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| ntroduction.

Silicon Carbide is a polymorphic ceramic materidliech can be grown as a single
crystal with electronic grade purity. Without dgiSiC is semi-insulating, while
with appropriate doping is a wide bandgap semicotmtu However, not all the
dopant atoms in substitutional position contribwieh an electron or a hole to the
electrical conductivity due to their high ionizatienergy. The purpose of this thesis
is to analyze theoretically the phenomenon of ghitinization of the substitutional
dopants in SiC in the concentration rangé?1010** atoms / cii A quantitative
description of this phenomenon is crucial for bd#sign of SiC devices and their
characterization, activities which are both perfediin CNR-IMM, Bologna, by the
group led by Dr. Roberta Nipoti, group inside whiaarried on this research.

In order to evaluate the degree of ionization galds, it is necessary to know
the energy levels they generate and their depeedamboth temperature and doping
density. Simplified models exist in the literatumdich describe the variation of
dopant ionization energies with dopant concentnatidhe aim of this thesis is to
improve these models by taking into account mangoitant aspects, in particular
the effect of the screening of Coulomb potentiathaf ionized dopant atoms by free
carriers and the formation of impurity bands athhagpncentrations. This problem
can not be treated analytically, therefore numémeathods will be used to obtain
quantitative predictions. However, in this work slall proceed as long as possible

(or reasonable) with purely analytical instruments.

The thesis is organized as follows:
» In Chapter 1 the properties of SiC of interesttfos work are described.
» In Chapter 2 the distribution of electrons and kdbetween conduction and

valence bands and impurity energy levels at theeqallibrium is described,

The incomplete ionization of substitutional dopants in Silicon Carbide 1



Introduction

taking into account Fermi-Dirac statistics for ttenduction and valence bands
to allow the treatment of high doping levels.

» In Chapter 3 the variation of the impurity ionizati energies with dopant
concentration and temperature is analyzed by wusingmerical solution of the
Schrddinger equation for a screened Coulomb petienA comparison of our
calculations with experimental data for moderatiped SiC is carried out.

» In Chapter 4 the formation of impurity bands fromgée impurity levels with
increasing impurity concentration and the occuparfayese bands when they
overlap with the conduction or the valence bandaaa&yzed. A preliminary
comparison of the calculations with existing expemts on heavily doped SiC

samples is finally carried out.

The chapters include many mathematical appendibéshvean be skipped at a first
reading.

This thesis was fully granted by the institute CNMRVl, Bologna, through the
contracts 126.241.BS.1.2007 and IMM009/2010/BO.

2 The incomplete ionization of substitutional dopants in Silicon Carbide



Chapter 1.

Silicon Carbide.

In this chapter, after the presentation of a bmisfory of Silicon Carbide in section
1.1, the properties of Silicon Carbide of interestthe topic of this thesis will be
presented. In particular, in section 1.2 a desionpof the polytypism of SiC is
given. In section 1.3 the different band structucé various SiC polytypes are
discussed, while in Sec. 1.4 the main dopant inipsriused for doping Silicon

Carbide are presented.

1.1. History of Silicon Carbide.

Silicon Carbide is one of the oldest natural commubsemiconductor of the universe
and it was among the first semiconductor matertalen into account for the
fabrication of electronic components. In fact, Sitrocrystal powders have been
found in the interstellar material that millionsye&ars ago reached the earth. In 1824
the Swedish chemist J. J. Berzelius, the same vudoowkred Silicon, suggested the
idea that there might be a chemical bond betwekeo8iand Carbon. This was the
first time in history when there was talk of Silic&Carbide. However, this new
material had to wait the invention of electric faces and their application to Carbon
compounds. In 1891 E. G. Acheson fused a massadfdd and Aluminum Silicate

in an attempt to obtain a material similar to Dianmpimmediately after the mixture
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had cooled, he noticed that they had formed snhmatiirsy blue crystals. Acheson
thought to use these crystals, which were very,ha@sdan abrasive or cutting tools.
He called this compoundcdrborundum” because it mistakenly believed he had
achieved a compound between Aluminum and Carboly, later his collaborators
realized that the compound was composed of Siland Carbon. In 1905 H.
Moisson discovered Silicon Carbide grains in someteorites found in Diablo
Canyon, Arizona, so that in its mineral form iscak®mown as “moissanite”.

Silicon Carbide was initially marketed as an alwadiecause of its extreme
hardness, later as a ceramic material resistahigto temperatures. Further later it
was used in electronic applications, when in 1907.HRound created the first LED
(Light Emitting Diode) made of Silicon Carbide. 1812 H. Baumhauer used for the
first time the word polytypism, to describe the lipiof Silicon Carbide to
crystallize in different forms varying only in tmestacking order in one direction.
Research on Silicon Carbide for electronic applicet received a boost in 1955
when Lely developed a technique of growing singlestals of Silicon Carbide, of
high crystalline quality, in large slices, i.e.1 cm2. During those same years,
however, another semiconductor material was spmgadister than Silicon Carbide:
it was Silicon. Hence, the research on Siliconbickr were put aside. In the late 70s
the interest on Silicon Carbide was brought badifedn applications related to blue
light LED, but soon was supplanted by direct gamisenductors. Interest revived
when researchers realized that Silicon technolagystrongly limited for high
temperature and high power applications, and tbezefemiconductor materials with
improved performance were required. Research toofiCarbide underwent a
substantial acceleration with the birth of Creedesh in 1987, which made easier
the availability of wafers of Silicon Carbide. Tlmstory of Silicon Carbide is

illustrated in the timing diagram of Fig.1.1.
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Brief SiC history i’
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Fig.1.1. Time diagram of the Silicon Carbide history.ofr{Ozpineci02] p. 15.

1.2. SIC crystalline structureand SiC polytypes.

Silicon Carbide has the chemical formula SiC whichresponds to 50% atoms of
Silicon (Si) and 50% of Carbon (C), that in ternisme@ight is a 70% content of Si
and 30% of C. From a structural point of viewfaills within covalent compounds
with each Carbon atom that binds to four Silicoona with tetrahedral bonds
similar to those of Diamond. The basic unit of 8i€ structure is the tetrahedron
shown in Figure 1.2. The structure of single alysBiC is given by the

concatenation of these tetrahedrons, linked togdilighe vertices, with the Si-Si
distancea and C-Si distance of 3.08 and of 1.89 A, respebtiv

SIiC has several stable crystalline structures @ghlelytypes. Polytypism is

characterized by the fact that the atoms that @nstituent of the material may have
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a different spatial arrangement along a directiah rfhaintaining the same atomic
ratio or atomic weight ratio per unit volume. Degig on the spatial sequence, the
crystal symmetry varies. Among the SiC crystal syatries, one of great interest for
electronic application is the hexagonal one. Tdw& faxes reference system of an
hexagonal crystal is shown in Fig.1.3. This systemaligned with respect to SiC
tetrahedron so that theeaxis is parallel to a C-Si bond, while thg a, anda; axes,
that are orthogonal to theeaxis and are placed at 120° one from the othent po
the position of the three Si atoms at the bas@éetdtrahedron, as can be seen from

the comparison of Figs. 1.2 and 1.3.

QO si sk

@ C
“'— 120F
a=3.08 & I E Y s e S
C-Si=1.89 A e ae T Rt
Fig. 1.2. Silicon Carbide tetrahedral cell. Fig. 1.3. Coordinate system with 4 axes for
From[AlampilQ], p. 7. describing a hexagonal crystal structure.

From[Alampil0], p. 7.

The Si-C bi-layers along theaxis can be ordered in more than 170 sequences.

Fig. 1.4 shows that, with respect to the tetrahdovad along the-axis, the above

"couple of Si-C planes" can occupy only three guespositions that are labeled A,
B and C. The various polytypes of SiC result frardifferent stacking sequence of
the Si-C planes pairs along the directioncedxis. Often to indicate the various
polytypes of SiC Ramsdell notation is used, comgisbf a number followed by a

letter. The number indicates the minimum numbeldagkers beyond which the

stacking of Si-C planes is repeated periodicallire letter indicates the symmetry of
the crystal structure: C stands for cubic, H foxdgonal, and R for rhombohedral.
Fig.1.4 shows the sequences of the cubic 3C-Si@, avZincblende type structure,
and of the hexagonal 4H-SiC and 6H- SiC, with a Witg type structure, but many

6 The incomplete ionization of substitutional dopants in Silicon Carbide



Chapter 1

other have been grown and studied, among thesehtmbohedral 15R-SIiC and
21R-SiC and the hexagonal 2H-SIC. 3C-, 4H- andSe€i-are at present the more

used SiC polytypes for manufacturing microelectrerdevices.

The polytype 4H has ABAC stacking sequence (Fid).1Macroscopically it

has hexagonal symmetry, but microscopically is coseg half of cubic sites and

half of hexagonal sites, equally distributed betw8eand C atoms. To date it is the

most widely polytype used for the construction kdceonic devices and it can be

grown into slices with diameter of 100 mm and Heshighest and least anisotropic

mobility than the other polytypes, the 6H, whiclm &g grown in slices of equal size.

“g;zg‘”

(d)
%P — C-face
— e

Fig. 1.4. Order of stacking of Silicon Carbide hexagonal pk&n
From[Alampil0], p. 8.
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1.3. Band diagrams and effective masses.

SiC is a wide bandgap semiconductor material. Wations of Silicon Carbide band
structure (see Figs. 1.5) show that SiC polytypmeehan indirect bandgap between
the maximum of the valence band and the minimunti{erequivalent minima) of
the conduction band. Such a gap has a value vidhsignificantly larger than that of
the most common semiconductor, i.e. Silicon. Eig.shows the bandgaps of the 4
most commonly used SiC polytypes. For comparisder SiQ and Silicon are
presented. It should be noted that the bandgagndispon temperature and pressure.

Of the polytypes of SiC, 4H has the widest bandg&ue to this property,
devices fabricated on 4H-SIiC are able to sustainigher electric field. This
property, together with the fact that the nativédexof SiC is Silicon Dioxide, leads
to the expectation that 4H-SIiC will be a suitabléostitute for Silicon in the
production of power MOSFETSs working in the harskiemments. Currently, the
guality of SIC/SiQ interface is so improved that the first commer8s MOSFET
has been launched by CREE Research|CRREE11]

5§ </@A§§
N

2 L0 XN

= 10/ ~ >

| ] <]

D N

AT MT K H A LM

Fig. 1.5a. Band structure of 3C-SiC, frof/ellenhofer97]
Here and in the following Figs. 1.5b and 1.5c,lihad above 0 eV is the conduction band
and the other two below 0 eV are fhand thes valence electron bands.
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Fig. 1.5b. Band structure of 4H-SiC, frofiivVellenhofer97]
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Fig. 1.5c. Band structure of 6H-SIC, frofiVellenhofer97]
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Silicon

15R-SiC BH-SIC 4H-SiC 1.12 oV

3C-SiC 2.96 eV 3.02 oV 3.26 eV

2.8 eV

Fig. 1.6. Energy gaps and relative band offsets of Si,%i@ common SiC polytypes, compiled
from results byjAfanas’ev96] From[Rozen08] p. 7.

Other quantities strictly related to the band gtrees of a semiconductor, and
which will be essential in our simulations, are #féective mass of electrons and
holes and the effective density of states (DOShefconduction and valence band.
In particular we are interested in the latter, whéce related to the effective mass of

electronans* and of holean,*, respectively, by the equationsge07] p. 18):

. 3/2
ok, T

N (T) = 2Mc EE’"“TJ (1.1a)
omik. T

N, (T) =2M,, Eﬁ%j (1.1b)

whereM¢c andMy, are the number of equivalent minima of the condacband and
of maxima of the valence band, respectivédy,is Boltzmann’'s constanf] the
absolute temperature of the semiconductorraRthnck’s constant. To be precise, in

general the electron and hole effective massedeasors and not scalars: in EQs.
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(1.1) two quantities enter which are appropriaterages of the principal components
of such tensors, called DOS effective masses invafley. In general they are
functions of the temperature. For example, Welldahand Réssler have calculated
theoretically their values for 4H- and 6H-Sj@/ellenhofer97] see Figs. 1.7. For
3C-SiC the valuesy* = 0.35my andmy* = 0.6 my have been reportdtiISM], where
ny is the free electron mass. We report in Tabtielnumber of equivalent valleys

of the conduction and valence band for some Si@tyos.

O.7||||1|||||||||||1rr ILINLINL I L L L L L L B L L B
i 3r .
4H SiC r .
0.6 - ~ B :
o I 3 25F 3
é IR :
= 05 |- — - o[ -
o o / o ]
£ 04rx . £ 15 4H SiC -
0.3 e v by b e by 1_|Ill||||||lllllll||:
0 200 400 600 8001000 0 200 400 600 8001000

T [K] T [K]

Fig. 1.7a. Electron DOS effective massin  Fig. 1.7b. Hole DOS effective mass in 4H-SiC,

4H-SiC, from[Wellenhofer97] from [Wellenhofer97]
0.9 L l LERELS I LR l LI | | LB _I LR ‘ TrT ' L I LU T l_
I _ 3F .
6H SiC - =
08 — C ]
=y | o 2.5 — .
E | £ -
~ 07 . > af ]
Y e 1 oA . ]
E 06 n E 15 BH SiC 3
0‘5 e e by s I T 1_1111||1||||||||||1|:
0 200 400 600 800 1000 0 200 400 8600 800 1000
T [K] T [K]

Fig. 1.7c. Electron DOS effective massin  Fig. 1.7d. Hole DOS effective mass in 6H-SiC,
6H-SIC, from[Wellenhofer97] from [Wellenhofer97]
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Mc My
3C-SiC 3 1
4H-SiC 3 1
6H-SiC 6 1

Tab. 1.1. Numbers of equivalent valleys in 3C, 4H- and GEB-fNSM].

