
Università degli Studi di Bologna

FACOLTÀ DI INGEGNERIA

Dottorato di Ricerca in Ingegneria Elettronica,
Informatica e delle Telecomunicazioni

XIX Ciclo

ING-INF/01

Software Tools for Embedded

Reconfigurable Processors

Tesi di Dottorato di Relatore

Claudio Mucci Chiar. mo Prof. Roberto Guerrieri

Coordinatore

Chiar. mo Prof. Paolo Bassi

Anno Accademico 2005-2006

Keywords:

Reconfigurable architectures

Programming environment

Application Development

HW/SW Co-Design

Digital Signal Processing

Contents

1 Introduction 1

2 Reconfigurable computing overview 9

2.1 Instruction set metamorphosis 9

2.2 Coarse-grained reconfigurable computing 13

2.3 XiRisc reconfigurable processor 20

2.4 DREAM adaptive reconfigurable DSP 25

2.4.1 PiCoGA-III architecture 27

3 Programming tools for reconfigurable processors 31

3.1 Motivations . 31

3.2 Algorithm development on reconfigurable

processors (programming issues) 35

3.3 Instruction set extension implementation on a standard com-

pilation tool-chain . 38

3.4 Bridging the gap from hardware to software through C-

described Data Flow Graphs 42

3.5 Overview of programming tools for reconfigurable processors 46

3.6 Griffy project overview . 50

4 Mapping DFG on reconfigurable devices 57

4.1 ILP exploitation through pipelined DFG and Petri Nets . . . 57

4.2 Instruction scheduling: optimized DFG for pipelined com-

putation . 65

4.2.1 Scheduling of direct acyclic graphs 65

i

ii CONTENTS

4.2.2 Scheduling of data flow graphs 67

4.2.3 Execution-time pipeline management 71

4.2.4 Griffy Front-End architecture 74

4.3 Target-specific customizations and back-end flows 76

4.3.1 DFG mapping for PiCoGA 77

4.3.2 DFG mapping for eFPGA 79

5 Simulation of dynamically reconfigurable processors 85

5.1 Functional simulation . 87

5.1.1 Functional emulation 87

5.1.2 Reconfigurable devices management via virtual target 90

5.2 Instruction set extension through dynamic libraries 92

5.2.1 Cycle-accurate simulation model 96

5.2.2 Simulation speed analysis 100

6 Application development on reconfigurable processors 105

6.1 Reconfigurable software development time: hardware and

software approaches . 111

6.2 Example of application mapping 116

6.2.1 MPEG-2 motion compensation on the XiRisc processor116

6.2.2 AES/Rijndael implementation on the DREAM adap-

tive DSP . 133

6.2.3 Low-complexity transform for H.264 video encoding 146

6.2.4 H.264 intra prediction with Hadamard transform for

4x4 blocks . 162

7 Performance and development time trade-offs 173

8 Conclusions 187

A Griffy-C syntax 191

A.1 Overview . 192

A.1.1 Standard Operators . 199

A.1.2 Arithmetical Operators 199

A.1.3 Bitwise Logical Operators 200

CONTENTS iii

A.1.4 Direct Assignment . 203

A.1.5 Shift Operators . 203

A.1.6 Comparison Operators 204

A.1.7 Conditional Assignment 208

A.1.8 Advanced Operators 210

A.1.9 Concatenate operator (#) 210

A.1.10 LUT operator (@) . 211

A.1.11 Built-in function as hard-macros 213

iv CONTENTS

List of Figures

1.1 Computational requirements vs. Moore’s law and battery

storage . 2

1.2 Factors considered most important in choosing a micropro-

cessor (source: J.Turley, “Survey says: software tools more im-

portant than chips”, Nov. 2005, www.embedded.com) 5

1.3 Performance vs. Development Time in a commercial DSP

(source: “EFR (Enhanced Full-Rate) vocoder on Dual-MAC ST122

DSP” STMicroelectronics online, www.stm.com) 7

2.1 PRISC Architecture overview 10

2.2 OneChip architecture . 11

2.3 Garp architecture . 12

2.4 XiRisc reconfigurable processor architecture 13

2.5 Molen architecture . 14

2.6 FPGA integration density (source: R. Hartenstein “Why we

need reconfigurable computing education”) 15

2.7 MorphoSys architecture . 16

2.8 PACT XPP architecture . 17

2.9 CHESS architecture and its hexagonal topology 18

2.10 Detailed XiRisc reconfigurable processor architecture 20

2.11 Pipelined Configurable Gate Array (PiCoGA) ver. 1.0 21

2.12 PiCoGA Reconfigurable Logic Cell (RLC) 22

2.13 Simplified DREAM architecture 25

2.14 Programmable address generator schema 26

2.15 Simplified PiCoGA-III Reconfigurable Logic Cell (RLC) . . . 29

v

vi LIST OF FIGURES

3.1 Performance vs. Time-to-develop design space 34

3.2 Basic software tool-chain extension to support reconfigura-

bility issues . 41

3.3 Examples of control and data flow graphs 43

3.4 Griffy Algorithm Development Environment 51

3.5 DFG Description . 52

3.6 Example of optimization of routing-only operators 53

3.7 Griffy-C Debugging and Validation Environment 55

4.1 Computation paradigm relaxation preserving the data de-

pendencies . 60

4.2 DFG and the corresponding Petri Net representation 62

4.3 Petri Net transition firing . 63

4.4 DAG scheduling pseudo-code (with routing only optimiza-

tion) . 66

4.5 Example of ALAP correction for static variables 69

4.6 Simplified DFG scheduling algorithm 70

4.7 Candidates analysis algorithm 72

4.8 Pipeline stage controller simplified architecture 73

4.9 P-block and S-block simplified architecture 73

4.10 Simplified Griffy Front-End architecture 75

4.11 Simplified Griffy flow for PiCoGA-III 76

4.12 PiCoGA-III control unit programmable interconnect 78

4.13 XiSystem SoC architecture . 80

4.14 Overall software tool-chain 81

4.15 XiSystem MPEG2 decoder performance 84

5.1 Griffy code viewer . 89

5.2 Simplified XiRisc simulation structure 94

5.3 An example of pipeline evolution 97

6.1 Case study: saturating MAC for low bit-rate audio com-

pression . 106

6.2 Case study: Griffy-C code for saturating arithmetic 107

LIST OF FIGURES vii

6.3 Case study: software pipelining across processor and PiCoGA108

6.4 Variation of %speed-up wrt �� and �� 113

6.5 Variation of speed-up wrt #optimized kernel and local speed-

up �� . 114

6.6 Motion estimation . 116

6.7 Search path . 119

6.8 Absolute Difference (AD) DFG 120

6.9 Concurrent 4-pixel Sum of Absolute Differences 120

6.10 Memory layout . 121

6.11 Enhanced search path . 123

6.12 Concurrent 4-blocks SAD . 124

6.13 Unfolded SAD function based on sad4blk 126

6.14 sad4blk DFG . 127

6.15 sad4blk Place & Route . 128

6.16 Full-Search workload vs. search window side 131

6.17 Common AES-Round block diagram 137

6.18 Inverse multiplicative on composite fields schemes 139

6.19 AES/Rijndael selected kernel and implementation 140

6.20 Speed-ups wrt RISC processor 142

6.21 Throughput vs. interleaving factor 144

6.22 Fast implementation of the 1-D H.264 transform 151

6.23 Fully-unfolded bi-dimensional transform diagram 152

6.24 Partially unfolded 4x4 DCT schema 153

6.25 sub4x4dct rows occupation 154

6.26 Modified sub4x4dct for area optimization 155

6.27 Fully-unfolded inverse 4x4-IDCT basic diagram 156

6.28 Partially-unfolded inverse 4x4-IDCT basic diagram 157

6.29 Modified clipping function structure 157

6.30 Speed-up figure with respect to a RISC processor working

at the same frequency . 160

6.31 Throughput achieved with respect to interleaving factor . . 160

6.32 Energy efficiency with respect to interleaving factor 161

6.33 Intra prediction modes for 4x4 luma block 162

viii LIST OF FIGURES

6.34 PiCoGA SAD structure . 164

6.35 DCT and Hadamard transform 165

6.36 1-D Hadamard transform butterfly schema 166

6.37 Fully unfolded 4x4 SATD data flow graph 167

6.38 Partially folded 4x4 SATD block diagram 167

6.39 Shifter register structure used for the matrix transposition . 168

6.40 Optimized SATD mapping . 169

6.41 4x4 SAD and SATD speed-up figures with respect to the in-

terleaving factor . 170

6.42 4x4 SAD and SATD throughput with respect to the inter-

leaving factor . 170

6.43 4x4 SAD and SATD energy efficiency with respect to the

interleaving factor . 171

7.1 Application development trade-off 177

7.2 Development Time vs Speed-Up percentage 177

7.3 Distribution of speed-up with respect to development time . 178

7.4 XiRisc vs DSP Development Time/Speed-Up analysis 181

7.5 DREAM speed-up . 182

7.6 DREAM throughput . 183

7.7 DREAM energy efficiency . 184

A.1 Multiple entry-point Griffy flow 193

A.2 Concatenate operator . 210

A.3 Multiplier chunk . 214

List of Tables

4.1 PiCoGA vs. eFPGA computational efficiency comparison . . 82

4.2 Area occupation and working frequency of circuits mapped

on the eFPGA . 83

5.1 Simulation results (without PiCoGA) 101

5.2 Simulation results (with PiCoGA) 102

6.1 MPEG-2 computation-aware analysis 117

6.2 Test-sequence features . 130

6.3 Performances . 131

6.4 MPEG-2: final results . 132

6.5 AES/Rijndael encoder performance 141

6.6 AES-128 encryption comparisons 145

6.7 sub4x4dct . 154

6.8 sub4x4dct . 155

6.9 F4x4idct and add4x4 . 158

6.10 4x4 Sum of Absolute Differences (SAD) 163

6.11 4x4 SATD static performance 168

7.1 Experimental results on application development 175

7.2 XiRisc vs. TI TMS320C6713 Performance Comparison 179

7.3 XiRisc vs. TI TMS320C6713 Performance Comparison 180

A.1 Griffy operators . 194

A.2 Typologies of LUTs supported 211

ix

x LIST OF TABLES

Chapter 1

Introduction

Flexible computational platforms are one of the most important need of

the modern electronic marketplace. The growth of non-recurring engi-

neering costs (NREs) coupled with the need of shorter time-to-market im-

pose to look forward, toward flexible solutions. The added capability to

update directly on the field or to provide on-the-fly new functionalities

makes appealing devices which can both reduce re-design costs and in-

crease the product lifetime. As an example, flexible platforms allow to

change the supported standards for telecommunication devices, as cell-

phones or wireless router, or to build new products when the standard is

not well defined, or in the status of draft, in order to match the optimal

time-to-market. Furthermore, market convergence toward devices inte-

grating multiple and heterogeneous applications is one of the most impor-

tant challenge for the consumer electronic scenario. As an example, each

smartphone, today, includes office applications, video capabilities, and

can work with different wireless communication standards (GSM, UMTS,

WiFi and maybe WiMax).

Processor-based embedded systems are becoming wide spread and the

term flexibility was often coupled with the presence of a processor and

its software programming environment. But, the huge increase of the

portable-device market puts pressure on application designers who need

to combine computational power, flexibility and limited energy consump-

tion. Modern embedded applications such as wireless communication

1

2 Introduction

19
92

19
96

20
00

20
04

19
80

19
84

19
88

Shannon
Law

Moore’s
Law

Battery
capacity

20
08

per Second
Operations

20
12

time

Figure 1.1: Computational requirements vs. Moore’s law and battery storage

and portable multimedia require computational power to grow faster than

Moore’s law and much faster than the energy provided by the batteries for

a given application [1], as shown in Fig. 1.1.

In this context and specially for portable low-power applications, de-

signers cannot use the leverage of frequency scaling if they want to meet

the performance requirements imposed by quality of service and real-time

constraints. The exploitation of instruction level parallelism in many digi-

tal signal processors (DSPs) and/or VLIW (Very Long Instruction Word) or

superscalar processors for embedded applications is an attempt to tackle

the performance gap but usually fails to reduce the energy consumption.

Many digital signal processing algorithms require sub-word (e.g. few bits)

computations which under-use the common 32-bit datapath of a standard

processor [2]. Hence many DSPs provide vectorized processing capabili-

ties, augmenting the instruction set with Single Instruction Multiple Data

(SIMD) instructions (like the Intel MMX). On the other hand, micropro-

cessors, whether general-purpose processors or DSPs, remain the most

3

reusable block in modern systems-on-chips (SoC) and the high-level lan-

guages used for programming them are well-known skills among embedded-

application developers.

A new processor-based computation paradigm, namely “adaptive com-

puting”, appeared in the early 90s as a promising way to bridge the gap

between general purpose microprocessors and application specific inte-

grated circuits (ASICs), in order to support new applications which were

both computational intensive and energy hungry. The most appealing

idea was to add application specific hardware accelerators in a standard

processor architecture (typically a RISC processor) to improve performance

on application critical hot-spots, while letting the processor handle the

control parts.

It should also be noted that, given a technology node, the area re-

quired for a new processor architecture increase by a factor that is greater

than the achieved performance improvements. This means that the tra-

ditional computing paradigm offered by processors itself loses in com-

putational efficiency (operations per second per mm�), thus causing an

undeniable crisis of standard and well-known devices. State of the art

system-on-chips for mobile applications, like ST Nomadik, Philips Nexpe-

ria, TI OPAM and Intel PXA, meet performance requirements and power

efficiency using the processor (usually an ARM9 core) as a supervisor (for

example, the operating system runs on the processor), while the compu-

tational intensive parts are commonly demanded to application-specific

hardware accelerators. From an engineering point of view, in this way,

the effort of accelerating an application focuses on a few computational

intensive kernels, thus reducing the time-to-develop.

A wide scenario of adaptive computing approaches has been presented

in the literature. We can distinguish among three different approaches:

� Application-Specific Standard Processors (ASSP), which are processors

featuring a customized instruction set targeting a given application.

Application specific instructions include, for example, the simple

multiply-and-accumulate operation in DSPs or the Sum of Absolute

4 Introduction

Differences (SAD) used in video encoding motion compensation en-

gines [3].

� Configurable processors, which enable SoC designers to rapidly extend

a base processor for specific application tasks (e.g. adding custom-

tailored execution units, registers, register files and communication

mechanisms at the register transfer level (RTL)), thus providing a

faster and easier way to build an ASSP [4, 5, 6].

� (Dynamically) Reconfigurable processors, which are able to customize

the instruction set at execution time by coupling a standard proces-

sor core with a run-time programmable device, such as a Field Pro-

grammable Gate-Array (FPGA) [30, 10].

While in both ASSPs and configurable processors the instruction set

extension is defined at the mask level, thus limiting the device in term

of both flexibility and application field, dynamically reconfigurable archi-

tectures allow the end-user to meet the requirements of a wide range of

applications. Consequently, dynamically reconfigurable architectures are

also suitable for use in low volume products as well, since they do not

suffer from non-recurring design costs. Furthermore, run-time reconfig-

urability (also known as on-line reconfigurability) allows one to update

the device frequently, thus increasing its lifespan.

In the field of run-time programmable machines, reconfigurable pro-

cessors form a natural extension to the widely used DSPs or microcon-

trollers for embedded applications, providing a third trade-off point, in

addition to general purpose architectures and dedicated hardware acceler-

ators. However, reconfigurable processors alter the boundary between tra-

ditional hardware and software programming, requiring inevitable changes

in the programmers’ approach and the definition of new design patterns

[29]. Algorithm development on reconfigurable processors requires ex-

pertise in both hardware and software programming flows and this may

prove an obstacle for a community of developers long used to C-based

algorithm implementations.

5

Software tools
Perform ance

Price
Operating system s

Hardware tools
Available software

Peripherals
Power Consum ption
Supplier reputation

Future roadm ap
Fam iliarity

Debug support
Popularity

Available as IP

0% 40% 60% 80%20%

Figure 1.2: Factors considered most important in choosing a microprocessor

(source: J.Turley, “Survey says: software tools more important than chips”,

Nov. 2005, www.embedded.com)

According to a survey on embedded development in the telecommuni-

cations, automotive, consumer, wireless, defence, industrial, and automa-

tion sectors, software tools are considered the most important factor in

choosing a microprocessor (see Fig. 1.2). Of course, if we analyze spe-

cific sectors, specific parameters such as power consumption for portable

devices increase in importance. Nevertheless, for programmers software

tools are “the things they touch”, the interface with the processor. In the

case of reconfigurable processors the importance of software tools grows

because of the hybrid nature of these architectures. This is the reason why

the lack of user-friendly tools and flows for exploring and implementing

the hardware and software portions of an algorithm has caused so much

difficulty when developing an application in such architectures [8].

Although not well suited to capture all the parallelism of an applica-

tion [9], the fact that knowledge of the ANSI-C programming language is

widespread among embedded systems and DSPs programmers suggests

one should also use it as the application description language for reconfig-

urable processors. This introduces the problem of translating behavioral

6 Introduction

C into some form of HDL description, or directly into hardware (i.e. con-

figuration bits for a run-time programmable device). Unfortunately, these

abstraction layers hide many implementation choices from the designer,

often making it difficult to obtain high-quality results even with a deep

understanding of the tools and the underlying architecture. Despite this,

for a wide spectrum of application fields, and thus for a large part of ap-

plication developers, the availability of a fast and easy way to improve

system performance has an impact on the time-to-market, increasing the

return on investments. Many reconfigurable processors described in the

literature, as well as many start-ups, propose C-based design frameworks

in order to cut long-time implementation cycles and/or to reduce the skill

gaps for reconfigurable architecture development.

In this thesis will be described a C-based algorithm development en-

vironment for reconfigurable processors. It has been successfully applied

to the XiRisc reconfigurable processor, coupling a RISC core to a custom-

designed mid-grain reconfigurable datapath. It has been also realized

a prototype providing the HDL code required to a RISC processor en-

hanced with a standard embedded FPGA. A C-based configuration flow

enables even unexperienced users to efficiently develop algorithms on the

reconfigurable processor. Performance improvements of 2-3� can be ob-

tained in 1-2 days of work, without requiring hardware design expertise

or awareness of the underlying architecture. Of course, experienced users

can achieve far better results, through manual optimizations, just as DSP

programmers may optimize at the assembly level so as to obtain the opti-

mal performance. As an example, Fig. 1.3 shows a case-study addressing

the relation between development time and performance in the case of

a commercial DSP featuring a specific instruction set extension for audio

coding applications. Near-optimal performance can be achieved by focus-

ing the implementation effort (mainly spent working with built-in func-

tions, loop restructuring and assembly-level optimization) on less than

25% of the code lines.

Most existing reconfigurable architectures use automatic or semiau-

tomatic C-to-HDL conversion tools to plug into standard synthesis and

7

Cycle Count
M cycle/s

16.9

12.5

10.5

9.5

1 week

1 M onth 4 M onths >1 Year

W orkload

ETSI C M odel
“Out-of-the-box”

Optimized
C source

75% C source
25% ASM source

100%
ASM Optimized

Close to optimum performance with
Limited effort and easy maintainability

Figure 1.3: Performance vs. Development Time in a commercial DSP (source:

“EFR (Enhanced Full-Rate) vocoder on Dual-MAC ST122 DSP” STMicro-

electronics online, www.stm.com)

Place & Route techniques for configuring the hardware accelerator. The

approach proposed in this thesis targets application fields where trading

some of the performance speed-up for a higher level of programmability

is important. A key contribution of this thesis is that it shows quantita-

tively how much performance one can gain by spending additional time

finely optimizing an implementation without ever leaving the purely C-

based design environment. It will be shown that knowledge of hardware

description languages and hardware design techniques is not required for

effective exploitation of a dynamically reconfigurable architecture, espe-

cially if the latter has been designed from the beginning to accommodate

an efficient software-oriented design flow.

8 Introduction

Chapter 2

Reconfigurable computing

overview

2.1 Instruction set metamorphosis

On 22 May 1999, The Economist (vol. 351, no. 8120, p. 89) reported the

following:

“In 1960 Gerald Estrin, a computer scientist at the University of Califor-

nia, Los Angeles, proposed the idea of a fixed plus variable structure com-

puter. It would consist of a standard processor, augmented by an array

of reconfigurable hardware, the behavior of which could be controlled

by the main processor. The reconfigurable hardware could be set up to

perform a specific task, such as image processing or pattern matching,

as quickly as a dedicated piece of hardware. Once the task was done,

the hardware could be rejigged to do something else. The result ought

to be a hybrid computer combining the flexibility of software with the

speed of hardware. Although Dr. Estrin built a demonstration machine,

his idea failed to catch on. Instead, microprocessors proved to be cheap

and powerful enough to do things on their own, without any need for

reconfigurable hardware. But recently Dr. Estrin’s idea has seen some-

thing of a renaissance. The first-ever hybrid microprocessor, combining a

conventional processor with reconfigurable circuitry in a single chip, was

launched last month. Several firms are now competing to build recon-

9

10 Reconfigurable computing overview

figurable chips for use in devices as varied as telephone exchanges, tele-

visions and mobile telephones. And the market for them is expected to

grow rapidly. Jordan Selburn, an analyst at Gartner Group (an American

information-technology consultancy), believes that annual sales of recon-

figurable chips will increase to a value of around $50 billion in 10 years

time. (The Economist: Reconfigurable Systems Undergo Revival)”.

Thanks to the evolution of microelectronics and the enhancement of

Field Programmable Gate Array, after 30 years from the Estrin’s idea, in

1993, Athenas and Silverman formalized the concept of instruction set

metamorphosis or adaptive instruction set proposing the PRISM archi-

tecture [16]. Coupling a RISC processor with a Xilinx FPGA the authors

realized the first relevant prototype of reconfigurable processor. For the

embedded world, the first significant example of processor including run-

time programmable hardware in the same chip is probably the PRogram-

mable Instruction Set Computer (PRISC) [17] proposed by Razdan and

Smit one year after.

Result Operand Bus

Source Operand Buses

PFUFU2FU1

Register

Logic

File

Bypass
and

PFU: Programmable Functional Unit
FU: Functional Unit

(a) PRISC

LUT LUT LUT LUT

LUT LUT LUT LUT

Outputs to result bus

Inputs from operand buses

(b) Programmable FU

Figure 2.1: PRISC Architecture overview

As shown in Fig. 2.1, the PRISC architecture defines a straightfor-

ward and efficient way to exchange data with the programmable hard-

ware adopting a schema in which the programmable hardware was em-

bedded in the processor pipeline as the other functional units (Arithmetic

Logic Unit, multiplier,. . .). The Programmable Functional Unit (PFU) has

2.1 Instruction set metamorphosis 11

PFU2

BFU

PFU1

M
U

X
M

U
X

M
U

X

ID EX MEM

Opcode
Instr.

RD_EXMEM
RD_MEMWB

Forwarding
unit

Signals required for
dependency check

to WB

RData2

RData1

Figure 2.2: OneChip architecture

been designed as a combinatorial matrix of Look-Up Tables (LUTs) inter-

connected via programmable wires like in FPGA technology. Combinato-

rial paths limited both the frequency and the size of the PFU. Following

an analogue schema, Wittig and Chow proposed the OneChip architecture

[18], improving the PRISC proposal with the capability of implementing

sequential logic and Finite State Machine (FSM).

One of the most important milestones of reconfigurable computing is

the Garp processor [19], developed at the University of California, Berke-

ley. Garp couples a MIPS processor with a FPGA-like reconfigurable de-

vice organized as a datapath (see Fig. 2.3). As for the second release of

OneChip, the Garp architecture provides the reconfigurable device the di-

rect access to the memory with an undeniable computational advantage.

In fact, while the computation shifts from the processor to the program-

mable hardware, the access to data long time appeared as a wall (or a bot-

tleneck) for the first generation of reconfigurable processors. In the case

of Garp, the reconfigurable array is connected to the processor core as a

coprocessor accessed by explicit move operations (move-to, move-from)

like that ones required for floating-point units.

12 Reconfigurable computing overview

Instruction

Cache

Data

Cache

Main
Processor
(MIPS) Array

Reconfigurable

Internal Bus

External Bus

External Memory

Figure 2.3: Garp architecture

XiRisc reconfigurable processor [66] can be considered the first silicon

implementation of custom designed reconfigurable instruction set proces-

sor. XiRisc couples a 2-way 32-bit Very Long Instruction Word (VLIW)

RISC processor with a custom designed reconfigurable LUT-based data-

path (the Pipelined Configurable Gate Array, PiCoGA) integrated in the

processor pipeline, as well as the other functional units. The VLIW ar-

chitecture allows to read up to 4 and write up to 2 registers at once, thus

improving the bandwidth between the processor core and the reconfig-

urable device, although a direct memory access is not provided. As in

Garp, the datapath control is performed by a dedicated programmable pi-

peline manager, that enables the activation of each array row. Fig. 2.4

shows the overall architecture, while section 2.3 provides a detailed de-

scription of this architecture and its embedded reconfigurable device Pi-

2.2 Coarse-grained reconfigurable computing 13

RCU

RCU

RCU

RCU

RCU

CONTROL
UNIT

R
E

G
IS

T
E

R
 F

IL
E

DATA CHANNEL 2

PiCoGA writeback
channels

Processor writeback channels

DATA CHANNEL 1

SHARED DATA CHANNEL

PROCESSOR INTERFACE

P
iC

oG
A

Figure 2.4: XiRisc reconfigurable processor architecture

CoGA.

The Molen [12] polymorphic processor focuses on the architectural for-

malization of the reconfigurable computation paradigm, with a special

glance at programming aspects. The Molen has been implemented on a

Xilinx Virtex-II Pro FPGA, utilizing the embedded PowerPC 405 core to

allocate, deallocate and execute instructions on the reconfigurable hard-

ware, as depicted in Fig. 2.5.

2.2 Coarse-grained reconfigurable computing

Standard FPGA technology has been the heart and soul of reconfigurable

processing pioneers, focused on the formalization of the new computation

paradigm. Unfortunately, state of the art FPGAs early appeared as too

big, slow and power hungry if compared to application requirement and

ASIC-based solutions. The full-flexibility offered from the bit-level pro-

grammability introduced too many overhead due to programmable logics,

14 Reconfigurable computing overview

MEMORY

CP

ρµ−code CCU

DATA
ARBITER

I_BUFFER

CR

GPR

Reconfigurable
Unit

Figure 2.5: Molen architecture

programmable interconnects and Static RAM cells needed to configure all

the device. Comparing the number of transistors available for computa-

tion to the number of transistors required by a standard FPGA technology

we need to remove wiring and reconfigurability overheads resulting about

three order of magnitude below the Moore curve. This gap increases since

the effective density is reduced by routing congestion that in big devices

further decrease the interconnect capabilities, as shown in Fig. 2.6. This

is what Hartenstein calls “reconfigurable computing paradox”, born to be

more efficient than processors in term of operations per second per mm�,

but intrinsically less efficient in term of transistor per mm� if compared to

the Moore curve.

The need for new programmable devices envisioned in the past years

by Nick Tredennick has been accomplished by the proposal of a surpris-

ingly wide scenario of reconfigurable devices trading part of the flexibility

2.2 Coarse-grained reconfigurable computing 15

Density

0

103

106

109

tr
an

si
st

or
s/

m
ic

ro
ch

ip

1980 1990 2000 2010

FPGA physical (w
irin

g overhead)

microprocessor
Moore curve

FPGA logical (re
configurability

 overhead)

FPGA routed
(routing congestion)

Effective

10

Figure 2.6: FPGA integration density (source: R. Hartenstein “Why we need re-

configurable computing education”)

in order to improve hardware efficiency. In its visionary retrospective [30],

Hartenstein underlined that “in contrast to FPGA use (fine grain reconfig-

urable) the area of Reconfigurable Computing mostly stresses the use of

coarse grain reconfigurable arrays (RAs) with path-widths greater than 1

bit, because fine-grained architectures are much less efficient because of

a huge routing area overhead and poor routability [2]. Since computa-

tional datapaths have regular structure, full custom designs of reconfig-

urable datapath units (rDPUs) can be drastically more area-efficient, than

by assembling the FPGA way from single-bit CLBs. Coarse-grained archi-

tectures provide operator level CLBs, word level datapaths, and powerful

and very area-efficient datapath routing switches.”

Many mid and coarse grain devices (but all termed as coarse grain in

the Hartenstein’s taxonomy) have been proposed from both academia and

industry in order to increase the ratio between the grain of the basic logic

cell and the programmable interconnects in which the computational logic

16 Reconfigurable computing overview

is embedded. The computational capability of the basic logic cell shifts

from the few LUTs to complete 32-bitwise arithmetic logic units (ALUs).

Furthermore, in many cases, interconnect flexibility has been reduced, for

example supporting only the connection of nearest rows or among nearest-

neighbor cells, in this way also reducing the associated overhead.

PipeRench [46] is one of the firsts and most important reconfigurable

devices featuring a datapath structure based on stripes. Each stripe is com-

posed by arithmetic logic unit, LUTs and a dedicated circuitry to speed-up

carry chains. PipeRench introduces the concept of virtual hardware com-

putation by means of fast partial dynamic reconfiguration. The configura-

tion of each stripe can be rapidly changed from the pipeline manager thus

allowing to fold deep pipelines on the device.

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

RC RC RC RC

Figure 2.7: MorphoSys architecture

MorphoSys [55] couples a 32-bit RISC core with an 8x8 mesh of 16-bit

ALUs with a peculiar interconnect architecture based on nearest-neighbor

wires and few regional connections (see Fig. 2.7). In order to reduce the

2.2 Coarse-grained reconfigurable computing 17

ALU PAE

RAM

RAM

RAM

RAM RAM

RAM

RAM

RAM

Streaming ports

Figure 2.8: PACT XPP architecture

configuration bits, the mesh can be programmed by rows or columns. In

other words, each row or column can implement a single instruction mul-

tiple data (SIMD) computation. The architecture features a multi-context

configuration memory in order to minimize reconfiguration penalty.

The PACT XPP digital signal processor [53] is composed by a matrix

of 16-bit Processing Array Elements (PAEs) working as an event-driven

data-stream datapath. Internal signals synchronize the data-flow, while

the communication is performed by means of packets transmission. Con-

cerning the routing architecture, the array is organized in rows, and the

data transfer among successive rows is performed in a synchronous way

through dedicated registers. Recently, PACT has introduced also small

processor cores based on a simplified 16-bit VLIW structure, in order to

achieve better performance figures on control intensive tasks. Figure 2.8

shows the overall architecture.

The CHESS reconfigurable arithmetic array [27], developed from HP

Labs and evolved in the Elixent Ltd. D-Fabrix [26], is a bi-dimensional mesh

of 4-bit ALUs. The principal goals for CHESS were to increase both arith-

metic computational density and the bandwidth and capacity of internal

memories significantly beyond the capabilities of current FPGAs, whilst

enhancing flexibility. For that, a chess-board layout alternating switch-

18 Reconfigurable computing overview

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU Embedded
RAM

Embedded
RAM

Figure 2.9: CHESS architecture and its hexagonal topology

boxes and ALUs is used as shown in Fig. 2.9. This allows CHESS to sup-

port strong local connectivity and communication among ALUs and gives

an effective routing network which uses only 50% of the array area, much

less than in traditional FPGA structures.

DREAM adaptive DSP [75] is one of the most recent reconfigurable

processor coupling a standard RISC core with a pipelined reconfigurable

datapath (the third generation of PiCoGA). The reconfigurable device is

an important evolution (if not a revolution) of the original PiCoGA, aug-

mented with 4-bit ALUs (comprising extended operations like a Galois

Fields Multiplier over GF(2�)) as basic computational blocks in addition to

the 64-bit LUTs. This allows DREAM to increase the computational den-

sity of the device. Furthermore, the adopted co-processor schema allows

the directed access to the local memory sub-system. In particular, a high

bandwidth buffer infrastructure has been implemented in order to allow

2.2 Coarse-grained reconfigurable computing 19

up to 12 32-bit inputs and 4 32-bit outputs per cycle (the maximum band-

width of the new PiCoGA device). Section 2.4 shows the detail of this

architecture.

The coarsening process of reconfigurable architectures has underlined

some interesting proposals in which the basic cell is represented by a small

processor. The two main examples are probably the RAW machine [49]

from MIT and the PicoChip [25]. RAW, acronym of Reconfigurable Ar-

chitecture Workstation, provides a RISC multiprocessor architecture com-

posed of nearest neighbor connected 32-bit modified MIPS R2000 micro-

processor tiles. Each processor features 6-stage pipeline with ALU, float-

ing point and 32 Kbyte SRAM. PicoChip is a massively parallel array of

430 heterogeneous processors linked by a deterministic high-speed switch-

ing matrix. About 230 processors include multiply and accumulate func-

tionalities, but the characteristics and instruction set of elements should in-

clude support for specialist operations such as spread, de-spread or compare-

add-select.

Specialization of computational blocks is thus an undeniable trend of

reconfigurable computing, similarly at the specialization that DSPs pro-

vided with dedicated instruction set extension. The main goal has been

and will be to reduce the impact of reconfiguration in term of area. In-

stead of application specific devices, we can term this approach as field-

specific since the flexibility offered by reconfigurable approaches appears

higher than that one offered by processor based systems augmented with

dedicated circuits. In any case, heterogeneity, additional interconnect con-

straints, as well as special and complex functionalities have an undeniable

impact on the programmability of the device and the efficiency in which

the devices can be used from programmers, as will be discussed in the

next chapter.

20 Reconfigurable computing overview

2.3 XiRisc reconfigurable processor

SHIFTER

SHIFTER

INSTR DECODE

LOGIC 1

INSTR DECODE

LOGIC 2

SHARED FUNCTIONAL UNITS

DATA CHANNEL 2

DATA CHANNEL 1

PiCoGA

GATE−ARRAY CONTROL

GATE−ARRAY WRITEBACK CHANNEL

F.U. #3
(...)

(Data Memory Handle)
F.U. #2

(Multiply/MAC)
F.U. #1

M
U

X
M

U
X

M
U

X

INSTRUCTION

MEMORY

M
U

X

ALU

M
U

X

ALU

P
iC

oG
A

 C
ontrol U

nit

R
E

G
IS

T
E

R
 F

ILE

MUX

MUX

Figure 2.10: Detailed XiRisc reconfigurable processor architecture

The XiRisc reconfigurable processor [66, 68] (Figure 2.10) is a 2-issue

Very Long Instruction Word (VLIW) RISC architecture, with two 32-bit

data paths, featuring a fine grain reconfigurable functional unit (a PiCoGA,

Pipelined Configurable Gate Array) that allows the user to dynamically adapt

the instruction set to the application workload. PiCoGA is a multi-context

array of 24 rows, each of them composed of 16 fine grain Reconfigurable

Logic Cells (RLCs), including four-input 16-bit look-up tables and dedi-

cated logic to support the efficient implementation of both arithmetic and

logic operators. Programmable interconnects allow point-to-point bit-level

communication using the island-style topology showed in Fig. 2.11. In or-

der to reduce the area overhead due to programmable interconnects, the

2.3 XiRisc reconfigurable processor 21

.

RLC

LUT
16x2

LUT
16x2

4x32−bit input data bus from Reg File
2x32−bit output data bus to Reg File

192−bit configuration bus from Configuration cache

pG
A

 C
O

N
T

R
O

L U
N

IT

CONNECTION
BLOCK

C
O

N
N

E
C

T
IO

N
B

LO
C

K

V
E

R
T

IC
A

L

SWITCH
BLOCK

HORIZONTAL

2

2

2

2 2

2
2

2

CARRY
CHAIN

12

configuration bus

REGISTERS
LOGIC,

EN

INPUT
LOGIC

OUTPUT

loop−
back

12 global lines to/from
 R

F
pGA control unit signals

Figure 2.11: Pipelined Configurable Gate Array (PiCoGA) ver. 1.0

routing topology features 2-bit granularity, which is relaxed to 1-bit only at

level of the connect blocks. Fig. 2.12 shows the detailed RLC architecture.

XiRisc architecture exploits an assembly-level mechanism to add cus-

tomized instructions, called PiCoGA operation or pgaop, which can re-

place on average 10-40 assembly instructions, and up to�400 when a deep

hardware approach (involving for example a synthesis step) is adopted.

The PiCoGA implements pipelined instructions using a dataflow paradigm

[63]. As will be described in the next chapters, customized instructions are

extracted, based on user annotations, from ANSI-C code. The Griffy com-

piler translates them into data-flow graphs (DFGs) which are thereafter

mapped on the PiCoGA. From the programmer’s point of view, pgaops

are application-specific intrinsics (as pseudo-function calls) in C code or

assembly instructions which trigger PiCoGA computations. In this way,

the user can still utilize a C-based globally imperative description style for

the implemented code.

The PiCoGA reconfigurable device is integrated as a Functional Unit

22 Reconfigurable computing overview

1
0

1

0123 0123

BURST_ON

BURST_DATA

CONF_CX_SEL

CONF_ADDR

CONF_DATA

EXEC_CX_SEL
X

[3
:2

]

X
[1

:0
]

RLC

EEN

cout

co

v[3:2]
v[1:0]

CK

Z[3:2] Z[1:0]

INIT

Retime0

D A B C

AF1

AF0

ADDR1[3:0] ADDR0[3:0]

Const

CinAdd

cin

ci

SF

Mode

Ecin

CinSel

C[1]
co

ut

cin

Y[0]

EN Y[3:2] Y[1:0]

EnSel

Q
[3

:2
]

Q
1[

3:
2]

Q
1[

1:
0]

Q
[1

:0
]

Xchg

Mask

Arith

CinExt Odd

MUX

BLOCK

LUT 16x2

SLICE1 SLICE0

LUT 16x2

LOOP LOGIC

INPUT MUX

SELECT
CARRY

Retime1

R1

R0 R0

R1

h[3:2] h[1:0]

Memory (1 bit)

Configuration

1 bit wire

2 bit wire

4 bit wire

8 bit wire

Figure 2.12: PiCoGA Reconfigurable Logic Cell (RLC)

2.3 XiRisc reconfigurable processor 23

(FU) of the processor core, thus reducing communication overheads to

and from other FUs. On the other hand, a register file based communi-

cation could be a bottleneck for applications in which high degree of data

parallelism can be exploited by streaming or by vectorized direct memory

access. The PiCoGA can load up to 4 pgaops for each of its 4 config-

uration contexts, and operations loaded in the same context can be exe-

cuted concurrently. Embedded hardwired control logic handles conflicts

on write-back channels when various pgaops need to write on the pro-

cessor register file. Furthermore, PiCoGA can operate concurrently with

the other functional units of the processor, since the data flow consistency

is ensured by a register locking mechanism.

Starting from a C source code, the compiling tool builds a pipelined

DFG by scheduling instructions. It then maps:

� DFG-node functionalities on the PiCoGA RLCs;

� pipeline management on a row-based dedicated control unit that en-

ables execution of the mapped pipeline stages [70].

Nodes in the DFG are functional operations mapped onto the device

resources (e.g., addition/subtraction or a bitwise logic operation). The pi-

peline is then built through operations scheduling of the C-level DFG rep-

resentation. As described in [64] (and explained in the following), a data-

flow graph represents dependencies among computational nodes through

the data dependencies graph. A pipelined data-flow computation, includ-

ing both data dependencies and resource constraints, can be modelled us-

ing synchronous Petri-Nets [65, 77]. In this model both data dependencies

and resource constraints are represented by arcs and tokens and each com-

putation transition fires when all input arcs have a token and a token for

each output arc has been produced. A set of transitions which fires simul-

taneously is also called a step.

