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Introduction. 
 

 

 

 

Silicon Carbide is a polymorphic ceramic material which can be grown as a single 

crystal with electronic grade purity.  Without doping SiC is semi-insulating, while 

with appropriate doping is a wide bandgap semiconductor.  However, not all the 

dopant atoms in substitutional position contribute with an electron or a hole to the 

electrical conductivity due to their high ionization energy.  The purpose of this thesis 

is to analyze theoretically the phenomenon of partial ionization of the substitutional 

dopants in SiC in the concentration range 1014 - 1021 atoms / cm3.  A quantitative 

description of this phenomenon is crucial for both design of SiC devices and their 

characterization, activities which are both performed in CNR-IMM, Bologna, by the 

group led by Dr. Roberta Nipoti, group inside which I carried on this research. 

In order to evaluate the degree of ionization of dopants, it is necessary to know 

the energy levels they generate and their dependence on both temperature and doping 

density.  Simplified models exist in the literature which describe the variation of 

dopant ionization energies with dopant concentration.  The aim of this thesis is to 

improve these models by taking into account many important aspects, in particular 

the effect of the screening of Coulomb potential of the ionized dopant atoms by free 

carriers and the formation of impurity bands at high concentrations.  This problem 

can not be treated analytically, therefore numerical methods will be used to obtain 

quantitative predictions.  However, in this work we shall proceed as long as possible 

(or reasonable) with purely analytical instruments. 

 

The thesis is organized as follows: 

� In Chapter 1 the properties of SiC of interest for this work are described. 

� In Chapter 2 the distribution of electrons and holes between conduction and 

valence bands and impurity energy levels at thermal equilibrium is described, 
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taking into account Fermi-Dirac statistics for the conduction and valence bands 

to allow the treatment of high doping levels. 

� In Chapter 3 the variation of the impurity ionization energies with dopant 

concentration and temperature is analyzed by using a numerical solution of the 

Schrödinger equation for a screened Coulomb potential.  A comparison of our 

calculations with experimental data for moderately doped SiC is carried out. 

� In Chapter 4 the formation of impurity bands from single impurity levels with 

increasing impurity concentration and the occupancy of these bands when they 

overlap with the conduction or the valence band are analyzed.  A preliminary 

comparison of the calculations with existing experiments on heavily doped SiC 

samples is finally carried out. 

 

The chapters include many mathematical appendices which can be skipped at a first 

reading. 

This thesis was fully granted by the institute CNR-IMM, Bologna, through the 

contracts 126.241.BS.1.2007 and IMM009/2010/BO. 
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Chapter 1. 

 

Silicon Carbide. 
 

 

 

 

In this chapter, after the presentation of a brief history of Silicon Carbide in section 

1.1, the properties of Silicon Carbide of interest for the topic of this thesis will be 

presented.  In particular, in section 1.2 a description of the polytypism of SiC is 

given.  In section 1.3 the different band structures of various SiC polytypes are 

discussed, while in Sec. 1.4 the main dopant impurities used for doping Silicon 

Carbide are presented. 

 

 

 

1.1.  History of Silicon Carbide. 

 

 

Silicon Carbide is one of the oldest natural compound semiconductor of the universe 

and it was among the first semiconductor materials taken into account for the 

fabrication of electronic components.  In fact, SiC microcrystal powders have been 

found in the interstellar material that millions of years ago reached the earth.  In 1824 

the Swedish chemist J. J. Berzelius, the same who discovered Silicon, suggested the 

idea that there might be a chemical bond between Silicon and Carbon.  This was the 

first time in history when there was talk of Silicon Carbide.  However, this new 

material had to wait the invention of electric furnaces and their application to Carbon 

compounds.  In 1891 E. G. Acheson fused a mass of Carbon and Aluminum Silicate 

in an attempt to obtain a material similar to Diamond; immediately after the mixture 
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had cooled, he noticed that they had formed small shining blue crystals.  Acheson 

thought to use these crystals, which were very hard, as an abrasive or cutting tools.  

He called this compound "carborundum" because it mistakenly believed he had 

achieved a compound between Aluminum and Carbon; only later his collaborators 

realized that the compound was composed of Silicon and Carbon.  In 1905 H. 

Moisson discovered Silicon Carbide grains in some meteorites found in Diablo 

Canyon, Arizona, so that in its mineral form is also known as “moissanite”. 

Silicon Carbide was initially marketed as an abrasive because of its extreme 

hardness, later as a ceramic material resistant to high temperatures.  Further later it 

was used in electronic applications, when in 1907 H. J. Round created the first LED 

(Light Emitting Diode) made of Silicon Carbide.  In 1912 H. Baumhauer used for the 

first time the word polytypism, to describe the ability of Silicon Carbide to 

crystallize in different forms varying only in their stacking order in one direction.  

Research on Silicon Carbide for electronic applications received a boost in 1955 

when Lely developed a technique of growing single crystals of Silicon Carbide, of 

high crystalline quality, in large slices, i.e. ≥ 1 cm².  During those same years, 

however, another semiconductor material was spreading faster than Silicon Carbide: 

it was Silicon.  Hence, the research on Silicon Carbide were put aside.  In the late 70s 

the interest on Silicon Carbide was brought back to life in applications related to blue 

light LED, but soon was supplanted by direct gap semiconductors.  Interest revived 

when researchers realized that Silicon technology is strongly limited for high 

temperature and high power applications, and therefore semiconductor materials with 

improved performance were required.  Research on Silicon Carbide underwent a 

substantial acceleration with the birth of Cree Research in 1987, which made easier 

the availability of wafers of Silicon Carbide.  The history of Silicon Carbide is 

illustrated in the timing diagram of Fig.1.1. 
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Fig.1.1.  Time diagram of the Silicon Carbide history.  From [Ozpineci02], p. 15. 
 

 

 

 

1.2.  SiC crystalline structure and SiC polytypes. 

 

 

Silicon Carbide has the chemical formula SiC which corresponds to 50% atoms of 

Silicon (Si) and 50% of Carbon (C), that in terms of weight is a 70% content of Si 

and 30% of C.  From a structural point of view, it falls within covalent compounds 

with each Carbon atom that binds to four Silicon atoms with tetrahedral bonds 

similar to those of Diamond.  The basic unit of the SiC structure is the tetrahedron 

shown in Figure 1.2.  The structure of single crystal SiC is given by the 

concatenation of these tetrahedrons, linked together by the vertices, with the Si-Si 

distance a and C-Si distance of 3.08 and of 1.89 Å, respectively. 

SiC has several stable crystalline structures called polytypes.  Polytypism is 

characterized by the fact that the atoms that are constituent of the material may have 
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a different spatial arrangement along a direction but maintaining the same atomic 

ratio or atomic weight ratio per unit volume.  Depending on the spatial sequence, the 

crystal symmetry varies.  Among the SiC crystal symmetries, one of great interest for 

electronic application is the hexagonal one.  The four axes reference system of an 

hexagonal crystal is shown in Fig.1.3.  This system is aligned with respect to SiC 

tetrahedron so that the c-axis is parallel to a C-Si bond, while the a1, a2 and a3 axes, 

that are orthogonal to the c-axis and are placed at 120° one from the other, point to 

the position of the three Si atoms at the base of the tetrahedron, as can be seen from 

the comparison of Figs. 1.2 and 1.3. 

 

 

 

The Si-C bi-layers along the c-axis can be ordered in more than 170 sequences.  

Fig. 1.4 shows that, with respect to the tetrahedral bond along the c-axis, the above 

"couple of Si-C planes" can occupy only three possible positions that are labeled A, 

B and C.  The various polytypes of SiC result from a different stacking sequence of 

the Si-C planes pairs along the direction of c-axis.  Often to indicate the various 

polytypes of SiC Ramsdell notation is used, consisting of a number followed by a 

letter.  The number indicates the minimum number of layers beyond which the 

stacking of Si-C planes is repeated periodically.  The letter indicates the symmetry of 

the crystal structure: C stands for cubic, H for hexagonal, and R for rhombohedral.  

Fig.1.4 shows the sequences of the cubic 3C-SiC, with a Zincblende type structure, 

and of the hexagonal 4H-SiC and 6H- SiC, with a Wurtzite type structure, but many 

Fig. 1.2.  Silicon Carbide tetrahedral cell. 
From [Alampi10], p. 7. 

Fig. 1.3.  Coordinate system with 4 axes for 
describing a hexagonal crystal structure. 

From [Alampi10], p. 7. 
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other have been grown and studied, among these the rhombohedral 15R-SiC and 

21R-SiC and the hexagonal 2H-SiC.  3C-, 4H- and 6H-SiC are at present the more 

used SiC polytypes for manufacturing microelectronics devices. 

The polytype 4H has ABAC stacking sequence (Fig. 1.4).  Macroscopically it 

has hexagonal symmetry, but microscopically is composed half of cubic sites and 

half of hexagonal sites, equally distributed between Si and C atoms.  To date it is the 

most widely polytype used for the construction of electronic devices and it can be 

grown into slices with diameter of 100 mm and has the highest and least anisotropic 

mobility than the other polytypes, the 6H, which can be grown in slices of equal size. 

 

 

 

 

 

 

Fig. 1.4.  Order of stacking of Silicon Carbide hexagonal planes. 
From [Alampi10], p. 8. 
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1.3.  Band diagrams and effective masses. 

 

 

SiC is a wide bandgap semiconductor material.  Calculations of Silicon Carbide band 

structure (see Figs. 1.5) show that SiC polytypes have an indirect bandgap between 

the maximum of the valence band and the minimum (or the equivalent minima) of 

the conduction band.  Such a gap has a value which is significantly larger than that of 

the most common semiconductor, i.e. Silicon.   Fig. 1.6 shows the bandgaps of the 4 

most commonly used SiC polytypes.  For comparison, also SiO2 and Silicon are 

presented.  It should be noted that the bandgap depends on temperature and pressure. 

Of the polytypes of SiC, 4H has the widest bandgap.  Due to this property, 

devices fabricated on 4H-SiC are able to sustain a higher electric field.  This 

property, together with the fact that the native oxide of SiC is Silicon Dioxide, leads 

to the expectation that 4H-SiC will be a suitable substitute for Silicon in the 

production of power MOSFETs working in the harsh environments.  Currently, the 

quality of SiC/SiO2 interface is so improved that the first commercial SiC MOSFET 

has been launched by CREE Research Inc. [CREE11]. 

 
 
 

 
 
 

Fig. 1.5a.  Band structure of 3C-SiC, from [Wellenhofer97]. 
Here and in the following Figs. 1.5b and 1.5c, the band above 0 eV is the conduction band 

and the other two below 0 eV are the p and the s valence electron bands. 
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Fig. 1.5b.  Band structure of 4H-SiC, from [Wellenhofer97]. 

 
 
 

 
 
 

Fig. 1.5c.  Band structure of 6H-SiC, from [Wellenhofer97]. 
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Fig. 1.6.  Energy gaps and relative band offsets of Si, SiO2 and common SiC polytypes, compiled 

from results by [Afanas’ev96].  From [Rozen08], p. 7. 

  

 

Other quantities strictly related to the band structure of a semiconductor, and 

which will be essential in our simulations, are the effective mass of electrons and 

holes and the effective density of states (DOS) of the conduction and valence band.  

In particular we are interested in the latter, which are related to the effective mass of 

electrons me* and of holes mh*, respectively, by the equations ([Sze07], p. 18): 

 

3/ 2

2

*2
( ) 2 e B

C C

m k T
N T M

h

π 
= ⋅  

 
     (1.1a) 

 

3/ 2

2

*2
( ) 2 h B

V V

m k T
N T M

h

π 
= ⋅  

 
     (1.1b) 

 

where MC and MV are the number of equivalent minima of the conduction band and 

of maxima of the valence band, respectively, kB is Boltzmann’s constant, T the 

absolute temperature of the semiconductor and h Planck’s constant.  To be precise, in 

general the electron and hole effective masses are tensors and not scalars: in Eqs. 
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(1.1) two quantities enter which are appropriate averages of the principal components 

of such tensors, called DOS effective masses in one valley.  In general they are 

functions of the temperature.  For example, Wellenhofer and Rössler have calculated 

theoretically their values for 4H- and 6H-SiC [Wellenhofer97], see Figs. 1.7.  For 

3C-SiC the values me* = 0.35 m0 and mh* = 0.6 m0 have been reported [NSM], where 

m0 is the free electron mass.  We report in Tab. 1.1 the number of equivalent valleys 

of the conduction and valence band for some SiC polytypes. 

 

 

  
 

Fig. 1.7a.  Electron DOS effective mass in 

4H-SiC, from [Wellenhofer97]. 

 

Fig. 1.7b.  Hole DOS effective mass in 4H-SiC, 

from [Wellenhofer97]. 

 

  

  
 

Fig. 1.7c.  Electron DOS effective mass in 

6H-SiC, from [Wellenhofer97]. 

 

Fig. 1.7d.  Hole DOS effective mass in 6H-SiC, 

from [Wellenhofer97]. 
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 MC MV 

3C-SiC 3 1 

4H-SiC 3 1 

6H-SiC 6 1 

 

 

Tab. 1.1.  Numbers of equivalent valleys in 3C, 4H- and 6H-SiC [NSM]. 

 

 

 

1.4.  Main dopant impurities in SiC. 

 

 

Doped semiconductors contain impurities, i.e. foreign atoms that are incorporated 

into the crystal structure of the semiconductor.  These impurities can either be 

unintentional or they can be added on purpose to provide free carriers in the 

semiconductor.  The generation of free carriers requires not only the presence of 

impurities, but also that such impurities are ionized to provide electrons to the 

conduction band (donors) or holes to the valence band (acceptors), in the latter case 

by effectively accepting an electron from the filled valence band.  A semiconductor 

doped with impurities which are ionized (meaning that the impurity atoms either 

have donated or accepted an electron) will therefore contain free carriers. 

Shallow impurities are impurities which require little energy – typically around 

the thermal energy at room temperature or less – to be ionized.  Deeper impurities 

require energies higher than the thermal energy at room temperature to be ionized, so 

that, if present in a semiconductor, in practice only a fraction of them contributes to 

free carriers.  In particular, deep states with energy levels more than five times the 

thermal energy away from either of band edges are very unlikely to be ionized at 

room temperature.  These deep impurities can be effective recombination centers, in 

which electrons and holes recombine and annihilate each other.  They are also called 

traps. 

