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... These turbulent fluctuations, embedded in a larger flow, tend to drain the large-scale
flow of energy by a variety of mechanical processes and in turn pass the energy to finer scale of
motions where viscosity can act directly. This notion of the cascade of energy from the largest
to the smallest scale of motion is far from clear and rigorous. [Pedlosky]
But It is the most challenging and appealing phenomenon
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Introduction

The Mediterranean ocean Forecasting System

The Mediterranean ocean Forecasting System (MFS) is working operationally since
2000 and is beeing continuolsy improved througth the framework of international
projects. The system is part of the Mediterranean Operational Oceanography Net-
work -MOON- and MFS is coordinated and operated by the Italian Group of Oper-
ational Oceanography (GNOO) (Tonani et al., 2009). Since year 2009 it is part of
the MyOcean system (www.myocean.eu) becoming Med-Monitoring and Forecasting
System (Med-MFC) (M.Tonani et al., in press).
The numerical model component of Med-currents is composed by two elements: an
Ocean General Circulation Model (OGCM) and a Wave Model. The OGCM code
is NEMO-OPA (Nucleus for European Modelling of the Ocean-Ocean PArallelise)
version 3.2 (Madec, 2008). The code is developed and maintained by the NEMO-
consortium. The model is a primitive equation in spherical coordinates. The Wave
Model is based on the WAM (Wave Analysis Model) code. NEMO-OPA has been
implemented in the Mediterranean at 1/16 deg. x 1/16 deg. horizontal resolution
and 72 unevenly spaced vertical levels (Oddo et al., 2009). Since September 2005
the system produces short-term ocean forecasts for the next ten days and the pro-
duction is on a daily basis, while before it was weekely and it is coupled off-line
with a biogeochemical forecasting system and a wave model. Every day (J) the
system produces 10 days forecast from J to J+9, as shown in Figure 1. On Tues-
days, 15 days of analysis are produced, from J-15 to J-1, with the assimilation of
all the available satellite and in situ data. Med-biogeochemistry 10-day forecast
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Figure 1:

is produced bi-weekly on Tuesday and on Friday (see Figure 1). All days, except
Tuesday, a 24-hour simulation is performed (from J-1 to J) in order to get the best
initial condition for the forecast. The simulation will be different from the forecast
produced the previous day (J-1) for the atmospheric forcing, which is an analysis
field instead of a forecast. All the products are validated and assessed in near real
time via comparison with dependent and semi-independent observations (Tonani et
al 2009). A real time network has been developed for this purpose in collaboration
with the MOON community (Mediterranean Operational Oceanography Network)
in order to collect all the available moored observations for temperature, salinity,
currents and sea level. All the information collected via this network are elaborated
by and ad hoc-software in order to evaluate the quality of the Med-MFC products
(http://gnoo.bo.ingv.it/myocean/calval).



iii

The problem of uncertainty in ocean modelling

The first successful numerical weather prediction occurred in the 1950s, and since
that date many important improvements have been made in the accuracy of numer-
ical weather prediction models.
Some advances depend on the steady developments in high-performance computing
resources which has permitted the increase in the spatial resolution of numerical
prediction models permitting to resolve different scales of motion. The accuracy of
the numerical prediction models has also benefited from improvements in the way
physical processes and motions on the subgrid-scale are represented as well as im-
provements in the representation of the interaction with the ocean and the land
surface. Nevertheless, some elements, such as initial condition uncertainties, atmo-
spheric forcing inaccuracy and model errors, being intrinsically related to truth state
of the fluid and the way that we use to describe it, cannot be easily removed, giving
an important contribution to errors growth.

State of art of multi model SuperEnsemble

Taking into account the previous statements about the impossibility of eliminate
forecast errors, many techniques, such as ensemble forecasting, have been developed
recently. The goal of ensemble forecasting is to predict the probability of future
weather events as much precisely as possible (Epstein 1969; Leith 1974; Mullen and
Baum- hefner 1994). Forecasts are sensitive to both small uncertainties in the initial
condition (Lorenz 1963) and model error (Harrison et al. 1999), so a deterministic
prediction may not be reasonable and then fail. An ensemble forecast system starts
by the creation of equally likely analyses of an initial state in which the ensemble
mean is the best estimate of the true state of the fluid we want to describe (both at-
mosphere and ocean). As the forecast time runs the trajectory of ensemble member
continue to diverge. For long enough time (depending on the system) they will differ
so much that they will be impossible to be distinguished from another randomly
chosen states.
Operationally, ensemble prediction systems have been made changing the initial con-
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ditions, adding the perturbation field to the analyses. In this way, we assume that
forecast errors arise from analysis errors while the model is considered perfect. The
National Centers for Environmental Prediction (NCEP) define these perturbations
through bred modes (Toth & Kalnay, 1993) which represent the fastest growing
perturbations and simulate the development of growing errors in the analysis cycle.
The European Center for Medium-Range Weather Forecasts (ECMWF), instead,
uses singular vectors (Buizza & Palmer, 1995) which maximize the linear growth
of energy over a specified domain. moreover, The Canadian Meteorological Center
(CMC) applies the ensemble Kalman filter (EnKF; Evensen, 2003; Houtekamer et al.,
1996) which provides an ensemble of initial conditions thanks to the assimilation of
an ensemble of perturbed observations.
in order to consider both initial conditions and model errors, multimodel approach,
statistical techniques involving the use of different forecast models (e.g. Evans et al.,
2000; Krishnamurti et al., 2000; Stensrud, 2001), different physical parameterization
schemes (e.g. Houtekamer et al., 1996; Stensrud et al., 1999) or stochastic physical
parameterization (e.g. Palmer, 2001; Grell and Devenyi, 2002) have been developed.
others use a multimodel formed by a combination of several operational products
plus perturbations of these runs, like Fujita et al. (2007) in their exploration of
various ensembles dealing with the influence of initial conditions and multiphysics
or Meng and Zhang (2007) in their test of an EnKF for data assimilation. In spite
of the wide range of existing building techniques it is still unclear which one is the
best. Numerous studies compare not only different sources of error (model or anal-
yses) but different techniques to deal with each source. For example, Stensrud et
al. (2000) and Fujita et al. (2007) compare initial conditions and model physics
uncertainties in an ensemble, Clark et al. (2008) compares the contributions of ini-
tial/lateral boundary conditions and mixed physics to the spread and skill of 120-h
precipitation ensemble forecasts while Meng and Zhang (2007) tested the sensitiv-
ity of an EnKF to model error induced by different cumulus parameterizations. in
Krishnamurti’s approach (Krishnamurti et al., 1999) he used an unbiased linear com-
bination of the available models, optimal (in the least-squares sense) with respect to
observations during a training period of a priori chosen length; all observations have
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equal importance. Lenartz et al. (2010) introduced dynamically evolving weights in
a linear combination of models, using data assimilation techniques (Kalman filter
and particle filter) adapted to the super-ensemble paradigm. These techniques are
able to train the weights on a time-scale corresponding to their natural characteris-
tic time, discarding older information automatically. The weights rate of change is
determined by the respective (and evolving) uncertainties of the weights themselves,
of individual models and of observations.

Study of multi model Superensemble

Because uncertainties arise from the initial conditions, improper model physics pa-
rametrization schemes, and atmospheric forcing inaccuracy, a good ensemble may
need to contain all these aspects. The intent of this thesis was to evaluate the im-
pact of model error, initial condition and atmospheric forcing throughout several
experiments. The first was addressed to model parametrizations scheme,since pres-
ence of model error can often produce both a large bias of the ensemble mean and
too little spread, bringing the ensemble algorithm to fail (Meng & Zhang (2011));
in the second experiment, uncertainties have been sampled both in initial conditions
and atmospheric forcing by a MFS-BHM winds. Finally, in the third experiment, we
used a wider approach addressed to remove the systematic error by using different
research institute estimates (analysis and forecast). SuperEnsemble performances
have been evaluated in every experiment on the base of every dataset created.

High resolution model

All numerical simulations of atmospheric and oceanic phenomena are limited by the
finite spatial resolution, generally requiring a parametrization of effects of motions
on unresolved scales on those explicitly resolved. A goal of numerical modellers
has been to resolve as many scales of the actual circulation as practically possible.
With the recent advent of a new generation of high-performance computing resources
some notable thresholds in terms of model resolution have been approached or, in
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some cases, surpassed. In this thesis starting from the default version of the Ocean
General Circulation employed in MFS, we implemented a higher resolution model in
the Mediterranean sea.

Thesis Objectives

This research activity studied how the uncertainties are concerned and interrelated
through the multi-model approach, since it seems to be the bigger challenge of ocean
and weather forecasting. Moreover, we tried to reduce model error throughout the
superensemble approach. In order to provide this aim, we created different dataset
and by means of proper algorithms we obtained the superensamble estimate. We
studied the sensitivity of this algorithm in function of its characteristics parameters.
Clearly, it is not possible to evaluate a reasonable estimation of the error neglecting
the importance of the grid size of ocean model, for the large amount of all the
sub grid-phenomena embedded in space discretizations that can be only roughly
parametrized instead of an explicit evaluation. For this reason we also developed
a high resolution model, in order to calculate for the first time the impact of grid
resolution on model error.

Structure of the thesis

This thesis is organized as follows: In chapter 1 we will describe the wide range
of uncertainties concerning the numerical modelling. The differences between "in-
trinsic" and "structural" uncertainties. Furthermore, the perfect model assumption
must be dropped in real world studies where computational constraint allow us to
parametrize some phenomena instead of an explicitly evaluation. We will explain the
differences between the Navier-Sokes Equations and Primitive equations. Finally we
will give a practical example of the error propagation. A large part of the effort of
this thesis was dedicated to method for the creation of suitable ensemble members
used in the experiments trained are presented in chapter 2. Furthermore we com-
mented the goodness of our ensemble on the basis of ad hoc indexes. In chapter 3
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we will show the methodology employed, the Krishnamurti Superensemble Concept,
and the results due to the employment of this technique in ocean ensemble datasets.
In chapter 4 we try to bring improvement to the classical superensemble approach
considering the EOFs/PC Analysis, so after an overview of how does this statistical
techniques can decompose a space and time dependent field into a set of spatial
patterns and associated time indices, giving the linking between their development
and the application in our case.
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Chapter 1

Uncertainties and model errors

Background

Uncertainties in numerical modelling arise both from Intrinsic Uncertainties such as
in the initial conditions and boundary (surface and lateral) conditions, and Structural
Uncertainties resulting from the fact that some processes are not fully understood.
Furthermore, the perfect model assumption must be dropped in real world studies
where the computational constraints allow us to parametrize some phenomena in-
stead of explicitly evaluated (hydrostatic approximation and rigid lid/free surface
assumption) bringing model error growth. Inadequate representation of physical
processes, parametrizations of the sub grid scale physical phenomena, numerical in-
accuracies,end truncation errors arrange that numerical output simulations will be
different from the true state of the fluid we want to describe.

1.1 Errors in initial conditions and atmospheric forc-

ing

Ocean observations are required for the model initialization, but the platforms and
sensors providing a wide range of physical and biological measurements are sparse
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both in space and time.The sampling error is one of the most relevant error in
oceans sciences. In an ideal world, observation should sample all the physical pro-
cesses, when using limited area model, observations are needed to prescribe at the
lateral open boundary processes not occurring locally but affecting and influencing
local dynamics. Ideally we should have one observation in each point of our domain,
so assimilation techniques have been developed in order to meld these data with the
dynamical models variables and produce the best estimate of the current oceanic
state. Beyond this native lack of knowledge of the system we want to describe,
ocean-earth’s system interactions are approximate and ocean boundary conditions
are inexact. These sources of uncertainties together with model error (approxima-
tions to equations and computational errors) lead to our estimate will be different
from the truth, and we will say that our estimate is affected by an error, Lermusiaux
(2006). All these sources of error are not really separable since the estimation of the
initial conditions involves a numerical model as merger so initial condition error will
be affected by model error and grown up in time.
The first theoretical studies on error growth in atmospheric prediction and on the
implied limits of a prediction and probabilistic prediction appeared in the late 1950s
to early 1970s. This area of meteorological research is referred as predictability. Let
us focus on initial condition uncertainties first, as we have already said they can be
estimated within a certain accuracy. Lorenz (1963) studied the growth of forecast
errors due to initial condition uncertainties by looking at the rate at which solu-
tions of the ECMWF numerical weather prediction model diverged, and realized
that forced dissipative systems of ordinary differential equations that originate from
highly truncated models of fluid flows, "systematically exhibit sensitive dependence
to initial conditions".
In a deterministic system the state is uniquely determined from initial condition
(no stochastic variables). Both atmosphere and ocean are deterministic systems,
and they are also perpetually forced by dissipative terms (there are sinks/sources).
Sensitivity to initial conditions means that two nearby trajectories separate expo-
nentially fast.This implies that, even if we have a deterministic system two solutions
starting from two almost equal states will separate and loose the similarities. It is
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the non-linearity of the system that gives raise to the irregular behaviour.