Following this elaboration pattern, a dedicated programmable control

unit is used to handle the pipeline activity, triggering the DFG nodes when

all necessary resources are ready and stalling when they are unavailable.

24 Reconfigurable computing overview

In order to minimize its area occupation, one row control unit (RCU) is

dedicated to each array row, so that the minimum granularity for RLC ac-

tivation is 16. More than one PiCoGA row could be used to build a wider

pipeline stage. On the other hand, cascading more than 1 RLC in a sin-

gle pipeline stage is often impossible because of the fixed high working

frequency (� 166-200MHz) constraint. When a pipeline stage performs

a computation, the control unit exploits a dedicated programmable in-

terconnection channel to send tokens to predecessor and successor nodes

[70].

2.4 DREAM adaptive reconfigurable DSP 25

2.4 DREAM adaptive reconfigurable DSP

DREAM architecture [75] is a dynamically reconfigurable platform cou-

pling the PiCoGA-III reconfigurable device with a RISC processor using

a loosely-coupled memory mapped co-processor schema. A high band-

width memory sub-system provides/receives data to/from PiCoGA-III

allowing one to both maximize the throughput and interface the DREAM

architecture with for example external computational blocks. Figure 2.13

shows the simplified DREAM block diagram.

…
…
…
…

…
…
…
…

… …

PiCoGA-III

Control
Unit Array

Address Generators

Interconnect Cross-Bar

High-Bandwidth
M emory Bank

Simple Registers

uP
Risc

M emory-M apped
Control Interface

M UX

REG

LUTALU
(add,sub,GFmult,…)

Reconfigurable Logic Cell (RLC)

Figure 2.13: Simplified DREAM architecture

The processor, a 32-bit RISC core with 4+4Kbyte of data/instruction

memory, is responsible of DREAM management, although it could be also

used to implement portions of applications, such as the control part of

the code. The high bandwidth memory sub-system is composed of 16

4Kbyte 32-bit memory banks, each of them accessed independently to the

other ones by programmable address generators. A fully-populated inter-

connect cross-bar allows the user to modify the connection with PiCoGA-

26 Reconfigurable computing overview

& &

mask

Base

Next Base

+
Stride

Local Counter

Next
Counter

+
1

==

Count

End of
Count

0

LocalAddr

Next
Address

+
Step

&

mask

+

Address
= Register

1

110 0

0

Full Address

Figure 2.14: Programmable address generator schema

III I/Os (12 32-bit inputs and 4 32-bit outputs). A 64-entry configuration

cache is provided for the interconnect, allowing to switch among different

connection topologies without any additional overheads, while the same

is not provided for the address generators. Furthermore, an additional

simple 32-bit register file is provided for local data, synchronized with

PiCoGA-III by a register locking mechanism. Concerning the programma-

ble address generators, it has been introduced the capability of handling

power-of-2 modulo addressing, in addition to standard step and stride

addressing modes. Fig. 2.14 shows the block diagram of the address gen-

erators. When mask is zero, for each read/write request, the local address

is initialized to the base address and is incremented by step (that could be

negative) for count times. When count operations are performed, the base

address is incremented by stride (that could be negative). If mask is not set

to zero (and features only one transition from 0 to 1, as in 0b00001111), it

2.4 DREAM adaptive reconfigurable DSP 27

allows to perform a selective bit-wise or between the local counter and the

base address. Since the local counter updating is masked, the mask allows

to wrap around the counting on a power-of-2 sub-buffer.

2.4.1 PiCoGA-III architecture

The PiCoGA-III is a programmable gate array especially designed to im-

plement high-performance algorithms described in C language. The focus

of the PiCoGA-III is to exploit the Instruction Level Parallelism (ILP) avail-

able in the innermost loops of a wide spectrum of applications, including

multimedia, telecommunication and data encryption. From a structural

point of view, the PiCoGA-III is composed of 24 rows, each of them imple-

menting a possible stage of a customized pipeline. Each row is composed

of 16 Reconfigurable Logic Cells (RLC) and a configurable horizontal inter-

connect channel. Each RLC includes a 4-bit ALU that allows to efficiently

implement 4-bitwise arithmetic/logic operations, and a 64-bit look-up ta-

ble in order to handle small hash tables and irregular operations hardly de-

scribable in C and that traditionally benefit from bit-level synthesis. Each

RLC is capable of holding an internal state, as the result of an accumula-

tion, and provides fast carry chain propagation through a PiCoGA row.

In order to improve the throughput, the PiCoGA supports the direct im-

plementation of Pipelined Data-Flow Graphs (PDFGs), thus allowing to

overlap the execution of successive instances of the same PGAOP (where

a PGAOP is a generic operation implemented on the PiCoGA). Flexibil-

ity and performance requirements are accomplished handling the pipe-

line evolution through a dynamic data-dependency check performed by a

dedicated Control Unit.

Summarizing, with respect to a traditional embedded FPGAs featur-

ing homogeneous island-style architecture, the PiCoGA-III is composed

of three main sub-parts:

� A homogeneous array of 16x24 RLCs with 4-bit granularity (capable

of performing operations, for example, between two 4-bitwise vari-

ables) and connected through a switch-based 2-bitwise interconnect

28 Reconfigurable computing overview

matrix;

� A dedicated Control Unit which is responsible to enable the execu-

tion of RLCs under a dataflow paradigm;

� A PiCoGA Interface which handles the communication from and to

the system (data availability, stalls generation, and so on).

In terms of I/O channels, the PiCoGA-III features 12 32-bit inputs and

4 32 -bit outputs, thus allowing for each PGAOP to read up to 384 bits and

to write 128 bits per cycle. The PiCoGA-III is a 4-context reconfigurable

functional unit capable of loading up to 4 PGAOPs for each configuration

layer. PGAOPs loaded in the same layer can be executed concurrently, but

a stall occurs when a context switch is performed. The main features of

the PiCoGA architecture are:

� A fine grain configurable matrix of 16x24 RLCs

� A reconfigurable Control Unit, based on 24 Row Control Units (RCUs)

that handles the matrix as a datapath.

� 12 primary 32-bit inputs and 4 primary 32-bit outputs

� 4 configuration contexts are provided as a first-level configuration

cache

– only 2 clock cycles are required to change the active context

(context switch)

– only 1 configuration context can be active at a time.

� Up to 4 independent PiCoGA operations can be loaded in each con-

text, featuring partial run-time reconfiguration.

Each RLC can compute algebraic and logic operations on 2 operands of

4 bits each, producing carryout and overflow signals, and a 4-bit result. As

a consequence, each row can provide a 64-bit operation or 2 32-bit opera-

tions (or four 16-bit, eight 8-bit operations, and so on). The cells commu-

nicate through an interconnection architecture with a granularity of 2 bits.

2.4 DREAM adaptive reconfigurable DSP 29

Input
preprocessing

4-bit
ALU

LUT
4-bit
out

Carry
chain

REG

First 4-bit
operand

Second
4-bit

operand
2-bit

control
operand

• M ultiplexer
• Conditional
operations

• Sign Inversion

•Addition
•M ultiplication block
•Saturating arithm etic
•Galois Field m ultiplication
GF(2^4)

• Bit-Level operations
• Com parison
• Hash
•Configurable as 6:1,
5:2, 4:4 tables

Carry IN

Carry
O UT

4-bit
Result

Internal Feed-
back

(accum ulators)

Control
operand

2-bit control output:

•Sign

•O verflow

•Carry out

Figure 2.15: Simplified PiCoGA-III Reconfigurable Logic Cell (RLC)

Each task mapped on the PiCoGA is defined PGAOP. The granularity of a

PGAOP is typically equivalent to some tens of assembly operations. Each

PGAOP is composed by a set of elementary operators (logic or arithmetic

operations) that are mapped on the array cell.

Each PiCoGA cell also contains a storage element (FF) that samples the

output of each operation. This storage element cannot be bypassed cas-

cading different cells, since the constant frequency of work featured by Pi-

CoGA. Thus PiCoGA can be considered a pipelined structure where each

elementary operator composes a pipeline stage. Computation on the array

is controlled by a RCU which triggers the elementary operations compos-

ing the array. Each elementary operation will occupy at most a clock cycle.

A set of concurrent (parallel) operations forms a pipeline stage.

The internal architecture of the Reconfigurable Logic Cell is depicted

in Fig. 2.15. Three different structures can be identified:

� The input pre-processing logic, which is responsible to internally

route inputs to the ALU or the LUT and to mask them when a con-

30 Reconfigurable computing overview

stant input is needed

� The elaboration block (ALU & LUT), which performs the real com-

putation based on the operation selected by the RLCop block

� The output manager, which can select outputs from the ALU, the

LUT, and eventually from the carry-chain and synchronizes them

through Flip-Flops. The output block samples when receives the Ex-

ecution Enable from the control unit. Therefore the control unit is

responsible for the overall data consistency as well as the pipeline

evolution.

Operations implemented in the ALU & LUT block are:

� 4-bitwise arithmetic/logical operations eventually propagating a carry

to the adjacent RLC (e.g. add, sub)

� 64-bit lookup tables organized as:

– 1-bit output 4/5/6-bit inputs

– 2-bit outputs 4/5-bit inputs

– 4-bit outputs 4-bit inputs

– a couple of independent lookup tables featuring respectively 1-

bit output 4-bit inputs, and 2-bit outputs 4-bit inputs.

� 4-bit multiplier module; more in detail, it is a multiplier module with

10-bit (in case of A * B. 6 bit are for the operand A and 4 bit for

the operand B) of inputs and 5-bit output, including 12 Carry Select

Adder and specifically designed to efficiently implement small and

medium multiplier on PiCoGA resource.

� 4-bit Galois Field Multiplier GF(��), with irreducible polynomial ���

� � �.

Chapter 3

Programming tools for

reconfigurable processors

3.1 Motivations

In the past, the term flexibility has often been linked with the software

implementation offered by general-purpose microprocessors, whose com-

putational model aims at:

� modifying the task (the algorithm) by changing a set of instructions

(the program) in a read/write memory.

� implementing the algorithm using a small number of general com-

puting resources, roughly corresponding to the assembly instruc-

tions, which are reused in the course of time.

This kind of computation is called temporal computation and rapidly

shows its limitations when algorithm operations fail to match the hard-

ware computational resources [11]. In reconfigurable architectures the

application features are exploited through configuration of customizable

hardware, thus improving the match between processor capabilities and

algorithm requirements. Unlike the temporal computation of traditional

processors, reconfigurable processors use a spatial model of computation

that (ideally) perfectly matches the algorithm, in terms of both available

31

32 Programming tools for reconfigurable processors

parallelism and computation granularity. Significant performance speed-

up and energy reduction can be achieved on critical kernels compared to

standard architectures [7].

Unfortunately, programmable fabrics are less efficient and require far

more additional area than dedicated circuits which exploit the spatial model

of computation as well, but lack flexibility. The silicon cost is often a strong

limitation for reconfigurable architectures being proposed to the consumer

market. One acceptable trade-off is only to exploit the spatial computation

on critical kernels of applications, thus reducing area requirements. Non-

critical computations or control-dominated tasks (which often show a very

small degree of instruction level parallelism) are efficiently mapped on the

standard processor core, taking advantage of its software programmabil-

ity and shortening the overall development time. According to Amdahl’s

law and the 90-10 rule (90% of time is spent executing 10% of the lines

of a code [28]), performance can be roughly enhanced up to one order of

magnitude when implementation efforts focus on the identification and

improvement of few critical kernels.

A typical flow for the development of applications on a reconfigurable

processor can be based on a common processor-oriented tool-chain aug-

mented in order to handle the instruction set extension. Starting from a

high-level description language, the developer needs to partition the ap-

plication code between hardware and software portions, typically guided

by simulation and profiling back-annotations. The partitioning is an iter-

ative process, implying refinements and modifications of a given imple-

mentation in order to exploit as much as possible the space-based com-

putation. When the partitioning is decided, the programmer (possibly

helped by tools and utilities) describes the hardware part in a proper lan-

guage, while the interaction between the processor and the reconfigurable

hardware can be accomplished by means of built-in functions and/or as-

sembly inlining.

When a portion of code is considered suitable for hardware implemen-

tation, it is translated into the description language used as the entry-point

for the reconfigurable device. A hardware-specific tool-chain then maps

3.1 Motivations 33

the description in the device, providing the configuration bit-stream. The

translation can be performed by re-writing the code from scratch (for ex-

ample, the algorithm is completely rewritten in VHDL/Verilog) or can be

assisted by tools. Automatic high-level language translation relieves the

user from the burden of learning a HDL language, introducing an abstrac-

tion layer that however hides many details of implementation, making it

hard to handle the performance accurately. On the other hand, when the

level of abstraction is tightly linked to the underlying hardware, the time

spent on optimizing an application grows, as do the skills required.

Processor-based computation allows the designer to exploit instruc-

tion level parallelism (ILP), while a hardware-oriented approach allows

one to match application requirements perfectly. If we consider the de-

velopment time spent in obtaining a specific implementation, processor-

based approaches typically require a matter of minutes to compile a given

source code, or a few days to optimize critical parts at the assembly level

and some weeks to maximize performance using manually-programmed

high-end VLIW DSPs. Of course, use of application-specific IPs or manual

optimization of an assembly code demands a deep knowledge of the un-

derlying architecture. In the hardware approach, the implementation of a

given application in an ASIC takes a long time, it being necessary to de-

scribe the algorithm in an optimized RTL HDL taking into account critical

paths, for example, after both physical synthesis and place-and-route.

These preliminary considerations are summarized in Figure 3.1, where

the performance improvement of a hardware implementation in terms of

execution time can be more than 2 orders of magnitude higher than a soft-

ware one. While a processor-based fully-software flow allows the designer

to match the ILP of a given application, a hardware-oriented approach re-

quires one order of magnitude more time-to-develop to achieve the best

performance. In the middle of this design space reconfigurable platforms

should find their place. The definition of design patterns and frameworks

for reconfigurable processors enabling unexperienced users to build appli-

cations defines an intermediate “optimization” curve in which the design

space moves from software to hardware, in terms of both performance

34 Programming tools for reconfigurable processors

Tim e

Perform ance
Im provem ent

Softwareapproach

Hardware approach

ILP
Boundary

Application
Boundary ReconfigurableCom puting

LearningCurve ?

Figure 3.1: Performance vs. Time-to-develop design space

expected and skills required to obtain it.

A further interpretation of these curves can be given in terms of cost

modelling. Few works have attempted to examine the impact on costs of

hardware/software trade-offs in embedded-system co-design [84, 85, 86,

87]. While the software cost is estimated using standard models, such as

COCOMO [82], in these works the hardware cost is mainly based on COTS

(Commercial Off-The-Shelf) and libraries of functions. The customization

of a reconfigurable processor, despite involving hardware concepts, is not

well suited for modelling as a standard hardware development, because

it requires an existing component (the reconfigurable processor) to be pro-

grammed rather than a new hardware component to be designed. On the

other hand development on a reconfigurable processor needs to take into

account many more details than a standard processor. For example, in the

case of the DSP in Fig. 1.3, better performance can be achieved by spending

additional time programming the processor at a lower level of abstraction.

Hence, the cost model is characterized by two calibration factors [83] that

describe the average number of code lines per function point, one for the part

of the application written in C and another one for the part written in as-

sembly. The total development time depends on the respective percentage

of function points implemented in C and assembly. The same approach

3.2 Algorithm development on reconfigurable
processors (programming issues) 35

holds for reconfigurable processors, but in this case the specific tools and

languages for the given reconfigurable logic need to be considered in ad-

dition to C and assembly.

3.2 Algorithm development on reconfigurable

processors (programming issues)

Processor-based system-on-chips (SoC) are becoming the most popular

way to perform computation in the electronic marketplace. Today, at least

one processor is present in every SoC in order to handle in a simple fash-

ion the overall system synchronization, be it provided by the operating

system functionalities (i.e. multitasking management, real-time issues) or

be it required for I/O communications. Usually, the processor (i.e. ARM9,

PowerPC, MIPS, . . .) is not the main responsible of the computation that is

demanded to high-performance co-processing engines. Depending on the

application constraints and the flexibility required, computation intensive

parts are implemented on dedicated hardware accelerators (when non-

recurring costs allow that) or on application-specific digital signal pro-

cessors (DSPs). In this context, high-end DSPs are proposed as a way

to match flexibility requirement (since they are software programmable)

with high performance. Architectures like the Texas Instruments OMAP

or the STMicroelectronics STW51000 (also known as GreenSIDE) are state

of the art examples of commercial ARM-based SoCs powered with one

or more DSPs plus one or more dedicated hardware accelerators. One of

the most interesting trend in the field of high-performance SoCs is rep-

resented by the introduction of dynamically (or run-time) reconfigurable

hardware (i.e. embedded FPGAs, reconfigurable data-path and reconfig-

urable processors) in substitution of the constellation of DSPs and/or ded-

icated hardware accelerators today necessary to match constraints in term

of performance and energy consumption [1, 2, 7, 8, 11, 10]. In general

terms, the exploitation of such kind of architectures implies the capability

to tailor the SoC functionalities around the computational requirements of

36 Programming tools for reconfigurable processors

a given application. This can be seen as an instruction set extension of the

main processor (e.g. the ARM in previously cited examples), being the re-

configurable hardware a run-time extension of the baseline computation

engine.

As for DSPs and dedicated accelerators, the exploitation of any degree

of parallelism at bit-, word-, instruction-, iteration- and task-level is the

control lever for the effective utilization of the reconfigurable hardware.

This implies for the programmer a deep knowledge of both application

and system architecture to well understand how to partition and how

to map algorithms over the different available computational resources.

On the other hand, this also implies for the programmer the capability to

investigate a hybrid design-space including both software and hardware

concepts, requirement not so usual for application developer long used to

C/assembly design environments. With respect to mask-time program-

mable hardware accelerators, reconfigurable computing offers the pro-

grammer the capability to design its proper extensions in order to satisfy

application-specific requirements. Therefore, the capability of providing

soft-hardware (or hardware programmable as software) is probably the

most important point to enable the large market of application developers

to use effectively a reconfigurable device [29].

In the past, the action of targeting a reconfigurable device borrowed

tools and methodologies from FPGA-based design (with hand-coded RTL

HDL), although it was clear from the beginning the severe lack of user-

level programmability coupled to this approach. The utilization of C lan-

guage has been seen as the most promising way to approach the customers

at the reconfigurable proposal. On one hand, C dialects have been pre-

sented including entire new object classes dedicated to hardware design,

like in System-C or Handel-C. This kind of approach move the C toward

the hardware design making the hardware description friendlier through

a C-based language that basically becomes another HDL, therefore requir-

ing hardware skills to the developers. On the contrary, a more promis-

ing approach is to use standard ANSI C code and translate it into some

kind of RTL, thus requiring a sort of C-to-RTL hardware compiler. Com-

3.2 Algorithm development on reconfigurable
processors (programming issues) 37

panies like Celoxica, Mentor Graphics, Impulse, Altium and CriticalBlue

offer stand-alone C-to-RTL and/or C-dialect-to-RTL synthesizers that can

be integrated in standard flows for FPGA and that were used in many

works on reconfigurable system implemented using commercial FPGAs.

For embedded applications, the reconfigurable device is a part of an

usually complex system with a rigid budget in term of area and cost. As

underlined in the previous chapter, this precludes the utilization of stan-

dard FPGAs, since they are too area demanding for the embedding and

not so appealing for the final implementation of the whole system (in term

of performance, power consumption and costs). Reconfigurability is then

provided through embedded-FPGAs (small FPGAs suitable for the em-

bedding in a SoC), reconfigurable data-paths and reconfigurable proces-

sors that offer flexibility under typically hard constraints in term of area.

The limitation in terms of area is accomplished by reducing the number

of programmable elements and equivalent KGates available, but while a

stand-alone high-end FPGA requires some hundreds of mm�, reconfig-

urable devices show an area occupation ranging from few mm� to some

tens. Even if much less than FPGAs, the area occupation of reconfigurable

devices is very often considered huge from SoC designers. This means

that the reconfigurable device needs to be as small as possible, while the

configuration efficiency must grow up to the peak performance offered by

the device.

On the architecture side, area limitation can be accomplished by an ac-

curate trade-off between logic and interconnects. For example, in island-

style programmable architectures it is possible to achieve better area fig-

ures increasing the grain of the basic logic element with respect to the

interconnect structure, or decreasing the interconnect capabilities for ex-

ample limiting the connection at level of rows and/or the neighbors logic

elements [53, 55]. This implies an undeniable reduction in term of flexibil-

ity, paid to the need of guarantee small area budget. On the programming

side, the increase of design constraints and then the reduction of degrees

of freedom in the mapping of algorithms imply that any inefficiency of the

automated high-level synthesizer leads to a dramatic loss in terms of per-

38 Programming tools for reconfigurable processors

formance. To avoid this, many reconfigurable devices provide structural

languages in which operators are directly mapped into the device without

synthesis and the application designer can tune, refine or re-write from

scratch the implementation in order to maximize the performance benefit

in the same way that a DSP programmer could use the assembly language.

All these preliminary considerations can be summarized in few points that

we can see as requirements for an application development environment

in the field of reconfigurable computing:

� to be appealing for the wide world of software and DSP program-

mers, such environment needs to be as similar as possible to tradi-

tional software-only environments.

� to be effective and compliant to the huge investment in term of area

and costs required by reconfigurable hardware, such environment

needs to provide capability to exploit as much as possible architec-

tural features.

3.3 Instruction set extension implementation on

a standard compilation tool-chain

The extension of a standard software tool-chain in order to support in-

struction set metamorphosis implies to analyze the role played by each

tool and the efficiency required by each step, with the final goal of propos-

ing to application developers a tool-chain in which hardware and software

can be handled together. The introduction of instruction set extensions

implies modifications in each step of the compilation process, and the ad-

dition of configuration tools dedicated to the mapping of instruction set

extensions in the reconfigurable hardware. In this section, we focus on

the software supports necessary to handle instruction set reconfiguration

from a C compiler, while aspects concerning the extension definition and

its mapping on the hardware support, will be dealt with in the next sec-

tions.

3.3 Instruction set extension implementation on a standard compilation
tool-chain 39

In general terms, modifications in the assembler and in the linker are

kept as minimal as possible, since the assembler can be reduced to a sim-

ple mnemonic translator and the linker needs to include the eventual bit-

stream for the hardware customization. On the contrary, the high-level

compiler needs to be conscious of the reconfigurable parts in order to help

the user in the optimization process. We can require to programming tools

for reconfigurable processors many tasks:

� to provide to the user the capability to define and instance an ex-

tended instruction;

� to schedule the extended instruction accurately;

� to automatically recognize user-defined extended instructions in a

general-purpose code;

� to detect critical kernels and automatically generate a set of extended

instructions.

The definition of extended instructions is usually accomplished by ded-

icated tools, while the capability of instancing the extended instructions in

a software code can be obtained by using the same functionalities pro-

vided for assembly inlining. The last three points are very specific of re-

configurable computing. Accurate scheduling and identification of cus-

tom instructions can be handled by modifying the machine description

and the intermediate representation (a sort of virtual machine-independent

assembler) of the compiler. In the case of traditional C tool-chains (e.g.

GNU GCC [97]), this implies the complete recompilation of the compiler

front-end since the machine description is static. It is thus possible to deal

with extended instruction in the same way that a compiler handles floating

point extension, describing the required functional units in the intermedi-

ate representation [98]. Of course, this proves to be a hard obstacle for

most of the application developers, also in terms of time required during

the design-space exploration when the instruction set extension is under

definition.

40 Programming tools for reconfigurable processors

Alternative approaches have been proposed in research projects on ad-

vanced high-level compilers like Impact [21] and SUIF [22]. In this cases

machine descriptions and intermediate representations can be dynami-

cally extended without rebuilding the tools, since the description of the

target architecture is read before each compilation. This implies that all

the internal automata required to implementing, for example, the pattern

matching and the scheduling steps are dynamically generated from the ar-

chitecture description. A state of the art compiler able to handle the opti-

mized scheduling of custom instructions (even if featuring long latencies)

can be found, for example, in the MOLEN project [12] or in the DRESC

framework [13], respectively based on SUIF and Impact. Moreover, the

Trimaran framework [14] proposes a scheduling mechanism based on sim-

ulation and profiling back-annotations to reduce the stalls in an execution-

aware environment, although the impact on the compilation time.

This point introduces the last issue that reconfigurable computing im-

poses on programming tools that is the reconfiguration of the simulator.

Similarly to the compiler, the simulator needs to be adapted to the changes

or the extensions of the instruction set. Language for Instruction Set Archi-

tecture (LISA), commercially available from CoWare and Axys, as well as

open-source architecture description languages, like Arch-C, are examples

of frameworks where cycle-accurate instruction set simulators can be built

with the support of a native structure implementing typical processor ob-

jects, like the pipeline or the register file. This approach requires to rebuild

the instruction set simulator every time the instruction set is changed. In

[15] an alternative approach is proposed. A dynamically linked library

is used to model the instruction set extension, while the main processor

is modelled by standard simulator support. The mechanism, described

in the following of this thesis, is applied on both functional and cycle-

accurate simulation, integrating the mechanism on an environment based

on LISA and SystemC, and on a pure-functional debugging environment

based on the GNU GDB simulator.

Figure 3.2 shows a simplified and very general block diagram for a pro-

gramming environment supporting reconfigurable computing. It includes

3.3 Instruction set extension implementation on a standard compilation
tool-chain 41

PartitioningPartitioning

Com pilerCom piler

M appingM apping

Configuration
Bit-Streams

Configuration
Bit-Streams

Extended
ISA

Extended
ISA

Basic
ISA

Basic
ISA

Assem blerAssem bler

LinkerLinker

High-Level
Language

High-Level
Language

Executable
File

Executable
File

Simulator
Profiler

Simulator
Profiler

Figure 3.2: Basic software tool-chain extension to support reconfigurability is-

sues

the basic software support (compiler + assembler + linker + simulator)

previously described, and the partitioning and configuration parts. The

partitioning is the process, automatic or not, of design-space exploration

in which critical tasks or kernels are moved from a software implementa-

tion to a hardware one (and viceversa) depending on the required perfor-

mance (speed, energy, . . .). Today, this process is usually under the whole

control of the programmer, although it can be helped by the usage of tools.

Many researches are going in the direction of full automation of the par-

titioning since it will represent the most appealing enabling step toward

the true soft-programmable hardware (e.g. [6]). Despite this, very few

works are leaving the academic/research project to challenge the market,

and these few works are focused in the field of mask-time programmable

device (e.g. [56]). Even if constrained to provide good area figures to be

appealing for the integration on system-on-chips, reconfigurable devices

42 Programming tools for reconfigurable processors

remain very precious resources (and area demanding) that shall be return

by high performance. The programming efficiency required for run-time

dynamically reconfigurable devices can be accomplished only by the full

exploitation of the computational capabilities of that, with a very restricted

margin for the overhead that an automatic design flow can introduce. This

is probably the most important difference between configurable solutions

(like mask programmable, application specific standard processor, and so

on) and reconfigurable solutions, that heavily impacts in term of program-

ming models and languages. In fact, while for configurable solutions the

literature as well as commercial proposals are talking of high level descrip-

tion languages, like the C, the common proposal for dynamically reconfig-

urable devices is some kind of structural form, like the assembler, as will

be described in the following of this chapter.

The last block in Figure 3.2 is the configuration engine, a tool that

starting from some kind of description language is capable of providing

the configuration bitstream for the reconfigurable device. This tool is (of

course) tightly coupled with the underlying hardware, and for C-based

configuration flow it represents the bridge from the software to the hard-

ware worlds.

3.4 Bridging the gap from hardware to software

through C-described Data Flow Graphs

Programming of reconfigurable devices can be performed in many differ-

ent ways, borrowing methods and tools from standard hardware design

(VHDL or Verilog) or borrowing methods and tools from software compi-

lation. As stated in [45], there is no a real difference from high-level be-

havioral synthesis and non-optimizing compilation of programming lan-

guages, since they are basically translations of the initial language to an

intermediate representation. On the contrary, the optimization is a very

different step in hardware synthesis from the software synthesis, with dif-

ferent metrics and cost-functions. Another common point between compi-

3.4 Bridging the gap from hardware to software through C-described
Data Flow Graphs 43

Data Flow

Graph

Insn2Insn1

InsnM

Body1 Body2

End

Header

(test condition)

Control Flow

Graph

If (cond) {

Insn1_1;

….

Insn1_N;

} else {

Insn2_1;

…

Insn2_M;

}

Body1

Body2

Figure 3.3: Examples of control and data flow graphs

lation and synthesis is that graphs are most often used for internal repre-

sentations. In software programs, we can distinguish between two kinds

of graphs: Control- and Data-Flow Graphs (respectively CFG and DFG).

The CFG is the representation of the paths that might be traversed through

a program during its execution. Each node of the CFG is known as basic

block and its graph representation is a DFG. The DFG describes the de-

pendencies among the set of operations required to the data processing.

As shown in the example in Figure 3.3, branches of a conditional state-

ment (if. . . then. . . else . . .) are represented as nodes of the CFG, while the

operations performed in each branch are described by a DFG “attached”

to a CFG node.

In hardware description languages there is the co-existence of both se-

quential and concurrent definitions of operations. As an example, the

behavior of a process or the expression assigned to a signal follow a se-

quential paradigm, although this not means that the same semantics of

the software languages, like C, are used. They can be viewed as nodes in

the DFG, as well as sub-graphs of a DFG, depending on the granularity

we assign to the node. In any cases, hardware description languages use

a event-driven activation mechanism in which more than one DFG and

more than one DFG node can be active per time natively, and this point

44 Programming tools for reconfigurable processors

represents the most significant difference with respect to control parts of

software languages. Of course, during the compilation for processors fea-

turing some degree of parallelism (e.g. VLIWs, Superscalars, TTAs, . . .)

this constraint is heavily relaxed, bringing software implementation near

to the hardware, although the different optimization metrics.

For the definition of a suitable bridge between hardware and software

in the field of reconfigurable computing, the DFG probably represents the

most natural choice. In fact, for reconfigurable processors the control part

is typically managed by the processor core, while the hardware accelera-

tion is provided for the DFGs. Hence, the DFG suitable for the mapping

on the reconfigurable device can be described by a sequential language,

like C, but it can be viewed at the same time as an abstract representation

of a circuit.

The exploitation of the parallelism is the key point for the effectiveness

of the reconfigurable computing, be it at word-level or loop-level. Stan-

dard software compilation techniques like software pipelining [61], itera-

tive modulo scheduling [62] and vectorization [60] are examples of well-

known methods that increase the instruction-level parallelism by the ex-

ploitation of loop-level data parallelism. Loop transformations are widely

used in compilation for VLIW processors to maximize the performance, as

well as they are applied to utilize SIMD (Single- Instruction Multiple-Data)

extensions (like the Intel MMX or AMD 3DNow!). These methodologies

can be efficiently applied in order to transfer loop-level parallelism to the

instructions in the loop body, thus increasing the instruction level paral-

lelism of the innermost DFG, while more hardware-oriented methods can

be applied for the efficient mapping of DFGs on the reconfigurable de-

vices. Starting from a DFG software description where the instructions (or

DFG nodes) are executed in the same order in which they are written in

the code, we can relax the enabling rule of the DFG executing each node

when inputs are available and output can be overwritten, as described in

[63]. The run-time execution of a DFG can thus be modelled by Petri Nets

as in [64, 65]. Furthermore, by nodes scheduling and registers insertion

it is possible to build the DFG in a pipelined form, without affecting the

3.4 Bridging the gap from hardware to software through C-described
Data Flow Graphs 45

functionality. In this case, it is possible to overlap the execution of succes-

sive DFG activations (if the data dependencies allow that) hence improv-

ing the performance by the exploitation of parallelism at level of iteration,

as in [59, 60].

To this point, we have discussed about the role played by DFGs as

bridge between software and hardware. One more point is of course repre-

sented by the way in which the DFG can be described in order to meet the

requirements of effectiveness and friendliness posed as basis of a program-

ming tool-chain for reconfigurable processors. We said that the entry lan-

guage must be appealing to software programmers and must be effective

in term of hardware utilization. An interesting option is to use the C lan-

guage for that goal: it allows to describe DFGs since DFGs are representa-

tions of the basic blocks, but it also allows to handle the DFG topology un-

der simple restrictions. For example, the utilization of a single-assignment

form, in which each variable is assigned exactly once, can help the user

in the DFG modelling, providing a simple way of handling efficiently all

the data dependencies, as proposed in [40]. The single-assignment form is

today introduced in many compilation frameworks as an important inter-

mediate representation in order to both simplify and optimize the internal

compilation steps. Starting from the version 4, also the GNU GCC makes

extensive use of single-assignment representations although the conver-

sion to single assignment is performed (in my knowledge) only for scalar

register values (everything except memory) at level of basic block. There-

fore, conditional statements (if. . . then. . . else) are converted in a specula-

tive form which executes concurrently each branch of the statement and

introduces merge nodes that select the correct outputs among the branch-

replications, similarly to functionality provided by multiplexers in the hard-

ware design.

In general talking, the translation of standard C and C-dialects into

some kind of hardware description is a complex problem addressed by

many research programs [36, 37, 38, 5, 39], especially if we include the

memory access (i.e. pointers) [43]. In the case of reconfigurable processors,

the processor core can handle (and usually handles) the memory access,

46 Programming tools for reconfigurable processors

eventually with the help of DMAs to speed-up the memory access, thus

simplifying the synthesis requirements. Summarizing, single-assignment

forms are a restriction of the C semantic, they are useful to accurately han-

dle the DFG performance (parallelism and pipeline structure) and they

can be extracted from high-level C compilers. The application developer

can thus start the implementation over a reconfigurable processor from

the application description written in C, and selecting the critical kernels

suitable for the reconfigurable hardware mapping. Depending on the effi-

ciency required, the application developer can choose to use an automatic

translation mechanism or to hand-code the kernel with a low-level de-

scription language, thus introducing a third trade-off point represented

by the time spent to the development.

3.5 Overview of programming tools for reconfig-

urable processors

Programming frameworks for reconfigurable architectures are highly de-

pendent on the structure, the hardware granularity and the language pro-

posed as entry-point. Although far from being an ideal hardware descrip-

tion language, C was selected as an appealing entry-point for the configu-

ration of reconfigurable processors since the first architectures (e.g. PRISM

[16]). Milestones of the research on field of reconfigurable processors, like

the Garp [19] processor, and commercial state-of-the-art reconfigurable

processors [23, 24, 25, 26] proposed C-based design environments envi-

sioning the possibility to offer the end-user the capability of automatic

partitioning, and then to co-compile the same source code over both the

processor core and the reconfigurable logic. The Nimble compiler [80],

targeting the Garp processor, is one of the first tools that try to automat-

ically move critical kernels from the processor core to the reconfigurable

hardware accelerator, selecting them from the basic blocks found in the in-

nermost loops. PipeRench [46, 47], one of most popular coarse-grained

reconfigurable data-paths, is configured using a single-assignment lan-

3.5 Overview of programming tools for reconfigurable processors 47

guage with C operators (called DIL, Dataflow Intermediate Language), as

well as RaPiD [48] that features a C-based proprietary language. RaPiD-C

programs consist of nested loops describing pipelines, and language ex-

tensions allow the programmer to explicitly handle synchronization me-

chanism, specify parallelism and data movement (that is stream-based).

Another example of popular coarse grain architecture is represented by

the RAW architecture [49] developed from the MIT: in this case a SUIF-

based compiler partitions the application over a mesh of RISC processors,

instead of performing a technology mapping. Another programming ap-

proach based on C language was provided for the NAPA architecture [50],

including a C-programmed reconfigurable device as I/O coprocessor.

Many reconfigurable devices are programmable at assembly-level or

by graphical tools (for manual mapping), in a way that seems to trade part

of the programmability offered by high-level languages with the program-

ming efficiency (MOPS/mm�), as reported in the Hartenstein’s retrospec-

tive [30]. In general, the underlying architecture has a strong impact on the

technology mapping, on the placement and to a lesser term on the routing

algorithm. Direct mapping is probably the most used method for coarse

grain architectures, where operators are mapped to the programmable ele-

ments that compound the device without a real logic synthesis step. PACT

XPP [53] and MorphoSys [55] are effective examples of this approach, al-

though they provide a tentative to virtualize the underlying layer using

C-based high-level compiler flows [60, 13]. For the full exploitation of

the architecture capabilities, PACT XPP is programmed through the Na-

tive Machine Language (NML), a structural event-based netlist descrip-

tion language. The following code is an example of nML code.

MODULE LDPC_VNODE_WC_2_SINGLENODE(DIN Q0,A0,B0, DOUT OUT)

{

OBJ q0_plus_b : ADD @ FREG 0,0 {

A = Q0

B = B0

}

OBJ q0_plus_a : ADD @ 0,0 {

A = Q0

B = A0

}

48 Programming tools for reconfigurable processors

OBJ clip_a : CLIP (8) @ 0,0 {

A = q0_plus_b.X

}

OBJ clip_b : CLIP (8) @ 1,0 {

A = q0_plus_a.X

}

OBJ pack : PACK @ FREG 1,0 {

A = clip_a.X

B = clip_b.X

}

OUT = pack.X

}

In the example, sums and clipping instructions are manually placed to

cells 0,0 and 1,0, whereas FREG register are used to transfer data between

two successive rows. In fact, PACT XPP not features a vertical routing

channel and vertical data transfers are performed only by registers in a

pipelined form. Specific tools are proposed for the place-&-route phase as

reported in [54], where the strongly pipelined structure requires to pipe-

line also the interconnections across rows by dedicated registers.

For the MorphoSys architecture, a SUIF-based compiler is provided for

the host processor, while the partitioning between hardware and software

is performed manually by the programmer. The MorphoASM, a structural

assembly-like language, is used to configure each programmable element

to the functionality required. Usually, the programmer needs to take into

account also the interconnect capabilities of each programmable element

in order to distribute the processing elements in the device pipeline in a

way compliant to the timing requirements. An example of MorphoASM

code is reported in the following (stars give the programmer the possibility

to specify manually row and column).

