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Introduction

After their first demonstration, occurred in the first seventies, optical telecom-
munications experienced a very rapid evolution, which has allowed dramatic changes
not only in the telecommunication networks [1], but also in the services which they
allow to provide to the final users.

The effort which has generated so rapid improvements has been twofold and does
not seem concluded yet. From one side, new and then expensive technologies have
been developed. Such technologies made available, for example, sources and detec-
tors operating at always longer wavelengths, to take advantage of lower absorption
losses of silica fibers, optical amplifiers, to allow transoceanic links with less re-
peaters, high speed modulators, to modulate directly the optical signal, Wavelength
Division Multiplexing (WDM) systems [2], to transmit many independent channels
on the same fiber and then increase the overall bandwidth. Research is not con-
cluded, anyway, as there are still some bottlenecks which should be eliminated. For
example, a cost effective way to perform all optical wavelength conversion or switch-
ing and routing operations without high-speed electronic data processing which re-
quires opto-electrical and electro-optical conversions has not yet been found. To
this purpose new components, for example based on non linear effects [3], are under
investigation.

But it must also be acknowledged that the attempts to advance technology be-
yond its present limits are not the only challenge researchers have to face. The
widespread application of optical technologies, in fact, has made cost reduction and
ease of operation an equally important issue. In view of a general system opti-
mization, also the design of basic elements should then be reconsidered. A typical
example is device pigtailing. Low loss connection of an optical fiber to an integrated
optical waveguide is a critical operation which requires time consuming alignment
procedures and expensive micropositioning systems. However, for mass production,
an easy operation with low positioning tolerances should be done to reduce cost and
time.

Coupling does not only introduce loss problems. In non linear optics and namely
in frequency conversion experiments, for example, waveguides which are monomode
at longer wavelengths are generally multimode at shorter ones [4]. The presence of
higher order modes reduces the process efficiency. In these cases, it would then be
important that the field coming from a shorter wavelength device could be trans-
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formed into the field of the long wavelength waveguide filtering higher order modes
to avoid the drawbacks caused by their presence.

It is also worth to be noticed that the set up of new kind of transmission systems
and the efficient solution of basic problems may not be independent. For example,
in transmission systems exploiting quantum properties of photons [5], allowing a
new kind of information cryptography [6] and then attracting as they seem a good
solution to the privacy problems, loss reductions can be obtained only by optimizing
all the component as bits are associated to single photons (Qbit), which then cannot
be amplified with classical amplifiers as, in this case, all the information would be
lost.

The simple examples mentioned before show how the quest for new and simple
optical devices has not yet reached its end. Instead of using time consuming oper-
ations or huge technological efforts, a careful rethinking of the devices, exploiting
new structures or physical principles seems then the way to follow.

This thesis tackles the problem of conceiving, designing and realizing new devices
to solve the basic problem of obtaining low loss and efficient device coupling. To
this purpose we considered the so called segmented waveguides . They are waveguides
with longitudinal variations of their refractive index. These variations can be not
only periodic, as it happens in gratings, or, more generally, in the so called Photonic
Crystals [7], but can also be suitably tailored. The versatility provided by their
many degrees of freedom has suggested us to investigate if they could be a way to
fabricate low loss couplers and mode filters.

This study has been carried out in all the steps necessary to demonstrate de-
vices operation, starting from their design, exploiting theoretical features of these
components also using suitable numerical techniques, through their fabrication and
performing also their characterization. The material chosen for the realization is
Lithium Niobate (LiNbO3), which is interesting for its low losses at the standard
telecommunications wavelengths and its good non linear as well as good electro-
optics properties. We have then realized a setup suitable to evaluate the perfor-
mances of the realized devices and compare them with the numerical predictions.
Coupling losses reduction and mode filtering will be the particular examples in which
the use of segmented waveguides will be proposed as a technologically simple and
efficient solution to obtain the desired result to improve performances.

In chapter 1, the properties of the segmented waveguides will be studied first,
introducing general principles with simple 1D models, and extending them to the
more interesting cases of slab and channel waveguides. In chapter 2, numerical tools
developed to model segmented waveguides in their 3D general structure will be in-
troduced. After their design, segmented waveguide based devices have been realized
starting from mask preparation up to device fabrication and characterization. Fabri-
cation techniques will be described in chapter 3, while in chapter 4 the experimental
set up used for device characterization will be described. The measurement appa-
ratus is an all-in-one set up conceived to evaluate not only propagation losses or
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guided mode size but also effective group index and dispersion for both integrated
optical waveguides and optical fibers. In chapter 5 the results obtained for tapers
characterization will be described showing that segmented waveguides allow realiza-
tion of couplers with coupling losses reduced by up to 0.78 dB. These devices have
also been successfully introduced, with similar performances, in a complex device for
quantum communication like a quantum relay. In chapter 6 we will report results
concerning a modal filter designed to operate at the wavelength λ = 840 nm. In
particular it will be described the design of the two tapers present in this component
in order to provide a fundamental mode transformation without the introduction of
higher order modes. Finally conclusions will be drawn.
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Segmented structures

1.1 Introduction

In this chapter, the characteristics of electromagnetic field propagation in wave-
guides with longitudinal changes of the refractive index will be described. The
general features of these structures will be introduced starting from the case of peri-
odically segmented waveguides , i.e. structures in which such changes are longitudi-
nally periodic. The very simple case of 1D periodic structures will be preliminarily
used to determine analytically their dispersion curves and different possible opera-
tion regimes. It will also be shown that many properties of these structures can be
determined also studying an equivalent continuous structure. The obtained results
will then be extended to 2D and 3D structures such as integrated optical slab or
channel waveguides. In the last part of the chapter we will relax the constraint of
regular periodicity and introduce the more general concept of segmented waveguide
where period and other device parameters can be varied longitudinally. In this
case the properties of periodic waveguides will be considered valid locally with the
same idea leading to define local normal modes in longitudinally varying continuous
structures. After reminding some well known applications of these structures, the
possible uses of segmented waveguides studied in this thesis will be introduced.

1.2 Propagation in periodic media

In order to show the properties of an electromagnetic field propagating through
a periodic medium, a simple 1D model can be used [8, 9, 10, 11]. The structure
is constituted by the regular repetition, with period P of layers alternatively with
high (width equal to a) and low (width equal to b) refractive indices, with infinite
dimensions in the two x and y directions orthogonal to z, as schematically illustrated
in 1.1.

One of the most important parameters for the characterization of any optical
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Figure 1.1: Ideal 1D periodic structure, consisting of alternating layers of low and
high index. P is the period of the structure, a and b are respectively the length of
the high (H) and of the low (L) refractive index segments.

structure is the so called dispersion function. Dispersion describes, in fact, the
frequency (or wavelength) dependence of the wave speed. For the structure of figure
1.1, the dispersion functions depend on the incident field polarization. In particular
for TE and TM polarization of an incident plane wave the following equations hold
respectively [11, 10]:

cos(Kb) cos(Qa)− Q2 + K2

2QK
sin(Kb) sin(Qa) = cos(kzP ) (1.1)

cos(Kb) cos(Qa)− ε2
LQ2 + ε2

HK2

2εLεHQK
sin(Kb) sin(Qa) = cos(kzP ) (1.2)

where
K2 = ω2µ0εL − k2

x − k2
y (1.3)

Q2 = ω2µ0εH − k2
x − k2

y (1.4)

are the propagation constants along the longitudinal direction z. If propagation
occurs exactly along the longitudinal direction (z), the two propagation vectors kx

and ky vanish and the dispersion functions for TE and TM modes degenerate.
In figure 1.2 dispersion curves are reported in a normalized reference plane where

Ω is the normalized frequency and κ the normalized wavevector, defined as:

Ω =
P

λ0

(1.5)

κ = kzP. (1.6)

being λ0 the wavelength in vacuum. The dispersion diagrams of these structures
are similar to that reported in figure 1.2. There are infinite dispersion curves along
the Ω axis. They also repeat periodically along the κ axis. Curves are separated
in frequency and form an infinite series of bands. For each of them it is possible to
distinguish three different working regions:
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Figure 1.2: Disperson curves for εL = 5ε0, εH = 10ε0, a = 1.5µm and b = 5µm for
degenerate TE and TM polarizations.

• Band Edge: for values of the normalized wavevector κ corresponding to
π+mπ (where m is an integer constant) the dispersion function exhibits the so
called band edge. The gap between two band edges of different adjacent bands
is the so called band gap. Exciting the structure with a field at a normalized
frequency inside a band gap the propagation vector kz becomes imaginary
[9]. This means that the field can not propagate trough the structure but is
reflected. Bragg gratings work in this region.

• Slow light region: close to the band gap, the dispersion curves are strongly
non linear. In this region, the propagating plane waves are characterized by
slow group velocity (vg) because of the small slope of the dispersion curves(vg =
∂ω
∂kz

).

• Linear region: this third zone is the linear one. In such regime the struc-
ture behaves like an homogeneous medium from a dispersive point of view.
In the rest of the thesis we will be mainly interested in this region. In the
next paragraph this idea will be developed with more mathematical detail to
demonstrate the very important theorem of the equivalent waveguide.

1.3 Equivalence theorem for periodic media

As said before, for frequencies far away from the band gap, the dispersion curve
of a periodic structure is almost linear, as it happens for an homogeneous medium
in the limit of neglecting material dispersion. In this section we then evaluate the
terms of this equivalence. We consider (Ωn, κn), the mid point of the linear part of
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the dispersion curve, as working point. With reference to figure 1.2 the normalized
wavevector κn is:

κn =
π

2
+ nπ, n = 0, 1, 2, ... (1.7)

Replacing 1.7 in equation 1.1 or in 1.2 and noting that:

cos(kzP ) = cos(κn) = cos[(n + 1/2)π] = 0 (1.8)

the dispersion relationship 1.1 or 1.2 with kx = ky = 0 reduces to:

tan(Kb) tan(Qa) =
2QK

Q2 + K2
. (1.9)

This is a transcendental equation and an analytical solution can be obtained only
after some approximations. First of all, observing equations 1.3 and 1.4 we can
write:

Q = K + ∆ (1.10)

where ∆ is related to the difference between εL and εH . Replacing 1.10 in the right
part of equation 1.9 and assuming that ∆/K ¿ 1, it holds:

2QK

Q2 + K2
≈ 1− ∆2

2K2
(1.11)

Neglecting second order infinitesimal terms in ∆/K, equation 1.9 can be approxi-
mated by:

tan(Kb) tan(Qa) ≈ 1. (1.12)

The solution of equation 1.12 can be obtained using the identity:

tan[(m± 1/4)π − ξ] tan[(m± 1/4)π + ξ] = 1 (1.13)

where m is an integer and ξ is arbitrary. Comparing equation 1.12 with the previous
identity, one finds that:

Kb = (m± 1/4)π − ξ

Qa = (m± 1/4)π + ξ. (1.14)

Adding Kb to Qa we get:

Kb + Qa = (m± 1/4)π − ξ + (m± 1/4)π + ξ =

= 2(m± 1/4)π. (1.15)

Replacing the definitions of K and Q (1.3, 1.4) in 1.15 we obtain:

ω
√

µ0 (b
√

εL + a
√

εH) = 2(m± 1/4)π. (1.16)
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m = −1 m = 0 m = 1 m = 2
2(m + 1/4)π −(3/2)π (1/2)π (5/2)π (9/2)π
2(m− 1/4)π −(5/2)π −(1/2)π (3/2)π (7/2)π

n = −1 n = 0 n = 1 n = 2
(n + 1/2)π −(1/2)π (1/2)π (3/2)π (5/2)π

Table 1.1: Sequence of the two equivalent expressions: (m± 1/4)π and (n + 1/2)π
for m and n integers.

For integer values of m, the sequence 2(m±1/4)π (developed in table 1.1) is equiva-
lent to the sequence (n+1/2)π with integers values of n. We can then write equation
1.16 as:

ω
√

µ0 (b
√

εL + a
√

εH) = (n + 1/2)π. (1.17)

Dividing both sides of 1.17 by a + b = P we obtain:

ω(bnL + anH)

c(a + b)
=

(n + 1/2)π

a + b
(1.18)

where nL and nH are the refractive indices of the two segments and c = 1/
√

µ0ε0 is
the light velocity in the vacuum.

Replacing the definition of κn we obtain finally:

ω(bnL + anH)

c(a + b)
=

κn

P
= kz. (1.19)

One can read this as the dispersion function of an homogeneous medium with re-
fractive index neq:

ω =
c

neq

kz (1.20)

having defined

neq =
(bnL + anH)

a + b
=

(bnL + anH)

P
=

=
b

P
nL +

a

P
nH . (1.21)

Moreover, defining the duty cycle DC as the ratio between the length a of the higher
index segment and the period P , we can write:

neq = (1−DC)nL + DCnH = nL −DCnL + DCnH =

= nL + (nH − nL)DC. (1.22)

In conclusion we have shown that in the linear zone of the dispersion curve a pe-
riodic medium is equivalent to an homogeneous one with refractive index equal to
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the average of the two refractive indexes nL and nH weighed by the DC. This de-
pendency of the equivalent index with a parameter like the DC is very interesting
from the technological point of view. The refractive index is, in general, a parameter
fixed by the technology and is then very hard to change. The DC, on the contrary,
is a parameter fixed by the design of the structure and is then relatively simple
to modify. This then allows to modify easily the equivalent index of the structure
without changing the fabrication technology.

1.4 Periodically segmented waveguides

Up to now, the considered structure is infinite in the transversal directions x
and y. This type of structure has a limited range of applications (lens antireflection
coatings, for example) but has no interest for integrated optics as the field is not
confined. We will then consider now structures that arrange the periodicity of the
refractive index, in the propagation direction, and also allow transversal confine-
ment of the field. Two examples of these structures are respectively the periodically
segmented slab (in the following also denoted as periodic slab) and the periodically
segmented waveguide (in the following also denoted as periodic waveguide) whose
structures are sketched in figure 1.3. For the periodic slab, the confinement of the

n

LD

sn

P

max
W

LD

sn

P

maxn

Figure 1.3: Representation of a periodic slab (left part of the figure) and of a periodic
waveguide (right part).

field is only in one direction and is guaranteed by the total reflection at the film-
substrate interface, while, for the periodic waveguide, confinement occurs in both
transversal directions.

The electromagnetic field propagating through a periodic slab or waveguide still
obeys the equivalent waveguide theorem. Validity of equation 1.22 also for confined
period structures has been confirmed by many publications [12, 13, 14, 15]. These
results confirm that for wavelengths far away from a band gap, a periodic waveguide
is equivalent to a continuous one with the same width and depth but with refractive
index equal to:

neq = ns + DC∆nmax (1.23)
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where ∆nmax and ns are respectively the maximum and the substrate refractive
index of the periodic waveguide. The use of periodic waveguides allows then to
artificially tune the refractive index of the waveguide without changing dopants or
technology.

The presence of longitudinal discontinuities in the waveguides, however, also
introduces propagation losses as the guided mode couples to radiation modes. This
point is important and merits to be investigated with some more detail.

1.5 Propagation losses in periodically segmented

waveguides

As just said, it is reasonable to expect that, passing from a continuous waveguide
to a periodic one, losses appear and increase for decreasing duty cycle as the fraction
of high index material in the period, which allows field confinement, is reduced. In
the low index zone, the field is not confined and is then coupled to radiation modes.
The field then spreads and when it reaches the next higher index piece of waveguide
it can not be totally coupled back to the guided mode. The smaller is the guiding
segment with respect to the period, the larger will be then the expected losses.

Amazingly, this explanation turns out to be valid only for duty cycles from 0.5
to 1. Further reduction of the duty cycle, in fact, leads to a maximum but then
losses are again reduced approaching DC = 0. This loss reduction is limited by the
presence of the cutoff wavelength, which limits the possible DC reduction.

This behavior has been confirmed both numerically [16, 14] and experimentally
[17, 18]. An explanation of the phenomenon is developed in the following. The
electromagnetic field in the periodic core can be expressed as a combination of the
so called spatial harmonics, i.e. solutions with longitudinal propagation constant
given by:

β + nG, n = ±0, 1, 2...; G =
2π

P
. (1.24)

In cover and substrate, only the plane waves with the same longitudinal propagation
constant can contribute to the field structure and only some of them significantly
contribute to the overall field. If the transversal propagation constant of these
planes waves has a small propagation factor in the transversal direction, the mode
is still practically confined. More details on this can be found, for example, in [14].
Computational result of propagating losses as a function of DC is shown in figure
1.4 for a slab waveguide. The attenuation peak at DC slightly larger than 0.9 is due
to Bragg reflection in the structure. The possibility of having small radiation losses
allows then the use of segmented waveguide as standard component in integrated
optics.
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Figure 1.4: Field attenuation versus DC in periodic waveguide, from Fogli et al.
[14].

1.6 Cutoff properties of periodically segmented

waveguides

A further interesting properties of periodic waveguides concerns the dependence
of the cutoff wavelength on the DC [19]. Cutoff is the condition for which the ef-
fective index of the propagating mode becomes equal to the substrate index. Such
condition implies that the mode is no longer confined but is spread out in the sub-
strate. Fixing the transversal index distribution in a continuous waveguide (CWG)
the cutoff condition depends only on wavelength.

In order to understand how the characteristics of a periodic waveguide can control
the cutoff wavelength, we consider the easier case of a periodic slab and then we
extend the result in the case of a periodic waveguide.