1.4. Main dopant impuritiesin SIC.

Doped semiconductors contain impurities, i.e. fygmeatoms that are incorporated
into the crystal structure of the semiconductorhede impurities can either be
unintentional or they can be added on purpose tvige free carriers in the

semiconductor. The generation of free carriersiireg not only the presence of
impurities, but also that such impurities are iedizto provide electrons to the
conduction band (donors) or holes to the valencel ljacceptors), in the latter case
by effectively accepting an electron from the fillealence band. A semiconductor
doped with impurities which are ionized (meaningttthe impurity atoms either

have donated or accepted an electron) will theeedontain free carriers.

Shallow impurities are impurities which requirdlétenergy — typically around
the thermal energy at room temperature or less betmnized. Deeper impurities
require energies higher than the thermal energgaah temperature to be ionized, so
that, if present in a semiconductor, in practicé @fraction of them contributes to
free carriers. In particular, deep states withrgyéevels more than five times the
thermal energy away from either of band edges arg unlikely to be ionized at
room temperature. These deep impurities can leetefé recombination centers, in
which electrons and holes recombine and annihdatd other. They are also called
traps.

A semiconductor in which ionized donors provideefrgectrons is called-

type, while a semiconductor in which ionized acoepprovide free holes is referred

12 The incomplete ionization of substitutional dopants in Silicon Carbide
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to as ap-type semiconductor. The ionization of the impastis dependent on the
thermal energy and the position of the impurityelewithin the energy bandgap.
Statistical thermodynamics can be used to obtarptbbability that the impurity is
ionized. The resulting expression is similar te Brermi-Dirac probability function,
except for a factor that accounts for the fact tinat impurity can host only one
electron or one hole, and also accounts for theemgcy of the conduction or
valence band. If shallow impurities are completely ionized, the nn&jyocarrier
density equals theimet impurity concentration (i.e. having subtracted dteasity of
compensating centers, which capture the majorityiera), if the intrinsic carrier
concentration is negligible.

In the case of SiC the most common donors are gétrand Phosphorus. The
former substitutes on Carbon sites and the latte®iicon sites in the lattice. The
most common acceptors are Aluminum and Boron. Tdiegubstitute on Silicon
sites. The site on which these dopants substiiigeC or Si site) is not polytype
dependent, but their energy level depends on thiecplar polytype. Furthermore,
due to the presence of several non-equivalent ¢caibil hexagonal) lattice sites in
almost all SiC polytypes, the same dopant speoiggeneral gives rise to more than
one energy level, one for each kind of non-equivialattice site, with the exception
of 3C- and 2H-SiC which are purely cubic and hexadjorespectively[Patrick62]
[Ikeda79] [Ikeda80). In Tab. 1.2 the stacking sequence together thglmumber of

non-equivalent (cubic and hexagonal) lattice sftesthe main SiC polytypes are

given.
Ramgdell ABC No. of inequivalent sites
notation notation hexagonal-like cubic-like
2H (wurzite) AB 1 0
3C (zinc blende) ABC 0 1
4H ABAC 1 1
6H ABCACEB 1 2
15R ABCACBCABACABCB 2 3

Tab. 1.2. Stacking sequence and relative number of norvatarit lattice sites in some SiC
polytypes. Fronjlkeda80]
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Nitrogen, Phosphorus and Aluminum are the most comigiopants. Such
impurities may be intentionally introduced durirge tgrowth, via ion implantation
technique or by diffusion. Diffusion is a commoopthg method of active layers.
However, the diffusion coefficients of impurities SiC are small, therefore ion
implantation is frequently used in SiC device fahtion. The main drawbacks are
the lattice damage caused during the ion bombardraed the occurrence of
amorphous material in the ion implanted volume. er€fore, a post-implantation
annealing is needed.

Purpose of this thesis is to model the ionizatibbaih p- andn-type dopants
in various SiC polytype versus doping concentratoi material temperature, for
homogeneous SiC samples at thermal equilibriume fEsults so obtained can be
used both for simulating SiC electrical behaviororder to improve the design of
various SiC devices, and for the interpretatiomxjperimental data such as those of

temperature dependent Hall effect measurements.

14 The incomplete ionization of substitutional dopants in Silicon Carbide



Chapter 2.

Occupancy of energy levels.

In this chapter we shall consider how electrons holés are distributed between
conduction and valence bands and the various enevgis provided by impurities
in a homogeneously doped semiconductor at theropalileium. In Sec. 2.1 we
shall present the expressions which rule the indet@ponization of discrete dopant
levels, considering also the possibility of excittdtes and valley-orbit splitting. In
Sec. 2.2 the charge neutrality equation will belditally solved in the non-
degenerate case, both for a single energy levethen gap, with or without
compensation, and for the case of two energy laagisesence of compensation. In
Sec. 2.3 we shall present a numerical method capaldolve the neutrality equation
for an arbitrary number of energy levels (both dsremd acceptors at the same time)

also in the degenerate case.

2.1. Occupation probability for discreteimpurity levels.

In this section we shall treat the thermodynamiireaof the incomplete ionization
of substitutional dopants in semiconductors. lhsgation 2.1.1 we shall treat the
well established model proposed for describing nmglete ionization of the ground

state of monovalent impurities (and in general iafjle discrete levels), while in

The incomplete ionization of substitutional dopants in Silicon Carbide 15
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subsection 2.1.2 we shall study the effect of excstates and of splitting of the
ground state on the occupancy probability of imgyuwrenters.

2.1.1. Occupancy of amonovalent impurity in itsground state.

For simplicity, let us consider a semiconductor taoning Np monovalent donor
impurity atoms per unit volume. In these atomswallence electrons, with the
exception of the least tightly bound, are in paivatence bonds. Therefore, in the
ground state each atom has only one electron tdagipa certain energyEp below
the absolute minimum of the conduction band, witiwave function of purelys
character. This electron can have spin up or d@enthe ground state will be
degenerate with a degeneracy factor of 2.

Note that, at a first approximation, a monovaleohat can not trap two
electrons since, once one electron is trappedirestatic forces raise the remaining
spin possibility to a higher energy, nearby or itite conduction band. Therefore,
we will consider only electrically neutral donomsith one electron trapped at the
energyEp = Ec — AEp), whose density we shall indicate wil’, and ionized
(unoccupied) donors with a denshty” = Np — Np”.

From statistical mechanicg<(ttel80], p. 138), the grand partition functiongf
= Np V donor atoms in a semiconductor of voluwhes given by:

223 3 onfMErreun)
; B

wheres(M; N) represents any possible arrangemem @lectrons betweeN donors,
Er is the Fermi level of the systenkgwm.n) is the total energy of the given
configurations(M; N), ks is Boltzmann’s constant ant is the temperature of the
system. Taking the absolute minimum of the condacbandEc as the energy
reference foreach single donor state, and disregarding the effecelettrostatic

interaction between charges on the energy levetiposvith respect t&c, we have:

16 The incomplete ionization of substitutional dopants in Silicon Carbide
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Eqmny =M (E; —AE,)

so that:

z=> 3 exp{MEF_Mk(;E_C_AED)}:

_&(N E. -E. +AE, ) _
5[0 pugenm)

the term ¥ in the sum being due to the two possible spinntaiions of each of the
M electrons. The average number of occupied dormomgiven by the relation
([Kittel80], p. 139):

(Noy =Xl 22

z
Z OE,

so that, substituting the grand partition functowaviously obtained, we have finally:

N

1L ol FoEc =05
2 kT

(N%) =

The statistical degree of neutrality of the donsrherefore [Blakemore62] p. 119):

& Np _(N°%) _ 1

D - - - )

No N .1 [E-E -
2 kT

while their statistical degree of ionization is:
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NG g g0 - 1

No 1+ 2exp{ Ee - IECT+ A5, j
B

& =

In general, the degeneragy of the donor ground state will differ from 2, for
example when the level is created by splittingstéites from a conduction band with
multiple or degenerate minima. Thus, for a doeweel at energ¥p = Ec —AEp, the
probability that this level will contain an eleatras in general [Blakemore62] p.
119):

8= 1 (2.1a)

1+1exp(EC—EF—AEDj
9o ke T

so the probability it will be ionized is:

1

& = . (2.1b)
gy o] =B
kT

Similar expressions hold for a monovalent accegtorywhich:

0
f= b : (2.22)
A 1+1eX{EF -E _AEAj
da ke T
is its degree of neutrality and:
__ N, 1
§p=—F= (2.2b)
KT
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is its ionization degred\Ea being the ionization energy amg the spin degeneracy
(or degeneracy factor) of its ground state, wiNle is the total concentration of
substitutional acceptord\’ the density of the neutral ones aNd that of the

ionized ones

2.1.2. Occupancy of amonovalent impurity with excited states.

As is well known, an isolated hydrogen atom cossgdtan electron moving under
the influence of a proton. The ground state of gystem, theslstate, has a spin
degeneracy of 2, and an energy of 13.6 eV is reduw ionize the atom. But there
are also many possible excited states of this atbemeight 2 and 2 states, the
eighteen 8 3p and 3l states, and so on. It is dangerous to pressaodof the
analogy between a hydrogen atom and a monovaleptrity center, but such
analogies are useful in reminding us that a donguurity is electrically neutral
whether it has an electron bound in the groune sttc — AEp or in an excited state
closer to the conduction band. Let us denote thelowest (or ground) level of the
donor, having a spin degeneracygefi. Groups of excited states in general have
different degeneracy factors, sgy, withr > 1, and lie at energiesEp, below the
conduction band edge.

Within the same approximation of the previous satise, a donor is capable
of binding an electron in one of tlgg, states at energyc —AEp, only if it doesn’t
have an electron already bound in any other statieer at the same level or at a

different one. Therefore, we finally obtaiBlakemore62] p. 142-144):

1
fg = , (23)
E. —E. +AE
1+g,, L+ Fexc(F)]@Xp( - Ech D‘lj
B
where:
1 &= AE,, —-AE
Fexc(T):_ligD,r eXp{Mj : (24)
g[),l r=2 kBT
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It should be noted that the series (2.4) divergams any finite temperaturd.
However, as Shifrin remarke@B({akemore62] ref. 1944:1), it is only necessary to
consider the first few terms of such a series siforea finite donor density, the wave
functions for the higher excited states will ovprtuuite strongly and these states will
form part of the conduction band. At very low temgiuresF«q(T) < 1, so Eq.
(2.3) reduces to Eqg. (2.1b). At higher temperatunewever, excited states could no
longer be neglected. Expressions similar to (2rR) (2.4) hold, obviously, for the
type case, and H. Matsuura applied them to theysisabf Al-doped SiC samples
[Matsuura02]

Also the splitting of the ground state can affdw tonization degree of an
impurity center. For example, as a consequenciefsix equivalent conduction
band minimathe I state of Phosphorus in Silicon is compounded>otites, each
with a spin degeneracy of 2, or twelve states lin &lvo of these states have wave
functions which do not vanish at the donor nucl@amnpletely symmetrical states),
whereas the wave functions of the other ten do sharat this point. As a
consequence, the two completely symmetrical stidest a considerably lower
energy than the remaining $tates. Let us callE,, the energy difference between
the two lowest and the other ters &tates. The spin degeneragy must be
substituted in Eq. (2.1b) by a temperature depend#active degeneracy factor
([Blakemore62] p. 148):

AE,
T)=2+10exp ——= |,
Op.ur (T) F{ kBTj
taking asAEp the ionization energy of the two deeper statessindilar result holds,
for example, for substitutional Nitrogen donorgret hexagonal sites in 4H-SIC, for

which:

_ _AE,
Ooer (T) =2+ 4ex;{ T j ,

B
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whereAE,, = 7.6 meV[G6tz93]
In the following part of our thesis, for simplicitye shall not take into account
the presence of excited states or of ground spéitarsy.

2.2. Solution of the charge neutrality equation in some particular

cases.

Egs. (2.1) and (2.2) have a general validity forsemiconductor at thermal
equilibrium. However, they depend on the FermirgneEr so they are not

immediately useful for a comparison with experina¢rttata. To this purpose the
Fermi level has to be eliminated, in order to ab&pressions depending only from
measurable parameters such as the dopant conaamgrdheir energy levels and the
system temperature. For a homogeneously dopedceseductor, the charge
neutrality equation hold$%ze07] p. 22):

Ny (E-) + P(E-) = N (E) +n(E;) || (2.5)

where p and n are the free hole and electron concentrationgyemsely, so
permitting theoretically to eliminat&r and express the ionization degree of the
various dopant species in terms of well known oasoeable parameters.