A semiconductor in which ionized donors provide free electrons is called n-

type, while a semiconductor in which ionized acceptors provide free holes is referred 
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to as a p-type semiconductor.  The ionization of the impurities is dependent on the 

thermal energy and the position of the impurity level within the energy bandgap.  

Statistical thermodynamics can be used to obtain the probability that the impurity is 

ionized.  The resulting expression is similar to the Fermi-Dirac probability function, 

except for a factor that accounts for the fact that the impurity can host only one 

electron or one hole, and also accounts for the degeneracy of the conduction or 

valence band.  If shallow impurities are completely ionized, the majority carrier 

density equals their net impurity concentration (i.e. having subtracted the density of 

compensating centers, which capture the majority carriers), if the intrinsic carrier 

concentration is negligible. 

In the case of SiC the most common donors are Nitrogen and Phosphorus.  The 

former substitutes on Carbon sites and the latter on Silicon sites in the lattice.  The 

most common acceptors are Aluminum and Boron.  They all substitute on Silicon 

sites.  The site on which these dopants substitute (i.e. C or Si site) is not polytype 

dependent, but their energy level depends on the particular polytype.  Furthermore, 

due to the presence of several non-equivalent (cubic and hexagonal) lattice sites in 

almost all SiC polytypes, the same dopant species in general gives rise to more than 

one energy level, one for each kind of non-equivalent lattice site, with the exception 

of 3C- and 2H-SiC which are purely cubic and hexagonal, respectively ([Patrick62], 

[Ikeda79], [Ikeda80]).  In Tab. 1.2 the stacking sequence together with the number of 

non-equivalent (cubic and hexagonal) lattice sites for the main SiC polytypes are 

given. 

 

 

 
 

Tab. 1.2.  Stacking sequence and relative number of non-equivalent lattice sites in some SiC 

polytypes.  From [Ikeda80]. 
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Nitrogen, Phosphorus and Aluminum are the most common dopants.  Such 

impurities may be intentionally introduced during the growth, via ion implantation 

technique or by diffusion.  Diffusion is a common doping method of active layers.  

However, the diffusion coefficients of impurities in SiC are small, therefore ion 

implantation is frequently used in SiC device fabrication.  The main drawbacks are 

the lattice damage caused during the ion bombardment and the occurrence of 

amorphous material in the ion implanted volume.  Therefore, a post-implantation 

annealing is needed. 

Purpose of this thesis is to model the ionization of both p- and n-type dopants 

in various SiC polytype versus doping concentration and material temperature, for 

homogeneous SiC samples at thermal equilibrium.  The results so obtained can be 

used both for simulating SiC electrical behavior, in order to improve the design of 

various SiC devices, and for the interpretation of experimental data such as those of 

temperature dependent Hall effect measurements. 

 



The incomplete ionization of substitutional dopants in Silicon Carbide                                                         15 

 

 

Chapter 2. 

 

Occupancy of energy levels. 
 

 

 

 

In this chapter we shall consider how electrons and holes are distributed between 

conduction and valence bands and the various energy levels provided by impurities 

in a homogeneously doped semiconductor at thermal equilibrium.  In Sec. 2.1 we 

shall present the expressions which rule the incomplete ionization of discrete dopant 

levels, considering also the possibility of excited states and valley-orbit splitting.  In 

Sec. 2.2 the charge neutrality equation will be analytically solved in the non-

degenerate case, both for a single energy level in the gap, with or without 

compensation, and for the case of two energy levels in presence of compensation.  In 

Sec. 2.3 we shall present a numerical method capable to solve the neutrality equation 

for an arbitrary number of energy levels (both donors and acceptors at the same time) 

also in the degenerate case. 

 

 

 

2.1.  Occupation probability for discrete impurity levels. 

 

 

In this section we shall treat the thermodynamic nature of the incomplete ionization 

of substitutional dopants in semiconductors.  In subsection 2.1.1 we shall treat the 

well established model proposed for describing incomplete ionization of the ground 

state of monovalent impurities (and in general of single discrete levels), while in 
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subsection 2.1.2 we shall study the effect of excited states and of splitting of the 

ground state on the occupancy probability of impurity centers. 

 

 

2.1.1.  Occupancy of a monovalent impurity in its ground state. 

 

For simplicity, let us consider a semiconductor containing ND monovalent donor 

impurity atoms per unit volume.  In these atoms all valence electrons, with the 

exception of the least tightly bound, are in paired valence bonds.  Therefore, in the 

ground state each atom has only one electron trapped at a certain energy ∆ED below 

the absolute minimum of the conduction band, with a wave function of purely s 

character.  This electron can have spin up or down, so the ground state will be 

degenerate with a degeneracy factor of 2. 

Note that, at a first approximation, a monovalent donor can not trap two 

electrons since, once one electron is trapped, electrostatic forces raise the remaining 

spin possibility to a higher energy, nearby or into the conduction band.  Therefore, 

we will consider only electrically neutral donors (with one electron trapped at the 

energy ED = EC – ∆ED), whose density we shall indicate with ND
0, and ionized 

(unoccupied) donors with a density ND
+ = ND – ND

0. 

From statistical mechanics ([Kittel80], p. 138), the grand partition function of N 

= ND V donor atoms in a semiconductor of volume V is given by: 

 

 

( ; )

0 ( ; )

exp
N

F s M N

M s M N B

ME E

k T=

− 
=  

 
∑ ∑Z  , 

 

where s(M; N) represents any possible arrangement of M electrons between N donors, 

EF is the Fermi level of the system, Es(M;N) is the total energy of the given 

configuration s(M; N), kB is Boltzmann’s constant and T is the temperature of the 

system.  Taking the absolute minimum of the conduction band EC as the energy 

reference for each single donor state, and disregarding the effect of electrostatic 

interaction between charges on the energy level position with respect to EC, we have: 
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( ; ) ( )s M N C DE M E E= − ∆  

 

so that: 

 

 

0 ( ; )
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=
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∑ ∑

∑
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the term 2M in the sum being due to the two possible spin orientations of each of the 

M electrons.  The average number of occupied donors is given by the relation 

([Kittel80], p. 139): 

 

0 B

F

k T
N

E

∂
〈 〉 = ⋅

∂
Z

Z
 

 

so that, substituting the grand partition function previously obtained, we have finally: 

 

0

1
1 exp

2
C F D

B

N
N

E E E

k T

〈 〉 =
 − − ∆+  
 

 . 

 

The statistical degree of neutrality of the donors is therefore ([Blakemore62], p. 119): 

 

0 0
0 1

1
1 exp

2

D
D

D C F D

B

N N

N N E E E

k T

ξ 〈 〉≡ = =
 − − ∆+  
 

 , 

 

while their statistical degree of ionization is: 
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0 1
1

1 2exp

D
D D

D F C D

B

N

N E E E

k T

ξ ξ
+

+ ≡ = − =
 − + ∆+  
 

 . 

 

In general, the degeneracy gD of the donor ground state will differ from 2, for 

example when the level is created by splitting off states from a conduction band with 

multiple or degenerate minima.  Thus, for a donor level at energy ED = EC – ∆ED, the 

probability that this level will contain an electron is in general ([Blakemore62], p. 

119): 

 

0 1

1
1 exp

D

C F D

D B

E E E

g k T

ξ =
 − − ∆+  
 

 ,    (2.1a) 

 

so the probability it will be ionized is: 

 

1

1 exp
D

F C D
D

B

E E E
g

k T

ξ + =
 − + ∆+  
 

 .    (2.1b) 

 

Similar expressions hold for a monovalent acceptor, for which: 

 

0
0 1

1
1 exp

A
A

A F V A

A B

N

N E E E

g k T

ξ ≡ =
 − − ∆+  
 

    (2.2a) 

 

is its degree of neutrality and: 

 

1

1 exp

A
A

A V F A
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N
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ξ
−
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    (2.2b) 
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is its ionization degree, ∆EA being the ionization energy and gA the spin degeneracy 

(or degeneracy factor) of its ground state, while NA is the total concentration of 

substitutional acceptors, NA
0 the density of the neutral ones and NA

− that of the 

ionized ones 

 

 

2.1.2.  Occupancy of a monovalent impurity with excited states. 

 

As is well known, an isolated hydrogen atom consists of an electron moving under 

the influence of a proton.  The ground state of this system, the 1s state, has a spin 

degeneracy of 2, and an energy of 13.6 eV is required to ionize the atom.  But there 

are also many possible excited states of this atom, the eight 2s and 2p states, the 

eighteen 3s, 3p and 3d states, and so on.  It is dangerous to press too far for the 

analogy between a hydrogen atom and a monovalent impurity center, but such 

analogies are useful in reminding us that a donor impurity is electrically neutral 

whether it has an electron bound in the ground state at EC – ∆ED or in an excited state 

closer to the conduction band.  Let us denote by 1 the lowest (or ground) level of the 

donor, having a spin degeneracy of gD,1.  Groups of excited states in general have 

different degeneracy factors, say gD,r with r > 1, and lie at energies ∆ED,r below the 

conduction band edge. 

Within the same approximation of the previous subsection, a donor is capable 

of binding an electron in one of the gD,r states at energy EC – ∆ED,r only if it doesn’t 

have an electron already bound in any other state, either at the same level or at a 

different one.  Therefore, we finally obtain ([Blakemore62], p. 142-144): 

 

,1
,1

1

1 [1 ( )] exp
D

F C D
D exc

B

E E E
g F T

k T

ξ + =
− + ∆ 

+ ⋅ + ⋅  
 

 ,  (2.3) 

 

where: 

 

, ,1
,

2,1

1
( ) exp D r D

exc D r
rD B

E E
F T g

g k T

+∞

=

∆ − ∆ 
= ⋅  

 
∑  .   (2.4) 
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It should be noted that the series (2.4) diverges for any finite temperature T.  

However, as Shifrin remarked ([Blakemore62], ref. 1944:1), it is only necessary to 

consider the first few terms of such a series since, for a finite donor density, the wave 

functions for the higher excited states will overlap quite strongly and these states will 

form part of the conduction band.  At very low temperatures Fexc(T) ≪ 1, so Eq. 

(2.3) reduces to Eq. (2.1b).  At higher temperatures, however, excited states could no 

longer be neglected.  Expressions similar to (2.3) and (2.4) hold, obviously, for the p-

type case, and H. Matsuura applied them to the analysis of Al-doped SiC samples 

[Matsuura02]. 

Also the splitting of the ground state can affect the ionization degree of an 

impurity center.  For example, as a consequence of the six equivalent conduction 

band minima, the 1s state of Phosphorus in Silicon is compounded of six states, each 

with a spin degeneracy of 2, or twelve states in all.  Two of these states have wave 

functions which do not vanish at the donor nucleus (completely symmetrical states), 

whereas the wave functions of the other ten do vanish at this point.  As a 

consequence, the two completely symmetrical states lie at a considerably lower 

energy than the remaining 1s states.  Let us call ∆Evo the energy difference between 

the two lowest and the other ten 1s states.  The spin degeneracy gD must be 

substituted in Eq. (2.1b) by a temperature dependent effective degeneracy factor 

([Blakemore62], p. 148): 

 

, ( ) 2 10exp vo
D eff

B

E
g T

k T

 ∆= + − 
 

 , 

 

taking as ∆ED the ionization energy of the two deeper states.  A similar result holds, 

for example, for substitutional Nitrogen donors at the hexagonal sites in 4H-SiC, for 

which: 

 

, ( ) 2 4exp vo
D eff

B

E
g T

k T

 ∆= + − 
 

 , 
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where ∆Evo = 7.6 meV [Götz93]. 

In the following part of our thesis, for simplicity we shall not take into account 

the presence of excited states or of ground state splitting. 

 

 

 

2.2.  Solution of the charge neutrality equation in some particular 

cases. 

 

 

Eqs. (2.1) and (2.2) have a general validity for a semiconductor at thermal 

equilibrium.  However, they depend on the Fermi energy EF so they are not 

immediately useful for a comparison with experimental data.  To this purpose the 

Fermi level has to be eliminated, in order to obtain expressions depending only from 

measurable parameters such as the dopant concentrations, their energy levels and the 

system temperature.  For a homogeneously doped semiconductor, the charge 

neutrality equation holds ([Sze07], p. 22): 

 

( ) ( ) ( ) ( )D F F A F FN E p E N E n E+ −+ = +  ,    (2.5) 

 

where p and n are the free hole and electron concentrations, respectively, so 

permitting theoretically to eliminate EF and express the ionization degree of the 

various dopant species in terms of well known or measurable parameters. 

Let us consider the n-type case, for simplicity.  For a wide range of 

temperatures, the minority carrier concentration p can be neglected in Eq. (2.5).  

Furthermore, if the acceptor levels are sufficiently below the Fermi level in the band 

gap (as it is often the case), they can be considered fully ionized so that Eq. (2.5) 

becomes: 

 

( ) ( )D F A FN E N n E+ = +  .      (2.6) 

 

In the non-degenerate case, the free carrier concentrations can be expressed as: 
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exp F C
C

B

E E
n N

k T

 −=  
 

      (2.7a) 

 

exp V F
V

B

E E
p N

k T

 −=  
 

 ,       (2.7b) 

 

NC and NV being the effective density of states in the conduction and valence band, 

respectively.  Therefore, substituting Eq. (2.1b) into Eq. (2.6) gives, for a single 

donor species present in the semiconductor: 

 

1 exp

D
A

D
D

C B

N
N n

En
g

N k T

= +
 ∆+  
 

 .     (2.8) 

 

This is a second-order polynomial equation in the variable n, which can easily be 

solved. 

In absence of compensation (NA = 0), the physically meaningful solution of Eq. 

(2.8) is ([Blakemore62], p. 122): 
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thus giving: 

 

 1 1 4 exp
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 . 

