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Preface 
 

A matrix converter (MC) is an array of controlled semiconductor switches 

that directly connect each input phase to each output phase, without any 

intermediate dc link. 

The main advantage of MCs is the absence of bulky reactive elements, 

that are subject to ageing, and reduce the system reliability. Furthermore, 

MCs provide bidirectional power flow, nearly sinusoidal input and output 

waveforms and controllable input power factor. Therefore MCs have received 

considerable attention as a good alternative to voltage-source inverter (VSI) 

topology. 

The development of MCs started when Alesina and Venturini proposed 

the basic principles of operation in the early 1980’s [1]. 

Afterwards  the research in this fields continued in two directions. On the 

one hand there was the need of reliable bidirectional switches, on the other 

hand the initial modulation strategy was abandoned in favor of more modern 

solutions, allowing higher voltage transfer ratio and better current quality. 

In the original Alesina and Venturini’s theory the voltage transfer ratio 

was limited to 0.5, but it was shown later that, by means of third harmonic 

injection techniques, the maximum voltage transfer ratio could be increased 

up to 0.866, a value which represents an intrinsic limitation of three-phase 

MCs with balanced supply voltages [2]. 

A new intuitive approach towards the control of matrix converters, often 
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defined “indirect method”, was presented in [3]. According to this method the 

MC is described as a virtual two stage system, namely a 3-phase rectifier and 

a 3-phase inverter connected together through a fictitious DC-link. The 

indirect approach has mainly the merit of applying the well-established space 

vector modulation (SVM) for VSI to MCs, although initially proposed only 

for the control of the output voltage [4]. The SVM was successively 

developed in order to achieve the full control of the input power factor, to 

fully utilize the input voltages and to improve the modulation performance 

[5], [6].  

A general solution of the modulation problem for MCs was presented in 

[7], based on the concept of “Duty-Cycle Space Vector”, that allows an 

immediate comprehension of all the degrees of freedom that affect the 

modulation strategies. 

Meanwhile, several studies were presented about the bidirectional switches 

necessary for the construction of a matrix converter. The bidirectional 

switches were initially obtained combining discrete components [8]. Then, as 

the interest toward matrix converter increased, some manufacturers produced 

power modules specifically designed for matrix converter applications [9]. As 

regards the hardware components, the switches are usually traditional silicon 

IGBTs, but also other solutions have been recently tested, such as MCTs or 

IGBTs with silicon carbide diodes. The performance of the switches has been 

compared in [10]-[13]. 

Another problem that the researchers have dealt with is the current 

commutation between the bidirectional switches. The absence of free-

wheeling diodes obliges the designer to control the commutation in order to 

avoid short circuits and over voltages. A comparison among several solutions 

has been done in [14], [15] and [16]. 

To obtain a good performance of the matrix converter, it is necessary also 

the design of a L-C filter to smooth the input currents and to satisfy the EMI 

requirements [17]. It has been shown that the presence of a resonant L-C 

filter could determine instability phenomena that can prevent the matrix 

converter to deliver the rated power to the load [18]. A possible remedy for 

this problem consists in filtering the input voltage before calculating the 

duty-cycles. In this way it is possible to increase the stability power limit and 

to obtain the maximum voltage transfer ratio. 



 
7 

All this aspects are considered in the next chapters. In particular, Chapter 

1 gives an overview of the basic principles of matrix converters. Chapter 2 

summarises the most important modulation strategies for matrix converter, 

whereas Chapter 3 proposes two novel modulation techniques that allows 

obtaining a better performance in terms of number of commutations and 

current distortion. 

Chapter 4 and 5 concern the stability problem. In those Chapters the 

unstable behaviour of matrix converter is explained and some solutions are 

proposed. 

Chapter 6 analyses in details the quality of the input currents. Finally, 

Chapter 7 presents and assesses a complete electric drive for induction motor 

based on matrix converter. 
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1.Chapter 1 
Fundamentals of 
Matrix Converters 
Abstract 

The matrix converter has several attractive features and some companies 

have shown a particular interest in its commercial exploitation. These 

chapter presents an introduction to its technology and theory. After a brief 

historical review, the basic hardware solutions for the development of matrix 

converters are described. A notable part of the chapter is dedicated to the 

comparison between matrix converter and back-to-back converter.  

1.1. Structure of Matrix Converter 

Basically, a matrix converter (MC) is composed by 9 bidirectional 

switches, as shown in Fig. 1.1, where each dot of the grid represents a 

connection between the output and the input terminals. 

The converter is usually fed at the input side by a three phase voltage 

source and it is connected to an inductive load at the output side. 

The schematic circuit of a matrix converter feeding a passive load is 

shown in Fig. 1.2. The system is composed by the voltage supply, an L-C 

input filter, the MC and a load impedance. 
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A. Input Filter 

The input filter is generally needed to smooth the input currents and to 

satisfy the EMI requirements. A reactive current flows through the input 

filter capacitor, leading to a reduction of the power factor, especially at low 

output power. As a consequence, the capacitor is chosen in order to ensure at 

least a power factor of 0.8 with 10% of the rated output power. After the 

selection of the capacitor, the input filter inductance of the matrix converter 

can be chosen in order to satisfy the IEEE Recommended Practices and 

Requirements for Harmonic Control in Electrical Power Systems (IEEE Std. 

519-1992).   

B. Bidirectional Switches 

The MC requires bidirectional switches with the capability to block the 

Power Circuits 

Input 
voltages

Output 
currents 

Control System 

Commutation 
control 

IoIi Iline Rs Ls

Lf Cf
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Fig. 1.2 - Complete scheme of a MC system. 
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Fig. 1.1 - Basic scheme of matrix converters. 
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voltage and to conduct the current in both directions. There are two main 

topologies for bi-directional switches, namely the common emitter anti-

parallel IGBT configuration and the common collector anti-parallel IGBT 

configuration. 

The common emitter arrangement is represented in Fig. 1.3(a). As can be 

seen, two IGBTs are connected with two diodes in an anti-parallel 

configuration. The diodes provide the reverse blocking capability.  

The complete connection scheme of the common emitter arrangement is 

shown in Fig. 1.4. The main advantage of this solution is that the two IGBTs 

can be driven with respect the same point, i.e. the same common emitter, 

that can be considered as a local ground for the bidirectional switch. On the 

other hand, each bidirectional switch requires an insulated power supply, in 

order to ensure a correct operation and, hence, a total of nine insulated 

power supplies is needed. The power supplies must be insulated because, as a 

bidirectional switch is turned on, the common emitter assumes the potential 

of an input phase. Therefore, it is not possible for all the bidirectional 

switches to be driven with respect to the same common point.  

a) b) 

Fig. 1.3 -  Bidirectional switches.  (a) common emitter configuration. (b) common collector 
configuration. 

 
b
c 

B C

S11 S12 S13 S 23 S22 S21 S31 S32 S 33 

a 
b
c 

A

S11 S12 S13 S 23 S22 S21 S31 S32 S 33 

a 

 

Fig. 1.4 -  Complete scheme of the power stage using common emitter arrangement. 
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The common collector arrangement is presented in Fig. 1.3(b). The IGBTs 

are now arranged in a common collector configuration. In this case, only six 

insulated power supplies are needed. In fact, three IGBTs have the emitter 

connected to the input phase a. This common point can be considered as a 

local ground for them. Furthermore, three other IGBTs have the emitter 

connected to the output phase A. Once again, this point has the meaning of a 

local ground, that has to be insulated from the previous one. The same 

happens for the couples of phases b-B and c-C, thus concluding that six 

insulated power supplies are necessary. The complete connection scheme of 

the common collector arrangement is shown in Fig. 1.5. 

From a commercial point of view, it is worth noting that several 

manufacturers have already produced integrated power modules for MC. The 

traditional solution consists of a single power module containing the switches 

corresponding to one leg of the converter. However, it is possible to find also 

modules containing the whole power stage of the converter (EUPEC). 

Another interesting solution proposed by International Rectifier is 

represented in Fig. 1.6. In this case each module contains three IGBTs 

connected to one input phase and three IGBTs connected to the 

corresponding output phase [19]. 

The arrangement shown in Fig. 1.6 is particularly suitable for the common 

collector configuration and allows a simplification of the control circuit 

layout, since each power module requires only two insulated supplies to be 

driven. The traditional solution, instead, requires four of the six insulated 
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a
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A 

 

Fig. 1.5 - Complete scheme of the power stage using common collector arrangement. 
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voltages that are necessary for the common collector configuration [20]. 

C. Current Commutation 

Matrix converters have not free-wheeling diodes, unlike traditional voltage 

source inverters. This makes the current commutation between switches a 

difficult task, because the commutation has to be continuously controlled. 

The switches have to be turned on and turned off in such a way as to avoid 

short circuits and sudden current interruptions. 

Many commutation strategies have been already studied. The most 

common solution is the ”4-step commutation”, that requires information 

about the actual current direction in the output phases. The four step 

sequence is shown in Fig. 1.7, that refers to the general case of current 

commutation from a bidirectional switch a to a bidirectional switch b. 

 In the beginning both IGBT of switch a are enabled. In the first step, the 
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Io 
a
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Fig. 1.7 - Four step commutation sequence. 

 
a

A 

Input phases 
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Fig. 1.6 - Scheme of the power stage based on modules manufactured by International 
Rectifier Corporation. 
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IGBT San, which is not conducting the load current, is turned off. In the 

second step, the IGBT Sbp, that will conduct the current, is turned on. As a 

consequence, both switches a and b can conduct only positive currents and 

short circuits are prevented. Depending upon the instantaneous input 

voltages, after the second step, the conducting diode of switch a is subject to 

the voltage vab. If vab < 0, then the diode is reverse biased and a natural 

commutation takes place. Otherwise, if vab ≥ 0, a hard commutation happens 

when, in the third step, IGBT Sap is turned off. Finally, in the fourth step, 

the non-conducting switch Sbn is enabled to allow the conduction of negative 

currents. During a period of the input voltage, the natural commutation 

occurs in 50% of all commutations and therefore this current commutation 

has earned the name “semisoft switching”.  
Apart the 4-step commutation, other commutation strategies have been 

proposed. In particular, a “3-step commutation strategy” is described in [14] 

and [15]. The basic principle is that, combining the measurements of the 

input voltages to those of the output currents, the control logic can always 

perform the current commutation avoiding one step. In this way the 

commutation time is reduced and the current quality improves. 

D. Converter Protections 

Due to the lack of free-wheeling paths for the currents, a number of 

protection strategies should be adopted to prevent the damage of the 

converter. Protections against over-load, short-circuit and over-voltage are 

usually implemented. 

The over-load protection is performed directly by the control logic, that 

turns off all the switches when the load current is greater than the rated one. 

This solution is not satisfactory in order to avoid the damage of the switches 

if a load short-circuit happens, because the latency time of the DSP 

depending on the cycle period is too high. Therefore, the protection against 

the short circuit consists in the monitoring of the collector-emitter voltage of 

all the IGBTs comprised in the power modules. 

It is worth noting that it is not possible to simply turn off all the switches, 

otherwise the inductive load current have no closing path. The most common 

solution to this problem is to add a diode bridge clamp across the input and 

the output sides of the converter, shown in Fig. 1.8. The small capacitor of 
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the clamp is designed to store the energy corresponding to the inductive load 

current. 

In addition the voltage across the capacitor is continuously measured. In 

fact fault conditions are more frequently caused by instability phenomena at 

the input of the converter or wrong switch commutations rather than short 

circuits of the load. When the voltage across the capacitor becomes greater 

than a limit value, the over-voltage protection should stop the converter. 

It is possible to show that some diodes of the clamp can be replaced by 

the diodes already present in the bidirectional switches if they are connected 

in the common-emitter configuration. In this way, instead of 12 clamp diodes, 

only 6 diodes are necessary. However, this solution requires three additional 

insulated voltage supplies for the drivers to guarantee a correct operation. 

Further details can be found in [17]. 

Another protection issue is that MC is less immune to power grid 

disturbances than other converter. In hoisting applications, short-term 

braking capability during a power outage is needed until the mechanical 

brake engages or to perform a more effective combined braking. 

A method to provide short-term braking capability during a power outage 

for MCs was presented in [20]. It includes a braking chopper in the clamp 

circuit, which allows a notable reduction of the capacitor size. The power 

flow in the clamp circuit is reduced by increasing the harmonic content in the 

motor currents, thus causing higher motor losses. 

1.2. Input Current Modulation Strategies 

The MC allows the control not only of the output voltages, but also of the 

phase angle of the input current vector. 

There are several possible solutions for the modulation of the input 

current vector that basically differ in the direction along which the current 

 
a
b
c

A
B
C

Cclamp 

 

Fig. 1.8 - Clamp circuit for the protection of the matrix converter. 
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vector is modulated. This direction can be represented introducing the vector 

ψ  with arbitrary magnitude, here named modulation vector. For any 

strategy it is 

 0=⋅ψ iij  (1.1) 

where ii  is the input current vector. 

Any input current modulation strategy is completely defined once the 

modulation vector ψ  is known. In fact, the input current can be expressed as 

a function of the modulation vector, the power absorbed by the converter 

and the input voltage. 

The power absorbed by the converter can be written as follows: 

 iii ivp ⋅=
2

3
. (1.2) 

Then, combining (1.1) and (1.2) leads to the following expression of the 

input current vector: 

 ψ
ψ⋅

=
 v

p
i 

i

i
i

3

2
 (1.3) 

where pi is the power delivered to the load. 

If the switches are assumed ideal and the converter power losses are 

neglected, the input power is equal to the power delivered to the load po. As 

a consequence, (1.3) becomes as follows: 

 ψ
ψ⋅

=
 v

p
i 

i

o
i

3

2
. (1.4) 

As can be seen from (1.4) the input current space vector depends on the 

output power level, the input voltage vector and the modulation vector.  

The simplest input current modulation strategy (Strategy A) is to 

maintain the input current vector in phase with the actual input voltage 

vector, determining instantaneous unity input power factor. For instance, 

Fig. 1.9 shows the behaviour of a 10-kW matrix converter. As is possible to 

see, the line current is nearly sinusoidal and is kept in phase with the input 

line-to-neutral voltage. 
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In case of input voltage disturbances, Strategy A produces non-sinusoidal 

input currents having the lowest total RMS value. 

In [21] it has been demonstrated that a better performance in terms of 

input current distortion can be achieved if the input current vector is 

dynamically modulated around the input voltage vector (Strategy B), or is 

modulated to be in phase with the positive sequence fundamental component 

of the input voltage vector (Strategy C). Theoretical and experimental results 

obtained comparing these input current modulation strategies are given in 

[22] and [23]. As a conclusion, it can be noted that Strategy B has to be 

preferred in the case of unbalanced sinusoidal input voltages because allows 

unbalanced, but sinusoidal, input currents to be obtained. Strategy C 

performs better in presence of input voltage distortions. It is possible to 

demonstrate that Strategy C represents the optimal modulation strategy 

which determines the lowest total RMS value of the input current 

disturbance. It will be pointed out that Strategy C has also a stabilizing 

effect on the converter operation. This aspect will be clarified in the next 

paragraph. 

1.3. Instability Phenomena 

The simplest modulation strategy is based on detecting the zero crossing 

 

Fig. 1.9 - Experimental tests: stable steady state operation. Upper track: line current (20
A/div). Middle track: input line-to-neutral voltage (400 V/div). Lower track: load line-to-line 
voltage (600 V/div). 
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of one input voltage for synchronizing the input current modulation. This 

control technique performs correctly if an ideal power supply is assumed (i.e. 

balanced and sinusoidal supply voltages), but in presence of input voltage 

disturbances, these are reflected on the output side determining low order 

voltage harmonics, as the matrix converter has no internal energy storage. 

Considering unbalanced non-sinusoidal input voltages, the magnitude and the 

angular velocity of the input voltage vector are not constant. Then, a simple 

synchronization with the input voltages is no longer applicable but the input 

voltages must be measured at each cycle period, in order to calculate the 

duty-cycles necessary to generate balanced and sinusoidal output voltages. 

However, the compensation of the input voltage disturbances leads to a 

closed loop control that might cause instability phenomena when the matrix 

converter output power exceeds a limit value. Typical waveforms of the line 

current, the output voltage and the input line-to-line voltage during unstable 

operation are shown in Fig. 1.10 for a 10-kW MC. 

Here is a qualitative explanation of the instability phenomena. Let’s 
suppose that a voltage disturbance is temporarily applied to the converter 

input, thus leading to a variation of the input current. It is worth noting that 

this current variation is proportional to the output power. The current 

harmonics with frequencies close to the resonant frequency of the LC input 

 

Fig. 1.10 - Experimental test: unstable steady state operation. Upper track: line current
(10A/div). Middle track: line to line output voltage (400 V/div). Lower track: line to line
input voltage (400 V/div). 
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filter are amplified and their effect is to reinforce the input voltage 

disturbance. If the output power is small, this reinforcement action is weak 

and after the disturbance has vanished, the converter returns to the normal 

steady state operation. Otherwise, if the output power is high enough, the 

reinforcement action is sufficient to establish self-sustained oscillations in the 

input voltages, even after the initial disturbance has vanished.  In this case, 

the system reaches a new steady state operation, but the converter does not 

work correctly, because the input currents and voltages are remarkably 

distorted. 

It is interesting to note that these oscillations have the form of “beatings”, 
namely they are composed by at least two separate harmonics with close 

frequencies. 

A first attempt to determine the stability power limit was done in [18], 

where the stability is evaluated by analyzing the migration of the eigenvalues 

of a small-signal model of the system. The power limit results as follows: 

 2
2

2
2 4

2
3

i
T

s
filim L

R
CVP ω+=  (1.5) 

where Vi is the amplitude of the input voltage vector, ωi the input angular 

frequency, and LT is the sum of filter and line inductances. 

For a prefixed value of the input filter resonance frequency, (1.5) 

emphasizes that, in order to increase the power limit, high values of the 

capacitance Cf and low values of the inductance Lf should be preferred. 

Furthermore, the control of MCs is usually done with digital 

microprocessors whose calculations are performed within a finite cycle period. 

The digital controller samples the input voltages in the beginning of the cycle 

period, but applies the new configurations only during the subsequent cycle 

period, thus determining a delay of one cycle period. It has long been known 

that a time delay could remarkably modify the system stability. The effect of 

the time delay was addressed in [24]. In this case the stability power limit 

depends not only on the line and filter parameters, but also on the load 

impedance and on the cycle period Tp. 

Some methods have been proposed to increase the stability power limit, 

such as the addition of a damping resistance across the filter inductor. In [25] 

and [26] it has been shown that the power limit can be sensibly improved if 
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the calculation of the duty-cycles is carried out by filtering the matrix 

converter input voltages of the MC by means of a digital low-pass filter. For 

example, the continuous-time equation of a possible filter applied to the input 

voltage vector is the following one: 

 
( )

τ
τω−−

= ifiiif vjv

dt

vd 1
 (1.6) 

where ifv  is the filtered input voltage vector. 

By increasing the time constant τ of the low-pass filter is possible to 

increase the limit voltage. The only drawback is that the filter may affect to 

some extent the capability of the control system to compensate the effect of 

input voltage disturbances on the load currents. 

1.4. Comparison between MC and Back-to-back Converter 

To obtain the favours of market, MC should overcome the performance of 

the other competitors in terms of cost, size and reliability. The most 

important alternative to MC is the back-to-back converter, whose scheme is 

shown in Fig. 1.11. 

The MC has been already compared with the back-to-back converter 

obtaining some important but not conclusive results. The comparison is 

extremely difficult due to the high number of system parameters (i.e. input 

filter and load parameters, switching frequency, output frequency, 
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Fig.1.11 - Schematic drawing of the back-to-back converter. 
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modulation strategies, etc.) and to the inherent differences between the two 

converter topologies, such as the maximum voltage transfer ratio. For 

instance, the MC is able to generate balanced and sinusoidal output voltages, 

whose amplitude can be regulated from zero to approximately 87% of the 

input voltage amplitude. The output voltage of the back-to-back converter 

instead is related to the DC-link voltage, and can be equal or even greater 

than the input voltage [26]. 

The switching frequencies of the two converters are related to the adopted 

modulation strategies and should be chosen with care in order to make a fair 

comparison. Furthermore, both converters need an input filter to reduce the 

input current harmonics, and the filter parameters are strictly related to the 

switching frequency. 

In [27]- [28] the comparison between the two topologies is performed in 

terms of total switch losses, by evaluating the converter efficiency for given 

operating conditions. On the other hand, it has been clearly emphasized that 

in matrix converters the switch losses are not equally shared among the 

switches, being the distribution related to the output frequency. Thus, 

considering only the total switch losses as the key-parameter for the 

comparison may be misleading. 

In [29] the comparison between matrix and back-to-back converters is 

performed by evaluating the maximum output power that each converter is 

able to deliver to the load for different output frequency. The comparison is 

carried out assuming the same types of IGBTs and diodes for both 

converters. The maximum output power is determined taking into account 

the thermal limit of each switch on the basis of a thermal model. All the 

parameters needed for the comparison are shown in Tab. 1.1. 

The performance of the two converter topologies has been tested for 

different values of the output frequency in the range 0-150 Hz. The voltage 

has been changed with the frequency according to the well-known constant 

V/Hz law for induction motor drives. Thus, the output voltage is varied 

proportionally to the frequency until 50Hz. For higher frequencies the phase 

to phase output voltage is kept constant, i.e. 330V and 380V for the MC and 

the back-to-back converter respectively. At low frequencies, the output 

voltage has been changed in order to compensate the voltage drop on the 

stator winding resistance. 
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The maximum output power achievable by the two converters as a 

function of the output frequency is summarized in Fig. 1.12. It is evident that 

the output power of MC is always higher than that of back-to-back 

converter, showing a decrease around 50 and 100 Hz.  

Fig. 1.13 shows the load current corresponding to the maximum output 

power as a function of the output frequency, for the matrix and the back-to-

back converters. In this figure the better performance of the matrix converter 

in terms of  maximum output current is evident, especially in the low output 

frequency range. The reason of so low values of the output current for the 

back-to back converter is that, at low frequency, the output current is not 

equally shared among the six switches. This situation is similar to the one 

occurring when the matrix converter operates at 50 Hz. On the contrary, the 

matrix converter is able to deliver high currents at low frequency because 

these currents are equally shared among the 18 switches.  

In order to make a fair comparison, one should take into account that the 

TABLE  1.1 – SYSTEM PARAMETERS 

Parameters Back to Back Matrix Converter 

VIN 380 V(RMS), 50 Hz 380 V(RMS), 50 Hz 

Rline 0.11Ω 0.11Ω 

Lline 0.167mH 0.167mH 

VDC 600V - 

CDC 200μF - 

Cf 25μF (Y) 40 μF (Y) 

Lf 1.00 mH 0.35 mH 

Rjc 0.64 °C/W 0.64 °C/W 

Cj 31.2 mJ/°C 31.2 mJ/°C 

θcase 70flC 70flC 

fsw 6.6kHz (ac-dc),16kHz (dc-ac) 8kHz 

cos ϕ load 0.8 0.8 

Vout 
f out< 50 Hz , const. V/Hz 

f out> 50 Hz , Vout = 380 V 

f out< 50 Hz , const. V/Hz

f out> 50 Hz, Vout = 330 V

Diodes HFA16PB120 HFA16PB120 

IGBTs IRG4PH50U IRG4PH50U 
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two converter topologies are realized with a different number of switches (i.e. 

18 for the matrix converter and 12 for the back-to-back converter). For this 

purpose two more significant quantities have been introduced, which rep-

resent the maximum output power per switch and the corresponding output 

current per switch. These new quantities are represented in Figs. 1.14 and 

1.15 respectively. 

Fig. 1.14 shows that the output power per switch of the MC is always 

lower than that of back-to-back converter, except for frequency values 

ranging from 0 to about 30 Hz. On the other hand, it can be seen from Fig. 

1.15 that the load current per switch of the matrix converter is always higher 

than that of the back-to-back converter, except for frequency values around 

50 Hz.  

From Figs. 1.14 and 1.15 it can be concluded that in terms of maximum 
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Fig. 1.12 - Maximum output power  as a function of the output frequency. 
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Fig. 1.13 - Maximum output current as a function of the output frequency. 
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output power per switch the two converter topologies show practically the 

same performance, whereas in terms of output current per switch the matrix 

converter should be preferred to the back-to-back converter particularly in 

the low output frequency range. 

These results could be usefully employed in the choice of the converter 

topology for drive systems, once the operating conditions and the over-load 

capability were specified in details. 

1.5. Conclusion 

MCs provides some interesting features, such as compactness and 

sinusoidal waveform of the input and output currents. However, there are 

some potential disadvantages of MC technology that have so far prevented 

its commercial exploitation. During the last two decades, several of these 

problems were solved. In particular, the commutation problem between two 

bidirectional switches was solved with the development of multistep 
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Fig. 1.15 - Maximum output current per switch as a function of the output frequency. 
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commutation strategies and new power modules designed for MC application 

have been manufactured. 
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2.Chapter 2 
Modulation 
Strategies 
Abstract 

In this chapter a novel representation of the switches state of a three-

phase to three-phase matrix converter is presented. This approach, based on 

the space vector representation, simplifies the study of the modulation 

strategies, leading to a complete general solution and providing a very useful 

unitary point of view. The already-established strategies can be considered as 

particular cases of the proposed general solution. Using this approach it can 

be verified that the SVM technique coincides with the general solution of the 

modulation problem of matrix converter. This technique can be considered 

the best solution for the possibility to achieve the highest voltage transfer 

ratio and to optimize the switching pattern through a suitable use of the zero 

configurations.   

2.1. Introduction 

The complexity of the matrix converter topology makes the study and the 

determination of suitable modulation strategies a hard task. 

Two different mathematical approaches have been considered in the past 
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to face this problem, namely the Modulation Duty-Cycle Matrix (MDCM) 

approach and the Space Vector Modulation (SVM) approach.  

The MDCM approach has been initially used in order to put the matrix 

converter theory on a strong mathematical foundation and several 

fundamental papers have been published. 

A first strategy based on MDCM and proposed by Alesina and Venturini 

(in the following AV method), allowing the full control of the output voltages 

and of the input power factor, has been derived in [1]. The maximum voltage 

transfer ratio of the proposed algorithm is limited to 0.5 and the input power 

factor control requires the knowledge of the output power factor. 

The inclusion of third harmonics in the input and output voltage 

waveforms has been successfully adopted in [30] to increase the maximum 

voltage transfer ratio up to 0.866, a value which represents an intrinsic 

limitation of the three-phase to three-phase matrix converter, with balanced 

supply voltages and balanced output conditions. In [2], the same technique 

has been extended with input power factor control leading to a very powerful 

modulation strategy (in the following optimum AV method).  

The scalar control modulation algorithm proposed in [31], although based 

on a different approach, leads to performance similar to that obtained by 

using the optimum AV method. 

A sensible increase of the maximum voltage transfer ratio up to 1.053 is a 

feature of the Fictitious DC Link algorithm, presented in [3]. This strategy 

considers the modulation as a two steps process, namely rectification and 

inversion. The higher voltage transfer ratio is achieved to the detriment of 

the waveform quality of the input and output variables.  

The SVM approach, initially proposed in [4] to control only the output 

voltages, has been successively developed in [6], [8], [21], [32] in order to 

completely exploit the possibility of matrix converters to control the input 

power factor regardless the output power factor, to fully utilize the input 

voltages, and to reduce the number of switch commutations in each cycle 

period. Furthermore, this strategy allows an immediate comprehension of the 

modulation process, without the need for a fictitious DC link, and avoiding 

the addition of the third harmonic components. 

In this chapter a new general and complete solution to the problem of the 

modulation strategy of three-phase matrix converters is presented. This 
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solution has been obtained using the Duty-Cycle Space Vector (DCSV) 

approach, which consists of a representation of the switches state by means 

of space vectors. In this way, the previously mentioned strategies can be 

considered as particular cases of the proposed one. 

A review of the well-established modulation techniques is presented in 

Paragraph 2.2. Then, in Paragraph 2.4, the new approach is illustrated in 

order to determine a generalized modulation technique.  

From this unitary point of view, some modulation techniques are 

described and compared with reference to maximum voltage transfer ratio, 

number of commutations and ripple of the input and output quantities. It 

should be noted that the analysis is concerned with modulation techniques 

that do not utilize information about the output currents. 

Finally, it is emphasized that the generalized SVM technique, obtained by 

using more than one zero configuration in each cycle period, represents the 

general solution to the problem of the modulation strategy for matrix 

converters. 

2.2. Duty-cycle Matrix Approach 

The basic scheme of three-phase matrix converters has been already 

represented in Fig. 1.1.  

The switching behaviour of the converter generates discontinuous output 

voltage waveforms. Assuming inductive loads connected at the output side 

leads to continuous output current waveforms. In these operating conditions, 

the instantaneous power balance equation, applied at the input and output 

sides of an ideal converter, leads to discontinuous input currents. The 

presence of capacitors at the input side is required to ensure continuous input 

voltage waveforms. 

In order to analyze the modulation strategies, an opportune converter 

model is introduced, which is valid considering ideal switches and a switching 

frequency much higher than input and output frequencies. Under these 

assumptions, the higher frequency components of the variables can be 

neglected, and the input/output quantities are represented by their average 

values over a cycle period cT . 

The input/output relationships of voltages and currents are related to the 
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states of the nine switches, and can be written in matrix form as 
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with 

 3,2,1,3,2,1,10 ==≤≤ khmhk . (2.3) 

The variables hkm  are the duty-cycles of the nine switches hkS  and can be 

represented by the duty-cycle matrix m . In order to prevent short-circuit on 

the input side and ensure uninterrupted load current flow, these duty-cycles 

must satisfy the three following constraint conditions: 

 1131211 =++ mmm  (2.4) 

 1232221 =++ mmm  (2.5) 

 1333231 =++ mmm . (2.6) 

The determination of any modulation strategy for the matrix converter, 

can be formulated as the problem of determining, in each cycle period, the 

duty-cycle matrix that satisfies the input-output voltage relationships (2.1), 

the required instantaneous input power factor, and the constraint conditions 

(2.3)-(2.6). The solution of this problem represents a hard task and is not 

unique, as documented by the different solutions proposed in literature.  

It should be noted that in order to completely determine the modulation 

strategy it is necessary to define the switching pattern, that is the 

commutation sequence of the nine switches. The use of different switching 

patterns for the same duty-cycle matrix m  leads to a different behaviour in 

terms of number of switch commutations and ripple of input and output 

quantities. 
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A. Alesina-Venturini 1981 (AV method) 

A first solution, obtained by using the duty-cycle matrix approach, has 

been proposed in [1]. This strategy allows the control of the output voltages 

and input power factor, and can be summarized in the following equation, 

valid for unity input power factor (αi = βi) 

 ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
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⎢⎣
⎡ π

−−β⎥⎦
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⎡ π

−−α+=
3

2
1cos
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2
1cos21

3
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khqm iohk . (2.7) 

Assuming balanced supply voltages and balanced output conditions, the 

maximum value of the voltage transfer ratio q is 0.5. This low value 

represents the major drawback of this modulation strategy. 

The allocation of the switch states within a cycle period is not unique and 

different switching patterns lead to different input-output ripple performance. 

A typical double-sided switching pattern usually adopted is represented 

schematically in Fig. 2.1. 

As is possible to see, by using this modulation technique, 12 switch 

commutations occur in each cycle period (a commutation takes place when 

the value of h or k in hkm  changes). 

B. Alesina-Venturini 1989 (Optimum AV method) 

In order to improve the performance of the previous modulation strategy 

in terms of maximum voltage transfer ratio, a second solution has been 

presented in [2]. In this case the modulation law can be described by the 

following relationship 
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In particular, the solution given in (2.8) is valid for unity input power 
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factor (αi = βi), and the maximum voltage transfer ratio q is 0.866. 

It should be noted that in [2] a complete solution, valid for values of the 

input power factor different from unity, has been also derived. The 

corresponding expressions for hkm  are very complex and require the 

knowledge of the output power factor. 

2.3. Space Vector Approach 

A. Vectors of MC 

The Space Vector Approach is based on the instantaneous space vector 

representation of input and output voltages and currents.  

Among the 27 possible switching configurations available in three-phase 

matrix converters, 21 only can be usefully employed in the SVM algorithm, 

and can be represented as shown in Tab. 2.1. 

The first 18 switching configurations determine an output voltage vector 

ov  and an input current vector ii , having fixed directions, as represented in 

Figs. 2.2(a) and (b), and will be named “active configurations”. The 

magnitude of these vectors depends upon the instantaneous values of the 

input line-to-line voltages and output line currents respectively. 