Let us consider then-type case, for simplicity. For a wide range of
temperatures, the minority carrier concentratmpican be neglected in Eqg. (2.5).
Furthermore, if the acceptor levels are sufficigtiklow the Fermi level in the band
gap (as it is often the case), they can be coresidily ionized so that Eq. (2.5)

becomes:

Ng (E-) =N, +n(E,) . (2.6)

In the non-degenerate case, the free carrier ctratcims can be expressed as:
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— E-—E

n=N¢ exp( T j (2.7a)
— E -E

pP=N, eXp( T j : (2.7b)

Nc andNy being the effective density of states in the catidn and valence band,
respectively. Therefore, substituting Eq. (2.1fpiEq. (2.6) gives, for a single

donor species present in the semiconductor:

ND
1+9, M ex A&,
Nc kT

This is a second-order polynomial equation in theablen, which can easily be

=N,+n. (2.8)

solved.
In absence of compensatidda(= 0), the physically meaningful solution of Eq.
(2.8) is (Blakemore62] p. 122):

n=N; = 2N, ,
N AE
1+, |1+ 49, —2 ex =
\/ 4gD NC F[ kBT J
thus giving:
-1+ |1+
+_ NJ \/ 4gD Nc F{ KeT j
ED = =

No 29, No ex;{ j
C

Such an expression has been proposed for SilicohidegRuff94], also for the

cases like 4H- and 6H-SIC in which there are sévera-equivalent lattice sites in
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the crystal AEp being an effective energy level intermediate betwthe real ones
andNp their total concentratiorfISEO04], p. 15.164). If compensation is present, the
physically meaningful solution of Eq. (2.8) is givim [Blakemore62] p. 134.

Similar expressions hold for thetype case. We stress that their applicability
is limited to the non-degenerate case and when oméy dominant energy level is
present in the bandgap or it is sufficient for demsieg the electrical behavior of the
system. For example, in Al-doped Silicon Carbitk® an the case of several non-
equivalent lattice sites (such as in 4H- and 6H}SiQly one acceptor energy level
can often be solved by temperature dependent Helttedata analysi$Pensl93]
seeming to be sufficient for electrical behaviosation.

However, forn-type 4H-SiC two energy levels have to be consilemne
corresponding to a donor substituting in a hexageita and the other to a donor
substituting in a cubic site, levels that are vgallvable by temperature dependent
Hall effect data analysi®ensl93] Again using Boltzmann approximation (2.7), Eq.

(2.6) becomes:

ND,h + ND,k -
AE AE
1+ gDhLeX i o ngL ex o
R KT B\ R KT
(2.9)
=N,+n ,

the lettersh andk corresponding to a donor substituting in a hexagamd cubic
site, respectively. EQ. (2.9) gives rise to adlorder polynomial equation in the

variablen, whose exact solution in presence of compensaigiven in[Rutsch99]
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2.3. General solution of the charge neutrality equation.

In general, however, more than two dominant entrggls are present in the energy
gap, due to non-equivalent lattice sites or to dégpants. In this case, the charge
neutrality equation takes the general form:

D,i

i=1

E. —-E. +AE,.
1+ gD’i ex% F EC D,

ksT

j"’ Ne m:i/z(

N, . -E
Z EVA‘J_E +AE ) +NV|3Ei/2(EVkTFJ=
1:11+ gA’j ex kFT A,jj B
B
N

E —E

KT

|

(2.10)

F1(X) being the Fermi-Dirac integral of order 1/2 (§8éakemore62] App. A),

while the letters andj correspond to theth andj-th kind of donor and acceptor

level, respectively. Here we have used the eximesgBlakemore62] p. 79):

E —_
n=Nc E(Fuz( FkBTECj (2.11a)
_ E -E
pP=N, E(F”z(kB—TF (2.11b)

which, unlike Eqgs. (2.7), hold also in the caselejeneration. Therefore, the results
we shall obtain here can be applied also to thdystfi degenerate semiconductors.

Unfortunately, Eq. (2.10) can not be solved aneity, therefore a numerical
method must be used for obtaining the dopant itimzadegrees. To this purpose,
looking at EqQ. (2.10), let us define the function:

24
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N, E,-E
P(E)=D, = +N, Efli/z(—FJ_
C —E. +AE, kT
l—l:]__'_gA’j ex EV kFT A,Jj B
B
No, E, -
p2 ED’—EC+AE . _Ncm:”{ FkTECj'
i=1 1+ gD’i eX;{ F k T D,Ij B
B

It can be demonstrated (see App 2A) that the fanc®(Er) is continuous and
monotonic inEr and that it passes through the value zero if thkeles of the
parameterdNaj, gaj, Np;j andgp,; are non-negative arfdy, andNc are strictly positive
(the only physically meaningful values they canuass). Therefore, the simple
bisection method can be used for solving the chasggrality equatiorP(Er) = 0O,
being sure that the value Bf so obtained is itanique solution and necessarily the
physically correct one. To this purpose, we hawasen the approximate expression

for Fix(X) given by [AymerichHumet81]which represents a good compromise

between accuracy and computational time, havingetaised in an iterative method
that often includes poorly accurate parametersh fag the empirical values of
impurity concentrations. Once the correct valu&pofs obtained in such a manner,
it can be substituted into Eqgs. (2.11), (2.1) aB@)(for giving the corresponding
values ofn, p, ;" andé&;~. This method can be applied also in the presefigery
deep compensating centers, whose ionization cdanger be assumed as complete
if their level is localized in the neighborhood thie main dopant levels or of the
Fermi energy.

To this purpose, sufficiently accurate values fog tonization energy of the
dopant levels should be known. However, the emglinalues obtained for example
by temperature dependent Hall effect data anaks over large ranges, making
guestionable the choice of a certain value to thieirdent of another in the same
range. Besides, these ionization energies shovlear dependence on dopant

concentration. This is exactly the topic whichlwg treated in the next chapter.
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Appendix 2A. Useful properties of the space charge density function
P(Er).

In Sec. 2.3 we have introduced the function:

N, . _
CD(EF)EZ 2 +Nv BFl/z EV EF -
j=1 Ev B EF +AEA,j kBT
1+ Ja; €X T
B

— NDJ _ E--E
iz %EF_EC-FAEDJJ NCBFUZ( keT j

=1
1+qg,. ex
9o, ke T

corresponding to the space charge densdg a function of the Fermi enerBy. To
be physically meaningful, the parametéMs;, Naj, Opo; and ga; must be non-
negative, whileNc, Ny andT must be strictly positive. First of all, we haeenote
that the functior®P(Er) is continuous in the variabk-, being the sum of continuous

functions (for the properties of1/x(X) see[Blakemore62] App. A). Let us now

study the asymptotic behavior @{Eg). Being:

lim ,,(X) =0

lim (%) =+oo

X — +oo

we have:
EIirrl P(E;) =+
EIim P(E;) =-
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beingNc, Ny andT positive.

Furthermore, the first derivative @f(Er) is:

aq)(EF):_ 1 gA,jNA,j N, F (EV—EFJ_
oE; keT = E,-E +AE, \|° koT 2 KT
1+g,  ex F a
') KT
_ 1 E 9o, No, —NCEF E- - E. <0
KT 4= E, —E. +AE, . 2 KT 2 KT ’
1+gDieX F D,i
’ KT

being (Blakemore62] App. A):

dF,,(X
F112(%) :#() >0 .

We have thus established that, with physically rregual values of its parameters:
1) ®(EF) is a continuous function;
2) ®(Ef) is a monotonically decreasing function;

3) ®(Er) assumes a positive value Bstends to <, and assumes a negative value

asEr tends to ¢o.

Therefore, there exist, and it is unique, a valuedfor which®(Ef) = 0. Due to the
continuity and monotonicity oP(Eg), such a value can easily be found numerically
by using the bisection method (Newton method turmed to be not always
convergent for such a problem).
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Dopant ionization energy variation.

In this chapter we shall treat the observed vamatif the dopant ionization energies
with dopant concentration, and we shall suggest thdirect dependence also from
temperature. In Sec. 3.1 we shall present an @apevidence for this variation,
based in particular on measurements of the majardyrier concentration for
different values of substitutional dopant densitids Sec. 3.2 we shall present the
traditional approach to this topic, based on thiclerby G. L. Pearson and J.
Bardeen written in 1949 and then improved by déif¢rauthors, together with its
recent application to SiC. In Sec. 3.3 we shaltdss the limits of such an approach
and propose a model based on a screened Coulomfitipbtiue to the redistribution
of free carriers around the dopant cores and theiso of the Schrédinger equation
with such a potential. Results of simulations iempénting such a model for SiC
will be presented and discussed in Sec. 3.4, anghared to experimental data.

3.1. Experimental evidence for a dopant ionizatioenergy variation.

As is well known, from temperature dependent Hdlea measurements it is
possible to obtain the majority carrier concentratin a homogeneous sample at
different temperatures and, fitting these data whth charge neutrality equation, the

dopant densities and ionization energies can beard, together with the total
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concentration of the compensating cent@&0d92], Chap. 3) The accuracy of this
procedure depends on several preconditions (sudieaknowledge of the Hall
scattering factor and homogeneity of the sample,ef@ample) and shrewdness in
performing the experimen{Blood92], Chap. 3) A consequence of these results,
however, seems to be undeniable: in a given semiiczior material, for a given
dopant species and compensating center concentréti® ionization energieSEy;
decrease with increasing substitutional dopant eotnation Ng. This result is
universal, i.e. it holds for all types of semicootius and dopant species. In
particular, we report in Figs. 3.1 some resultstlod analysis of temperature
dependent Hall effect data corresponding to hetland p-type 3C- and 4H-SiC
samples[Segall86] [Achatz08] [Rao06] [KagamiharaO}.

This phenomenon is well known from more than hatfeatury, and several
models have been proposed to explain it. In thé section we shall analyze the
most important of them, which has been most largslyd for fitting experimental
ionization energies and for simulating the eleafribehavior of semiconductor
samples and devices (§&3#LVACOO0O0], p. 3-10[ISE04], p. 15.163).

O AIVAZOVA, ET AL TD.;—‘; e Ty
50 o PRESENT WORK 200l Bea o
® = 150+ X\‘Q
2 gﬂ 100 N
@ < o JAP 96 2708 (2004) v
W 50F o PRB67 165211 (2003) .
A JAP 99 023706 (2005) \
Of = thiswork N
10 107 10" 10*
-3
Ny, [em]

Fig. 3.1(a). Nitrogen donor ionization energy in Fig. 3.1(b). Aluminum acceptor ionization
3C-SiC as a function of N density. “Present work” energy in 4H-SiC as a function of Al
refers to[Segall86] from which this image is taken. ~density. “This work” refers tfAchatz08]
In this and the following figures, the solid or tiad from which this image is taken.

lines are fits of the experimental data following

Pearson and Bardeen’s model (see next section).
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3.2. Pearson and Bardeen’s model and its improvemts.

Chronologically, the first model suggested for disieg the variation of the
ionization energy of dopants in a semiconductoremat was proposed by K. S.
Shifrin in 1944 (sedLehman55] note 1), then improved by G. L. Pearson and J.
Bardeen in 1949[Pearson49][Pearson5Q] It was so successful that it is still
largely used, with only little variations in ordey take into account the effect of
compensation. The main reasons of such a gerenladigplication of this model are
essentially two: its ability to fit the experimehemergy data together with its great
simplicity. In Sec. 3.2.1 we shall describe thisd®l, while in Sec. 3.2.2 we shall
see the variations proposed by other authors iardadimprove it and in Sec. 3.2.3
its application to 3C- and 4H-SiC.

3.2.1. Pearson and Bardeen’s model.

Pearson and Bardeen studied the case of uncomeér&ititon, in which the lattice
sites are equivalent, homogeneously doped with wedeat impurities (P or B) at
the thermodynamic equilibrium. They suggested that decrease in ionization
energy of a substitutional dopant atom with indregagoncentration results from a
decrease in the average potential energy of artreteor a hole. The energy
decrease is taken to be inversely proportionahéaverage distance of separation

1/3

between impurities, i.e. proportional k&, whereNgy is the substitutional dopant

concentration. Thus, one might expect the iomratenergy to vary with

concentration as:

AE;(N,) = AE,(0)—ay ON® (3.1)

where, following a simple modalla Bohr:

m* &
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Is the ionization energy for an isolated impurignter,n* being the effective mass
of majority carriers,e the absolute value of electron chargethe dielectric
permittivity of the semiconductor arfdPlanck’s constant. The value @f depends
on the exact form of the potential enefggarson49]

The authors observed that an accurate calculafidtineopotential energy term
is very difficult, so they attempted only very réugonsiderations and lefty to be
determined by a fit of the experimental data. al$ been theoretically evaluated only
in order to see if the empirical value they obtdingas or not of reasonable
magnitude.

In order to estimate the value of, Pearson and Bardeen observed that the
impurities are probably distributed more or lessasdom, and the mobile charges
are distributed in such a way to shield the dopans from one another. They
maintained that, following the method of Wigner éwitz[Wigner33] it should be
possible to draw a spherical region about eachwioich is electrically neutral. The
average radiusg, of such a sphere (Wigner-Seitz radius) is given b

4_77['53 =N ;1
so that:
3 1/3
r,= =0.6204N;"° . (3.3)
AnN,

Assuming the mobile charges uniformly distributddotighout the sphere and all
electron or holes as mobile (complete ionizaticdhgy found a variation in the

ionization energy given by:

2
~1.6463-°— . (3.4)
4rEr,

Substituting forrs from the Eqg. (3.3), this becomg&earson49]
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2 n11l/3
pe5af N
4rE
Therefore:

2 7
a, = 2.653]4‘;g = 3'82}0

r

eMcn , (3.5)

where & is the relative dielectric permittivity of the liasemiconductor. The value
given by (3.5) resulted to be about 2/3 of the eiogli one obtained by Pearson and
Bardeen for Si & = 13) doped with P or B, thus justifying on a qualite
theoretical basis the experimental results.