 

Such an expression has been proposed for Silicon Carbide [Ruff94], also for the 

cases like 4H- and 6H-SiC in which there are several non-equivalent lattice sites in 
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the crystal, ∆ED being an effective energy level intermediate between the real ones 

and ND their total concentration ([ISE04], p. 15.164).  If compensation is present, the 

physically meaningful solution of Eq. (2.8) is given in [Blakemore62], p. 134. 

Similar expressions hold for the p-type case.  We stress that their applicability 

is limited to the non-degenerate case and when only one dominant energy level is 

present in the bandgap or it is sufficient for describing the electrical behavior of the 

system.  For example, in Al-doped Silicon Carbide also in the case of several non-

equivalent lattice sites (such as in 4H- and 6H-SiC) only one acceptor energy level 

can often be solved by temperature dependent Hall effect data analysis [Pensl93], 

seeming to be sufficient for electrical behavior description. 

However, for n-type 4H-SiC two energy levels have to be considered, one 

corresponding to a donor substituting in a hexagonal site and the other to a donor 

substituting in a cubic site, levels that are well solvable by temperature dependent 

Hall effect data analysis [Pensl93].  Again using Boltzmann approximation (2.7), Eq. 

(2.6) becomes: 

 

, ,

, ,
, ,1 exp 1 exp

           ,

D h D k

D h D k
D h D k

C B C B

A

N N

E En n
g g

N k T N k T

N n

+ =
∆ ∆   

+ +   
   

= +
  (2.9) 

 

the letters h and k corresponding to a donor substituting in a hexagonal and cubic 

site, respectively.  Eq. (2.9) gives rise to a third order polynomial equation in the 

variable n, whose exact solution in presence of compensation is given in [Rutsch99]. 
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2.3.  General solution of the charge neutrality equation. 

 

 

In general, however, more than two dominant energy levels are present in the energy 

gap, due to non-equivalent lattice sites or to deep dopants.  In this case, the charge 

neutrality equation takes the general form: 

 

,
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,
1/ 2
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,

1 exp
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F
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(2.10) 

 

F1/2(x) being the Fermi-Dirac integral of order 1/2 (see [Blakemore62], App. A), 

while the letters i and j correspond to the i-th and j-th kind of donor and acceptor 

level, respectively.  Here we have used the expressions ([Blakemore62], p. 79): 

 

1/ 2
F C

C
B

E E
n N

k T

 −= ⋅  
 

F       (2.11a) 

 

1/ 2
V F

V
B

E E
p N

k T

 −= ⋅  
 

F        (2.11b) 

 

which, unlike Eqs. (2.7), hold also in the case of degeneration.  Therefore, the results 

we shall obtain here can be applied also to the study of degenerate semiconductors. 

Unfortunately, Eq. (2.10) can not be solved analytically, therefore a numerical 

method must be used for obtaining the dopant ionization degrees.  To this purpose, 

looking at Eq. (2.10), let us define the function: 
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It can be demonstrated (see App 2A) that the function Φ(EF) is continuous and 

monotonic in EF and that it passes through the value zero if the values of the 

parameters NA,j, gA,j, ND,i and gD,i are non-negative and NV and NC are strictly positive 

(the only physically meaningful values they can assume).  Therefore, the simple 

bisection method can be used for solving the charge neutrality equation Φ(EF) = 0, 

being sure that the value of EF so obtained is its unique solution and necessarily the 

physically correct one.  To this purpose, we have chosen the approximate expression 

for F1/2(x) given by [AymerichHumet81] which represents a good compromise 

between accuracy and computational time, having to be used in an iterative method 

that often includes poorly accurate parameters, such as the empirical values of 

impurity concentrations.  Once the correct value of EF is obtained in such a manner, 

it can be substituted into Eqs. (2.11), (2.1) and (2.2) for giving the corresponding 

values of n, p, ξD,i
+ and ξA,j

−.  This method can be applied also in the presence of very 

deep compensating centers, whose ionization can no longer be assumed as complete 

if their level is localized in the neighborhood of the main dopant levels or of the 

Fermi energy. 

To this purpose, sufficiently accurate values for the ionization energy of the 

dopant levels should be known.  However, the empirical values obtained for example 

by temperature dependent Hall effect data analysis span over large ranges, making 

questionable the choice of a certain value to the detriment of another in the same 

range.  Besides, these ionization energies show a clear dependence on dopant 

concentration.  This is exactly the topic which will be treated in the next chapter. 
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Appendix 2A.  Useful properties of the space charge density function 

ΦΦΦΦ(EF). 

 

 

In Sec. 2.3 we have introduced the function: 
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corresponding to the space charge density ρ as a function of the Fermi energy EF.  To 

be physically meaningful, the parameters ND,i, NA,j, gD,i and gA,j must be non-

negative, while NC, NV and T must be strictly positive.  First of all, we have to note 

that the function Φ(EF) is continuous in the variable EF, being the sum of continuous 

functions (for the properties of F1/2(x) see [Blakemore62], App. A).  Let us now 

study the asymptotic behavior of Φ(EF).  Being: 
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we have: 
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being NC, NV and T positive. 

Furthermore, the first derivative of Φ(EF) is: 
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being ([Blakemore62], App. A): 

 

1/ 2
1/ 2

( )
( ) 0

d x
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We have thus established that, with physically meaningful values of its parameters: 

 

1)  Φ(EF) is a continuous function; 

 

2)  Φ(EF) is a monotonically decreasing function; 

 

3)  Φ(EF) assumes a positive value as EF tends to –∞, and assumes a negative value 

as EF tends to +∞. 

 

Therefore, there exist, and it is unique, a value of EF for which Φ(EF) = 0.  Due to the 

continuity and monotonicity of Φ(EF), such a value can easily be found numerically 

by using the bisection method (Newton method turned out to be not always 

convergent for such a problem). 
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Chapter 3. 

 

Dopant ionization energy variation. 
 

 

 

 

In this chapter we shall treat the observed variation of the dopant ionization energies 

with dopant concentration, and we shall suggest their indirect dependence also from 

temperature.  In Sec. 3.1 we shall present an empirical evidence for this variation, 

based in particular on measurements of the majority carrier concentration for 

different values of substitutional dopant densities.  In Sec. 3.2 we shall present the 

traditional approach to this topic, based on the article by G. L. Pearson and J. 

Bardeen written in 1949 and then improved by different authors, together with its 

recent application to SiC.  In Sec. 3.3 we shall discuss the limits of such an approach 

and propose a model based on a screened Coulomb potential due to the redistribution 

of free carriers around the dopant cores and the solution of the Schrödinger equation 

with such a potential.  Results of simulations implementing such a model for SiC 

will be presented and discussed in Sec. 3.4, and compared to experimental data. 

 

 

 

3.1.  Experimental evidence for a dopant ionization energy variation. 

 

 

As is well known, from temperature dependent Hall effect measurements it is 

possible to obtain the majority carrier concentration in a homogeneous sample at 

different temperatures and, fitting these data with the charge neutrality equation, the 

dopant densities and ionization energies can be extracted, together with the total 
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concentration of the compensating centers ([Blood92], Chap. 3)  The accuracy of this 

procedure depends on several preconditions (such as the knowledge of the Hall 

scattering factor and homogeneity of the sample, for example) and shrewdness in 

performing the experiment ([Blood92], Chap. 3)  A consequence of these results, 

however, seems to be undeniable: in a given semiconductor material, for a given 

dopant species and compensating center concentration, the ionization energies ∆Ed,i 

decrease with increasing substitutional dopant concentration Nd.  This result is 

universal, i.e. it holds for all types of semiconductors and dopant species.  In 

particular, we report in Figs. 3.1 some results of the analysis of temperature 

dependent Hall effect data corresponding to both n- and p-type 3C- and 4H-SiC 

samples ([Segall86], [Achatz08], [Rao06], [Kagamihara04]). 

This phenomenon is well known from more than half a century, and several 

models have been proposed to explain it.  In the next section we shall analyze the 

most important of them, which has been most largely used for fitting experimental 

ionization energies and for simulating the electrical behavior of semiconductor 

samples and devices (see [SILVACO00], p. 3-10, [ISE04], p. 15.163). 

 

 

 
 

 

Fig. 3.1(a).  Nitrogen donor ionization energy in 

3C-SiC as a function of N density.  “Present work” 

refers to [Segall86], from which this image is taken.  

In this and the following figures, the solid or dashed 

lines are fits of the experimental data following 

Pearson and Bardeen’s model (see next section). 

 

Fig. 3.1(b).  Aluminum acceptor ionization 

energy in 4H-SiC as a function of Al 

density.  “This work” refers to [Achatz08], 

from which this image is taken. 
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Fig. 3.1(c).  Phosphorus donor ionization energy in 

the hexagonal sites of 4H-SiC as a function of P 

density, from [Rao06].  In this and next figure, full 

circles correspond to [Rao06] while open circles to 

[Wang02] and [Laube02] experimental results. 

 

 

Fig. 3.1(d).  Phosphorus donor ionization 

energy in the cubic sites of 4H-SiC as a 

function of P density, from [Rao06]. 

 

 

 

 

 

Fig. 3.1(e).  Nitrogen donor ionization energies in 

cubic and hexagonal sites of 4H-SiC as a function of N 

density, from [Kagamihara04]. 
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3.2.  Pearson and Bardeen’s model and its improvements. 

 

 

Chronologically, the first model suggested for describing the variation of the 

ionization energy of dopants in a semiconductor material was proposed by K. S. 

Shifrin in 1944 (see [Lehman55], note 1), then improved by G. L. Pearson and J. 

Bardeen in 1949 ([Pearson49], [Pearson50]).  It was so successful that it is still 

largely used, with only little variations in order to take into account the effect of 

compensation.  The main reasons of such a generalized application of this model are 

essentially two: its ability to fit the experimental energy data together with its great 

simplicity.  In Sec. 3.2.1 we shall describe this model, while in Sec. 3.2.2 we shall 

see the variations proposed by other authors in order to improve it and in Sec. 3.2.3 

its application to 3C- and 4H-SiC. 

 

 

3.2.1.  Pearson and Bardeen’s model. 

 

Pearson and Bardeen studied the case of uncompensated Silicon, in which the lattice 

sites are equivalent, homogeneously doped with monovalent impurities (P or B) at 

the thermodynamic equilibrium.  They suggested that the decrease in ionization 

energy of a substitutional dopant atom with increasing concentration results from a 

decrease in the average potential energy of an electron or a hole.  The energy 

decrease is taken to be inversely proportional to the average distance of separation 

between impurities, i.e. proportional to Nd
1/3, where Nd is the substitutional dopant 

concentration.  Thus, one might expect the ionization energy to vary with 

concentration as: 

 

1/3( ) (0)d d d d dE N E Nα∆ = ∆ − ⋅      (3.1) 

 

where, following a simple model à la Bohr: 
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is the ionization energy for an isolated impurity center, m* being the effective mass 

of majority carriers, e the absolute value of electron charge, ε the dielectric 

permittivity of the semiconductor and h Planck’s constant.  The value of αd depends 

on the exact form of the potential energy [Pearson49]. 

The authors observed that an accurate calculation of the potential energy term 

is very difficult, so they attempted only very rough considerations and left αd to be 

determined by a fit of the experimental data.  It has been theoretically evaluated only 

in order to see if the empirical value they obtained was or not of reasonable 

magnitude. 

In order to estimate the value of αd, Pearson and Bardeen observed that the 

impurities are probably distributed more or less at random, and the mobile charges 

are distributed in such a way to shield the dopant ions from one another.  They 

maintained that, following the method of Wigner and Seitz [Wigner33], it should be 

possible to draw a spherical region about each ion which is electrically neutral.  The 

average radius, rs, of such a sphere (Wigner-Seitz radius) is given by: 

 

3 14

3 s dr N
π −=  

 

so that: 

 

1/3

1/33
0.6204

4s d
d

r N
Nπ

− 
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 .     (3.3) 

 

Assuming the mobile charges uniformly distributed throughout the sphere and all 

electron or holes as mobile (complete ionization), they found a variation in the 

ionization energy given by: 

 

2

1.646
4 s

e

rπε
− ⋅  .       (3.4) 

 

Substituting for rs from the Eq. (3.3), this becomes [Pearson49]: 
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Therefore: 

 

2 73.82 10
2.653  eV cm

4d
r

eα
πε ε

−⋅= ⋅ = ⋅  ,    (3.5) 

 

where εr is the relative dielectric permittivity of the host semiconductor.  The value 

given by (3.5) resulted to be about 2/3 of the empirical one obtained by Pearson and 

Bardeen for Si (εr  ≈ 13) doped with P or B, thus justifying on a qualitative 

theoretical basis the experimental results. 

One important feature of Pearson and Bardeen’s model is that, as Nd reaches 

the critical value: 

 

3
(0)d

cr
d

E
N

α
 ∆≡  
 

 , 

 

∆Ed becomes zero and all substitutional dopants are ionized.  In this case, the sample 

will behave like a metal, presenting a finite conductivity in the limit of zero 

temperature and a weak dependence on temperature of both conductivity and free 

carrier concentration.  This effect has been observed experimentally in all 

semiconductors, Silicon Carbide included [FerreiraDaSilva06], and it is known as the 

Mott transition (although the latter includes a larger set of phenomena [Mott74]).  

Another feature is that ionization energies, following this model, are independent of 

the temperature T, having assumed a complete ionization of dopants at all 

temperatures and therefore a concentration of mobile carriers independent of T. 
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3.2.2.  Corrections to Pearson and Bardeen’s model. 

 

As pointed out before, Pearson’s and Bardeen’s model has been largely used 

although with some corrections due to several authors.  In this subsection we will 

make a survey of this variations. 

The first correction is due to the observed difference between the empirical 

ionization energies of several dopants in their high dilution limit and the values 

predicted by (3.2) ([Milnes73], p. 6).  So ∆Ed(0) is treated as an empirical parameter 

in expressions like Eq. (3.1) instead of using Eq. (3.2). 

Similarly, the factor: 

 

2

2.653
4d

eα
πε

= ⋅  

 

appears to be unfit to predict the experimental values, so also αd is treated as an 

empirical parameter to be obtained by a fit of the experimental ionization energy 

values with the expression (3.1). 