For a slab waveguide the normalized frequency [20] is defined as:

V = LD
2π

λ0

√
(n2

max − n2
s) (1.25)

where nmax is the maximum refractive index of the slab waveguide, ns is the substrate
refractive index and LD is the depth of the waveguide. The expression 1.25 can be
used for both the step index [21, 22] and the graded index slab [20]. For the diffused
slab waveguide the only assumption is that the index profile decreases monotonically
from the maximum surface value to the substrate one. At cutoff, the normalized
frequency V depends only on the asymmetry parameter a [22] defined as:

a =
n2

s − n2
c

n2
max − n2

s

(1.26)

where nc is the cladding refractive index. Assuming nmax > ns > nc, the parameter
a can vary between 0, for the perfect symmetric structures (ns = nc) and infinity,
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for structures with strong asymmetries (ns 6= nc and ns → nmax). In the case of
integrated optical devices the cladding is generally air and the structures present
strong asymmetries. This means that a is almost infinity and for all the devices
of this type the value of V is the same. In particular it is possible to say that the
normalized frequency, at cutoff, is the same for a slab waveguide (CWG, continuous
waveguide) and for a periodic slab (PWG, periodic waveguide):

V cutoff
PWG = V cutoff

CWG (1.27)

As a consequence, changing the DC of a periodic waveguide, the cutoff wavelength
is modified too. This is a consequence of the equivalence theorem and of equation
1.27. Writing nmax as:

nmax = ns + ∆n (1.28)

and assuming a small index change:

∆n2 ¿ 2ns∆n (1.29)

we obtain: (
n2

max − n2
s

) ≈ 2ns∆n. (1.30)

Replacing approximation 1.30 in the definition of the normalized frequency 1.25, we
obtain the following expression for V 2:

V 2 = L2
D

(
2π

λ0

)2

(n2
max − n2

s) ≈ L2
D

(
2π

λ0

)2

(2ns∆n). (1.31)

Equation 1.31 can be evaluated in the case of a continuous slab and a periodic
slab, taking into account the dispersive behavior in frequency of ns and δn. For the
continuous slab it holds:

(V cutoff
CWG )2 = L2

D

(
2π

λCWG

)2

2ns(λCWG)∆n(λCWG) (1.32)

where λCWG is the cutoff wavelength of the continuous slab. For the periodic slab
it holds:

(V cutoff
PWG )2 = L2

D

(
2π

λPWG

)2

2ns(λPWG)∆neq(λPWG) (1.33)

where λPWG is the cutoff wavelength of the periodic slab and ∆neq(λPWG) can be
expressed using the relation of the equivalent waveguide 1.23 as:

∆neq(λPWG) = DC∆n(λPWG). (1.34)

Using 1.34, 1.27, 1.32 and 1.33 we can write:

λ2
PWGns(λCWG)∆n(λCWG)

λ2
CWGns(λPWG)∆n(λPWG)

= DC. (1.35)
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The terms ns(λCWG)/ns(λPWG) and ∆n(λCWG)/∆n(λPWG) on the left side of equa-
tion 1.35 are related to the dispersive behavior of the materials. Neglecting material
dispersion, equation 1.35 can be simplified to:

DC =
λ2

PWG

λ2
CWG

. (1.36)

Figure 1.5 shows a plot of the cutoff wavelength versus the DC for a periodic
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Figure 1.5: Cutoff wavelength as a function of the duty cycle for a periodic slab
with nmax = 2.2443, ns = 2.1897, nc = 1 and Ld = 0.67µm.

slab. Another way to visualize the result given by 1.36 is reported in figure 1.6,
where the cutoff wavelength of the periodic slab waveguide can be expressed, for a
fixed DC, as a function of the cutoff wavelength of the continuous slab waveguide.
Noting that a continuous waveguide is a segmented waveguide with DC = 1, we
can rewrite equation 1.35 replacing the continuous slab waveguide parameters with
those of another periodic slab waveguide. To distinguish the two waveguides, suffix
1 will be used for parameters of the original PWG while suffix 2 will indicate the
parameters of the newly introduced one. Equation 1.35 becomes then:

λ2
PWG(DC1)ns(λPWG(DC2))∆n(λPWG(DC2))

λ2
PWG(DC2)ns(λPWG(DC1))∆n(λPWG(DC1))

=
DC1

DC2

. (1.37)

Neglecting dispersion we obtain:

DC1

DC2

=
λ2

PWG(DC1)

λ2
PWG(DC2)

. (1.38)

This result can be generalized in the case of channel waveguide using the relation
between the normalized frequency V for the slab waveguide and the normalized
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Figure 1.6: Periodic waveguide cutoff wavelength versus the cutoff wavelength of a
continuous waveguide for a fixed DC equal to 0.55.

frequency V c for a channel waveguide [23].

V c = V b
W

LD

(1.39)

where W is the width of the channel waveguide and b is the normalized propagation
constant [23]. Equation 1.39 suggests that for a channel waveguide with fixed width
and depth, the parameter V c is a function of only V and b. Being b a function of V
it is then possible to deduce that V c is directly related to V . At cutoff, V c is then
the same for a periodic and a continuous waveguide. All the results obtained for
slab waveguides can then be extended to channel waveguides.

1.7 Segmented waveguides

Up to now, we have discussed the properties of periodically segmented wave-
guides. It is anyway possible to imagine to vary longitudinally any of the parameters
describing one of the features of the periodic waveguide: the period P , the duty cycle
DC and also the lateral width of the pieces of waveguides forming the structure. In
this case only numerical approaches can be used to determine the electromagnetic
behavior of these structures as the propagation constant β is no longer constant, but
varies with z and the ansatz E(x, y, z) = E(x, y) e−jβz cannot be set to determine
the modes of the structure.

It is anyway possible to assume that, locally, the guided field is the same for both
a structure with longitudinal features equal anywhere and those of the considered
section. This is not rigorous, but it is anyway useful, mainly when longitudinal
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changes are “slow” with respect to the wavelength, so that one can suppose that
there are no significant changes in the propagation constant or important reflections
[24]. We will refer to this structures simply denoting them as segmented .

This conceptually simple extension opens a lot of possibilities to imagine new
types of structures, but also sets the huge problem of designing a structure optimiz-
ing many parameters at the same time. This task can in effect be tackled only in
a two step process: the former conceiving the structure with the desired properties
using simple, also analytical, approaches; the latter refining the design using 2D
or 3D numerical methods, and, in case, iterating the process until the desired de-
vice performances are envisaged. This allows to minimize the number of prototypes
which must be fabricated. This was in effect the way of working used in this work.

Before entering into detailed descriptions of the realized devices, it is anyway
worthwhile provide a brief summary of the most important applications of (peri-
odically) segmented structures in optical transmission systems and then provide a
general description of the problems to be solved by this kind of devices.

Segmented waveguides have been widely used both for linear and non linear
applications such as Bragg reflectors, dispersion compensators, sensors, wavelength
converters, frequency generation, etc. More details and references can anyway be
found in many text books or papers, such as, for example [25, 26, 27, 28, 29, 30, 31].

We now focus our attention to the two particular examples which will have been
deeply investigated in this thesis work. They operate in the almost linear part of the
dispersion characteristic (figure 1.2) and then do not present any Bragg reflection
effect. This way, the use of the local mode approximation will be allowed.

1.7.1 Mode transformers: Taper

The mode transformers or tapers are devices able to couple two different optical
waveguides allowing maximum energy transfer. Coupling two different waveguides,
in fact, induces losses which can be very important. The first cause of loss is related
to Fresnel reflections, due to the refractive index mismatch of the two waveguides.
The second contribution to the coupling losses is related to the different mode shape
in the two structures. If the two modes are different, continuity conditions at the
interface induce coupling also to the radiating modes or to higher order modes, if
they exist. This introduces losses as well.

Fresnel losses can be reduced using proper index matching materials.
To minimize shape mismatch losses, a mode transformer should be placed (as

schematically shown in figure 1.7) between the two structures to be coupled, A and B.
The three goals of a taper are: reduction of the interface reflections, improvement of
the mode overlap at the interfaces and reduction of the mode transformation losses.
The most interesting application of the taper is coupling optimization between an
integrated optical waveguide and an external optical fiber as these two guides have
large structural differences. In these cases the presence of a taper between waveguide
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?A B

Taper

Figure 1.7: Schematic of the taper insertion between two different optical structures.

and fiber turns out favorable.
In order to realize a taper, different solutions can be envisaged, depending on

the specific requirements and the available technology. The first idea that can be
proposed in order to increase the propagating mode size in a waveguide is based on
a gradual increase of the waveguide size. An example of this type of structure is
shown in figure 1.8. The advantage of this kind of taper is the fabrication simplicity.

Core of the fibreWaveguide

Figure 1.8: Schematic representation of a taper obtained by increasing the width of
the waveguide in the propagation direction.

But a taper of this type it affected by some problems. First of all it is not always
true that increasing the size of an optical waveguide also induces an increase of the
guided mode size. Two phenomena exist, in fact, when the dimension of a waveguide
is increased. The first phenomenon is the increase of the mode size related to the
fact that the guiding structure is larger, the second is the increase of the effective
index of the mode, that induces, on the contrary, a better confinement of the field.

The presence of these two effects has the consequence that the mode size can
not change monotonically with the waveguide dimension, but shows a minimum
as sketched in figure 1.9. For a fixed fabrication technology an optical waveguide
can be on the left or on the right of the characteristic curve minimum. Increasing
the waveguide section when the initial operating condition is on the right of the
minimum means in effect an increase of the mode size. But, if the initial operating
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condition belongs to the left part of the curve, the increase of the waveguide size
causes an unwanted reduction of the mode size.
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Figure 1.9: Representation of the fundamental mode width in a generic optical
waveguide as a function of the waveguide width (continuous line) resulting on the
contribution of the effective index (dashed line) and waveguide size (dotted line).

Another problem that occurs in this type of taper is that often, it is not techno-
logically easy or even possible to modify the waveguide depth. This causes a strong
ellipticity of the waveguide mode resulting completely unsatisfactory from the point
of view of the overlap with the fundamental mode of a circular fiber. The last draw-
back of this solution is that increasing the waveguide size at a fixed wavelength the
structure can become multimode, which is a condition obviously to be avoided.

A second kind of taper is shown in figure 1.10. A reduction of the waveguide
size can in fact induce a mode size increase as suggested in figure 1.9.

Core of the fibreWaveguide

Figure 1.10: Schematic representation of a taper obtained reducing the width of
the waveguide in the propagation direction. The mode size widens approaching the
cutoff condition.

Reducing the size of the waveguide, in fact, induces a reduction of the effective
index and, as a consequence, the mode turns out to be less confined. The advantages
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of this type of taper are due to the fact that an increase of both the lateral and
vertical mode size can be obtained and that the structure can not become multimode.
The drawback are related to technological problems. The only parameter which can
be easily controlled during fabrication is the width of the waveguide and this is the
only parameter which can be used to modify the mode size in both directions. This
makes the design of this taper critical. Moreover curves at the left of the minimum
of figure 1.9 are usually very steep as operating conditions approach cutoff. This
means that a small imprecision on the determination of the width of the taper can
cause large changes of the mode size.

In this work we have investigated the possibility to use segmented waveguides
[32] to provide a third way to fabricate tapers. Expected advantages are fabrication
simplicity and the possibility to eliminate the problems evidenced for the previously
described structures [33].

Core of the fibreWaveguide

Figure 1.11: Schematic representation of a segmented waveguide taper obtained
with a graded variation of the DC in the propagation direction.

The structure of this segmented waveguide taper is shown in figure 1.11. The
continuous waveguide becomes segmented with variable duty cycle along the prop-
agation direction. Once reached the desired duty cycle the mode can be stabilized
with a periodically segmented waveguide. From the equivalent waveguide theorem
this structure can be analyzed as a continuous waveguide with refractive index grad-
ually reduced along the longitudinal direction. As a result the mode size is therefore
increased both in width and depth. The final mode shape depends on the combina-
tion of the final duty cycle and the waveguide width. The possibility of controlling
the mode size through two independents parameters is an important features which
provide less critical design of the structures, with respect to the previously presented
solutions. Moreover, no unwanted higher order modes appear as segmentation re-
duces the effective index with respect to that of the continuous waveguide.

1.7.2 Mode filters

A mode filter is a device able to eliminate one or more higher order modes
propagating in a multimode waveguide. Such operation turns out to be particularly
important in non linear applications, for example in wavelength conversion. In
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the case of a difference-frequency mixer, for example, a pump at frequency ωp is
mixed with a signal with frequency ωs in order to generate an idler frequency ωi =
ωp−ωs. This type of interaction is used in many applications, from the generation of
particular radiation in the near infrared, to wavelength conversion for WDM systems
or for single photon generation in quantum communication applications. Usually
idler or signal radiations have wavelength significantly larger with respect to that
of the pump. Even if the guide is monomode at the idler and signal wavelengths,
it is multimode at the pump frequency. Therefore, it turns out difficult to couple
in efficient way the laser radiation of the pump to the fundamental mode of the
waveguide. Moreover, the unavoidable excitation of higher order modes generates
undesired peaks in the fluorescence output spectrum.

Using segmented waveguides it is possible to solve also this problem. Higher
order modes at the pump wavelength can in fact be filtered by simply reducing the
value of the duty cycle DC of a segmented waveguide thus leading those modes to
cutoff. This is shown in figure 1.12 where the effective indices of the propagating
modes in the segmented waveguide are reported as a function of DC.
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Figure 1.12: Effective index values of guided modes as a function of the DC. The
substrate refractive index is ns = 2.1788 (dashed line), for effective index neff

smaller than ns the corresponding mode is at cutoff.

The waveguide considered in this example guides five modes at λp = 775 nm.
Reducing DC, the value of their effective indices is reduced. For values of the DC
between 0.2 and 0.4 just one mode results in propagation (neff > ns). Taking
advantage of this property, a segmented waveguide structure acting as mode filter
has been proposed [34]. A schematization of this solution is shown in figure 1.13.

The input section is a segmented waveguide with constant DC determined to
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TAPER WaveguidePSW

Figure 1.13: Schematization of the mode filter proposed by [34] constituted by a
segmented waveguide with constant DC (PWG) and a taper which optimize the
coupling with the continuous waveguide.

guarantee monomode operation for the pump and also the propagation of the signal
at higher wavelength. Through the taper, the fundamental mode of the segmented
waveguide is slowly transformed into the fundamental mode of the continuous wave-
guide. This operation must be performed accurately in order to reduce both the
excitation of higher order mode and the mode transformation losses. In the case
shown in figure 1.13, also the waveguide width is tapered in the propagation direc-
tion. This particular taper design is necessary to obtain large mode transformations
and also to better control the ellipticity of the mode.
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2

Numerical methods

2.1 Introduction

In this chapter the main features of two numerical tools used both to design the
components and analyze the experimental results comparing them with theoretical
predictions will be discussed. The two algorithms solve the fundamental problems
one faces when designing a component: computing both the field evolution along a
longitudinally varying guide and the field which can be guided by a longitudinally
invariant structure. From the mathematical point of view, the former is an initial
value problem, while the latter is a boundary value problem.

The development of the source code allows to control in detail all the modelling
parameters for the different devices. The choice to develop original versions of the
codes instead of buying commercial ones is due to the fact that in this way we have
the full control of all the introduced assumptions and a precise knowledge of the
theoretical and numerical limitations.

The first technique is the so called full vectorial Finite Difference 3D Beam
Propagation Method (FD-BPM)[35]. It uses a finite difference scheme to solve the
Helmholtz equations in the case of unidirectional propagation of the electromagnetic
field trough the optical structure. The formulation originally adopted and extended
for this work is based on the Helmholtz equations written for the electric field.
However, numerical instability problems affecting this kind of solver have been found.
To eliminate them, a 3D BPM based on the so called magnetic formulation was then
developed. It solves the Helmholtz equation written for the magnetic field. In order
to improve the result accuracy and to allow the study of wide-angle propagations,
the paraxial approximation has been replaced by the Padé approximants in both
codes. The anisotropic Perfectly Matched Layer (PML) boundary condition [36]
essential to absorb outgoing radiation was also introduced.

The second numerical technique developed and discussed in this chapter allows
to calculate the mode properties (shape, effective index) of z-invariant structures. It
is a Mode Solver and solves the Maxwell equations by a Finite Difference technique
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in the Frequency Domain (FD-FD). This tool is also used to calculate the initial
conditions (input field) of the 3D BPM if a mode of the structure is to be considered.

2.2 3D fully vectorial Beam Propagation Method

The time domain electromagnetic field behavior in a photonic devices is described
by the Maxwell equations and by the costitutive relations of the material. In a
Cartesian orthogonal reference frame they can be written as:

∇× E(x, y, z, t) = −∂B(x, y, z, t)

∂t
(2.1)

∇×H(x, y, z, t) =
∂D(x, y, z, t)

∂t
+ J(x, y, z, t) (2.2)

∇ ·D(x, y, z, t) = ρ(x, y, z, t) (2.3)

∇ · B(x, y, z, t) = 0 (2.4)

where

• E and H are the electric and magnetic field vectors

• D and B are the electromagnetic and magnetic induction vectors

• J is the source current vector

• ρ is the electric charge density

• ε and µ are the tensors of dielectric permittivity and magnetic permeability.

Electric and magnetic induction vectors can be expressed as:

D(x, y, z, t) = ε(x, y, z, ω,
∣∣E∣∣) · E(x, y, z, t) (2.5)

B(x, y, z, t) = µ(x, y, z, ω,
∣∣H

∣∣) ·H(x, y, z, t) (2.6)

which set the relations between electromagnetic fields and material properties. Per-
mittivity and permeability are represented by tensorial quantities in order to take
into account anisotropic materials. They depend on the considered point (x, y, z),
the frequency (ω) and on the electric and magnetic field intensity. In this way we
can consider non homogeneous materials with both frequency dispersion and non
linearity. The solution of this completely general problem is not always necessary
and we can then simplify the model according to the characteristics of the considered
structures.

We can first assume that the tensor µ is a scalar constant:

µ = µ0 = 4π10−7H/m (2.7)
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while for the dielectric properties we consider a linear, non dispersive and isotropic
material. In this case ε(x, y, z, ω,

∣∣E
∣∣) reduces to a scalar function of the point:

ε(x, y, z). We can finally assume also that no charges (ρ = 0) and no sources (J = 0)
are present in the computational domain.

For the linearity of Maxwell equations we can consider also a stationary harmonic
regime. This allows to introduce complex vectors [37]:

E(x, y, z, t) = <{
E(x, y, z) ejωt

}

H(x, y, z, t) = <{
H(x, y, z) ejωt

}

where <{·} denotes the real part of the argument.
Introducing all these hypotheses in the Maxwell equations, after some simple

algebra, we get:

∇2E(x, y, z) + k2
0n

2(x, y, z) E(x, y, z) = ∇ (∇ · E(x, y, z)
)

(2.8)

where k0 = 2π/λ0 is the wavenumber in vacuum and n(x, y, z) =
√

ε(x,y,z)
ε0

is the

local refractive index.
Being ρ = 0, equation 2.3 reduces to ∇ ·D(x, y, z, t) = 0 and we can write:

∇ ·D(x, y, z) = ∇ · ε(x, y, z)E(x, y, z) =

= ε(x, y, z)∇ · E(x, y, z) +∇ε(x, y, z) · E(x, y, z) =

= 0. (2.9)

From this, it follows immediately that ∇ · E(x, y, z) can be expressed as:

∇ · E(x, y, z) = −∇ε(x, y, z)

ε(x, y, z)
· E(x, y, z) =

= −∇n2(x, y, z)

n2(x, y, z)
· E(x, y, z). (2.10)

Inserting 2.10 in 2.8 we obtain:

∇2E(x, y, z) + k2
0n

2(x, y, z)E(x, y, z) = ∇ (∇ (
ln n2(x, y, z)

) · E(x, y, z)
)
. (2.11)

This is the Helmholtz vectorial equation. In the adopted Cartesian reference frame,
this equation can be separated in tree equations of the type:

∂2Ei(x, y, z)

∂x2
+

∂2Ei(x, y, z)

∂y2
+

∂2Ei(x, y, z)

∂z2
+

+k2
0n

2(x, y, z)Ei(x, y, z) = − ∂

∂i

[
Ex(x, y, z)

∂ ln n2(x, y, z)

∂x
+

Ey(x, y, z)
∂ ln n2(x, y, z)

∂y
+ Ez(x, y, z)

∂ ln n2(x, y, z)

∂z

]
(2.12)



26 2. Numerical methods

where i can be x, y or z and Ex(x, y, z), Ey(x, y, z), Ez(x, y, z) are the cartesian
components of the electric field:

E(x, y, z) = Ex(x, y, z)x̂ + Ey(x, y, z)ŷ + Ez(x, y, z)ẑ. (2.13)

If z is associated to the propagation direction, one can write any component as the
product of a rapidly varying propagation term (e−jk0n0z) and a slowly varying one
Fi(x, y, z), the so called pulse envelope:

Ei(x, y, z) = Fi(x, y, z) e−jk0n0z (2.14)

where n0 is a properly chosen reference refractive index.
Replacing 2.14 in 2.12 for i = x we obtain:

∂2Fx(x, y, z)e−jβz

∂x2
+

∂2Fx(x, y, z)e−jβz

∂y2
+

∂2Fx(x, y, z)e−jβz

∂z2
+

+k2
0n

2(x, y, z)Fx(x, y, z)e−jβz = − ∂

∂x

[
Fx(x, y, z)e−jβz ∂ ln n2(x, y, z)

∂x
+

Fy(x, y, z)e−jβz ∂ ln n2(x, y, z)

∂y
+ Fz(x, y, z)e−jβz ∂ ln n2(x, y, z)

∂z

]

where β = k0n0 is the reference propagation constant. Developing separately the
three derivatives:

∂2Fx(x, y, z)e−jβz

∂x2
= e−jβz ∂2Fx(x, y, z)

∂x2

∂2Fx(x, y, z)e−jβz

∂y2
= e−jβz ∂2Fx(x, y, z)

∂y2

∂2Fx(x, y, z)e−jβz

∂z2
=

∂

∂z

(
e−jβz ∂Fx(x, y, z)

∂z
− jβFx(x, y, z)e−jβz

)

we obtain:

e−jβz ∂2Fx(x, y, z)

∂x2
+ e−jβz ∂2Fx(x, y, z)

∂y2
− jβe−jβz ∂Fx(x, y, z)

∂z
+

+e−jβz ∂2Fx(x, y, z)

∂z2
− jβe−jβz ∂Fx(x, y, z)

∂z
+ (−jβ) (−jβ) e−jβzFx(x, y, z) +

+k2
0n

2(x, y, z)Fx(x, y, z)e−jβz = − ∂

∂x

[
Fx(x, y, z)e−jβz ∂ ln n2(x, y, z)

∂x
+

+Fy(x, y, z)e−jβz ∂ ln n2(x, y, z)

∂y
+ Fz(x, y, z)e−jβz ∂ ln n2(x, y, z)

∂z

]
.