One important feature of Pearson and Bardeen’s hisdbat, asNy reaches

the critical value:

v o250

ay

AE4 becomes zero and all substitutional dopants aneed. In this case, the sample
will behave like a metal, presenting a finite coctility in the limit of zero
temperature and a weak dependence on temperaturetiofconductivity and free
carrier concentration. This effect has been obseregperimentally in all
semiconductors, Silicon Carbide includéerreiraDaSilva0Og]and it is known as the
Mott transition (although the latter includes agkar set of phenomenalott74]).
Another feature is that ionization energies, follagvthis model, are independent of
the temperatureT, having assumed a complete ionization of dopartsalh

temperatures and therefore a concentration of mabiiriers independent of
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3.2.2. Corrections to Pearson and Bardeen’s model.

As pointed out before, Pearson’s and Bardeen’s mbde been largely used
although with some corrections due to several asthdn this subsection we will
make a survey of this variations.

The first correction is due to the observed diffieee between the empirical
ionization energies of several dopants in theithhdjution limit and the values
predicted by (3.2f[Milnes73], p. 6). SAAEy(0) is treated as an empirical parameter
in expressions like Eq. (3.1) instead of using B®R).

Similarly, the factor:
eZ
a, =2.653—
4

appears to be unfit to predict the experimentales| so alsay is treated as an
empirical parameter to be obtained by a fit of é&x@erimental ionization energy
values with the expression (3.1).

A subtler correction to Pearson and Bardeen’s mante$ to take into account
the effect of compensation on the ionization enevgiues of dopants. Several
models have been proposed to this purpose, bisealhs to lead to an expression
like [Shklovski80]:

2

e
a,(K)=—[F(K) , (3.6)
47
where:
Ncom
K =™ (3.7)
Nd

is the compensation degrelsomp being the total concentration of compensating
centers, whilef(K) is a universal dimensionless function Kf In Pearson and

Bardeen’s model:
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f(K)=2.653,
i.e. it is a constant, while for some authfirsloup78}
f(K)=BO1-K)"?, (3.8a)

whereB is a dimensionless constant, so that:
- — _ 862 _ 1/3
AEd ( Nd Ncomp) =A Ed(o) 4 H Nd Ncom;) : (38b)
JE

For other authors, insteafK) is a much more complex function i&f which can be

expressed analytically only in some limiting cak&sklovski80].

3.2.3. Pearson and Bardeen’s model as applied t&CS

Pearson and Bardeen’s model, with the correctiossudsed in the preceding
subsection, has been applied also to differenttpofs of Silicon Carbide. We

report in Tab. 3.1 some results published in ttezdiure, corresponding to some of
the fits plotted in Figs. 3.1.

OBy, Qg1 A\ =P aq,2
polytype  dopant reference
[eV] [eV cm] [eV] [eV cm]
3C-SiC N 0.048 2.60° - - [Segall86]
4H-SiC N 0.0709 3.38[10°% | 0.1237 4.65[110° | [Kagamihara04]
4H-SiC Al 0.220 2.32mm0° - - [Achatz08]

Tab. 3.1. Parameters for the concentration dependence of sabsitutional dopant energy levels
in 3C- and 4H-SiC.
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3.3. A different model for the ionization energy dariation.

As the same Pearson and Bardeen suggestfféearson49]the majority carriers
may be concentrated more in the neighborhood ofidipant ions than they assumed,
so the assumption of an ionization energy indepenoethe degree of ionization of
the impurities can be considered only an approxonatin fact, on the average, only
a part of the majority carriers become free dughrmal activation, while the
remaining ones are localized in the neighborhoatth@fdopant ions in a bound state,
so the concentration ofiobile carriers that shield the impurity ion potentiahaor
than the total substitutional dopant density: iis taseNy should be substituted by
No" or Na~ in Eg. (3.1), thus giving a temperature dependenization energy.
Moreover, as we shall see in the next subsectios, nhobile carriers rearrange
themselves more in the neighborhood of the doplaatged cores, so the hypothesis
of a uniform mobile charge distribution falls dowhese observations led us to
search for a model of the ionization energy vasratnore realistic than Pearson and
Bardeen’s one.

3.3.1. Static Coulomb screening.

In order to find a more physically correct modet the variation of the dopant
ionization energy, we concentrated our attentiontlon variation of the potential
energy of a charge carrier due to a dopant iorhénpgresence of mobile carriers.
Such a potential enerd¥(r) is given by the solution of Poisson’s equatifsze07]
p. 62) multiplied by+e, the minus sign holding for electrons and the sigs for

holes:

AU(r) =¢% ) | (3.9)
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wherel\, is the Laplacian operator am) is the space charge density, the plus sign
holding for electrons and the minus sign for hol€onsidering here thetype case
and calling Ec the absolute minimum of the conduction band, weuire the
potential energyJ(r) of an electron in the presence of a donor ioadgd at the

origin of the coordinate system) to satisfy thestmaints:

‘!i‘[an(r) = E; (3.10a)

and:

tim{Jr|ue) -Ec] = —f—m (3.10b)

in order to be physically meaningful. The firsinstraint means that, takiri: as
the energy reference, the potential energy tend®ito at infinite distance from the
donor ion, while the second constraint means thathe very neighborhood of the
dopant ion, the latter exercises on electrons dmary (i.e. unscreened) Coulomb
attraction.

The solution of Eq. (3.9) subject to the constsif®.10) is, within the linear
screening approximatiofihklovski84], Sec. 11.1):

—r i)

e _exp(
U(r)=E, ~— &
(r)=E I - , (3.11)
wherer = |r| and the screening radiugg, is given by:
2
1. g% (3.12)
M & dE;

whereEr is the Fermi level of the system. In the nextssadtion we shall search for

an acceptable expression for the screening raglius
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3.3.2. Evaluation of the screening radius.

In the literature several expressions for the stngeradiusys, can be found. The
most simple of them neglect both the minority @arrand the ionized dopant
concentration, i.e. they simplify the space chatgesity taking into account only the
majority carrier concentration in the right side Ed. (3.12). Then, in the-type

case:

2
1_gpgd, (3.13)
r. & dE.

wheren is the free electron concentration.

In the two limiting cases of non-degeneration andng degeneration of electrons in
the conduction band, two very simple expressionssf@an be obtained. In the first
case Boltzmann statistic can be used, thus gi\dag App. 3A) the so called Debye-
Huckel radius[Fistul’69], p. 93-94):

oy = : (3.14)

In the opposite case, we obtain (see App. 3A) thealed Thomas-Fermi radius
([Fistul'69], p. 93-94):

hzg 1 1/3
= . A
"re \/4m;e2[E3n2M(§n] (3.15)

For having a unique general expression figr W.A. Harrison suggested to use
([Harrison99] p. 289):

foe =\Ton +T e (3.16)
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but this is a very rough expression which doesatts§/ us. In fact, the correct
expression is given byKistul’69], p. 93-94):

1_eN EfF_l,z(—EF - Ecj , (3.17)

whereNc is the effective density of states in the conductiand andF-;/5(X) is the
Fermi-Dirac integral of order1/2. Using tabulated values of the functicfig(X)
and F.12(x) [Cloutman89] we have verified that the expression (3.16) giwasies
of rsc far until 11% from the correct ones for value€gfin the neighborhood dc.
Therefore, an approximate expression for the foncfi_;»(x) have to be used, but

we shall discuss its choice in the next subsection.

A further improvement in the expression fgycan be obtained considering not
only the contribution to the space charge densitthe free majority carriers, but
also that of the ionized dopant atoms. Consideting compensating centers
completely ionized, their concentration resultbédndependent of the Fermi energy
and Eq. (3.12) becomes:

, (3.18)

whereNp" is the total concentration of ionized donors:

N+ :z ND,i
P 2 AE. . - ’
"1+, E(EXF{k ? jDex;EEFkBTECj
B

Np,; being the concentratiorgp; the degeneracy factor amkEp; the ionization
energy of the-th substitutional donor level, respectively. e tcase a single donor
species is present= 1 for 3C-,i =1, 2 for 4H- and = 1, 2, 3 for 6H-SIC, due to
non-equivalent lattice sites (see Tab. 1.2). Byndeg the ionization degree of the

th donor level as:
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1
AE, . -
1+ gDi |]3X — Di EEX ﬁ
’ KT KT

(see Eq. (2.1b)),we find (see App. 3B):

$oi =

1 _ e2 EF - EC + +
2 kT EENC E(F_”z(k—BTjJriz Yo, o) M=%, )} (3.199)

2
sC

which, in the case of a single donor level, assutheswell known form (see

[PernotO1ljfor the non-degenerate case):

2 ek, T KT N,

2
sC

whereN, is the total compensating acceptor concentrages App. 3C). Therefore,
the expression (3.19a) can be considered as therajization of (3.19b) for more

than one dopant level. Similar expressions haldHep-type case.

3.3.3. Approximate expression for the Fermi-Diragéntegral of order =1/2.

We have seen in the preceding subsection thatadleulating the screening radius,
rs, we need an expression for the Fermi-Dirac infegfrarder—1/2, F-1/5(X). Such

a function cannot be expressed in terms of simjpiervn functions, so we need to
use an approximate expression Br,(x). In the literature exist several accurate
procedures for calculating this function with a yemnigh precision([Jog79]
[VanHalen85] [Sagar91] [VanCong91] [VanCong92] [Goano93] [MacLeod98]
[Lether00) but in general they are too complex for the ledifprecision we need,
requiring a certain unnecessary computational tane, converging only in a part of

the whole domain of the function. An expressiorsex however, which has a form

The incomplete ionization of substitutional dopants in Silicon Carbide 41



Chapter 3

similar to that we used for calculatiri»(xX) [AymerichHumet81]and represents a

good compromise between accuracy and simpliptymerichHumet83] It is
unique over the entire range of its variable, soidgimg unnatural discontinuities in
the simulation results. Therefore, we believs i igood starting point.

The expression proposed[#ymerichHumet83]is:

(3.20)

(F_llz(x) = 7Tl 2 + exp(—X) |
X+ b+(

|X_ tic+ %l/c

which with the values proposed by the authors ler parametera, b, c reaches a
maximum relative error (in its absolute value) a2%. However, it is possible to
improve its precision with a better choice of tlineee parameters, b, c. For

example, we found that using the values:

a=10.05912

b=1.63692 (3.21)

Cc=4.44581

it is possible to reach a maximum relative errori(s absolute value) of less than
0.8% (see Fig. 3.2), thus obtaining a maximum iseagrror (in its absolute value) of
less than 0.4% for the screening radius (3.19a)e WMl use the approximate

function (3.20) with the parameters (3.21) in dumdations.
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Fig. 3.2. Relative error of our fit ofF_;,,(xX) with function (3.20) and parameters (3.21).

3.3.4. Eigenvalues of Schrédinger equation with screened Coulomb potential.

Now we have all the instruments for determining euoally the potential energy
(3.11) or, to be more precise, the differeb{e) — Ec. At this point, what should we
do with this function?

It is evident that the hydrogenic model for a sitbsbnal donor atom can no
longer be used, and something else should takdaite. The hydrogenic model was
obtained by solving the Schrédinger equation witsimple (unscreened) Coulomb
potential, while now a static screened Coulomb mité has to be considered. In

other words, we have to solve the Schrédinger emuat

2 2 -
Z?n* AW {—AED + 4‘;2 X rr e )} W=0, (3.22)

where W is the wave function of the syster,= h / 2/7is the reduced Planck’s

constant andn* is the effective mass of electrons or holes, hoit necessarily the
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conduction or valence band free carrier effectiassn respectively. In fact, it seems

to be more useful to introduce the binding mag$Martinez02}

, AE, (0
mf&%% , (3.23)

where AEp(0) is the measured ionization energy of the danathe high dilution
limit (so without screeningf\Ey = 13.6 eV is the ionization energy of the hydrogen
atom in vacuum andy is the free electron mass. In such a mannersahdion of
Eq. (3.22) withm* = mg and without screening gives the correct empiniealltAEp
= AEp(0) in the high dilution limit.

We now assume, as a simplifying hypothesis, that dobnor atom can be
described by Eqg. (3.22) with a constant effectivassm* = mg, which is considered
unaffected by screening effects. We then introdteeeffective Bohr radius of the

donor atom in the high dilution limjMartinez02}

(3.24)

_EMm ., _1_AE
0)=rbh@, =g
(O)=T b E, =SB,

whereay = 0.529 A is the Bohr radius of a hydrogen atorwaouum. Let us now
define the dimensionless variable:

r, (0
Xo = Dr( ) (3.25a)
AE
A&, = D
D AE. (0) (3.25b)
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With some passages the Schrodinger equation (B&2®)mes (see App. 3D):
2
APW{—AgD +;exp(—)(Dp)}BLP =0, (3.26)

whered, = ro(0)? 4, is the reduced Laplacian operator. Thereforeuinmodel, the
reduced energ& turns out to be a universal function of the paramg, alone.
Let us search for such a function.

Fortunately, we are interested only in the eigamsd&, of Eq. (3.26) in the
ground state of the system: we don’t need to kntse the corresponding wave
functions. Several authors[Rpgers70] [Singh84] [Holubec90] [Diaz91] had
solved numerically such an equation for a discseteof values akp, finding also its

critical value[Diaz91].