CELL{*,*} R13 = MULSIH{FB{InputTwiddleCos, 0, OMEGA_BR2, COL_BUS,

WORD}, R5, R14} << 1;

CELL{*,*} R12 = MULSIH{FB{InputTwiddleCos, 0, OMEGA_BR2, COL_BUS,

WORD}, R1, R14} << 1;

CELL{*,*} R11 = MULSIH{FB{InputTwiddleSin, 0, OMEGA_BR2, COL_BUS,

WORD}, R1, R14} << 1;

CELL{*,*} R10 = MULSIH{FB{InputTwiddleSin, 0, OMEGA_BR2, COL_BUS,

WORD}, R5, R14} << 1;

CELL{*,*} NOP{}; CELL{*,*} R13 = ADD{R13, R11} >> 1; // scale down;

CELL{*,*} R12 = SUB{R12, R10} >> 1; // scale down;

3.5 Overview of programming tools for reconfigurable processors 49

CELL{*,*} R11 = MULL{R15,R4} >> 1;// scale down for adjustment;

CELL{*,*} R10 = MULL{R15,R0} >> 1;// scale down for adjustment;

CELL{*,*} NOP{}; CELL{*,*} R8 = ADD{R11, R13};

CELL{*,*} R9 = ADD{R10, R12};

CELL{*,*} R4 = MULSIL{R15,R4,R8}; // scale down

CELL{*,*} R0 = MULSIL{R15,R0,R9}; // scale down

The mapping on reconfigurable architectures, especially for coarse grain

architectures which are very different from the island style of FPGAs, re-

quires specific management constructs. As an example, in the Garp pro-

cessor, the GAMA tool [79] maps a DFG using a dedicated tree covering

algorithm that split the original graph into sub-trees with single fanout

nodes, introducing a significant overhead in the resources utilization. Fur-

thermore, only acyclic graphs are supported. Modules detected by the

tree covering are placed in Garp array rows (only one module per row)

using bit-slice methods proposed for data-paths synthesis in regular archi-

tectures. The DRESC compiler [13] is an example of high-level compiler

targeting a MorphoSys-like coarse grain architecture. It focuses on the

exploitation of loop-level parallelism and performs the place-&-route for

the reconfigurable hardware using an extended iterative modulo schedul-

ing algorithm. A simulated annealing strategy is used to decide when

a legal configuration can be accepted or not, helping to escape from lo-

cal minimum. In some cases, where the reconfigurable processor is inte-

grating an embedded FPGA or it is implemented on a stand-alone FPGA

(like in MOLEN [12]), VHDL and Verilog are used for the hardware cus-

tomization: the optimization process is that one typical of hardware de-

sign on FPGAs where the behavioral HDL descriptions are substituted

by FPGA-specific macros, when expected performance are not achieved

directly from synthesis. On the programmability side, since HDL is the

entry-point, all the C-based language generating VHDL can be applied

for a more software approach, but the optimization process is performed

under the hardware design paradigm, for example analyzing timing con-

straints and critical paths.

50 Programming tools for reconfigurable processors

3.6 Griffy project overview

This section introduces the Griffy project, a programming environment for

reconfigurable processor focused on C language for the processor core and

a simplified C syntax for the reconfigurable device. Implementation de-

tails of the most significant steps will be described in the following chap-

ters and results achieved developing applications will be provided. The

approach has been originally applied to the XiRisc reconfigurable pro-

cessor [66], developed at the Arces/STM joint lab of the University of

Bologna, and it is currently applied also to the DREAM adaptive DSP

[75] and to the XiSystem [67] integrating in the same chip XiRisc and a

standard eFPGA. All these systems are based on processor cores driving

one or more reconfigurable devices (connected as functional units or co-

processors), thus providing the system reconfigurability at level of assem-

bly instruction. As an example, in the case of XiRisc, the reconfigurable

device (the PiCoGA) is fit in the processor pipeline as an additional func-

tional unit, triggered by a dedicated assembly instruction called pgaop,

whereas in the DREAM architecture the reconfigurable co-processing sub-

system based on PiCoGA-III is handled, for simplicity, by standard mem-

ory access (as an example, computation is triggered by store operation).

The functionality associated to an extended instruction (in the following

commonly called pgaop) is modelled as a DFG, implemented in a pipeli-

ned form in order to enhance computation performance.

Figure 3.4 shows the overall programming environment proposed to

the application developer. Through the profiling analysis the program-

mer can identify the critical kernels suitable for the mapping on recon-

figurable hardware, evaluating the performance of the new implementa-

tion in order to find the best partitioning between reconfigurable hard-

ware and software. The compiler tool-chain is based on a retargeted ver-

sion of the GNU GCC and instruction set extensions are handled through

assembler inlining. No specific scheduling support is provided for the

extended instruction set, although recent versions of GCC (3.2 and later)

counts the number of semicolons (“;”) inside the assembler inlining tem-

3.6 Griffy project overview 51

picogaop

extraction
Kernel

PiCoGA Mapping

Software Simulation

Memory:

Registers:

C Code Profiling Optimized
C Code

Function
Emulation

Code
Executable

Configuration
Bits

Figure 3.4: Griffy Algorithm Development Environment

plate in order to roughly estimate the number of cycle required (the idea

is to consider 1 cycle per instruction, thus 1 cycle per semicolon is con-

sidered). Software simulation is provided for both pure functional debug-

ging on the GNU GDB and cycle-accurate instruction-set simulation with

the LISA and System-C supports. Differently to the compiler, the simu-

lation environment supports the instruction metamorphosis through the

utilization of a dynamically linked shared library (.so library under Linux

environment). The emulation library of the instruction set extension is au-

tomatically generated from DFG compilation, and is currently successfully

plugged in both GDB and LISA/System-C environments [15].

The functionality of each instruction set extension is described starting

from a single-assignment manually-dismantled C syntax called Griffy-C

[71]. Griffy-C is a structural description in which basic C operators, like

sum, subtraction, bitwise logical operation and comparison, are directly

mapped on hardware resources, without logic synthesis. Figure 3.5(a)

shows an example of the Griffy-C code used to implement a simple sum of

absolute differences (SAD) required on video encoding applications and

the corresponding (non-optimized) Data Flow Graph. Griffy-C does not

support control flow statements, with the only exception of the conditional

52 Programming tools for reconfigurable processors

#pragma pga sad4 1 2 out p1 p2

�

short int sub0a, sub1a, sub0b, sub1b;

unsigned short int sub0, sub1;

unsigned char cond0, cond1, p10, p11, p20, p21;

#pragma attrib sub0a, sub1a, sub0b, sub1b SIZE=10

#pragma attrib cond0, cond1 SIZE=1

p10=p1; p11=p1 �� 8; p20=p2; p21=p2 �� 8;

sub0a=p10-p20; sub0b=p20-p10;

cond0=sub0a�0;

sub0=cond0 ? sub0b : sub0a;

sub1a=p11-p21; sub1b=p21-p11;

cond1=sub1a�0;

sub1=cond1 ? sub1b : sub1a;

out=sub0+sub1;

�

#pragma end

(a) C-level description

p1

p10
(=)

p11
(>>)

sub0a
(-)

sub0b
(-)

sub1a
(-)

sub1b
(-)

8

p21
(>>)

p2

p20
(=)

cond0
(<)

sub0
(? :)

cond1
(<)

sub1
(? :)

0

out
(+)

(b) DFG - Graphical view

Figure 3.5: DFG Description

assignment (“? :”) used to implement multiplexers, in hardware terms, or

the merge-node under the dataflow paradigm. Detailed description of the

Griffy-C syntax is provided in Appendix A.

The C-oriented description implies that some operations with constant

operands may be resolved by constant folding and collapsing on following

nodes. This kind of operators do not need explicit instantiation of process-

ing elements, an this kind of optimization can be regarded as a very basic

synthesis step. An example of such approach is the utilization of the rout-

ing resources to implement constant amount shifts in a fine grain routing

architecture. Figure 3.6(a) shows the collapsing of shifts used in the pre-

vious SAD example for unpacking the input variable, thus providing in

the Figure 3.6(b) the optimized pipelined DFG. In the figure, nodes are de-

picted aligned per pipeline stage and dotted nodes represent the collapsed

operators.

The single-assignment syntax used in Griffy-C allows the user to han-

dle accurately the pipeline structure and at the same time can be automat-

ically generated from a high-level compiler tool-chain as proposed in [88].

3.6 Griffy project overview 53

(>>) (>>)

p1

p10
(=)

p11

sub0a
(−)

sub0b
(−)

sub1a
(−)

sub1b
(−)

8

p21

p2

p20
(=)

cond0
(<)

sub0
(? :)

cond1
(<)

sub1
(? :)

0

out
(+)

(a) Synthesis step

p1

p10
(=)

p11
(>>)

sub0a
(-)

sub0b
(-)

sub1a
(-)

sub1b
(-)

8

p21
(>>)

p2

p20
(=)

cond0
(<)

sub0
(? :)

cond1
(<)

sub1
(? :)

0

out
(+)

(b) Pipeline building

Figure 3.6: Example of optimization of routing-only operators

Specific extensions for the definition of the variable size at bit-level are pro-

vided through #pragma directives in order to reduce the area occupation.

The mapping process can be divided in five main steps:

� Instruction-Level Parallelism extraction. Starting from the data depen-

dencies of the DFG, an optimized scheduling algorithm builds the

pipeline structure. Griffy-C code is analyzed and scheduled in pipe-

line stages applying an earliest firing rule, in which instructions are

executed as soon as possible. Detection of routing-only instructions

allows to build optimized pipeline stages, although the presence of

an eventual internal state (e.g. described by static variable in the C

syntax) requires special management.

� Physical Mapping. The arithmetic and logic operations that require

computational resources on the array are generated with a proper

configuration. The result is a netlist, annotated with configuration

bits, where elements are hierarchically organized for pipeline stage

and macro-elements (the set of basic computational blocks imple-

menting a Griffy-C operation).

� Placement, routing and pipeline synchronization. In this phase the netlist

is arranged on hardware-specific resources, while synchronization

mechanisms required for the pipeline evolution are programmed.

54 Programming tools for reconfigurable processors

� Bit-stream generation is the last step in the configuration process, and

provides the set of bits necessary for hardware configuration in a C

vector form that can be included in all the standard processor tool-

chains.

The validation process or debugging is an additional key point re-

quired to an algorithm development environment. In reconfigurable com-

puting handled by a processor core, the overall simulation can be man-

aged by a standard software debugger like that one provided in the GNU

environment by GDB (and its graphical interface DDD) or by the cycle ac-

curate tools provided for LISA/System-C environments. In both cases, in

the Griffy-C approach the validation of the reconfigurable part is handled

by a separate viewer that shows the same Griffy-C code written by the

user annotated with intermediate results. Breakpoints and control flow

management are in general handled by the processor debugger, and the

application developer can only inspect the status of the reconfigurable

unit. As an example, Figure 3.7 provides a screen-shot of the GDB-based

debugging environment augmented with the Griffy code viewer.

Applications development under the Griffy-C approach is a process in

which the programmer can move the application from software to hard-

ware in a sort of continuous space. In fact, starting from the original C

code, the user manually rewrites the code in Griffy-C, usually working

with C-based operators and then starts the performance analysis. The par-

titioning between C-code on the processor and Griffy-code on the recon-

figurable device is an iterative process of refinement where experience and

knowledge plays a very important role. But, differently to methodologies

borrowed from FPGA design, this kind of approach is mainly software-

oriented. In fact the user can change the partition and can optimize the

kernel mapped on the reconfigurable hardware in the same way that DSP

programmers use assembly for speeding-up their applications. Optimiza-

tion of Griffy-C code can be performed at two main levels: pipeline re-

styling and intrinsic optimization. In the first case, the pipeline structure

is modified playing with data-dependencies in order to retime the graph

or to adjust the write-back points in pipeline, for example using software

3.6 Griffy project overview 55

Figure 3.7: Griffy-C Debugging and Validation Environment

pipelining methods [59, 60]. In the second case (intrinsic optimization),

the programmer can substitute part of the code with optimized operations

like the direct instance of a look-up table. For software programmers this

seems the assembly-level optimization in which high-level code is substi-

tuted by built-in functions, linear assembler or assembler, since the syntax

remains strongly sequential and imperative, without any kind of direct

parallelism exposition. Only tools are responsible of that.

56 Programming tools for reconfigurable processors

Chapter 4

Mapping DFG on reconfigurable

devices

This chapter describes the mapping of Data Flow Graphs (DFGs) described

by Griffy-C on a reconfigurable device. DFGs are implemented in a pipeli-

ned form, in order to improve the final performance. Instructions schedul-

ing is required to transform software DFG into a pipelined DFG, although

some optimization steps can be applied only under some hypothesis on

the underlying architecture. After a general part, the chapter includes the

description of target-specific back-end flows for the mapping on PiCoGA

(in particular, for the ��� release) and on a commercially available eFPGA,

through the generation of VHDL description.

4.1 ILP exploitation through pipelined DFG and

Petri Nets

Griffy-C code, as described in Appendix A, features a single-assignment

manually-dismantled syntax in which each operation is described by:

���� � �	
���

������ ����� � � � � ������

Single-assignment form means that each variable can be assigned only

once, while the manually-dismantling underlines the fact that each �	
���

57

58 Mapping DFG on reconfigurable devices

is defined by a single operator. Griffy-C syntax borrows most of the oper-

ators from the C syntax (in fact, Griffy-C is a simplified C syntax), but also

includes a set of built-in functions (or hard-macros) useful to instance op-

timized, and commonly target-specific, functionalities (similarly to built-

in functions or intrinsics of DSPs). As an example, the capability to di-

rectly specify LUTs on the PiCoGA is offered by means of a dedicated

hard-macro. The semantic of Griffy-C is strongly sequential, as in ANSI

C, and no parallel statements are defined. This means that parallelism is

extracted from the code.

Given a set of instructions � , a sequential semantic rule implies to ex-

ecute instructions in the same order they are defined. This firing rule de-

fines the data dependencies among the different instructions. Under the

Von Neumann paradigm, that is the underlying paradigm of software pro-

gramming, data are stored in the memory and the access to the memory

defines a sort of synchronization point. Since variables are implemented

as memory locations, the access to these memory locations can be used

to define the concept of data dependency. There are three types of data

dependencies, which also happen to be the three data hazards:

� Read after Write (RAW or ”True”): �� writes a value used later by ��.

�� must come first, or �� will read the old value instead of the new.

� Write after Read (WAR or ”Anti”): �� reads a location that is later

overwritten by ��. �� must come first, or it will read the new value

instead of the old.

� Write after Write (WAW or ”Output”): Two instructions both write

the same location. They must occur in their original order.

Due to the single-assignment form of Griffy-C the third kind of de-

pendency cannot occur, while RAW and WAR can occur. If only RAW

dependencies occur and then the resulting graph will be a direct acyclic

graph. Variables read before written implement an internal state, and are

implemented in C using the static attribute. Exploitation of the available

instruction level parallelism needs to relax the sequential semantic rule

4.1 ILP exploitation through pipelined DFG and Petri Nets 59

preserving the behaviour of the block, thus preserving the data depen-

dencies.

Let us consider the set of instructions � defined as:

� �
�

��

�� ��
�����
�� ������
�

� ������ �

where the index � defines the order in which instructions are declared,

thus executed. Moreover, let us suppose that at a given time � the set of

variables ������� be available. Then the instructions that can be executed

at time � � � are that ones for which is true:

�
� ������ � �������

����� � �����	 � � �� � �� �

While the first check preserves the RAW dependencies, the second one

is required to preserve WAR dependencies and it is always verified for

direct acyclic graphs. Substituting the fully sequential semantic rule with

this set of relaxed rules, it is possible to execute concurrently a set of in-

structions, based only on the verification of the data dependencies. Data

Flow Graph (DFG) representation in Fig. 4.1 shows the result of this in-

struction reorganization (or scheduling), where instructions (represented

as nodes) are aligned for execution time. Edges represent the data depen-

dencies among nodes: forward edges represent RAW dependencies, while

backward edges represent WAR dependencies. This kind of scheduling is

also known as As-Soon-As-Possible (ASAP) scheduling policy, since in-

structions are executed in the first safe temporal slot.

Under the Von Neumann paradigm, a central memory stores the vari-

ables and a processing unit perform the elaboration. Storage and process-

ing are distinct units, and the communication between them is often a sig-

nificant bottleneck. On the contrary, hardware implementation joins stor-

age and processing in the same unit. Each processing element is directly

connected with the other processing elements providing the input data,

thus requiring storage element to provide temporal disambiguation and

to avoid Write-after-Read hazards.

60 Mapping DFG on reconfigurable devices

I1

I2

I3

I4

I5

I6

I1 I2 I3

I4

I5

I6

SEQUENTIAL EXECUTION
PARADIGM

DATA−DEPENDENCY BASED
RELAXED PARADIGM

Figure 4.1: Computation paradigm relaxation preserving the data dependencies

In order to improve the computational efficiency, each DFG computa-

tion can start before the completion of the previous ones, thus overlapping

(pipelining) the execution of more DFGs. To achieve this, data dependen-

cies shall be checked in order to preserve the behaviour, verifying the pos-

sibility to update a given variable. In general terms, the computation of

each node can thus start when inputs are available and outputs can be up-

dated. This second condition is a little more complex with respect to the

pure WAR safety and includes the computation time required to read and

elaborate each data. For synchronous digital circuits, time is measured in

term of clock cycles, although the clock cycle period depend on the com-

binatorial logic used. In this context, it will be supposed that the clock

period is defined by the most complex computational nodes, then each

computation node (or Griffy operation) requires at the most one clock cy-

cle. Under this assumption, at a given time � the execution of each node

(or instruction ��) can be triggered when:

4.1 ILP exploitation through pipelined DFG and Petri Nets 61

� inputs are available

�
� ��������� � �������

� outputs can be updated, since

– all the preceding nodes ���� requiring the old value of �� are

already triggered, hence the old value of �� is not more required

(WAR check)

�������� � �����	��� � � �� � �� �

– given at the time � the on-going

� DFG iteration, a node rela-

tive to the
 � �
� iteration can be triggered if

� RAW and WAR dependencies for the
 � �
� iteration are

verified (as in previous items)

�
� ���������
 � �� � �������
 � �� � � � 	

��������
 � �� � �����	���
 � �� � � � � � 	� �� � �� �

� all the successive nodes ���� relative to the previous DFG

iterations
 � �
� with � � � have already read the output

����� �� corresponding to the �
��iteration (temporal depen-

dent RAWs and WARs)

��������
 � �� �	 �����	���
 � �� �� � �� �� � �� �

This process can be better and more intuitively modelled by Petri Nets

[65]. A Petri Net is a three-tupla (P,T,A) where:

� P is a non-empty set of place denoted by
��� ��� ���� ���;

� T is a non-empty set of transitions denoted by
��� ��� ���� �
�;

� A is a non-empty set of directed arcs;

such that � �� �, � �� � and � � � � �, � � � � �
 � � � . Pictorially, P, T

and A are respectively represented by circles, bars and directed arcs. Each

62 Mapping DFG on reconfigurable devices

I1 I2 I3

I4

I5

I6

T1 T2 T3

T4

T5

T6

Figure 4.2: DFG and the corresponding Petri Net representation

transition is enabled when all the places connected to the transition have at

least one token. In our case, we consider a subset of Petri-Net in which at

most one token can reside in each place and the status is updated at dis-

crete steps, hence each transition is fired when all the tokens are available

(earliest firing rule) at discrete step of time (also known as timed Petri Net

[64]).

Computational nodes are associated to transitions, and firing a transi-

tion means executing an operation. Starting from a Data Flow Graph, each

edge is substituted by two arcs, respectively forward and backward (with

respect to the direction of the original DFG edge). Forward arcs determine

the availability of a new input data, while the backward ones determine

the request of new data, under a producer-consumer mechanism. Fig. 4.2

shows an example of DFG and the corresponding Petri Net representation.

Tokens, depicted as black circles, identify the initial state in which all the

operations require data to compute, and (let us suppose) the primary in-

puts are available. Transitions featuring a token for each input arcs are ��,

�� and ��, then can be fired at time �. At time ���, only �� can be triggered,

while at ��� either ��, �� and ��. At time ���, �� and �� can be triggered,

and so on, as described in Fig. 4.3.

4.1 ILP exploitation through pipelined DFG and Petri Nets 63

T1 T2 T3

T4

T5

T6

T1 T2 T3

T4

T5

T6

T=t+3

T1 T2 T3

T4

T5

T6

T=t+4

T1 T2 T3

T4

T5

T6

T=t+1 T=t+2

Figure 4.3: Petri Net transition firing

Pipelined execution of DFGs, under a Petri Net paradigm, implies that

intermediate results are stored in registers, since temporally different in-

stances of the same DFG are overlapped. But, also in this case, two con-

siderations can drive further optimizations:

� in digital synchronous design, registers sample the input at the rising

(or falling) edge of the clock, and their outputs don’t change during

the clock period. This means that the backward arcs can provide

their tokens at the beginning of the clock cycle in which transitions

are fired, allowing to implement more compact pipelines.

64 Mapping DFG on reconfigurable devices

� if the target architecture features programmable routing, some oper-

ations can be implemented only by routing resources, like in the case

of a shifts with constant amount. Furthermore, under some hypoth-

esis (discussed in the following), some operation can be collapsed

in the successive operations. This is the case of bit-wise logic oper-

ation involving a constant that can be reduced to selective connec-

tions (some bit connected, some bit constant to 1 or 0) or bit-wise

not. If the architecture provides LUTs or input inversion logic, also

this kind of operation can be considered routing-only since its imple-

mentation does not require specific computational resources. This

optimization can be used to optimize the instruction scheduling in

order to implement more compact pipelines.

Last two items improve the timed Petri Net evolution in order to achieve

better pipelines and then better throughput. This is the computational

schema proposed in the Griffy project, that will be described in the fol-

lowing, and that can be summarized in:

� a Pipelined Data Flow Graph is built exploiting the instruction-level

parallelism from the sequential Griffy-C code.

� for a given DFG, RAW and WAR dependencies are preserved at com-

pilation time by the Griffy scheduler, while hazards across different

iterations of the same DFG are handled by dedicated hardware at

execution time. For that:

– without loss of generality, each pipeline stage (composed by a

set of concurrent computational nodes) is considered as a Petri

Net transition, under an ASAP scheduling policy.

– pipeline management is handled by a programmable control

unit, generated by Griffy tools. Each element of the control unit

represents a programmable Petri Net transition which enables

the execution of the respective (set of) computational node(s)

depending on sources and resources availability.

4.2 Instruction scheduling: optimized DFG for pipelined computation65

It should be noted that spatial computation is preserved by the com-

piler, during the pipeline organization. On the contrary, temporal depen-

dent hazards are checked at execution time, since the pipelined and over-

lapped execution of successive DFG iterations is dependent on conditions

non-predictable at compile time, as the inputs availability, external condi-

tion of stalls and, of course, the frequency of DFG triggering.

4.2 Instruction scheduling: optimized DFG for

pipelined computation

Instruction scheduling is the phase in which sequential Griffy-C code is

selected to be executed in a specific pipeline stage, thus translating a se-

quential description in a concurrent pipelined form. This process borrows

the instruction firing mechanism of the Petri Nets, since instructions can

be executed in a specific pipeline stage under the same hypothesis that

enable the transition firing. This section describes the selection algorithm

used in the Griffy flow, starting from a simplified version for direct acyclic

graphs (DAGs) and thus improving the algorithm to support functionali-

ties holding an internal state. In the first case only RAW dependencies are

considered, while in the second one also WAR dependencies will be taken

into account.

After the scheduling phase, the flow becomes mainly target specific

and includes for example the place & route phases. The next section will

provide an overview of two target specific back-end, the first one for the

PiCoGA-III (featuring a dedicated control unit) and the second one for a

commercially available eFPGA programmed generating standard VHDL

description.

4.2.1 Scheduling of direct acyclic graphs

A direct acyclic graph is a graph with one-way edges containing no cycles.

This means that if there is a route from node A to node B then there is no

66 Mapping DFG on reconfigurable devices

way back. In “software” words, this means that each variables is written

before read, then only RAW data dependencies can happen, without static

variables.

Under the earliest firing rule, each instructions is executed as soon as

possible, thus in the first pipeline stage in which input data are avail-

able. Routing only operations can be considered as operations featuring

zero-time execution, then they provides data available in the same stage

in which the instruction is executed. On the contrary, the other instruc-

tions will provide variables available only in the next pipeline stage. In

this case, the corresponding ASAP scheduler is very simple, and can be

represented by the pseudo-code in Fig. 4.4.

� �
�
�
��� �� ��
 �� ���
���
����

� � �� �� �����
�� ���
���
���� ���
�� ������
 �������� �
���

�� � �� �� ������
 �������� �
���

������ ��! ��� �
�

���
��" ����
�

����� 	� �� �
 �

������� �� �� � ��

�� 	�������	��
 � ������ ��! ���
 �

� � � � ��

�� 	�� �� ���
��� ���"
 �

������ ��! ��� � ������ ��! ��� � ���
���
���	��
�

�

�

���

� ��������
���	��
 � � � ��#���� �������� �
���

� � � � � � �� $�
��� �%���
�� ���
���
����

������� �� �� � �� ��&���
� ������ �� ����� ���

������ ��! ��� � ������ ��! ��� � ���
���
����	��
�

���

�� ��� ��&���
� ������
 �������� �
���

� � �� ��$���
 �����
�� ���
���
����

�

Figure 4.4: DAG scheduling pseudo-code (with routing only optimization)

It is important to observe that while the scheduling algorithm pre-

serves the read-after-write data dependencies inside a specific Griffy op-

eration, in case of pipelined (overlapped) execution of successive instances

of the same Griffy operation also write-after-read hazards shall be checked.

In fact, each pipeline stage can accept a new computation when the out-

4.2 Instruction scheduling: optimized DFG for pipelined computation67

puts can be updated (there is a write-after-read check), under the compu-

tational paradigm explained in the previous section. This second check is

provided by a Petri-Net based hardware pipeline manager that, depend-

ing on the data dependencies, allows or not to trigger pipeline stages.

4.2.2 Scheduling of data flow graphs

To consider complete DFGs means to take into account DFGs featuring an

internal state. In particular two additional effects are to be considered. The

first one is given by the presence of static variables (used to implement a

state) for which the old value is available at the beginning of the DFG

computation, be it an initialization value or a real value referred to a past

computation, and that can be update only when all the WAR dependencies

are preserved. The second effect is given by the presence of routing-only

operations for which the optimization process would remove the corre-

sponding memory location. Let us consider the following example:

static int status;

tmp1 = status << 1;

status = in + 5;

out = tmp1 + 1;

In this case, standing the routing-only optimization of ����, the
	�

variable must be considered dependent from the old value of ����	�, and

the scheduling algorithm shall preserve this behaviour adding a firing

rules. In this case WAR hazards are verified by:

�������� � �����	��� � � �� � �� �

� ������������� � �����	��� � � ��� �

where the function � ���1 represents any possible direct or indirect de-

pendency to the static variable �����. A direct dependency represents the

case in which a routing-only instruction involves a static variable. Let us

define this case as direct static alias, and let us define as indirect static alias
1the term alias is used since the operation can be considered as an alias representation

of the memory location of the original variable

68 Mapping DFG on reconfigurable devices

(and consequently a indirect dependency to a static variable) a routing-

only instruction which involves a direct static alias or another indirect

static alias. Under this assumption, a static alias (both direct and indi-

rect) depends to one or more instructions holding a state. Then, the static

variables shall be updated only when both direct and indirect (by means

of routing-only propagation) WAR dependencies are preserved.

Let us consider now the following code:

static int status;

tmp1 = status << 1;

status = in + 5;

out = tmp1 + status;

In this case, we have that
	� reads both the old and the new value

of the static variable ����	�. This implies that ���� cannot be optimized,

since only different storage elements can preserve the original behaviour.

Hence routing-only optimization depends from the overall DFG and the

adopted scheduling policy, and not only from the specific instruction.

The scheduling algorithm proposed in the Griffy project supports both

static variables management and routing-only optimization. Routing-only

operations are detected depending on the features of the single instruc-

tion, checking the operation type and the sources involved. The PIPEREG

attribute (see Appendix A) can be used by the programmer in order to

force a routing-only instruction to be non optimized (for example, in or-

der to build a delay line or to retime a graph). The scheduling algorithm

tries to execute all the operations that satisfy the earliest firing rule, con-

sidering as zero-time executed all the routing-only instructions similarly

to the scheduling algorithm proposed for DAG. In addition to that basic

algorithm (Fig. 4.4), a check condition enables the firing of instructions

involving static variables and alias of static variables.

In the first case, the computation of an instruction �� having as desti-

nation a static variable (thus an instruction holding an internal state) is

enabled only if all the instructions which need to read the old value of ��

are already executed or they are executed in the current pipeline stage. In

the second case, a static alias could be triggered in the first pipeline stage

4.2 Instruction scheduling: optimized DFG for pipelined computation69

Pure ASAP scheduling ALAP correction for static variables

Figure 4.5: Example of ALAP correction for static variables

in which non-static variables are available (at the most, in the first pipeline

stage), but this could create longer paths in the case of shift registers. As

shown in Fig. 4.5, the firing of static alias following a pure ASAP policy

could imply that a chain of registers is split over more than one pipeline

stage, hence increasing the critical path (and the issue delay) since past

values are available from the beginning. For that, the Griffy scheduling

algorithm tries to delay the execution of static alias2 As Late As Possible

(ALAP), implementing in many cases a more efficient pipeline structure,

as in the right part of Fig. 4.5.

On the other hand, check conditions enabling the execution of an in-

struction are both coherence and optimization checks. If the enabling con-

dition is not verified, then the instruction �� is not fired and is removed

from the set of instructions suitable for the execution in the current pipe-

line stage. As a consequence of this cleaning, other instructions could be

removed since �� is not more fired and some dependencies could be not

more verified.

The resulting scheduling algorithm is reported in a simplified form in

Fig. 4.6, and is composed of a main loop executed until instructions are

available. The loop body can be partitioned in three main sections:

� candidate selection, in which instructions having available sources are

selected to be executed in the current pipeline stage;

2since the past value of a static variable can be seen as a static alias

70 Mapping DFG on reconfigurable devices

� �
�
�
��� �� ��
 �� ���
���
����

� � �� �� �����
�� ���
���
���� ���
�� ������
 �������� �
���

�� � �� �� ������
 �������� �
���

������ ��! ��� � 	
�

���
��" ����
�
 � 	
�

�
�
�� ����� ���

����� 	� �� �
 �

������ ��! ��� � ������ ��! ��� � 	
�

	�
�
�� ����� ��� � �

������� �� �� � �� �� �������
� �����
���

�� 	�������	��
 � ������ ��! ���
 � �� $�' ����(

� � � � ��

�� 	�� �� ���
��� ���"
 ������ ��! ��� � ������ ��! ��� � ���
���
���	��
�

�� 	�� �� �
�
��
 �� �
�
�� ���

���
���
�� ��� ����� �� ��

��� ������ ��

������ ��! ��� � ������ ��! ��� � ���
���
���	��
�

�

���

� � �������
������"���	�� �
�

�� 	� � �
 �

��
���
�)���
 ����
���	�
�

������

���������
���	��
 � � � ��#���� �������� �
���

� � � � � � �� $�
��� �%���
�� ���
���
����

������� �� �� � �� ��&���
� ������ �� ����� ���

������ ��! ��� � ������ ��! ��� � ���
���
���	��
�

���

�� ��� ��&���
� ������
 �������� �
���

�

� � �� ��$���
 �����
�� ���
���
����

�

Figure 4.6: Simplified DFG scheduling algorithm

� candidate analysis, in which both RAW and WAR dependencies are

verified, as well as the ALAP correction for static management is

applied (see pseudo-code in Fig. 4.7);

� commit stage, in which instructions selected for the execution on the

current pipeline stage (after passing the previous check) are commit-

ted and removed from list of pending instructions. Furthermore the

corresponding destination variable becomes available for the next

pipeline stage. In the case of no instructions selected for execution,

the scheduling algorithm activates the disambiguation mode, in which

conflicting routing-only instructions are de-optimized adding a PI-

PEREG attribute.

4.2 Instruction scheduling: optimized DFG for pipelined computation71

It should be noted, from the code in Fig. 4.7 that the ALAP correction

is applied only if static alias are involved in the computation. Then, using

temporary and routing-only variables it is possible to choose the way in

which a set of correlated static variables is scheduled. As a choice, if the

old value is passed through temporary instructions (indirect dependency)

a tentative of alignment (critical path optimization) is done, while if the

old value is passed referring directly the static variable, ALAP correction

is not applied. It is possible to avoid this side-effect applying the ALAP

correction also to static variables, but in this case the disambiguation mode

shall work in two phases. In the first one, the ALAP correction will be

relaxed (removed) without generating new registers, while in the second

phase (the second round without fired instruction) the routing-only de-

optimization shall be applied.

4.2.3 Execution-time pipeline management

Given a Data Flow Graph (DFG) organized in pipeline stages, pipeline ex-

ecution of successive DFG instances shall be enabled checking at run-time

the data-dependencies. For that, each pipeline stage is represented by a

node of the Pipelined Data Flow Graph (PDFG) representing the data de-

pendency across pipeline stages. Data dependencies are analyzed and for

each pipelined stage is generated a pipeline controller, implementing the

handshake mechanism described by the corresponding Petri-Net transi-

tion. The basic pipeline stage controller, depicted in Fig. 4.8 features:

� a preceding input port, providing the pipeline stage controller infor-

mations about inputs availability;

� a successive input port, providing the pipeline stage controller infor-

mations about the possibility to update the outputs;

� an execution enable that triggers the computation of the pipeline stage.

P-blocks and S-blocks are the basic sub-blocks that verify, respectively,

the preceding and successive input ports. The internal structure of these

72 Mapping DFG on reconfigurable devices

����
��� �������
������"��� 	���
���
��� ���
 �� ���
���
��� ���
 �
 �

������� �� �� � ��

���

������
���
���	��

 � �� ���

�� �� � ����
���
���	��

 � ��

�������
���
���	��

 � �� ��������
���
���	��

 � �� $��� �� � ����
���
���	��

 � ��

���

������� �� �� � ��

������� �� �� �������	��
 ��

��		���
�
��	��
 �
���
���	���

�����
 � �

 �������
 � �� �� $��� ���
 ����� 	���

���� ������
 � �� �� $��� ��� �����

��		���
�
��	��
 �
���
 ��� 	���

�����
 � �
 ��� 	�� 	 �

 $��� �� � ���
 � ��

���

�� 	���
�
��	���
���
���	��

 �
���
 ���

������
���
���	��

 � ��

�� 		���
�
��	���
���
���	��

 �
���
 ��� 	�� 	 �

 ���

�� �� � ����
���
���	��

 � ��

���

�� � ��
���� � ��

������� �� �� � ��

�� 	���
�
�������	��

 �� �
�
�� ����� ����(

������� �� �� �������	��
 ��

��	���
�
��	��
 ��� ���

�� �� � ���
 � �

$�
���$�����*��
�������
�	�� � �
� ��
���� ���

���

���

������� �� �� � �� �� �
�
�� ����(� ��� ����� �� �� ����� � "�
 ����

�� 	���
�
��	���
���
���	��

 ��� 	$��� �� � ����
���
���	��

 � ��������
���
���	��

� � � � ��� ��
���� ���

���

� ����� 		��
���� �� �
 ��� 	� �� �

��
���� �

�

����
��� $�
���$�����*��
�������
� 	���
���
��� !� ���
���
��� ���
 +
 �

+ � + � ! �

������� +� �� + ��

��	���
���
���	!
 	 �������	+�

 $�
���$�����*��
�������
�	+� � +
�

���

�

Figure 4.7: Candidates analysis algorithm

sub-blocks is reported in Fig. 4.9. Execution enables provided by the other

pipeline stages are used as preceding and successive signals (directly con-

nected or routed by a programmable interconnect), and are stored inter-

nally to the specific sub-block until the pipeline stage is fired since they

can disappear after a single execution. Thanks to a feedback path, both

P-block and S-block maintain the local execution enable until the global

execution enable is fired, while it is reseted when after a triggering. Differ-

4.2 Instruction scheduling: optimized DFG for pipelined computation73

EENs1

EENp2

RCU

EENp0

EENp1

EENs0

RESET

EEN

P−block 0

P−block 1

S−block 0

P−block 2

S−block 1

C
O

N
F

IG
U

R
A

B
LE

 C
O

N
N

E
C

T
IO

N
 B

LO
C

K

Figure 4.8: Pipeline stage controller simplified architecture

ently from the P-block, the S-block features a combinatorial path (dashed

in Fig. 4.9) that allows to early evaluate the data request from succes-

sive pipeline stages, thus improving the pipeline evolution and the overall

throughput (relaxing the timed Petri-Net model).

P−block

S−block

EEN

RESET

EENs

EEN

RESET

EENp

ENABLEs

ENABLEp

Figure 4.9: P-block and S-block simplified architecture

For each pipeline stage, the Griffy-C compiler generate a specific pi-

peline stage controller and the corresponding data dependencies with the

other pipeline stages. In the following code, 4 pipeline stages (here termed

virtual rows, or V-Rows) are described, as well as dependencies from pri-

74 Mapping DFG on reconfigurable devices

mary inputs and outputs.

.output out 4

V-Row: 1

Preceding: #gins

Successive: 2

V-RowEnd

V-Row: 2

Preceding: 1

Successive: 3

V-RowEnd

V-Row: 3

Preceding: 2

Successive: 4

V-RowEnd

V-Row: 4

Preceding: 3

Successive: #gouts0

V-RowEnd

4.2.4 Griffy Front-End architecture

The overall architecture of the Griffy Front-End compiler is shown in Fig.

4.10. Lexer and parser are implemented using standard tools (GNU Flex

for the lexer and GNU Bison for the parser), which allow to verify the

grammar of the input Griffy-C code and translate them into an abstract

syntax tree (AST). The next is the (semantic) verification of the DFG de-

scription. It is performed at AST-level in order to verify the correctness of

the code, including additional checks on the single-assignment form, on

the variable declaration, and on the read-after-write dependency of non-

static variables. When a condition is not verified, the compiler break the

execution and provide an error message to the user.

Analyzing the instructions and the kind of variables involved in the

computation, the compilation flow detects the instructions suitable for

routing-only optimization. Then, it starts the phase of pipeline organiza-

tion in which instruction level parallelism is exploited using the schedul-

ing algorithm explained before. As a result, a netlist is generated with

4.2 Instruction scheduling: optimized DFG for pipelined computation75

Lexer/Parser

Griffy−C

Grammar checks

DFG checks
Declaration check

Single−assignment check
RAW check for non−static variables

Alias
Analysis

ILP
Extraction

Emulation

Netlist
Generation

Model

Graphical
DFG dump

Griffy Netlist

ANSI−C

.dot file

Emulation

(for GraphViz)Pipeline
Management

Figure 4.10: Simplified Griffy Front-End architecture

the corresponding pipeline structure and activation sequence. During the

netlist generation, aliased signals (derived from the utilization of alias in-

structions) are substituted by the corresponding physical implementation.

For example, a shift with constant amount is obtained by appropriately

rearranging the input variable, and a bitwise-and with a constant is im-

plemented by connecting the signals corresponding to 1s and by open-

connection for the 0s. Furthermore, taking into account the pipeline struc-

ture, a simulation model is generated, emulating the Griffy-C code in stan-

dard ANSI-C. As a user facility, a graphical view of the pipelined DFG is

dumped using the .dot format of the GraphViz tools (free download from

Graph Visualization Software, www.graphviz.org).

76 Mapping DFG on reconfigurable devices

Lexer/Parser

Griffy−C

Grammar checks

DFG checks
Declaration check

Single−assignment check
RAW check for non−static variables

Alias
Analysis

ILP
Extraction

Emulation

Netlist
Generation

Model

Graphical
DFG dumpPipeline

Management

Griffy Netlist

ANSI−C
Emulation

.dot file
(for GraphViz)

Library
Macro

Netlist
Target−dep Routing

Control Unit
Configuration

Bit−stream
Generation

Placement

information
area

Figure 4.11: Simplified Griffy flow for PiCoGA-III

4.3 Target-specific customizations and back-end

flows

Previous sections have described the Griffy flow for a generic target. The

description has been focused on the exploitation of instruction level par-

allelism as a mean to organize DFG in pipeline stages. This is a common

point for most of the reconfigurable architectures, although specific cus-

tomization including checks or optimizations shall be implemented. In

this section, it is provided a brief overview of two specific customizations.