The ocean exchanges mass and energy with the atmosphere through its surface.
The surface boundary condition for momentum is:

Avm
∂uh

∂z
|z=η=

τ

ρ0

(1.1)

where Avm is the vertical eddy viscosity, τ = (τu, τv) represents the zonal and merid-
ional wind stress components and uh = (u, v).
The water flux boundary condition states that a particle of water can enter or escape
the sea surface only through precipitation or evaporation:

w =
Dη

Dt
− (E − P ) (1.2)

E and P are evaporation and precipitation, D
Dt

= ∂
∂t

+ uh |z=η ·∇ is the total deriva-
tive.
The water flux is coupled to the salinity boundary condition by the (E − P ) term
with runoff(R) by:

Avs
∂S

∂z
|z=η= (E − P −R)Sz=η (1.3)

Finally, the boundary condition for heat flux is:

AvT
∂T

∂z
|z=0=

Q

ρ0Cp
(1.4)

where Cp is the ocean heat capacity constant and Q is the heat budget and consists
of the solar radiation flux Qs minus the net long-wave radiation flux QB, the latent
heat flux QE and the sensible heat flux QH . Knowledge of all the components of the
heat and water budgets at the air-sea interface are key points in ocean modelling.
Unfortunately, given the complexity of the processes involved, they must necessarily
be parametrized. Several techniques have been historically applied and are widely
described in the literature, providing different results depending on their approxi-
mations and accuracy. In the nineties and last ten years, heat fluxes started to be
parametrizes with empirical (bulk) formulae forced by atmospheric data sets rather



4 Uncertainties and model errors

then the true measures of fluxes (due to their cost are too sparse both in space and
time). The seminal work of Rosati & Miyakoda (1988) described the first OGCM
application of this methodology. At present, this approach is the most often used,
since it represents the best compromise. Atmospheric forcing data (wind, temper-
ature, humidity, precipitation and cloud cover) originate from a variety of sources
with different accuracy, the question arises how accurate the atmospheric data has
to be in order to be useful for a realistic simulation of atmosphere state. Recent
works have demonstrated a Kinetic Energy (KE) deficiency in global ocean surface
winds provided by Numerical Weather Prediction (NWP) system with respect to co-
incident surface winds retrieved by scatterometer data(Chin et al. (1998) and Milliff
et al. (2004)). A similar behaviour (ECMWF winds usually underestimates wind
speed) has been recognized comparing ECMWF analyses and QuickScat data over
Mediterranean basin(Milliff (2004)). Bayesian Hierarchical Model for surface winds(
Milliff et al. (2011) and Pinardi et al. (2011)) is a statistical technique able to produce
different estimates of winds as a combination of ECMWF products with QuickScat
Data which sampling the uncertainties affecting the atmospheric field forcing (see the
experiment described in 2.2). Furthermore all the atmospheric variable uncertainties
are coupled trough the bulk formulae, for example the heat fluxes are affected by wind
perturbation through two processes: wind speed is an input in the parametrization
scheme of sensible and latent heat, while variations of sea surface temperature due
to wind driven circulation affect the parametrisation schemes of sensible and latent
heat and the net outgoing long-wave flux. For all that reasons air-sea interactions
constitute a primary source of model error growth (Gould et al. (2001)).

1.2 From the closure problem to the sub-grid scale

parametrizations

The numerical ocean modelling involves the seeking of solutions of a coupled set
of non-linear partial differential equations (PDEs), called Navier-Stokes equations,
able to describe the time-dependent behaviour of properties of a fluid flowing in
three-dimensional space and acted upon by various forces, under the constraint of
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conservation equations for some scalar properties such as sea temperature and salin-
ity with appropriate source and sink terms. Each numerical model solves the basic
conservation equation for mass (eq.(1.5)) and momentum (eq.(1.6)) suitably modified
in order to describe the rotation of the reference system and the thermodynamic(1.8)
or other dissipative processes which can take place in the ocean1.

dρ

dt
+ ρ∇ · ~v = 0 (1.5)

where ~v = (u, v, w) and ρ is the density;

ρ
d~v

dt
= −∇p− ρ∇φ+ F (~v) (1.6)

or that mass per unit volume times the accelaration is equal to the sum of the pressur
gradient force, the body ρ∇φ where φ is the potential by which conservative body
forces can be represented, and the force F is in principle the frictional force in the
fluid. For Newtonian fluid like air or water

F (~v) = µ∇2~v +
µ

3
∇ (∇ · ~v) (1.7)

where µ is the molecular viscosity. This is an exact representation for F when µ, in
principle a thermodynamic variable is taken as constant over the field of motion.

cp
dT

dt
+
T

ρ
α
dp

dt
=
k

ρ
∇2T +Q (1.8)

where α is the coefficient of thermal expansion defined by the following relation
α = −1

ρ

(
∂ρ
∂T

)
p
, k is the thermal conductivity, cp = T

(
∂S
∂T

)
p
is the specific heat at

constant pressure, Q is the rate of heat addition per unit mass by internal sources.
Moreover since ρ = ρ(T, ρ, p) we need an additional constraint on salinity taking in
account of the related source/sink terms and diffusivity redistribution of salinity.

dS

dt
= F (S) (1.9)

1see Pedlosky (1979)
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In order to include some effects of the small-scale processes, which are not the
focus of our interest but they may influence large scale-flow motions, we can decom-
pose the state variables (scalars or vectorial) in large-scale (and/or long-period) and
smaller-scale (and/or shorter-period) components.

B(t) = B̄(t) + B̂(t)

By convention the over bar (̄.) represents the chosen averaging operator and the
caret (̂.) denotes the deviation from that average, and B is a generic variable. Under
the basic assumption that:

¯̂
B = 0

B = B̄

B̄1B̂2 = 0

and
B1B2 = B1B2

Here B1 and B2 are other different generic variable. So starting from the inviscid
momentum equation written in tensioral form (1.10):

∂ui
∂t

+ uj
∂ui
∂xi
− fεijkuj =

∂p

∂xi
− g

ρ0

ρδi3 (1.10)

We can rewrite each state variable as the sum of mean field and a perturbation:
ui = ūi + ûi ρ = ρ̄+ ρ̂ p = p̄+ p̂

This kind of averaging procedure dates back to the last century and it is referred as
Reynolds decomposition(Reynolds (1895)).

Substituting in each term of 1.10 its mean field and perturbations, and then
averaging we obtain:

∂ūi
∂t

+ ūj
∂ūi
∂xj
− fεijkūj = − ∂p̄

∂xi
− g

ρ0

ρ̄δi3 −
∂ûiûj
∂xj

(1.11)



1.2 From the closure problem to the sub-grid scale parametrizations 7

The last term is called Reynolds stress tensor, its diagonals elements: ûiûi stand
for the mean turbulent momentum fluxes, while the symmetric off-diagonal (i 6= j)

elements ûiûj are the shearing stresses. These new variables, for which there are
no prognostic equations, arise in the Reynolds averaging procedure, so we cannot
resolve the equations unless we specify the stress (ûiûj) tensor directly or writing
some kind of relationship of the fluctuating components to the mean field, this is the
so called closure problem. Experimental evidences support the hypothesis that small
scale processes act on large scale flow in a manner that mimics the way in which
molecular motions affect macroscopic flow, and so Reynolds stresses are parametrized
directly assuming a linear dependence (see eq. 1.12)with large scale flow gradient:

∂(ûiûj)

∂xi
=

∂

∂xi
(Axixj

∂ui
∂xj

) (1.12)

In a general approach the tensor A in a 3x3 matrix if space an time varying coeffi-
cients,

A =

 Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 (1.13)

In wide use is the much simpler diagonal form:

A =

 Ah 0 0

0 Ah 0

0 0 Av

 (1.14)

This approximation follows from the small aspect ratio (δ = H
L
) in the ocean, which

suggests a separate treatment of lateral and vertical sub grid scale parametrizations.
If the tensor A is assumed to be a constant, the new equation form for large scale flow
is identical to ordinary Navier-Stokes equations with an effective viscosity (µ

ρ
+ A).
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1.2.1 Lateral parametrization

Lateral mixing schemes in ocean models usually use a first order closure method.
The lateral mixing includes all quasi-diffusive and viscous processes that occur along
geopotential surfaces, along surfaces of constant potential or in situ density and
along the bottom boundary. In an inhomogeneous flow field, turbulent viscosity
may clearly depends on the local position, so it plausible that the rate of SGS mixing
should vary with location and resolution. A realistic approach relates the coefficients
to the ambient conditions in the large scale flow field, so an extension of the constant
coefficient concept is used, involving spatially varying mixing coefficients A(xi, xj).
Usually there are two classes of these realistic schemes: upstream (Lin & Walker,
1994) and the Smagorinsky(Smagorinsky, 1993) In the first, the eddy coefficient is
proportional to the local flow speed and the grid spacing, while the latter combines
a grid size dependence with the deformation of velocity field. Moreover in high
resolution simulation, since part of the spectrum of mesoscale eddies is explicitly
incorporated, the harmonic approach seems to be too dissipative on the eddy scales,
especially where the cut-off wave number on the numerical grid is close to the Rossby
deformation radius. So it is used higher order diffusive or viscous operator2 e.g.

∂(ûiûj)

∂xi
= (−1)n+1 ∂

∂xi
(A

xixj
bi

∂∇2nui
∂xj

) (n = 0, 1, ...) (1.15)

For n=0 we have the basic harmonic operator. If n=1 we have the bi-harmonic
viscosity/diffusivity term, which can offer a compromise between increased scale se-
lectivity and computational requirement. Since small-scale noise often accumulates
at the highest wave-number, and since these flow components are unlikely to be
accurately computed in any case, scale selective filtering techniques (like Shapiro
filter, see Shapiro, 1970) have been developed. However we have to consider that
the principle direction of mixing is therefore neither strictly vertical nor purely hor-
izontal, but a spatial mixture of the two. A rotation of the mixing tensor from
the standard horizontal/vertical orientation can be performed (Solomon, 1971 and
Redi, 1982)and available in ocean models. Often viscous and diffusive operators have

2see Haidvogel & Beckmann (1999)
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the same forms, but different dissipative coefficients. Nevertheless monotonicity and
positive definiteness are usually considered important proprieties of the numerical
solution for the tracer equation, while they are less stringent for the momentum
equations. The choice of diffusive closure in therefore closely related with the form
of the horizontal advection operator. A priori choice is not always obvious. Some
closures are rather ad hoc, and the only available justification for their use is the
preservation of smooth numerical results. Furthermore, the SGS schemes can be
used as filter, in order to remove the small scale numerical noise.

1.2.2 Parametrization in the vertical direction

As reviewed in detail by Large (1998) parametrization can be classified into local and
non-local closure schemes. The formers assume that the eddy fluxes depend on the
local properties of the large scale flow, while the latter recognize that the turbulent
transports at a given level may not depend exclusively on the local properties at
that level, but rather on the overall state of the boundary layer. Both these closure
schemes are derived by time evolution on the Turbulent Kinetic Energy (TKE), as:

∂TKE

∂t
= AMv

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]
− ATvN2 +

∂

∂z

(
Ak
∂TKE

∂z

)
− ε (1.16)

N2 = − g

ρ0

∂ρ

∂z
(1.17)

N2 is the Brunt− V äisälä frequency and Ak is the vertical diffusivity of the TKE.
This two terms are related to the production of the vertical shear and buoyancy. This
equation is the basis for a large number of higher-order turbulent closure schemes.
Two frequent approach are the so called k − l and k − ε schemes. The first uses a
length scale l to close the system, the second gives a definition for l, as l = cε

√
TKE3

ε
,

and use an additional equation for the rate ε. In the absence of high frequency
forcing, night-time convection, and with low vertical resolutions, turbulent closures
cannot produce high enough mixing at the top layer interface. This explains why
non-local parametrisation have been developed, like the KPP scheme (Large et al.
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(1994) see appendixA.1.1 for a brief description) where the vertical gradients are ex-
plicitly retained rather then the assumption of having a well mixed boundary layer.

A different approch, called Pacanowski and Philander(P.P.) (R C Pacanowski,
1981), reckons the vertical diffusion coefficients as a function of the local Richardson
number neglecting the time-evolution of the Turbulent Kinetic energy (see descrip-
tion in appendix A.1.3).In this scheme, turbulent mixing il is treated by a first-order
local diffusion approach in which the sub-grid scale turbulent vertical kinematic flux
of a quantity x (X as the mean) is assumed proportional to the local property gradi-
ent with an appropriate eddy mixing coefficient K. This so- called K theory can be
described as

wx = −K ∂X
∂z

where the upper case (X) represents mean quantities resolved at
the model grid and the lower case (x) represents the subgrid-scale variables (also
called turbulent fluctuations).

The mixing coefficients can be approximated as

• Km = ν0
(1+αRig)n

+ νb

• Kt = ν0
(1+αRig)n+1 + κb

where Km represents viscosity, Kt represents diffusivity, and the local gradient
Richardson number :

Rig =
N2

U2
z + V 2

z

(1.18)

1.3 The Primitive Equation

The task of solving the resulting PDEs in the most efficient manner possible requires
careful attention to the nature of the flow, the available computer resources, and the
simplifications that can be made without adversely affecting the solutions sought.
To conduct analytical studies Navier-stokes equation, they are subjected to some
approximations, furthermore other kind of simplification are due to computational
constraint. That simplifications are derived by the scaling analysis, task of this
process is to eliminate certain terms that will be unlikely to be important.
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• The Boussinesq approximation: density variations may be neglected ex-
cept when they are coupled to the gravitational accelation in the buoyancy
force, the variations in volume expansion due to temperature gradients will
also be small. Density field can be expressed as a sum of a constant reference
value ρ0 and a smaller, space and time varying perturbation, ρ̂:

ρ(x, y, z, t) = ρ0 + ρ̂(x, y, z, t) ρ0 � ρ̂ (1.19)

As conseguence in the momentum equation and the mass conservation, we may
sustitute the inertial term and the consituity equation with a constant.

• Incompressibility:The specification of incompressibility and constant density
immediately decouples the dynamic from the thermodynimics and reduce the
equation of mass conservation to the condiction incompressibility or non diver-
gence field. the three dimensional divergence of the velocity vector is assumed
to be zero ; Let’s take the conservation equation for mass eq.(1.5 together with
the approximation 1.19 it became:

ρ0 (∇ · ~v) + ρ̂ (∇ · ~v) +
dρ̂

dt
= 0 (1.20)

The second term is smaller compared to the former, so it can be ignored,
furthermore if the characteristic length and time scales of perturbation density
are comparable to those of the velocity components, than the three term is also
smaller then the first by a factor. So a suitable approximation can be:

∇ · ~v = 0 (1.21)

for a quantitative and more accurate demonstration refers to Batchelor (1967).is
in the momentum equation where the kinematic viscosity can be assumed con-
stant

• The Hydrostatic approximation: considering the oceanic circulation and
taking the appropriate typical magnitudes for the variables involved in Navier-
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Stokes equation, the vertical momentum equation is reduced to a balance be-
tween the vertical pressure gradient and the gravitational force.

−1

ρ

∂p

∂z
− g ' 0 (1.22)

A complete justification of this approximation (completed by demonstration
that perturbations to the mean hydrostatic state are themselves hydrostatic,
and that scales of motion typical of mesoscale circulation are also hydrostatic,
see Holton (1992)).

• Spherical earth approximation: The geopotential surfaces are assumed
to be spheres so gravity field lines are parallel to the earthś radius, and the
equations are written in spherical coordinates (λ, φ, z) where λ is longitude, φ
is latitude and z is depth.