X, =1.19061242106061

above whichAg, < 0 and no more bound states exist. In the latise, all donors of
the examined type turn out to be ionized, as ing&@aand Bardeen’s model.

Eq. (3.26) is not analytically solvablén order to find an approximate
expression for the universal functidas(xp) corresponding to thesktate, we have
performed a fit of the numerical results obtainadHolubec90] [Diaz91] in the

interval [0, <] through a fourth order polynomial:

f)=c+qly+ oy’ + ¢y’ + ¢y’ (3.27)

subjected to the four constraints:

1) f(0)=1 (by the definition ofA&y)

2) f'(0)=-2 (by perturbation theorysmith64)
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3) f(x,)=0 (by definition ofx. [Diaz91])

4) f'(x,) =0 (bylooking at the behavior &&(x) in the neighborhood ofc),

requiring also thatf(x)=0 in its domain [0,x;]. The optimal parameters we

obtained are:

6 =1

C, =1.39997147516] (3.28)

¢, =-0.48905401573]

c, =0.11052214582]

The universal functioM&(xp) = f(xp) is plotted in Fig. 3.3a, while Fig. 3.3b
illustrates the relative error (in its absoluteugl of our fit.

For xo > xor we have to saip = 0 in the expression for the ionization degree of
the donor; this corresponds physically to the abseri bound donor states and gives
numericallyNp® = Np. This makes superfluous the knowledge of thes(meably
negative) ionization energy of the correspondingaicstate, therefore we can set it
arbitrarily equal to zero in our simulations andhe graphical representations of our

results (see Fig. 3.4b in the next section foramnele).
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4 [Holubec90], [Diaz91]

— our fit

Fig. 3.3a. Fit of numerical values given ljiolubec90]and[Diaz91] using Eq. (3.27) with

IAep(y) - f(x)I/ Acp(y)

Fig. 3.3b

parameters (3.28).

8%

6% [

4% |

2%

0% 1 1 [l

. Relative error (in its absolute value) of ourui#ting Eq. (3.27) with parameters (3.28).
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It should be stressed that, while the screeninmisaassumes aniquevalue for
all donors or acceptors present in the systegtffarent value of the parameteyy
will correspond tceachkind of dopant state due to the different ionizatenergies
of the same dopant species substituting in nonvatgnt lattice sites, or of different
dopant species contemporarily present (see Eq&4)(and (3.25a)). Therefore it
happens that when a certain dopant state becomeglately ionized, i.e. when its
energy level touches the conduction or valence gk, all the other states with
deeper energy levels in general continue to extist finite ionization energies also if
they correspond to the same chemical species.eXamnple, as we shall see in the
next section, P substituting imexagonalsites in 4H-SIiC is completely ionized at
room temperature at a phosphorus concentrationvfach P substituting ircubic
sites is still partially ionized, because of itegder energy level and therefore a lower
value of xy (see Egs. (3.24) and (3.25a)).

3.4. Simulation results.

The model we have elaboratiedthe preceding sections has been implemented
in a simulation program written in VBA/(sual Basic for Applicatiopswhich treats
in a self-consistent way the solution of the chamgatrality equation together with
the screening problem. Here and in the next chaptesimulate 4H-SIiC behavior
because for this polytypal the physical parameters required by our modeiaie
established in the literature. However, our madel be applied also to the other SiC
polytypes, thus giving at least semi-quantitatiesults.

We illustrate in Figs. 3.4 our simulation results incompensated 4H-SiC:P at
room temperatureT(= 300 K), having taken as parameters those ginerab. 3.2,
so that the effective density of states of the catidn band at room temperature
results to beNc(300 K) = 1.87(110"° cm®. For comparison, we have plotted in Fig.
3.4a also our solution of the charge neutralityadigum without screening, i.e. with
concentration independent ionization energies,digguagain the parameters of Tab.

3.2, and in particular the same ionization energégive to the high dilution limit.
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Fig. 3.4a. lonization degree of substitutional Phosphorugricompensated 4H-SiC at room

temperature.
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Fig. 3.4b. Energy levels of substitutional Phosphorus inaimgensated 4H-SiC at room temperature,
taking the conduction band edBg as energy reference. An arrow indicates whetthmd state

plotted with the same color vanishes.
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me* = 0.394my DOS effective mass of electrons in | [Wellenhofer97]

one valley of the conduction band

Mc =3 number of equivalent valleys in the | [Persson97]

conduction band

& =9.78 static dielectric constant [KoizumiQ9]

Oph=Opk =4 degeneracy factor of hexagonal and[GreulichWeber97]

cubic P donor bound states

AEp;, (0) = 60.7 meV| ionization energy of P substituting on[lvanov05]

hexagonal sites: high dilution limit

AEp, (0) = 120 meV | ionization energy of P substituting on[lvanov05]

cubic sites: high dilution limit

Nph = Npk repartition of substitutional P betweefKagamihara04]

hexagonal and cubic sites

Tab. 3.2. Parameters used for simulating Phosphorus doesi@ behavior.

In the first line,my is the free electron mass.

As we can see from Fig. 3.4a, the main differenetvben unscreened and
screened dopant model is that the former predictmomotonically decreasing
ionization degree of Phosphorus with increasingceatration, while the latter, after
a similar decrease for moderately doped 4H-SiQjipte a P complete ionization for
sufficiently high substitutional Phosphorus concatidtns. The model including
screening reproduces better the experimental sesulthe heavy doping region,
where for example an electron concentration of aAa110°° cm® was measured
for a 4H-SiC sample with a P implant concentratequal to 2.0010°° cm?®
[Laube02] By assuming a complete activation of the immdntonors and the
absence of compensating centers, the ionizatioredenf P in such a sample is 0.6.
The model with constant energy levels predictsamzation degree value equal to

0.03, which is really too low, while the model inding screening predicts a value of
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0.5; the latter model seems to respect at leastotder of magnitude of the
experimental data.

However, as it is apparent from Fig. 3.4a, our nhgoledicts unnatural
discontinuities in the degree of ionization, eadécantinuity corresponding to an
ionization energy becoming zero; in this case,F®ubstituting in a hexagonal site
first and in a cubic site successively, as we enfeom Fig. 3.4b. This is due to the
fact that when an ionization energy becomes zehe, dopants to whom it
corresponds are “suddenly” completely ionized bseanf the discrete nature of their
energy level. In order to avoid such discontimgitiwe must consider an important
phenomenon typical of heavily doped semiconduciasthe broadening of dopant
energy levels into impurity bandislorgan65] This topic will be discussed in detalil
in the next chapter.

Another feature of our model is the dependence mérgy levels on
temperature, due to the decrease of free carrigerdration with decreasingand
the consequent increase of the screening radiug.giie an example, we have
plotted in Fig. 3.5 the Phosphorus donor energglteas functions of for 4H-SiC
doped with 1&° P atoms / cthand 10% compensated. As we can see from this
figure, between liquid Nitrogen temperature (77d0d 150 K the P energy levels
result to be strongly temperature dependent, tgnairtheir high dilution limits a¥
tends to the absolute zero (the latter being argémbaracteristic of our model,
because at very low temperatures the screening neconegligible). This
temperature dependence of energy levels increasesagnitude with increasing
dopant concentration, because the difference betwe= high temperature and the
low temperature limit of energy levels increasethwincentration due to screening
effects. But the low temperature region is crudal extracting just the dopant
ionization energies from standard temperature dgrenHall effect data analysis
([Blood92], p. 101), which assumes energy levels indepenafent Therefore, the
values obtained from such an analysis result tatbdeast questionable for samples
with a not too low dopant density, if our modet@rect. This makes very difficult

a comparison of our model with the experimentaadatnd in the literature.
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Fig. 3.5. Energy levels of substitutional P in’2@n® Phosphorus doped 4H-SiC, 10% compensated,

taking the conduction band edBg as energy reference.

For this reason, we made a comparison with theatitee data obtained by
moderately dopedSiC samples, for which the ionization energy u#ia with
temperature can be neglected. In Fig. 3.6 we ptessmputed versus experimental
values (the latter taken frofhaube02] [HandyOO]and[Rao06) of the free electron
concentratiom for a few different couples of P donors and conspéing center
densities Klp, Ncomp in 4H-SIC at room temperature. The couples gpeemental
Np andNcompValues are those given fiyaube02] [Handy0O]and[Rao06] while the
substitutional Phosphorus ionization energies ateutated self-consistently during
our simulation. The parameters used in our contiputaare the same of Tab. 3.2.
As we can see from Fig. 3.6, our model reproducels te measured values ofin
all the examined cases. We presented these reduthe 8 European Conference
on Silicon Carbide and Related Materials (ECSCRNM®(Scaburri]
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Fig. 3.6. Simulated versus experimental free electron amtnaton in partially compensated 4H-

SiC:P at room temperature.
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Appendix 3A. Debye-Huckel and Thomas-Fermi screeng radius.

We have seen that, considering only the screeniegal free carriers and neglecting
the minority carrier density, in the-type case the screening radius is given by
(3.13):

1
r

F—, (3A.1)

€ _dn
& dE;.

2
sc

where (see Eq. 2.11a):

n(E.)= N, EfF( EFk‘TE°j (3A2)

is the free electron concentration. Let us novewdate the screening radius in two

limiting cases: the non-degenerate and the strashggyenerate one.

1) In the case of non-degeneration:

and therefore (sg8lakemore62] App. A):

KT K, T

Hence Boltzmann approximation can be used, (3Ae2piming:

n(E.) = N, @xp(%j ,
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2) In the case of strong degeneration:

EF ~ Ec
kBT

and therefore (sg8&lakemore62] App. A):

o St )
V2 KT W kT '

Hence Thomas-Fermi approximation can be used, being:

- 4NC EF _ EC 3/2
| kT '

Substituting Eg. (1.1a) we have:
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o] (55
h? kT

Mefai €-E )"

3h3

which, by inversion, gives:

1-Cpd (o foni e - ]} -

_8ME o 5 € - E )=

4n1\/|e

(@ §* € - E J*

which, substituting (3A.4), becomes:

2
sC

4:}62 0@PMEn §°

Therefore:
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.- h’e o 1
sc 4rn’;é (3772Mén)1/3 !
i.e. the Thomas-Fermi radius (3.15).

Out of any approximation, being (siakemore62] App. A):

d
&Tl/z(x) =F (X,

Egs. (3A.1) and (3A.2) give:

2 —
i2:e_gd N¢ [F,, S =
r. & dE; kgT
2 _
_e E-E
ek, T 2 KT |
l.e. EQ. (3.17).
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Appendix 3B. Derivative of the ionized dopant corentration.

Eq. (3.18) for the screening radius requires thentedge of the derivative of:

ND,i

Ny =)
' 1+gp, E@x;{AED‘ij Dex;E Ee - EC]

KT KT

with respect tdr. The ionization degree of tlwh kind of donor being:

1
&= , (3A.1)
‘ AE, -
1+g,, [ex i | oy ==~ Ee
' KT kK, T
we have:
Ng ZZ Np; 5
so that, the concentratioMy ; being independent &, we have:
+ d +_
dN, => Ny, Gf—D : (3A.2)
de. 5 7 dE

By taking the derivative of Eq. (3A.1) we obtain:

OI{1+ Oo, @xp{AEWJ bep{EF L H
d&;, __dE | kT kT )] _

d _ENVE
= [1+ Op, EEXP(AkE_DI_’ij Dex;EEFkB _I_EC ﬂ
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L GO I

k
kT _ENT
B {“ o @X‘{AkE? JDEX{ i H

__i + T+
=t o oy )

B

so substituting in (3A.2) and then in (3.18) giwtbe expression (3.19a) for the

screening radius.
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Appendix 3C. Screening radius for a single donomehel.

In EqQ. (3.19a) the term:
iZ N, o, [-455)

occurs, which, in the case of only one dopant |dvetomes:
N, I M1-45) -

Multiplying and dividing this term b\p, we have:

)= (ND DfS)EGND - Ny H:S)
Np

ND aﬂ; Eﬂl—fg

(3C.1)
_ Np N, - ;)
ND

However, by neglecting the minority carriers andsidering completely ionized the

compensating centers (of acceptor type), the chaeggality equation becomes:
NS =N,+n.
Substituting in (3C.1), we finally obtain:

):(NA+n)mND_ N, - n

ND Dﬂ; Eﬂl-fé N
D

which, substituted in Eqg. (3.19a), gives Eqg. (3)19b
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Appendix 3D. Dimensionless Schrodinger equation.

By introducing the binding mass (3.23) and the disienless parameters:

and:

(0)

Ab

the Schrodinger equation (3.22) can be rewritten as

2

¢ exptxop)
aE, (0 p

_"__a
2m, [1,(0)]*

W+{—AED+ }mvzo

2
or, multiplying byZth%’ as:

2
A | 2MILO1AE, | 2m 606 exptxoo)| o
P 2 47Eh2 p

From the definitions (3.23) and (3.24) we have:

2m[1,(O)°AE, (205, . AE0) [ 1,88 |
h2 hz r AEH gr AED(O)

__AE, Dznmiﬂ&: AE,
AE, (0) ? AE, (0)

taking into account that:
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AE,, = . (3D.1)

Furthermore:

2
2m(OF | 268 oAB(0) (1o AR o
ATER 4TE Eh AE, & AE, (0)
- AME -,
ATE N '

taking into account that:

_ A

e (3D.2)

Therefore Eq. (3.22) takes the form (3.26):
2
AW {-Aso +;exp(—xop)} W=0,

being by definition (3.25b):

A&, Ak, :
AE, (0)
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Inclusion of impurity bandsin our model.

