Università degli Studi di Bologna

Dipartimento di Elettronica Informatica e Sistemistica

Dottorato di Ricerca in Ingegneria Elettronica, Informatica e delle Telecomunicazioni - XIX Ciclo

SSD: ING-INF/03 - Telecomunicazioni

Iterative Decoding Methods Based on Low-Density Graphs

(Metodi di Decodifica Iterativa Basati su Grafi Sparsi)

Tesi di: Relatore: Ing. Enrico Paolini Chiar.mo Prof. Ing. Marco Chiani

Coordinatore: Chiar.mo Prof. Ing. Paolo Bassi

To my grandparents, Bice, Enzo, Silvana and Paolino

Contents

	Intr	oduct	ion	3
1	Ger	neralizi	ing Low-Density Parity-Check Codes: GLDPC and D-GLDPC	
	Coc	les		9
	1.1	Introd	luction	9
	1.2	LDPC	Codes, GLDPC codes and D-GLDPC codes	10
	1.3	Parity	r-Check Matrix Construction for D-GLDPC Codes	12
	1.4	Decod	ling of D-GLDPC Codes on the BEC	14
	1.5	Depen	ndence of D-GLDPC Codes on the Generalized Variable Nodes Rep-	
		resent	ation	16
_				
2		•	of Generalized and Doubly-Generalized LDPC Codes on the	
		•	easure Channel	19
	2.1		Functions for Generalized Variable and Check Nodes on the BEC	20
		2.1.1	EXIT Function for the Variable Nodes on the BEC	22
		2.1.2	EXIT Function for the Check Nodes on the BEC	23
		2.1.3	Bounded-Distance EXIT Functions	24
	2.2	Rando	om Code Hypothesis and Expurgated Ensemble Definition	25
		2.2.1	Operational Definition of $\mathcal{G}_*^{(n,k)}$	27
		2.2.2	Theoretical Definition of $\mathcal{G}_*^{(n,k)}$	28
	2.3	Expec	ted Information Functions Computation	29
		2.3.1	Computation of $J(m, n, r)$	31
		2.3.2	Computation of $K(m, n, g, u, r)$	31
	2.4	Expec	ted Split Information Functions Computation	33
		2.4.1	Computation of $\widetilde{K}(m, n, a, b, t, r)$	35
		2.4.2	Computation of $\widehat{K}(m, n, a, b, t, r)$	35
	2.5	Nume	rical Results	37
		2.5.1	GLDPC Codes with Uniform Check Node Structure	38
		2.5.2	Capacity-Approaching GLDPC Codes with Hybrid Check Node	
			Structure	40

ii Contents

		2.5.3 Capacity Approaching D-GLDPC Codes	43			
	2.6	Conclusion	45			
	2.7	Proofs of Lemmas and Theorems of Section 2.3	46			
	2.8	Proofs of Lemmas and Theorems of Section 2.4	49			
3	Ger	neralized Stability Condition for Generalized and Doubly-Generalized				
	LDI	PC Codes	55			
	3.1	Introduction	55			
	3.2	Definitions and Basic Notation	56			
	3.3	Independent Sets and Minimum Distance	58			
	3.4	Stability Condition and Derivative Matching for GLDPC Codes	59			
	3.5	Stability Condition and Derivative Matching for D-GLDPC Codes	61			
	3.6	Final Remarks	63			
	3.7	Appendix: Some Hints for Further Investigation	64			
4	A (A Class of LDPC Erasure Distributions with Closed-Form Threshold				
	Exp	pression	65			
	4.1	Introduction	65			
	4.2	Threshold for Check Regular Distributions	66			
	4.3	The New Class of Degree Distributions	68			
	4.4	Optimization of p -positive Degree Distributions	71			
		4.4.1 Optimization with Constrained Differential Evolution	71			
		4.4.2 Optimization Based on the Fourier-Budan Theorem	72			
	4.5	The Binomial Distributions are p -positive	76			
	4.6	Final Remarks	77			
	4.7	Appendix: Fixed Points Analysis of $\phi(\cdot)$ Function	78			
5	Con	astruction of Near-Optimum Burst Erasure Correcting Low-Density				
	Par	ity-Check Codes	81			
	5.1	Introduction	81			
	5.2	Pivots of Stopping Sets	84			
	5.3	Optimization Algorithm for LDPC Codes on Burst Erasure Channels	89			
	5.4	Numerical Results	93			
	5.5	Final Remarks	96			
6	Con	nclusion	99			
\mathbf{A}	EX	IT Functions for (31, 21) Generalized Check Nodes	109			
	A.1	(31, 21) Check Node with $d_{\min} = 2 \dots \dots \dots \dots \dots \dots$	109			
	A 2	(31–21) Check Node with $d_{\text{min}} = 3$	110			

Contents

	A.3 EXIT Function for the (31, 21) BCH Check Node	
В	Expected Split Information Functions Over $\mathcal{G}_*^{(31,10)}$	113
\mathbf{C}	Parity-Check Matrix for the $(1008, 504)$ Code with $L_{\text{max}} = 446$	123
	Acknowledgments	135

<u>iv</u> Contents

List of Tables

2.1	Thresholds on the BEC of GLPDC codes with (31, 21) BCH check nodes,	
	under d -bounded-distance decoding, and thresholds evaluated with the ex-	
	pected (31, 21) EXIT function	40
2.2	Capacity-approaching rate-1/2 LDPC, GLPDC, D-GLDPC $_1$ and D-GLDPC $_2$	
	edge distributions	42
2.3	Decoding thresholds for capacity-approaching rate-1/2 LDPC and GLPDC	
	distributions	42
4.1	Optimal p-positive and not p-positive distributions and thresholds for $R =$	
	$1/2, L = 20 \text{ and } d_c = \{6, 7\}. \dots$	72
4.2	Optimal $R = 1/2$ p-positive and not p-positive distributions for $d_c = \{6, 7\}$	
	with $\lambda(x) = \lambda_2 x + \lambda_3 x^2 + \lambda_5 x^4 + \lambda_L x^{L-1}$	75
5.1	Original and improved values of $L_{\rm max}$ for the five investigated LDPC codes.	93
5.2	Number of uncorrectable burst positions and corresponding erasure burst	
	lengths for the (4608, 4033) regular LDPC code	94

vi Contents

List of Figures

1.1	Structure of a D-GLDPC code	11
1.2	Bipartite graph for a (10,3) D-GLDPC code	13
1.3	Bipartite graph for a $(8,3)$ D-GLDPC code	17
2.1	General decoding model for the variable and check nodes of a D-GLDPC code	21
2.2	If $rank(\mathbf{G}) = r$ and the first j columns are an independent set, then \mathbf{G} can be transformed as shown by row summations only, with \mathbf{A} , \mathbf{B} and \mathbf{C}	20
2.3	non-null matrices	28 33
2.4	Scheme of matrix $[\mathbf{G} \mid \mathbf{I}_k]$ and definition of submatrix $\mathcal{S}_{q,h}$ for the evaluation	
	of the expected split information functions	34
2.5	Comparison between the EXIT function of a $(16,8)$ variable node, with generator matrix randomly chosen from $\mathcal{G}_*^{(16,8)}$ (solid), and the expected	
	EXIT function over $\mathcal{G}_{*}^{(16,8)}$ (dotted), for of $q = 0.2, 0.4, 0.6, 0.8, 1.0$	38
2.6	EXIT function of the (31,21) BCH code (solid) and expected EXIT func-	
	tion of the $(31,21)$ expurgated ensemble (dotted) under d -bounded-distance	
	decoding, for $d = 4, 7, 10, 31$	39
2.7	Comparison between the performance of a (3999, 1419) GLDPC code with	
	uniform check node structure composed of (31, 21) binary BCH codes and	
	a (3999, 1419) GLDPC code with uniform check node structure composed	
	of (31,21) linear block codes with $d_{\min} = 2$. The bipartite graph is the	
	same for the two codes	41
2.8	Performance of $R=1/2$ LDPC, GLDPC and D-GLDPC codes of length	
	N = 128000 on the BEC	44
2.9	Specific matrix for the computation of function $J(\cdot)$	46
2.10	Specific matrix for the computation of function $M(\cdot)$	47
2.11	Matrix for the computation of function $K(\cdot)$	48

viii Contents

2.12	Matrix for the computation of function $\widetilde{N}(\cdot)$	49
2.13	Specific choice of the submatrix \mathbf{M}_1 for the computation of $\widehat{M}(m, n, a, b, t, u, r)$.	50
2.14	Specific choice of the $(m \times j)$ matrix for the computation of $G(m, j, l, b, \gamma, \delta)$.	50
2.15	Specific position of the j independent columns, with $\mathrm{rank}(\mathbf{\Gamma}) = \gamma$ and	
	$\operatorname{rank}(\mathbf{\Delta}) = \delta.$	51
2.16	Specific position of the j independent columns, with $\mathrm{rank}(\Gamma) = \gamma$ and	
	$\operatorname{rank}(\mathbf{\Delta}) = \delta.$	51
2.17	Specific choice of ${\bf A}$ for the computation of the number of $[{\bf M_3} {\bf M_4}]$ matrices.	52
4.1	Permitted region for some values of (d_c, K, L)	74
4.2	Diagram showing the permitted region and the trajectory of the point	
	$(\epsilon(\overline{x}), \lambda_{17}(\overline{x}))$, for $R = 1/2$, $d_c = 7$, $K = 5$ and $L = 17$	75
4.3	Plot of $p(\cdot)$ for the optimal $R=1/2$ p-positive distribution corresponding	
	to $d_c = 7$, $K = 5$ and $L = 17$	76
5.1	Example of subgraph induced by a stopping set of size 6, with no pivots	85
5.2	Example of subgraph induced by a stopping set of size 4. The variable	
	nodes V_1 and V_2 are pivots for the stopping set, the variable nodes V_3 and	
	V_4 are not pivots	85
5.3	Example of subgraph induced by a size-8 stopping set with pivots $\{V_2, V_4, V_6, V_7\}$	$,V_8$
	If $\mathcal{P}^0 = \{V_2\}$, then the set of pivots found by the pivot searching algorithm	00
F 1	is $\{V_2, V_4, V_6\}$	88
5.4		00
F F	$\tilde{V}^{(i)}$ (not in $\mathcal{B}^{(i)}$) in order to make the pivots' span greater than $L_{\max} + 1$.	90
5.5	<u> </u>	95
5.6	Residual bit erasure rate for the (1008, 504) irregular PEG code with $L_{\text{max}} =$	
	86 and for the PSS-optimized code with the parity-check matrix given in	O.C
		96
5.7	Decoding failure rate for the (1008, 504) irregular PEG code with $L_{\text{max}} =$	
	86 and for the PSS-optimized code with the parity-check matrix given in	07
	Appendix C (with $L_{\text{max}} = 446$)	97

Acronyms

APP a posteriori probability

Bi-AWGN binary-input additive white Gaussian noise

BEC binary erasure channel

BP belief propagation

BSC binary symmetric channel

CCSDS Consultative Committee for Space Data Systems

CLBuEC constant length burst erasure channel

CND check node decoder

DE differential evolution

D-GLDPC doubly-generalized LDPC

eIRA Extended irregular repeat-accumulate

ESA European Space Agency

ESOC European Space Operation Center

EXIT extrinsic information transfer

GeIRA generalized extended irregular repeat-accumulate

GLDPC generalized low-density parity-check

i.i.d. independent, identically distributed

IRA irregular repeat-accumulate

LDPC low-density parity-check

LR likelihood ratio

2 Contents

MAP maximum a posteriori

 ${f NASA\text{-}JPL}$ NASA Jet Propulsion Lab

SPC single parity-check

 \mathbf{VND} variable node decoder

This thesis investigates channel coding schemes that can be represented as low-density bipartite graphs, and which are decoded through iterative algorithms based on the beliefpropagation (BP) principle [1]. By definition, a bipartite graph is any graph whose nodes are partitioned into two disjoined subsets, such that any edge can connect only two nodes belonging to different subsets [2]. The number of edges connected to a node is said the node degree. For each of the two disjoint subsets, the sequence of node fractions associated to the node degrees is said the (node-oriented) degree distribution. If the fraction of edges towards the nodes of a certain degree is used, instead of the fraction of nodes with that degree, then the edge-oriented degree distribution is obtained. By definition, a cycle of length l is a path in the bipartite graph, composed of l edges, starting and ending on the same node. The graph qirth is length of the shortest cycle in the graph. From the point of view of BP decoding, bipartite graphs with large girth are preferable. The bipartite graph representing the code is sparse in that the number of edges in the bipartite graph is a relatively small fraction of the total number of possible edges connecting the nodes of different subsets. The sparseness of the bipartite graph is the key feature for developing iterative decoding algorithms whose complexity is manageable even for very long codeword lengths (up to thousands of bits).

The so far most investigated class of such codes is represented by low-density parity-check (LDPC) codes, that were first proposed in [3] in 1963, and then rediscovered only about forty years later (see e.g. [4, 5, 6, 7, 8]), after the invention of turbo codes [9]. For LDPC codes, the two disjoint sets of nodes are called *variable nodes* and *check nodes*, where the variable nodes represent the encoded bits and the check nodes the parity-check equations involving such bits. Thus, a variable node V is connected to a check node C if and only if the bit corresponding to V is involved in the parity-check equation corresponding to C. LDPC codes have been shown to exhibit excellent performance, under iterative BP decoding, over a wide range of communication channels, achieving extraordinary coding gains with moderate decoding complexity.

Asymptotically in the codeword length, LDPC codes exhibit a threshold phenomenon. In fact, if the noise level is smaller than a certain *decoding threshold* (which depends on the bipartite graph properties) then it is possible to achieve an arbitrarily small bit error

probability under iterative decoding, as the codeword length tends to infinity. On the contrary, for noise level larger than the threshold, the bit error probability is always larger than a positive constant, for any codeword length [7, 8]. On the binary-input additive white gaussian noise (Bi-AWGN) channel, this threshold value is defined in terms of signal-to-noise ratio, on the binary symmetric channel (BSC) in terms of error probability, on the binary erasure channel (BEC) in terms of erasure probability. There are two main tools for asymptotic analysis of LDPC codes, i.e. for evaluating the decoding threshold associated to a given degree distribution: differential evolution [7] and extrinsic information transfer (EXIT) charts [10].

One of the features that makes LDPC codes very attractive is the possibility to design, for several transmission channels, the bipartite graph degree distribution for the variable and check nodes in order to obtain a decoding threshold which is extremely close to the channel capacity [11]. For given code rate and node degrees, the threshold optimization is usually performed by means of numerical optimization tools, especially differential evolution (DE) [12]. In the special case of the BEC, where the transmitted bits are either correctly received or "lost" independently with some erasure probability, it was also shown that it is possible to design sequences of degree distributions, known as *capacity-achieving sequences* [13] whose threshold converges to the channel capacity.

While the asymptotic design and analysis of LDPC codes is so far mostly understood, there still is a knowledge gap with respect to the design of *finite length* LDPC codes. In fact, it has not be possible up to date to design finite length LDPC codes having both very good waterfall performance and very good error floor performance: finite length LDPC codes with a degree distribution associated to a close-to-capacity decoding threshold, though characterized by very good waterfall performance, usually exhibit a bad error floor performance, due to poor minimum distance [14, 15]. Then, the design of finite length LDPC codes mostly relies on the search for the best compromise between the two regions of the performance curve, by carefully constructing the bipartite graph. Among the several techniques that have been proposed they are quite effective those based on finite geometries [5], on the progressive-edge-growth (PEG) construction [16], on the irregular repeat-accumulate (IRA) construction [17], on circulant permutation matrices [18] and on protographs [19]. These techniques, or their combinations, lead to codes with good code properties (in terms, for instance, of girth of the bipartite graph and possibility to perform the encoding procedure efficiently).

The attempt to improve the compromise between waterfall performance and error floor has recently inspired the study of more powerful, and somewhat more complex, coding schemes. This is the case of generalized LDPC (GLDPC) codes [20] and doubly-generalized LDPC (D-GLDPC) codes [21] that, together with standard LDPC codes, are the coding techniques subject of this thesis. The basic idea behind GLDPC and D-

GLDPC codes is to bridge the classical coding techniques and the modern ones (based on sparse graphs and BP decoding), by letting classical linear block codes be nodes of the bipartite graph. In GLDPC codes, generic linear block codes are used as check nodes. In D-GLDPC codes, which represent a wider class of codes than GLDPC codes, the generalization consists in using generic linear block codes both as variable nodes and as check nodes.

The above mentioned coding techniques are studied in this thesis assuming as communication channel the BEC. This communication channel has gained a certain interest in the last few years for a number of reasons. First, when considering transmission on the BEC, it is sometimes possible to study the problems analytically instead of by extensive simulation. Second, it was proved in recent works that LDPC codes optimized for transmission on the BEC usually exhibit good performance also when used for transmission on error channels, like the BSC or the Bi-AWGN channel [22]. In general, codes having a good compromise between waterfall and error floor performance on the BEC, exhibit the same good compromize also on other channels. Third, when performing asymptotic code analysis by EXIT chart, it is sometimes possible to use the EXIT function for the check nodes, evaluated on the BEC, instead of the actual EXIT function, and still obtain an accurate threshold analysis. Fourth, codes designed for transmission on erasure channels (especially burst erasure channels) are interesting for a wide range of heterogeneous applications, including wireless communications, data storage and packet-level forward erasure correction in space applications (this specific application is currently under investigation within the CCSDS by ESA/ESOC and NASA-JPL [23]). The thesis outline is described next.

In Chapter 1, the coding techniques investigated in the thesis, namely LDPC, GLDPC and D-GLDPC codes, are described, and the basic notation is introduced. In this chapter, the rules for developing the parity-check matrix of GLDPC codes and D-GLDPC codes from the code bipartite graph, and the decoding algorithm for such codes on the BEC are also described.

In Chapter 2, a method for the analysis of GLDPC codes and D-GLDPC codes on the BEC, based on the concept of extrinsic information transfer (EXIT) chart, is described. This method permits to overcome the problem consisting in the impossibility to evaluate the EXIT function for the check or variable component codes, in situations where the information functions or split information functions for the component code are unknown. According to the proposed technique, GLDPC codes and D-GLDPC codes where the generalized check and variable component codes are random codes with minimum distance at least 2, are considered. A method is then developed which permits to obtain the EXIT chart for the overall GLDPC or D-GLDPC code, by evaluating the expected EXIT function for each check and variable component code. This technique is then combined

with differential evolution (DE) algorithm in order to generate some optimal GLDPC and D-GLDPC edge distributions. Numerical results on long, random codes, are presented which reveal that D-GLDPC codes can outperform standard LDPC codes and GLDPC codes in terms of both waterfall performance and error floor.

In Chapter 3, the well-known stability condition for LDPC codes on the BEC is extended to GLDPC codes and D-GLDPC codes. It is proved that, in both cases, the stability condition only involves the component codes with minimum distance 2. The stability condition for GLDPC codes is always expressed as an upper bound to the decoding threshold. This is not possible for D-GLDPC codes, unless all the generalized variable nodes have minimum distance at least 3. Furthermore, a condition called derivative matching is defined, which is sufficient for a GLDPC or D-GLDPC code to achieve the stability condition with equality. If this condition is satisfied, the threshold of D-GLDPC codes (whose generalized variable nodes have all minimum distance at least 3) and GLDPC codes can be expressed in closed form.

A family of LDPC degree distributions, whose decoding threshold on the binary erasure channel (BEC) admits a simple closed form, is studied in Chapter 4. These degree distributions are a subset of the check regular distributions (i.e. all the check nodes have the same degree) fulfilling the derivative matching condition, and are referred to as p-positive distributions. Achieving the stability condition with equality, the threshold of a p-positive distribution is simply expressed by $[\lambda'(0)\rho'(1)]^{-1}$. Besides this closed form threshold expression, the p-positive distributions exhibit three additional properties. First, for given code rate, check degree and maximum variable degree, they are in some cases characterized by a threshold which is extremely close to that of the best known check regular distributions, under the same set of constraints. Second, the threshold optimization problem within the p-positive class can be solved in some cases with analytic methods, without using any numerical optimization tool. This is indeed the most interesting feature of this class of codes. Third, these distributions can achieve the BEC capacity. The last property is shown by proving that the well-known binomial degree distributions belong to the p-positive family.

Chapter 5 moves to consider finite length LDPC codes and their design over non-memory-less erasure channels. In this chapter, a simple, general-purpose and effective tool for the design of LDPC codes for iterative correction of bursts of erasures is presented. The design method consists in starting from the parity-check matrix of an LDPC code and developing an optimized parity-check matrix, with the same performance on the memory-less erasure channel, and suitable also for the iterative correction of single bursts of erasures. The parity-check matrix optimization is performed by an algorithm called pivot searching and swapping (PPS) algorithm, which executes permutations of carefully chosen columns of the parity-check matrix, after a local analysis of particular variable

nodes called stopping set pivots. This algorithm can be in principle applied to any LDPC code. If the input parity-check matrix is designed for achieving good performance on the memory-less erasure channel, then the code obtained after the application of the PSS algorithm provides good joint correction of independent erasures and single erasure bursts. Numerical results are provided in order to show the effectiveness of the PSS algorithm when applied to different categories of LDPC codes.

Concluding remarks are presented in Chapter 6.

Chapter 1

Generalizing Low-Density Parity-Check Codes: GLDPC and D-GLDPC Codes

1.1 Introduction

Low-density parity-check (LDPC) codes [3] have been shown to exhibit excellent asymptotic performance over a wide range of channels, under iterative decoding [7, 11, 5, 24, 18, 25]. It has been proved that irregular LDPC codes are able to asymptotically achieve the binary erasure channel (BEC) capacity for any code rate [26, 13]: this means that, for any code rate R and for any small $\epsilon > 0$, it is possible to design an edge degree distribution (λ, ρ) such that $\int_0^1 \rho(x) dx / \int_0^1 \lambda(x) dx = 1 - R$, whose threshold is $p^* = (1 - \epsilon)(1 - R)$. Examples of capacity achieving (sequences of) degree distributions are the heavy-tail poisson sequence [26] and the binomial sequence [27].

It is well known that this very good asymptotic performance in terms of decoding threshold does not necessarily correspond to a satisfying finite length performance. In fact, finite length LDPC codes with good asymptotic threshold, though typically characterized by good waterfall performance, are usually affected by high error floors [14, 28, 29]. This phenomenon has been partly addressed in [15], where it is proved that all the so far known capacity approaching LDPC degree distributions, all characterized by $\lambda'(0)\rho'(1) > 1$, are associated to finite length LDPC codes whose minimum distance is a sublinear (more precisely, logarithmic) function of the codeword length N. When considering transmission on the BEC, the low weight codewords induce small stopping sets [30], thus resulting in high error floors.

The (so far not overcome) inability in generating LDPC codes, with threshold close to capacity and good minimum distance properties as well, is one of the main reasons for investigating more powerful (and complex) coding schemes. Examples are generalized LDPC (GLDPC) codes and doubly-generalized LDPC (D-GLDPC) codes. In GLDPC

codes, generic linear block codes are used as check nodes in addition to the traditional single parity-check (SPC) codes, as explained in Section 1.2. First introduced in [20], GLDPC codes have been more recently investigated, for instance, in [31, 32, 33, 34, 35, 36, 37, 38, 39, 40. Recently introduced in [21, 41, 42], D-GLDPC codes represent a wider class of codes than GLDPC codes. The generalization consists in using generic linear block codes as variable nodes in addition to the traditional repetition codes (see Section 1.2). Linear block codes used as check or variable nodes will be called *component codes* of the D-GLDPC code. The check nodes represented by component codes which are not SPC codes will be called *generalized check nodes*, and their associated codes *generalized check* component codes. Analogously, the variable nodes represented by component codes which are not repetition codes will be called *generalized variable nodes*, and their associated codes generalized variable component codes. The ensemble of all the check nodes will be referred to as the check node decoder (CND), and the ensemble of all the variable node variable node decoder (VND). In this thesis, only binary check and variable component codes will be considered, so that the overall LDPC, GLDPC or D-GLDPC code is a binary code.

A description of the concepts of GLDPC and D-GLDPC code is provided in Section 1.2. In Section 1.3 the rule for obtaining the parity-check matrix of a D-GLDPC code is explained. Then, in Section 1.4 the decoding algorithm for D-GLDPC codes on the BEC is described. Both Section 1.3 and Section 1.4 include LDPC and GLDPC codes as special instances. Finally, in Section 1.5 it is provided evidence that the structure and the properties of a D-GLDPC code depend on the representation chosen for its generalized variable nodes.

1.2 LDPC codes, GLDPC codes and D-GLDPC codes

A traditional LDPC code of length N and dimension K is usually graphically represented by means of a sparse bipartite graph, known as Tanner graph [20], characterized by N variable nodes and a number $M \geq N - K$ of check nodes. Each edge in the graph can only connect a variable node to a check node, and the number of edges is small with respect to the total number of possible edges $M \cdot N$. According to this representation, the variable nodes have a one-to-one correspondence with the encoded bits of the codeword, and each check node represents a parity-check equation involving a certain number of encoded bits. The degree of a node is defined as the number of edges connected to the node. Thus, the degree of an LDPC variable node is the number of parity constraints the corresponding encoded bit is involved in, and the degree of an LDPC check node is the number of bits involved in the corresponding parity-check equation.

A degree-n check node of a standard LDPC code can be interpreted as a length-n

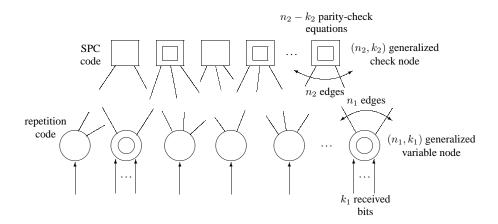


Figure 1.1: Structure of a D-GLDPC code.

SPC code, i.e. as a (n, n-1) linear block code. Analogously, a degree-n variable node can be interpreted as a length-n repetition code, i.e. as a (n, 1) linear block code, where the information bit corresponds to the bit received from the communication channel. A first step towards the generalization of LDPC codes consists in letting some of (or eventually all) the check nodes, be generic (n, k) linear block codes: the corresponding code structure is known as GLDPC code. An (n, k) generalized check node is connected to n variable nodes, and corresponds to n-k parity-check equations. Then, for GLDPC codes, the number of parity check equations is no longer equal to the number of check nodes. If there are N_C check nodes, then the number of parity-check equations is $M = \sum_{i=1}^{N_C} (n_i^C - k_i^C)$, where n_i^C and k_i^C are, respectively, the length and the dimension of the i-th check component code.

The generalized check nodes are characterized by better error or erasure correction capability than SPC codes, and they can be favorable from the point of view of the code minimum distance. The drawback of using generalized check nodes is an overall code rate loss, which might be not compensated by their high correction capability [34]. This makes GLDPC codes with uniform check node structure (i.e. composed only of generalized nodes, e.g. only of (7,4) Hamming codes), despite being characterized by a minimum distance linearly growing up with the codeword length N [31], quite poor in terms of decoding threshold. This poor threshold, which was evaluated in [34] on the BEC assuming bounded distance decoding at the check nodes, does not improve to competitive values even if MAP decoding is performed at the check nodes [37], as it will be shown in Section 2.5.

The second generalization step consists in introducing variable nodes different from repetition codes. The corresponding code structure is known as D-GLDPC code [21, 41], and is represented in Fig. 1.1. An (n, k) generalized variable node is connected to n check nodes, and receives its k information bits from the communication channel. Thus, k of

the N encoded bits for the overall D-GLDPC code are received by the (n, k) generalized variable node, and interpreted by the variable node as its k information bits. In a D-GLDPC code, the number of parity check equations is still given by $M = \sum_{i=0}^{N_C} (n_i^C - k_i^C)$, as for a GLDPC code. Moreover, if N_V is the number of variable nodes, the codeword length is $N = \sum_{j=1}^{N_V} k_j^V$, where k_j^V is the dimension of the j-th variable component code.

1.3 Parity-Check Matrix Construction for D-GLDPC Codes

Let us consider a D-GLDPC code with a given sparse bipartite graph, and let us suppose that the bipartite graph is composed of N_V variable nodes, indexed from 1 to N_C , connected to N_C check nodes, indexed from 1 to N_C . For simplicity, we assume that there are no multiple connections between each pair of connected variable and check nodes. The $(N_C \times N_V)$ sparse binary matrix whose element (i, j) is equal to 1 if the *i*-th check node is connected to the *j*-th variable node, and is equal to 0 otherwise, is called *adjacency matrix* of the bipartite graph, denoted by \mathbf{A} . The adjacency matrix has a one-to-one correspondence with the bipartite graph. The method for obtaining the parity-check matrix of a D-GLDPC with a certain bipartite graph consists in starting from the adjacency matrix of the graph, and then modifying it in two successive steps, as explained in [21].

Let \mathbf{H}_i^C be a $((n_i^C - k_i^C) \times n_i^C)$ parity-check matrix representation for the *i*-th check node; if the check node is a standard SPC code, then \mathbf{H}_i^C is a row vector of length n_i^C . Let \mathbf{G}_j^V be a $(k_j^V \times n_j^V)$ generator matrix representation for the *j*-th variable node, and let $\mathbf{G}_j^{V,T}$ be its transposed matrix; if the variable node is a standard repetition code, then \mathbf{G}_j^V is a row vector of length n_j^V . The two steps for obtaining the parity-check matrix \mathbf{H} of the D-GLDPC code from its adjacency matrix \mathbf{A} are described next (for more details we refer to [21]).

- Row expansion. For $i = 1, ..., N_C$, in row i of \mathbf{A} substitute to each 0 an all-zero column vector of length $n_i^C k_i^C$, and to each 1 a specific column of \mathbf{H}_i^C . Let the obtained $((\sum_{i=1}^{N_C} (n_i^C k_i^C)) \times N_V)$ binary matrix be $\tilde{\mathbf{H}}$.
- Column expansion. For $j = 1, ..., N_V$, in column j of $\tilde{\mathbf{H}}$ substitute to each 0 an all-zero row vector of length k_j^V , and to each 1 corresponding to the same check node, the same row of $\mathbf{G}_j^{V,T}$.

The binary matrix with $M = \sum_{i=1}^{N_C} (n_i^C - k_i^C)$ rows and $N = \sum_{j=1}^{N_V} k_j^V$ columns, obtained at the end of the above described two-step procedure, is the parity-check matrix **H** for the overall D-GLDPC code. If the code is a standard LDPC code, the parity-check matrix **H** is equal to the adjacency matrix **A**. If the code is a GLDPC code (i.e.

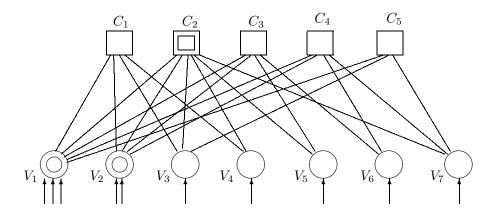


Figure 1.2: Bipartite graph for a (10,3) D-GLDPC code.

there are generalized check nodes, but there are no generalized variable nodes), then the parity-check matrix \mathbf{H} is equal to $\tilde{\mathbf{H}}$.

Example 1.1. Consider the (10,3) D-GLDPC code with the bipartite graph depicted in Fig. 1.2, with a (5,3) generalized variable node (V_1) , a (4,2) generalized variable node (V_2) and a (6,3) generalized check node (C_2) . Suppose that the generator matrices for the two generalized variable nodes, in systematic representation, are

$$\mathbf{G}_1^V = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right]$$

and

$$\mathbf{G}_2^V = \left[\begin{array}{ccc} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array} \right] \,,$$

and that the parity-check matrix for the generalized check node is

$$\mathbf{H}_2^C = \left[egin{array}{ccccc} 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 & 0 & 0 \end{array}
ight] \,.$$

The adjacency matrix for this code is:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix},$$

where the bold entries emphasize that the second row corresponds to a generalized check node. By applying the row expansion step, we obtain:

$$\tilde{\mathbf{H}} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & 1 & 1 & 0 & 0 & 0 \\ \underline{\mathbf{1}} & \underline{\mathbf{0}} & 0 & 0 & 1 & 0 & 1 \\ \underline{\mathbf{0}} & \underline{\mathbf{1}} & 0 & 1 & 0 & 0 & 1 \\ \underline{\mathbf{0}} & \underline{\mathbf{1}} & 1 & 1 & 0 & 0 & 0 \\ \mathbf{1} & \mathbf{1} & 0 & 0 & 1 & 1 & 0 \\ \mathbf{1} & \mathbf{1} & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

where now the bold entries emphasize that the first and the second columns correspond to generalized variable nodes, and the underlined entries emphasize that, in these two columns, the second, third and fourth rows correspond to the same check node (C_2) . By applying the column expansion step we finally obtain the D-GLDPC code parity check matrix:

1.4 Decoding of D-GLDPC Codes on the BEC

In this section, the message-passing iterative decoding algorithm for D-GLDPC codes on the BEC is described. The iterative decoding algorithm for standard LDPC codes and for GLDPC codes can be obtained as a special instance of the general algorithm presented next. For a detailed description of the iterative decoding algorithm of D-GLDPC codes on the BI-AWGN channel we refer to [21]).

In order to properly describe the decoding algorithm for D-GLDPC codes on the BEC, some notation is needed. The check nodes connected to the variable node V_j are denoted by $C^{j,1}, C^{j,2}, \ldots, C^{j,n_j^V}$, while their indexes are denoted by $c^{j,1}, c^{j,2}, \ldots, c^{j,n_j^V}$. The socket of the check node $C^{j,w}$, connected to the w-th socket of V_j , is indexed by $t^{j,w}$. Analogously, the variable nodes connected to the check node i are denoted by $V^{i,1}, V^{i,2}, \ldots, V^{i,n_i^C}$, while their indexes are denoted by $v^{i,1}, v^{i,2}, \ldots, v^{i,n_i^C}$. The socket of the variable node $V^{i,w}$, connected to the w-th socket of C_i , is indexed by $s^{i,w}$.

The erasure probability of the BEC is q, and the erased bits are denoted by the symbol "?". The transmitted codeword is $\mathbf{b} = [\mathbf{b}_1, \dots, \mathbf{b}_{N_V}]$ and the sequence received from the BEC is $\mathbf{y} = [\mathbf{y}_1, \dots, \mathbf{y}_{N_V}]$, where $\mathbf{b}_j = [b_{j,1}, \dots, b_{j,k_j^V}]$ and $\mathbf{y}_j = [y_{j,1}, \dots, y_{j,k_j^V}]$, both of

size k_j^V , correspond to the j-th variable node. It is $y_{j,t} = b_{j,t}$ with probability 1 - q and $y_{j,t} =$ "?" with probability q. The number of "?" symbols in a sequence **d** is denoted by $\mathcal{E}(\mathbf{d})$.

At the generic decoding iteration ℓ , some of the information bits for the j-th variable are known and the other ones are unknown. These information bits are denoted by $\mathbf{u}_j^{\ell} = [u_{j,1}^{\ell}, \dots, u_{j,k_j^{V}}^{\ell}]$ where, for $t = 1, \dots, k_j^{V}$, $u_{j,t}^{\ell}$ may be equal to 0/1 (in case it is known) or to "?" (in case it is unknown). The encoded bits $\mathbf{x}_j^{\ell} = [x_{j,1}, \dots, x_{j,n_j^{V}}]$ that correspond to \mathbf{u}_j^{ℓ} are given by $\mathbf{u}_j^{\ell} \mathbf{G}_j^{V}$, where $0/1 \cdot ? = ? \cdot 0/1 = 0/1 + ? = ? + 0/1 = ?$.

The *a priori* information that the *j*-th variable node receives from the check nodes is denoted by $\mathbf{a}_j = [a_{j,1}, \dots, a_{j,n_j^V}]$. Correspondingly, the *a priori* information that the *i*-th check node receives from the variable nodes is denoted by $\mathbf{z}_i = [z_{i,1}, \dots, z_{i,n_j^C}]$.

The iterative decoding algorithm for D-GLDPC codes on the BEC is described next. It is a generalization of the iterative decoder for standard LDPC codes presented in [26]. The decoding algorithm is described next under the hypothesis that MAP decoding is performed at each check and variable component code. Different decoding algorithms (e.g. bounded distance decoding, see Section 2.1.3) may be considered.

Iterative Decoding Algorithm for D-GLDPC codes on the BEC

- Initialization. Set $\ell = 1$. For $j = 1, ..., N_V$, set $\mathbf{r}_j^{\ell} = \mathbf{y}_j$ and set \mathbf{a}_j^{ℓ} equal to the all-"?" word of length n_j^V . For $j = 1, ..., N_V$, consider the $(k_j^V \times (n_j^V + k_j^V))$ code with code with generator matrix $[\mathbf{G}_j^V \mid \mathbf{I}_{k_j^V}]$, and run MAP decoding on the BEC for this code, assuming $[\mathbf{a}_j^{\ell} | \mathbf{r}_j^{\ell}]$ as received. Let the decoded sequence be $[\mathbf{x}_j^{\ell} | \mathbf{u}_j^{\ell}]$.
- Horizontal step. For $i=1,\ldots,N_C$, for $w=1,\ldots,n_i^C$, set $z_{i,w}^\ell=x_{v^{i,w},s^{i,w}}^\ell$. Run MAP decoding on the BEC for the (n_i^C,k_i^C) check node for the received sequence \mathbf{z}_i^ℓ . Let the decoded sequence be $\mathbf{e}_i^\ell=[e_{i,1}^\ell,\ldots,e_{i,n_i^C}^\ell]$.
- Vertical step. For $j=1,\ldots,N_V$, set $\mathbf{r}_j^\ell = \mathbf{u}_j^\ell$. For $j=1,\ldots,N_V$, for $w=1,\ldots,n_j^V$, set $a_{j,w}^\ell = e_{c^{j,w},t^{j,w}}^\ell$. For $j=1,\ldots,N_V$, consider the $(k_j^V \times (n_j^V + k_j^V))$ code with code with generator matrix $[\mathbf{G}_j^V \mid \mathbf{I}_{k_j^V}]$, and run MAP decoding on the BEC for this code, assuming $[\mathbf{a}_j^\ell | \mathbf{r}_j^\ell]$ as received sequence. Let the decoded sequence be $[\mathbf{x}_j^\ell | \mathbf{u}_j^\ell]$.
- Stopping criterion step. If $\mathcal{E}(\mathbf{u}^{\ell}) = 0$, exit and declare a success. Else, if $\ell = \ell_{\text{max}}$, exit and declare a failure. Else, if $\ell \geq 2$ and $\mathcal{E}(\mathbf{u}^{\ell}) = \mathcal{E}(\mathbf{u}^{\ell-1})$ exit and declare a failure. Else, go to the horizontal step.

In the first half of each decoding iteration (horizontal step), the i-th (n_i^C, k_i^C) check node receives n_i^C messages from the variable nodes, stored into \mathbf{z}_i : some of them are known messages (i.e. "0" or "1" messages, with infinite reliability) some others are erasure messages (i.e. "?" messages). MAP decoding is then performed at the check node in order

to recover its unknown encoded bits, resulting in \mathbf{e}_i . After the check node has completed its decoding procedure, a known message is sent through the w-th socket, to the variable node with index $v^{i,w}$ if the bit $e_{i,w}$ is known, while an erasure message is sent if $e_{i,w}$ is still unknown.

In the second half of each decoding iteration (vertical step), the generic (n_j^V, k_j^V) variable node receives n_j^V messages from the check nodes, stored into \mathbf{a}_j : some of them are erasure messages, some others are known messages. The computation performed by an (n_j^V, k_j^V) variable node is analogous to that of a check node, with the difference that, at each iteration, some of the information bits might be known as well as some of the encoded bits. In order to exploit the partial knowledge of the information bits \mathbf{u}_j , MAP decoding is performed on the extended generator matrix $[\mathbf{G}_j^V | \mathbf{I}_{k_j^V}]$, where \mathbf{G}_j^V is the chosen $(k_j^V \times n_j^V)$ generator matrix for the variable node, and $\mathbf{I}_{k_j^V}$ is the $(k_j^V \times k_j^V)$ identity matrix. After MAP decoding has been performed, some of the previously unknown information and encoded bits for the variable node might be recovered. A known message is then sent through the w-th socket, to the check node with index $c^{j,w}$ if the bit $x_{j,w}$ is known, while erasure messages is sent if $x_{j,w}$ is still unknown.