The vector invariant form of the primitive equations as solved by the OceanGeneral
Circulation Model employd in our institute became:

∂Uh

∂t
= −

[
(∇×U)×U +

1

2
∇
(
U2
)]

h

−fk×Uh −
1

ρ0

∇hp+ Du

∂p

∂z
= −ρg

∇ ·U = 0

∂T

∂t
= −∇ · (TU) +DT

∂S

∂t
= −∇ · (SU) +DS

ρ = ρ (T, S, p)

Here we defined U = Uh+wk (the subscript h denotes the local horizontal vector
i.e. over the (i,j) plan), T is the potential temperature, S the salinity ρ is the in-situ
density. Futhermore ∇ is the generalised derivative vector operator in the (i, j,k)
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directions,t is the time, z is the vertical coordinate f the coriolis acceleration (f =

2ωkwhere ω is the earth angular velocity vector ) g is rge gravitational acceleration,
Du, DT and DS are the parametrizations of small scale physics for momentum,
temperature and salinity, including surface forcing terms.

1.4 Errors of numerical approximations

There are several potential sources of errors in a numerical calculation. Two sources
are universal in the sense that they occur in any numerical computation. They are
round-off and truncation errors. Inaccuracies of numerical computations due to the
errors result in a deviation of a numerical solution from the exact solution, no matter
whether the latter is known explicitly or not.

1.4.1 Round-off errors

Numbers are represented in a computer by a finite number of digits of precision.
The simplest variant for hardware implementation is to keep the first n digits and to
chop off all remaining digits. A more accurate scheme is to examine the (n+ 1)− st
digit and to round the n − th digit to the nearest integer. This procedure leads to
round-off errors. We studied this kind of error with a simple example: the Leibniz
formula for π.

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− ... =

π

4
(1.23)

We truncated the sum for n = 100, in the first case we did the integration 100 times
on the same processor, in the other cases we did the integration 100/Nprcs for processor,
sending the information from one processor to the other and printing the results in
double precision.

• RUN on 1 processor:π is approximately: 3.1416009869231254

• RUN on 2 processors: π is approximately: 3.1416009869231241

• RUN on 10 processors: π is approximately: 3.1416009869231249
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• RUN on 20 processors: π is approximately: 3.1416009869231245

• RUN on 40 processors: π is approximately: 3.1416009869231258

• RUN on 50 processors: π is approximately: 3.1416009869231254

1.4.2 Truncation errors

Several kind of truncation errors occur in representing a continuous function in term
of a discrete set of variables. A first possibility is to obtain a power series for
the function u(x) by truncating the Taylor series expansion about some point x0

under the hypothesis that continuous function u(x) possesses an (n + 1) derivative
everywhere on the interval [x0, x]. Taylor series expansion is used in order to evaluate
the derivative of a function.
Another example of truncation error is the numerical integration of a function where
the exact calculations would require us to calculate the area under the curve by the
infinite summation of the subtended rectangles. Since we cannot choose an infinite
number of rectangles, we will have truncation error.
Error can come by piecewise interpolation due to the representation of a function
defined on a grid in a grid with different grid spacing. it has been shown that
maximum error goes like grid spacing squared, Haidvogel & Beckmann (1999). Other
times, it is necessary to replaces the series by the n− th order polynomial, this lead
the grows of a truncation error of the n− th order.

1.5 Error Propagation

Since different sources of error can affect a simulation we trained a simple twin exper-
iment to test error propagation due to inaccuracy in atmospheric forcing uncertanies
and model approximations. European Centre for Medium-Range Weather Forecasts
(ECMWF) provides to MFS Wind velocity(10 m), cloud cover, humidity, temper-
ature and pressure(at 2 m) with a time interval of 6 hours once per day. For our
purposes, since all those fields come from a global model 1/4 °(from 2009, before 1/2 )
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they have to be interpolated by an apposite algorithm (bi-linear or bi-cubic accord-
ing to the field) to the operational set up regular grid 1/16 °resolution. ( 1/24 °in the
high resolution model (see appendix B)). As long as the NEMO model code ran on
a vector machine, a bicubic spline interpolation had been used for the interpolation
procedure. During our work thesis, we the port on a scalar machine the old code in
order to ran with domain decomposition technique. The old spline method was no
more a suitable option, hence a simpler bicubic interpolation has been implemented.
We studied how a new interpolation method can impact the forecast simulation by
setting up the following twin experiment. Two simulations started from the same
initial conditions and were forced for 10 days with the same ECMWF files, but have
being interpolated with the two different interpolation algorithms. Uncertainties in
atmospheric forcing and computational error were propagated by the model. The re-
sults are depicted in fig.1.1. Even though the interpolation method ensure the same

Figure 1.1: Differences °C the twin experiment simulations

accuracy of evaluation, and the simulations have been carried with same computa-
tional design(same machine and domain splitting), we were able to reach significant
differences between the simulation only by the choice of an interpolation procedure.





17

Chapter 2

Building the SuperEnsemble dataset

Overview

For weather and ocean prediction systems, the uncertainties and model errors can be
investigated by applying the ensemble techniques designed to sample the error under
investigation. If we are interested in model initialization uncertainties the ensemble
members will be obtained by the repeated integrations of the model forward in time
from slight-perturbed initial conditions, with perturbations designed in order to cap-
ture as much as possible of the underlying uncertainty(Kalnay (2003)). Similarly,
model error due to physical parametrizations can be addressed by the "multi-physic"
approach, i.e. running the same simulation several times with different settings of
the physical parametrization schemes(Pellerin et al. (2003)) or with different para-
metrization schemes. Moreover, in order to take into account both sources of error
(initial conditions, model error), both the techniques can be combined to a new ap-
proach, the multi-model superensemble concept, in this case the ensemble is built
combining several model integrations able to sample a wider range of uncertainties,
from different initial conditions, atmospheric forcing inaccuracy and the different
physical parametrizations.
As far as uncertainties are concerned and interrelated, no one of the previous ap-
proach is clearly better than another, but in this work we focused in the latter
approach since it seems to be the bigger challenge of ocean and weather forecasting.
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In this chapter, the basic idea beside the set up of each experiment carried out,
the tasks addressed and considerations on the goodness of ensemble generated are
presented. Since simulations results are indirect measurements of the quantity stud-
ied, we can use the same terminology used in experimental physical measurements.
Hence, the accuracy of a measurement system is the degree of closeness of measure-
ments of a quantity to that quantity’s actual (true) value, while the precision is the
degree to which repeated measurements under unchanged conditions show the same
results. A measurement system can be accurate but not precise, precise but not ac-
curate, neither, or both. For example, if the experiment contains a systematic error,
then increasing the sample size generally increases precision but does not improve
accuracy. Eliminating the systematic error improves accuracy but does not change
precision. For our purposes, the spread around the ensemble mean mimics the ac-
curacy while the difference in generated variability from ensemble and the observed
state can mimic the precision. metti qualcosa che lo spieghi As evidenced by Kalnay
et al. (2006) we have built a "good ensemble" if "truth" looks like a member of the
ensemble (see figure 2.1 )

Figure 2.1: Practical Example corresponding to the idealized "good ensemble"

So two main conditions must be satisfied:
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• Spread around the ensemble mean. As evidenced by Hagedorn et al. (2005)
before, Weigel et al. (2008) and Knutti (2010) later, the feedback spread-bias
reduction is challenging since it is impossible remove a correct bias if the stan-
dard deviation around ensemble mean, is less than the mean difference between
simulations and truth state. It means we gain in accuracy despite to the preci-
sion of the measurement. most correlated patterns are also those that reduce
the ensemble spread Feddersen et al. (1999)

• Generated Varibility. This feature can be considered as the average ensem-
ble capability in reproducing the truth observed state variability during a time
period. It means that even if we were able to remove the bias, in order to be
reliable we should reproduce major phenomena occurring during the period of
interest,Johnson & Bowler (2009).

The variability for the ensemble member has been evaluated as:

VMP =
1
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While for the truth state it has been evaluated as:
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The variability generated by the multi-physics ensemble was smaller than the natural
variability of the system as depicted in figure 2.2, also the spread defined as:
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was smaller than the mean absolute difference (MAD) MAD = 1
T

T∑
t

|Mt −Ot |
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2.1 Multiphysics SuperEnsemble Experiment

Despite there are several kinds of uncertainties and model error affecting a simulation,
here we focused our attention only in some specific topic fields. The main idea leading
to this experiment derived from the analysis of the Primitive Equations.

∂−→u
∂t

+−→u · ∇−→u + f ×−→u +
1

ρ
∇p = kH∇2−→u + kz

∂2−→u
∂z2

(2.4)

The first term on LHS is the local tendency, the quantity we want to resolve, the
second is the advcection term, the third the coriolis force and the last term on LHS is
the pressure term. All this terms can be resolved explicitly and errors related to the
LHS are mostly due to discretization techniques or accuracy of numerical schemes.
In the RHS the viscosity term has been splitted into the horizontal (first term on
RHS) and vertical components. For these two terms (the closure problem discussed
in the previous chapter) some physical assumption and/or parametrization must be
used, that inevitably will impact the model results.

Other structural uncertainties arise if we consider the advective part in the ad-
vection/diffusion equation for the tracer.

∂T

∂t
+ (u · ∇h)T + w

∂T

∂z
= Ah∇2

hT + Az
∂2T

∂z2
(2.5)

Since the equation must be solved on computers, a space and time discretization is
needed. The choice made in space and time interpolation defines the value of the
tracer at the velocity points that can change according to the grid an time stepping
used.

Concerning the space discretization, the vertical grid size is usually an increasing
function of depth, this leads to the sparsest resolution at the ocean floor. In this
way the bottom boundary layer dynamics can not be explicitly represented and a
parametrization for the bottom momentum flux is necessary. The previous sources
of uncertainties can be sampled building the multi-physics ensemble as a collection of
simulations generated using the related physical parametrization schemes available
in the Ocean General Circulation Model NEMO (Nucleus for European Modelling
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of the Ocean, Madec (2008)), implemented in our institute.

2.1.1 The basic model configuration

The Ocean General Circulation Model (OGCM) code is NEMO-OPA (Nucleus for
European Modelling of the Ocean-Ocean PArallelise) version 2.3 (Madec et al 2008).
The code is developed and maintained by the NEMO- consortium. The model is
primitive equation in spherical coordinates. NEMO-OPA has been implemented in
the Mediterranean at 1/16 x 1/16 °horizontal resolution(almost 6.5 Km) and 72 un-
evenly spaced vertical levels and they have a thickness ranging from 3 m at the
surface to 300 m at the ocean bottom. Partial steps on the floor, in order to bet-
ter reproduce the bathymetry, are employed for the vertical grid mesh. This model
can be defined as a mesoscale-resolving model for the Mediterranean Sea, since the
first internal Rossby radius of deformation is around in summer and for most of the
Mediterranean basin (excpet in the Adriatic Sea). The Digital Bathymetric Data
Base Variable Resolution (DBDB-V) has been used to determine the cost line and
bathymetry. Futhermore, bathymetry has been manually interpolated along the
Croatian coast by a comparison with detailed nautical chart. In order to better
describe bottom shape, the vertical coloumn are discretized by partial cells. The
model covers the entire Mediterranean Sea and also extend into the Atlantic in order
to better resolve the exchanges with the Atlantic Ocean at the Strait of Gibraltar.
The model is nested, in the Atlantic, within the monthly mean climatological fields
computed from ten years of daily output of the 1/4 x 1/4 °global model (Drevillon
et al., 2008). In this way the total volume is allowed to change producing improve-
ments particularly evident in the Mediterranean sea level seasonal variability and
in the salinity characteristics of the Modified Atlantic Water (details on the nesting
technique and other major impacts on the model results are in Oddo et al., 2009).
Primitive Equations are intergrated with a time step of 600s.
Momentum, water and heat fluxes are interactively computed by bulk formulae us-
ing the 6-h, 0.25Â° deg. horizontal-resolution operational analyses and forecasts
fields from the European Centre for Medium-Range Weather Forecasts (ECMWF).
The water balance is computed by Evaporation minus Precipitation and Runoff.
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The evaporation is derived from the latent heat flux while the precipitation and
the runoff are provided by monthly mean datasets: the Climate Prediction Center
Merged Analysis of Precipitation (CMAP) Data (Xie and Arkin, 1997), the Global
Runoff Data Centre dataset (Fekete et al., 1999) for the Ebro, Nile and Rhone and
the dataset from Raicich (Raicich, 1996) for the Adriatic rivers (Po, Vjose, Seman
and Bojana). The Dardanelles inflow is parametrized as a river and the climato-
logical net inflow rates are taken from Kourafalou and Barbopoulos (2003). The
horizontal viscosity and diffusion operators are assumed to be bi-laplacian with coef-
ficients of 5 x 109m/s and 3 x m4/s for viscosity and diffusion respectively. The vertical
diffusion and viscosity terms are dependent upon the Richardson number. The ver-
tical convective processes are parameterized using the enhanced vertical diffusivity
parameterization. The advection scheme for active tracers, temperature and salinity,
is a mixed up- stream/MUSCL (Monotonic Upwind Scheme for Conservation Laws,
Estubier and Lvy, 2000) scheme. This mixed scheme has the capability to switch to
a simple up-stream scheme in areas where numerical instabilities might occur such as
in proximity of the river mouths, close to the Atlantic boundaries or near the Strait
of Gibraltar. Here the large mixing acting, due to the internal wave and tide break-
ing, is not explicitly resolved.In this area also the vertically diffusivity is artificially
increased.

2.1.2 Creation of the ensemble members

All the simulations started from the same initial conditions (climatology), the 7th
of January 2004, at the 00 UTC and lasted 30 days. Specifically, (see table 2.1) the
multi-physics dataset is the combination of two different viscosity operators (har-
monic and biharmonic) for the momentum, two vertical diffusion schemes (k − ε

and P.P.), three different advection schemes (upstream, Total Variance Dissipation
-TVD- and Monotone Upstream Scheme for Conservative Laws (MUSCL) -all those
schemes are described in appendix A- and three kinds of bottom friction parametri-
sations.