In this chapter we shall treat the impurity bandrfation and insert it into our model
for incomplete ionization of substitutional dopants Sec. 4.1 we shall discuss the
physical origin of impurity bands and present thedsl of this phenomenon
proposed by T. F. Lee and T. C. McGill in 1975 lightly doped semiconductors.
In Sec. 4.2 we shall modify Lee and McGill's modielorder to extend it also to
heavily doped semiconductors. In Sec. 4.3 we shsdluss how to treat the effect of
impurity bands on the degree of ionization of siingbnal dopants. In Sec. 4.4 we
shall present the results of our simulations fdic&n Carbide and compare them

with experimental results.

4.1. Formation of impurity bands.

With increasing doping concentration in a semicatolumaterial, dopant discrete
energy levels in the bandgap split into quasi-cadus bands. This is due to two
independent phenomena, which however happen aatine time. The first one is
the gradual overlapping of wave functions of chaogeriers bound withequal
binding energies to dopant cores as the averagandes between these latter
decreases, following the model of Kronig and Penji@pnig31]: it has a purely

quantum mechanical nature. The second phenomenasists in increasing
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potential fluctuations by ionized impurities dibtited at random in the host lattice,
which has the effect of spreading out the densitfestates in the energy diagram
[Kane63] it has a purely statistical nature. As previgushid, the combination of
these two phenomena determines the formation ofiiitypbands.

An enormous number of papers in the literatureldess devoted to this topic.
We have chosen to start from the relatively simmpbalel proposed by T. F. Lee and
T. C. McGill [Lee75] for impurity bands, which includes Morgan’s modiet the
effect of potential fluctuations on impurity levelslorgan65] For a quantitative
treatment of the quantum mechanical broadening ddpant level, Lee and McGill
considered a dopant concentration sufficiently Eavthat the tight binding model
can be used. Therefore, the energy level broagdeesults to be proportional to the

energy transfer integrllee75}
Jq (‘Ri _Rj‘) :IR3V(I’ _Ri)%,o(r _Ri)%,o(r - Rj) d’r )

where:

e2

V(r)=-
) 4rE, 1

is the unscreened Coulomb potential energy and:

A1) :%exp{— } (4.1)

71, (0)] 4(0)

Is the dopant ground state wave function, begnipe relative dielectric permittivity
of the host semiconductor ang(0) a ground state effective Bohr radius of the
dopant atom (different than ours). Due to the sytnynof the problem, the energy

transfer integral can be rewritten as:

3, (R=]_ V() @o(r) ,o(r —R) dr (4.2)
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to give[Lee75}

J,(R) =- ¢ {1+ R }exp{— R } ,
A7 £, (0) | 14 (0) ry (0)

whereR is the distance between nearest dopant neightfirsce the doping atoms
are randomly distributed in space, the distaRde the nearest dopant neighbor and
the energy transfer integrdy(R) vary from one doping atom to another. If the
dopants are absolutely randomly distributed in sermductors, they should follow a
Poisson distribution. In a Poisson distributidie probability that the nearest dopant

neighbor lies at a distan€&ein a spherical shell betwe&andR + dRis given by:
arr 3| o2
47N, ex -y N,R* |[R°dR ,

whereNy is the concentration of dopants with the samegnkavel Eq. Therefore,
the average energy transfer integral between andogiom and its nearest dopant

neighbor is equal tfi_ee75}
too A 3 | p2
(3,(R)) = 47N, j NG exp{—? N,R jR drR . (4.3)
In the tight binding model, the total bandwidth is:
B, =27,|3,(R)| , (4.4)

wherezy is the number of nearest neighbors. With a Pais#istribution, there is
only one nearest neighbor to every dopant atom #edefore,zy = 1. Hence, by

defining the impurity band half-widt¥, = By / 2, we havgLee75}

W, =[3,(R)| -
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The quantity of interest is the impurity band densif statesoso(E), which is
in general a very complicated function of enerddowever, for their purposes, Lee
and McGill assumegyo(E) to be a constant over the bandwidd} i.e. (see Fig.
4.1):

N |E-Ey|<W,

Pao(E)=1 " (4.5)
0 |E-Ey|>W, .
E

\

conduction band

squared impurity band

g(E)

Fig. 4.1. Density of states described by (4.5).
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As we have mentioned before, the random distributsd ionized dopants
generates spatial fluctuations in the potentialthst the dopant ground state results
to be spread in energy. For having a dopant deasgtatesoy(E) including both the
fluctuation-induced broadening and the broadening tb a finite energy transfer
integral, Lee and McGill proposed to averagg(E) over the value of the local
potential. Thereforfl_ee75}

Ps(E)=[ " pyo(E-V) p(V) dV (4.6)
where:
1 Ve
p(V)_ U\/ETexp( ZUZJ . (47)

Eq. (4.7) has been taken directly from the worR ™. Morgan, whereris the
solution of the systerfMorgan65}

_ 2ner B __Rd
107@(T£)DZN z exp{ J

S‘:

(4.8)

2
&@Xp(—&j =23 ,

arE £, R, My

whererg is the screening radius (the calculation was nigdglorgan for the case of
a screened Coulomb potentidi);® is the concentration of ionized dopants ofdké
type,Zq is their charge (i units) andRy is a variable with the dimension of a length
to be obtained together witin by solving the system (4.8). It is apparent fritma
second of Egs. (4.8) that the same valuRgaholds for all ionized dopants with the
same charge (in its absolute val{ig)|e. Moreover, if we consider only monovalent

dopants, i.elZy| = 1, it can be demonstrated (see App. 4A) that:
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2 * 4+ N-
o= & [=(N5+N,) xp| -
£.&, 8

This is the model for impurity bands elaboratedleg and McGill, who — it has to

1
S G

be remarked — used values 1Q(0), rs and o different from ours, the latter ones
being given by Eqgs. (3.19a) (or its equivalent tfog p-type case), (3.24) and (4.9)
respectively.

4.2. Our model for impurity bands.

We have seen that Lee and McGill obtained theinevdbr the bandwidtiB, in the

case of an unscreened Coulomb potential, whiclomsistent with their assumption
of a moderate dopant concentration. However, wee hgeen in the preceding
chapter that it has to be substituted by a scre@waedomb potential if we want to
describe the behavior of a heavily doped semicaldud his choice affects also the
form of the ground state wave function to be pub ithe energy transfer integral
(4.2). As a first approximation, we assume theemrground state wave function to

have the same form (4.1), but with an effective Baldiusrq given by:

AE_(0)
r (O)Eldi X <Xcr
)T AR ()
re(Xq) = (4.10)
+0o Xd 2)(cr

consistently with the dhydrogenic wave function (4.1) we chose and tHaevaf
the ionization energ®Eq(xq), with x4 given by (3.25a). Therefore, by defining the

dimensionless parameters:
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_Oe) X Xa
a, = = =
T Be() O (4-11a)
(see the definition (3.25b) and Egs. (3.27) anggg.and:
x=—R_ (4.11b)
ry(Xa)

the energy transfer integral turns out to be (see. AB):

8AE, E(,axp(—x) B

2
J(R)=J, (r,X)=- a,x————[l-expa,x .
o(R)= 341 =~ "L B 5 = a5 - ll-exp-a, )]}

(4.12)

(in the following part of this chapter, the depemcke ofry, AEg and ag on xg will be

implied). By defining the dimensionless parameter:

By =— Nyt (4.13)

and substituting Eq. (4.12) into (4.3), we thusagb{see App. 4C):

_ 245,AE, 2 1 B, :
(J4(R) = (2+a,)a’ E{2+ad EE(Had ¥ Dl( (1+a, )3] Il('gd)}L

(4.14)

where:
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1 .(B) sjo”" X" exp (x - Bx%) dx (3=0) . (4.15)

Unfortunately, the integrals (4.15) can not be esgped in terms of other
known functions. Therefore we have to find appmedied expressions for them, at
least for the two integrals(f) andl,(5) which appear in (4.14). We shall explain in
App. 4E the two approximate expressions we fourdt this point, it is more
important to stress on the asymptotic behavior6f) and I,(f) as S tends to

infinity, i.e. asyq approacheg. so thaty tends to infinity (see App. 4D):

r(2/3)

| =

1(18) ﬂ2/3
1

I =— .

2(B) 3

It is easy to verify (see App. 4F) that, in the sdimiting case:

(3,(R)) =242, (0) Qs

3
d

l.e. in the heavy doping limit, wheyy reachesy.: andrq become infinite, ity is still
equal to 1 in EqQ. (4.4), the bandwidth tends t@zdBut this makes no physical sense
and is in contrast with all experimental resultdowever, the assumptiony = 1
holds only in the high dilution limit: when the exisionry of a dopant state becomes
infinite, all other dopants become nearest neighbors. Therefesuggest to
replacezq = 1 with the expression:

Viyrg
Z :1+ZG§Nd Iy , (4.16)
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whered is a dimensionless constant of the order of unitgis means that in the high
dilution limit zy = 1, but the probability to haveore than one nearest neighbor
increases proportionally to the dopant concentnaaod to the “volume” of the
dopant state, in such a manner that the numbeearest neighbors becomes infinite
as the dopant state extends to infinity. In tlaise; we have from (4.4):

lim W, = lim z,|(3,(R)| =3277¢ N, 1, (0)r; AE, (0) | (4.17)

Iy -

which is finite, as it should be (see App. 4F). [epose to use (4.17) for all values
Xd 2 Xer, this expression having been obtained for infingtewhich is characteristic
of all extended states. For simplicity, in our simulasiove shall us€ = 1, but we
think that its correct value could be obtained frorababilistic considerations.

Now we have all the instruments needed for theutation of the impurity
band half-widthwgy. For simplicity we assume, as Lee and McGillt tha impurity
band density of states due to the overlapping phdbstate wave functions still has
the rectangular form (4.5). We have now to treateffect of potential fluctuations
due to randomly distributed ionized impuritiesstead of using the expression (4.6),
we propose to keep the rectangular form also ferdsulting density of states(E),

but with an effective half-bandwidth:

W, =W +0° || (4.18)

with ogiven by Eq. (4.9).

At this point, our model for the impurity band depsof states seems to be
complete. However, we have not yet said anythibguaithe position of the center
Eq of the impurity band oncgy exceeds its critical valug,. Whenxy = X, the
ionization energyAEy4 becomes zero, i.&y = Ec or E4 = Ey for a donor or acceptor
case, respectively. But what happen€goonce x4 > xo? We have not given an
answer to this question in the preceding chaptetabise we considered there only
discrete states becoming completely ionized wkee X, the exact value of the

(negative or zero) ionization energy thus being infliential. But in the case of
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impurity bands the position oEy is of crucial importance, governing the
concentration of free carriers. At the moment, &éesv, we have not a quantitative
model for this topic. Therefore, considering thlaé¢ function (3.27) presents a

minimum atyy = Xer, We assumarbitrarily in our simulations that:

Ay (Xq) = FOx) BSign(x, —xq) |, (4.19)

because we expect thag continues to penetrate into the conduction ornadeéand,

and Eq. (4.19) is the simplest function which egemonotonically the function

(3.27) to all the positive real axis while keepiagontinuous first derivative. We
hope to find a better expression in the future thasemore physical considerations.
From this point of view, the model of band edgepldisements elaborated for 3C-,
4H- and 6H-SIC by U. Lindefe[iLindefelt98] seems to be well promising, but it is
still limited to the uncompensated case and carsecguoblems of convergence in

our simulation software.

4.3. Occupancy of impurity bands.

Having established a model for the impurity bandsity of states, now we have to
explain how its energy levels are occupied by ebast or holes. Let us consider the
n-type case for simplicity. As we have done forcdi$e energy levels in Chap. 3, we
shall consider completely ionized all donor statéth energykE > Ec, while we ask

the donor states with enerdy < Ec to follow the ordinary Fermi-Dirac statistics

(2.1). Therefore, we assume:

N; =N (E<E.)+N,(E=E,) , (4.20)

where:
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N, (E=E,) :j;pD(E) dE (4.21a)
N (E<E,.) :jE: Po(E) dE |, (4.21b)

E. -E
1+9, ex F
0, p[kBTj

M(E) being the density of states (4.5) but with hailfiv given by Eq. (4.18). Let

us define the dimensionless function:

1 x>1
F(X)=q x [¥<1 (4.22)
-1 x<-1

Hence we obtain (see App. 4G):

W, _
exp{ kD;‘;_ﬁ [IF(V?/ED H+gD ex;{ E IEC_:AEDJ
. Nk T B D eff B
No = 2\/DvB o W, E.-E. +AE *
b exp(_ o j+ o ex;{ o j
B B
+No + F( AE, ]
2 WD,eff
(4.23)

which is the value to be put into the charge ndityraquation (2.5). A similar

expression holds for thetype case.
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Fig. 4.2. Phosphorus donor ionization degree in uncompedg#t-SiC at room temperature.

The pure rectangular model has been used.