The algorithm is stopped as soon as there are no longer unknown encoded bits for the overall code (in this case decoding is successful), or when unknown encoded bits for the overall code still exist, but either a maximum number of iterations ℓ_{max} has been reached, or in the last iteration no encoded bits where recovered. It the latter two cases, a decoding failure is declared.

In all the simulation results presented in this thesis, it is assumed $\ell_{\text{max}} = \infty$.

1.5 Dependence of D-GLDPC Codes on the Generalized Variable Nodes Representation

A very important property of D-GLDPC codes is that the structure and the properties of the code depend on the representation chosen for its generalized variable nodes. This fact is addressed next with an example.

Let us consider the (8,3) D-GLDPC code with the bipartite graph depicted in Fig. 1.3. Such bipartite graph is composed of five degree-3 standard check nodes (length-3 SPC codes), five degree-2 standard variable nodes (length-2 repetition codes), and one (5,3) generalized variable node. Let the code book for the (5,3) generalized variable node be $\{00000, 10011, 01001, 00110, 11010, 10101, 01111, 11100\}$. Two possible (3×5) generator matrix representations that correspond to this code book are

$$\mathbf{G_1} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \tag{1.1}$$

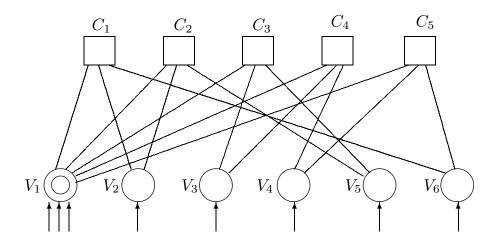


Figure 1.3: Bipartite graph for a (8,3) D-GLDPC code.

and

$$\mathbf{G_2} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}, \tag{1.2}$$

where G_1 is a systematic representation for the generalized variable node, and G_2 is a non-systematic representation.

Assuming the systematic representation G_1 for the generalized variable node V_1 , and applying the rules for developing the D-GLDPC code parity-check matrix described in Section 1.4, we obtain the following parity-check matrix for the overall D-GLDPC code:

$$\mathbf{H_{G_1}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}. \tag{1.3}$$

On the other hand, assuming the non-systematic representation G_2 , we obtain the parity-check matrix

$$\mathbf{H_{G_2}} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}. \tag{1.4}$$

The code book for the overall D-GLDPC code corresponding to $\mathbf{H}_{\mathbf{G_1}}$ is

```
\mathbf{x_1} = 0 \quad 0
\mathbf{x_2} = 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0
\mathbf{x_3} = 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0
\mathbf{x_4} = 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1
\mathbf{x_5} = 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0
\mathbf{x_6} = 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1
\mathbf{x_7} = 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1
\mathbf{x_8} = 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1
```

while the code book corresponding to $\mathbf{H}_{\mathbf{G_2}}$ is

```
\mathbf{x_1} = 0 \quad 0
\mathbf{x_2} = 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0
\mathbf{x_3} = 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0
\mathbf{x_4} = 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1
\mathbf{x_5} = 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0
\mathbf{x_6} = 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1
\mathbf{x_7} = 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1
\mathbf{x_8} = 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1
```

It is clear that the choice of different representations for the generalized variable node V_1 lead to different D-GLDPC codes, with different properties. For instance, in this specific example, we obtain a D-GLDPC code with minimum distance $d_{\min} = 2$ by choosing $\mathbf{G_1}$ and a D-GLDPC code with minimum distance $d_{\min} = 3$ by choosing $\mathbf{G_2}$.

We also explicitly remark that this fact is not shared by the generalized check nodes. Assuming a different representation for the generalized check nodes does not modify the code book of the overall D-GLDPC code.

Chapter 2

Analysis of Generalized and Doubly-Generalized LDPC Codes on the Binary Erasure Channel

In this chapter, a technique for the asymptotic analysis of GLDPC and D-GLDPC codes on the BEC is presented. This technique is based on extrinsic information transfer (EXIT) charts [43, 10, 44, 45]. As it will be explained in the following, the success of EXIT chart analysis is bound to the knowledge of the EXIT function for each check and variable component code. By exploiting results from [44, Theorem 2] it is proved that, if the communication channel is a BEC, then the EXIT function of a check component code, under maximum a posteriori (MAP) decoding, can be related to the code information functions (a concept first introduced in [46]), and the EXIT function of a variable component code, under MAP decoding, to the code split information functions (see Section 2.1). This relationship between EXIT function and (split) information functions is very useful for the threshold analysis on the BEC of GLDPC and D-GLDPC codes built up with component codes whose (split) information functions are known. A major problem is that, for a wide range of linear block codes, including most binary double error-correcting and more powerful BCH codes, these parameters are still unknown. In fact, no closed-form expression is available as a function of the code dimension k and code length n, and a direct computation of these parameters is unfeasible, due to the huge computation time required, even for small codeword lengths. This is the case, for instance, of the split information functions for the (31, 10) dual code of a narrowsense binary (31, 21) BCH code.

In this work, a solution for the asymptotic analysis of GLDPC and D-GLDPC codes, which permits to overcome the impossibility to evaluate the EXIT function for the check or variable component codes also in situations where the information functions or split information functions remain unknown, is developed. The proposed method consists in considering *random* check and variable generalized component codes belonging to an

expurgated ensemble, instead of specific check and variable generalized component codes (like Hamming codes, BCH codes, etc., or the dual codes). As it will be explained in Section 2.2 this expurgated ensemble is the ensemble of all the binary linear block codes with minimum distance d_{\min} satisfying $d_{\min} \geq 2$. A technique is then developed in order to exactly evaluate the expected information functions for each check component code and the expected split information functions for each variable component code over the considered expurgated ensemble. This permits to evaluate the expected EXIT function for each check component code or variable component code, supposing transmission on the BEC, and the expected EXIT function for the overall check node decoder (CND) or variable node decoder (VND).

The developed analysis tool is then exploited in order to design capacity approaching GLDPC and D-GLDPC distributions. Simulation results obtained on random, long codes, reveal that capacity approaching D-GLDPC codes can exhibit better threshold *and* lower error floor than capacity approaching LDPC and GLDPC codes. Moreover, by imposing constraints on the fraction of edges towards the generalized check nodes, the error floor of D-GLDPC codes can be further lowered (at the cost of increased complexity), while preserving good or very good waterfall performance.

This chapter is organized as follows. In Section 2.1 the relationship between the EXIT function of check and variable component codes on the BEC, and (split) information functions, is recalled. In the same section, the EXIT function of a generalized check node on the BEC, assuming bounded distance decoding instead of MAP decoding, is investigated. Section 2.2 is devoted to the explanation of the random component codes hypothesis and to the definition of the expurgated ensemble of check and variable component codes, which guarantees a correct application of the EXIT chart analysis. In Sections 2.3 and 2.4 the technique for the evaluation of the expected information functions for a random check component code and, respectively, of the expected split information functions for a random variable component code, are developed. Numerical results involving threshold analysis, distribution optimization and finite-length performance analysis, for both GLDPC and D-GLDPC codes, are presented in Section 2.5. Finally, concluding remarks are presented in Section 4.6.

2.1 EXIT Functions for Generalized Variable and Check Nodes on the BEC

In [44, Fig. 3], a general decoding model is described, which can be effectively adopted in order to express the EXIT function for the generalized check nodes of a GLDPC or D-GLDPC code, and for the generalized variable nodes of D-GLDPC code. This general decoding model is depicted in Fig. 2.1. The encoder of a linear block code with dimension

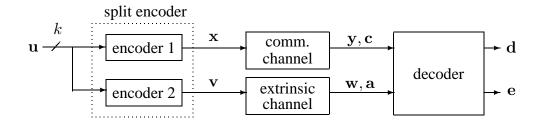


Figure 2.1: General decoding model for the variable and check nodes of a D-GLDPC code.

k is split into two linear encoders, namely encoder 1 and encoder 2, with generator matrices \mathbf{G}_1 and \mathbf{G}_2 generating a codeword (\mathbf{x}, \mathbf{v}) (with $\mathbf{x} = \mathbf{u} \mathbf{G}_1$ and $\mathbf{v} = \mathbf{u} \mathbf{G}_2$), and codeword length $|\mathbf{x}| + |\mathbf{v}|$, where $|\cdot|$ denotes the vector size. For each information word \mathbf{u} , the encoded bits \mathbf{x} are transmitted over a communication channel, resulting in \mathbf{y} , while the encoded bits \mathbf{v} are transmitted over an extrinsic channel, resulting in \mathbf{w} . Both the likelihood ratios (LRs) \mathbf{c} and \mathbf{a} , relative to \mathbf{y} and \mathbf{w} respectively, are exploited by the a posteriori probability (APP) decoder in order to compute the LRs \mathbf{d} for the encoded bits, and the extrinsic LRs \mathbf{e} . In the following, capital letters are used to denote random variables, lower case letters to denote realizations of such random variables.

The EXIT function of the linear code in Fig. 2.1, assuming that the encoders 1 and 2 have no idle bits, that MAP decoding is performed, that communication channel is a BEC with erasure probability q and that the extrinsic channel is a BEC with erasure probability p, has been shown in [44, eq. 36] to be expressed by

$$I_{E}(p,q) = \frac{1}{|\mathbf{v}|} \sum_{i=1}^{|\mathbf{v}|} I(V_{i}; \mathbf{Y}, \mathbf{W}_{[i]}) = 1 - \frac{1}{n} \sum_{h=0}^{k} (1-q)^{h} q^{k-h} \sum_{g=1}^{n} (1-p)^{g-1} p^{n-g} \cdot [g \, \tilde{e}_{g,h} - (n-g+1) \tilde{e}_{g-1,h}]. \tag{2.1}$$

In (2.1), V_i is the *i*-th bit of the encoded word \mathbf{V} (whose elements are i.i.d. Bernoulli random variables with equiprobable values), \mathbf{Y} is the random word outcoming from the communication channel, $\mathbf{W}_{[i]}$ is the random word outcoming from the extrinsic channel except the bit W_i , $I(\cdot)$ denotes the mutual information, and $\tilde{e}_{g,h}$ is the (g,h)-th unnormalized split information function. This parameter is defined as the summation of the dimensions of all the possible codes obtained considering just g positions among the encoded bits \mathbf{v} and just h positions among the encoded bits \mathbf{x} . It can be computed by performing the summation of the ranks of the $\binom{n}{g}\binom{k}{h}$ submatrices obtained by selecting g columns in \mathbf{G}_1 and h columns in \mathbf{G}_2 .

We refer to this decoding model in order to describe and analyze each generalized check node of a GLDPC or D-GLDPC code and each generalized variable node of a D-GLDPC code. In the contest of GLDPC and D-GLDPC codes, the communication channel is the channel over which the encoded bits of the overall code are transmitted; moreover, the extrinsic channel represents a model for the channel over which the messages are exchanged between variable and check nodes, during the iterative decoding process. If the communication channel is a BEC, then also the extrinsic channel is modelled as a BEC.

2.1.1 EXIT Function for the Variable Nodes on the BEC

The generic variable node (either a repetition code or a generalized one), representing an (n, k) linear block code, receives its k information bits from the communication channel, and interfaces to the extrinsic channel through its n encoded bits. For this reason, for a variable node, the encoder 1 is represented by the identity mapping $\mathbf{x} = \mathbf{u}$ (i.e. $\mathbf{G}_1 = \mathbf{I}_k$) and the encoder 2 performs a linear mapping $\mathbf{v} = \mathbf{G} \mathbf{u}$ (i.e. $\mathbf{G}_2 = \mathbf{G}$), where \mathbf{G} is one of the several possible generator matrix representations for the (n, k) linear block code. In this case it results $|\mathbf{x}| = k$ and $|\mathbf{v}| = n$. Thus, the (n, k) variable node is indeed interpreted as a (n + k, k) code whose generator matrix is in the form $[\mathbf{G} | \mathbf{I}_k]$, and its EXIT function on the BEC is the given by (2.1), with the encoder 1 being the identity mapping $\mathbf{x} = \mathbf{u}$ and the encoder 2 being the linear mapping $\mathbf{v} = \mathbf{G} \mathbf{u}$. This EXIT function can be equivalently expressed by:

$$I_{E}(p,q) = 1 - \frac{1}{n} \sum_{t=0}^{n-1} \sum_{z=0}^{k} p^{t} (1-p)^{n-t-1} q^{z} (1-q)^{k-z} \cdot [(n-t)\tilde{e}_{n-t,k-z} - (t+1)\tilde{e}_{n-t-1,k-z}],$$
(2.2)

which can be easily obtained from (2.1) by performing the substitutions t = n - g and z = k - h. Expressions (2.1) and (2.2) are valid under the hypothesis of MAP erasure decoding. If applied to a (n, 1) repetition code, (2.2) leads to $I_E(p, q) = 1 - q p^{n-1}$, i.e. to the well known expression of the EXIT function for a degree-n variable node of an LDPC code on the BEC.

It was shown in Section 1.5 that the properties of a D-GLDPC code depend on the chosen representation for its generalized variable nodes. Analogously, the split information functions are not unique for a given (n, k) generalized variable node and depend on the specific representation chosen for its generator matrix \mathbf{G} . This can be justified as follows. Different generator matrices correspond to different mappings of vectors \mathbf{u} 's to vectors \mathbf{v} 's. Hence, for a given information vector \mathbf{u} , a generator matrix \mathbf{G}' will lead to a codeword $(\mathbf{v}', \mathbf{u})$ for the (n + k, k) code with split encoder, while a generator matrix \mathbf{G}'' will lead to a different codeword $(\mathbf{v}'', \mathbf{u})$, thus generating a different code book. As a consequence, the EXIT function for a (n, k) linear block code, when used at a variable node within a D-GLDPC code, depends on the generator matrix representation chosen for the code. This fact does not hold for repetition codes (i.e. for the traditional variable

node of LDPC and GLDPC codes), for which only one code representation is possible. Then, an important difference between variable nodes represented by repetition codes and generalized (n, k) variable nodes of a D-GLDPC code (with k > 1) is that, in the latter case, different representations of the generator matrix \mathbf{G} are possible. These different code representations correspond to a different performance of the overall D-GLDPC code. The code representation for the generalized variable nodes becomes a degree of freedom for the code design.

2.1.2 EXIT Function for the Check Nodes on the BEC

For a check node (either a SPC code or a generalized one), no communication channel is present. Moreover, any check node representing an (n, k) linear block code interfaces to the extrinsic channel through its n encoded bits. Then, the encoder 1 is not present, while the encoder 2 performs a linear mapping $\mathbf{v} = \mathbf{G} \mathbf{u}$, where \mathbf{G} is one of the several possible generator matrix representations for the (n, k) linear block code. It follows that $|\mathbf{v}| = n$. This model is the same proposed in [44, Sec. VII-A].

The EXIT function of a generic (n, k) check node of a D-GLDPC code on the BEC can be obtained by letting $q \to 1$ in (2.2) (no communication channel is present). The obtained expression, equivalent to [44, eq. 40], is

$$I_{E}(p) = \frac{1}{|\mathbf{v}|} \sum_{i=1}^{|\mathbf{v}|} I(V_{i}; \mathbf{W}_{[i]}) = 1 - \frac{1}{n} \sum_{t=0}^{n-1} p^{t} (1-p)^{n-t-1} \cdot [(n-t)\,\tilde{e}_{n-t} - (t+1)\tilde{e}_{n-t-1}], \tag{2.3}$$

where, for g = 0, ..., n, \tilde{e}_g is the g-th (un-normalized) information function. It is defined as the summation of the dimensions of all the possible codes obtained considering just g positions in the code block \mathbf{v} of length n [46]. This parameter can be computed by performing the summation of the ranks of the $\binom{n}{g}$ submatrices obtained by selecting g columns in \mathbf{G} .

As for (2.2), also (2.3) assumes that erasures are corrected at the check node according to MAP decoding. If applied to a (n, n - 1) SPC code, (2.3) leads to the expression of the EXIT function on the BEC for a degree-n check node of an LDPC code, i.e. $I_E(p) = (1-p)^{n-1}$.

Since the code book of a linear block code is independent of the choice of the generator matrix, different code representations have the same information functions. Thus, different code representations for a generalized check node lead to the same EXIT function. This means that, differently from what happens for the generalized variable nodes, the performance of a GLDPC or D-GLDPC code is independent of the specific representation of its generalized check nodes.

2.1.3 Bounded-Distance EXIT Functions

Decoding algorithms that are less powerful than MAP decoding, but having a reduced complexity, may be used at the generalized variable and check nodes. In these cases, different expressions of the EXIT function must be considered. For example, let us consider a generalized (n, k) check node, and let us suppose that erasure recovery is performed according to the following bounded-distance decoding strategy, here referred to as d-bounded-distance decoding: "if the number of received erasures from the extrinsic channel is less than or equal to d, then execute MAP decoding, otherwise declare a decoding failure".

Theorem 2.1. If the extrinsic channel is a BEC with erasure probability p, then the EXIT function for a generalized (n,k) check node without idle bits, under d-bounded-distance decoding, is given by:

$$I_{E}(p) = 1 - \frac{1}{n} \sum_{t=0}^{d-1} (1-p)^{n-t-1} p^{t} [(n-t)\tilde{e}_{n-t} - (t+1)\tilde{e}_{n-t-1}]$$
$$- \sum_{t=d}^{n-1} (1-p)^{n-t-1} p^{t} \binom{n-1}{t}. \tag{2.4}$$

Proof. The following equalities hold:

$$I_{E}(p) = \frac{1}{|\mathbf{v}|} \sum_{i=1}^{|\mathbf{v}|} I(V_{i}; \mathbf{W}_{[i]})$$

$$= \frac{1}{n} \sum_{i=1}^{n} H(V_{i}) - \frac{1}{n} \sum_{i=1}^{n} H(V_{i} | \mathbf{W}_{[i]})$$

$$= 1 - \frac{1}{n} \sum_{t=0}^{n-1} p^{t} (1-p)^{n-t-1} \sum_{i=1}^{n} \sum_{\mathbf{w}_{[i]}^{(t)}} H(V_{i} | \mathbf{W}_{[i]} = \mathbf{w}_{[i]}^{(t)}),$$

where $H(\cdot)$ is the entropy function, $\mathbf{w}_{[i]}^{(t)}$ is a specific realization of $\mathbf{W}_{[i]}$ with t erasures, and $\sum_{i=1}^{n} H(V_i) = n$ since the code has no idle bits. The d-bounded-distance decoding strategy is equivalent to assume that is equal to 1 the entropy of each encoded bit V_i given any realization of $\mathbf{W}_{[i]}$ with $t \geq d$ erasures, thus leading to the term $\sum_{t=d}^{n-1} (1-p)^{n-t-1} p^t \binom{n-1}{t}$. On the contrary, if t < d, MAP decoding is performed thus leading to the same terms as in (2.3).

Example 2.1. In [34, Tab. 2], some thresholds on the BEC are presented for GLDPC codes with uniform check node structure, composed of narrow-sense binary BCH codes. These thresholds have been evaluated through a generalization of density evolution [47, 7,

48, 49, 50], assuming d-bounded-distance decoding at the check nodes, with $d = d_{\min} - 1$. The same thresholds can also be obtained through an EXIT charts approach exploiting (2.4) for the BCH check nodes, with $d = d_{\min} - 1$.

2.2 Random Code Hypothesis and Expurgated Ensemble Definition

Consider a D-GLDPC code with \mathcal{I}_V different types of variable component codes and \mathcal{I}_C different types of check component codes. The *i*-th variable component code type has EXIT function on the BEC $I_{E,V}^{(i)}(p,q)$, corresponding to a specific code representation, and is assumed without idle components. Analogously, the *i*-th check component code type has EXIT function $I_{E,C}^{(i)}(p)$, and is assumed without idle components. Variable and check nodes are supposed randomly connected through an edge interleaver. The fraction of edges towards the variable nodes of type *i* is denoted by λ_i , and the fraction of edges towards the check nodes of type *i* by ρ_i . Then, the total EXIT function for, respectively, the VND and for the CND is given by

$$I_{E,V}(p,q) = \sum_{i=1}^{\mathcal{I}_V} \lambda_i I_{E,V}^{(i)}(p,q)$$
(2.5)

$$I_{E,C}(p) = \sum_{i=1}^{\mathcal{I}_C} \rho_i I_{E,C}^{(i)}(p).$$
 (2.6)

These relationships can be obtained by reasoning in the same way as [44] for the EXIT functions of the variable and check nodes decoders of an irregular LDPC code.

Next, we introduce the random code hypothesis. Each variable or check component code is assumed a random linear block code. More specifically, the generator matrix of each (n_i, k_i) variable component code of type i $(i = 1, ..., \mathcal{I}_V)$ is assumed uniformly chosen at random from an expurgated ensemble denoted by $\mathcal{G}_*^{(n_i, k_i)}$. The generator matrix of each (n_i, k_i) check component code of type i $(i = 1, ..., \mathcal{I}_C)$ is assumed uniformly chosen at random from the same expurgated ensemble.

Let $\mathbb{E}[I_{E,V}(p,q)]$ and $\mathbb{E}[I_{E,C}(p)]$ be, respectively, the expected variable and check EXIT function for such D-GLDPC code ensemble. Then, from (2.5) and (2.6) we have

$$\mathbb{E}[I_{E,V}(p,q)] = \mathbb{E}\Big[\sum_{i=1}^{\mathcal{I}_{V}} \lambda_{i} I_{E,V}^{(i)}(p,q)\Big]$$

$$= \sum_{i=1}^{\mathcal{I}_{V}} \lambda_{i} \mathbb{E}_{\mathcal{G}_{*}^{(n_{i},k_{i})}}[I_{E,V}^{(i)}(p,q)]$$
(2.7)

$$\mathbb{E}[I_{E,C}(p)] = \mathbb{E}\Big[\sum_{i=1}^{\mathcal{I}_C} \rho_i I_{E,C}^{(i)}(p)\Big]$$

$$= \sum_{i=1}^{\mathcal{I}_C} \rho_i \mathbb{E}_{\mathcal{G}_*^{(n_i,k_i)}}[I_{E,C}^{(i)}(p)], \qquad (2.8)$$

where $\mathbb{E}_{\mathcal{G}_*^{(n,k)}}[\cdot]$ denotes the expectation over $\mathcal{G}_*^{(n,k)}$. If the *i*-th variable code type is a repetition code, or the *i*-th check code type is a SPC code, no expectation is needed.

The reason for an expurgated ensemble of $(n \times k)$ generator matrices is needed, instead of the ensemble of all the possible $(k \times n)$ binary matrices with rank k, is to ensure a correct application of the EXIT charts analysis, as explained next.

The aim is to perform a threshold analysis of the D-GLDPC codes ensemble through an EXIT chart approach, using the expected EXIT functions expressed by (2.7) and (2.8). In order to correctly apply the analysis based on EXIT charts, the following conditions are required:

$$\lim_{r \to 0} \mathbb{E}[I_{E,V}(p,q)] = 1 \quad \forall \, q \in (0,1)$$
 (2.9)

$$\lim_{p \to 0} \mathbb{E}[I_{E,C}(p)] = 1 \tag{2.10}$$

$$\lim_{p \to 1} \mathbb{E}[I_{E,C}(p)] = 0. \tag{2.11}$$

Conditions (2.9) and (2.10) guarantee that, for both the variable and the check node decoder, the average extrinsic information outcoming from the decoder is equal to 1 when the extrinsic channel in Fig. 2.1 is noiseless. Condition (2.11) guarantees that the average extrinsic information from the check node decoder is 0 when the extrinsic channel is the useless channel.

Since the conditions $\sum_{i=1}^{\mathcal{I}_V} \lambda_i = 1$ and $\sum_{i=1}^{\mathcal{I}_C} \rho_i = 1$ hold, it follows from (2.7) and (2.8) that (2.9) and (2.10) are satisfied if these relationships hold:

$$\lim_{n \to 0} \mathbb{E}_{\mathcal{G}_{*}^{(n_{i},k_{i})}}[I_{E,V}^{(i)}(p,q)] = 1 \quad \forall q \in (0,1), \, \forall i = 1,\dots, \mathcal{I}_{V}$$
(2.12)

$$\lim_{p \to 0} \mathbb{E}_{\mathcal{G}_*^{(n_i, k_i)}}[I_{E, C}^{(i)}(p)] = 1 \quad \forall i = 1, \dots, \mathcal{I}_C.$$
(2.13)

Analogously, (2.11) is fulfilled if

$$\lim_{n \to 1} \mathbb{E}_{\mathcal{G}_*^{(n_i, k_i)}}[I_{E, C}^{(i)}(p)] = 0 \quad \forall i = 1, \dots, \mathcal{I}_C.$$
(2.14)

In order to have (2.12), (2.13) and (2.14) satisfied it is sufficient that, for each (n, k), analogue relationships hold for the EXIT function of all the linear block codes represented by the generator matrices in $\mathcal{G}_*^{(n,k)}$. In other words, for each check component code represented by a generator matrix in $\mathcal{G}_*^{(n,k)}$, it must be $\lim_{p\to 0} I_E(p) = 1$ and $\lim_{p\to 1} I_E(p) = 0$; for each variable component code represented by a generator matrix in $\mathcal{G}_*^{(n,k)}$ it must be $\lim_{p\to 0} I_E(p,q) = 1$ for all $q \in (0,1)$. This is indeed the key for obtaining a definition of $\mathcal{G}_*^{(n,k)}$. In Subsections 2.2.1 and 2.2.2, two equivalent definitions of $\mathcal{G}_*^{(n,k)}$ are provided.

2.2.1 Operational Definition of $\mathcal{G}_*^{(n,k)}$

Definition 2.1 (independent set). Given a $(k \times n)$ binary matrix of rank r, a set of t columns is said an independent set when removing these t columns from the matrix leads to a $(k \times (n-t))$ matrix with rank $r - \Delta r < r$, for some $0 < \Delta r \le t$. The number t is the size of the independent set.

An independent set of size 1 will be also called *independent column*. An independent column is linearly independent of all the other columns of the matrix.

Theorem 2.2. $\mathcal{G}_*^{(n,k)}$ is the ensemble of all the $(k \times n)$ binary matrices with rank k, without all-zero columns and without independent columns.

Proof. Consider first a check component code. From (2.3) it follows

$$\lim_{p \to 0} I_E(p) = 1 - (\tilde{e}_n - \frac{\tilde{e}_{n-1}}{n}).$$

Then, the desired property $\lim_{p\to 0} I_E(p) = 1$ is guaranteed by the equality $n \,\tilde{e}_n = \tilde{e}_{n-1}$. This equality is satisfied when the generator matrix \mathbf{G} is full-rank $(\operatorname{rank}(\mathbf{G}) = k)$, and when the $(k \times (n-1))$ matrix obtained by removing any column from \mathbf{G} is full rank, i.e. \mathbf{G} has no independent columns. In fact, in this case both sides of the previous equality are equal to $k \, n$. By reasoning in the same way, it is readily proved from (2.3) that

$$\lim_{p \to 1} I_E(p) = 1 - \frac{\tilde{e}_1}{n}.$$

Then, $\lim_{p\to 1} I_E(p) = 0$ when $\tilde{e}_1 = n$, i.e. when the generator matrix has no zero columns. This is equivalent to assume that the component code has no idle bits, an hypothesis already implicitly considered in (2.3). Then, (2.10) and (2.11) are satisfied if the generator matrix of any check component code is full rank, has no independent columns, and has no zero columns.

Consider a variable component code. From (2.2):

$$\lim_{p \to 0} I_E(p, q) = 1 - \sum_{z=0}^k q^z (1 - q)^{k-z} (\tilde{e}_{n, k-z} - \frac{\tilde{e}_{n-1, k-z}}{n}).$$

If $n \,\tilde{e}_{n,h} = \tilde{e}_{n-1,h}$ for $h = 0, \ldots, k$, then $\lim_{p \to 0} I_E(p,q) = 1$ for any q. This is always true when the $(k \times n)$ generator matrix is full rank $(\operatorname{rank}(\mathbf{G}) = k)$ and has no independent columns. In fact, in this case $n \,\tilde{e}_{n,h} = \tilde{e}_{n-1,h} = \binom{k}{h} n \,k$. The constraint that the generator matrix has no zero columns must be also considered, since it is a key hypothesis for the validity of (2.1). Then, (2.9) is satisfied if the generator matrix of any variable component code is full rank, has no independent columns, and has no zero columns.

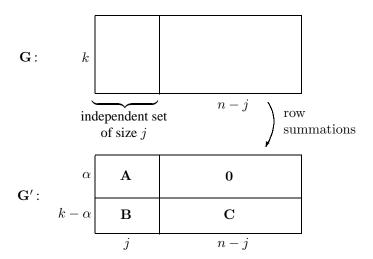


Figure 2.2: If $rank(\mathbf{G}) = r$ and the first j columns are an independent set, then \mathbf{G} can be transformed as shown by row summations only, with \mathbf{A} , \mathbf{B} and \mathbf{C} non-null matrices.

This operational definition will be used in the following sections for developing a technique for the computation of the expected EXIT functions for the VND and CND of GLDPC and D-GLDPC codes. A more theoretical definition of $\mathcal{G}_*^{(n_i,k_i)}$ is given next.

2.2.2 Theoretical Definition of $\mathcal{G}_*^{(n,k)}$

If j columns are an independent set for a certain generator matrix representation of a linear block code, they are an independent set for any other representation. Moreover, removing them from any representation of the generator matrix leads to the same rank reduction Δr . This is because all the possible representations of the generator matrix can be obtained by row summations starting from any other representation.

Lemma 2.1. If any representation of the generator matrix of a (n,k) linear block code has an independent set of size j, then the code minimum distance d_{\min} satisfies $d_{\min} \leq j$.

Proof. Let us suppose that j columns of a generator matrix \mathbf{G} are an independent set of size j. Then, it must be possible to perform row summations on \mathbf{G} in order to obtain a new generator matrix representation \mathbf{G}' , where a certain number α of rows have all their 1's in correspondence of only the columns of the independent set (see for example Fig. 2.2, where the first j columns are supposed an independent set, and where \mathbf{A} , \mathbf{B} and \mathbf{C} are non-null matrices). Any of these α rows is a valid codeword. Then, $d_{\min} \leq j$.

Lemma 2.2. Let G be any representation of the generator matrix of an (n, k) linear block code. Then, the following statements are equivalent:

- a) the code has minimum distance t;
- b) the minimum size of the independent sets of G is t.

Proof. [a \Rightarrow b] If $d_{\min} = t$, then it is possible to construct a representation of **G** where there is at least one row with exactly t 1's. The columns of **G** corresponding to these t 1's are an independent set (of size t), because removing them from **G** leads to a reduction of the rank. This independent set must be of minimum size. In fact, if it existed an independent set of size j < t, then from Lemma 2.1 it would follow $d_{\min} \leq j < t$, thus violating the hypothesis $d_{\min} = t$.

[b \Rightarrow a] Let us suppose that the minimum size of the independent sets of **G** is t, and let us consider an independent set of size t. From Lemma 2.1 it follows that $d_{min} \leq t$. The proof is completed by showing that it is not possible to have $d_{min} < t$. In fact, if $d_{min} = j < t$ then, by reasoning in the same way as for the [a \Rightarrow b] proof, it would follow that the minimum size of the independent sets of **G** is j < t, which violates the hypothesis.

By combining Theorem 2.2 and Lemma 2.2, it is immediate to obtain the following theorem.

Theorem 2.3. $\mathcal{G}_*^{(n,k)}$ is the ensemble of all the $(k \times n)$ binary matrices that represent linear block codes without idle components and with minimum distance $d_{\min} \geq 2$.

It follows from (2.2) and (2.3) that the problem of evaluating the expected EXIT function on $\mathcal{G}_*^{(n,k)}$, for each (n,k) variable (check) node, can be completely solved by evaluating the expected split information functions (information functions) on $\mathcal{G}_*^{(n,k)}$. In Section 2.3 and Section 2.4 a technique for solving this problem for the generalized check nodes and, respectively, for the generalized variable nodes is presented.

2.3 Expected Information Functions Computation

In this section we present an approach to compute the expected values of the information functions for any random (n, k) linear block code, where the expectation is over the expurgated ensemble $\mathcal{G}_*^{(n,k)}$ of all the (n,k) generator matrices representing codes with minimum distance at least 2. The method is based on some recursive formulas that permit to compute the exact number of binary matrices with specific properties.

Let **G** be a generator matrix randomly chosen in $\mathcal{G}_*^{(n,k)}$, and let \mathcal{S}_g be a submatrix of **G** obtained selecting g columns. The expectation of \tilde{e}_g can be developed as:

$$\mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}[\tilde{e}_{g}] = \mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\sum_{\mathcal{S}_{g}} \operatorname{rank}(\mathcal{S}_{g})\right]$$

$$= \sum_{\mathcal{S}_{g}} \mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\operatorname{rank}(\mathcal{S}_{g})\right]$$

$$= \binom{n}{g} \mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\operatorname{rank}(\mathcal{S}_{g})\right], \tag{2.15}$$

where the last equality is due to the fact that, for random matrices in $\mathcal{G}_*^{(n,k)}$, the expectation of the rank when selecting g columns is independent of the specific selected columns. In the following, we suppose that \mathcal{S}_g in (2.15) is the submatrix composed of the first g columns of \mathbf{G} , without loss of generality. The expectation of rank(\mathcal{S}_g) in (2.15) can be further developed in the following way:

$$\mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\operatorname{rank}(\mathcal{S}_{g})\right] = \sum_{u=1}^{\min\{k,g\}} u \cdot \Pr\{\operatorname{rank}(\mathcal{S}_{g}) = u\}$$

$$= \sum_{u=1}^{\min\{k,g\}} u \cdot \frac{K(k, n, g, u, k)}{J(k, n, k)},$$
(2.16)

where the summation in u is from u = 1 and not from u = 0 because S_g has no zero columns by hypothesis. In (2.16), we denote by J(m, n, r) the number of rank-r $(m \times n)$ binary matrices without zero columns, and such that removing any column does not reduce the rank (i.e. with no independent columns). According to Theorem 2.2, it is $J(k, n, k) = |\mathcal{G}_*^{(n,k)}|$. The function K(m, n, g, u, r) represents the number of rank-r $(m \times n)$ binary matrices without zero columns, without independent columns, and such that the first g columns have rank u. For any $1 \le g \le n$, we have

$$\sum_{u=1}^{\min\{k,g\}} K(m,n,g,u,r) = J(m,n,r).$$
(2.17)

Next we develop recursive formulas for computing $J(\cdot)$ and $K(\cdot)$. Even if $J(\cdot)$ can be expressed in terms of $K(\cdot)$ according to (2.17), an independent recursive formula for $J(\cdot)$ is presented. The proofs of lemmas and theorems claimed in this section are presented in Appendix 2.7. In this and in the next section, we will often invoke the following well known result.

Lemma 2.3. The number of rank-r $(m \times n)$ binary matrices is given by

$$\prod_{j=0}^{r-1} \frac{(2^m - 2^j)(2^n - 2^j)}{(2^r - 2^j)}.$$

2.3.1 Computation of J(m, n, r)

The number J(m, n, r) of rank- $r(m \times n)$ binary matrices without zero columns and without independent columns is computed as difference between the total number F(m, n, r) of rank- $r(m \times n)$ binary matrices without zero columns and the number of such matrices with at least one independent column.

Lemma 2.4. Let F(m, n, r) be the number of rank-r $(m \times n)$ binary matrices without zero columns. Then

$$F(m,n,r) = \prod_{j=0}^{r-1} \frac{(2^m - 2^j)(2^n - 2^j)}{(2^r - 2^j)} - \sum_{z=1}^{n-r} \binom{n}{z} F(m,n-z,r).$$
 (2.18)

In (2.18) it must be imposed that $F(m, n, 1) = 2^m - 1$, and F(m, n, r) = 0 when at least one of the following conditions is true: $m \le 0$, $n \le 0$, $r \le 0$, $r > \min\{m, n\}$.

Theorem 2.4. The function $J(\cdot)$ can be recursively evaluated according to 1

$$J(m, n, r) = F(m, n, r) - \sum_{j=1}^{r-1} {n \choose j} \left[\prod_{i=0}^{j-1} (2^m - 2^i) \right] 2^{j(r-j)} \cdot J(m - j, n - j, r - j).$$
(2.19)

As in (2.18), also in (2.19) it must be imposed that $J(m, n, 1) = 2^m - 1$, and J(m, n, r) = 0 when at least one of the following conditions is true: $m \le 0$, $n \le 0$, $r \le 0$, $r > \min\{m, n\}$.

2.3.2 Computation of K(m, n, g, u, r)

In order to develop a formula for computing the number K(m, n, g, u, r) of rank-r binary $(m \times n)$ matrices without zero columns, without independent columns, and such that the first g columns have rank equal to u, we use a method analog to that one used for function $J(\cdot)$. Let M(m, n, g, u, r) be the number of rank-r binary $(m \times n)$ matrices without zero columns and such that the first g columns have rank equal to u. Then K(m, n, g, u, r) is equal to the difference between M(m, n, g, u, r) and the number of such matrices with at least one independent column.

¹The summation in j can be actually always stopped at j = r - 1, i.e. $J(m, n, r) = F(m, n, r) - \sum_{j=1}^{r-1} J^{(j)}(m, n, r)$ instead of $J(m, n, r) = F(m, n, r) - \sum_{j=1}^{r} J^{(j)}(m, n, r)$, except for full-rank matrices for which $m \ge n$. Since for binary $(k \times n)$ generator matrices it is always k < n, for the purposes of expected information functions computation, the summation in j up to r-1 is sufficient. This observation is also exploited in (2.21) and (2.29).

Lemma 2.5. Let T(m,n) be the total number of $(m \times n)$ binary matrices without zero columns, i.e. $T(m,n) = \sum_{r=1}^{\min\{m,n\}} F(m,n,r)$, and let T(m,0) = 1 by definition. Then:

$$M(m, n, g, u, r) = F(m, g, u) \cdot \sum_{z=0}^{(n-g)-(r-u)} {n-g \choose z} T(u, z)$$
$$\cdot 2^{u(n-g-z)} F(m-u, n-g-z, r-u). \tag{2.20}$$

For a correct working of the recursion (2.20), M(m, n, g, u, r) must be set to 0 if one of the following conditions is true: $m \le 0$, $n \le 0$, u < 0, $r \le 0$, g < 0, g > n, $u > \min\{m, g\}$, $r > \min\{m, n\}$, $r - u > \min\{n - g, m - u\}$, u > r, $\{g > 0, u = 0\}$, $\{g = 0, u > 0\}$, $\{g = n, u \ne r\}$, $\{m = n, r = m, g \ne u\}$. Special cases are: M(m, n, g, u, r) = F(m, n, r) if $\{g = 0, u = 0\}$ or $\{g = n, u = r\}$, M(m, n, g, u, r) = F(m, g, m) cdotT(m, n - g) if u = m, $M(m, n, g, u, r) = F(m, g, r) \cdot (2^r - 1)^{n-g}$ if $\{u = r, n > g\}$.