The last 3 switching configurations determine zero input current and 

output voltage vectors and will be named “zero configurations”. 
The remaining 6 switching configurations have each output phase 
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Fig. 2.1 – Double-sided switching pattern in a cycle period Tp. 
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connected to a different input phase. In this case the output voltage and 

input current vectors have variable directions and cannot be usefully used to 

synthesise the reference vectors. 

B. SVM Technique 

The SVM algorithm for matrix converters presented in this paragraph has 

the inherent capability to achieve the full control of both output voltage 

vector and instantaneous input current displacement angle [6], [8], [21], [32]. 

At any sampling instant, the output voltage vector ov  and the input 

current displacement angle iϕ  are known as reference quantities (Figs. 2.3(a) 

and 2.4(b)). The input line-to-neutral voltage vector iv  is imposed by the 

TABLE 2.1 - SWITCHING CONFIGURATIONS USED IN THE SVM ALGORITHM. 

Switch 
configuration 

Switches On vo αo ii βi 

+1 S11 S22 S32 2/3 v12i 0 2/√3 io1 -π/6 

−1 S12 S21 S31 -2/3 v12i 0 -2/√3 io1 -π/6 

+2 S12 S23 S33 2/3 v23i 0 2/√3 io1 π/2 

−2 S13 S22 S32 -2/3 v23i 0 -2/√3 io1 π/2 

+3 S13 S21 S31 2/3 v31i 0 2/√3 io1 7π/6 

−3 S11 S23 S33 -2/3 v31i 0 -2/√3 io1 7π/6 

+4 S12 S21 S32 2/3 v12i 2π/3 2/√3 io2 -π/6 

−4 S11 S22 S31 -2/3 v12i 2π/3 -2/√3 io2 -π/6 

+5 S13 S22 S33 2/3 v23i 2π/3 2/√3  io2 π/2 

−5 S12 S23 S32 -2/3 v23i 2π/3 -2/√3 io2 π/2 

+6 S11 S23 S31 2/3 v31i 2π/3 2/√3 io2 7π/6 

−6 S13 S21 S33 -2/3 v31i 2π/3 -2/√3 io2 7π/6 

+7 S12 S22 S31 2/3 v12i 4π/3 2/√3 io3 -π/6 

−7 S11 S21 S32 -2/3 v12i 4π/3 -2/√3 io3 -π/6 

+8 S13 S23 S32 2/3 v23i 4π/3 2/√3 io3 π/2 

−8 S12 S22 S33 -2/3 v23i 4π/3 -2/√3 io3 π/2 

+9 S11 S21 S33 2/3 v31i 4π/3 2/√3 io3 7π/6 

−9 S13 S23 S31 -2/3 v31i 4π/3 -2/√3 io3 7π/6 

01 S11 S21 S31 0 - 0 - 

02 S12 S22 S32 0 - 0 - 

03 S13 S23 S33 0 - 0 - 
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source voltages and is known by measurements. Then, the control of iϕ  can 

be achieved controlling the phase angle iβ  of the input current vector. 

In principle, the SVM algorithm is based on the selection of 4 active 

configurations that are applied for suitable time intervals within each cycle 

period pT . The zero configurations are applied to complete pT . 

In order to explain the modulation algorithm, reference will be made to 

Figs. 2.3(a) and (b), where ov  and ii  are assumed both lying in sector 1, 

without missing the generality of the analysis. 

The reference voltage vector ov  is resolved into the components ’
ov  and ”

ov  

along the two adjacent vector directions. The ’
ov  component can be 
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synthesised using two voltage vectors having the same direction of ’
ov . Among 

the six possible switching configurations (±7, ±8, ±9), the ones that allow also 

the modulation of the input current direction must be selected. It is verified 

that this constraint allows the elimination of two switching configurations 

(+8 and -8 in this case). Among the remaining four, we assume to apply the 

positive switching configurations (+7 and +9). The meaning of this 

assumption will be discussed later in this paragraph. With similar 

considerations the switching configurations required to synthesise the ’’
ov  

component can be selected (+1 and +3). 

Using the same procedure it is possible to determine the four switching 

configurations related to any possible combination of output voltage and 

input current sectors, leading to the results summarized in Tab. 2.2.  

Four symbols (I, II, III, IV) are also introduced in the last row of Tab. 2.2 

to identify the four general switching configurations, valid for any 

combination of input and output sectors. 

Now it is possible to write, in a general form, the four basic equations of 

the SVM algorithm, which satisfy, at the same time, the requirements of the 

reference output voltage vector and input current displacement angle. With 

reference to the output voltage vector, the two following equations can be 

written:  

TABLE 2.2 – SELECTION OF THE SWITCHING CONFIGURATIONS FOR EACH COMBINATION 
OF OUTPUT VOLTAGE AND INPUT CURRENT SECTORS. 

 
  Sector of the output voltage vector  

 
 1 or 4 2 or 5 3 or 6 

1 or 4 +9 +7 +3 +1 +6 +4 +9 +7 +3 +1 +6 +4 

2 or 5 +8 +9 +2 +3 +5 +6 +8 +9 +2 +3 +5 +6 
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With reference to the input current displacement angle, two equations are 

obtained by imposing to the vectors ( )IIII
i

II
i ii δ+δ  and ( )IVIV

i
IIIIII

i ii δ+δ  to 

have the direction defined by iβ . This can be achieved by imposing a null 

value to the two vectors component along the direction perpendicular to ije β  

(i.e. ijej β ), leading to 

 ( ) ( ) 031˜ =⋅δ+δ π−β ii KjjIIII
i

II
i eejii  (2.11) 

 ( ) ( ) 031˜ =⋅δ+δ π−β ii KjjIVIV
i

IIIIII
i eejii . (2.12) 

In (2.9)-(2.12) oα̃  and iβ̃  are the output voltage and input current phase 

angle measured with respect to the bisecting line of the corresponding sector, 

and differ from oα  and iβ  according to the output voltage and input current 

sectors. In these equations the following angle limits apply 
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Iδ , IIδ , IIIδ , IVδ  are the duty-cycles (i.e. δI=tI/Tp) of the 4 switching 

configurations, Kv=1,2,..,6 represents the output voltage sector and 

Ki=1,2,…,6 represents the input current sector. IV
o

III
o

II
o

I
o v v v v ,,,  are the 

output voltage vectors associated respectively with the switching 

configurations I, II, III, IV given in Tab. 2.2. The same formalism is used for 

the input current vectors. 

Solving (2.9)-(2.12) with respect to the duty-cycles, after some tedious 

manipulations, leads to the following relationships [21]: 
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Equations (2.14)-(2.17) have a general validity and can be applied for any 

combination of output voltage sector Kv and input current sector Ki.  

It should be noted that, for any sector combinations, two of the duty-

cycles calculated by (2.14)-(2.17) assume negative values. This is due to the 

assumption made of using only the positive switching configurations in 

writing the basic equations (2.9)-(2.12). A negative value of the duty-cycle 

means that the corresponding negative switching configuration has to be 

selected instead of the positive one. 

Furthermore, for the feasibility of the control strategy, the sum of the 

absolute values of the four duty-cycles must be lower than unity 

 1≤δ+δ+δ+δ IVIIIIII . (2.18) 

The zero configurations are applied to complete the cycle period. 

By introducing (2.14)-(2.17) in (2.18), after some manipulations, leads to 

the following equation 

 
oi

iq
αβ

ϕ
≤

˜cos˜cos

cos

2

3
. (2.19) 

Equation (19) represents, at any instant, the theoretical maximum voltage 

transfer ratio, which is dependent on the output voltage and input current 

phase angles and the displacement angle of the input current vector. It is 

useful to note that, in the particular case of balanced supply voltages and 

balanced output voltages, the maximum voltage transfer ratio occurs when  

(2.19) is a minimum (i.e. when iβ̃cos  and oα̃cos  are equal to 1), leading to 
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 iq ϕ≤ cos
2

3
. (2.20) 

Assuming unity input power factor, (2.20) gives the well-known maximum 

voltage transfer ratio of matrix converters 0.866. 

Using the SVM technique, the switching pattern is defined by the 

switching configuration sequence. With reference to the particular case of 

output voltage vector lying in sector 1 and input current vector lying in 

sector 1, the switching configurations selected are, in general, 01, 02, 03, +1, -

3, -7, +9. It can be verified that there is only one switching configuration 

sequence characterized by only one switch commutation for each switching 

configuration change, that is 03, -3, +9, 01, -7, +1, 02. The corresponding 

general double-sided switching pattern is shown in Fig. 2.4. 

The use of the three zero configurations leads to 12 switch commutations 

in each cycle period. It should be noted that the possibility to select the 

duty-cycles of three zero configurations gives two degrees of freedom, being 

9731030201 1 δ−δ−δ−δ−=δ+δ+δ . This two degrees of freedom can be 

utilized to define different switching patterns, characterized by different 

behaviour in terms of ripple of the input and output quantities. In particular, 

the two degrees of freedom might be utilized to eliminate one or two zero 
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Fig. 2.4 – Double-sided switching pattern in a cycle period Tp. 
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configurations, affecting also the number of commutations in each cycle 

period. 

In the following, reference will be made to 2 particular cases of SVM 

techniques. The first one, called “Symmetrical SVM” (SSVM), utilizes all the 

three zero configurations in each cycle period, with equal duty-cycles. As a 

consequence 12 switch commutations occur in each cycle period. The second 

one, called “Asymmetrical SVM” (ASVM), utilizes only one of the three zero 

configurations, that is the configuration located in the middle of each half of 

the switching pattern (configuration 10  in Fig. 2.4). In this way, the switches 

of one column (in this case the first one of Fig. 1) of the matrix converter do 

not change their state, and the number of switch commutations in each cycle 

period is reduced to 8 ( 11S  is always on, 12S  and 13S  are always off in Fig. 

2.4). 

2.4. New Duty-Cycle Space Vector Approach 

A new and very efficient mathematical approach for the analysis of matrix 

modulation techniques can be developed by using the space vector notation, 

and introducing the concept of “duty-cycle space vector”.  
The three duty-cycles 11m , 12m  and 13m  in the first row of the modulation 

duty-cycle matrix, can be represented by the duty-cycle space vector 1m , 

defined by the following transformation equation: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

ππ
3

4

13
3

2

12111
3

2 jj

ememmm . (2.21) 

Taking into account the constraint condition (2.4), the inverse 

transformations are  

 0
111

3

1 jemm ⋅+=  (2.22) 

 3

2

112
3

1
π

⋅+=
j

emm  (2.23) 
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 3

4

113
3

1
π

⋅+=
j

emm . (2.24) 

A similar transformation can be introduced for the second and third row 

of the modulation duty-cycles matrix (2.1), defining respectively 2m  and 3m . 

In general we can write: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

ππ
3

4

3
3

2

21
3

2 jj

ememmm llll                  3,2,1=l  (2.25) 

 
( )
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1

3

1
π

−
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kj

hhk emm    3,2,13,2,1 == k ,h . (2.26) 

In order to explain the meaning of this new duty-cycle space vector 

approach, the geometrical representation of 1m  in d-q plane will be discussed. 

Taking the constraints (2.3) into account, it can be realized that all the 

acceptable values for 1m  are inside a region, represented in Fig. 2.5 by the 

equilateral triangle ABC. In fact, the acceptable values for 11m  are inside the 

region delimited by the two vertical parallel lines obtained by solving (2.22) 

for 011 =m  and 111 =m , respectively. In the same way, two regions 
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Fig. 2.5 – Geometrical representation of the validity domain for 1m . 
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delimited by two parallel lines can be defined with reference to 12m  and 13m . 

The intersection among the three regions lead to the triangular domain ABC 

of Fig. 2.5, which includes all the possible values for 1m , and then any 

combination of 11m , 12m  and 13m . 

The position of the space vector 1m  inside the triangle determines the 

number of switch commutations of 11S , 12S  and 13S  in a cycle period.  

Switching patterns with four commutations, as shown in the first row of 

Fig. 2.4, are represented by values of 1m  inside the triangle. Switching 

patterns with only two commutations are represented by values of 1m  lying 

on the triangle sides, being one switch always off. In fact, each triangle side is 

defined by a null value of 11m  or 12m  or 13m . Switching patterns with no 

commutations, are represented by values of 1m  coinciding with the triangle 

vertexes, being in this case two switch always off, and one switch always on.  

The duty-cycle space vectors 1m , 2m  and 3m  can be usefully employed, 

instead of the duty cycle matrix m , in order to describe the switches state of 

the matrix converter in each cycle period. It should be noted that, using this 

notation, the three constraint conditions (2.4)-(2.6) are intrinsically satisfied. 

Then, the input-output relationships (2.1) and (2.2) can be rewritten in 

the following form 
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⎠

⎞
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The previous equations suggest to define three new variables dm , im , om  

as functions of 1m , 2m , 3m , using the following direct transformation 

equations 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

ππ
3

4

3
3

2

21
3

1 jj

d ememmm  (2.29) 



 
40 

 ⎟⎟
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1 jj

i ememmm  (2.30) 

 ( )321
3

1
mmmmo ++= . (2.31) 

The quantities dm , im , om  may be considered as direct, inverse and zero 

component of the duty-cycle space vectors 1m , 2m  and 3m . 

The inverse transformation equations are: 

 oid mmmm ++=1  (2.32) 
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d mememm ++=
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3
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d mememm ++=
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3

2
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Substituting (2.32) - (2.34) in (2.27) and (2.28) yields: 

 diiio mvmvv **

2

3

2

3
+=  (2.35) 

 doioi mimii *

2

3

2

3
+= . (2.36) 

The relationships (2.35) and (2.36) represent the input-output 

relationships of three-phase matrix converters in a very useful and compact 

form. A similar formalism for representing the input-output relationships of 

voltages and currents has been presented in [33]. 

2.5. Generalized Modulation Strategy 

The problem of determining a modulation strategy is completely defined 

by solving with respect to dm  and im  the following equations 

 diiirefo mvmvv **
,

2

3

2

3
+=  (2.37) 

 ( ) 0* =ψ⋅+ refdoio jmimi  (2.38) 
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being the phase angle of refψ  the desired phase angle for the input current 

space vector and refov ,  the desired output voltage vector. 

The first equation is clearly related to the output voltage control 

requirement, whereas the second equation is written so as to satisfy the 

required input power factor. 

It can be noted that only the variables dm  and im  appear in (2.37) and 

(2.38). As a consequence the variable om  can assume any arbitrarily chosen 

value, without affecting the average value of the reference quantities. 

The general solution of the system of equations (2.37) and (2.38), valid for 

any value of the parameter λ , is 

 ( ) **

,

3 oirefi

refrefo

d
ivv

v
m

λ
+

ψ⋅
ψ

=  (2.39) 

 ( ) oirefi

refrefo

i
ivv

v
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*

*
,

3

λ
−

ψ⋅
ψ

= . (2.40) 

The parameter λ , together with om , yields three degrees of freedom, 

which can be utilized in defining any type of modulation strategy.  

The general solution given in (2.39) and (2.40) includes all the already- 

known modulation strategies as particular cases. 

As it is possible to see, the parameter λ  can be utilized only if the phase 

angle of oi  is known in each cycle period. Here this parameter is not utilized 

and is set to zero, then (2.39) and (2.40) can be rewritten as: 

 io jj

i

d ee
q

m βα

ϕ
=

cos3
 (2.41) 

 io jj

i

i ee
q

m βα−

ϕ
=

cos3
. (2.42) 

Taking into account (2.32) - (2.34), (2.41) and (2.42) leads to: 
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⎡ π

−−α
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cos
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Equation (2.43) allows the determination, in each cycle-period, of the 

values of the three duty-cycle space vectors 1m , 2m , 3m , as function of the 

voltage transfer ratio q, the output voltage phase angle oα , the input current 

phase angle iβ , and the input power factor iϕcos .  

These equations can be analyzed using their geometrical representation in 

the d-q plane. The three quantities 1m , 2m  and 3m  given in (2.43) lie on a 

segment of variable length, rotating and translating within the triangular 

domain as function of time, as represented in Fig. 2.6(a). The position of the 

three duty-cycle space vectors 1m , 2m  and 3m  on the segment depends on 

the output voltage vector sector. The situation illustrated in Fig. 2.6(a) refers 

to output voltage and input current vectors lying in their corresponding 

sectors 1. The length of the segment depends on the voltage transfer ratio, 

the instantaneous input power factor, and the output voltage phase angle, 

whereas its orientation is given by the input current phase angle.  

The position of any segment connecting the three duty-cycle space vectors 

iβ

1m
2m

3m

0m

 

Fig. 2.6(a) – Geometrical representation of 
the segment connecting 1m , 2m  and 3m . 
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Fig. 2.6(b)  – Geometrical representation of 
four typical positions of the segment 
connecting 1m , 2m  and 3m . 
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can be arbitrarily changed by means of om , with the constraint that it has to 

remain completely within the triangular region. The choice of om  provides 

two degrees of freedom, affecting the modulation features in terms of 

maximum voltage transfer ratio, number of switch commutations and ripple 

of the input/output quantities. 

For given values of oα , iβ  and iϕ , the maximum achievable value for the 

voltage transfer ratio depends on how long can be the segment without 

crossing the triangle boundary. The maximum length depends on the position 

of the segment within the triangle and, as a consequence, from the selected 

value of om .  

As already mentioned, the number of switch commutations in a cycle 

period depends on the position of 1m , 2m  and 3m  with respect to the 

triangle boundaries and vertexes, and then once again on om . Four different 

typical positions may occur, which are represented in Fig. 2.6(b). 

When the segment is completely within the triangle (case a)) the values of 

the nine duty-cycles hkm  are within the interval [0,1]. Then 12 switch 

commutations occur in a cycle period. In the case b), 3m  lies on the triangle 

boundary. Then 031 =m  and, as a consequence, the number of switch 

commutations in the cycle period is reduced to 10, being the switch 31S  

always off. 

In the case c), 1m  and 3m  lie both on the boundaries of the triangle 

leading to 013 =m  and 031 =m , with only 8 switch commutations in the 

cycle period. 

The same number of switch commutations occur in case d) where 1m  

coincides with a vertex of the triangle. In this condition 111 =m , 012 =m  

and 013 =m , then the switches 12S  and 13S  are always off whereas the 

switch 11S  is always on. These concepts will be discussed with further details 

in Chapter 3. 

At last, it is worthy to note that different values of om  yield the same 

average values for the input/output quantities in a cycle period, but they 
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determine different switching patterns and, as a consequence, different 

performance in terms of ripple.  

Substituting (2.43) in (2.26), leads to: 

 

( ) ( )
( )

3

2
1

cos

3

2
1cos

3

2
1cos

3

2

3

1
π

−
⋅+

ϕ

⎥⎦
⎤

⎢⎣
⎡ π

−−β⎥⎦
⎤

⎢⎣
⎡ π

−−α
+=

kj

o

i

io

hk em

kl

qm  (2.44) 

where h=1,2,3   k=1,2,3. 

This equation is a new and compact solution to the problem of 

determining the modulation law for matrix converters. Equation (2.44) may 

be considered also a direct generalization of the solution corresponding to the 

AV method and the optimum AV method. 

2.6. Comparison of the Modulation Strategies 

Any modulation strategy can be represented using the DCSV approach 

and analyzed from a new unitary point of view. In this way, a fair 

comparison can be carried out in terms of voltage limits, number of switch 

commutation, and ripple of the input/output quantities. 

In order to do this it is sufficient to determine, for each modulation 

technique, the expression of om , being dm  and im  prefixed by the reference 

quantities, namely q, iϕcos , oα  and iβ . Then, by using (2.43) it is possible 

to evaluate the trajectories of the three duty-cycle space vectors 1m , 2m , 

3m , and the movement of the corresponding segment within the triangular 

domain. In Fig. 2.7 some examples are shown with reference to operating 

conditions characterized by input and output frequency of 50 Hz and 25 Hz 

respectively, with a voltage transfer ratio of 0.5. 

A. Alesina-Venturini 1981  

Substituting (2.7) in (2.25), and then the obtained equation in (2.31), 

leads to: 

 0=om . (2.45) 

The movement of the segment connecting 1m , 2m  and 3m  is emphasized 



 
45 

in Fig. 2.7(a), whereas the trajectories of the three duty-cycle space vectors 

are shown in Figs. 2.7(b), (c) and (d) respectively. 

Fig. 2.7(a) shows six numbered segments, which have been obtained in six 

successive time instants, equally spaced by 20 electrical degrees (with 

reference to the input quantities). The ends of these segments draw the 

trajectories of 1m and 3m , as shown in Figs. 2.7(b) and 2.7(d), respectively. 

The numbered points in Figs. 2.7(b) – (d) refer to the corresponding segment 

positions of Fig 2.7(a).  

In this modulation strategy the two degrees of freedom related to the 

choice of om  are not utilized, then the segment substantially rotates around 

the origin of the axis. In this way the performance in terms of maximum 

voltage transfer ratio are very poor as emphasized in Fig. 2.11(a). In this 

figure the surface representing the maximum voltage transfer ratio is shown 

as function of the instantaneous values of oα  and iβ , with unity input power 

factor. Owing to the symmetry, the analysis has been restricted to values of 

oα  and iβ  within the intervals [ ]oo 120,0  and [ ]oo 90,30−  respectively. 

The lower and the higher values are 0.5 and 1, respectively. The lower 

value 0.5 determines the maximum voltage transfer ratio achievable in 

balanced sinusoidal operating conditions, as also shown by the trajectories of 

Fig. 2.7.  

 As far as the number of commutations are concerned, it can be noted 

that the trajectories of 1m , 2m  and 3m  remain completely within the 
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Fig. 2.7 – Segment position a), trajectory of 1m  b), 2m  c) and 3m  d) obtained by using AV 

strategy with: ,5.0=q Hzf 501 = , Hzf 252 = . 
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boundary of the triangular region, without touching the triangle sides. As a 

consequence, using this modulation technique, 12 switch commutations occur 

in each cycle period. 

It should be noted that the AV method does not provide any degree of 

freedom, then the performance in terms of ripple of the input/output 

quantities is intrinsically prefixed. 

B. Alesina-Venturini 1989 

Substituting (2.8) in (2.25) and then, the equation so obtained in (2.31), 

leads to: 

 ( ) ⎥
⎦
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As is possible to see, the presence of the zero component 0m  of the duty-

cycle space vectors determines a rotation and a translation of the segment in 

the d-q plane. This movement is emphasized in Fig. 2.8(a), whereas the 

trajectories of the three duty-cycle space vectors 1m , 2m  and 3m , are shown 

in Figs. 2.8(b), (c) and (d), respectively. The maximum voltage transfer ratio 

can be sensibly improved owing to this particular choice of om , as shown in 

Fig. 2.11(b). The lower and the higher values are 0.866 and 0.945 

respectively. The increase of the lower value to 0.866 has to be considered a 

great advantage of this optimum AV method with reference to the basic AV 

method, despite of a small reduction of the higher value. 

 Also in this case, the trajectories of 1m , 2m  and 3m  remain completely 
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Fig. 2.8 – Segment position a), trajectory of 1m  b), 2m  c) and 3m  d) obtained by using 

optimum AV strategy with: ,5.0=q Hzf 501 = , Hzf 252 = . 
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within the boundary of the triangular region, without touching the triangle 

sides, leading to 12 switch commutations in each cycle period. 

Furthermore, as in AV method, the optimum AV method does not 

provide any degree of freedom, then the performance in terms of ripple of the 

input/output quantities is intrinsically prefixed. 

C. SVM Technique 

In order to achieve the expression of om  for the SVM technique, reference 

is made to Tab. 2.1, Tab. 2.2 and (2.14)-(2.17). In the case of output voltage 

vector and input current vector both lying in their corresponding sectors 1, 

after some manipulations, it is possible to obtain the following equation 
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Owing to the presence of the last term in (2.47), the value of 0m  depends 

on the particular selection of the zero configuration duty-cycles, leading to 

two degrees of freedom. 

With simple considerations it is possible to demonstrate that these degrees 

of freedom correspond to the two degrees of freedom of the segment 

represented in Fig. 2.6(a), which can translate anywhere within the 

triangular region.  

As a consequence, the SVM technique should not be considered a 

particular modulation strategy, but indeed a synthesis of all the possible 

modulation strategies. In fact, the AV and the optimum AV techniques can 

be derived by the SVM technique with an opportune choice of 01δ , 02δ  and 

03δ , in each cycle period. 

The movement of the segment related to SSVM technique is illustrated in 

Fig. 2.9(a), whereas the trajectories of the three duty-cycle space vectors 1m , 

2m  and 3m  are shown in Figs. 2.9(b), (c) and (d), respectively. As is possible 

to see, comparing Figs. 2.8 and Figs. 2.9, the behaviour of the SSVM 

technique is quite similar to the behaviour of the optimum AV method. The 
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segment moves, without discontinuity, completely within the triangular 

region, leading to 12 switch commutations in each cycle period. 

The movement of the segment obtained using the ASVM technique is 

illustrated in Fig. 2.10(a), whereas the trajectories of the three corresponding 

duty-cycle space vectors 1m , 2m  and 3m  are shown in Figs. 2.10(b), (c) and 

(d), respectively. This kind of movement is quite different from that obtained 

using SSVM. The segment rotates around one of its ends, cantered on a 

vertex of the triangle, which is determined by the actual sector of the input 

current vector. Then, the position of the segment instantaneously changes as 

the input current vector crosses the sector boundary. In this way, 8 switch 

commutations occur in each cycle period. 

With regard to the voltage transfer ratio, it is easy to demonstrate, with 

geometrical consideration, that the maximum voltage transfer ratio 

achievable with optimal positioning of the segment within the triangular 

region equals the maximum voltage transfer ratio of the SVM technique 
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Fig. 2.9 – Segment position a), trajectory of 1m  b), 2m  c) and 3m  d) obtained by using 
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Fig. 2.10 – Segment position a), trajectory of 1m  b), 2m  c) and 3m  d) obtained by using 

ASVM strategy with: ,5.0=q Hzf 501 = , Hzf 252 = . 
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shown in (2.19). Then, from this point of view, the SVM technique can be 

considered the optimal solution.  

This result is clearly emphasized in Fig. 2.11(c). The lower and the higher 

values are 0.866 and 1.155 respectively. The lower value is the same as in 

optimum AV, but the higher value is sensibly increased. This feature is very 

important with reference to the possibility to apply over-modulation 

techniques. 

Finally, it should be noted that the SVM technique, owing to the 2 

degrees of freedom related to the three zero configuration duty-cycles, allows 

different switching patterns to be used and, as a consequence, different 

performance in terms of the RMS value of the output currents and input 

voltages ripple to be obtained. 

2.7. Conclusion 

The analysis of the three-phase to three-phase matrix converter 

modulation strategies represents a hard task. Some solutions, proposed in the 

literature and using different theoretical approaches, have been here briefly 

reviewed. 

A new representation of the switches state of the matrix converter, based 

on the Duty-Cycle Space Vector approach, has been presented. Using this 

approach it has been demonstrated that three degrees of freedom are 

available in defining the modulation law, allowing the control of the 

instantaneous values of the output voltages and input power factor. The 
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Fig. 2.11 – Surfaces representing the instantaneous maximum voltage transfer ratio q as a 
function of oα  and iβ  for unity input power factor.  

 a) AV method, b) optimum AV method, c) SVM method. 
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degrees of freedom reduce to only two if no information about the output 

currents is used. 

A compact and general solution to modulation problem of the matrix 

converter, which includes the already-established modulation strategies as 

particular cases, has been derived.  

A useful geometrical representation of the duty-cycle space vector has 

been presented. It provides a unitary point of view and simplifies the 

comparison between different modulation strategies in terms of maximum 

voltage transfer ratio, switching frequency and ripple of the input/output 

quantities. 

Owing to its intrinsic two degrees of freedom, SVM technique represents 

the general solution of the matrix converter modulation problem, and can be 

considered the best solution for the possibility to achieve the highest voltage 

transfer ratio and to optimize the switching pattern through a suitable use of 

the zero configurations. 
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3.Chapter 3 
Advanced 
Modulation 
Strategies 
Abstract 

The performance of matrix converters is strictly related to the modulation 

strategy adopted to control the state of the switches. In the first part of this 

chapter a novel modulation strategy, based on the measurement of the output 

currents, is presented and discussed. The proposed strategy allows obtaining 

sinusoidal input and output currents, like the well-known Space Vector 

Modulation or Alesina-Venturini Modulation. However, compared to those 

modulation strategies, it requires a lower number of switch commutations for 

cycle period, thus leading to a sensible reduction of the converter switching 

losses and of the effects related to the switching dead time. Furthermore, the 

maximum voltage transfer ratio can be preserved. 

In the second part of the chapter an analytical approach to predict the 

current ripple in an inductive load fed by a matrix converter controlled with 

Space Vector Modulation is presented. The analysis aims at determining the 



 
52 

optimal modulation strategy that minimizes the rms value of the load current 

ripple. The minimization procedure is based on the analysis of the locus 

described by the current ripple in the d-q reference frame. As a result, a set 

of equations which allows the on-line calculation of the optimal SVM 

switching pattern is found. It has been verified that it is possible to obtain a 

current ripple lower than that of traditional SVM strategies, and with a 

reduced number of commutations. Experimental results are provided to 

confirm the theoretical approach. 

  

3.1. Introduction 

While the main features of the modulation theory for VSI are well-

established, the research on the modulation strategies for matrix converters 

are still in progress. 

Several solutions have been presented in Chapter 2. Each of them shows 

different features in terms of number of switch commutations in a cycle 

period and utilization of the input voltage. 

To discuss this issue, it is convenient to introduce the concept of Branch 

Switch Overs (BSOs). The number of BSO of a branch is defined as the 

number of its state changes in a cycle period. 

The voltage transfer ratio of Alesina and Venturini’s original theory, by 

means of third harmonic injection techniques, can be increased up to 0.866, a 

value which represents an intrinsic limitation of three-phase matrix 

converters with balanced supply voltages [1]. 

The Optimum Alesina-Venturini method requires 12 BSOs per cycle 

period [2]. 

The Scalar Control Algorithm proposed in [31], based on a different 

approach, leads to similar performance. 

In [34] a double-sided SVM strategy with 9 BSOs was proposed. Later, in 

[35], it was shown that a proper selection of the switch sequence could reduce 

the number of BSOs from 9 to 8 without deteriorating the performance of the 

modulation strategy. Finally, in [36] a modified SVM strategy was proposed 

in order to reduce the switch losses. This strategy can be applied only for 

voltage transfer ratio lower than 0.5.  

A comparison between different types of modulation strategies can be 
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found in [7], [37]-[39], showing that the ”indirect approach” for matrix 

converter, initially preferred for its simplicity, is now partially replaced by 

modern direct theories, that allow an immediate understanding of the 

modulation process, without the need of a fictitious DC link. 

The general and complete direct solution of the control problem of matrix 

converters, described in Chapter 2, was originally presented in [7]. This 

solution is based on the Duty-Cycle Space Vector (DCSV) approach, which 

consists in the representation of the switch states by means of space vectors. 

This approach has the advantage to emphasize all the parameters 

affecting the performance of the modulation strategy, such as the common 

mode voltage and the output currents. 

It should be noted that the modulation techniques cited above do not 

utilise any information about the output currents. The main reason is that, 

at a first glance, a modulation strategy avoiding the use of current sensors, is 

desirable. 

However, in several applications involving electric motor drives, the load 

currents must be monitored and directly controlled. In these cases, the 

current sensors are required without regard to the type of converter feeding 

the motor, and the current measurement can be used also for improving the 

performance of the modulation strategy. 

Exploiting the features of the DCSV approach, a novel modulation 

strategy based on the measurement of the output currents is proposed and 

analysed in the first part of this chapter. Compared with the well-established 

strategies, its main advantage is the reduction of the number of BSOs in a 

cycle period from 8 to 6, thus decreasing the switch losses and the effects of 

the switch dead time [40],[41]. 

Furthermore, this advantage is obtained without deteriorating the quality 

of the input/output voltages and currents and preserving the maximum 

voltage transfer ratio.     

3.2. Duty-Cycle Space Vector Approach 

The matrix converter input-output relationships can be easily expressed 

introducing the concept of ”Duty-Cycle Space Vector” exposed in Chapter 2. 

According to this principle, the duty-cycles 11m , 12m  and 13m  of the three 
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switches S11, S12, S13 of the first branch of the converter shown in Fig. 1.1 can 

be represented by the space vector 1m  given by (2.1). 

The geometrical representation of 1m  in the d-q plane shows that all the 

acceptable values for 1m  are inside the region represented in Fig. 3.1 by the 

equilateral triangle ABC. It can be noted that the distances between 1m  and 

the triangle sides directly represent the values of the duty-cycles m11, m12 and 

m13. 