A subtler correction to Pearson and Bardeen’s model aims to take into account 

the effect of compensation on the ionization energy values of dopants.  Several 

models have been proposed to this purpose, but all seems to lead to an expression 

like [Shklovskiĭ80]: 

 

2

( ) ( )
4d

e
K f Kα

πε
= ⋅  ,      (3.6) 

 

where: 

 

comp

d

N
K

N
≡         (3.7) 

 

is the compensation degree, Ncomp being the total concentration of compensating 

centers, while f(K) is a universal dimensionless function of K.  In Pearson and 

Bardeen’s model: 



Chapter 3 

                                                        The incomplete ionization of substitutional dopants in Silicon Carbide 36 

 

( ) 2.653f K =  , 

 

i.e. it is a constant, while for some authors [Leloup78]: 

 

1/3( ) (1 )f K B K= ⋅ −  ,      (3.8a) 

 

where B is a dimensionless constant, so that: 

 

2
1/3( ) (0) ( )

4d d comp d d comp

Be
E N N E N N

πε
∆ − = ∆ − ⋅ −  .  (3.8b) 

 

For other authors, instead, f(K) is a much more complex function of K, which can be 

expressed analytically only in some limiting cases [Shklovskiĭ80]. 

 

 

3.2.3.  Pearson and Bardeen’s model as applied to SiC. 

 

Pearson and Bardeen’s model, with the corrections discussed in the preceding 

subsection, has been applied also to different polytypes of Silicon Carbide.  We 

report in Tab. 3.1 some results published in the literature, corresponding to some of 

the fits plotted in Figs. 3.1. 

 

 

polytype dopant 
∆Ed,1 

[eV] 

αd,1 

[eV cm] 

∆Ed,2 

[eV] 

αd,2 

[eV cm] 
reference 

3C-SiC N 0.048 2.6 ⋅ 10-8 - - [Segall86] 

4H-SiC N 0.0709 3.38 ⋅ 10-8 0.1237 4.65 ⋅ 10-8 [Kagamihara04] 

4H-SiC Al 0.220 2.32 ⋅ 10-8 - - [Achatz08] 

 

 Tab. 3.1.  Parameters for the concentration dependence of some substitutional dopant energy levels 

in 3C- and 4H-SiC. 
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3.3.  A different model for the ionization energy variation. 

 

 

As the same Pearson and Bardeen suggested in [Pearson49], the majority carriers 

may be concentrated more in the neighborhood of the dopant ions than they assumed, 

so the assumption of an ionization energy independent of the degree of ionization of 

the impurities can be considered only an approximation.  In fact, on the average, only 

a part of the majority carriers become free due to thermal activation, while the 

remaining ones are localized in the neighborhood of the dopant ions in a bound state, 

so the concentration of mobile carriers that shield the impurity ion potential is minor 

than the total substitutional dopant density: in this case, Nd should be substituted by 

ND
+ or NA

− in Eq. (3.1), thus giving a temperature dependent ionization energy.  

Moreover, as we shall see in the next subsection, the mobile carriers rearrange 

themselves more in the neighborhood of the dopant charged cores, so the hypothesis 

of a uniform mobile charge distribution falls down.  These observations led us to 

search for a model of the ionization energy variation more realistic than Pearson and 

Bardeen’s one. 

 

 

3.3.1.  Static Coulomb screening. 

 

In order to find a more physically correct model for the variation of the dopant 

ionization energy, we concentrated our attention on the variation of the potential 

energy of a charge carrier due to a dopant ion in the presence of mobile carriers.  

Such a potential energy U(r ) is given by the solution of Poisson’s equation ([Sze07], 

p. 62) multiplied by ∓e, the minus sign holding for electrons and the plus sign for 

holes: 

 

2

( ) ( )
e

U ρ
ε

∆ = ± ⋅r r r  ,      (3.9) 
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where ∆r is the Laplacian operator and ρ(r ) is the space charge density, the plus sign 

holding for electrons and the minus sign for holes.  Considering here the n-type case 

and calling EC the absolute minimum of the conduction band, we require the 

potential energy U(r ) of an electron in the presence of a donor ion (placed at the 

origin of the coordinate system) to satisfy the constraints: 

 

 

lim ( ) CU E
→∞

=
r

r        (3.10a) 

 

and: 

 

[ ]{ }
 

2

0
lim ( )

4C

e
U E

πε→
⋅ − = −

r
r r      (3.10b) 

 

in order to be physically meaningful.  The first constraint means that, taking EC as 

the energy reference, the potential energy tends to zero at infinite distance from the 

donor ion, while the second constraint means that, in the very neighborhood of the 

dopant ion, the latter exercises on electrons an ordinary (i.e. unscreened) Coulomb 

attraction. 

The solution of Eq. (3.9) subject to the constraints (3.10) is, within the linear 

screening approximation ([Shklovskiĭ84], Sec. 11.1): 

 

2 exp( / )
( )

4
sc

C

r re
U E

rπε
−= − ⋅r  ,     (3.11) 

 

where r ≡ |r | and the screening radius, rsc, is given by: 

 

2

2

1

sc F

e d

r dE

ρ
ε

= − ⋅  ,       (3.12) 

 

where EF is the Fermi level of the system.  In the next subsection we shall search for 

an acceptable expression for the screening radius rsc. 
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3.3.2.  Evaluation of the screening radius. 

 

In the literature several expressions for the screening radius, rsc, can be found.  The 

most simple of them neglect both the minority carrier and the ionized dopant 

concentration, i.e. they simplify the space charge density taking into account only the 

majority carrier concentration in the right side of Eq. (3.12).  Then, in the n-type 

case: 

 

2

2

1

sc F

e dn

r dEε
= ⋅  ,       (3.13) 

 

where n is the free electron concentration. 

In the two limiting cases of non-degeneration and strong degeneration of electrons in 

the conduction band, two very simple expressions for rsc can be obtained.  In the first 

case Boltzmann statistic can be used, thus giving (see App. 3A) the so called Debye-

Hückel radius ([Fistul’69], p. 93-94): 

 

2
B

DH

k T
r

e n

ε=  .       (3.14) 

 

In the opposite case, we obtain (see App. 3A) the so called Thomas-Fermi radius 

([Fistul’69], p. 93-94): 

 

1/32

2 22*
1

34
TF

Ce

h
r

M nm e

ε
π

 
= ⋅ 

 
 .     (3.15) 

 

For having a unique general expression for rsc, W.A. Harrison suggested to use 

([Harrison99], p. 289): 

 

2 2
sc DH TFr r r≈ +  ,       (3.16) 

 



Chapter 3 

                                                        The incomplete ionization of substitutional dopants in Silicon Carbide 40 

but this is a very rough expression which doesn’t satisfy us.  In fact, the correct 

expression is given by ([Fistul’69], p. 93-94): 

 

2

1/ 22

1 C F C

sc B B

e N E E

r k T k Tε −

 −= ⋅  
 

F  ,     (3.17) 

 

where NC is the effective density of states in the conduction band and F−1/2(x) is the 

Fermi-Dirac integral of order −1/2.  Using tabulated values of the functions F1/2(x) 

and F−1/2(x) [Cloutman89], we have verified that the expression (3.16) gives values 

of rsc far until 11% from the correct ones for values of EF in the neighborhood of EC.  

Therefore, an approximate expression for the function F−1/2(x) have to be used, but 

we shall discuss its choice in the next subsection. 

A further improvement in the expression for rsc can be obtained considering not 

only the contribution to the space charge density of the free majority carriers, but 

also that of the ionized dopant atoms.  Considering the compensating centers 

completely ionized, their concentration results to be independent of the Fermi energy 

and Eq. (3.12) becomes: 

 

2

2

( )1 D

sc F

d n Ne

r dEε

+−= ⋅  ,      (3.18) 

 

where ND
+ is the total concentration of ionized donors: 

 

,

,
,1 exp exp

D i
D

i D i F C
D i

B B

N
N

E E E
g

k T k T

+ =
∆   −+ ⋅ ⋅   
   

∑  , 

 

ND,i being the concentration, gD,i the degeneracy factor and ∆ED,i the ionization 

energy of the i-th substitutional donor level, respectively.  In the case a single donor 

species is present, i = 1 for 3C-, i = 1, 2 for 4H- and i = 1, 2, 3 for 6H-SiC, due to 

non-equivalent lattice sites (see Tab. 1.2).  By defining the ionization degree of the i-

th donor level as: 
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,
,

,

1

1 exp exp
D i

D i F C
D i

B B

E E E
g

k T k T

ξ + =
∆   −+ ⋅ ⋅   

   

 

 

(see Eq. (2.1b)),we find (see App. 3B): 

 

 

2

1/ 2 , , ,2

1
(1 )F C

C D i D i D i
isc B B

E Ee
N N

r k T k T
ξ ξ

ε
+ +

−

  −= ⋅ ⋅ + ⋅ ⋅ −  
  

∑F  (3.19a) 

 

which, in the case of a single donor level, assumes the well known form (see 

[Pernot01] for the non-degenerate case): 

 

2

1/ 22

( ) ( )1 F C A D A
C

sc B B D

E E N n N N ne
N

r k T k T Nε −

  − + ⋅ − −= ⋅ ⋅ +  
  

F  , (3.19b) 

 

where NA is the total compensating acceptor concentration (see App. 3C).  Therefore, 

the expression (3.19a) can be considered as the generalization of (3.19b) for more 

than one dopant level.  Similar expressions hold for the p-type case. 

 

 

3.3.3.  Approximate expression for the Fermi-Dirac integral of order −−−−1/2. 

 

We have seen in the preceding subsection that for calculating the screening radius, 

rsc, we need an expression for the Fermi-Dirac integral of order −1/2, F−1/2(x).  Such 

a function cannot be expressed in terms of simpler known functions, so we need to 

use an approximate expression for F−1/2(x).  In the literature exist several accurate 

procedures for calculating this function with a very high precision ([Jog79], 

[VanHalen85], [Sagar91], [VanCong91], [VanCong92], [Goano93], [MacLeod98], 

[Lether00]) but in general they are too complex for the limited precision we need, 

requiring a certain unnecessary computational time, and converging only in a part of 

the whole domain of the function.  An expression exists, however, which has a form 
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similar to that we used for calculating F1/2(x) [AymerichHumet81] and represents a 

good compromise between accuracy and simplicity [AymerichHumet83].  It is 

unique over the entire range of its variable, so avoiding unnatural discontinuities in 

the simulation results.  Therefore, we believe it is a good starting point. 

The expression proposed in [AymerichHumet83] is: 

 

( )
1/ 2

1/

1
( )

/ 2
exp( )cc

x

x
x b x b a

π− =
+ −

+ + − +

F  ,   (3.20) 

 

which with the values proposed by the authors for the parameters a, b, c reaches a 

maximum relative error (in its absolute value) of 1.2%.  However, it is possible to 

improve its precision with a better choice of the three parameters a, b, c.  For 

example, we found that using the values: 

 

10.05912a =  

 

1.63692b =        (3.21) 

 

4.44581c =  

 

it is possible to reach a maximum relative error (in its absolute value) of less than 

0.8% (see Fig. 3.2), thus obtaining a maximum relative error (in its absolute value) of 

less than 0.4% for the screening radius (3.19a).  We will use the approximate 

function (3.20) with the parameters (3.21) in our simulations. 
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Fig. 3.2.  Relative error of our fit of F−1/2(x) with function (3.20) and parameters (3.21). 

 

 

 

3.3.4.  Eigenvalues of Schrödinger equation with a screened Coulomb potential. 

 

Now we have all the instruments for determining numerically the potential energy 

(3.11) or, to be more precise, the difference U(r ) – EC.  At this point, what should we 

do with this function? 

It is evident that the hydrogenic model for a substitutional donor atom can no 

longer be used, and something else should take its place.  The hydrogenic model was 

obtained by solving the Schrödinger equation with a simple (unscreened) Coulomb 

potential, while now a static screened Coulomb potential has to be considered.  In 

other words, we have to solve the Schrödinger equation: 

 

2 2 exp( / )
0

2 * 4
sc

D

r re
E

m rπε
 −∆ Ψ + −∆ + ⋅ ⋅Ψ = 
 

r

ℏ
 ,   (3.22) 

 

where Ψ is the wave function of the system, ℏ ≡ h / 2π is the reduced Planck’s 

constant and m* is the effective mass of electrons or holes, but not necessarily the 
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conduction or valence band free carrier effective mass, respectively.  In fact, it seems 

to be more useful to introduce the binding mass mB [Martinez02]: 

 

2
0

(0)D
B r

H

E
m m

E
ε ∆= ⋅ ⋅

∆  ,      (3.23) 

 

where ∆ED(0) is the measured ionization energy of the donor in the high dilution 

limit (so without screening), ∆EH = 13.6 eV is the ionization energy of the hydrogen 

atom in vacuum and m0 is the free electron mass.  In such a manner, the solution of 

Eq. (3.22) with m* = mB and without screening gives the correct empirical result ∆ED 

= ∆ED(0) in the high dilution limit. 

We now assume, as a simplifying hypothesis, that the donor atom can be 

described by Eq. (3.22) with a constant effective mass m* = mB, which is considered 

unaffected by screening effects.  We then introduce the effective Bohr radius of the 

donor atom in the high dilution limit [Martinez02]: 

 

0 1
(0)

(0)
r H

D H H
B r D

m E
r a a

m E

ε
ε

∆≡ ⋅ = ⋅ ⋅
∆  ,    (3.24) 

 

where aH = 0.529 Å is the Bohr radius of a hydrogen atom in vacuum.  Let us now 

define the dimensionless variable: 

 

(0)D

r

r
ρ ≡  

 

and the dimensionless parameters: 

 

(0)D
D

sc

r

r
χ ≡        (3.25a) 

 

(0)
D

D
D

E

E
ε ∆∆ ≡

∆  .       (3.25b) 
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With some passages the Schrödinger equation (3.22) becomes (see App. 3D): 

 

2
exp( ) 0D Dρ ε χ ρ

ρ
 ∆ Ψ + −∆ + − ⋅ Ψ = 
 

 ,    (3.26) 

 

where ∆ρ ≡ rD(0)2 ∆r is the reduced Laplacian operator.  Therefore, in our model, the 

reduced energy ∆εD turns out to be a universal function of the parameter χD alone.  