This equation can be rearranged as:

−∂2Fx(x, y, z)

∂z2
+ j2β

∂Fx(x, y, z)

∂z
=

∂2Fx(x, y, z)

∂x2
+

∂2Fx(x, y, z)

∂y2
+
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+
(
k2

0n
2 − β2

)
Fx(x, y, z) +

∂

∂x

[
Fx(x, y, z)

∂ ln n2(x, y, z)

∂x
+

+Fy(x, y, z)
∂ ln n2(x, y, z)

∂y
+ Fz(x, y, z)

∂ ln n2(x, y, z)

∂z

]
. (2.15)

If one can assume that the so called Slowly Varying Envelope Approximation
(SVEA) ∣∣∣∣

∂2Fx(x, y, z)

∂z2

∣∣∣∣ ¿ 2k0n0

∣∣∣∣
∂Fx(x, y, z)

∂z

∣∣∣∣ (2.16)

holds, the contribution of ∂2Fx(x,y,z)
∂z2 is negligible in 2.15. This approximation, also

known as paraxial approximation [38], fixes a limit on the variation of field envelope
during the propagation. If SVEA is a too much restrictive condition, it is possible
to introduce the Padé approximate operators. They allow to better describe wide
angle propagation [39, 40, 41]. The code previously developed was then extended to
include the Padé operators. To do so, we first move all the derivatives of Fx(x, y, z)
to the left side of 2.15 in order to leave on the right side only terms which depend
on Fy and Fz:

∂2Fx(x, y, z)

∂z2
− 2jβ

∂Fx(x, y, z)

∂z
+

+
∂2Fx(x, y, z)

∂x2
+

∂2Fx(x, y, z)

∂y2
+

∂

∂x

(
Fx(x, y, z)

∂lnn(x, y, z)2

∂x

)
+

+
(
k2

0n
2(x, y, z)− β2

)
Fx(x, y, z) =

= − ∂

∂x

[
Fy(x, y, z)

∂lnn2(x, y, z)

∂y
+ Fz(x, y, z)

∂lnn2(x, y, z)

∂z

]
.

︸ ︷︷ ︸
Q

We can then write:

− ∂

∂z

(
∂

∂z
− 2jβ

)
Fx(x, y, z) = PFx(x, y, z) + Q

= P

(
1 +

Q

PFx(x, y, z)

)
Fx(x, y, z)

which allows to obtain the z-derivative of Fx(x, y, z):

∂Fx(x, y, z)

∂z
= −

P
(
1 + Q

PFx(x,y,z)

)

∂
∂z
− 2jβ

Fx(x, y, z) =
− [P(1+ Q

PFx(x,y,z))]
2jβ

1
2jβ

∂
∂z
− 1

Fx(x, y, z)

=

−j[P(1+ Q
PFx(x,y,z))]
2β

1 + j
2β

∂
∂z

Fx(x, y, z). (2.17)
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From 2.17 we can find the iterative expression of ∂
∂z

by using the Padé approximants:

∂

∂z

∣∣∣∣
p

=

−j[P(1+ Q
PFx(x,y,z))]
2β

1 + j
2β

∂
∂z

∣∣
p−1

. (2.18)

We have obtained a recursive relation for the operator ∂·
∂z

whose precision depends
on the value of p. Increasing p we obtain a better approximation. For example, if
p = 1 we can write:

∂

∂z

∣∣∣∣
1

=
−jP

(
1 + Q

PFx(x,y,z)

)

2β
(2.19)

while for p = 2 we find:

∂

∂z

∣∣∣∣
2

=

−j[P(1+ Q
PFx(x,y,z))]
2β

1 + j
2β

∂
∂z

∣∣
1

=

−j[P(1+ Q
PFx(x,y,z))]
2β

1 + j
2β

−jP(1+ Q
PFx(x,y,z))
2β

=

−j[P(1+ Q
PFx(x,y,z))]
2β

1 +
P(1+ Q

PFx(x,y,z))
4β2

. (2.20)

Usually, we refer to these two examples as Padé approximants of order (1, 0) and
(1, 1) respectively. The first number is the degree of the numerator polynomial,
while the second one is the degree of the denominator polynomial. Note that for
the approximant (1, 0) we obtain the paraxial approximation obtained eliminating
the second order derivative term of the field in the propagation direction. We can
finally write equation 2.17 using Padé approximant (1, 1):

∂Fx(x, y, z)

∂z
=

−j
P(1+ Q

Fx(x,y,z))
2β

1 + j
2β

−jP(1+ Q
PFx(x,y,z))
2β

= −j
N

D
Fx(x, y, z) (2.21)

where N and D are respectively:

N =
P

(
1 + Q

PFx(x,y,z)

)

2β

D = 1 +
P

(
1 + Q

PFx(x,y,z)

)

4β2
.

From 2.21 one then gets:

D
∂Fx(x, y, z)

∂z
= −jNFx(x, y, z).
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Repeating the same procedure for Fy and Fz and separating the contribution of
the different terms, it is possible to rewrite the vectorial equations in the following
compact formulation:

−∂Fx(x, y, z)

∂z
= GxxFx(x, y, z) + GxyFy(x, y, z) + GxzFz(x, y, z)

−∂Fy(x, y, z)

∂z
= GyxFx(x, y, z) + GyyFy(x, y, z) + GyzFz(x, y, z) (2.22)

−∂Fz(x, y, z)

∂z
= GzxFx(x, y, z) + GzyFy(x, y, z) + GzzFz(x, y, z)

From this system of equations it is quite easy to understand how to move from a
vectorial to a scalar formulation of the BPM. First of all, just one equation is needed
and then all the coupling terms must vanish. In many case a scalar formulation can
be used to find preliminary results in structures where the polarization state is
preserved during the propagation. The main advantage is the reduced memory and
time consuming with respect to a full vectorial formulation.

2.2.1 Finite difference schematization

To solve numerically these equations, a finite difference approach has been adopted:
the continuous space is sampled on a lattice structure defined in the computational
region using a ∆x, ∆y, ∆z mesh and all the differential operators are replaced by
their corresponding finite-difference ones. This can be done observing that a com-
plex function f(x) of a real variable x, which can be derived at x = a, has derivatives
in this point equal to:

f ′(a) = lim
h→0

f(a + h)− f(a)

h
. (2.23)

This derivative can be approximated by a central difference scheme as:

f ′(a) ∼= f(a + h)− f(a− h)

2h
. (2.24)

The same procedure can be applied to the second order derivative:

f ′′(a) ∼= f(a + h)− 2f(a) + f(a− h)

h2
=

f ′(a + h)− f ′(a− h)

2h
. (2.25)

Applying this rules to equations 2.22 the differential problem becomes the following
algebraic one:

[A] · x = b (2.26)

where [A] is the coefficient matrix, b is the known terms vector and x is the unknown
vector.
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2.2.2 Crank-Nicholson method

As said before, BPM is an initial value problem. Once the initial conditions are
set, the evolution of the propagating field can be calculated. In particular, from the
knowledge of the field envelope Fi in a section l (in the following F l

i ) the algorithm
calculates Fi in the following section l + 1 (in the following F l+1

i ). The choice of
the differential scheme is important because it affects both the stability and the
performance of the algorithm. Considering, for example, the equation at the partial
derivatives:

∂f(x, y, z)

∂z
= a1

∂g(x, y, z)

∂x
+ a2

∂g(x, y, z)

∂y
(2.27)

we can adopt two different methodologies to obtain a numerical solution:

• explicit scheme: the solution is obtained approximating 2.27 with:

f l+1
(x,y,z) − f l

(x,y,z)

∆z
= a1

gl
(x+∆x,y,z) − gl

(x,y,z)

∆x
+ a2

gl
(x,y+∆y,z) − gl

(x,y,z)

∆y
. (2.28)

In this case f l+1
(x,y,z) can be directly calculated knowing the complete distribu-

tion of the two functions f(x, y, z) and g(x, y, z) at the previous step l. The
approach is very simple to implement, but there are some constraint which
must be satisfied to guarantee that the algorithm is stable [42].

• implicit scheme:

f l+1
(x,y,z) − f l

(x,y,z)

∆z
=

1

2

{
a1

gl+1
(x+∆x,y,z) − gl+1

(x,y,z)

∆x
+ a2

gl+1
(x,y+∆y,z) − gl+1

(x,y,z)

∆y
+

+a3
gl
(x+∆x,y,z) − gl

(x,y,z)

∆x
+ a4

gl
(x,y+∆y,z) − gl

(x,y,z)

∆y

}
.

(2.29)

In this case, the solution is more complicated because there are more unknowns
at the l +1 step which are related each other. The advantage of this approach
is that this solution is always stable for all the values of ∆z [43, 44, 42].

Our BPM solves the equivalent problem 2.27 modifying the Crank-Nicholson method
[45], which is one of the most popular implicit finite difference numerical schemes.
This method allows to write equation 2.29 in this way:

f l+1
(x,y,z) − f l

(x,y,z)

∆z
= α

{
a1

gl+1
(x+∆x,y,z) − gl+1

(x,y,z)

∆x
+ a2

gl+1
(x,y+∆y,z) − gl+1

(x,y,z)

∆y
+

}l+1

+(1− α)

{
a3

gl
(x+∆x,y,z) − gl

(x,y,z)

∆x
+ a4

gl
(x,y+∆y,z) − gl

(x,y,z)

∆y

}l
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where α is a weighting factor necessary to stabilize the whole system. From the
numerical point of view, the possible values of α can change from 0.5, which allows
very precise solution but causes instability in some cases, to 1 where a numerical
attenuation is introduced perturbing the result but assuring algorithm stability [46].

We followed a mixed approach, in which the explicit scheme was used to evaluate
the coupling terms of 2.22 and the implicit scheme was used for the other terms. At
the point x = h, y = p one can then write:

(
−∂Fx(x, y, z)

∂z

)

h,p

∼= F l+1
x

(h, p)− F l
x
(h, p)

∆z
. (2.30)

The coupling terms GxyFy and GxzFz are developed at l step with the explicit scheme
while the term GxxFx is written using the implicit one. The stability is provided by
the α parameter. After some algebra, the final system turns out to be:

A1(h, p)F l+1
x

(h + 1, p) + A2(h, p)F l+1
x

(h− 1, p)+

A3(h, p)F l+1
x

(h, p + 1) + A4(h, p)F l+1
x

(h, p− 1)+

A5(h, p)F l+1
x

(h, p) = Nx(h, p)

(2.31)

C1(h, p)F l+1
y

(h + 1, p) + C2(h, p)F l+1
y

(h− 1, p)+

C3(h, p)F l+1
y

(h, p + 1) + C4(h, p)F l+1
y (h, p− 1)+

C5(h, p)F l+1
y

(h, p) = Ny(h, p)

(2.32)

G1(h, p)F l+1
z

(h + 1, p) + G2(h, p)F l+1
z (h− 1, p)+

G3(h, p)F l+1
z

(h, p + 1) + G4(h, p)F l+1
z (h, p− 1)+

G5(h, p)F l+1
z

(h, p) = Nz(h, p)

(2.33)

The solution of this system can be obtained using iterative methods [47], in partic-
ular for our BPM we have adopted a GMRES solver.

2.2.3 Perfect Matched Layer

The equations described so far hold in an infinite domain, corresponding to the
transversal section. Their numerical implementation requires that they are limited
to the finite computational domain. Proper boundary conditions must then be set in
order to simulate in the mathematical model the infinite physical domain. Different
approaches have been proposed so far. Absorbing Boundary Conditions (ABC)
[46], which use an artificial layer on the boundary to absorb the incident field, and
Transparent Boundary Conditions (TBC) [48], which simulate the infinite domain
making some assumption on the characteristics of the incident field, have been used
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to reduce field refections but with non satisfactory results. The introduction of
anisotropic absorbing layers called Perfectly Matched Layers (PML) [49, 36] has
efficiently eliminated the field reflection at computational windows. The idea of
Berenger, who first proposed the PML to absorb outgoing radiation [49], was to
divide the magnetic field component Hz into two subcomponents Hzx and Hzy and
to operate on them so that the interface between PML and free space could result
refectionless for all wavelengths, polarizations and incident angles.

Later on, Sacks [50] used the anisotropic material properties (ε, µ, σE, σH) to
describe the absorbing PML layer, where σE and σH are the electric and magnetic
conductibility, respectively. Let us then consider a material with complex diagonal
relative permittivity and permeability tensors given by

εr =




εx
r +

σx
E

jω
0 0

0 εy
r +

σy
E

jω
0

0 0 εy
r +

σy
E

jω




µr =




µx
r +

σx
H

jω
0 0

0 µy
r +

σy
H

jω
0

0 0 µy
r +

σy
H

jω


 .

(2.34)

In order to match the intrinsic impedance of the free space, the condition

ε0εr

ε0

=
µ0µr

µ0

(2.35)

must be satisfied. Therefore it must be:

εr = µr =




a 0 0
0 b 0
0 0 c


 = Λ (2.36)

where

a = εx
r +

σx
E

jω
= µx

r +
σx

H

jω

b = εy
r +

σy
E

jω
= µy

r +
σy

H

jω

c = εz
r +

σz
E

jω
= µz

r +
σz

H

jω
.

By studying the reflection coefficients at the interfaces between the PML region and
free space, we find that in certain circumstances reflection can be zero. For the PML

region with an interface where x = const and y = const, Λ is required to be [51]:

Λx =




a 0 0
0 1

a
0

0 0 1
a


 (2.37)
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for x = const, and

Λy =




1
b

0 0
0 b 0
0 0 1

b


 (2.38)

for y = const. Fhe PML tensor is obtained multiplying the previous two tensors for
the PML regions at the four corners of the computational window:

Λxy = Λx · Λy =




a
b

0 0
0 b

a
0

0 0 1
ab


 . (2.39)

For the full-vectorial formulation we then modify the permittivity and perme-
ability tensors ε and µ to

ε = ε · S−1

µ = µ · S (2.40)

where

S =




SySz

Sx
0 0

0 SzSx

Sy
0

0 0 SxSy

Sz


 . (2.41)

The PML parameters (Sx, Sy, Sz) are assigned to each PML region as shown in figure

2.1: for the non-PML regions, the PML tensor S is an identity matrix, while in the
PML regions the parameters are given by:

Si = 1− j
σMAX

E

ωε0εPML
r

(
ρ

di

)m

, i = 1, 2, 3, 4 (2.42)

where ρ is the distance from the PML boundary, d is the thickness of the PML layer
and m controls the profile of the conductivity. Generally, linear (m = 1), parabolic
(m = 2) and cubic (m = 3) conductivity profiles are assumed. The maximum
electric conductivity σMAX

E and the permittivity of the PML layers are determined
from the required reflection coefficient [52] according to [53]:

Ri = exp

(
− 2σmax

E di

3ε0c
√

εPML
r

)
(2.43)

where Ri is the reflection coefficient of the ith PML region and c is the light velocity
in vacuum. Typically Ri is chosen to be about 10e− 4 [53] and σMAX

E to be about
0.01Ω−1(µm)−1 when the permittivity is chosen as 1. The parameters (Sx, Sy, Sz)
are still all equal to 1 for non-PML regions and assigned according to figure 2.1 for
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Figure 2.1: Computational domain surrounded by perfectly matched layer (PML).

PML regions. Note that the transformations set by equation 2.40 are intrinsically
equivalent to modify the ∇ operator of 2.11 into

∇ = x̂ Sx
∂

∂x
+ ŷ Sy

∂

∂y
+ ẑ Sz

∂

∂z
. (2.44)

However, this does not introduce extra programming complexity, since all the pro-
cedures related to the iterative solver and propagation technique remain unchanged.

2.2.4 BPM validation

Two kinds of validation for the 3D BPM algorithm will be discussed: the effect
of PML and the effect of Padé approximants.

To test the efficiency of the PML absorber, we calculate first Gaussian beam
propagation in the free space with and without absorbing layers. Then we compare
these two results with the correct field obtained adopting a larger computational
window, chosen to avoid interactions between field and domain boundary. Figure
2.2 shows Gaussian beam propagation in the free-space when boundary condition
are absent. The input beam is launched on the (x, y)-plane. As expected, the beam
is reflected when approaching the computational boundary and after some distance
the reflection strongly interferes with the original propagating beam. The total
power within the computational window is conserved. Errors are large, as it can be
observed in the last figure of the sequence.

These results can be compared with those obtained when the free space is sur-
rounded by the anisotropic PML absorber. At the interface between PML and free
space, reflection is completely eliminated, as clearly shown in figure 2.3. In this cal-
culation, the transversal mesh size is given by ∆x = ∆y = 0.2 µm, the propagation
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Figure 2.2: From upper left to lower right: gaussian beam intensity at z = 0,
z = 4 µm, z = 8 µm, z = 12 µm, z = 16 µm, z = 20 µm (Without PML).

step is ∆z = 0.1 µm, and the conductivity distribution inside the PML region has a
parabolic profile.