The position of the space vector 1m  inside the triangle determines the 

number of switch commutations of 11S , 12S  and 13S  in a cycle period, and 

consequently defines the number of BSOs of the first branch. 

Furthermore, modern modulation strategies are usually ”double-sided” or 

”symmetrical”, meaning that the turn-on sequence of the switches is 

completed in the first half of the cycle period and it is repeated with inverse 

order in the second half of the cycle period. In such a way, useless 

commutations can be avoided, if the switch state at the beginning of the 

current cycle period is equal to the switch state at the end of the previous 

cycle period. 

If 1m lies inside the triangle, all the duty-cycles are expected to be greater 

than zero and the corresponding number of BSOs for a double-sided turn-on 

sequence of the switches is 4. For instance, a possible symmetrical sequence 

for the switches S11 , S12 and S13 concerning the first output phase could be 
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Fig. 3.1 – Graphical meaning of the duty-cycle space vector 1m . 



 
55 

S11→S12→S13→S12→S11, where each arrow corresponds to one BSO. 

If 1m lies on a triangle side, then at least one duty-cycle among m11, m12, 

m13 is zero. This means that the corresponding switch never turns on during 

the cycle period and the number of BSOs reduces to 2. 

Finally, if 1m is on a triangle vertex, two duty-cycles are zero. In this case 

the number of BSOs is zero, because the state of the branch never changes 

during the cycle period. 

The same considerations can be carried out for the second and the third 

branch of the converter in Fig. 1.1, introducing the duty-cycle space vectors 

2m  and 3m  respectively. The number of BSOs can be derived in general 

form as shown in Tab. 3.1. 

3.3. Generalized Modulation Strategy 

The problem of determining a modulation strategy is completely defined 

by (2.39) and (2.40), here reported for convenience: 
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being the phase angle of refψ  the desired phase angle for the input current 

space vector and refov , the desired output voltage vector. 

The parameter λ  together with om  yield three degrees of freedom, which 

can be utilized in defining any type of modulation strategy. 

After the calculation of dm and im  by means of (2.39)-(2.40), (2.32)-(2.34) 

TABLE 3.1 – NUMBER OF BSOS OF THE K-TH BRANCH FOR A 
DOUBLE-SIDED SWITCHING PATTERN. 

Position of km  (k=1,2,3) Number of BSOs 

Inside the triangle 4 
On a triangle side 2 

On a triangle vertex 0 
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can be used to determine 1m , 2m and 3m . As is possible to see, the 

parameter λ  can be utilized as a degree of freedom only if the phase angle of 

oi  is known in each cycle period, otherwise it should be set to 0. 

Finally, from 1m , 2m and 3m , one obtains the duty-cycles of the matrix 

converter switches, which can be used as input commands for the converter, 

by means of (2.26). 

Taking (2.39) and (2.40) into account, (2.32) - (2.34) lead to: 
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Equation (3.1) can be rewritten in a more compact form as follows: 
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As can be seen in (3.3) - (3.4), kA  and kB  can be calculated using 

reference and measured quantities. 

Equation (3.1), which allows the determination of the values of the three 

duty-cycle space vectors 1m , 2m , 3m  in each cycle-period, can be analyzed 

using a geometrical representation in the d-q plane. 

Assuming λ = 0, a value implicitly adopted for defining the modulation 

laws in [1]–[6], [34]-[39] the three quantities 1m , 2m  and 3m  lie on a line 

segment. The segment length depends on the voltage transfer ratio, the 

instantaneous input power factor, and the output voltage phase angle, 

whereas its orientation is given by the input current phase angle.  

The line segment can be arbitrarily moved within the triangle by varying 
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om . This provides two degrees of freedom, affecting the maximum voltage 

transfer ratio, the total number of BSOs in a cycle period and the ripple of 

the input/output quantities. Four typical positions can be defined for the 

segment, already shown in Fig. 2.6(b): 

a) the line segment is completely inside the triangle. In this case the total 

number of BSOs is 12 (4 BSOs for each branch); 

b) one end point of the line segment lies on a triangle side. In this case the 

total number of BSOs is 10 (2 BSOs for one branch and 4 BSOs for the 

others); 

c) both the end points of the line segment lie on triangle sides. The total 

number of BSOs is 8 (two branches present 2 BSOs and the other one 

presents 4 BSOs); 

d) one end point of the line segment coincides with a triangle vertex. The 

total number of BSOs is 8 (one branch does not present any BSO, each one 

of the others presents 4 BSOs). 

These results are summarised in Tab. 3.2. 

It is important to note that the already-known modulation strategies can 

be reviewed according to the DCSV approach. For instance, Optimal Alesina-

Venturini Modulation Strategy and the particular type of SVM that uses 3 

zero vectors belong to case a) and present 12 BSOs. 

The SVM that uses 2 zero vectors belongs to case b) and presents 10 

BSOs. The SVM that uses 1 zero vector belongs to case c) or d) and presents 

8 BSOs. 

3.4. Modulation Strategy with Minimum BSOs 

In this paragraph, a novel approach, that makes use of the parameter λ  in 

order to reduce the total number of BSOs in a cycle period, is discussed. As 

TABLE 3.2 
TOTAL NUMBER OF BSOS FOR DOUBLE-SIDED SWITCHING 

PATTERN WITH REFERENCE TO FIG. 3.1 

Case Total number of BSOs 
a) 12 
b) 10 
c) 8 
d) 8 
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is possible to see from (2.39) and (2.40), if the phase angle of oi  is known in 

each cycle period, the parameter λ  can be utilized as a further degree of 

freedom. In particular, as is possible to see from (3.1), the parameter λ moves 

1m , 2m  and 3m  along straight lines that are perpendicular to the input 

voltage space vector. It will be shown that, with an opportune selection of 

the value of the parameters λ and 0m , it is always possible to move one 

duty-cycle space vector to a triangle vertex and at least another one to a 

triangle side. 

Thus the total number of BSOs in a cycle period is reduced to only 6. In 

this way a significant reduction of the switching frequency with respect to 

the already-known modulation strategies is achieved. 

Here, the basic principle of the modulation strategy is summarised with 

reference to the example shown in Fig. 3.2.  

The value of om  can be selected in order to move the segment so that one 

of its ends coincides with one vertex of the triangle, defined on the basis of 

the input current direction. In this way one of the duty-cycles space vector 

( 1m  in the example) is fully determined, because its position is known. 

 Starting from an initial null value of λ and varying the value of this 

parameter, 2m  and 3m  migrate from their initial positions along two straight 

lines (r and s). By an appropriate selection of om , it is possible to keep the 

1m

2m

3m

d

q

r

s

 
Fig.3.2 – Example of migration of 1m , 2m  and 3m  due to a non-null value of λ. 
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position of 1m  unchanged for any value of λ. Thus the values of λ bringing 

2m  or 3m  on a triangle side can be found. From a geometrical point of view, 

this can be done finding the six values of λ corresponding to the intersections 

between the straight lines r and s, expressed in a parametric form, with the 

straight lines to which the triangle sides belong. 

 Among these six values, let λp be  the minimum among the positive 

values and λn the maximum among the negative ones. It is worth noting that 

values of λ external to the interval [λn, λp] lead 2m  or 3m  out of the triangle, 

which represents the validity domain. 

To reduce the number of BSOs, λ can assume indifferently the values λn 

or λp. Once the values of λ and om  are defined, it is possible to determine 2m  

and 3m , thus giving the complete solution of the modulation problem with 

only 6 BSOs. 

The algorithm for the selection of λ and om  in the general case is 

presented in Appendix A. 

3.5. Simulation Results 

To verify the analytical approach, the behaviour of the proposed 

modulation strategy has been tested with numerical simulation for a system 

composed by a non-ideal supply, an input L-C filter and a matrix converter 

feeding a three-phase symmetrical R-L passive load. The basic scheme of the 

system is shown in Fig. 3.3 and the values of the system parameters are 

reported in Tab. 3.3. 

The behaviour of the proposed modulation strategy has been also 

compared with some well-established modulation strategies based on SVM. 

Figs. 3.4, 3.5 and 3.6 represent the waveform of the input voltage (a), the 

line current (b) and the output current (c) for three different modulation 

strategies, namely the SVM that uses one zero vector placed at the beginning 

of the cycle period (8 BSOs), the SVM that uses two zero vectors placed at 

the beginning and in the middle of the switching period (10 BSOs), and the 

new modulation strategy (6 BSOs). The simulations have been carried out for 
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a cycle period Tp of 200 μs, that is generally sufficient for the implementation 

of the control algorithm. 

As can be seen, the new modulation strategy determines practically the 

same current and voltage ripple as the SVM with one zero vector, while the 

SVM with two zero vectors performs better than the other modulation 

techniques. 

To make a fair comparison, the cycle period should be changed in order to 

cause the same BSOs per second for each modulation strategy. As a 

consequence, a cycle period of 250 μs has been assumed for the SVM with 

two zero vectors, while a cycle period of 150 μs has been used for the new 

modulation strategy. The behaviour of these modulation strategies is shown 

in Fig. 3.7 and 3.8 respectively. The cycle period for the SVM with one zero 

vector has been kept unchanged. 

As can be seen, although the new modulation has only 6 BSOs, its 

performance is comparable with the SVM with 10 BSOs, and is better than 

the SVM with 8 BSOs. 
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Fig. 3.3 - Basic matrix converter scheme using the space vector notation. 

TABLE 3.3
SYSTEM PARAMETERS 

Supply 
VS(rms) = 220 V, ωS = 2π 50 rad/s, RS = 0.25 Ω, LS=0.4 mH 

Filter 
Lf = 0.6 mH, Cf = 10.0 μF 

Load 
Rl = 10 Ω, Ll = 20 mH, ωo = 2π 25 rad/s 



 
61 

Furthermore, the reduction of the number of BSOs allows to limit the 

effects related to the switch dead-time.   

3.6. Preliminary Conclusion 

A new modulation strategy for matrix converters, based on the output 

current sensing and characterized by only 6 BSOs for cycle period, has been 

presented. The reduced number of BSOs leads to a sensible reduction of the 

converter switching losses and of the effects related to the switch dead time, 

without deteriorating the quality of the input/output voltages and currents.  

The modulation strategy has been developed using the Duty-Cycle Space 
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Fig. 3.4 - SVM with one zero vector placed at the beginning of the cycle period (8 BSOs). 
Cycle period of 200 μs. (a) input voltage, (b) line current, (c) output current. 
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Vector Theory, which allows, through a simple and direct geometrical 

representation, an immediate comprehension of the modulation basic 

principles. 

The performance of the new modulation strategy and of the well-known 

SVM, in terms of ripple of input and output quantities, has been analyzed by 

means of realistic numerical simulations. The comparison has been carried 

out assuming either the same cycle period or the same switching frequency. 

The obtained results clearly emphasize the effectiveness of the proposed 

modulation strategy. 
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Fig. 3.5 - SVM with two zero vectors placed at the beginning and at the middle of the cycle
period (10 BSOs). Cycle period of 200 μs. (a) Input voltage, (b) line current, (c) output
current. 
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3.7. Optimisation of SVM: an Overview 

In Chapter 2 a direct approach for SVM has been presented. This 

algorithm allows balanced and sinusoidal output voltages to be generated, 

even under unbalanced non-sinusoidal supply conditions. The algorithm is 

based on the instantaneous space vector representation of input and output 

voltages and currents. It analyses all the possible switching configurations 

available in three-phase MCs, and does not need the concept of a virtual DC 

link. 

Furthermore, the arrangement of the three zero voltage vectors of MCs in 
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Fig. 3.7 - SVM with two zero vectors placed at the beginning and at the middle of the cycle 
period (10 BSOs). Cycle period of 250 μs. (a) Input voltage, (b) line current, (c) output 
current. 
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the switching pattern offers some degrees of freedom that the designer can 

usefully utilize to improve the modulation strategy.  

The remaining paragraphs of this chapter will discuss the relationship 

existing between the rms value of the current ripple and the arrangement of 

the zero voltage vectors. In fact, a widely-used method to evaluate the 

relative merits of different modulation techniques is to calculate the rms 

value of the load current ripple, which is strongly related to torque ripple and 

motor heating. 

Finally a method for predicting the minimum rms value of the load 

current ripple in each cycle period is presented. The result of the analysis 

consists of very simple equations, which can be used in digital control 

systems for the on-line implementation of the optimal modulation technique. 
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Fig. 3.6 - New modulation strategy (6 BSOs). Cycle period of 200 μs. (a) Input voltage, (b) 
line current, (c) output current. 
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 This technique produces a current ripple lower than that of traditional 

SVM strategies for MCs and, in operating conditions with high values of the 

modulation index, it produces also a reduction of the number of 

commutations. 

3.8. SVM for MCs 

A. Basic Principles 

The SVM algorithm for MCs is able to synthesize the reference output 

voltage vector refov ,  and to control the phase angle of the input current 

vector selecting 4 non-zero configurations, applied for suitable time intervals 
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Fig. 3.8 - New modulation strategy (6 BSOs). Cycle period of 150 μs. (a) Input voltage, (b) 
line current, (c) output current. 
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within the cycle period pT . The three zero configurations available in MCs 

are applied to complete pT . 

Therefore, the reference output voltage can be written as follows: 

 44332211, vvvvv refo δ+δ+δ+δ=  (3.5) 

where 1v , 2v , 3v  and 4v  are the output voltage vectors corresponding to the 

4 selected configurations, and δ1, δ2, δ3 and δ4 are the duty-cycles, defined as 

 
p

k
k

T

T
=δ , k=1,2,3,4. (3.6) 

In (3.6), T1, T2, T3 and T4 are the time intervals of application of 1v , 2v , 

3v  and 4v .  

Once δ1 , δ2 , δ3 and δ4 are found, it is necessary to define the switching 

pattern, namely the turn-on and turn-off sequence of the switches. 

B. Degrees of freedom in the switching patterns 

It is a general principle that, once the reference output voltage vector and 

the input current displacement angle are given, the SVM univocally 

determines the switching pattern. In fact, among all possible switching 

sequences involving 1v , 2v , 3v , 4v  and the three zero vectors, there is only 

one commutation sequence characterized by only one switch commutation for 

each switching configuration change. 

The SVM algorithm can be simplified to some extent taking advantage of 

its symmetries if the d-q plane is divided into 6 sectors for the output voltage 

vectors and the input current vectors as shown in Figs. 2.2(a)-(b). Hence, in 

the following, the input voltage vector and the reference output voltage 

vector are assumed in sector 1. In addition it is assumed that the goal of the 

control system is to keep the input current in phase with the input voltage 

vector, leading to unity input power factor. 

Fig. 3.9 shows the switching sequence corresponding to the case of Fig. 

2.2(a)-(b). As can be seen, the use of the three zero configurations leads to 12 

switch commutations in each cycle period. It should be noted that the 

possibility to select the duty-cycles of three zero configurations gives only two 
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degrees of freedom, being 

 4321030201 1 δ−δ−δ−δ−=δ+δ+δ  (3.7) 

where δ01, δ02 and δ03 are the duty-cycles of the 3 zero voltage vectors )1(0v , 

)2(0v and )3(0v . These two degrees of freedom will be used to define different 

switching patterns, characterized by different behaviour in terms of ripple of 

the input and output quantities. The two degrees of freedom might be 

utilized also to eliminate one or two zero configurations, affecting also the 

number of commutations in each cycle period. 

In the following, the switching frequency sf  is defined as the total number 

of BSOs per second. 

The traditional SVM strategies considered in this chapter and their 

switching frequencies are reported in Tab. 3.4. 

Strategies 1-3 are characterized by only one zero configuration for each 

half of the switching pattern. Using these strategies the number of switch 

commutations in each cycle period is 8. A particular case is Strategy 1, which 

uses only the zero configuration located in the middle of each half of the 

switching pattern (vector )1(0v  in Fig. 3.9). In this way, the switches of one 

column (in this case the first one of Fig. 1.1) of the MC do not change their 

state ( 11S  is always on, 12S  and 13S  are always off in Fig. 3.3). 

Strategies 4–6 use two zero configurations, determining 10 commutations 

in a cycle period.  

Finally, Strategy 7 is characterized by the fact that all zero configurations 

are used with equal duty-cycles. As a consequence, 12 switch commutations 
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Fig. 3.9 – Double-sided switching pattern in a cycle period Tp, with reference to the case shown 
in Fig. 2. 
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occur in each cycle period. 

3.9. Analysis of the Load Current Ripple 

If the reference voltage vector refov ,  could be ideally applied to the load, 

the corresponding current would be refoi , . However, the actual value of the 

output voltage ov  differs from refov ,  because ov  can assume only a finite 

number of values. Hence, it is possible to define the output voltage and 

current ripple vectors as follows 

 refoorip vvv ,−=  (3.8) 

 refoorip iii ,−=  (3.9) 

where oi  is the actual value of the load current vector, and  refoi ,  is its mean 

value over the cycle period. According to the principles of the SVM 

technique, the mean value of ripv  during a cycle period Tp is zero. 

For an inductive load, the high frequency relationship between ripv and 

ripi can be written as follows 

 
L

riprip

L

v

dt

id
=  (3.10) 

TABLE 3.4  – STRATEGIES FOR SVM 

Strategy number Defining equation Switching frequency 

1 00302 =δ=δ  fs=8/Tp 

2 00301 =δ=δ  fs=8/Tp 

3 00201 =δ=δ  fs=8/Tp  

4 (Asymmetrical) 0, 010302 =δδ=δ fs=10/Tp 

5 0, 020301 =δδ=δ fs=10/Tp 

6 0, 030201 =δδ=δ fs=10/Tp 

7 (Symmetrical) 030201 δ=δ=δ  fs=12/Tp 
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where LL is the load inductance. 

Also the current ripple has zero mean value in a cycle period. Taking (3.6) 

into account, it is possible to determine the locus described in the stationary 

d-q reference frame by the vector ripi  during Tp. Fig. 3.10 shows the locus 

obtained with reference to the switching pattern of Fig. 3.9. 

At the beginning of the cycle period, ripi  is zero, corresponding to the 

point O, origin of the reference frame. After a time interval T03/2 , during 

which the zero vector )3(0v  is applied to the load, ripi  reaches point A and the 

current ripple vector changes by the quantity AO  given by 

 refo

L

p v
L

T
AO ,

03

2

δ
−= . (3.11) 

During the second interval of length 12
1 T , the vector 1v  is applied to the 

load and ripi  changes by the quantity BA  given by 

 ( )refo

L

p vv
L

T
BA ,1

1

2
−

δ
= , (3.12) 

thus reaching the point B. The ripple vector ripi  reaches the points C, D, E 

and F in sequence (corresponding to the application of the vectors 2v , )1(0v , 

3v  and 4v  shown in Fig. 3.9). After the application of the vector )2(0v , ripi  
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Fig. 3.10 – Locus described by the current ripple vector in the d-q plane. 
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reaches the point O again in the middle of the cycle period. Afterwards, ripi  

symmetrically covers the second half of the locus passing through F’, E’, D’ 

C’, B’, A’ and finally returns to O. 

 It is worth noting that the length of the segments AO, DC and OF is 

proportional to δ01, δ02 and δ03 respectively. Therefore, the shape of the locus 

depends on the splitting of the total time δ0. For example, Fig. 3.11 shows 

the locus of the load current ripple for the same case of Fig. 3.10, but with δ02 

= 0 (C coincides with D). As can be seen, it is rather different from the one 

shown in Fig. 3.10, and the overall ripple is likely greater. 

3.10. Optimal Space Vector Modulation Strategy 

The parameter that is commonly used to represent the distortion of the 

current waveform is the rms value of its ripple, defined as 

 2
,,3

2
,,2

2
,,1, rmsripormsripormsripormsrip iiiI ++= . (3.13) 

where io1,rip,rms, io2,rip,rms and io3,rip,rms are the rms values of the ripple of the three 

load currents. 

As the locus described by ripi  is symmetrical with respect to the origin of 

the reference frame, the rms value of the current ripple, in terms of the space 

vector ripi , can be written as follows: 
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Fig. 3.11 – Locus described by the current ripple vector in the d-q plane for the case δ02 = 0. 
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 ∫= 2

0

22
,

3 pT

dti
T

I rip

p

rmsrip . (3.14) 

In order to determine the operating conditions that minimize the current 

ripple, a geometrical analysis of the locus described in the d-q reference frame 

is necessary. Owing to the symmetry, the analysis can be focused only on the 

figure with vertexes OABCDEFO shown in Fig. 3.10, that corresponds to the 

first half of the cycle period. Moreover, the figure can be decomposed in two 

separate triangles, namely the triangles ABC and DEF. 

Hence, the integral in (3.10) can be divided into two terms, each one 

corresponding to a different triangle, as follows:  

 ∫∫∫ +=
DEF

rip

ABC

rip

T

rip dtidtidti
p

222

0

2 . (3.15) 

The length of the sides of the triangles is shown in Tab. 3.5. It is worth 

noting that the times necessary to cover the sides AC and DF, namely pTδ′
2
1  

and pTδ ′′
2
1 , are “virtual” since they do not correspond to a specific switching 

interval. However, they can be calculated as shown in Appendix B as a 

function of the two fictitious duty-cycles δ′  and δ ′′ , that depend on δ0 but 

are independent of δ01, δ02 and δ03 separately. 

As a first step, it is interesting to calculate the average value of the 

current ripple for both triangles, as follows: 

 ∫=′
ABC

rip

ABC

dti
T

OG
1

 (3.16) 

TABLE 3.5 – LENGTH OF THE SIDES OF THE TRIANGLES ABC AND DEF

BA  
( )

L

refop

L

vvT

2

,11 −δ
 ED  

( )
L

refop

L

vvT

2

,33 −δ
 

CB  
( )

L

refop

L

vvT

2

,22 −δ
 FE  

( )
L

refop

L

vvT

2

,44 −δ
 

AC  
L

refop

L

vT

2

,δ′
−  DF  

L

refop

L

vT

2

,δ ′′
−  
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 ∫=′′
DEF

rip

DEF

dti
T

OG
1

 (3.17) 

where TABC and TDEF are the total times required to cover the triangles ABC 

ed DEF, defined as 

 ( )δ′+δ+δ= 212
1

pABC TT  (3.18) 

 ( )δ ′′+δ+δ= 432
1

pDEF TT . (3.19) 

It is worth noting that TABC and TDEF are independent of the duty-cycles 

δ01, δ02 and δ03 as well. Obviously, their sum is equal to half the cycle period, 

i.e. 

 pDEFABC TTT 2
1=+ . (3.20) 

It can be verified that (3.16) and (3.17) are similar to the equations used 

to calculate the centre of gravity of a mechanical system with respect to the 

point O, origin of the reference frame. Like in mechanics, the positions of the 

points G′  and G ′′  are independent from the point O. Hence, it is convenient 

to refer ripi  to G′  and G ′′ . For the triangle ABC, the current ripple ripi  can 

be written introducing the new space vector i ′  defined as follows: 

 OGiirip ′+= ’ . (3.21) 

Since OG′  is the average value of ripi over ABC, the average value of i ′  

over TABC  is zero. Similarly, for the triangle DEF, the current ripple can be 

expressed introducing the new space vector i ′′ , whose average value is zero in 

the time interval TDEF, as follows: 

 OGiirip ′′+′′= . (3.22) 

Substituting (3.21) and (3.22) in (3.14) leads to the following result: 

 ∫∫∫ ′′+′+′′+′=
DEFABC

DEF

T

ABCrip dtidtiOGTOGTdti
p

22
22

2

0

2 . (3.23) 

The two integral terms in (3.23) are independent from the duty-cycles δ01, 
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δ02 and δ03. Therefore the rms value of the current ripple is minimum when 

both vectors OG′  and OG ′′  have the minimum length. This condition is 

achieved when the projections of G′ and G ′′  on the line AF coincide with the 

point O, as shown in Fig. 3.12. 

For the application of this basic principle it is useful to introduce the 

parameters λ and μ defined as 

 
ABCT

T03=λ  (3.24) 

 
DEFT

T02=μ . (3.25) 

The geometrical condition shown in Fig. 3.12, after some analytical 

developments, leads to the following optimal values for λ and μ: 

 ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
δδ+δ+δδ

δ−δδδ
+δ=λ

21
2
2

2
1

2121

’42

1
’sgnopt  (3.26) 

 ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
δδ+δ+δδ ′′

δ−δδδ
+δ ′′=μ

34
2
4

2
3

3443

42

1
sgnopt . (3.27) 

The mathematical procedure used to obtain (3.26) and (3.27) is similar to 

that applied in [42] for traditional VSIs. 
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Fig. 3.12 – Half of the locus described by the current ripple vector in the condition of 
minimum ripple. 
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The optimal values for δ03 and δ02 are 

 { }0,03 0 δδ′λ=δ ˝,, max—min  optopt  (3.28) 

 { }0,02 0 δδ ′′μ=δ ˝,, max—min  optopt  (3.29) 

and δ01,opt is given by 

 δ01,opt = δ0 - δ02,opt - δ03,opt. (3.30) 

Equations (3.28) and (3.29) ensure that δ03,opt and δ02,opt are positive and 

lower than δ0. However, since δ02,opt and δ03,opt are found minimizing the two 

distances OG′  and OG ′′  separately, it can happen that the condition 

 δ01,opt > 0 (3.31) 

is not satisfied. In this case, it is necessary to assume 

 δ01,opt = 0 (3.32) 

and (3.28) and (3.29) are replaced by the following equations:  

( ){ +δ+δ+δ′δ′λ=δ 21,03  max—minopt  

 ( )( ) }0,, - δδ′′μδδ+δ+δ′′+ 0034  (3.33) 

 δ02,opt  = δ0 - δ03,opt . (3.34) 

3.11. Simulation Results 

To characterize the behaviour of the modulation strategies, it is opportune 

to introduce an appropriate quality index. This quality index could be the 

mean value of the 2
,rmsripI  evaluated over the range [0,2π] of the phase angles 

α and β of the output and input voltage vectors. The index is defined as 

follows: 

 ∫ ∫
π π

βαβα
ππ

=
2

0

2

0

2
, ),(

2

1

2

1
ddIQ rmsrip . (3.35) 

Fig. 3.13 shows the behaviour of Q as a function of the modulation index 
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q, namely the ratio between the magnitudes of the output and the input 

voltage vectors.  Fig. 3.13 has been normalized with respect to the value of Q 

for q = 2/3  using the optimal modulation strategy.  It can be noted that 

the behaviour of the optimal strategy is better than that of the other 

strategies for any value of q. In addition, the optimal modulation is superior 

to Strategy 7 in terms of mean switching frequency, for high values of q. In 

fact, in these operating conditions the optimal strategy tends to perform like 

Strategy 4. This is confirmed in Fig. 3.14, where the switching frequency, 

expressed in p.u. of the switching frequency of Strategy 7 is plotted as 

function of q for the different types of modulation strategies. 

3.12. Experimental Results 

In order to verify the theoretical approach, a prototype of a three-phase to 

three-phase MC has been used to supply a linear passive R-L load. The MC 

is realized using the FM35E12KR3 IGBT module produced by EUPEC. The 

control algorithm is implemented on the platform C6711, a floating-point 

digital signal processor provided by Texas Instruments. The switching 

frequency of the SVM strategies is 12.5 kHz, corresponding to a cycle period 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

Opt (7) 

(2), (3) 

(1) (5), (6) 

(4) 

N
or

m
al

iz
ed

 v
al

ue
 o

f  
Q

 

Modulation index, q  

Fig. 3.13 - Behavior of the quality index Q as a function of the modulation index q for 
Strategies (1)-(7) and for the optimal strategy (Opt). All curves are normalized with respect to 

the value of Q for q = 2/3 using the optimal modulation strategy. 
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of 80 μs. The converter is fed by a voltage transformer with variable voltage 

transfer ratio to adjust the input voltage to a value of about 110 V rms. A L-

C filter is connected at the input side of the converter. The parameters of 

filter, supply and load correspond to those reported in Tab. 3.6. 

Fig. 3.15 shows the behaviour of the traditional modulation strategies and 

of the optimal strategy in terms of squared rms value of the load current 

ripple. The rms value of the ripple has been determined by sampling the 

current waveforms and considering only the high frequency harmonics. As 

can be seen, the optimal modulation exhibits the lowest ripple, and the 

behaviour of the curves is similar to that predicted in Fig. 3.13.  

3.13. Conclusion 

A geometrical approach for the analysis of the load current ripple in SVM 

for MCs has been presented. The proposed method has been applied to define 
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Fig. 3.14 - Behaviour of the switching frequency for all the modulation strategies in p.u. of the
switching frequency of Strategy 7. 

TABLE 3.6

SYSTEM PARAMETERS. 

Supply Filter Load 

VS  = 110 V(rms), 

ωi = 2π 50 rad/s, 

RS = 0.2 Ω, LS=0.70 mH 

Lf = 1.16 mH 

Cf = 4.5 μF 

Rf = 300 Ω 

RL = 8.3 Ω 

LL = 1.3 mH, 

ωo = 2π 100 rad/s 
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the optimal SVM technique, characterized by the minimum rms value of the 

load current ripple in each cycle period and, as a consequence, over the 

fundamental period. The explicit equations to calculate the duty-cycles of the 

three zero voltage vectors and then the determination of the switching 

pattern of the optimal SVM technique have been presented. 

The performance of the optimal modulation strategy has been compared 

with that of the most commonly used modulation techniques. As a result, the 

optimal strategy performs better than the other modulation strategies in 

terms of current ripple. In addition, for high values of the modulation index, 

the optimal strategy shows a switching frequency that is ≈15% lower than 

that of the modulation strategy that uses three zero vectors. 

Experimental tests have been performed emphasizing the behaviour of the 

different modulation strategies and confirming the results predicted by the 

theoretical approach. 
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Fig. 3.15 - Experimental tests. Square of the rms value of the load current ripple as a function 

of the modulation index ρ for different modulation strategies. 
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4.Chapter 4 
Stability of 
Matrix Converter 
Abstract 

Input filters are usually adopted in electrical drives in order to improve 

the input current quality and to reduce the input voltage distortion. These 

filters can determine instabilities, depending on the converter topology and 

drive control strategy. 

Matrix converters perform a direct coupling between two ac sources 

without the need of energy storage components. This characteristic, together 

with the presence of L-C input filters and the feedforward compensation of 

the input voltage disturbances, may determine unstable operation as the 

power delivered to the load exceeds a limit value.  

In this chapter the stability of an electrical drive fed by a three-phase to 

three-phase matrix converter is analyzed considering two different input filter 

structures. A state average model of the whole system, assuming a constant 

power load, is proposed. The stability of the system is evaluated by analyzing 

the migration of eigenvalues of the system, which is linearized around the 

operating point. The analytical approach allows the determination of 

relationships showing the maximum output power of the matrix converter as 

a function of the parameters of power supply and input filter.   
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4.1. Introduction 

The presence of filters, at the input side of a power converter, can 

determine instabilities depending on the drive control strategy and the 

converter topology [43]-[45]. This problem becomes evident if the converter is 

controlled with fast closed loops, as it happens in controlled rectifiers [46], in 

Field Oriented Control (FOC) and in Direct Torque Control (DTC) drives 

[47]-[48], thus leading to constant power operation. 

The use of matrix converters increases the problems of instability, owing 

to the absence of an intermediate dc-link with energy storage capability and 

the reduced size of the input filters [49], [50].  

Several control techniques for matrix converters have been proposed in 

literature [1] , [2], [5], [7], [13], [21], [32]. Among these the most simple is the 

one based on detecting the zero crossing of one input voltage for 

synchronizing the input current modulation strategy, under the assumption 

of ideal supply (i.e. balanced and sinusoidal supply voltages). In this case any 

input voltage disturbance is reflected on the output voltages determining low 

order harmonics. 

It is possible to compensate these effects by monitoring the input voltages 

and, consequently, calculating the duty-cycles necessary to generate balanced 

and sinusoidal output voltages. However, this type of feedforward 

compensation of the input voltage perturbations might lead to instability 

phenomena as the matrix converter output power exceeds a maximum limit 

that is related to the grid impedance and the input L-C filter parameters [18]. 

Firstly in this chapter two input filter topologies are considered, and the 

different effects on system stability are emphasized. It has been verified that 

standard design methods of input filters for matrix converters lead to filter 

parameters that may determine instability phenomena at very low power 

levels. 

Then, it is shown that the power limit can be increased if the duty-cycles 

of the switching configurations are calculated using input voltages filtered by 

a digital low-pass filter implemented in a synchronous reference frame. As a 

consequence, the capability of the matrix converter to compensate input 

voltage disturbances is affected to some extent, but the stability limits can be 

sensibly improved. 