In each multi-model database, the distinction between "best effort" simulations
(i.e. the results from the default version, in this case the operational model in simula-



2.1 Multiphysics SuperEnsemble Experiment 23

n° V ertical
scheme

Tracer
advection

Bottom
friction

Lateral
momentumviscosity

k − ε P.P. UBS TVD MUSCL Laplacian Bilaplacian
1 × × non linear slip ×
2 × × non linear slip ×
3 × × non linear slip ×
4 × × free slip ×
5 × × no slip ×
6 × × non linear slip ×
7 × × non linear slip ×
8 × × non linear slip ×
9 × × non linear slip ×
10 × × no slip ×

Table 2.1: Experiment 1 design: Model configurations used in the multi-physics ensemble. Member
number 1 is the model basic configuration (Default version). All the other member are obtained
changing only one numerical scheme per time from the Default version.

tion mode used at INGV) and the perturbed physics ensembles is important because
can help us in modelling the uncertainties. As Murphy et al. (2004) pointed out,
the main limit of this kind of procedure is the un-reduction of the systematic error,
since the ensemble will have the structure of the underlying default model, so if it
is not able to reproduce a special process, then no one of the perturbed ensemble
member will be able to do it. For instance, if the ensemble is a collection of hydro-
static models, the vertical flow is determined by the incompressibility condition, and
has no direct energy source. So total kinetic energy in the hydrostatic case remains
bounded, as the horizontal velocity is limited by the available potential energy and
the vertical velocity is limited through the incompressibility condition(eq.1.21). Since
all convective processes aren’t explicitely resolved, neither they can be eliminated,
they will be parametrized, in different way, in each member.

A comparison of the resulting simulation as been analysed in terms of spread are
depicted in figure 2.3.between the model and the observations(figure 2.3 ).
Despite the plain results this experiment was helpful since we were able to evaluate
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Figure 2.2: Mean Variability generated in one month by the Multi-Physics ensemble (left) versus
the natural variability in the observations.

Figure 2.3: Standard Deviation of Multi-physics members (left) and the Mean Absolute Difference
between Ensemble Mean and the observation(right).
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the capability of the model to generate spatial variability, the rate of formation of
the spread and we could studied the impact of each numerical scheme choice.

2.2 BHM SuperEnsemble Experiment

In the second approach we produced 22 ensemble members ensemble that could
help us in investigating the atmospheric forcing uncertainties. Usually wind analysis
present systematic and persistent errors in representing the external forcing over sea
surface and can constitute an ideal starting point to address the problem of ocean
forecasting. This is especially true for high resolution model. Quick scat wind con-
stitutes a large data-set to compare the ECMWF products and derive a realistic
representation of the errors. This system is not optimal in the sense the reduces the
ensemble size that is necessary to consider, but it is a sound representation of a well
known source of uncertainty for ocean forecasting [Pinardi et al. (2011) . Hence,
in this case, we suppose a perfect ocean model (in parametrizations choice sense)
and model error is due to the wind forcing and initial conditions uncertainties. We
decided to address a more classical approach, in order to reproduce Krishnamruti’s
results for mesoscale resolving ocean simulations. The table 2.2 shows the major
differences between the ensemble members. Target Field: Horizontal map of tem-
perature from Operational model output with data assimilation (SYS3a2);

In this case we had reached satisfactory results in term of variability, but the map
of spread shows low pattern correlations with MAD.

2.3 Multi-Model Multi-Physics SuperEnsemble Ex-

periment

On the base of previous experiments results a third ensemble has been created. The
MultiModel Multi-Physics Ensemble dataset uses the simulations with the physi-
cal parametrizations set having the largest impact on the ensemble spread of on the
first experiment(Multi-Physics Ensemble), in addition to varies initial conditions and
estimates of ocean state evolution obtained using by different model results (both
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SYS3a2 OPA 8.2 OPA 9.0
Atlantic

Boundaries Close Close Open

Topography Z-levels Z-levels Z-levels &
Partial Step

Water
Flux

WF=E-P-R relaxation to
climatology

WF=E-P-R

Assimilation
Scheme

3Dvar no assimila-
tion

no assimila-
tion

Atmospheric
Forcing ECMWF

ECMWF +
10 BHM

ECMWF +
10 BHM

Table 2.2: Set up of BHM SuperEnsemble Experiment, the columns are the members, while the
rows are the difference between each member.

Figure 2.4: Standard Deviation of BHM ensemble members (left) and the Mean Absolute Differ-
ence between Ensemble Mean and the observation(right).
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Figure 2.5: Mean Variability generated by the BHM ensemble (left) versus the natural variability
in the observations (right) during the training period

analysis and forecasts). This study is based on the extensive data set of analysis
produced in the MyOcean project, purposed to evaluate the performances of "stan-
dard" Multi-Model Super-Ensemble (MMSE) approaches to get the Mediterranean
Sea Surface Temperature best estimate, by combining the operational results from
the single members. In the first phase of this research activity, the MMSE have
been applied to analysis results to obtain a first guess of the method advantages and
limits (studying the sensitivity on training period lengths and number of members
in the ensemble). In the second phase, a forecast exercises will be performed evalu-
ating the limit of the applied method in terms of forecast range. The members have
been regressed on a truth state produced by SST analysed from satellite avalilable
in MyOcean Catalogue. This approach started with a synergic effort from Istituto
Nazionale di Geofisica e Vulcanologia (INGV), Hellenic Centre for Marine Research
(HCMR) and MERCATOR Ocean; in a second phase of this research United King-
dom Met Office (UKMO) has been contacted. A description of the data set can
be found on the following sections, while an explanation of the diagnostic tool and
nomenclature is presented in section 3.1.
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2.3.1 Analysis mode

An extensive multi-model analysis dataset, produced in the framework of MyOcean
project has been used for a complete and comprehensive assessment of multi-model
capability in reproducing SST by satellite and to study the benefit of having different
operational oceanographic systems in the Mediterranean Sea We explored the impact
of model error, initial conditions and atmospheric forcings in analysis configuration.
All the members are numerical models solving the the primitive equations with
assimilation of real observations. The members used to create the ensemble are:

• INGV1: SYS3a2 & SYS4a3 Daily Output; Both the system use the same data
assimilation technique, 3VAR (Dobricic & Pinardi, 2008). The major differ-
ences between this kind of products concern the numerical code used, OPA 8.2
in the first, while NEMO 9.0 in used in the latter. Furthermore the advection
scheme for active tracer has been upgraded from the 2nd order centered used
in SYS3a2 to a mixed up-stream/MUSCL in SYS4a3. Concerning the para-
metrization in the Atlantic part of the model, SYS4a3 is nested (Oddo et al.
(2009)) within the monthly mean climatological fields computed from the daily
output of the MERCATOR 1/4 °resolution global model Drevillon et al. (2008).

• HCMR 2: This model is based on the Princeton Ocean model (POM 3), which
is a primitive equations free surface ocean model, operating under the hydro-
static and Boussinesq approximations. The model equations are written in
sigma-coordinates(Mellor & Blumberg (1985) ) and discretized using the cen-
tered second-order finite differences approximation. The model domain has a
horizontal resolution of 1/10 °and 24 sigma layers along the vertical with a loga-
rithmic distribution near the surface and the bottom. This model is forced with
hourly surface fluxes of momentum, heat and water provided by the weather
prediction system Poseidon - ETA high resolution (1/20 °). The assimilation
system is based on local SEEK Singular Evolutive Extended Kalman (SEEK)
filter filter(Pham et al. (1998)). SEEK is an error subspace extended Kalman

1http://gnoo.bo.ingv.it
2http://www.hcmr.gr
3http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/
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filter that operates with low-rank error covariance matrices as a way to re-
duce the computational burden. The filter uses covariance localization and
partial evolution of the correction directions. This assimilation scheme cor-
rects the forecast state of the model on a weekly basis (Korres et al., 2009);
. The assimilated observational data set is multivariate including AVISO sea
level height, AVHRR sea surface temperature, MEDARGO floats T and S pro-
files and XBT data. The Mediterranean hydrodynamical model is forced with
hourly momentum, heat and freshwater fluxes derived from the POSEIDON
weather prediction system based on a 1/20Â° resolution, ETA regional non-
hydrostatic atmospheric model.

• MERCATOR 4 : Mercator Ocean operates with resolution (1/12Â°) in the
Mediterranean Sea. The system uses the NEMO OGCM. Its assimilation sys-
tem is based on the SEEK filter base (computed once from an ensemble). At-
mospheric forcing is applied by computing interactive fluxes (bulk formulae) of
heat, momentum, and freshwater from European Center for Medium- Range
Weather Forecasts (ECMWF) operational atmospheric products, applying a
precipitation correction using US National Aeronautics and Space Adminis-
tration (NASA) Global Precipitation Analysis (GPCP) data with a method
derived from Troccoli and Kallberg (2004). River runoffs are computed from
Dai and Trenberth (2003) climatology. The products are nested in their global
ocean ocean model at 1/4 °resolution. The analysis come from two different
code version: NEMO 2.3 and NEMO 3.2 and the data assimilation system have
been switched from local SEEK Filter + 3DVAR bias correction for Temper-
ature and Salinity with sequential correction in V0 version to a local SEEK
Filter + 3DVAR bias correction for Temperature and Salinity with Incremental
Analysis Update (IAU) Tranchant et al. (n.d.) ) in the V1 version.

In order to asses the seasonal dependence of the technique, the dataset cover one year
time period, from the 1st of January to 31 December 2008. The atmospheric forcing

4http://www.mercator-ocean.fr



30 Building the SuperEnsemble dataset

MMSE
Member

V ertical
scheme

Diffusion V iscosity Assimilation

SYS3a2 P.P. Bilap. Bilap. OceanVAR
+SST
nudging

SYS4a3 P.P. Bilap. Bilap. 3DVAR
+SST
nudging

Mercator V0 k − ε Bilap. Bilap. SAM

Mercator V1 k − ε Bilap. Bilap. SAMv2

HCMR(POM) k − l Bilap. SEEK filter

P.P. Bilap. Bilap. no
NEMO k − ε Bilap. Bilap. no

multiphysics P.P. Bilap. lap... no
P.P. lap. lap. no

Table 2.3: Set up of MultiModel SuperEnsemble Experiment obtained by MyOcean database (on
the top) and the multi-physics members(on the bottom of the table)

were taken from the ECMWF analysis dataset (excluding HCRM which used its own
atmospheric field). The ocean initial condition were different for each model except
for the multi-physics member which started form the same conditions given by the
default model run used in experiment 1,multi-physics ensemble. Ocean observations
have been assimilated in all the analysis member with their own assimilation scheme.
The main differences in the dataset are shown in table 2.3.

This experiment shows very good results in terms of variability generated by the
Multimodel and also very good correlation between the spread and the MAD, in
agreement with literature results, probably this good agreement is due to the nice
quality of ensemble members.

2.3.2 Forecast Mode

Different works (Krishnamurti et al., 1999 , Krishnamurti et al., 2000 and Vich et al.,
2011) have demonstrated the superior forecast skill of superenseble versus single-
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Figure 2.6: Mean Variability generated by the MMSE (left) versus the natural variability in the
observations (right) during the time period, year 2008

Figure 2.7: Standard Deviation of MMSE members in analysis mode(left) and the Mean Absolute
Difference between Ensemble Mean and the observation(right).
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model performances, but any substantial work on the success of this technique has
been done with forecast members. Motivated by this lack of groundwork, we test
the multi-model in a forecast configuration. The dataset comprises three different
OGCMs of the following institutions:

• INGV : SYS2b Daily Output lead-time 9 days. The model equations consider
an implicit free surface approximation to the primitive equations for oceanic
fluids (Roullet et al., 2000). The model salinity and temperature fields along
the boundary of the Atlantic box are relaxed at all depth to the climatology.
The salt flux is given by a relaxation at the surface toward monthly mean cli-
matological values given by MEDATLAS climatology. A sub-model computes
air-sea fluxes of momentum and heat from 6h operational analysis atmospheric
forcing in all the Mediterranean Basin. The sub-model computes separately all
the terms in the surface heat budget and the choice of bulk formulas follows
Castellari et al. (1998, 2000). Different choice has been done for the Atlantic
Box where the wind stress are from a monthly mean climatology and the heat
flux is given by relaxation at the surface toward the MEDATLAS monthly
mean climatology. The data assimilation technique involved for the creation
of the best estimate of the initial state was System for Ocean Forecast and
Analysis (SOFA), which is a reduced order optimal interpolation intermittent
scheme (De Mey, 2002)

• HCMR 3 Day-Forecast (Daily output);

• Met Office 5: Numerical model output based on NEMO code, with a resolution
of 1/12 °. The model is then forced by 3-hourly forecast winds form the Met
Office numerical weather prediction (NWP) system. The horizontal momen-
tum diffusion is a combination of laplacian and bilaplacian operators, and the
tracer equations employ a TVD advection scheme. The vertical mixing uses

5http://www.metoffice.gov.uk/
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the TKE scheme. 5 Day-Forecast lead time.

We merged these members with some multi-physics member used in the first experi-
ment, forced with ten different realizations obtained by BHM. For all that members
forecast was 9 days lead time. In this way we can investigate the uncertainties in
initial conditions,the model error due to the parametrizations and the atmospheric
forcing impact. Furthermore, for the first time, we can evaluate the impact of grid
resolution in ocean simulations using a high resolution model (see appendix B) 1/24

°(around 4.5 Km at our latitude), developed during this research work. With this
large dataset we could study the time evolution of forecast error in different seasons
for year 2008: February-March-April ; July-August; October-November. Again in
this case the truth state is represented by map of satellite derived SST. Table 2.4
shows the major difference in each member of the dataset.