We have implemented such a model in a self-comgigtierative program, and
we have found that slope discontinuities appearnwkie, = tWp « (See Fig. 4.2,
where we have used the same parameters given in3Tabp. 50 of this thesis).
These slope discontinuities are mathematical atfand have no physical meaning:
they are due only to the oversimplified rectanguatadel (4.5) for the impurity band
density of states. In order to avoid them, we hd@eded to substitute the function
(4.22) into (4.23) with the more smoothed function:

1

I:(X)El+exp(—2x)

(4.24)

which has the same asymptotic behavior of (4.23) dsends to infinity and has the
same derivative ix = 0 (see Fig. 4.3 for a comparison). In such ameaall slope

discontinuities disappeared, as can be seen frerfigares in the next section. Such
a smoothing is qualitatively consistent with Eg&.6] and (4.7), which spread the

density of states (4.5) of well defined widBg over all the real axis of the energies.
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Eq, although small for low impurity concentrations.

125 r
. 100
=
L o075}
0.50
— purely rectangular model
> T — smoothed model
-3 -2 -1 T 1 2 3 4
-0.25

Fig. 4.3. Functions (4.22) and (4.24) for impurity band ralirg.

4.4. Simulation results and discussion.

We illustrate in Fig. 4.4 our simulation results Rhosphorus-doped uncompensated
4H-SIiC at room temperature obtained by using timetfan (4.24) instead of (4.22)
and the same parameters given in Tab. 3.2, p. Bliothesis. As we can see from
Fig. 4.4a, the unnatural slope discontinuities W&amed by using (4.22) vanished.
We must point out that, in comparison with Fig.a83.the ionization degree does not
go to one for high concentrations, i.e. the ionaats not complete. In Fig. 4.4b we

have plotted the corresponding energy diagram, hiclwwe have use8p« as a

measure of the impurity band amplitude.
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Fig. 4.4a. Phosphorus donor ionization degree in uncompeds#t-SiC at room temperature.

The smoothed impurity band model has been used.

0.2

0.1

-0.2
1E+14 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 1E+22

Np [cm?]

Fig. 4.4b. Phosphorus impurity band formation in uncompestsdH-SiC at room temperature,
taking the conduction band edBg as energy reference. The dashed lines reprdsenenteE, of
each impurity band. Blue color refers to the hexe site and red color to the cubic one. The

smoothed impurity band model has been used.
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To test our model, we have simulated the free mlactoncentration as a
function of temperature for Phosphorus doped 10%mpemsated 4H-SIiC for
different values of P concentration (from*4@ 1G* cm*, as explained in Tab. 4.1),
which could be obtained from a temperature depdntiati effect measurement.
For comparison, we have performed the same simulatiso following the model
with discrete energy levels both without screer(ig seen in Chap. 2) and taking it
into account (as seen in Chap. 3). Figs. 4.5tidis our results. As we can see, the
main difference between the model including impub&nds and the others is that it
predicts more and more high carrier concentratiahslow temperatures with
increasing P concentration. As a consequence,eeati®’ and 50110"° P atoms /
cm® (for a compensation degrée = 0.1), a passage from a semiconducting to a
metallic behavior is predicted. Such a behaviartbeen observed experimentally, as
can be seen ifLaube02] M. Laube and coworkers explained such a behawor
invoking the onset of impurity conduction, i.e. awement of electrons through
impurities without thermal activation from donoss @B (Hung50] [Hung54). In
our model, however, such a metallic behavior igrelyt due to electronsn the
conduction band, made free from impurity levels lying over the @Bge (see Fig.
4.4b), while impurity conduction has been compietetglected. If our model is
correct, it is therefore not necessary to invole @hset of impurity conduction for
explaining such a metallic behavior. As a consagegour model could be used for
analyzing temperature dependent Hall effect data &ir those samples which are
degenerate and present a metallic behavior, asallyat can not be performed by
using the standard discrete-energy-level-baseddifirocedure.

To give an example of such a possibility, we hal@ted in Fig. 4.5 the
experimental values obtained by Laube and coworlkerthe electron concentration
in three Phosphorus-implanted and then anneale8i@Hsamples together with our
simulation curves, the latter obtained by usinggaemeters given in Tab. 3.2 and P
concentrations equal to those effectively implantdsl= 2.6 010" cm® for sample
P1,Np = 510" cmi® for sample P2 anip = 2 [(1L0?° cm® for sample P3Laube02]
The compensation degree has been adjusted manuoiadider to achieve a fairly
good agreement with the experimental data. Weirdddea degree of compensation
equal to 15%, 14% and 0% for samples P1, P2 anteBBectively.
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Fig. 4.5a. Electron concentrations from simulation with dams discrete energy levels.
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Fig. 4.5b. Electron concentrations from simulation with déte energy levels in presence of

screening.
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Fig. 4.5c. Electron concentrations from simulation with stieal impurity bands.

identifier name| substitutional P concentration Fgm
S1 16"
S2 16°
S3 16°
S4 167
S5 16°
S6 16°
S7 2 10"
S8 510"
S9 16°
S10 16

Tab. 4.1. Concentrations used for the simulations illusttlan Figs. 4.5.
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Fig. 4.5. Manual fit of[Laube02]experimental results by using our model.

While the first two results are reasonable for iampéd samples, the third is
not. a compensation degree of the order of 10%xjeaed from the experience.
Furthermore, as we can see from Fig. 4.5, the agFee of our curves with the
experimental data is rather good, but, also ifihot evident from the figure, their
derivatives with respect to inverse temperature’tdoorrespond to those of the
empirical data. Therefore, we think that our mdued to be further refined in order
to get a better agreement with the experimentalltses On the other side, it has
demonstrated to be a very good instrument for anajytemperature dependent Hall
effect measurement data of SiC samples, in paaticihiose corresponding to the
most heavily doped samples, which could not beyaedl by using the standard

methods.
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Appendix 4A. Calculation of the parameter o from Eqs. (4.8).
Let us rewrite the system (4.8) by substitutinggbeond equation with its square:

d (47Er ‘90 )2 r

s

2.4
o =1.0702m, [ N —24€ ex;{—ﬂj

(4A.1)
2.4
Zd—ez@xp —Z_R’ = (2330’2 .
(47Er£0RJ) rsc
From the second equation:
zze' 2R, )
——[exp — |= (2. o
(47, p( )T
which, substituted into the first equation of tlystem, gives:
0’ =1.07t2mr D' Ni 2.R, jo? .
d
Hence:
1
=0.028. (4A.2)

r N;R: =
xD; R 277[1.070(2.35

If ions of only one value ofZ| are present, like our case in whij = 1
(monovalent centers), from the second equatiodAfl() results that there will be a

unique value oRy for bothZ = +1 andZ = -1. Therefore, (4A.2) gives:

R = 1 _ [ 0028 _ 1
J2mL.070(2.35r, ON; +N; ) Ve NS +N)  g/r, DN +N; )
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which, substituted into the second equation ofsystem (4.8) withiZy| = 1, gives:

2
o =e—@xp KL
2.3WE, £)R, r

s

€ 2r1.07%2.3fr_ ON;, + N, s - 1 ~
2.3WE, £, 6r_/r. ON: +N;)

2 + -
_ € /rSC(ND+NA) Oexth — 1
£&, 8 64/r> (NS +N;3)

l.e. EQ. (4.9). In the last passage we assumé&t=110
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Appendix 4B. Calculation of the energy transfer integral (EQ.
(4.12)).

We have to calculate the energy transfer integral)(
(R =[ VO @)@ -R) d¥ (4B.1)

with:

and:

@(r)=

exp —| .
nr(f Iq

The integral (4B.1) can be written extensively as:

2

e exp (r /r.) r Ir=R|) .
J.(R)=- < [exp —— |[exp —— | d°r =
«(R) 4772£r50rd3J. R® r p( rdJ F( r,

3 r+r-R
:—e—3|:j 3E[:lex - L+g d3r
Ae g IR x r r,

Let us define the dimensionless variable:

o
1
|

and the dimensionless parameters:
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X
1
| 7o

(4B.2a)

Tq
rﬂ:

a (4B.2b)

(see Egs. (4.11)). Hence, the energy transfegratéecomes:

e’ r r r+[r+R|)| d*
3, (RX)) = ——— 0 lomaxp - e+ =
(RO ATPE &, [J.ﬂ@ r p|: {r r r, H rs

d

2

1
ST BN T

Taking thez axis parallel tox, i.e. to R, the result being independent of tRe
direction for reasons of symmetry, and introducihg spherical coordinates, (6,

#), we obtain:

) (R(x))-—émzwr 1,101, e ~(aava)+

rnJE 2+ 2q0 co@)}mz sthdg d6 dx =

e v o1 ( PN ﬂ
= exp—-(aq+q+ +x°+ 2qOco8
27TE Ey qo IO FE a4+ \/q q
(¢ sind dé dq

the integrand being independent of the varigbléerherefore, by defining:

(= - Tl 13, (R() =1 PR (4B.3)
& 4 AE,
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(see Egs. (4.10), (3.24), (3D.1) and (3D.2) foreheivalence of the second and the
third term of (4B.3)), Eq. (4B.1) becomes simply:

j(x)=I;wj:exp[—(aq+q+\/q2+x2+ 2><q[b059ﬂm si®dédq .

In order to calculate explicitly such an integridt us make the change of

variable:
z=-cosd ,
from which:
dz=-singddé

and therefore:

j(x)= J';wjjllexp[—(aq +q+ 2+ X - 2q Qﬂ [0 dzdq .
Let us define also the new variable:

t?=g°+x°-2xqz , t>0.
Hence:

2tdt=-2xqdz = dz=—ﬂ

Xq

and:

The incomplete ionization of substitutional dopants in Silicon Carbide 87



Chapter 4
. +o o gHX tdt
=] [ expF@a+q+t)m—dq=
0 |a-x| Xq
_ 1 +o0 q+x
—;EJ‘O { expt Fta )N H‘q_x‘tDexpft ﬁt} dq

Taking into account that:
[texp ety = —(% +%) Cexp £6t )+ const | (4B.4)
we can thus write{being here equal to 1):

N . : )
j(X)—;l:J-O {exp[ (1+a)q][ﬁ(|q x| +1) Cexy{~|q - x|)
- g+x+ 1)]expfq—x]}dq :

In order to eliminate the modulus functions, letspéit the range of integration

into two intervals, [Oy] and fy, +w]. Let us therefore write:
XCJ(X) = 1L, (X) +1,(x) = 1 (X) , (4B.5)
where:
1,(X) zjo exp [~ (L+ a)q]0x-q+ 1)exp ¢ - x )dq =

= exptx )] exptaq DX-q+ Big

,9=] " exp[-(1+a)q]la-x+)lexp -0 )dq =

= expk )] " expt (a ¥ P-x+ Bix
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(9= " exp[-(1+a)q]0a+x+ )lexp (- X )dx =
= exptx ) " expf (2o ) I+ x+ Big

By remembering Eq. (4B.4), we can split the integi) itself into two parts:
1,09 =exp EX)f 6+ D exp taq Xa~[ " aDexptaq iq| =

= exp £x IE X+ 153% ( jDexp—(ax rY— }

Hence:

1,(x) =exp (_X)[E(%l_a_lszr(_ElJra_lzj Cexp eax)} . (4.B6a)
Similarly:
129 =exp () 4-x)],” expE (e ) i+

¢ aDexp{ (@a q 4o} =

- expk IE{ (Ex [Lgxp[ (2+a)x]

X 1
-{2+a+ (2+a)2}Dexp-[ (2a %}]

and therefore:
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1L(y) :Lia ; (2+1a)2}@xp -+ a)x]. (4B.6b)
Finally:
15(X) = exp (—x)[@ (x+ 1 * expF (2ra Y1 Mg+
+[ “qlexpt (a p ]dq}
hence:

(4B.6C)

I,(X) =exp (—x)EE x+1 = } :

+
2+a (2+ay

We can therefore write, from (4B.5):

XCj (X) = exp (—x)E{XT”—a_lzj +[—

J{ 1 1 }Dexp(ax {x+1+ 1 }}:

+
2+a (2+ay 2+a (2+aY

x+1 1 x+1 1
= exp{X Q| —-—- - s |+
a a° 2+a (2+a)

+{—1+i2+ 1 + L }Dexpeax% ,

a a® 2+a (2+a)

Q|

+a_12j Cexp Cax }

which can be rewritten as:
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j(x)=ME{{(2+”)a<x+l>—(2+a)-a2(x+1>‘ o }

(2+a)a®x 2+a
{ (Fa Ha+ 1}az+cha}m exp-a x }):

_exp x) ~ a’

_—(2+a)azxgﬂa (Zta-a)k+ 1)y (Za )‘2+a}+
+(2+0)2(‘a+;):a(2+a)a2+azDexp{ax }):

- &P ExX) ax+a- 2 a +

(2+a)a’x 2+a
,(B+da+a’)ca+ 2c72+a‘°’+az@xID (—ax)} _
2+a

- 2 _ a2
_ exp(xz ogx+ 4-a +
(2+a)a“x 2+a

+4+4a+a2—4a— a-a*+ Ii+a’
2+a

:—exp(—xz) (er——4 j+ 4 Oexp€ax
(2+a)ax 2+a) 2+a

[exp Cax )}

Therefore:

L 2exp Ex) _ 2 5 .
j(X)=—"="dax 2+a[@1 exp(axj},

C (2+a)a’x

which becomes Eq. (4.12) taking into account E®B.3} and comparing the
definitions (4B.2) to (4.11).
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Appendix 4C. Calculation of averaged energy transfer integral (Eq.

(4.14)).