In order to investigate the stability improvement achievable by using 
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filtered input voltages, a theoretical analysis based on a state variable 

average model is proposed. The stability of the whole system, including the 

grid impedance, the input L-C filter and a passive load, is evaluated by 

analyzing the migration of eigenvalues of the linearized state matrix. The 

analytical approach allows the determination of the maximum voltage 

transfer ratio of the matrix converter, and then of the maximum output 

power, as function of the time constant of the digital low-pass input voltage 

filter. 

Firstly the validity of the analytical approach has been verified by 

numerical simulations in which the matrix converter switches are assumed as 

ideal switches. Then, more accurate models of the power switches have been 

considered using a general-purpose simulator of electronic circuits. The 

transition from stable to unstable operation of the matrix converter has been 

verified changing the operating conditions.  

The most important contribution of this study is the analytical approach 

proposed for the analysis of matrix converter stability, which makes it 

possible to demonstrate the existence of possible unstable operating 

conditions and to find out a simple method for extending the stability power 

range. 

Numerical simulations have been performed showing the validity of the 

analytical approach. 

4.2. Mathematical Model Using L-C Filter 

The whole system, which is composed by a non-ideal supply, a second 

order L-C filter and a matrix converter operating at constant power, is 

represented as shown in Fig. 4.1. 

The input current modulation strategy generally maintains a constant 

displacement angle between the input line-to-neutral voltage space vector and 

the input current space vector. In this case the input current modulation 

strategy can be expressed as 

 ϕ−=ψ j
iref ev  (4.1) 

where refψ  is the space vector defining the direction along which the input 

current is modulated. 
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In the following, the analytical developments are carried out neglecting 

the effects of the switching harmonics, considering for the output voltages 

and input currents their average values over a switching interval.   

The system equations, written using the space vector notation, are  

 i
S

TSSS v
dt

id
LiRv ++=  (4.2) 

 
dt

vd
Ci i

ff =  (4.3) 

 ifS iii +=  (4.4) 

 
refi

refo

i
v

P
i

ψ⋅
ψ

=
3

2
 (4.5) 

where fST LLL +=  and Po is the constant output power. 

Equation (4.5) is valid supposing that the converter is ideal, without 

power losses. In this case the output power is equal to the input power and 

the input current is perfectly modulated. 

From (4.2)-(4.5) it is possible to derive the nonlinear state space equations 

in a synchronous reference frame, which can be expressed as 

 S

T

i

T

Si

T

SS v
L

v
L

ij
L

R

dt

id 11
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ω+−=  (4.6) 
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i i
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Cdt

vd 11
−ω−=  (4.7) 
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Fig. 4.1 - Basic scheme of the system analyzed. 
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being ωi the supply angular frequency. 

It should be noted that the system behaviour depends on the adopted 

input current modulation strategy. This is emphasized by the presence in 

(4.5) of the space vector refψ . 

Assuming for refψ  the expression given in (4.1) and using (4.5) leads for 

(4.7) the following new form: 

 
ϕ

−ω−=
ϕ−

cos

11
*

3
2

i

j
o

f

iS

f

i

v

eP

C
vji

Cdt

vd
. (4.8) 

This equation can be further simplified assuming 0=ϕ , which represents 

unity input power factor. 

4.3. Steady-State Operating Conditions 

In the synchronous reference frame and in steady-state conditions, the 

variables iv , Sv  and Si  assume the corresponding constant values iV , SV  

and SI . As a consequence, (4.6) and (4.8) become 

 S

T

i

T

S

T

S V
L

V
L

Ij
L

R 11
0 +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ω+−=  (4.9) 

 
ϕ

−ω−=
ϕ−

cos3

21
0

*
if

j
o

iS

f VC

eP
VjI

C
. (4.10) 

These equations can be solved with respect to sI  and iV . It can be verified 

that the solution exists only if the output power Po of the matrix converter 

satisfies the following inequality, written in the particular case of ϕ = 0: 

 21 SoS PPP <<  (4.11) 

where 
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The power limit expressed by (4.12) represents the well-known maximum 

power that can be exchanged between a power source with internal 

impedance and a load. 

The positive value PS2 refers to motor behaviour, whereas the negative 

value PS1 represents a limit during regenerative braking. 

4.4. Stability Analysis 

Assuming the d-q synchronous reference frame with the d-axis along the 

direction of the vector iV , and linearizing  (4.6) and (4.8) around the steady-

state operating point, leads to the following state equations: 
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where 

 
f

o
d

C

P
A

3

2
= , ϕ−= tg

C

P
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f

o
q

3

2
.   

The analysis of the eigenvalues of the state matrix in (4.13) leads to the 

following simple stability conditions:  

 11 PPP o <<−  (4.14) 

and 
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 22 PPP o <<−  (4.15) 

where 
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The relationship (4.14), which is usually more restrictive than (4.15), 

defines a limit value for the output power of the matrix converter as function 

of the system parameters. It can be noted that the best condition, in terms of 

maximum power limit, is obtained with unity input power factor. 

The output power limit given in (4.16) is not related in any way to the 

output power limit given in (4.12), that is concerned with steady-state 

operating conditions. Instead, P1 is a power limit, usually much lower than 

PS2, determined by dynamic operating conditions. 

It should be noted that the maximum output power limits given by (4.16) 

and (4.17) do not depend on the switching frequency of the matrix converter. 

In fact, the analysis has been carried out assuming an infinitely high 

switching frequency. Then, increasing the switching frequency does not 

prevent the system from becoming unstable. 

The proposed approach demonstrates that instability phenomena are not 

determined by the interaction between the filter and the switching 

harmonics, as it could appear from analyzing the behaviour of the input 

quantities as the instability occurs. 

The results obtained in terms of output power limits are valid for the 

input current modulation strategy given in (4.1). Changing the input current 

modulation strategy leads to different output power limits. 

Equation (4.16) is a simple expression that can be useful to understand 

the effect of the input filter parameters on the system stability. 

For a prefixed value of the input filter resonance frequency, (4.16) 

emphasizes that, in order to increase the power limit, high values of the 

capacitance Cf and low values of the inductance Lf should be preferred. On 

the other hand, high values of the capacitance deteriorate the input power 
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factor. In order to overcome this problem, a different filter structure should 

be considered. 

4.5. Mathematical Model Using R-L-C Filter 

The relationship (4.16) emphasizes the positive effect of the line resistance 

on the system stability. Obviously, it is not possible to add a damping 

resistance in series with the L-C input filter, because this solution would 

seriously degrade the efficiency.  

A better solution is to add a resistance in parallel with Lf, so that, in 

practice, only the high frequency current harmonics flow through the 

damping resistance [51]. 

The structure of the R-L-C type filter is shown in Fig. 4.2. In order to 

show the effectiveness of this filter, the stability analysis has been carried out 

in the same way as in Paragraph 4.4, but considering the third order R-L-C 

filter. 

The nonlinear state space equations of the whole system, in a synchronous 

reference frame, can be written as 
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Fig. 4.2 – Topology of the R-L-C type input line filter. 
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L

+
=τ . 

Linearizing (4.18)-(4.20) around the steady-state operating point and 

decomposing in d-q components, leads to the following state equation, valid 

for ϕ = 0. 
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 (4.21) 

The stability of the system described by (4.21) cannot be easily developed 

in analytical form. Then, a numerical approach has been used. With reference 

to the system defined in Tab. 4.1, the position of the dominant eigenvalue is 

evaluated as function of the matrix converter output power, for different 

values of the filter damping resistance fR . The results are shown in Fig. 4.3. 

TABLE  4.1 - SYSTEM PARAMETERS 
Supply 

VS = 220 V(rms),  ωi = 2π 50 rad/s 

RS = 0.25 Ω, LS = 0.4 mH. 
Filter 

Lf = 0.6 mH, Cf = 10.0 μF. 
Load 

RL = 10 Ω, LL= 20 mH. 
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As is possible to see, the introduction of the damping resistance improves 

significantly the system stability. The power limit, which is of about 1 kW 

for ∞=fR  (L-C input line filter), can be increased up to a maximum value 

of about 9 kW by decreasing fR  down to 4Ω. A further reduction of the 

damping resistance is not useful, because it reduces the corresponding power 

limit. 

4.6. Simulation Results 

In order to verify the consistency of the proposed analytical approach, the 

behaviour of the system composed by a non-ideal supply, an input line filter 

and a matrix converter feeding a three-phase symmetrical R-L passive load, 

has been tested by numerical simulation.  

The simulation takes into account the switching behaviour of the matrix 

converter and the delay related to the digital implementation of the control 

algorithm. 

The values of the system parameters have already been shown in Tab. 4.1. 

The control strategy adopted for the matrix converter is the SVM 

Rf = ∞ 
Rf = 10 Ω 

Rf = 4 Ω 

Rf = 6 Ω 

Rf = 3 Ω 

 

Fig. 4.3 – Position of the dominant eigenvalue in the complex plane as function of the matrix 
converter output power. 
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technique, with double-sided switching pattern and cycle period of 80 μs [7]. 

The behaviour of the system has been analysed at two different power 

levels by changing the magnitude of the output voltages. 

The results obtained, with unity input power factor, are presented in Figs. 

4.4 and 4.5. 

Fig. 4.4(a) shows the steady-state waveform of the input voltage of the 

matrix converter with an output to input voltage ratio of 50/220, 

corresponding to an output power of 670 W. The steady-state waveforms of 

line current and load current are illustrated in Figs. 4.4(b) and (c), 

 

Fig. 4.4(a) - Matrix converter input line to 
neutral voltage, P=670 W. 

Fig. 4.5(a) - Matrix converter input line to 
neutral voltage, P=1500 W. 

 

Fig. 4.4(b) - Line current. Fig. 4.5(b) - Line current. 

 

Fig. 4.4(c) - Load current. Fig. 4.5(c) – Load current. 
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respectively. 

As is possible to see, all the waveforms are sinusoidal and characterized by 

a small ripple, due to the high switching frequency of the matrix converter. 

Fig. 4.5(a) shows the transient waveform of the input voltage of the 

matrix converter with an output to input voltage ratio of 74/220, 

corresponding to a theoretical output power of 1500 W. The transient 

waveforms of line current and load current are illustrated in Figs. 4.5(b) and 

(c), respectively. 

As is possible to see in Figs. 4.5(a) and (b), in these operating conditions 

the waveforms of voltage and current at the input side are heavily distorted, 

showing large oscillations at a frequency close to the resonance frequency of 

the input filter.  

This behaviour is due to the predicted instability phenomena that occur 

when the output power exceeds the stability range limits defined by (4.14)-

(4.17), even if the switching frequency (12.5 kHz) is much higher than the 

resonance frequency of the input filter (1.6 kHz). 

These results can be justified on the basis of the proposed stability 

analysis. With reference to the values of the system parameters, shown in 

Tab. 4.1, (4.16) gives a power limit of 970 W.  

In the first case (Figs. 4.4), the power delivered to the load is lower than 

the power limit, and the system is stable. In the second case (Fig. 4.5), the 

output power is higher than the power limit, and the system becomes 

unstable. Any small perturbation, as the switching effects of the matrix 

converter, causes the system to leave steady-state operating conditions. 

It should be noted that, initially, in spite of the large oscillations at the 

input side, the waveform of the load current is nearly sinusoidal, as can be 

seen from Fig. 4.5(c). The fast adaptation of the duty-cycles, based on on-line 

measurement of the input voltages, allows the control of the output voltages 

to be maintained. 

In order to emphasize the improvements that can be reached by changing 

the input line filter structure, the system behaviour has been evaluated with 

a damping resistance of 4 Ω. 

The results obtained with an output to input voltage ratio of 170/220 (Po 

= 8000 W) are shown in Fig. 4.6. 

Fig. 4.6(a) shows the input voltage waveform of the matrix converter, 
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whereas the line current waveform is illustrated in Fig. 4.6(b). According to 

the results shown in Fig. 4.3, this operating condition is stable and all the 

waveforms are practically sinusoidal.  

As can be seen, the damping resistance in the input line filter, which 

determines negligible power losses, strongly increases the system power limit. 

4.7. Use of a Digital Input Filter 

In the following it will be shown that the power limit can be sensibly 

improved if the calculation of the duty-cycles is carried out filtering the 

matrix converter input voltages by means of a digital low-pass filter 

implemented in a reference frame synchronous with the fundamental 

component of the input voltage vector.  

The modulation strategy is such that the input current vector is kept in 

phase with the filtered input voltage vector instead of the actual voltage 

vector. Therefore, the modulation vector refψ  is defined by 

  ifref v=ψ . (4.22) 

The system scheme is the same shown in Fig. 4.1. It is important to note 

that, due to phase lag of the digital input filter, it is not possible to suppose 

that the matrix converter delivers a constant power to the load during the 

transients. Therefore, it is necessary to consider the behaviour of the load 

and not only that of the voltage source. 

As usual, the analytical developments are carried out neglecting the effects 

of the switching harmonics, considering for the output voltages and input 

currents their average values over a switching interval. 

  

Fig. 4.6(a) – Matrix converter input line to 

neutral voltage, P=8000 W, Rf = 4 Ω. 

Fig. 4.6(b) – Line current. 
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The system equations, in terms of space vectors, can be written for 

convenience in different reference frames as summarized in Tab. 4.2. 

The equations for the input side of the matrix converter, written in a 

reference frame rotating at the supply angular frequency ωi are given by (4.6) 

and (4.7).  

The equation representing the behaviour of the first order low-pass filter 

applied to the input voltage is 

 ifi

if vv
dt

vd

τ
−

τ
=

11
 (4.23) 

where τ is the time constant of the input voltage filter. It can be noted that 

this filter, being implemented on a synchronous reference frame, does not 

introduce any attenuation and phase shift on the fundamental component of 

the input voltage. 

The equation for the output side of the matrix converter is written in a 

reference frame rotating at the output angular frequency ωo as follows:  

  o
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ij
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id 1
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⎞
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⎝

⎛
ω+−= . (4.24) 

The input-output relationships of the matrix converter, written using the 

duty-cycle space vectors dm  and im , are as follows: 

  diiio mvmvv **

2

3

2

3
+=  (4.25) 

TABLE 4.2 – SYNCHRONOUS REFERENCE FRAMES 

Variables Angular speed of the 
reference frame 

Input variables ωi 

Output variables ωo 

dm  ωi + ωo 

im  ωi - ωo 
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  doioi mimii *

2

3

2

3
+= . (4.26) 

In (4.25) and (4.26) the duty-cycle space vector dm  is defined in a 

reference frame rotating at the angular speed ωi + ωo, and the duty-cycle 

space vector im  in a reference frame rotating at the angular speed ωi - ωo .  

The problem of the determination of the duty-cycle space vectors is 

completely solved by the following equations, valid under the assumption 

that the measured input voltages are filtered as shown in (4.22): 

  
*

,

3 if

refo

d
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v
m =  (4.27) 
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3 if

refo

i
v

v
m = . (4.28) 

 In order to study the stability of the system it is opportune to linearize 

the system equations around a steady-state operating point corresponding to 

balanced and sinusoidal supply voltages.  

A. Steady-State Operating Conditions with Balanced and Sinusoidal 
Supply Voltages 

In steady-state operating conditions, the variables Sv , Si , iv , ii , ifv ,  

refov , , ov , oi , dm  and im , expressed in their synchronous reference frames, 

assume the constant values SV , SI , iV , iI , ifV , oV , oI , refoV , , dM , iM . 

It is worth noting that the phase angles of iV  and refoV ,  can be arbitrarily 

chosen. 

Assuming for iV   and refoV ,  the following values ii VV =  , reforefo VV ,, =  , 

and solving the system equations (4.6),(4.7), (4.23) – (4.28) leads to the 

following solution: 

  iif VV =  (4.29) 
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where LLLL LjRZ ω+= and TiSS LjRZ ω+= . As usual, the variable  

irefo VVq ,=  is the voltage transfer ratio. 

From the previous equations it can be noted that the filtered input 

voltage is equal to the input voltage itself, as well as the output voltage is 

equal to the corresponding reference value. This means that, in these 

operating conditions, the digital low-pass filter does not affect the output 

voltage. 

B. Small Signal Equations 

The linearization of the system equations (4.22)–(4.28) around the steady-

state operating point defined by (4.29)– (4.36) leads to the following system 

of small signal equations: 
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  ( ) ifidifd vqVmvM Δ=Δ+Δ⋅ 316   (4.43) 

  ( ) ifiiifi vqVmvM Δ=Δ+Δ⋅ 316 . (4.44) 

4.8. Stability Analysis  

Resolving (4.37)–(4.44) into the d–q components leads to the following 

state equations: 

  xA
x

=
dt

d
  (4.45) 

being 

  [ ]TifqifdoqodiqidSqSd vviivvii ΔΔΔΔΔΔΔΔ=x   (4.46) 
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where 

 ⎥
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The stability limit of the matrix converter can be evaluated by analyzing 

the eigenvalues of the state matrix A, through a numerical approach. 

This approach demonstrates the existence of a limit value for the voltage 

transfer ratio, above which the real part of at least one eigenvalue becomes 

positive and the linear system is unstable. For this purpose the voltage 

transfer ratio has been used to represent the maximum power that the matrix 

converter is able to deliver to the load, as a function of the time constant τ of 
the digital low-pass voltage filter. With reference to the system parameters 

defined in Tab. 4.1, the results of the stability analysis are summarized in 

Fig. 4.7, with reference to the case of ωo = 2π 25 rad/s. 

As is possible to see, a significant improvement of the system stability can 

be achieved by applying the digital low-pass filter to the input voltage values 

used for the calculation of the duty-cycles. In this case, a value 0.4 ms for the 

filter time constant τ allows the theoretical maximum voltage transfer ratio 
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to be practically achieved. 

 The proposed approach can be useful in the design of the digital input 

filter, providing an accessible method of checking for the occurrence of 

instabilities. 

The digital filter time constant can be increased in order to ensure the 

system stability for any operating condition, but as a counterpart a high 

value of τ reduces the capability of the control system to compensate the 

input voltage perturbations. These aspects will be analyzed in details in the 

next paragraph.  

4.9. Analysis of the Output Voltage Distortion  

In presence of input voltage disturbances, depending on the strategy used 

to control the matrix converter, the output voltages might be more or less 

affected by distortions. In this paragraph, the analysis is focused on the 

effects introduced on the output voltages by the presence of the digital low-

pass filter.  

For this purpose, balanced and sinusoidal output voltages are assumed as 

reference, and a small input voltage disturbance is superimposed to balanced 

and sinusoidal input voltages. The input voltage disturbance is defined by 

  tj
iHi

HeVv ω=Δ . (4.49) 

Stable region 

Unstable region 

 

Fig. 4.7 - Stability limit of the matrix converter voltage transfer ratio as function of the filter 

time constant τ. 
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The variable iHV  determines the amplitude and the phase angle of the 

disturbance harmonic component, whereas Hω  defines the corresponding 

angular frequency with respect to the input reference frame. 

Solving (4.40), (4.41), (4.43) and (4.44), and introducing (4.49), leads to 

the following expression for the output voltage disturbance of the matrix 

converter: 
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This equation can be considered as the transfer function between the 

output and input voltage disturbances. The output voltage disturbance 

consists of two harmonic components having the angular frequency Hω  and 

Hω− , respectively, in the output reference frame. The two harmonic 

components have the same amplitude, which is related to the input voltage 

disturbance, the voltage transfer ratio and the digital low-pass filter time 

constant.  

Actually, the two ratios containing Hω  and - Hω  are the analytical 

expressions of two high-pass filter. As a consequence, high frequency input 

voltage disturbances are reflected on the output side, whereas low frequency 

input voltage disturbances are attenuated as function of the filter time 

constant. For high values of τ ( ∞→τ ) the input disturbances are completely 

transferred to the output side. If the action of the low-pass filter is eliminated 

( 0=τ ), the output voltages are balanced and sinusoidal even in presence of 

input voltage disturbances.  

4.10. Computer Simulations of a MC with Input Digital 
Filter 

In order to verify the analytical approach, the behaviour of the system 

composed by a non-ideal supply, an input L-C filter and a matrix converter 

feeding a three-phase symmetrical R-L passive load, has been tested by 

numerical simulations. The switches of the matrix converter have been 

assumed as ideal switches. 
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The simulation takes into account the switching behaviour of the matrix 

converter and the delay related to the digital implementation of the control 

algorithm. 

The values of the system parameters are that of Tab. 4.1, and are the 

same used in Fig. 4.7.  

The control strategy adopted for the matrix converter is the SVM 

technique, with a double-sided switching pattern and a cycle period of 80 μs 

[7]. 

The behaviour of the system, in terms of stability, has been analyzed for 

different values of the voltage transfer ratio and of the time constant of the 

digital low-pass input filter. 

The results obtained are presented in Figs. 4.8, 4.9, and 4.10. 

Fig. 4.8(a) shows the steady-state waveform of the input voltage of the 

matrix converter, with a voltage transfer ratio of 0.2, and with 0=τ . The 

steady-state waveforms of the line current and load current are illustrated in 

Figs. 4.8(b) and (c), respectively. 

As is possible to see, all the waveforms are sinusoidal and characterized by 

a small ripple, due to the high switching frequency of the matrix converter. 

Fig. 4.9(a) shows the waveform of the input voltage of the matrix 

converter with a voltage transfer ratio of 0.35, and with 0=τ . The 

waveforms of a line current and a load current are illustrated in Figs. 4.9(b) 

and (c), respectively. In these operating conditions the input voltage and 

current waveforms are heavily distorted, showing large oscillations at a 

frequency practically equal to the resonance frequency of the input L-C filter.  

This behaviour is due to the predicted instability phenomena that occur 

when the voltage transfer ratio exceeds the stability limits shown in Fig. 4.7, 

even if the switching frequency (12.5 kHz) is much higher than the resonance 

frequency of the input L-C filter (1.6 kHz). 

These results are in agreement with the stability limits determined by the 

proposed analysis. Fig. 4.7 gives a voltage transfer ratio limit of 0.27 for the 

system under study, with 0=τ  . 

In the first case (Fig. 4.8), the voltage transfer ratio is lower than the 

limit value, and the system is stable. In the second case (Fig. 4.9), the 

voltage transfer ratio is higher than the limit value, and the system becomes 

unstable.  
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Any small perturbation due to the switching effects, or coming from 

input/output side, causes the system to leave the stable and steady-state 

operating conditions. 

It should be noted that, initially, in spite of the large oscillations at the 

input side, the waveform of the load current is nearly sinusoidal, as can be 

seen in Fig. 4.9(c), because of the fast adaptation of the duty-cycles, based on 

the on-line measurement of the input voltages. 

Fig. 4.10(a) shows the steady-state waveform of the input voltage of the 

matrix converter with an output to input voltage transfer ratio of 0.55, with 

ms4.0=τ  . The steady-state waveforms of the line current and load current 

  

Fig. 4.8(a) - Matrix converter input line to 

neutral voltage, q=0.2, τ=0 ms. 

Fig. 4.9(a) - Matrix converter input line to 

neutral voltage, q=0.35, τ=0 ms. 

  

Fig. 4.8(b) - Line current, q=0.2, τ=0 ms. Fig. 4.9(b) - Line current, q=0.35, τ=0 ms. 

  

Fig. 4.8(c) - Load current, q=0.2, τ=0 ms. Fig. 4.9(c) - Load current, q=0.35, τ=0 ms. 
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are illustrated in Figs. 4.10(b) and 

(c), respectively. 

As is possible to see, all the 

waveforms are sinusoidal and 

characterized by a small ripple. This 

result demonstrates the effectiveness 

of the digital low-pass filter in terms 

of stability.  

In order to emphasize the 

behaviour of the control system 

under operating conditions 

characterized by input voltage 

distortion, a negative sequence 

fundamental component has been 

superimposed to the positive 

sequence fundamental component of 

the supply voltages. The amplitude 

of the negative sequence is 10% of 

the positive sequence amplitude. 

Firstly, the system behaviour has 

been evaluated without the digital 

low-pass input voltage filter ( 0=τ  ). 

The waveforms of the input voltage 

and output current, obtained with a 

voltage transfer ratio of 0.2, are 

shown in Figs. 4.11(a) and (d), 

respectively.  Figs. 4.11(b) and (e) 

represent the locus described by the input voltage and load current space 

vectors, respectively. 

The corresponding harmonic spectra in p.u. of the fundamental component 

are shown in Figs. 4.11(c) and (f). These results demonstrate that the control 

system is stable and is able to completely compensate the input voltage 

disturbance. 

As a second step, the system behaviour has been verified in presence of 

the digital low-pass input voltage filter, with 4.0=τ ms. The results obtained 

 

Fig. 4.10(a) - Matrix converter input line to 

neutral voltage, q=0.55, τ=0.4 ms. 

 

Fig. 4.10(b) - Line current, q=0.55, τ=0.4 
ms. 

 

Fig. 4.10(c) - Load current, q=0.55, τ=0.4 
ms. 
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are shown in Figs. 4.12(a)-(f). 

In this case the stability of the system would be improved, but the 

capability to compensate the input voltage disturbance is reduced. 

Figs. 4.12(d)-(f) clearly show that the load current is characterized by the 

presence of harmonic components, according to the theoretical results 

expressed by (4.50). 

  

Fig. 4.11(a) - Matrix converter input line to 

neutral voltage, q=0.2, τ=0 ms (unbalance 
degree 10%). 

Fig. 4.11(d) - Load current, q=0.2, τ=0 ms 
(unbalance degree 10%) 

  

Fig. 4.11(b) - Locus of the matrix converter 
input line to neutral voltage space vector. 

Fig. 4.11(e) - Locus of the load current space 
vector. 

  

Fig. 4.11(c)- Spectrum of the matrix converter 
input line to neutral voltage space vector. 

Fig. 4.11(f) - Spectrum of the load current 
space vector. 
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A further simulation has been carried out considering as input voltage 

perturbation a 5th harmonic component, having amplitude of 10% of the 

fundamental component. 

The system behaviour has been firstly evaluated without the digital low-

pass input voltage filter ( 0=τ ), and then in presence of the filter. 

The results obtained are illustrated in Figs. 4.13 and 4.14, respectively. In 

the case of 0=τ  (Fig. 4.13) the system compensate the input voltage 

disturbance and the load current is practically sinusoidal. 

  

Fig. 4.12(a) – Matrix converter input line to 

neutral voltage, q=0.2, τ=0.4 ms (unbalance 
degree 10%). 

Fig. 4.12(d) – Load current, q=0.2, τ=0.4 ms 
(unbalance degree 10%). 

  

Fig. 4.12(b) – Locus of the matrix converter 
input line to neutral voltage space vector. 

Fig. 4.12(e) – Locus of the load current space 
vector. 

   

Fig. 4.12(c)–Spectrum of the matrix converter 
input line to neutral voltage space vector. 

Fig. 4.12(f) – Spectrum of the load current 
space vector. 
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In the case of τ = 0.4 ms (Fig. 4.14) the input voltage disturbance is 

partially reflected at the output side, and the output current is characterized 

by the presence of harmonic components, as predicted by (4.50) and shown in 

Fig. 4.14(f). 

 

Fig. 4.13(a) - Matrix converter input line to 

neutral voltage, q=0.2, τ=0 ms (10%  5th 
harmonic). 

Fig. 4.13(d) - Load current, q=0.2, τ=0 ms 
(10%  5th harmonic). 

  

Fig. 4.13(b) - Locus of the matrix converter 
input line to neutral voltage space vector. 

Fig. 4.13(e) - Locus of the load current space 
vector. 

  

Fig. 4.13(c)-Spectrum of the matrix converter 
input line to neutral voltage space vector. 

Fig. 4.13(f) - Spectrum of the load current 
space vector. 
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4.11. Important Remarks About Stability 

Actually, stability issues of power converters and electrical drives have 

been already discussed in several papers [43]-[47]. With reference to matrix 

converters it is worth noting that the possibility of unstable behaviour is not 

inherent in matrix converter operation, but rather related to the control 

algorithm implementation. It has been previously mentioned that it is 

  

Fig. 4.14(a) – Matrix converter input line to 

neutral voltage, q=0.2, τ=0.4 ms. (10%  5th 
harmonic) 

Fig. 4.14(d) – Load current, q=0.2, τ=0.4 ms. 
(10%  5th harmonic) 

  

Fig. 4.14(b) – Locus of the matrix converter 
input line to neutral voltage space vector. 

Fig. 4.14(e) – Locus of the load current space 
vector. 

 

 

 

  

Fig. 4.14(c)– Spectrum of the matrix 
converter input line to neutral voltage space 
vector. 

Fig. 4.14(f) – Spectrum of the load current 
space vector. 
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opportune to calculate the duty-cycles of the switching configurations on the 

basis of the instantaneous values of the input voltages when studying the 

operation of matrix converters under unbalanced and distorted supply 

voltages. The feedforward action of this type of control is the main potential 

reason of the instability phenomena. It has been also shown that the power 

limit can be sensibly improved if the calculation of the duty-cycles is carried 

out using filtered values of the matrix converter input voltages. 

In practical applications, the instability phenomena could be not observed 

if the voltage measurement is performed at the input of the L-C filter, rather 

than at the input of the converter. In this case the system stability is 

improved because the filtering action performed by the proposed digital filter 

is replaced, to some extent, by the filter inductance Lf. Actually, instability is 

not eliminated, but only moved towards higher power levels. 

However, it can be noted that the voltage measurement at the L-C filter 

input is not an optimal solution owing to the following reasons: 

- The L-C filter is usually designed in order to satisfy EMC requirements 

rather than to guarantee the system stability. In addition, it determines a 

sensible phase-shift in the measured voltage at the fundamental frequency, 

which can deteriorate the output voltage since the duty-cycles are not 

calculated on the basis of the actual voltage. 

- The digital filter, instead, can be tuned so that the system shows the 

best performance and, in addition, it is implemented in the synchronous 

reference frame, thus introducing no phase shift at the fundamental 

frequency. 

- If the matrix converter is connected to a weak network, the filter 

inductance can be omitted because the grid inductance is sufficient for the 

filter requirements; it is then possible to avoid the presence of a bulky 

component. In this case the matrix converter stability can be improved only 

by using the digital low-pass filter applied to the voltages measured across 

the filter capacitors. 

The effects introduced by digital controllers, such as the sample and hold 

circuit and the switching period delay, also affect the stability of matrix 

converters. The digital controller samples the input voltages at the beginning 

of the cycle period, then calculates the duty-cycles of the switching 

configurations that will be applied at the beginning of the next cycle period, 
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thus determining a delay of one cycle. It has long been known that a time 

delay could remarkably modify the stability of the drive system. 

The proposed analytical approach does not take into account the effect of 

the control delay and therefore it gives reliable results only for low values of 

the cycle period. The value of 80μs adopted in the numerical simulations is 

sufficient for the implementation of the control algorithm and provides 

results in good agreement with the theoretical analysis. In [52] it has been 

clearly emphasized the influence of the cycle period width on the stability of 

the drive system.  

A further issue, relevant for the system stability, is the energy losses in 

the input filter and in the converter switches, which influence the damping 

capability of the drive system. In fact the energy losses can reduce the 

voltage and current oscillations so improving the system stability.  

For this purpose the behaviour of the matrix converter has been also 

verified using the electronic circuit analysis program MICRO-CAP 7.0. In 

this program it is possible to use more accurate models of the power switches 

and then to improve the simulation reliability. The models adopted for 

IGBTs and diodes are MICRO-CAP general models: IGBT type 

IRG4PH50U, diode type HFA16PB120. 

The matrix converter control technique and the system parameters are the 

same used in the previous paragraph. 

Fig. 4.15 shows the transition from stable to unstable operation of the 

matrix converter obtained increasing the voltage transfer ratio q, for a given 

value of the filter time constant (τ=0.2 ms).  The upper traces represent the 

input and output current waveforms, the medium trace is the voltage 

measured at the input side of the L-C filter, and the bottom trace is the 

voltage measured across the filter capacitance. As can be seen, the system is 

stable for q=0.3 and unstable for q=0.7, in perfect agreement with Fig. 4.7. 

For q=0.5 the system shows a stable behaviour, although the voltage 

transfer ratio is slightly greater than the stability limit of Fig. 4.7. This can 

be explained by the damping introduced by the energy losses and the effect 

of the cycle period delay.  
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4.12. Conclusion 

The MC can be considered as a current source at the input side, then a L-

C filter topology is needed to smooth the input currents and to satisfy the 

EMI requirements. A reactive current flows through the input filter capacitor 

of the matrix converter, which causes a reduction of the power factor 

especially at low output power. As a consequence, the capacitor should be 

chosen in order to ensure at least a power factor of 0.8 with 10% of the rated 

output power. After the selection of the capacitor, the input filter inductance 

can be selected in order to satisfy the IEEE Recommended Practices and 

Requirements for Harmonic Control in Electrical Power Systems (IEEE Std. 