Theorem 2.5. The function $K(\cdot)$ can be recursively evaluated according to

$$K(m, n, g, u, r) = M(m, n, g, u, r) - \sum_{j=1}^{r-1} \sum_{l=0}^{\min\{u, j\}} {g \choose l} {n-g \choose j-l} \Big[\prod_{i=0}^{j-1} (2^m - 2^i) \Big] 2^{j(r-j)} \cdot K(m-j, n-j, g-l, u-l, r-j).$$
(2.21)

The function K(m, n, g, u, r) is set to 0 in the same cases where M(m, n, g, u, r) is set to 0. Special cases are: K(m, n, g, u, r) = J(m, n, r) if $\{g = 0, u = 0\}$ or $\{g = n, u = r\}$, $K(m, n, g, u, r) = 2^m - 1$ if $\{u = 1, r = 1, g > 0, n - g > 0\}$.

In summary, for some k and n, $E_{\mathcal{G}_*^{(n,k)}}[\tilde{e}_g]$ can be computed from (2.15) and (2.16), where $J(\cdot)$ is obtained recursively from (2.19), and $K(\cdot)$ is obtained recursively from (2.21).

Example 2.2. In Fig. 2.3, a detail of the EXIT function on the BEC for three binary (31,21) linear block codes used as generalized check nodes (solid lines) is shown, as a function of the a priori mutual information $I_A = 1 - p$, for I_A ranging between 0.45 and 0.65. The minimum distances for the three check nodes are 2, 3 and 5, where the $d_{\min} = 5$ code is the (31,21) narrow-sense binary BCH code. For each of the three codes, the EXIT function has been evaluated by first computing the information functions \tilde{e}_g (which is still feasible for (31,21) codes, even if time consuming), and then applying (2.3). In the same figure, the dashed line is the expected EXIT function on $\mathcal{G}_*^{(31,21)}$, evaluated by first computing the expected information functions $\mathbb{E}_{\mathcal{G}_*^{(31,21)}}[\tilde{e}_g]$ according to (2.15), (2.16), (2.19) and (2.21), and then applying (2.3). The code details for the minimum distance 2 and for the minimum distance 3 codes, as well as the analytic expressions of the check node EXIT functions associated to these codes are provided in Appendix A. In the same appendix, the expected information functions over $\mathcal{G}_*^{(31,21)}$ are given.

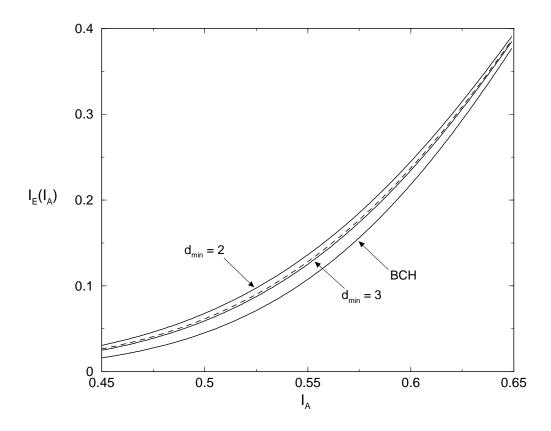


Figure 2.3: Plot detail of the EXIT functions of a (31,21) check node with $d_{\min} = 2$, a (31,21) check node with $d_{\min} = 3$ and the (31,21) BCH check node ($d_{\min} = 5$). Dashed line: $\mathcal{G}_*^{(31,21)}$ ensemble average.

The match between the solid curves and the dashed curve in Fig. 2.3 is quite good, despite the moderately short codeword length (n=31). This fact indicates that the expected EXIT function can be confidently used, instead of the exact EXIT function, for longer component codes, for which the information functions remain unknown.

2.4 Expected Split Information Functions Computation

In this section, the technique for the evaluation of the expected information functions over $\mathcal{G}_*^{(n,k)}$, presented in the previous section, is extended to the variable node split information functions.

Let **G** be a $(k \times n)$ binary matrix from $\mathcal{G}_*^{(n,k)}$, and let $\mathcal{S}_{g,h}$ be a submatrix of $[\mathbf{G} \mid \mathbf{I}_k]$

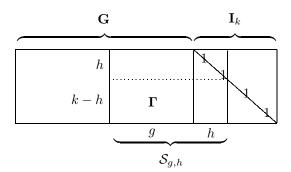


Figure 2.4: Scheme of matrix $[\mathbf{G} | \mathbf{I}_k]$ and definition of submatrix $\mathcal{S}_{g,h}$ for the evaluation of the expected split information functions.

obtained by selecting g columns in G and h columns in I_k . Then:

$$\mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}[\tilde{e}_{g,h}] = \mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\sum_{\mathcal{S}_{g,h}} \operatorname{rank}(\mathcal{S}_{g,h})\right]$$

$$= \sum_{\mathcal{S}_{g,h}} \mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\operatorname{rank}(\mathcal{S}_{g,h})\right]$$

$$= \binom{n}{g} \binom{k}{h} \mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\operatorname{rank}(\mathcal{S}_{g,h})\right]. \tag{2.22}$$

The last equality is due to the fact that, for matrices in $\mathcal{G}_*^{(n,k)}$, the expectation of the rank when selecting g columns in \mathbf{G} and h columns in \mathbf{I}_k is independent of the specific selected columns. Thus, $\mathcal{S}_{g,h}$ in (2.22) can be in principle any such submatrix.

Let us suppose that $S_{g,h}$ in (2.22) is the submatrix composed of the last g columns of \mathbf{G} , and the first h columns of \mathbf{I}_k (see Fig. 2.4). The probability $\Pr \{ \operatorname{rank}(S_{g,h}) = u \}$ that, for a randomly chosen matrix \mathbf{G} in $\mathcal{G}_*^{(n,k)}$, the submatrix $S_{g,h}$ has rank u, can be expressed as the number of matrices in $\mathcal{G}_*^{(n,k)}$ for which this property holds divided by the total number of matrices in $\mathcal{G}_*^{(n,k)}$. It is clear from Fig. 2.4 that the rank of $S_{g,h}$ is at least h. In fact, the last h columns of this submatrix, i.e. the first h columns of \mathbf{I}_k , are linearly independent. Moreover, in order to have $\operatorname{rank}(S_{g,h}) = u$, it is necessary and sufficient that the $((k-h) \times g)$ submatrix $\mathbf{\Gamma}$ in Fig. 2.4 has $\operatorname{rank} u - h$. Hence, the binary matrices $\mathbf{G} \in \mathcal{G}_*^{(n,k)}$ satisfying $\operatorname{rank}(S_{g,h}) = u$, are those ones for which $\operatorname{rank}(\mathbf{\Gamma}) = u - h$. Equivalently, they are those for which the submatrix intersection of the first g columns and the first k - h rows has $\operatorname{rank} u - h$ (since $\mathbf{\Gamma}$ can be any intersection of k - h rows and g columns of \mathbf{G}).

The expectation of rank($S_{g,h}$) in (2.22) can then be further developed as:

$$\mathbb{E}_{\mathcal{G}_{*}^{(n,k)}}\left[\operatorname{rank}(\mathcal{S}_{g,h})\right] = \sum_{u=h}^{\min\{k,g+h\}} u \cdot \Pr\left\{\operatorname{rank}(\mathcal{S}_{g,h}) = u\right\}$$

$$= \sum_{u=h}^{\min\{k,g+h\}} u \cdot \frac{\widetilde{K}(k,n,g,k-h,u-h,k)}{J(k,n,k)}, \qquad (2.23)$$

where $\widetilde{K}(m,n,a,b,t,r)$ represents the number of rank-r $(m \times n)$ binary matrices without zero columns, without independent columns, and such that the submatrix intersection of the first a columns and first b rows has rank t. The function $\widetilde{K}(\cdot)$ is a generalization of the function $K(\cdot)$ investigated in the previous section. In fact, $K(m,n,g,u,r) = \widetilde{K}(m,n,g,m,u,r)$. In the following, a technique for the computation of $\widetilde{K}(\cdot)$ is derived.

2.4.1 Computation of $\widetilde{K}(m, n, a, b, t, r)$

Let $\widehat{K}(m,n,a,b,t,u,r)$ be the number of rank-r $(m \times n)$ binary matrices without zero columns, without independent columns, such that the submatrix intersection of the first a columns and b rows has rank t, and such that the submatrix composed of the first a columns has rank u. The function $\widetilde{K}(\cdot)$ can be expressed in terms of $\widehat{K}(\cdot)$, as

$$\widetilde{K}(m, n, a, b, t, r) = \sum_{u=1}^{\min\{m, a\}} \widehat{K}(m, n, a, b, t, u, r).$$
(2.24)

The technique for the evaluation of $\widetilde{K}(\cdot)$ is based on a recursive formula developed for $\widehat{K}(\cdot)$, and presented in the next subsection. For any (m, n, a, b, t, r), $\widehat{K}(m, n, a, b, t, u, r)$ is first evaluated for $u = 1, \ldots, \min\{m, a\}$, then $\widetilde{K}(m, n, a, b, t, r)$ is computed according to (2.24).

2.4.2 Computation of $\widehat{K}(m, n, a, b, t, r)$

In this section a recursion for the computation of $\widehat{K}(m, n, a, b, t, u, r)$ is developed. The proofs of lemmas and theorems claimed next are presented in Appendix 2.8.

Lemma 2.6. Let $\widetilde{N}(m, n, p, t, r)$ be the number of rank-r $(m \times n)$ binary matrices, such that the rank of the first p rows is t. Then

$$\widetilde{N}(m,n,p,t,r) = \prod_{j=0}^{t-1} \frac{(2^p - 2^j)(2^n - 2^j)}{2^t - 2^j} \cdot \prod_{j=0}^{r-t-1} \frac{(2^{m-p} - 2^j)(2^{n-t} - 2^j)}{2^{r-t} - 2^j} \cdot 2^{t(m-p)}. \quad (2.25)$$

The function $\widetilde{N}(\cdot)$ is set to 0 if at least one of the following conditions is true: $m \leq 0$, $n \leq 0$, p < 0, t < 0, t < 0, t > r, p > m, $\{p = 0, t > 0\}$, $\{p = m, t \neq r\}$, $r > \min\{m, n\}$, $t > \min\{p, n\}$. Particular conditions are: $\widetilde{N}(m, n, p, 0, r) = \prod_{j=0}^{r-1} (2^{m-p} - 2^j)(2^n - 2^j)/(2^r - 2^j)$, $\widetilde{N}(m, n, m, r, r) = \prod_{j=0}^{r-1} (2^m - 2^j)(2^n - 2^j)/(2^r - 2^j)$.

Lemma 2.7. Let $\widetilde{F}(m, n, p, t, r)$ be the number of rank-r $(m \times n)$ binary matrices, such that the rank of the first p rows is t, and without zero columns. Then

$$\widetilde{F}(m,n,p,t,r) = \widetilde{N}(m,n,p,t,r) - \sum_{z=1}^{n-r} \binom{n}{z} \widetilde{F}(m,n-z,p,t,r).$$
 (2.26)

The function $\widetilde{F}(\cdot)$ is set to 0 in the same cases as $\widetilde{N}(\cdot)$, or when r=0. Special conditions are: $\widetilde{F}(m,n,p,t,r)=F(m-p,n,r)$ if t=0, and $\widetilde{F}(m,n,p,t,r)=F(m,n,r)$ if $\{p=m,t=r\}$.

Lemma 2.8. Let $\widehat{M}(m,n,a,b,t,u,r)$ be the number of rank-r $(m \times n)$ binary matrices without zero columns, such that the submatrix intersection of the first a columns and the first b rows has rank t, and such that the submatrix composed of the first a columns has rank u. Then

$$\widehat{M}(m, n, a, b, t, u, r) = \widetilde{F}(m, a, b, t, u)$$

$$\cdot \sum_{z=0}^{(n-a)-(r-u)} \binom{n-a}{z} F(m-u, n-a-z, r-u) \cdot T(u, z) \cdot 2^{u(n-a-z)}, \qquad (2.27)$$

where T(m,n) is defined as in Lemma 2.5.

The function $\widehat{M}(\cdot)$ is set to 0 if at least one of the following conditions is true: $m \leq 0$, $n \leq 0$, a < 0, b < 0, $r \leq 0$, t < 0, u < 0, t > r, t > u, u > r, a > n, b > m, $r > \min\{m,n\}$, $t > \min\{a,b\}$, $u > \min\{m,a\}$, $\{a = 0,t > 0\}$, $\{b = 0,t > 0\}$, $\{a = 0,u > 0\}$, $\{a = n,u \neq r\}$, $\{b = m,t \neq u\}$, $\{a = n,b = m,t \neq r\}$. Special cases are: $\widehat{M}(m,n,a,b,t,u,r) = F(m,n,r)$ if $\{a = 0,t = 0,u = 0\}$ or $\{a = n,b = m,t = u = r\}$, $\widehat{M}(m,n,a,b,t,u,r) = \widetilde{F}(m,n,b,t,r)$ if $\{a = n,u = r,b < m\}$, $\widehat{M}(m,n,a,b,t,u,r) = M(m,n,a,u,r)$ if $\{b = m,t = u,a < n\}$, $\widehat{M}(m,n,a,b,t,u,r) = \widetilde{F}(m,a,b,t,u) \cdot T(u,n-a)$ if $\{u = r\}$.

Lemma 2.9. Let $G(m, j, l, b, \gamma, \delta)$ be the number of rank-j $(m \times j)$ binary matrices (necessarily without zero columns), such that the submatrix intersection of the first l columns and the first b rows has has rank γ , and such that the submatrix composed of the first b rows has rank δ . Then

$$G(m, j, l, b, \gamma, \delta) = \widetilde{F}(m, l, b, \gamma, l) \cdot \widetilde{F}(m - l, j - l, b - \gamma, \delta - \gamma, j - l) \cdot 2^{l(j-l)}. \tag{2.28}$$

The function $G(\cdot)$ is set to 0 when at least one of the following conditions is true: $m \leq 0, j \leq 0, l < 0, b < 0, m < j, \gamma > \min\{b, l\}, \delta > \min\{b, j\}, \{b = 0, \gamma > 0\}, \{b = 0, \delta > 0\}, \{l = j, b > 0, \delta \neq \gamma\}, \{l = 0, \gamma > 0\}.$ Special conditions for $G(\cdot)$ are: $G(m, j, l, b, \gamma, \delta) = \widetilde{F}(m, j, b, \delta, j)$ if $\{l = 0, \gamma = 0, b > 0\}$ or $\{l = j, \delta = \gamma, b > 0\}$, and $G(m, j, l, b, \gamma, \delta) = \prod_{i=0}^{j-1} (2^m - 2^i)$ if $\{b = 0, \gamma = 0, \delta = 0\}$.

Theorem 2.6. Let $\gamma_{\text{max}} = \min\{b, l\}$, $\delta_{\text{max}} = \min\{b, j\}$ and $p_{\text{max}} = \min\{b - \delta, a - l, t - \gamma\}$. Then, the function $\widehat{K}(\cdot)$ can be recursively evaluated according to

$$\widehat{K}(m, n, a, b, t, u, r) = \widehat{M}(m, n, a, b, t, u, r)$$

$$- \sum_{j=1}^{r-1} \sum_{l=0}^{u} {a \choose l} {n-a \choose j-l} \sum_{\gamma=0}^{\gamma_{\text{max}}} \sum_{\delta=\gamma}^{\delta_{\text{max}}} G(m, j, l, b, \gamma, \delta) \cdot 2^{(r-j)(j-(\delta-\gamma))}$$

$$\cdot \sum_{p=0}^{p_{\text{max}}} \widehat{K}(m-j, n-j, a-l, b-\delta, p, u-l, r-j)$$

$$\cdot \prod_{j=0}^{t-\gamma-p-1} \frac{(2^{\delta-\gamma}-2^{i})(2^{u-l-p}-2^{i})}{2^{t-\gamma-p}-2^{i}} \cdot 2^{((r-j)-(u-l-p))(\delta-\gamma)}. \quad (2.29)$$

The function $\widehat{K}(\cdot)$ is set to 0 in the same cases as $\widehat{M}(\cdot)$. Special conditions are: $\widehat{K}(m,n,a,b,t,u,r)=J(m,n,r)$ if $\{a=0,t=0,u=0\}$ or $\{a=n,b=m,t=u=r\}$, $\widehat{K}(m,n,a,b,t,u,r)=K(m,n,a,u,r)$ if $\{b=0,t=0\}$ or $\{b=m,t=u\}$.

Example 2.3. In Fig. 2.5, a comparison is shown between the EXIT function on the BEC of a (16,8) variable node, with generator matrix randomly chosen from $\mathcal{G}_*^{(16,8)}$, and the expected EXIT function on $\mathcal{G}_*^{(16,8)}$, computed according to (2.22), (2.23), (2.19), (2.24) and (2.29). The EXIT functions are compared for q = 0, 0.2, 0.4, 0.6.0.8, 1 (the q = 1 case actually corresponds to the code used as a check node). Despite the short codeword length (n = 16), the ensemble average confidently approximates the EXIT function of the specific code, for all the considered values of q. The expected EXIT function can be confidently used, instead of the exact EXIT function for those variable component codes for which the split information functions remain unknown.

2.5 Numerical Results

In this section, some numerical results about GLDPC and D-GLDPC codes on the BEC are presented. These results are obtained by exploiting the technique for the evaluation of the expected CND and VND EXIT function, under the hypothesis of random component codes from the expurgated ensemble $\mathcal{G}_*^{(n,k)}$. Subsection 2.5.1 is focused on non-capacity-approaching GLDPC codes with a uniform check nodes structure, composed of

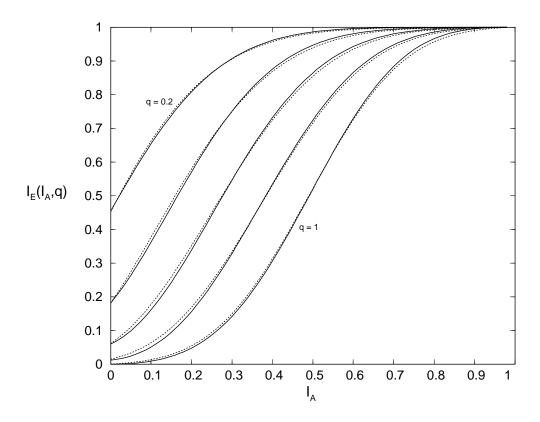


Figure 2.5: Comparison between the EXIT function of a (16,8) variable node, with generator matrix randomly chosen from $\mathcal{G}_*^{(16,8)}$ (solid), and the expected EXIT function over $\mathcal{G}_*^{(16,8)}$ (dotted), for of q = 0.2, 0.4, 0.6, 0.8, 1.0.

generalized check nodes, and a VND composed of length-2 repetition codes. It is shown that, for this class of codes, choosing check component codes with poor minimum distance provides a benefit with respect to good minimum distance codes. Subsection 2.5.2 moves to capacity-approaching GLDPC codes with hybrid check node structure and irregular VND. It is provided evidence that, in this case, generalized check component codes with good minimum distance properties are a better choice from a decoding threshold point of view. Finally, in Subsection 2.5.3, capacity approaching LDPC, GLDPC and D-GLDPC codes are compared, in terms of both asymptotic threshold and finite length performance of long random codes. These results reveal that random D-GLDPC codes can outperform standard LDPC codes and GLDPC codes in terms of both waterfall performance and error floor.

2.5.1 GLDPC Codes with Uniform Check Node Structure

Let us consider a GLDPC code, with (31,21) BCH codes as check nodes and length-2 repetition codes as variable nodes. The code rate is R = 0.35484, corresponding to a

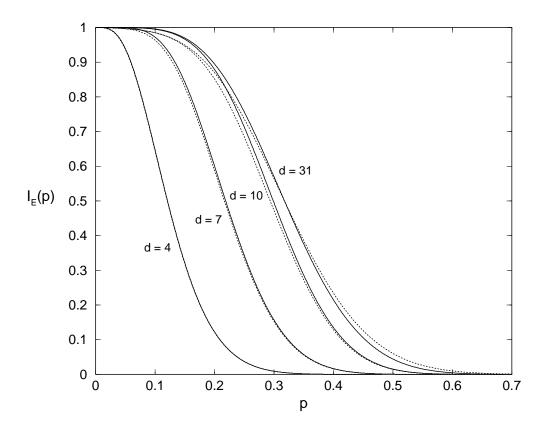


Figure 2.6: EXIT function of the (31, 21) BCH code (solid) and expected EXIT function of the (31, 21) expurgated ensemble (dotted) under d-bounded-distance decoding, for d = 4, 7, 10, 31.

Shannon limit on the BEC $q_{\rm Sh}=1-R=0.64516$. Let us assume d-bounded distance decoding (see Section 2.1.3) at the BCH check nodes. The GLDPC code threshold can be evaluated with the EXIT chart based on (2.4), by numerically evaluating the (31,21) BCH code information functions. The EXIT functions for d=4,7,10,31 are plotted in Fig. 2.6 (solid curves) as a function of the extrinsic channel erasure probability p, while the GLDPC thresholds are given in Table 2.1 (these threshold values are bounded away from $q_{\rm Sh}=0.64516$). Next, let us consider the same class of codes, under the hypothesis that the (31,21) check nodes are random linear block codes from $\mathcal{G}_*^{(31,21)}$. The corresponding expected EXIT functions under d-bounded-distance decoding are plotted in Fig. 2.6 (dotted curves), and the GLPDC thresholds are given in Table 2.1, for d=4,7,10,31.

The threshold values shown in Table 2.1 suggest the following consideration. From a threshold point of view, when the maximum number d of erasures faced by the decoder is bounded to a small value, it is convenient to use a component code with good minimum distance properties, like the BCH code. On the contrary, if this number is bounded to a higher value, or no bound is imposed at all (d = 31, which corresponds to MAP

d	ВСН	expectation
4	0.21915	0.21879
7	0.35596	0.35407
10	0.46256	0.45929
31	0.50187	0.51426

Table 2.1: Thresholds on the BEC of GLPDC codes with (31, 21) BCH check nodes, under d-bounded-distance decoding, and thresholds evaluated with the expected (31, 21) EXIT function.

decoding), linear block codes must exist within $\mathcal{G}_*^{(n,k)}$ that guarantee a better GLDPC threshold than the BCH code. In fact, for sufficiently high d, the threshold computed assuming the expected CND EXIT function is better than the threshold guaranteed by the BCH check nodes. For this specific example, the crossover point between the ensemble average and the BCH code is at d = 12.

We actually found (31, 21) linear block codes for which the GLDPC threshold is better than the ensemble average, under unconstrained MAP decoding. For instance, we generated a (31,21) code with $d_{\min}=2$ for which the GLDPC threshold is 0.51920. We also generated a (31,21) linear code characterized by $d_{\min}=3$, and we found a threshold equal to 0.51310 for the corresponding GLDPC code. This value is intermediate with respect to the thresholds corresponding to the BCH code and to the $d_{\min} = 2$ code. These codes are the ones whose EXIT functions have been already shown in Fig. 2.3 (the code details are available in Appendix A). Denoting by $T(\mathcal{C})$ the GLDPC code threshold corresponding to the choice of code $\mathcal C$ for the check nodes, we have $T(\mathcal{C}_{\mathrm{BCH}}^{(31,21)}) < T(\mathcal{C}_{d_{\min}=3}^{(31,21)}) < T(\mathbb{E}[\mathcal{C}^{(31,21)}]) < T(\mathcal{C}_{d_{\min}=2}^{(31,21)}).$ This reveals that using weak codes as check component codes for GLDPC codes with uniform check structure can be more convenient than using more powerful codes, like the BCH codes. This fact is confirmed by the simulation result shown in Fig. 2.7, where it is shown that the performance of a (3999, 1419) GLDPC code using (31, 21) BCH check nodes is worse than the performance of a similar code, having the same bipartite graph, but using the $d_{\min} = 2$ linear block code.

2.5.2 Capacity-Approaching GLDPC Codes with Hybrid Check Node Structure

Let us consider at first the optimization problem on the BEC for an LDPC distribution with the following constraints: variable nodes degree ranging from 2 up to 30, check nodes degree ranging from 3 up to 14, code rate R = 1/2. We solved the problem using the differential evolution (DE) algorithm [12, 51], for different starting distribution

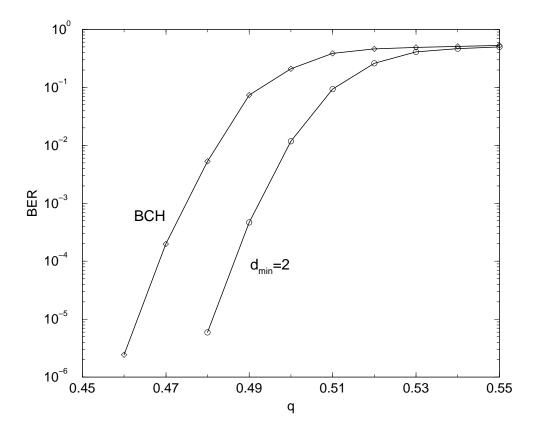


Figure 2.7: Comparison between the performance of a (3999, 1419) GLDPC code with uniform check node structure composed of (31, 21) binary BCH codes and a (3999, 1419) GLDPC code with uniform check node structure composed of (31, 21) linear block codes with $d_{\min} = 2$. The bipartite graph is the same for the two codes.

populations. The threshold of the best found distribution is $q^* = 0.49611$, quite close to the Shannon limit 1 - R = 0.5, while the distribution is described in Table 2.2 (LDPC column).

Next, we solved the same optimization problem for a GLDPC code with a hybrid check node structure, composed of SPC codes and (31,21) linear block codes. We solved again the optimization problem through DE algorithm, assuming the same degree constraints for the variable nodes and for the SPC codes, and again R = 1/2. More specifically, we separately solved the problem in the cases where the (31,21) check nodes are represented by the binary BCH code with $d_{\min} = 5$, or by the $d_{\min} = i$ code (i = 2,3) considered in previous subsection. We also solved the optimization problem using the expected EXIT function for the (31,21) expurgated ensemble. The optimal distribution corresponding to the choice of the (31,21) BCH code is described in Table 2.2 (GLDPC column), while the GLDPC thresholds are presented in Table 2.3.

For all the choices of the (31,21) generalized check nodes, the edges for the capacity-

Code type	LDPC	GLDPC	D-GLDPC ₁	D-GLDPC ₂			
Variable Nodes							
Rep. 2	0.281884	0.270712	0.287410	0.275116			
Rep. 3	0.123242	0.168858	0.161606	0.280377			
Rep. 4	0.060701						
Rep. 5	0.106412	0.165958	0.293870	0.358294			
Rep. 8		0.230227					
Rep. 9	0.084976						
Rep. 10	0.103547						
Rep. 29			0.217547				
Rep. 30	0.239238	0.164246		0.174163			
(31, 10)			0.039568	0.030803			
Check Nodes							
SPC 8	0.925027						
SPC 9		0.912838	0.871398	0.381799			
SPC 10	0.074973			0.458201			
(31, 21)-BCH		0.087162	0.128602	0.160000			
Thresholds							
q^*	0.49611	0.49671	0.49759	0.49655			

Table 2.2: Capacity-approaching rate-1/2 LDPC, GLPDC, D-GLDPC₁ and D-GLDPC₂ edge distributions.

LDPC	0.49611
$GLDPC, d_{min} = 2$	0.49627
GLDPC, expectation	0.49639
$GLDPC, d_{min} = 3$	0.49648
GLDPC, BCH	0.49671

Table 2.3: Decoding thresholds for capacity-approaching rate-1/2 LDPC and GLPDC distributions.

approaching distribution are connected to the SPC nodes with degree 9 and to the (31, 21) nodes. Moreover, the optimized distributions (both variable and check) are very similar in all cases. The fraction of edges connected to the (31, 21) codes ranges from about 5.73% for the $d_{\min} = 2$ code to about 8.72% for the BCH code. Some considerations about these results are presented next.

First, it is possible to improve the threshold of an LDPC code by letting unchanged the constraints for the degrees of the repetition and SPC nodes, introducing check component codes different from the SPC codes, and modifying accordingly the edge distribution. The presented example is even more meaningful, since the starting LDPC distribution is

already capacity-approaching. This better GLDPC threshold is achieved with a relatively small fraction of generalized check nodes. In fact, the fraction of BCH check nodes is about 2.70%, which results in a small increase in terms of decoding complexity with respect to the LDPC code.

Second, when considering hybrid check node structures instead of uniform ones, using more powerful codes like the BCH codes leads to better thresholds. For the hybrid case it results $T(\mathcal{C}_{d_{\min}=2}^{(31,21)}) < T(\mathbb{E}[\mathcal{C}^{(31,21)}]) < T(\mathcal{C}_{d_{\min}=3}^{(31,21)}) < T(\mathcal{C}_{BCH}^{(31,21)})$, which is the opposite of what found for a uniform check node structure. The reason is that the role of weak codes (necessary for obtaining good thresholds) is now played by the SPC codes.

Third, when combined with differential evolution, the developed technique for evaluating the expected EXIT function of generalized check nodes on $\mathcal{G}_*^{(n,k)}$ leads to an optimal distribution and threshold which closely matches that obtained for the choice of the BCH code. Hence, this technique can be confidently used not only for the threshold analysis, but also for the purposes of GLDPC distributions optimization.

2.5.3 Capacity Approaching D-GLDPC Codes

We solved the same optimization problem considered in the previous subsection for a R=1/2 D-GLDPC coding scheme. The same check node types as for the GLDPC code were considered; in addition, hybrid variable nodes were allowed, composed by a mixture of repetition codes with the same degrees as for the LDPC code, plus (31,10) random linear block codes from $\mathcal{G}_*^{(31,10)}$. The choice of (31,10) codes as variable nodes was dictated by the heuristic guideline to use codes with same length and dual dimension at different sides of the bipartite graph². The random codes approach was followed since the direct computation of the split information functions for a specific (31,10) linear block code, e.g. the dual of the (31,21) BCH code, is not feasible in terms of computation time. The expected EXIT function for the generalized variable nodes over $\mathcal{G}_*^{(31,10)}$ was evaluated according to the method presented in Section 2.3. The expected split information functions over $\mathcal{G}_*^{(31,10)}$ are listed in Appendix B. The capacity-approaching D-GLDPC distribution returned by differential evolution is shown in Table 2.2, together with its threshold, and called D-GLDPC₁ distribution. Some considerations are provided next.

First, the D-GLDPC₁ distribution has the best threshold. Hence, under the described constraints, using generalized variable nodes together with generalized check nodes permits to increase the threshold with respect to GLDPC codes, even in a case study where the GLDPC threshold is already very close to capacity. This better D-GLDPC threshold is achieved with a small increase of the fraction of generalized check nodes, and with a small fraction of generalized variable nodes. In fact, the fraction of BCH check nodes and

²No proof has actually been developed so far that this is an optimal choice.

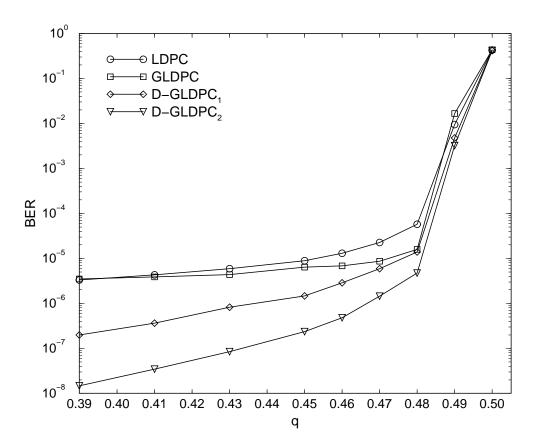


Figure 2.8: Performance of R=1/2 LDPC, GLDPC and D-GLDPC codes of length N=128000 on the BEC.

(31, 10) variable nodes for the D-GLDPC code are about 4.11% and 0.48% respectively, which results a small increase in terms of decoding complexity with respect to the GLDPC code.

Second, the larger fraction of BCH check nodes in the D-GLDPC distribution than in the GLDPC one (4.11% vs 2.70%) suggests the following. The original idea behind GLDPC codes was to strengthen the check nodes, by introducing powerful generalized check nodes [20]. This approach can provide good minimum distance properties, but the drawback is a lowering of the overall code rate, which reveals unacceptable in many cases [34][37]. The key idea behind D-GLDPC codes is to overcome this rate loss by introducing weaker component codes at the variable nodes. In the case study under analysis, the introduction of (31, 10) generalized variable nodes is able to partly compensate the rate loss due to the (31, 21) BCH check nodes; then, it is possible to use a larger number of powerful erasure correcting codes among the check nodes, without loosing performance in terms of threshold.

In order to support these asymptotic performance results, we simulated long and randomly constructed codes, designed according to the distributions presented in Table 2.2. Random codes were simulated, because random connections between the variable and check nodes were assumed to develop the expected EXIT functions for the VND and CND. For the D-GLDPC coding scheme, the dual of the (31,21) BCH code (in systematic representation) was used at the generalized variable nodes. In Fig. 2.8, the performance in terms of post-decoding bit erasure rate (BER) is shown for codes of length N=128000. As expected, the LDPC code exhibits bad error floor performance, due to the poor minimum distance of capacity approaching distributions (for this distribution it is $\lambda'(0)\rho'(1)=2.015$). This high error floor is not improved when considering the GLDPC code construction. However, the D-GLDPC code exhibits both a slightly better waterfall performance (according to the slightly better threshold) and an error floor which is about one order of magnitude lower than that of LDPC and GLDPC codes. This result suggests that capacity approaching D-GLDPC codes can be constructed, characterized by better properties in terms of both waterfall and error floor performance than LDPC and GLDPC codes, and with limited increase of decoding complexity.

Using generalized variable nodes enables to use a larger number of generalized (powerful) check nodes than for GLDPC codes, providing better minimum distance properties, while keeping a better threshold. In order to construct D-GLDPC codes with better minimum distance properties than the D-GLDPC₁ code, and still a good threshold, we tried the following approach. We ran the DE algorithm again for the D-GLDPC distribution, with the additional constraint of a lower bound on the fraction of edges towards the generalized check nodes. More specifically, we ran the DE optimization with the further constraint $\rho_{\text{BCH}} \geq \rho_{\text{BCH}}^{\text{min}}$. The obtained distribution for $\rho_{\text{BCH}}^{\text{min}} = 0.16$ and the corresponding threshold are presented in Table 2.2, in the D-GLDPC₂ column. The threshold is still better than that of the LDPC distribution.

The performance curve on the BEC obtained for a random N=128000 code, designed according to the D-GLDPC₂ distribution, is shown in Fig. 2.8. We observe an improvement in the error floor region, about one order of magnitude with respect to the D-GLDPC₁ code, and about two orders of magnitude with respect to the GLDPC and LDPC codes, with no loss in terms of waterfall performance.

2.6 Conclusion

In this chapter, a technique for the analysis of D-GLDPC codes on the BEC has been proposed. This technique assumes that the variable and check component codes are random codes with minimum distance at least 2. It permits to evaluate the expected EXIT function for the variable and check node decoders, thus enabling for the EXIT chart analysis. The core of this method is the computation of the expected (split) information functions over the expurgated ensemble of (n, k) linear block codes with minimum distance

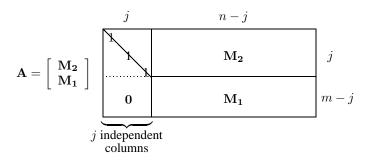


Figure 2.9: Specific matrix for the computation of function $J(\cdot)$.

at least 2, where the expurgation guarantees a correct application of the EXIT charts analysis. The expected (split) information function computation exploits some formulas for obtaining the exact number of binary matrices with specific properties. The proposed analysis method has been combined with the differential evolution algorithm, in order to develop optimal D-GLDPC distributions. Focusing on random, capacity approaching codes, it has been shown that D-GLDPC codes can be constructed, outperforming LDPC and GLDPC codes in terms of both waterfall and error floor. Moreover, by lower bounding the fraction of edges towards the generalized check nodes, D-GLDPC codes have been designed, which gain two orders of magnitude with respect to the LDPC and GLDPC codes in terms of error floor, with no sacrifice in terms of waterfall performance.

2.7 Proofs of Lemmas and Theorems of Section 2.3

Proof of Lemma 2.4: F(m,n,r) is equal to the total number of rank-r $(m \times n)$ binary matrices minus the number of rank-r $(m \times n)$ binary matrices with at least one zero column. The total number of rank-r $(m \times n)$ binary matrices is given by $\prod_{j=0}^{r-1} (2^m - 2^j)(2^n - 2^j)/(2^r - 2^j)$. The number of rank-r $(m \times n)$ binary matrices with exactly z zero columns $(z \le n - r)$ is expressed by $\binom{n}{z} F(m, n - z, r)$.

Proof of Theorem 2.4: J(m, n, r) can be computed as $F(m, n, r) - \sum_{j=1}^{r} J^{(j)}(m, n, r)$, where $J^{(j)}(m, n, r)$ is the number of rank-r binary $(m \times n)$ matrices without zero columns and with j independent columns.

There are $\binom{n}{j}$ possible positions for the j independent columns, and the number of choices of the j independent columns is $\prod_{i=0}^{j-1} (2^m - 2^i)$. Hence we have

$$J^{(j)}(m,n,r) = \binom{n}{j} \left[\prod_{i=0}^{j-1} (2^m - 2^i) \right] \cdot D^{(j)}(m,n-j),$$

where $D^{(j)}(m, n-j)$ is the residual number of $(m \times (n-j))$ binary matrices (that must have no zero columns and no independent columns). We prove next that $D^{(j)}(m, n-j) =$

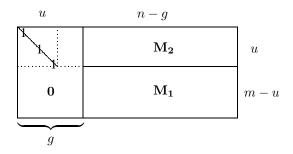


Figure 2.10: Specific matrix for the computation of function $M(\cdot)$.

 $J(m-j, n-j, r-j) \cdot 2^{j(r-j)}$, thus leading to the recursion (2.19).

Since $D^{(j)}(m, n-j)$ is independent of the position and choice of the j independent columns, we can reason on the specific matrix shown in Fig. 2.9, where the matrix **A** is defined. With respect to this choice, $D^{(j)}(m, n-j)$ is the number of choices of the last n-j columns.

The rank of such a matrix is equal to $j + \operatorname{rank}(\mathbf{M_1})$. Thus $\mathbf{M_1}$ must have rank r - j, and it must have no independent columns (in fact, since the total rank is $j + \operatorname{rank}(\mathbf{M_1})$, an independent column for $\mathbf{M_1}$ would be independent for the whole matrix). Moreover, since each of the last n - j columns must be independent of each of the first j columns, each column of $\mathbf{M_1}$ must have at least one 1. Hence, the number of $\mathbf{M_1}$ matrices is equal to J(m-j,n-j,r-j). Since the first j columns are independent, removing them from the matrix must lead to a rank r-j. Then, $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{M_1}) = r-j$. Then, any row in $\mathbf{M_2}$ must be a linear combination of rows in $\mathbf{M_1}$. The total number of such combinations is $2^{j(r-j)}$. Hence it results $D^{(j)}(m,n-j) = J(m-j,n-j,r-j) \cdot 2^{j(r-j)}$,

Proof of Lemma 2.5: The function M(m,n,g,u,r) can be expressed as F(m,g,u) (number of choices of the first g columns) times the number of $(m \times (n-g))$ binary matrices without zero columns and such that the overall rank is r. Since this number is independent of the specific choice of the first g columns, we can reason on the specific matrix of Fig. 2.10. In order to have an overall rank r, we must have $\operatorname{rank}(\mathbf{M}_1) = r - u$. Denoting by z the number of zero columns in \mathbf{M}_1 , the number of \mathbf{M}_1 matrices can be expressed as $\binom{n-g}{z} F(m-u,n-g-z,r-u)$. Since $\operatorname{rank}(\mathbf{M}_1) = r-u$, the number z of zero columns in \mathbf{M}_1 cannot exceed s = (n-g) - (r-u). The only constraint on \mathbf{M}_2 is that at least one 1 must be present in each column of \mathbf{M}_2 corresponding to a zero column of \mathbf{M}_1 . Thus the number of \mathbf{M}_2 matrices corresponding to a \mathbf{M}_1 matrix with z zero columns is $T(u,z) \, 2^{u(n-g-z)}$, where $T(\cdot)$ is defined in the statement of the lemma, and where T(u,0) must be set to 1 (no zero columns in \mathbf{M}_1). Then we obtain (2.20).