Let us search for such a function. 

Fortunately, we are interested only in the eigenvalues ∆εD of Eq. (3.26) in the 

ground state of the system: we don’t need to know also the corresponding wave 

functions.  Several authors  ([Rogers70], [Singh84], [Holubec90], [Diaz91]) had 

solved numerically such an equation for a discrete set of values of χD, finding also its 

critical value [Diaz91]: 

 

1.190612421060618crχ =  

 

above which ∆εD < 0 and no more bound states exist.  In the latter case, all donors of 

the examined type turn out to be ionized, as in Pearson and Bardeen’s model. 

Eq. (3.26) is not analytically solvable. In order to find an approximate 

expression for the universal function ∆εD(χD) corresponding to the 1s state, we have 

performed a fit of the numerical results obtained in [Holubec90], [Diaz91] in the 

interval [0, χcr] through a fourth order polynomial: 

 

2 3 4
0 1 2 3 4( )f c c c c cχ χ χ χ χ≡ + ⋅ + ⋅ + ⋅ + ⋅    (3.27) 

 

subjected to the four constraints: 

 

1)  (0) 1f =   (by the definition of ∆εD) 

 

2)  (0) 2f ′ = −   (by perturbation theory [Smith64]) 
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3)  ( ) 0crf χ =   (by definition of χcr [Diaz91]) 

 

4)  ( ) 0crf χ′ =   (by looking at the behavior of ∆εD(χ) in the neighborhood of χcr), 

 

requiring also that ( ) 0f χ ≥  in its domain [0, χcr].  The optimal parameters we 

obtained are: 

 

0 1c =  

 

1 2c = −  

 

2 1.399971475167c =       (3.28) 

 

3 -0.489054015737c =  

 

4 0.110522145823c =  . 

 

The universal function ∆εD(χD) ≈ f(χD) is plotted in Fig. 3.3a, while Fig. 3.3b 

illustrates the relative error (in its absolute value) of our fit. 

For χD > χcr we have to set gD = 0 in the expression for the ionization degree of 

the donor; this corresponds physically to the absence of bound donor states and gives 

numerically ND
+ = ND.  This makes superfluous the knowledge of the (reasonably 

negative) ionization energy of the corresponding donor state, therefore we can set it 

arbitrarily equal to zero in our simulations and in the graphical representations of our 

results (see Fig. 3.4b in the next section for an example). 
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Fig. 3.3a.  Fit of numerical values given by [Holubec90] and [Diaz91] using Eq. (3.27) with 

parameters (3.28). 

 

 

 
 

Fig. 3.3b.  Relative error (in its absolute value) of our fit using Eq. (3.27) with parameters (3.28). 
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It should be stressed that, while the screening radius assumes a unique value for 

all donors or acceptors present in the system, a different value of the parameter χd 

will correspond to each kind of dopant state due to the different ionization energies 

of the same dopant species substituting in non-equivalent lattice sites, or of different 

dopant species contemporarily present (see Eqs. (3.24) and (3.25a)).  Therefore it 

happens that when a certain dopant state becomes completely ionized, i.e. when its 

energy level touches the conduction or valence band edge, all the other states with 

deeper energy levels in general continue to exist with finite ionization energies also if 

they correspond to the same chemical species.  For example, as we shall see in the 

next section, P substituting in hexagonal sites in 4H-SiC is completely ionized at 

room temperature at a phosphorus concentration for which P substituting in cubic 

sites is still partially ionized, because of its deeper energy level and therefore a lower 

value of χd (see Eqs. (3.24) and (3.25a)). 

 

 

 

3.4.  Simulation results. 

 

 

The model we have elaborated in the preceding sections has been implemented 

in a simulation program written in VBA (Visual Basic for Applications), which treats 

in a self-consistent way the solution of the charge neutrality equation together with 

the screening problem.  Here and in the next chapter we simulate 4H-SiC behavior 

because for this polytype all the physical parameters required by our model are well 

established in the literature.  However, our model can be applied also to the other SiC 

polytypes, thus giving at least semi-quantitative results. 

We illustrate in Figs. 3.4 our simulation results for uncompensated 4H-SiC:P at 

room temperature (T = 300 K), having taken as parameters those given in Tab. 3.2, 

so that the effective density of states of the conduction band at room temperature 

results to be NC(300 K) = 1.87 ⋅ 1019 cm-3.  For comparison, we have plotted in Fig. 

3.4a also our solution of the charge neutrality equation without screening, i.e. with 

concentration independent ionization energies, by using again the parameters of Tab. 

3.2, and in particular the same ionization energies relative to the high dilution limit. 
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Fig. 3.4a.  Ionization degree of substitutional Phosphorus in uncompensated 4H-SiC at room 

temperature. 

 

 

 
 

Fig. 3.4b.  Energy levels of substitutional Phosphorus in uncompensated 4H-SiC at room temperature, 

taking the conduction band edge EC as energy reference.  An arrow indicates when the bound state 

plotted with the same color vanishes. 
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me* = 0.394 m0 

 

 DOS effective mass of electrons in 

 one valley of the conduction band 

[Wellenhofer97] 

MC = 3  number of equivalent valleys in the 

 conduction band 

[Persson97] 

εr = 9.78  static dielectric constant 

 

[Koizumi09] 

gP,h = gP,k = 4  degeneracy factor of hexagonal and 

 cubic P donor bound states 

[GreulichWeber97] 

∆EP,h (0) = 60.7 meV  ionization energy of P substituting on 

 hexagonal sites: high dilution limit 

[Ivanov05] 

∆EP,k (0) = 120 meV  ionization energy of P substituting on 

 cubic sites: high dilution limit 

[Ivanov05] 

NP,h = NP,k  repartition of substitutional P between 

 hexagonal and cubic sites 

[Kagamihara04] 

 

 

Tab. 3.2.  Parameters used for simulating Phosphorus doped 4H-SiC behavior. 

In the first line, m0 is the free electron mass. 

 

 

As we can see from Fig. 3.4a, the main difference between unscreened and 

screened dopant model is that the former predicts a monotonically decreasing 

ionization degree of Phosphorus with increasing concentration, while the latter, after 

a similar decrease for moderately doped 4H-SiC, predicts a P complete ionization for 

sufficiently high substitutional Phosphorus concentrations.  The model including 

screening reproduces better the experimental results in the heavy doping region, 

where for example an electron concentration of about 1.2 ⋅ 1020 cm-3 was measured 

for a 4H-SiC sample with a P implant concentration equal to 2.0 ⋅ 1020 cm-3 

[Laube02].  By assuming a complete activation of the implanted donors and the 

absence of compensating centers, the ionization degree of P in such a sample is 0.6.  

The model with constant energy levels predicts an ionization degree value equal to 

0.03, which is really too low, while the model including screening predicts a value of 
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0.5; the latter model seems to respect at least the order of magnitude of the 

experimental data. 

However, as it is apparent from Fig. 3.4a, our model predicts unnatural 

discontinuities in the degree of ionization, each discontinuity corresponding to an 

ionization energy becoming zero; in this case, for P substituting in a hexagonal site 

first and in a cubic site successively, as we can see from Fig. 3.4b.  This is due to the 

fact that when an ionization energy becomes zero, the dopants to whom it 

corresponds are “suddenly” completely ionized because of the discrete nature of their 

energy level.  In order to avoid such discontinuities, we must consider an important 

phenomenon typical of heavily doped semiconductors, i.e. the broadening of dopant 

energy levels into impurity bands [Morgan65].  This topic will be discussed in detail 

in the next chapter. 

Another feature of our model is the dependence of energy levels on 

temperature, due to the decrease of free carrier concentration with decreasing T and 

the consequent increase of the screening radius.  To give an example, we have 

plotted in Fig. 3.5 the Phosphorus donor energy levels as functions of T for 4H-SiC 

doped with 1020 P atoms / cm3 and 10% compensated.  As we can see from this 

figure, between liquid Nitrogen temperature (77 K) and 150 K the P energy levels 

result to be strongly temperature dependent, tending to their high dilution limits as T 

tends to the absolute zero (the latter being a general characteristic of our model, 

because at very low temperatures the screening becomes negligible).  This 

temperature dependence of energy levels increases in magnitude with increasing 

dopant concentration, because the difference between the high temperature and the 

low temperature limit of energy levels increases with concentration due to screening 

effects.  But the low temperature region is crucial for extracting just the dopant 

ionization energies from standard temperature dependent Hall effect data analysis 

([Blood92], p. 101), which assumes energy levels independent of T.  Therefore, the 

values obtained from such an analysis result to be at least questionable for samples 

with a not too low dopant density, if our model is correct.  This makes very difficult 

a comparison of our model with the experimental data found in the literature. 
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Fig. 3.5.  Energy levels of substitutional P in 1020 cm-3 Phosphorus doped 4H-SiC, 10% compensated, 

taking the conduction band edge EC as energy reference. 

 
 
 
 

For this reason, we made a comparison with the literature data obtained by 

moderately doped SiC samples, for which the ionization energy variation with 

temperature can be neglected.  In Fig. 3.6 we present computed versus experimental 

values (the latter taken from [Laube02], [Handy00] and [Rao06]) of the free electron 

concentration n for a few different couples of P donors and compensating center 

densities (ND, Ncomp) in 4H-SiC at room temperature.  The couples of  experimental 

ND and Ncomp values are those given by [Laube02], [Handy00] and [Rao06], while the 

substitutional Phosphorus ionization energies are calculated self-consistently during 

our simulation.  The parameters used in our computation are the same of Tab. 3.2.  

As we can see from Fig. 3.6, our model reproduces well the measured values of n in 

all the examined cases.  We presented these results at the 8th European Conference 

on Silicon Carbide and Related Materials (ECSCRM 2010) [Scaburri]. 
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Fig. 3.6.  Simulated versus experimental free electron concentration in partially compensated 4H-

SiC:P at room temperature. 
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Appendix 3A.  Debye-Hückel and Thomas-Fermi screening radius. 

 

 

We have seen that, considering only the screening due to free carriers and neglecting 

the minority carrier density, in the n-type case the screening radius is given by 

(3.13): 

 

2

2

1

sc F

e dn

r dEε
= ⋅  ,       (3A.1) 

 

where (see Eq. 2.11a): 

 

1/2( ) F C
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B

E E
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F      (3A.2) 

 

is the free electron concentration.  Let us now calculate the screening radius in two 

limiting cases: the non-degenerate and the strongly degenerate one. 

 

1)  In the case of non-degeneration: 
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k T

− −≪  

 

and therefore (see [Blakemore62], App. A): 
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Hence Boltzmann approximation can be used, (3A.2) becoming: 
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to give: 
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Hence, we obtain the Debye-Hückel radius (3.14): 
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2)  In the case of strong degeneration: 
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and therefore (see [Blakemore62], App. A): 
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Hence Thomas-Fermi approximation can be used, being: 
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 . 

 

Substituting Eq. (1.1a) we have: 
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   (3A.3) 

 

which, by inversion, gives: 
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Substituting (3A.3) in (3A.1) gives: 
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which, substituting (3A.4), becomes: 
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Therefore: 
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i.e. the Thomas-Fermi radius (3.15). 

 

Out of any approximation, being (see [Blakemore62], App. A): 
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x x
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Eqs. (3A.1) and (3A.2) give: 
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i.e. Eq. (3.17). 
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Appendix 3B.  Derivative of the ionized dopant concentration. 

 

 

Eq. (3.18) for the screening radius requires the knowledge of the derivative of: 
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with respect to EF.  The ionization degree of the i-th kind of donor being: 

 

,
,
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1
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we have: 

 

, ,D D i D i
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so that, the concentrations ND,i being independent of EF, we have: 

 

,
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D iD
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By taking the derivative of Eq. (3A.1) we obtain: 
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so substituting in (3A.2) and then in (3.18) gives the expression (3.19a) for the 

screening radius. 
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Appendix 3C.  Screening radius for a single donor level. 

 

 

In Eq. (3.19a) the term: 

 

 , , ,(1 )D i D i D i
i

N ξ ξ+ +⋅ ⋅ −∑  

 

occurs, which, in the case of only one dopant level, becomes: 

 

(1 )D D DN ξ ξ+ +⋅ ⋅ −  . 

 

Multiplying and dividing this term by ND, we have: 
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   (3C.1) 

 

However, by neglecting the minority carriers and considering completely ionized the 

compensating centers (of acceptor type), the charge neutrality equation becomes: 

 

D AN N n+ = +  . 

 

Substituting in (3C.1), we finally obtain: 

 

( ) ( )
(1 ) A D A

D D D
D

N n N N n
N

N
ξ ξ+ + + ⋅ − −⋅ ⋅ − =  

 

which, substituted in Eq. (3.19a), gives Eq. (3.19b). 
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Appendix 3D.  Dimensionless Schrödinger equation. 

 

 

By introducing the binding mass (3.23) and the dimensionless parameters: 
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r
ρ ≡  

 

and: 
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the Schrödinger equation (3.22) can be rewritten as: 
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From the definitions (3.23) and (3.24) we have: 
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taking into account that: 
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Furthermore: 
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taking into account that: 
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Therefore Eq. (3.22) takes the form (3.26): 
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being by definition (3.25b): 
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Chapter 4. 

 

Inclusion of impurity bands in our model. 
 

 

 

 

In this chapter we shall treat the impurity band formation and insert it into our model 

for incomplete ionization of substitutional dopants.  In Sec. 4.1 we shall discuss the 

physical origin of impurity bands and present the model of this phenomenon 

proposed by T. F. Lee and T. C. McGill in 1975 for lightly doped semiconductors.  

In Sec. 4.2 we shall modify Lee and McGill’s model in order to extend it also to 

heavily doped semiconductors.  In Sec. 4.3 we shall discuss how to treat the effect of 

impurity bands on the degree of ionization of substitutional dopants.  In Sec. 4.4 we 

shall present the results of our simulations for Silicon Carbide and compare them 

with experimental results. 