Figure 2.8: Mean Variability generated by the MMSE in forecast mode (left) versus the natural
variability in the observations (right) during the time period, 3day forecast lead time

To avoid spurious results due to the forcing lasting, all the comparison could
be done only with homogeneous dataset. In this section we will show only the
comparisons obtained with 3 days forecast lead time that corresponds to the larger
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MMSE
Member

Code V ertical
scheme

Diffusion V iscosity Forcing Notes

1 NEMO 2.3 P.P. Bilap. Bilap. 0000
2 NEMO 2.3 P.P. Lap. Lap. 0001
3 NEMO 2.3 k − ε Lap. Lap. 0002
4 NEMO 2.3 k − ε Lap. Lap. 0003 free slip

bottom fr.
5 NEMO 2.3 P.P. Bilap. Bilap. 0004
6 NEMO 2.3 P.P. Lap. Lap. 0005
7 NEMO 2.3 k − ε bilap. bilap. 0006
8 NEMO 2.3 P.P. Lap. Lap. 0007 no slip

bottom fr.
9 NEMO 2.3 k − ε Lap. Lap. 0008 no slip

bottom fr.
10 NEMO 2.3 P.P. Bilap. Bilap. 0009 free slip

bottom fr
11 NEMO 2.3 P.P. lap. lap. 0010
12 NEMO 3.2 P.P. Bilap. bilap. 0000 1/24Res.
13 NEMO 2.3 P.P. Bilap. bilap. UKMO 1/12Res.
14 POM k − l Bilap. bilap. HCMR 1/10Res.
15 OPA 8.2 P.P. Bilap. bilap. 0000 SYS2b

Table 2.4: Experiment design for MultiModel SuperEnsemble in forecast configuration, BHM
multi-physics members (on the top of the table) and MyOcean database(on the bottom)
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Figure 2.9: Standard Deviation of MMSE members in forecast mode(left) and the Mean Absolute
Difference between Ensemble Mean and the observation(right).

dataset. For a more complete discussion see section 3.2.4. The results reached in
this last experiment are good in terms of correlation in the variability generated
by the Multimodel (see 2.8) and the natural variability of the system, but MMSE
seems to underestimate variability in some areas (for example over the Adriatic and
Tyrrhenian Sea and Sicily Strait), while good correlation and right values, has been
found between the spread and the MAD.
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Chapter 3

Classical SuperEnsemble approach

Overview

With the availability of ocean predictions produced by several numerical models,
multi-model ensemble forecasting has drawn some attention recently (Krishnamurti
et al. 2000 , Lenartz et al. 2010 and Yun et al. 2003). Several calibration methods
of combining individual forecasts from a group of models to produce an ensemble of
predictions have been developed, and in this section we will describe the combination
method proposed by Krishnamurti et al. (1999). This weighing average methodology
will be applied to the ensemble datasets described in the previous chapter. Different
verification procedures have been employed to verify the SE results since to assess the
quality of a set of forecasts, scalar measures are commonly used, but being scalar
measures of a multidimensional problem, they only partially describe the various
aspects of the forecasts. The comparison is generally addressed to the degree of sim-
ilarity between forecast and corresponding Satellite-derived Sea Surface Temperature
(SST). Within this study, it has been decided to employ two of the most commonly
used indexes: the (bias removed) Root Mean-Squared Error(RMSE), and since we
were interested in the spatial comparison between "truth" data and observation in a
point, the (Centred) Anomaly Correlation Coefficient, ACC. Some sensitivity tests
have been done in order to evaluate the limit of the involved procedure.
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3.1 Methodology

The conventional multimodel superensemble forecast (Krishnamurti et al. (1999))
can be constructed with bias-corrected data as follows:

S = Ō +
N∑
i=1

ai
(
Fi,t − F̄i

)
(3.1)

where S is the SuperEnsemble (SE) estimate, Fi,t is the i− th model forecast for
time t, Fi is the mean of the i− th model over the training period, Ō is the observed
mean (Unbiased Estimator) over the training period, ai are regression coefficients
obtained by an appropriate minimization procedure during the training period, and
N is the number of models involved. The systematic errors of ensemble members
in eq (3.1) are removed because the anomalies term

(
Fi,t − F̄i

)
in the equation ac-

counts for each model’s own bias. The linear regression technique, used to compute
the coefficients ai, involves a minimization function that acts to limit the spread be-
tween the variables of member models and observed state. The regression coefficient
(weights) ai are computed for by a point-wise multiple regression technique in each
grid point by minimizing the following:

G =

Ttrain∑
t=0

(St −Ot)
2 (3.2)

So we have to substitute in 3.2 the 3.1 and obtain:

G =

Ttrain∑
t=0

([
Ō +

N∑
i=1

ai
(
Fi − F̄i

)]
t

−Ot

)2

(3.3)

The minimum of (3.3) is found by setting its gradient to zero.

Since the equation contains N parameters there will be a system N equations.
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So for j=1....N we will have:

∂G

∂aj
= 2

Ttrain∑
t=0

([
Ō +

N∑
i=1

ai
(
Fi − F̄i

)]
t

−Ot

) N∑
i=1

∂ai
∂aj

(
Fj − F̄j

) = 0; (3.4)

∂ai
∂aj

= δi,j

So the sum in the last term reduces in :

(
Fj − F̄j

)
≡ bj,t (3.5)

Ttrain∑
t=0

Ōbj,t ≡ βj (3.6)

N∑
i=1

ai

Ttrain∑
t=0

bi,t · bj,t ≡
N∑
i=1

ai · γj,i (3.7)

The covariance γj,i matrix is built with the multi-model members anomaly (bj,t):

Ttrain∑
t=0

Otbj,t ≡ εj (3.8)

With this definitions the system reduces in a set of data as a linear function of
input data.

N∑
i=1

ai · γj,i = εj − βj ≡ φj (3.9)

or in vectored form:
~a · Γ = ~φ (3.10)

Where ~φ is vector containing the covariances of the observations with the indi-
vidual models for which we want to find a linear regression formula, Γ is the covari-
ance matrix, and ~a is the vector of regression coefficients (the unknowns). In the
conventional superensemble approach, the regression coefficients are obtained using
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Gauss-Jordan elimination with pivoting:

~a = ~φΓ−1 (3.11)

The covariance matrix Γ and ~φ are rearranged into a diagonal matrix, and the so-
lution vector is obtained as in eq.(3.11) The Gauss-Jordan elimination method for
obtaining the regression coefficients is not numerically robust (Yun et al., 2003).
Problems arise if a zero pivot element is encountered on the diagonal of the matrix
since the solution procedure involves division by the diagonal elements. Overall to
evaluate the inverse of a matrix, the determinant involved is closer to zero when
highly correlated measured are used.To avoid ill-conditioning problem we have to
remove the degeneracy of covariance matrix enlarging the training period length.
Some studies (Krishnamurti et al., 2000) have interpreted the regression coefficients
as indicators of the relative model "reliability". However, this interpretation needs
some specification as Kharin & Zwiers (2002) had done. For instance, consider a
simple ensemble dataset of two members, the first M1 that overestimates, and the
latter M2 which underestimates the true state of the field we want to reproduce,O,
as depicted in fig. 3.1 where M1 = 1.5 ·O + ε1 and M2 = 0.5 ·O + ε2. The members
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Figure 3.1: Anomaly of a simple dataset

will have the same RMSE during the training period, equal to: 0.52 · σ2
O. If we solve

the system 3.11 we can find that a2 = 1/4 while a1 = 3/4 = 3a2 As shown we can infer
that "equally reliable model outputs may not necessarily be weighted equally when
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combined optimally".

Furthermore, a simple "toy experiment" has been done in order to check the value
of coefficients, using the truth estimator as an ensemble member. This test, can be
considered as the maximum skill that could be achieved with a multi-model and it
is the only way to check the perfect multi-linear combination coefficients estimates.
As expected, all the regression coefficients are zero, except the weight related to
"fake member", which is set as 1. Enlarging or trimming the dataset (adding or
removing some members), we noticed that when the training period units are less
than the number of multi-model members involved, the algorithm fails, giving wrong
values to the coefficients. We can infer that the regression procedure is not able to
recognize the "best" member when it is trained for a (relatively to the dataset size)
tiny number. Hence a threshold constraint for the training period must be:

Length Training Period ≥ModelsNumber (3.12)

3.2 Results

Verification methods

A wide range of possible scores are available in order to asses the ranking of a
forecast, and for each method we can find the "best" and "worst" model, according
to a chosen score. Following Murphy (1993), a good forecast should satisfy the three
"desirable" properties and for each one we can set an appropriate score(in brackets):

• Consistency( Anomaly Correlation Coefficient, ACC)

• Quality(Root Mean Squared Error, RMSE)

• Value(Mean Square Error Skill Score, MSESS).

The mean error, i.e. the sum of the deviation from the reference value during the
test period, is an inadequate measure of the skill of a prediction, since positive-
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negative values can compensate in turn. A simple way of avoiding compensation
errors is achieved considering the absolute value of the deviances, Mean Absolute
Error (MAE), or in turn taking the root mean squared of the deviances. We referred
to the latter quantity as Root Mean Squared Error (RMSE), which is described by
the following statistic law:

RMSE =

√√√√ N∑
i

(Fi −O)2

N
(3.13)

Since we are accounting on the squares, this measure is more sensitive to large
forecast errors than other methods (like the Mean Absolute Error). For this reason
we subtracted the estimated model bias to recalibrate it, centring the error of the
ensemble members and the observations around their respective mean value.

RMSEc =

√√√√ N∑
i

(
Fi − Fi −Oi −O

)2

N
(3.14)

Furthermore, since we are evaluating the performance of an "expensive" post-processing
method against the "classical" mean or the default value from a model, it is straight-
forward to use (a generalization) of the Mean Square Error Skill Score, which is
defined by Murphy & Epstein (1989) as:

MSESS = 1− MSESE
MSER

(3.15)

MSESE is the squared of the term evaluated by 3.13 and the denominator is the same
but for the reference member. Its maximum value is 1 which indicates the perfect
forecast, an decreases to zero as the forecast skill is equal to the climatological
(or in our case the reference member). A negative value implies that the model
forecast is worst than the reference member. It is dimensionless and increase with
the forecast skill. A good method developed for the spatial evaluation of a forecast
is the Anomaly Correlation Coefficient, which is the correlation between the forecast
and the observed anomaly over a grid. We used the centred version in order to take
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in account of the respective bias. In this formulation (3.16)

ACCc =

[
(f − c)− (f − c)

] [
(a− c)− (a− c)

]
√(

(f − c)− (f − c)
)2 (

(a− c)− (a− c)
)2

(3.16)

Here f is the value of the forecast, c is the climatological value (in our case the truth
estimator Ō) and a stands for the behaviour of the validating analysis dataset. ACC
is equivalent to the Pearson product moment correlation coefficient of the anomalies,
and measures how well a forecast captures the magnitude of the anomalies. As a
correlation, it ignores the bias so it is more appropriately considered a measure of
potential performance.

3.2.1 Results Multi-physics experiment

The multi-physics ensemble was generated using a variety of physical parametriza-
tions available in NEMO model described in section 2.1. Here we will show the
results after the verification procedure. Since observations from ARGO and other in
situ measurements were too sparse in space and in time, we decide to use the SST
satellite derived for the comparison. In this way we set the unbiased estimator as the
time mean of SST during the training period (see fig. 3.2) from the 7 January to

Figure 3.2: resulting maps for the first experiment, SE on the top, SST Satellite-derived(middle)
and the worst MP member (bottom)

31 January 2004. During the same period we evaluate regression coefficients accord-
ing eq.(3.11). The figure 3.3 shows the retrieved SE prediction, truth state and the
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output of the worst member corresponding to the first day of the test period. The
SE prediction was a higly discontinuous field, where a large fraction of grid points
gives unlikely results such as SST > 50 °C or SST < 0 °C. The performances of
the SE and the other members are assessed by the evaluation on RMSE domain
average and showed in figure 3.4, each multi-physics member is better than the SE
prediction. Hence the SE is the worst predictor, this is due to the rank-deficiency of
the covariance matrix Γ. The determinant is almost zero, since the row are almost
small perturbation of linear combination of each other. Matrix ill-conditioning is a
general term used to describe a matrix of values which is unsuitable for any use in
a particular analysis. The condition number measures how small perturbations in
the data affect the answer. This problem occurs frequently in applications of linear
multiple regression when the matrix of correlations for the predictors is singular and
thus the regular matrix inverse cannot be computed.

3.2.2 Results in the BHM experiment

The dataset used in this study was generated by 22 runs with MFS BHM-winds over
the Mediterranean area and described in section 2.2.

Training period:

• 1 February-31 March for years 2005 2006 2007 and 1-29 February 2008;

• 1 simulation driven by ECMWF analisys +10 runs with MFS-BHM - Winds
of Operational Model (OPA 8.2);

• 1 simulation driven by ECMWF analisys +10 runs with MFS-BHM- Winds
NEMO (OPA 9.0);

Event Period :

• 1-31 March 2008;

• 1 simulation driven by ECMWF analisys +10 runs with MFS-BHM - Winds
of Operational Model (OPA 8.2);
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Figure 3.3: resulting maps for the first experiment, SE on the top, SST Satellite-derived(middle)
and the worst MP member (bottom)
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Figure 3.4: RMSE between truth observation and MP members (coloured bar) and SE (brown
bar) for SST field, during the five days of the test period

• 1 simulation driven by ECMWF analisys +10 runs with MFS-BHM- Winds
NEMO (OPA 9.0);

As first, we checked the algorithm behaviour during the training period, to be
sure that we had a good dataset, and to avoid any errors in the regression procedure
and the results (see fig.3.5) confirm that the SE has been regressed in the optimal
way for the most of the training period both in term of Root Mean Squared Error
and Bias Removed RMSE.
So we applied the regression coefficients in the test dataset, and we evaluated the
RMSE and the Bias Removed RMSE during the test period (fig 3.6). In this case,
the SE can outperforms all the models, at least in the first part of the test phase.

The results for the BIAS, (fig. 3.7) indicate that all members involved under-
predict temperature (Bias <0).The analysis of ACC , fig.3.8, indicates that BHM
MM members show better performance in displacing the anomaly of the temperature
during the test period. An important consideration when assessing the impact of
the multi-model approach is related to choice of the metric used in diagnostic and
training period. The solid bars in fig. correspond to the MSESS between the SE
and each MM members, this comparison display a gain in the prediction using the
SE since the MSESS is always positive. Usually only one particular diagnostic, the
RMSE has been used to demonstrate the out-performance of SE, but as shown in
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Figure 3.5: performance during the training period of the SE prediction(red), OPA BHM mem-
bers(black lines) and NEMO BHM members(blue lines).RMSE (top panel) Bias Removed RMSE
(lower panel)
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Figure 3.6: Domain averaged Bias Removed RMSE during the test period.
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Figure 3.7: BIAS during the test period.
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Figure 3.8: ACC during the test period.