Proof of Theorem 2.5: In a similar way as for function $J(\cdot)$, we have $K(m,n,g,u,r) = M(m,n,g,u,r) - \sum_{i=1}^{r-1} K^{(j)}(m,n,g,u,r)$, where $K^{(j)}(m,n,g,u,r)$ is the number of rank-r

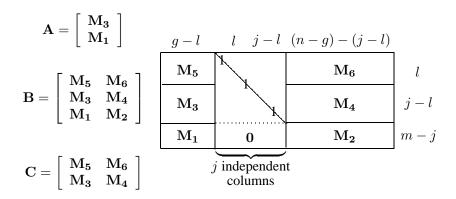


Figure 2.11: Matrix for the computation of function $K(\cdot)$.

 $(m \times n)$ binary matrices without zero columns, with the first g columns of rank u, and with j independent columns.

Let the number of independent columns among the first g columns be $l \leq \min\{u, j\}$, and the number of independent columns among the last n-g columns be j-l. The number of possible positions of the independent columns is $\binom{g}{l}\binom{n-g}{j-l}$, while the number of choices of the j independent columns is $\prod_{i=0}^{j-1}(2^m-2^j)$. We can reason on a specific position and choice of the independent columns. The specific choice is depicted in Fig. 2.11, where matrices \mathbf{A} , \mathbf{B} and \mathbf{C} are defined. We have $K^{(j)}(m,n,g,u,r) = \sum_{l=0}^{\min\{u,j\}}\binom{g}{j-l}\binom{n-g}{j-l}\left[\prod_{i=0}^{j-1}(2^m-2^i)\right]\cdot N_B$, with N_B number of \mathbf{B} matrices for each choice of the j independent columns. We prove next that the number of $[\mathbf{M_1}|\mathbf{M_2}]$ possible matrices is K(m-j,n-j,g-l,u-l,r-j) and, for each choice of $[\mathbf{M_1}|\mathbf{M_2}]$, the number of \mathbf{C} matrices is $2^{j(r-j)}$, so that

$$N_B = 2^{j(r-j)} \cdot K(m-j, n-j, g-l, u-l, r-j),$$

from which it follows the recursion (2.21).

The rank of the overall matrix is equal to $j+\operatorname{rank}([\mathbf{M_1}|\mathbf{M_2}])$. Consequently, $\operatorname{rank}([\mathbf{M_1}|\mathbf{M_2}])=r-j$. Furthermore, $[\mathbf{M_1}|\mathbf{M_2}]$ must also have no independent columns (since the overall rank is $j+\operatorname{rank}([\mathbf{M_1}|\mathbf{M_2}])$, any such column would be independent also for the overall matrix). $[\mathbf{M_1}|\mathbf{M_2}]$ must also have at least one 1 for each column due to the linear independence between the j independent columns and all the columns of \mathbf{B} . Finally, it must be $\operatorname{rank}(\mathbf{M_1})=u-l$. This condition can be obtained in the following way. Since $\operatorname{rank}(\mathbf{B})=\operatorname{rank}([\mathbf{M_1}|\mathbf{M_2}])=r-j$, each row in \mathbf{C} must be a linear combination of rows in $[\mathbf{M_1}|\mathbf{M_2}]$. This implies in particular that each row in $\mathbf{M_3}$ must be a linear combination of rows in $\mathbf{M_1}$, i.e. $\operatorname{rank}(\mathbf{A})=\operatorname{rank}(\mathbf{M_1})$. The rank of the first g columns is equal to $l+\operatorname{rank}(\mathbf{A})$. Since this rank must be equal to u, it follows $\operatorname{rank}(\mathbf{A})=u-l$, i.e. $\operatorname{rank}(\mathbf{M_1})=u-l$. Then, the number of $[\mathbf{M_1}|\mathbf{M_2}]$ matrices is K(m-j,n-j,g-l,u-l,r-j).

Since each row of C is a linear combination of rows of $[M_1|M_2]$, and since $\operatorname{rank}([M_1|M_2]) =$

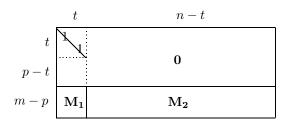


Figure 2.12: Matrix for the computation of function $\widetilde{N}(\cdot)$.

r-j, then for each choice of $[\mathbf{M_1}|\mathbf{M_2}]$ there are $2^{j(r-j)}$ matrices \mathbf{C} allowed.

2.8 Proofs of Lemmas and Theorems of Section 2.4

Proof of Lemma 2.6: The number of choices of the first p rows is $\prod_{j=0}^{t-1} (2^p - 2^j)(2^n - 2^j)/(2^t - 2^j)$. Since the number of choices of the last m - p rows does not depend on the structure of the first p rows, the specific matrix depicted in Fig. 2.12 can be considered. The rank of the $(m \times n)$ matrix is given by $t + \text{rank}(\mathbf{M_2})$: then, $\text{rank}(\mathbf{M_2}) = r - t$, and the number of $\mathbf{M_2}$ matrices is $\prod_{j=0}^{r-t-1} (2^{m-p} - 2^j)(2^{n-t} - 2^j)/(2^{r-t} - 2^j)$. Since there are no constraints on the choice of $\mathbf{M_1}$, the number of $\mathbf{M_1}$ matrices for each choice of the first p columns and for each choice of $\mathbf{M_2}$ is $2^{t(m-p)}$.

Proof of Lemma 2.7: $\widetilde{F}(m,n,p,t,r)$ is equal to the total number of rank-r binary matrices such that the rank of the first p rows is t, $\widetilde{N}(m,n,p,t,r)$, minus the number of such matrices with z zero columns, for $z=1,\ldots,n-r$. The number of rank-r $(m\times n)$ binary matrices such that the rank of the first p rows is t and with exactly z zero columns $(z\leq n-r)$ is expressed by $\binom{n}{z}\widetilde{F}(m,n-z,p,t,r)$.

Proof of Lemma 2.8: Let \mathbf{M}_1 be the submatrix composed of the first a columns, and \mathbf{M}_2 be the submatrix composed of the last n-a columns. The number of \mathbf{M}_1 matrices is $\widetilde{F}(m,a,b,t,u)$, expressed by Lemma 2.7. The number of \mathbf{M}_2 submatrices is independent of the specific choice of \mathbf{M}_1 . A convenient choice of \mathbf{M}_1 is depicted in Fig. 2.13, where \mathbf{M}_2 is partitioned into the three submatrices $\mathbf{M}_2^{(1)}$, $\mathbf{M}_2^{(2)}$, $\mathbf{M}_2^{(3)}$, and the matrix \mathbf{A} is defined. In order to have a total rank r, it must be $\mathrm{rank}(\mathbf{A}) = r - u$. Denoting by z the number of zero columns in \mathbf{A} , the number of \mathbf{A} matrices is $\sum_{z=0}^{z_{\max}} \binom{n-a}{z} F(m-u,n-a-z,r-u)$, where $z_{\max} = (n-a) - (r-u)$ (because we need at least r-u non-zero columns for \mathbf{A}). Since the overall $(m \times n)$ matrix must have no zero columns, the total number of choices for the z columns of $\mathbf{M}_2^{(2)}$, corresponding to the z zero columns of some choice of \mathbf{A} , is T(u,z). Moreover, no constraint exists on the choice of the n-a-z columns of $\mathbf{M}_2^{(2)}$ corresponding to the non-zero columns of \mathbf{A} . Then, this number is $2^{u(n-a-z)}$.

Proof of Lemma 2.9: Since the rank of the $(m \times j)$ matrix is equal to j, all the columns

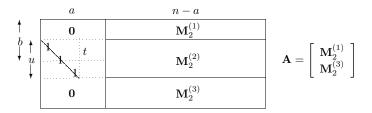


Figure 2.13: Specific choice of the submatrix \mathbf{M}_1 for the computation of $\widehat{M}(m,n,a,b,t,u,r)$.

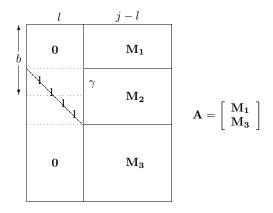


Figure 2.14: Specific choice of the $(m \times j)$ matrix for the computation of $G(m, j, l, b, \gamma, \delta)$.

must be linearly independent. Hence, the number of possible choices for the first l columns is $\widetilde{F}(m,l,b,\gamma,l)$, with $\widetilde{F}(\cdot)$ defined in Lemma 2.7. The number of possible choices for the last j-l columns is independent of the specific choice of the first l columns. A convenient choice is depicted in Fig. 2.14, where the last n-l columns are decomposed into three the submatrices $\mathbf{M_1}$, $\mathbf{M_2}$ and $\mathbf{M_3}$, and where $((m-l)\times(j-l))$ matrix \mathbf{A} is defined. We prove next that, for each choice of the first l columns, the number of \mathbf{A} matrices is $\widetilde{F}(m-l,j-l,b-\gamma,\delta-\gamma,j-l)$ and, for each choice of the first l columns and \mathbf{A} matrix, the number of $\mathbf{M_2}$ matrices is $2^{l(j-l)}$.

The total rank of the $(m \times j)$ matrix is equal to $l + \text{rank}(\mathbf{A})$: then, it must be $\text{rank}(\mathbf{A}) = j - l$. Moreover, in order to have a rank δ for the first b rows, it must be $\text{rank}(\mathbf{M}_1) = \delta - \gamma$. Since all the j columns must be independent, \mathbf{A} must have no zero columns. Then, the number of \mathbf{A} matrices is $\widetilde{F}(m-l,j-l,b-\gamma,\delta-\gamma,j-l)$. Since any choice is allowed for \mathbf{M}_2 , the number of such submatrices is $2^{l(j-l)}$.

Proof of Theorem 2.6: The searched number of binary matrices can be obtained as

$$\widehat{M}(m, n, a, b, t, u, r) - \sum_{j=1}^{r-1} \widehat{K}^{(j)}(m, n, a, b, t, u, r),$$

where $\widehat{K}^{(j)}(m,n,a,b,t,u,r)$ is the number of rank-r $(m \times n)$ binary matrices without

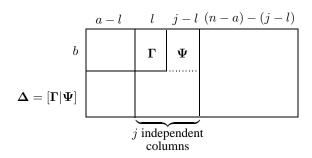


Figure 2.15: Specific position of the j independent columns, with rank(Γ) = γ and rank(Δ) = δ .

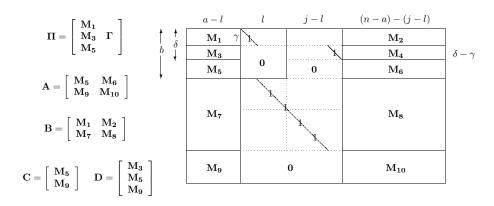


Figure 2.16: Specific position of the j independent columns, with rank(Γ) = γ and rank(Δ) = δ .

zero columns, such that the rank of the submatrix intersection of the first a columns and the first b rows is t, such that the rank of the first a columns is u and with exactly j independent columns. For each j, let l be the number of independent columns among the first a columns, and j-l the number of independent columns among the last n-a columns. Since the rank of the first a columns must be u, it is $l \in \{0, \ldots, u\}$. For l, there are $\binom{a}{l}\binom{n-a}{j-l}$ possible positions for the j independent columns.

Let us assume that the j independent columns are the last l out of the first a columns, and the first j-l out of the last n-a columns, as shown in Fig. 2.15, where the matrices Γ , Ψ and Δ are defined. Denoting by γ the rank of the $(b \times l)$ matrix Γ and by δ the rank of the $(b \times j)$ matrix Δ , it is $\gamma \in \{0, \ldots, \min\{b, l\}\}$ and $\delta \in \{\gamma, \ldots, \min\{b, j\}\}$.

For fixed γ and δ , the number choices for the j independent columns is $G(m, j, l, b, \gamma, \delta)$ defined in Lemma 2.9. We can reason on the specific choice of the j independent columns depicted in Fig. 2.16, where the matrices Π , Λ , B, C and D are defined. Let rank(M_5) = p. Since M_5 is a $((b-\delta)\times(a-l))$ matrix, and since rank(Π) = t, it is $p \in \{0, \ldots, \min\{b-\delta, a-l, t-\gamma\}\}$.

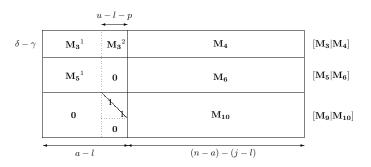


Figure 2.17: Specific choice of $\bf A$ for the computation of the number of $[\bf M_3|\bf M_4]$ matrices.

For each value of p, the number of \mathbf{A} matrices is equal to $\widehat{K}(m-j,n-j,a-l,b-\delta,p,u-l,r-j)$, as proved next. The $((m-j)\times(n-j))$ matrix \mathbf{A} in Fig. 2.16 must have rank r-j, because the overall rank r is given by $j+\mathrm{rank}(\mathbf{A})$. It must have no zero columns due to the linear independence between the j independent columns and all the columns. It must have no independent columns because, being the total rank equal to $j+\mathrm{rank}(\mathbf{A})$, such columns would be independent for the overall matrix. The rank of the intersection between its first a-l columns and $b-\delta$ rows is p. Finally, the rank of its first a-l columns (i.e. $\mathrm{rank}(\mathbf{C})$) must be equal to u-l. The latter property can be proved as follows. By removing the j independent columns, we obtain a matrix with $\mathrm{rank}\ r-j$, which is also the rank of \mathbf{A} . Then, each row of the matrix obtained by removing the j independent columns is a linear combination of the rows of \mathbf{A} . In particular, each row of \mathbf{M}_3 is a linear combination of the rows of \mathbf{C} , from which we obtain $\mathrm{rank}(\mathbf{D}) = \mathrm{rank}(\mathbf{C})$. Since the rank of the first a columns of the overall matrix is u, it follows from Fig. 2.16 that $\mathrm{rank}(\mathbf{D}) = u-l$ i.e. $\mathrm{rank}(\mathbf{C}) = u-l$.

The number of rows of **B** is $j - (\delta - \gamma)$, and the only condition on this matrix is that all its rows are linear combinations of the rows of **A**, whose rank is r - j. Then, the number of choices of **B** is $2^{(r-j)(j-(\delta-\gamma))}$, that is independent of p, so can be moved outside the summation over this parameter.

The proof is completed by computing the number of $[\mathbf{M_3}|\mathbf{M_4}]$ matrices. It must be $\operatorname{rank}(\mathbf{\Pi}) = t$, $\operatorname{rank}(\mathbf{M_5}) = p$, $\operatorname{rank}(\mathbf{C}) = u - l$ and any row of $[\mathbf{M_3}|\mathbf{M_4}]$ must be a linear combination of the rows of \mathbf{A} . Let us consider the specific choice of \mathbf{A} depicted in Fig. 2.17, where $\operatorname{rank}(\mathbf{M_5^1}) = p$. The condition $\operatorname{rank}(\mathbf{\Pi}) = t$ is satisfied if and only if $\operatorname{rank}(\mathbf{M_3^2}) = t - \gamma - p$. Each row of $\mathbf{M_3^2}$ must be a linear combination of the u - l - p rows of \mathbf{A} corresponding to the \mathbf{I}_{u-l-p} matrix. All the possible $((\delta - \gamma) \times (u - l - p))$ $\mathbf{M_3^2}$ matrices can be generated with these vectors. Then, the number of $\mathbf{M_3^2}$ matrices is

$$\prod_{i=0}^{t-\gamma-p-1} \frac{(2^{\delta-\gamma}-2^i)(2^{u-l-p}-2^i)}{2^{t-\gamma-p}-2^i} \, .$$

Let us fix a $\mathbf{M_3^2}$ matrix. Each row of $\mathbf{M_3^2}$ selects a specific linear combination of the u-l-p rows of \mathbf{A} that correspond to \mathbf{I}_{u-l-p} . The other rows have a rank (r-j)-(u-l-p), so there are $2^{[(r-j)-(u-l-p)]}$ possible choices for each row of $[\mathbf{M_3^1}|\mathbf{M_4}]$. Since the total number of such rows is $\delta - \gamma$, the number of $[\mathbf{M_3^1}|\mathbf{M_4}]$ matrices is $2^{[(r-j)-(u-l-p)](\delta-\gamma)}$.

Chapter 3

Generalized Stability Condition for Generalized and Doubly-Generalized LDPC Codes

3.1 Introduction

As remarked in Chapter 1, a traditional LDPC code of length N and dimension K is graphically represented through a bipartite graph with N variable nodes and $M \geq N - K$ check nodes [20]. A degree-n check node of an LDPC code can be interpreted as a length-n single parity-check (SPC) code, i.e. as a (n, n-1) linear block code, while a degree-n variable node can be interpreted as a length-n repetition code, i.e. as a (n, 1) linear block code.

For standard LDPC ensembles, an important role is played by an inequality known as *stability condition* [7][52]. For transmission on a BEC with erasure probability q, and assuming minimum variable node degree 2, the stability condition establishes the following upper bound to the asymptotic threshold q^* for the LDPC ensemble:

$$q^* \le [\lambda'(0)\,\rho'(1)]^{-1}.\tag{3.1}$$

In (3.1), $\lambda'(0) = \lambda_2$ is the fraction of edges towards the length-2 repetition variable nodes, while $\rho'(1)$ is the derivative (computed in x = 1) of the function $\rho(x) = \sum_{j \geq 2} \rho_j x^{j-1}$, where ρ_j is the fraction of edges connected to SPC check nodes of length j. The bound (3.1) was first developed in [7] from density evolution. It is possible, however, to interpret it in a simple graphical way, by exploiting EXIT charts. More specifically, the stability condition is equivalent to the following statement: a necessary condition for (asymptotic) LDPC successful decoding, is that the derivative of the EXIT function $I_{E,V}(I_A, q)$ for the variable node decoder (VND), with respect to I_A^{-1} and evaluated in $I_A = 1$, is smaller than

 $^{^{1}}I_{A}$ denotes the average *a priori* mutual information in input to the VND or to the CND. Since the extrinsic channel is modelled as a BEC with erasure probability p, it is $I_{A} = 1 - p$.

the derivative of the inverse EXIT function $I_{E,C}^{-1}(I_A)$ for the check node decoder (CND), evaluated in $I_A = 1$, i.e. (3.1) is equivalent to

$$\frac{\partial I_{E,V}(I_A, q^*)}{\partial I_A}\Big|_{I_A=1} \le \frac{\mathrm{d}I_{E,C}^{-1}(I_A)}{\mathrm{d}I_A}\Big|_{I_A=1}.$$
(3.2)

The LDPC stability condition (3.1) is a tight upper bound, since there exist LDPC distributions whose threshold achieves it with equality, assuming the closed form $q^* = [\lambda'(0)\rho'(1)]^{-1}$. For achieving (3.1) with equality, it is sufficient that the first occurrence of a tangency point between the EXIT function $I_{E,V}(I_A, q)$ of the VND and the inverse EXIT function $I_{E,C}^{-1}(I_A)$ of the CND appears in $I_A = 1$, i.e.

$$\begin{cases}
I_{E,V}(1,q^*) = I_{E,C}^{-1}(1) = 1 \\
\frac{\partial I_{E,V}(I_A,q^*)}{\partial I_A}\Big|_{I_A=1} = \frac{\mathrm{d}I_{E,C}^{-1}(I_A)}{\mathrm{d}I_A}\Big|_{I_A=1}.
\end{cases}$$
(3.3)

For LDPC codes, the first equality is always true. As proved in Section 2.2, it is always satisfied also for GLDPC and D-GLDPC codes, provided that all the variable and check component codes have $d_{\min} \geq 2$, which is assumed true throughout this chapter. Then, only the second equality will be considered in the sequel, and referred to as *derivative matching condition*.

In this chapter, the stability condition (3.2), and the derivative matching condition (3.3) are extended to GLDPC and D-GLDPC codes [53]. Two main results are obtained. The first is that only the component codes with $d_{\min} = 2$, including length-2 repetition codes and SPC codes, appear in the stability condition. The second is that, for GLDPC codes satisfying the derivative matching condition, it is always possible to develop a closed-form expression of the threshold; the same expression holds also for D-GLDPC codes satisfying the derivative matching condition, if all the generalized variable nodes have $d_{\min} \geq 3$.

3.2 Definitions and Basic Notation

The transmission channel is a BEC with erasure probability q. Assuming a bipartite graph with random connections, the *extrinsic channel*, over which the messages are exchanged between the variable and check nodes, during the iterative decoding process, is modelled as a second BEC with erasure probability p (see Section 2.1). It is readily proved that $I_A = 1 - p$: since the EXIT functions will be expressed as functions of p (and q for the VND), the derivatives of the EXIT function for the VND and of the inverse EXIT function for the CND will be evaluated in p = 0 ($I_A = 1$).

Under the hypothesis of random bipartite graph, the VND and CND EXIT functions

are expressed, respectively, by (2.5) and (2.6), here recalled for convenience:

$$I_{E,V}(p,q) = \sum_{i=1}^{\mathcal{I}_V} \lambda_i I_{E,V}^{(i)}(p,q)$$
(3.4)

$$I_{E,C}(p) = \sum_{i=1}^{\mathcal{I}_C} \rho_i I_{E,C}^{(i)}(p), \tag{3.5}$$

where \mathcal{I}_V and \mathcal{I}_C are the number of variable and check node types, $I_{E,V}^{(i)}(p,q)$ and $I_{E,C}^{(i)}(p)$ are the EXIT function for the *i*-th variable node type and *i*-th check node type, λ_i and ρ_i are the fraction of edges towards the variable nodes of type *i* and the check nodes of type *i*.

For the scope of this chapter, it is useful to isolate, in (3.4), the contribution of the repetition codes and, in (3.5), the contribution of the SPC codes. Since the EXIT function on the BEC for a length-j repetition variable node is $I_E(p,q) = 1 - q p^{j-1}$, and since the EXIT function on the BEC for a length-j SPC check node is $I_E(p) = (1-p)^{j-1}$, then we obtain:

$$I_{E,V}(p,q) = \sum_{j\geq 2}^{\text{(rep)}} \lambda_j^{(r)} \cdot (1 - q \, p^{j-1}) + \sum_i^{\text{(gen)}} \lambda_i \, I_{E,V}^{(i)}(p,q)$$

$$= \sum_{j\geq 2}^{\text{(rep)}} \lambda_j^{(r)} - q \, \lambda_r(p) + \sum_i^{\text{(gen)}} \lambda_i \, I_{E,V}^{(i)}(p,q)$$
(3.6)

$$I_{E,C}(p) = \sum_{j\geq 2}^{(SPC)} \rho_j^{(SPC)} \cdot (1-p)^{j-1} + \sum_{i}^{(gen)} \rho_i I_{E,C}^{(i)}(p)$$
$$= \rho_{SPC}(1-p) + \sum_{i}^{(gen)} \rho_i I_{E,C}^{(i)}(p). \tag{3.7}$$

In (3.6), j is the length of the generic repetition variable node, $\lambda_j^{(r)}$ is the fraction of edges towards the repetition variable nodes of length j, $\lambda_r(x)$ is defined as $\sum_{j\geq 2} \lambda_j^{(r)} x^{j-1}$. The summation in i is over all the generalized variable node types. Analogously, in (3.7), j is the length of the generic SPC node, $\rho_j^{(\text{SPC})}$ is the fraction of edges towards the SPC nodes of length j, $\rho_{\text{SPC}}(x)$ is defined as $\sum_{j\geq 2} \rho_j^{(\text{SPC})} x^{j-1}$.

The EXIT function for an (n, k) generalized variable node of a D-GLDPC code on the BEC can be expressed by (2.2), here recalled for convenience:

$$I_E(p,q) = 1 - \frac{1}{n} \sum_{t=0}^{n-1} \sum_{z=0}^{k} a_{t,z} p^t (1-p)^{n-t-1} q^z (1-q)^{k-z},$$
(3.8)

where $a_{t,z} = [(n-t)\tilde{e}_{n-t,k-z} - (t+1)\tilde{e}_{n-t-1,k-z}]$, and where the parameter $\tilde{e}_{g,h}$ (with $g = 0, \ldots, n$ and $h = 0, \ldots, k$) is the (g,h)-th un-normalized split information function. Considering a representation of the generator matrix \mathbf{G} for the (n,k) variable node, and appending to it the $(k \times k)$ identity matrix \mathbf{I}_k , $\tilde{e}_{g,h}$ is equal to the summation of the ranks over all the possible submatrices obtained selecting g columns in \mathbf{G} and h columns in \mathbf{I}_k . The split information functions for a generalized variable node, and then its EXIT function, heavily depend on the code representation, i.e. on the chosen generator matrix [41]. Then, the performance of the overall D-GLDPC code depends on the code representation used at the generalized variable nodes.

The EXIT function for a generalized (n, k) check node of a GLDPC or D-GLDPC code on the BEC can be obtained by letting $q \to 1$ in (3.8) (no communication channel is present). The obtained expression is given in (2.3), here recalled for convenience:

$$I_E(p) = 1 - \frac{1}{n} \sum_{t=0}^{n-1} a_t p^t (1-p)^{n-t-1},$$
(3.9)

where $a_t = (n-t) \tilde{e}_{n-t} - (t+1) \tilde{e}_{n-t-1}$ and where for g = 0, ..., n, \tilde{e}_g is the g-th unnormalized information function of the (n,k) code. It is defined as the summation of the ranks over all the possible submatrices obtained selecting g columns from the generator matrix G. As opposed to the split information functions, the information functions are independent of the code representation. Thus, different code representations lead to the same EXIT function for the generalized check node. The performance of the overall D-GLDPC code is then independent of the specific representation of the generalized check nodes.

Equations (3.8) and (3.9) assume that MAP erasure correction is performed at the variable and check node.

3.3 Independent Sets and Minimum Distance

The development of a generalized stability condition for GLDPC and D-GLDPC codes is mostly based on the concept of *independent set* of columns introduce in Section 2.2.1 and on Lemma 2.2 proved on page 28. This lemma establishes a necessary and sufficient condition for a $(k \times t)$ binary matrix, obtained by selecting t columns in the generator matrix \mathbf{G} (any representation) of a (n, k) linear block code, to be full rank. The concept of independent set and Lemma 2.2 are recalled next.

Definition 3.1 (independent set). Given a $(k \times n)$ binary matrix of rank r, a set of t columns is said an independent set when removing these t columns from the matrix leads to a $(k \times n - t)$ matrix with rank $r - \Delta r < r$, for some $0 < \Delta r \le t$. The number t is the size of the independent set.

Lemma 3.1. Let G be any representation of the generator matrix of an (n, k) linear block code. Then, the following statements are equivalent:

- a) the code has minimum distance t;
- b) the minimum size of the independent sets of G is t.

The present section is concluded by the following lemma.

Lemma 3.2. Let k < n, and t be the minimum size of the independent sets of a $(k \times n)$ binary matrix with rank r. Then, removing any independent set of size t, leads to a $(k \times (n-t))$ matrix with rank r-1.

Proof. Since t is the minimum size of the independent sets of the matrix, then removing any set of j < t columns does not affect the rank. For an independent set of size t, one can remove any subset of t-1 columns without reducing the rank; when removing the t-th column, the rank can only decrease by 1.

3.4 Stability Condition and Derivative Matching for GLDPC Codes

In GLDPC codes, all the variable nodes are repetition codes. Recalling (3.6), and observing that $\sum_{j\geq 2}^{(\text{rep})} \lambda_j^{(\text{r})} = 1$, the EXIT function on the BEC for the VND is given by $I_{E,V}(p,q) = 1 - q\lambda^{(r)}(x)$. Hence:

$$\frac{\partial I_{E,V}(p,q)}{\partial p}\Big|_{p=0} = -q \,\lambda_2^{(r)}. \tag{3.10}$$

Recalling (3.7), the derivative of $I_{E,C}(p)$ in p=0 is

$$\frac{\mathrm{d}I_{E,C}(p)}{\mathrm{d}p}\Big|_{p=0} = -\rho'^{(SPC)}(1) + \sum_{i}^{(gen)} \rho_i \frac{\mathrm{d}I_{E,C}^{(i)}(p)}{\mathrm{d}p}\Big|_{p=0}.$$
 (3.11)

In order to develop the previous expression, it is necessary to express the derivative of the EXIT function for the generalized check nodes. This task can be performed by exploiting Lemma 3.1, as explained next.

Consider an (n, k) generalized check node, with EXIT function $I_E(p)$ in the form (3.9). It is readily shown that the derivative of $I_E(p)$, computed in p = 0, is

$$\frac{\mathrm{d}I_E(p)}{\mathrm{d}p}|_{p=0} = \frac{(n-1)a_0 - a_1}{n}.$$

According to Lemma 3.1, $a_0 = 0$ if and only if the generalized check node has minimum distance $d_{\min} \geq 2$. In fact, the generator matrix of the check node is full rank (rank = k)

by definition, so $\tilde{e}_n = k$. Furthermore, from Lemma 3.1, removing any single column from the generator matrix does not reduce the rank if and only if $d_{\min} \geq 2$, thus leading to $\tilde{e}_{n-1} = n k$. Then, $a_0 = n \tilde{e}_n - \tilde{e}_{n-1} = n k - n k = 0$. As recalled in Section 1.1, the hypothesis $d_{\min} \geq 2$ is always assumed in this work. Then, it will be always assumed $a_0 = 0$.

It follows that, assuming $d_{\min} \geq 2$ for the check node,

$$\frac{\mathrm{d}I_E(p,q)}{\mathrm{d}p}|_{p=0} = -\frac{a_1}{n},$$

where $a_1 = (n-1)\tilde{e}_{n-1} - 2\tilde{e}_{n-2} = k n (n-1) - 2\tilde{e}_{n-2}$. By applying again Lemma 3.1, we obtain

$$a_1 \begin{cases} = 0 & \text{if } d_{\min} \ge 3\\ \neq 0 & \text{if } d_{\min} = 2. \end{cases}$$
 (3.12)

In fact, if $d_{\min} \geq 3$, removing any pair of columns from the generator matrix does not affect the rank. In this case $2 \tilde{e}_{n-2} = 2 k \binom{n}{2} = k n (n-1)$, hence $a_1 = 0$.

According to these results, the only generalized check nodes that give some contribution to the summation in the second member of (3.11) are those characterized by $d_{\min} = 2$. By recalling that all the SPC codes have minimum distance 2, we conclude that $\frac{\mathrm{d}I_{E,C}(p)}{\mathrm{d}p}|_{p=0}$ only depends on the check nodes with $d_{\min} = 2$. The derivative in p = 0 of the EXIT function for the CND can be then expressed as

$$\frac{\mathrm{d}I_{E,C}(p)}{\mathrm{d}p}\Big|_{p=0} \\
= -\rho'^{(SPC)}(1) - \sum_{i}^{d_{\min}=2} \rho_{i} \frac{k_{i}n_{i}(n_{i}-1) - 2\tilde{e}_{n_{i}-2}}{n_{i}} \\
= -\rho'^{(SPC)}(1) - \sum_{i}^{d_{\min}=2} \frac{2\rho_{i}}{n_{i}} \Delta_{n-2}^{(i)}, \tag{3.13}$$

where the summation is over the generalized check nodes with minimum distance 2. In the last equality, $\Delta_{n-2}^{(i)} > 0$ is defined as follows. Let \mathcal{S}_{n_i-2} be the generic $(k_i \times (n_i - 2))$ matrix obtained by selecting $n_i - 2$ columns in the generator matrix. Then,

$$\Delta_{n-2}^{(i)} = \sum_{\mathcal{S}_{n_i-2}} (k_i - \operatorname{rank}(\mathcal{S}_{n_i-2})),$$

where the summation is over all the possible matrices $S_{n_{i-2}}$. The parameter $\Delta_{n-2}^{(i)}$ does not depend on the chosen representation for the *i*-th generalized check node.

The derivative in p = 0 for the inverse EXIT function $I_{E,C}^{-1}(p)$ of the CND is simply given by the inverse of (3.13). Then, from (3.10) and (3.13), the stability condition

 $\partial I_{E,V}(I_A,q^*)/\partial I_A\,|_{I_A=1} \leq \mathrm{d} I_{E,C}^{-1}/\mathrm{d} I_A\,|_{I_A=1}$ for GLDPC codes leads to 2

$$q^* \le \left[\lambda_2^{(r)} \left(\rho'^{(SPC)}(1) + \sum_{i=1}^{d_{\min}=2} \frac{2\rho_i}{n_i} \Delta_{n-2}^{(i)}\right)\right]^{-1},$$
 (3.14)

an upper bound on the threshold q^* which represents a necessary condition for successful GLDPC (asymptotic) decoding.

For GLDPC codes satisfying the derivative matching condition (3.3) (the first occurrence of a tangency point between $I_{E,V}(p,q)$ and $I_{E,C}^{-1}(p)$ appears in p=0), the threshold assumes the following simple closed form:

$$q^* = \left[\lambda_2^{(r)} \left(\rho'^{(SPC)}(1) + \sum_{i=1}^{d_{\min}=2} \frac{2\rho_i}{n_i} \Delta_{n-2}^{(i)}\right)\right]^{-1}.$$
 (3.15)

If only generalized check nodes with $d_{\min} \geq 3$ are used, then the stability condition (3.14) and the threshold expression (3.15) become, respectively,

$$q^* \le \left[\lambda_2^{(r)} \rho'^{(SPC)}(1)\right]^{-1} \tag{3.16}$$

$$q^* = \left[\lambda_2^{(r)} \, \rho'^{(SPC)}(1)\right]^{-1}. \tag{3.17}$$

3.5 Stability Condition and Derivative Matching for D-GLDPC Codes

The derivative in p = 0 of the EXIT function for the CND of D-GLDPC codes is the same as for GLDPC codes, and is expressed by (3.13). The derivative with respect to p, in p = 0, of the EXIT function for the VND is developed next.

By computing the partial derivative respect to p of $I_{E,V}(p,q)$ from (3.6), we obtain:

$$\frac{\partial I_{E,V}(p,q)}{\partial p}\Big|_{p=0} = -q \,\lambda_2^{(r)} + \sum_{i}^{(\text{gen})} \lambda_i \,\frac{\partial I_{E,V}^{(i)}(p,q)}{\partial p}\Big|_{p=0}.$$
 (3.18)

In order to develop the summation on the generalized variable node types in the second member, the derivative in p = 0 for the EXIT function of each generalized variable node must be computed, based on (3.8). By defining

$$f(p) = \sum_{t=0}^{n-1} a_{t,z} p^{t} (1-p)^{n-1-t},$$

²If the derivatives are computed with respect to $p=1-I_A$, the stability condition is $\partial I_{E,V}(p,q^*)/\partial p|_{p=0} \ge \mathrm{d}I_{E,C}^{-1}/\mathrm{d}p|_{p=0}$.

it results

$$\frac{\partial I_E(p,q)}{\partial p}\Big|_{p=0} = -\frac{1}{n} \sum_{z=0}^k q^z (1-q)^{k-z} \frac{\mathrm{d}f(p)}{\mathrm{d}p}\Big|_{p=0}
= \sum_{z=0}^k q^z (1-q)^{k-z} \frac{(n-1)a_{0,z} - a_{1,z}}{n},$$
(3.19)

where the fact that

$$\frac{\mathrm{d}f(p)}{\mathrm{d}p}\Big|_{p=0} = -(n-1)a_{0,z} + a_{1,z}$$

has been exploited. The previous relationship can be further developed by exploiting Lemma 3.1. Since, by hypothesis, any variable node has minimum distance at least 2, removing any single column from the generator matrix \mathbf{G} of the code associated to the variable node does not affect the rank of \mathbf{G} . It follows $a_{0,z} = n \, \tilde{e}_{n,k-z} - \tilde{e}_{n-1,k-z} = k \, n \, \binom{k}{k-z} - k \, n \, \binom{k}{k-z} = 0$, thus leading to

$$\frac{\partial I_E(p,q)}{\partial p}|_{p=0} = -\sum_{z=0}^k q^z (1-q)^{k-z} \frac{a_{1,z}}{n}.$$

Lemma 3.1 can be invoked again in order to show that

$$a_{1,z} \begin{cases} = 0 & \forall z & \text{if } d_{\min} \ge 3\\ \neq 0 & \forall z & \text{if } d_{\min} = 2, \end{cases}$$
 (3.20)

where d_{\min} is the minimum distance of the (n, k) code associated to the variable node under analysis. In fact, under the hypothesis $d_{\min} \geq 3$, no independent sets of size 1 and 2 are present in (any representation of) the generator matrix \mathbf{G} . Then

$$a_{1,z} = (n-1)\,\tilde{e}_{n-1,k-z} - 2\,\tilde{e}_{n-2,k-z} = k\,n\,(n-1)\,\binom{k}{k-z} - 2\,k\,\binom{n}{n-2}\,\binom{k}{k-z} = 0.$$

It follows that the contribution of the generalized variable nodes to $\frac{\partial I_{E,V}(p,q)}{\partial p}|_{p=0}$ is 0 if they all have minimum distance greater than or equal to 3. The only non-null contribution comes from the generalized variable nodes with minimum distance $d_{\min} = 2$, which is coherent with the fact that, among the repetition codes, only those with $d_{\min} = 2$ (i.e. the length-2 repetition codes) give a non-null contribution.

Then, relationship (3.18) can be developed as

$$\frac{\partial I_{E,V}(p,q)}{\partial p}\Big|_{p=0} = -q \,\lambda_2^{(r)} - \sum_{i}^{d_{\min}=2} \sum_{z=0}^{k_i} q^z \,(1-q)^{k_i-z}
\cdot \lambda_i \frac{k_i \,n_i (n_i - 1) \binom{k_i}{k_i - z} - 2\,\tilde{e}_{n_i - 2, k_i - z}}{n_i}
= -q \,\lambda_2^{(r)} - \sum_{i}^{d_{\min}=2} \sum_{z=0}^{k_i} q^z \,(1-q)^{k_i - z} \frac{2\lambda_i}{n_i} \Delta_{n-2, k-z}^{(i)}.$$
(3.21)

In the previous expression, $\Delta_{n-2,k-z}^{(i)}$ is defined in a similar way as $\Delta_{n-2}^{(i)}$ for GLDPC codes. Let S_{n_i-2,k_i-z} be the generic $(k_i \times (n_i - 2 + k_i - z))$ matrix obtained by selecting $n_i - 2$ columns in the generator matrix, and $k_i - z$ columns in the $(k \times k)$ identity matrix. Then,

$$\Delta_{n-2,k-z}^{(i)} = \sum_{\mathcal{S}_{n_i-2,k_i-z}} (k_i - \text{rank}(\mathcal{S}_{n_i-2,k_i-z})),$$

where the summation is over all the possible matrices S_{n_i-2,k_i-z} . Differently from $\Delta_{n-2}^{(i)}$, the parameter $\Delta_{n-2,k-z}^{(i)}$ depends on the code representation, i.e. on the chosen generator matrix for the variable node.