519-1992).  

If the input filter is well designed, current harmonics at frequencies greater 

or equal to the switching frequency are smoothed to a certain extent. On the 
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Fig. 4.15 - Transition from stable to unstable operation changing q from 0.3 to 0.5 and then to 

0.7, with τ=0.2 ms. a) output current, b) input current, c) filter input voltage, d) matrix 
converter input voltage. 
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other hand, current harmonics at a frequency close to the resonance 

frequency of the filter could be amplified determining oscillations of the 

voltage across the capacitor, which in turn have a negative effect on the MC 

behaviour leading to possible unstable operating conditions.  

In order to increase the system stability it is possible to add a damping 

resistance in parallel with the filter inductance. A suitable value of this 

resistance allows the high frequency current harmonics to close through the 

source leading to lower oscillations of the capacitor voltage. The damping 

effect and then the stability limit increases while reducing the value of the 

resistance. Unfortunately, this solution is effective for improving the MC 

stability but it is of detriment for the EMI requirements. Therefore, a 

compromise should be find between stability and input current quality. 

A different approach which avoids the need of damping resistances is to 

calculate the duty cycles of the MC switching configurations by means of 

input voltage values filtered by a low-pass filter implemented in a 

synchronous reference frame. This method has been proved to be very 

effective for increasing the power limit and is included in the control scheme 

of the MC analyzed in this chapter. 

In this chapter a method for the stability analysis of matrix converters has 

been proposed. For this purpose a variable state average model of the whole 

system, including the grid impedance, the input L-C filter and the load, has 

been derived, and the stability of the system has been evaluated by analyzing 

the migration of the eigenvalues of the linearized state matrix.  

By using the proposed approach, the maximum output power can be 

calculated as function of the digital low-pass filter time constant, for given 

values of the grid impedance, input L-C filter parameters and load. 

Simulation results have been performed showing the validity of the proposed 

method for low values of the cycle period, and emphasizing the improvement 

of the power limit achievable by changing the time constant of the digital 

low-pass filter. 
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5.Chapter 5 
Advanced Models 
for Stability 
Analysis 
Abstract 

In this chapter a theoretical analysis of the stability of matrix converters 

is presented with the aim of predicting possible critical operating conditions. 

It is verified that all the system parameters affect more or less the stability, 

including the delay introduced by the digital controller and the power losses. 

The theoretical analysis is supported by numerical simulations and 

experimental results carried out on a matrix converter prototype.  

 

5.1. Introduction 

In chapter 4, MC stability has been investigated through a small signal 

analysis of the whole system composed by the power grid, the input filter, the 

MC and the load. It has been shown that the power limit is related to all 
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system parameters, and in particular to the grid impedance and the input L-

C filter parameters.  

In addition, the analysis has been further developed showing that the 

power limit can be increased if the duty-cycles of the switching configurations 

are calculated using input voltages filtered by a digital low-pass filter 

implemented in a synchronous reference frame. Using this filter the capability 

of the matrix converter to compensate input voltage disturbances is affected 

to some extent, but the stability limit can be sensibly improved. It has been 

also verified that including a damping resistance in the input filter allows a 

significant increase of the stability limit. 

However, up to now, the analysis has neglected that the control of matrix 

converter is usually achieved with a digital microprocessor, whose 

calculations are performed within a finite cycle period. The digital processor 

samples the input voltages and determines the configuration of the matrix 

converter switches that are modified at the beginning of the next cycle 

period, thus determining one cycle delay.  

It has long been known that a time delay could remarkably modify the 

system stability. 

The analytical approach proposed in Chapter 4 does not take into account 

the effect of the control delay and therefore it gives reliable results only for 

low values of the cycle period. 

In [52] the effects due to the presence of a sample and hold circuit and a 

cycle period delay in the digital control of MCs have been investigated using 

a small signal analysis combined with a frequency domain analysis. It has 

been shown that, depending on the system parameters, the cycle period value 

affects more or less the power limit. The presence of unstable operation in 

MCs has been also documented in [25], where the same small signal analysis 

as proposed in [18],[53] has been used. In particular, the effect of filtering 

differently the magnitude and the phase angle of the input voltage vector has 

been investigated. The existence of potential  unstable operating conditions  

has been experimentally proved, emphasizing the influence of the system 

parameters. 

In the first part of this chapter a complete analysis of the MC stability 

taking account of all the system parameters including the input voltage filter 

and the effects of the digital control is presented. The analysis is developed in 
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the frequency domain, using a small signal analysis similar to that carried out 

in [52]. The new contribution is the analytical approach proposed for the 

analysis of  MC  stability, which makes it possible to demonstrate the 

existence of possible unstable operating conditions and to emphasize which 

parameters may affect, more or less, the stability power limit. It has been 

verified that, besides the system parameters, also the power losses must be 

considered in order to predict the stability limit of matrix converter. 

Despite of its completeness, the proposed method uses a small-signal 

analysis that makes difficult the interpretation of the physical phenomena 

related to instability. 

During the study of instability phenomena, initially, it is possible to 

observe small high frequency oscillations superimposed on the input voltages. 

Then, owing to the effects of these oscillations on the calculations of the 

duty-cycles, the amplitude of the voltage oscillations increases preventing the 

normal operation. 

In the second part of this chapter a different approach is presented for the 

analysis of the MC stability, which is based on a large signal analysis carried 

out in the frequency domain. The main advantage of this approach is the 

easy comprehension of the instability origin and the possibility to relate the 

amplitude of the input voltage oscillations to the operating conditions. 

As the proposed analysis is based on a large-signal model, it is possible to 

investigate the non-linear behaviour of MCs in the case of large input voltage 

perturbations. This allows explaining phenomena that have not been clearly 

understood until now, such as the unstable behaviour of MCs in terms of 

limit cycles. 

 Several numerical simulations are presented showing current and voltage 

waveforms under stable and unstable operating conditions. Finally, 

experimental results carried out on a MC prototype are given for supporting 

the theoretical analysis and for proving the effect of different filtering 

methods applied to the input voltages. 

5.2. Input/Output Matrix Converter Performance 

The whole system, which is composed by a power supply, a second order 

input R-L-C filter, and a matrix converter feeding a R-L passive load, is 

represented in Fig. 5.1, where space vector notation is used for the 
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representation of the system variables. 

In this paragraph the main equations related to the system represented in 

Fig. 5.1 will be introduced. As usual, the analytical developments are carried 

out neglecting the effects of the switching harmonics, considering for the 

output voltages and input currents their average values over a cycle period 

Tp.  

The variable t, s and z will be used to distinguish between the time 

domain, the Laplace domain and the domain of the sampled signal, 

respectively. 

With reference to Fig. 5.1, the equation for the input side of the converter, 

written in the Laplace domain, is as follows:  

 )()()()( svsisZsv iieq +=  (5.1) 

where )(sveq  and )(sZ  are the equivalent voltage and the impedance of the 

voltage source and the input filter, considered as a single bipole. 

The equation of the output side of the converter can be expressed as 

follows 

 )()()( svsYsi oo =  (5.2) 

where )(sY  is the admittance of the passive linear load. 

The input-output relationships (2.35)-(2.36) of the matrix converter, 

written using the duty-cycle space vectors dm and im  [7], are here reported 

for convenience: 

 

ii
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Fig. 5.1 - Basic matrix converter scheme. 
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 [ ])()()()(
2

3
)( ** tvtmtvtmtv idiio +=  (5.3) 

 [ ])()()()(
2

3
)( * titmtitmti odoii += . (5.4) 

The symbol ‘*’ is used to represent complex conjugate variables. 

If the input current vector is kept in phase with the input voltage vector, 

the problem of the determination of the duty-cycle space vectors is 

completely solved by the following equations: 
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)(3

)(
)(

*

*
,

,
tv

tv
tm

i

refo

refi = . (5.6) 

where )(, tv refo  is the reference output voltage. 

Unfortunately, at any instant t the duty-cycles )(tmd  and )(tmi  cannot 

have exactly the values )(, tm refd  and )(, tm refi  because the digital controller, 

which measures the input voltages and calculate (5.5) and (5.6) at each cycle 

period, applies the new switching configurations only at the beginning of the 

next cycle period, thus introducing a time delay. This means that )(tmd  and 

)(tmi are delayed with respect to the desired values. 

The model represented in Fig. 5.2 has been developed to take into account 

the effects of the control system delay. S&H is a sample and hold device, z--1 

is the delay operator and ZOH a zero-order hold. 

It should be noted that, using this model, )(tmd  and )(tmi  in (5.3) and 

(5.4) are constant during a cycle period Tp, while the input voltage vector 

Z-1 ZOH
refim ,

refdm ,

im

dm

S&H

 

Fig. 5.2 - System used to represent the effect of the digital controller. 
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)(tvi  and the output current vector )(tio  are free to change. 

According to Fig. 5.2, the relationship between )(tmd  and )(, tm refd  or 

between )(tmi  and )(, tm refi  can be described through the transfer function 

)(sD  in the Laplace domain given by 
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. (5.7) 

In (5.7) the term inside the brackets is related to the sampling and 

reconstruction processes, whereas the exponential term outside the brackets is 

due to the delay introduced by the digital controller. 

In order to study the stability of the system, it is opportune to linearize 

the system equations around a steady-state operating point corresponding to 

balanced and sinusoidal supply voltages. 

5.3. Steady-State Operating Conditions with Balanced and 
Sinusoidal Supply Voltages 

In steady-state operating conditions, with balanced and sinusoidal supply 

voltages, the input voltages and the reference output voltages can be 

represented by means of rotating space vectors with constant magnitudes, as 

follows: 

 tj
ii

ieVtV ω=)(  (5.8) 

 tj
reforefo

oeVtV ω= ,, )(  (5.9) 

where ωi and ωo are the input and output angular frequency, respectively. 

Substituting (5.8) and (5.9) in (5.5) and (5.6), leads to the following 

steady-state expressions for  )(, tm refd  and )(, tm refi : 

 tj
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)( ω−ω= . (5.11) 

The actual values of the duty-cycle space vectors dM and iM could be 

calculated applying (5.7) to (5.10) and (5.11), respectively. It is worth noting 

that the delay introduced by the digital filter on the fundamental harmonics 

at frequencies ωi and ωo can be ignored and the actual values of the duty-

cycle space vectors dM  and iM  can be assumed equal to their reference 

values refiM ,  and refdM , . On the basis of this assumption, substituting (5.10) 

and (5.11) in (5.3), and taking (5.8) into account, it is possible to verify that 

also the output voltage can be assumed equal to its reference value 

 )()( , tVtV refoo = . (5.12) 

As a consequence, the steady-state output current vector can be expressed 

as 

 tj
o

tj
refooo

oo eIeVYtI ωω =ω= ,)()(  (5.13) 

where 
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 )()(
2

3
, tItVP orefoid ⋅= .  (5.16) 

 In (5.14) and (5.16) Pid is the power delivered to the load by an ideal 

matrix converter in which )()( , tVtV refoo = . 

5.4. Small Signal Equations 

The stability analysis is performed under the assumption that a small 

perturbation ivΔ  is superimposed on the input voltage space vector. 
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The linearization of the set of equations (5.1)-(5.7) around the steady-

state operating point defined by (5.8)-(5.16) leads to the following set of 

small-signal equations: 

 )()()(0 svsisZ ii Δ+Δ=  (5.17) 

 )()()( svsYsi oo Δ=Δ  (5.18) 

 [ ])()()()()()()()(
2

3
)( **** tmtVtMtvtMtvtmtVtv didiiiiio Δ+Δ+Δ+Δ=Δ (5.19) 

 [ ])()()()()()()()(
2

3
)( ** tMtitMtitmtItmtIti doiodoioi Δ+Δ+Δ+Δ=Δ  (5.20) 
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refi Δ−=Δ  (5.22) 

 )()()( , smsDsm refdd Δ=Δ  (5.23) 

 )()()( , smsDsm refii Δ=Δ . (5.24) 

The small signal equations (5.17)-(5.24) have been determined under the 

assumption that the supply voltage and the reference output voltage vector 

are not subjected to perturbations, namely 

 0=Δ sv  (5.25) 

 0, =Δ refov .  (5.26) 

Fig. 5.3 shows the equivalent circuit described by (5.17). As can be seen, 

the matrix converter acts as a non-linear harmonic current generator. 

In order to determine the variation of the input current due to the 

perturbation of the input voltage, the system of equations (5.17)-(5.24) has to 

be solved.  For this purpose, it is necessary to substitute the expression of 

)(sioΔ , given by (5.18) and (5.19), in (5.20), taking (5.8), (5.9) and (5.21)-

(5.24) into account. To simplify the analysis, the low-pass filtering action of 

the load can be assumed high enough to neglect the output current variations 
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due to the output voltage variations, yielding  

 0=Δ oi . (5.27) 

Under this assumption, substituting (5.12), (5.14), (5.21)-(5.24) in (5.20) 

leads to the following expression for the variation of the input current in the 

Laplace domain: 

 [ ] )2()(
3

2
)(

2* i
c
ieq

i

id
i jsvsD

V

P
si ω−Δ−=Δ  (5.28) 

where )(sv c
iΔ  is the Laplace transform of )(* tviΔ  and )(sDeq  is defined by 

 [ ])()(
2

1
)( *

ooeq jsDjsDsD ω+γ+ω−γ= . (5.29) 

The superscript ”c” applied to the function ivΔ  is used to represent the 

Laplace transform of the conjugate of ivΔ . More details on this mathematical 

representation, that will be used in the following, can be found in Appendix 

C. It can be verified that for angular frequencies much higher than ωo, 

)()( ω≅ω jDjDeq .  

It is possible to determine the fundamental equation that must be satisfied 

by the input voltage variation substituting (5.28) in (5.17), yielding 

 [ ] 0)()2()()(
3

2
2*

=Δ+ω−Δ− svjsv
V

P
sDsZ ii

c
i

i

id
eq . (5.30) 

In the previous equation there are two unknowns, which are ivΔ  and c
ivΔ . 

Hence, to solve the problem, a further equation is needed. This equation can 

be found by applying the operator ”c” to (5.30), leading to 

ivΔ)(sZ )(siiΔ

 

Fig. 5.3 - Equivalent circuit of the system for small signal analysis. 
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To simplify (5.30) and (5.31) it is useful to introduce a rotating reference 

frame synchronous with the supply voltage, which is completely defined 

substituting the variable s with 

 s = u + jωi . (5.32) 

The following set of equations, written in matrix form, can be determined 

introducing (5.32) in (5.30) and (5.31), yielding: 
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where 
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and 

  )()()( sDsZsZ eqeq = . (5.35) 

By means of the previous analytical developments, the small signal 

equations (5.17)-(5.24) have been summarized by (5.33)-(5.35), which 

completely describe the system response due to a small input voltage 

variation. 

Analyzing (5.35) it can be concluded that the behaviour of the system is 

described by the equivalent grid impedance eqZ , given by a combination of 

the actual impedance and the transfer function of the delay introduced by 

the digital controller. 

5.5. Stability Analysis 

Due to presence of the controller delay, the system stability cannot be 

analyzed through the determination of the system poles, because the 
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characteristic equation does not have a polynomial form. The instability 

phenomena that can be observed in matrix converters are generally 

characterized by the presence of sinusoidal oscillations superimposed to the 

input voltage. Therefore it is possible to determine an equation representing 

the necessary condition for the existence of unstable operation writing (5.33) 

in the form of an harmonic balance. For this purpose the variable u = jω 

must be introduced in (5.33) yielding  
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⎢
⎣

⎡
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ii
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jjv
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The set of equations (5.37) has a non-trivial solution only if the 

determinant of M is zero, leading to the following constraint equation: 
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where 

 )()()( i
c
eqieq jjZjjZ ω−ωω+ω=ωΓ . (5.38) 

A necessary condition for (5.37) to be verified is the existence of an 

angular frequency ωr satisfying the following constrain equation: 

 0)(arg =ωΓ r . (5.39) 

According to (5.39), for ω equal to ωr the function )(ωΓ  is a real positive 

number, having the dimension of the square of an impedance. It is then 

useful to define a new equivalent resistance given by 

 )( rresR ωΓ= . (5.40) 

Substituting (5.40) in (5.37) and solving for Pid leads to the following 

value of the ideal power limit: 

 
res

i
id,lim

R

V
P

2

2

3
= . (5.41) 

As can be seen from (5.41), the maximum power limit is proportional to 
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the square of the input voltage and to the inverse of the equivalent resistance 

Rres. 

To outline how the stability analysis can be applied, an example is 

discussed in the following. 

The first step is to plot )(ωΓ  as a function of ω. The most significant 

range of frequencies is centred around the resonance frequency of the input L-

C filter (including the grid inductance too), as it corresponds to the highest 

magnitudes of the function )(ωΓ . Fig. 5.4 shows the behaviour of )(ωΓ  with 

reference to the parameters given in Tab. 5.1 and for a cycle period Tp of 

80μs. 

Fig. 5.4(a) shows the magnitude of )(ωΓ , whereas the argument of )(ωΓ , 

normalized in the range [-π, π], is shown in Fig. 5.4(b). It can be noted that 

the argument of )(ωΓ  equals zero for several angular frequencies, i.e. ’
rω  and 

’’
rω . Obviously, the stability power limit has to be evaluated with reference to 

the worst case, corresponding to the highest magnitude of )(ωΓ . Among all 

the solutions, )(ωΓ  assumes the maximum value for ’
rω=ω , as can be 

verified in Fig. 5.4(a). Then, the equivalent resistance Rres must be calculated 

assuming ’
rr ω=ω  in (5.40). Once Rres is known, the stability power limit can 

be determined by means of (5.41). 

In order to emphasize how the delay of the digital controller can improve 

the stability power limit, a further example is discussed with reference to an 

ideal controller with a cycle period Tp=0. In this case the behaviour of )(ωΓ  

is illustrated in Fig. 5.5. The stability power limit, corresponding to the 

angular frequency ’’’
rω , is sensibly lower compared with the one determined 

TABLE 5.1 - SYSTEM PARAMETERS 

Supply 

VS  = 110 V(rms), 

ωi = 2π 50 rad/s, 

RS = 0.55 Ω, LS=0.90 mH 

Filter 

Lf = 1.16 mH, Cf = 4.5 μF 

Rf = 300 Ω 

Load 

RL= 8.2 Ω, LL = 1.3 mH, 

ωo = 2π 100 rad/s 
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for a non-ideal controller. It is clear, comparing Fig. 5.5 to Fig. 5.4, that the 

delay introduced by the digital controller has the effect to modify the 

)(arg ωΓ curve, whereas the magnitude is practically the same in both cases. 

Owing to the delay, the argument of )(ωΓ  shown in Fig. 5.4(b) reaches 

zero at ’
rω , that is much lower than ’’’

rω . As a consequence, also the 

equivalent resistance Rres is lower, leading to a higher stability power limit. 

Further details on the effect of the digital delay have been discussed in [52]. 

5.6. Small Signal Equations Introducing a Digital Filter  

The power limit can be sensibly improved if the calculation of the duty 

cycles is carried out by filtering the matrix converter input voltages [24].  

The equation of this filter, written in terms of Laplace transform, can be 

expressed as: 

 )(
)(1

1
)()()( sv

js
svsFsv i

i

iif ω−τ+
==  (5.42) 

where )(svif  is the Laplace transform of the filtered input voltage vector. 

Owing to the discretization introduced by the digital controller, the 

transfer function )(sF  in (5.42) can be only approximated by a Z-transform 

)(zFd . The expression of )(zFd  varies on the basis of the method used to 
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Fig. 5.4 – Behaviour of )(ωΓ  for the 

system parameters of Tab. I, with the 
effects of the digital controller delay, a) 
magnitude, b) argument . 

Fig. 5.5 – Behaviour of )(ωΓ  for the system 

parameters of Tab. I, without the effects of 
the digital controller delay, a) magnitude, b) 
argument . 



 
122 

obtain the discrete-time formulation. The expression of )(zFd  used in this 

chapter is given in Appendix D. On the other hand, the analysis is developed 

in the Laplace domain, then it is necessary to represent )(zFd  in terms of 

Laplace transform, introducing the transfer function )(sFa . It is known that 

the expression of )(sFa  can be determined from )(zFd  introducing  Tsez = , 

leading to 

 )()( Ts
da eFsF = . (5.43) 

On the basis of (5.43), the variation of the filtered voltage  in terms of 

Laplace transform can be approximated as follows: 

 )()()( svsFsv iaif Δ=Δ   (5.44) 

The approximation consists in neglecting the harmonic components of 

)(sviΔ  at a frequency comparable with or greater than the sampling 

frequency. In the system under study this assumption can be made because 

the input filter is of low-pass type.  

Using the same procedure described in Paragraph 5.4, in which the input 

voltage variation )(sviΔ  is replaced by )(svifΔ , leads to the following 

expression for the input current variation: 

 [ ] )2()2()(
3

2
)(

2* i
c
ii

c
aeq

i

id
i jsvjsFsD

V

P
si ω−Δω−−=Δ . (5.45) 

It can be noted that (5.45) corresponds to (5.28), the only difference is the 

presence of the transfer function )2( i
c

a jsF ω−  which multiplies the term 

)(sDeq . As a consequence, the stability analysis carried out in Paragraph 5.5 

is still valid provided that the equivalent impedance (5.35) is replaced with 

the following expression: 

 )2()()()( i
c

aeqeq jsFsDsZsZ ω−= . (5.46) 

The presence of the transfer function )2( i
c

a jsF ω−  modifies the equivalent 

impedance reducing its magnitude and changing its argument. If the filter is 
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correctly designed, this effect determines a reduction of the equivalent 

resistance (5.40) with an effective improvement of the stability power limit. 

5.7. Model for the MC Losses 

The power limit that can be calculated by means of the equations 

presented in the previous paragraphs is generally lower than that achievable 

in experimental tests. This because several factors, such as the iron losses in 

the inductances, or the power losses of the converter, may increase the 

damping effect of the real system, thus preventing unstable oscillations to 

arise. 

In this paragraph a simplified method to represent the effects of the 

converter power losses on the system stability is proposed. 

A non-ideal converter can be generally represented using a simplified 

model composed by an ideal converter and two generators that take into 

account the converter power losses, i.e. switching losses and conduction 

losses. The converter model that will be used in this chapter is represented in 

Fig. 5.6.  

The output voltage is usually lower than the reference voltage since there 

is a voltage drop on the static switches. This voltage drop mainly determines 

the amount of the conduction losses )(tpcd , and the voltage cdv  can be 

defined as follows: 

 )(
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2
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ti
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tv o

o

cd
cd = . (5.47) 

Due to the switching losses )(tpsw , the current at the input side of the 

non-ideal converter is generally higher than that of the ideal converter. This 

 

 
Ideal 

Matrix Converter
 

+

swi

cdv

outvov

iiini oi

 

Fig. 5.6 - Basic scheme of a non-ideal matrix converter. 
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behaviour can be modelled with a current generator swi  defined by 

 )(
)(

)(

3
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2
tv

tv
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ti i

i

sw
sw = . (5.48) 

The voltage generator in (5.47) and the current generator in (5.48) are 

defined so that they absorb an active power equal to pcd and psw, respectively. 

The presence of the power losses must be included in the small signal 

equations with the aim of predicting the power limit with more accuracy. In 

order to linearize (5.47) and (5.48), it is firstly necessary to determine the 

equations of the system in steady-state operating conditions with balanced 

and sinusoidal supply voltages. It is useful to represent the steady-state 

values of pcd and psw introducing two equivalent resistances as follows 

 2
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3
ocdcd IRP = . (5.49) 
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= . (5.50) 

Substituting (5.49) in (5.47) yields  

 )()( tIRtV ocdcd =  (5.51) 

which demonstrates that at the fundamental frequency the conduction losses 

have the same effect as an additional resistance Rcd connected in series with 

the load. Therefore, (5.13)-(5.17) are still valid if the load admittance at 

angular frequency ωo is replaced by the following expression: 
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oeq

jYR

jY
jY
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ω

=ω . (5.52) 

According to this approach, the main effect of the conduction losses is the 

reduction of the steady-state load current and, consequently, of the input 

current. The presence of switching losses, instead, does not modify anyone of 

the steady-state equations determined in Paragraph 5.15. Once the steady-

state conditions have been determined, in order to proceed along with the 

linearization of (5.47) and (5.48), a model for the converter losses is needed. 

The switching losses are proportional to the input voltage and the output 
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current, while the conduction losses are proportional to the output current 

[54]. Then, the simplest model for the converter losses can be represented by 

the following equations: 

 ocdcd iktp =)(  (5.53) 

 oiswsw ivktp =)(  (5.54) 

where kcd and ksw are constant. 

Taking (5.54) and (5.55) into account, the small signal equations 

corresponding to (5.47) and (5.48) are as follows: 

 0=Δ cdv  (5.55) 
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The result expressed in (5.55) is justified by the fact that, according to 

(5.27), the variation of the output current is negligible. 

In (5.56) the switching losses Psw appear in both terms. In the first term 

the switching losses can be expressed through (5.50), whereas in the second 

term it is convenient to express the switching losses as a percentage of Pid 

introducing the ratio ε (Appendix E) defined as  

    
id

sw

P

P
=ε . (5.57) 

In this way it will be possible to define an equivalent impedance )(sZeq  

similar to (5.35) and (5.46). Taking (5.57) and (5.50) into account, (5.56) can 

be rewritten in the Laplace domain as follows: 
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The equivalent circuit of the switching losses represented by (5.58) is 

shown in Fig. 5.7.  

The equivalent circuit of the whole system can be determined combining 

the equivalent circuit of Fig. 5.7 with the basic circuit of Fig. 5.3, leading to 

Fig. 5.8. 
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 It can be noted that the effect of the power losses can be described with a 

resistance connected in parallel with the input impedance and with a current 

generator. Fig. 5.8 can be simplified substituting the two current generators 

with an equivalent single current generator giΔ , as shown in Fig. 5.9. Taking 

(5.45) into account, giΔ  can be expressed as 

  )2()2()(
2)(3

2
)(

2* i
c
ii

c
aeq

i

id
g jsvjsFsD

V

P
si ω−Δ⎟
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⎜
⎝
⎛ ω−+

ε
−=Δ  (5.59) 

The only difference between (5.59) and (5.45) is the presence of the term 

ε/2 added to the term )2()( i
c

aeq jsFsD ω− . Consequently, the stability analysis 

carried out in Paragraph 5.5 is still valid provided that the equivalent 

impedance (5.46) is replaced with the following expression: 

 ( ) ⎟
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⎜
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⎛ ε

+ω−=
2

)2()(2//)()( i
c

aeqsweq jsFsDRsZsZ  (5.60) 

It can be verified that the magnitude of the function )(ωΓ , developed 

through (5.60), is reduced owing to the presence of the resistance 2Rsw 

connected in parallel with the input impedance. This effect leads to an 
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Fig. 5.7 - Equivalent circuit of the switching losses for small signal analysis. 
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Fig. 5.8 - Equivalent circuit of a non-ideal matrix converter for small signal analysis. 
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improvement of the stability power limit as will be shown in the next 

paragraphs. 

In order to perform numerical and experimental tests on the stability of 

matrix converters feeding a constant load, it is more opportune to use as 

variable the output-to-input voltage transfer ratio q instead of Pid. 

Combining (5.13)-(5.16) and (5.41) and solving for q leads to the following 

value of the limit voltage transfer ratio: 

  
{ })(Re

1

oeqres

lim

jYR
q

ω
= . (5.62) 

It is evident in (5.62) that, as the conduction power losses reduce the 

equivalent load admittance, they increase the limit voltage transfer ratio. 

5.8. Simulation Results 

In order verify the theoretical results obtained in the previous paragraphs, 

the behaviour of the system represented in Fig. 5.1 has been tested by 

numerical simulations. 

For this purpose, the electronic circuit analysis program MICRO-CAP 7.0 

has been adopted. In this program it is possible to use accurate models of the 

power switches and then to improve the simulation reliability. The numerical 

simulations take into account the switching behaviour of the matrix 

converter and the delay related to the digital implementation of the control 

algorithm. 

The control strategy adopted for the matrix converter is the SVM 

technique, with a double-sided switching pattern [7] and a cycle period of 80 

μs. The values of the system parameters are shown in Tab. 5.1. 

Firstly, the effect of the power losses has been neglected and the equations 

ivΔ

iniΔ

)(sZ swR2 )(sigΔ

 

Fig. 5.9 - Equivalent circuit of a non-ideal matrix converter with a single current generator. 
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found in Paragraphs 5.16 and 5.17 have been used to evaluate the limit 

voltage transfer ratio for different values of the cut-off frequency fcut-

off=1/(2πτ) of the input voltage digital filter. The corresponding results are 

shown by the curve a) of Fig. 5.10. 

Several simulations have been performed to check the validity of this 

stability curve using ideal switches. For instance, Fig. 5.11 shows the 

behaviour of the converter for q = 0.37 and fcut-off = 300 Hz (corresponding to 

a time constant τ = 0.53 ms), which is represented by the point 1 in Fig. 

5.10. 

Fig. 5.11(a) shows the steady-state waveform of the input voltage of the 

matrix converter. The steady-state waveforms of the line current and load 

current are illustrated in Figs. 5.11(b) and (c), respectively. As is possible to 

see, all the waveforms are sinusoidal and characterized by a small ripple, due 

to the high switching frequency of the matrix converter. 

Then, the voltage transfer ratio has been changed to 0.47 (point 2 in Fig. 

5.10) and the corresponding converter behaviour is shown in Fig. 5.12. Fig. 

5.12(a) shows the waveform of the input voltage, whereas the waveforms of 

the line current and load current are illustrated in Figs. 5.12(b) and 5.12(c), 

respectively. In these operating conditions the input voltage and the line 

current waveforms are heavily distorted, showing large oscillations at about 

1.75 kHz. 

 This behaviour is due to the predicted instability phenomena that occur 

0
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Fig. 5.10 - Limit voltage transfer ratio versus cut-off frequency of the input voltage digital 
filter with the system parameters given in Tab. I. a)  without converter power losses, b) with 
converter power losses. 
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as the voltage transfer ratio exceeds the stability limits shown in Fig. 5.10. It 

is important to note that this unstable operation can be observed even if the 

switching frequency (12.5 kHz) is much higher than the resonance frequency 

of the input L-C filter (1.65 kHz). 

These results are in agreement with the stability limits determined by the 

theoretical analysis. Fig. 5.10 gives a limit voltage transfer ratio of 0.43 at fcut-

off = 300 Hz. In the case of Fig. 5.11, corresponding to the point 1 of Fig. 

5.10, the voltage transfer ratio is lower than the limit value, and the system 

is stable. In the case of Fig. 5.12, corresponding to the point 2 in Fig. 5.10, 

the voltage transfer ratio is higher than the limit value, and the system 

becomes unstable. Any small perturbation, due to the switching effects or 

coming from input/output side, causes the system to leave the stable 

operating point. 

It should be noted that in spite of the large oscillations at the input side, 

the waveform of the load current is nearly sinusoidal, as can be seen in Fig. 

5.11(c), because of the fast adaptation of the duty-cycles, based on the on-

line measurement of the input voltages. 
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Fig. 5.11- Numerical results without the contribution of the converter power losses. Behavior
of the matrix converter for fcut-off = 300 Hz and q = 0.37, a) input phase-to-phase voltage, b) 
line current, c) output current. 
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Fig. 5.13(a), (b) and (c) show the numerical results achieved in the same 

operating conditions as in Fig. 5.12, but considering the power losses of the 

switching devices. To take into account the power losses, the model of the 

converter has been modified and improved using the models of real switches. 

As can be seen, the use of non-ideal switches introduces a damping effect 

on input voltage and  current oscillations, and a higher power can be 

delivered to the load before reaching the unstable operation. Comparing Figs. 

5.12 and 5.13, it is evident that the converter power losses improve the 

system stability. 

The curve b) in Fig. 5.10 represents the limit voltage transfer ratio taking 

the converter power losses into account. According to [54] and [55], it is 

assumed that the converter power losses are composed by 30% of switching 

losses and by 70% of conduction losses. This situation corresponds to a ratio 

δ (Appendix E) equal to 2.33. 

For given values of switching frequency and load parameters, the 

converter efficiency depends on the output voltage. Due to the small value of 

the power delivered to the load (between 1-2 kW), for the theoretical 

calculations the efficiency has been assumed variable between 75% and  85%, 

and increasing with the voltage transfer ratio.  
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Fig. 5.12- Numerical results without the contribution of the converter power losses. Behavior
of the matrix converter for fcut-off = 300 Hz and q = 0.47, a) input line-to-line voltage, b) line 
current, c) load current. 