 

 

 

4.1.  Formation of impurity bands. 

 

 

With increasing doping concentration in a semiconductor material, dopant discrete 

energy levels in the bandgap split into quasi-continuous bands.  This is due to two 

independent phenomena, which however happen at the same time.  The first one is 

the gradual overlapping of wave functions of charge carriers bound with equal 

binding energies to dopant cores as the average distance between these latter 

decreases, following the model of Kronig and Penney [Kronig31]: it has a purely 

quantum mechanical nature.  The second phenomenon consists in increasing 
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potential fluctuations by ionized impurities distributed at random in the host lattice, 

which has the effect of spreading out the densities of states in the energy diagram 

[Kane63]: it has a purely statistical nature.  As previously said, the combination of 

these two phenomena determines the formation of impurity bands. 

An enormous number of papers in the literature has been devoted to this topic.  

We have chosen to start from the relatively simple model proposed by T. F. Lee and 

T. C. McGill [Lee75] for impurity bands, which includes Morgan’s model for the 

effect of potential fluctuations on impurity levels [Morgan65].  For a quantitative 

treatment of the quantum mechanical broadening of a dopant level, Lee and McGill 

considered a dopant concentration sufficiently low so that the tight binding model 

can be used.  Therefore, the energy level broadening results to be proportional to the 

energy transfer integral [Lee75]: 

 

( )   

3

3
,0 ,0 

( ) ( ) ( ) d i j i d i d jJ V dφ φ− = − − −∫R R r R r R r R r
ℝ

 , 

 

where: 
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0
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e
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rπε ε
= −r  

 

is the unscreened Coulomb potential energy and: 

 

,0 3

1
( ) exp

(0)[ (0)]
d

dd

r

rr
φ

π
 

= − 
 

r      (4.1) 

 

is the dopant ground state wave function, being εr the relative dielectric permittivity 

of the host semiconductor and rd(0) a ground state effective Bohr radius of the 

dopant atom (different than ours).  Due to the symmetry of the problem, the energy 

transfer integral can be rewritten as: 

 

  

3

3
,0 ,0 

( ) ( ) ( ) ( ) d d dJ R V dφ φ= −∫ r r r R r
ℝ

    (4.2) 
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to give [Lee75]: 

 

  

2

0

( ) 1 exp
4 (0) (0) (0)d

r d d d

e R R
J R

r r rπε ε
   

= − + −   
   

 , 

 

where R is the distance between nearest dopant neighbors.  Since the doping atoms 

are randomly distributed in space, the distance R to the nearest dopant neighbor and 

the energy transfer integral Jd(R) vary from one doping atom to another.  If the 

dopants are absolutely randomly distributed in semiconductors, they should follow a 

Poisson distribution.  In a Poisson distribution, the probability that the nearest dopant 

neighbor lies at a distance R in a spherical shell between R and R + dR is given by: 

 

 

3 24
4 exp

3d dN N R R dR
ππ  − 

 
 , 

 

where Nd is the concentration of dopants with the same energy level Ed.  Therefore, 

the average energy transfer integral between a doping atom and its nearest dopant 

neighbor is equal to [Lee75]: 

 

  

 3 2

 0

4
( ) 4 ( ) exp

3d d d dJ R N J R N R R dR
ππ

+∞  = − 
 ∫  .  (4.3) 

 

In the tight binding model, the total bandwidth is: 

 

2 ( )d d dB z J R=  ,       (4.4) 

 

where zd is the number of nearest neighbors.  With a Poisson distribution, there is 

only one nearest neighbor to every dopant atom and, therefore, zd = 1.  Hence, by 

defining the impurity band half-width Wd ≡ Bd / 2, we have [Lee75]: 

 

( )d dW J R=  . 
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The quantity of interest is the impurity band density of states ρd,0(E), which is 

in general a very complicated function of energy.  However, for their purposes, Lee 

and McGill assumed ρd,0(E) to be a constant over the bandwidth Bd, i.e. (see Fig. 

4.1): 

 

 ,0

      
2

( )

           
0  .

d
d d

d

d

d d

N
E E W

W
E

E E W

ρ

 − ≤
= 

 − >

    (4.5) 

 

 

 

 
 

Fig. 4.1.  Density of states described by (4.5). 
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As we have mentioned before, the random distribution of ionized dopants 

generates spatial fluctuations in the potential, so that the dopant ground state results 

to be spread in energy.  For having a dopant density of states ρd(E) including both the 

fluctuation-induced broadening and the broadening due to a finite energy transfer 

integral, Lee and McGill proposed to average ρd,0(E) over the value of the local 

potential.  Therefore [Lee75]: 

 

 

,0 
( ) ( ) ( ) d dE E V p V dVρ ρ

+∞

−∞
= −∫  ,    (4.6) 

 

where: 

 

2

2

1
( ) exp

22

V
p V

σσ π
 

= − 
 

 .     (4.7) 

 

Eq. (4.7) has been taken directly from the work of T.N. Morgan, where σ is the 

solution of the system [Morgan65]: 

 

 

4
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1.07 exp
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d d
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d d
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e r R
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πσ
πε ε
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πε ε

±  
= ⋅ ⋅ −  

 


   ⋅ − =   

∑

   (4.8) 

 

where rsc is the screening radius (the calculation was made by Morgan for the case of 

a screened Coulomb potential), Nd
± is the concentration of ionized dopants of the d-th 

type, Zd is their charge (in e units) and Rd is a variable with the dimension of a length 

to be obtained together with σ by solving the system (4.8).  It is apparent from the 

second of Eqs. (4.8) that the same value of Rd holds for all ionized dopants with the 

same charge (in its absolute value) | Zd | e.  Moreover, if we consider only monovalent 

dopants, i.e. | Zd | = 1, it can be demonstrated (see App. 4A) that: 
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 .  (4.9) 

 

This is the model for impurity bands elaborated by Lee and McGill, who – it has to 

be remarked – used values for rd(0), rsc and σ different from ours, the latter ones 

being given by Eqs. (3.19a) (or its equivalent for the p-type case), (3.24) and (4.9) 

respectively. 

 

 

 

4.2.  Our model for impurity bands. 

 

 

We have seen that Lee and McGill obtained their value for the bandwidth Bd in the 

case of an unscreened Coulomb potential, which is consistent with their assumption 

of a moderate dopant concentration.  However, we have seen in the preceding 

chapter that it has to be substituted by a screened Coulomb potential if we want to 

describe the behavior of a heavily doped semiconductor.  This choice affects also the 

form of the ground state wave function to be put into the energy transfer integral 

(4.2).  As a first approximation, we assume the correct ground state wave function to 

have the same form (4.1), but with an effective Bohr radius rd given by: 

 

 

(0)
(0)       

( )
( )

                         

d
d d cr

d d

d d

d cr

E
r

E
r

χ χ
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χ χ
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 +∞ ≥

    (4.10) 

 

consistently with the 1s hydrogenic wave function (4.1) we chose and the value of 

the ionization energy ∆Ed(χd), with χd given by (3.25a).  Therefore, by defining the 

dimensionless parameters: 
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d d d d

d
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ε χ χ
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(see the definition (3.25b) and Eqs. (3.27) and (3.28)) and: 

 

( )d d

R
x

r χ
≡  ,        (4.11b) 

 

the energy transfer integral turns out to be (see App. 4B): 
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d d d
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J R J r x x x
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α α

α α α
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 . 

 

(4.12) 

 

(in the following part of this chapter, the dependence of rd, ∆Ed and αd on χd will be 

implied).  By defining the dimensionless parameter: 

 

 

34

3d d dN r
πβ ≡         (4.13) 

 

and substituting Eq. (4.12) into (4.3), we thus obtain (see App. 4C): 
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(4.14) 

 

where: 
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 3

 0
( ) exp ( ) n

nI x x x dxβ β
+∞

≡ − −∫           (β ≥ 0) .   (4.15) 

 

Unfortunately, the integrals (4.15) can not be expressed in terms of other 

known functions.  Therefore we have to find approximated expressions for them, at 

least for the two integrals I1(β) and I2(β) which appear in (4.14).  We shall explain in 

App. 4E the two approximate expressions we found.  At this point, it is more 

important to stress on the asymptotic behavior of I1(β) and I2(β) as β tends to 

infinity, i.e. as χd approaches χcr so that rd tends to infinity (see App. 4D): 

 

1 2/3

(2 / 3)
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β
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2

1
( )I β
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≈  . 

 

It is easy to verify (see App. 4F) that, in the same limiting case: 

 

 

  

2

3

(0)
( ) 24 (0) d sc

d d
d

r r
J R E

r
≈ − ∆  , 

 

i.e. in the heavy doping limit, when χd reaches χcr and rd become infinite, if zd is still 

equal to 1 in Eq. (4.4), the bandwidth tends to zero.  But this makes no physical sense 

and is in contrast with all experimental results.  However, the assumption zd = 1 

holds only in the high dilution limit: when the extension rd of a dopant state becomes 

infinite, all other dopants become nearest neighbors.  Therefore, we suggest to 

replace zd = 1 with the expression: 

 

 

34
1

3d d dz N r
πζ= + ⋅  ,      (4.16) 
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where ζ is a dimensionless constant of the order of unity.  This means that in the high 

dilution limit zd ≈ 1, but the probability to have more than one nearest neighbor 

increases proportionally to the dopant concentration and to the “volume” of the 

dopant state, in such a manner that the number of nearest neighbors becomes infinite 

as the dopant state extends to infinity.  In this case, we have from (4.4): 

 

     

2lim lim ( ) 32 (0) (0)
d d

d d d d d sc d
r r

W z J R N r r Eπ ζ
→∞ →∞

= = ∆  ,  (4.17) 

 

which is finite, as it should be (see App. 4F).  We propose to use (4.17) for all values 

χd ≥ χcr, this expression having been obtained for infinite rd, which is characteristic 

of all extended states.  For simplicity, in our simulations we shall use ζ = 1, but we 

think that its correct value could be obtained from probabilistic considerations. 

Now we have all the instruments needed for the calculation of the impurity 

band half-width Wd.  For simplicity we assume, as Lee and McGill, that the impurity 

band density of states due to the overlapping of dopant state wave functions still has 

the rectangular form (4.5).  We have now to treat the effect of potential fluctuations 

due to randomly distributed ionized impurities.  Instead of using the expression (4.6), 

we propose to keep the rectangular form also for the resulting density of states ρd(E), 

but with an effective half-bandwidth: 

 

 

2 2
,d eff dW W σ= +  ,      (4.18) 

 

with σ given by Eq. (4.9). 

At this point, our model for the impurity band density of states seems to be 

complete.  However, we have not yet said anything about the position of the center 

Ed of the impurity band once χd exceeds its critical value χcr.  When χd = χcr, the 

ionization energy ∆Ed becomes zero, i.e. Ed = EC or Ed = EV for a donor or acceptor 

case, respectively.  But what happens to Ed once χd > χcr?  We have not given an 

answer to this question in the preceding chapter, because we considered there only 

discrete states becoming completely ionized when χd ≥ χcr, the exact value of the 

(negative or zero) ionization energy thus being not influential.  But in the case of 
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impurity bands the position of Ed is of crucial importance, governing the 

concentration of free carriers.  At the moment, however, we have not a quantitative 

model for this topic.  Therefore, considering that the function (3.27) presents a 

minimum at χd = χcr, we assume arbitrarily in our simulations that: 

 

( ) ( ) sign( )d d d cr dfε χ χ χ χ∆ = ⋅ −  ,    (4.19) 

 

because we expect that Ed continues to penetrate into the conduction or valence band, 

and Eq. (4.19) is the simplest function which extends monotonically the function 

(3.27) to all the positive real axis while keeping a continuous first derivative.  We 

hope to find a better expression in the future based on more physical considerations.  

From this point of view, the model of band edge displacements elaborated for 3C-, 

4H- and 6H-SiC by U. Lindefelt [Lindefelt98] seems to be well promising, but it is 

still limited to the uncompensated case and can cause problems of convergence in 

our simulation software. 

 

 

 

4.3.  Occupancy of impurity bands. 

 

 

Having established a model for the impurity band density of states, now we have to 

explain how its energy levels are occupied by electrons or holes.  Let us consider the 

n-type case for simplicity.  As we have done for discrete energy levels in Chap. 3, we 

shall consider completely ionized all donor states with energy E ≥ EC, while we ask 

the donor states with energy E < EC to follow the ordinary Fermi-Dirac statistics 

(2.1).  Therefore, we assume: 

 

( ) ( )D D C D CN N E E N E E+ += < + ≥  ,     (4.20) 

 

where: 
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ρD(E) being the density of states (4.5) but with half-width given by Eq. (4.18).  Let 

us define the dimensionless function: 
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Hence we obtain (see App. 4G): 
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(4.23) 

 

which is the value to be put into the charge neutrality equation (2.5).  A similar 

expression holds for the p-type case. 
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Fig. 4.2.  Phosphorus donor ionization degree in uncompensated 4H-SiC at room temperature. 

The pure rectangular model has been used. 

 

 

We have implemented such a model in a self-consistent iterative program, and 

we have found that slope discontinuities appear when ∆ED = ±WD,eff (see Fig. 4.2, 

where we have used the same parameters given in Tab. 3.2, p. 50 of this thesis).  

These slope discontinuities are mathematical artifacts and have no physical meaning: 

they are due only to the oversimplified rectangular model (4.5) for the impurity band 

density of states.  In order to avoid them, we have decided to substitute the function 

(4.22) into (4.23) with the more smoothed function: 

 

 

1
( )

1 exp ( 2 )
F x

x
≡

+ −  ,      (4.24) 

 

which has the same asymptotic behavior of (4.22) as |x| tends to infinity and has the 

same derivative in x = 0 (see Fig. 4.3 for a comparison).  In such a manner all slope 

discontinuities disappeared, as can be seen from the figures in the next section.  Such 

a smoothing is qualitatively consistent with Eqs. (4.6) and (4.7), which spread the 

density of states (4.5) of well defined width Bd over all the real axis of the energies.  
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As a consequence, the resulting density of states is finite also at a large distance from 

Ed, although small for low impurity concentrations. 

 

 

 
Fig. 4.3.  Functions (4.22) and (4.24) for impurity band modeling. 

 

 

 

 

4.4.  Simulation results and discussion. 

 

 

We illustrate in Fig. 4.4 our simulation results for Phosphorus-doped uncompensated 

4H-SiC at room temperature obtained by using the function (4.24) instead of (4.22) 

and the same parameters given in Tab. 3.2, p. 50 of this thesis.  As we can see from 

Fig. 4.4a, the unnatural slope discontinuities we obtained by using (4.22) vanished.  