By combining (3.13) and (3.21) the stability condition $\frac{\partial I_{E,V}(p,q^*)}{\partial p}\Big|_{p=0} \ge dI_{E,C}^{-1}(p)/dp\Big|_{p=0}$ becomes:

$$q^* \lambda_2^{(r)} + \sum_{i}^{d_{\min}=2} \sum_{z=0}^{k_i} (q^*)^z (1 - q^*)^{k_i - z} \frac{2\lambda_i \Delta_{n-2,k-z}^{(i)}}{n_i}$$

$$\leq \left[\rho'^{(SPC)}(1) + \sum_{i}^{d_{\min}=2} \frac{2\rho_i}{n_i} \Delta_{n-2}^{(i)} \right]^{-1}.$$
(3.22)

Inequality (3.22) is a necessary condition for (asymptotic) successful D-GLDPC decoding on the BEC. Differently from the GLDPC case, it is not possible to express this inequality as an explicit upper bound on q^* , because of the impossibility to factor q^* from the summation in z. For D-GLDPC codes satisfying the derivative matching condition, (3.22) holds with equality. For the same reason, it does not lead to an explicit closed form expression of the threshold. However, if $d_{\min} \geq 3$ for all the generalized variable nodes, then any term of the summation over the generalized variable nodes is null. In this case, the same upper bound to q^* as in (3.15) holds:

$$q^* \le \left[\lambda_2^{(r)} \left(\rho'^{(SPC)}(1) + \sum_{i=1}^{d_{\min}=2} \frac{2\rho_i}{n_i} \Delta_{n-2}^{(i)}\right)\right]^{-1},$$

and this inequality is achieved with equality by D-GLDPC codes satisfying the derivative matching condition. Moreover, if $d_{\min} \geq 3$ also for all the generalized check nodes, then the upper bound on q^* assumes the simple form as in (3.16):

$$q^* \leq \left[\lambda_2^{(r)} \, \rho'^{(SPC)}(1)\right]^{-1}$$
.

This inequality is achieved with equality by D-GLDPC codes satisfying the derivative matching condition.

3.6 Final Remarks

In this chapter, a stability condition on the BEC has been derived for GLPDC and D-GLDPC codes, generalizing the inequality $q^* \leq [\lambda'(0)\rho'(1)]^{-1}$, valid for standard LDPC

codes. A derivative matching condition has been also defined, sufficient for a GLDPC and D-GLDPC codes to achieve the stability condition with equality.

It has been shown that, as for LDPC codes, only the variable and check nodes with minimum distance 2 are involved in the stability condition. Then, it has been shown that the stability condition for GLDPC codes can be always explicitly expressed as an upper bound on the decoding threshold. D-GLDPC codes do not share this property in general; however, if all the generalized variable nodes have minimum distance at least 3, the stability condition becomes the same as for GLDPC codes. As a consequence, for GLDPC codes and for D-GLDPC codes with variable component codes of minimum distance at least 3, the decoding threshold assumes a simple closed form.

3.7 Appendix: Some Hints for Further Investigation

It was proved in [15] (also exploiting results from [54]) that the parameter $\lambda'(0)\rho'(1)$ plays a fundamental role with respect to the minimum distance properties of standard irregular LDPC codes. More specifically, it was shown that the minimum distance of an irregular, length-n, LDPC code \mathcal{G} randomly chosen in the standard ensemble $\mathcal{C}(\lambda,\rho,n)$ (i.e. in the ensemble of all LDPC codes with length n and degree distribution (λ,ρ) satisfies $\lim_{n\to\infty} \Pr(d_{\min}(\mathcal{G}) > \lfloor \delta n \rfloor) = \sqrt{1-\lambda'(0)\rho'(1)}$ for strictly positive δ , if $\lambda'(0)\rho'(1) < 1$. It was also shown in [15] that this result can be even improved to $\lim_{n\to\infty} \Pr(d_{\min}(\mathcal{G}) > \lfloor \delta n \rfloor) = 1$ by properly expurgating the standard LDPC ensemble. On the contrary, if $\lambda'(0)\rho'(1) > 1$, for sufficiently small $l \in \mathbb{N}$, the number $N(\mathcal{G}, l)$ of codewords of Hamming weight l for a randomly chosen code \mathcal{G} in $\mathcal{C}(\lambda,\rho,n)$ satisfies $\Pr(N(\mathcal{G},l) > 0) = 1 - e^{-\frac{(\lambda'(0)\rho'(1))^l}{2l}} + O(1/\sqrt[3]{n})$.

The parameter $\lambda'(0)\rho'(1)$ is the inverse of the second member in the stability condition, which has been generalized in this chapter to GLDPC and D-GLDPC codes. Thus, a natural question is whether the mentioned result for LDPC code ensembles can be extended to GLDPC and D-GLDPC codes. In other words, writing the stability condition as $q^* \leq q^*_{\text{max}}$, with q^*_{max} depending on the edge distribution and on the structure of the variable and check component codes, the question is whether there exists some threshold value for $[q^*_{\text{max}}]^{-1}$ which discriminates between a linear and a sublinear minimum distance behavior of sufficiently long GLDPC or D-GLDPC codes randomly chosen in their ensemble. In the most general case, the parameter $[q^*_{\text{max}}]^{-1}$ does not admit an explicit close form, which indeed exists for GLDPC codes and for D-GLDPC codes without generalized component codes having minimum distance 2.

Such investigation would help to better understand, from a theoretical point of view, the potentials of these generalized classes of iteratively decoded codes, as well as their possible advantages with respect to standard LDPC codes.

Chapter 4

A Class of LDPC Erasure Distributions with Closed-Form Threshold Expression

4.1 Introduction

The unavailability of a closed form expression for the decoding threshold of low-density parity-check (LDPC) codes still represents an open problem. So far, no general closed form threshold expression is known for any transmission channel. Some results in this sense have been developed for the BEC, for which some analytic threshold expressions have been proposed. In [55], an analytic threshold expression has been presented for regular LDPC ensembles. A more general analytic expression, valid for check regular ensembles, has been proposed in [56]. The most general analytic expression currently available is that one developed in [57], which can be applied to fully irregular ensembles. For regular or check regular ensembles, the formula proposed in [57] coincides with that one from [56]. The problem with these expressions is that none of them can be really considered a closed form one (except for the case of regular LDPC ensembles with degree-2 variable nodes presented in [55]). In fact, in all these formulas, the threshold is a function of some parameter which in general does not admit a closed form expression. This parameter, which depends on the degree distribution, can be a root of a real polynomial, a fixed point of a real function, or the abscissa of the tangent point between two EXIT curves [58].

An exception is represented by the degree distributions for which the first occurrence of a tangency point between the EXIT curves in the EXIT chart appears for a value of the a priori mutual information equal to 1 (which is known as derivative matching condition, as explained in Section 3.1). Denoting the decoding threshold by q^* , these distributions achieve with equality the stability condition $q^* \leq [\lambda'(0)\rho'(1)]^{-1}$ [7] (which holds for any distribution). This chapter presents a family of check regular LDPC distributions, called

p-positive distributions [59], which are a subset of the distributions achieving the derivative matching condition. The starting point for obtaining this family is the afore mentioned analytic formula developed in [56].

The name "p-positive" is chosen because these distributions are defined as those ones for which a certain polynomial $p(\cdot)$, whose coefficients depend on the edge-oriented variable distribution $\lambda(x)$ and on the degree d_c of the check nodes, is non-negative between 0 and 1. The theory of polynomials can be applied to obtain conditions for a check regular distribution to be p-positive. A useful theorem in this sense is the Fourier-Budan theorem [60, p. 27], which states an upper bound to the number of real roots in a given interval, for a polynomial with real coefficients. The application of the Fourier-Budan theorem to the polynomial $p(\cdot)$ leads to a set of inequalities involving the coefficients λ_i 's and d_c , which represent a necessary condition for a distribution to be p-positive.

Besides the closed form threshold expression, the p-positive distributions are shown to exhibit some additional good properties. First, the threshold of the optimal p-positive distribution under a set of constraints, represented by the given code rate, check degree and maximum variable degree, is in some cases extremely close to that of the best known check regular degree distributions. Second, within the p-positive class, it is in some cases possible to optimize the degree distribution with analytic methods only, i.e. without using numerical optimization tools. In fact, despite being only necessary, the condition obtained from the Fourier-Budan theorem is shown to be sufficient, in some cases, to find the p-positive distribution with optimum threshold under the given set of constraints. Third, it is proved that capacity achieving sequences exist within the p-positive class. More specifically, it is recognized that any binomial degree distribution [27] is p-positive.

4.2 Threshold for Check Regular Distributions

Let $C^n(\lambda, \rho)$ be the ensemble of all the length-n LDPC codes with edge-oriented degree distribution (λ, ρ) [7]. Let q be the BEC erasure probability. Then, the (bit oriented) threshold q^* for the ensemble $C^n(\lambda, \rho)$ on the BEC is defined as the maximum q for which the residual bit erasure probability can be made arbitrarily small by increasing the number of decoding iterations, in the limit where the codeword length n tends to infinity.

Density evolution for the BEC [7], can be expressed as follows. If x_{ℓ} is the probability that a message from a variable node to a check node during the ℓ -th decoding iteration is an erasure message and the bipartite graph is cycle-free (infinite codeword length), then $x_{\ell+1} = q \lambda(1-\rho(1-x_{\ell}))$. Hence, the threshold q^* is the maximal q for which $x_{\ell} \to 0$ in the limit where $\ell \to \infty$. The first appearance of a non-zero fixed point for x_{ℓ} is a necessary and sufficient condition for the corresponding q to be the threshold.

From this observation, q^* can be equivalently expressed as the maximal q for which

 $q \lambda(1 - \rho(1 - x)) < x \ \forall x \in (0, q]$ [61], or the maximal q for which:

$$\rho(1 - q \lambda(x)) > 1 - x \qquad \forall x \in (0, 1].$$
(4.1)

For check regular codes, with variable distribution $\lambda(x) = \sum_{i \geq 2} \lambda_i x^{i-1}$ and check distribution $\rho(x) = x^{d_c-1}$ ($d_c \geq 3$), the inequality (4.1) becomes:

$$(1 - q\lambda(x))^{d_c - 1} > 1 - x \qquad \forall x \in (0, 1]. \tag{4.2}$$

Let us define $f(x,q) = (1 - q\lambda(x))^{d_c-1}$ and suppose at first $\lambda_2 = 0$. For any given $x \in (0,1]$, f(x,q) is continuous and monotonically decreasing with respect to q, varying from f(x,0) = 1 to $f(x,1) = (1 - \lambda(x))^{d_c-1} > 0$. Moreover, it is everywhere derivable for x in (0,1), and the following relationships hold:

$$\partial f/\partial x (0,q) = 0 \quad \forall q \in (0,1)$$

 $f(0,q) = 1 \quad \forall q \in (0,1)$
 $f(1,q) = (1-q)^{d_c-1} > 0$
 $f(x,0) = 1 \quad \forall x \in (0,1).$

It follows from these properties that the maximal value of q for which (4.2) holds is the minimum value of q for which the graph of f(x,q) (considered as a function of x with q playing the role of parameter) is tangent to the graph of g(x) = 1 - x, for some $x = \gamma$. The tangency condition in $x = \gamma$ is:

$$\begin{cases}
(1 - q\lambda(\gamma))^{d_c - 1} = 1 - \gamma \\
q(d_c - 1)\lambda'(\gamma)(1 - q\lambda(\gamma))^{d_c - 2} = 1.
\end{cases}$$
(4.3)

The relationships (4.3) are not able to unambiguously determine the threshold. In fact, (4.3) can admit several discrete solutions (q, γ) , with $\gamma \in (0, 1)$ and $q \in (0, 1)$. From a geometrical point of view, several discrete values of $q \in (0, 1)$ can exist for which the graph of f(x,q) (for fixed q) is tangent to the graph of g(x) = 1 - x in some $x = \gamma$. The threshold q^* for the check regular distribution is the minimum among these discrete values of q.

The second equation of (4.3) can be written as

$$(1 - q\lambda(\gamma))^{d_c - 2} = [q(d_c - 1)\lambda'(\gamma)]^{-1},$$

that can be substituted in the first equation in order to obtain

$$q = [\lambda(\gamma) + (d_c - 1)(1 - \gamma)\lambda'(\gamma)]^{-1}.$$
(4.4)

In the following, $h(\cdot)$ will denote the following key function:

$$h(x) = [\lambda(x) + (d_c - 1)(1 - x)\lambda'(x)]^{-1}.$$
(4.5)

By substituting (4.4) into the first equation of (4.3), we obtain

$$\frac{\lambda(\gamma) + (d_c - 1)(1 - \gamma)\lambda'(\gamma)}{(d_c - 1)(1 - \gamma)\lambda'(\gamma)} = (1 - \gamma)^{-\frac{1}{d_c - 1}},$$

and developing this expression leads to:

$$\gamma = 1 - \left(\frac{\lambda(\gamma)}{(d_c - 1)\lambda'(\gamma)} + 1 - \gamma\right)^{\frac{d_c - 1}{d_c - 2}}.$$
(4.6)

Summarizing, for a given check regular ensemble with $\lambda_2 = 0$, the threshold on the BEC is equal to the minimum $h(\gamma)$ under the constraint that γ is one of the (usually) several fixed points in (0,1) of

$$\phi(x) = 1 - \left(\frac{\lambda(x)}{(d_c - 1)\lambda'(x)} + 1 - x\right)^{\frac{d_c - 1}{d_c - 2}}.$$
(4.7)

Note that $\gamma = 0$ is always a fixed point for $\phi(\cdot)$. However, for $\lambda_2 = 0$ the threshold is never achieved in correspondence of $\gamma = 0$, because in this case $\lim_{x\to 0+} h(x) = +\infty$.

The only differences when removing the hypothesis $\lambda_2 = 0$ are that $\partial f/\partial x(0,q) < 0 \ \forall q \in (0,1)$, and that h(0) is finite and equal to $[\lambda_2(d_c-1)]^{-1} = [\lambda'(0)\rho'(1)]^{-1}$. Hence, the threshold could be achieved in correspondence of the fixed point $\gamma = 0$. Thus, the threshold for a check regular ensemble with $\lambda_2 > 0$ is equal to the minimum $h(\gamma)$, with γ fixed point in [0,1) of $\phi(\cdot)$. An analysis of the fixed points of $\phi(\cdot)$ is presented in appendix to this chapter.

In the special case of regular LDPC codes, with variable distribution $\lambda(x) = x^{d_v-1}$, $d_v \geq 3$, and check distribution $\rho(x) = x^{d_c-1}$, $d_c \geq 3$, the threshold is given by

$$q^* = \frac{[(d_c - 1)(d_v - 1)]^{-1}}{\gamma^{d_v - 2} - c \, \gamma^{d_v - 1}},\tag{4.8}$$

where γ is the unique fixed point in (0,1) of

$$\psi(x) = 1 - (1 - cx)^{\frac{d_c - 1}{d_c - 2}}. (4.9)$$

with $c = [(d_c - 1)(d_v - 1) - 1]/[(d_c - 1)(d_v - 1)] < 1$.

4.3 The New Class of Degree Distributions

In this section, the class of p-positive degree distributions is introduced.

Definition 4.1. A degree distribution with code rate R and threshold $q^* = (1 - \epsilon)(1 - R)$ is called $(1 - \epsilon)$ capacity achieving of rate R.

Consider a check regular distribution for which $h(x) \ge h(0) \ \forall x \in (0, 1]$, where $h(\cdot)$ is defined in (4.5). This can be equivalently written as $[h(x)]^{-1} \le [h(0)]^{-1}$, i.e.

$$\sum_{i=2}^{L} \lambda_i x^{i-1} + (d_c - 1)(1 - x) \sum_{i=2}^{L} (i - 1)\lambda_i x^{i-2} \le \lambda_2 (d_c - 1),$$

where L denotes the maximum variable degree. After some algebraic manipulation, the previous inequality can be put in the form $p(x) \ge 0$, where $p(\cdot)$ is the real polynomial

$$p(x) = \omega_L \lambda_L x^{L-2} + \sum_{i=2}^{L-1} [\omega_i \lambda_i - (\omega_{i+1} + 1) \lambda_{i+1}] x^{i-2}, \qquad (4.10)$$

where $\omega_i = (d_c - 1)(i - 1) - 1$. The polynomial $p(\cdot)$ will be expressed in the form $p(x) = \sum_{i=0}^{L-2} p_i x^i$. The condition $h(x) \geq h(0)$ for all $x \in (0,1]$ is equivalent to the condition that the real polynomial $p(\cdot)$ is positive or null in (0,1]. The class of degree distribution pairs studied in this paper is introduced next.

Definition 4.2. A p-positive distribution is any check regular degree distribution with $\lambda_2 > 0$, such that $p(x) \ge 0 \ \forall \ x \in (0,1]$.

The following theorem individuates a simple closed form for the threshold of the p-positive distributions, and states the necessary and sufficient condition for any p-positive distribution to be $(1 - \epsilon)$ capacity achieving of rate R.

Theorem 4.1. The threshold of any p-positive degree distribution is equal to $[\lambda'(0)\rho'(1)]^{-1}$. The degree distribution is $(1 - \epsilon)$ capacity achieving of rate R if and only if

$$\lambda_2 = [(1 - \epsilon)(1 - R)(d_c - 1)]^{-1}. \tag{4.11}$$

Proof. For a p-positive distribution, $h(x) \geq h(0)$ for all $x \in (0,1]$. From Section 4.2 it is known that the threshold for a check regular ensemble with $\lambda_2 > 0$ is the minimum among discrete values $h(\gamma)$, with γ fixed point in [0,1) of $\phi(\cdot)$ defined in (4.7). Moreover, $\gamma = 0$ is always a fixed point of $\phi(\cdot)$ under the condition $\lambda_2 > 0$. If $h(x) \geq h(0)$ for all $x \in (0,1]$, then the minimum is always achieved in correspondence of the fixed point $\gamma = 0$, independently of the number and the positions of all the other fixed points of $\phi(\cdot)$. Hence, $q^* = h(0) = [\lambda'(0)\rho'(1)]^{-1} = [\lambda_2(d_c - 1)]^{-1}$. If and only if equality (4.11) holds, it is $q^* = (1 - \epsilon)(1 - R)$.

For a given $\epsilon > 0$, the search for p-positive $(1 - \epsilon)$ capacity achieving of rate R distributions, with check degree d_c and maximum variable degree L, can be performed by

letting λ_2 be expressed by (4.11), and looking for λ_i , i = 3, ..., L, such that $p(x) \geq 0$ for all $x \in (0,1]$. In general, for some R, d_c and L, this problem admits solutions for $\epsilon \geq \epsilon_{\rm opt} > 0$, with $\epsilon_{\rm opt}$ depending on R, d_c and L. The value $\epsilon_{\rm opt}$ is associated to the optimal p-positive distribution, under the imposed set of constraints (i.e. code rate, check nodes degree and active variable degrees).

It is readily shown that $p(1) = (d_c - 1)\lambda_2 - 1$, which is positive (from (4.11)). Then, the condition that $p(x) \geq 0$ for x between 0 and 1, is equivalent to the condition that $p(\cdot)$ has only roots with even multiplicity between 0 and 1. Several well known properties of the real roots of polynomials can be then exploited, in order to develop conditions for a check regular distribution to be p-positive. In particular the following theorem, known as the Fourier-Budan theorem, permits to obtain a simple necessary (but not sufficient) condition. It provides an upper bound to the number of zeroes of a real polynomial between two values a and b, with a < b.

Theorem 4.2 (Fourier-Budan Theorem [60, p. 27]). Let $p(\cdot)$ be a real polynomial of degree d, and let a and b be two real values such that a < b, and $p(a) \cdot p(b) \neq 0$. Then, the number of real roots of $p(\cdot)$ between a and b (each one counted with its multiplicity) is not greater than A - B, where A and B are, respectively, the number of sign changes in sequences:

$$p(a), p'(a), p''(a), \dots, p^{(d)}(a)$$

 $p(b), p'(b), p''(b), \dots, p^{(d)}(b).$

Moreover, if the number of real roots of $p(\cdot)$ between a and b is smaller than A-B, then it differs from A-B by an even number.

This theorem can be directly applied to the polynomial $p(\cdot)$ defined by (4.10), where a = 0 and b = 1, leading to the following corollary.

Corollary 4.1. The number of real roots between 0 and 1 of $p(x) = \sum_{i=0}^{L-2} p_i x^i$ defined by (4.10) is not greater than the number A of sign changes in the sequence $p_0, p_1, \ldots, p_{L-2}$. If the number of roots is smaller than A, then it differs from A by an even number.

Proof. The *i*-th derivative of $p(\cdot)$ in 0 and 1 is

$$p^{(i)}(0) = i! p_i$$

$$p^{(i)}(1) = \sum_{j=i}^{L-2} \frac{j!}{(j-i)!} p_j.$$

From the structure of the coefficients of $p(\cdot)$ it is not difficult to recognize that all the values in the sequence $p(1), p'(1), \ldots, p^{(L-2)}(1)$ are positive for any L and $d_c \geq 3$. Hence,

B=0 and the number of roots of $p(\cdot)$ between 0 and 1 is not greater than the number A of sign changes in the sequence $p_0, 1!p_1, \ldots, (L-2)!p_{L-2}$. This is equal to the number of sign changes in $p_0, p_1, \ldots, p_{L-2}$. By directly applying Theorem 4.2, we obtain the statement. We also observe that $p_{L-2} = [(L-1)d_c - L] \lambda_L$ is always positive.

Recall that, for the p-positive distributions, $p(\cdot)$ has only roots, between 0 and 1, with even multiplicity. Then, the following necessary condition for a check regular distribution to be a p-positive distribution is obtained from Corollary 4.1.

Corollary 4.2. Necessary condition for a check regular distribution to be a p-positive distribution is that the number of sign changes in the sequence $p_0, p_1, \ldots, p_{L-2}$ is even.

In the next section, some examples of threshold optimizations for p-positive distributions are provided. These results reveal that, for some values of the code rate R, check degree d_c and maximum variable degree L, the p-positive distributions are characterized by very good thresholds. In some cases, the threshold is very close to that one of the best known distributions, under the same set of constraints.

4.4 Optimization of p-positive Degree Distributions

4.4.1 Optimization with Constrained Differential Evolution

The threshold optimization problem for the p-positive distributions can be in principle performed numerically, using a constrained version of the differential evolution (DE) algorithm. Specifically, a number $N_D + 1$ of values $x_i = (1/N_D) \cdot i$, for $i = 0, ..., N_D$, are first chosen, for sufficiently large N_D , and then the DE optimization tool is run for given code rate, given check degree and given maximum variable degree, and with the additional set of constraints $p(x_i) \geq 0$ for all i.

We performed this constrained DE optimization for R=1/2, L=20 and $d_c=\{6,7,8\}$. Under the same set of constraints, we also performed the DE optimization, without imposing the p-positive bound. The results of this search are shown in Table 4.1 for $d_c=6$ and $d_c=7$. In both cases, the best p-positive distribution exhibits a threshold that is only slightly worse than that one of the best check regular distribution obtained removing the p-positive constraint, with the advantage represented by the closed form threshold expression.

This conclusion is no longer valid for $d_c = 8$. In fact, for this check node degree, the best found p-positive threshold was $q^* = 0.469592$, while the best found check regular threshold was $q^* = 0.491988$. This means that the p-positive constraint is not "compatible" with all the possible sets of bounds on the code rate, check degree and maximum

	d_c	=6	$d_c = 7$				
	p-pos.	not p -pos.	p-pos.	not p -pos.			
λ_2	0.415884	0.415273	0.339162	0.338843			
λ_3	0.165968	0.160268	0.138401	0.140058			
λ_4	0.095028	0.142202	0.104711	0.104198			
λ_5	0.106071		0.033138				
λ_6		0.034597		0.087264			
λ_7			0.166166	0.104669			
λ_8	0.070638	0.247661					
λ_9	0.146412						
λ_{14}			0.104300				
λ_{16}				0.224968			
λ_{19}			0.114122				
Thresholds							
q^*	0.480904	0.491740					

Table 4.1: Optimal p-positive and not p-positive distributions and thresholds for R = 1/2, L = 20 and $d_c = \{6, 7\}$.

variable degree. When this compatibility holds, the *p*-positive distributions exhibit very good thresholds. In the other cases, they exhibit a threshold loss with respect to the best known distributions.

4.4.2 Optimization Based on the Fourier-Budan Theorem

In Section 4.4.1, the p-positive distribution optimization has been performed according to a constrained version of the DE algorithm. Some examples of p-positive threshold optimization, based on a totally different technique, are presented next. More specifically, it is shown that the necessary condition, developed in the previous section (Corollary 4.2), can be exploited in order to perform the optimization process without using numerical tools. This is possible for particular structures of the variable nodes degree distribution.

As a case study, let us consider check regular distributions with variable distribution in the form $\lambda(x) = \lambda_2 x + \lambda_3 x^2 + \lambda_K x^{K-1} + \lambda_L x^{L-1}$ with $L \geq 7$ and 4 < K < L-1. For any choice of R, d_c , K and L, ϵ_{opt} will denote the minimum ϵ such that a corresponding p-positive $(1-\epsilon)$ capacity achieving distribution of rate R exists, for the given parameters.

For such $\lambda(\cdot)$, the coefficients of $p(\cdot)$ are:

$$\begin{split} p_0 &= (d_c - 2)\lambda_2 - (2d_c - 2)\lambda_3 \\ p_1 &= (2d_c - 3)\lambda_3 \\ p_{K-3} &= -[(K-1)d_c - (K-1)]\lambda_K \\ p_{K-2} &= [(K-1)d_c - K]\lambda_K \\ p_{L-3} &= -[(L-1)d_c - (L-1)]\lambda_L \\ p_{L-2} &= [(L-1)d_c - L]\lambda_L. \end{split}$$

According to Corollary 4.2, necessary (but not sufficient) condition for the degree distribution to be p-positive is that the number A of sign changes in the sequence $p_0, p_1, p_{K-3}, p_{K-2}, p_{L-3}, p_{L-2}$ is even. In the specific case under analysis, the following inequalities are always true: $p_{L-2} > 0$, $p_{L-3} < 0$, $p_{K-2} > 0$, $p_{K-3} < 0$, $p_1 > 0$. Then, if and only if $p_0 > 0$, the condition that A is even is satisfied (specifically, it results A = 4).

Suppose to fix the code rate R, the check nodes degree d_c and the active variable degrees (K and L). From the constraints $\sum_{i=2}^{L} \lambda_i = 1$ and $R = 1 - d_c / (\sum_{i=2}^{L} \lambda_i / i)$, and from (4.11), expressions of λ_3 and λ_K as functions of ϵ and λ_L , namely $\lambda_3 = \lambda_3(\epsilon, \lambda_L)$ and $\lambda_K = \lambda_K(\epsilon, \lambda_L)$, can be found. Then, the necessary condition for the distribution to be p-positive is given by the following set of inequalities:

$$0 < \lambda_2(\epsilon) < 1 \qquad 0 < \lambda_3(\epsilon, \lambda_L) < 1$$
$$0 < \lambda_K(\epsilon, \lambda_L) < 1 \qquad 0 < \lambda_L < 1$$
$$p_0(\epsilon, \lambda_L) > 0.$$

The solution of this set of inequalities identifies a region on the plane $\epsilon - \lambda_L$. This region, denoted by \mathcal{M} , will be called the *permitted region* (since no *p*-positive distribution can exist outside this set). Some examples of permitted regions, for different values of d_c , K and L, all corresponding to R = 1/2, are depicted in Fig. 4.1. If $(\epsilon, \lambda_L) \in \mathcal{M}$, then the polynomial $p(\cdot)$ could have in principle 0, 2 or 4 real roots between 0 and 1 (A = 4).

Let $\epsilon_{\min}^{\mathcal{M}}$ be the minimum value of ϵ allowed for points within \mathcal{M} . If, for $\epsilon = \epsilon_{\min}$, at least a λ_L exists such that $(\epsilon_{\min}, \lambda_L) \in \mathcal{M}$, and such that $p(\cdot)$ is not negative between 0 and 1, then it follows $\epsilon_{\text{opt}} = \epsilon_{\min}$. On the contrary, if p(x) is negative for some x between 0 and 1, for $\epsilon = \epsilon_{\min}$ and for any admitted λ_L , it results $\epsilon_{\text{opt}} > \epsilon_{\min}$. This is always the case when $\epsilon_{\min} = 0$. An approach to evaluate ϵ_{opt} in this case is described next.

The proposed approach is based on this observation: If $(\epsilon_{\text{opt}}, \hat{\lambda}_L)$ is a solution of the optimization problem (for some $\hat{\lambda}_L$), then at least one $\overline{x} \in (0, 1)$ must exist such that

$$p\left(\overline{x}; \epsilon_{\text{opt}}, \hat{\lambda}_L\right) = 0 \tag{4.12}$$

$$p'(\overline{x}; \epsilon_{\text{opt}}, \hat{\lambda}_L) = 0, \tag{4.13}$$

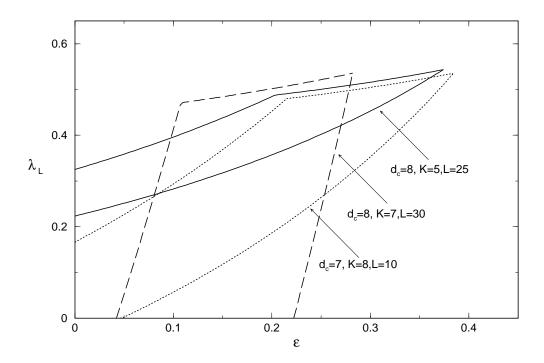


Figure 4.1: Permitted region for some values of (d_c, K, L) .

where the dependence of the coefficients of $p(\cdot)$ on ϵ and λ_L have been explicitly indicated. Then, the search for the optimal distribution can be restricted to the points $(\epsilon, \lambda_L) \in \mathcal{M}$ for which $p(\overline{x}; \epsilon, \lambda_L) = 0$ and $p'(\overline{x}; \epsilon, \lambda_L) = 0$.

From these relationships, it is possible to obtain ϵ and λ_L as rational functions of \overline{x} , namely $\epsilon = \epsilon(\overline{x})$ and $\lambda_L = \lambda_L(\overline{x})$. Then, the technique consists in plotting the trajectory of the point $(\epsilon(\overline{x}), \lambda_L(\overline{x}))$ on the plane $\epsilon - \lambda_L$, as well as the permitted region \mathcal{M} . From this diagram it is usually possible to univocally determine ϵ_{opt} , as shown next with an example.

For instance, suppose R=1/2, $d_c=7$, K=5 and L=17. The rational functions $\epsilon=\epsilon(\overline{x})$ and $\lambda_{17}=\lambda_{17}(\overline{x})$ are:

$$\epsilon(\overline{x}) = \frac{4620 - 42880\,\overline{x} + 99260\,\overline{x}^2 - 72105\,\overline{x}^3 - 944384\,\overline{x}^{13} + 1351364\,\overline{x}^{14} + 4718775\,\overline{x}^{15} - 9931740\,\overline{x}^{16} + 4828850\,\overline{x}^{17}}{\overline{x}\left(-233280 + 442260\,\overline{x} - 204930\,\overline{x}^2 + 2467584\,\overline{x}^{12} - 4716684\,\overline{x}^{13} + 4588470\,\overline{x}^{14} - 4583880\,\overline{x}^{15} + 2228700\,\overline{x}^{16}\right)}$$

$$\delta = \frac{85\,\left(-33 + 944\,\overline{x} - 1753\,\overline{x}^2 + 759\,\overline{x}^3\right)}{7\,\left(660 + 27200\,\overline{x} - 49000\,\overline{x}^2 + 18975\,\overline{x}^3 - 487424\,\overline{x}^{13} + 866864\,\overline{x}^{14} + 18615\,\overline{x}^{15} - 763980\,\overline{x}^{16} + 371450\,\overline{x}^{17}\right)}$$

The trajectory of $(\epsilon(\overline{x}), \lambda_L(\overline{x}))$ is depicted in Fig. 4.2, together with a detail of the permitted region. The trajectory of $(\epsilon(\overline{x}), \lambda_L(\overline{x}))$ crosses the permitted region for values of \overline{x} between $\overline{x}_1 = 0.527434$, and $\overline{x}_2 = 0.735514$. The minimum- ϵ point on the trajectory segment $\overline{x}_1 \to \overline{x}_2$ is the intersection point between the trajectory and the upper boundary of \mathcal{M} . For this point, it results $\epsilon = \epsilon(\overline{x}_1) = 0.032242$. The corresponding polynomial

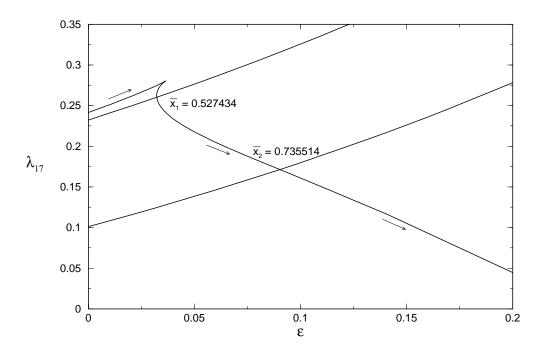


Figure 4.2: Diagram showing the permitted region and the trajectory of the point $(\epsilon(\overline{x}), \lambda_{17}(\overline{x}))$, for R = 1/2, $d_c = 7$, K = 5 and L = 17.

	$d_c = 6,$	L = 10	$d_c = 7, L = 15$				
	p-pos.	DE	p-pos.	DE			
λ_2	0.418913	0.415774	0.341501	0.339505			
λ_3	0.167565	0.180916	0.142292	0.140214			
λ_5	0.266696	0.248100	0.248395	0.259036			
λ_L	0.146826	0.155210	0.267812	0.261244			
Thresholds							
q^*	0.477426	0.480325	0.488041	0.490947			

Table 4.2: Optimal R=1/2 p-positive and not p-positive distributions for $d_c=\{6,7\}$ with $\lambda(x)=\lambda_2\,x+\lambda_3\,x^2+\lambda_5\,x^4+\lambda_L\,x^{L-1}$.

 $p(\cdot)$, whose graph is depicted in Fig. 4.3, does not assume negative values between 0 and 1. Hence, the minimum- ϵ point on the segment $\overline{x}_1 \to \overline{x}_2$ corresponds to a p-positive distribution: Then, $\epsilon_{\rm opt} = 0.032242$. The threshold of the corresponding degree distribution is $q^* = [\lambda'(0)\rho'(1)] = (1 - \epsilon_{\rm opt})(1 - R) = 0.483879$, the value of λ_{17} can be obtained from the function $\lambda_{17} = \lambda_{17}(\overline{x})$ and the values of λ_3 and λ_5 can be obtained from the functions $\lambda_3 = \lambda_3(\epsilon, \lambda_{17})$ and $\lambda_5 = \lambda_5(\epsilon, \lambda_{17})$.

By adopting a similar approach, we fixed R = 1/2, K = 5, and looked for the best p-positive distribution for $d_c = 6$ and $d_c = 7$. The optimal distributions were obtained for

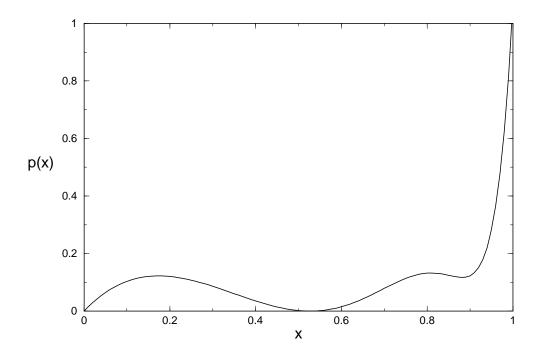


Figure 4.3: Plot of $p(\cdot)$ for the optimal R = 1/2 p-positive distribution corresponding to $d_c = 7$, K = 5 and L = 17.

L=10 and L=15, respectively. They are shown in Table 4.2, as well as the optimal check regular distributions obtained by running the DE tool, under the same set of constraints (R, d_c) and active variable degrees), but without the p-positive constraint. The p-positive thresholds are only slightly lower than the not p-positive counterparts, and the degree distributions are quite similar. Again, the p-positive distributions have the advantage represented by the closed-form threshold expression $[\lambda'(0)\rho'(1)]^{-1}$.

4.5 The Binomial Distributions are *p*-positive

In [27], it was shown that capacity achieving sequences of degree distributions for the BEC can be constructed according to the binomial degree distribution. This is a check regular distribution, whose variable distribution is in the form $\lambda(x) = \sum_{i=2}^{L} \frac{\alpha \binom{\alpha}{i-1}(-1)^i}{\alpha - L\binom{\alpha}{L}(-1)^{L+1}} x^{i-1}$, where $\binom{\alpha}{N} = \alpha(\alpha - 1) \dots (\alpha - N + 1)/(N!)$, and $\alpha = (d_c - 1)^{-1}$. Recognizing the binomial degree distributions as part of the *p*-positive family, the following theorem states that this family can achieve the BEC capacity.

Theorem 4.3. Any binomial degree distribution is p-positive.

Proof. Recall that, for $i=2,\ldots,L-1$, the (i-2)-th coefficient of $p(\cdot)$ is $p_{i-2}=\omega_i\lambda_i-1$

 $(\omega_{i+1}+1)\lambda_{i+1}$. For the binomial distribution, it is

$$\omega_i \, \lambda_i = [(d_c - 1)(i - 1) - 1] \, \frac{\alpha \binom{\alpha}{i-1} (-1)^i}{\alpha - L\binom{\alpha}{L} (-1)^{L+1}}.$$

Furthermore, it is

$$(\omega_{i+1} + 1) \lambda_{i+1} = (d_c - 1) i \frac{\alpha \binom{\alpha}{i} (-1)^{i+1}}{\alpha - L \binom{\alpha}{L} (-1)^{L+1}}$$

$$= (d_c - 1) \frac{(i - 1 - \alpha) \alpha \binom{\alpha}{i-1} (-1)^i}{\alpha - L \binom{\alpha}{L} (-1)^{L+1}}$$

$$= [(d_c - 1) (i - 1) - \alpha (d_c - 1)] \frac{\alpha \binom{\alpha}{i-1} (-1)^i}{\alpha - L \binom{\alpha}{L} (-1)^{L+1}}$$

$$= [(d_c - 1)(i - 1) - 1] \frac{\alpha \binom{\alpha}{i-1} (-1)^i}{\alpha - L \binom{\alpha}{L} (-1)^{L+1}},$$

where the second equality is due to the fact that $\binom{\alpha}{i} = \binom{\alpha}{i-1} \frac{\alpha-i+1}{i}$, and the last equality to the fact that $\alpha = (d_c - 1)^{-1}$. Thus, for $i = 0, \ldots, L - 1$, $\omega_i \lambda_i = (\omega_{i+1} + 1) \lambda_{i+1}$, i.e. $p_{i-2} = 0$. It follows $p(x) = \omega_L \lambda_L x^{L-2}$, which is always positive for $x \in (0, 1]$.

4.6 Final Remarks

In this chapter, a special family of LDPC degree distributions has been presented. The main feature of these distributions is the possibility to express in closed form their decoding threshold on the BEC, under iterative decoding. More specifically, the threshold admits the simple closed form $[\lambda'(0)\rho'(1)]^{-1}$. This family is a subset of the class of checkregular distributions, and the distributions within this family have been called p-positive distributions. A simple necessary condition for a check regular distribution to belong to this class has been obtained, by invoking some known results about the real roots of polynomials.

Three additional properties of the proposed distributions have been highlighted. The first one is their very good threshold under some set of constraints. This property is not general, depending on the specific imposed set of constraints. The second one is the possibility, for particular structures of the variable distribution, to optimize the distribution without necessarily using the numerical optimization tools which are usually exploited. The third one is the possibility to achieve the BEC capacity with sequences belonging to the proposed family.

4.7 Appendix: Fixed Points Analysis of $\phi(\cdot)$ Function

The fixed points of a real function $f: \mathbb{R} \to \mathbb{R}$ can be classified as attractors and repellers. The attractors are those fixed points $x_{\rm fp}$ towards which the fixed point iteration $x_{n+1} = f(x_n)$ converges, for appropriate starting value x_0 . On the other hand, the repellers are those fixed points $x_{\rm fp}$ which cannot be computed through the fixed point iteration, since there is no convergence towards them for any $x_0 \neq x_{\rm fp}$. The attractors and repellers are further classified in strong/weak attractors and strong/weak repellers, depending on the convergency or divergency rapidity of the fixed point iteration. If $x_{\rm fp}$ is a fixed point for $f(\cdot)$, then it is a strong attractor if $0 < f'(x_{\rm fp}) < 1$, a strong repeller if $f'(x_{\rm fp}) > 1$, a weak attractor if $-1 < f'(x_{\rm fp}) < 0$ and a weak repeller if $f'(x_{\rm fp}) < -1$.