Figure 3.9: MSESS for the 22 BHM MM members and SE for the parameter SST
over Rhode Gyre region during the test period(March 2008). Black bars represent
gain respect OPA predictions, and blue bars the gain respect NEMO
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fig.3.8 we don’t reach the same result changing the diagnostic metric. So we can infer
that SE prediction trained with RMSE can not skilful in diagnostic ACC metrics. An
examination of the fifth day of the prediction over the Rhode Gyre region (fig. 3.10)
shows some unrealistic features, confirming the low ACC skill of SE. The map seems
to be over-fitted by the regression procedure against the observations. Overfitting
(Tetko et al. (1995)) occurs when a regression model begins to memorize training
data rather than learning to generalize from trend. In our case, since the number of
parameters is less than the number of observations, the regression model learnt to
perfectly predict the training data simply by memorizing them. In this way it fails
drastically on unseen data, as it has not learned to generalize at all. To avoid this
problem it is necessary to use additional filtering techniques (described in chapter ).

3.2.3 Results MultiModel Multiphysics experiment

In the previous experiment we noted that SE predictions can have higher skill com-
pared to all the partecipating multimodels. This experiment is purposed to study
the sensitivity of the regression procedure versus the major impacting factor of its
computation: training period legth and composition of the dataset.

3.2.3.1 Results in the MMSE experiment Analysis Mode

In this case we have used the extensive dataset provided by MyOcean project de-
scribed in section 2.3.1. A range of experiments has been carried out to test the
performance of the method proposed by Krishnamurti, setting the unbiased esti-
mator as the Sea Surface Temperature from Satellite. To assess the sensitivity on
training period lengths, we fixed the length of the test period as 10 days, and we
adopted the training period as the last n days from the first day of the prediction, fd.
For example, when we try to forecast the SST in the 1st of July 2008, the training
is performed using maximum n cases, with training period set as n days before the
first day, fd. As we will show in section 3.2.3.2 that the training period length can
not be reduced beyond a threshold that can ensure robust optimal weights from the
regression algorithm, which in our case has been set as 14 days. So for each day fd
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Figure 3.10: A typical example of a reconstructed map of SST, on day five over Rhode Gyre
region, valid the 5 March 2008: analysis (top left), lowest skill model (bottom left), SuperEnsemble
(top right) and best partecipating model (bottom right).
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we could have 46(60 has been set has the maximum training period length minus
the threshold value 14) SE realizations experienced by the corresponding training
period.

Figure 3.11: Schematic representation of the experiment carried in MMSE analysis mode.

To find the optimal training period length we repeated the same regression dif-
ferent times during the year, changing training period from a minimum of 14 days
to maximum value of 60 days. Due to large amount of cases, 2532 during the year
2008, we decided to analysed the results in terms of different skill scores rather than
changing each day. Generally the reconstructed map of SST show that within a
range of 30-40 training days the superenseble is best predictor for the SST at least
for the early 4-5 days of the test period, and its performances deteriorates in time,
for example fig.3.12 depicts the resulting map of SST for the first day of the test
period, 1 June 2008 obtained by 41 day of training period while fig3.13), depicts the
resulting maps for the 10 June 2008 also derived trainging the algorithm for 41 days,
we can see in the latter figure, the noise is incremented in SE realizations (top left
of both figures) which is confirmed by the curve of time-series of the domain average
centred RMSE which reach its maximum value in the last day of the test period. On
the opposite side ACC curves (fig. 3.15)shows a "U shape", until the second day SE
can outperforms all the ensemble members, after the best performances are obtained
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by the single-model members. In fig.3.16) we can see the better performances of
SE prediction in terms of BIAS (removed during construction) until the forth day,
again a singe-model member is the best for the remaining day of the test period (the
blue curve, SYS3a2 is closer to zero than the SE, red curve). The ranking of SST
performance are almost constant according each metric applied. The best model in
centred RMSE term is almost the best also in ACC and BIAS ranking. We can
conclude that the features of the ranking are consistent across the whole range of
used skill measures.

Figure 3.12: A typical example of prediction for the first day of test period over the Mediterranean
area, valid on the 1st of June 2008 reached with 41 days of training period, SE prediction (top
left), best participating model (bottom left), SST Satellite derived (top right) and lowest skill model
(bottom right)
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Figure 3.13: A typical example of predictior for the last day of test period over the Mediterranean
area, valid on the 10th of June 2008, reached with 41 days of training period, SE prediction (top
left), best participating model (bottom left), SST Satellite derived (top right) and lowest skill model
(bottom right)
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Figure 3.14: Time serie of the domain average (over the Mediterranean) Bias removed RMSE
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Figure 3.15: Anomaly Correlation Coefficient time series
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Figure 3.16: Bias (Model - Observation) Time serie over the Mediterranean sea)
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3.2.3.2 Study on the sensitivity of the algorithm

Sensitivity on the training period length During year 2008, we carried out
2532 experiments, and in each we changed the initial day of the training period and
its length. Hence for each test period, we can have several predictions.For example
the previous map are the results from the 1 to the 10 th June, reached training the
algorithm for 41 days, but during the same test period we have other realizations,
obtained training the algorithm for a different period. All those realizations have
been over-imposed in the same graph (figures: 3.17, 3.18 and 3.19 ) in order to
asses the dependence with training period, the lines colour, in the box on the right
side graph, stand for training period involved. First, all the scores used to asses
the prediction show a dependence with the training period length. As expected the
most sensitive score is the RMSE, which curve arise more slowly(becoming almost
flat) for training period longer that 40 days (see fig. 3.17). An important feature
displayed in figures 3.18 and fig. (3.19) is the relative improvement of the multi-
model performance defined by other skill scores (ACC and BIAS), enlarging the
training period. Furthermore all the experiments show that there is a critical day
in the test period, in which the SE performance matches the performance of an
other ensemble member, so for all the following days the superensemble won’t be the
best predictor ( fig.3.14 ), for the following day the best performance are obtained
by the single-model member. We refer that day as "skill" of the SE prediction, in
this way, using only one number, we could study more easily the evolution of the
skill with the training period compared to the other ensemble members. All the
skills , for RMSE (fig. 3.20), ACC (fig.3.21) and BIAS(fig. 3.22) used to asses the
prediction, show a weak dependence with the training period. As expected only the
bias is almost constant according the training period length. We over imposed all
the curves of skill, in order to identify the different growth rates. As we can see ACC
curve grows faster and reach a plateau around 40 days of the training period. On
the other hand RMS is almost constant until 35 days of training period and then
seems to growth, but as we have shown in BHM experiment this due to the regression
procedure, which perfectly predict the training data by memorizing them leading to
have unlikely results in the SST maps.
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Figure 3.17: Domain average RMSE comparison for the same test period(1-10 June
2008), with different training period. Dark Blue line reprent shorter training period,
yellow line display longer training period
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Figure 3.18: ACC comparison for the same test period(1-10 June 2008), with different
training period. Dark Blue line reprent shorter training period, yellow line display
longer training period
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Figure 3.19: BIAS comparison for the same test period(1-10 June 2008), with dif-
ferent training period. Dark Blue line reprent shorter training period, yellow line
display longer training period
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Figure 3.20: Bias Removed RMSE mean Skill of the Multi Model superenseble with 9
members against the trainin period legths (green spots) the error bar is the standard
deviation



58 Classical SuperEnsemble approach

15 20 25 30 35 40 45 50 55 60
0

1

2

3

Training Period Length

Sk
ill

 sc
or

e 
(D

ay
s)

 

 

Skill ACC

Figure 3.21: ACC mean Skill of the Multi Model superensemble with 9 members
against the trainin period legths(red spots) the error bar is the standard deviation
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Figure 3.22: Bias Skill of the Multi Model superenseble with 9 members against the
trainin period legths(black spots) the error bar is the standard deviation
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Figure 3.23: Comparison of the mean skills for BIAS(black spots), ACC (red spots)
and Centred RMSE(green spots)

Sensitivity on the the dataset The aim of this study is to study the impact
in SE performance adding or removing a "bad" or a "good" model (i.e a model
that consistently performs worse than average of the ensemble, and complementary
the best model) in order to identify the condition under which the MMSE approach
really enhance the prediction skill. Taylor diagrams (Taylor (2001)) have been intro-
duced for model inter-comparison, providing a way of graphically summarizing how
closely a pattern matches observations. The similarity between two patterns is quan-
tified in terms of their correlation, their centred root-mean-square difference and the
amplitude of their variations (represented by their standard deviations). From the
analysis of the Taylor diagram (3.24 ) three different sub-samples have been created
from the complete dataset in order to test the sensitivity to multimodel goodness and
to study the impact of overconfident (Weigel et al. (2008)) dataset or too correlated
ensemble members:

• Multimodel constructed from overconfident models ensemble: Sub-
sample A, the members are the operational product, SYS3a2, SYS4a3, Merca-
tor V0, Mercator V1, HCMR and NEMO operational in simulation.

• Multimodel constructed from well dispersed models ensemble:Sub-
sample B, the members are SYS3a2, HCMR and the four simulations with
multi-physics members NEMO.
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Figure 3.24: Domain average

• Multimodel constructed from bad dispersed models ensemble:Sub-
sample C, Mercator V1;HCMR and four simulations with multiphysics mem-
bers NEMO.

For each dataset we carry out again all the experiment done with the original dataset
and compare the results using the previous diagnostic metrics. To avoid mislead-
ing we compared the skill only between the overconfident dataset and the original
because in the other dataset the potential better performance would be a paradox
due to deteriorating dataset performances. As we can see the overconfident dataset
show better skill scores and faster skill growth versus the training period length re-
spect the original 9 member ensemble but again for longer training period we reach
the plateau for ACC, meaning that incur again in overfitting. In figures 3.30, 3.31
3.32 we show the sensitivity on the skill scores versus the training period and the
sub sample. As we can see the original dataset isn’t the best predictor for short
training period, but the differences decrease enlarging the training period, letting
the bad dispersed dataset be the worst of the available predictions. As we can see
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Figure 3.25: A typical example of prediction for the first day of test period over the Mediterranean
area, valid on the 1st of June 2008 reached with 41 days of training period, SE prediction from the
original dataset (top left), SE prediction from the well dispersed dataset (bottom left), SE prediction
from the overconfident dataset (top right) SE prediction from the well dispersed dataset (bottom
right)
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Figure 3.26: A typical example of prediction for the last day of test period over the Mediterranean
area, valid on the 10th of June 2008, reached with 41 days of training period, SE prediction from the
original dataset (top left), SE prediction from the well dispersed dataset (bottom left), SE prediction
from the overconfident dataset (top right) SE prediction from the well dispersed dataset (bottom
right)
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in the sub sample A, the overconfident dataset is the best in term of RMSE for
longer training period, and also the worst in terms of bias reduction for shorter
training period. We can conclude that the algorithm needs time to evaluate the the
rights coefficient values, and since all the predictions give the same results for longer
training period(3.25 and 3.26), we can infer that regression procedure can choose
the best models, neglecting the informations coming from "poor" members only for
shorter training period, while for longer training period is common the overfitting of
the results, it means that the procedure neglect the informations coming from the
predictors, and the SE learns only from the past observations.
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Figure 3.27: Bias Removed RMSE mean Skill of the Multi Model superenseble with
9 members against the training period legths (black spots) the black error bar is
the standard deviation, green spots are Bias Removed RMSE mean Skill for the
subsample A ,the green bars are the standard deviations.

3.2.4 Results in the MMSE experiment Forecast Mode

This experiment was aimed to check the performance of the superensemble algorithm
in forecast mode, in order to evaluate a potential use in operational forecasting. Since
we were interested in a simulation of forecasting, we didn’t use long training period
and study the results according to the dataset used and the lead time of the forecast.
"The importance of this experiment we are using forecast a better performance in
term of forecast means a provide a better product".
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Figure 3.28: ACC mean Skill of the Multi Model superenseble with 9 members
against the training period legths (black spots) the black error bar is the standard
deviation, green spots are ACC mean Skill for the subsample A the green bar are
the standard deviations.
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Figure 3.29: BIAS Skill of the Multi Model superenseble with 9 members against
the training period legths (black spots) the black error bar is the standard deviation,
green spots are ACC mean Skill for the subsample A the green bar are the standard
deviations.
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Figure 3.30: Domain average RMSE comparisons for the same test period(1-10 June
2008), with different training period(indicated over each subplot). Black line is the
SE from the original dataset, green line for the subsample A, blue line subsample B
and red line subsample C
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Figure 3.31: ACC comparisons for the same test period(1-10 June 2008), with dif-
ferent training period(indicated over each subplot). Black line is the SE from the
original dataset, green line for the subsample A, blue line subsample B and red line
subsample C
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Figure 3.32: BIAS comparisons for the same test period(1-10 June 2008), with dif-
ferent training period(indicated over each subplot). Black line is the SE from the
original dataset, green line for the subsample A, blue line subsample B and red line
subsample C
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They training period changed according to the dataset from a minimum of 10 days
(with the smaller dataset) to a maximum value of 25 days. We drew 3 sub-sample
from the original dataset.

• 3 days of forecast (all the member in table )

• 5 days of forecast (all the member in table except HCMR forecasts)

• 9 days of forecast (all the member in table except HCMR forecasts and Met
Office products)

Unfortunately in this case even if we had a good spread and good variability gener-
ated by the ensemble the resulting map are physicalness. In all analysed samples SE
prediction could not outperform the other members. The noisy results, are reflected
in the large values of the RMSE. Again we need to enlarge the training period to
have better performance of the SE, but it was out the aim of this experiment. In
order to have an homogeneous comparison we will show the results obtained with
training period around 20 days, since for the largest dataset we need at least 15 days
of training(see eq.3.12).