We must point out that, in comparison with Fig. 3.4a, the ionization degree does not 

go to one for high concentrations, i.e. the ionization is not complete.  In Fig. 4.4b we 

have plotted the corresponding energy diagram, in which we have used BD,eff as a 

measure of the impurity band amplitude. 
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Fig. 4.4a.  Phosphorus donor ionization degree in uncompensated 4H-SiC at room temperature. 

The smoothed impurity band model has been used. 

 

 

 
 

Fig. 4.4b.  Phosphorus impurity band formation in uncompensated 4H-SiC at room temperature, 

taking the conduction band edge EC as energy reference.  The dashed lines represent the center ED of 

each impurity band.  Blue color refers to the hexagonal site and red color to the cubic one.  The 

smoothed impurity band model has been used. 
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To test our model, we have simulated the free electron concentration as a 

function of temperature for Phosphorus doped 10% compensated 4H-SiC for 

different values of P concentration (from 1014 to 1021 cm-3, as explained in Tab. 4.1), 

which could be obtained from a temperature dependent Hall effect measurement.  

For comparison, we have performed the same simulation also following the model 

with discrete energy levels both without screening (as seen in Chap. 2) and taking it 

into account (as seen in Chap. 3).  Figs. 4.5 illustrate our results.  As we can see, the 

main difference between the model including impurity bands and the others is that it 

predicts more and more high carrier concentrations at low temperatures with 

increasing P concentration.  As a consequence, between 1019 and 5 ⋅ 1019 P atoms / 

cm3 (for a compensation degree K = 0.1), a passage from a semiconducting to a 

metallic behavior is predicted.  Such a behavior has been observed experimentally, as 

can be seen in [Laube02].  M. Laube and coworkers explained such a behavior by 

invoking the onset of impurity conduction, i.e. a movement of electrons through 

impurities without thermal activation from donors to CB ([Hung50], [Hung54]).  In 

our model, however, such a metallic behavior is entirely due to electrons in the 

conduction band, made free from impurity levels lying over the CB edge (see Fig. 

4.4b), while impurity conduction has been completely neglected.  If our model is 

correct, it is therefore not necessary to invoke the onset of impurity conduction for 

explaining such a metallic behavior.  As a consequence, our model could be used for 

analyzing temperature dependent Hall effect data also for those samples which are 

degenerate and present a metallic behavior, analysis that can not be performed by 

using the standard discrete-energy-level-based fitting procedure. 

To give an example of such a possibility, we have plotted in Fig. 4.5 the 

experimental values obtained by Laube and coworkers for the electron concentration 

in three Phosphorus-implanted and then annealed 4H-SiC samples together with our 

simulation curves, the latter obtained by using the parameters given in Tab. 3.2 and P 

concentrations equal to those effectively implanted: NP = 2.6 ⋅ 1018 cm-3 for sample 

P1, NP = 5 ⋅ 1019 cm-3 for sample P2 and NP = 2 ⋅ 1020 cm-3 for sample P3 [Laube02].  

The compensation degree has been adjusted manually in order to achieve a fairly 

good agreement with the experimental data.  We obtained a degree of compensation 

equal to 15%, 14% and 0% for samples P1, P2 and P3, respectively. 
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Fig. 4.5a.  Electron concentrations from simulation with constant discrete energy levels. 

 

 

 

 

 

Fig. 4.5b.  Electron concentrations from simulation with discrete energy levels in presence of 

screening. 
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Fig. 4.5c.  Electron concentrations from simulation with smoothed impurity bands. 

 

 

 

identifier name substitutional P concentration  [cm-3] 

S1 1014 

S2 1015 

S3 1016 

S4 1017 

S5 1018 

S6 1019 

S7 2 ⋅ 1019 

S8 5 ⋅ 1019 

S9 1020 

S10 1021 

 

 

Tab. 4.1.  Concentrations used for the simulations illustrated in Figs. 4.5. 
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Fig. 4.5.  Manual fit of [Laube02] experimental results by using our model. 

 

 

 

While the first two results are reasonable for implanted samples, the third is 

not: a compensation degree of the order of 10% is expected from the experience.  

Furthermore, as we can see from Fig. 4.5, the agreement of our curves with the 

experimental data is rather good, but, also if it is not evident from the figure, their 

derivatives with respect to inverse temperature don’t correspond to those of the 

empirical data.  Therefore, we think that our model has to be further refined in order 

to get a better agreement with the experimental results.  On the other side, it has 

demonstrated to be a very good instrument for analyzing temperature dependent Hall 

effect measurement data of SiC samples, in particular those corresponding to the 

most heavily doped samples, which could not be analyzed by using the standard 

methods. 
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Appendix 4A.  Calculation of the parameter σσσσ  from Eqs. (4.8). 

 

 

Let us rewrite the system (4.8) by substituting the second equation with its square: 

 

 

2 4
2

2
0

2 4
2 2

2
0

2
1.07 2 exp

(4 )

2
exp (2.3)  .          

(4 )

d d
sc d

d r sc

d d

r d sc

Z e R
r N

r

Z e R

R r

σ π
πε ε

σ
πε ε

±  
= ⋅ ⋅ −  

 


   ⋅ − =   

∑

   (4A.1) 

 

From the second equation: 

 

2 4
2 2

2
0

2
exp (2.3 )

(4 )
d d

d
r sc

Z e R
R

r
σ

πε ε
 

⋅ − = 
 

 

 

which, substituted into the first equation of the system, gives: 

 

2 2 21.07 2 (2.3 )sc d d
d

r N Rσ π σ±= ⋅ ⋅∑  . 

 

Hence: 

 

2
2

1
0.028

2 1.07 (2.3)sc d d
d

r N R
π

±⋅ = ≈
⋅ ⋅∑  .    (4A.2) 

 

If ions of only one value of |Z| are present, like our case in which |Z| = 1 

(monovalent centers), from the second equation of (4A.1) results that there will be a 

unique value of Rd for both Z = +1 and Z = −1.  Therefore, (4A.2) gives: 

 

   

2

1 0.028 1

( )2 1.07 (2.3) ( ) 6 ( )
d

sc D Asc D A sc D A

R
r N Nr N N r N Nπ + −+ − + −

= ≈ ≈
⋅ +⋅ ⋅ ⋅ + ⋅ +
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which, substituted into the second equation of the system (4.8) with |Zd| = 1, gives: 

 

 

 

 

  

2

0

2 2

0

2

3
0

exp
2.3 4

2 1.07 (2.3) ( ) 1
          exp

2.3 4 6 ( )

( ) 1
          exp  ,

8 6 ( )

d

r d sc
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r sc sc D A
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Re

R r

e r N N

r r N N

r N Ne

r N N

σ
πε ε

π
πε ε

ε ε π

+ −

+ −

+ −

+ −

 
= ⋅ − ≈ ⋅  

 ⋅ ⋅ ⋅ +
 ≈ ⋅ − ≈
 ⋅ ⋅ + 

 +
 ≈ ⋅ −
 + 

 

 

i.e. Eq. (4.9).  In the last passage we assumed 1.07 ≈ 1. 
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Appendix 4B.  Calculation of the energy transfer integral (Eq. 

(4.12)). 

 

 

We have to calculate the energy transfer integral (4.2): 

 

  

3

3

 
( ) ( ) ( ) ( ) d d dJ R V dφ φ= −∫ r r r R r

ℝ

    (4B.1) 

 

with: 

 

2

0

( ) exp
4 r sc

e r
V

r rπε ε
 

= − − 
 

r  

 

and: 

 

 

3

1
( ) expd

dd

r

rr
φ

π
 

= − 
 

r  . 

 

The integral (4B.1) can be written extensively as: 

 

 

3

3

2
3

2 3  
0

2
3

2 3  
0

exp ( / )
( ) exp exp  

4

1
          exp   .

4

sc
d

r d d d

r d sc d

r re r
J R d

r r r r

re r
d

r r r r

π ε ε

π ε ε

 −  −= − ⋅ − ⋅ − =  
   

  + − 
= − ⋅ ⋅ − +  

   

∫

∫

r R
r

r R
r

ℝ

ℝ

 

 

Let us define the dimensionless variable: 

 

dr
≡ r

q  

 

and the dimensionless parameters: 
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dr
≡ R

x         (4B.2a) 

 

d

sc

r

r
α ≡  .        (4B.2b) 

 

(see Eqs. (4.11)).  Hence, the energy transfer integral becomes: 

 

( )

  

 

   

 

 
3

 

  
3

2 3

2 3
0

2
3

2  
0

( ( )) exp
4

1
          exp  .

4

d d
d
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e
q q d
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π ε ε

α
π ε ε

  + +
= − ⋅ ⋅ − ⋅ + =  

   

 = − ⋅ ⋅ − + + + 

∫

∫

r R r

q x q

ℝ

ℝ

 

 

Taking the z axis parallel to x, i.e. to R, the result being independent of the R 

direction for reasons of symmetry, and introducing the spherical coordinates (q, θ, 

ϕ), we obtain: 

 

( )

)

( )

 

 

 

 

   

   

 

  

 
  

2 2

2 0 0 0
0

2 2 2
 

2
2 2

0 0
0

1
( ( )) exp

4

                    2 cos sin   

          exp 2 cos
2

                    

d
r d

r d

e
J R x q q

r q

q x xq q d d dx

e
q q q x xq

r

q

π π

π

α
π ε ε

θ θ ϕ θ

α θ
π ε ε

+∞

+∞

= − ⋅ ⋅ − + +

+ + + ⋅ ⋅ =

 = − ⋅ − + + + + ⋅  

⋅

∫ ∫ ∫

∫ ∫

sin    ,d dqθ θ

 

 

the integrand being independent of the variable ϕ.  Therefore, by defining: 

 

 0
2

2 ( ( ))1
( ) ( ( ))

4
r d d

d
d

r J R x
j x J R x

e E

π ε ε≡ − ⋅ = − ⋅
∆

   (4B.3) 
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(see Eqs. (4.10), (3.24), (3D.1) and (3D.2) for the equivalence of the second and the 

third term of (4B.3)), Eq. (4B.1) becomes simply: 

 

( )  

  

 
  

2 2
  

0 0
( ) exp 2 cos sinj x q q q x xq q d dq

π
α θ θ θ

+∞  = − + + + + ⋅ ⋅  ∫ ∫  . 

 

In order to calculate explicitly such an integral, let us make the change of 

variable: 

 

cosz θ≡ −  , 

 

from which: 

 

 sindz dθ θ= −  

 

and therefore: 

 

( ) 

  

 
  

1 2 2
  

0 1
( ) exp 2j x q q q x xq z q dz dqα

+∞ +

−
 = − + + + − ⋅ ⋅  ∫ ∫  . 

 

Let us define also the new variable: 

 

2 2 2 2t q x xq z≡ + − ⋅  ,          0t ≥  . 

 

Hence: 

 

  2 2t dt xq dz= −       ⇔      
 t dt

dz
xq

= −  

 

and: 
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{ }
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1
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t dt
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∫ ∫
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Taking into account that: 

 

     
2

1
exp ( ) exp ( ) .

t
t t dt t constξ ξ

ξ ξ
 ⋅ − = − + ⋅ − + 
 

∫  ,  (4B.4) 

 

we can thus write (ξ being here equal to 1): 

 

( ) ( ){

]}

      

 

 

 
 

0

 

1
( ) exp [ (1 ) ] 1 exp

          ( 1) exp ( )  .

j x q q x q x
x

q x q x dq

α
+∞
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− + + ⋅ − −

∫
 

 

In order to eliminate the modulus functions, let us split the range of integration 

into two intervals, [0, y] and [y, +∞].  Let us therefore write: 

 

 1 2 3( ) ( ) ( ) ( )x j x I x I x I x⋅ = + −  ,     (4B.5) 

 

where: 
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By remembering Eq. (4B.4), we can split the integral I1(x) itself into two parts: 
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Similarly: 
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∫

∫
 

 

and therefore: 
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 .  (4B.6b) 

 

Finally: 
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hence: 
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We can therefore write, from (4B.5): 
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which can be rewritten as: 
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Therefore: 

 

[ ] 

   

 

2

2exp ( ) 2
( ) 1 exp ( )

(2 ) 2

x
j x x x

x
α α

α α α
−  = ⋅ − ⋅ − − + + 

 , 

 

which becomes Eq. (4.12) taking into account Eq. (4B.3) and comparing the 

definitions (4B.2) to (4.11). 

 



Chapter 4 

                                                        The incomplete ionization of substitutional dopants in Silicon Carbide 92 

 



Inclusion of impurity bands in our model 

The incomplete ionization of substitutional dopants in Silicon Carbide 93 

Appendix 4C.  Calculation of averaged energy transfer integral (Eq. 

(4.14)). 

 

 

The average (4.3) of the energy transfer integral (4.12) is: 
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By introducing the dimensionless variable; 
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it becomes: 
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and, by defining the dimensionless parameter (4.13): 
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we have: 
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Let us study the dimensionless integral: 
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We can split it into three parts: 
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by defining the three integrals: 
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However, the third integral J1(α, β ) can be expressed in terms of the first one by 

means of the change of variable: 
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As a matter of fact, we have: 
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Therefore, the integral (4C.2) can be written as: 
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which, substituted in (4C.1), gives Eq. (4.14). 
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Appendix 4D.  Asymptotic behavior of the two integrals I1(ββββ ) and 

I2(ββββ ). 

 

 

We want to study here the asymptotic behavior of the integral; 

 

( )  

 3

 0
( ) expn

nI x x x dxβ β
+∞

≡ − −∫  ,      0β ≥     ,    1n > −  (4D.1) 

 

in the two extreme cases β ≪ 1 and β ≫ 1.  For β ≪ 1 we can write: 

 

( )

( )

  

 3 2

 0

2

( ) exp ( ) 1  

          ( 1) ( 4)  .

n
nI x x x O dx

n n O

β β β

β β

+∞
 = − − + = 

= Γ + − ⋅Γ + +

∫
 

 

Therefore: 

 

( )2
1( ) 1 24I Oβ β β= − +  

          (4D.2) 

( )2
2( ) 2 120I Oβ β β= − +  . 