Lemma 4.1. For any edge-oriented variable distribution $\lambda(x) = \sum_{i \geq 2} \lambda_i x^{i-1}$ of a standard LDPC code:

$$\lim_{x \to 0+} \frac{\lambda(x)\lambda''(x)}{(\lambda'(x))^2} = \frac{m-2}{m-1},$$

where $m = \min\{i \mid \lambda_i \neq 0\}.$

Proof. Suppose first $\lambda_2 \neq 0$ (m=2), and define $p = \min\{i > 2 \mid \lambda_i \neq 0\}$. It follows $\lambda(x) = \lambda_2 x + \lambda_p x^{p-1} + o(x^{p-1})$, $\lambda'(x) = \lambda_2 + (p-1)\lambda_p x^{p-2} + o(x^{p-2})$ and $\lambda''(x) = (p-1)(p-2)\lambda_p x^{p-3} + o(x^{p-3})$. Since $\lambda'(x)$ converges to $\lambda_2 > 0$ and $\lambda(x)$ to 0 as x tends to 0,

$$\lim_{x \to 0+} (\lambda(x)\lambda''(x))/(\lambda'(x))^2 = 0$$

for every $p \geq 3$, that proves the lemma for m = 2.

Suppose now $m \geq 3$ ($\lambda_2 = 0$). We find $\lambda(x) = \lambda_m x^{m-1} + o(x^{m-1})$, $\lambda'(x) = (m-1)\lambda_m x^{m-2} + o(x^{m-2})$ and $\lambda''(x) = (m-1)(m-2)\lambda_m x^{m-3} + o(x^{m-3})$, from which

$$\lim_{x \to 0+} \frac{\lambda(x)\lambda''(x)}{(\lambda'(x))^2} = \lim_{x \to 0+} \frac{(m-1)(m-2){\lambda_m}^2 x^{2m-4}}{(m-1)^2 {\lambda_m}^2 x^{2m-4}}$$
$$= \frac{m-2}{m-1}$$

for every choice of $m \geq 3$.

Property 4.1. The function $\phi(\cdot)$ has no weak attractors/repellers in the interval (0,1).

Proof. The derivative of $\phi(\cdot)$ can be put in the form:

$$\phi'(x) = \frac{d_c - 1}{d_c - 2} \cdot \left(\frac{\lambda(x)}{(d_c - 1)\lambda'(x)} + 1 - x\right)^{\frac{1}{d_c - 2}} \cdot \left(\frac{d_c - 2}{d_c - 1} + \frac{\lambda(x)\lambda''(x)}{(d_c - 1)(\lambda'(x))^2}\right),$$

which is a strictly positive function for $x \in (0,1)$; hence, $\phi(\cdot)$ is monotonically increasing in (0,1), and its fixed points can be just strong attractors and strong repellers.

Property 4.2. Let $\lambda_2 = 0$. Then there is some positive and odd integer N such that $\phi(\cdot)$ has exactly $\frac{N+1}{2}$ strong attractors and $\frac{N-1}{2}$ strong repellers in (0,1).

Proof. It is simple to show that, for every choice of $\lambda(x) = \sum_{i \geq 2} \lambda_i x^{i-1}$, it results

$$\lim_{x \to 0+} \lambda(x)/\lambda'(x) = 0. \tag{4.14}$$

From this result, and from Lemma 4.1, it follows:

$$\lim_{x \to 0+} \phi(x) = 0$$

$$\lim_{x \to 0+} \phi'(x) = \frac{d_c - 1}{d_c - 2} \cdot \left(\frac{d_c - 2}{d_c - 1} + \frac{1}{d_c - 1} \cdot \frac{m - 2}{m - 1} \right)$$
$$= 1 + \frac{1}{d_c - 2} \cdot \frac{m - 2}{m - 1} > 1.$$

Thus, if $\lambda_2 = 0$, for sufficiently small and positive values of x, $\phi(x) > x$. Since $\phi(\cdot)$ is a continuous function and

$$\phi(1) = 1 - \left[(d_c - 1)\lambda'(1) \right]^{-\frac{d_c - 1}{d_c - 2}} < 1, \tag{4.15}$$

an odd number N of fixed points must exist in (0,1) and the smallest of them is an attractor. Since attractors and repellers must be necessarily alternated, the total number of strong attractors and repellers is respectively $\frac{N+1}{2}$ and $\frac{N-1}{2}$.

Property 4.3. Let $\lambda_2 > 0$. Then:

- 1. if $\frac{\lambda_3}{\lambda_2} > \frac{1}{2} \cdot \frac{d_c 2}{d_c 1}$, then there is some positive and odd integer N such that $\phi(\cdot)$ has $\frac{N+1}{2}$ strong attractors and $\frac{N-1}{2}$ strong repellers in (0,1);
- 2. if $\frac{\lambda_3}{\lambda_2} < \frac{1}{2} \cdot \frac{d_c 2}{d_c 1}$, then there is some positive and even integer N such that $\phi(\cdot)$ has $\frac{N}{2}$ strong attractors and $\frac{N}{2}$ strong repellers in (0,1).

Proof. From Lemma 4.1 and (4.14) it follows that $\lim_{x\to 0+} \phi'(x) = 1$ if $\lambda_2 > 0$. Furthermore:

$$\lim_{x \to 0+} \phi''(x) = \frac{2(d_c - 1)\lambda_3 - (d_c - 2)\lambda_2}{(d_c - 1)(d_c - 2)\lambda_2}.$$

Hence, $\lim_{x\to 0+} \phi''(x) > 0$ if and only if $\frac{\lambda_3}{\lambda_2} > \frac{1}{2} \cdot \frac{d_c-2}{d_c-1}$. Under this condition, $\phi(x) > x$ for small and positive x. It follows that $\phi(\cdot)$ must have $\frac{N+1}{2}$ attractors and $\frac{N-1}{2}$ repellers in (0,1) for odd N, with the smallest fixed point being a strong attractor. On the contrary, if $\frac{\lambda_3}{\lambda_2} < \frac{1}{2} \cdot \frac{d_c-2}{d_c-1}$, then $\phi(x) < x$ for small and positive values of x. In this case, the smallest fixed point of $\phi(\cdot)$ in (0,1) must be a strong repeller; since (4.15) is still valid, the number N of fixed points of $\phi(\cdot)$ in (0,1) must be necessarily even, with an equal number $\frac{N}{2}$ of strong attractors and repellers.

Chapter 5

Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes

5.1 Introduction

Recently, the problem of designing low-complexity codes for transmission on burst erasure channels, especially low-density parity-check (LDPC) codes [3], has gained a certain interest (e.g. [62, 63, 23, 64, 65, 66, 67, 68, 69, 70]). This demand for burst erasure correcting codes can be explained by the fact that such codes are quite interesting for several (vey heterogeneous) applications, including magnetic storage, wireless communications on correlated fading channels, and even space communications. For instance, LDPC codes with good properties in terms of correction of single bursts of erasures have been shown in [62] and [63] to represent a promising solution, respectively, for the error control system in magnetic recording applications, and for communication on correlated Rayleigh fading channels. Furthermore, it is currently under investigation the possibility to implement LDPC-like codes at the upper layers of the communication stack, for correcting bursts of packet erasures in space and satellite communication links [23, 64], in order to heavily reduce the use of automatic repeat request (ARQ) protocols.

In a recent paper, it has been shown that practically any (N, K) linear block code can be used to correct any single burst of N - K or less erasures, thus achieving the optimal correction capability of single bursts of erasures [71]. More specifically, it has been proved that, under very mild assumptions, it is possible to obtain a (redundant) representation of the parity-check matrix for the code (called parity-check matrix in burst correction form) that permits to recover from any pattern of N - K or less contiguous erasures, by applying a decoding algorithm whose computational complexity is quadratic in the codeword length N. The same code can be then used in a communication system for erasure recovery both in scenarios with independent bit erasures and in scenarios where the erasures occur in

bursts. The decoding is performed according to a two-step process: the received sequence is first processed by the burst correcting algorithm operating on the parity-check matrix in burst correction form, and then by the decoding algorithm for independent erasures correction, operating on a different parity-check matrix representation.

This very general technique can be in principle applied also to LDPC codes. In this case, in the first step of the decoding process, the burst erasure correcting decoder is applied, with quadratic complexity, to the parity-check matrix in burst correction form; in the second step of the decoding process, the iterative decoding [26] is performed on a low-density representation of the parity-check matrix.

In this chapter, the possibility to construct LDPC codes, capable to perform recovery of both independent erasures and bursts of erasures by exploiting *only* the iterative decoder, is investigated. More specifically, the approach consists in starting from an LDPC code parity-check matrix, usually designed in order to achieve good performance on the (memory-less) BEC¹, and then properly modifying it in order to make it suitable also for the *iterative* correction of single bursts of erasures.

The performance of this single-step LDPC iterative decoding process is in general suboptimal, in burst scenarios, with respect to the two-step technique proposed in [71], because of the suboptimal iterative burst correction. However, avoiding the quadratic complexity burst correction step (which becomes an issue for long LDPC codes) it only requires linear in N decoding complexity [26]. Furthermore, the proposed algorithm used for making the parity-check matrix suitable to iterative correction of bursts of erasures, besides being extremely simple, turns out to be also extremely effective, generating finite length LDPC codes whose erasure burst correction capability is very close to its maximum possible value. Moreover, if the input parity-check matrix is designed for achieving good performance on the BEC, the optimized code can be used for transmission in both burst and independent erasure scenarios.

This chapter is strictly related to a number of recent works, i.e. [62, 63, 65, 68, 69]. In [62], a key parameter is proposed as a measure of the robustness of an LDPC code to single bursts of erasures, namely the maximum guaranteed resolvable erasure burst length, denoted by L_{max} . A general definition of the parameter L_{max} , valid for any code, can be given as follows.

Definition 5.1. For a given code, a given parity-check matrix representation, and a given decoding algorithm, the maximum guaranteed resolvable erasure burst length (L_{\max}) is the maximum length of an erasure burst which is correctable independently of its position within the codeword.

¹Throughout the chapter the acronym BEC will be used to denote the standard memory-less binary erasure channel.

As explicitly remarked in this definition, L_{max} is not unique for a given code, heavily depending on both the decoding algorithm and the parity-check matrix representation. For instance, for a given parity-check matrix representation of an LDPC code, the value of L_{max} is not the same with respect to the standard iterative decoding algorithm or to the improved decoding algorithm proposed in [72]. In the sequel, the standard iterative decoder for LDPC codes will be always considered. In [62], an algorithm for the efficient computation of L_{max} for LDPC codes under iterative decoding is developed.

An estimate of the optimal value of L_{max} for LDPC codes, under standard iterative decoding, has been proposed in [63]. Consider an LDPC code, and let q^* denote the associated asymptotic decoding threshold [7] on the BEC. Then, for sufficiently large codeword length N, there exists some proper permutation of the parity-check matrix columns such that $L_{\text{max}}/N \simeq q^*$. Then, $\lfloor q^*N \rfloor$ can be used as an estimate of the maximum value of L_{max} that can be obtained for the length-N LDPC code, by permuting the parity-check matrix columns.

The maximum guaranteed resolvable erasure burst length for an LDPC code, under iterative decoding, has a strong dependence on the *stopping sets* present in the bipartite graph. The concept of stopping set has been first introduced in [30], and further investigated in [54]. By definition, a stopping set is any set of variable nodes such that any check node connected to this set is connected to it at least twice. In [30], it is also proved that the union of stopping sets is a stopping set, so that it is possible to define a maximal stopping set included in a subset of the variable nodes, as the union of all the stopping sets included in the subset. The residual erased variable nodes (after iterative decoding) constitute the maximal stopping set included in the original erasure pattern. Hence, a decoding failure takes place whenever the erasure pattern due to the channel contains a stopping set.

The relation between stopping sets and L_{max} has been addressed in [65]. Let \mathcal{G} be the LDPC code bipartite graph, and let $\mathcal{V} = \{V_0, V_1, \dots, V_{n-1}\}$ be the set of the variable nodes. If $\mathcal{S} = \{V_{i_1}, V_{i_2}, \dots, V_{i_t}\}$, with $i_1 < i_2 < \dots < i_t$, is a stopping set, then the span of \mathcal{S} is defined as $1 + |i_t - i_1|$. Denoting by $\mu(\mathcal{G})$ the minimum span of stopping sets (i.e. the minimum among the spans of all the stopping sets of \mathcal{G}), it follows that $L_{\text{max}} = 1 + \mu(\mathcal{G})$. The span of the stopping sets, a concept of no interest on the BEC, heavily affects the code performance when the erasures occur in bursts.

The concept of span of stopping sets is considered in [67], where a lower bound is found for the minimum span of stopping sets for any regular LDPC code. More specifically, it is proved that the minimum span of stopping sets satisfies $\mu(\mathcal{G}) \geq \delta$, where δ is the minimum zero span in the parity-check matrix. A zero-span is defined as a sequence of consecutive zeroes in a parity-check matrix row; in terms of L_{max} the bound is $L_{\text{max}} \geq \delta + 1$. In [67], a technique for constructing regular LDPC codes with good L_{max} is also presented.

Finally, some results about protograph based LDPC codes on burst erasure channels are presented in [68].

The main contribution of this work is the development of a greedy algorithm, which is able to modify the parity-check matrix of an LDPC code, designed for erasure correction on the BEC, in order to make it suitable also for the iterative correction of single erasure bursts. The present work extends and improves some results from [69], where a former version of the algorithm was presented. The developed algorithm is called *pivot searching* and swapping (PSS) algorithm [73], since it is based on the search and swap of the pivots of stopping sets. The novel concept of pivot of a stopping set will be introduced in the next section. According to the proposed approach, the parity-check matrix for iterative burst correction is generated by only performing column permutations on the input paritycheck matrix. Hence, the sparseness of the matrix is not altered by the algorithm, and the iterative decoder applied to the new parity-check matrix leads, on the BEC, to exactly the same performance as the original one. If the parity-check matrix received in input by the algorithm is designed for achieving good performance on the BEC, then the code obtained after the application of the PSS algorithm provides good joint correction of independent erasures and single erasure bursts, within a single-step decoding scheme, only exploiting the iterative decoder.

5.2 Pivots of Stopping Sets

In this section, the novel concept of pivots of a stopping set is introduced. It is given proof that the minimum number of pivots for any stopping set is two, and an efficient algorithm for finding some pivots of a given stopping set is developed.

For any LDPC code, and for any stopping set of the LDPC code, we define *subgraph* induced by the stopping set the bipartite graph composed of the variable nodes which are part of the stopping set, the check nodes connected (necessarily at least once) to these variable nodes, and the edges connecting such variable nodes and such check nodes. The key concept of *pivot* of a stopping set is defined next.

Definition 5.2. Let \mathcal{G} be the subgraph induced by a stopping set \mathcal{S} of an LDPC code. A variable node V is called pivot of the stopping set if the following property holds: if the value of V is known and the value of all the other variable nodes of \mathcal{G} is unknown, then the iterative decoder applied to \mathcal{G} is able to successfully recover from the erasure pattern.

According to this definition, if the variable node V is pivot for a stopping set S, then the set of variable nodes $S/\{V\}$ is not a stopping set for the LDPC code and contains no stopping sets.

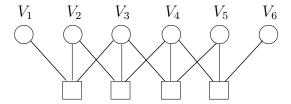


Figure 5.1: Example of subgraph induced by a stopping set of size 6, with no pivots.

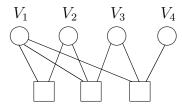


Figure 5.2: Example of subgraph induced by a stopping set of size 4. The variable nodes V_1 and V_2 are pivots for the stopping set, the variable nodes V_3 and V_4 are not pivots.

As recalled in the previous section, the iterative decoder is not able to recover from a starting erasure pattern caused by the channel when this erasure pattern includes at least one stopping set. In particular, the set of variable nodes which remain uncorrected at the end of the decoding process is the maximal stopping set included in the starting erasure pattern, i.e. the union of all the stopping sets included in it. The residual graph at the end of the decoding process is the subgraph induced by the stopping set. What we point out with the above definition is that, among the variable nodes in this residual graph, one should distinguish between pivot and non-pivot variable nodes: if the value of at least one of the pivots was known, then the decoding would be successful. This is the basic idea exploited in the optimization algorithm presented in the next section.

It is important to underline that not all the stopping sets have pivots. For instance, the stopping set of size 6 with the induced subgraph depicted in Fig. 5.1 has no pivots, while the stopping set of size 4 with the induced subgraph depicted in Fig. 5.2 has two pivots, V_1 and V_2 . The concept of *span of pivots*, defined next, will be used in Section 5.3.

Definition 5.3. Let S be a stopping set with pivots, and let V_p and V_q be, respectively, the pivot of S with minimum index and the pivot of S with maximum index. Then, the span of the pivots of S is then defined as q - p + 1².

The next lemma points out an important property of the structure of stopping sets characterized by the presence of pivots.

Lemma 5.1. No stopping set S with pivots exists whose induced subgraph is composed by disjoint graphs.

²The fact that a stopping set with pivots has at least two pivots will be proved in Theorem 5.1.

Proof. It is well known that the union of stopping sets is a stopping set [30]. Hence, the union of stopping sets with unconnected induced subgraphs is a stopping set. Let \mathcal{G} be the subgraph induced by a stopping set, and let $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_2$, with \mathcal{G}_1 and \mathcal{G}_2 unconnected. In such a condition, even if a variable node V_{α} is pivot with respect to \mathcal{G}_1 , it cannot be pivot for the whole stopping set, because no variable node in \mathcal{G}_2 can be corrected from the knowledge of the value of V_{α} only. Analogously, even if a variable node V_{β} is pivot with respect to \mathcal{G}_2 , it cannot be pivot for the whole stopping set. Hence, the stopping set has no pivots.

For a given stopping set of an LDPC code, the problem of finding all the stopping set pivots could be in principle solved by considering the subgraph induced by the stopping set, and by trying, for each variable node, whether the property expressed by Definition 5.2 is verified. However, there are some complexity issues when following this approach. In fact, this technique would be computationally onerous, especially for stopping sets with large size, and when iteratively used as a subroutine of some algorithm (like that one proposed in the next section). The complexity of this pivot searching algorithm could be reduced by exploiting the following lemma, which defines a necessary condition for a variable node to be a stopping set pivot.

Lemma 5.2. Necessary condition for a variable node belonging to a stopping set S to be pivot for S, is that the variable node is connected to at least one check node with degree 2 in the subgraph induced by S.

Proof. If no such check node is connected to the variable node, even if the value of the variable node is known, no further correction can be performed by the iterative decoder. In fact, after the elimination from the graph of the variable node and of all the edges connected to it, every check node continues to have a degree at least 2. \Box

According to Lemma 5.2, the search can be restricted only to the variable nodes which are connected to at least one check node of degree 2 in the subgraph induced by the stopping set.

We propose next an alternative and more efficient algorithm for the search of stopping set pivots. This algorithm is in general not able to find all the pivots of a given stopping set, and its success is bound to the condition that at least one pivot for the stopping set is already available. However, for the purposes of the optimization algorithm of LDPC on burst erasure channels described in the next section, where two pivots for each stopping set are always available, this algorithm comes out to be extremely effective. The proposed pivot searching algorithm is based on the following lemma. It defines a simple, sufficient condition for a variable node to be a stopping set pivot.

Lemma 5.3. Sufficient condition for a variable node V_{α} belonging to a stopping set S to be pivot for S, is that there exists some $V_{\beta} \in S$ and some check node such that V_{β} is pivot for S, the check node has degree 2 in the subgraph induced by S and it is connected to V_{α} and V_{β} .

Proof. Let C be the check node connected to V_{α} and V_{β} , with degree 2 in the subgraph induced by S. If the value of the variable node V_{α} is known, and the value of all the other variable nodes in S is unknown, then C is capable to correct the variable node V_{β} . Since V_{β} is a pivot of S by hypothesis, then all the variable nodes of the stopping set will be corrected.

Combining Lemma 5.2 and Lemma 5.3 it is possible to prove the following result.

Theorem 5.1. If a stopping set S has pivots, then it has at least two pivots.

Proof. Let the variable node V_{α} be a pivot of \mathcal{S} . For Lemma 5.2, V_{α} must have at least one connection towards a check node C, with degree 2 in the subgraph induced by \mathcal{S} . Let V_{β} be the second variable node connected to C. From Lemma 5.3, this is sufficient to conclude that V_{β} is a pivot of \mathcal{S} . Thus, the number of pivots is at least two.

The variable nodes V_{α} and V_{β} in the statement of Lemma 5.3 will be referred to as neighboring pivots. If it is known that the variable node V is a pivot of a certain stopping set, then all its neighboring pivots can be found by looking, among the check nodes connected to V, for check nodes with degree 2 in the subgraph induced by the stopping set. Based on Lemma 5.3, we propose the following pivot searching algorithm for a stopping set S of an LDPC code. As remarked above, the hypothesis is that at least one pivot of the stopping set is already available at the beginning of the algorithm.

Pivot Searching Algorithm.

- [Initalization] Set $\mathcal{P}^{(0)}$ equal to the available (non-empty) set of pivots of \mathcal{S} . Set $\hat{\mathcal{P}}^{(0)} = \mathcal{P}^{(0)}$.
- $[\mathcal{P}^{(\ell)} \ expansion]$ For each stopping set pivot $V \in \hat{\mathcal{P}}^{(\ell)}$, apply Lemma 5.3 in order to find the set $\hat{\mathcal{P}}(V)$ of the neighboring pivots of V. Set

$$\mathcal{P}^{(\ell+1)} = \left(\bigcup_{V} \hat{\mathcal{P}}(V)\right) \cup \mathcal{P}^{(\ell)}.$$
 (5.1)

Set

$$\hat{\mathcal{P}}^{(\ell+1)} = \mathcal{P}^{(\ell+1)} / \mathcal{P}^{(\ell)}. \tag{5.2}$$

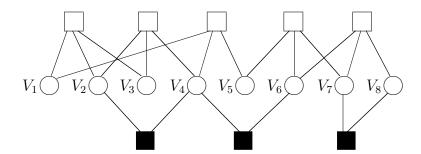


Figure 5.3: Example of subgraph induced by a size-8 stopping set with pivots $\{V_2, V_4, V_6, V_7, V_8\}$. If $\mathcal{P}^0 = \{V_2\}$, then the set of pivots found by the pivot searching algorithm is $\{V_2, V_4, V_6\}$.

• [Stopping criterion] If $\hat{\mathcal{P}}^{(\ell+1)}$ is equal to the empty set, stop and return $\mathcal{P}^{(\ell)}$. Else, set $\ell = \ell + 1$ and goto the $\mathcal{P}^{(\ell)}$ expansion step.

If only one pivot is available at the beginning of the algorithm ($|\mathcal{P}^{(0)}| = 1$), since at least one neighboring pivot must exist for the available pivot, the minimum number of pivots returned by the algorithm is 2. At each step of the algorithm, the sufficient condition expressed by Lemma 5.3 is applied to the new pivots found at the previous step. The algorithm is stopped as soon as no new pivots are found.

Example 5.1. Let us consider the stopping set of size 8 whose induced subgraph is depicted in Fig. 5.3, where the variable nodes V_2 , V_4 , V_6 , V_7 and V_8 are supposed to be the stopping set pivots. In this figure, the check nodes with degree 2 in the subgraph induced by the stopping set, and connecting the neighboring pivots, have been depicted as filled square nodes, while the other check nodes have been depicted as non-filled square nodes. If $\mathcal{P}^{(0)} = \hat{\mathcal{P}}^{(0)} = \{V_2\}$, then it follows $\mathcal{P}^{(1)} = \{V_2, V_4\}$, $\hat{\mathcal{P}}^{(1)} = \{V_4\}$, $\mathcal{P}^{(2)} = \{V_2, V_4, V_6\}$, $\hat{\mathcal{P}}^{(2)} = \{V_2, V_4, V_6\}$, $\hat{\mathcal{P}}^{(3)} = \{\}$. The set of pivots $\mathcal{P}^{(2)}$ is returned by the algorithm. Note that the pivots V_7 and V_8 cannot be found by the algorithm, for $\mathcal{P}^{(0)} = \{V_2\}$.

This pivot searching algorithm is exploited in the optimization algorithm for LDPC codes on burst erasure channels, presented in the next section. The key for the application of the pivots searching algorithm is the following observation: if for a given LDPC code with maximum guaranteed resolvable burst length L_{max} , a burst of length $L_{\text{max}} + 1$ is non-resolvable, then two pivots of the maximal stopping set included in the burst can be always immediately found.

5.3 Optimization Algorithm for LDPC Codes on Burst Erasure Channels

After having defined the concept of stopping set pivots, in this section we present the LDPC codes optimization algorithm for burst erasure channels.

For an LDPC code with maximum guaranteed resolvable erasure burst length $L_{\rm max}$, any single erasure burst of length $L \leq L_{\rm max}$ can be corrected by the iterative decoder independently of the burst position within the codeword of length n. On the contrary, there exists at least one erasure burst of length $L_{\rm max} + 1$, starting on some variable node V_j , which is non-correctable by the iterative decoder. This implies that this erasure burst includes some stopping sets. Next, it is proved that the maximal stopping set included in the burst (defined as the union of all the stopping sets included in the burst) has at least two pivots. Specifically, the variable nodes V_j and $V_{j+L_{\rm max}}$, i.e. the first and the last variable nodes in the burst, are pivots.

Theorem 5.2. Let L_{max} be the maximum guaranteed resolvable burst length of an LDPC code under iterative decoding, and let the erasure burst of length $L_{\text{max}} + 1$ starting on the variable node V_j and ending on the variable node $V_{j+L_{\text{max}}}$, be non-correctable. Then, V_j and $V_{j+L_{\text{max}}}$ are pivots for the maximal stopping set included in the burst.

Proof. Let S be the maximal stopping set included in the non-correctable erasure burst of length $L_{\text{max}} + 1$, and let \mathcal{G} be the subgraph induced by S. By hypothesis, an erasure burst of length L_{max} , starting on the variable node V_j and ending on the variable node $V_{j+L_{\text{max}}-1}$, can be corrected by the iterative decoder. This implies that if the value of the variable node $V_{j+L_{\text{max}}}$ is known, then the iterative decoder applied to \mathcal{G} is able to successfully correct all the variable nodes in the maximal stopping set. Hence, $V_{j+L_{\text{max}}}$ is a pivot of S.

Analogously, an erasure burst of length L_{max} , starting on the variable node V_{j+1} and ending on the variable node $V_{j+L_{\text{max}}}$, can be corrected by the iterative decoder. By reasoning in the same way, it is proved that V_j is a pivot of \mathcal{S} .

The theorem implies that the pivots' span of the maximal stopping set included in the erasure burst of length $L_{\text{max}} + 1$ is equal to $L_{\text{max}} + 1$. By combining Lemma 5.1 with Theorem 5.2 we also obtain the following result on the structure of the maximal stopping set included in a non-correctable erasure burst of length $L_{\text{max}} + 1$.

Corollary 5.1. Let L_{max} be the maximum guaranteed resolvable burst length of an LDPC code under iterative decoding. Let the erasure burst of length $L_{\text{max}} + 1$, starting on the variable node V_j , be non-correctable, and let S be the maximal stopping set included in the

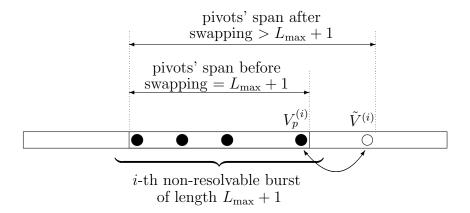


Figure 5.4: The pivot $V_p^{(i)}$ of the stopping set $\mathcal{S}_{\max}^{(i)}$ is swapped with the variable node $\tilde{V}^{(i)}$ (not in $\mathcal{B}^{(i)}$) in order to make the pivots' span greater than $L_{\max} + 1$.

burst. Then, the subgraph \mathcal{G} induced by \mathcal{S} is composed of non-disjoint bipartite graphs, i.e. a path exists from any variable node in \mathcal{G} to any other variable node in \mathcal{G} .

The optimization algorithm for LDPC codes on burst erasure channels is described next. It receives an LDPC code parity-check matrix in input, and returns an LDPC code parity-check matrix with improved performance in environments where erasures occur in bursts. This algorithm performs some permutations of the input LDPC code variable nodes, in order to increase its maximum guaranteed resolvable burst length, thus improving its burst erasure correction capability. Neither the input code degree distribution nor the connections between the variable and the check nodes are modified by the algorithm. As a consequence, the input LDPC code and the LDPC code returned by the algorithm have the same degree distribution and the same performance on the memory-less erasure channel.

Consider an LDPC code with maximum guaranteed resolvable burst length L_{max} , let \mathcal{V} denote the ensemble of all its variable nodes, and suppose that the iterative decoder is not able to successfully recover from a number N_B of erasure bursts of length $L_{\text{max}} + 1$ (some of the non-correctable erasure bursts might be partly overlapped). Let $V^{(i,f)}$ and $V^{(i,l)}$ be, respectively, the first and the last variable node of the *i*-th uncorrectable burst, with $i = 1, \ldots, N_B$, and let $\mathcal{B}^{(i)}$ be the set of all variable nodes included in the *i*-th burst. According to Theorem 5.2, the *i*-th uncorrectable burst contains a maximal stopping set can be eventually found by the pivot searching algorithm presented in the previous section. Suppose that one of these pivots is swapped with a variable node $\tilde{V}^{(i)}$ not included in $\mathcal{B}^{(i)}$ such that, after the swapping, the pivots' span of $\mathcal{S}^{(i)}_{\text{max}}$ becomes larger than $L_{\text{max}} + 1$ (see Fig. 5.4). For any starting erasure pattern given by an erasure burst of length $L_{\text{max}} + 1$, the value of at least one pivot of $\mathcal{S}^{(i)}_{\text{max}}$ is now known, and the considered stopping set will

be resolvable for any possible position of such burst.

If this procedure is applied to each uncorrectable erasure burst, each maximal stopping set $\mathcal{S}_{\max}^{(i)}$ ($i=1,\ldots,N_B$) becomes resolvable for any possible burst position. This does not necessarily imply that the erasure burst length $L_{\max}+1$ will be resolvable at the end of the swapping procedure, since any swap could in principle reduce the pivots' span of some other stopping set. On the other hand, all our numerical results reveal that this approach is indeed very effective up to values of the erasure burst length L extremely close to $\lfloor q^*N \rfloor$.

If the sequence of N_B variable node permutations makes the erasure burst length $L_{\text{max}} + 1$ resolvable for any position of the burst, then the new burst length $L_{\text{max}} + 2$ is considered. On the contrary, a failure is declared, all the permutations are refused, and a new sequence of N_B permutations is performed. The algorithm ends when a maximum number F_{max} of subsequent failures is reached, for the same burst length. The L_{max} optimization algorithm is formalized in the following. The algorithm input is an LDPC code with maximum guaranteed resolvable burst length L_{max} .

Pivot Searching and Swapping (PSS) Algorithm

- [Initialization] Set $L = L_{\text{max}} + 1$.
- [Pivot searching step] Set F = 0. Find all the uncorrectable erasure bursts of length L, and let the number of such bursts be N_B . For each $i = 1, ..., N_B$, find all the pivots which are neighbors of $V^{(i,f)}$ and all the pivots which are neighbors of $V^{(i,l)}$. Let \mathcal{P}_i be the set of pivots found for the burst i.
- [Pivot swapping step] For each $i = 1, ..., N_B$:
 - 1- Randomly choose a pivot $V_p^{(i)}$ in $\mathcal{P}^{(i)}$.
 - 2- If $V_p^{(i)} \neq V^{(i,f)}$ and $V_p^{(i)} \neq V^{(i,l)}$, then randomly choose a variable node

$$\tilde{V}^{(i)} \in \mathcal{V} / \left(\mathcal{B}^{(i)} \cup \left(\bigcup_{j \neq i} \mathcal{P}^{(j)} \right) \cup \left\{ \tilde{V}^{(1)}, \dots, \tilde{V}^{(i-1)} \right\} \right), \tag{5.3}$$

and swap $V_p^{(i)}$ and $\tilde{V}^{(i)}$.

Else, if $V_p^{(i)} = V^{(i,f)}$, then randomly choose a variable node $\tilde{V}^{(i)}$ as from (5.3), and such that the index of $\tilde{V}^{(i)}$ is smaller than the index of $V^{(i,f)}$. Swap $V_p^{(i)}$ and $\tilde{V}^{(i)}$.

Else, if $V_p^{(i)} = V^{(i,l)}$, then randomly choose a variable node $\tilde{V}^{(i)}$ as from (5.3), and such that the index of $\tilde{V}^{(i)}$ is larger than the index of $V^{(i,l)}$. Swap $V_p^{(i)}$ and $\tilde{V}^{(i)}$.

• [Stopping criterion] If the erasure burst length is not resolvable, set F = F + 1. If $F = F_{\text{max}}$, stop and return the new LDPC code with $L_{\text{max}} = L - 1$. If $F < F_{\text{max}}$ goto Pivot swapping step.

Else, if the erasure burst length L is resolvable, set L = L + 1 and goto Pivot searching step.

For each non-resolvable burst, the randomly chosen pivot $V_p^{(i)}$ is swapped with a variable node $\tilde{V}^{(i)}$ in order to guarantee that pivots' span of $\mathcal{S}_{\max}^{(i)}$ after the swapping is greater than $L_{\max} + 1$. If $V_p^{(i)} \neq V^{(i,f)}$ and $V_p^{(i)} \neq V^{(i,l)}$, then $\tilde{V}^{(i)}$ is randomly chosen in $\mathcal{V}/\mathcal{B}^{(i)}$, with the exclusion of the available pivots for the maximal stopping sets of the other non-correctable bursts, and of the variable nodes already swapped for the previously considered bursts. If $V_p^{(i)} = V^{(i,f)}$, there are some cases where the pivots' span of $\mathcal{S}_{\max}^{(i)}$ after the swapping might be not greater than $L_{\max} + 1$, i.e. when the index of $\tilde{V}^{(i)}$ is larger than, and sufficiently close to, the index of $V^{(i,l)}$. For this reason, if $V^{(i,f)}$ is selected, $\tilde{V}^{(i)}$ is chosen among the variable nodes with index smaller than $V^{(i,f)}$. Analogously, if $V^{(i,l)}$ is selected, $\tilde{V}^{(i)}$ is chosen among the variable nodes with index larger than $V^{(i,l)}$.

The PSS algorithm is extremely flexible and can be in principle applied to any LDPC code, independently of its structure, code rate and codeword length. For instance, it can be applied to either regular or irregular LDPC codes, both computer generated (e.g. IRA [17], eIRA³ [74][75] or GeIRA [76] codes generated according to the PEG algorithm [77, 78, 16], protograph codes [19, 79]) and algebraically generated (e.g. LDPC codes based on finite geometries [5, 80]). The optimized code returned by the algorithm has the same performance as the input code on the memory-less erasure channel, but is characterized by an increased capability of correcting single erasure bursts. Then, the PSS algorithm can be used within a two-step design approach, consisting in first generating a good LDPC code for the memory-less erasure channel, and then improving it for burst correction. This approach leads to LDPC codes with good performance in environments where the erasures are independent, and where the erasures occur in bursts. The algorithm can be also applied to already implemented LDPC codes: in this case, it can be interpreted as a tool for the design of an *ad hoc* interleaver which will increase the robustness of the code to erasure bursts.

³There actually is a difference between IRA codes and eIRA codes, albeit small. In particular, the row weight for the systematic part of the parity-check matrix is constant according to the definition of an IRA code in [17]. Further, according to [17], the systematic part of the parity-check matrix must be a (low-density) generator matrix for an IRA code (meaning that it has more columns than rows). Neither of these contraints are necessary for eIRA codes.

	Margulis	PEG irregular	PEG IRA	PEG GeIRA	PEG regular
(N,K)	(2640, 1320)	(1008, 504)	(2000, 1000)	(2048, 1024)	(4608, 4033)
R	0.5	0.5	0.5	0.5	0.8752
N-K	1320	504	1000	1024	575
$L_{\rm max}$	1033	86	403	495	287
$\lfloor q^*N \rfloor$	1133	473	861	946	445
$L_{ m max}^{ m PSS}$	1135	446	852	914	425

Table 5.1: Original and improved values of L_{max} for the five investigated LDPC codes.

5.4 Numerical Results

In this section, some numerical results on the L_{max} improvement achievable by applying the PSS algorithm are shown. Five examples are provided. The first four examples are given for LDPC codes with rate R=1/2 and different construction methods; the fifth one for a rate R = 0.8752 LDPC code. The four rate-1/2 codes are, respectively, a (3,6)-regular (2640, 1320) LDPC code with Margulis construction [81, 82], an irregular (1008, 504) LDPC code generated with the PEG algorithm, a (2000, 1000) IRA code generated with the PEG algorithm and a (2048, 1024) GeIRA code generated with the PEG algorithm. The IRA and GeIRA codes construction was performed by first generating, respectively, the double-diagonal and multi-diagonal part of the parity-check matrix corresponding to the parity bits, and then generating the systematic part with the PEG algorithm, also considering the 1s already positioned in the parity part. The IRA code is characterized by uniform check node distribution and by a regular systematic part of the parity-check matrix, with all the variable nodes corresponding to the systematic bits having degree 5. The GeIRA code is characterized by feedback polynomial (for the recursive convolutional encoder) $g(D) = 1 + D + D^{420}$, and by uniform check node distribution. The degree multiplicity for the variable nodes corresponding to the parity bits is 1(1), 419(2), 604(3), while the degree multiplicity of the variable nodes corresponding to the systematic bits is 885(3), 85(13), 54(14). Finally, the rate 0.8752 code is a (4, 32)-regular (4608, 4033) LDPC code generated with the PEG algorithm (the parity-check matrix for this code is (256×4608) , with one redundant row). The bipartite graphs of the (2640, 1320) Margulis code and of the (1008, 504) irregular code are both available in [83], where the degree distribution of the irregular code is also specified. The bipartite graph of the (2000, 1000) IRA code, (2048, 1024) GeIRA code and high rate code were generated independently.

The results obtained with the application of the PSS algorithm (with $F_{\text{max}} = N$) to the five codes are summarized in Table 5.1. In this table, N - K represents the maximum possible value for L_{max} , which can be obtained by generating the parity-check matrix in burst correction form and applying to it the quadratic complexity decoding algorithm,

288	289	290	300	322	328	330	334	335	337	340
1	3	3	1	1	1	1	1	1	1	1
344	352	354	356	361	362	365	368	373	374	376
1	1	1	1	2	1	1	1	3	2	8
377	378	379	380	381	382	383	384	385	386	387
2	6	4	5	3	5	9	6	8	6	9
388	389	390	391	392	393	394	395	396	397	398
5	13	6	2	5	9	7	12	3	9	7
399	400	401	402	403	404	405	406	411	412	414
8	12	7	5	18	1	6	1	2	1	3
415	416	418	419	420	421	422	423	424	425	426
3	2	2	2	3	5	4	6	5	4	9

Table 5.2: Number of uncorrectable burst positions and corresponding erasure burst lengths for the (4608, 4033) regular LDPC code.

as explained in [71]. For each code, the value of L_{max} for the original code, and the estimate of the maximum value of L_{max} achievable with column permutations ($\lfloor q^*N \rfloor$, as suggested in [63]), are also shown. At the bottom of the table, $L_{\text{max}}^{\text{PSS}}$ denotes the maximum guaranteed resolvable burst length for the code returned by the algorithm.