The average (4.3) of the energy transfer integrdl?) is:

(3,(R)) 4an J,(R) exp( TN R3ijdR—
S SMNE, ¢ fp [ R),R2 g
(2+ay)a; 'F R ry ry 2+a,

[+ oo, oo 42

By introducing the dimensionless variable;

_ R
X=—
r.d
it becomes:
<Jd (R)> —_ 327TNd AEd Edgj +oo eXp (_X) ad X
(2+a,)a? 0 X

Dex;E—%T N, rj’xgj x> dx

and, by defining the dimensionless parameter (4.13)

4
ﬁ ?N rd ,
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we have:

<Jd(R)>:_%[J'0mxexp(—x){adx— 2 01~ exp(—adx)]}[

(2+a,)a? 2+a,
O ex()—,[z’x3) dx
(4C.1)
Let us study the dimensionless integral:
| (a,B) = J'Om X exp (—x){ad X - 2+Zad 1~ exq-a, x)]} [
(4C.2)

O ex()—ﬁx3) dx
We can split it into three parts:

1@y, )= ()~ T,(B) +—> 0@, ;)

d

by defining the three integrals:
1,(B) = J'Om x@xp(—x—,[z’x3) dx
1,(B) = J'Om X @xp(—x—,é’xa) dx

J(a.B) sjo“” xexp| - (b a x— Bx ] dx .

However, the third integrali(a, §) can be expressed in terms of the first one by

means of the change of variable:
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t=Q+a)x.

As a matter of fact, we have:

B
1+ay

3@, B)=— q+”(1+a)x&xp{—(1+a)x—

@+a) Jo

O a X ]3}

d [(ka X ]

__1 2[jmtDex;{—t— ’BSEHS}dt:
(+a) 7o (+a)

=1u1(ﬂj.
@+ay "\ @+ay

Therefore, the integral (4C.2) can be written as:

Cong 2 2 5 1 o B
H(@.p)=al,(5) 2+aD1(’8)+2+aD(1+a)2ml((ﬁa)’J_

2 1 4 B
_2+0[E(1+a)2 [ﬂl((1+a)3j |1(B)}+O’D]2(8),

which, substituted in (4C.1), gives Eq. (4.14).
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Appendix 4D. Asymptotic behavior of the two integrals I,(8) and
12(B).
We want to study here the asymptotic behavior efititegral,

In(ﬂ)Ej;mx”exp(—x—,Bxs)dx ., fB=20 , n>-1 (4D.1)
in the two extreme cas¢gs< 1 andf8> 1. Forf < 1 we can write:

1. (B) :jo”" X' exp (-x)[ 1= Bx° +0(B%) | dx=

=[ i+ 1 BT 6+ 4}0(5?)

Therefore:

1,(8) =1-243+0( )
(4D.2)
1,(8)=2-1208+0(5) .

In the opposite casgf > 1, we can rewrite the integral (4D.1) as:

1. (B) = jgm(él_;?’;(}” exp[‘%z‘ﬂxgj % =

1/3

:ﬁ[j;m(ﬁ”e‘x)n ex{—%—ﬂxe‘j d ([)’”3x)

and introduce the new variable:
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tEﬂl/gx ,

so that:

1.(B) =ﬁq:t” exp(— /;1,3 —t3J dt . (4D.3)

By introducing now another variable:

So that:
t=2"

dz

dt:F s

the integral (4D.3) becomes:

1/3
1 to o z _
|n(ﬁ):—3’8(nﬂ),3q0 A 2)/3exp{—(zj —z} dz=

— 1 *° _(n-2)13 _
= 350" [EJ'O z exp £z Xz

1 e 1
_ﬂ1/3qo z" expz ()iz"'o(ﬂz/sﬂz

)

L
3,8(”+1)’3 3,8 (n+2)/3 ﬂnlsrl
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Therefore:

_r(2/3 1 1
Il(ﬂ)_ 3,82/3 3,8+O(,8 4/3]

_i_r(4/3) 1
|2(/3)—3/3 37 +O(ﬂ5/3J -
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Appendix 4E. Approximate expressions for the two integrals ()

and 1(9).

Starting from the asymptotic behaviors (4D.2) a4id.4) we have found in App. 4D,
let us define the two functions:

(0= Lty O 3
3 3b1 1/3 1

(1+ 2450 +{r(z/s)g(} [EX +r(2/3}
(9 = 2740 X :
(1+600)° +( 3, x) Ix"*+T 4/ ]

and set the parametdysandb, to:

b =9.55276

b, =9.08726

Let us now define the function:

g(xA,0,u)=1+ A [exp{—UD(lnx—,U )2] :

The two integral$i(x) andl,(x) can be well approximated by the two functions:
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(¥

1,(x) =

g(X;Alalo-la!/j]a)@(X;/‘b’ab ’/'lb)

f(%)

1,(x) =

(X Apas Ty Mo LU (X5 A, O 3 3, JIO (XGA 1T 5 1 )

(4B.1a)

(4B.1b)

with the parameters given in Tabs. 4B.1. In suchamner, we have approximated

the integrald (x) andl,(x) with a maximum relative error (in its absolutduey of

about 0.5% and 0.14%, respectively.

A o Y7
la 0.0534 0.1042 -1.343
1b -0.0783 0.5292 -3.797

Tab. 4B.1a. Parameters to be used in (4.1a).

A o 7]
2a 0.05138 0.07266 0.3626
2b -0.079 0.27 -0.92
2c -0.03362 0.5454 -4.79084
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Tab. 4B.1b. Parameters to be used in (4.1b).
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Appendix 4F. Asymptotic behavior of the averaged energy transfer
integral (Eq. (4.17)).

We have seen that the averaged energy transfgrahis given by (see Eq. (4.14)):

_ 245, AE, 2 1 B, :
(Ja(R) = (2+a,)a? E{2+ad [E(1+ad ¥ Dl( (1+a, f’j Il('gd)}L

(4F.1)
where:
=T

a, = (4F.2a)

B, 54?” N, 13 (4F .2b)
(see definitions (4.11a) and (4.13)) and the rehati

ng, = 25010 (4F.2¢)

rd

holds (see (4.10)).

Here we want to study the behavior(df (R)) asrq tends to infinity, i.e. when
the dopant ionization energy tends to zero (se€@Fand the corresponding states
become delocalized. This happens for finite valofethe dopant concentratidy

and of the screening radiug. Hence, substituting Egs. (4F.2) into (4F.1),hage:
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3 2 3
ad ad ad ad

(3,(R)) = —%E{itﬁiﬂ{ﬂ]— Il(/m}ad Dz(/m}

because botlary and 5y tends to infinity in such a limit (see (4F.2a) a@dr.2b)).
Being:

finite, from Eqgs. (4D.4) we have:

itﬁi[ﬂl(%j_ l1(ﬂd)i|+ad 0,(8) =

2
ad ad

2 11 4T r@2/3)|, a
:_[E_Dl(_Ndrsij_ (2/3 )]l__d:
a 3 :Bd ﬁd

2 2/3
:£ %Hl(ﬂTNdr;j_r(zzlg) > + > 2=
ry ry 3 ry 4rN, g\

Hence:

2483, N\E 3
(4(R)) =~ ;3 dD4er rr2
d d'sc’'d

___18 PO, _
N, agry

d'sc

3
—_ 18 B“giTNd rds ﬁEd 0)ry (0) di EI—JZ'
S Iy Iy

3
7N, ry
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thus giving:

(3,(R)) = —24AE, 0= (4F.3)

rs
Such a value tends to zerorg$ends to infinity.

By using the coordination numbey given by Eq. (4.16), in the same limiting
case we have (see (4.4)):

4 o)re
W, = 7,3, (R)| = ¢ 2N, 17 24, (0 -
d

= 3¢ N,r, (0)2AE, (0),

l.e. EQ. (4.17).
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Appendix 4G. lonization in an impurity band (Eq. (4.23)).

In Sec. 4.3 we assumed that (Eq. (4.20)):

N: =N (E<E.)+N,(E=E,.) , (4G.1)

where (see Eqs. (4.21)):

N, (E=E,) :j:pD(E) dE (4G.2a)
Ng(E<EC):j_E: pD(Eé — dE (4G.2b)
1+9, ex;{ F j
kT
and:
2\/\'70 |E-Ep| W,
po(B)=1  ° (4G.3)
0 |E-Ep|>Wp o -

In calculating the integrals (4G.2), we have tdidguish three cases.

1) E-E < Wo o -

In this case the impurity band lies entirely belin conduction band edge, thus:

No(E=E:)=0

and:
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N, [J‘ENWD.e« dE

NS(E<E ):M . E_E
D.eff ~ l+gyexg —
kBT

2) |Ep —Ec|<sWou -

In this case the impurity band lies partly belovd grartly above the conduction
band edge, thus:

_ ND Ep *Wp &t
No(E2 ;)= e—If " dE =
D,eff
N
=2 [[E, +W, o ~E;)=
D, eff
- ND [E n ED B Ec]
2 W &

and:

N (E<E.)=

N, [jEC dE

2WN Ep *Wp - '
D eff 1+ gD ex{EFEj
KT

3) B —E¢ >WD,eff :

In this case the impurity band lies entirely in doduction band, thus:
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and:
NS(E<E.)=0.

To calculate the concentration of ionized donorsoseh states lie below the
conduction band, i.&\p"(E < Ec), we observe that:

E-E,
dE B T
j = B dE

E -E =] E-E
1+qg,exp —F ex o+
0% p(kBTj MT] %
E-E
=k.T On ex o+ +const .
B { ;{kBTj go}

Therefore, in the three cases we have distinguished

1) Ep-Ec< Wour = DB >Wp 4

ED +WD,eff _EF j_l_g
D

i
N (E<E,) = NokeT kT _

2V\/D,eff exp{ ED _WD,eff - EF j+ 9
D
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W _
exp( Dot j+ 9 exp{AED tE B j
_NokeT kT kT

Ao e exp(—vz["_le_“ )+ 95 exp{AED’LETF_ECJ
B B

E.-E +
NG (E < E.) =e<el iy p( T )|
0 ZVVD,eff exp( E, _WD,eff -E; j_'_ 9
ke T P
NoksT eXp( Eck_T Fj Jo
=—DB [ & =
AN eXp(_VZD;?fj EEXF{ E, - Eck+TEc -E j+ do
L B B
expl 20 |4 g e 26> *E: ~Ec
_NokeT keT keT _
W, exp(_VzD,eﬁ j+ N eXF{AED LETF - Ecj
L B B
expl SEo ot |, g F{AED o Ecj
_ NpkgT an Woer  KeT ke T
W,
Dt exp(— kD;ﬁ j+ 95 exp[AED T(ETF Ee j
B B

3) Ex-E PWour = DB, <Wp

We can write:
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N,k T
Ny (E<E.)=0=—2"L_[n ()=
o(E<E) AN @

D eff

W, J+9D eXF{AED+EF —ECJ

By introducing the dimensionless function (4.22):

1 x>1
F(X)=q x [¥<1
-1 x<-1

we can summarize our results in the compact form:

N (E>E.) :%Eﬁl_F(ngo H

Np (E<Ec)=
exp W, o F AE, +g. ex AE, +E; —E
NpksT 0l keT Wo e i keT
= ny
Mo exp(—VZD'_liﬁ J+ d, exp(AED T(E'IE “E j
B B

Eq. (4.23) follows immediately from (4G.1).
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Conclusions.

In this work we have established a model for sitindathe incomplete
ionization of substitutional dopants in homogene@&ilkcon Carbide samples at
thermal equilibrium. Our model is based on thaigsoh of the Charge Neutrality
Equation (CNE) and takes into account: 1) the preseof non-equivalent lattice
sites in almost all SiC polytypes, which gives risemore than one energy level in
the bandgap for each dopant species, thus requiriggneral a numerical solution
of the CNE; 2) Fermi-Dirac statistics for free éteas and holes in the conduction
and valence band, respectively, instead of theee&sltzmann statistics, in order to
study also heavily doped SiC samples; 3) the sorgeof the Coulomb potential
around each dopant ion mainly by the “sea” of fragiers, causing the variation of
the dopant ionization energy; 4) the formationrapurity bands by the splitting of
the discrete dopant energy levels with increasorgentration.

Coulomb screening has required to replace the usydlogenic model for
dopant atoms with the solution of Schrodinger eiquatvith a screened Coulomb
potential, which is not analytically solvable. Thmyenvalues of such an equation
furnish the ionization energy of dopants as a fiancof the screening radius. We
obtained an approximate expression of such a famct\We have then obtained an
expression for the screening radius which takes aticount both free carriers and
ionized impurities, thus generalizing a well knof@enmula to the case of more than
one kind of impurity center. The CNE and the scheg problem have to be solved
self-consistently: we wrote a program which givkes tlesired solution. We have
then established a relatively simple model for itheurity band density of states,
which can be applied also to the case of heavilyedosamples while most of the

literature on this topic is limited to the moderdtgping case. We have then written

The incomplete ionization of substitutional dopants in Silicon Carbide 113



Conclusions

a program which implements such a model and mapielaninary comparison of
our results with the experimental ones availablhéliterature.

We have found a ionization degree of about 0.5hfgh doping levels which
compares well with the experimental value. Morepeer model has shown to be
able to describe the metallic behavior observedHRSIC samples heavily doped
with Phosphorus without requiring the onset of imigguconduction. This fact
makes possible the use of our program for the arsatf temperature dependent Hall
effect data also in the cases in which a heavymdppioesn’t permit to use the
standard procedures, as we have shown for thre8i@HR samples. However, our
model has to be further refined in order to obt@icomplete agreement with the

experimental results.
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