 

In the opposite case,  β ≫ 1, we can rewrite the integral (4D.1) as: 

 

( )

( ) ( )

 
  

 

   

 

  

  

1/31/3 1/3 3
1/3 1/3 1/3 0

1/3 1/3 3 1/3
 

( 1) /3 1/3 0

( ) exp

1
          exp

n

n

n

n

d xx x
I x

x
x x d x

ββ ββ β
β β β

ββ β β
β β

+∞

+∞

+

   
= − − =   

   

 
= ⋅ − − 

 

∫

∫

 

 

and introduce the new variable: 
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 1/3t xβ≡  , 

 

so that: 

 

  

 3
 

( 1) /3 1/3 0

1
( ) expn

n n

t
I t t dtβ

β β
+∞

+

 = ⋅ − − 
 

∫  .   (4D.3) 

 

By introducing now another variable: 

 

3z t≡  

 

so that: 

 

1/3t z=  

 

2/33

dz
dt

z
=  , 

 

the integral (4D.3) becomes: 

 

 

 

 

 

  

1/3
 ( 2) /3

 
( 1) /3  0

 ( 2) /3
( 1) /3  0

 ( 1) /3
1/3 2/3 0

1
( ) exp

3

1
          exp ( ) 

3

1 1
                    exp ( ) 

1
3

          

n
n n

n
n

n

z
I z z dz

z z dz

z z dz O

n

β
β β

β

β β

+∞ −
+

+∞ −
+

+∞ −

  = ⋅ − − =  
   


= ⋅ − −



 − ⋅ − + = 
 

+Γ
=

∫

∫

∫

   ( 1) /3 ( 2) /3 /3 1

2
13

 .
3 3n n n

n

O
β β β+ + +

+   Γ        − +  
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Therefore: 

 

( )
  1 2/3 4/3

2 / 3 1 1
( )

3 3
I Oβ

β β β
Γ  = − +  

 
 

          (4D.4) 

( )
  2 4/3 5/3

4 / 31 1
( )

3 3
I Oβ

β β β
Γ  = − +  

 
 . 
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Appendix 4E.  Approximate expressions for the two integrals I1(ββββ) 

and I2(ββββ). 

 

 

Starting from the asymptotic behaviors (4D.2) and (4D.4) we have found in App. 4D, 

let us define the two functions: 

 

( ) ( )
 

1

3

3 2
1

1  3  3

3 1/31

1
( )

3 1
(1 24 )

2 / 3 2 / 3

b x
f x

b
x x x

 
 
 + ⋅≡  

    + ⋅ + ⋅ ⋅ +    Γ Γ    

 

 

( ) ( )

 

 
 

1

66 6 2
2

2  666 1/3
2

2
( )

(1 60 ) 3 4 / 3

b x
f x

x b x x

 + ⋅ ≡  
 + ⋅ + ⋅ ⋅ + Γ   

 

 

and set the parameters b1 and b2 to: 

 

1 9.55276b =  

 

2 9.08726b =  . 

 

Let us now define the function: 

 

2( ; , , ) 1 exp (ln )g x xλ σ µ λ σ µ ≡ + ⋅ − ⋅ −   . 

 

The two integrals I1(x) and I2(x) can be well approximated by the two functions: 
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1
1

1 1 1 1 1 1

( )
( )

( ; , , ) ( ; , , )a a a b b b

f x
I x

g x g xλ σ µ λ σ µ
≈

⋅    (4B.1a) 

 

2
2

2 2 2 2 2 2 2 2 2

( )
( )

( ; , , ) ( ; , , ) ( ; , , )a a a b b b c c c

f x
I x

g x g x g xλ σ µ λ σ µ λ σ µ
≈

⋅ ⋅   

 

(4B.1b) 

 

with the parameters given in Tabs. 4B.1.  In such a manner, we have approximated 

the integrals I1(x) and I2(x) with a maximum relative error (in its absolute value) of 

about 0.5% and 0.14%, respectively. 

 

 

 λ σ µ 

1a 0.0534 0.1042 -1.343 

1b -0.0783 0.5292 -3.797 

 

Tab. 4B.1a.  Parameters to be used in (4.1a). 

 

 

 λ σ µ 

2a 0.05138 0.07266 0.3626 

2b -0.079 0.27 -0.92 

2c -0.03362 0.5454 -4.79084 

 

Tab. 4B.1b.  Parameters to be used in (4.1b). 
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Appendix 4F.  Asymptotic behavior of the averaged energy transfer 

integral (Eq. (4.17)). 

 

 

We have seen that the averaged energy transfer integral is given by (see Eq. (4.14)): 

 

 

 

1 12 2 3

2

24 2 1
( ) ( )

(2+ ) 2 (1 ) (1 )

        ( )  ,

d d d
d d

d d d d d

d d

E
J R I I

I

β β β
α α α α α

α β

   ∆ = − ⋅ ⋅ ⋅ − +   + + +   

+ ⋅ 


 

 

          (4F.1) 

 

where: 

 

d
d

sc

r

r
α ≡         (4F.2a) 

 

 

34

3d d dN r
πβ ≡        (4F.2b) 

 

(see definitions (4.11a) and (4.13)) and the relation: 

 

 (0) (0)d d
d

d

E r
E

r

∆∆ =       (4F.2c) 

 

holds (see (4.10)). 

Here we want to study the behavior of 〈Jd
 (R)〉 as rd tends to infinity, i.e. when 

the dopant ionization energy tends to zero (see (4F.2c)) and the corresponding states 

become delocalized.  This happens for finite values of the dopant concentration Nd 

and of the screening radius rsc.  Hence, substituting Eqs. (4F.2) into (4F.1), we have: 
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1 1 23 2 3

24 2 1
( ) ( ) ( )d d d

d d d d
d d d d

E
J R I I I

β β β α β
α α α α

   ∆  ≈ − ⋅ ⋅ ⋅ − + ⋅   
    

 

 

because both αd and βd tends to infinity in such a limit (see (4F.2a) and (4F.2b)).  

Being: 

 

 

3
3

4

3
d

d sc
d

N r
β π
α

=  

 

finite, from Eqs. (4D.4) we have: 

 

 

 

 

 

  

1 1 22 3

3
12 2/3

2/32
3

12 2

2 1
( ) ( )

2 1 4 (2 / 3)
          

3

2 4 (2 / 3) 3 3
          

3 4 4

d
d d d

d d d

d
d sc

d d d d

sc sc
d sc

d d d d d sc d

I I I

I N r

r r
I N r

r r r N N r r

β β α β
α α α

απ
α α β β

π
π π

  
⋅ ⋅ − + ⋅ ≈  

  

 Γ ≈ ⋅ ⋅ − + =  
  

  Γ  = ⋅ ⋅ − ⋅ +  
    

  

2

2 3

3 1
           .

4 d sc d d

O
N r r rπ

≈

 
= +  

 

 

 

Hence: 

 

 

  

 

  

 

 

 

3 2

3 2

3
3

3 2

24 3
( )

4

18
          

(0) (0)18 4 1
          

3

d d
d

d d sc d

d d

d sc d d

d d sc
d d

d sc d d d

E
J R

N r r

E

N r r

E r r
N r

N r r r r

β
α π

β
π α

π
π

∆≈ − ⋅ =

∆= − ⋅ =

∆= − ⋅ ⋅ ⋅ ⋅
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thus giving: 

 

 

  

2

3

(0)
( ) 24 (0) d sc

d d
d

r r
J R E

r
≈ − ∆  .     (4F.3) 

 

Such a value tends to zero as rd tends to infinity. 

By using the coordination number zd given by Eq. (4.16), in the same limiting 

case we have (see (4.4)): 

 

 

   

    

2
3

3

2

(0)4
( ) 24 (0)

3

          32 (0) (0) ,

d sc
d d d d d d

d

d d sc d

r r
W z J R N r E

r

N r r E

πζ

π ζ

= ≈ ⋅ ∆ =

= ∆
 

 

i.e. Eq. (4.17). 
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Appendix 4G.  Ionization in an impurity band (Eq. (4.23)). 

 

 

In Sec. 4.3 we assumed that (Eq. (4.20)): 

 

( ) ( )D D C D CN N E E N E E+ += < + ≥  ,     (4G.1) 

 

where (see Eqs. (4.21)): 

 

 

 
( ) ( ) 

C
D C DE

N E E E dEρ
+∞

≥ = ∫      (4G.2a) 

 

 

 

( )
( )  

1 exp

CE
D

D C

F
D

B

E
N E E dE

E E
g

k T

ρ+

−∞
< =

 −+  
 

∫    (4G.2b) 

 

and: 

  

 

,
,

,

      
2

( )

               
 .0

D
D D eff

D eff

D

D D eff

N
E E W

W
E

E E W

ρ

 − ≤
= 

 − >

    (4G.3) 

 

In calculating the integrals (4G.2), we have to distinguish three cases. 

 

1)  ,D C D effE E W− < −  . 

 

In this case the impurity band lies entirely below the conduction band edge, thus: 

 

( ) 0D CN E E≥ =  

 

and: 
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,

,

 

 
,

( )
2

1 exp

D D eff

D D eff

E W
D

D C E W
D eff F

D
B

N dE
N E E

W E E
g

k T

++

+
< = ⋅

 −+  
 

∫  

 

2)   ,D C D effE E W− ≤  . 

 

In this case the impurity band lies partly below and partly above the conduction 

band edge, thus: 

 

( )

, 

 
,

,
,

,

,

( )
2

          
2

          1
2

          1
2

D D eff

C

E W
D

D C E
D eff

D
D D eff C
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D CD
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D D

D eff

N
N E E dE

W

N
E W E

W

E EN
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N E
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≥ = ⋅ =
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 ∆= ⋅ −  
 

∫

 

 

and: 
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2
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D D eff

E
D

D C E W
D eff F

D
B

N dE
N E E

W E E
g

k T

+

+
< = ⋅

 −+  
 

∫  . 

 

3)  ,D C D effE E W− >  . 

 

In this case the impurity band lies entirely in the conduction band, thus: 

 

,

,

 

 
,

( )
2

D D eff

D D eff

E W
D

D C DE W
D eff

N
N E E dE N

W

+

−
≥ = ⋅ =∫  
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and: 

 

( ) 0D CN E E+ < =  . 

 

To calculate the concentration of ionized donors whose states lie below the 

conduction band, i.e. ND
+(E < EC), we observe that: 

 

exp

 

1 exp exp

          ln exp .

F

B

F F
D D

B B

F
B D

B

E E

k TdE
dE

E E E E
g g

k T k T

E E
k T g const

k T

 −
 
 = =

   − −+ +   
   

  −= ⋅ + +  
  

∫ ∫

 

 

Therefore, in the three cases we have distinguished: 

 

1)  ,D C D effE E W− < −     ⇔    ,D D effE W∆ > : 

 

,

,,

,

,,
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          ln
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,

,,

exp exp

          ln  .
2

exp exp

D eff D F C
D

B BD B

D effD eff D F C
D

B B

W E E E
g

k T k TN k T
WW E E E

g
k T k T

    ∆ + −+    
    = ⋅

    ∆ + −− +    
     

 

 

2)   ,D C D effE E W− ≤     ⇔    ,D D effE W∆ ≤ : 
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    ∆ + − − +   
     

 

 

3)  ,D C D effE E W− >     ⇔    ,D D effE W∆ < − : 

 

We can write: 
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,
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,,

( ) 0 ln (1)
2

exp exp

          ln  .
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exp exp
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D effD eff D F C
D

B B

N k T
N E E

W
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By introducing the dimensionless function (4.22): 

 

 

1       1

( )       1

1      1

x

F x x x

x

>
≡ ≤
 − < −

 

 

we can summarize our results in the compact form: 
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Eq. (4.23) follows immediately from (4G.1). 
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Conclusions. 
 

 

 

 

In this work we have established a model for simulating the incomplete 

ionization of substitutional dopants in homogeneous Silicon Carbide samples at 

thermal equilibrium.  Our model is based on the solution of the Charge Neutrality 

Equation (CNE) and takes into account: 1) the presence of non-equivalent lattice 

sites in almost all SiC polytypes, which gives rise to more than one energy level in 

the bandgap for each dopant species, thus requiring in general a numerical solution 

of the CNE; 2) Fermi-Dirac statistics for free electrons and holes in the conduction 

and valence band, respectively, instead of the easier Boltzmann statistics, in order to 

study also heavily doped SiC samples; 3) the screening of the Coulomb potential 

around each dopant ion mainly by the “sea” of free carriers, causing the variation of 

the dopant ionization energy; 4) the formation of impurity bands by the splitting of 

the discrete dopant energy levels with increasing concentration. 

Coulomb screening has required to replace the usual hydrogenic model for 

dopant atoms with the solution of Schrödinger equation with a screened Coulomb 

potential, which is not analytically solvable.  The eigenvalues of such an equation 

furnish the ionization energy of dopants as a function of the screening radius.  We 

obtained an approximate expression of such a function.  We have then obtained an 

expression for the screening radius which takes into account both free carriers and 

ionized impurities, thus generalizing a well known formula to the case of more than 

one kind of impurity center.  The CNE and the screening problem have to be solved 

self-consistently: we wrote a program which gives the desired solution.  We have 

then established a relatively simple model for the impurity band density of states, 

which can be applied also to the case of heavily doped samples while most of the 

literature on this topic is limited to the moderate doping case.  We have then written 
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a program which implements such a model and made a preliminary comparison of 

our results with the experimental ones available in the literature. 

We have found a ionization degree of about 0.5 for high doping levels which 

compares well with the experimental value.  Moreover, our model has shown to be 

able to describe the metallic behavior observed in 4H-SiC samples heavily doped 

with Phosphorus without requiring the onset of impurity conduction.  This fact 

makes possible the use of our program for the analysis of temperature dependent Hall 

effect data also in the cases in which a heavy doping doesn’t permit to use the 

standard procedures, as we have shown for three 4H-SiC:P samples.  However, our 

model has to be further refined in order to obtain a complete agreement with the 

experimental results. 
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