Figure 2.3: From upper left to lower right: gaussian beam intensity at z = 0,
z = 4 µm, z = 8 µm, z = 12 µm, z = 16 µm, z = 20 µm (With PML).
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Looking at the figures, the field does not seem perturbed by the presence of
the PML layers. To check quantitatively this qualitative result, a simulation with a
bigger computational windows has been made. In the left part of figure 2.4, a section
of the four field profiles (y = 35 µm) calculated at the same plane of z = 20 µm is
plotted. The dashed line refers to the field computed in a 70 µm× 70 µm window;
the black line refers to the field computed in a 40 µm×40 µm window with 20 PML
layers; the red line refers to the field computed in a 40 µm×40 µm window without
PML. The oscillations due to reflections when PML are not used appear clearly,
while the field distribution obtained using PML practically superimpose to the field
computed in the larger domain, thus proving the ability of PML to simulate an
infinite computational domain. The right part of figure 2.4 shows differences among
the results in terms of relative error between the results obtained in the smaller
computational window and those obtained in the larger one. In the PML case the
error is of the order of 10−4 and in the figure it almost coincides with the x-axis.
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Figure 2.4: In the left part we show the field section at z = 20 µm calculated with
PML (black line) and without PML (red line) compared with the numerical result
obtained for a large computational window (dashed line). In the right part we show
the relative error for the PML and non-PML solution respect the case of big domain.

To confirm absorption in the PML layers, figure 2.5 shows the evolution of the
total power in the computational domain during propagation. Power reduction
caused during the propagation by the artificial loss of the PML is evident. From
the physical point of view this power reduction corresponds to the power radiated
outside the computational window.

The second kind of test we have done concern the effect of the Padé approxi-
mant introduction. To do that we consider a tilted gaussian beam propagation in
free space and we compare the two solutions obtained with the paraxial approxi-
mation and with Padé (1,1) with respect to the theoretical field obtained Fourier
transforming the initial beam. The calculation domain is the same adopted for the
PML validation.
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Figure 2.5: Power in the computational window at different propagation steps: con-
stant when PML are not used, decreasing when PML are used.
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Figure 2.6: Comparison between the solutions obtained with the paraxial approxi-
mation and with Padé (1,1) with respect to the theoretical field for a tilted gaussian
propagation in free space at 10◦.

Figure 2.6 shows the results for a propagation angle of 10◦. As one can see only
results obtained using the Padé approximants agree quite well with the expected
field shape, while this does not happen when the paraxial approximation is used.
For larger angles, an higher approximation order with respect to (1,1) is however
necessary.
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2.2.5 Consideration on the non-unitarity of BPM operators

While numerous numerical simulations of optical devices have been performed
with explicitly stable one-way scalar finite-difference electrical field propagation
methods, electric field polarization evolution in complex waveguiding geometries
must be described using the full vectorial finite-element procedures. However, these
algorithms intrinsically violate power-conservation [54]. This is due to numerical
problems induced in difference calculations by the discontinuities of some of the
electric field components at the interfaces between different dielectric materials. To
solve this problem we have implemented also a formulation of the fully vectorial
BPM with PML and Padé (1,1) based on the vector Helmholtz equations written
for the magnetic field instead of the electric field:

∇2H + n2
0k

2
0H +

1

n2
0

∇n2
0 ×

(∇×H
)

= 0 (2.45)

using the condition:

∇ ·H = 0. (2.46)

The magnetic field distribution does not present any discontinuity at dielectric in-
terfaces. With this approach stable solutions has been obtained even in cases where
the E formulation fails. The formal steps necessary to develop the equation to be
solved, formally similar to 2.31, 2.32, 2.33, starting from the Helmholtz equation are
practically the same used for the E field formulation developed in the last section,
and will then not reported, for the sake of brevity.

Figure 2.7 shows the computed fields propagating in a square waveguide (n = 1.1)
surrounded by air using both the E and H formulation. Note that for the electric field
components Ex and Ey discontinuities appear at the interfaces between waveguide
and air in x and y direction, respectively, while the magnetic field is not affected by
these discontinuities.

2.3 Finite difference mode solver

A further code developed and used during this thesis allows to calculate the
modes propagating in a z-invariant structure. In this case just one section of the
structure must be studied, as the ansatz of separation of variables can be done
and the field propagating along z is assume to depend on such a coordinate by the
translation factor (exp (−jβz)).

To implement our mode solver we have adopted the formulation proposed by [55].
The structure is superimposed to a cartesian mesh with not necessarily constant
steps. The general case, for an arbitrary point P inside the mesh with neighboring
points N,W,S,E is shown in figure 2.8. The used Helmholtz equations follows the H
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Figure 2.7: Six components of the fundamental mode of a square waveguide with
refractive index 1.1 surrounded by air calculated with both the E (left) and H (right)
BPM formulations.

scheme for the four subregions (ν = 1, 2, 3, 4):

∂2Hx

∂x2
+

∂2Hx

∂y2
+

(
ενk

2 − β2
)
Hx = 0 (2.47)

∂2Hy

∂x2
+

∂2Hy

∂y2
+

(
ενk

2 − β2
)
Hy = 0 (2.48)
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Figure 2.8: Point P and neighboring points in a cartesian mesh with uniform dielec-
tric constant ε1, ε2, ε3, ε4 of the subregion 1-4.

To obtain the discrete formulation, the differential operators can be developed using
a second order Taylor expansion:

HW = HP −∆x−
∂H

∂x

∣∣∣∣
W

+
(∆x−)

2

2

∂2H

∂x2

∣∣∣∣
W

+ O
[(

∆x−
)3

]
(2.49)

HE = HP + ∆x+ ∂H

∂x

∣∣∣∣
E

+
(∆x+)

2

2

∂2H

∂x2

∣∣∣∣
E

+ O
[(

∆x+
)3

]
(2.50)

HS = HP −∆y−
∂H

∂y

∣∣∣∣
W

+
(∆y−)

2

2

∂2H

∂y2

∣∣∣∣
W

+ O
[(

∆y−
)3

]
(2.51)

HN = HP + ∆y+ ∂H

∂y

∣∣∣∣
N

+
(∆y+)

2

2

∂2H

∂y2

∣∣∣∣
N

+ O
[(

∆y+
)3

]
(2.52)

The possibility of choosing different values for ∆x± and ∆y± allows to reduce the
mesh step where the field is expected to concentrate, but should be done with care,
as it also influences precision, which decreases for increasing mesh size differences.

The approximated expression for the second order derivative operators can be
obtained adding the equation 2.49 to 2.52, 2.49 to 2.51, 2.50 to 2.51 and 2.50 to 2.52
respectively. Replacing the operators in the Helmholtz equations we obtain:

2HW

(∆x−)2 −
2HP

(∆x−)2 +
2

∆x−
∂H

∂x

∣∣∣∣
W

+

+
2HN

(∆y+)2 −
2HP

(∆y+)2 −
2

∆y+

∂H

∂y

∣∣∣∣
N

+

+
(
ε2k

2 − β2
)
HP = 0 (2.53)

2HW

(∆x−)2 −
2HP

(∆x−)2 +
2

∆x−
∂H

∂x

∣∣∣∣
W

+
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+
2HS

(∆y−)2 −
2HP

(∆y−)2 +
2

∆y−
∂H

∂y

∣∣∣∣
S

+

+
(
ε3k

2 − β2
)
HP = 0 (2.54)

2HE

(∆x+)2 −
2HP

(∆x+)2 −
2

∆x+

∂H

∂x

∣∣∣∣
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where H stands for Hx or Hy. Applying continuity condition at the boundaries of
neighboring cells we can eliminate the first order derivative component of H. This
can be done with the relation ∇ ·H = 0 obtaining:

Hz =
1

jβ

(
∂Hx

∂x
+

∂Hy

∂y

)
(2.57)

Ez =
1

jεk

√
µ0

ε0

(
∂Hy

∂x
+

∂Hx

∂y

)
. (2.58)

For an horizontal discontinuity we can write (see figure 2.9):
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Figure 2.9: Horizontal (a) and vertical (b) discontinuity between neighboring cells.
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while for a vertical one:
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∂Hx

∂y
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These conditions allow to eliminate spurious results which do not correspond to
physical solutions. After some simple algebra, it is possible to obtain a linear eigen-
value problem described by the following matrix formulation:

A ·H ≡
[

Axx Axy

Ayx Ayy

]
·
[

Hx

Hy

]
= β2

[
Hx

Hy

]
≡ β2H (2.63)

where A is a matrix of elements which depend on the dielectric constant of the
structure, Hx and Hy are the eigenvector and β2 is the eigenvalue.

This problem is solved by an iterative algorithm [47]. After computing the
transverse components Hx and Hy the longitudinal components Hz and Ez can be
computed by 2.57 and 2.58, respectively. The transverse electric field components
Ex and Ey can be determined with (∇×H = jωεoεE):

Ex =
β

εk

√
µ0

ε0

Hy − 1

εkβ

√
µ0

ε0

(
∂2Hx

∂x∂y
+

∂2Hy

∂y2

)
(2.64)

Ey = − β

εk

√
µ0

ε0

Hx +
1

εkβ

√
µ0

ε0

(
∂2Hx

∂x2
+

∂2Hy

∂x∂y

)
(2.65)

In conclusion we have obtained the all six components of the electromagnetic field.

2.3.1 Mode solver validation

In order to validate the implementation of the mode solver we have calculated
the field components and the effective index of the propagating mode of the rib
waveguide shown in figure 2.10. The wavelength of the propagating field is λ =
1.55 µm and the mesh is constituted by 160 × 320 points. Figure 2.11 shows the
calculated transversal field components. The value of the obtained effective index
has been compared with those obtained using other techniques and the results are
compared in table 2.1 where the mesh size ∆x = ∆y used for the calculations i salso
specified. Results agree quite well. Slight differences can be explained considering
that some approximations have been made. First of all, the differential equations
2.47 and 2.48 are replaced by difference equations, and the mesh size influences the
result precision. Then, even iterative techniques used to solve the eigenvalue problem
are different and cause cause additional errors. Note finally also that, in the even
more general case of graded index structures or structures with contours not parallel
to lines of the grid, to be able to solve the problem with the used rectangular mesh,
the index profile have to be approximated by stair cases.



2.3 Finite difference mode solver 43

m

y

x

ns =3.34

n

n

=3.44

=1

f

c
0.2

1.3

2.0

µm

µm

µ

Figure 2.10: Rib waveguide with large refractive index step.

Figure 2.11: Transversal electromagnetic field components of the fundamental mode
of the rib waveguide.
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Method ∆x = ∆y [µm] neff

Robertson [56] 0.033 3.391292
Delage [57] 0.025 3.391320
Vassallo [58] 0.01 3.388669
Stern [59] 0.095 3.386926
This work 0.025 3.384989

Table 2.1: Values of the effective index of the fundamental mode of the test rib
waveguide calculated by various numerical approaches.



3

Device fabrication techniques

3.1 Introduction

In the two previous chapters we have described the theoretical properties of
segmented waveguides and the tools for their numerical modelling. In this chapter,
we will describe the techniques used for their fabrication. In particular we will
concentrate on device realized in Lithium Niobate, which is one of the most popular
materials used for integrated optical waveguides because of its many properties.
It exhibits in fact low propagation losses at the telecommunication wavelengths
of interest, good non linear properties, which allow efficient frequency conversion
operations, and high electro-optical coefficients allowing fabrication of Mach-Zender
modulators and other electronically driven optical circuits.

After recalling the main physical features of Lithium Niobate, we will illustrate
the various fabrication steps, the photolitography operations and the photomask
design of the devices. The samples obtained with this fabrication procedure present
good quality shape of the exchanged zone, but require improvements in terms of
surface roughness and scattering losses for the segmented waveguides.

3.2 Properties of Lithium Niobate

Lithium Niobate, whose chemical formula is LiNbO3, is an anisotropic material.
This means that its optical characteristics depend on the propagation of the elec-
tromagnetic field direction. Anisotropy is one peculiar characteristic of the crystals
and it is directly related to the particular atom arrangements.

The Lithium Niobate elementary cell belongs to the hexagonal crystallographic
system. We indicate the crystal axes as X, Y , Z, while a, b, c are the size of the
crystallographic cell and α, β, γ are the angles formed between these three axes, as
shown in figure 3.1.

From the optical point of view, Lithium Niobate is an uniaxial crystal. This
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Figure 3.1: Elementary cell of the Lithium Niobate crystal lattice.

means that the permittivity dielectric tensor ε written with respect to a Cartesian
frame presents non zero terms only on the main diagonal and two of them are equal.

εr =




n2
1(x, y) 0 0

0 n2
1(x, y) 0

0 0 n2
3(x, y)


 . (3.1)

In this way the secular equation, which describes the plane wave propagation in the
lattice, becomes [38]:

[
k2 − k2

on
2
1

] · [k2
(
s2
1 + s2

2

)
n2

1 + k2s2
3n

2
3 − k2

on
2
1n

2
3

]
= 0 (3.2)

where k is the wavenumber, while si are the cosine directors of the wavevector
and n1 = n2, n3 are the refractive indices in the x, z directions in the considered
reference system. The solution of equation 3.2 can be obtained solving a system in
two equations:
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2
1 = 0

k2s2
1

n2
3

+
k2s2

2

n2
3

+
k2s2

3

n2
1

= 0
. (3.3)

The first equation does not depend on the considered propagation direction: the
corresponding normal surface is then described by a sphere. This means that for
any direction, the propagation constant does not change. This kind of wave is
commonly named ordinary , because everything works like in the isotropic case.

The second equation describes an ellipsoid generated around the rotational z
axis. As a consequence, modifying the propagation direction, the wavenumber k
changes accordingly. This solution is known as the extraordinary wave.

The extraordinary and ordinary refractive indices of the Lithium Niobate mas-
sive crystals are well approximated, in their wavelength (chromatic dispersion) and
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temperature dependencies, by the Sellmeier relations 3.4 [60]:

n2
o = 4.9048 +

0.11775 + 2.2314 · 10−8(T − 24.5)(T + 24.5 + 546)

λ2 − [0.21802− 2.9671 · 10−8(T − 24.5)(T + 24.5 + 546)]2
+

+ 2.1429 · 10−8(T − 24.5)(T + 24.5 + 546)− 0.027153 · λ2

n2
e = 4.5820 +

0.09921 + 5.2716 · 10−8(T − 24.5)(T + 24.5 + 546)

λ2 − [0.21090− 4.9143 · 10−8(T − 24.5)(T + 24.5 + 546)]2
+

+ 2.2971 · 10−7(T − 24.5)(T + 24.5 + 546)− 0.021940 · λ2 (3.4)

where the wavelength λ is expressed in µm and the temperature T in ◦C. In figure
3.2 the extraordinary and ordinary indices are plotted as a function of the wavelength
for T = 25◦C in the interval of interest. Lithium Niobate is a non centrosymmetric
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Figure 3.2: Extraordinary and ordinary refractive index of the Lithium Niobate
crystal as a function of the wavelength for T = 25◦C.

crystal and then can exhibit also second order non linear effects. We will not use
this properties and for this reason we refer to specialized books [9] for a complete
description of non linearity effects.

3.3 Waveguide fabrication

In order to realize optical waveguides in a Lithium Niobate substrate, many
techniques have been proposed in the past: out-diffusion [61], titanium indiffusion
[62], ion implantation [63], proton exchange [64] and its different implementations
(simple Proton Exchange [64], Annealed Proton Exchange, APE [65], Soft Proton
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Exchange, SPE [66]). Among the PE techniques, we have chosen the SPE process
as it does not perturb the crystalline structure of LiNbO3 while other ones do [67,
68]. In particular, the ferroelectric domain inversion of Periodically Poled Lithium
Niobate (PPLN) devices remains intact after SPE [69].

3.3.1 Soft Proton Exchange

The Soft Proton Exchange process (SPE) in Lithium Niobate substrate is an
interesting and important technique for the fabrication of integrated optical devices.
The most important advantage of this technique is the easier way with which the
devices can be realized. The technique is based on the diffusion of hydrogen ions
(H+) that penetrate the Lithium Niobate wafer going to tie with oxygen creating a
thin layer that represents the transmission channel. At the same time, lithium ions
(Li+) escape from the substrate in the opposite direction leaving the space for the
hydrogen ions. The diffusion process can be written using the following equation:

LiNbO3 + xH+ → Li1−xHxNbO3 + Li+ (3.5)

where x represents the normalized proton concentration.
The proton source used with Lithium Niobate is the Benzoic acid (C6H5COOH)
with a fraction of Lithium Benzoate (LB). In order to obtain a waveguide, it is
necessary to dispose of a Lithium Niobate substrate cut along one of the three
possible plans, we indicate with X-cut, Y -cut and Z-cut (in our case, crystals were
Z-cut LiNbO3 substrates with diffusion plane orthogonal to the Z axis). The most
important parameters for this process are the percentage of LB in the mixture, the
Tspe (time interval in which the substrate remains in contact with the acid) and
the temperature at which the process happens. Varying %LB between 0 and 5, the
nature of the exchanged layer is strongly modified. It is possible to identify three
different regimes, as shown in figure 3.3, corresponding to three different ranges of
%LB: Proton Exchange (PE), Multiphase Proton Exchange (MPE) and Soft Proton
Exchange (SPE). In the left part of figure 3.3 a low value of %LB is considered
(0 < %LB < 1%): in this regime the index profile is step with maximum value
∆ne between 0.08 and 0.12 at λ = 632.8nm. If %LB is greater than 2.8% the
SPE regime is obtained and the shape of the extraordinary index is graded with a
maximum ∆ne = 0.03 at λ = 632.8nm. The region named MPE is a combination
of the other two regimes and shows an index shape intermediate between the step
and the graded index.

The PE waveguide allows to obtain strong field confinement improving in this
way the non linear and electro-optic effect efficiency, which depends on the local
intensity. Unfortunately, these advantages are canceled by the reduction of the non
linear and electro-optic coefficients. Contrary to what happens for SPE waveguides,
even if the mode is weakly confined, the optical quality provides low propagation
losses and preserves the non linear and electro-optic properties of the substrate. The
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Figure 3.3: Refractive index profile in the depth direction for three different ranges
of the LB percentage: (a) PE: (0 < %LB < 1%), (b) MPE: (1 < %LB < 2.8%) and
(c) SPE: (%LB > 2.8%).

PE and MPE waveguide properties can be improved through an annealing process.
This process is then known as APE (Annealed Proton Exchange). The annealing
process consists in warming up the sample in a oven at temperature higher than
that of the exchange. The H+ ions diffuse deeply into the crystal lattice modifying
the step profile into a graded one and improving the overall optical qualities. The
relation between the proton concentration and the optical quality of the waveguide is
quite complex to obtain. Different models have been proposed in [70] and [69]. The
crystallographic analysis with X rays and the study of the spectral emissions in the
infrared after the exchange have been demonstrated to be of primary importance.
The analysis of many optical waveguides with different exchange and annealing
parameters allowed to identify seven crystallographic phases of the proton exchanged
Lithium Niobate. They are indicated with α, κ1, κ2, β1, β2, β3, β4. These phases
can be evidenced by plotting the component ε33 of the stress tensor of the crystal
as a function of the step index ∆ne. The deformation ε33 result almost proportional
to the proton concentration.

In figure 3.4 the phase diagram is reported. For each phase the variation function
is almost linear but the slopes are different. The α phase present small ∆ne and
ε33 and is obtained with the SPE process. This confirms the fact that with a SPE
waveguide the non linear and the electro-optic coefficients are preserved.