3.3 Summary

In this chapter we have shown the results obtained with the multi-model techniques.
In first place we noted that if the length of the training period (in time units) is less
than the ensemble size, the algorithm fails since it is not able to recognize best-worst
participating models.
In the first experiment we have seen that lack of spread lead the algorithm fail.
In the second experiment we showed that multi-model approach can outperform all
the participating model. A careful examinations of the results show that robust
optimal weights are difficult to calculate giving short training period samples, while
too long training period lead to overfitted predictions. In the third experiment we
have studied the sensitivity and the limit of this procedure. The critical point is
the choice of the dataset, as long as the individual components are able to make
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Figure 3.33: A typical example of prediction for the first day of test period over the Mediterranean
area, valid on the 10th of November 2008 reached with 21 days of training period, SE prediction (top
left), lowest skill model (bottom left), SST Satellite derived (top right) and high resolution output
(bottom right)
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Figure 3.34: centred RMSE for the ensemble members (top) and the superensemble
prediction (bottom panel) with the same traing period (21 days) during the year
2008 with forecast period three days.
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Figure 3.35: centred RMSE for the ensemble members (top) and the superensemble
prediction (bottom panel) with the same traing period (20 days) during the year
2008 with forecast period five days.
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Figure 3.36: centred RMSE for the ensemble members (top) and the superensemble
prediction (bottom panel) with the same traing period (18 days) during the year
2008 with forecast period nine days.
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a positive contributions to a relevant aspect of the prediction, the multimodel will
benefit from this additional information. We have shown that better performance are
achieved reducing the size of the ensemble, avoiding the worst participating model.
In this scenario one model is superior to all the other component, so poorer model
couldn’t add information. Hence, the key of the success of multi-model concept lies
in combining independent and skilful models. Furthermore if the quality assessment
detect a single model that is always worst than the others, it should be excluded.
Since for long training period all the dataset reach same performances means that
there is an upper limit for the predictability, over that limit overfitting problem arise.
Moreover in this last experiment we decided to avoid longer training period usages,
since the unbiased estimator will be no more "unbiased" being affected by seasonal
cycle effects. Finally we use a dataset of forecast members, in order to simulate a
potential application in ocean forecasting. In this case SE approach fails at least
for shorter training period involved. An area of future work would be to explore
the usefulness of EOFs (Empirical Orthogonal Functions) to remove the degeneracy
of ill-conditioning matrix when short training period are used (Krishnamurti et al.
(2003))





75

Chapter 4

Improving the classical MMSE
approach

4.1 Background

Empirical Orthogonal Functions(EOFs) were first used in meteorology in the late
1940s (Obukhov, 1947). This powerful method consisting in a space time-field de-
composition into spatial patterns ans associated time indices, contributed much in
advancing our knowledge of the atmosphere and oceans. The EOFs method is in
essence an exploratory (I.E. non model orientated) tool, able to find the spatial
patterns of variability, their time variations and gives a measure of the importance
of each pattern. The probabilistic prediction obtained from the regression method
illustrated in the previous chapter could be not reliable,since the spatial correlation
of the field regressed on the observations is not taken into account. Kharin & Zwiers
(2002) suggest that that poorer performance of combined multi-model predictions
trougth multiple linear regression is due to overfitting or, in other words, biased es-
timates of the coefficients. Because co-linearity of predictors may explain part of the
failure, principal component regression (von Storch H., 1995.) offers an alternative
way of performing the regression with linearly uncorrelated variables.
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4.2 Formulation and computation of EOFs

Given any space and time dependent field, EOF analysis finds a set of orthogonal
spatial patterns along with a set of assosiciated uncorrelated time series or principal
components(PCs). The geometrical constraint characterizing EOFs an PCs can be
very useful since the covariance matrix of any subset of retained PCs is always
diagonal. Here will be presented a short description of how to obtain EOFs, giving
the linking between their development and the application in our case. Once the
anomaly data matrix (bij) is determined:

bij =



(
F11 − F1

) (
F12 − F1

) (
F13 − F1

)
...

(
F1n − F1

)(
F21 − F2

) (
F22 − F2

) (
F23 − F2

)
...

(
F2n − F2

)
(
Fm1 − Fm

) (
Fm2 − Fm

) (
Fm3 − Fm

)
...

(
Fmn − Fm

)

 Fm =
1

N

N∑
i=1

Fmi

(4.1)
we can determine the covariance matrix of our original data Γ = b′ · b(for definition
check the eq. 3.7).

The EOFs are obained as the solution of the classical eigenvalues problem

Γ~x = λ2~x; (4.2)

The k − th EOF is simply the k − th eigenvector xk of Γ The corresponding
eigenvalue λ2

k is:
λ2
k = ~x′k · Γ · ~xk = V ar(b~xk) (4.3)

and hence λ provide a measure of the variance of the data accouted for the direction
defined by ~xk. After finding the eigen elements of the sample covariance matrix the
eigenvalues are normally sorted in decreasing order. The projection of the anomaly
field b onto the k − th EOF(~xk) is the k − th Principal Component, whose elements
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ak = b~xk are given by:
p∑
j=1

xt,j · uk,j (4.4)

It can be shown that is possible to use a powerful tool for very non square matrix,
the SVD (Singular Value Decomposition) method, which finds the EOF/PC without
solving the complete eigenvalue problem, but simply finding the singular value of
the covariance matrix and projecting the anomaly on those singular values. So the
initial field b can be expressed in term of the EOF/PC Analysis:

b =

p∑
j=1

λkaku
′
k (4.5)

The dimensionality of the initial data can be reduced by truncating the sum at a
index M which is less than the rank of the matrix b. However there is no univer-
sal rule for truncation, and the choice of the degree of EOF is somehow arbitrary.
Usually the truncation order is obtained by fixing the amount of the represented
variance, a common value is 90% of variance, hence it is chosen a set of n leading
EOFs that can explain at least that amount of variance. The non degeneracy of the
eigenspectrum is an important property and can be vary useful in interpreting EOFs.
Real physical identification in the pattern retrieved by EOF is not always obvious for
their orthogonal nature. Orthogonality translates into the fact that typical patterns
appear in secondary (higher order) EOF. Sometimes the resulting optimized modes
are difficult to interpret physically, either because the real relation is localized and
the EOF, due to new reference system, are spreading it creating artificial non local
relations, or because the EOF are so close in terms of eigenvalue separation, that the
numerical techniques cannot really distinguish between them. The most common
situation in which malfunctioning can arise is when data represent local variances.
In this case the EOF will try to fit globally the domain under consideration, with
as few modes as possible, generating first EOF(low order modes) with very large
structures(A Navarra, 2010).
As first guess we applied the EOF analysis only to the weights mask, in order to
filter the noise due to the overfitting procedure involved in the regression of the
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anomalies during the long training period. The analysis of the eigenvalues power
spectrum yields to a very smooth spectrum, it means that there are not only small
modes of variability In order to remove the degeneracy of the power spectrum we
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Figure 4.1: Eigenvalues spectrum for the weights mask in the BHM dataset

decided to apply the EOF analysis to the multimodel anomaly fields and project the
observation anomaly field on the EOF too. Step back to equation 3.10,

Γ · ~a = ~φ (4.6)

We can substitute in Γ its eigenvalues and solve the following system

~xλ~a = ~x~φ (4.7)

In this way the regression coefficients vector can be evaluated as:

~a = (~xλ)−1~x~φ (4.8)

which is the product of the inverse of the filtered (projected on the EOFs) covari-
ance matrix and the Principal Components of the observations anomaly field. The
principal component analysis was performed with each sample in order to reduce the
spatial dimension to a number smaller than the original number of grid points. Only
the component explaining the 90% of the variance have been retained, which in our
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case corresponds to take only the first seven-nine EOFs (according to training period
length involved) of the anomaly field, see figure 4.2
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Figure 4.2: Eigenvalues spectrum for the weights mask in the BHM dataset

4.3 Results with EOFs analysis

4.3.1 Multiphysics Experiment

We performed the EOFs analysis on the first experiment dataset, the perturbed
physic ensemble.The new computation of the superensemble show that EOFs/PC
Analysis was able to reduce the degeneracy of covariance matrix due to the high
correlation on the ensemble model members(as shown in fig 4.3), nevertheless SE is
not the best performer of the ensemble fig.4.4,since the brown bar is taller than the
other centred RMSE

4.3.2 BHM experiment

The superensemble was constructed merging the 22 output of MFS BHM-winds
described in . The weights have been obtained by the regression of the projections of
true observator and multimodel members and retaining the first nine EOFs. The new
results are quite appealing. We were able to reduce the noise in the map(see 4.5), and
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Figure 4.3: first prediction day of the classical SE (top right) SST satellite derived (top left), SE
EOFs based (bottom left) and one of the model of the ensemble
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Figure 4.4: RMSE between truth observation and MP members (coloured bar) and SE EOs based
(brown bar) for SST field, during the five days of the test period
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until the 20th days of test period the SE EOFs-based gives the best results in terms
of centred RMSE(see fig.4.6). Only at the end of test period its performance became
worst due to an increase of the bias(see fig. 4.9). In term of anomaly correlation
coefficient (fig.4.8)superensemble prediction was the best model too(compared to the
performance of the classical superensemble).

Figure 4.5: A typical example of a reconstructed map of SST, on day three over Rhode Gyre
region, valid the 3 March 2008: analysis (top left), SE EOFs besed(bottom left), SuperEnsemble
classic (top right) and best partecipating model (bottom right).
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Figure 4.6: Domain averaged RMSE between the OPA members(black), NEMO members (blue),
SuperEnsemble prediction(red) and SE prediction EOFs based(green) during the test period
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Figure 4.7: MSESS for the 22 BHM MM members and SE EOFs for the parameter SST over
Rhode Gyre region during the test period(March 2008). Black bars represent gain respect OPA
predictions, and blue bars the gain respect NEMO
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Figure 4.8: ACC, OPA members(black), NEMO members (blue), SuperEnsemble prediction(red)
and SE prediction EOFs based(green) during the test period
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Figure 4.9: BIAS, OPA members(black), NEMO members (blue), SuperEnsemble prediction(red)
and SE prediction EOFs based(green) during the test period

4.3.3 Multimodel Multiphysics experiment Analysis mode

In this section we present the results on the multimodel Multi-physics experiments,
a collection of analyses from different research institutes and four perturbed physics
members, covering the year 2008. We performed again all the experiments carried
outin previous chapter and in this case we reached different results. Despite the fact
that SE prediction EOFs based seems better at first sight,see fig.4.10 and fig.4.11,
the performance of SE EOFs based, got worst increasing the lead time of the test
period. Figure 4.12 shows on the right side the "classical" scores for the fifth day of
the test period during year 2008 for the original 10 members dataset, of the centred
RMSE, bias and ACC respectively (top, middle and bottom) and the correspondently
results with the superensemble with EOF employment to evaluate the weights, for
a training period of 10 days. Figure 4.13 is the same 4.12 , but obtained
with longer training period, 30 days. Since in the latter case we have a bigger bias,
consequently we have a bigger RMSE. In it important to note that during August
since we have the minimum of the bias, RMSE is smaller if SE is evaluated by EOFs
analysis ( fig.4.12). ACC plots show clearly a worsening of performance of SE EOF
based in terms of ACC, nevertheless the ACC in the classical approach is affected
by overfitting. It is clear from those results that the new method doesn’t bring
the desired improvements. A careful analysis of the weights mask shows smaller
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Figure 4.10: A typical example of prediction for the first day of test period over the Mediterranean
area, valid on the 1st of July 2008 reached with 55 days of training period, SE prediction (top left),
SE EOFs based prediction (bottom left), SST Satellite derived (top right) and lowest skill model
(bottom right)
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Figure 4.11: A typical example of prediction for the last(10th) day of test period over the
Mediterranean area, valid on the 1st of July 2008 reached with 55 days of training period, SE
prediction (top left), SE EOFs based prediction (bottom left), SST Satellite derived (top right) and
lowest skill model (bottom right)
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Figure 4.12: Performances of SE obtained by 10 days of training period, during year 2008, left
panels the classical approach, right side the SE EOFs based approach. Blue bars stand for RMSE,
red bars for BIAS and green bars for the ACC.
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Figure 4.13: Performances of SE obtained by 30 days of training period during year 2008, left
panels the classical approach, right side the SE EOFs based approach. Blue bars stand for RMSE,
red bars for BIAS and green bars for the ACC.
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values for the coefficients than in the classical approach(see fig.4.14). Referring
to Krishnamurti et al. (2003) we try to reproduce a similar set up, using seven
members (the subsample A, overconfident dataset) and trained them for 100 days.
Krishnamurti in his experiment used a laplacian based superensemble assessing that
in that way he could extract some extra skill from gradients and laplacian, avoiding
the degeneracy of covariance matrix.

As we can see with the classical approach ( top of 4.14 ) we got greater value
(the magnitude order of unit and more), while in the filtered approach the weights
exhibit a distribution of positive and negative fractional values. So we can states
that:

|wmeof
(
Fmn − Fm

)
| < |wm

(
Fmn − Fm

)
| (4.9)

EOFs gives value of weights closer to that papers (see fig.4.15), but in our case the
unbiased estimator,Ō in no more unbiased since it takes in account of the seasonal
cycle. Since we were trying to predict during a different test period, the smaller value
of the weights are no more able to remove the actual bias during the test period.

It is clear from the inequality (4.9) that smaller weights are not able to reduce
the bias in season cycle affected "Unbiased Estimator" if the variability (the term(
Fmn − Fm

)
) evalaluated by multimodel is the same order of the variability of obser-

vations. Hence SE fails due to a wrong BIAS reduction, at least if the superenseble
involves fractional weigths. As a result SE will be affected by cold bias during spring-
summer time and warm bias during fall-winter time. The key point is the kind of
field we want to reproduce, since we are considering a faster varying field than Kr-
ishnamurti, EOFs based SE evaluated with this kind of "unbiased estimator" was
not a good way to perform the regression.