In the first case, Griffy-C is used to configure the PiCoGA (in particular, the

description focus on the ��� release, PiCoGA-III, included in the DREAM

adaptive DSP), while the second target is a commercially available embed-

ded FPGA for which a VHDL code is provided from a Griffy description

in order to enter in the eFPGA proprietary tool-flow. Furthermore, for the

PiCoGA is outlined the back-end tool-flow including the place & route

and the bitstream kit.

4.3 Target-specific customizations and back-end flows 77

4.3.1 DFG mapping for PiCoGA

PiCoGA-III is a reconfigurable device implementing pipelined data flow

graph on a hybrid architecture in which computational parts are mapped

on an island-style matrix of 16�24 4-bitwise tiles, while the pipeline man-

agement is handled by a dedicated pipeline control unit. For that, while

the front-end, does not need a specific customization3, but require a com-

plete target-specific back-end flow. In fact, under some hypothesis on the

connectivity, the netlist provided by the front-end is not target specific,

and the specific PiCoGA customization only requires to add a physical

mapping phase in which:

� each computational nodes is implemented using the resources avail-

able on one or more reconfigurable logic cells (RLCs), thus providing

a target-specific mapping;

� each pipeline stage controller is implemented using the dedicated

row control units.

Physical mapping is implemented using a library-based approach in

which each Griffy computational node is split into one or more RLCs. No

physical synthesis is performed, if we exclude the routing-only optimiza-

tion implemented in the Griffy Front-End. In fact, Griffy code is intended

as a structural way to effectively handle a reconfigurable device under

a pipelined DFG paradigm, providing the programmer a low-level opti-

mization step similar to the assembly-level optimization for DSPs. The

target specific netlist is then placed on PiCoGA. Since each row can be

fired synchronously, each row can be used at most by one pipeline stage,

while more than one row can be triggered together in order to build larger

pipeline stages. Placement is than the phase in which pipeline stages are

split into one or more rows, and reconfigurable logic cells are fitted into.

In order to contain the number of used rows, a pseudo-malloc algorithm is

used: for each pipeline stage, computational nodes are sorted depending

3if we exclude a writeback alignment, that is implemented as an additional check

condition during the candidate analysis phase.

78 Mapping DFG on reconfigurable devices

on the relative weight (the number of RLC required for the implementa-

tion) and they are fit in the first empty space found in a free row or in a

row assigned to the same pipeline stage. Reduction of connection costs

is implemented applying simulated annealing internally to the pipeline

stage, using a Manhattan metric as cost function.

EEN1

EEN0

EEN2

EEN3

EEN4

Computational
logic

RCU 1

Row 0

Row 1

Row 4

Row 3

CONTROL UNIT

RCU−Array interfaceInterconnection Matrix

RCU 2 Row 2

PiCoGA

RCU 0

RCU 3

RCU 4

Figure 4.12: PiCoGA-III control unit programmable interconnect

After the placement phase, the pipeline control unit is configured. In

particular, the configuration of every pipeline stage controller is applied

to each row used to implement a pipeline stage. As shown in Fig. 4.12, a

dedicate programmable bus is provided the necessary handshakes, prop-

agating the execution enables between predecessor and successor nodes.

When more than one row is used to implement a single pipeline stage,

Griffy tools perform the connection with the nearest row for both preced-

ing and successive pipeline stage, in order to reduce the routing utiliza-

tion.

PiCoGA routing is programmed using a customized version of VPR

[81], a well-known open-source tool developed at the University of Toronto.

It is based on a state of the art timing-driven negotiation-based pathfinder

algorithm in which resources over-utilization is allowed in the first iter-

ations of the routing algorithm. The final solution is achieved minimize

4.3 Target-specific customizations and back-end flows 79

the overall cost that is basically driven by the Elmore delay associated to

the nets increased. To avoid over-utilization, an additional cost parameter

is introduced in order to increase the cost of overused resources, that be-

come less appealing and that shall be negotiated among the “users”. On

this context, PiCoGA specific customizations are focused on the architec-

ture modelling, while the routing algorithm is not changed with respect

to the basic one proposed in VPR. In particular, it was modelled the 2-bit

granularity of the interconnections and the particular switch-block [66].

After place & route the area required for the specific Griffy operation

is available and is reported to the simulation engine, in order to verify the

resources utilization on PiCoGA. The routing part is necessary in order

to take into account the routing exceeding the bounding box defined by

the placement, as could happen in the case of design with high routing

congestion.

The last step of the PiCoGA specific tool-chain is the generation of the

bit-stream. This topic is achieved in two steps. In the first phase both RLC

configuration (from the physical mapping) and routing configuration are

translated to a textual bit-stream that specifies the logical value of each

programmed bit. Only in a second phase bits are placed corresponding

to the physical implementation of the device and the configuration bit-

stream is generated in the form of a C vector.

4.3.2 DFG mapping for eFPGA

This section describes the mapping of Griffy-C code in device that have

a proprietary back-end flow receiving, as entry-point, standard hardware

description languages. In particular, this section describes a Griffy target

generating VHDL code implemented, as a prototype, in order to provide

the XiSystem architecture a homogeneous algorithm development envi-

ronment.

The XiSystem architecture [67] is the first time architecture integrating

two different field-programmable devices to provide application-specific

computing blocks and IOs. A XiRisc reconfigurable processor is exploited

80 Mapping DFG on reconfigurable devices

Timer

PiCoGA

Conf. Cache

AHB Slave
Interface

AHB Master
Interface

Instruction
Cache

Data
Cache

on−chip SRAM
256 KB TIC

eFPGA

DMA

Interfaces
Basic IO

Bridge

AHB

APB

256

XiRisc

Core
XiRisc

I/O pads I/O pads

PiCoGARegister
File

Figure 4.13: XiSystem SoC architecture

to achieve a more than one order of magnitude speed-up and energy con-

sumption reduction vis-à-vis a DSP-like processor, while an embedded

FPGA (eFPGA) is integrated in the system in order to make it flexible

enough to support various IO ports and protocols. The reconfigurable IO

device is also utilized for pre/post data processing and implementation of

some standard computational blocks. Fig. 4.13 shows the overall system

architecture.

While instruction set extensions for the XiRisc processor is generated

configuring the PiCoGA starting from Griffy-C by the previously described

flow, the management of the eFPGA could depend on the specific utiliza-

tion. On one hand, hardware description languages provide the designer

a straightforward way to describe I/O protocols directly exposing timing

issues. On the other hand, if the eFPGA is used for pre/post data pro-

4.3 Target-specific customizations and back-end flows 81

GCC
Compiler

PiCoGA Mapping

eFPGA Mapping

S
yn

th
es

iz
er

H
D

L

pga−op

C Code

Library

Optimized
C Code

Profiling
Registers:

Memory:

Software Simulation
Extraction

Kernel

eFPGAPiCoGA

Configuration
bits

Executable
Code

HDL
Customized

PiCoGA

eFPGA

Figure 4.14: Overall software tool-chain

cessing or as a streaming computational block the utilization of hardware

description languages could be substituted with the same high level de-

scription language (Griffy-C) used for PiCoGA configuration. Exploita-

tion of both instruction and data parallelism are key elements to achieve

impressive performance improvement also using standard reconfigurable

devices, whereas the utilization of software-like languages could be in-

tended as a way to allows software programmer to benefit from this tech-

nology. Also in this case, the detection of critical kernels is made through

an iterative profiling step, where the programmer can evaluate various

possible implementations of the algorithm. Moreover, the programmer

can choose to implement such a kernel on PiCoGA or on eFPGA (or in

both), as well as to choose what kind of approach (Griffy-C or VHDL) for

the programming of the eFPGA. Fig. 4.14 shows the overall software tool-

chain implemented for the XiSystem architecture.

In particular, the translation of the Griffy-C code in VHDL is based on

82 Mapping DFG on reconfigurable devices

PiCoGA eFPGA

Area Contexts Eff. Area Freq. Eff.

Kernel ��� used ,-	

� ��� !"� ,-	

�

Motion 11 4 15.09 10.76 52 4.81

Pred. 5.5 2 30.18 2.54 86 33.66

FDCT 7.3 2 22.64 3.18 68 21.26

Quant. 10.5 3 15.75 3.81 47 12.4

IDCT 7.3 4 22.64 9.14 46 5

Table 4.1: PiCoGA vs. eFPGA computational efficiency comparison

the same principles adopted for PiCoGA programming. A library based

generation of appropriately sized computational blocks (i.e. adder, sub-

tractor, bit-wise logic, etc.) and a library based generation of pipeline stage

controllers. A library of VHDL components implementing both computa-

tional and control parts has been developed and the back-end flow in-

stance the appropriate component thus realizing the target specific netlist.

With respect to the mapping on PiCoGA, only one pipeline stage controller

is generated since eFPGAs are not organized by rows. Moreover, the hand-

shaking among pipeline stages is handled by point-to-point direct connec-

tion. The final design mix both computational and control parts in the

same support, differently from PiCoGA approach in which computation

and control are separated.

The realization of the prototype tool-flow generating VHDL code start-

ing from Griffy-C description allowed a comparison between the PiCoGA

and the eFPGA. The comparison has been conducted on the MPEG2 en-

coder application evaluating the maximum performance achievable on

critical kernels. Table 4.1 shows the area occupation, working frequency

and computational efficiency of the same 5 circuits mapped on both de-

vices starting from the same Griffy-C code. In the case of the PiCoGA

(ver 1.0, integrated in XiRisc) a fixed frequency of 166 MHz was consid-

ered. Computational efficiency has been calculated as the ratio between

the working frequency and the area occupied on the device to implement

4.3 Target-specific customizations and back-end flows 83

Circuit eFPGA Frequency

area occupation

IEEE1284 1.5% 83MHz (SCK/2)

RS232 39% 83MHz (SCK/2)

I�C 8% 55MHz (SCK/3)

LCD + YUV-RGB conv. 28% 42MHz (SCK/4)

VideoCam 1.5% 166MHz (SCK)

CRC 32% 55MHz (SCK/3)

Reed-Solomon 20% 55MHz (SCK/3)

IDCT 60% 42MHz (SCK/4)

SCK: System CK frequency

Table 4.2: Area occupation and working frequency of circuits mapped on the eF-

PGA

the circuit. The PiCoGA advantage is maximum when all the 4 contexts

are used, as in the case of motion estimation and IDCT which are the most

critical kernels of MPEG2 encoder. This demonstrates that PiCoGA can

be 2 to 3 times more efficient than the eFPGA when implementing DSP

algorithms, since the introduction of the eFPGA is not aimed at increasing

computational density but at adding system interfacing flexibility and at

providing additional parallel pre/post processing facilities.

Common communication protocols, such as I�C, RS232 and IEEE1284,

have been mapped on the reconfigurable IO module, satisfying the spe-

cific requirements of each protocol (see Table 4.2). Moreover, it could be

convenient to map some additional post/pre-processing operations, for

example to perform data format manipulation or error correcting codes,

which are well suited to FPGA implementation because of their bit-level

granularity. This allows one to remove a portion of computational load

from the central processor. Particularly interesting are error detection and

correction algorithms such as CRC and Reed-Solomon, which is almost

ubiquitous, used for example in storage drives, wireless communications,

digital television, and broadband modems. Both have been mapped in the

84 Mapping DFG on reconfigurable devices

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

XiRisc

Y
U

V
−

R
G

B

ID
C

T

G
et

_B
its

ID
C

T
ID

C
T

Y
U

V
−

R
G

B

G
et

_B
its

ID
C

T

Y
U

V
−

R
G

B

architecture
DSP−like

XiSystem

eFPGA Processor PiCoGA

Normalized processing time

G
et

_B
its

Figure 4.15: XiSystem MPEG2 decoder performance

eFPGA, which is capable of supporting up to a 100MB/sec data rate for

the Reed-Solomon encoder.

As a proof of the benefit provided by mixed reconfigurable devices,

it has been developed an MPEG-2 application (encoder and decoder) on

XiSystem, applied to a standard QCIF stream with a frame resolution of

176x144 pixels and half-pel precision. Application-specific instructions in-

troduced with the PiCoGA achieve a 5x speed-up and 66% energy reduc-

tion on the encoder and 1.5x speed-up on the decoder. Reconfigurable IOs

are used to implement drivers for external peripherals such as an LCD dis-

play or a videocam, not binding the chip to any specific device. Since the

LCD display chosen requires RGB pixel format while an MPEG decoder

computes frames in YUV format, the necessary conversion has been im-

plemented in the eFPGA, removing this procedure from the central core.

This simple data post-processing achieved a 10% speed-up and 6% energy

saving on the whole decoder application. Moreover the coprocessor con-

figuration of the eFPGA was used to implement the row processing part

of IDCT, achieving a further 6% speed-up, as shown in Figure 4.15.

Chapter 5

Simulation of dynamically

reconfigurable processors

“Modern processors are incredibly complex marvels of engineering that are be-

coming increasingly hard to evaluate” [89].

In the case of reconfigurable architectures, simulation and performance

evaluation shows additional complexity due to the coupling of dynami-

cally programmable logic with standard processor cores. On one hand,

fast simulation is a strict requirement for a design environment in which

the iterative refinement of partitioning between hardware and software is

a critical point in order to achieve the expected performance improvement.

On the other hand, fast simulation requires the instruction set customiza-

tion to be handled using high-level models (it is not required to control

each transition associated to each signal, but only the overall behavior)

and new strategies are thus necessary in order to save both cycle-level ac-

curacy and fast reconfiguration time.

Design of reconfigurable architecture simulators can be oriented to fast

source-level retargeting or to dynamic simulator extension. In the first

case, the Instruction Set Simulator (ISS) description allows the user to

rapidly add and remove instructions from the basic instruction set, but it

requires the simulator to be recompiled for each instruction set extension.

As an example, the Language for Instruction Set Architecture description

(LISA [90]) was introduced in order to reduce retargeting time in design

85

86 Simulation of dynamically reconfigurable processors

and exploration of processor architectures, even if instruction set exten-

sion involves detailed description of new pipeline irregularity, such as the

case of different pipeline depths and internal stalls. Also the SimpleScalar

Toolset [89] allows the user to modify both the instruction set and the pi-

peline architecture. This infrastructure has been used in [91] where recon-

figuration is performed via application specific re-targeting and simulator

recompiling (Fig. 4 in [91]).

A different approach is followed in [92] where speed-up and perfor-

mance estimation involve the GNU gprof profiler and a prototype FPGA

used to synthesize application kernels. Due to space limitations, no file,

I/O, or operating system calls have been implemented on the prototype

FPGA. Kernels are implemented on the prototype FPGA allowing to com-

pare execution time for the reconfigurable implementation to software im-

plementation. The application speed-up is estimated employing the Am-

dahl’s law.

In the Griffy project, two layer of simulation environment has been

provided:

� functional simulation, in which the programmer can validate a Griffy-

C code on the host-machine (e.g. x86 Linux) using a compiled sim-

ulator, which joins the Griffy emulation and processor code in the

same executable.

� cycle-accurate simulation, in which the programmer can simulate the

Griffy code on the target architecture, thus allowing both target spe-

cific debugging and performance evaluation.

In both the cases, the emulation of Griffy code, be it used for PiCoGA

configuration or for different devices like an eFPGA, is automatically gen-

erated by the Griffy toolchain. The following of the chapter explains the

Griffy emulation principles, with an example of integration in an open-

source environment. As a test-case will be considered the GNU GDB-

based simulation environment of the XiRisc processor. GNU GDB is not a

cycle accurate simulation environment, like that ones provided for exam-

ple by LISA, but it is a commonly available and well-know tool. For this

5.1 Functional simulation 87

reason, it will be used as an example of integration, although the Griffy

emulation has been successfully plugged also in LISA-based environment

for both XiRisc and DREAM processors.

5.1 Functional simulation

The goal of the functional simulation is to provide the end-user a tool for

the verification and the debugging of the Griffy-C specification. For this

reason one of the most important points is the speed of simulation, since

the verification could require intensive tests with a high volume of data. In

this case and for this purpose, it is not so important to have a correct man-

agement of all the timing aspects (for example, the pipeline evolution),

which on the contrary will be required in target specific performance eval-

uations. Two aspects will be considered in following:

� the functional emulation of Griffy-C code, which requires the trans-

lation to standard ANSI C of the Griffy-C operations, including both

the operators and the #pragma attributes.

� the definition of a virtual platform (a simple reconfigurable architec-

ture) which allows the utilization of functionalities defined by Griffy-

C code in a standard C code.

5.1.1 Functional emulation

Functional emulation is the standard C translation of the Griffy-C opera-

tions, including both operators and #pragma attributes. Griffy tools pro-

vide an emulation function for each Griffy operation defined in the source

code. Emulation is based on a re-ordered Griffy-C code scheduled per

pipeline stages in order to validate also the consistency of the data depen-

dencies.

The translation of Griffy C code is handled in two steps:

� mapping of Griffy-C operators on standard C operators. While for many

operators this phase is a pure cut-&-paste, since most Griffy-C op-

88 Simulation of dynamically reconfigurable processors

erators are a subset of ANSI C operators, additional functionalities

requires the generation of specific code. As an example, LUT emula-

tion is obtained declaring local arrays to implement the functionality,

while the operator is substituted with the read of an array elements.

#pragma attrib out SIZE=1;

#pragma attrib in SIZE=4;

out = in @ 0x05;

comes

{

unsigned char emulation_vector[16] = { 1,0,1,0,

0,0,0,0,

0,0,0,0,

0,0,0,0};

out = emulation_vector[in];

}

� adding attribute side effects. Attributes allow to both define bit-level

variable size and extract information about the carryout and over-

flow condition on arithmetic operations. They are handle adding a

“normalization” process after the basic operation in order to patch

the result. � -bit resizing is implemented by means of masking and

depending on the variable type is obtained by:

– bit-wise and with �. � � in the case of unsigned variables.

– left and right shift by ! � � in the case of signed variables,

where ! is the original size (32-bit for integers, 16-bit for short

and 8-bit for char types).

Carryout and overflow informations are extracted adding specific

emulation code after the operation under check. As an example, for

an addition:

– carryout is obtained by:

tmp1 = i1 + i2;

__griffy_gen_carryout_tmp1 = ((((i1 >> 1) & 0x7fffffffULL) +

((i2 >> 1) & 0x7fffffffULL) +

5.1 Functional simulation 89

Figure 5.1: Griffy code viewer

((((i1 & 0x01) + (i2 & 0x01)) >> 1) & 0x1)

) >> (32 - 1)) & 0x01;

– overflow is obtained by:

tmp1 = i1 + i2 ;

__griffy_gen_overflow_tmp1 = (

(((i1 < 0) ? 1 : 0) == ((i2 < 0) ? 1 : 0)) &&

(((i1 < 0) ? 1 : 0) != ((tmp1 < 0) ? 1 : 0))) & 0x01;

After each Griffy-C emulation, a file dump is performed in order to

allows the inspection on the internal value. Since Griffy code describes a

hardware part (although reconfigurable), it could be misleading to allow

break-pointing on Griffy code just like on standard C code. For this rea-

son, intermediate results are only reported in a dedicated viewer (Fig. 5.1)

available for the entire simulation environment in which Griffy emulation

is plugged.

90 Simulation of dynamically reconfigurable processors

5.1.2 Reconfigurable devices management via virtual tar-

get

The verification of Griffy-C code in a given application requires to perform

several operations on the reconfigurable device programmed by Griffy-

C. Most of them are strongly connected to the specific system including

the device, the way in which the device is connected to the processor and

the specific management protocol of the device. Usually, from a hard-

ware point of view, a reconfigurable device is explicitly triggered to load

configurations and to execute operations, writing the specific commands

in a specific hardware port. While the physical implementation of these

operations is roughly system independent, the mechanism that generate

the command is strongly dependent from the system around the reconfig-

urable engine. In this context, we can suppose, without loss of generality,

that the reconfigurable device is managed through a standard micropro-

cessor. For these reasons, we provide a virtual Application Program Inter-

face (API) that allows the user to load, trigger, and deallocate operations

on the reconfigurable device in a sort of virtual platform. In the follow-

ing, this section describes the functional simulation model used to handle

Griffy operations through a standard processor, as in the following exam-

ple.

Initialization { ... }

PD = pga_allocate (my_first_pgaop);

{ ... }

Computation { ... }

For(; ;) {

...

pgaop_direct1(PD, &outputs,... ,inputs, ...);

...

}

Conclusion { ... }

pga_dealloacate (PD);

5.1 Functional simulation 91

Low level built-in functions are provided to manage the configuration.

pga load and pga free builtin functions allow users to load a configu-

ration and to release the space used by a configuration. They are low level

primitives to handle a reconfigurable device like the PiCoGA that pro-

vides the user the possibility to load more than one configuration in the

same device. Although it is provided an emulation of these builtins, their

functionality needs to be considered, for most devices, as atomic. Using

pga load and pga free, the user is responsible to allocate Griffy operations

into the reconfigurable and to check the space availability, since this pa-

rameter is specific to the target. But, on the other hand, if the allocation is

handled by a processor, it is also possible to run a flexible allocation mech-

anism, requiring the user to specify only the name of the Griffy operation

(or pga-op, programmable gate array operation) to be load or free. This

function can automatically find an appropriate empty space (layer and

starting row) inside the reconfigurable device, thus providing the user an

abstraction layer with respect to the direct hardware level management.

At the highest abstraction layer, the allocation mechanism is very sim-

ilar of that one used for the dynamic memory allocation. The pga allocate

provides the user the capability of load a new configuration on the recon-

figurable device. The pga allocate function searches for an empty avail-

able space in the array, starting from the first row in the first configuration

context (or layer), but it does not perform any analysis about fragmenta-

tion of the reconfigurable device. If the pga allocate finds a proper space,

it forces the pga load command, which is the physical operation that re-

ally interact with the reconfigurable device. Of course, the user can di-

rectly force an allocation manually, using the pga load, but in this case the

allocation structure used by pga allocate is not updated. The user is re-

sponsible to assure the data structure consistency when a mix of pga load

and pga allocate is used. pga allocate returns a pga-op descriptor (PD in

the example before), that includes information about the location inside

the reconfigurable device. The pgaop is triggered specifying the PD in the

pgaop direct1.

92 Simulation of dynamically reconfigurable processors

Of course, it is necessary to require the configuration of a given opera-

tion before its issue. Usually though, the configuration of an operation can

be performed in the initialization phase of the application, and this rarely

causes any overhead on the performance. The pgaop direct1 is the link

that allows to compute the previously described emulation function of a

given PGAOP. It works like an ANSI C procedure, thus results are pro-

vided through memory referencing (pointer). The pgaop direct1 requires:

� PD : PGAOP DESCRIPTOR

� 4 outputs (even if not all used)

� 12 inputs (even if not all used)

Communication with the reconfigurable device is handled by a vir-

tual mechanism implemented in software by a function call. Real data

transfer shall be defined and refined on the target-specific simulation en-

vironment. The pga deallocate function allows to remove the specified

operation (specified through the PD) when it has no longer to be used, or

when the user needs space for a new set of operations. The pga deallocate

updates the same data structure used by pga allocate (it’s its inverse func-

tion), and perform a call to the pga free. Before an allocation, the identi-

fication of a given operation is obtained referring to the name used in the

Griffy-C declaration. When one or more operations are compiled by Griffy

Tools, an enumerate list is provided, assuring the consistency of data struc-

tures (e.g. internally to pga allocate). In the case of operation holding an

internal state (by the utilization of static variables), the (re)initialization

can be forced by the pga init function. At the next execution, initialization

values are reloaded in each static variable.

5.2 Instruction set extension through dynamic li-

braries

The basic idea of the Griffy simulation environment is to work as a plug-in

for standard simulation environments, be its functional or cycle-accurate.

5.2 Instruction set extension through dynamic libraries 93

To maintain a high simulation speed, operations implemented on a recon-

figurable device are emulated (as explained before), do not performing

simulation at bit-level. Starting from emulation functions, the reconfig-

urable device resources are modelled in such a way that all the physical

constraints are respected all along the program execution. In the case of

cycle-accurate simulation, timing issues, as for example the pipeline evo-

lution, are handled by a third additional wrapper.

Dynamic reconfiguration is thus handled by changing the emulation

function associated to a specific pgaop descriptor (this link is provided by

the execution of pga load/pga free primitives). Since for reconfigurable

processor most of the architecture is defined and only a part changes de-

pending on the application specific customization, reconfigurability is pro-

vided by means of dynamically linked libraries. This avoid the need of in-

struction set simulator (ISS) recompilation, that could be excessively time

expensive for the end-user.

Therefore, the emulation of a set of functionalities mapped on the re-

configurable unit implies a description of:

� the functionalities to be implemented on the array;

� the description of the resources available on the reconfigurable de-

vice;

� the way the operations are structured within pipeline stages.

Such items are partly described in the ISS definition, and partly come

with the dynamic library produced by the application compilation. Re-

sources description is specific for the reconfigurable device, as well as the

way in which pipeline evolution is handled, although the pipeline control

structure can be considered common to all the operations. Therefore, it is

possible to integrate these structures in the ISS core, by programming the

pipeline manager for each new functionality loaded in the reconfigurable

device. The dynamic library only needs to describe the pgaops functional-

ity and the proper pipeline activation events. According to this approach,

94 Simulation of dynamically reconfigurable processors

GRIFFY−C
AND

C Compiler

DYNAMICAL
PICOGA

EMULATION

C Source
Code

EXECUTABLE

XIRISC
SIMULATOR

CORE
ISS

Figure 5.2: Simplified XiRisc simulation structure

as summarized in Figure 5.2 for the XiRisc processor, when a new applica-

tion is compiled, the Griffy toolchain provides:

� an executable program, in ELF1 format, composed by the processor

code/data and the configuration bitstream for the reconfigurable de-

vice;

� an application-specific emulation library for the instruction set exten-

sion that is dynamically linked to the ISS-core.

The simulation library can be compiled in verbose mode. In this case,

it is possible to monitor the internal status of the reconfigurable device

during the ISS elaboration and to visualize it with an external viewer in

order to implement source-line debugging.

As an example, we can consider the dynamic instruction set extension

of a GNU GDB-based simulator. Similarly to other instruction set sim-

ulators, the core of GDB is the instruction set description in which a set

of functions associates a specific functionality to each assembly operation.

In the case of GDB, the .igen format is used in order to specify the in-

struction template (opcode � input and output registers), the mnemonic

1Executable and Linking Format

5.2 Instruction set extension through dynamic libraries 95

(dumped if simulation tracking is enabled) and the functionality. The fol-

lowing code shows the description of a simple ADD operation.

000000,5.RS,5.RT,5.RD,00000,000000:SPECIAL:32::ADD

"add r<RD>, r<RS>, r<RT>"

{

GPR[RD] = GPR[RS] + GPR[RT];

}

RD represents the destination register, whereas RS and RT are the input

registers. GPR is the general purpose register file. The first two lines rep-

resent respectively the instruction template and the mnemonic. The func-

tionality, written in ANSI C, can include additional operations, such as

for example the updates of the program counter in the case of conditional

branches, delay slot management and so on. In the case of instruction set

extension in which the functionality is defined by the end-user and often

depend on the application, the retargeting performed re-compiling all the

simulation engine is not particularly appealing. In the Griffy project, and

in particular in the case of the XiRisc reconfigurable processor, dynamic

instruction set extension is handled using dynamically linked libraries. In

this case, the .igen description shall be modified to call an emulation

function. In this case, during the compilation of GDB, a curses-library is

used, providing error message for the invocation of undefined functional-

ities. When the application and the relative set of Griffy operation are de-

fined, the emulation library providing correct emulation is available. GDB

is then modified in order to support a-specific assembly instruction, in-

struction skeleton in which the functionality is specified at execution time,

like in the following PGA32 code:

111110,5.RD1,5.RD2,5.RS,5.RT,4.PD,00:SPECIAL:32::PGA32

"pga32 <PD>, r<RD1>, r<RD2>, r<RS>, r<RT>"

{

// Verification of PD availability

if (PGA_ID_table[PD] != 1) {

fprintf (stderr, "Error!!! PD 0x%x not loaded\n", PD);

exit (1);

}

// Dynamically linked with libemu.so

__pga_emul[PD] (&latency_dest, &issue_delay,

96 Simulation of dynamically reconfigurable processors

PD,

&(GPR[RD1]), &(GPR[RD2]), // Output list

GPR[RS], GPR[RT] // Input list

);

}

The pga emul is a vector of pointer to function that is initialized by

the pga load. During the pga load, the emulation function is associated to

the PD, and at the trigger is verified that this link exists. Input and output

values are passed depending on the model of computation used: in this

case, a functional unit model is chosen and data are passed through the

register file (2 inputs and 2 outputs). Latency and issue delay represent

the static parameter of the function and they are used in the timing model

as discussed in the following.

5.2.1 Cycle-accurate simulation model

The management of a set of custom operations mapped on user-defined

pipelines over a reconfigurable device is described in the following propos-

ing at the beginning a model for a single configurable pipeline and than

the same model will be extended to handle stalls involved, for example, in

context switches, writeback conflicts and so on. As introduced in previous

chapter, the computation of custom pipelines generated by Griffy tools

is controlled through timed Petri Nets, with operations firing associated to

each taken transition. In simulation, the check of the token availability

for every node would require a large amount of time. To overcome the

problem, it is proposed a different cycle-accurate model based on resource

allocation vectors.

We distinguish between two levels of description of the custom pipe-

line:

� the “functional model”, in which we describe the functionality of

the DFG, its area occupation and load penalty on the reconfigurable

device.

� the “timing model”, which takes into account stalls occurrences both

5.2 Instruction set extension through dynamic libraries 97

Figure 5.3: An example of pipeline evolution

inside and outside the reconfigurable device and due to data depen-

dencies in the program flow and/or between successive pgaops.

Although for debugging purposes it is possible to attach the functional

model to a functional-only simulation engine (e.g. the Gnu Debugger GDB),

a cycle accurate performance evaluation requires to interfacing the proces-

sor core ISS with the timing model in order to represent correctly all stalls.

As an example, stalls in the XiRisc computations can be due to two dif-

ferent factors: inter-operation data hazards, due to dependencies in the

processor program flow, and intra-operation pipeline hazards inside the

PiCoGA computation.

Program Flow Hazards

A cycle accurate model can be seen as an abstract object with an internal

hierarchy:

� the functional model is an internal, compilation dependent and dy-

namically linked core that describes the pgaop functionality;

� the timing model is a fixed wrapper handling communication with

the ISS core.

The wrapper emulates pipeline activity, and handles all hazards occur-

rences thus allowing cycle-accurate simulation. It is also the wrapper that

98 Simulation of dynamically reconfigurable processors

appropriately calls the functional model of the required pgaop, writing

back on the register file computation results at the appropriate time and

issuing stalls according to the data hazard handling rules.

PiCoGA Internal Hazards

A relevant feature of the PiCoGA unit is the capability to compute concur-

rently on a pipelined pattern multiple issues of the same pgaop, resolving

dynamically at computation time all potential hazards. Thus, a fundamen-

tal issue of the timing model embedded in the wrapper is the description

of the pipeline management inside the PiCoGA in case of multiple issue of

a given pgaop. Other architectures does not provide this feature, as well

as they could not have the capability to load more than one operation at

time. For all these architecture, the simulation model shall be simplified

in term of concurrency management, whereas for example checks on re-

sources availability shall be improved.

For each pipeline stage, preceding and successive data dependencies

define an issue delay which describes the minimum number of cycles

among successive firing. These “Pipeline effects” are described by an Issue

Delay Vector (IDV), produced by the DFG compilation. The IDV describes

for each pipeline stage (i.e. set of concurrent DFG nodes) the number of

cycles, in the overall pipeline flow, during which the stage must be idle,

because:

� it is waiting for an input not yet produced by a previous stage;

� one output must be processed by a following stage whose computa-

tion that has not yet been triggered.

The maximum value in the IDV will describe the issue delay of the

overall pipeline that is the rate at which new issues of the same operation

can be fed to the pipeline. An optimal DFG has an IDV composed of ’1’ for

each stage. This means it features an issue delay of 1, and a new operation

can be fed to the pipeline at each cycle (provided it does not cause pro-

gram flow inconsistencies at processor level as described in section 5.2.1).

5.2 Instruction set extension through dynamic libraries 99

Of course, the IDV is specific for a given pgaop and represents the key

information for the timing model.

During simulation, to each loaded configuration corresponds a Status-

IDV (SIDV). The SIDV is used to verify resource availability: when a pgaop

computes the i
� pipeline stage, it sets the i
� entry of the SIDV to the cor-

responding Issue Delay. At every cycle each element in the SIDV value is

decremented: each specific pgaop issue will be stalled in the stage un-

til the corresponding SIDV entry returns to zero. Figure 5.3 shows an

example of pipeline evolution under this model. Let’s suppose that the

processor core is capable of trigger a new pgaop at every clock cycle. At

��(� � � � we try to trigger a new pgaop, but a stall occurs because the

pipeline stage 2 features an issue delay of 2.

The distance between successive operations in the pipeline is not fixed:

a stall condition occurs when a pgaop tries to compute a pipeline stage

(i.e. DFG node) corresponding to a non-zero value in the SIDV. As a con-

sequence, successive issues will (�) stall if the pipeline is at the maximum

issue rate (backward avalanche effect) or (��) proceed until they “reach”

the stall location (elastic effect).

All effects discussed so far are due to multiple issues of the identical

pgaop: this guarantees that at most only one issue per clock is comput-

ing the last stage of the pipeline and is thus performing writeback on the

register file. On the contrary, concurrent computation of different pgaops,

that is pgaops implementing different pipelines on the PiCoGA resources,

are completely independent and feature different latencies. Consequently,

they may cause conflicts on the writeback channels. This will cause a stall

of one of the two pipelines.

Another cause of stall handled by the wrapper is due to context switch.

For architecture like PiCoGA featuring multi-context capabilities, the re-

configurable device is able to change the active configuration contexts in

few cycles. In the case of PiCoGA, the active context (among the 4 avail-

able) can be switched in a single clock cycle simply addressing a pgaop

that is residing in a different context with respect to the active one. Sev-

eral stalls may then be necessary in order to complete all current computa-

100 Simulation of dynamically reconfigurable processors

tions in the current context and flush all active pipelines before the context

switch.

Of course, all internal stalls described so far may affect the processor

core pipeline, as the reconfigurable device may refuse the issue of an op-

eration whose initial stage is already occupied by a stall. Furthermore,

an incorrect utilization of the reconfigurable device may cause exceptions.

The wrapper is capable to back-annotate stall (and exception) information

to the processor model.

In Figure 5.3, a couple of stalls occur during the execution when the

reconfigurable device tries to writeback values to the register file (��(�

� �
). In the following clock cycle (��(� � � �) an elastic effect occurs,

allowing computing other pending operations until they reach the stalled

pipeline stage: successive issues will “crowd” in the stages following the

stall. A backward avalanche stall will be caused. When the first stalled

stage will resume computation, all following pipelines will in turn resume

their normal computation and spread over the pipeline. In general, both

backward avalanche and elastic effect can occur when more than one op-

eration is under execution in reconfigurable devices like the PiCoGA, fea-

turing a flexible pipeline management based on the Petri-Net paradigm.

The resulting overall effect resembles the alternance of compression and

dilation phases in longitudinal wave propagation.

5.2.2 Simulation speed analysis

Evaluation of a simulation engine needs to take into account several pa-

rameters such as flexibility and accuracy. As well, for a reconfigurable ar-

chitecture we need to know how the ISS can be retargeted and how much

time must be spent in retargeting. As additional constraint, the design

exploration needs to have a fast simulation engine because of the huge

amount of time spent from the end-user during the application develop-

ment. In the case of the simulation engine described before, reconfigu-

ration costs are tightly coupled with the time spent compiling the appli-

cation. In fact, when the hardware-part of an application is compiled, the

5.2 Instruction set extension through dynamic libraries 101

Algorithm LISA-System LISA-core GDB

FDCT #CK Cycles 11572872 8225712 7028208

Sim. Time 160 sec. 7 sec. 7sec.

IDCT #CK Cycles 18492536 15279930 14237048

Sim. Time 300 sec. 14 sec. 13 sec.

Quantization #CK Cycles 33727336 25929123 21899910

Sim. Time 528 sec. 24 sec. 21 sec.

VLC #CK Cycles 34663765 34132828 28611213

Sim. Time 532 sec. 33 sec. 27 sec.

Motion Estimation #CK Cycles 815167602 805077673 695172321

Sim. Time 210 min. 754 sec. 650 sec.

MPEG-2 Encoder #CK Cycles 978423450 920866413 795349022

Sim. Time 260 min. 845 sec. 747 sec.

IDEA #CK Cycles 84682673 84682662 76556209

Sim. Time 22.4 min. 79 sec. 69 sec.

CRC #CK Cycles 11779 11295 10245

Sim. Time 1.15 sec. 0.5 sec. 0.5 sec.

Table 5.1: Simulation results (without PiCoGA)

compilation flow automatically provides the simulation library which rep-

resents the functional model of the current application and the amount of

time required can be estimated in few minutes.

In order to trace results, it has been evaluated the performance of three

simulation engines, the first one based on GNU GDB and two based on

LISA ISS, all featuring dynamic instruction set extension through the Griffy-

generated emulation library. The GDB model takes into account both re-

configurable unit latency and maximum issue delay of each pgaop, but

does not consider processor internal stalls. The LISA-core adds an accu-

rate evaluation of processor stalls due to internal pipeline and the recon-

figurable unit timing model described in the previous section. The LISA-

System simulator is the more accurate engine that integrates LISA-core

modelling both contentions on bus architecture and latency of memory

hierarchy described in System-C.

102 Simulation of dynamically reconfigurable processors

Algorithm LISA-System LISA-core GDB

FDCT #CK Cycles 6354872 4446330 3936240

Sim. Time 94 sec. 5 sec. 4 sec.

IDCT #CK Cycles 13097695 13097695 10207483

Sim. Time 186 sec. 13 sec. 10 sec.

Quantization #CK Cycles 21437286 12662704 10929703

Sim. Time 324 sec. 13 sec. 10 sec.

VLC #CK Cycles 24303819 24194040 21686592

Sim. Time 340 sec. 25 sec. 22 sec.

Motion Estimation #CK Cycles 127151165 120938635 100900354

Sim. Time 46 min. 123 sec. 104 sec.

MPEG-2 Encoder #CK Cycles 239064880 192245109 163166038

Sim. Time 90 min. 270 sec. 168 sec.

IDEA #CK Cycles 31947675 31947688 28998568

Sim. Time 490 sec. 34 sec. 26 sec.

CRC #CK Cycles 8204 8198 5637

Sim. Time 1 sec. 0.4 sec. 0.3 sec.

Table 5.2: Simulation results (with PiCoGA)

Referring to the XiRisc model, Tables 5.2 and 5.1 show performance re-

sults achieved from the ISS running on a Sun Sparc UltraIII workstation,

900MHz with and without the reconfigurable unit (PiCoGA in the case

of XiRisc) emulation engine compared to the functional-only GDB-based

simulation engine running on a Linux workstation with Athlon XP2000+.