The other two parameters of the SPE processes, temperature and exchange time
Tspe, influence the size of the diffused layer. P. Aumont [71] in his PhD thesis
analyzed the contribution of this parameter in order to fabricate devices with good
optical quality. The high temperature increases the speed of the process and reduces
the number of dislocations introduced in the crystal during the process. A property
of Lithium Niobate is the ability to preserve its regular crystal structure also at high
temperatures. The limit temperature of Lithium Niobate is TCurie = 1253◦C that
allows to adopt high temperatures fabrication processes for the device fabrication.
In our case the limit is 300◦C imposed by the fabrication technologies. The exchange
time acts on the neff of the propagating mode with two antagonistic phenomena.
The former is the improvement of the exchanged layer and the latter is the reduction
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Figure 3.4: Phase diagram for the proton exchanged Lithium Niobate crystal.

of the ∆ne. The higher neff can be obtained with exchange time of three days (72
hours).

In order to fabricate the SPE waveguide, we have used the immersion technique
that consists in using an ampoule with a throttling in the center. The proton source
is placed in the lower part of the ampoule while the masked Lithium Niobate crystal
in the upper part (throttling prevents the contact between the two components).
The ampoule is then connected to a vacuum pump that can create the desired
depressurization. After that the ampoule is closed with a flame. The ampoule is
then placed into an iron pipe which protect the environment in the case of explosion
and provide an important thermic inertia. The pipe is then placed in the oven at
the temperature of 300◦C. The fusion temperature of the Benzoic acid is 160◦C
while for the Lithium Benzoate LB it is much more higher than 300◦C. Fortunately,
LB is soluble in the liquid Benzoic acid and in this way we obtain a liquid mixture.
When the temperature is stabilized we can just turn the pipe in order to put the
sample and the proton source in contact. From this moment the exchange begins.
After 72 hours we turn off the oven and the pipe is turned once again. When it is
cold the sample can be taken out.

3.4 Photolithography

In order to fabricate segmented waveguide devices it is necessary to control the
diffusion process. This can be done by masking the surface of the Lithium Niobate
using photolithography. This word, which in Greek means “writing on a stone with
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light”, is used to describe the process by which patterns on a LiNbO3 substrate can
be defined using light. The absence of dust is an essential condition to obtain good
results from this technique and for this reason all the step we are going to illustrate
are made in the clean room of the Centre de Recherche sur l’Hétéro-Epitaxie et
ses Applicationsas (CRHEA) of Valbonne-Sophia-Antipolis with the collaboration
of Sorin Tascu (post doctorate at the LPMC of the university of Nice Sophia An-
tipolis). A schematization of the different steps is shown in figure 3.5. Before the
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Figure 3.5: Schematization of the photolitography process.

photoresist is applied to the substrate, the surface is cleaned to remove any traces of
contamination from the surface of the wafer such as dust, organic, ionic and metal-
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lic compounds. The cleaned wafer is subject to priming, to aid the adhesion of the
photoresist to the surface of the substrate material.

A 700 nm thick layer of photoresist is applied to the surface using a spin-coating
machine (figure 3.6). This device holds the wafer of semiconductor, using a vacuum
pump, and spins the photoresist at high-speed for a period of 15-30 seconds. A small
quantity of photoresist is put on the center of the spinning wafer. The rotation causes
the photoresist to be spread across the surface of the wafer with excess being thrown
off. Preparation of the photoresist is concluded by a bake, where the wafer is heated
in a oven to partially solidify the photoresist.

Figure 3.6: Picture of the spin coating machine used for the photoresist deposition
on the wafer.

The photomask with the shape of our optical devices is created by a photographic
process and developed onto a quartz substrate for its mechanical and optical prop-
erties.

Alignment between photomask and wafer is critical and must be achieved in
x and y directions as well as rotationally. Photolithography machines use pattern
recognition to achieve a so presise alignment (figure 3.7).

During the exposure process, the photoresist undergoes a chemical reaction. De-
pending on the chemical composition of photoresist, it can react in two ways when
the light strikes the surface. The action of light on a positive photoresist causes it to
become polymerized where it has been exposed to the light. A negative photoresist
has the reverse property. Exposure to UV-light cause the photoresist to decom-
pose. Preliminary experiments have shown that using a negative photoresist all the
dimensions of our structures are reduced by about 1µm respect to the photomask
reference. This is the reason for which we have fabricated our device using a positive
photoresist.

After the develop process the sample is ready for the deposition of 200nm thick
SiO2 layer over all the surface of the wafer. The final SiO2 mask is obtained with
a lift-off process which removes the resit through chemical reaction.
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Figure 3.7: Picture of the photolithography machines used for the UV exposition.

3.4.1 Photomask design

To draw the photomask we have used Wavemaker [72]. This commercial CAD
provides a graphical interface to realize the schematic of optical components, allow-
ing to save the final draft in the standard format (.gds) used by the facilities which
produce photomasks. In our case the photomask has been fabricated by Photronics
(UK) [73].

Segmented waveguides and tapers are structures constituted by hundreds of seg-
ments, each one with different size depending on the device parameters (taper length,
width, DC etc.). It is, therefore, impossible to draw this kind of photomask for a
three inches wafer adopting the standard “cut and paste” procedure or similar com-
mands available in the CAD. We have then used the scripting language available
in Wavemaker in order to automatize the photomask preparation. In this way, all
the “draw” command can be given through an external file instead of the standard
graphic interface. We have developed a Fortran program that acquires the descrip-
tions of all the devices we want to put in the photomask from an input file (.txt).
This input file follows rules fixed by us, without entering in the details of the single
segments. After the execution of our program we obtain a command file (.cmd)
compatible with the scripting language of Wavemaker and a control file (.log) which
summarizes all the parameters of the plotted devices. A flow chart of this process
is shown in figure 3.8

This tool has been very useful during the photomask preparation allowing to
obtain very fastly the desired results correctly.

A very important parameter to take into account during the photomask design is
the distance to maintain between two neighbouring devices, fabricated on the same
substrate, in order to avoid unwanted interferences but at the same time preserving
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Figure 3.8: Schematization of the photomask preparation using the numerical tools
implemented to interface with the CAD Wavemaker.

space. The problem can be resolved by making a study on the coupling interaction
occurring between integrated optical waveguides with the complication that in our
case the coupled waveguides are segmented.

The coupling phenomena is strongly related to the evanescent tails of the two
electromagnetic modes that propagate in the waveguides and must be accurately
evaluated. For this reason, we have adopted the 3D BPM for the numerical analysis
of this problem. In this case, we can not apply the equivalent waveguide theorem
and adopt the mode solver to obtain a precise evaluation of the coupling. The reason
is that during the propagation the mode is modulated by the periodic structure [74].
This modulation is not present when modelling the segmented waveguide with an
equivalent continuous waveguide: as a consequence, the coupling effect would be
perturbed.

The analysis we have made consists in evaluating the coupling effect simply
changing the distance between two parallel segmented waveguides. The worst case
happens when the field is less confined and the overlap between the two modes is
then more important. As a consequence, for the segmented waveguide parameters,
we have considered the less confined structure with period P = 25 µm, duty cycle
DC = 0.4 and waveguide width W = 5µm and working wavelength equal to 1.55 µm.
Using the BPM it is possible to evaluate the power evolution in the two waveguide
in the propagation direction z 1 and then obtain the coupling length Lc. Figure 3.9
shows the power distribution for two segmented waveguides placed at the center to
center distance d = 10 µm.

For the same structure in figure 3.10 the field distributions in horizontal and
vertical sections are shown. Note that the energy can completely be transfered from
one guide to the other one as the two segmented waveguide are identical.

Repeating the simulation for different distances d between the two segmented

1Note that in the following, z will refer to the propagation direction, which is different to the
crystal axis Z of the Lithium Niobate substrate
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Figure 3.9: Power evolution int the two segmented waveguides for d = 10µm.
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Figure 3.10: Field distribution in two neighbouring segmented waveguides. For
z = 0 (a) all the energy is in the right waveguide, then for z = Lc (b) the energy is
completely transferred to the left waveguide, in (c) the coupler is balanced.

waveguide and evaluating the corresponding values of Lc we obtained the result
plotted in figure 3.11. Imposing, as a condition for the optical isolation of the two
waveguides, that less than 1% of the power can be transferred after a propagation
of Lsmp = 3 cm, it is possible to calculate the minimal coupling length allowed as:

sin2

(
π · Lsmp

2 · Lc

)
≤ 0.01. (3.6)

This condition fixes Lc >= 0.471 m. From figure 3.11 one can see that this condition
imposes a minimal distance between the waveguide d >= 49.7 µm. As fabrication
imperfections can improve the coupling phenomena a security margin must be con-
sidered. In our photomask we have then considered a distance d = 60 µm .
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Figure 3.11: Coupling length versus the distance center to center d.

3.5 Fabrication results

After the proton exchange, the sample is extracted from the ampoule and cleaned
with acetone and alcohol to get rid of the remaining acid. The deposed mask of
SiO2 is eliminated immersing the sample in BOE acid. Observing the sample with
a microscope in transmission or reflection (figure 3.12) it is possible to recognize the
waveguides from their increased refractive index. Observing the samples with the

Figure 3.12: Microscope picture of fabricated waveguides obtained in reflection
mode.

microscope in dark field we obtain the results shown in figure 3.13. This technique
consists in illuminating the sample with a light grazing to the sample surface. This
then allows to evidence the presence of scattering sources. For a perfect surface we
should obtain a completely dark image. In our case, however, we can note that the



3.5 Fabrication results 57

Figure 3.13: Dark field image of two fabricated segmented waveguide.

edges of our waveguides are visible. This result shows the presence of bulges or sinks
in the contour of the exchanged zones. This problem has required a more advanced
analysis. Using a AFM (Atomic Force Microscope) Sorin Tascu (post doctorate at
the LPMC of the university of Nice Sophia Antipolis) confirmed the presence of
sinks of about 50 nm of depth. This phenomenon clearly increases the propagation
losses of continuous and segmented waveguides. We report in the following table
the propagation losses of our fabricated waveguides. The measurement technique
adopted for this characterization will be described with more details in the next
chapter.

P = 15µm P = 25µm
DC W = 5µm W = 7µm W = 5µm W = 7µm
0.5 2 dB/cm 2.34 dB/cm 4 dB/cm 2.99 dB/cm
0.6 1.71 dB/cm 2.02 dB/cm 2.92 dB/cm 2.02 dB/cm
0.7 1.74 dB/cm 2.16 dB/cm 2.40 dB/cm 2.04 dB/cm
1 1.13 dB/cm 1.34 dB/cm 1.13 dB/cm 1.34 dB/cm

The possible causes to explain this roughness phenomena and the consequently
elevated propagation losses respect to smaller expected values are:

• the crystal structure of Lithium Niobate is perturbed during the photoresist
deposition;

• the crystal structure of Lithium Niobate is perturbed during the SiO2 depo-
sition;

• the acid BOE attacks the Lithium Niobate surface during the elimination of
the deposed SiO2 mask;

• the Lithium Niobate crystal structure is fragilized during the SPE process.
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The first three possibilities have been rapidly excluded repeating the procedure of
photoresist and SiO2 deposition on the Litium Niobate substrate. We have then
removed the two depositions with acetone and BOE to obtain a perfect surface
without any kind of imperfections. The only remaining possibility is then that of
the fragilization induced by the SPE. During the exchange the sample is subject
to acid contact at hight temperatures: this stress is probably too strong for the
crystal structure. To confirm this hypothesis PE and APE waveguides have been
fabricated as they require reduced exchange time. For both of them no defects
appear on the surface. It is then necessary that future work will study in more
details this phenomenon to allow fabrication of better quality SPE waveguides with
low propagation losses.

3.5.1 M-lines characterization

One side of the sample during the SPE being unmasked is completely exchanged
and the resulting increase of the refractive index forms a slab waveguide. The
presence of this waveguide can be used to determine the optical properties of the
device fabricated on the other side of the sample. Using the m-lines techniques [75],
it is also possible, in fact, to measure the effective index of the propagating modes
of the slab. Then, using the Inverse-WKB (IWKB) technique [76, 77] it is possible
to reconstruct the refractive index profile in the vertical direction for the exchanged
zones. With the m-lines technique it is also possible evaluate qualitatively the optical
properties of the sample under test.

A schematic of the m-lines experimental setup is shown in figure 3.14.

Rutile prisms

He-Ne: Laser

Mirror

Sample

Screen

Normal

Autocollimated

monocular

q

Figure 3.14: Experimental setup for the m-lines characterization.
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Two rutile prisms are placed on the slab surface. A He−Ne laser emits a beam
at 632 nm incident the input prism. Inside the prism the beam is total reflected by
the interface with the slab waveguide. The total reflection in the prism is associated
to an evanescent wave in the small air gap present at the interface between slab
and prism. If the air gap is sufficiently small the evanescent field can be coupled
into the waveguide slab when the phase matching condition between the two fields
is satisfied. This condition can be achieved by modifying the entrance angle of the
laser beam. Once the coupling condition is satisfied, the field can propagate into
the slab and then can be out coupled by the second prism. Measuring the angle θ
that the output beam forms with respect to the normal direction of the end face
of the prism, it is possible to calculate the effective index of the propagating mode
using the relation:

neff = nrutile · sin
[
arctan

(
sin θ/nrutile√

1− sin θ/nrutile

)
+ θp

]
. (3.7)

The measurement of this angle can be obtained using an autocollimated monocular
which provides a very good resolution of ±0.015◦. The systematic error for the
effective index measurement is then ±2.5e− 4.

The far field outgoing from the output prism, if projected on a screen, appears as
bright lines (from this the name of the technique), which correspond to the excited
modes, and a superposed bright point. This image carries the information on the
optical quality of the sample. In particular the considered evaluation methods are:

• Width of the bright line: this properties allows to obtain information on the
homogeneity of the slab waveguide in the out coupling region. In fact, if
inhomogeneities are present, the propagating constant can be locally modified
and fluctuations of the output angle appear. As a consequence the line appears
large.

• Central point very bright: it proves that during propagation in the slab wave-
guide the laser beam has not been perturbed by diffusion. In this case propa-
gation losses will be relatively small.

• Selectivity in the mode excitation: for the angle which satisfies the phase
matching condition, just one mode must be in propagation and just one line
must appear. The presence of energy in other modes at the same time proves
intermodal coupling related to strong diffusion.

The first result obtained using the m-lines technique is the characteristic function
of the SPE process. First of all, we have fabricated some slab waveguides with
different percentages of LB with exchanges of 72 hours at a temperature of 300◦C.
The waveguides have been then characterized at 632 nm. Figure 3.15 shows the
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Figure 3.15: Effective index of the fundamental mode versus the percentage of LB
for planar waveguide, deduced from the m-lines measurement at 632nm.

values of the effective index of the fundamental mode as a function of the percentage
of LB. The high values of the effective index obtained with low percentages of LB are
related to deeply perturbed crystalline structures. For LB percentages larger than
the threshold value of 2.8%, the crystalline phase is not modified and we consider
only this regime for the fabrication of our devices. This is the so called SPE regime.

Starting from the results obtained with the m-lines technique it is possible to
identify the point of the index profile for which the effective index is equal to the
local refractive index. This numerical elaboration can be made using the IWKB
algorithm. A version of this numerical tools was available at the LPMC. Making an
interpolation of the obtained point, it is possible to obtain the complete index profile.
The precision of this interpolation depends on the number of the available points,
i.e. the number of modes. With a He−Ne laser at 632 nm our waveguide presents
3 to 4 modes in the SPE regime. In the following table, we present the results
obtained with the m-lines technique and the IWKB for slab waveguide fabricated
with 2.8% and 3.5% of LB.



3.6 Polishing 61

M-lines thecnique IWKB
LB percentage Angle [deg] effective index @ 632.8µm Deep [µm]

10.926 2.21848 1.48
2.8 % 9.841 2.20874 2.651

9.383 2.20459 4.882
9.227 2.20318 8.93
9.888 2.20916 2.182

3.5 % 9.374 2.20451 3.822
9.181 2.20276 7.562

Using interpolation techniques we have reconstructed the two profiles shown in figure
3.16.

0 2 4 6 8
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2.215

2.22

2.225

2.23
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3.5% LB

  fitted profile 3.5% LB

2.8% LB

  fitted profile 2.8% LB

Figure 3.16: Index profile reconstructed using the IWKB algorithm after the m-lines
measurement on SPE waveguide with different LB percentage: LB%=3.5 (red line),
LB%=2.8 (blue dashed line).

3.6 Polishing

In order to couple energy into an optical waveguide different techniques have
been developed. One of these solutions has been already presented describing the
m-lines experimental setup. It consists in using two prisms as shown in figure 3.17.
For channel waveguides this solution is very difficult to use as alignment is not
simple. Another solution proposed in the past [78] uses diffracting gratings at the
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Figure 3.17: Scheme of the prism coupling technique.

two waveguide ends. The radiating characteristic of the grating allows to collect
and emit the light with a particular angle respect the surface of the sample. The
drawback of this solution (schematically shown in figure 3.18) is its complexity: it
requires, in fact, the design of the gratings.

Figure 3.18: Scheme of out plane coupling trough diffraction grating.

A further alternative to these solutions is the so called end fire coupling. In this
technique the waveguide mode is directly coupled with the external components
(fibers or microscope objective) through the end face of the sample. The advantage

Figure 3.19: Scheme of end fire coupling.

of this solution is that it does not require additional structures in the optical device
and the alignment is quite simple to obtain. The drawback is that the two end faces
must be polished before the characterization of the sample, adding a further step in
the fabrication process and that radiating mode of the structure can be excited.
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The polishing technique we have used consists to fix vertically the sample between
two piece of glass inside a metallic support. The presence of the two pieces of glass
provides a better stability to the sample and improves the edge quality. The metallic
support is then mounted into a Sample Mounting Fixture (SMF) to apply uniform
pressure to the sample during polishing. The SMF is then placed on a rotating plate
and its position is controlled by a mechanical arm. Suitable abrasive products must
be put on the plate to improve grinding and polishing of the sample end face. In our
case, we have adopted dust of alumina mixed in water. The procedure consists to
start the polishing with big grains of alumina for an approximative result since using
small grain of alumina and a chemical attack for the final step. The table summarizes
the polishing time corresponding to the size of the alumina grains adopted:

Step Alumina size [µm] Time [min]
1 20 15
2 9 30
3 5 30

The polish procedure with alumina is only mechanical and can be realized with a
machine shown in the left part of figure 3.20. The last step requires a more accurate

.

Figure 3.20: Pictures of the two polish machine used for the alumina (left) or chem-
ical (right) step.

surface polishing and can be obtained using a particular plate (see right part of
figure 3.20), adding a liquid product that attacks chemically the end face of the
sample. Care is required to avoid the presence of big grains that can produce deep
scratches which would prevent good quality samples.
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4

Characterization techniques

4.1 Introduction

Once devices have been fabricated, they must be characterized to measure the
most important parameters which determine their performances. For linear devices,
propagation losses, effective group index Neff and mode size of the propagating
field are among the most important ones, as they influence maximum allowed de-
vice length, dispersion properties and coupling efficiency with other components.
Measurements techniques should be precise, simple to manage, non destructive and
allow easy upgrade to guarantee the accuracy and sensitivity required by the con-
tinuous technology advancements. The purpose of this chapter is that of presenting,
after a rapid summary of the measurement techniques proposed so far, the main
features of an all-in-one experimental set up [79] with specific mention to the values
of precision we obtained. Then, to show its proper functioning and versatility, mea-
surement result on different devices (fiber and integrated optical waveguide), will be
reported and discussed.