4.3.4 Multimodel Multiphysics experiment Forecast mode

In this section we will show some results obtained using the EOFs based SE in fore-
cast experiments. In this case we didn’t find a clearly correlation on training period
or dataset, since results changed with any specific correlation for each experiment.
For shorter training period we got the irretrievable results due to the satisfaction



4.3 Results with EOFs analysis 89

Figure 4.14: Geographical distribution of the regression coefficients for the first model member, as
the simple anomaly field (top) and for the filtered anomaly field (bottom) after 100 days of training
period, note the different colorbars



90 Improving the classical MMSE approach
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FIG. 5. Geographical distribution of statistical weights for different member models: (a) Northern
Hemisphere and (b) Southern Hemisphere. Color scale of the fractional weights is shown at the bottom.

least squares minimization of errors is different from
the simple bias correction in the following manner.
The simple classical bias is given by
CB (classical bias) � {Z (�, �) � Z (�, �)}/N.Fn on

(4)
Here the nth-day forecast bias for a total number of N
days is considered; Fn is the average forecasted geo-Z
potential height value at 500 hPa for a period of N days

while On is the averaged of the observed (analyzed)Z
geopotential height for that period.
The superensemble-based bias, following Eq. (1), is

given by

SB (superensemble bias) � Z � Zsn on

t�N P�Q

� a (Z � Z ). (5)� � i Fi FMi
t�1 1

Figure 4.15: Statistical coefficient fromKrishnamurti et al. (2003)
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of inequality 3.12, and showed in figure 4.16, here the brown bar, showing the per-
formance of SE EOFs based in term of centred RMSE are the worst of the entire
dataset for all the experiments trained. Enlarging the training period in some cases
SE could outperform all ensemble member, but at the end of the test period 4.17.
We noted that the rate of growth of multi-model members and SE are different, the
first show a faster growth rate than the latter. For this reason, SE can outperforms
all the members at the end of the forecast period. It must be noted that when
the forecast consist in a unusual situation, it means the forecast forcing have differ-
ent performance than usual, for example showing a flat histogram of the errors (it
means RMSE almost constant during the test period) the superensemble approach
fails(4.18). Hence as Krishnamurti et al. (2003) noted, training (and the per-
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Figure 4.16: centred RMSE for the ensemble members and the superensemble prediction (brown
bar) with the same training period (9 days) during the year 2008 with forecast period nine days.

formances of Multimodel member) is a major component of the forecast initiative.
Since the SE is trained is a higher variability field, in which the performances of the
MM often change, SE can not outperform the originating dataset.
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Figure 4.17: centred RMSE for the ensemble members and the superensemble prediction (brown
bar) with the training period of 18 days, for the 1st of March 2008, with forecast period nine days
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Figure 4.18: centred RMSE for the ensemble members and the superensemble prediction (brown
bar) with the training period of 27 days, for the 1 November 2008, with forecast period nine days
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Conclusions

Weather , ocean and climate prediction are subjected to many sources of error:

• Uncertainties in model initialization, due, for example due to incomplete data
coverage, measurement error and boundary conditions.

• Uncertainties and error in the model itself, because of some physical processed
are not fully understood, or also due to the parametrization of physical pro-
cesses computational limitations.

Multi-model is pragmatic a approach pursued to obtain a a first crude estimate
of the range of uncertainties induced by model error , while superenseble (SE) is
a weighted mean of different model outputs in which the weights are evaluated by
multiple linear regression between the "truth observator" and model outputs , which
seems to be affected by a reduced model error. Previous employments of this tech-
nique (Krishnamurti et al., 2000 and Kharin & Zwiers, 2002) have shown slightly
contradictory results.

In this thesis we examined the different conditions under which SE seems to
outperforms the generating ensemble. First we noted that for a very short training
period, the algorithm fails a priori. Hence a first condition concerns the length
of the training period which must exceeds the generating ensemble size. As we
have pointed out, our ensemble perturbed physic approach is not good method to
generate the dataset, since lack of spread causes a degeneracy in covariance matrix,
which can not be easily inverted. MFS BHM winds perturbation, acting on the
vertical stratification of the fluid, was able to generate a large ensemble variability.
In this latter contest the SE approach could give good results. A careful comparison
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of the centred RMSE, reduced the outperformances of SE, enhancing the critical
point played by the unbiased estimator. Longer training period let the unbiased
estimator be a plain estimate of the field we want to reproduce (seasonal cycle
affected). Furthermore, due to overfitting of multilinear regression (common problem
when the number of observations is bigger than the parameters) the resulting maps
show very noisy fields, which neglect the spatial correlations of the field.
As Krishanumrti and Kharin pointed out, the employment of EOFs/PC analysis
could be a good method to remove the ill - conditioning of covariance matrix and
the overfitting. In this way the results show that multimodel in not able to reduce the
bias, since coefficients evaluated from filtered fields are smaller than in the classical
approach, and the unbiased estimator is no more the best estimate of the field we
want to reproduce. A careful study on the sensitivity of the algorithm on training
period length and ensemble composition had been done in the third experiment
using the extended dataset provided by MyOcean. We found a weak dependence
of the performances of SE versus the length of the training period, and equally
Anomaly Correlation Coefficient, ACC, showed a similar dependence but with a
different rate, that is faster for short training period and than reaches a plateau.
Instead, no important correlation have been noticed for the BIAS. We can infer that
as soon as the ACC curve reaches the plateau and correspondly the RMS starts to
diminish, we are in a overfitting regime, anomalies are perfectly "predicted" with
any physical meaning but only due a statistical regression . This idea is confirmed
even by the sensitivity of the algorithm with the ensemble composition. Following
Weigel et al. (2008) we built three different sub-samples, an overconfident dataset,
a well dispersed dataset and a bad dispersed dataset. For short training period,
the tree sub-sample outperform the results of the original dataset, while for longer
training period (almost 4 times the ensemble size) there are no particular differences
between them, meaning that, again, we incur in overfitting. It must be pointed out
that, as expected, better performances are reached with the overconfident dataset,
confirming Weigel’s suggestion that the dataset quality is a main impacting factor to
the out-performance of SE. In this latter approach the employment of EOFs didn’t
give any improvement. The retrieved coefficients were very small, and bias reduction
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problem arose. Histogram of the bias in time clearly show seasonal cycle effects
(negative temperature bias in temperature rising period and conversely positive bias
in fall-winter time).
In the last experiment we tried to simulate a forecast approach for the superensemble,
and for the first time we tried to study the impact of model resolution on model error.
As expected the spread was very high, confirming the high importance of the grid
resolution on model error. SE results cover a wide range of possibilities: in some
cases SE could be a better estimates but in general we drew the same considerations
of the third experiment, i.e. the strong dependences on ensemble dataset quality
and on the training period length.
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Appendix A

Numerical schemes available in
NEMO

A.1 Vertical Physics

A.1.1 KPP turbulent closure scheme

The KPP turbulent closure assumption for tracer is:

ŵb̂ = −k
(
∂b

∂z
− γ
)

(A.1)

where k is the vertical mixing coefficient and b is any prognostic quantity. The
non-local transport term is non zero only under convective forcing condition; while
γ is proportional to the surface flux and inversely proportional to vertical friction
velocity and mixing layer depth.

A.1.2 TKE scheme

The vertical mixing coefficients are computed from a 1.5 turbulent closure model
based on a prognostic equation for e , the turbulent kinetic energy,and a closure
assumption for the turbulent length scales.
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∂ē

∂t
=
Aνm

e3

[
(∂u/∂k)2 + (∂v/∂k)2

]
− AνmN2 + 1

e3
∂
∂k

[
Aνm

e3
∂ē
∂k

]
− cε ē

3/2

lε

Aνm = Cklk
√
ē; AνT = Aνm/Pn

• lε and lk are the dissipation and mixing turbulent length scales;

• Prt Prandtl number.

A.1.3 The Pacanowski and Philander (PP) scheme

As in Pacanowski and Philander (1981), the background viscosity νb = 1cm2/s, dif-
fusivity κb = 0.1cm2/s , ν0 = 100cm2/s , n = 2 and α = 5. Here N represents
Brunt-Väisälä frequency and Uz and Vz the vertical shear. For the convection case
(Rig < 0), a maximum value of 1 · 106cm2/s is used in order to mix the heat instan-
taneously in the vertical to a depth that ensures a stable density gradient.

A.2 Tracer Advections

• Total Variance Dissipation scheme, the tracer at velocity points is evaluated
using a combination of an upstream and a centred scheme. For example, in
the i-direction :

τupsu =

τ i+1 if ui+1/2 < 0

τi if ui+1/2 ≥ 0

τ tvdu = τupsu + cu
(
τ cen2
u − τupsu

)
;

– 0 ≤ cu ≤ 1 flux limiter function;

• Monotone Upstream Scheme for Conservative Laws, the tracer at velocity
points is evaluated assuming a linear tracer variation between two T-points.For
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example, in the i-direction :

τmusclu =

τ i + 1
2

(
1− ui+1/24t

e1u

)
∂̃iτ if ui+1/2 ≥ 0

τ i+1/2 + 1
2

(
1 +

ui+1/24t
e1u

) ˜∂i+1/2τ if ui+1/2 < 0

– ∂̃iτ is the slope of the tracer on which a limitation is imposed to ensure
the positive character of the scheme.

• Upstream-Biased Scheme,it is based on the fourth order scheme to which an
upstream-biased diffusion term is added. In the i-direction :

τubsu =

τ cen4
u + 1

12
τ ′′i if ui+1/2 ≥ 0

τ cen4
u − 1

12
τ ′′i+1 if ui+1/2 < 0

(A.2)

τ ′′i = δi
[
δi+1/2τ

]
– The 4th order part (as well as the 2nd order part as stated above) has to

be evaluated at the now time.

– The diffusion term is a biharmonic operator with an eddy coefficient pro-
portional to the velocity.

A.3 Viscosity Operator

A.3.1 Laplacian Operator

In basin scale models, the smallest spatial scale is often the width of the western
boundary current. When it is controlled by laplacian friction it is called a Munk
boundary layer. The condition that the grid scale ∆x be smaller than the Munk layer
width results in a minimum bound for viscosity (Smith and McWilliams, 2003):

ν > νM ≈ β∆x3
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On the other hand, viscosity cannot be arbitrarily large due to the stability
constraint (similar to the CFL criterion for advection). This criterion is more severe
in ocean models that use explicit leap-frog time stepping schemes for non-linear
advection, with the viscous terms lagged by one time step for stability. For laplacian
viscosity :

ν <
∆x2

8∆t

Laplacian operator as modelled in OPA is :

DlT
T =

1

e1T e1T e1T

[
δi

[
AlTu

(
e2ue3u
e1u

δi+1/2 [T ]
)]

+δj

[
AlTv

(
e2ve3v
e1v

δj+1/2 [T ]
)]

(A.3)

It preserves simmetry and ensures a complete separation between vorticity and
divergence parts.

A.3.2 Bilaplacian Operator

For a biharmonic operator the criterion as coded in the OPA model is:

ν <
∆x4

128∆t

For the biharmonic operation the numerical stability criterion is often more stringent
than the Munk layer constraint. A decrease of the biharmonic coefficient with the
grid spacing is often needed in order to ensure stability on spatially variable grids
Smagorinsky (1963) has proposed to make the laplacian viscosity proportional to
the deformation rate times the squared grid spacing ∆x2. Such a parametrisation
can be physically motivated in three dimensional turbulence and is used in large
eddy simulations. A study by Griffies and Hallberg (2003) suggests that using a
biharmonic operator with Smagorinsky-like viscosity is better in eddy permitting
simulation when the flow is non homogeneous (in the presence of western bound-
ary currents, for instance) because it allows lower levels of viscosity in the interior.
The latter combination is the operational model set-up. The lateral fourth order
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bilaplacian operator on tracers is obtained by applying (A.3) twice.
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Appendix B

High resolution model

The aim of this study is to give a detailed description of the new implementation
of the OGCM employed Mediterranean Sea forecasting. This model has been de-
veloped starting from the latest operational model, with a higher resolution of 1/24

°(almost 4.5Km) and 91 unevenly spaced vertical levels unevenly spaced and having
a thickness ranging from 2 m at the surface to 245 m at the ocean bottom. The depth
of the first level is 1 m and that of the deepest is 5000 m. The model domain and
the bathymetry are shown in Fig.B.1: the coastline resolves 49 islands. The Digital
Bathymetric Data Base-Variable Resolution has been used to make the MFS2491
coastlines and bathymetry. DBDB-5at 1’ resolution has been used for the Mediter-
ranean basin, whilst for the Atlantic DBDB-5 have been used. The bathymetry file
has been manually corrected along the Croatian coast by a comparison with detailed
nautical charts. The bathymetry has been interpolated on the model horizontal and
vertical grid and manually checked for isolated grid point, islands and straits and
passages and it is shown in figureB.1 . With this new grid, Messina Strait (fig. B.2)
could be resolved, and as for Gibraltar strait an up-stream scheme is used to avoid
numerical instabilities. Other main differences between the old resolution coast line
can be found near Iskenderum gulf, that now it is fully resolved (fig.B.3).
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Figure B.1: New model bathymetry and domain for the MFS2491 set up

Figure B.2: new Bathymetry near Messina Strait
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Figure B.3: new Bathymetry near Iskenderum Gulf

B.1 Vertical model discretization

All the vertical profiles taken from CTD show the same shape: gradients of density
and tracers are often concentrated in the thin layers just below the surface mixed
layer or in the thermocline. Because of the computational limitation, a stretched grid
in vertical direction (with the maximum of resolution near surface) is best choice to
ensure a second-order accuracy scheme (see Treguier et al. (1996)) without increasing
computational cost.
NEMO vertical mesh is determined by four factors:

1. the bathymetry (in meters);

2. the number of vertical level (in our case 72, in the future it can increase till
100);

3. the analytical transformation of z (depth of level, see equations (B.1) and
(B.2)) and the vertical scale factor (vertical derivatives of the transformation);
in our case we use z-coordinate with partial step bathymetry. The vertical



108 High resolution model

distribuition follow the equations (see ?) :

z0(k) = hsur − h0k − h1 log

[
cosh

(
(k − hth)
hcr

)]
; (B.1)

e(k) = −h0 − h1 tanh

(
(k − hth)
hcr

)
; (B.2)

In the current configuration the values are

hsur = −110493.9930400577
h0 = 1362.526788714143
h1 = 1362.915990505609
hth = 101.8303560439433
hcr = 30.00000000000000

(B.3)

In figure B.4 we can see the new vertical distribution profile implemented and
compared to the previous version. In figure B.5 is the depicted the new relative
frequency histogram of the number of vertical levels per interval depth, in
yellow, and compared with the old relative frequency, in red.

4. Masking system.

The equation (B.1) allows us to define a nearly uniform vertical location of levels at
the ocean top and a bottom with a smooth hyperbolic tangent transition in the water
column between. Once chosen the desired resolution in the surface (bottom) about
2m (300m) layer and a range of depth (in our case it varies from 0 to -5000m) we can
determine the values of the parameters in expression (B.3). Due to the atmospheric
forcing parametrization and assimilation, the first layer must lie under 1m depth.
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Figure B.4: Vertical level distribution versus the depth of water column as computed by NEMO-
OPA, new one 91 levels in red, in black the old distribution with 72 levels
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Figure B.5: Histogram of relative frequency number of level for each interval depth, in old version
in red, while the new in yellow.
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