 
131 

As can be seen from Fig. 5.10, the converter power losses have a strong 

stabilizing effect and give an effective contribution to the system stability 

improvement. 

5.9. Experimental Results 

In order to verify the proposed theoretical approach for the MC stability, 

a prototype of a three-phase to three-phase matrix converter has been used to 

supply a linear passive R-L load. The matrix converter is realized using the 

FM35E12KR3 IGBT module produced by EUPEC. The control algorithm is 

implemented on the platform C6000, a floating-point digital signal processor 

provided by Texas Instruments. The switching frequency is 12.5 kHz, 

corresponding to a cycle period of 80 μs. The converter is fed by a voltage 

transformer with variable voltage transfer ratio to adjust the input voltage to 

a value of about 110 V rms. A L-C filter is connected at the input side of the 

converter. The parameters of filter, supply and load correspond to those 

reported in Tab. 5.1. 

Several tests have been performed, for different values of the cut-off 

frequency of the input voltage digital filter and for different values of the 
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Fig. 5.13- Numerical results with the contribution of the converter power losses. Behavior of 
the matrix converter for fcut-off = 300 Hz and q = 0.47, a) input line-to-line voltage, b) line 
current, c) load current. 
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voltage transfer ratio. 

Fig. 5.14 shows the behaviour of the matrix converter for fcut-off = 300 Hz 

and q = 0.6. Fig. 5.14(a) represents the input voltage, Fig. 5.14(b) the line 

current and Fig. 5.14(c) the load current, respectively. It is evident that the 

system is stable, and only a small ripple due to the switching operation can 

be seen. 

In Fig. 5.15, the voltage transfer ratio has been increased up to 0.7.  As 

can be seen, the system becomes unstable, with appreciable oscillations on 

both input voltage and line current. The frequency of these oscillations is 

about 1700 Hz. 

This results are in good agreement with the proposed theoretical 

approach. In fact, the situation of Fig. 5.14 corresponds to point 3 in Fig. 

5.10, that is inside the stability region, whereas the situation of Fig. 5.15 

corresponds to point 4, that is outside the stability region. 

It is important to make a final remark on the use of the mathematical 

model proposed in this Chapter. The system parameters should be exactly 

known in order to determine the power stability limit with sufficient 

accuracy. Even small errors on the parameters values may lead to appreciable 

mismatching between theoretical and experimental results. 
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Fig. 5.14 - Experimental tests. Behavior of the matrix converter for fcut-off = 300 Hz
and q = 0.6, a) input line-to-line voltage, b) line current, c) load current. 
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However, the proposed approach has the merit of emphasizing the 

mathematical relationships between the power stability limit and the system 

parameters, being a useful tool for the comprehension of the phenomena 

which occur in matrix converters. 

5.10. Stability Analysis Based on a Large Signal Model 

When instability phenomena are observed in MCs, as the output power is 

increased over a limit value, initially, small low frequency oscillations 

superimposed on the input voltages take place. Then, owing to the effects of 

these oscillations on calculations of the duty-cycles, the amplitude of the 

voltage oscillations increases preventing the normal operation. 

Despite of its completeness, the analysis presented in the first part of this 

chapter uses a small-signal approach [56], making difficult to interpret the 

physical phenomena related to instability. 

In the second part of this chapter a new approach is presented for the 

analysis of the MC stability, which is based on a large signal analysis carried 

out in the frequency domain. The main advantage of this approach is the 

easy comprehension of the instability origin and the possibility to relate the 

amplitude of the input voltage oscillations to the operating conditions. 
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Fig. 5.15 - Experimental tests. Behavior of the matrix converter for fcut-off = 300 Hz 
and q = 0.7, a) input line-to-line voltage, b) line current, c) load current. 
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As the proposed analysis is based on a large-signal model, it is possible to 

investigate the non-linear behaviour of MCs in the case of large input voltage 

perturbations. This allows one to explain phenomena that have not been 

clearly understood until now, such as the unstable behaviour of MCs in terms 

of limit cycles. 

 Several numerical simulations are presented showing current and voltage 

waveforms under stable and unstable operating conditions. Finally, 

experimental results carried out on a MC prototype are given for supporting 

the theoretical analysis and for proving the effect of different filtering 

methods applied to the input voltages. It is expected that these results will 

be useful in the design of matrix converter systems in the future. 

5.11. Equations of the System 

As is known, the matrix converter allows not only the control of the 

output voltages, but also of the phase angle of the input current vector. 

If the switches are assumed ideal and the converter power losses are 

neglected, the input current vector can be expressed in terms of the power po 

delivered to the load as shown in (1.4): 

As usual, the input current vector is supposed to be in phase with the 

actual input voltage vector, determining instantaneous unity input power 

factor, 

 iref v=ψ . (5.63) 

Substituting (3) in (1.4) leads to the following expression for the input 

current: 

 
*

)(

3

2

i

o
i

v

tp
i = . (5.64) 

The magnitude of the input current space vector depends on the output 

power level and the input voltage vector. 

With reference to Fig. 5.1, the equation for the input side of the MC, 

written in the Fourier domain, is reported in (5.1). 

The behaviour of the system at the input side is completely described by 

(4.1) and (5.1) once the output power is assigned. 
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A. Expression of the Input Voltage 

In order to introduce the problem of the stability of matrix converter, it is 

opportune to discuss the results of some numerical simulations. For this 

purpose, the electronic circuit analysis program MICRO-CAP 7.0 has been 

adopted. In this program it is possible to use accurate models of the power 

switches and then to improve the simulation reliability. The numerical 

simulations take into account the switching behaviour of the matrix 

converter and the delay related to the digital implementation of the control 

algorithm. The control strategy adopted for the matrix converter is the SVM 

technique, with a double-sided switching pattern [7] and a cycle period of 80 

μs. The values of the system parameters are shown in Tab. 5.2. 

The behaviour of a matrix converter in stable operating conditions is 

shown in Fig. 5.16 referring to a input-to-output voltage transfer ratio  

q = 0.4. Fig. 5.16(a) shows the steady-state waveform of the input voltage of 

the matrix converter. The steady-state waveforms of the line current and 

load current are illustrated in Figs. 5.16(b) and 5.16(c), respectively. As can 

be seen, all the waveforms are sinusoidal and characterized by a small ripple, 

due to the high switching frequency of the matrix converter. 

Then, the voltage transfer ratio is changed to q = 0.50 and the 

corresponding converter behaviour is shown in Fig. 5.17. Fig. 5.17(a) shows 

the waveform of the input voltage, whereas the waveforms of the line current 

and load current are illustrated in Figs. 5.17(b) and 5.17(c), respectively. In 

these operating conditions the input voltage and the line current waveforms 

are heavily distorted, showing large oscillations at about 2.2 kHz. This 

behaviour is due to the predicted instability phenomena that occur as the 

voltage transfer ratio is increased and the output power exceeds the stability 

limits. It is important to note that this unstable operation can be observed 

even if the switching frequency (12.5 kHz) is much higher than the resonance 

frequency of the input L-C filter (1.7 kHz). 

TABLE 5.2 - SYSTEM PARAMETERS 

Supply 

VS  = 110 V(rms), 
ωi = 2π 50 rad/s, 

RS = 0.2 Ω, LS=0.70 mH 

Filter 

Lf = 1.16 mH, Cf = 4.5 μF 
Rf = 300 Ω 

Load 

Rl= 8.3 Ω, Ll = 1.3 mH, 
ωo = 2π 100 rad/s 
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A detailed analysis of Fig. 5.17(a) and 5.17(b) reveals that the oscillations 

superimposed on the input voltage and line current fundamental components 

do not have constant amplitude. The amplitude, instead, varies periodically 

from zero to a maximum value and the frequency of its modulation is exactly 

double with respect to input source frequency. This phenomenon, widely 

known in wave physics, is usually referred as ”beating” and it is determined 

by the sum of at least two separate harmonics with close frequencies. 

The spectrum of the input voltage corresponding to Fig. 5.17(a) is shown 

in Fig. 5.18. As can be seen, apart from the fundamental component at 50 

Hz, there are two harmonics respectively at 2130 Hz and 2230 Hz. The 

switching harmonics at 12.5 kHz, outside the visible frequency range, are 

negligible. 

As a consequence, in order to define a large signal model of matrix 

converter, it is necessary to represent the input voltage vector as the sum of 

a fundamental component and two harmonics at high frequency, as follows: 

  ( ) tjtj
inv

tj
dirii

irr eeVeVVtv ωω−ω ++=)(  (5.65) 

where iV is the Fourier coefficient of the fundamental component at angular 

frequency ωi, dirV and invV  are the Fourier coefficients of the harmonics at 
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Fig. 5.16 - Simulation result - Behavior of the matrix converter for q = 0.4, a) input line-to-
neutral voltage, b) line current, c) load current. 
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angular frequencies ωi+ωr and ωi-ωr. The frequency ωr, that the numerical 

simulations demonstrate to be close to the resonance angular frequency of the 

input L-C filter, is unknown and has to be determined. 

When the system is stable, obviously dirV and invV  are zero. However, 

voltage source perturbations or random noise, acting as excitation sources, 

could force dirV and invV  to assume values different from zero for a while. If 

the system behaviour is stable, as soon as the temporary excitation 

disappears, the system returns to the original operating conditions after a 
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Fig. 5.17 - Simulation results - Behavior of the matrix converter for  q = 0.5, a) input line-to-
neutral voltage, b) line current, c) load current. 
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Fig. 5.18 - Simulation results - Spectrum of the input line-to-neutral voltage for  q = 0.5. 
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short  transient. Otherwise, if the voltage transfer ratio is greater than a limit 

value, as in the case shown in Fig. 5.17, the system present steady-state 

oscillations with finite-amplitude superimposed on the input voltages and 

currents. 

B. Expression of the Input Current 

In order to find the power stability limit, it is necessary to determine the 

effects on the input current produced by the distorted voltage (5.65). The 

input current is completely defined once the output power waveform is 

assigned. In this paragraph the output power is assumed constant, i.e. 

 ido Ptp =)(  (5.66) 

where Pid is the reference value for the power delivered to the load. Fig. 5.19 

shows the block diagram of the system with constant output power. 

In Appendix F it is shown that the input current can be approximated by 

means of the following harmonics: 

 ( ) tjtj
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irr eeIeIIsi ωω−ω ++=)(  (5.67) 
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Fig. 5.19 - Block diagram of the system with constant output power. 
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In (5.69)-(5.70)  δ  is defined as 
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There are in general two solutions for the root square of a complex 

number. Therefore, it is important to note that (5.71) must be intended as 

the solution in the right half of the complex plane (i.e. with positive real 

part). 

In (5.67) high order harmonics due to switching effects have been ignored, 

because the input L-C filter acts as a low pass filter. 

C. Determination of the Oscillation Magnitudes 

In order to determine the magnitudes of the current and voltage 

oscillations, (5.1) can be written for the specific cases ω = ωi, ω = ωi + ωr, ω 

= ωi - ωr, as emphasized in (5.65) and (5.67), leading to  the following system 

of equations: 

 iiiieq VIZv +ω=ω )()(  (5.72) 

 dirdirri VIZ +ω+ω= )(0  (5.73) 

 invinvri VIZ +ω−ω= )(0 . (5.74) 

The system of equations (5.72)-(5.73) together with (5.68)-(5.70) 

completely describe the behaviour of the system composed of the matrix 

converter, the grid and the input L-C filter, either for stable or unstable 

operating conditions. 

5.12. Stability Analysis 

The stability analysis involves the determination of solutions of the system 

of equations (5.72)-(5.74). To simplify the problem, the magnitude of iV  can 

be considered known and close to that of the source voltage. In such a way, 

only (5.73) and (5.74) are necessary to determine dirV , invV  and ωr.  

Substituting (5.69)-(5.70) in (5.73)-(5.74) and solving for dirV and invV  



 
140 

leads to the following explicit form for the equations of the system: 
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As can be seen, (5.75)-(5.76) always present the trivial solution 

 0== invdir VV  (5.77) 

that corresponds to stable, steady-state operating conditions. 

Non-trivial solutions for dirV and invV  can be found solving the following 

system of equations, which can be obtained dividing (5.75)-(5.76) by dirV and 

invV , respectively: 
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A. Determination of the Angular Frequency ωr 

To determine ωr, (5.78)  and (5.79) must be combined multiplying term 

by term (5.78) and the complex conjugate of (5.79), leading to 
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where 

 )()()( *
ririr ZZ ω−ωω+ω=ωΩ . (5.81) 

In (5.81) only the value in the right half of the complex plane has to be 

considered. 

A necessary condition for (5.80) to be verified is the existence of an 

angular frequency ωr0 satisfying the following constrain equation: 
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 0)(arg 0
2 =ωΩ r  (5.82) 

Equation (5.82) can be written also in the equivalent following form: 

 0)(arg 0 =ωΩ r  (5.83) 

According to (5.83), for ωr = ωr0 the function )( rωΩ  is a real number, 

having the dimension of an impedance. It is then useful to introduce a new 

equivalent resistance Rres, defined as 

 )( 0rresR ωΩ= . (5.84) 

B. Determination of the Amplitude of the Harmonics 

Dividing term by term (5.78) and (5.79) leads to the following relationship 

between the magnitude of dirV and invV  :  
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It is worth noting that (5.85) is not sufficient to find dirV and invV  in 

explicit form. However, a simple method based on a graphical approach can 

be used to determine dirV and invV . For this method it is useful to introduce 

the new variable p , normalised product of the harmonic amplitudes, defined 

as 
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The magnitudes of dirV and invV  can be expressed in terms of p  by solving 

(5.85) and (5.86) as follows 
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As a conclusion, the knowledge of p and ωr0 is sufficient to determine the 

magnitude of both voltage harmonics. 

In order to study the behaviour of p, it is convenient to rewrite (5.80) in 

the following form: 

 1)( 1 =−pAG  (5.89) 

where 
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It is worth noting that (5.89) can be interpreted as the characteristic 

equation of the closed-loop system represented by the block diagram shown 

in Fig. 5.20. G represents the forward gain, A the feedback non-linear 

attenuation and p  has the meaning of a state variable. 

It is demonstrated in Appendix G that the solutions of (5.78)-(5.79) are 

represented by the values of p  defined by following parametric equation: 
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where λ is any positive real number and β is defined by 

 { } { })(arg)(arg 00 riri ZZ ω−ω=ω+ω=β . (5.93) 
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Fig. 5.20 - Block diagram of  closed loop system equivalent to (5.89). 
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For any value of λ it is possible to calculate p  and the corresponding 

value of )(pA . These couples of values (p, )(pA ) can be plotted on a graph 

with the values of p on the real axis and the values of )(pA  on the imaginary 

axis. In this way )(pA  can be plotted as a function of p. 

The curves of )(pA  show only two types of behaviour, corresponding  to 

cos β > 0 and cos β <0. 

Fig. 5.21(a) shows the curve of )(pA  for cos β > 0. As can be seen, the 

diagram starts from the point A=1 at p = 0. According to (5.89) the 

determination of p can be performed by intersecting )(pA  with the straight 

line corresponding to the gain G, proportional to the power delivered to the 

load. If G is lower than 1, an intersection is possible (state p0), but this 

solution is not stable. In fact, starting from the state p0, a small decrease of p 

determines an increase of the attenuation, thus causing a further decrease of 

p toward the stable state p = 0. On the other side, a small increase of p 

determines a decrease of the attenuation, thus causing a further increment of 

p. 

As a consequence, if G is lower than 1, for any disturbance of small 

amplitude p< p0, the attenuation function A is greater than gain G and the 

disturbance tends to vanish. If G is greater than 1, the gain G is always 

greater than the attenuation function A and any small disturbance is 

indefinitely amplified. 

Fig. 5.21(b) shows the curves of )(pA  corresponding to the case cos β < 0. 
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Fig. 5.21 - Curves of the attenuation A as a function of the variable p. 
a) cos β > 0, b) cos β < 0. 
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In this case, no intersection between the straight line corresponding to the 

gain G and the curve A is possible if G < 1.  Otherwise, if G > 1 the 

intersection corresponding to the state p1 can be determined. It is important 

to note that this solution is stable, but the converter does not work correctly, 

as a value of p different from zero means that dirV and invV  have finite 

magnitude and the input voltage is distorted. 

As a conclusion, in both cases the stability power limit corresponds to the 

condition G=1 and its value is 
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From a physical point of view, it is possible to describe the behaviour of 

the system in this way: a disturbance of the input voltage leads to a 

corresponding disturbance of the input current, that is proportional to the 

output power. The input L-C resonant filter amplifies the current disturbance 

and if the output power is sufficiently high, the system can reach a new 

steady state condition, but with distorted voltages. 

5.13. Delay of the Digital Control 

In Paragraph 5.17 it has been shown that the digital controller introduces 

a delay, that leads to two main consequences. The first one is that the 

controller does not keep the input current in phase with the input voltage. 

The second one is that the output power cannot be considered completely 

constant and equal to the desired value. 

A. Delay Introduced on the Input Current Vector 

As known from the control theory, the effects determined by a sample & 

hold process and by the delay of the digital controller can be approximately 

studied inserting the following transfer function in the block diagram of the 

system. 
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In (5.95) the term inside the brackets is related to the sampling and 
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reconstruction processes, whereas the exponential term outside the brackets is 

due to the delay introduced by the digital controller. The block diagram of 

the system including the delay is shown in Fig. 5.22. 

Comparing the block diagram of Fig. 5.19 with that of Fig. 5.22 it can be 

noted that the power limit (5.94), found in the previous paragraph, is still 

valid provided that )(ωZ  is replaced with the following equivalent 

impedance: 

 )()()( ωω=ω DZZeq . (5.96) 

The presence of the delay modifies the impedance mainly changing its 

argument. It can be verified that in a system with delays the angular 

frequency ωr0 is different from that of the same system without delays and 

generally corresponds to lower values of Rres. This causes an effective 

improvement of the stability power limit. 

B. Variation of the Output Power due to Digital Control Delay 

The output voltage can be expressed in terms of the input voltage by 

means of (5.3), where the duty-cycle space vector dm  and im  are given by 
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In (5.97) and (5.98) refoV ,  is the reference output voltage vector with 
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Fig. 5.22 - Block diagram of the system including the delay introduced by the digital 
controller. 
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angular frequency ωo and )(tvim  is the input voltage measured by the digital 

controller and used to calculate the duty-cycles.  

Substituting (5.97) and (5.98) in (5.3) leads to the following expression for 

the output voltage: 
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If the effects of the delay are negligible, the measured voltage coincides 

with the actual voltage, namely 

 )()( tvtv iim =  (5.100) 

and (5.41) becomes: 

 tj
refoo

oeVtv ω= ,)( . (5.101) 

Due to the delay, the measured voltage imv  is slightly different from the 

actual voltage iv . The explicit expression of the measured voltage can be 

found multiplying (5.65) by the transfer function )(ωD . In the time domain 

one finds 
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Due to the inductive load, the output current is not sensitive to the 

output voltage harmonics at high frequency and can be expressed as follows: 
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where )(ωY  is the admittance of the load. 

Therefore, the output power can be expressed as 
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where Pid is the output power corresponding to the reference voltage, defined 

as 
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The analysis presented in Paragraphs 5.23 and 5.24 should be now 

repeated assuming for po the expression (5.104) instead of (5.66) and taking 

(5.102) into account. For doing this, the mathematical developments are not 

simple and are not useful for the comprehension of the system behaviour. 

However, with the aim to understand the changes that (5.104) determines 

in the power limit, it is opportune to linearize the system equations assuming 

that dirV and invV  have small magnitudes. 

Instead of the non-linear system of equations (5.75)-(5.76), the analysis 

leads to the following system of equations, written in matrix form: 
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where 
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The coefficients of the matrix M are defined as follows 
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and Rres is now re-defined in the general form 
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This equation is formally equivalent to (5.94). The system of equations 

(5.107) has non-trivial solutions only if the determinant of M is zero, leading 

to the following constraint equation: 

 0)()(2 =ω+ω+ rresrres cRbR  (5.113) 

where 
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The equation (5.113) is of the second order and has two solutions Rres = 

1Ω  and Rres = 2Ω , namely 
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As Rres in (5.112) is a real positive number, a necessary condition for 

(5.116) to be acceptable is the existence of an angular frequency ωr0 satisfying 

the following constrain equation: 

 0)(arg 02,1 =ωΩ r . (5.117) 

As can be noted, (5.117) is the general form of (5.83). After Rres is known, 

the power limit can be determined solving (5.54) for Plim. 

5.14. Improvement of the Stability Power Limit 

The analysis described in the previous paragraphs gives important 

information for the improvement of the stability power limit. Equation 

(5.112) shows that the stability power limit is affected by the value of the 

resistance Rres that depends on the grid and input filter impedance and on 

the digital system delays. 

Lower values of Rres, corresponding to higher power limits, can be obtained 

reducing the peak of resonance of )(ωZ , i.e. adding damping resistors. The 
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use of damping resistance in parallel with the filter inductance is described in 

[18] and [52]. A suitable value of this resistance allows the high frequency 

current harmonics to flow through the source leading to lower oscillations of 

the capacitor voltage. The damping effect and then the stability limit 

increases while reducing the value of the resistance. Unfortunately, this 

solution is effective for improving the MC stability but it is detrimental for 

the EMI requirements. Therefore, a compromise should be found between 

stability and input current quality. 

Another important consideration for the improvement of the system 

stability is the fact that the delay introduced by the digital controller affects 

the angular frequency ωr. The same result can be achieved if the calculation 

of the duty cycles is carried out by filtering the matrix converter input 

voltages [24]-[25].  

5.15. Experimental Results 

In order to verify the proposed theoretical approach for the MC stability, 

the same prototype presented in Paragraph 5.9 has been used. The matrix 

converter is realized using the FM35E12KR3 IGBT module produced by 

EUPEC. The control algorithm is implemented on the platform C6711, a 

floating-point digital signal processor provided by Texas Instruments. The 

switching frequency is 12.5 kHz, corresponding to a cycle period of 80 μs. The 

converter is fed by a voltage transformer with variable voltage transfer ratio 

to adjust the input voltage to a value of about 110 V rms. A L-C filter is 

connected at the input side of the converter. The parameters of filter, supply 

and load correspond to those reported in Tab. 5.2. 

In order to perform experimental tests on the stability of a matrix 

converter feeding a constant passive load, it is more appropriate to use the 

output-to-input voltage transfer ratio q instead of Pid.  

Combining (5.94), (5.105) and solving for q leads to the following value of 

the limit voltage transfer ratio: 

  
{ })(Re

1

ores

lim

YR
q

ω
= . (5.118) 

Firstly, to validate the stability analysis, some experimental tests have 
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been performed to find the limit voltage transfer ratio. 

Fig. 5.23 shows the behaviour of the matrix converter for q = 0.39. Fig. 

5.23(a) represents the input voltage, Fig. 5.23(b) the line current and Fig. 

5.23(c) the load current, respectively. It is evident that the system is stable, 

and only a small ripple due to the switching operation can be seen. 

In Figs. 5.24 and 5.25, the voltage transfer ratio has been increased to 0.46 

and 0.49 respectively. As can be seen, the system becomes unstable, with 

appreciable oscillations on both input voltage and line current.  

The spectral analysis of the input voltage is given in Fig. 5.26 and shows 

that there are two main harmonics with frequencies of 2150 Hz e 2250 Hz, 

respectively. This result is in good agreement with the proposed theoretical 

approach, as the two frequencies differ for the double of the input frequency 

(2π50 Hz = 100 Hz). In addition, the amplitude of the oscillations tends to 

increase with the output power as predicted by the stability analysis for the 

case with cos β < 0. 

In Tab. 5.3 the limit voltage transfer ratio calculated by means of the 

proposed theory is compared with the experimental limit value, namely q ≅ 

0.45. 

The basic theory, that neglects both the effects caused by the delay, 
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Fig. 5.23 - Experimental tests - Behavior of the matrix converter for  q = 0.39, a) input line-
to-line voltage, b) line current, c) load current. 
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predicts the possibility that the system becomes unstable, but with increasing 

voltage and current oscillations. 

This is different from the behaviour experimentally observed, that 

presents finite-amplitude stable oscillations. The limit voltage transfer ratio 

calculated is 0.167, about half of the experimental value. This difference is 

probably due to the lower value of ωr compared to that obtained in the 
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Fig. 5.24 - Experimental tests - Behavior of the matrix converter for q = 0.46, a) input line-to-
line voltage, b) line current, c) load current. 
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Fig. 5.25 - Experimental tests - Behavior of the matrix converter for q = 0.49, a) input line-to-
line voltage, b) line current, c) load current. 



 
152 

experimental test. 

Better results can be found if the delay introduced by the digital 

controller is taken into account. In this case, (5.83) presents several solutions. 

Obviously, the stability power limit has to be evaluated with reference to the 

worst case, corresponding to the lowest value of qlim.  

If the output power is assumed constant, qlim results 0.230. However, the 

second solution (i.e. qlim = 0.443, ωr/2π = 2180 Hz) presents a behaviour that 

is very close to that of the actual system. This means that it is essential to 

take the delay into account to describe the real system. 
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Fig. 5.26 - Experimental tests. Spectrum of the input line-to-neutral voltage
during unstable operation of the converter. 

TABLE 5.3 - COMPARISON BETWEEN THEORETICAL RESULT AND EXPERIMENTAL TESTS 

Mathematical model 
π

ω
2

r  cos β Rres qlim Solution type 

Basic theory 
(no delays and Po=Pid) 

1739 0.53 299 0.167 Unstable oscillations 

Model with delays, but output 
power is assumed constant. 

1630 
2180 

0.98 
-0.99 

158,9 
42,67 

0.230 
0.443 

Unstable oscillations 
Stable oscillations 

Model with Po=Po(t) 1616 0.39 133,0 0.251 Unstable oscillations 

Complete model, with delays 
and Po=P(t) 

1007 
2182 
3142 

0.75 
-0.99 
-0.69 

17.29 
42.17 
13,18 

0.696 
0.446 
0.797 

Unstable oscillations 
Stable oscillations 
Stable oscillations 

Experimental tests 2200 - - 0.44 Stable oscillations 
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If the output power is not assumed constant and the effect of the delay on 

the input current displacement is neglected, then the limit voltage ratio 

increases to 0.251. 

Finally, if both the effects caused by the delays of the digital controller are 

considered, the theory predicts the value 0.446 for the limit voltage transfer 

ratio that is just a little lower than the experimental value. In addition, the 

frequency and the behaviour of the oscillations are in good agreement with 

the experimental results. The small mismatching between theoretical 

predictions and experimental values may be ascribed to several factors, such 

as converter power losses and parameter uncertainties. 

It is worth noting that this analysis does not consider the effect of the 

converter losses for the sake of brevity. The power limit that can be 

calculated by means of the equations presented in the previous paragraph is 

generally lower than that achievable in experimental tests. This is because 

the iron losses in the inductances or the power losses of the converter may 

increase the damping effect of the real system, thus preventing unstable 

oscillations to arise. The effect of the losses is more or less evident depending 

on the operating conditions and the system parameters. In particular, the 

damping effect could be very evident if the theoretical stability power limit 

would be small and comparable with the converter losses. 

Another case in which the damping effect of the losses becomes evident is 

when the digital filter is used, and this is because the consequent power limit 

increase leads to higher losses as shown in [25]. 

Several tests have been performed, for different values of the time 

constant τ of the input voltage digital filter in order to evaluate the limit 

voltage transfer ratio. The discrete-time version of the digital filter is 

presented in Appendix D. The experimental results are reported in Fig. 5.27. 

The dashed area between the two curves represents an uncertainty region, 

where it is not possible to clearly state if the system is stable or unstable.  

In fact, in experimental tests the unstable behaviour of the converter can 

be established only in case of input voltage and current oscillations higher 

than a threshold value. If the output power is not sufficiently greater than 

the stability limit, these oscillations are very small and can be confused with 

the natural disturbances due to the interaction between the switched current 

and the input L-C filter.  
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The frequency of the oscillations was about 1850 Hz at τ = 0.9 ms and 

moves toward higher values as τ decreases. 

Additional tests were carried out considering digital filters of the 2nd and 

3rd order. These filters were implemented using filters of first order in 

cascade. Fig. 5.28 shows in percent the increase of the limit voltage transfer 

ratio with respect to the case of first order filtering. 

5.16. Conclusion 

In the first part of this chapter a complete analysis of the stability of 

matrix converters has been carried out using a small signal analysis around a 

steady-state operating point. A complex mathematical model was necessary 
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Fig. 5.28 - Experimental tests - Percentage of increment of the limit voltage transfer ratio for 
filters of 2nd and 3rd order. 
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Fig. 5.27 - Experimental tests. Limit voltage transfer ratio as a function of the input digital
filter τ. 
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to include all the system parameters and to emphasize their effect on the 

matrix converter stability. Particular attention has been paid to take the 

time delay introduced by digital controllers and the matrix converter power 

losses into account.  

In the second part of this chapter, the analysis of the stability of matrix 

converters has been carried out using a large signal analysis based on the 

physical observation that the instability phenomena can be described as 

beatings. 

The proposed analytical methods can be usefully adopted for the 

estimation of the maximum output power and for choosing among different 

input filter topologies. Furthermore they help understanding the operating 

principle of some common methods to increase the system stability, such as 

filtering the input voltages. 

Finally, several experimental tests are reported to validate the theoretical 

approach. 
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6.Chapter 6 
Quality of the 
Input Current 
Abstract 

This chapter deals with the quality of the input currents in matrix 

converters under input and output unbalanced conditions. Two control 

strategies of the input current displacement angle are presented and 

compared in order to emphasise their influence on the input current 

harmonic content. The first one is based on keeping the input current vector 

in phase with the input voltage vector. In the second one the input current 

displacement angle is dynamically modulated as function of positive and 

negative sequence components of the input voltages. In both cases the 

harmonic content and the three-phase RMS value of the input current have 

been evaluated analytically. In the second part of the chapter a general 

approach for the determination of the line current harmonic content in 

matrix converters is presented. The input disturbances, such as voltage 

unbalance and voltage harmonics, are considered as perturbations of the 

fundamental component, and a small-signal analysis is used to determine the 

spectrum of the line current. The proposed analytical approach has a general 

validity, because it takes the effects of the line and filter impedance into 

account, and can be usefully employed to evaluate the line current quality in 
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the point of common coupling for different filter topologies and supply 

distortions. Experimental results are given to confirm the analytical solution.  

6.1. Introduction 

As the matrix converter has no DC-link energy storage, any disturbance in 

the input voltages will be reflected in the output voltages. In particular, 

considering unbalanced input voltages, most of the modulation strategies 

introduce low order harmonics in the output voltages. The effects of 

unbalanced supply voltages have been already investigated in traditional 

converters [57]-[59], and recently some attention has been paid also to matrix 

converter [60]-[62]. 

In [61] a SVM algorithm for matrix converters has been presented which 

allows balanced output voltages to be generated, even under unbalanced 

supply conditions. As known, in the case of unbalanced supply voltages, the 

negative sequence components of the voltage system causes variation in 

magnitude and angular velocity of the input voltage vector. As a 

consequence, a simple synchronisation with the input voltages, as under 

balanced conditions, is no longer applicable and the input voltages have to be 

measured at each sampling instant. Owing to the angular velocity variation 

of the input voltage vector some problems arise in defining the input current 

displacement angle. In [61] the input current vector has been modulated in 

order to be, at any instant, in phase with the input voltage vector. In [62] the 

matrix converter analysis has been developed in order to take account of both 

input and output unbalance. 

In the first part of this chapter an input current modulation strategy is 

proposed in order to reduce the harmonic content of the input current under 

unbalanced conditions and is compared to that described in [61]. The 

proposed control strategy is based on a dynamic modulation of the 

instantaneous displacement angle between input voltage and current vectors. 

The modulation law is determined as function of the magnitude and phase 

angle of positive and negative sequence components of the input voltages. 

The corresponding harmonic content, as well as the three-phase RMS value 

of the input current, has been determined analytically in the general case of 

input and output voltage unbalance. 

A numerical simulation of the matrix converter has been carried out 
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assuming ideal switching devices. Some numerical results are presented in 

order to show the influence of input and output unbalance on the input 

current RMS value and input current harmonic content. 