4.2 Measuring attenuation, effective group index

and mode size

As mentioned in the introduction, we are interested in measuring propagation
losses, effective group index and mode size of the propagating field in the linear
devices we have fabricated to evaluate the overall device performances. In order
to evaluate such parameters, different measurement techniques have been proposed
in the past, but each of them allows one measurement at a time, which may be
a problem when these features should be evaluated for the same device. It is then
worthwhile to rapidly summarize the different techniques proposed so far, illustrating
advantages and problems in order to show how it is possible to unify all of them in
a single set up.
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Propagation losses can be evaluated in a conceptually very simple way using the
so called insertion losses technique [80]. The Device Under Test (DUT) is inserted
between two identical fibers. The transmitted power is measured and attenuation
is obtained comparing this value to that resulting from direct connection of the two
fibers. Such technique is conceptually very simple, but requires the knowledge of
the overlap integral between the fiber mode and that of the DUT input and output
sections. Moreover, systematic errors can come from alignment problems and pos-
sible formation of parasitic air cavities between the fiber and the sample interface
that can perturb the transmission power measurement. Some of these problems
are eliminated by the so called back coupling method [81]. This technique assumes
that all guided field outgoing the DUT can be reflected and coupled back into it
by a proper optical system. If such an operation is lossless, only Fresnel losses oc-
cur. Overall transmission losses can then be determined comparing the intensities
of the launched beam and that of the back reflected light after double passing the
DUT. The precision of this technique critically depends on the quality of both the
input beam splitter and the output reflecting optical system. A further method is
based on the assumption that the power laterally scattered by the DUT is linearly
proportional to the guided one. Measuring its evolution during propagation (with
a camera or any other sensor) allows an indirect evaluation of DUT attenuation
[82, 74]. This measurement technique is simple, but has problems both in high
loss devices because of the presence of scattering centers and in low loss devices,
where very long samples are required for loss evaluation. A fourth method used for
propagation losses measurement is the so called Fabry-Perot resonance technique
[83]. The sample acts as a cavity whose quality factor and finesse depend on the
propagation losses. A tunable laser source with narrow linewidth allows spectral
characterization of the cavity parameters providing also its propagation losses, af-
ter some data processing. This technique requires careful sample preparation and
alignment procedures to avoid again parasitic air cavities outside the DUT. It works
well for low losses measurements (under 3-4 dB/cm) and its precision depends on
the sample length.

The second parameter to be measured is the effective group index Neff of a
propagating mode [84], which establishes the dispersive behavior of an optical wave-
guide. Fiber suppliers are interested in such a parameter and many measurement
setups have been then proposed so far: for example, the so called time of flight
measurement [85, 86] or other interferential techniques [87, 88]. But they are not
fully general as they cannot be used for integrated optical devices. Today, the inter-
est for measuring such a parameter is still strong as, for example, photonic crystal
waveguides [89, 90, 91, 92] can be used for slow light guidance [93, 94] and the Neff

measurement is then fundamental for their characterization. A method to evaluate
Neff in integrated optical waveguides is based on a spectral measurement of the
field mode size [95, 96]. The precision of this method depends on the accuracy of
the mode size measurement and on how good is the approximation of the relation
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between the waveguide dispersion and the mode size. A different approach is based
on the characterization of the Fabry-Perot cavity formed by the sample, as previ-
ously discussed talking about propagation loss measurements. In this case, in fact,
the distance between the resonance peaks depends on the value of Neff [97].

Finally, the field distribution of the modes guided by the DUT is most of the
time obtained by measuring the near field by a camera [98]. Problems of this setup
come from nonlinearity and inhomogeneity of the sensor, aberrations of the lens used
to magnify the near field image and difficult calibration of the whole measurement
setup. To overcome these problems, the near field is evaluated scanning the DUT
end-face with a 1-µm-diameter pinhole in a 2.5-µm-thick steel sheet mounted on
a single-mode fiber connected to the detector [99]. The price to pay is a much
longer measurement time, requiring setup and source thermal stabilization. Far field
measurements and subsequent Hankel transform to reconstruct the near field have
also been proposed [100]. They eliminate the risks connected to close and moving
parts, which may damage optical surfaces, but are not precise, as the evanescent
part of the plane wave spectrum composing the near field is not present in the far
field and so the field reconstruction is not precise.

As one can see, measurement procedures to evaluate all these parameters are
cumbersome, time consuming and are affected by systematic errors depending on
each particular setup. So we have conceived and realized an all-in-one measurement
setup to evaluate propagation losses, effective group index Neff and mode size of
the propagating field of both optical fibers and integrated optical waveguides. This
solution, which will be described in the next section, reduces measurement time,
saves space and allows optimizing all the setup parameters only once, thus providing
measurements results affected by the same measurement errors. This also allows
simpler upgrade to higher measurement precision, when needed.

The setup is conceived also to collect all the best features of the previously
illustrated ones. The loss and effective group index measurement principle is based
on the Fabry-Perot cavity. The mode size measurement is based on the idea proposed
in [99], but with improvements in terms of precision of the results and simplicity of
the experimental setup because only a monomode fiber has been used to perform
the scan.

4.3 Experimental setup

The schematic of the measurement setup is shown in figure 4.1. The laser source
is a tunable external cavity laser emitting between 1.5 µm and 1.6 µm (NetTest Tu-
nics Plus) with an automatic power control system and a linewidth as narrow as 150
kHz. To allow polarization controlled measurements, the laser output is connected
to a polarization maintaining fiber, monomode at the working wavelengths. The
other fiber end is fixed on a piezoelectric positioning system. Such system allows
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controlling the position of the fiber on the x-y plane in a range of 25 µm × 25 µm
with step of 16 nm. With micrometric controls, it is also possible to adjust the hor-
izontal (Θh) and vertical incidence angles (Θv) of the fiber with respect to the optic
axis. On the other side of the DUT, a SMF28 fiber is fixed on a similar piezoelectric
positioning system with the same features as the previous one in order to collect the
output signal. The SMF28 fiber output is connected to an InGaAs detector for the
intensity measurement. The piezoelectric stages and the detector are connected to a
control station that allows the interface with a Personal Computer (PC) through a
GPIB port. A Labview R© [101] program controls all the measurements and provides

Optical isolator

PM-Fiber SMF28

Piezo

Controller

GPIB

Computer

Detector

z
x

y

Piezo

DUTTunable Laser

Figure 4.1: Schematic of the all-in-one experimental setup to measure propagation
losses, effective group index and mode size of an optical fiber or an integrated optical
device (DUT: Device Under Test).

rapid and reproducible data collection. The remote control of the measurement
from the PC offers many advantages, not only related to increased reproducibility
and precision. For example, there is no need for operators to get close or touch the
components. This avoids mechanical changes due to temperature variations in the
setup, which are critical when long measurements must be performed. Figure 4.2
shows a screenshot of the program interface. The DUT is surrounded by air and
its end-faces form a Fabry-Perot cavity. As said before, once the cavity parameters
are known, values of both propagation losses and Neff can be obtained. Moreover,
the possibility to scan the output section of the DUT by moving the SMF28 fiber
allows also obtaining information on the shape of the field that propagates through
the sample. In the following subsections, more details on the different measurement
techniques integrated in this setup will be provided.

4.3.1 Loss measurements

The Fabry-Perot based technique to evaluate propagation losses L is based on
the fact that the guided mode of the DUT is partially reflected at the end-faces of
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Figure 4.2: Screenshot of the Labview R© program used to control the experimental
setup.

the sample. This is due to the difference between the refractive index of air and
the effective index of the propagating mode, neff , defined as the ratio between the
propagation constant β and the wavenumber k0. The waveguide behaves then as
a resonant cavity and modes propagating in both directions interfere according to
their relative phases. Resonance conditions depend on wavelength. Their periodic
occurrence can be evidenced by a spectral scanning of the transmission character-
istics. Such a transmission spectrum is characterized by the so called contrast C,
which is defined as:

C =
Imax − Imin

Imax + Imin

(4.1)

being Imax and Imin the maximum and the minimum output intensities respectively.
Assuming orthogonally polished end-faces with respect to the waveguide, the prop-
agation losses L (evaluated in dB) can be obtained by measuring C and using [83]:

L = 4.34

[
ln

1−√1− C2

C
− ln (R)

]
(4.2)

where R is the end-face (Fresnel) reflection coefficient:

R =
(neff − 1)2

(neff + 1)2
. (4.3)
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Using the experimental setup of figure 4.1, the contrast measurement is performed
by varying the signal wavelength of the laser and recording the detected output
intensity. The minimum and the maximum of measurement coincide respectively
with Imin and Imax of 4.1. In order to obtain a correct measurement, some conditions
should be fulfilled. First of all, the laser must be stable in power and wavelength
and no mode-hopping should occur. This is true for the NetTest Tunics Plus laser
using APC fiber connectors we used. Moreover, the only cavity of the system must
be formed by the DUT. Thus, the input and output fibers must be tilted with
respect to the waveguide at an angle in order to eliminate the parasite air cavities
formed by the end-faces of the sample and the fibers. In our setup, both the tilt
angles were set to Θh = Θv = 2◦. These non perfect alignments contribute however
to increase the coupling losses with the sample, though they do not perturb the
contrast measurement. In order to check this, we realized a contrast measurement
of an integrated optical waveguide, maintaining or not the output fiber perfectly
aligned to the optical axis. Figure 4.3 shows the effect of the distance between
the output fiber and the end-face of the sample on the output intensity when a
wavelength scanning is performed. The left part of figure 4.3 refers to the case of
fibers with no tilt. The contrast changes abruptly, when, during the wavelength
scanning, at 1550.1 nm, we have modified the distance. The right part of the same
figure reports the results obtained, with the same procedure, when the fibers are
tilted. In this case the intensity varies, but there is no change in the contrast.
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Figure 4.3: Interference fringes of a Fabry-Perot cavity obtained with fibers aligned
(left) or not (right) to the waveguide. Regions A (before 1550.1 nm) and B (after
1550.1 nm) refer to different distances between the output fiber and the sample
end-face.

A further problem in the correct evaluation of C comes from the possible presence
of non zero angles ψx,i, ψy,i, ψx,o, ψy,o, formed by the waveguide with the end-faces
of the sample. Corrective terms must be introduced in 4.2 to take into account these
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angles [80]:

R =
(neff − 1)2

(neff + 1)2
·
√

Lx,iLx,o

√
Ly,iLy,o (4.4)

In this equation

Lx,i = e(−β2
i w2

y,iψ
2
x,i) Lx,o = e(−β2

ow2
y,oψ2

x,o)

Ly,i = e(−β2
i w2

x,iψ
2
y,i) Ly,o = e(−β2

ow2
x,oψ2

y,o) (4.5)

being βi and βo the input and output wavevectors respectively, while wx,i, wx,o, wy,i,
wy,o are the mode size in the x and y direction at the input and output end face of the
sample. As these angles can be easily evaluated with a precisions of 0.1◦, the effect of
the angle measurements uncertainty on the determination of the propagation losses
can be practically eliminated. In conclusion, the main contribution to the overall
measurement error comes from the noise introduced by the acquisition system when
evaluating the contrast C. Note however that, contrary to what happens using
most of the classical methods of measuring waveguide losses, the error decreases
for decreasing attenuation as the contrast increases accordingly. For devices with
very low propagation losses the limit of this technique then comes basically from
the precision determining the neff of the propagating mode and the noise of the
experimental setup for the contrast evaluation. This noise depends on the adopted
setup and its evaluation can be obtained by repeating the same measurement and
observing the dispersion of the results. With our setup, exploiting the features
of the remote control, we obtain a fluctuation of the contrast value in reapited
measurements of just 0.5%.

4.3.2 Group index and dispersion measurements

With the same configuration of the experimental setup used for loss measurement
we can obtain also the effective group index Neff of the propagation mode in a
waveguide, with Neff defined as:

c

vg

= Neff (λ0) = neff (λ0)− λ0
∂neff (λ0)

∂λ0

(4.6)

where c is the speed of light in vacuum, vg is the group velocity and λ0 is the
free space wavelength. As we can see, Neff takes into account both propagation
and dispersion characteristics. The value of Neff comes from the knowledge of
the free spectral range ∆λ of the transmission spectrum [84]. To determine the
relationship between Neff and the measurement results, one can start from the
resonance conditions corresponding to maximum power transmission:

2 · 2π

λ0

· neff (λ0) · L = 2mπ (4.7)
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where L is the sample length and m is an arbitrary integer constant. At λ0 + ∆λ it
then holds:

2 · 2π

λ0 + ∆λ
· neff (λ0 + ∆λ) · L = 2(m− 1)π. (4.8)

Subtracting 4.8 from 4.7 and considering ∆λ ¿ λ0 we get:

1 =
2

λ0

neff (λ0)L− 2

λ0

(
1− ∆λ

λ0

)(
neff (λ0) + ∆λ

∂neff (λ0)

∂λ0

)
L =

=
2L ·∆λ

λ2
0

(
neff (λ0)− λ0

∂neff (λ0)

∂λ0

)
=

2L ·∆λ

λ2
0

Neff . (4.9)

Measuring ∆λ and the sample length, we then can then calculate Neff as:

Neff =
λ2

0

2L ·∆λ
. (4.10)

The relative error Er of this measurement is:

Er(Neff ) = 2 · Er(λ0) + Er(L) + Er(∆λ) (4.11)

where Er(λ0), Er(L) and Er(∆λ) are respectively the relative errors associated to
the values of λ0, L and ∆λ. In this equation Er(L) is determined by the instrument
used to evaluate the length of the sample, Er(λ0) is defined as the ratio between the
laser linewidth and λ0 while Er(∆λ) can be calculated as:

Er (∆λ) =
2δ

∆λ
(4.12)

where δ is the wavelength resolution of the laser. Er(∆λ) can be reduced considering
two resonances separated by more than one period ∆λ or using a laser with better
resolution. Both Er(∆λ) and Er(λ0) depend on the precision on the laser wavelength
but in our case Er(λ0) is negligible respect to Er(∆λ) because of the narrow linewidth
of the laser. In many cases, it may also be of interest to know the wavelength
dependence of the effective group index Neff as it is related to the second order
dispersion of the effective index. In fact, deriving equation 4.6 with respect to λ0

one obtains:

∂Neff (λ0)

∂λ0

=
∂neff (λ0)

∂λ0

− ∂neff (λ0)

∂λ0

− λ0
∂2neff (λ0)

∂λ2
0

= −λ0
∂2neff (λ0)

∂λ2
0

(4.13)

which provides the desired relation:

∂2neff (λ0)

∂λ2
0

= − 1

λ0

∂Neff (λ0)

∂λ0

. (4.14)

Repeating the Neff measurement at different wavelengths and then calculating the
slope of the interpolating function allows to show the possible presence of a zero
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dispersion condition of the DUT. For example, considering the two wavelengths
λ01 and λ02 (with free spectral ranges given by ∆λ01 and ∆λ02 respectively) and
applying 4.10, the slope of Neff (λ0) is:

∂Neff (λ0)

∂λ0

≈ Neff (λ01)−Neff (λ02)

λ01 − λ02

=

λ2
01

2L·∆λ01
− λ2

02

2L·∆λ02

λ01 − λ02

=

=
∆λ02 · λ2

01 −∆λ01 · λ2
02

(2L ·∆λ01 ·∆λ02) (λ01 − λ02)
. (4.15)

The evaluation of the relative error of 4.15 is more cumbersome than that of 4.10.
From 4.15, after some algebra, one first gets:

Er

(
∂Neff (λ0)

∂λ0

)
= Er

(
∆λ02 · λ2

01 −∆λ01 · λ2
02

)
+

+ Er ((2L ·∆λ01 ·∆λ02)(λ01 − λ02)) . (4.16)

This formula can be simplified. As said before, Er(λ0) is negligible with respect to
Er(∆λ). This allows to consider ∆λ01 and ∆λ02 constant and develop the first term
of 4.16 as:

Er

(
∆λ02 · λ2

01 −∆λ01 · λ2
02

)
=

2δ (λ2
01 + λ2

02)

∆λ02 · λ2
01 −∆λ01 · λ2

02

. (4.17)

Assuming ∆λ01 ≈ ∆λ02 ≈ ∆λ this reduces to

Er

(
∆λ02 · λ2

01 −∆λ01 · λ2
02

)
=

2δ (λ2
01 + λ2

02)

∆λ · (λ2
01 − λ2

02)
≈ Er (∆λ)

(λ2
01 + λ2

02)

(λ2
01 − λ2

02)
(4.18)

and the second term of 4.16 becomes:

Er ((2L ·∆λ01 ·∆λ02)(λ01 − λ02)) = Er (L) + 2Er (∆λ) . (4.19)

The total relative error is then:

Er

(
∂Neff (λ0)

∂λ0

)
≈ Er (∆λ) ·

[
(λ2

01 + λ2
02)

(λ2
01 − λ2

02)
+ 2

]
+ Er (L) . (4.20)

This result evidences the importance of the laser resolution in this kind of mea-
surements. Note that Neff is polarization dependent, i.e. it differs in quasi-TE
and quasi-TM guided modes. It is then necessary to have a tight control on the
polarization of the source both to launch only the desired one into the waveguide
and to keep it constant during the whole measurement. In fact, if the sample can
guide both quasi-TE and quasi-TM modes (for example Titanium indiffused LiNbO3

waveguides), the presence of both polarizations causes an error on the evaluated ∆λ
and therefore on Neff . However, this is not a problem if the sample under test is in-
sensible to the polarization (for example a perfectly circular optical fiber) or if it can
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guide only a single polarization (for example a single polarization fiber or a Proton
Exchanged LiNbO3 waveguide) as the lack of polarization stability of the emitted
field simply introduces an additional attenuation which depends on the wavelength
but does not affect the correctness of the ∆λ measurement.

It is then important to evidence if the source presents polarization instability.
To this purpose, one can simply replace the sample with a polarizer and observe
the detected signal. Using our setup we obtained the result reported in figure 4.4.
The continuous line is obtained letting the filter pass only the TM polarization,
while the dashed one is obtained with a 90o rotation, which allows propagation
of the TE polarization. Strong oscillations occur, with phase opposite curves (the
TM polarization is fully transmitted when the TE one is completely attenuated)
instead of constant values, which should be observed for stable polarization. These
oscillations are due to polarization changes related to spectrally dependent physical
phenomena occurring in our laser and should not be confused with the Fabry-Perot
resonances mentioned before. Note in fact that these plots are obtained with a
wavelength scale much larger than that used for attenuation measurements. Here
one period corresponds roughly to 3-4 nm, while, in loss measurements (see figure
4.3) periods are about two orders of magnitude smaller. In conclusion with our
laser the measurement is still correct if the structure is insensible to the polarization
or if guides only a single polarization. If source polarization control is needed, a
single polarization input fiber can be used in the setup instead of the polarization
maintaining one we used.
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Figure 4.4: Transmitted light intensity trough a polarizer oriented to transmit TM
(continuous line) and TE (dashed line) polarization versus the wavelength. Polar-
ization roughly varies in the range ±45◦ around the average value.