The LISA ISS environment shows a computational capability of about 1

MIPS, while the integrated system model computes about 50,000 clock cy-

cles per second, reducing the overall simulation engine performance up

to 20 times. The simulation environment has been mainly benchmarked

using a 12 QCIF Frames (176x144) MPEG-2 encoding requiring about 1 bil-

lion clock cycles to be executed. As a reference, a HDL simulation engine

runs about 1000 clock/sec without a system-level integration and about

400 clock/sec with memory hierarchy. The LISA-System cycle-accurate

instruction set simulator runs about three orders of magnitude faster than

5.2 Instruction set extension through dynamic libraries 103

HDL simulation, while the LISA-core gains up to five orders of magnitude

with respect to HDL simulation time.

104 Simulation of dynamically reconfigurable processors

Chapter 6

Application development on

reconfigurable processors

I’m not a bit-level programmer,

but a right-level programmer!

(Mario Toma, STMicroelectronics)

Reconfigurable hardware accelerators are the strong point of reconfig-

urable processors if compared to general purpose processors (GPPs). Ef-

ficient programming of reconfigurable architectures often implies finding

the best HW/SW partitioning of the C program execution between the

standard hardwired functional units (SW) and the hardware accelerators

(HW). Unlike C-to-FPGA synthesis which translates a whole C program

to hardware and therefore needs to fully support all C constructs (arith-

metic and logical operations, memory access, etc. [43, 38]), the compila-

tion flow for a reconfigurable processor translates to programmable logic

only the program sections that may benefit most and can be implemented

as hardware, while the rest of the algorithm is executed on the hardwired

functional units. Hence restrictions on C constructs that can be mapped

onto HW do not compromise the overall system capabilities. Finding the

optimal HW/SW partitioning for a given reconfigurable architecture is a

very complex task for a software tool, and hence the Griffy development

environment currently provides support only for manual partitioning. As

105

106 Application development on reconfigurable processors

Word32 L_mac (Word32 L_var3,
Word16 var1, Word16 var2)

{
Word32 L_var_out, L_produit;
L_produit = L_mult(var1, var2);
L_var_out = L_add(L_var3, L_produit);
return(L_var_out);

}

Word32 L_mult(Word16 var1,Word16 var2)
{

Word32 L_var_out;
L_var_out = (Word32)var1 * (Word32)var2;
if (L_var_out != (Word32)0x40000000L) {

L_var_out *= 2L;
} else {

Overflow = 1;
L_var_out = MAX_32;

}
return(L_var_out);

}

Word32 L_add(Word32 L_var1, Word32 L_var2)
{

Word32 L_var_out;
L_var_out = L_var1 + L_var2;
if (((L_var1 ^ L_var2) & MIN_32) == 0L) {

if ((L_var_out ^ L_var1) & MIN_32) {
L_var_out = (L_var1 < 0L) ?

MIN_32 : MAX_32;
Overflow = 1;

}
}
return(L_var_out);

}

L_mult

L_add

var1 var2

L_var3

*

Sat

+

Sat

var1 var2

L_var3

Overflow

Selected
Cluster

Figure 6.1: Case study: saturating MAC for low bit-rate audio compression

a general rule, control or data management is better suited to the sequen-

tial elaboration of the CPU core, while computational kernels with higher

instruction level parallelism (ILP) or prevalent bit-level operations benefit

most from a hardware implementation.

Let us consider, as an example, the case of saturating multiply-and-

accumulate (MAC) used in many low bit-rate audio compression applica-

tions implemented on the XiRisc reconfigurable processor. A typical code

is shown in Fig. 6.1. Since the PiCoGA is not well suited to implementing

large multipliers, the initial multiplication is performed on the processor,

while the other operations (the saturation of the multiplication and the

saturating sum) are “clustered” to a single operation performed on the

PiCoGA. The selected code is backgrounded in grey in Fig. 6.1 and a sim-

plified data-flow graph is shown.

Fig. 6.2 shows the Griffy-C code relating to implementation of the se-

lected kernel and the resulting mixed HW/SW saturating multiplication.

The Griffy-C code is included between “pragma” directives and additional

pragma directives are used to manage the size of each variable at the bit

107

#pragma picoga kernel_L_add_mux 2 3
L_var_out overflow // Output list
L_var1 L_var2 overflow1 // Input list

{
int L_sum;

#pragma attrib L_sum SAT
int Lvar1, Lvar1_tmp, Lvar2,Lvar2_tmp;
int Lvar2_out_tmp, L_var_out_tmp1;
unsigned char cond, cond1, overflow_a;

#pragma attrib cond, cond1, overflow_a SIZE=1

Lvar2 = L_var2;
Lvar2_tmp = Lvar2 << 1;
cond = Lvar2 != 0x40000000;
overflow_a = cond ? overflow1 : 1;
Lvar2_out_tmp = cond ? Lvar2_tmp:0x7fffffff;
Lvar1 = L_var1;
L_sum = Lvar1 + Lvar2_out_tmp;

cond1 = Lvar1 < 0;
L_var_out_tmp1 = cond1 ? 0x80000000:0x7fffffff;
L_var_out = L_sum(overflow) ? L_var_out_tmp1:L_sum;
overflow = L_sum(overflow) ? 1:overflow_a;

}
#pragma end

Word32
L_mac(Word32 L_var3, Word16 var1, Word16 var2)
{

Word32 L_var_out;
L_var_out = (Word32)var1 * (Word32)var2;
kernel_L_add_mux (L_var_out, Overflow,

L_var3, L_var_out, Overflow);
return(L_var_out);

}

L_var2

Lvar2
(=)

Lvar2_tmp
(<<)

cond
(!=)

Lvar2_out_tmp
(? :)

1

overflow_a
(? :)

overflow
(? :)

L_var1

Lvar1
(=)

cond1
(<)

L_somme
(+)

L_var_out_tmp1
(? :)

0

0x40000000

L_var_out
(? :)

0x80000000 0x7fffffff

overflow1

L_somme(overflow)

Figure 6.2: Case study: Griffy-C code for saturating arithmetic

level. In addition, the SAT flag enables a bit of overflow information to

be extracted directly from an arithmetic operation. Control statements are

dismantled in conditional assignments mapped one-to-one to multiplex-

ers with 2 input words. The corresponding pipelined DFG is also repre-

sented: nodes are aligned per pipeline stage, thus showing the 4 result-

ing stages. On the processor side, the PiCoGA operation is triggered as a

function-like call.

Fig. 6.3 summarizes the optimization process. While (a) is the start-

ing point, and (b) represents the partitioning step, (c) corresponds to the

final optimization. Analysis of the basic implementation in (b) shows that

memory accesses to provide data, multiplication and the PiCoGA opera-

tion are cascaded in such a way as not to allow exploiting either the pi-

pelining inside the array or the concurrent elaboration between PiCoGA

and processor. However by applying a loop transformation based on stan-

dard software pipelining methodology [61, 59], it is possible to compose a

loop body (shown in (c)) where the PiCoGA operation and the processor

code run concurrently, since they are working on data referring to succes-

sive loop iterations. This is a first optimization step, which exploits the

108 Application development on reconfigurable processors

for (i = 0; i < lg; i++)
{

s = L_mult (x[i], a[0]);

for (j = 1; j <= m; j++)
{

s = L_mac (s, a[j], x[i - j]);
}

s = L_shl (s, 3);
y[i] = round (s);

}
for (i = 0; i < lg; i++)

{
s = L_mult (x[i], a[0]);

for (j = 1; j <= m; j++)
{

tmp = a[j] * x[i-j];
kernel_L_add_mux (s, Overflow,

s, tmp, Overflow);
}

s = L_shl (s, 3);
y[i] = round (s);

}

for (i = 0; i < lg; i++)
{

s = L_mult (x[i], a[0]);
tmp = a[j] * x[0-j];
for (j = 1; j <= m-1; j++)
{
kernel_L_add_mux (s, Overflow,

s, tmp, Overflow);
tmp = a[j] * x[i+1-j];

}
kernel_L_add_mux (s, Overflow,

s, tmp, Overflow);

s = L_shl (s, 3);
y[i] = round (s);

}

a) Starting Code

b) Code Partitioning and
kernel substitution

c) Code optim ization via
software pipelining

Figure 6.3: Case study: software pipelining across processor and PiCoGA

concurrency between the processor core and the PiCoGA, but further im-

provements can be achieved by applying loop unrolling or similar meth-

ods capable of enhancing the PiCoGA hardware pipelining as well [60].

For a wide spectrum of current embedded applications, the typical ker-

nels are located in the core of innermost loops [57], which can be usually

described with traditional data-flow graphs. Very significant speed-ups

can be achieved by pipelining successive loop iterations in the case of

acyclic graphs [59]. This software compilation technique [61] has been

shown to be an effective means to increase the instruction level paral-

lelism without increasing the code size for highly parallel processor ar-

chitectures (e.g., super-scalar processors with 8 or more data channels).

Reconfigurable processor architecture can also directly exploit more tradi-

tional hardware pipelining [60]. In fact, the innermost loop can be mapped

(or clustered), for example, in a single Griffy operation and then executed

overlapping successive iteration depending on the issue delay. Neverthe-

less, several application do not allow the clustering of the whole innermost

loop because either the whole loop does not fit in the reconfigurable de-

vice or the whole loop features instructions ill-suited to the reconfigurable

device (as the multiplication in the previous example). Furthermore, for

109

many architecture, the access to the memory is performed only by the

processor core (reducing the cache coherency problems), that is thus re-

sponsible to feed data to the reconfigurable device and store data after the

elaboration. Let’s consider the following example:

// C source code

for (i=0; i<64; i++) {

tmp1 = f1(v[i]);

tmp2 = tmp1 * w[i];

out[i] = f2 (tmp2,z[i]);

}

Pseudo-ASM code

loop:

reg3 = load (v[i]);

reg4 = load (w[i]);

reg5 = load (z[i]);

tmp1 = f1 (reg3);

tmp2 = mult (tmp1, reg4);

reg6 = f2 (tmp2, reg5);

out[i] = store (reg6);

loop i;

where f1 and f2 are computations suitable for the reconfigurable ac-

celerator, while the multiplication is an example of an operation that is

usually better implemented in a hardwired functional unit. Load/store

operations are commonly implemented in the processor core, as in the

case of XiRisc. This is an example of an acyclic graph in which a mixture

of software pipelining and clustering can improve the performance of the

application with respect to software pipelining or clustering taken alone.

Superscalar processors apply software pipelining to increase instruction

level parallelism up to the limit determined by the available processor re-

sources. Traditional reconfigurable processors apply the clustering of as-

sembly instructions moving the computation to the HW and waiting for

the results, since both the communication overheads often forbid to spread

the computation over a mix of processor and configware resources, and

configuration tools often discard kernels with strange operators. In the

“reconfigurable” computation pattern instead, we can map f1 and f2 as

concurrent sub-graphs of the same Griffy operation and then apply a soft-

ware pipelining schedule to the resulting code:

Pseudo-ASM code

SW-pipelining prologue

loop:

reg3 = load (v[i]);

reg4 = load (w[i]);

reg5 = load (z[i-1]);

110 Application development on reconfigurable processors

tmp2 = mult (tmp1, reg4); # tmp1 is the old value

out[i-2] = store (reg6);

PiCoGA-operation implements both f1 and f2

tmp1,reg6 = PiCoGA-operation (reg3,tmp2,reg5);

loop i;

SW-pipelining epilogue

The execution of the Griffy-operation can be concurrent to the proces-

sor computation and it can overlap both loop instructions and memory

access. Furthermore, sub-graphs f1 and f2 work with data referred to

different loop iterations in the original code, thus the concurrent execu-

tion of f1, f2 and the multiplication can be achieved. As shown in this

example, applicable for example to the XiRisc architecture, it is possible

to design “around” the processor functional units an additional functional

unit implemented as a Griffy operation, which is highly specific for the

kernel.

For run-time reconfigurable devices, like the PiCoGA, it is possible to

provide dedicated functional units for as many kernels as they can be

found in an application, thus truly realizing the dynamic reconfiguration

concept. The high degree of reusability together with the close interaction

with the standard processor datapath allows the reconfigurable device to

be of a smaller size than the FPGAs used in other approaches, where sev-

eral entire kernels need to be mapped at the same time in the device.

On the other hand performance optimization with a reconfigurable

processor requires a co-design tightly coupled between the processor core

and the reconfigurable device. In order to avoid stalls and to improve the

instruction level parallelism, the algorithm developer needs to manually

tune the accelerated kernel ’C’ code up to the boundaries defined by the

application data dependencies. In this context, the user often needs to be

conscious of the DFG abstraction that is implemented at the intermediate

level by the Griffy-C description, and thus it is required to accurately han-

dle the data flow across the reconfigurable device to obtain considerable

performance improvements. It is important to notice that the optimiza-

tion step is managed only at the DFG-level without any need for deep

knowledge of the underlying architecture or circuit implementation. In

6.1 Reconfigurable software development time: hardware and software
approaches 111

this context Griffy-C language also provides the user with a means to de-

scribe pipelines at a deep level of detail, though without needing skills in

hardware design. For these reasons we state in the introduction that recon-

figurable processors represent the natural extension of DSPs among other

things for what concerns the algorithm development methodologies.

6.1 Reconfigurable software development time:

hardware and software approaches

Depending on the constraints and on the type of algorithm, the imple-

mentation of an application on a reconfigurable processor can follow var-

ious different strategies, which lead to different trade-offs between per-

formance and the development effort required. Hardware/software co-

design for these architectures provides an additional dimension to the tra-

ditional design space for DSPs. Quality of service as well as real-time spec-

ifications can be used to select the implementation strategy and evaluate

the development effort required.

Two main orthogonal factors can influence the time required to de-

velop an application on reconfigurable processors:

� Algorithm modifications are applied. This is the case when the algo-

rithm utilizes a description that is not well suited to the implemen-

tation on the target device or there is a different description which

provides significant performance improvements. In the second case

we include, for example, the description of non-standard operators

(for example Galois Fields arithmetic) which achieve an important

improvement when synthesized at the LUT-level, while a pure C

code proves particularly inefficient. This approach is often referred

as hardware approach, since it is orient to the optimization in a way

similar to the optimized design of application-specific circuits.

� Accurate scheduling is applied. In this case the algorithm imple-

mentation is efficiently described by C language by means of high

112 Application development on reconfigurable processors

level arithmetic/logic operations. This approach is also referred as

software approach, since it is similar to the approaches used to opti-

mize software programs, and the design space exploration performed

at this point is:

– clustering basic operations to compose a Griffy operation, in-

cluding the possibility of grouping clusters of concurrent or in-

dependent sub-graphs;

– scheduling the execution (i.e. through software pipelining) be-

tween the processor core and the reconfigurable device in an ef-

ficient way, thus avoiding stalls due to long latency instructions

or memory accesses. However this is a common task that DSP

developers are used to undertaking, in order to exploit dedi-

cated functional units provided in the processor data-path.

Proficiency in co-design is the first key-point in order to obtain a re-

duction in the time-to-develop, given the expected performance. The time

spent on application partitioning is often the dominant task, because this

is an iterative task which includes analysis, description, validation and

performance estimation. Acquired experience on application analysis for

DSPs could help one early on to discard several solutions, thus focusing

the design space exploration on a few significant options. Depending on

both the ability of the user and the degree of modification that we want

to introduce, the implementation process could take a long time, which is

only justified if an appropriate performance improvement is achieved.

At a first glance, the programming of a reconfigurable processor could

appear time-consuming as the ASIC design, requiring expertise on both

the application and the architecture as well as non-common skills (par-

titioning, pipelining, and so on). However, compared to a traditional

hardware design flow, the adopted development methodology does not

require one to handle timing, critical paths, clock synchronization, or other

hardware-specific features, which are extremely time-consuming in an HDL-

to-silicon flow. In the case of Griffy, the framework in which the recon-

figurable operations are described is strongly sequential, the working fre-

6.1 Reconfigurable software development time: hardware and software
approaches 113

Figure 6.4: Variation of %speed-up wrt �� and ��

quency of a Griffy operation is assumed constant, since a reasonable worst-

case condition is assumed (as in the case of PiCoGA), and performance im-

provements are achieved by managing the structure of the DFG pipeline

through data dependencies directly described in the Griffy-C intermediate

format. We can thus say that performance tailoring is achieved at the DFG

level, simplifying the user-approach to the design-space.

In general talking, the approach of development shall be optimized

in term of expected performance, kernel criticality and cost in term of de-

velopment time. For example, long time development required for a hard-

ware approach on a marginally import tasks, requiring � �	� of execution

time, is probably not justified by a reasonable performance improvement.

The impact of a i-th kernel optimization depend on the percentage of time

�� of the kernel with respect to the whole application and the local speed-

up �� by the formula:

����� 	� � �
�
/�	�

�
��

When the local speed-up increase, the overall performance improve-

ment depends only from the time ��, thus giving a upper bound to the

114 Application development on reconfigurable processors

performance. Fig. 6.4 show the percentage of overall speed-up gained

with respect to the local speed-up, considering a set of different compu-

tational weight ��. It is possible to see that the impact on overall perfor-

mance saturate rapidly especially for kernel with �� �
	�.

For real application, the computational load is commonly distributed

over N kernels, than the speed-up is determined by the formula:

����� 	� � �

�

�

���

���
/�	�

�
��

When a designer starts the implementation, he/she decides how many

performance improvement is required to match the constraints and he/she

needs to estimate how much development effort is necessary. It is neces-

sary to optimize as much as possible all the critical kernels? Or, mixing

hardware and software approaches it is possible to focus the development

time only on few very critical kernels in order to achieve near-optimal per-

formance? These are two important questions, for the engineering of re-

configurable system. To better explain the point, it could be considered the

following example. Let us consider to have the 90% of the computational

overload on 10 comparable kernels (9% per kernel).

Figure 6.5: Variation of speed-up wrt #optimized kernel and local speed-up ��

6.1 Reconfigurable software development time: hardware and software
approaches 115

Fig. 6.5 shows a bi-dimensional space exploration obtained consider-

ing a variable number of optimized kernels and different (homogeneous)

local speed-up. It is possible to see that better performance can be achieved

with reduced local speed-up applied to all the kernels, with respect to the

strong optimization of few parts. Moreover, usually, small local speed-

ups could be obtained with a software approach, thus reducing the design

time. This consideration could be extended to real cases, although the

application-specific parameter could bias the final result and the choice of

the best development strategy. For a quantitative analysis, please refer to

the next chapter, where experimental results will be provided.

116 Application development on reconfigurable processors

Frames sequence

Motion vector

Search

Window

Reference block

MAD

Block

Figure 6.6: Motion estimation

6.2 Example of application mapping

6.2.1 MPEG-2 motion compensation on the XiRisc proces-

sor

Compression techniques are successfully employed in order to reduce the

volume of transmitted data in audio/video communication devices. In

particular, in the case of real video sequences (e.g. video conference),

successive frames often have similar or identical content, mainly due to

subjects or objects motion, thus introducing a high degree of correlation

and a temporal redundancy that can be exploited using differential coding

techniques[99]. MPEG video coding standards improve the compression

scheme with a motion compensated prediction. Each frame is subdivided

in blocks (or macro-blocks), of typically 16x16 pixels, and motion vectors

are estimated searching among consecutive frames the block with a min-

imum distance. MPEG Software Simulation Group[100] proposes a pub-

lic release of their MPEG-2 encoder compliant with ISO/IEC 13828-2[101]

where motion estimation is computed using an exhaustive search pattern.

The minimum absolute difference (MAD or L1 matching criteria) is deter-

mined among all blocks in a search window around the reference block

(see Fig. 6.6).

6.2 Example of application mapping 117

Table 6.1: MPEG-2 computation-aware analysis

Algorithm Clock Cycles %

Motion Estimation 696144419 87%

Fast DCT 10820304 1.4%

Inverse DCT 14260740 1.8%

Prediction 6675078 0.8%

Quantization 12554590 1.5%

Inverse Quantization 9331982 1.3%

Variable-Length Coding 5260986 0.6%

Bitstream packing 30397513 3.8%

Communication among tasks 14445511 1.8%

Total 799891123 100%

This search approach, known as full-search motion estimation, allows

the computation of an absolute minimum into the search window, but re-

quires a very relevant computational cost. A computation-aware analysis

of the MPEG-2 encoding engine, reported in Tab. 6.1 referring to a 12-

frames sequence (or 1 group of pictures, GOP) with a resolution of 176x144

pixel (QCIF standard) and implemented on a VLIW RISC processor fetch-

ing 2-instruction per clock, shows how a largely dominant amount of com-

putational time is spent over the motion estimation engine (about 90%),

and specifically a significant contribution is due to the measurement of

the distance between pairs of macro-blocks. This L1 matching criteria is

a Sum of Absolute pixel-to-pixel Differences (or SAD) as described by the

following formula:

#����	� �� �
��.
��
���

��.
��
���

����� � $������� (6.1)

Usual macro-blocks are squares of 16x16 pixel thus requiring 256 sums

118 Application development on reconfigurable processors

of absolute differences repeated W� times, where W is the search window

width in pixels. The dimension of the search window is thus defined by a

trade-off between computational complexity and the compression factor.

Standard general purpose embedded processors can hardly meet quality

standards because of the described computational requirements. In such,

several categories of multimedia processors have been proposed [102] in

order to fill this efficiency gap. In fact, general purpose processors are

inefficient when the Instruction Set Architecture (ISA) is not well suited to

the task or when the amount of algorithmic parallelism in the application

is greater than their capability to exploit it. On the contrary, Application

Specific Integrated Circuits (ASICs) are optimized for the required task

and offer excellent results in terms of speed and energy consumption, but

their utilization implies non-recurring costs (NREs) that are often hardly

justified by the application environment.

Reconfigurable computing appears a cost-effective and performing so-

lution for data-intensive applications featuring deep pipelining and high

concurrency. The key issue for the algorithm developer is the exploration

of the design space in order to match application requirements with com-

putational capabilities, thus determining the optimal partitioning of the

task between hardware (the reconfigurable logic) and software (the pro-

cessor core) resources. For example, multiplications or control-flow state-

ments usually do not show particular advantages in space-based com-

putations while bit-wise logic and concurrent multiple data arithmetic

may offer significant improvement when implemented on an appropri-

ately programmed FPGA-based device.

Full-search motion estimation performs an exhaustive comparison be-

tween all macro-blocks in the search windows and a reference block. A

possible option to reduce complexity in the pixel-to-pixel distance mea-

surement is to stop distance computation when the actual value exceeds

the minimum pre-determined distance value. It is also possible to obtain a

computational advantage choosing a suitable search path. In low motion

sequences, such as in video conference environment, a locality criteria can

be introduced in the search path performing a spiral path, as shown in Fig.

6.2 Example of application mapping 119

1 Pixel

1 Pixel

Search window bound

Reference macroblock

Figure 6.7: Search path

6.7.

This notwithstanding, the most significant algorithmic contribution in

terms of complexity and time-cost considerations remains the computa-

tion of the distance between two given macro-blocks. Considering 16x16

pixel macro-blocks, the account of this distance requires 256 sums, 256 dif-

ferences and 256 absolute value operations (ABSs). Using standard pro-

cessors without an application-specific ABS hardware unit, this step can

be performed using an “if-then-else” conditional structure and compar-

isons, severely increasing computational requirements.

The amount of assembly instructions spent for each distance measure-

ment is around 1000, because the absolute difference computation per-

formed through conditional statements requires roughly four instruction

cycles, as is shown in the following assembly code (where r2, r3 are the

current loaded pixels), repeated for all the 256 pixels.

subu r4,r3,r2

bgez r4,$L1

subu r4,r0,r4

$L1: addu r10,r10,r4

This computational kernel has been demonstrated as critical through a

profiling-based analysis on the MPEG-2 encoding of a 12-frame sequence.

In this test-case, the motion estimation phase accounts for about the 90%

of the overall computation time, and more than 70% of that is spent on

120 Application development on reconfigurable processors

A B

0 1
Sign

A − B B − A

Figure 6.8: Absolute Difference (AD) DFG

the distance measurement function. In the case of the processor architec-

ture, a first optimization step may be to use reconfigurable logic in order to

implement the absolute difference (AD) operation. The space based com-

putational pattern typical of hardware-oriented applications allows one

to enhance the degree of parallelism in the computation using the graph

shown in Fig. 6.8.

Since pixels are described using 8-bit unsigned variables, the area re-

quired for the implementation of this graph in a FPGA-like architecture

or in the PiCoGA unit is extremely small. In fact, the Absolute Difference

DFG mapped on the PiCoGA requires about 4% of the cells of the gate

array. Still, the computational density achieved using this 8-bit pattern is

small. Each processor datapath is used at 25% and the array under 4%

of its potential computing power. The under-utilization of the PiCoGA

AD AD AD AD

+ +

+

Figure 6.9: Concurrent 4-pixel Sum of Absolute Differences

6.2 Example of application mapping 121

Aligned read
Reference macroblock

First macroblock compared

Second macroblock compared

Third macroblock compared

Fourth macroblock compared

Figure 6.10: Memory layout

suggests an investigation of single-instruction-multiple-data (SIMD) com-

putation patterns, implementing four concurrent absolute difference com-

putations at a time. In this case, data transferred through the register file

are integers and the array utilization goes up to 16%. It is also possible

to embed the sum of these four absolute differences in the PiCoGA using

a balanced logarithmic tree scheme, as illustrated in Fig. 6.9, thus maxi-

mizing instruction level parallelism and reducing both latency and issue

delay of the graph. If the graph does not show dependencies across pi-

peline stages, the issue delay is minimal and then it is possible to overlap

successive computations of long latency PiCoGA instructions significantly

increasing the throughput.

A relevant problem introduced by the exploitation of concurrent com-

putation over the gate-array, as is the case with the SAD proposed in Fig.

6.9, is the bottleneck caused from the number of accesses to system mem-

ory.

The XiRisc instruction set does not support misaligned memory access,

so misaligned read/write operation from/to data memory is handled by

byte-level load/store and packing/unpacking operations. As shown in

Fig. 6.10, performing a spiral search path, only one frame over four is

word-aligned, thus requiring four load-byte operations and byte packing

(based on constant-step shift and bitwise-or) in order to build the correct

inputs for the SAD operation. Operands’packing introduces a very sig-

nificant overhead that significantly affects the possible speed-up figure.

In conclusion, memory access bandwidth is the bottleneck which stops

122 Application development on reconfigurable processors

an high throughput execution and thus the processor core introduces an

upper-bound to achievable pipelining.

Increasing the PiCoGA input bandwidth performing on the gate array

a sum of absolute differences which involves more than four pairs of pixels

is a way that maximizes the PiCoGA area utilization, but it also increases

the overhead introduced for packing operations due to misaligned mem-

ory access. In the next section we propose a modified implementation of

the full-search motion estimation that avoids packing overhead and ob-

tains significant performance figures following an alternative search path.

Improved Full-Search Motion Estimation

In the previous section we have shown how to improve the computation of

the distance between two macro-blocks using PiCoGA. Unfortunately, the

proposed implementation is affected by the problem of misaligned mem-

ory accesses that affect the available performance gain. In this section,

an alternative approach will be proposed in order to improve full-search

estimation avoiding the impact of operands packing, using well-known

unfolding techniques in digital signal processing.

A macro-block in the search window is aligned if each 4-byte word in

the 16x16 macro-block are aligned. In this case, the SAD shown in Fig.

6.9 can be computed without any overhead concurrently loading input

data using only two memory accesses, as word-wise access is suitable

for both reference macro-block and the current macro-block under com-

parison. Pixel-wise scan paths are unfortunately characterized by �
�

mis-

aligned blocks. In order to overcome this problem, we have chosen to

utilize a search path based on a 4-pixel-step spiral. We divided the search

window in a Group of 4x4 Macro-blocks (GM) and we performed a spiral

path among all the GMs in the search window. Each GM is thus internally

parsed by rows, as depicted in Fig. 6.11.

Using this search pattern, each Group of Macro-blocks is aligned. It is

then possible to perform concurrent computations of a row of GMs, thus

nicely improving PiCoGA utilization, computational density and conse-

6.2 Example of application mapping 123

4 pixel

4 pixel

Search Window

Reference macroblock

Scan Path
Local

Group of 4x4 Macroblocks

Figure 6.11: Enhanced search path

quently gaining performance. Four SAD operations on four bytes, as shown

in Fig. 6.9, are used in order to implement a concurrent 4-blocks SAD op-

eration that requires only word-aligned access to memory. In Fig. 6.12 the

result of this unfolding approach applied both on the search path and on

the local scan path is shown. The area required to implement this com-

putational kernel is about 100% of the PiCoGA resources and the latency

required in order to execute the SAD is 7 clock cycles which is the same of

the concurrent 4-bytes SAD previously shown. We define this implemen-

tation as sad4blk.

The PiCoGA architecture is oriented at the pipelined elaboration of

data-flow graphs in order to improve the throughput of a data-intensive

computations. By overlapping successive executions of long latency Pi-

CoGA instructions, it is often possible to improve the throughput up to

bounds that are set by the issue delay on a side, and the processor-to-

PiCoGA data bandwidth on the other. The main limitation comes again

from the memory access bandwidth (three load versus one PiCoGA op-

eration). But some further modifications of the inner loop allow one to

achieve a higher degree of data reuse. For example, the reference block

word can be reused for all 16 macro-blocks in the GM. The increment

of the unfolding factor may also increase the number of registers stati-

cally allocated in order to store both temporary results and reusable data,

124 Application development on reconfigurable processors

SAD4 SAD4 SAD4 SAD4

64−bit Output

Macroblock
Reference

Group of Macroblocks

Figure 6.12: Concurrent 4-blocks SAD

introducing a critical trade-off between unfolding factor and register file

occupancy. In order to avoid data dependencies that could lead to pipe-

line stalls, correlation among successive PiCoGA operations must be very

small. This goal may be achieved by only taking the register file dimen-

sions into careful account. The optimal unfolding factor is determined by

the minimum number of stalls and the maximum usage of the register

file without having to resort to the main memory for temporary variables

storage.

We estimated as optimal trade-off the computation of 2-rows for each

macro-block and the concurrent utilization of GM composed of 8 mac-

roblocks each, leading to a loop utilizing 16 sad4blk operations. The

pseudo-code in Fig. 6.13 shows this unfolded metric function. Intra-block

unfolding decreases the number of used registers (for storing temporary

results), but increases data dependencies. Thus, pipeline stalls needed to

wait for PiCoGA writeback. Inversely, inter-block unfolding increases the

6.2 Example of application mapping 125

number of allocated registers, but decreases the number of processor stalls

because of a low degree of correlation among macro-block distances. Us-

ing this unfolding factor, the instructions executed in the processor core, in

order to provide data to the PiCoGA and to accumulate partial results, bal-

ances the PiCoGA operation latency avoiding stalls in the processor core

thus allowing a good degree of pipeline utilization.

Furthermore, the register file usage, albeit scheduled with manual reg-

isters allocation, shows a high degree of coverage without increasing mem-

ory activity. The break mechanism previously introduced in order to stop

the computation of distances greater than the actual minimum value shows

a smaller impact, because of the unfolding factor applied in the inner loop.

This reduction is more than compensated by the degree of utilization of the

customized PiCoGA pipeline.

The unfolding technique applied to the spiral full-search path requires

the concurrent availability of 4x4 macroblocks for each spiral step. This ap-

proach presents a drawback when the search path overcomes the bound-

aries of the search window or the frame size. In these cases, the cho-

sen solution has been to read macroblocks exceeding the search window

space discarding their distance values. This is possible with negligible

computational cost. Each group of macroblocks is processed by reading 3-

additional blocks with respect to the spiral path coordinates. By appropri-

ately choosing the search window side, it is then possible to significantly

reduce or to avoid altogether these boundary effects. In fact, boundary

effects involve the control statements of the spiral-form path introducing

additional check points which can be used in order to choose an appropri-

ate measurement functions that involve or do not involve PiCoGA.

Fig. 6.14 shows the correspondent data flow graph, automatically gen-

erated through the C-based Place and Route flow described above. Each

computational node represents an assembly-level operation, such as an

addition or a subtraction, and is mapped over a set of logic cells. Nodes

represented over the same line all belong to the same row and thus to the

same pipeline stage. Consequently, the alignment shows the conforma-

tion of the pipeline stages (for example, in Fig. 6.14 is possible to iden-

126 Application development on reconfigurable processors

for (j = macroblock height; j � 0; j -= 2) �

//lx: Frame width

// First row of the corrent group of macroblocks - First internal row

// RowPixels 0 - 3

sad4blk(o1, o2, ((uint *) current GM row)[0], ((uint *) current GM row)[1], ((uint *) ref macroblock)[0]);

// RowPixels 4 - 7

sad4blk(o3, o4, ((uint *) current GM row)[1], ((uint *) current GM row)[2], ((uint *) ref macroblock)[1]);

// RowPixels 8 - 11

sad4blk(o5, o6, ((uint *) current GM row)[2], ((uint *) current GM row)[3], ((uint *) ref macroblock)[2]);

// RowPixels 12 - 15

sad4blk(o7, o8, ((uint *) current GM row)[3], ((uint *) current GM row)[4], ((uint *) ref macroblock)[3]);

sad1 2 += o1 + o3 + o5 + o7; //Concurrent two 16-bit add

sad3 4 += o2 + o4 + o6 + o8; //Concurrent two 16-bit add

// First row of the current group of macroblocks - Second internal row

current GM row += lx;

sad4blk(o1, o2, ((uint *) current GM row)[0], ((uint *) current GM row)[1], ((uint *) ref macroblock)[0]);

sad4blk(o3, o4, ((uint *) current GM row)[1], ((uint *) current GM row)[2], ((uint *) ref macroblock)[1]);

sad4blk(o5, o6, ((uint *) current GM row)[2], ((uint *) current GM row)[3], ((uint *) ref macroblock)[2]);

sad4blk(o7, o8, ((uint *) current GM row)[3], ((uint *) current GM row)[4], ((uint *) ref macroblock)[3]);

sad5 6 += o1 + o3 + o5 + o7; //Concurrent two 16-bit add

sad7 8 += o2 + o4 + o6 + o8; //Concurrent two 16-bit add

// Second row of the current group of macroblocks - First internal row

current GM row -= lx; ref macroblock += lx;

sad4blk(o1, o2, ((uint *) current GM row)[0], ((uint *) current GM row)[1], ((uint *) ref macroblock)[0]);

sad4blk(o3, o4, ((uint *) current GM row)[1], ((uint *) current GM row)[2], ((uint *) ref macroblock)[1]);

sad4blk(o5, o6, ((uint *) current GM row)[2], ((uint *) current GM row)[3], ((uint *) ref macroblock)[2]);

sad4blk(o7, o8, ((uint *) current GM row)[3], ((uint *) current GM row)[4], ((uint *) ref macroblock)[3]);

sad1 2 += o1 + o3 + o5 + o7; //Concurrent two 16-bit add

sad3 4 += o2 + o4 + o6 + o8; //Concurrent two 16-bit add

// Second row of the current group of macroblocks - Second internal row

current GM row += lx;

sad4blk(o1, o2, ((uint *) current GM row)[0], ((uint *) current GM row)[1], ((uint *) ref macroblock)[0]);

sad4blk(o3, o4, ((uint *) current GM row)[1], ((uint *) current GM row)[2], ((uint *) ref macroblock)[1]);

sad4blk(o5, o6, ((uint *) current GM row)[2], ((uint *) current GM row)[3], ((uint *) ref macroblock)[2]);

sad4blk(o7, o8, ((uint *) current GM row)[3], ((uint *) current GM row)[4], ((uint *) ref macroblock)[3]);

sad5 6 += o1 + o3 + o5 + o7; //Concurrent two 16-bit add

sad7 8 += o2 + o4 + o6 + o8; //Concurrent two 16-bit add

�

Figure 6.13: Unfolded SAD function based on sad4blk

tify 5 pipeline stages). Some operations, such as constant-step shifts em-

ployed for word-wise to byte-wise pixel unpacking, can be made using

only the programmable interconnections of the gate array reducing both

area and latency of the graph. These instructions do not occupy any stage

in the hardware pipeline, thus are defined routing-only operations and are

6.2 Example of application mapping 127

p1

p13 p12p11p10

sub3asub3b sub6a sub6bsub9asub9bsub12asub12b sub2a sub2bsub5asub5bsub8asub8b

8

p22 p16

sub1asub1bsub4asub4b

16

p21 p15

sub0asub0b

24

p20 p14

p3

p23

sub7a sub7b sub11a sub11b sub15a sub15bsub10a sub10b sub14a sub14bsub13a sub13b

p2

cond0

sub0

cond1

sub1

cond2

sub2

cond3

sub3

cond4

sub4

cond5

sub5

cond6

sub6

cond7

sub7

cond8

sub8

cond9

sub9

cond10

sub10

cond11

sub11

cond12

sub12

cond13

sub13

cond14

sub14

cond15

sub15

0

acc1 acc2acc3 acc4acc5 acc6acc7 acc8

out1 out2 out3 out4

conca1 conca2

o1 o2

Figure 6.14: sad4blk DFG

drawn, in the DFG, using dotted nodes. Fig. 6.15 depicts the sad4blk

instruction mapped over the PiCoGA.

It should be observed that sad4blk cannot be effectively used in the

case of the half-pel refinement of the motion vector. Half-pel precision

is utilized in MPEG compression in order to reduce the residual error in

the differential coding, but the interpolation among adjacent macroblocks

and the compile-time non-predictable alignment of the minimum distance

macroblock requires memory accesses to be performed at byte level. The

need of a packing step in order to feed PiCoGA with an appropriate work-

load would require such relevant processor activity to vanify any advan-

tage introduced by configurable computation. For this reason, in our im-

plementation, the half-pel refinement phase is performed through processor-

only computation.

128 Application development on reconfigurable processors

Figure 6.15: sad4blk Place & Route

Performance Evaluation

An evaluation of the effectiveness of the implemented solution can be ob-

tained comparing results achieved using the XiRisc reconfigurable pro-

cessor with the performances obtained by a general purpose embedded

VLIW RISC processor not augmented by PiCoGA. Operating frequency

and function units availability are the same in the two cases in order to

have a fair proof of the performance enhancements bound to the instruc-

tion set architecture metamorphosis.

The synthesizable HDL model of the processor can be used in order to

verify the correctness of the implementation, but the huge simulation time

required by MPEG compression algorithm would not allow an exhaustive

6.2 Example of application mapping 129

analysis over a significant benchmark. Faster simulations can be obtained

using an instruction set simulator (ISS) which describes the functionality

of the processor. Depending on the desired level of accuracy it is possible

to use bit-accurate or a cycle-accurate simulation.

Instruction-accurate simulators, such as the internal ISS of the GNU

GDB debugger, performs an evaluation of the computation without con-

sidering pipeline stalls or memory waits. On the other hand, cycle-accurate

simulators such as ISS generated from LISA (Language for Instruction Set

Architecture) evaluate accurately pipeline stalls, and can be embedded

into a System-C environment in order to evaluate memory hierarchy im-

pact. For a qualitative performance evaluation we have used a profiling

tools based on the GNU-GDB ISS, that is be used to provide a program

trace (a trace file that annotates all computed instructions) estimating only

the processor stalls introduced by the PiCoGA register lock mechanism.

The results of the profiling are then back-annotated on C and assembler

source code.