6.2. Input And Output Unbalance Representation 

The input current of the matrix converter can be expressed as a function 

of the output power and the input voltage, as follows: 

 
ψ+ψ

ψ
= ∗∗  e e

 p
 i

ii

o
i

3

4
. (6.1) 

Equation (6.1) is a general expression of the input current vector which 

can be further developed for any particular case. In the following the analysis 

will be focused on the development of (6.1) under input and output 

unbalanced conditions. In particular, for unbalanced supply voltages and 

sinusoidal conditions with period Ti=2π/ωi , the input line-to-neutral voltage 

vector can be written as 

  *
inip

t  j 
in

t  j
ipi eee EeEe ii +=+= ω−∗ω   (6.2) 

where ipE  and inE  are the time phasors of positive and negative symmetrical 

components of the line-to-neutral input voltages. It should be noted that, 

when a voltage unbalance is present, the negative sequence component causes 

the input voltage vector trajectory to change from circular to elliptical shape. 

This causes variations in input voltage vector magnitude and angular 

velocity. 

By substituting (6.2) in (6.1) yields 
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. (6.3) 

In order to make an analysis concerning balanced and unbalanced output 

conditions the effects due to the switching harmonics are neglected. 

Considering balanced output conditions the output power assumes a constant 

value. On the contrary, under unbalanced output conditions the output 

power can be in general expressed as the sum of a constant and an 
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alternating component. In this case the analysis requires the output 

quantities also to be expressed in terms of symmetrical components, as 

follows: 

 t j 
on

t  j
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oo eEeEe ω−∗ω +=  (6.4) 

 t j 
on

t  j
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oo eIeIi ω−∗ω += . (6.5) 

Substituting (6.4) and (6.5) in (6.3) leads to the following expression for 

the input current vector: 
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where the constants C1 and 2C  are given by 
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It can be shown that the constants C1 and 2C  are related to the mean 

value Pom and to the alternating component Poa of the output power 

respectively, by the following relationships 

 omP   C
3

4
1 =  , oaP C

3

2
2 = . (6.8) 

Equations (6.3) and (6.6) show that the input current vector is influenced 

by the choice of the space vector ψ  along which the input current is 

modulated. The choice of this space vector is important because it determines 

the input current harmonic content. The difference between the two 

modulation strategies described below is concerned with the choice of the 

space vector ψ . 

6.3. Constant Displacement Angle Between Input Voltage 
And Current Vectors (Method 1) 

As explained above, with unbalanced supply voltage, the input voltage 

vector has variable angular velocity. Then, a possible modulation strategy 
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can be adopted in order to keep, at any instant, a constant displacement 

angle between input voltage and current vectors. In this case the input 

current vector direction can be defined by 

 ( ) ( ) iiiii  j 
inip

 j t  j 
in

t  j
ip

 j 
i eeee eEe E=e e ϕ−ϕ−ω−∗ωϕ− +=+=ψ *  (6.9) 

Fig. 6.1 shows the corresponding space vector representation in the d-q 

plane. 

Introducing (6.9) in (6.6), after some manipulations leads to 
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Equation (6.10) clearly emphasises the influence of the input current 

displacement angle iϕ . Of course, assuming iϕ =0 leads to the lowest value 

for the input current vector magnitude. 

In order to evaluate the input current quality it is necessary to determine 

the harmonic content of the input current vector. For this purpose it is 

opportune to express by complex Fourier series the following term of (6.10) 
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Rearranging (6.11) and equating terms with the same angular frequency it 

is possible to show that all even harmonic symmetrical components of the 

input current are identically null. The odd harmonic symmetrical components 
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Fig. 6.1 - Space vector representation of Method 1. 
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for inip E  E >  are as follows: 
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Taking the results obtained into account, (6.10) gives the input current 

vector in terms of complex Fourier series which can be expressed as 
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 (6.14) 

As (6.14) shows, the harmonic content of ii  is represented by three series 

of harmonics which decay by the input unbalance degree u, which is defined 

as 

 ipin EEu = . (6.15) 

The displacement angle iϕ  has the same influence on all the current 

harmonic components. The magnitude of the harmonic components are 

related to the output power by means of the constants C1 and 2C . In 

particular the first series depends on the average value of the output power, 

while the second and third series depend on the amplitude of the output 

power alternating component. It should be noted that the third series may 

introduce sub-harmonic components depending on the difference between 

input and output frequency. 

The harmonic content of the three line currents can be derived from the 

harmonic content of the input current vector. 
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A. Balanced Input - Unbalanced Output Conditions 

Analysing (6.14) it is possible to verify that with balanced supply voltages 

(u=0), only the first harmonic component of each series will be present and 

the input current equation reduces to 
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B. Unbalanced Input - Balanced Output Conditions 

Under balanced output conditions the output power is constant and equals 

the input power. Considering unbalanced supply voltages, the input current 

cannot be balanced and sinusoidal. This can be verified rewriting (6.14) 

under such operating conditions ( 2C =0), leading to 
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As it is possible to see, only the first series of (6.28) containing positive 

sequence harmonic components is present in this case. The input line 

currents, described by (6.31) are characterised by different waveforms but 

having equal RMS value. 

C. Calculation of the Three-Phase RMS Value of the Input Current 

Using the analytical relationships obtained it is possible to evaluate the 

three-phase RMS value of the input line currents which is defined as [63] 

 ( )  dt  i  i  i  
T

  I
T
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2221
. (6.18) 

The three-phase RMS value so defined is related to the Joule losses. 

Equation (6.18) can be expressed as function of positive and negative 

sequence components leading to  
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Equation (6.19) is a general expression and can be further developed 

taking the results of (6.14) into account. If all the harmonic components in 

(6.14) have different harmonic order, (6.19) becomes 
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The previous equation shows how the three-phase RMS value is affected 

by the input current displacement angle, the input unbalance degree and the 

output unbalance defined by the ratio between the alternating component 

and the mean value of the output power. From (6.20) it is possible to derive 

the three-phase RMS value of the input current vector for unity input power 

factor (ϕi=0), balanced supply voltages (u=0) and balanced output voltages 

(Poa=0). 

Equation (6.20) shows that operating the matrix converter with ϕi=0 

leads to the lowest three-phase RMS value of the input current vector. It 

could be shown that this result is valid also considering any modulation 

strategy of ϕi. 

6.4. Variable Displacement Angle Between Input Voltage 
And Current Vectors (Method 2) 

As explained above, the harmonic content of the input current is strongly 

influenced by the choice of the input current reference angle. Analysing (6.20) 

we can note that a reduction of the harmonic content could be achieved 

applying a new modulation strategy of the input current displacement angle 

defined by the following expression 

 *
inip

t  j 
in

t  j
ip eee E  e E  ii −=−=ψ ω−∗ω  (6.21) 

The space vector representation of this input current modulation is given 

in Fig. 6.2. As it is possible to see, due to the opposite angular velocity of ipe  

and *
ine , a dynamic modulation of the input current displacement angle is 

obtained. 

The implementation of the modulation law expressed by (6.21) is more 

complex with respect to that given by (6.9) being related to the positive and 
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negative sequence components of the input voltage. However, it can be shown 

that the modulation law expressed by (6.21) allows the elimination of the 

time dependent terms in the denominator of (6.6) which determine the 

presence of harmonic series in the input current. For this purpose, the 

analytical expression of the input current vector is obtained substituting 

(6.21) in (6.6). After some manipulations, it is possible to obtain the 

following equation 

 ( ) ( ) e E  e E
 EEEE

eCe CC
i t  j 

in
t  j

ip

ininipip

t   j t   j

i
ii

oo
ω−∗ω

ω−∗ω

−
−

++
=

**

2
2

2
21

2
 (6.22) 

By further developments of (6.22), the final expression for the input 

current becomes 
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Equation (6.23) shows that the input current harmonic content is reduced to 

a positive and a negative sequence fundamental component, plus two positive 

and two negative sequence harmonic components. Comparing Method 2 to 

Method 1 we can note that each series of (6.14) is substituted by a couple of 

terms in (6.23). In this way the high order harmonic components in the input 

current spectrum are eliminated. 
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Fig. 6.2 - Space vector representation of Method 2. 
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A. Balanced Input - Unbalanced Output Conditions 

In this case the equation of the input current vector can be obtained 

rewriting (6.23) with Ein=0, leading to 

 [ ( ) ( ) ]t  jt   jtj

ip

i
ioioi e C eCeC 

E
i ω+ω−∗ω+ωω ++= 2

2
2

21*2

1
 (6.24) 

By comparing (6.24) to (6.16) it appears that Method 2 is equivalent to 

Method 1 when operated with ϕi=0. 

B. Unbalanced Input - Balanced Output Conditions 

The use of Method 2 is particularly effective in the usual case of balanced 

output conditions ( 2C =0). In fact in this case (6.23) reduces to 

 [ ]t  j 
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⎛

=
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2
 (6.25) 

As it is possible to see the current spectrum contains only the positive and 

the negative sequence fundamental component, so determining unbalanced 

but sinusoidal input line currents. 

By comparing (6.25) to (6.17) the improvement achieved in the harmonic 

content of the input current using Method 2 is particularly evident. 

C. Calculation of Input Current RMS Value 

If all the harmonic components in (6.23) have different harmonic order, 

the three-phase RMS value of the input current becomes 
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=  (6.26) 

Equation (6.26) shows how the three-phase RMS value is affected by the 

input unbalance degree and the output unbalance. 

6.5. Numerical Simulations 

Two different simulation models for the matrix converter have been used 

in the analysis. The first is based on the power balance equation, neglecting 



 
166 

the losses and switching effects of the converter. 

In order to apply this model it is necessary to calculate the input voltage 

vector ie  for a given set of input voltages. Then, the input current vector ii  

can be determined by (6.1) for a given output power Po once the reference 

displacement angle of the input current is known. Finally the input line 

currents are readily evaluated and the harmonic content of ii  can be 

determined by numerical integration. The three-phase RMS value is 

calculated by (6.19). 

For the numerical examples the following supply unbalance has been 

considered 

ipE = 300 V / 0°     ,     inE =30 V / 0° 

The input frequency is fi = 50 Hz and the output frequency is fo = 80 Hz. 

6.6. Unbalanced Output Conditions 

In the case of unbalanced output conditions the output voltages and 

currents have been assumed as follows 

opE = 300/√3 V / -30°  onE = 0 

opI = 208 A  / -67°  onI = 41.5 A / -67° 

Fig. 6.3 shows the harmonic content of the input current vector when 

Method 1 is applied with unity input power factor (ϕi=0). As predicted by 

(6.14), three series of harmonics have been obtained. In Fig. 6.3, the three 

series are clearly denoted by different symbols. The first harmonic 

components of the series have frequency of -110 Hz, 50 Hz and 210 Hz. Note 

that negative values of frequency represent negative sequence harmonic 

components. 

Fig. 6.4 shows the harmonic content of the input current vector when 

Method 2 is employed. Analysing Figs. 6.3 and 6.4 it appears that the new 

modulation strategy performs in order to transform each series of harmonics 

of Method 1, into a positive and a negative sequence component, having the 

same frequency of the first harmonics. The amplitudes and the frequencies of 

these harmonic components are in full agreement with that predicted by 
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(6.23). 

The three-phase RMS value of the input currents is 120 A for Method 1 

and 121 A for Method 2. The same values have been obtained using (6.20) 

and (6.26) respectively. It can be noted that the reduction of the input 

current harmonic content has been obtained without appreciable increase of 

the input current three-phase RMS value. 

6.7. Balanced Output Conditions 

In order to emphasise the effectiveness of  Method 2 an example with 

balanced output conditions has been investigated. The output voltages and 

currents have been assumed as follows 

 

Fig. 6.3 - Input current spectrum, Method 1. 

 

Fig. 6.4 - Input current spectrum, Method 2. 
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opE = 300/√3 V / -30°  onE = 0 

opI = 208 A  / -67°  onI =0 

Fig. 6.5 represents the input current spectrum using Method 1. In this 

figure it is possible to note the presence of a series of positive sequence 

harmonic components, as predicted by (6.17). 

Fig. 6.6 represents the harmonic content obtained using Method 2. In this 

case the new modulation strategy determines sinusoidal input currents 

characterised by only a positive and a negative fundamental component, as it 

appears in (6.25). The three-phase RMS value of the input currents is 118 A 

for Method 1 and 119 A for Method 2. 

Taking into account that Method 1 gives the lowest three-phase RMS 

 

Fig. 6.5- Input current spectrum, Method 1. 

 

Fig. 6.6 - Input current spectrum, Method 2. 
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value for the input current, these results emphasise that, for acceptable 

unbalance degrees (u<0.1), Method 2 allows the input current harmonic 

elimination without appreciable increase of the three-phase RMS value. 

The simulation model above described does not take into account the 

presence of the high frequency harmonic components due to the commutation 

processes. In order to take these phenomena into account a simulation model 

of the matrix converter has been implemented on the basis of the SVM 

algorithm. The matrix converter is constituted by ideal switches. The input 

terminals are connected to an ideal voltage source and the output terminal to 

a given R-L load.  

In order to clearly show the switching effects, all the simulations have 

been performed assuming a switching frequency of 2 kHz. Figs. 6.7, 6.8 and 

6.9 show the results obtained using Method 1, with unity input power factor. 

For display purposes the switched waveform of the input current shown in 

Fig. 6.7 is smoothed averaging the instantaneous values over each switching 

cycle period. Fig. 6.8 shows the waveforms of the three averaged input line 

 

Fig. 6.7.- Input line-to-neutral voltage and line current 

 

Fig. 6.8 - Averaged input line currents. 
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currents. It is possible to verify that the input line currents have the same 

RMS value even if they show different waveforms. Fig. 6.9 shows the 

harmonic content of the switched input currents. As it is possible to see, the 

higher amplitude harmonics correspond to those given in Fig. 6.5. The lower 

amplitude harmonics shown in Fig. 6.5 are, in Fig. 6.9, obscured by the 

switching harmonics. 
Figs. 6.10, 6.11 and 6.12 show the numerical results obtained using 

Method 2, for the same operating conditions used for Method 1. Comparing 

Figs. 6.8 and 6.11 to Figs. 6.9 and 6.12 respectively it is evident the effect 

produced by the new modulation strategy which determines sinusoidal input 

currents, as predicted by (6.25). The presence of the negative sequence 

fundamental components determines different amplitude for the three input 

line currents. Fig. 6.12 shows the harmonic content of the switched input 

 
Fig. 6.9 - Input current spectrum. 

 

 
Fig. 6.10 - Input line-to-neutral voltage and line current. 
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currents. In this case also the higher amplitude harmonics match against the 

corresponding harmonics given in Fig. 6.6. 

6.8. Preliminary Conclusions 

Two input current modulation strategies for matrix converters have been 

analysed. The first one (Method 1) operates in order to keep the input 

current vector in phase with the input voltage vector. This strategy can be 

easily implemented requiring only the determination of the phase angle of the 

input voltage vector. Furthermore, it determines input currents with the 

lowest three-phase RMS value. 

The second strategy (Method 2) is some more complicated to be 

implemented but it has the advantage concerning the possibility to reduce or 

eliminate the harmonic content of the input current. It has been shown that 

the improvement of the input current quality can be achieved without 

appreciable increase of the three-phase RMS value given by Method 1. 

 

Fig. 6.11 - Averaged input line currents. 

 

Fig. 6.12 - Input current spectrum. 
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The two input current modulation strategies have been implemented using 

a SVM algorithm which ensures sinusoidal and balanced output voltages even 

under unbalanced input voltages. 

For both strategies the input current harmonic spectrum and the three-

phase RMS value have been determined analytically showing the influence of 

input and output unbalance conditions. 

The validity of the theoretical analysis and the performance of the 

modulation algorithm have been confirmed by numerical simulations. 

6.9. Introduction  to the General Analysis of the Input 
Current 

In the previous paragraphs two modulation strategies of the input current 

reference angle have been proposed in order to reduce the harmonic content 

of the input current under unbalanced supply voltages. 

However, the supply voltages not only are usually unbalanced to some 

extent, but also show a typical distortion due to the presence of nonlinear 

loads connected to the grid. Hence, it is of practical interest to investigate 

the performance of MCs in these operating conditions as well [64], [65].  

A general analysis on the input current for unbalanced and distorted input 

voltages was presented in [22]. 

Recently, industry has paid particular attention to this problem, that is 

important for EM compatibility and line current quality. In [66] the attention 

is focused on the input and output filters to meet the restrictive CISPR 11 

standards, whereas an active damping has been proposed in [67] to reduce the 

line harmonics. 

In the second part of this chapter, a general approach is developed in 

order to predict the spectrum of the line current of MCs controlled with the 

Space-Vector Modulation (SVM) technique in the case of unbalanced and 

non-sinusoidal supply voltages. The input current harmonic content is 

obtained with a small signal analysis of the system equations. In this way, it 

is possible to investigate the converter performance under any condition 

determined by input disturbances. The main advantage of the proposed 

approach is the possibility to consider the effects of the line and filter 

impedance, that can be important for detecting the resonant behaviours of 

the converter. The results of the analysis could be of considerable interest in 
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the design of the input filters.  

6.10. Basic Equations 

The system considered for the analysis is composed of a power supply, a 

second order input L-C filter, and a MC feeding a passive load. The system is 

the same shown in Fig. 5.1, where space vector notation is used for the 

representation of the system variables. 

The input filter is generally needed to smooth the input currents and to 

satisfy the EMI requirements. It is also known that the design of the input 

filters is strictly related to the switching frequency [68]. If the input filter is 

well designed, current harmonics at frequencies greater or equal to the 

switching frequency are smoothed adequately. 

In this paragraph the main equations related to the system represented in 

Fig. 5.1 will be introduced. The variables t and ω will be used to distinguish 

between the time domain and the Fourier domain respectively. 

In the following, the analytical developments are carried out neglecting 

the effects of the switching harmonics, considering for the output voltages 

and input currents their average values over a cycle period Tp.  

The input current modulation strategy keeps the input current vector in 

phase with the actual input voltage vector, determining instantaneous unity 

input power factor.  

However, as shown in the beginning of this chapter, variants of this 

modulation strategies are possible to reject the input voltage disturbances, 

such as the one based on keeping the input current vector in phase with the 

fundamental component of input voltage vector instead of its instantaneous 

value [22]. 

Hence, it is convenient to consider the modulation vector as a function of 

the input voltage vector, and eventually of its derivatives and integrals, as 

follows: 

 ),,( dtv
dt

vd
v ∫ψ=ψ .  (6.27) 

The equation for the input side of the MC, written in the Fourier domain, 

is as follows:  
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 )()()()( ω+ωω=ω viZEeq  (6.28) 

where )(ωeqE  and )(ωZ  are the Thevenin equivalent voltage and impedance 

of the voltage source and input filter.  

For the particular case shown in Fig. 5.1, )(ωeqE  and )(ωZ can be 

expressed as functions of the line and filter parameters as follows: 
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The behaviour of the system at the input side is completely described by 

(1.4) and (6.28) once the converter power and the modulation law are 

assigned. 

The line current, instead, depends on the filter topology. For the typical 

case shown in Fig. 5.1, the line current is 
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s
L Z

vei .  (6.32) 

As can be seen from (6.32), to determine the line current spectrum, it is 

necessary to know the spectrum of the input voltage vector. However, the 

input voltage depends on the current absorbed by the converter, due to the 

voltage drop on the impedance of the line and the filter. 

For this reason, to determine the line current spectrum, it is necessary to 

solve the set of non-linear equations (1.4), (6.27) and (6.28). The solution of 

this problem will be presented in the following sub-sections. 

A. Steady State Operating Conditions with Balanced and Sinusoidal 
Supply Voltages 

In steady-state operating conditions, with balanced and sinusoidal supply 
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voltages, the input voltages can be represented by means of rotating space 

vectors with constant magnitudes as follows: 

 tj
eq

ieEtE ω= 1)(  (6.33) 

 tj ieVtv ω= 1)(   (6.34) 

where ωi is the angular frequency of the voltage source. 

In these operating conditions, the modulation vector coincides with the 

input voltage vector, as follows: 

 tj ieVt ω=ψ 1)(  . (6.35) 

B. Steady State Operating Conditions with Unbalanced and Non-
sinusoidal Supply Voltages. 

If the supply voltages are not balanced and sinusoidal, then (6.33)-(6.35) 

must be rewritten in the following form: 

 )()( 1 tEeEtE eq
tj

eq
i Δ+= ω   (6.36) 

 )()( 1 tveVtv tj i Δ+= ω   (6.37) 

 )()( 1 teVt tj i ψΔ+=ψ ω   (6.38) 

where )(tEeqΔ , )(tvΔ  and )(tψΔ  are the perturbations of each quantity with 

respect to its fundamental harmonic. 

It is convenient to rewrite (6.37) and (6.38) in terms of new variables, that 

allow one to make easier the mathematical approach, as follows: 

 ( ))(1)( 1 teVtv tj i ε+= ω   (6.39) 

 ( ))(1)( 1 teVt tj i γ+=ψ ω   (6.40) 

where 
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As can be seen from (6.41) and (6.42), )(tε  and )(tγ  represent the 

perturbations )(tvΔ  and )(tψΔ  written in p.u. in a reference frame 

synchronous with the fundamental component of the input voltage. 

The expression of the input current can be found under the assumption 

that the perturbations )(tvΔ  and )(tψΔ are small compared to the 

fundamental harmonics. Substituting (6.39) and (6.40) in (1.4) leads to the 

following expression of the input current, valid for small signals: 
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where the symbol “*” is used to represent complex conjugate variables. 

6.11. Small-Signal Equations in the Fourier Domain 

In order to determine the spectrum of the line current, it is convenient to 

rewrite the equations shown in the previous paragraph in the Fourier domain. 

Equations (6.36), (6.39)-(6.40) and (6.43) become 

 )()()( 1 ωΔ+ω−ωδ=ω eqieq EEE   (6.44) 

 )()()( 11 ii VVv ω−ωε+ω−ωδ=ω  (6.45) 

 )()()( 11 ii VV ω−ωγ+ω−ωδ=ωψ  (6.46) 
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where )(ωδ  is the Dirac function and )(ωΔi is defined as follows: 
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In (6.48) the superscript “ c “ applied to the functions γ  and ε  is used to 

represent the Fourier transform of the complex conjugate of )(tε  and )(tγ , 

i.e. )(* tε  and )(* tγ . Some details on this mathematical representation, that 

will be used in the following, can be found in Appendix C. 
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As can be seen from (6.48), the perturbation of the input current can be 

determined only if the modulation law is assigned. For sake of simplicity, it is 

convenient to suppose that the perturbation of the modulation vector is 

directly related to the perturbation of the input voltage vector, as follows: 

 )()()( ωεω=ωγ H   (6.49) 

where )(ωH is a transfer function that can be chosen by the designer. It is 

possible to show that (6.49) is rather general and comprises several well-

known modulation laws of the input current as particular cases. For instance, 

a modulation strategy that keeps the modulation vector in phase with the 

input voltage is represented by 

 1)( =ωH   (6.50) 

whereas, the modulation strategy that keeps the modulation vector in phase 

with the fundamental component of the input voltage is described by 

 0)( =ωH . (6.51) 

Substituting (6.26) in (6.25) leads to the following expression for the input 

current disturbance: 
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6.12. Determination of the Input Voltage 

It is possible to determine the fundamental equations that must be 

satisfied by the fundamental component of the input voltage and its 

perturbation substituting (6.44), (6.45) and (6.47) in (6.28), and taking (6.52) 

into account. Equating the terms corresponding to the same frequencies leads 

to the following independent equations: 
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Equation (6.53) allows the determination of the fundamental harmonic of 

the input voltage in terms of supply voltage, grid and filter impedance and 

power delivered to the load. 

Equation (6.54) instead relates the input voltage perturbation to the 

supply voltage perturbation. It is evident that in (6.54) there are two 

unknowns, namely ε  and cε . To emphasize this aspect, (6.54) can be 

rewritten performing a frequency shift as follows: 
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Hence, to solve (6.55), a further equation is needed. This equation can be 

found by applying the operator “c” to (6.55), leading to 
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Solving (6.55) and (6.58) leads to the following expression for the 

perturbation of the input voltage: 
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where 

 )()()()()( ωω−ωω=ω cc BBAAD  . (6.60) 

Once the input voltage perturbation is known from (6.59) and (6.45), it is 
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possible to derive the expression of the line current by means of (6.32). 

6.13. Expression of the Input Voltage in Terms of Harmonics 

In the previous paragraphs it has been shown how to calculate the Fourier 

transform of the input voltage, and consequently of the line current, in a very 

general form. 

However, the most common case is the one with supply harmonics having 

frequencies multiple of the fundamental one, as follows 

 ∑
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kk

ikeq kEE  . (6.61) 

Substituting (6.31) in (6.59) and taking (6.45) into account, leads to the 

following expression of the input voltage vector in the time domain: 
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Assuming that the modulation strategy is the one keeping the input 

current vector in phase with the input voltage vector, corresponding to 

(6.50), the explicit expression of (6.63) is as follows 
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The line current can be expressed as a Fourier series as follows 
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As can be seen from (6.64), the k-th harmonic of the input voltage, and 

consequently the line current, is a weighted value of the k-th and the (2-k)-th 

harmonics of the supply voltage. This result is not new, and was already 

found in [22]. However, it is remarkable that the weights depends on the line 

and filter impedance, and the converter power as well.  

This result can be important for the design of the input L-C filters, as its 

resonant frequency should be chosen far enough from the frequency of the 

supply voltage harmonics.  

6.14. Experimental Results 

In order to verify the theoretical analysis of the input current, a prototype 

of MC was used to supply a passive R-L load.  

The control algorithm was implemented on the TMS320F2812, a fixed 

point DSP manufactured by Texas Instruments. The cycle period was 125 μs, 

corresponding to a switching frequency of 8 kHz. 

The converter is fed by a voltage transformer with variable voltage 

transfer ratio to adjust the input voltage to a value of about 115 Vrms. Three 

capacitors of 40 μF are wyse-connected at the input side of the converter. 

The other parameters concerning the filter, the supply and load are reported 

in Tab. 6.1. 

Firstly, the supply voltages, that show a small amount of distortion and 

unbalance, were sampled and their spectrum was determined. The magnitude 

and the phase of the main harmonics of the supply voltage are listed in Tab. 

6.2, whereas its spectrum is shown in Fig. 6.13.  

Then, the converter was activated, and the line currents and the input 

voltages were sampled and stored. 

The waveforms of the three line-to-neutral input voltages are shown in 

Fig. 6.14(a), whereas the waveforms of the three line currents are shown in 

Fig. 6.14(b). 

As can be seen from Fig. 6.14(b), the line currents are distorted to some 

extent. There are two main reasons for this distortion. The first one is that, 

despite a constant output power, the input currents of the MC cannot be 
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sinusoidal if the input voltages are unbalanced or non-sinusoidal. The second 

reason is that the capacitor of the L-C input filter tends to enhance the 

harmonic distortion that is present in the supply voltage. 

The spectrum of the input voltage vector and of the line current vector, in 

p.u. of the fundamental component, is shown in Figs. 6.15(a) and 6.15(b). As 

can be seen, according to the theory exposed, supply harmonics of order k 

lead to input voltage and line current harmonics of order k and k−2 . 

To validate the proposed analytical approach, the spectrum of the line 

current must be compared with the one that can be calculated with (6.66). 

It is worth noting that, before (6.66) is used, 1V  must be preliminary 

determined solving (6.53), then the input voltage harmonics kV  must be 

calculated with (6.64).  

TABLE 6.1 - SYSTEM PARAMETERS

ωi = 2π50 rad/s 

Ls+Lf = 1 mH, Rf = 300 Ω  

Cf = 40 μF  

Rs = 0.2 Ω 

Pi = 497 W 

ωo = 2π150 rad/s 

Tc = 125 μs. 
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Fig. 6.13 – Experimental results. Spectrum of the supply voltage vector se in per cent of the fundamental 

component. 

TABLE 6.2

MAIN HARMONICS OF THE VOLTAGE SUPPLY 

Order Magnitude [V] Phase [Deg.] 

1 

3 

5 

7 

-1 

-5 

-7 

93.57 

0.11 

0.10 

0.88 

1.10 

2.18 

0.32 

0 

+126 

+160 

-42 

+30 

-20 

+62 
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Fig. 6.15 – Experimental result. a) Spectrum of the input voltage vector, in percent of the
fundamental component. b) Spectrum of the line current vector, in percent of the fundamental
component.  
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Fig. 6.14 – Experimental tests. Sampled waveforms of the line-to-neutral voltages (a) and of 
the line currents (b). 
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The expected spectrum of the line current is shown in Fig. 6.16. As can be 

seen, there is a good agreement between theoretical and experimental results. 

The proposed analytical approach is valid if power absorbed by the MC is 

constant. To verify this assumption, it can be noted that the waveform of the 

output current, shown in Fig. 6.17, is almost sinusoidal, except for the typical 

ripple due to SVM. This guarantees that the output power, and thus the 

input power, is rather constant. 
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Fig. 6.16 – Theoretical result. Spectrum of the line current, in per cent of the fundamental 
component. 
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Fig. 6.17 - Experimental test. Typical waveforms. (a) Load current (2 A/div). (b) Line-to-line 
voltage VAB (150 V/div). (c) Line-to-line voltage VAC (150 V/div).  
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In order to emphasizes the effect of the line and filter impedance on the 

line current, the theoretical spectrum of the input current is shown in Fig. 

6.18. It is calculated by means of (6.1) on the basis of the sampled values of 

the input voltages. 

This result is the same that could be achieved assuming that the converter 

is fed by an ideal voltage source, without internal impedence and LC input 

filter. 

It is worth noting that the spectra of the line and input currents are 

rather different, specially for the magnitude of the -5th and the 7th harmonics. 

 This means that, if the quality of the input current is investigated, the 

effect of the line and filter parameters cannot be ignored and the traditional 

analysis, based on the assumption that they are negligible, is not sufficiently 

accurate. 

6.15. Conclusion 

A theoretical method for the determination of the line current spectrum 

has been presented. The method is based on a small-signal analysis of the 

whole system in the Fourier domain and its main characteristic is that it 

takes the effect of the filter and line impedance into account. 

In addition, it is rather general, because it allows the determination of the 

line current spectra for different input current modulation strategies. 
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Fig. 6.18 - Theoretical result. Spectrum of the input current, in per cent of the fundamental
component. 
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The utility of the proposed analysis is mainly related to unbalanced and 

non-sinusoidal supply voltage and can be used for the design of the input 

filter. 

The validity of the theoretical analysis has been confirmed by 

experimental tests. 
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7.Chapter 7 
Electric Drives 
Abstract 

The control scheme of a speed-sensorless induction motor drive fed by a 

matrix converter is presented. The proposed scheme allows the motor to 

exploit the maximum torque in the whole speed range, and shows a reduced 

dependence on the motor parameters. The behaviour of the matrix converter 

is assessed by means of computer simulations and experimental results.  

7.1. Introduction 

Induction motor drives fed by MC can theoretically offer better 

performance than traditional drives based on voltage source inverters [69]. 

The main advantages that are often cited are the compactness, the 

bidirectional power flow and the higher current quality. In fact, the matrix 

converter is more compact than a voltage source inverter (VSI), since it does 

not require  bulky capacitors (some small capacitors are present in the input 

high frequency filter and in the safety diode clamp). In addition, breaking 

resistances are not necessary, since the power flow during breaking can be 

reverted, thus leading to a regenerative operation. Finally, the input currents 

are sinusoidal and the power factor is near unity. 

However, the use of MC poses some problems. First of all, to obtain a 

good quality of the output currents, the input voltages should be constantly 

measured in order to adapt the duty-cycles of the output voltages in presence 
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of input voltage harmonics or disturbances [22]. When the power delivered to 

the load is constant, this closed-loop scheme has been proved to be unstable, 

depending on the value of the output power and the parameters of the input 

filter and the grid. In fact, as soon as the output power exceeds a limit value, 

voltage and current oscillations arise at the input of the converter [56].  

Secondly, MC bidirectional switches cause an higher voltage drop 

compared to VSI power switches, since the output current has to pass 

through two components in series, usually an IGBT and a diode. In addition, 

the switch commutation is a complex process that introduces dead-times 

similar to those of voltage source inverters. These converter nonlinearities, 

together with the sensor offsets, could affect the estimation of the voltage 

applied to the load [12], [70]. 

Finally, some studies have shown that the quality of the input current 

deteriorates if the source voltage is unbalanced or distorted. The same 

happens if the load current is distorted or unbalanced [22]. 

All these aspects should be taken into account when assessing the 

performance of an electric motor drive fed by a MC. 

Some paper describing drives based on MC have already been presented. 

Initially, the researchers turned their attention to the solution of the 

hardware problems, such as the construction of the bidirectional switches or 

the process of current commutation. Then, the compactness of MC suggested 

the possibility to integrate the converter and the motor in a single unit, in 

order to reduce the costs and to increase the overall efficiency [71], [72]. 