4.3 Experimental setup 75

4.3.3 Mode size measurements

As mentioned before, the near field intensity measurement is made by scanning
the output section of the DUT with a SMF28 fiber and detecting the collected light.
This kind of measurements provides results which depend not only on the shape of
the near filed of the DUT but also on that of the scanning fiber. The result of the
scanning procedure is then given by:

S(x, y) =

∣∣∣∣
∫ ∫

Ψg(τx, τy) ·Ψ∗
f
(x− τx, y − τy)dτxdτy

∣∣∣∣
2

(4.21)

where Ψf and Ψg are respectively the fiber mode and the mode of the waveguide
under test, x and y indicating the relative position on the scanning plane. How-
ever we are interested in the normalized cross-correlation function X(x, y) which is
expressed as

X(x, y) =

∣∣∣
∫ ∫

Ψg(τx, τy) ·Ψ∗
f
(x− τx, y − τy)dτxdτy

∣∣∣
2

∫ ∫ |Ψg(τx, τy)|2dτxdτy ·
∫ ∫ |Ψf (τx, τy)|2dτxdτy

(4.22)

Its maximum value, corresponding to the best coupling efficiency, added to the
Fresnel losses, provides the total coupling loss. To evaluate X(x, y), Ψf and Ψg

must then be reconstructed. Assuming a Gaussian profile for the fiber mode Ψf

[102], we can obtain its pattern simply scanning another SMF28 fiber:

S(x, y) =

∣∣∣∣
∫ ∫

Ψf (τx, τy) ·Ψ∗
f (x− τx, y − τy)dτxdτy

∣∣∣∣
2

= |Ψf | (4.23)

Once Ψf is known, Ψg can then be extracted from the measured S(x, y) using a
simple decorrelation routine. To obtain correct results with this kind of measure-
ment, source power and wavelength stability should be guaranteed. This may be a
problem as the measurement time is long.

A further problem comes from the presence of the air gap between the fiber
and the waveguide. Such a gap cannot be eliminated, as it is necessary to allow
displacements of the scanning fiber, but forms a parasitic cavity which perturbs the
measurement, as seen before when discussing the propagation loss measurements.
Moreover, the size of the air gap changes during the scanning procedure, as the
scanning plane is never perfectly parallel to the end-face of the sample. This induces
a further, varying, perturbation of the transmitted power.

To understand the procedure we envisaged to avoid or at least reduce these
problems, let us consider first, for example, an horizontal scanning, done with Θv 6= 0
to avoid the effect of the parasitic cavity. Results depend however also on the value
of Θh. In fact, in 4.21, if Θh 6= 0, the projection of Ψf on the scanning plane
should be considered. This reduces the width of S(x, y) introducing an error in the
measurement, which can be eliminated if Θh = 0.
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This condition can then be found simply performing some scans for varying values
of Θh and looking for the value corresponding to the maximum width of S(x, y). As
an example we show in figure 4.5 the results of such a measurement using a SMF28
fiber as DUT.
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Figure 4.5: Width of the fiber mode measurement versus the angle Θh (continuous
line) and its interpolation with a parabolic function (dashed line). The perfect
alignment is obtained for Θh = 0 where the width is maximum.

Reciprocally, for vertical scans, Θh 6= 0 should be assumed and the just described
procedure is followed to set Θv = 0. Figure 4.6 shows results for vertical and
horizontal cross-correlation measurements obtained on a SMF28 using our setup.
The two fields have the same width, evaluated according to Petermann’s definition
[103], equal to 9.6 ± 0.5µm at λ = 1.55µm. This value is in agreement with the
specification of the fiber manufacturer, which guaranties a mode width of 10.4 ±
0.8µm [104], confirming the correctness of the procedure.

The precision of this technique depends on the noise introduced by the decorrela-
tion algorithm and on the accuracy of the positioning system. For what concerns the
former cause of noise, it is known that the routine that allows reconstructing the Ψg

from cross-correlation measurements consists in a simple iterative algorithm which
introduce a noise on the field profile measurement estimated to be around ±2%. For
what concerns the latter problem, piezoelectric stages with open loop power supply
without any kind of position control were used in our experimental setup. Without
a feedback from the position probes, measurements are affected by the imperfections
of the piezoelectric adjusters such as hysteresis and temporal drift which increase
systematic error of about ±0.5µm in the mode size measurements. These errors
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Figure 4.6: Horizontal (left) and vertical (right) cross-correlation measurements of
a SMF28 sample.

can be reduced by characterizing the piezoelectric stages and then introducing the
proper corrections after the measurement. This as been done for example for data
reported in figure 4.5 where the r.m.s. noise induced error was estimated to be lower
than ±0.1µm.

Using a setup with feedback from position probes the systematic error of the
measurement can be reduced to the value due to the decorrelation noise, which for
a mode size measurement is equivalent to ±0.02µm. Compared with other near
field reconstruction techniques this solution can reach higher precisions with the
only drawback that the measurement is not obtained in real time but can takes few
minutes for the scan procedure.

4.4 Results

In this section, results of different measurements performed with the setup de-
scribed so far are illustrated and commented to show both its possibilities and
versatility. The test for the propagation loss measurement has been made on in-
tegrated optical waveguides fabricated in LiNbO3 with the soft proton exchange
technique (SPE). Figure 4.7 shows the output intensity versus wavelength. The
measured contrast is 0.146 which corresponds to total losses of 2.4 dB. The sample
is 2.169±0.0005cm long and the propagation losses are then 1.1±0.1 dB/cm, which
corresponds to the expected value for this technology. The accuracy was obtained
repeating the measurement and observing the dispersion of the results. Note that
the error depending on the evaluation of the angle formed by the waveguide with
the end-faces of the sample turns out to be approximately 5e− 4 dB, confirming its
negligible importance.

In order to validate the Neff measurement with our experimental setup, we have
used a piece of standard fiber (SMF28) 25.91±0.025mm long. In order to eliminate
the cladding modes we have immersed the sample in a proper index matching liquid.
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Figure 4.7: Interference fringes of a integrated optical waveguide which forms a
Fabry-Perot cavity with its end-faces. The contrast of this oscillation is related to
the propagation losses.

The measurement has been obtained by varying the wavelength of the laser between
λmin = 1552 nm and λmax = 1554 nm with step equal to the wavelength resolution
δ = 0.001 nm obtaining a ∆λ = 31.54 ± 0.015pm which corresponds to Neff =
1.4698. The relative error 4.11 of this measurements is Er(Neff ) = 2.9e − 3 and is
obtained by adding the contributions of both Er(L) = 1.9e−3 and Er(∆λ) = 1e−3.
Er(λ0) is in fact negligible with our laser. The fiber data sheet reports Neff = 1.4682
confirming the result obtained with our measurement.
Another example of Neff measurement has been made for segmented waveguides
fabricated on a LiNbO3 substrate with the SPE technique [66]. Such waveguides
present a periodic variation of the refractive index in the propagation direction. As
said in the first chapter, one of the most important parameters of these waveguides
is the duty cycle DC, defined as the ratio between the length of the high index
segment and the period. Reducing the DC the Neff must be reduced too. This
properties has been experimentally confirmed and the results reported in figure 4.8
at λ = 1.55µm.

An example of dispersion slope measurement has been made for the same inte-
grated optical waveguide used for the propagation losses test. Figure 4.9 shows the
Neff measurement obtained at the three wavelengths 1.5, 1.55 and 1.6 µm. The
dotted line is the linear interpolation of the results. Measuring the slope of the
interpolated curve we obtain a value of ∂Neff/∂λ = −0.0225 ± 0.0025 µm−1. The
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Figure 4.8: Effective group index measurement for segmented waveguide with P =
15µm and W = 5µm (dashed line) and 7µm (continuous line).
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Figure 4.9: Effective group index measurement versus the wavelength. Dotted line
represents the linear interpolation to consider for slope evaluation.

chromatic dispersion of an optical device is related to the material and to the guiding
dispersion. In our case, simulations has shown that the second term is negligible.



80 4. Characterization techniques

Material dispersion can be easily evaluated with the Sellmeier equation for LiNbO3.
In particular calculating ∂Neff/∂λ at 1.55 µm we obtain −0.0233 µm−1 confirming
the measurement.

For the mode field shape measurement and the evaluation of the overlap with
an optical fiber we have used as sample the segmented waveguides fabricated on a
LiNbO3 substrate with the SPE technique. Reducing the DC of the waveguide,
one reduces the confinement and the mode size increases. This property can be
exploited to reduce the coupling losses between an integrated waveguide and a fiber,
as shown in [33]. With our measurements, we have reconstructed the mode in the
segmented waveguides for different values of DC and calculated the overlap with
a SMF28 fiber. The reconstructed field is shown in figure 4.10 for a continuous
waveguide and is in good agreement with the simulations obtained by modeling the
waveguide with a full vectorial 3D BPM [35].

-3 -2 -1 0 1 2 3

x 10
-5

0

0.2

0.4

0.6

0.8

1

X [m]

a
.u

.

Measurement

Simulation

-3 -2 -1 0 1 2 3

x 10
-5

0

0.2

0.4

0.6

0.8

1

Y [m]

a
.u

.

Measurement

Simulation

Figure 4.10: Horizontal (left) and vertical (right) mode profile of continuous wave-
guide.

We have than repeated the measurement for segmented waveguides with differ-
ent DC and calculated the overlap integral with the mode fiber obtaining the result
of figure 4.11. We can notice that a DC reduction increases the overlap and induces
a coupling losses decrease. In our setup, piezoelectric stage is affected by hysteresis
phenomena estimated on the order of 8% of the commanded motion. This incerti-
tude, added to the contribution of the decorrelation algorithm induces an error on
the overlap measurement of less than ±0.04.
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Figure 4.11: Overlap between the segmented waveguide mode and the SMF28 mode
for different DC. Measurements (continuous line) are compared to simulation results
(dashed line).



82 4. Characterization techniques



5

Segmented Waveguide Taper

5.1 Introduction

As mentioned in the introduction of this thesis, insertion losses have always been
a major problem in Integrated Optics. Reducing the insertion losses is important
for telecom and sensors applications and is mandatory in the case of Quantum Com-
munication where the information is carried by single photons and where amplifiers
are not allowed.

Coupling losses are due to misalignments between the two waveguides, Fresnel
reflection and mode mismatch. Misalignments between fiber and IO device can be
avoided using careful aligning procedures. Fresnel reflection losses, due to the differ-
ent values of the refractive indices of the IO waveguide and the optical fiber, can be
reduced using index matching fluids or antireflection coatings at the end-face of the
sample. Mode mismatch losses are due to different mode sizes in the IO waveguide
and the fiber. They are particularly important in the case of active electro-optic
(EO) or nonlinear (NL) devices where the component efficiency is a growing func-
tion of the mode confinement. In these cases, designing the waveguide to optimize
its coupling with low confinement telecom single mode fibers is far from being op-
timum, but is the more commonly used technique [105] since we are still missing a
practical and cost effective solution allowing longitudinal variation of the transversal
section of the waveguide mode. This mode size transformer (taper) should be adia-
batic, as short as possible, in order to realize the best trade off between propagation
losses and coupling efficiency. In the literature a lot of solutions for the design of
a taper has been proposed [106, 107, 108]. Among them, the segmented waveguide
configuration seems the most suitable as it does not introduce additional steps in
the fabrication process [34, 109, 110, 33, 111, 112]. In principle, this technique is
rather general, and can be adapted to any material or waveguide fabrication tech-
nique. Nevertheless, as the excess losses induced by the segmentation depend very
much on material and waveguide fabrication technique, each case has to be carefully
studied experimentally. In this chapter, we present a study devoted to waveguides
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realized in Z-cut wafers of LiNbO3 that are commonly used for their good non-
linear properties, allowing for example the fabrication of efficient optical frequency
converters and photon pair sources required for quantum communication at telecom
wavelength [113]. The reported results [114] show that when pushing the SPE pa-
rameters to obtain waveguides with the maximum ∆n, which allows maximum field
confinement, tapers showing an overall reduction of the insertion losses with respect
to the untapered waveguide can be successfully realized. The chapter is organized
as follows. In the next section, the numerical taper design are described. Then, the
fabrication processes and different characterization techniques used to evaluate the
improvements of the taper are illustrated. Finally, the experimental results obtained
with different fabrication parameters of the taper are presented.

5.2 Numerical design of the taper

The tested devices are constituted by a taper that transforms the highly confined
mode of a continuous waveguide (CWG) to that confined by a segmented one (SWG)
as shown in figure 5.1. To understand the features of the mode of such a waveguide

CW SWG

W

Taper

PL

Figure 5.1: Schematic of the tested devices.

one should remind (Chapter 2) that SWG behavior can be described using the
so called equivalent waveguide theorem for periodic structures [115, 116, 74]. For
wavelengths far away from the band gap, a SWG is equivalent to a continuous
waveguide with the same depth and same width but with a surface index equal to:

neq = nsub + ∆n ·DC (5.1)

where nsub is the substrate index and DC is the duty cycle. In the case of a ta-
per the DC is varying from DC = 1 (continuous waveguide) to smaller DC with
constant period P so that the surface index of the equivalent waveguide is reduced
as well as the mode confinement. Once the desired mode size is reached, the DC
is kept constant down to the end of the sample to stabilize the mode size after the
transformation in the taper.

The numerical modelling of this structure is made with the tools presented in
chapter 2. The project of all the taper parameter is obtained following the three
steps:
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• Numerical modelling of continuous and segmented waveguide in Lithium Nio-
bate fabricated with the SPE techniques using the mode solver and the BPM
tools.

• Calculation of the best segmentation parameter (DC, P and W ) of the SWG
in order to maximize the overlap between the SWG mode and the mode of a
standard fiber SMF28.

• Evaluation of the taper length L and DC variation function during the prop-
agation which allow an adiabatic transformation of the mode.

5.2.1 Numerical modelling of Lithium Niobate waveguides

Results presented at the end of chapter 3 show the index profile, evaluated with
the IWKB algorithm, for our planar waveguides fabricated with SPE technique in
Lithium Niobate substrate. This vertical index profile can be easily fitted with basic
functions such as exponential or gaussian and used to describe the index distribution
inside our numerical tools. This approach is not completely correct if the m-lines
measurement and the IWKB profile reconstruction is made at wavelengths far from
those of interest for the numerical analysis. In our case, in fact, the experimental
characterization is made at 632 nm, in order to have multimode structures, while the
numerical analysis is made at 1.55µm. Moving from λ = 632 nm to λ = 1.55 µm,
in fact, dispersion changes refractive index values. The indices of the substrate
and the exchanged zone vary in different ways with respect to wavelength and it is
very difficult to obtain the total dispersion behavior for a graded index waveguide.
Moreover, the field at 632 nm is well confined and the interaction with the air
interface is very different with respect to the mode at 1.55 µm. These kind of
considerations are the base of a model proposed by Fabrizio Fogli [117](PhD student
of the university of Bologna in collaboration with the LPMC university of Nice -
Sophia Antipolis). He proposed a index profile of a SPE waveguide in deep (y axis)
that follows this function:

f(y) = e−( y
p)

0.6

(5.2)

where p = 0.615µm has been empirically estimated .

For a planar waveguide the index distribution in the horizontal direction is con-
sidered constant but for channel waveguide also lateral diffusion in the region pro-
tected by the photolithography mask must be evaluated. For a z-cut Lithium Nio-
bate substrate P.Aumont [71] has experimentally and numerically confirmed the
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presence of a lateral diffusion modelled by a gaussian function in this way:

g(x) =





e
−

(
x−W

2
p

)2

, x > W
2

1, W
2
≤ x ≤ W

2

e
−

(
x+ W

2
p

)2

, x < W
2

(5.3)

where t = 1.2 µm represents the half width at 1/e of the gaussian profile and W is
the waveguide width imposed by the photomask. Combining the vertical and the
horizontal profile, we obtain the index distribution for a continuous waveguide:

n(x, y) = ns + δnmax · f(y) · g(x) (5.4)

where ns is the substrate index and δnmax the maximum index variation at the
surface. For a well confined waveguide δnmax has been estimated equal to 0.071.
This structure can be analyzed with the mode solver. Figure 5.2 shows the intensity
of the fundamental mode at 1.55 µm for the three components Ey and Ex and Ez

(Ey is the main component).

Figure 5.2: Three electric field components of the SPE waveguide calculated with
the mode solver.

The computational window is 60 µm × 50 µm, large enough to prevent border
effects induced by the absence of PML. The mesh discretization has been fixed at
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∆x = ∆y = 0.2 µm as the best trade off between the accuracy of the results and
the computational time has been obtained for that mesh as shown in the next table.
This model is in quite good agreement with the m-lines measurement performed at

∆x = ∆y x points y points neff Elapsed time [s] Precision
0.05 600 800 2.1435705 3360 ref.
0.1 300 400 2.1427007 240 4.06e-4
0.2 150 200 2.1424178 35 5.38e-4
0.4 75 100 2.1422174 5 6.32e-4
0.5 60 80 2.1419813 2 7.42e-4

1.55 µm with just one mode is in propagation. Once the mode guided by the straight
waveguide has been calculated, it is possible to model the segmented waveguide
behavior. The Beam Propagation Method is the best numerical tool to analyze
this kind of longitudinal varying structure. The fundamental assumptions to obtain
correct BPM solutions are satisfied for SPE : LiNbO3 waveguides, in fact, the
index variation is weak and the field intensity can not change very fast during the
propagation on distance compared to the wavelength. Moreover, the low contrast
longitudinal changes do not allow the excitation of back propagating modes.