As described in [66], the energy consumption of the XiRisc proces-

sor architecture can be roughly considered proportional to the number of

memory accesses, which in turn is mainly due to instruction fetches. By

collapsing a set of assembly instructions in a single instruction that trig-

gers PiCoGA elaboration, it is possible to reduce the number of fetches and

thus to decrease energy consumption. Of course, this decrease is traded

with the overhead in power consumption due to the reconfigurable hard-

ware unit (leakage power) and the elaboration of the unit itself (dynamic

power):

� the first component is proportional to gate array area;

� the second one is a dynamic component of energy consumption due

to PiCoGA elaboration and depends from both the input data and

the DFG implemented.

This simplified model was used in order to estimate energy consump-

tion on the traces provided by software simulation. The model was em-

pirically verified from measurement performed on silicon prototypes.

130 Application development on reconfigurable processors

Table 6.2: Test-sequence features

Sequence title : Coast-guard

Number of frames: 12 (1 GOP)

Frame standard : QCIF (176x144)

YUV standard : 4:2:0

Interleaving : No

Macroblocks : 16x16

Search windows : 16x16 (-8,+7)

The effectiveness of the introduced motion estimation implementation

has been evaluated on a test sequence composed by a group of 12 frames

in QCIF standard. Encoding this sequence (Table 6.2), we have analyzed

an entire Group of Picture (or GOP) featuring both backward and forward

predictions. By extracting from the MPEG profiling analysis the results

referred to motion estimation it is possible to observe a performance im-

provement up to one order of magnitude (in the case of full-pel precision)

comparing XiRisc with a general purpose VLIW RISC processor.

Results are shown in Table 6.3, where the “distance” speed-up (about

18x) is reported referred to the kernel directly involved in the PiCoGA-

driven computation and the motion estimation performance is referred

both at the case of full-pel and half-pel precision. These performances are

relevant also in the case of the motion estimation algorithm with half-pel

analysis which introduces a significant overhead due to control flow state-

ments and spiral path handling that justify the speed-up figure decrement.

The performance gain achieved using sad4blk depends on the re-

quired search area. As explained in [104], it is necessary to find a trade-off

between search area, compression factor and computation-time. Depend-

ing on the amount of available computation, several algorithms feature

a reduced computational requirement inspecting a subset of checkpoints

through hierarchical paths or through search windows with variable side.

In Fig. 6.16, considering the full-search engine (with full-pel precision),

6.2 Example of application mapping 131

Table 6.3: Performances

Speed-up Energy Consumption

Reduction

Distance 18x -

M.E. Full-Pel 10x 80%

M.E. Half-Pel 7x 75%

Figure 6.16: Full-Search workload vs. search window side

we show a linear increase of computational workload proportionally to

the search window sides comparing a VLIW processor with a XiRisc im-

plementing the sad4blk.

Even if the computational workload is small, this XiRisc configura-

tion can be effectively used obtaining a significant gain. In the border-

case represented by fast motion estimation algorithms (e.g. the algorithms

overviewed in [105]), where the matching criterion is applied to a very

small number of distributed macroblocks, sad4blk can be used in order

to avoid computational overheads due to data misalignments achieving a

speedup that can be estimated about 5x in full-pel distance measurement.

The impact on the overall MPEG-2 encoding is summarized in Table 6.4.

Using the power estimation model described in the previous section,

an energy consumption reduction of about 75-80% has been achieved,

mainly due to PiCoGA intensive usage in the most significant computa-

132 Application development on reconfigurable processors

Table 6.4: MPEG-2: final results

Algorithm Clock Cycles %

Motion Estimation 115671891 53%

Fast DCT 10820304 4.9%

Inverse DCT 14260740 6.4%

Prediction 6675078 3%

Quantization 12554590 5.7%

Inverse Quantization 9331982 4.3%

Variable-Length Coding 5260986 2.3%

Bitstream packing 30397513 13.9%

Communication among tasks 14445511 6.5%

Total 219418595 100%

tional kernel thus demonstrating the effectiveness of reconfigurable com-

puting approach for energy-critical applications.

6.2 Example of application mapping 133

6.2.2 AES/Rijndael implementation on the DREAM adap-

tive DSP

Security of data is becoming an important challenge for a wide spectrum

of applications, including communication systems (with high privacy re-

quirements), secure storage supports, digital video recorders, smart cards,

cellular phones. Resistance against known attacks is one of the main prop-

erties that an encryption algorithm needs to provide. When a new attack

is demonstrated as effective (also in term of computation time), the up-

date of the encryption system is a real necessity to guarantee the security

of data.

In November 2001, the National Institute of Standard Technology (NIST)

announced the Advanced Encryption Standard (AES) [106], as a replace-

ment of the Data Encryption Standard (DES). The Rijndael algorithm [107],

selected among 15 candidates, is a symmetric key algorithm based on

a substitution-permutation network, where most of the calculations are

done using Galois Field (GF) arithmetic defined over the field GF(2�) with

the irreducible polynomial x�+x�+x�+x+1.

Applications requiring high performance and/or low power consump-

tion are today implemented using dedicated hardware accelerators with

the downside of higher development costs and lack of flexibility (i.e. algo-

rithm update or parameter changes) with respect to software implementa-

tions. In this context, reconfigurable hardware such as Field Programma-

ble Gate Arrays (FPGAs) seems to bridge the gap between performance

and flexibility required to guarantee the necessary updates. For complex

System-on-Chip, where the area budget dedicated to a single computa-

tional island is a constraint, reconfigurable architectures (RAs) for embed-

ded applications were proposed as hardware accelerators, including em-

bedded FPGAs, reconfigurable processors and reconfigurable data-paths.

In this section, an implementation of the AES/Rijndael algorithm on

the DREAM architecture will be presented. The DREAM architecture is

composed of a reconfigurable data-path (the 3�� generation Pipelined Con-

figurable Gate Array, or PiCoGA-III) controlled by a 32-bit RISC processor.

134 Application development on reconfigurable processors

PiCoGA-III is directly interfaced to a high-bandwidth memory sub-system

through programmable address generators, featuring for example vector-

ized and modulo addressing. An important key point is that the PiCoGA-

III features a native support for operations in GF(2�), thus allowing easy

and effective implementations of composite fields that provide the mathe-

matical back-ground for many applications, including Reed-Solomon Codes.

Overview: the AES/Rijndael algorithm

The Rijndael algorithm [107] is a symmetric key cipher implementing a

substitution-permutation network. The size of both ciphered block and

key depends on the security level required, as well as the number of it-

erations (rounds) required to encrypt the plain-text. As an example, the

U.S. Government requires 128-bit keys for SECRET data, while the TOP-

SECRET level requires 196 and 256-bit keys. While Rijndael supports a

large range of block and key sizes, the NIST standardized a subset of them,

using only 128-bit blocks and 128, 196 and 256-bit keys [106]. For ciphering

a stream, AES/Rijndael can be applied in many schemes, including ECB

(Electronic Codebook) and CBC (Cipher Block Chaining) [108]. While the

EBC mode ciphers each block independently to the other ones, the CBC

XORs the plain-text with the previously ciphered block, preventing the

coding of equal plain-blocks with equal ciphered-blocks. On one hand,

the CBC mode introduces an additional level of security wrt EBC, but on

the other hand we have an additional feedback that limit the peak perfor-

mance, especially for hardware implementation.

The encryption process starts arranging the block in a matrix form

termed State. Let us consider as reference the 128-bit (block and key) Rijn-

dael. In this case, the State (S) is a 4�4 array of bytes in which the 128-bit

block is arranged by rows. The State is thus encrypted by the iterative

application of 4 operations, as described in the following pseudo-code.

6.2 Example of application mapping 135

S=in; N� = 128;

S=AddRoundKey(S, key[0,N�-1]);

for (i=1; i�Nround; i++) �

S = SubBytes(S);

S = ShiftRows(S);

S = MixColumns(S);

S = AddRoundKey(S,key[i*N�,(i+1)*N�]);

�

S = SubBytes(S);

S = ShiftRows(S);

S = AddRoundKey(S,key[i*N�,(i+1)*N�]);

out = S;

The number of iteration (Round) depend on the key size, and ranges

from 10 to 14. Four basic operations are applied to the State:

SubBytes: is a non-linear substitution step applied to each byte of the

State array, that is substituted with its inverse multiplicative over

GF(2�). Then, an affine transformation (�� � ! � �� �) is applied, as

described by the following equivalent equation:

��� � �� � �	���

�� � � �	���

�� � � (6.2)

�	���

�� � � �	���

�� � � ��

where �� and � are bytes of the State array, � is the vector �	��			���.

The non-linear substitution applied to each byte is also known as

S-Box.

ShiftRows: operates on the rows of the State, rotating them to the left by

a shift step equal to the row index.

��
��� � �	���
�

����� (6.3)

where � and % are respectively the column and row indexes.

MixColumns: operates on the four bytes of each column of the State ar-

ray, that are treated as the coefficient of a 4-th order polynomial over

GF(2�). The MixColumns step performs a multiplication (modulo

�� � �) with the fixed polynomial ��� � �� � � � �.

136 Application development on reconfigurable processors

AddRoundKey: represents the last operation of each Round and performs

an addition over GF(2�) between the State and the Round Key, a 4�4

array generated from the original key by an expansion step in order

to provide different key-words to different rounds.

The key expansion step, also known as Key Schedule, is performed be-

fore the encryption, and is described with mathematical operations, mainly

based on the application of S-Box and word rotation [106, 107].

All the operations previously described are invertible in a very straight-

forward manner, resulting a decoding schema very similar to the encoding

one. In particular, the computational complexity is more or less the same,

since the kind of applied operations is the same.

The Advanced Encryption Standard implemented by the Rijndael al-

gorithm can be efficiently implemented in both software and hardware.

8-bit processors can directly implement most of the operations required

by AES since they are natively working on 8-bit variables (e.g. ShiftRows,

AddRoundKey and MixColumns), while the S-Box is more efficiently im-

plemented using a 256-entry 8-bit hash table. 32-bit processors implement

fast Rijndael combining the different step of a round transformation in a

single set of hash-tables. As a result, 4 tables with 256 32-bit values (termed

T-Box) substitute most of the round operations, leaving to the dynamic

computation XORs and rotations [107]. Comparing this optimized version

with the basic one, about one order of magnitude in performance is gained

on a RISC processor. Implementations on TI DSPs are discussed in [112]: a

112.3 Mbit/sec throughput (@ 200MHz) is achieved on the C62x architec-

ture for the encoder, 1.6� faster than a Pentium-Pro working at the same

frequency. Moreover, instruction set extensions dedicated to Rijndael are

present in the literature, such as [109, 110].

Hardware implementations of AES are optimized by the exploitation

of the available parallelism. Hence, the design of hardware accelerators for

AES begins from the 1-to-1 unfolding of the Round definition, as shown

in Figure 6.17. For the ECB mode, the Rijndael algorithm can be com-

pletely unrolled and pipelined, thus improving the available throughput

up to the technological limit. The undeniable drawback is the consider-

6.2 Example of application mapping 137

S-Box
S-Box

S-Box
S-Box

S-Box
S-Box

S-Box
S-Box

…

128-bit
block

M ix
Col

M ix
Col

M ix
Col

M ix
Col

^

Round Key

SubBytes M ix
Columns

Shift
Rows

Add
Round
Key

Figure 6.17: Common AES-Round block diagram

able augment in area occupation. Examples of AES implementations for

stand-alone FPGAs are [115, 116, 113, 117, 114], providing 2-30 GBit/sec

throughout. Hybrid solutions, coupling a processor with FPGA technol-

ogy, are implemented in the Xilinx Virtex II Pro platform [114, 118], achiev-

ing performance up to 1.2 GBit/sec. For embedded applications, where

the area budget is a constraint, devices with restricted size are proposed.

Embedded FPGAs (e.g. [111]) are the most direct “translation” of the tradi-

tional field-programmable technology to the market of IPs suitable for SoC

integration. Alternatively, and depending on the application field, recon-

figurable data-paths (e.g. [53, 55]) are used as hardware-programmable

accelerators. As an example, in [120] a reconfigurable datapath challenges

a set of cryptographic applications.

Implementation of basic GF(2�) operations

An important property of Galois Fields is that they are univocally defined

by the number of elements. What can be changed, depending on the irre-

ducible polynomial, is the representation. Therefore, the GFs are isomorphic

with respect to an irreducible polynomial change and a transformation ma-

138 Application development on reconfigurable processors

trix can be defined in order to change the representation. As described in

Paar’ PhD Thesis [121], this implies that GF(2�) can be seen as a compos-

ite field GF((2�)�) whose elements are represented by 1-order polynomials

&� � ' with &� ' 	 GF(2�). PiCoGA-III features a native support of GF(2�)

with the irreducible polynomial �� � � � �. This means that each RLC can

be programmed to perform both the sum (�) operation, implemented by

LUT as a 4-bit XOR, and the multiplication (�) operation, implemented by

the dedicated GF multiplier.

The AES/Rijndael algorithm requires to implement three operations

on GF(2�): the sum, the multiplication by constant amount, and the in-

verse multiplicative. While the sum and the multiplication with constant

amount can be described (in Griffy-C) and implemented (on the PiCoGA)

with standard C (XORs, ANDs and shifts), the implementation of the in-

verse multiplicative over GF(2�) benefits from the GF capabilities of PiCoGA-

III. By definition [122], the inverse multiplicative on the composite field

GF((2�)�) (using the irreducible �� � � � (��) is:

�&� � '�
� � &�)
�� � �&� '�)
� (6.4)

) � &� � (�� � &� ' � '�

Figure 6.18(a) shows the straightforward implementation of the inverse

multiplicative obtained from equation (6.4). Basic blocks are aligned per

pipeline stage, and each basic block can be mapped on one RLC (the in-

verse on GF(2�) is a 4-in 4-out function implemented by LUT). The full

retiming, needed to maximize the throughput, requires 7 additional reg-

isters (dashed-line blocks), for a total of 17 RLCs distributed over 5 rows.

Figure 6.18(b) shows an optimized inverse multiplicative generated by re-

writing the equation (6.4) in the following form:

�&� � '�
� � �&
� � Æ�
�� � ��&� '�
� � Æ�
�

Æ � &� � (�� � ' � �&� '� (6.5)

6.2 Example of application mapping 139

a b

1−x

2x 2x

w14

a’ b’

1−x 2x

1−x

1−x 1−x

a b

a’ b’

w14

(a) (b)

Figure 6.18: Inverse multiplicative on composite fields schemes

In this second case we have an issue-delay of 2 cycles, requiring only 4

additional registers (for a total of 15 RLCs) for the full retiming. The max-

width of this implementation schema is 4 RLCs, allowing a better packing

of multiple instances of the inverse multiplier in the PiCoGA rows (each

of them composed by 16 RLCs). To complete an S-Box, we need to add the

isomorphism matrix and the successive affine transformation. Two rows

with respectively 4 and 2 RLCs are required for the input isomorphism,

while the output isomorphism and the affine transformation can be col-

lapsed together, with the same resources occupation (4+2 RLCs).

Implementation of AES/Rijndael

A goal of our AES/Rijndael implementation is to be flexible for both block

and key size. Hence, we have analyzed, in relation with DREAM capa-

bilities, the following properties of Rijndael algorithm. First of all, since

the SubBytes operation does not depend on the position of each byte, the

ShiftRows can be performed before the SubBytes. In addition, ShiftRows

140 Application development on reconfigurable processors

Figure 6.19: AES/Rijndael selected kernel and implementation

performs a rotation which can be implemented using modulo addressing.

Hence, using different memory banks for storing the different rows of the

State matrix, PiCoGA is able to load a new State column for each cycle.

The rotation applied by ShiftRows is handled by changing the starting ad-

dress of each bank, while the different number of columns (for the generic

Rijndael) is handled by setting the address generator end-of-count. The

organization by column allows the packing of the MixColumns function

in the same PiCoGA operations.

Figure 6.19 shows the corresponding implementation scheme. This

PGAOP performs AddRoundKey, SubBytes and MixColumns for the 4

bytes in a column concurrently, leaving the addressing engine to handle

the ShiftRows for both block and key access. A different set of buffers is

used to store PGAOP results, since it is not possible to read-and-write a

memory bank in the same cycle. This implementation requires 4 PGAOP

call in order to accomplish one AES/Rijndael Round, after that we need

6.2 Example of application mapping 141

Clock cycles per 1 block

block/key Scalable Optimized Key

size Version Version Expansion

128/128 408 285 192

128/192 466 329 216

128/256 524 373 240

256/128 455 - 319

256/192 521 - 367

256/256 587 - 415

Table 6.5: AES/Rijndael encoder performance

to re-configure the interconnect cross-bar in order to swap the used I/O

buffers. Although this operation could be performed in parallel to the

PGAOP computation (destination port are stored internally to the PiCoGA

during the PGAOP triggering), this reconfiguration break the best pipeline

evolution. For the EBC mode, there is not dependency among the encryp-

tion of successive blocks, thus it is possible to interleave the encryption

of more than one block in order to mitigate the impact of the interconnect

reconfiguration. The stride factor allows the address generator to jump to

the next block when the Round is finished. The last Round requires the im-

plementation of a dedicated PGAOP, without MixColumns and within an

additional AddRoundKey before the SubBytes needed by the loop trans-

formation introduced before. Only 11 pipeline stages are required for this

goal, but the area occupation is increased to 17 rows because of an unfa-

vorable requirement of additional retiming registers necessary to maintain

the issue-delay equal to 1.

For 128-bit block only, the PiCoGA-III is able to output a whole 4x4

block, then it is possible to implement an optimized PGAOP using only

the simple registers. When blocks interleaving is not applicable (e.g. in

CBC mode), we can achieve a further 1.4� speed-up reducing the con-

figuration overhead, through the utilization of simple registers instead of

address generators to exchange data with the PiCoGA. Two additional

142 Application development on reconfigurable processors

1

10

100

1000

0 20 40 60 80 100 120 140

Num ber of interleaved blocks

S
p
e
e
d
-u
p

AES-128 SW
AES-192 SW
AES-256 SW
AES-128 FastSW
AES-192 FastSW
AES-256 FastSW

Figure 6.20: Speed-ups wrt RISC processor

shift registers (and the corresponding control logic) shall be mapped on

the PGAOP because the ShiftRows requires to be implemented internally.

Data are loaded at the first PGAOP trigger, while other 3 three additional

triggers are required to provide the correct result.

Experimental results and comparisons

We have implemented the AES/Rijndael algorithm on the DREAM cycle-

accurate Instruction Set Simulator (ISS), based on CoWare technology. The

RISC processor is modelled using LISA language, while the memory sub-

system and the PiCoGA are modelled using a mix of SystemC and C/C++.

Frequency and power consumption figures are estimated starting from

measurement on the silicon prototype in [75], featuring a comparable de-

sign complexity. Both scalable and optimized implementations presented

in the previous section were considered in our analysis and the cycle count

obtained is reported in Table 6.5. Results are provided for the encryp-

tion of a single block, considering various block and key sizes. At the fre-

quency of 200MHz, it is possible to achieve a throughput up to 90Mbit/sec

using a scheme applicable in both EBC and CBC modes.

6.2 Example of application mapping 143

In EBC mode, the scalable solution can interleave the encryption of

more than one blocks, exploiting as much as possible the computational

efficiency of DREAM. Pipelining the computation on the PiCoGA-III, the

obtained speed-up figures raises from 100� to 930� wrt the ANSI-C Ref-

erence Code (v. 2.2) running on a RISC processor at the same frequency,

while it raises from 3� to 24� wrt a fast software implementation (by

C. Devine, on-line available at the Rijndael Home Page [107]) working on

the same RISC processor. Figure 6.20 shows the achieved speed-ups versus

the level of interleaving applied, hence in relation to the number of block

concurrently elaborated.

Figure 6.21 shows an analysis of the throughput with respect to the

interleaving factor applied. As a consequence, ciphering 64 or 128 blocks,

the benefit of pipelining the computation inside the PiCoGA-III mitigates

the overhead due to interconnect configuration changes, allowing one to

obtain up to 546 Mbit/sec of throughput. Considering the case of AES-

128, the throughput increases from 63 to 546 Mbit/sec in a way that is

proportional to the average number of active rows inside the PiCoGA. In

fact, the average number of active rows growth from 1.5 rows/cycle to 12.8

rows/cycle, respectively corresponding to 10% and 85% of the PGAOP.

With 256-bit block size, the memory utilization growths faster, then the

128-block interleaving cannot be applied.

Comparisons with other AES-128 implementations are reported in Ta-

ble 6.6, including both fast software (with an assembly hand-coded Pentium-

III) and hardware approaches. Furthermore, a processor with custom-

designed ISA [109] is considered too. For the hardware approaches, we

have taken into account folded schemes implemented on both FPGA and

ASIC (0.18*m) prototype. The energy efficiency (Mbit/sec/mW) shows

the density advantage of DREAM with respect to the other “programma-

ble” solutions. For this purpose, the power consumption of DREAM is

estimated in a range from 80 mW (CBC) to 180 mW (EBC), depending on

the different PiCoGA-III utilization and correlated memory activity.

144 Application development on reconfigurable processors

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

Num ber of interleaved blocks

T
h
ro
u
g
h
p
u
t
(M
b
it
/s
e
c
)

128 bit block, 128 bit key
128 bit block, 192 bit key
128 bit block, 256 bit key
256 bit block, 128 bit key
256 bit block, 192 bit key
256 bit block, 256 bit key

Figure 6.21: Throughput vs. interleaving factor

6.2 Example of application mapping 145

Frequency Throughput Energy eff.

MHz Mbit/sec Mbit/sec/mW

DREAM

(EBC)

200 546 3.03

DREAM

(CBC)

200 90 1.12

ARM9	�

[123]

500 46.6 0.32	�

ARM9	�

[123]

250 23.3 0.67	�

TI C62x

[112]

200 112 n/a

Pentium-III

[119]

1130 645 0.015

Ravi [109] 188 17.2 n/a

Lu [118] 196 1197 n/a

Chaves [114] 100 1258 n/a

Sch. [119]

FPGA

77 640 0.39

Sch. [119]

ASIC

154 1280 22.8

(1) ARM926EJ-S Speed-Opt. 90nm 0.29 mW/MHz (www.arm.com)

(2) ARM926EJ-S Area-Opt. 90nm 0.14 mW/MHz (www.arm.com)

Table 6.6: AES-128 encryption comparisons

146 Application development on reconfigurable processors

6.2.3 Low-complexity transform for H.264 video encoding

The H.264 video encoding architecture [124] has many innovations if com-

pared to previous standards and provides a compression gain of 1.5-2.0�

over in relation to them. Among the other things, this standard introduces:

� a new low-complexity transform and quantization approaches [125]

employing only integer arithmetic without multiplications. Its co-

efficients and scaling factors can be elaborated using a 16 bit arith-

metic, leading to a significant complexity reduction, and allowing a

more efficient hardware implementation, in particular for reconfig-

urable devices.

� new cost functions for the definition of the macro-block distance

metric in motion compensation heuristics. In particular two metrics

are defined, the sum of absolute difference (SAD) and sum of ab-

solute transform difference (SATD) based on Hadamard transform.

Motion compensation is also used for the efficient intra-frame encod-

ing, by the introduction of nine motion mode. Intraframe prediction

can be used to encode very efficiently also static images, with the

same signal to noise ratio of JPEG2000, but with a better compres-

sion factor [126].

This section and the next one will introduce the implementation of

these critical kernels on the PiCoGA-III reconfigurable device in the DREAM

adaptive DSP. It will be also illustrated the techniques of optimization

adopted to obtain an optimal implementation of these computational ker-

nels.

H.264 Transform

The structure of H.264 imposes several requirements on the design of resid-

ual coding. In traditional video encoding standard, residual decoding

contains the possibility of drift (mismatch between the decoded data in

the encoder and decoder). The drift arises from the fact that the inverse

6.2 Example of application mapping 147

transform is not fully specified in integer arithmetic, but using floating-

point operations (sinus and cosine samples, for the implementation of Dis-

crete Cosine Transform - DCT) that introduce approximation errors due to

the specific implementation. On one hand, the programmer can adapt

and optimize the implementation on a particular architecture, but in the

other hand the cost of this flexibility is the introduction of a prediction

drift. To avoid this, H.264 standard introduces an integer transform in

which all the operations are natively defined by fixed point arithmetic,

thus without loss of information. Moreover, H.264 transform is applied to

4�4-pixel blocks, whereas the previous video coding standards used 8x8

blocks. This smaller block size leads to a significant reduction in ringing

artefacts (image border noise) and computational requirements. In addi-

tion, compression gain is improved by using inter-block pixel prediction

for intra-coded frames. The transform is applied to prediction residuals,

reducing the spatial correlation and the size of transformed block without

affecting the compression gain.

The length-4 transform proposed in H.264 is an integer orthogonal ap-

proximation of the Discrete Cosine Transform (DCT), which allows bit-

exact implementation for both encoder and decoder. From a computa-

tional point of view, the new transform has the additional benefit of sub-

stituting multiplications with shifts, more suitable for the implementation

on reconfigurable hardware. For improved compression efficiency, H.264

employs a hierarchical transform structure, in which the DC coefficients

of neighboring 4x4 transform are grouped in 4x4 blocks and transformed

again by a second level transform.

Integer Transform design

DCT is commonly used as block transform coding of images and video be-

cause its close approximation to the statistically optimal Karhunen-Loeve

transform, for a wide class of signals. DCT maps a N-length vector x into

a new vector X, by a linear transformation

+ � "�

148 Application development on reconfigurable processors

where the elements of the matrix " are defined by

"(� � "���
� � �(

�
�

�
���

��

 �

�

�

��,

�

�

The DCT matrix is orthogonal, thus

� � "
�+ � "/+

A disadvantage of DCT is that coefficients "���
� are irrational numbers,

that in a digital computer are approximated, thus introducing some de-

gree of error. In H.264, the transform is based on the DCT and operates on

��� blocks of residuals data, but differs from a DCT for the fact that is na-

tively defined using integer arithmetic (without loss of accuracy, for both

direct and inverse transform), avoiding mismatch between encoders and

decoders. Furthermore, the core part is multiply-free, and a scaling multi-

plication is integrated in the quantizer thus reducing the total number of

multiplications.

A ��� DCT of an input array + is given by:

- � �+�/ �

	

�

� � � �

$ � �� �$

� �� �� �

� �$ $ ��

�

�

	

�

+

�

�

	

�

� $ � �

� � �� �$

� �� �� $

� �$ � ��

�

�

where:

� �
�

�
� $ �

�
�

�
�
�

�
,

�
� � �

�
�

�
�
�

�
�,

�

The matrix multiplication can be factorized in the following form:

- � �.+./ �� / �	

�

� � � �

� � �� ��

� �� �� �

� �� � ��

�

�

	

�

+

�

�

	

�

� � � �

� � �� ��

� �� �� �

� �� � ��

�

�
�

	

�

�� �$ �� �$

�$ $� �$ $�

�� �$ �� �$

�$ $� �$ $�

�

�

.+./ is the “core” 2D transform, while / matrix represents the required

scaling factors (� means scalar multiplication) for the corresponding ele-

ments of .+./ . � and $ are the same defined before, while � � �

is ap-

proximatively 	����. To simplify the implementation of the transform � is

6.2 Example of application mapping 149

approximated to 	�
, and $ is consequently modified in order to maintain

the matrix orthogonal, so that:

� �
�

�
� $ �

�
�

� � �

�

�

Then, the ��� and �
� rows of . and the ��� and �
� columns of ./ are

up-scaled by a factor of 2, post-scaling consequently the matrix /. The

final forward transform becomes:

- � �.+./ �� / �	

�

� � � �

� � �� ��

� �� �� �

� �� � ��

�

�

	

�

+

�

�

	

�

� � � �

� � �� ��

� �� �� �

� �� � ��

�

�
�

	

�

�� �
�

�� �
�

�
�

 �

�
�
�

 �

�

�� �
�

�� �
�

�
�

 �

�
�
�

 �

�

�

�

Matrix / is collapsed in the quantizer, that is defined by:

0��� � �
	
��
-���

1����
� � �
	
��2���

�3

1����
�

where PF is post-scaling factor that depends on the position ��� %� such that:

�	� 	�� ��� 	�� �	� ��� ��� �� ��

��� ��� ��� ��� ��� ��� ��� �� $���

�4�� �$��

On the decoder side, we can use "/ scaling the reconstructed trans-

form coefficients in order to compensate the different row norms. On the

other hand, we need to reduce the dynamic range gain in order to min-

imize the combined rounding errors from the inverse transform and re-

construction. H.264 standard scales the odd-symmetric basis functions by

1/2, replacing the rows �� � �� ��� and �� �� � ��� with �� ��� ���� ���

and ���� �� � �����, respectively. That way, the sum of absolute values of

the odd functions is 3, which reduces the dynamic range gain for the 2-D

inverse transform from �� to ��. This allows reducing the dynamic range

increase from 6 bits to 4 bits. Therefore, the inverse transform matrix is

then defined as

150 Application development on reconfigurable processors

���� �

	

�

� � � ���

� ��� �� ��

� ���� �� �

� �� � ����

�

�

A key point is that the small errors caused by the right shifts are com-

pensated by the 2-bit gain in the dynamic range of the input to the inverse

transform. Inverse transform can thus be performed by the following ex-

pression:

� � "���+"/
���

Direct transform mapping and optimization

Various methods has been proposed in literature in order to decrease the

computational complexity of the (I)DCT, most of them based on decima-

tion algorithms and butterfly structures. For the case of H.264 direct and

inverse transform, the butterfly structure is represented by the schemes in

Figure 6.22.

Direct transform is performed on the residual frame obtained from

the pixel-to-pixel difference between the current frame and the previous

frame, reconstructed by decoding the previously encoded frame. There-

fore, before the butterfly structure is required an additional stage perform-

ing the pixel to pixel difference between corresponding macro-blocks. The

following code represents the software implementation of the H.264 2-D

4x4-DCT.

6.2 Example of application mapping 151

x (0)r

x (1)r

x (2)r

x (3)r

X (0)r

X (3)r

X (2)r

X (1)r

x(0)

x(1)

x(2)

x(3) X(3)

X(0)

−2

2

−

−

−

Fast implemetation of inverse transform (b)

Fast implemetation of direct transform (a)

1/2

1/2

−

−

−

−

X(2)

X(1)

Figure 6.22: Fast implementation of the 1-D H.264 transform

for(y = 0; y � 4; y++)

for(x = 0; x ¡ 4; x++)

d[y][x] = pix1[y][x] - pix2[y][x];

for(i = 0; i � 4; i++)�

int s03 = d[i][0] + d[i][3]; int s12 = d[i][1] + d[i][2];

int d03 = d[i][0] - d[i][3]; int d12 = d[i][1] - d[i][2];

tmp[0][i] = s03 + s12; tmp[1][i] = 2*d03 + d12;

tmp[2][i] = s03 - s12; tmp[3][i] = d03 - 2*d12;

�

for(i = 0; i � 4; i++)�

int s03 = tmp[i][0] + tmp[i][3]; int s12 = tmp[i][1] + tmp[i][2];

int d03 = tmp[i][0] - tmp[i][3]; int d12 = tmp[i][1] - tmp[i][2];

dct[0][i] = s03 + s12; dct[1][i] = 2*d03 + d12;

dct[2][i] = s03 - s12; dct[3][i] = d03 - 2*d12;

�

152 Application development on reconfigurable processors

¿From a computational point of view, the direct transform requires

pixel-to-pixel subtractions (highly parallel), sums and shifts. Multiplica-

tions are not required since the matrix coefficients can be strength-reduced

in shifts and sums. Two-dimensional DCT can be performed using the

common row-column algorithm, thus the whole computation schema is

that one represented in Figure 6.23, where the 5� block are the previously

described 4-point 1-D DCT.

1−D Transform

Figure 6.23: Fully-unfolded bi-dimensional transform diagram

Considering the data range, the elements of the transformed matrix

can be represented by 15 bit, since 9 bits are required after the pixel-to-

pixel difference (pixel are represented by 8-bit variable) and 6 additional

bits are required after the transform. Therefore the representation of the

whole matrix requires a bandwidth greater than the bandwidth available

in PiCoGA-III, that provides up to 4 32-bit outputs. This requires to split

the execution of the transform in two successive calls, each of them provid-

ing one half matrix. To save memory space and to improve the commu-

nication bandwidth, two pixels can be packed in the same output word

without loss in precision. Therefore, the implementation on PiCoGA-III

requires the insertion of a multiplexing layer for the selection of the out-

puts. The most efficient solution is to insert the multiplexing layer at the

same level of the row-column transposition, as is shown in Figure 6.24:

� the row computation is performed by a full-unfolded schema, since

6.2 Example of application mapping 153

for each column transform a sample of every row is required.

� the column computation is performed by a 2-way unfold, since this

level of unfolding is the maximum allowed by the output band-

width. The multiplexing layer allows to choose the couple of rows

under elaboration.

1−D Transform

Multiplexing stage

Figure 6.24: Partially unfolded 4x4 DCT schema

This function features 9 inputs (4+4 for the two input blocks with 8-bit

pixels packed in 32-bit words, 1 for the multiplexing) and 4 outputs. To

complete the elaboration of one 4x4 block is required to call two times this

function. The static features are summarized in the table 6.7, while Figure

6.25 shows the mapping on the array. A detailed analysis of this imple-

mentation emphasizes resources under-utilization in the reconfigurable

device. As can be seen in Figure 6.25, some rows is only partially used,

as for example the case of the 3,7 and 11.

Although not critical in term of performance, the under-utilization of

the device can be seen as an overhead in term of area and can cause an ad-

ditional energy consumption, which is roughly proportional to the num-

ber of active rows. It is possible to use a software pipelining methodology

in order to fold cascaded pipeline stages in the same pipeline stage, by

means of the introduction of status register and feedbacks which allow to

work with data referred to a different iteration time. Software pipelining

154 Application development on reconfigurable processors

Pgaop name sub4x4dct

Rows 20

Pipeline Stage 7

Latency 8

Issue Delay 1

Table 6.7: sub4x4dct

Figure 6.25: sub4x4dct rows occupation

the first two stages, and the third and fourth ones, we can save two rows,

as it is shown in Figure 6.26. As a consequence, the PiCoGA operation

shall be call more times in order to both fill the internal status register

with valid data and to output the results. Since this process is pipelined, it

introduces only a small overhead due to this prologue/epilogue require-

ments. After the first three additional calls, this operation provides as out-

put a half matrix every cycle. The static features of this implementation

6.2 Example of application mapping 155

are summarized in the table 6.8.

Figure 6.26: Modified sub4x4dct for area optimization

Pgaop name sub4x4dct

Rows 18

Pipeline Stage 5

Latency 6

Issue Delay 1

Table 6.8: sub4x4dct

Inverse transform mapping and optimization

As for the direct transform, the inverse transform is split in two computa-

tional kernels: in the first part, given the transformed matrix, is extracted

156 Application development on reconfigurable processors

the residual matrix, while in the second part the reconstructed block is

added. Since the input data have a range that is greater than the range

of the direct transform, area requirements are more demanding and the

optimized implementation requires two PiCoGA operations. The basic

butterfly schema is that one shown in Figure 6.22(b). Furthermore, a fur-

ther stadium shall be added just before the output, in order to perform a

shifting and rounding operations, as represented in Figure 6.27.

1−D Transform

Shift and Round

Figure 6.27: Fully-unfolded inverse 4x4-IDCT basic diagram

Also in this function the output data range not allows to map the whole

function on PiCoGA-III, since the matrix elements require 13 bit to be rep-

resented (9 for the difference representation and 4 due to transform and

inverse transform). The methodology adopted to solve this problem is the

same applied to the previous PiCoGA operation, with the introduction of

a multiplexing layer to select the required outputs after each PiCoGA op-

eration elaboration, as in Figure 6.28.

The last stage of this function performs a shift-and-round operation. In

the software implementation this operation is obtained adding 32 (0b10000

in binary) and right-shifting by 6 bits. In the hardware implementation, in

order to reduce the area occupation it is possible to carry out part of the op-

eration of right-shifting before the sum, thus reducing the number of bits

required. After the shift-and-round, a clipping operation is performed,

setting to 0 every negative value, and to 255 every value greater than 255.

Let us suppose to have in input 16 bit data, the clipping operation can be

performed by the logical structure represented in Figure 6.29.

6.2 Example of application mapping 157

1−D Transform

Multiplexing stage

Shift and Round

Figure 6.28: Partially-unfolded inverse 4x4-IDCT basic diagram

Output data

Mux!= 0

MSB input data

>> 16
16 bits input data

sign bit

Neg
LSB input data

10

Figure 6.29: Modified clipping function structure

In this structure, the multiplexer selector is determined analyzing the 8

most significant bits of the input data. If these bits are set to 0 the clipping

shall not be performed (the number is positive and less than 255), then the

output is obtained passing the input data through the clipping structure.

Otherwise the clipping shall be performed, and the output data are ob-

tained by 16-bit shifting and not operations. The first operation generate

158 Application development on reconfigurable processors

a binary number composed from all 0 if the input data is positive, or all

1 otherwise. Therefore, the not operation allows to obtained in output all

1 (corresponding to 255 if we consider such number unsigned char) if the

input data is positive and all 0 (corresponding to 0) otherwise. This type

of implementation allows to use only 4 rows of PiCoGA-III for the com-

putation of 16 value clipping. The high issue delay requires the insertion

of some retiming registers that caused a increase of the used rows (from 4

to 8).

Summarizing, two functions are used to implement the inverse 4x4

DCT. The first one is characterized by 8 inputs, containing the input matrix

composed by 16 elements of 16 bits, and 4 outputs returning the two se-

lected columns. The second one is characterized from 8 inputs, 4 for each

input matrix (residual and reference), and 4 outputs containing the output

block composed from 16 pixels of 8 bits. To elaborate a 4x4 block inverse

DCT is necessary to call two times the first function and only one the sec-

ond one. The static features of the two PiCoGA operation are summarized

in the table 6.9.

Pgaop name F4x4idct

Rows 22

Pipeline Stage 7

Latency 8

Issue Delay 1

Pgaop name add4x4

Rows 14

Pipeline Stage 4

Latency 5

Issue Delay 1

Table 6.9: F4x4idct and add4x4

6.2 Example of application mapping 159

Results

Both direct and inverse transform are implemented in such a way that is

suitable for the computation in a pipelined form. In the case of the direct

transform, only one PiCoGA operation is required. Therefore, it is possible

to feed the reconfigurable device with new data every cycle, by mean of

the high-bandwidth direct memory access performed via programmable

address generators available in the DREAM adaptive DSP. A set of blocks

is stored in the local memory, then the computation start. Depending on

the number of locally stored and elaborated macro-blocks, also defined as

interleaving factor, the computation achieves better performance figures

since the pipelining is better exploited thus allowing a reduction of stalls.

On the contrary, in the case of the inverse transform, two PiCoGA oper-

ation are required. To pipeline as much as possible the computation an in-

termediate data repository is necessary. The local data buffers of DREAM

can be used for this purpose, thus running the two PiCoGA operations

alternatively and storing/reading intermediate data from the exchange

buffer.

Fig. 6.30 shows the performance improvement (speed-up figure) with

respect to a RISC processor working at the same frequency. As expected,

the speed-up increases with the interleaving factor, saturating when the

PiCoGA pipeline is completely active and prologue/epilogue overhead

are negligible compared to the overall computation time.