The starting value of L_{max} for the Margulis code (1033) was already quite close to $\lfloor q^*N \rfloor$. On the contrary, the values of L_{max} exhibited by the other codes (86, 403, 495) and 287 respectively) were quite poor with respect to $|q^*N|$, especially for the irregular (1008, 504) PEG code. When applied to the Margulis code, the PSS algorithm returned a code with an excellent value of $L_{\text{max}}^{\text{PSS}}$, even larger than $\lfloor q^*N \rfloor$. This result leads to a relevant conclusion: it is possible to construct finite length LDPC codes with moderate codeword length, such that $L_{\text{max}} > \lfloor q^* N \rfloor$. Furthermore, for the irregular PEG code, the IRA code, the GeIRA code and the high rate regular code, the values of $L_{\rm max}^{\rm PSS}$ produced by algorithm were quite close to (though lower than) $|q^*N|$. These examples reveal the extreme effectiveness of the PSS algorithm for a wide range of LDPC construction methods. As a comparison, in [66, Example 3], a (4, 32)-regular (4608, 4033) quasi cyclic LDPC code, whose construction is based on circulant permutation matrices, is proposed for burst erasure correction. This code is characterized by $L_{\rm max}=375$. As it can be observed in Table 5.1, the original (4, 32)-regular code generated by the PEG algorithm has a value of L_{max} smaller than 375; however, the PSS algorithm was able to improve this value beyond 375, up to 425.

In order to give a more precise idea about the L_{max} improvement capability of the PSS algorithm, consider Table 5.2, where the details of how the algorithm worked for the (4,32)-regular code are provided. In each table entry two integer numbers are shown: the integer on the top is a value of erasure burst length, while the integer on the bottom is the

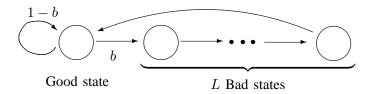


Figure 5.5: Constant length burst erasure channel model.

number of uncorrectable positions registered for that erasure burst length (denoted by N_B in the formalization of the algorithm proposed in the previous section). The burst lengths not shown in the table are those ones for which $N_B=0$ was registered. Hence, for instance, the first erasure burst length that was recognized as non-resolvable for some burst position, was L=288: for this length, one non-resolvable burst position was found. By applying the pivot searching and swapping principle, a column permutation was obtained which made the length L=288 resolvable for any burst position. Assuming this permuted version of the parity-check matrix, the burst length L=289 was investigated, and three burst positions where recognized as non-resolvable ($N_B=3$). Again, a column permutation was found that guaranteed the length L=289 to be resolvable for any burst position, and so on up to the burst length L=426, for which the algorithm failed. As it can be observed from Table 5.2, for some values of L the algorithm was able to correct a relatively large number of uncorrectable burst positions, e.g. $N_B=12$ for L=395 and L=400, $N_B=13$ for L=389 and $N_B=18$ for L=403.

We investigated through simulation the performance of the original and of the PSS-optimized (1008, 504) PEG irregular codes, in terms of residual bit erasure rate and decoding failure rate (both evaluated on all the encoded bits) over the constant length burst erasure channel (CLBuEC) depicted in Fig. 5.5. The CLBuEC is described by a Markov chain with a Good state with erasure probability $p_G = 0$, and L Bad states each with erasure probability $p_B = 1$. The channel executes a state transition for each transmitted bit, moving from the Good state to the Bad states with transition probability b, thus generating a burst of erasures of length L. After the generation of the last erasure in the burst, the channel returns in the Good state.

The performance curves of the two codes are shown in Fig. 5.6 and in Fig. 5.7, respectively, for erasure burst length L=128, L=256, L=384. The parity-check matrix of the original code is that given is [83]; the parity-check matrix of the optimized code is given in Appendix C. It is quite evident the performance gain introduced by the optimization performed by the PSS algorithm.

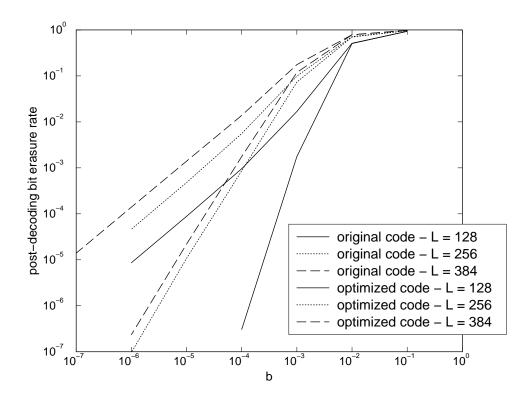


Figure 5.6: Residual bit erasure rate for the (1008, 504) irregular PEG code with $L_{\text{max}} = 86$ and for the PSS-optimized code with the parity-check matrix given in Appendix C (with $L_{\text{max}} = 446$).

5.5 Final Remarks

In this chapter, a simple and effective algorithm for the optimization of LDPC codes on burst erasure channels, under iterative decoding, has been developed. The application of the proposed algorithm to a given LDPC parity-check matrix leads to a new parity-check matrix, characterized by properly permuted columns, with a notable improvement in terms of maximum guaranteed resolvable burst length. At each step of the algorithm, the columns to be permuted are carefully chosen on the basis of a local stopping set pivot analysis for the uncorrectable burst positions. The optimized code has the same performance as the original code on the BEC. Hence, if the input parity-check matrix is optimized in order to achieve good performance on the memory-less erasure channel, then the resulting code can be used for communication both in scenarios with independent erasures and in scenarios where the erasures occur in bursts, by only exploiting the linear complexity iterative decoder. Numerical results have been presented, showing the effectiveness of the proposed approach for a wide range of LDPC code constructions.

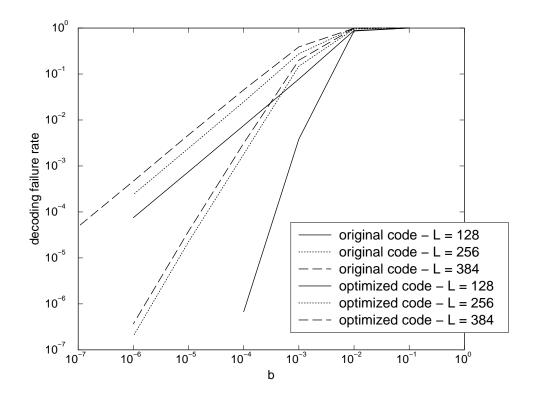


Figure 5.7: Decoding failure rate for the (1008, 504) irregular PEG code with $L_{\rm max}=86$ and for the PSS-optimized code with the parity-check matrix given in Appendix C (with $L_{\rm max}=446$).

Chapter 6

Conclusion

In this thesis, some issues about asymptotic and finite length design and analysis of binary codes, whose structure is based on sparse bipartite graphs, and whose decoding is performed through iterative algorithms, have been investigated. The coding techniques subject of this thesis, namely LDPC, GLDPC and D-GLDPC codes, have been presented in Chapter 1. In Chapters 2, 3 and 4, asymptotic analysis and design of these codes on the BEC has been considered. More specifically, in Chapter 2, a method for the analysis of GLDPC codes and D-GLDPC codes on the BEC, based on EXIT chart, has been described. This method permits to overcome the problem consisting in the impossibility to evaluate the EXIT function for the check or variable component codes, in situations where the information functions or split information functions for the component code are unknown. The analysis technique has been then combined with DE algorithm in order to generate some optimal GLDPC and D-GLDPC edge distributions. In Chapter 3, the stability condition for LDPC codes on the BEC has been generalized to GLDPC codes and D-GLDPC codes. It is proved that, in both cases, the stability condition only involves the component codes with minimum distance 2. Furthermore, a condition called derivative matching was defined, which is sufficient for a GLDPC or D-GLDPC code to achieve the stability condition with equality. If this condition is satisfied, the threshold of D-GLDPC codes (whose generalized variable nodes have all minimum distance at least 3) and GLDPC codes can be expressed in closed form. In Chapter 4, a family of check-regular LDPC degree distributions, fulfilling the derivative matching condition on the BEC, and are referred to as p-positive distributions, has been analyzed. It was shown that the ppositive distribution have a special property: the threshold optimization problem within the p-positive class can be solved in some cases with analytic methods, without using any numerical optimization tool like DE. It was also shown that these distributions can achieve the BEC capacity, by proving that the binomial degree distributions belong to the p-positive family.

Chapter 5 has then moved towards finite length LDPC codes, and their design over

non-memory-less erasure channels. In this chapter, a simple, general-purpose and effective tool for the design of LDPC codes for iterative correction of bursts of erasures, namely the PSS algorithm, has been presented. This algorithm executes permutations of carefully chosen columns of the parity-check matrix, after a local analysis of particular variable nodes called stopping set pivots. This algorithm can be in principle applied to any LDPC code. If the input parity-check matrix is designed for achieving good performance on the memory-less erasure channel, then the code obtained after the application of the PSS algorithm provides good joint correction of independent erasures and single erasure bursts. Numerical results were provided in order to show the effectiveness of the PSS algorithm when applied to different categories of LDPC codes.

Bibliography

- [1] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. San Francisco, California: Morgan Kaufmann, 1988.
- [2] R. Diestel, *Graph Theory (Graduate Texts in Mathematics)*, 3rd ed. Springer-Verlag, 2005.
- [3] R. Gallager, Low-Density Parity-Check Codes. Cambridge, Massachussets: M.I.T. Press, 1963.
- [4] D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," *IEEE Trans. Inform. Theory*, vol. 45, no. 2, pp. 399–431, 1999.
- [5] Y. Kou, S. Lin, and M. Fossorier, "Low-density parity-check codes based on finite geometries: a rediscovery and new results," *IEEE Trans. Inform. Theory*, vol. 47, Nov. 2001.
- [6] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, "Improved low-density parity-check codes using irregular graphs," *IEEE Trans. Inform. Theory*, vol. 47, no. 2, pp. 585–598, Feb. 2001.
- [7] T. Richardson, M. Shokrollahi, and R. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes," *IEEE Trans. Inform. Theory*, vol. 47, pp. 619–637, Feb. 2001.
- [8] T. J. Richardson and R. L. Urbanke, "The capacity of low-density parity-check codes under message-passing decoding," *IEEE Trans. Inform. Theory*, vol. 47, no. 2, pp. 599–618, Feb. 2001.
- [9] C. Berrou and A. Glavieux, "Near optimum error correcting coding and decoding: turbo-codes," *IEEE Trans. Commun.*, vol. 44, no. 10, pp. 1261–1271, Oct. 1996.
- [10] S. ten Brink, "Convergence behavior of iteratively decoded parallel concatenated codes," *IEEE Trans. Commun.*, vol. 49, pp. 1727–1737, Oct. 2001.

[11] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, "On the design of low-density parity-check codes within 0.0045 db of the Shannon limit," *IEEE Comm. Lett.*, vol. 5, pp. 58–60, Feb. 2001.

- [12] K. Price and R. Storn, "Differential evolution a simple and efficient heuristic for global optimization over continuous spaces," J. Global Optimization, vol. 11, pp. 341–359, 1997.
- [13] P. Oswald and M. A. Shokrollahi, "Capacity-achieving sequences for the erasure channel," *IEEE Trans. Inform. Theory*, vol. 48, pp. 364–373, Dec. 2002.
- [14] M. Chiani and A. Ventura, "Design and performance evaluation of some high-rate irregular low-density parity-check codes," in *Proc. of IEEE Global Telecommunications Conf.*, San Antonio, USA, Nov. 2001.
- [15] C. Di, R. Urbanke, and T. Richardson, "Weight distribution of low-density parity-check codes," *IEEE Trans. Inform. Theory*, vol. 52, no. 11, pp. 4839–4855, Nov. 2006.
- [16] X. Hu, E. Eleftheriou, and D. Arnold, "Regular and irregular progressive edge-growth tanner graphs," *IEEE Trans. Inform. Theory*, vol. 51, no. 1, pp. 386–398, Jan. 2005.
- [17] H. Jin, A. Khandekar, and R. McEliece, "Irregular repeat-accumulate codes," in *Proc. of Int. Symp. on Turbo codes and Related Topics*, Brest, France, Sept. 2000.
- [18] M. P. C. Fossorier, "Quasi-cyclic low-density parity-check codes from circulant permutation matrices," *IEEE Trans. Inform. Theory*, vol. 50, pp. 1788–1793, Aug. 2004.
- [19] D. Divsalar, C. Jones, S. Dolinar, and J. Thorpe, "Protograph based LDPC codes with minimum distance linearly growing with block size," in *Proc. of IEEE Global Telecommunications Conference*, St. Louis, USA, Nov./Dec. 2005.
- [20] R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inform. Theory, vol. 27, pp. 533–547, Sept. 1981.
- [21] Y. Wang and M. Fossorier, "Doubly-generalized low-density parity-check codes," in *Proc. of IEEE Int. Symp. on Inform. Theory*, Seattle, USA, July 2006.
- [22] F. Peng, W. E. Ryan, and R. D. Wesel, "Surrogate-channel design of universal LDPC codes," *IEEE Communications Letters*, vol. 10, no. 6, June 2006.
- [23] G. Calzolari, M. Chiani, F. Chiaraluce, R. Garello, and E. Paolini, "New requirements and trends for channel coding in future space missions," *Proc. IEEE*, Jan. 2007, submitted.

[24] H. Xiao and A. H. Banihashemi, "Graph-based message-passing schedules for decoding LDPC codes," *IEEE Trans. Commun.*, vol. 52, no. 12, pp. 2098–2105, Dec. 2004.

- [25] H. Song, R. M. Todd, and J. R. Cruz, "Low density parity check codes for magnetic recording channels," *IEEE Trans. Magn.*, vol. 36, no. 5, pp. 2183–2186, Sept. 2000.
- [26] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, "Efficient erasure correcting codes," *IEEE Trans. Inform. Theory*, vol. 47, pp. 569–584, Feb. 2001.
- [27] M. A. Shokrollahi, "New sequences of linear time erasure codes approaching the channel capacity," in Proc. of Int. Symp. Applied Algebra, Algebraic Algoritmhs, and Error Correcting Codes (Lecture Notes in Computer Science), M. Fossorier, H. Imai, S. Lin and A. Poli, Eds. Berlin, Germany: Springer-Verlag, 1999, pp. 65–76.
- [28] T. Richardson, "Error floors of LDPC codes," in Proc. of Allerton Conf. on Communication, Control and Computing, Monticello, USA, Oct. 2003.
- [29] A. Amraoui, A. Montanari, and R. Urbanke, "How to find good finite-length codes: From art towards science," presented at the 4th Int. Symp. on Turbo Codes and Related Topics, 2006.
- [30] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, "Finite-length analysis of low-density parity-check codes on the binary erasure channel," *IEEE Trans. Inform. Theory*, vol. 48, 2002.
- [31] M. Lentmaier and K. Zigangirov, "On generalized low-density parity-check codes based on Hamming component codes," *IEEE Comm. Lett.*, vol. 3, pp. 248–250, Aug. 1999.
- [32] J. Boutros, O. Pothier, and G. Zemor, "Generalized low density (Tanner) codes," in *Proc. of IEEE Int. Conf. on Communications*, Vancouver, Canada, June 1999.
- [33] J. Chen and R. Tanner, "A hybrid coding scheme for the GilbertElliott channel," *IEEE Trans. Commun.*, vol. 54, no. 10, pp. 564–571, Oct. 2006.
- [34] N. Miladinovic and M. Fossorier, "Generalized LDPC codes with Reed-Solomon and BCH codes as component codes for binary channels," in *Proc. of IEEE Global Telecomm. Conf.*, St. Louis, USA, Dec. 2005.
- [35] S. Abu-Surra, G. Liva, and W. E. Ryan, "Design and performance of selected classes of Tanner codes," in *UCSD Workshop on Information Theory and its Applications*, San Diego, USA, Feb. 2006.

[36] —, "Low-Floor Tanner Codes via Hamming-Node or RSCC-Node Doping," in 16th AAECC (Applied Algebra, Algebraic Algorithms, and Error Correcting Codes) Symposium, Las Vegas, USA, Feb. 2006.

- [37] E. Paolini, M. Fossorier, and M. Chiani, "Analysis of generalized LDPC codes with random component codes for the binary erasure channel," in *Proc. of Int. Symp. of Information Theory and its Applications*, Seoul, Korea, Nov. 2006.
- [38] G. Liva, W. E. Ryan, and M. Chiani, "Quasi-cyclic Generalized LDPC codes with low error floors," *IEEE Trans. Commun.*, 2007, to be published.
- [39] —, "Design of quasi-cyclic Tanner codes with low error floors," in *Proc. Inter-national Symposium on Turbo codes and Related Topics*, Münich, Germany, Apr. 2006.
- [40] G. Yue, L. Ping, and X. Wang, "Generalized low-density parity-check codes based on hadamard constraints," *IEEE Trans. Inform. Theory*, vol. 53, no. 3, pp. 1058–1079, Mar. 2007.
- [41] E. Paolini, M. Fossorier, and M. Chiani, "Analysis of doubly-generalized LDPC codes with random component codes for the binary erasure channel," in *Proc. of Allerton Conf. on Communications, Control and Computing*, Monticello, USA, Sept. 2006.
- [42] —, "Generalized and doubly-generalized LDPC codes with random component codes for the binary erasure channel," *IEEE Trans. Inform. Theory*, to be submitted.
- [43] S. ten Brink, "Convergence of iterative decoding," *Electronics Letters*, vol. 35, no. 10, pp. 806–808, May 1999.
- [44] A. Ashikhmin, G. Kramer, and S. ten Brink, "Extrinsic information transfer functions: Model and erasure channel properties," *IEEE Trans. Inform. Theory*, vol. 50, pp. 2657–2673, Nov. 2004.
- [45] E. Sharon, A. Ashikhmin, and S. Litsyn, "Analysis of low-density parity-check codes based on EXIT functions," *IEEE Transactions on Communications*, vol. 54, no. 8, pp. 1407–1414, Aug. 2006.
- [46] T. Helleseth, T. Kløve, and V. I. Levenshtein, "On the information function of an error-correcting code," *IEEE Trans. Inform. Theory*, vol. 43, pp. 549–557, Mar. 1997.
- [47] S. Chung, "On the construction of some capacity-approaching coding schemes," Ph.D. dissertation, Massachusset Institute of Technology, Cambridge, Massachussets, Sept. 2000.

[48] J. Chen and M. Fossorier, "Density evolution for two improved BP-based decoding algorithms of LDPC codes," *IEEE Communications Letters*, vol. 6, no. 5, pp. 208– 210, May 2002.

- [49] W. Tan and J. R. Cruz, "Analyzing low-density parity-check codes on partial response channels with erasures using density evolution," *IEEE Trans. Magn.*, vol. 40, no. 5, pp. 3411–3418, Sept. 2004.
- [50] C. C. Wang, S. R. Kulkarni, and H. V. Poor, "Density evolution for asymmetric memoryless channels," *IEEE Trans. Inform. Theory*, vol. 51, no. 12, pp. 4216–4236, Dec. 2005.
- [51] M. A. Shokrollahi and R. Storn, "Design of efficient erasure codes with differential evolution," in *Proc. of IEEE Int. Symp. on Inform. Theory*, Sorrento, Italy, June 2000.
- [52] T. Richardson and R. Urbanke, *Modern Coding Theory* (preprint), 2006. [Online]. Available: http://lthcwww.epfl.ch/mct/index.php
- [53] E. Paolini and M. Fossorier, "Generalized stability condition for generalized and doubly-generalized LDPC codes," Jan. 2007, submitted for publication.
- [54] A. Orlitsky, K. Viswanathan, and J. Zhang, "Stopping set distribution of ldpc code ensembles," *IEEE Trans. Inform. Theory*, vol. 51, pp. 929–953, Mar. 2005.
- [55] L. Bazzi, T. Richardson, and R. Urbanke, "Exact thresholds and optimal codes for the binary-symmetric channel and Gallager's decoding algorithm A," *IEEE Trans. Inform. Theory*, vol. 50, no. 9, pp. 2010–2021, Sept. 2004.
- [56] E. Paolini and M. Chiani, "On the threshold of right regular low-density parity-check codes for the erasure channel," in *Proc. of IEEE Vehicular Technology Conf. Spring*, Stokholm, Sweden, June 2005.
- [57] T. Hehn, A. Dönmez, and J. B. Huber, "Exact thresholds for LDPC codes transmitted over binary erasure channels," in *Proc. of Allerton Conf. on Communications*, Control and Computing, Monticello, USA, Sept. 2005.
- [58] S. ten Brink, G. Kramer, and A. Ashikhmin, "Design of low-density parity-check codes for modulation and detection," *IEEE Trans. Commun.*, vol. 52, pp. 670–678, Apr. 2004.
- [59] E. Paolini and M. Chiani, "A class of LDPC erasure distributions with closed-form threshold expression," in *Proc. of IEEE Int. Conf. on Communications*, Glasgow, Scotland, June 2007.

- [60] E. Barbeau, *Polynomials*. Springer Verlag, 2003.
- [61] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, "Practical loss-resilient codes," in *Proc. of the twenty-ninth annual ACM symposium* on Theory of computing, 1997, pp. 150–159.
- [62] M. Yang and W. Ryan, "Performance of efficiently encodable low-density parity-check codes in noise bursts on the EPR4 channel," *IEEE Trans. Magn.*, vol. 40, no. 2, Mar. 2004.
- [63] F. Peng, M. Yang, and W. Ryan, "Simplified eIRA code design and performance analysis for correlated Raileigh fading channels," *IEEE Trans. Wireless Commun.*, vol. 5, no. 4, Apr. 2006.
- [64] E. Paolini, M. Chiani, and G. P. Calzolari, "Long erasure correcting codes: the new frontier for zero-loss in space applications?" in *Proc. of Int. Conf. on Space Operations*, Rome, Italy, June 2006.
- [65] T. Wadayama, "Ensemble analysis on minimum span of stopping sets," in Proc. of Inform. Theory and its Applications Workshop, La Jolla, USA, Feb. 2006.
- [66] Y. Y. Tai, L. Zeng, L. Lan, S. Song, S. Lin, and K. Abdel-Ghaffar, "Algebraic construction of quasi-cyclic LDPC codes Part II: For AWGN and binary random and burst erasure channels," Applied Algebra, Algebraic Algorithms and Error-Correcing Codes, Lecture Notes in Computer Science, vol. 3857, Feb. 2006.
- [67] Y. Y. Tai, L. Lan, L. Zeng, S. Lin, and K. Abdel-Ghaffar, "Algebraic construction of quasi-cyclic LDPC codes for the AWGN and erasure channels," *IEEE Trans. Commun.*, vol. 54, pp. 1765–1774, Oct. 2006.
- [68] D. Divsalar, S. Dolinar, and C. Jones, "Protograph LDPC codes over burst erasure channels," in *Proc. of Military Communications Conference*, Washington, USA, Oct. 2006.
- [69] E. Paolini and M. Chiani, "Improved low-density parity-check codes for burst erasure channels," in *Proc. of IEEE Int. Conf. on Communications*, Istanbul, Turkey, June 2006.
- [70] G. Hosoya, H. Yagi, T. Matsushima, and S. Hirasawa, "Performance of low-density parity-check codes for burst erasure channels," in *Proc. of Int. Symp. on Inform.* Theory and its Applications, Seoul, Korea, Nov. 2006.

[71] M. Fossorier, "Universal burst error correction," in *Proc. of Int. Symposium on Inform. Theory*, Seattle, USA, Jan. 2006.

- [72] H. Pishro-Nik and F. Fekri, "On decoding of low-density parity-check codes over the binary erasure channel," *IEEE Trans. Inform. Theory*, vol. 50, pp. 439–454, Mar. 2004.
- [73] E. Paolini and M. Chiani, "Construction of near-optimum burst erasure correcting low-dnesity parity-check codes," *IEEE Trans. Commun.*, 2007, submitted.
- [74] M. Yang, Y. Li, and W. Ryan, "Design of efficiently encodable moderate-length high-rate irregular LDPC codes," *IEEE Trans. Commun.*, vol. 52, pp. 564–571, Apr. 2004.
- [75] Y. Zhang, W. Ryan, and Y. Li, "Structured eIRA codes with low floors," in *Proc. of IEEE Int. Symp. on Inform. Theory*, Adelaide, Australia, Sept. 2005.
- [76] G. Liva, E. Paolini, and M. Chiani, "Simple reconfigurable low-density parity-check codes," *IEEE Communications Letters*, vol. 9, no. 3, pp. 258–260, Mar. 2005.
- [77] H. Xiao and A. Banihashemi, "Improved progressive-edge-growth (PEG) construction of irregular LDPC codes," *IEEE Communications Letters*, vol. 8, no. 12, pp. 715–717, Dec. 2004.
- [78] Z. Chen and S. Bates, "Construction of low-density parity-check convolutional codes through progressive edge-growth," *IEEE Communications Letters*, vol. 9, no. 12, pp. 1058–1060, Dec. 2005.
- [79] D. Divsalar, S. Dolinar, and C. Jones, "Low-rate LDPC codes with simple protograph structure," in *Proc. of IEEE International Symposium on Information Theory*, Adelaide, Australia, Sept. 2005.
- [80] S. Lin, H. Tang, and Y. Kou, "On a class of finite geometry low density parity check codes," in *IEEE International Symposium on Information Theory*, Washington, USA, June 2001.
- [81] G. A. Margulis, "Explicit constructions of graphs without short cycles and low density codes," *Combinatorica*, vol. 2, no. 1, 1982.
- [82] D. MacKay and M. Postol, "Weaknesses of Margulis and Ramanujan-Margulis lowdensity parity-check codes," *Electronic Notes in Theoretical Computer Science*, vol. 74, 2003.

[83] D. MacKay, "Encyclopedia of sparse graph codes." [Online]. Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

Appendix A

EXIT Functions for (31, 21) Generalized Check Nodes

A.1 (31, 21) Check Node with $d_{\min} = 2$

• Generator matrix (systematic representation):

010000000000000000000000110101010000010000000000000000111010010100000100000000000000000100111111 $0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,1\,0\,0\,0\,0\,1\,0\,1\,0\,0\,1\,1\,1\,0\,1$ $0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,1\,0\,0\,0\,1\,1\,1\,0\,0\,1\,1\,1\,0\,1$ $0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,1\,0\,0\,0\,1\,1\,0\,0\,1\,0\,0\,0\,1$ 000000000000000000000011100

• EXIT function of the (31, 21) $d_{\min} = 2$ code as a check node on the BEC:

$$I_{E}(I_{A}) = \frac{1}{31} I_{A}^{6} (28 + 56 I_{A} + 99 I_{A}^{2} + 150 I_{A}^{3} + 385 I_{A}^{4} + 672 I_{A}^{5} + 871 I_{A}^{6} + 784 I_{A}^{7} - 570 I_{A}^{8}$$

$$- 6240 I_{A}^{9} - 16490 I_{A}^{10} - 34794 I_{A}^{11} - 34637 I_{A}^{12} + 45340 I_{A}^{13} + 350490 I_{A}^{14}$$

$$+ 835098 I_{A}^{15} + 85836 I_{A}^{16} - 7079304 I_{A}^{17} - 7440650 I_{A}^{18} + 69872946 I_{A}^{19}$$

$$- 132276186 I_{A}^{20} + 126483644 I_{A}^{21} - 68247469 I_{A}^{22} + 19922550 I_{A}^{23}$$

$$- 2462578 I_{A}^{24})$$

A.2 (31, 21) Check Node with $d_{\min} = 3$

• Generator matrix (systematic representation):

• EXIT function of the $d_{\min} = 3$ code as a check node on the BEC:

$$\begin{split} I_E(I_A) &= \frac{1}{31} \, I_A^6 \, (14 + 16 \, I_A + 99 \, I_A^2 + 190 \, I_A^3 + 385 \, I_A^4 + 864 \, I_A^5 + 1183 \, I_A^6 + 1218 \, I_A^7 - 60 \, I_A^8 \\ &- 4416 \, I_A^9 - 16592 \, I_A^{10} - 39942 \, I_A^{11} - 73663 \, I_A^{12} - 26780 \, I_A^{13} + 339654 \, I_A^{14} \\ &+ 1471492 \, I_A^{15} + 1360887 \, I_A^{16} - 9234432 \, I_A^{17} - 26205375 \, I_A^{18} + 135813782 \, I_A^{19} \\ &- 231220494 \, I_A^{20} + 210207452 \, I_A^{21} - 109990359 \, I_A^{22} + 31442850 \, I_A^{23} \\ &- 3827942 \, I_A^{24} \big) \end{split}$$

A.3 EXIT Function for the (31, 21) BCH Check Node

• EXIT function of the (31, 21) BCH code as a check node on the BEC:

$$I_{E}(I_{A}) = \frac{1}{31}I_{A}^{11} (3720 + 8432 I_{A}^{4} - 117180 I_{A}^{6} - 470580 I_{A}^{8} + 429660 I_{A}^{9} + 1783430 I_{A}^{10}$$

$$+ 8277930 I_{A}^{11} - 8559720 I_{A}^{12} - 118804650 I_{A}^{13} + 400115274 I_{A}^{14}$$

$$- 599316975 I_{A}^{15} + 510710760 I_{A}^{16} - 257365575 I_{A}^{17} + 71968920 I_{A}^{18}$$

$$- 8663415 I_{A}^{19})$$

A.4 Expected Information Functions over $\mathcal{G}^{(31,21)}_*$

The expected un-normalized information functions $\mathbb{E}_{\mathcal{G}_*^{(31,21)}}(\tilde{e}_g)$ are given next. The expected EXIT function over $\mathcal{G}_*^{(31,21)}$ can be computed according to these parameters.

```
\begin{array}{l} \tilde{e}_0 = 0 \\ \tilde{e}_1 = 31 \\ \tilde{e}_2 = \frac{592309685955342566724971891408683046414604485580096933506881080}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_3 = \frac{8588487123181173185324131293088604202821491339941690270662594965}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_4 = \frac{80159160378382397431846327922572012901569098543150173533675944380}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_5 = \frac{541073715995212268952095869414896915871920509881535566510796002857}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_6 = \frac{2813577691135965400845879223468887867001062785998730981763037480272}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_7 = \frac{11723198631876043017451497806841015171911333693196657907376897333325}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_8 = \frac{40193566470632908218711977852264847507255647407613313758253668280150}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_8 = \frac{66892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_8 = \frac{66892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_8 = \frac{66892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_8 = \frac{66892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547} \\ \frac{666892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547} \\ \frac{666892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547} \\ \frac{666892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547} \\ \frac{666892283181047003977585113353969020718521606746980893309547}{63689228318104700397
```

$\tilde{e}_9 = \frac{115555160323135361225262553164877890931385011171514371498575233512575}{669} = \frac{1155555160323135361225262553164877890931385011171514371498575233512575}{669} = \frac{1155555160323135011171514371498575233512575}{669} = \frac{1155555160323135011171514371498575233512575}{669} = \frac{1155555160323135011171514371498575233512575}{669} = \frac{115555516032313501117151437149857523351175}{669} = 11555551603231350111715143714985752335117171514371498575233511717151437149857523351171715143714985752335117171514371498575233511717151437149857523351171715143714985752335117171514717171717171717171717171717171$
$636892283181047003977585113353969020718521606746980893309547 \\ 21727858616077006897875702025804768871042766414597903541237288720440$
$\tilde{e}_{10} = \frac{48991714090849769536737316411843770824501662057460068716119}{593147299039452032361390101724201634745846861571830739995403196060365}$
$\tilde{e}_{11} = \frac{636892283181047003977585113353969020718521606746980893309547}{1078371330736844476386531655687104491556843051296352213393666138720450}$
$\vec{e}_{12} = {636892283181047003977585113353969020718521606746980893309547}$
$\tilde{e}_{13} = \frac{131322336700481750208437430118928812713011694606696909138302276947575}{43201714000840760172772731641194277032415016696909138302276947575}$
$\tilde{e}_{14} = \frac{48991714090849769536737316411843770824501662057460068716119}{6363204199007316556146268657262786276368077223830814249476925823123500}$
2868243271771558717628008545433901135639515314857557099986993816947265
$ \tilde{e}_{15} = {636892283181047003977585113353969020718521606746980893309547} \\ \tilde{a}_{15} = {636892283181047003977585113353969020718521606746980893309547} \\ \tilde{e}_{15} = {63689228318104700397586007299058760079} \\ \tilde{e}_{15} = {6368922831810470039758600729907007007007007007} \\ \tilde{e}_{15} = {6368922831810470039758007007007007007007007007007007007007007$
$\tilde{e}_{16} = \frac{636892283181047003977585113353969020718521606746980893309547}{2860879802455801190261784724688780325589006976353574351075448640555275}$
$\tilde{e}_{17} = \frac{636892283181047003977585113353969020718521606746980893309547}{636892283181047003977585113353969020718521606746980893309547}$
$\tilde{e}_{18} = \frac{234862626296534142275142011175884942145042401557173548753713090060600}{66000000000000000000000000000$
$\frac{636892283181047003977585113353969020718521606746980893309547}{1686386363776456599182439145445589096129349438262301544076359017348375}$
$\tilde{e}_{19} = \frac{1}{636892283181047003977585113353969020718521606746980893309547} \\ 1053955498571955370070323689968743059520967746898811547367642801069040$
$\tilde{e}_{20} = \frac{636892283181047003977585113353969020718521606746980893309547}{569368373576094165718663734191557751306298941812915054428206409028455}$
$\frac{\ddot{e}_{21} = {636892283181047003977585113353969020718521606746980893309547}}{263820783206035192101409752856689602938118050496066991872455432418925}$
$\tilde{e}_{22} = \frac{1}{636892283181047003977585113353969020718521606746980893309547}$
$\tilde{e}_{23} = \frac{104343527523236650925519731542102361064256192554028972440340601591875}{623000000000000000000000000000000000000$
$636892283181047003977585113353969020718521606746980893309547 \ 34977138610506386695220685358539908405275113495844278411074825611125$
$\tilde{e}_{24} = {636892283181047003977585113353969020718521606746980893309547} \\ = {9821670325423964121544284121179260874564512121193459383899585275161}$
$ \tilde{e}_{25} = \frac{636892283181047003977585113353969020718521606746980893309547}{6269775739862184527285851831187461732760259851942837109920601119857} $
$\begin{array}{l} \tilde{e}_{26} = {636892283181047003977585113353969020718521606746980893309547} \\ 420620994776339095702712222829569444119979105760024298039720501405 \end{array}$
$\tilde{e}_{27} = \frac{1}{636892283181047003977585113353969020718521606746980893309547}$
$\tilde{e}_{28} = \frac{4623712216939972846994280507272787457945298148987936019321288005}{43201714000840760126777279164119427779394501662017469062716110}$
$\tilde{\epsilon}_{232} = \frac{6218963652531595220416862738351052380477293591348986700425556155}{6218963652531595220416862738351052380477293591348986700425556155}$
636892283181047003977585113353969020718521606746980893309547
$\tilde{e}_{30} = 651$
$\tilde{e}_{31} = 21$

Appendix B

Expected Split Information Functions Over $\mathcal{G}_*^{(31,10)}$

For each pair (g,h), the value of $\mathbb{E}_{\mathcal{G}^{(n,k)}_*}[\tilde{e}_{g,h}]$ is shown.