On the other hand, some researches were made to transfer the existing 

control techniques for voltage source inverters to MCs, such as constant 

V/Hz, field-oriented control and direct torque control [48], [73]-[75]. 

Electric drives are often requested to deliver constant power at speeds 

higher than the rated one. However so far the performance of drives fed by 

MC and operating in the field-weakening region has not been examined in 

details.  

When the induction motors are used for applications at high speed, it is 

desirable to retain the maximum torque capability in the field weakening 

region. Several papers about this issue were presented for drives fed by 

traditional VSI [76]-[80]. According to these field weakening algorithms, the 

optimal flux value of the motor should be updated by means of look-up 



 
188 

tables or explicit expressions containing the motor parameters and quantities 

such as the motor speed, the motor currents, the dc-link voltage and the 

requested torque. However, the performance of these algorithms is strictly 

related to the accuracy by which the parameters are known. In addition, the 

drive performance in the high speed range may depend on the correct 

determination of the base speed, which is function of the actual dc-link 

voltage and the overload capability. 

As a consequence, new methods for compensating the parameter variations 

and the uncertainties of the models have been investigated. Among these, 

some adaptive schemes have been proposed in order to provide a suitable 

estimation of the varying parameters [81]-[84]. These methods provide good 

drive performance to the detriment of the complexity of the control scheme 

and the regulator tuning. 

A suitable method for robust field weakening is to determine the optimal 

flux level using closed-loop schemes that analyze the motor behaviour, rather 

than look-up tables or explicit expressions containing the motor parameters. 

From this point of view, interesting contributions towards robust field 

weakening strategies were proposed in [85]-[88]. According to these papers, 

the flux is adjusted on the basis of the supply voltage requested by the 

regulators. If the requested voltage is greater than the available one, the field 

weakening algorithm reduces the flux. Furthermore, suitable control 

strategies allows the motor to exploit the maximum torque in the whole 

speed range, namely the motor current is kept equal to the maximum current 

in the constant power speed range, and is lower in the decreasing power 

speed range. 

In this chapter, a field weakening scheme for induction motor drives fed 

by a MC is presented and assessed. 

The proposed scheme allows the motor to exploit the maximum torque 

capability in the whole speed range and exhibits a reduced dependence on the 

motor parameters and the base speed. In addition, it does not require any 

complex calculation of the flux level or look-up tables. 

The traditional field-oriented control utilizes the stator current 

components as control variables. The d-component of the stator current acts 

on the rotor flux, whereas the q-component is proportional to the motor 

torque. In the proposed rotor-flux-oriented control scheme the main control 
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variables are the stator flux components instead of the stator current 

components. This basic choice simplifies the control scheme and simplifies the 

tuning of the regulators. 

Since the motor is fed by a MC, all the advantages  provided by this type 

of converter (compactness, bi-directional power flow, good quality of input 

and output currents) are inherited by the whole drive. 

The feasibility of the motor drive (including the robust field weakening 

algorithm) is confirmed through simulations and experimental tests. 

7.2. Machine Equations 

The behaviour of the induction machine can be described in terms of 

space vectors by the following equations written in a reference frame 

synchronous with the rotor flux: 

 
dt

d
jiRv s

ssss

ϕ
+ϕω+=  (7.1) 

 ( )
dt

d
jiR r

rmrr

ϕ
+ϕω−ω+=0  (7.2) 

 rsss iMiL +=ϕ  (7.3) 

 srrr iMiL +=ϕ  (7.4) 

 rr jipT ϕ⋅−=
2

3
. (7.5) 

where p is the pole pairs number, ω is the angular speed of the rotor flux 

vector, ωm is the rotor angular speed in electric radians, and “·” denotes the 

scalar product. 

Solving (7.3) and (7.4) with respect to si  and ri , and substituting in (7.2) 

and (7.5) yields 
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 (7.7) 

where the parameter σ is defined as follows: 

 
rsLL

M 2

1 −=σ  . (7.8) 

The reference frame orientation is chosen so that the d-axis has the 

direction of the rotor flux vector. Hence (7.6) can be rewritten in terms of d 

and q components as follows: 
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ϕσ
 (7.9) 
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σ
=ϕω−ω . (7.10) 

Also (7.7) can be rewritten as follows 

 sqr

rsLL

M
pT ϕϕ

σ
=

2

3
 . (7.11) 

As can be seen, these equations are quite similar to the corresponding 

equations of the traditional field oriented control based on d-q stator current 

components. In fact the rotor flux depends only on ϕsd, whereas the motor 

torque is proportional to sqϕ . 

In steady-state operation, (7.1), (7.3) and (7.9) become 

 ssss jIRV ϕω+=   (7.12) 

 sdssd IL=ϕ   (7.13) 

 sqssq ILσ=ϕ   (7.14) 

 sd

s

r
L

M
ϕ=ϕ . (7.15) 

These steady-state equations will be utilized for the analysis of the 

maximum torque capability. 
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7.3. Maximum Torque Capability In The Field Weakening 
Region 

In the high-speed range the motor performance is limited by the maximum 

inverter voltage, the inverter current rating and the machine thermal rating. 

The maximum voltage magnitude Vs,max that the inverter can apply to the 

machine is related to the input voltage amplitudes and the modulation 

strategy. Using Space Vector Modulation (SVM) the maximum magnitude of 

the stator voltage vector is 

 is,max vV
2

3
= . (7.16) 

The voltage limit and the current limit can be represented by the 

following inequalities: 

 vs ≤ Vs,max  (7.17) 

 is ≤ Is,max . (7.18) 

Inequalities (7.17) and (7.18) sensibly influence the motor behaviour, 

especially at high speed. It is known that the operation of an induction motor 

can be divided into three speed ranges, namely the low speed range (region 

I), the constant-power speed range (region II) and the decreasing-power speed 

range (region III). 

In region I, the current limit and the rated flux level determine the 

operating point corresponding to the maximum torque. 

The beginning of region II is defined as the voltage required to inject the 

maximum current reaches Vs,max. In region II, it is necessary to reduce the 

stator flux magnitude to keep the back emf approximately constant. 

Therefore the operating point corresponding to the maximum torque requires 

a rotor flux magnitude lower than the rated one, and the magnitudes of the 

stator current vector and stator voltage vector are equal to the limit values 

Is,max and Vs,max respectively. As the torque is inversely proportional to the 

rotor speed, the power delivered to the load is nearly constant.  

Finally, in region III the available voltage is not sufficient to inject the 

maximum current and the power delivered to the load decreases nearly 

proportionally with the rotor speed. 

It is evident that the maximum torque capability is a consequence of the 
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voltage and current limits. 

In order to determine the operating point corresponding to the maximum 

torque, when the stator voltage is equal to Vs,max, it is opportune to introduce 

the angle α between the stator flux vector and the rotor flux vector, as 

follows: 

 ϕsd = ϕs cos α (7.19) 

 ϕsq = ϕs sin α. (7.20) 

Combining (7.11), (7.15), (7.19) and (7.20), it is possible to express the 

motor torque as follows 

 αϕ
σ

= 2sin
4

3 2

2

2

s

rsLL

M
pT  . (7.21) 

At high speed, the voltage drop on the stator resistance is small and (7.12) 

can be approximated as 

 ss,maxV ωϕ≅  . (7.22) 

Combining (7.22) and (7.21) leads to the following expression of the 

torque in the high speed region: 
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ωσ
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3
2

2

2
max,s

rs

V

LL

M
pT  . (7.23) 

From (7.23) it is clear that for any value of ω, the maximum torque is 

produced when the stator flux and the rotor flux vectors are delayed by an 

angle of 45°, i.e. sqϕ  is equal to sdϕ . 

However, when the maximum torque is delivered to the load, the current 

could be greater than Is,max. In fact, according to (7.13) and (7.14), the stator 

current components are related to the corresponding stator flux components. 

Since the magnitude of the stator current vector must not exceed the 

maximum current Is,max, a limitation strategy should be present to prevent the 

flux request ϕsq,req from reaching too high values. 

If isd is the d-component of the current corresponding to the flux ϕsd, in 

order to guarantee that the current limit (7.18) is satisfied, the absolute value 
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of isq cannot be greater than the following value: 

 22
,, sdmaxsavailablesq iIi −= .  (7.24) 

As a consequence, due to (7.14), the flux component ϕsq cannot be grater 

than the following limit value: 

 ϕsq,available = σLs isq,available. (7.25) 

In conclusion, the maximum torque compatible with the constraints (7.17) 

and (7.18) is given in any operating condition by the following value of ϕsq: 

 { }availablesqsdsq,max ,,min ϕϕ=ϕ  . (7.26) 

This fundamental relationship will be used by the field weakening 

algorithm to achieve the maximum torque operation. 

7.4. Control Algorithm 

The torque control block diagram, including the proposed field weakening 

strategy, is shown in Fig. 7.1. It is worth noting that the subscript ”req” in 

Fig. 7.1 is used for the output quantities of the regulators, whereas the 

subscript ”ref” denotes the reference signals at the input of the regulation 

loops. 

The control scheme is implemented in a reference frame synchronous with 

the rotor flux vector, like traditional field oriented controls. It is assumed 

that a suitable observer estimates sϕ , rϕ , and the angular frequency ω of the 

rotor flux vector.  

A. Torque Control  

The motor torque is controlled by comparing the torque reference Tref with 

the estimated torque T. On the basis of the torque error, the PI regulator (a) 

produces a torque request by adjusting the q-component of the stator flux, 

according to (7.11). Therefore, if the reference torque is higher than the 

actual torque, the PI regulator (a) tends to increase the ϕq,req, otherwise it 

tends to decrease it.  
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B.  Control of Rotor and Stator Fluxes 

The rotor flux is controlled by adjusting the d-component of the stator 

flux, according to (7.9). 
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Fig. 7.1- Block diagram of the torque control scheme, including the field weakening strategy. 
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In region I, the d-component of the stator flux is constant and has the 

rated value ratedsd ,ϕ . At higher speeds, instead, it is reduced by the field 

weakening algorithm, as described in Paragraph 7.5.  

The stator flux regulator behaves as a proportional controller, with some 

additional terms compensating the stator back-EMF and the voltage drop 

caused by the stator resistance. The stator flux regulator equation can be 

expressed as follows:  

 
τ

ϕ−ϕ
+ϕω+= srefs

sssreqs jiRv ,

,  (7.27) 

where 1/τ represents the gain of the controller.  

Combining (7.27) and (7.1), i.e. reqss vv ,= , leads to the following equation, 

expressing the dynamic behaviour of the stator flux vector: 

 refss
s

dt

d
,ϕ=ϕ+

ϕ
τ  . (7.28) 

According to (7.28), in order to obtain fast flux transients, and 

consequently a high torque dynamic, it is necessary to adopt small values of 

τ.  
The limitation block (d) ensures that the voltage reference satisfies the 

voltage constraint (7.17), namely the voltage reference vector lies inside a 

circle with radius Vs,max. 

The behaviour of the limitation block (d) is described by the following 

equation: 
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According to (7.29), if the requested voltage is greater than Vs,max the 

limitation block (d) performs a proportional reduction of its magnitude, but 

preserves the angular phase. 

Finally, the reference voltage vector in the stator reference frame is 

calculated by means of the operator θje  , where θ is the phase angle of the 
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rotor flux vector with respect to the stationary reference frame.   

C. Maximum Torque Capability 

In order to guarantee the maximum torque capability, the flux request has 

to be lower than ϕsq,max given by (7.26). This task is performed by the 

limitation block (b), shown in details in Fig. 7.2. At low speed this block does 

not limit ϕsq for usual overload conditions.  

It is interesting to note that, at high speed, the limitation block (b) 

prevents instability phenomena by limiting the torque reference (i.e. ϕsq,ref) to 

values lower than the maximum achievable torque, according to (7.26). In 

fact, without the limitation block (b), an excessive torque request causes an 

increase of the requested voltage, which in turn yields to a reduction of ϕsd 

and of the produced torque. This behaviour proceeds leading to a progressive 

reduction of the stator flux until the motor stops.  

7.5. Field Weakening Algorithm 

Several field weakening strategies are possible for induction motor drives, 

as reported in the introduction. However, the best results are obtained using 

closed-loop controllers based on the principle of reducing the flux reference as 

soon as the voltage request becomes greater than the available voltage. 

This principle can be implemented according to the block diagram shown 

in Fig. 7.3. As can be seen, the stator flux regulator compares the flux 

reference with the corresponding estimated value and establishes the voltage 

that has to be applied to the motor. When the motor operating point is very 

close to the field weakening region, the voltage request may become greater 

than the limit voltage Vs,max. A negative difference between the limit voltage 

maxsq,ϕ

reqsq,ϕ

refsq,ϕ

maxsq,ϕ−
 

Fig. 7.2 – Limitation block (b) for the q-component of the stator flux vector. 
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and the amplitude vs,req of the requested voltage means that the back-emf is 

too high and the flux level should be reduced. This task is performed by the 

PI regulator (e), that integrates the difference s,reqs,max vV − . If this difference 

is negative, the flux request decreases; otherwise, the flux level increases up 

to the rated value defined in the limitation block (f).  Fig. 7.4 shows the 

behaviour of the limitation block (f) in details, where ϕsd,rated and ϕsd,min are 

the rated and the minimum admissible value of the d-component of the 

stator flux, respectively. 

It is worth noting that in the field weakening region, owing to the integral 

part of the regulator (e), the amplitude of the voltage request tends to equal 

the limit voltage. From this point of view, the field weakening control scheme 

is very similar to an anti-windup scheme preventing a voltage request greater 

than the available voltage. 

Although the scheme of Fig. 7.3 allows the motor to fully utilize the 

supply voltage, it has an inherent drawback related to the fact that fast 

variations of the torque demand in region II and III lead to undesired flux 

transients which delay the torque response. In fact this scheme is based on 

selecting ϕsd,ref so that the voltage required to produce the demanded torque 

ratedsd ,ϕ

ratedsd ,ϕ

reqsd ,ϕ

minsd ,ϕ

refsd ,ϕ

minsd ,ϕ
 

Fig. 7.4 – Limitation block (f) for the d-component of the stator flux vector. 
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Fig. 7.3- Block diagram of the field weakening controller based on the saturation of the
voltage regulator. 
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satisfies the voltage limit. For example, when a torque variation is required in 

region II or III, the control system, as a consequence of the corresponding 

variation of the requested voltage, changes ϕsd,ref, thus causing undesired 

transients of the rotor flux. 

To avoid this problem, the scheme of Fig. 7.3 should be modified in order 

to change the basic principle for the selection of the flux level. In particular, 

the flux level should be always set to the value required to generate the 

maximum achievable torque at any operating speed. In this way any demand 

of torque variations within the admissible values is achieved without 

changing ϕsd but only ϕsq. This new field weakening strategy is implemented 

as shown in Fig. 7.1. 

For a given value of the d-component of the stator flux, and consequently 

of the rotor flux, the maximum torque is achieved when ϕsq,ref = ±ϕsq,max. 

Taking this equation into account, the voltage required to generate the 

maximum torque can be determined from (7.27) as follows: 

 ( )
τ

ϕ−ϕ
+ϕϕω−= sdrefsd

maxsqsqmaxsdsreqmaxsd iRv ,

,, sign  (7.30) 

 
τ

ϕ−ϕ
+ϕω+= sqrefsq

sdmaxmaxsqsreqmaxsq iRv ,

,,  (7.31) 

where isq,max is defined as follows 
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and ωmax is the corresponding angular frequency of the rotor flux, expressed 

by 
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sqmaxsq

r

r
sqmax

L
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ϕ

ϕ−ϕ

σ
ϕ+ω=ω ,

sign . (7.33) 

It is worth noting that in practical applications it is possible to 

approximate ωmax with ω and therefore the knowledge of the rotor parameters 

is not necessary. 

The main advantage of the proposed field weakening scheme is the 
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independence from the base speed and a fast torque response in the field 

weakening region. 

7.6. Flux and Torque Observers 

A. Flux Observer 

 The aim of the flux observer is the determination of stator flux and phase 

angle of the rotor flux, which are necessary for the field oriented control of 

the induction machine. The flux observer operates in the stator reference 

frame. In the following the subscript “s” will be used to identify quantities 

expressed in the stator reference frame. 

The stator flux is determined integrating the stator voltage: 

 ( )∫ −=ϕ dtiRv s
ss

s
s

s
s  . (7.34) 

The rotor flux can be estimated as follows 

 ( )s
ss

s
s

rs
r iL

M

L
σ−ϕ=ϕ  . (7.35) 

The phase angle θ of the rotor flux vector, necessary for the field oriented 

control, can be derived from (7.35) as follows 

 ( )s
ss

s
s

s
r iLσ−ϕ=ϕ=θ argarg  . (7.36) 

It is evident from (7.34) that the estimation of the stator flux vector can 

be affected by stator resistance mismatch, sensor offsets and the inverter non-

linearity (inverter dead-times, voltage drop on the conducting switches, etc.). 

However, at high speed, and hence in the field weakening region, the 

estimation error is lower than that at low speed, because the input voltage 

becomes the most important term in the right-hand side of (7.34). 

The estimation error on the phase angle θ depends on the stator flux 

estimation error, the mismatch on the leakage inductance σLs and the offset 

of the current sensors. The leakage inductance shows moderate variations 

with the stator currents and it will be assumed practically constant. 

In conclusion, the stator flux observer depends only on two machine 

parameters, namely Rs and σLs, but the effects of this dependence can be 
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considered negligible in the high speed range. On the contrary, in order to 

obtain good performance at low speed, it is preferable to adopt a closed-loop 

flux estimator, that could reduce the effect of parameter mismatch and sensor 

offsets [79].  

B. Estimation of the Angular Frequency of the Rotor Flux Vector 

The angular frequency ω needed in (7.27) and (7.33) is obtained by means 

of the following equation: 

 ⎟
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r j
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d
 . (7.37) 

The angular frequency ω is insensitive to disturbance and noise that 

usually affect the stator flux and the stator currents, owing to the filtering 

action applied to the rotor flux. When this action is not adequate, an 

additional low-pass filter can be applied to (7.37). 

C. Torque Observer 

The torque can be estimated from the measurements of the stator current 

and the estimation of the stator flux, as follows: 

 ( )ss jipT ϕ⋅=
2

3
. (7.38) 

As can be seen, the torque estimation does not require explicitly any 

motor parameters, excepts the pole pairs.  

7.7. Simulation Results 

Preliminarily, some numerical simulations have been carried out to 

confirm the effectiveness of the field weakening strategy. The motor 

parameters are reported in Tab. 7.1, and the load is supposed to be only 

inertial. 

Fig. 7.5 shows the motor behaviour in response to a step command of the 

motor torque (the figure does not include the end of the transient). Vertical 

dash-dotted lines delimit the three regions of operation of the induction 

motor. Initially, the torque delivered to the load is zero, the motor is at 

standstill and the stator flux corresponds to the rated value. As the torque 
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command is applied, the motor starts up. 

The q-component of the stator flux requested by the PI regulator (a) is 

limited to the value ϕsq,max, corresponding to a stator current equal to Is,max.  

As soon as vs,max req reaches the  voltage limit, the field weakening algorithm 

decreases the d-component of the stator flux. As a consequence of the 

reduction of the magnetizing current, the q-component of the stator current, 

0
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Region I Region II Region III

(1)

(6)

0.5 s/div  

Fig. 7.5 – Computer simulation. Starting transient from 0% up to 600% of the base speed after 
the application of the rated torque. Main motor quantities. 1) Torque reference. 2) Estimated 
torque. 3) ϕsd,ref. 4) ϕsq,ref.. 5) Rotor flux. 6) Motor speed. 7) Stator current. 

TABLE 7.1 – MOTOR PARAMETERS 

Prated = 0.25 kW  Rs = 14.6 Ω 
Is, rated = 1.16 Arms  Rr = 16 Ω 
Vs,rated = 220 Vrms  Ls = 701 mH 
ωs = 2π50 rad/s  Lr = 701 mH 
p = 1  M = 53 mH 
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proportional to  ϕsq,ref,  increases, making it possible to keep the stator 

current equal to the limit current in region II. As soon as the motor enters in 

region III, the current decreases and the maximum value of ϕsq,ref is set equal 

to ϕsd,ref.  

Fig. 7.6 shows the motor behaviour after a torque reduction from 100% of 

the rated torque to 50% of the rated torque in region II. As can be seen, 

immediately after the torque decreases, the voltage delivered to the loads is 

lower than Vs,max, but this voltage margin does not mean that ϕsd should 

increase. In fact the motor continues accelerating and ϕsd decreases without 

unwanted transients. This behaviour could not be achieved without changing 

the basic scheme of the field weakening strategy of Fig.7.3 as proposed in 
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Fig. 7.6 – Computer simulation. Torque reduction from 100% of the rated torque to 50% of 
the rated torque in region II during an acceleration transient. Main motor quantities. 1) 
Torque reference. 2) Estimated torque. 3) ϕsd,ref. 4) ϕsq,ref.. 5) Vs,max. 6) vs. 7) Motor speed. 8) 
Stator current. 
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Fig. 7.1. 

7.8. Experimental Results 

A complete drive system has been realized to verify the feasibility of the 

proposed control scheme. The experimental set-up consists of a MC inverter 

and a 250 W, 2-pole squirrel cage induction motor. The motor parameters are 

the same ones reported in Tab. 7.1. The test motor is coupled to a separately 

excited DC machine, 3000 rpm. The control algorithm is implemented on a 

Digital Signal Processor (DSP) TMS320C28. The cycle period of the control 

scheme, including the field weakening algorithm, is 125 μs. 

Some tests have been carried out to investigate the drive performance in 

the field weakening region. In order to limit the test bench speed to safe 

values, the motor has been fed with a reduced voltage, i.e. 25% of the rated 

voltage, so leading to a rated speed of about 700 rpm. 

Fig. 7.7 shows the motor behaviour during a transient from 90% up to 

600% of the rated speed (the figure does not include the end of the 

transient). As can be seen, the motor behaves as expected, namely the 

(2)

(4)

(1)

(3)

Region 
I 

Region 
II 

Region III

 

Fig. 7.7 – Experimental test. Speed transient from 90% to 600% of the base speed. 1) 
Estimated speed (1500 rpm/div). 2) ϕsd,ref. (0.25 Wb/div). 3) ϕsq,ref. (0.25 Wb/div). 4) Stator 
current (1.5 A/div). 
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current is constant in region II and decreases in region III. 

 Some tests were carried out to assess the dynamic performance of the 

motor drive. In Figs. 7.8 and 7.9 the behaviour during a transient after a 
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Fig. 7.8 – Experimental test. Starting transient from 0% up to 600% of the base speed. Main
motor quantities. 1) Estimated speed (1500 rpm/div). 2) ϕsd,ref (0.25 Wb/div). 3) ϕsq,ref. (0.25 
Wb/div). 4) Stator current (1.5 A/div). 
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Fig. 7.9 – Experimental test. Starting transient from 0% up to 700% of the base speed. Main 
motor quantities. 1) Estimated speed (1500 rpm/div). 2) ϕsd,ref (0.25 Wb/div). 3) Estimated 
torque (0.8 Nm/div). (4) Stator current (1.5 A/div). 
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torque step is shown. The experimental results are in good agreement with 

the computer simulations shown in Fig. 7.5. In particular ϕsq,ref, constant in 

region I, slightly increases in region II, keeping the stator current equal to the 

limit value. 

Some tests have been carried out to evaluate the capability of the control 

system to increase the flux during a deceleration transient.  

Fig. 7.10 shows the motor behaviour when the speed decreases from about 

500% to 90% of the base speed.  The deceleration is obtained by increasing 

the breaking torque generated by the DC machine operating as a load. It can 

be verified that, as the speed decreases, the control algorithm increases 

smoothly the flux reference ϕsd,ref up to the rated value. 

Finally, the quality of the input and output currents have been assessed. 

Fig. 7.11 shows the waveform of a load current, whereas Fig. 7.12 shows the 

waveforms of the line currents for two different load conditions. As can be 

seen, all the waveforms are nearly sinusoidal and the harmonic content is 

negligible. 
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Fig. 7.10 – Experimental test. Breaking transient from 500% down to 90% of the base speed. 
Main motor quantities. 1) Estimated speed (1500 rpm/div). 2) ϕsd,ref (0.25 Wb/div). 3) ϕsq,ref.
(0.25 Wb/div). (4) Stator current (1.5 A/div). 
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7.9. Conclusion 

A control strategy for field weakening operation of speed-sensorless 

induction motor drives fed by MC is analyzed in this chapter. 

The control system scheme utilizes the stator flux components as control 

variables and decreases the d-component of the stator flux as the voltage 

corresponding to the maximum torque achievable at a given speed tends to 

exceed the maximum voltage. 

The control scheme allows a smooth transition into and out of the field 

a) b) 

Fig. 7.12 – Experimental test. Input currents for two different load conditions (2.5 A/div). 
Motor operating at the base speed, at 30% of the rated torque (a) or at the rated torque (b). 

 

Fig. 7.11 – Experimental test. Load currents (0.75 A/div). 
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weakening mode, exploiting the maximum torque capability of the machine 

over the whole operating speed range. 

The main advantages of proposed field weakening algorithm are: i) 

reduced dependence on machine parameters, ii) no need of calculation of the 

base speed, which in general depends on the machine parameters, motor 

current and available voltage, iii) fast torque response, also in the field 

weakening region. 

The effectiveness of the proposed control scheme has been verified by 

computer simulations and experimental tests. 
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8.Appendix A 
  
 

The algorithm for the selection of λ and om  in the general case is 

presented in this Appendix. 

The first step is to determine which triangle vertex should coincide with a 

duty-cycle space vector. This can be done by means of Fig. A.1, that reports 

the vertex names as a function of the sector of refψ . If the indexes 1,2,3 are 

associated to the vertex A, B and C respectively, the position of the selected 

vertex in the d-q plane can be represented by means of the space vector 

( )( )3/12exp3
2 −νπj , where ν is defined in Fig. A.1. 

Then, the modulation algorithm determines which duty-cycle space vector 

among 1m , 2m  and 3m  should coincide with the vertex previously selected. 

For this purpose, the index n of the searched duty-cycle space vector is 

reported in Table A.1. As can be seen, the index n depends on the sector 

occupied by the reference output voltage and the input current. The sectors 

of the reference output voltage are represented in Fig.A.2. 

The duty-cycle space vector nm  must satisfy the following constraint: 

 
( )1

3

2

3

2 −νπ
=

j

n em  (A1) 
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Substituting (18), written for k=n in (A1), and solving for om , leads to 

the following expression: 

 
( )

nn

j

o BAem λ−−=
−νπ 1

3

2

3

2
. (A2) 

By substituting (A2) in (3.2) the following general expressions for the 

remaining duty-cycle space vectors, as a function of λ, can be found: 

 ( ) ( )1
3

2

3

2 −νπ
+−λ+−=

j

nknkk eBBAAm (k=1,2,3 and k ≠ n).  (A3) 
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refψ

Vertex A
(ν =1) 

 

 

  

 

 

Vertex C
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(ν =3) 

Vertex A
(ν =1) 
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(ν =2) 

Vertex B
(ν =2) 

 
Fig. A.1 – Graphic table for the selection of the triangle vertex coinciding with a duty cycle
space vector among 1m , 2m  and 3m as a function of the  desired direction of the input

current. 
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Fig. A.2 - Sectors of the output reference voltage vector. 
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With reference to the example of Fig. 3.2, (A3) represent the parametric 

equations of the straight lines r and s. 

The next step of the modulation algorithm consists in the determination 

of the six values of λ that bring a duty-cycle space vector to a triangle side. 

These values can be determined by solving each of the six following linear 

equations: 

 0
3

1
3

2

=+⋅
πh

j

k em     (k ≠ n, h=0,1,2) (A4) 

Among these six values of λ, in this analysis, the one corresponding to the 

minimum absolute value is adopted for the modulation law. The selected 

value coincides with the values λp or λn previously defined. 

TAB. A.1 – INDEX n  OF THE DUTY-CYCLE SPACE VECTOR PLACED ON A TRIANGLE VERTEX 
 

SECTOR OF THE DESIRED INPUT CURRENT  
1 - 3 - 5 2 - 4 - 6

1 1 3 
2 2 3 
3 2 1 
4 3 1 
5 3 2 

 
 

SECTOR OF THE 

REFERENCE 
 OUTPUT VOLTAGE 

6 1 2
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9.Appendix B 
  
 

To determine the time required by ripi  to virtually cover the distance 

between C and A, the following equation can be used: 

 0=++ ACCBBA  (B1) 

where the expression of BA , CB  and AC  are those given in Tab. 3.5. 

Substituting and solving for δ′  leads to 

 
( ) ( )

2
,

,,22,,11

refo

reforeforeforefo

v

vvvvvv ⋅−δ+⋅−δ
=δ′ . (B2) 

Similarly, for δ ′′  one obtains: 

 
( ) ( )

2
,

,,44,,33

refo

reforeforeforefo

v

vvvvvv ⋅−δ+⋅−δ
=δ ′′ . (B3) 
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10.Appendix C 
  
 

In this Appendix some definitions involving Laplace transform are 

presented, which are used in the stability analysis. 

Let be )(sf  the Laplace transform of the generic vector )(tf , defined as 

follows: 

 ∫
∞

−=
0

)()( dtetfsf st . (C1) 

The superscript ‘c’ is used for the Laplace transform of )(* tf , defined as  

 ∫
∞

−=
0

* )()( dtetfsf stc . (C2) 

It can be verified that the following relationships exist between )(sf  and 

)(sf c : 

 )()( ** sfsf c =  (C3)  

 )()( ** sfsf c =  (C4) 
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11.Appendix D 
  
 

A transfer function of a filter in the time domain can be approximated in 

the discrete-time by using several expressions. 

In Chapter 5, (5.42) has been approximated by means of the following 

difference equation: 

 )1()()1()( 101 −++−= kvbkvbkvakv iiifif  (D1) 

where 

 2

2

1

1

2

11
1 TjTja ii ⎟

⎠
⎞

⎜
⎝
⎛ ω+−+⎟

⎠
⎞

⎜
⎝
⎛ ω+−+=

ττ
 (D2) 

 
τ20

T
b =  (D3) 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ω+−+= Tj

T
b iττ

1
1

2
1 . (D4) 

that can be represented with the following Z-transform: 

 
1

1

1
10

1
)( −

−

−
+

=
za

zbb
zFd . (D5) 
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12.Appendix E 
  
 

The ratio ε can be more easily characterized by the knowledge of the 

converter efficiency (η) and the conduction losses to switching losses ratio 

(δ). The converter efficiency is given by 

 
swid

cdid

in

out

PP

PP

P

P

+
−

==η  (E1) 

which can be rewritten as follows 

 
ε
δεη

+
−

=
1

1
 (E2) 

where 

 
sw

cd

P

P
=δ . (E3) 
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13.Appendix F 
  
 

The input current can be expressed as a sum of harmonics. To obtain this 

result, it is necessary to substitute (5.65) in (5.64) and to take (5.66) into 

account. It follows: 

 tj
i

ietfi ω= )(  (F1) 

where 

 
tj

inv
tj

diri

id

rr eVeVV

P
tf ωω− ++

=
***3

2
)(  (F2) 

The function )(tf  is periodic and can be expressed as a Fourier series as 

follows: 

 ∑
∞

−∞=

ω=
k

tjk
k

reFtf )(  (F3) 

where 

 ∫ω
π

ω
π

−

ω
π

−

π
ω

= r

r

r dtetfF
ktj

r
k

2

)(
2

. (F4) 

An approximated form for )(tf  can be derived from (F3) neglecting the 
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terms with order greater then 1, as follows 

 tjtj rr eFFeFtf ωω−
− ++≅ 101)( . (F5) 

The explicit form of 1−F , 0F  and 1F  can be calculated by means of (F4) 

for k = -1, 0 and 1 respectively. Substituting (F5) in (F1) leads to (5.67) and 

the expressions of 1−F , 0F  and 1F  coincides with those given in (5.68), (5.69) 

and (5.70). 
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14.Appendix G 
  
 

To derive (5.92), (5.78) must be written in the following form: 

 1
1

1
3

)(
2

−=⎟
⎠
⎞

⎜
⎝
⎛

δ
−ω+ω β

dir

oj
ri

V

P
eZ . (G1) 

Rearranging the terms of (G1) leads to this equivalent equation: 

 β−λ−=⎟
⎠
⎞

⎜
⎝
⎛

δ
− je

1
1  (G2) 

where λ is the real positive parameter defined as 

 
ori

dir

PZ

V

)(

3 2

ω+ω
=λ . (G3) 

Finally, combining (G2), (5.71) and (5.86) and solving for p  leads to 

(5.92). 
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