Fig. 6.31 shows the throughput achieved with respect to the interleav-

ing factor. Since the direct transform provide one half output matrix for

every PiCoGA trigger, the maximum bandwidth achievable is:

5
�% �
��� � � �6���7	��	�� � ��$�� � �		!"�

��� �
� �
��8$������

In the case of the inverse transform, two PiCoGA operations are re-

quired thus the maximum achievable bandwidth is 12.8 Gbit/sec. As it is

shown in Fig. 6.31, sizing properly the interleaving factor, near-optimal

performance is achieved. The exploitation of the pipelining degree cause

an increase of the dynamic power that is roughly proportional to the num-

ber of active rows per cycle and the memory bandwidth utilized. On the

160 Application development on reconfigurable processors

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048

Interleaving factor

Speed-up vs RISC

4x4 add idct

4x4 sub dct

Figure 6.30: Speed-up figure with respect to a RISC processor working at the

same frequency

contrary, the energy efficiency, mixing the energy consumption with the

achieved performance, increase with the interleaving factor since the per-

formance gain is greater than the energy increase. The related figure of

merit is reported in Fig. 6.32.

0,1

1

10

100

1 2 4 8 16 32 64 128 256 512 1024 2048

Interleaving factor

Throughput
(G bit/sec)

4x4 Add IDCT

4x4 Sub DCT

Figure 6.31: Throughput achieved with respect to interleaving factor

6.2 Example of application mapping 161

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048

Interleaving factor

Energy efficiency
(M bit/sec/m W)

4x4 Add IDCT

4x4 Sub DCT

Figure 6.32: Energy efficiency with respect to interleaving factor

162 Application development on reconfigurable processors

6.2.4 H.264 intra prediction with Hadamard transform for

4x4 blocks

Intra-frame prediction is introduced in H.264 advanced video coding stan-

dard in order estimate 4x4 pixel block starting from the neighboring pixels,

as shown in Fig. 6.33. If compared to previous standard, as the JPEG2000,

this enhancement allows to achieved better compression gain and the same

signal to noise ratio, as proof in [126]. Although different block sizes are

supported by the standard, for the base profile the commonly used macro-

block is 4x4 pixels, and the intra prediction is applied to the luminance

component (or luma), that represents the grey-scale.

J

K

J

K

J

K

J

K

J

K

J

K

J

K

J

K

J

K

MODE 0 MODE 1 MODE 2

MODE 3 MODE 4 MODE 5

MODE 6 MODE 7 MODE 8

MEAN
A−D I−L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

A B C D E F G H

I

M

L

Figure 6.33: Intra prediction modes for 4x4 luma block

Although H.264 not specifies any mode decision, some algorithms are

proposed with different trade-off between quality and computational com-

plexity, considering both distortion and rate. While high complexity mode

a sum of square differences is used, for low complexity mode decision, dis-

tortion is evaluated by sum of absolute differences (SAD) or sum of abso-

lute transformed differences (SATD) between the predictors and original

pixels (where the applied transform is the Hadamard transform). Usually,

the coding performance by selecting SATD is 0.2 0.5 dB better. The rate is

6.2 Example of application mapping 163

estimated by the number of bits required to code the mode information,

and depends - among the others - to the level of quantization. Most of

the computational complexity is associated to SAD and SATD elaboration,

and these two kernels are considered for the implemented on DREAM.

4x4 SAD mapping and optimization

Similarly to MPEG-2 standard, the SAD function is defined by:

��# �
��

���

��
���

����� � $����

where ���� and $��� are the ��� %�
� elements of two macro-blocks A and B.

SAD features a very high level of intrinsic parallelism, both at instruction

level and at loop level. Instruction level parallelism resides in the arith-

metic properties of the mathematical definition, whereas the loop level

parallelism is due to the fact that SAD computation could be applied in

parallel to all the macro-block in a frame. Each pixel is represented by

8-bit variable, thus it is possible to pack in 4 32-bit words a whole macro-

block. Since PiCoGA-III features up to 12 32-bit input words, it is pos-

sible to transfer every cycle all the data required for the 4x4 SAD com-

putation. The output is the SAD value, that can range between 0 and

�� � ��
� � 	� � �	��. Figure 6.34 shows the simplified (fully-unfolded)

block diagram of the 4x4 SAD subdivided in the three phases required:

differences, absolute value computation and adder tree.

This operation fits the PiCoGA-III computational capabilities, and achieved

static features are summarized in table 6.10.

Pgaop name sad4x4

Rows 10

Pipeline Stage 6

Latency 7

Issue Delay 1

Table 6.10: 4x4 Sum of Absolute Differences (SAD)

164 Application development on reconfigurable processors

Diff. Diff. Diff.

Abs Abs Abs

Phase 1

Phase 2

Phase 3

Matrix 1 Matrix 2

Figure 6.34: PiCoGA SAD structure

SATD mapping and optimization

The Sum of Absolute Transformed Differences (SATD) is defined as:

���# �
��

���

��
���

������

where ���� denotes the ��� %�
� elements of the C matrix, which is the

Hadamard-transformed difference between the macro-block A and B. Con-

sidering the case of 4x4 pixel blocks, the Hadamard transform of the D

matrix is calculate by:

. � "�#"/
�

where "� (Hadamard transform) is defined by the orthogonal matrix:

6.2 Example of application mapping 165

� �

	

�

� � � �

� �� � ��

� � �� ��

� �� �� �

�

�

Since ". has N orthogonal rows "."/
. � �. (where �. is the NxN

identity matrix) and "
�
. � ".�� . Therefore, the inverse transform is

defined by

� "�."/
�

Investigating the number of sign transition among the values of each

column of "�, it is possible to see that the first one has 0 sign transitions,

the second one 3 sign transitions, the third one 1 sign transition, and the

fourth one 2 sign transition. The number of sign transition is often termed

“sequence”, and it is a common concept already present in Fourier trans-

form (see Fig. 6.35). Zero sign transition corresponds to a DC component,

whereas a big number of sign changes corresponds to high frequency com-

ponents.

(a) DCT base (b) Hadamard

base

Figure 6.35: DCT and Hadamard transform

If the columns of "� are arranged per increasing sequence, the obtained

matrix is called Walsh transform matrix and is defined as:

166 Application development on reconfigurable processors

� �

	

�

� � � �

� � �� ��

� �� �� �

� �� � ��

�

�

Just like in 4x4 DCT, the resulting basic computational engine has the

usual butterfly structure, and the bi-dimensional transform is obtained by

a row/column algorithm. The butterfly structure for the 1-D Hadamard

transform is depicted in Fig. 6.36, where both direct and inverse data flow

graph are represented.

x (0)r

x (1)r

x (2)r

x (3)r

X (0)r

X (3)r

X (2)r

X (1)r

x(0)

x(1)

x(2)

x(3) X(3)

X(0)

−

−

−

Fast implemetation of inverse transform (b)

Fast implemetation of direct transform (a)

−

−

−

−

X(2)

X(1)

Figure 6.36: 1-D Hadamard transform butterfly schema

The 4x4 SATD operation is very similar to the previously described

4x4 SAD function, with the difference that the SATD performs a transform

6.2 Example of application mapping 167

before the computation of the absolute values. Fig. 6.37 shows the corre-

sponding data flow graph.

MacroBlock
Difference 1−D Transform

SATD

Absolute

Adder tree

Value

Figure 6.37: Fully unfolded 4x4 SATD data flow graph

Difference
Rows

1−D Transform

1−D Transform

SATD

Absolute

Adder tree

Value

SHIFT REGISTER

Figure 6.38: Partially folded 4x4 SATD block diagram

Although no limitation is given by I/O resources, the mapping of a

whole 4x4 SATD does not fit the resource available on PiCoGA-III, then

is required some kind of partitioning or folding. In particular, we chosen

to fold the butterfly structure allowing to elaborate only one row per call,

and to maintain unfolded the absolute value computation and the adder

tree. In the middle, a shift register store the intermediate results, allowing

to write-back a SATD computation every 4 cycle. Fig. 6.38 shows the

block diagram of this implementation, while the required shift register is

depicted in Fig. 6.39.

168 Application development on reconfigurable processors

Third
matrix
row

Fourth
matrix
row

Second
matrix
row

First
matrix
row

Butterfly

Figure 6.39: Shifter register structure used for the matrix transposition

Standing this computational structure, four calls are necessary to ob-

tain a valid SATD computation since only after this time the internal shift

register, implementing the transposition matrix, is filled with valid data.

This notwithstanding, a streaming work-plan is allowed, although requir-

ing output sub-sampling. Furthermore, software pipelining and retim-

ing registers are used to improve the utilization of PiCoGA-III. Fig. 6.40

shows the mapped operation, while Table 6.10 summarizes the static per-

formance.

Pgaop name satd4x4

Rows 24

Pipeline Stage 6

Latency 7

Issue Delay 1

Table 6.11: 4x4 SATD static performance

Results

Results achieved implement 4x4 SAD and SATD function on the DREAM

architecture are reported in Fig. 6.41, Fig. 6.42 and Fig. 6.43. In particular,

6.2 Example of application mapping 169

Figure 6.40: Optimized SATD mapping

Fig. 6.41 shows the speed-up figure with respect to a RISC processor work-

ing at the same frequency of DREAM, while Fig. 6.42 reports the absolute

throughput achieved. Fig. 6.43 shows the energy efficiency, measured in

term of Mbit/sec/mW. The last figure of merit is the inverse of nJ/bit,

value that gives an idea of the amount of energy spent for the elaboration

of each bit in output.

170 Application development on reconfigurable processors

Figure 6.41: 4x4 SAD and SATD speed-up figures with respect to the interleaving

factor

Figure 6.42: 4x4 SAD and SATD throughput with respect to the interleaving fac-

tor

6.2 Example of application mapping 171

Figure 6.43: 4x4 SAD and SATD energy efficiency with respect to the interleaving

factor

172 Application development on reconfigurable processors

Chapter 7

Performance and development

time trade-offs

Application development on reconfigurable processors is performed par-

titioning the computational workload between software and (reconfigurable)

hardware. As usual, partitioning is an iterative process of design refine-

ments or (in the worst-case) re-designs in order to achieved the optimal

result. But, what is the optimal result? Of course, we can said that con-

straints, such as real-time requirements, shall be verified, but it could be

possible to further improve the performance in order to achieve greater

energy reduction. As an example, additional performance improvements

can be used to over-boost the application by reducing the pure cycle count,

then reducing the working frequency to achieve better energy consump-

tion figures. In the case in which complex applications feature a set of

computational kernels (and not only one critical hot spot), it is required

to speed-up as much as possible all the kernels or it is better to focus the

optimization in a subset of them?

Of course, performance, be it computation speed or energy consump-

tion, is not the only cost function to be evaluated, if performance improve-

ments are generated by additional development, thus additional devel-

opment costs. As for the well-known assembly-level optimization, the

programmer shall choose for each critical kernel the most appropriate de-

velopment methodology. As shown in the previous chapter, the effective

173

174 Performance and development time trade-offs

utilization of reconfigurable devices could be driven by a software or a

hardware approach that depends on the application field can return dif-

ferent performance.

The quantitative analysis of the different performance and develop-

ment time trade-off has been evaluated on the XiRisc reconfigurable pro-

cessor. The adopted functional unit computational model reduces any

communication overhead between processor core and reconfigurable de-

vice. This allows to obtain interesting performance improvement after few

hours or few days of work, by mean of local optimizations obtained by

re-mapping part of the software code on the reconfigurable device. On

the contrary, hardware approaches, deeply investigating the mathemati-

cal aspects of the computation to match the device capabilities, promise

impressive performance improvements at the cost of long development

time. Commonly, a hardware approach could imply additional skills with

respect to backgrounds on software development and this can be seen as

an additional cost.

Several applications were developed in order to evaluate the differ-

ent trade-off points proposed by the Griffy methodology in terms of per-

formance, required skills and development time. While previous works,

such as [73, 74], detailed the implementation of common applications on

the XiRisc reconfigurable processor, and [68, 66, 67] summarize perfor-

mance and energy reduction on typical benchmarks compared to tradi-

tional general-purpose embedded processors and DSPs. In this section,

we discuss the relation between the performance achieved and the devel-

opment time spent working on the XiRisc.

The applications were chosen in order to be representative of the whole

“embedded scenario”, using open-source codes that are part of well-known

benchmark suites such as MediaBench [57] or from well-known applica-

tions in the field of image processing, telecommunications, and cryptogra-

phy. Each algorithm has been optimized for XiRisc architecture, exploiting

reconfigurability as much as possible. In this case, Griffy-C code is used

as entry-point to configure the PiCoGA, refining at low-level the initial

configuration using if necessary LUTs or built-in functions.

175

Algorithm Speed-up after development time Line of Code Methods of

Developments
�
�

day 1 day 10

days

�1

months

�3

months

SW

Only

Griffy-C

IDEA 1,9 2,1 2,6 2,7 - 600 740 Clustering,

Mult

CRC 2,3 2,6 2,6 4,0 - 154 430 Clustering, LUT

RSA 1 1,1 1,3 1,6 - 2500 130 Clustering, Pi-

pelining

AES (128-bit) 1 1 1,5 2,5 - 860 490 Clustering, LUT

Kasumi 1,1 1,5 1,6 2,4 - 507 391 Clustering, LUT

Reed-Solomon

Encoder

(255,239)

3 4 7 10 80 156 1500 Clustering,

LUT, HW-

approach

Viterbi Decoder 1,4 1,6 1,7 3 - 300 250 Clustering, LUT

FDCT 1,5 1,6 1,8 2 2,5 250 1000 Clustering, LUT

IDCT 1,2 1,5 2 2,5 - 260 250 Clustering

Quantization 2 2,5 - - - 400 1000 Clustering, Pi-

pelining, Mult

VLC 1,5 2,1 - - - 400 24 Clustering, Pi-

pelining

Motion

Estimation

1,5 3 7 14 16 350 300 Clustering,

Loop unrolling,

Pipelining,

Loop transfor-

mation

MPEG-2

Encoder

1,2 1,5 2 2,5 5 10000 2800 -

MPEG-2

Decoder

1,2 1,3 1,4 1,5 - 4000 120 -

Find Best 1,5 2,5 5,4 - - 200 50 Clustering, Pi-

pelining

Find Acbk 1,1 2,2 4,5 - - 200 50 Clustering, Pi-

pelining

Estim Pitch 1,3 2,3 4,8 - - 200 50 Clustering, Pi-

pelining

Vocoder G.723.1 1,1 1,2 1,9 2 - 16500 210 -

Residu 1,5 3,5 5,0 - - 83 144 Clustering,

Loop unrolling

Vocoder ETSI

GSM 06.60

1,1 1,5 1,8 2,6 - 15000 169 -

Template

Matching

Ncc

1,1 1,5 4 4,4 - 1700 291 Clustering, Pi-

pelining

Template

Matching

Bpc

1,1 1,2 1,5 1,7 - 1900 291 Clustering, Pi-

pelining

Average 1,5 2 3 3,8 7,5 2690 500 -

Table 7.1: Experimental results on application development

176 Performance and development time trade-offs

Reported results include both whole applications and many significant

critical kernels. In all cases, most of the work was performed by under-

graduate students with about 1-2 weeks of training in reconfigurable com-

puting, and the development was stopped when an implementation pro-

viding near-optimal results was obtained. This was either because all the

computational resources were fully exploited, and hence no further per-

formance improvement could be achieved with the same architecture, or

because further improvements would have been too expensive in terms of

development time.

Table 7.1 shows the performance improvement in terms of speed-ups

compared to a VLIW RISC processor, featuring the same instruction set as

XiRisc but not augmented by PiCoGA. In this case, the speed-up takes into

account only the pure cycle count, considering core-only and PiCoGA-

augmented processors as working at the same clock frequency. The table

also reports the number of additional Griffy-C code lines required for the

final implementation compared to the amount of initial code. This should

give an idea of the amount of work required to achieve the final solution.

Table 7.1 also indicates the main methodology and implementation tech-

niques providing the most significant performance gain for the specific

application.

The same results are summarized in Figure 7.1. Two zones in the graph

can be clearly distinguished, one corresponding to pure software opti-

mizations, such as loop unrolling and memory reorganization, and one

corresponding to more hardware-oriented optimizations. In less than 2

days of work, one can easily obtain 2-3� speed-ups using the automated

C-to-DFG translation and standard techniques (software pipelining and

loop unrolling). Longer development times, however, leads to much larger

performance improvements, up to one order of magnitude. The highest

speed-ups are achieved through manual optimization, rescheduling as-

sembly instruction, careful algorithm analysis, and, in extreme cases, even

hardware synthesis.

For some applications, the maximum performance gain is obtained by

re-writing the algorithm from scratch, following the analysis of its mathe-

177

Perform ance vs Developem ent Tim e

1,00

10,00

100,00

0day 1/2day 1day 10day >1m onth >3m onth

Developm ent Tim e

Speed-Up

Average

IDEA

CRC

RSA

AES

Kasum i

Reed-Solom on Encoder

Viterbi Decoder

FDCT

IDCT

Q uantization

VLC

M otion Estim ation

M PEG 2 Encoder

M PEG 2 Decoder

Find_Best

Find_Acbk

Estim _Pitch

Vocoder G.723.1

Residu

Vocoder ETSI GSM 06.60

Tem plate M atching Ncc

Tem plate M atching Bpc

Figure 7.1: Application development trade-off

Utilization

0%

20%

40%

60%

80%

100%

120%

0day 1/2day 1day 10day >1m onth >3m onth

Developm ent Tim e

S
p
e
e
d
-U
p
 P
e
rc
e
n
ta
g
e

Average

IDEA

CRC

RSA

AES

Kasum i

Reed-Solom on Encoder

Viterbi Decoder

FDCT

IDCT

Quantization

VLC

M otion Estim ation

M PEG2 Encoder

M PEG2 Decoder

Find_Best

Find_Acbk

Estim _Pitch

Vocoder G.723.1

Residu

Vocoder ETSI GSM 06.60

Tem plate M atching Ncc

Tem plate M atching Bpc

Figure 7.2: Development Time vs Speed-Up percentage

178 Performance and development time trade-offs

1/2day

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10
Ot
he
r

1day

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10
Ot
he
r

1 m onths

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Ot
he
r

3m onths

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Ot
he
r

m ore…

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 Other

10 days

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10
O t
he
r

Figure 7.3: Distribution of speed-up with respect to development time

matical structure. This is, for example, the case of the Reed-Solomon En-

coder, where software implementations are performed using 256-element

hash-tables and arithmetical operations, while a hardware approach re-

quires one to directly implement operations in Galois Fields arithmetic

using LUTs. The development time reported includes both the time re-

quired to develop the new algorithm and the time required to implement

and validate it.

Figure 7.2 shows the percent average speed-up obtained by spending

additional time, in term of the final implementation. About 70% perfor-

mance gain is obtained in less than 10 days. Figures 7.2and 7.1 can guide a

designer to estimate a cost-effective development strategy and an appro-

priate trade-off between expected performance and required development

time and expertise, balancing for example the time spent for each kernel

in a whole application.

Figure 7.3 shows the distribution of performance speed-ups with re-

spect to the development time spent. While the average speed-up can

be affected by the performance of biased-applications, the distribution of

speed-ups indicates the number of algorithms that achieve a performance

improvement in a specific range. In the short-term, the distribution is con-

centrated around 2-3� speed-up figures, while in long-term development

179

Algorithm Speed-Up Energy Saving Development

Time on DSP

MPEG-2 Encoder 1.9� 63.3% 11h

MPEG-2 Decoder 1.2� 58.4% 3h

IDCT 1.9� 73.8% 1h

IDCT��� 0.8� -160% -

Motion Estimation 2.3� 64.8% 7h

Reed-Solomon 80� 80.1% 20h

Encoder (255,239)

Residu��� 0.2� -340% 15h

AES 1.02� 20% 20h

IDEA 0.85� 0.11% 1h

RSA��� 1.2� 69.8% 3h

	�
 Using the 16-bit TI C5510 and the assembly code provided by

the optimized DSP library

	�
 Using the dedicated application-specific instruction set

	�
 1024 bit key and 2KByte message

Table 7.2: XiRisc vs. TI TMS320C6713 Performance Comparison

three main regions can be identified, depending on the algorithm features.

The first peak in the long-term histogram is typical of algorithms having

little parallelism or not well-suited to PiCoGA, while applications with a

high degree of instruction- and data-level parallelism benefit by more than

1 month of development time (achieving an average performance peak of

5�). Algorithms that require one to re-design the application adopting a

hardware-oriented approach can achieve speed-ups greater than 10� (3��

peak in the histogram) but the development time usually takes more than

3 months.

Table 7.2 shows a performance comparison between the XiRisc recon-

figurable processor and a TI TMS320C6713 32-bit general-purpose DSP

capable of executing up to 8 32-bit instructions per cycle [96]. It can be

observed that in many cases XiRisc achieves a better performance in terms

both of speed and energy. On the other hand, as expected, the DSP per-

forms better in heavily MAC-intensive applications. For example, con-

sider the Residu function which represents a typical filtering kernel of

low bit-rate audio coding using saturating arithmetic. Implementation on

XiRisc uses the PiCoGA to implement the saturating part, while the pro-

180 Performance and development time trade-offs

Algorithm TI C6713 XiRisc

Standard C C with intrinsics Optimized C Assembly-level

Optimization

(clock cycles) (clock cycles) (clock cycles) (clock cycles)

Residu 27910 994 (�1h.) 386 (5h.) 360 (15h.) 1914

AES 1200 - 316 (5h.) 293(20h.) 288

IDEA 360 - 373��� (1h.) 220

	�
 with an interleaving factor of 2, thus 2 blocks are elaborated concurrently

Table 7.3: XiRisc vs. TI TMS320C6713 Performance Comparison

cessor core provides the multiplier and access to the memory sub-system.

This implementation requires �1900 clock cycles. For this kind of ker-

nel, C6713 represents an almost application-specific architecture provid-

ing a dedicated instruction set for saturating arithmetic and 2 concurrently

available multipliers. Table 7.3 reports the number of cycles required to

execute Residu with respect to each improvement step. As expected, the

most significant improvement is associated with introduction of the intrin-

sics (the dedicated instructions), which substitute both multiplication and

the saturation. Nevertheless, this first step shows a result that is not so

distant (only a factor 2) from the reconfigurable solution proposed by the

XiRisc processor. Further optimizations have been obtained via accurate

scheduling at the assembly level.

In the case of AES and IDEA, neither XiRisc nor the DSP can be clas-

sified as application-specific supports. However the multiplicative kernel

of IDEA can benefit from the dual-multiplier architecture of the DSP and

in the XiRisc implementation we mapped an additional multiplier on the

PiCoGA.

Figure 7.4 shows a straightforward comparison of the development de-

sign spaces of XiRisc and the DSP. Performance improvements are con-

sidered for each architecture with respect to its baseline. In the case of

XiRisc the baseline is the execution time of the processor core without

the PiCoGA, while for the DSP it is the execution time obtained without

optimizations. Speed-ups are thus normalized with respect to the basic

features of a given architecture which are directly exploitable by a com-

piler, that is by simply writing a purely ANSI-C code. In this way we

181

1,00

10,00

100,00

0day 1/2day 1day 10day >1m onth >3m onth

Developm ent Tim e

S
p
e
e
d
-U
p

XiRisc - Average

DSP - Average

XiRisc - IDEA

XiRisc - RSA

XiRisc - AES

XiRisc - Reed-

Solomon Encoder
XiRisc - IDCT

XiRisc - Motion
Estimation
XiRisc - Residu

DSP - IDEA

DSP - RSA

DSP - AES

DSP - Reed-Solomon
Encoder
DSP - Motion
Estimation
DSP - IDCT(2)

DSP - Residu(1)

Figure 7.4: XiRisc vs DSP Development Time/Speed-Up analysis

only consider the effort required by programming the PiCoGA to accel-

erate a kernel regardless of the basic processor architecture where it is in-

tegrated. Only critical kernels were taken into account, because from an

optimization point of view a complete application can be considered as

a collection of kernels. In the comparison we considered XiRisc-efficient

kernels (Reed-Solomon Encoder, Motion Estimation), DSP-efficient ker-

nels (IDCT, Residu), and “neutral” applications (IDEA, RSA, AES). In par-

ticular, for IDCT implementation we considered implementation on a TI

C5510, which uses the application-specific DCT library and hence allows

one to obtain better performance, despite the additional programming

complexity due to 16-bit processor architecture. We also considered imple-

mentation with intrinsics as the baseline for Residu implementation on the

TI C6713, since this optimization step is performed in a very straightfor-

ward manner merely using #defines to rename the application-specific

instructions. The average results approximatively confirm the “learning”

182 Performance and development time trade-offs

1

10

100

1000

1 10 100 1000 10000

Interleaving factor

S
p
e
e
d
-u
p
 v
s
 R
IS
C

Add4x4idct Sub4x4dct

Sad4x4 Satd4x4

Ofdm _M apper-1 Ofdm _M apper-4

Ofdm _M apper-8 AES-128

Figure 7.5: DREAM speed-up

curve of XiRisc in Figure 3.1. While the DSP curve saturates the speed-

ups after a few days, XiRisc architecture allows the user to improve for a

longer time, and hence achieve much higher performances.

A similar analysis can be driven in the case of the DREAM architecture.

Compared to the XiRisc processor, the DREAM architecture performs in-

struction set extension using a co-processor model of computation. On the

application side, it is possible to underline three main differences between

the two processors, that could impact on both performance and develop-

ment time:

� high-bandwidth direct access to the memory subsystem, by program-

mable address generator;

� loosely coupled register file and dedicated memory subsystem, which

increases the communication overhead between processor core and

reconfigurable accelerator;

� PiCoGA-III instead of PiCoGA 1.0, with roughly double computa-

tional capabilities.

183

0,01

0,1

1

10

100

1 10 100 1000 10000

Interleaving factor

T
h
ro
u
g
h
p
u
t
(G
B
it/
se
c)

Add4x4idct Sub4x4dct

Sad4x4 Satd4x4

Ofdm _M apper-1 Ofdm _M apper-4

Ofdm _M apper-8 AES-128

Figure 7.6: DREAM throughput

On one hand, we could apparently think that DREAM architecture is

less programmable than the XiRisc processor, since the increase of com-

munication overhead and the necessity to manually handle both the allo-

cation of registers inside the dedicated register file and the access to the

memory. But, on the other hand, these features allow DREAM to overtake

most of the bottlenecks of the XiRisc processor (for example, the access to

the memory), thus improving the achieved performance. It should be no-

ticed that the memory bottleneck causes in the XiRisc processor a small uti-

lization of the PiCoGA: 1 o 2 row are actives at times (with a peak of 12 in

the motion estimation algorithm), whereas in DREAM this average value

growth at 22. Performance improvements in terms of speed-up, through-

put and energy efficiency for the DREAM architecture are reported respec-

tively in Fig. 7.5, Fig. 7.6 and Fig. 7.7.

With respect to XiRisc, DREAM encourages the utilization of hardware

approaches providing additional degrees of freedom, although fast soft-

ware approach could benefit from the same features to overtake the in-

crease of communication overhead. Usually, most of the time is spent

184 Performance and development time trade-offs

0,1

1

10

100

1000

1 10 100 1000 10000

Interleaving factor

E
n
e
rg
y
 e
ff
ic
ie
n
c
y
 (
M
b
it
/s
e
c
/m
W
)

Add4x4idct Sub4x4dct

Sad4x4 Satd4x4

Ofdm _M apper-1 Ofdm _M apper-4

Ofdm _M apper-8 AES-128

Figure 7.7: DREAM energy efficiency

on the design of the instruction set extension, deeply analyzing the algo-

rithm and its mathematical background. In fact, following hardware ap-

proaches, DREAM achieves impressive performance in 2-4 weeks of work,

whereas the XiRisc processor requires 1-2 months. Moreover, further per-

formance improvements are easily achieved by exploiting data parallelism

using address generator to perform some kind of streaming or fully pipe-

lined computation.

Concerning the skills required to develop applications on the DREAM

architecture, it is possible to note that most of the required knowledge

is the same of XiRisc. In fact, the Griffy approach allows to abstract the

reconfigurable device at level of software DFG, also providing the possi-

bility to efficiently handling the pipeline structure by data dependencies.

Data analysis required to exploit as much as possible the pipelining is a

well known concept of DSP programming, since most of the DSPs pro-

vide scratch-pads with programmable access pattern. On this side, since

it has been affirmed that embedded reconfigurable computing represents

the most natural evolution of the DSP, it could said that the direct mem-

185

ory access provided by DREAM is not an obstacle to programmability but

the solution of a bottleneck of XiRisc. For both the architectures, as well

as for the XiSystem, the Griffy approach is resulted as an effective way

of programming, thus proving the generality of the approach. Although

XiSystem, including an additional eFPGA, is not involved in this analysis

on the development time, we can reasonably expect similar results also in

this case. Less speed-ups should be expected, due to communication over-

heads and to the utilization of a general-purpose device providing further

reconfigurability at level of I/O protocols.

186 Performance and development time trade-offs

Chapter 8

Conclusions

During this thesis an application development environment for embed-

ded reconfigurable processors has been developed, focusing on enabling

technologies delivering reconfigurable computing to software program-

mers. In fact, one of the greater obstacles for the deployment of reconfig-

urable processors is the required co-design of both software and hardware

parts. Co-design involves knowledge and skills non common in the field

of embedded applications, long time dominated by solutions based on

microcontrollers or DSPs augmented with application-specific hardware

accelerators. Although several approaches and languages have been pro-

posed to handle reconfigurable processors, a homogeneous and effective

solution has not been found yet, mainly because of the difficulty to match

performance gain with user-friendly design control. While hardware de-

signers may obtain significant benefits from traditional HDL flows, pro-

grammers cannot optimize the software implementation without specific

training.

To be appealing for the wide scenario of DSP programmers, a simpli-

fied C syntax, termed Griffy-C, has been proposed as main entry-point for

the mapping on reconfigurable devices. Griffy-C provides a DFG-based

abstraction of the underlying hardware, and implements the DFG in a pi-

pelined form to increase the throughput. On the Griffy paradigm, most

of the optimization steps can be driven as graph transformations (e.g. un-

folding, software pipelining), and Griffy-C can be seen as the assembly-

187

188 Conclusions

level optimization performed by DSP developers, do not requiring any

expertise on hardware design.

In the first phase of this thesis, a complete tool-chain for the XiRisc re-

configurable processor has been implemented. Griffy code is used to con-

figure the reconfigurable functional unit of XiRisc (the PiCoGA), while the

processor core is programmed by ANSI C. The implemented tool-chain

provides simulation engines for both debugging and cycle-accurate per-

formance evaluation. Graphical interfaces are provided for source-level

debugging of both processor core and reconfigurable device. The user-

friendly framework allowed also unexperienced users to develop their

applications on the XiRisc processor obtaining valuable results after few

days of work.

In a second phase, the Griffy approach has been extended to support a

commercially available eFPGA, added to the XiRisc processor in the XiSys-

tem architecture to provide pre/post processing capabilities and config-

urability at level of I/O protocols. A specific back-end has been imple-

mented in order to generate VHDL from the Griffy-C. Furthermore, the

Griffy approach has been applied to the DREAM adaptive DSP, including

the ��� release of PiCoGA directly connected at the memory sub-system

by means of programmable address generators. In this last release, Griffy

has been augmented with the capability to handle built-in functions in or-

der to directly instance advanced operators, similarly to the case of DSP

intrinsics.

A key issue of this work is a transparent instruction set extension me-

chanism, applied to both functional unit and co-processor models, that

allows the unexperienced user full control over the embedded reconfig-

urable hardware, thus enabling significant performance improvements in

terms of both speed and energy consumption. Applications developed,

also by students, provide a quantitative assessment of this aspect, by de-

scribing precisely how much performance gain can be be obtained with a

longer design cycle. In particular, two main zones can be identified de-

pending on the programming approach and consequently the develop-

ment time spent. In the first one, corresponding to pure software opti-

189

mization, in less than 2 days of work one can easily obtain 2-3� speed-ups

simply rewriting the original code in Griffy-C, performing some memory

reorganization and using standard development techniques like software

pipelining and loop unrolling.

Additional development time, however, can be spent to achieve more

dramatic performance improvements, up to one order of magnitude in

the case of XiRisc and two orders in case of DREAM. The latter approach

often requires manual optimizations, involving assembly and instruction

rescheduling, deep analysis of the algorithms and their mathematical back-

grounds, as well as in extreme cases hardware synthesis or hardware-

aware mapping. In combination with Amdahl’s law, these experimental

curves, showing the different trade-offs between performance and devel-

opment time, can guide application developers to identify a cost-effective

mapping approaches, optimizing the overall development cost.

190 Conclusions

Appendix A

Griffy-C syntax

66. Griffy the Cooper

THE COOPER should know about tubs. / But I learned about life as well,

And you who loiter around these graves / Think you know life.

You think your eye sweeps about a wide horizon, perhaps,

In truth you are only looking around the interior of your tub.

You cannot lift yourself to its rim / And see the outer world of things,

And at the same time see yourself. / You are submerged in the tub of yourself?

Taboos and rules and appearances, / Are the staves of your tub.

Break them and dispel the witchcraft / Of thinking your tub is life!

And that you know life!

Spoon River Anthology - E. L. Masters

191

192 Griffy-C syntax

A.1 Overview

Griffy-C is a restricted subset of ANSI C syntax enhanced with some ex-

tensions, to handle for example variable resizing, that allow to describe

software Data Flow Graph (DFG) suitable for the implementation on re-

configurable devices. Differences with other approaches reside primarily

in the fact that Griffy is aimed at the extraction of a pipelined DFG from

standard C and its mapping over a gate-array that is also pipelined by ex-

plicit stage enable signals. The fundamental feature of Griffy-based algo-

rithm implementation is that Data Flow Control is not synthesized on the

array cells but is handled separately by a hardwired control unit, thus al-

lowing a much smaller resource utilization and easing the mapping phase.

This also greatly enhances the regularity of the placing.

Griffy-C is used as a friendly format for the programming of recon-

figurable devices using hand-written behavioral descriptions of DFGs, but

can also be used as an intermediate representation (IR) automatically gen-

erated from high-level compilers. As in Fig. A.1, it is thus possible to

provide different entry points for the compiling flow: high-level C de-

scriptions, preprocessed by compiler front-end into Griffy-C, behavioral

descriptions (using hand-written Griffy-C) and gate level descriptions, ob-

tained by logical synthesis and again described at LUT level. The figure

also shows the capability of programming different devices changing the

back-end flow, indicating as an example the possibility to generate config-

urations for PiCoGA or eFPGAs (by mean of VHDL).

Restrictions essentially refer to supported operators (only operators

that are significant and can benefit from hardware implementation are

supported) and semantic rules introduced to simplify the mapping into

the gate-array. Three basic hypothesis are assumed:

� DFG-based description: no control flow statements (if, loops or func-

tion calls) are supported, as data flow control is managed by the em-

bedded control unit. Conditional assignments (? :) are implemented

on standard multiplexers.

A.1 Overview 193

Figure A.1: Multiple entry-point Griffy flow

� single assignment: each variable is assigned only one time, avoiding

hardware connection ambiguity.

� manual dismantling: only single operator expressions are allowed (sim-

ilarly to intermediate representation or assembly code).

Griffy-C operators are summarized in Tab. A.1 and will be described

in the following sections.

Native supported variable types are signed/unsigned int (32-bit), short

int (16-bit) and char (8-bit). Width of variables can be defined at bit level

using #pragma directives. Operators width is automatically derived from

the operands size. Variables defined as static are used to allocate static

registers inside the reconfigurable device, that is registers whose value is

maintained across successive calls (i.e. to implement accumulations). All

others variables are considered “local” to the operation and are not visible

to successive issues.

194 Griffy-C syntax

Arithmetical operators

dest = src1 [���] src2;

Bitwise logical operators

dest = src1 [&,�,ˆ] src2; dest = ˜ src1;

Shift operators

dest = src1 [��,��] constant;

Comparison operators

dest = src1 [�� ������ � �� ��� �] src2;

Conditional Assignment (Multiplexer operator)

dest = src1 ? src2 : src3;

Extra-C operators

LUT operator: dest = src1 � 0x[LUT layout];

Concatenation operator: dest = src1 # src2;

Table A.1: Griffy operators

A.1 Overview 195

Griffy-C code can be considered as a special function mapped in a re-

configurable devices, which substitutes the object code with a bit-stream.

It needs a special declaration obtained with #pragma directive and “picoga”

keyword. In the following, PiCoGA is considered as the target example,

although the same syntax could be re-used for different platform.

#pragma picoga name n_outs n_ins <outs> <ins>

{

[declaration of variables]

[declaration of attributes]

[PiCoGA-function body]

}

#pragma end

#pragma picoga syntax description:

� name is the name associated at the pga-op in the code and it can be

used to call them in the ANSI C source code.

� n outs is the number of outputs (no more then two) and n ins is the

number of inputs (no more then four).

� �outs� and �ins� are, respectively, the names of the output and in-

put variables (separated by blanks). I/O transferring from/to the

reconfigurable device is done using 32-bit unsigned int variables.

� Pga-ops declaration is closed by #pragma followed by “end” keyword.

� Pga-ops can be called in the ANSI C source code similarly to proce-

dure calls as in the following example:

name (<outs>,<ins>);

As in ANSI C syntax, variables are separated using commas (“,”).

� variable declaration and function body must be inserted between

curly braces (“
” and “�”, as in previous example): function body

cannot have more then one basic block (DFG-based description), thus

no other curly braces can be used.

196 Griffy-C syntax

Variables Declaration

Variable types supported by Griffy-C syntax are the standard:

� 8-bit signed/unsigned char

� 16-bit signed/unsigned short int

� 32-bit signed/unsigned int

No array or pointer are supported. It is also defined the static type in order

to assign a specific variable to PiCoGA registers. Similar to ANSI C, static

variables are allocated at compiling time and exist throughout program

execution (its are permanently), but their scope is the block in which they

are defined (restricted visibility).

Attributes Declaration

Using #pragma directive with attrib keyword it is possible to associate some

additional attributes at standard variables. For example, it is possible to

define width of all variables at bit level. Syntax used to define additional

attributes of the variable is the following one:

#pragma attrib Var1,...,VarN attribs

Attributes defined in Griffy-C environment are:

� SIZE=nbits: it sets at nbits the width, at bit level, of the variable; re-

sized width must be less (or equal) then the original size: on the

other hand, resizing not augments the original width of the variable.

� SAT: it allows to extract overflow/carryout informations from addi-

tions or subtractions that have a destination variable with SAT at-

tribute set. Carryout and overflow are defined as additional flags

of the destination variable, if and only if the operation is ���. It is

possible to use these flags to realize “saturation” arithmetic. Only

variables that are destination of adds or subs can be used with these

flags. To use these flags in Griffy function body is possible using spe-

cial variables (implicitly defined by SAT attribute):

A.1 Overview 197

var name(carryout)

var name(overflow)

where var name is the name of the variable declared SAT.

� PIPEREG: this flags can be used to define an explicit pipeline stage

without that the variable should be seen as a static elements from the

software environment.

Griffy-function Body

Function body description is obtained using a restricted subset of ANSI C

syntax with some additional operators used to implement in the descrip-

tion environment grouping (or concatenation) of signals using routing-only

resources and to implement some truth tables using the internal RLC re-

sources (mainly, LUTs and multiplexers).