(0,0)	0.000000
(0, 1)	10.000000
(0, 2)	90.000000
(0,3)	360.000000
(0,4)	840.000000
(0, 5)	1260.000000
(0,6)	1260.000000
(0,7)	840.000000
(0, 8)	360.000000
(0,9)	90.000000
(0, 10)	10.000000
(1,0)	31.000000
(1, 1)	619.696970
(1, 2)	4180.909091
(1,3)	14854.545455
(1, 4)	32454.545455
(1,5)	46635.272727
(1,6)	45169.090909
(1,7)	29298.181818
(1,8)	12207.272727
(1,9)	2945.151515
(1, 10)	310.000000

(2,0)	929.545460
(2,1)	13931.827127
(2,1) $(2,2)$	83495.694746
(2, 3)	277802.986569
(2,3) $(2,4)$	581531.486141
(2,4) $(2,5)$	809603.803052
	763439.857130
(2,6)	482230.392439
(2,7)	194887.070264
(2,8)	
(2,9)	45339.771631
(2,10)	4650.000000
(3,0)	13467.433057
(3,1)	179317.441605
(3,2)	1006449.585126
(3,3)	3208664.213253
(3,4)	6508607.018652
(3,5)	8824698.372438
(3,6)	8109830.375383
(3,7)	4978791.005197
(3,8)	1950251.927063
(3,9)	443897.711452
(3, 10)	44950.000000
(4,0)	125522.211766
(4, 1)	1565284.881525
(4, 2)	8418703.803610
(4,3)	26009974.366845
(4, 4)	51390645.817435
(4,5)	67930160.930020
(4,6)	60730222.638597
(4,7)	36211885.518441
(4,8)	13900267.005602
(4,9)	3126911.158904
(4, 10)	314650.000000
(5,0)	845253.865429
(5,1)	10100832.042276
(5,2)	52649058.013457
(5,3)	158452844.393846
(5,4)	305272587.758980
(5,5)	392722484.407236
(5,6)	341324193.126170
(5,7)	199590339.030473
(5,8)	75753992.769304
(5,9)	16938261.839087
(5,10)	1699110.000000
(-,)	222-20.00000

(6,0)	4377027.468771
(6,1)	50692322.288212
(6,2)	257399841.476255
(6,3)	755439013.948270
(6,4)	1416766955.160452
(6,5)	1772671029.950008
(6,6)	1511436152.949736
(6,7)	874077445.537898
(6,8)	329790392.823242
(6,9)	73513729.266952
(6, 10)	7362810.000000
(7,0)	18104402.514149
(7,1)	204262885.368240
(7,2)	1011477588.621147
	2890038143.968905
(7,3)	
(7,4)	5272640732.082114
(7,5)	6473140714.757799
(7,6)	5458981280.977422
(7,7)	3138482814.778333
(7,8)	1180561370.808930
(7,9)	262753466.330030
(7, 10)	26295750.000000
(8,0)	61278874.870362
(8,1)	674258327.754605
(8,2)	3250657245.841676
(8,3)	9036290308.186577
(8,4)	16177501390.832565
(8,5)	19645275018.586632
(8,6)	16470870944.496225
` ' '	9440885525.858236
(8,7)	
(8,8)	3545803903.398328
(8,9)	788566749.071551
(8, 10)	78887250.000000
(9,0)	172310501.718899
(9,1)	1845932393.777827
(9,2)	8658745260.240742
(9,3)	23620651928.758492
(9,4)	41829907984.078880
(9,5)	50501396528.333168
(9,6)	42213762526.091072
(9,7)	24159367759.986790
(9, 8)	9066768085.980492
(' /	2015617201.155661
(9,9)	
(9, 10)	201600750.000000

(10,0)	406105259.031647
(10, 1)	4232996948.215034
(10, 2)	19485756113.129803
(10,3)	52581925597.006966
(10, 4)	92577683785.290939
(10,5)	111433993455.688950
(10,6)	93004742327.039581
(10,7)	53186604303.028770
(10, 8)	19952685854.441792
(10,9)	4434787593.051601
(10, 10)	443521650.000000
(11,0)	808117906.179592
(11,1)	8266504806.757377
(11, 2)	37642581226.773872
(11,3)	100989667423.850220
(11, 4)	177273408970.402830
(11,5)	213055479762.149380
(11,6)	177683167816.872130
(11,7)	101572437814.320790
(11, 8)	38097021033.105110
(11, 9)	8466822492.859234
(11, 10)	846723150.000000
(12,0)	1377751350.754546
(12, 1)	13941539171.830137
(12, 2)	63117431868.306053
(12, 3)	168828298401.211940
(12, 4)	295903729272.282840
(12, 5)	355358041286.772280
(12, 6)	296245904646.636960
(12,7)	169316034816.289400
(12, 8)	63499639864.851669
(12, 9)	14111711999.961872
(12, 10)	1411205250.000000
(13,0)	2037610380.543325
(13, 1)	20499562089.524292
(13, 2)	92530075841.779861
(13,3)	247125806334.909060
(13,4)	432802996402.281130
(13, 5)	519563677452.488340
(13,6)	433053178012.444400
(13,7)	247482812158.157590
(13,8)	92810528116.392349
(13,9)	20625058924.688747
(13, 10)	2062530750.000000

(4.4.0)	
(14,0)	2635658996.247985
(14, 1)	26437090892.463089
(14, 2)	119149418185.684980
(14, 3)	317976053905.264040
(14, 4)	556672238878.893070
(14, 5)	668135295493.918820
(14, 6)	556833025385.680420
(14,7)	318205621708.205020
(14, 8)	119329981260.671370
(14, 9)	26518092868.001831
(14, 10)	2651825250.0000000
(15,0)	2996204732.017513
(15,1)	30007962209.370403
(15, 2)	135139530917.046190
(15,3)	360510612785.162780
(15,4)	631014901368.111450
(15, 5)	757290713546.031620
(15,6)	631105948440.099850
(15,7)	360640644084.295650
(15, 8)	135241867918.032530
(15,9)	30053929141.184380
(15, 10)	3005401950.000000
(16,0)	3000797257.771355
(16,1)	30030989542.642181
(16, 2)	135191339148.062320
(16,3)	360579484782.960880
(16,4)	631074718195.666750
(16, 5)	757326042328.804440
(16,6)	631120195604.878300
(16,7)	360644443553.303160
(16, 8)	135242478565.066650
(16, 9)	30053974374.967899
(16, 10)	3005401950.000000
(17,0)	2649794052.065346
(17, 1)	26508100059.804852
(17, 2)	119309330796.488590
(17,3)	318188737213.128910
(17, 4)	556857002955.348750
(17,5)	668244433134.972530
(17, 6)	556877040334.643550
(17,7)	318217360072.837100
(17, 8)	119331867867.530850
(17,9)	26518232619.768288
(17, 10)	2651825250.000000

(10.0)	
(18,0)	2061741735.977990
(18,1)	20621365051.890923
(18, 2)	92805029214.516251
(18, 3)	247491929330.167630
(18, 4)	433121247542.450440
(18, 5)	519751720145.155210
(18, 6)	433129026486.351260
(18,7)	247503041726.521360
(18,8)	92813779562.936020
(18,9)	20625299782.430264
(18, 10)	2062530750.0000000
(19,0)	1410935895.637917
(19,1)	14110706835.014940
(19, 2)	63501214193.475197
(19,3)	169340616236.542110
(19,4)	296349618042.984740
(19,5)	355621665491.057070
(19,6)	296352272855.257140
(19,7)	169344408760.863220
(19, 8)	63504200693.666870
(19,9)	14112049866.195944
(19, 10)	1411205250.000000
(20,0)	846642625.851372
(20,1)	8466829241.714141
(20, 2)	38101638405.118507
(20,3)	101605578240.330920
(20,4)	177810819966.280430
(20,5)	213373618796.164000
(20,6)	177811613513.982850
(20,7)	101606711870.315510
(20, 8)	38102531122.008568
(20,9)	8467230712.741138
(20, 10)	846723150.000000
(21,0)	443500682.090548
(21,1)	4435111758.931985
(21, 2)	19958239039.290668
(21,3)	53222285612.595879
(21,4)	93139275312.001175
(21,5)	111767295669.561040
(21,6)	93139481931.197479
(21,7)	53222580781.642380
(21, 8)	19958471482.763126
(21,9)	4435216295.019461
(21, 10)	443521650.000000

(22,0)	201596031.086607
(22,1)	2015983928.055483
(22,2)	9071980816.419312
(22,3)	24192019698.340012
(22, 3) $(22, 4)$	42336096470.266403
` ' /	50803352963.353203
(22,5)	
(22,6)	42336142969.085526
(22,7)	24192086125.088341
(22, 8)	9072033127.246248
(22,9)	2016007453.870089
(22, 10)	201600750.000000
(23,0)	78886342.244510
(23,1)	788867965.618235
(23, 2)	3549916067.560413
(23,3)	9466456476.624792
(23,4)	16566310760.206268
(23,5)	19879580067.927399
(23,6)	16566319704.808643
(23,7)	9466469254.615534
(23, 8)	3549926130.206060
(23,9)	788872491.126374
(23, 10)	78887250.000000
(24,0)	26295603.119677
(24,0) $(24,1)$	262956766.313146
	1183307102.431586
(24,2)	
(24,3)	3155487811.854520
(24,4)	5522105600.447498
(24,5)	6626527878.359177
(24,6)	5522107047.725414
(24,7)	3155489879.393436
(24, 8)	1183308730.616802
(24, 9)	262957498.564207
(24, 10)	26295750.000000
(25,0)	7362790.480560
(25,1)	73628002.498014
(25, 2)	331326231.049636
(25,3)	883536909.210881
(25,4)	1546189847.562929
(25,5)	1855427970.941902
(25,6)	1546190039.895925
(25,7)	883537183.972246
(25, 8)	331326447.424111
(25,9)	73628099.809193
(25, 3) $(25, 10)$	7362810.000000
(20, 10)	1002010.000000

(26,0)	1699107.946839
(26,1)	16991089.744220
(26, 2)	76459926.969643
(26,3)	203893169.413272
(26,4)	356813073.447346
(26,5)	428175704.321289
(26,6)	356813093.677939
(26,7)	203893198.314117
(26, 8)	76459949.729055
(26,9)	16991099.979930
(26, 3) $(26, 10)$	1699110.000000
(20, 10) $(27, 0)$	314649.839246
(27,0) $(27,1)$	3146499.197017
(27,1) $(27,2)$	14159248.196824
(27, 2) $(27, 3)$	37757997.605193
(27, 3) $(27, 4)$	66076497.921044
(27,4) $(27,5)$	79291798.772426
` ' /	66076499.505010
(27,6)	
(27,7)	37757999.868003
(27,8)	14159249.978786
(27,9)	3146499.998429
(27, 10)	314650.000000
(28,0)	44949.991654
(28,1)	449499.958311
(28,2)	2022749.906383
(28,3)	5393999.875666
(28,4)	9439499.892065
(28,5)	11327399.936267
(28,6)	9439499.974301
(28,7)	5393999.993147
(28, 8)	2022749.998899
(28,9)	449499.999918
(28, 10)	44950.000000
(29,0)	4649.999784
(29,1)	46499.998922
(29, 2)	209249.997580
(29, 3)	557999.996786
(29,4)	976499.997210
(29, 5)	1171799.998353
(29, 6)	976499.999336
(29,7)	557999.999823
(29, 8)	209249.999972
(29, 9)	46499.999998
(29, 10)	4650.000000

(30, 0)	310.000000
(30, 1)	3100.000000
(30, 2)	13950.000000
(30, 3)	37200.000000
(30,4)	65100.000000
(30, 5)	78120.000000
(30, 6)	65100.000000
(30,7)	37200.000000
(30, 8)	13950.000000
(30, 9)	3100.000000
(30, 10)	310.000000
(31,0)	10.000000
(31, 1)	100.000000
(31, 2)	450.000000
(31, 3)	1200.000000
(31, 4)	2100.000000
(31, 5)	2520.000000
(31, 6)	2100.000000
(31,7)	1200.000000
(31, 8)	450.000000
(31, 9)	100.000000
(31, 10)	10.000000

Appendix C

Parity-Check Matrix for the (1008, 504) Code with $L_{\text{max}} = 446$

Each line corresponds to a check node. For each check node, the indexes (from 0 to 1007) of the variable nodes connected to that check node are specified.

```
593
8
      19
           41
                108
                     212
                           508
                                547
          235
                282
                     525
183
     191
                           673
                                866
                                       874
 2
      89
          130
                233
                     345
                           495
                                 674
                                       894
     295
225
          364
                472
                      675
                           962
                                 969
                                       975
174
     221
          257
                293
                      428
                           477
                                 676
                                       850
186
     385
          415
                536
                           755
                                 882
                     677
                                      1006
6
     102
          186
                235
                     340
                           498
                                678
                                       949
 3
     247
                           679
          347
                361
                      541
                                 844
                                       987
13
     142
          473
                481
                      498
                           590
                                648
                                       810
7
     38
          422
                452
                     527
                           680
                                 843
                                       969
95
     125
          362
                523
                     681
                           808
                                 816
                                       874
75
     107
          263
                324
                     361
                           682
                                 977
                                      1007
9
          254
                381
                                 844
     107
                      515
                           683
                                       850
41
     48
          219
                389
                     409
                           438
                                 597
                                       652
145
     201
          226
                523
                     551
                           685
                                900
                                       901
24
     59
           97
                107
                      259
                           267
                                 414
                                       686
16
     164
          184
                223
                     345
                           409
                                 427
                                       687
          226
                362
                     372
119
     130
                           397
                                 688
                                      1002
7
      59
           89
                170
                      181
                           507
                                 685
                                       917
223
     229
          232
                447
                     678
                           933
                                959
                                      1001
     20
18
          156
                174
                     253
                           377
                                 481
                                       805
225
     256
                496
                                 875
                                       998
          479
                     647
                           863
37
     107
          133
                274
                      481
                           691
                                 958
                                      1006
275
     377
          500
                547
                     692
                           836
                                936
                                      1006
```

18	23	24	302	722	844	889	996
82	140	268	336	385	414	694	850
99	461	476	490	580	695	981	992
36	118	346	477	696	971	994	998
73	120	174	219	280	431	541	697
11	77	119	316	461	574	683	851
164	186	302	567	698	928	929	994
29	201	243	347	587	699	843	860
162	287	426	477	489	700	845	878
25	133	284	325	421	701	969	991
34	184	244	310	543	702	856	902
150	223	433	543	703	849	883	998
14	27	89	359	388	482	704	875
194	246	428	429	469	543	705	863
76	291	706	844	846	863	917	957
33	66	89	151	347	701	832	1001
66	341	476	481	707	818	836	999
271	292	308	543	570	708	814	922
58	102	307	388	504	582	642	844
14	174	325	444	503	523	709	919
128	245	294	311	364	597	710	863
313	543	555	711	832	854	858	911
80	224	296	416	567	712	814	846
73	211	276	414	585	595	814	838
68	94	387	506	555	820	830	998
45	130	314	338	515	541	715	870
179	325	434	456	547	716	845	933
58	255	301	417	647	841	939	949
234	246	335	451	572	717	841	848
36	224	317	343	522	523	535	718
49	73	212	224	354	419	719	998
130	173	305	337	422	525	720	944
212	276	458	540	583	721	962	1006
159	184	232	525	558	693	850	916
15	18	153	364	369	388	443	723
18	37	55	405	507	724	837	841
24	205	529	543	559	668	822	934
60	107	118	200	436	509	590	725
96	119	170	283	312	338	726	869
36	119	399	425	499	727	877	912
207	230	570	728	827	912	950	981
60	170	262	315	318	541	729	837
57	70	174	175	498	730	932	969
11	62	151	490	731	922	925	989
41	43	107	423	732	822	845	929

170	184	462	545	730	835	836	970
255	463	465	523	531	549	674	1001
85	246	278	531	580	733	936	989
24	313	321	462	498	734	914	921
127	170	227	235	571	725	809	989
219	255	425	518	680	836	885	911
92	400	441	499	518	735	841	846
41	85	224	568	736	835	841	950
41	55	118	467	489	575	737	908
91	130	153	245	396	738	868	922
52	71	211	454	477	580	933	975
72	79	364	480	739	830	841	1001
30	78	316	329	543	577	740	971
206	283	313	417	525	586	661	863
48	236	306	448	681	896	900	936
85	90	130	179	204	741	836	940
40	41	99	243	300	742	875	952
199	515	590	743	871	879	936	973
258	400	494	515	555	744	933	983
121	201	252	269	412	506	745	922
52	81	364	393	462	743	956	981
146	186	414	557	746	886	902	989
151	219	457	525	747	815	837	878
84	191	203	347	395	530	741	826
33	101	364	397	424	523	748	898
118	288	313	327	400	418	749	819
119	184	215	335	388	391	459	750
88	89	107	721	814	851	995	997
128	130	498	591	751	837	960	987
84	164	188	244	293	499	582	737
99	119	267	483	752	852	998	1007
476	753	848	859	903	966	974	976
75	89	147	339	754	848	863	870
23	52	325	398	428	522	755	1000
37	52	252	348	362	756	875	984
93	118	196	233	287	420	476	757
125	241	313	361	758	829	969	979
233	239	308	398	523	590	733	972
316	432	525	555	565	759	884	962
246	261	263	333	351	369	498	677
244	325	352	514	591	728	838	900
118	332	336	429	760	837	840	981
118	198	205	276	465	761	844	997
76	93	130	137	298	805	843	949
7	90	153	404	533	762	837	976

98	101	244	264	476	763	931	1001
68	99	218	235	428	573	764	970
144	266	555	698	876	900	953	1001
118	141	237	245	316	320	765	913
279	323	388	499	503	507	543	766
96	121	259	276	374	376	691	933
25	48	99	350	395	479	767	966
61	76	152	457	522	558	768	845
125	148	212	290	534	596	749	827
18	105	187	517	555	754	827	949
1	235	264	411	554	588	902	925
106	141	149	200	770	828	935	1001
85	125	219	229	501	763	844	990
7	235	344	359	560	771	825	863
109	164	170	491	508	510	744	935
11	94	201	202	545	547	550	844
19	25	52	111	275	459	464	772
25	112	327	388	470	569	694	836
83	99	113	157	184	325	738	891
47	114	173	300	311	325	773	833
43	76	365	590	730	850	880	965
18	47	116	196	316	409	474	746
246	304	525	554	691	713	846	899
363	371	543	774	889	891	935	936
8	73	107	138	168	255	347	657
212	233	313	599	775	830	847	862
7	232	282	316	380	589	600	776
7	25	121	356	601	768	888	996
80	239	255	276	282	375	775	987
313	326	523	538	602	777	848	991
25	186	477	516	583	603	778	904
75	170	276	349	393	499	779	858
52	123	338	385	557	604	705	830
125	378	382	554	579	780	851	935
78	126	379	397	605	720	933	976
54	78	173	224	431	439	507	678
92	362	606	707	828	893	965	989
24	54	246	411	464	597	646	983
35	129	519	543	607	733	812	837
42	136	364	451	541	608	727	850
19	156	326	484	609	707	863	943
7	47	203	510	781	849	904	1004
74	78	186	444	505	553	813	998
206	411	445	481	562	610	652	843
7	173	202	223	256	576	611	774

```
494
                            520
18
      60
           134
                282
                                 669
                                        900
177
     223
           241
                276
                      783
                            890
                                 935
                                        984
     145
           244
                255
                      477
                            784
                                 806
135
                                        849
231
     235
           388
                612
                      683
                            831
                                 915
                                       1001
18
     118
           427
                450
                      613
                            763
                                 888
                                       1006
     212
           245
                277
                      390
53
                            414
                                 785
                                        921
     173
           327
                424
                      581
                            652
139
                                 850
                                        913
87
     165
           295
                320
                      399
                            411
                                 786
                                        814
35
      52
           82
                 144
                      222
                            392
                                 787
                                        827
                                              989
 7
                      537
                            732
                                 828
      50
           142
                174
                                        883
47
     138
           143
                247
                      295
                            525
                                 772
                                        965
256
     257
                      772
                            815
                                 900
           411
                614
                                        981
51
     186
           316
                394
                      467
                            615
                                 788
                                        824
25
      36
           245
                            593
                555
                      556
                                 670
                                        757
     392
                      789
18
           449
                616
                            863
                                 934
                                        940
62
     141
           263
                364
                      477
                            546
                                 553
                                        685
24
     362
           384
                386
                      400
                            611
                                 790
                                        930
           555
166
     174
                617
                      762
                            816
                                 846
                                        981
223
     252
           255
                498
                      616
                            759
                                 920
                                       1005
58
     282
           327
                            780
                460
                      618
                                 954
                                       1006
22
      41
           337
                498
                      645
                            897
                                 972
                                        976
 7
           244
                      401
                            767
                                 842
      60
                364
                                       1000
47
     175
           199
                362
                      373
                            402
                                 619
                                        693
41
      57
           296
                370
                      477
                            523
                                 620
                                        783
48
           362
                614
                      712
                            850
                                 924
     337
                                       1004
121
                      403
                            522
                                 595
     154
           156
                164
                                        771
     199
           244
                572
                      779
                            834
                                 909
174
                                        959
155
     163
           423
                615
                      706
                            900
                                 969
                                        989
56
     121
           173
                242
                      467
                            480
                                 787
                                        931
81
     121
           122
                338
                      621
                            704
                                 836
                                        930
     259
           436
                491
                      676
58
                            845
                                 930
                                        941
124
     219
           590
                602
                      791
                            875
                                 882
                                        924
162
     177
           218
                244
                      498
                            586
                                        872
                                 787
47
     233
           437
                473
                            622
                                 716
                      567
                                        997
     442
           446
                494
                      740
                            911
                                 976
173
                                        989
52
     209
           224
                266
                      566
                            590
                                 760
                                       1007
78
     121
           161
                336
                      364
                            407
                                 620
                                        792
107
     177
           205
                522
                      530
                            793
                                 936
                                        942
36
     223
           265
                270
                      373
                            400
                                 536
                                        794
76
      97
           212
                524
                      609
                            795
                                 935
                                        938
68
     212
           254
                336
                      434
                            476
                                        796
                                 513
58
           328
                      587
                            797
     316
                526
                                 863
                                        972
25
      98
           141
                223
                      224
                            455
                                 623
                                        798
338
     477
           555
                596
                      606
                            799
                                 883
                                        960
 5
     219
           313
                317
                      424
                            491
                                 796
                                        891
```

```
27
     162
           184
                411
                      519
                            523
                                 781
                                        948
58
     114
           313
                357
                      481
                            624
                                 735
                                        823
19
      35
           103
                            223
                                 625
                                        767
                 158
                      174
                                              902
110
     173
           200
                450
                      764
                            875
                                 997
77
     411
           626
                793
                      818
                            841
                                 933
                                        978
24
     195
           233
                      295
                            366
                284
                                 431
                                        800
125
     153
                627
                      750
                            820
                                 828
           414
                                        833
           263
51
     164
                338
                      365
                            710
                                 906
                                        911
76
     236
           474
                626
                      745
                            814
                                 853
                                       1006
169
     173
           541
                591
                      628
                            768
                                 969
                                        988
52
     285
           408
                582
                      600
                            748
                                 848
                                        998
79
     302
           304
                310
                      467
                            773
                                 845
                                        848
196
     203
           297
                400
                      801
                            828
                                 858
                                        905
     130
                499
                      623
                            710
61
           146
                                 961
                                        976
24
                      532
                            629
      77
           199
                478
                                 709
                                        855
30
     246
           384
                385
                      481
                            571
                                 630
                                        671
118
     222
           322
                354
                      364
                            385
                                 442
                                        778
     152
                      682
65
           170
                295
                            808
                                 848
                                        986
      99
           187
                313
                      382
                            578
                                 797
                                        989
16
     124
           152
                      353
                            385
 0
                174
                                 554
                                        759
           316
46
     201
                451
                      610
                            768
                                 828
                                        967
     201
           255
                358
                      529
                            631
                                 748
176
                                        850
25
      75
           76
                 148
                      176
                            244
                                 271
                                        669
45
     323
           411
                516
                      522
                            711
                                 976
                                        992
65
     224
           263
                478
                      570
                            632
                                 780
                                        861
171
     233
           244
                291
                      489
                            522
                                 633
                                        699
           125
                      254
     123
                232
                            433
41
                                 481
                                        680
186
     295
           424
                453
                      563
                            634
                                 802
                                        826
311
     368
           388
                411
                      567
                            756
                                 934
                                        967
76
     180
           203
                219
                      251
                            534
                                 567
                                        731
24
                            824
      89
           418
                613
                      702
                                 947
                                        981
184
     286
           300
                332
                      349
                            659
                                 848
                                        969
182
     325
           347
                373
                      635
                            666
                                 827
                                        978
39
      83
                      245
           170
                174
                            374
                                 587
                                        784
                271
     234
           235
                      463
                            788
                                 875
139
                                        969
78
     160
           245
                298
                      708
                            837
                                 901
                                        911
59
     255
           424
                440
                      801
                            863
                                 881
                                        975
68
     492
           556
                636
                      803
                            824
                                 912
                                        922
185
     345
           411
                            778
                590
                      637
                                 845
                                        943
18
      53
           64
                 99
                      112
                            590
                                 804
                                        993
91
     201
           394
                476
                      495
                            591
                                 781
                                        845
233
     245
                                 814
           314
                478
                      638
                            747
                                        881
41
     119
           191
                258
                      265
                            514
                                 779
                                        814
47
      82
           122
                155
                      235
                            541
                                 597
                                        695
 4
      11
           173
                355
                      400
                           799
                                 826
                                        956
```

```
325
24
           335
                802
                      837
                            864
                                 880
                                        992
28
     199
           282
                 331
                      404
                            476
                                 800
                                        823
     101
           108
                 199
                      333
                            339
                                 900
35
                                        954
44
      63
           252
                 354
                      499
                            525
                                  765
                                        936
99
     165
           424
                 522
                      639
                            760
                                  930
                                        963
           554
                562
                      802
                            895
66
     466
                                 981
                                       1006
233
     499
           540
                      625
                            796
                                 826
                568
                                        828
190
     199
           286
                 359
                      414
                            605
                                  791
                                        912
132
     179
           244
                 345
                      424
                            706
                                 819
                                        843
           219
                295
172
     199
                      559
                            640
                                 689
                                        843
30
     158
           305
                555
                      619
                            686
                                 875
                                       1006
47
      48
                      280
           159
                 192
                            806
                                  843
                                        935
245
     361
           546
                 640
                      717
                            825
                                 933
      71
                 288
                      522
                            567
35
           115
                                 807
                                        848
     245
                532
173
           347
                      705
                            714
                                 932
                                        940
 7
      11
            41
                 366
                      631
                            714
                                 726
                                        894
11
     177
           295
                477
                      617
                            687
                                 887
                                        926
     212
                                 821
35
           364
                411
                      535
                            708
                                        899
                                              940
60
     201
           330
                595
                      688
                            907
                                 912
                                       1006
           236
                 347
                      483
                            585
                                 623
41
     164
                                        789
56
      99
           102
                245
                      260
                            338
                                 524
                                        728
     448
           547
                555
                      590
                            735
                                 839
119
                                        974
50
     164
           173
                 197
                      551
                            641
                                  775
                                        912
104
     236
           255
                 470
                      642
                            799
                                 845
                                        875
77
     108
           263
                353
                      362
                            541
                                  643
                                        937
239
     478
           541
                542
                            692
                      554
                                 961
                                        971
     362
           524
                            814
                                 892
201
                 644
                      701
                                        964
31
      99
           385
                 459
                      564
                            645
                                  766
                                        827
164
     463
           471
                512
                      545
                            644
                                 845
                                        900
11
      48
           222
                 299
                      611
                            751
                                 865
                                        933
89
     182
           303
                 400
                      423
                            808
                                  868
                                        976
173
     231
           262
                 282
                      345
                            385
                                  466
                                        665
276
     467
           809
                823
                      856
                            870
                                 955
                                        969
                 588
                            836
                                 841
135
     541
           567
                      646
                                        910
28
      89
           315
                 523
                      525
                            582
                                  616
                                        717
64
     187
           223
                 391
                      522
                            740
                                 806
                                        875
119
     174
           209
                 355
                      562
                            635
                                  716
                                        863
48
     160
           283
                 501
                      522
                            539
                                 810
                                        814
     270
                            690
                                  715
10
           364
                 463
                      554
                                        848
 7
     186
           208
                478
                      502
                            627
                                  700
                                        965
 6
      19
           239
                574
                      639
                            785
                                 850
                                        934
 9
     125
           242
                 365
                      755
                            843
                                 936
                                        998
78
     129
           149
                 362
                      525
                            646
                                  752
                                        826
                            426
     224
                      422
118
           246
                 290
                                  679
                                        968
11
      85
           107
                180
                      313
                            757
                                 879
                                        895
```

```
57
     113
           121
                260
                      411
                            414
                                 534
                                        809
19
     130
           172
                309
                      333
                            590
                                 617
                                        693
78
     319
           337
                400
                      743
                            847
                                 889
                                        922
68
     223
           382
                440
                      648
                            751
                                 843
                                        877
63
     163
           420
                462
                      522
                            541
                                 671
                                        828
           124
                367
                      478
                            552
58
     121
                                 569
                                        711
      70
           76
                      226
                            382
                                 476
11
                 104
                                        884
58
     210
           262
                342
                      476
                            739
                                 883
                                        912
35
           592
                618
                      789
                            857
                                 933
                                        981
     551
29
     121
           342
                498
                      608
                            804
                                 826
                                        935
41
     153
           223
                649
                      754
                            836
                                 942
                                        980
      38
                      295
                                 788
18
           106
                266
                            649
                                        936
219
     414
           451
                636
                      664
                            946
                                 981
                                       1003
78
     333
           467
                472
                      650
                            784
                                        893
                                 844
263
     509
           526
                628
                                 836
                      719
                            736
                                        933
58
      78
           302
                378
                      603
                            699
                                 827
                                        926
76
     110
           366
                523
                      537
                            673
                                 837
                                        879
                244
                      253
119
     203
           213
                            478
                                 628
                                        803
18
      52
           61
                 89
                      193
                            651
                                 750
                                        951
52
     233
           261
                298
                      316
                            373
                                 804
                                        945
219
     362
           527
                543
                      544
                            684
                                 782
                                        810
58
     246
           347
                371
                      419
                            612
                                 776
                                        931
300
     498
           554
                569
                      598
                            795
                                 844
                                        865
78
      88
           156
                255
                      396
                            554
                                 634
                                        787
           380
                541
                      734
                            863
                                 909
138
     181
                                        922
           282
                283
                      390
                                 719
                                        922
116
     164
                            651
                216
                            653
52
     124
                      498
                                 792
           188
                                        843
35
     325
           454
                462
                      478
                            654
                                 703
                                        869
121
     346
           385
                406
                      631
                            725
                                 844
                                        992
49
     107
           121
                217
                      235
                            655
                                 677
                                        999
     259
           316
                511
                      549
164
                            670
                                 953
                                        969
99
     125
           127
                437
                      806
                            837
                                 873
                                        919
189
     245
           263
                510
                      684
                            696
                                 887
                                       1006
                241
                      249
                            512
                                 798
48
     174
           186
                                        992
           338
198
     251
                388
                      587
                            655
                                 789
                                        989
31
     224
           313
                388
                      397
                            514
                                 689
                                       1003
11
     276
           397
                412
                      517
                            676
                                 837
                                        957
133
     357
           420
                424
                      554
                            565
                                 709
                                        922
17
      78
                      421
                                 785
           107
                184
                            548
                                        940
                      573
130
     316
           366
                497
                            640
                                 778
                                        989
24
     224
           316
                330
                            527
                                 656
                      410
                                        758
24
                            590
      35
           385
                451
                      548
                                 638
                                        662
                                              952
184
     199
           528
                630
                      798
                            845
                                 885
                                        999
62
      94
           170
                178
                      191
                            220
                                 255
                                        467
196
     276
           334
                388
                      561
                            720
                                 910
                                        998
```

```
823
11
     117
           246
                250
                      325
                            657
                                 745
24
      25
           87
                 220
                      432
                            635
                                 712
                                        875
99
     167
           400
                469
                      731
                            949
                                 988
                                       1006
     203
                            718
197
           481
                524
                      589
                                 886
                                        981
58
      99
           283
                285
                      310
                            497
                                 675
                                        934
           224
                601
                      804
                            823
                                 827
100
     130
                                        982
           347
                      439
                            562
                                 658
19
     194
                364
                                        781
 3
      76
           601
                726
                      900
                            976
                                 995
                                        999
73
     125
           130
                430
                      478
                            504
                                 511
                                        620
                372
                      637
48
      86
           290
                            785
                                 969
                                        998
364
     400
           459
                481
                      493
                            602
                                 698
                                        908
     300
                724
107
           615
                      827
                            862
                                 863
                                        898
228
     341
           464
                478
                      722
                            912
                                 935
                                        989
     356
           496
                      598
                            729
                                 828
19
                551
                                        922
                302
                      476
107
     154
           204
                            555
                                 644
                                        770
32
     164
           373
                414
                      592
                            675
                                 841
                                        918
10
     199
           309
                387
                      591
                            786
                                 934
                                        976
 4
                      597
                                 729
      17
           313
                554
                            619
                                       1001
 7
     109
           481
                499
                      654
                            800
                                 945
                                        997
214
     219
           236
                325
                      475
                            495
                                 792
                                        934
19
     373
           476
                594
                      633
                            766
                                 920
                                        936
 1
     282
           407
                452
                      826
                            836
                                 844
                                        884
25
     170
           333
                435
                      563
                            659
                                 736
                                        981
78
     395
           414
                438
                      703
                            829
                                 863
                                        931
     325
           337
                      388
                            627
                                 794
255
                360
                                        927
47
     252
           350
                621
                            848
                                 933
                      764
                                        938
     132
57
           447
                 522
                      543
                            650
                                 803
                                        850
25
                329
      74
           276
                      347
                            643
                                 738
                                        975
118
     162
           487
                521
                      648
                            766
                                 934
                                       1001
107
     212
           316
                326
                      622
                            812
                                 980
                                       1002
233
     263
           327
                 360
                            813
                      654
                                 837
                                        928
47
     238
           411
                499
                      660
                            689
                                 770
                                        985
 0
      35
           96
                 282
                      400
                            578
                                 786
                                        935
                                              966
99
     478
                            848
                                 897
           661
                776
                      817
                                        900
     184
           224
                347
                      366
                            387
                                 801
                                        817
161
86
     263
           269
                453
                      529
                            875
                                 888
                                        935
119
     460
           522
                554
                      614
                            746
                                 834
                                        915
89
     121
           137
                199
                      399
                            783
                                 827
                                        857
35
      76
           383
                499
                      658
                            817
                                 888
                                        930
201
     263
           288
                295
                      363
                            402
                                 805
                                        852
47
           207
                477
                      529
                            590
                                 599
                                        807
     150
           211
                303
19
     177
                      334
                            386
                                 481
                                        837
30
      48
           338
                554
                      662
                            722
                                 923
                                        979
                            673
120
     256
           338
                498
                      633
                                 841
                                        890
12
      52
           125
                203
                      289
                            630
                                 800
                                        852
```

```
124
67
           238
                388
                      416
                            477
                                 813
                                        922
100
     477
           499
                542
                      622
                            792
                                 931
                                        969
184
     369
           379
                424
                      481
                            505
                                 583
                                        811
125
     141
           312
                 388
                      637
                            697
                                  955
                                       1006
385
     423
           663
                 777
                      814
                            821
                                 933
                                        968
     142
                      186
140
           151
                 184
                            201
                                 560
                                        744
21
      35
           121
                      424
                            690
                                        823
                 362
                                 692
                                              985
           215
13
      77
                 282
                      424
                            625
                                 674
                                        998
186
     203
           421
                541
                      783
                            906
                                 915
                                        941
                 525
12
     245
           415
                      567
                            600
                                 808
68
     567
           657
                 790
                      864
                            866
                                 935
                                        976
61
     170
           203
                 340
                      477
                            605
                                  761
                                        903
61
     212
           240
                520
                      634
                            686
                                 843
                                        848
203
     227
           243
                 326
                      525
                            794
                                 814
                                        937
     235
           259
125
                 352
                      444
                            486
                                 687
                                        814
170
     441
           475
                 525
                      664
                            771
                                  891
                                        998
25
     192
           443
                 489
                      543
                            660
                                  695
                                        841
26
           250
                      875
      35
                 665
                            884
                                 891
                                        934
     126
           467
                475
                      555
                            807
                                 886
19
                                        999
     468
           477
                      734
348
                 607
                            843
                                 902
                                        912
48
     196
           282
                 307
                      666
                            764
                                 860
                                        934
58
     482
           590
                 679
                      828
                            892
                                 913
                                        975
235
     263
           385
                 551
                      593
                            758
                                 840
                                        951
21
     224
           405
                 414
                      518
                            555
                                 888
                                        909
     246
186
           272
                 366
                      639
                            770
                                 836
                                        867
      42
                 256
                      599
                            762
35
           164
                                  769
                                       1006
20
      68
           246
                 282
                      408
                            524
                                  656
                                        806
87
     127
           184
                 294
                      647
                            936
                                 946
                                       1001
19
     178
           195
                 338
                      527
                            664
                                  780
                                        814
297
     381
           385
                 656
                      790
                            845
                                 922
                                        966
235
     358
           492
                 603
                      777
                            836
                                  845
                                        852
183
     223
           245
                 561
                      610
                            739
                                 827
                                        919
                            713
     203
           382
                523
                      621
                                  798
19
                                        927
     219
           485
                      802
                            827
67
                 667
                                  930
                                       1001
     263
           281
                      401
                            486
18
                313
                                  650
                                        756
 2
     400
           467
                567
                      661
                            795
                                 850
                                        867
15
      47
           95
                 276
                      428
                            476
                                  638
                                        749
219
     281
           331
                 641
                      662
                            948
                                 989
                                        998
89
                 228
                      290
                            416
                                  797
     103
           119
                                        936
           239
25
     199
                 306
                      410
                            413
                                  481
                                        584
     159
           273
                 290
                      299
                            554
                                  791
58
                                        900
     377
316
           400
                 505
                      529
                            912
                                  964
                                        986
119
     169
           250
                 323
                      326
                            767
                                 827
                                        845
413
     414
           498
                 562
                      668
                            774
                                 845
                                        855
57
     255
           263
                583
                      624
                            867
                                 923
                                        981
```

58	223	240	362	528	723	803	929
125	295	577	663	807	841	872	909
5	52	53	201	246	248	496	765
131	212	295	567	629	799	981	990
125	186	499	524	668	747	958	993
199	463	641	737	841	905	916	1006
52	68	131	171	301	527	802	900
78	89	487	488	499	667	807	
68	193	295	478	480	505	782	850
1	263	276	413	488	800	934	965
212	222	246	581	584	666	803	1001
414	552	566	587	684	772	976	1001
11	30	435	541	575	771	827	947
105	118	373	424	742	839	876	935
87	218	351	467	724	922	976	977
24	26	203	424	663	689	919	974
174	185	282	801	824	848	896	950
35	48	83	89	191	321	694	944
424	469	478	533	777	790	918	936
68	289	292	414	489	786	936	956
75	484	498	523	564	567	796	878
7	162	467	742	814	861	932	973
22	244	567	626	727	811	875	989
214	222	279	338	347	467	682	921
203	319	344	430	793	843	850	1001
47	131	164	213	313	344	507	753
48	111	166	276	343	366	799	922
48	124	136	295	500	549	555	809
118	119	370	404	406	609	843	930
190	423	458	476	525	607	715	828
233	375	388	467		659	808	843
68	162	306	538	813	844	969	982
76	318	467	478	481	536	588	963
201	274	325	383	567	632	791	936
130	295	325	510	636	775	831	993
167	376	411	624	779	812	844	912
130	133	201	249	268	645	702	998
121	359	485	502	697	848	934	1000
41	277	524	669	769	850	884	989
27	58	170	173	217	269	336	544
44	69	224	510	642	773	837	912
48	184	278	361	367	604	794	912
18	347	476	570	576	696	914	959
39	248	523	541	690	793	852	934
68	134	186	255	459	618	704	859

```
221
          276
                          804
                               828
34
               338
                     753
                                     868
233
     266
          293
               362
                     521
                          583
                               612
                                     976
47
     343
          435
               478
                     812
                          836
                               875
                                     1005
                     501
11
     40
          216
               385
                          765
                               900
                                     919
19
     235
          272
               774
                     841
                          854
                               883
                                     957
     173
          233
               471
                     579
                          667
                               812
53
                                     841
     53
          170
               362
                     385
                          456
                               655
                                     801
46
     117
                                     915
68
          244
               575
                     590
                          795
                               873
19
     219
          332
               445
                     487
                          809
                               900
                                     966
          119
                               732
47
     115
               237
                     582
                          658
                                     922
210
     359
          543
               550
                     649
                          718
                               827
                                     976
76
     266
          468
                          700
                                     933
               554
                     608
                               907
199
     368
          660
               769
                     810
                          824
                               828
                                     933
     199
          212
                     522
                          606
                                776
                                     813
147
               449
68
     89
               232
                          588
                               853
                                     899
          118
                     403
203
     334
          411
               810
                     842
                          876
                               909
                                     969
100
     281
          467
               515
                     543
                          594
                               651
                                     828
          230
               653
                     723
                          828
                                836
                                     934
151
     168
18
     223
          235
               328
                     513
                          643
                                773
                                     909
12
     162
          233
               338
                     389
                          511
                               689
                                     912
157
     244
          417
               493
                     570
                          688
                               844
                                     935
11
     72
           87
               203
                     245
                          281
                               629
                                     985
143
     174
          212
               281
                     322
                          400
                               632
                                      741
25
     67
          201
               282
                     671
                          672
                                761
                                      830
41
     76
          324
               613
                     672
                          784
                               823
                                     912
7
     24
          273
               338
                          665
                                752
                                     909
                     360
11
     68
          133
               446
                     604
                          681
                               934
                                     939
                          455
69
     78
          124
               164
                     246
                               721
                                     874
32
     208
          653
               797
                     915
                          935
                               981
32
     156
          189
               347
                     424
                          499
                               788
                                     871
```

Acknowledgment

During my doctoral course period I have been constantly encouraged, supported and advised by several people: had it not been for them, I would have never made this thesis in shape. It turns to be a pleasant part that I have now the opportunity to express my gratitude to all of them.

I am deeply indebted to my supervisor, Prof. Marco Chiani, for offering me the study chance and the research environment, for supporting me, for continuously stimulating me with his instructions, and for allowing me to spend a research period in the United States, under the supervision of Prof. Marc Fossorier. I am grateful to Prof. Marc Fossorier for hosting me in his laboratory at the University of Hawai'i at Manoa and for always supporting me. I deeply appreciate his insightful ideas and his many hours spent with me discussing my research.

I wish to dedicate a special thank to my friends and former officemates Matteo Mazzotti, Gianluigi Liva and Andrea Giorgetti (we had a great time together) and to Prof. Davide Dardari for never denying me his precious suggestions any time I needed them. I also wish to thank all my labmates, colleagues and friends in Cesena, especially Enrico Maria Vitucci, Mirko Viroli, Matteo Lucchi, Stefano Severi, Paola Pulini, Alessandro Ricci, and all the people carrying out every day their working activity at the II Engineering Faculty of the University of Bologna. I also wish to thank all the friends I have in Fano, my town (and here the list would be really too long).

I will never forget the kindness of people living in Hawai'i, especially Bruse Eckmann (without his daily help I'd never had such a great time in Hawai'i), Louise Marie Giuseffi, Eric Moennich, and all the people and Ph.D. students (Yige Wang, Wenyi Jin, Zigui Yang) I have met at the EE Department of the UH.

Finally, I would like to express boundless thanks to my wife Manuela, whose love and infinite patience enabled this work, to my parents Fausto and Carla, my brother Fabio and my sisters Letizia and Silvia, for their encouragement in getting a doctoral degree.

Vedi, in questi silenzi in cui le cose
s'abbandonano e sembrano vicine
a tradire il loro ultimo segreto,
talora ci si aspetta
di scoprire uno sbaglio di Natura,
il punto morto del mondo, l'anello che non tiene,
il filo da disbrogliare che finalmente ci metta
nel mezzo di una verità.
Lo sguardo fruga d'intorno,
la mente indaga accorda disunisce
nel profumo che dilaga
quando il giorno piú languisce.
Sono i silenzi in cui si vede
in ogni ombra umana che si allontana
qualche disturbata Divinità.

E. Montale, *I limoni*