DFG-based description

Only DFG (Data Flow Graph) description is supported: no control state-

ments (e.g if or loops) are defined in the Griffy syntax. The only exception

is the conditional assignment operator that is used to implement an hard-

wired multiplexer. Thus, each node of a DFG can be described using a sin-

gle assignment operation at Griffy-C level. When the DFG is not a DAG

(Data Acyclic Graph) and thus it has one or more feedbacks, static variables

must be used because, in the “software” C-compliant description of the

feedback, each variable is read before written. When a feedback occurs,

each pga-ops trigger set the value for the following pga-ops trigger.

Single Assignment Form

Each variable must be assigned one and only one time in the function

body. This hypothesis is taken in order to avoid ambiguity and to sim-

plify hardware translation of the DFG. In fact, under a single assignment

assumption, each DFG node is unambiguously defined by the destination

198 Griffy-C syntax

variable. Dependences among nodes and instruction level parallelism is

explicitly defined by the data-dependencies graph. Single assignment hy-

pothesis is equal to assume that each variable should be used as instruc-

tion destination only one time in the DFG description. Variables can be

seen as the labels of each DFG edge.

Manual Dismantling

Manual Dismantling is the third assumption of Griffy-C. DFG description

can be seen as an assembly language used to configure reconfigurable de-

vices. Dismantling of complex instructions is a non-trivial task that in-

volves instruction level parallelism (ILP) exploited in the Griffy-C descrip-

tion and effectively usable in the configuration flow (performed by Griffy).

For example, in order to dismantle the following complex expression:

y = x1 + x2 + x3 + x4;

it is possible to use two main policies. The first one is a traditional

sequential dismantling:

y1 = x1 + x2;

y2 = y1 + x3;

y = y2 + x4;

x1x2

x3

x4

y1

y2

y

+

+

+

that obtains a 3 clock cycles latency and not exploit any degree of instruc-

tion level parallelism. A more efficient approach is the balanced-tree dis-

mantling that exploits the most degree of instruction level parallelism. As

shown in the following example, using a balanced-tree dismantling strat-

egy, only 2 cycles of latency are required:

y1 = x1 + x2;

y2 = x3 + x4;

y = y1 + y2;

+

x1 x2 x3

y1 y2

y

x4

+

+

A.1 Overview 199

Dismantling has an important impact on both latency and issue delay of

pga-ops.

Operator Width

Operator width is obtained involving the width of both input and output

operands and type of operator. For example, adder width is set by the

destination width, whereas the size of comparison is given by the greater

input operand. Inputs truncation or extension are done to correctly resize

the variables, padding with zeros or propagating the sign bit.

A.1.1 Standard Operators

In this section standard operators defined in Griffy-C syntax are summa-

rized focusing on the differences (if there are) with ANSI C. Informations

about the routing-only optimization are also provided. Descriptions refer

to local destination variable: if destinations are statics or if they are at-

tributed with PIPEREG flag, then routing-only optimization is not taken.

Exceptions at this rule are explicitly reported in the descriptions.

A.1.2 Arithmetical Operators

Addition

Syntax:

� dest = src1 + src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib.

� dest = src1 + const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const + src2;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

200 Griffy-C syntax

� dest = const1 + const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Subtraction

Syntax:

� dest = src1 - src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib.

� dest = src1 - const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const - src2;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const1 - const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

A.1.3 Bitwise Logical Operators

Bitwise And

Syntax:

� dest = src1 & src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib.

A.1 Overview 201

� dest = src1 & const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted. This instruction masks some bit

of the variable src1 and is implemented using routing-only resources:

some bits are propagated ant the others are set to 0.

� dest = const & src2;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted. This instruction masks some bit

of the variable src2 and is implemented using routing-only resources:

some bits are propagated ant the others are set to 0.

� dest = const1 & const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Bitwise Or

Syntax:

� dest = src1 � src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib.

� dest = src1 � const;

const is an unsigned integer; both decimal (e.g 120) and hexadeci-

mal (e.g. 0xfA00) formats are accepted. This instruction is imple-

mented using routing-only resources because it masks src1: some bits

are propagated to destination and the others are set to 1 by constant

propagation.

� dest = const � src2;

const is an unsigned integer; both decimal (e.g 120) and hexadeci-

mal (e.g. 0xfA00) formats are accepted. This instruction is imple-

mented using routing-only resources because it masks src2: some bits

202 Griffy-C syntax

are propagated to destination and the others are set to 1 by constant

propagation.

� dest = const1 � const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Bitwise Not

Syntax:

� dest = ˜ src2;

src2 is a variable; this instruction can be implemented manipulating

destination RLCs without area occupancy.

� dest = ˜ const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted. This instruction type is realized

by constant folding and propagation: implementation do not needs

RLCs.

Bitwise Xor

Syntax:

� dest = src1 ˆ src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib.

� dest = src1 ˆ const;

const is an unsigned integer; both decimal (e.g 120) and hexadeci-

mal (e.g. 0xfA00) formats are accepted. This instruction is imple-

mented using routing-only resources because it masks src1: some bits

are propagated to destination and the others are propagated in active

low format.

A.1 Overview 203

� dest = const ˆ src2;

const is an unsigned integer; both decimal (e.g 120) and hexadeci-

mal (e.g. 0xfA00) formats are accepted. This instruction is imple-

mented using routing-only resources because it masks src2: some bits

are propagated to destination and the others are propagated in active

low format.

� dest = const1 ˆ const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

A.1.4 Direct Assignment

Syntax:

� dest = src1;

This instruction can be used as an explicit cast in order to resize src1

width to dest: src1 can be extended using zeros (if unsigned) or using

the most significant bit (if signed) or reduced taking a slice of src1

(number of bits are defined by dest size).

� dest = const;

This instruction is implemented using constant folding and propa-

gation.

A.1.5 Shift Operators

Syntax:

� dest = src1 �� const;

src1 is a variable; this instruction can be implemented using routing-

only resources and do not needs RLCs. Zeros are inserted as least

significant bits.

204 Griffy-C syntax

� dest = const �� const;

This instruction can be implemented by constant folding and propa-

gation.

� dest = src1 �� const;

src1 is a variable; this instruction can be implemented using routing-

only resources. When src1 is unsigned Zeros are inserted as most

significant bits; when src1 is signed the most significant bit is ex-

tended.

� dest = const �� const;

This instruction can be implemented by constant folding and propa-

gation.

Note:

Destination variable can be used to select some bits of the source in order

to realize an unpacking. If destination width is less then source width, then

a slice of source is taken: the least significant bit is set by shift step and the

most significant bit is defined by “dest size + shift step”. For example:

unsigned int original_word;

unsigned char byte1, byte2, byte3, byte4;

.......

byte1 = original_word;

byte2 = original_word >> 8;

byte3 = original_word >> 16;

byte4 = original_word >> 24;

.......

can be used to unpack a word in four byte variables. This procedure must

be used for unpack variables transferred from register file to PiCoGA.

A.1.6 Comparison Operators

Comparison operators must have destination variable with 1-bit SIZE at-

tribute defined: Output value is 1 when comparison returns TRUE and 0

when comparison returns FALSE.

A.1 Overview 205

Equal

Syntax:

� dest = src1 == src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib. SIZE of dest must be 1.

� dest = src1 == const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const == src2;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const1 == const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Not Equal

Syntax:

� dest = src1 != src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib. SIZE of dest must be 1.

� dest = src1 != const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const != src2;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

206 Griffy-C syntax

� dest = const1 != const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Less Than

Syntax:

� dest = src1 � src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib. SIZE of dest must be 1.

� dest = src1 � const;

const is an unsigned integer; both decimal (e.g 120) and hexadec-

imal (e.g. 0xfA00) formats are accepted. When src1 is signed and

const == 0, instruction is implemented extracting sign bit of src1 with-

out using RLCs.

� dest = const � src2;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const1 � const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Less or Equal Than

Syntax:

� dest = src1 �� src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib. SIZE of dest must be 1.

A.1 Overview 207

� dest = src1 �� const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const �� src2;

const is an unsigned integer; both decimal (e.g 120) and hexadec-

imal (e.g. 0xfA00) formats are accepted. When src2 is signed and

const == 0, instruction is implemented extracting sign bit of src2 and

to propagate them in active low form without using dedicated RLCs.

� dest = const1 �� const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Greater Than

Syntax:

� dest = src1 � src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib. SIZE of dest must be 1.

� dest = src1 � const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const � src2;

const is an unsigned integer; both decimal (e.g 120) and hexadec-

imal (e.g. 0xfA00) formats are accepted. When src2 is signed and

const == 0, instruction is implemented extracting sign bit of src2 and

to propagate them without using dedicated RLCs.

� dest = const1 � const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

208 Griffy-C syntax

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

Greater or Equal Than

Syntax:

� dest = src1 �� src2;

dest, src1, src2 are variables; width of these ones is defined by integer

type or by #pragma attrib. SIZE of dest must be 1.

� dest = src1 �� const;

const is an unsigned integer; both decimal (e.g 120) and hexadec-

imal (e.g. 0xfA00) formats are accepted. When src1 is signed and

const == 0, instruction is implemented extracting sign bit of src2 and

to propagate them in active low form without using dedicated RLCs.

� dest = const �� src2;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = const1 �� const2;

const1 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted. This instruction

type is realized by constant folding and propagation: implementa-

tion do not needs RLCs.

A.1.7 Conditional Assignment

Conditional assignment is implemented as a multiplexing DFG node and

cannot be used to explicitly perform control flow. This is the only three

input edges defined in Griffy-C syntax. Variable used as conditional flag

must be have SIZE equal to 1.

Syntax:

A.1 Overview 209

� dest = src1 ? src2 : src3;

dest, src1, src2, src3 are variables; width of these ones is defined by

integer type or by #pragma attrib. SIZE of src1 must be 1.

� dest = src1 ? src2 : const;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = src1 ? const : src3;

const is an unsigned integer; both decimal (e.g 120) and hexadecimal

(e.g. 0xfA00) formats are accepted.

� dest = src1 ? const2 : const3;

const2 and const2 are unsigned integers; both decimal (e.g 120) and

hexadecimal (e.g. 0xfA00) formats are accepted.

� dest = const1 ? src2 : src3;

const1 is an unsigned integer with SIZE = 1: implementation re-

quires routing-only resources because conditional assignment can be

resolved at compiling time; selected variable is propagated to desti-

nation without dedicated RLCs.

� dest = const1 ? const2 : src3;

const1 is an unsigned integer with SIZE = 1: implementation re-

quires routing-only resources because conditional assignment can be

resolved at compiling time; src3 is propagated to destination using

routing only resources if const1 is equal to 0. Instead, if const1 is true

then const2 is folded and propagate wherever dest is used.

� dest = const1 ? src2 : const3;

const1 is an unsigned integer with SIZE = 1: implementation re-

quires routing-only resources because conditional assignment can be

resolved at compiling time; src3 is propagated to destination using

routing only resources if const1 is equal to 1. Instead, if const1 is false

then const3 is folded and propagate wherever dest is used.

210 Griffy-C syntax

� dest = const1 ? const2 : const3;

In this case dest is a constant calculated at compiling time: so, it is

folded and propagate, similarly to other constants, wherever dest is

used.

A.1.8 Advanced Operators

In this section two additional operators are shown. Its extend ANSI C

syntax in order to exploit packing (concatenation) of multiple variables or

to define some truth-tables implemented using RLC-only resources.

A.1.9 Concatenate operator (#)

Concatenate operator can be used in order to pack two variables into only

one. If destination width is less to the sum of the widths of the sources

then a packing truncated is performed.

Syntax:

� dest = src1 # src2;

dest, src1, src2 are variables. Bits correspondence is shown in fig. A.2.

No constants can be directly used with concatenate operator. In order to

concatenate a variable with a constant can be used shift and bitwise-or, or,

better, using a direct assignment in order to fix the size of the constant and

thus concatenate them.

SRC1

SRC2

N 0

SRC1 SRC2

DEST

02N

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

SRC1

SRC2

N 0

SRC1 SRC2

0>2N

DEST (with truncation)

Figure A.2: Concatenate operator

A.1 Overview 211

A.1.10 LUT operator (@)

LUT operator (@) is defined in order to implement some typology of truth

tables using resources inside single RLC. Typology of truth table is defined

by destination and source width.

Syntax:

� dest = src1 @ 0x[LUT LAYOUT];

From destination and source is defined how to read the LUT layout

(hexadecimal) string.

Typologies of supported truth tables are summarized in tab. A.2: LUTs

2x4:1 or 2x4:2 are pairs of independent LUTs, respectively 4:1 or 4:2, inside

the same RLC.

SIZE attrib LUT Typology

Src Dest

4 1 4:1

5 1 5:1

6 1 6:1

4 2 4:2

5 2 5:2

4 4 4:4

8 2 2 x 4:1

8 4 2 x 4:2

Table A.2: Typologies of LUTs supported

LUT Layout Rules

LUT Layout can be specified coding in an hexadecimal string the output(s)

of the truth table using layout rules defined for each LUT typology. Hex-

adecimal string is left extended with 0 to achieve required width.

� 4:1 - 5:1 - 6:1

212 Griffy-C syntax

SRC DEST

0. . . 0 �
...

...

1. . . 1 �

dest = src @ 0x[�. . .�];

Example: and6i = src @ 0x1;

� 4:2 - 5:2

SRC DEST1 DEST0

0. . . 0 �1 �0
...

...
...

1. . . 1 �1 �0

dest = src @ 0x[�1. . .�1][�0. . .�0];

Example: and4 2 = src @ 0x00010001;

or: and4 2 = src @ 0x10001;

� 4:4

SRC DEST3 DEST2 DEST1 DEST0

0. . . 0 �3 �2 �1 �0
...

...
...

...
...

1. . . 1 �3 �2 �1 �0

dest = src @ 0x[�3. . .�3][�2. . .�2][�1. . .�1][�0. . .�0];

� 2x4:1

SRC[7:4] DEST1 SRC[3:0] DEST0

0. . . 0 �1 0. . . 0 �0
...

...
...

...

1. . . 1 �1 1. . . 1 �0

dest = src @ 0x[�1. . .�1][�0. . .�0];

� 2x4:2

A.1 Overview 213

SRC[7:4] DEST3 DEST2 SRC[3:0] DEST1 DEST0

0. . . 0 �3 �2 0. . . 0 �1 �0
...

...
...

...
...

...

1. . . 1 �3 �2 1. . . 1 �1 �0

dest = src @ 0x[�3. . .�3][�2. . .�2][�1. . .�1][�0. . .�0];

A.1.11 Built-in function as hard-macros

Reconfigurable devices featuring basic logic block with advanced oper-

ators can benefit of the direct instance of these functionalities. The case

is analogue to the built-in function provided in DSP processor in order

to explicitly instance some assembly instruction, like a sum of absolute

differences or a saturating sum. The syntax adopted is the same of stan-

dard function calls, although the number of inputs depends on the specific

functionality.

Syntax:

� dest = my hard macro (src1, . . . , srcN);

Example: PiCoGA-III specific built-in functions

PiCoGA-III features a hybrid reconfigurable logic cells allowing straight-

forward implementations of non-standard operations by mean of dedi-

cated logic. As an example, the simple adder is implemented using the

ALU block, but more complex operations can be provided coupling ALU

features with the surrounding control logic. To give an idea of that capa-

bilities, the following items shows a basic set of built-in functions already

implemented on the PiCoGA-III specific Griffy flow.

GFMult : implements the multiplication on the Galois Field GF(2�) with

the irreducible polynomial �� � � � �;

���� � 83!	 � ������ ������

214 Griffy-C syntax

a0b3

a0b4

a0b5

a1b4

a2b3

a3b2

a1b3

a2b2

a3b1 a2b1

a1b2

a3b0

multblock

Figure A.3: Multiplier chunk

multblock : implements a multiplier chunk as shown in Fig. A.3

���� � �	 �$
�� ������ ������

CondSum : implements a conditional sum. Depending on a condition

flag, it performs a sum or a subtraction between two operands

���� � .

��	� ��

�� ����� ������

� ���� � �

������� ���� � ���� � �����

Accumulator : implements a routing-efficient accumulator in which the

feedback path is internal to the reconfigurable logic cell

���� � ���	�	 ��
�������

� ���� � ���� � ����

CondAccumulator : implements a routing efficient conditional accumu-

lator which accumulates or reset to a constant depending on the con-

dition

���� � .

����	�	 ��
���

�� �

��� �����

� ���� � ��� � ��

���

�� � ������

A.1 Overview 215

Xor10bit : implements a single-cell xor among 10 bits

SuperMux : implements a 4-input 1-output multiplexer, based on 2-bitwise

chunk implemented on a single cell.

216 Griffy-C syntax

Bibliography

[1] J. Rabaey Reconfigurable Computing: The solution to Low Power Program-

mable DSP, Proceedings of the 1997 IEEE International Conference on

Acoustics, Speech and Signal Processing, April 1997.

[2] W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebel-

ing, R. Hartenstein, O. Mencer, J. Morris, K. Palem, V.K. Prasanna,

H.A.E. Spaanenburg Seeking solutions in configurable computing, IEEE

Computer, Dec 1997.

[3] J. Goodacre, A.N. Sloss Parallelism and the ARM Instruction Set Architec-

ture, IEEE Computer, May 2005.

[4] S. Leibson, J. Kim Configurable Processors: a new era in chip design, IEEE

Computer, May 2005.

[5] V.Kathail, S.Aditya, R.Schreiber, B.R.Rau, D.C.Cronquist,

M.Sivaraman PICO: Automatically Designing Custom Computers,

IEEE Computer, Feb 2002.

[6] N.T. Clark, H. Zhong, S.A. Mahlke Automated Custom Instruction Gen-

eration for Domain-Specific Processor Acceleration, IEEE Transactions on

Computers, Vol. 54, No. 10, October 2005.

[7] A. DeHon The density advantage of configurable computing, IEEE Com-

puter, April 2000.

[8] K. Bondalapati, V.K. Prasanna Reconfigurable Computing Systems, Pro-

ceedings of the IEEE, Vol. 90, No. 7, April 2002.

217

218 BIBLIOGRAPHY

[9] L. B. Baumstark, L. M. Wills Retargeting Sequential Image-Processing Pro-

grams for Data Parallel Execution, IEEE Transactions on Software Engi-

neering, vol. 31, no. 2, February 2005.

[10] F. Barat, R. Lauwereins, G. Deconinck Reconfigurable instruction set

processors from a hardware/software perspective, IEEE Transactions on

Software Engineering, Volume 28, Issue 9, Sept. 2002.

[11] A. DeHon, J. Wawrzynek Reconfigurable Computing: What, Why and

Implications for Design Automation, Proceeding on DAC, 1999.

[12] S. Vassiliadis, S. Wong, S. Gaydadjiev, K. Bertels, G. Kuzmanov,

E.M. Panainte The MOLEN Polymorphic Processor, IEEE Transactions on

Computers, Nov. 2004.

[13] B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins DRESC: A

Retargetable Compiler for Coarse-Grained Reconfigurable Architecture, Int l

Conference on Field Programmable Technology, Dec. 2002.

[14] Trimaran consortium. The Trimaran Compiler Infrastructure,

http://www.trimaran.org.

[15] C. Mucci, F. Campi, A. Deledda, A. Fazzi, M. Ferri, M. Bocchi A cycle-

accurate ISS for a dynamically reconfigurable processor architecture,

IEEE Reconfigurable Architecture Workshop (RAW), Apr. 2005

[16] P.M. Athanas, H.F. Silverman Processor Reconfiguration Through

Instruction-Set Metamorphosis, IEEE Computer, March 1993.

[17] R. Razdan; M.D. Smith A High-Performance Microarchitecture with

Hardware-Programmable Functional Units, Proceedings of IEEE MICRO,

Nov. 1994.

[18] R.D. Wittig; P. Chow OneChip: An FPGA Processor With Reconfigurable

Logic, IEEE Symposium on FPGA for Custom Computing Machine,

1996.

BIBLIOGRAPHY 219

[19] T.J. Callahan, J.R. Hauser, J. Wawrzynek The Garp architecture and C

compiler, IEEE Computer, April 2000.

[20] J-Y. Mignolet, V. Nollet, P. Coene, D.Verkest, S. Vernalde, R. Lauw-

ereins Infrastructure for Design and Management of Relocatable Tasks in a

Heterogeneous Reconfigurable System-on-Chip, Proceedings of the DATE

2003.

[21] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, W.W. Hwu IMPACT:

An Architectural Framework for Multiple-Instruction-Issue Processors, Pro-

ceedings of the 18th Annual Int’l Symposium on Computer Architec-

ture, Toronto, Canada, May 28, 1991, pp. 266-275

[22] SUIF Compiler System [online] http://suif.standford.edu

[23] J.M. Arnold S5: the architecture and development flow of a software con-

figurable processor, Proceedings on IEEE International Conference on

Field-Programmable Technology, 11-14 Dec. 2005, pp. 121-128

[24] Sato, T.; Watanabe, H.; Shiba, K.; Implementation of dynamically recon-

figurable processor DAPDNA-2, IEEE VLSI-TSA International Sympo-

sium VLSI Design, Automation and Test, 27-29 April 2005, pp. 323-324

[25] R. Baines and D. Pulley A Total Cost Approach to Evaluating Different

Reconfigurable Architectures for Baseband Processing in Wireless Receivers,

IEEE Communication Magazine, Jan. 2003.

[26] Elixent http://www.elixent.com

[27] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings A

reconfigurable arithmetic array for multimedia applications Proceedings of

the ACM/SIGDA International Symposium on Field programmable

gate arrays (FPGA), 1999.

[28] Hennessy, Patterson Computing architecture: a quantitative approach,

Morgan Kaufmann

220 BIBLIOGRAPHY

[29] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda,

H. Naeimi, M. Vanier, M. Wrighton Design Patterns for Reconfigurable

Computing, IEEE Symposium on FCCM, April 2004.

[30] R. Hartenstein A Decade of Reconfigurable Computing: a Visionary Ret-

rospective, DATE 2001.

[31] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara,

A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-

Vincentelli. Hardware-Software Co-Design of Embedded Systems: The Polis

Approach, Kluwer Academic Publishers, 1997.

[32] L.M. Reynari, F. Cucinotta, A. Serra, L. Lavagno A hardware/software

co-design flow and IP library based of Simulink /, , Proceedings on DAC,

Jun. 2001.

[33] A. Baghdadi, N.-E. Zergainoh, W. O. Cesario, A.A. Jerraya, Combining

a Performance Estimation Methodology with a Hardware/Software Codesign

Flow Supporting Multiprocessor Systems, IEEE Transactions on Software

Engineering, vol. 28, no. 9, September 2002.

[34] http://www.systemc.org/

[35] A. Gerstlauer, R. Dmer, P.Junyu, D.D. Gajski, System Design: A Practi-

cal Guide with SpecC, Kluwer Academic Publishers, 2001.

[36] Sullivan, C.; Wilson, A.; Chappell, S.; Using C based logic synthesis to

bridge the productivity gap, Proceedings of the Asia and South Pacific

Design Automation Conference (ASP-DAC), 27-30 Jan. 2004, pp. 349-

354

[37] J. Frigo, M. Gokhale, D. Lavenier Evaluation of the Streams-C C-to-

FPGA Compiler: An Applications Perspective, Proceeding on FPGA 2001.

[38] S. Gupta, N. Dutt, R. Gupta, A. Nicolau SPARK : A High-Level Synthe-

sis Framework For Applying Parallelizing Compiler Transformations, Inter-

national Conference on VLSI Design, January 2003.

BIBLIOGRAPHY 221

[39] G. De Micheli Hardware synthesis from C/C++ models, Proceedings of

Design, Automation, and Test in Europe (DATE), Munich, Germany,

March 1999.

[40] W.A. Najjar, W. Bohm, B.A. Draper, J. Hammes, R. Rinker, J.R. Bev-

eridge, M. Chawathe, C. Ross High-Level Language Abstraction for Re-

configurable Computing, IEEE Computer, August 2003.

[41] S. Edwards The Challenges of Hardware Synthesis from C-like Languages,

Proceedings on IWLS 2004.

[42] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, A. Sangiovanni-

Vincentelli System-Level Design: Orthogonalization of Concerns and

Platform-Based Design, IEEE Transactions on CAD, Dec. 2000

[43] L. Semeria, K. Sato, G. De Micheli Synthesis of hardware models in C

with pointers and complex data structures, IEEE Transactions on VLSI Sys-

tems, Dec. 2001

[44] R. Camposano, W. Rosenstiel Synthesizing Circuits From Behavioral De-

scriptions, IEEE Transactions on Computer-Aided Design, February

1989.

[45] R. Camposano From Behavior to Structure: High-Level Synthesis, IEEE

Design & Test of Computers, October 1990.

[46] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. Reed

Taylor PipeRench: A Reconfigurable Architecture and Compiler, IEEE

Computer, April 2000.

[47] M. Budiu, S.C. Goldstein Fast Compilation for Pipelined Reconfigurable

Fabrics, FPGA 1999.

[48] D.C. Cronquist, P.Franklin, S.G. Berg, C. Ebeling Specifying and Com-

piling Applications for RaPiD, Proceedings of IEEE Workshop on FPGAs

for Custom Computing Machines (FCCM), April 1998.

222 BIBLIOGRAPHY

[49] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,

Fae Ghodrat, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jae-

Wook Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan

Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe and

Anant Agarwal The Raw Microprocessor: A Computational Fabric for Soft-

ware Circuits and General Purpose Programs, IEEE Micro, Mar/Apr 2002.

[50] M.B. Gokhale, J.M. Stone NAPA C: Compiling for a Hybrid RISC/FPGA

Architecture, Proceedings of IEEE Workshop on FPGAs for Custom

Computing Machines (FCCM), April 1998.

[51] S. Talla Adaptative Explicit Parallel Instruction Computing, PhD Thesis,

Department of Computer Science, New York University, May 2001.

[52] V.S. Gheorghita, W.-F. Wong, T. Mitra, S. Talla A Co-simulation Study of

Adaptative EPIC Computing, Proceedings on IEEE Field Programmable

Technologies (FPT), 2002.

[53] M. Vorbach, J. Becker, Reconfigurable processor architectures for mobile

phones Proceedings on the Int’l Parallel and Distributed Processing

Symposium, 22-26 April 2003.

[54] Florian Stock, Andreas Koch Architecture Exploration and tools for pipe-

lined coarse grained reconfigurable arrays, Proceedings on the IEEE Int l

Conference on Field Programmable Logic and Application (FPL), Aug.

2006.

[55] H. Singh, M.-H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, E.M.

Chaves Filho MorphoSys: An Integrated Reconfigurable System for Data-

Parallel and Computation-Intensive Applications, IEEE Transactions on

Computers, May 2000.

[56] C. Rowen, S. Leibson Engineering the Complex SOC: Fast, Flexible De-

sign with Configurable Processors, Prentice-Hall, 2004.

[57] C. Lee, M. Potkonjak, W.H. Mangione-Smith MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems,

BIBLIOGRAPHY 223

30th Annual International Symposium on Microarchitecture (Micro

’97), December 1997.

[58] R. Lysecky, F. Vahid A Configurable Logic Architecture for Dynamic Hard-

ware/Software Partitioning, Proceedings on the Design Automation and

Test in Europe Conference (DATE), February 2004.

[59] G. Snider Performance-Constrained Pipelining of Software Loops onto Re-

configurable Hardware, Proceeding on FPGA 2002.

[60] M. Weinhardt and W. Luk Pipeline Vectorization, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, Feb.

2001, pp. 234-248.

[61] V. Allan, R. Jones, R. Lee, S. Allan Software Pipelining, ACM Comput-

ing Surveys, Vol. 27, No. 3 September 1995.

[62] B. R. Rau. Iterative Modulo Scheduling. Technical Report HPL-94-115,

Hewlett Packard Company, November 1995.

[63] A.H. Veen Dataflow Machine Architecture, ACM Computing Surveys,

Vol. 18, No. 4, December 1986.

[64] G. Gao, Y. Wong, Q. Ning A Timed Petri-Net Model for Fine-Grain Loop

Scheduling, Proceedings of the ACM SIGPLAN ’91 Conference on Pro-

gramming Language Design and Implementation, June 1991.

[65] M.Mukund Petri Nets and Step Transition Systems. International Jour-

nal of Foundations of Computer Science 3, 443-478, World Scientific,

1992.

[66] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, R. Guerrieri

A VLIW processor with reconfigurable instruction set for embedded applica-

tions, IEEE Journal of Solid-State Circuit, Nov. 2003.

[67] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De Bar-

tolomeis, L. Ciccarelli, R. Giansante, A. Deledda, F. Campi, M. Toma

224 BIBLIOGRAPHY

and R. Guerrieri, XiSystem: a XiRisc-based SoC with a Reconfigurable IO

module, IEEE Journal of Solid-State Circuit (JSSC), Jan. 2006

[68] M. Bocchi, C. De Bartolomeis, C. Mucci, F. Campi, A. Lodi, M. Toma,

R. Canegallo, R. Guerrieri A XiRisc-based SoC for Embedded DSP Appli-

cations, IEEE Custom Integrated Circuits Conferences (CICC’04), Oct.

2004

[69] A. Lodi, M. Toma, F. Campi A Pipelined Configurable Gate Array for

Embedded Processors, Proceeding on FPGA 2003.

[70] A. Cappelli, A. Lodi, C. Mucci, M. Toma, F. Campi A Dataflow Control

Unit for C-to-Configurable Pipelines Compilation Flow, IEEE Symposium

on FCCM, Apr. 2004.

[71] C. Mucci, C. Chiesa, A. Lodi, M. Toma, F. Campi A C-based Algorithm

Development Flow for a Reconfigurable Processor Architecture, IEEE Inter-

national Symposium on System on Chip, November 2003.

[72] C. Mucci, F. Campi, A. Deledda, A. Fazzi, M. Ferri, M. Bocchi A cycle-

accurate ISS for a dynamically reconfigurable processor architecture, IEEE

Reconfigurable Architecture Workshop (RAW), Apr. 2005.

[73] A. La Rosa, L. Lavagno, C. Passerone, Software Development for High-

Performance, Reconfigurable, Embedded Multimedia Systems, IEEE Design

and Test of Computers, vol. 22, no. 1, pp. 28-38, January/February,

2005.

[74] C. Mucci, M. Bocchi, P. Gagliardi, L. Ciccarelli, A. Lodi, M. Toma,

F. Campi A Case-Study on Multimedia Applications for the XiRisc Recon-

figurable Processor, Proceedings on IEEE Int’l Symposium on Circuits

and Systems (ISCAS), May 2006.

[75] F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, C. Mucci, A. Lodi,

A. Vitkovski, L. Vanzolini, P. Rolandi A dynamically adaptive DSP for het-

erogeneous reconfigurable platforms, Proceedings on IEEE/ACM DATE

2007.

BIBLIOGRAPHY 225

[76] E. Sentovich et al. SIS: A System for Sequential Circuit Synthesis,

UCB/ERL M92/41, May 1992.

[77] D. Xu, X. He, Y.Deng, Compositional Schedulability Analysis of Real-Time

Systems Using Time Petri Nets, IEEE Transactions on Software Engineer-

ing, vol. 28, no. 10, October 2002.

[78] A. Koch Module Compaction in FPGA-based Regular Datapaths, Proceed-

ing on DAC 1996.

[79] T.J. Callahan , P. Chong, A. DeHon, and J. Wawrzynek Fast Module

Mapping and Placement for Datapaths in FPGAs, Proceeding on FPGA

1998.

[80] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, J. Stockwood

Hardware-Software Co-Design of Embedded Reconfigurable Architectures,

Proceedings on DAC, 2000.

[81] V. Betz, J. Rose, A. Marquardt Architecture and CAD for Deep-Submicron

FPGAs, Kluwer Academic Publishers, 1999.

[82] COCOMO 2.0 Model Definition manual, ver 1.2, 1997.

[83] Capers Jones, Chairman, Software Productivity Research,

Inc. Programming Languages Table, Release 8.2, March 1996.

http://www.theadvisors.com/langcomparison.htm

[84] J. A. Debardelaben, V. K. Madisetti, A. J. Gadient Incorporating Cost

Modeling in Embedded-System Design, IEEE Design & Test of Computer,

Vol. 14, Issue 3, pag. 24-35, July-Sept. 1997

[85] D. Ragan, P. Sandborn, P. Stoaks A Detailed Cost Model for Concurrent

Use With Hardware/Software Co-Design, Proceedings on the Design Au-

tomation Conference (DAC), June 10-14, 2002, New Orleans, LA.

[86] W. Fornaciari, F. Salice, U. Bondi, E. Magini, Development Cost and Size

Estimation Starting from High-Level Specifications, Proceedings on the In-

ternational Symposium on Hardware/Software Codesign (CODES),

April 25-27, 2001, Copenhagen (Denmark).

226 BIBLIOGRAPHY

[87] V. K. Madisetti, J. A. Debardelaben A RASSP Approach to HW/SW

Codesign, RASSP Digest, Vol. 2 4th Qtr. 1995.

[88] A. La Rosa, L. Lavagno, M. Lazarescu, C. Passerone, An optimizing C

front-end for hardware synthesis, Proceedings on the workshop on Wire-

less Reconfigurable Terminals and Platforms (WiRTeP), April, 10-12,

2006, Rome (Italy).

[89] D. Burger, T. Austin The SimpleScalar Tool Set, Version 2.0,

www.simplescalar.com

[90] S. Pees, A. Hoffmann, V. Zivojnovic, H. Meyr LISA - Machine Descrip-

tion Language for Cycle-Accurate Models of Programmable DSP Architec-

tures, Proceedings on DAC, Jun. 1999.

[91] J. Cardillo, P. Chow The Effect of Reconfigurable Units in Superscalar Pro-

cessors, Proceedings on FPGA, February 2001.

[92] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,

E.M. Panainte The MOLEN Polymorphic Processor, IEEE Transactions on

Computers, November 2004

[93] Suddep Pasricha Transaction level modeling of Soc with SystemC 2.0,

Synopsys User Group Conference (SNUG), 2002.

[94] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, C. Turchetti

Transaction-Level Model for AMBA Bus Architecture Using SystemC 2.0,

Proceedings of the Design,Automation and Test in Europe Conference

and Exhibition (DATE 2003)

[95] L. Di Stefano, S. Mattoccia, F. Tombari Speeding-up NCC-based template

matching using parallel multimedia instructions, Proceedings on the 7th

Int’l Workshop on Computer Architecture for Machine Perception, 4-6

July 2005.

[96] Texas Instruments Incorporated. TMS320C6713, TMS320C6713B

Floating-point Digital Signal Processors. [Online]. Available:

http://focus.ti.com/lit/ds/symlink/tms320c6713.pdf

BIBLIOGRAPHY 227

[97] GNU Compiler Collection (GCC) [online available] http://gcc.gnu.org

[98] C. Brunelli, F. Garzia, F. Campi, C. Mucci, J. Nurmi A FPGA Imple-

mentation of an Open-Source Floating-Point Computation System, IEEE Int

l Symposium of System-on- Chip, Tampere (Finland), Nov. 2005.

[99] T. Sikora, MPEG Digital Video-Coding Standards, IEEE Signal Process-

ing Magazine, September 1997.

[100] MPEG Software Simulation Group http://www.mpeg.org

[101] ISO/IEC 13818 Draft International Standard: Generic Coding of

Moving Pictures and Associated Audio, Part-2: video.

[102] A. Dasu and S. Panchanathan A survey of media processing approaches,

IEEE Transactions on Circuits and Systems for Video Technology, Au-

gust 2002.

[103] F. Campi et al. A VLIW Processor with Reconfigurable Instruction Set for

Embedded Applications, ISSCC 2003.

[104] P.L. Tai, S.Y. Huang, C.T. Liu and J.S. Wang Computation-Aware

Scheme for Software-Based Block Motion Estimation, IEEE Transactions on

Circuits and Systems for Video Technology, September 2003

[105] C. De Vleeschouwer, T. Nilsson, K. Denolf, J. Bormans Algorithmic

and Architectural Co-Design of a Motion-Estimation Engine for Low-Power

Video Devices, IEEE Transactions on Circuits and Systems for Video

Technology, December 2002

[106] NIST Specification for the ADVANCED ENCRYPTION STANDARD

(AES), FIPS PUBS 197, November 26, 2001.

[107] J. Daemen and V. Rijmen AES Proposal: Rijndael, NIST AES Proposal,

www.esat.kuleuven.ac.be/˜rijmen/rijndael/.

[108] B. Schneier, Applied Cryptography, 2nd ed. John Wiley and Sons. New

York, NY, 1996.

228 BIBLIOGRAPHY

[109] S. Ravi, A. Raghunathan, N. Potlapally, M. Sankaradass System De-

sign Methodologies for a Wireless Security Processing Platform, Proceed-

ings on the DAC 2002.

[110] S. Tillich et al. An Instruction Set Extension for Fast and Memory-

Efficient AES Implementation, Communications and Multimedia Secu-

rity, Springer Verlag, 2005.

[111] M2000 Inc. www.m2000.fr

[112] T. Wollinger, M. Wang, J. Guajardo, C. Paar How well Are High-

End DSPs Suited for the AES Algorithms? (AES Algorithms on the

TMS320C6x DSP) Presentation at the NIST AES-3 Conference, 2000.

http://csrc.nist.gov/CryptoToolkit/aes/round2/conf3/presentations/wollinger.pdf

[113] J. Zambreno et al. Exploring Area/Delay Tradeoffs in an AES FPGA Im-

plementation, FPL 2004.

[114] R. Chaves et al. Reconfigurable Memory Based AES Co-Processor, Pro-

ceedings of the RAW, April 2006

[115] HELION. High Performance AES (Rijndael) cores for Xilinx FPGA,

http://www.heliontech.com

[116] A. Wiesmaier, The State of the Art in Algorithmic Encryption (2006),

citeseer.ist.psu.edu/wiesmaier06state.html

[117] A. Hodjat and I. Verbauwhede A 21.54 Gbit/s fully pipelined AES pro-

cessor on FPGA, FCCM 2004.

[118] J. Lu, J. Lockwood IPSec Implementation on Xilinx Virtex-II Pro FPGA

and Its Application, RAW 2005

[119] P.R. Schaumont, H. Kuo, I. Verbauwhede Unlocking the Design Secrets

of a 2.29 Gb/s Rijndael Processor, DAC 2002.

[120] R.R. Taylor, S.C. Goldstein A High-Performance Flexible Architecture

for Cryptography, CHES 1999.

BIBLIOGRAPHY 229

[121] C. Paar Efficient VLSI Architectures for Bit-Parallel Computation in Ga-

lois Fields, Ph.D. Thesis, 1994.

[122] V. Rijmen Efficient Implementation of the Rijndael S-box,

[123] G. Bertoni et al. Efficient Software Implementation of AES on 32-Bit Plat-

forms, CHES 2002.

[124] T. Wiegand, G.J. Sullivan, G. Bjntegaard, A. Luthra Overview of the

H.264/AVC video coding standard, IEEE Transaction on Circuits and Sys-

tems for Video Technology, July 2003.

[125] H. S. Malvar, A. Hallapuro, M. Karczewicz, L. Kerofsky Low-

Complexity Transform and Quantization in H.264/AVC, IEEE Transaction

on Circuits and Systems for Video Technology, July 2003.

[126] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, Liang-Gee Chen

Analysis, fast algorithm, and VLSI architecture design for H.264/AVC intra

frame coder IEEE Transactions on Circuits and Systems for Video Tech-

nology, March 2005.