In view of realistic simulations of these waveguides, the refractive index modelling
include both the effects of lateral and longitudinal proton diffusion. As we use Z-cut
Lithium Niobate crystal substrate, we can say that lateral and longitudinal diffusion
are identical and induce the same index profile. The profile can than be written in
z direction as:

h(z) =





e−( z
t )

2

, z < zi

e−( z−zi
t )

2

, zi ≤ z < 2zi

1, P (1−DCm) ≤ z < P

(5.5)

where zi is the the point corresponding to the mid masked zone. Moreover DCm is
the mask duty cycle defined as the ratio between the length of the mask segment and
the period. Adopting the longitudinal index profile of equation 5.5 Pierre Aumont
[71] in his PhD work calculated the transmission in the SPE segmented waveguides,
concluding that the reflections in the Brag region are extremely weak for periods
larger than 8µm, due to the strong lateral diffusion of the fabrication process. Note
that, if the segments were square like shape, then the high order contribution of
the refractive index grating formed by the segments could be efficient. But because
of the strong lateral diffusion, the segments are not at all square like shape but
much more smooth, so the high orders are extremely unefficient. For example, in a
waveguide with length equal to 2.5cm, P = 8µm, the nearest Bragg peak at wave-
length 1.55µm reduces the transmission from 1 to 0.9997 which is not a detectable
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variation. With the same structure, the length of the waveguide should be 14cm in
order to obtain a 1% attenuation. In our PSW the periods are always larger than
8µm and the reflectivity can only be smaller. For this reason we have no limitation
on the device operating bandwidth and we could use the BPM to study this kind of
structure.
In case of intersection between two neighboring gaussian profiles, each profile is con-
sidered independently as depicted in figure 5.3. This choice has been made by Pierre
Aumont comparing the effective index measurements obtained with simulations at
different index profiles and different DCm. An important consequence derived by
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Figure 5.3: Longitudinal refractive index profile for a SPE segmented waveguide
with perios P = 10 µm and DCm = 0.7.

the presence of a longitudinal diffusion is that the DC must be redefined as:

DC =

P∫
0

h(z)dz

P∫
0

1dz

(5.6)

which, after some algebra, becomes:

DC = DCm +
√

π
t

P
erf

[
P (1−DCm)

2t

]
(5.7)

which can be useful when using the equivalent waveguide theorem. When we intro-
duce this segmented waveguide model in the 3D BPM we can use the same mesh used
in the mode solver. Concerning the longitudinal step, we have fixed ∆z = 0.2 µm.
This value has been chosen as before as the best compromise between precision and
CPU time which is proportional, for a fixed propagation length, to the inverse of
∆z. The following table shows the computational times for different values of ∆z
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and the corresponding precisions obtained for the power evolution in a 2mm length
segmented waveguide with P = 15µm, W = 5µm and DCm = 0.5. I consider the
result obtained for ∆z = 0.1µm as a reference (Ref. in the table) for the precision
evaluation.

∆z[µm] Elapsed time [s] Precision
0.1 14520 Ref.
0.2 7260 5.68e-5
0.4 4020 2.84e-4
0.5 3360 4.26e-4
1.0 2340 1.82e-3

5.2.2 Segmented waveguide design

The SWG positioned at the end of the sample determines the dimensions of the
output mode. Modifying its parameters (DC, P and W ) we can then improve the
coupling efficiency to the fiber mode.

The parameter we need to maximize is the overlap integral between the output
field of the SWG ψSWG and the fiber mode ψf , defined as:

I =

∣∣∫∫ ΨSWG ·Ψ∗
fdS

∣∣2
∫∫ |ΨSWG|2 dS · ∫∫ |Ψf |2 dS

. (5.8)

The fiber mode ψf can be easily obtained using the mode solver because the structure
is z-invariant. Considering a standard SMF28 single mode fiber [?] the result is
shown in figure 5.4.

Figure 5.4: Calculated fundamental mode intensity in a standard SMF28.

In order to obtain a good precision when determining the propagating field in
the segmented waveguide, instead of the mode solver, we have used the 3D BPM.
The transversal model of the integrated waveguide is the same of the previous model
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analyzed in section 5.2.1 for the SPE : LiNbO3 waveguides. The transversal com-
putational window is less critical because the BPM uses PML layers.

For the simulations, we have considered segmented waveguides with periods P =
15 µm and P = 25 µm. Figure 5.5 shows the overlap integral I between the
fundamental mode of the SMF28 and the mode of the segmented waveguide as a
function of the DCm for period P = 15 µm and P = 25 µm.
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Figure 5.5: Overlap integral I between the fundamental mode of the SMF28 and
the mode of the segmented waveguide as a function of the DCm for P = 15 µm and
P = 25 µm.

For a continuous waveguide (DC = 1) the calculated overlap is 0.76. Reducing
the DC this overlap increases as a better match between the segmented waveguide
mode and the fiber mode. Reducing the period P , the maximum overlap is obtained
in correspondence of a smaller DCm. This behavior is explained by the presence
of the longitudinal diffusion. In fact plotting DC versus DCm for P = 15 µm and
P = 25 µm (left part of figure 5.5) we obtain two shifted curves which can be used
to express the overlap as a function of DC (right part of figure 5.5). With this
consideration, the maximum for the two curves is obtained for the same value of
DC = 0.64.

As said before, the coupling losses, are related to the overlap between the two
modes ψg and ψf , but also to the effect of the Fresnel reflections at the interface.
When we couple an optical fiber with an integrated waveguide an air gap is formed.
Neglecting the multiple reflections in the air gap, the attenuation induced by the
passage of the electromagnetic field trough these three different materials can be
evaluated using the following relation [38]:

Tf =
4n1n2

(n1 + n2)
2 ·

4n2n3

(n2 + n3)
2 (5.9)
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Figure 5.6: In the left part: relation between the DC and the DCm for P = 15 µm
and P = 25 µm. In the right part: Overlap integral I between the fundamental
mode of the SMF28 and the mode of the segmented waveguide as a function of the
DC.

where n1 is the effective index of the propagating mode in the segmented waveguide,
n2 is air (or the index of added liquid) and n3 is the fiber effective index. The values
of n1 versus the DCm can be obtained using the BPM, the result is shown in figure
5.7. Considering n2 = 1 the values of Tf as a function of DCm is shown in figure 5.8.
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Figure 5.7: Evaluation of the effective index in the segmented waveguide as a func-
tion of DCm.

Note that reducing DCm the Fresnel reflections are reduced too, but this variation is
relatively small and does not modify the optimal values of DCm obtained considering
the overlap integral.

It is now necessary to consider how the width of the waveguide W can modify
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Figure 5.8: Fresnel transmission coefficient versus DCm considering a segmented
waveguide coupled to a fiber optic trough an air gap.

the overlap with the fiber mode. To do that, we have considered the parameters
which provide the best performance DCm = 0.5 and P = 15 µm and we have
evaluated the overlap integral I varying W . Figure 5.9 shows the obtained results.
For W < 3.5 µm the waveguide mode approaches the cutoff condition and for W >
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Figure 5.9: Overlap integral versus the waveguide width (W ).

8 µm the mode presents a strong ellipticity and the waveguide becomes multimode.
For 3.5 < W < 8 µm the overlap variation is not very large and the maximum is
obtained for W = 5 µm.

Another important parameter, we would like to calculate with the BPM analysis,
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is the propagation loss. This evaluation can be easily done calculating the total
power of the computational window during the propagation and fit the result with an
exponential. Such kind of evaluation has been made for the segmented waveguides
with period P = 15 µm, W = 5 µm for different DCm. The obtained results
has then been compared to the measured propagation losses presented in chapter
3. From figure 5.10 we note disagreement between the two results. This happen
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Figure 5.10: Comparison between calculated and measured propagation losses as a
function of DCm for segmented waveguides with period P = 15 µm and W = 5 µm.

because we can not consider in the BPM model the roughness at the surface of the
real component. A proposed solution is to introduce complex dielectric constant
in the BPM and assign an absorption profile to the waveguide. The problem is to
determine the right complex profile for which the scattering losses are equal to the
artificial absorption losses.

The concluding of this discussion on segmented waveguides design, we have found
that the best coupling with a SMF28 can be obtained for P = 15 µm, DCm = 0.5
and W = 5 µm.

5.2.3 Taper design

In this section we will now address the problem of designing a tapered SWG.
The aim of the taper is to transform (see figure 5.11) the fundamental mode of a
continuous waveguide into the fundamental mode of the segmented waveguide that
provides the best coupling with the mode fiber. As expressed by the equivalent
waveguide theorem, the DC is the parameter we have to change in order to modify
the segmented waveguide properties. This parameter can be modified playing with
DCm and P . With the design of the final PSW (positioned at the interface with the
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fiber), we have fixed the parameters W , DCm and P at the end of the taper. The
optimal W of the PSW is equal to 5µm, which is a good value also for a continuous
waveguide. For this reason we do not need to modify its value in the taper. In the
case of continuous waveguide which requires different values of W a variation of the
taper width should be introduced. For the mode shaping we can play with both
DCm and P . If we choose to modify P we have two possible choices:

1. Move from a continuous waveguide to a PSW with DCm constant;

2. Move from a continuous waveguide to a PSW modifying both DCm and P .

Solution 1 has the problem that for DC near to 1, P must reach higher values and
this causes the increase of the total taper length (and of losses accordingly). Solution
2 has not the problem of solution 1 but the taper design results rather complicated
as both DCm and P must change in order to obtain a slow variation of the real DC.
In conclusion, the best taper design is obtained modifying the DCm with a constant
period P .

Waveguide

Figure 5.11: Schematic representation of the taper structure for the mode transfor-
mation.

The 3D BPM has been used also for the taper analysis. The goal of the taper is to
perform such mode transformation minimizing losses and device length. Taper losses
are due to two contributions. The firmer is related to the fact that the structure
is z-variant and during mode transformation some radiating modes can be excited
thus increasing the propagation losses. This problem, in our case, is increased by
fabrication imperfection and for this reason it is very difficult to quantify their values.
The latter contribution is related to the mismatch between the mode at the output
of the taper and the mode of the segmented waveguide, as it happens in a general
coupling problem.
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The parameters to determine for a complete definition of the taper structure
are the length L and the DCm variation function in the longitudinal axes. We
have considered two DCm variation functions: the linear and the cubic (DC lin

m and
DCcub

m ) defined by:

DC lin
m (z) = 1−

(
1−DCm

L

)
z

DCcub
m (z) = 1−

(
1−DCm

L3

)
z3. (5.10)

In order to determine which of them provide the better performances, we have
calculated the overlap between the field at the output of the taper and the mode
of the segmented waveguide as a function of the taper length L. Figure 5.12 shows
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Figure 5.12: Overlap between the field at the output of the taper and the mode of
the segmented waveguide as a function of the taper length L for a linear (red line)
and cubic (blue dashed line) variation of the DCm.

that the cubic taper can provide a practically perfect overlap at L = 1400 µm while
the linear one requires longer taper lengths. This result confirms results previously
published in literature [34]. The need to reduce taper length comes not only from the
need of compactness, but also from the larger propagation losses induced by longer
devices. This is then a trade off which must be determined: propagation losses,
can be reduced with a taper length reduction, while the overlap with the segmented
waveguide mode is improved increasing the taper length. Such a trade off cannot
be determined using the BPM because, as said before, surface imperfections cannot
be included in the numerical model. Figure 5.13 provides anyway a good hint.
Propagation losses in fact can only reduce the value of the optimal L. To better
explain this point we have considered a taper with constant propagation losses equal
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to 2.5 dB/cm. Figure 5.13 shows the propagation and the overlap losses and their
combination to obtain the total losses as a function of the length L. Note that the
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Figure 5.13: Propagation (green dotted line) and overlap losses (blue dashed line)
as a function of the taper length L. The red line represents the total of the two
contributes.

length of the total losses minimum (red line) is no longer 1400 µm but reduced to
1190 µm once the propagating losses term is considered. In conclusion the numerical
analysis of the taper shows that changing the DCm from DCm = 1 to DCm = 0.5
with a segmentation period P = 15 µm, the better solution is to use a cubic DCm

longitudinal variation function and a length between 1000 and 1400 µm, depending
on the propagating losses. The overlap with the SMF28 pass from 76% to 92%
(0.82 dB) and from this improvement we must subtract the loss introduced by the
taper and the segmented waveguide respect the continuous waveguide. The worst
case of taper losses equal to 2.5 dB/cm induce a reduction of 0.36 dB but more
reasonably we can imagine a reduction between 0.1 dB and 0.2 dB, which allow an
insertion losses overall reduction between 0.62 dB and 0.72 dB.

To conclude the numerical analysis we can study the wavelength dependence of
the optimum design for improved coupling with SMF28. Modifying the working
wavelength, at the output of the taper, the mode shape changes in a different way
respect to the fiber mode. This means that, in order optimize the taper design
for different wavelengths, its parameters must be recalculated. We have done some
simulations for λ = 1.31µm instead of 1.55µm. With such a wavelength reduction,
at the output of the taper, the mode size is strongly reduced with respect to the fiber.
The next table shows the overlap as a function of the DCm for period P = 15µm
and W = 5µm at λ = 1.31µm.

Note that the maximum value of the overlap is now obtained for DCm = 0.4 and
its value is smaller with respect the overlap of 0.92 calculated at λ = 1.55µm and
DCm equal to 0.5. It is possible to conclude that with a wavelength reduction, the
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DCm Overlap
0.3 0.8756
0.4 0.8950
0.5 0.8366

optimum design can be obtained reducing the final DCm of the segmented waveguide
taper and similarly with a wavelength increase the optimum design can be obtained
for higher DCm. Concerning the taper length no important variations have been
observed in this wavelength range.

5.3 Device Fabrication

Samples are fabricated on a Z-cut LiNbO3 substrate with the SPE and pho-
tolithography techniques described in chapter 3. The SPE has been used with two
different values of LB percentage. A first sample has been fabricated with 3.5%
of LB, which gives a small index variation and a second one with 2.8% of LB to
create SPE guides with the maximum index variation. In both cases waveguides are
monomode at 1.55 µm, the standard telecommunication wavelength and therefore
the preferred wavelength for long distance quantum communications. As said be-
fore, the parameters we can choose when designing the taper are its length (L), the
segmentation period (P ), the final duty cycle (DCm) and the waveguide width (W ).
Tapers with 48 possible combinations of these parameters were then fabricated on
the same substrate. The following table summarizes the values of the parameters
used for the tapers present on the sample.

P [µm] DCm W [µm] L[µm]
15 0.5 5 100
25 0.6 7 600

0.7 1000
1400

The last fabrication step is the end-face polishing to allow end-fire coupling of the
sample with the input and output fiber. A particular care is devoted to the control
of the angle between the end-face and the waveguides which has to be 90◦ in order
to use the Fabry-Perot technique to measure propagation loss [83].

5.4 Experimental setup

In this section, we describe the device characterizations of the fabricated samples
using the experimental setup described in chapter 4. This system can be used not
only to evaluate separately the integrated optical waveguide propagation losses and
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the mode overlap integral but also their combined effect, comparing the overall cou-
pling efficiencies using tapered and untapered structures. The three characterization
steps can be summarized as follows:

• The propagation losses are measured using the Fabry-Perot cavity technique
[83]. Measuring the power transmitted through the system at different wave-
lengths, one obtains fringes whose contrast is directly related to the propaga-
tion losses.

• The overlap integral between waveguide and fiber modes can be evaluated via
the measurement of the mode cross-correlation. Such a function is measured
by exciting the waveguide under test with a constant power at a fixed wave-
length and recording the power collected by the output fiber, while it scans,
with 16 nm steps, a 25 µm × 25 µm window centered on the waveguide out-
put. Such measurement is similar to that described in [99] and provides many
information. First of all we can quantify how critical the fiber to waveguide
alignment is. A sharp cross-correlation function corresponds to a low toler-
ance to alignment errors, while a smooth cross correlation function allows some
alignment errors without dramatic impact on the coupling losses. Moreover,
knowing the cross-correlation function and the fundamental mode pattern ψf

of the SFM28 fiber, it is possible to reconstruct the waveguide mode field dis-
tribution ψw through a simple deconvolution operation. This finally allows
evaluating the intensity overlap integral 5.8. Evaluating this integral for dif-
ferent tapers allows then to determine the combination of parameters which
gives the better mode matching.

• The overall coupling efficiency improvement, which depends on the combined
effect of taper induced propagation losses and waveguide to fiber mode match-
ing improvement can be evaluated comparing the maximum power transmitted
through the different waveguides present on the sample under test. For each
waveguide, the throughput power is measured optimizing contemporarily the
positions of both input and output fibers with piezo-controlled stages.

5.5 Results

We have first characterized the sample obtained with 3.5% of LB. Figure 5.14(a)
presents the mode size as a function of the DCm of the segmented waveguides. For
DCm = 1, corresponding to a continuous waveguide, we found mode sizes bigger
than the fiber mode size (dashed line). This indicates that the field is less confined
in the waveguide than in the fiber. In this case we found an overlap of 85%, which
cannot be improved by the use of a taper. The losses measured for the continuous
waveguide are 1.5 dB/cm. They are mainly caused by surface scattering. The weak
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Figure 5.14: Measurement of the lateral and vertical mode sizes (at 1/e of the
field maximum) of segmented waveguides as a function of DCm with W = 5µm and
P = 15µm for two samples fabricated with 3.5% (a) and 2.8% (b) of LB. The dotted
line refers to the mode size of the output fiber SMF28.

confinement of the mode allows a strong interaction with surface imperfections and
is responsible for these rather high scattering losses. In this case high performances
cannot reasonably be obtained for non-linear or electro-optical components. In fact,
even if coupling losses are small, the weak mode confinement does not allow strong
localized field intensity.

The second sample was fabricated performing SPE with 2.8% of LB, condition
which corresponds to the maximum index increase achievable with this technique. In
this case a stronger confinement is expected. This is confirmed by the results shown
in Figure 5.14(b), where the mode size of the segmented waveguide is reported as
a function of the DCm. The field is more confined and this contributes to reduce
the losses down to 1 dB/cm. As said before, the drawback of a smaller mode size
is the increase of the coupling losses related to the reduction of the mode-fiber
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overlap. Figure 5.15 shows that for DCm = 1 the overlap is 78% but the use of a
segmented waveguide taper can improve it up to 92% for DCm = 0.5, W = 5 µm
and a period P = 15 µm (continuous line). This corresponds to an improvement
of 0.71 dB in logarithmic scale. This experimental result agrees with the numerical
prediction obtained using a 3D BPM [35] (dashed line in figure 5.15). However,
this result is not the real performance improvement, which can be obtained using
tapered and segmented waveguides, as they induce extra propagation losses which
are not taken into account in the overlap integral. These extra propagation losses
are due to imperfect mode transformation and scattering losses at the segments
edges. So, the use of a segmented waveguide taper becomes effective if the mode
matching improvement is larger than the propagation loss increase. Using the Fabry-
Perot cavity technique, illustrated in the previous section, taper and segmented
waveguide introduction was found to cause a loss increase of only 0.04dB with
respect to the continuous waveguide. The total improvement obtained in terms
of waveguide to fiber coupling is then 0.71 − 0.04 = 0.67 dB. The precision of
this result is estimated to be around ±0.2 dB. The overall improvement was also
measured using the approach described in chapter 4. The results are reported in the
following table where Pt and PCWG are output powers measured at the end of the
waveguides with and without taper respectively. Negative results correspond to the
cases where the overlap improvement does not even compensate for the additional
losses. The optimum length of the taper depends on the segmentation parameters
and the table reports the results for the lengths that provide the best performances.
We obtained the overall best result with a 1400 µm long taper associated to a
2600µm long segmented waveguide, with P = 15 µm, W = 5 µm and DCm = 0.5.
In that case, an overall increase of 0.78 dB of the transmitted power was observed
with respect to the continuous waveguide. The precision of this measurement is
around ±0.1 dB. These two different measurements give results, which taking into
account the uncertainties, are equal and confirm the practical interest of segmented
waveguide tapers realized using the SPE process. It is worth noting that the test
structures realized for this study have taper at one end only. Therefore, the benefit
for a real component with a taper at both ends will be doubled. Further improvement
can also be obtained working on the taper length, which can be reduced by reducing
the segmentation period.

Taper length 10 log(Pt/PCWG) 10 log(Pt/PCWG)
P [µm] L[µm] DCm [W = 5µm] [W = 7µm]

1400 0.5 0.78 dB 0.06 dB
15 1000 0.6 0.22 dB -0.25 dB

600 0.7 0.19 dB 0.20 dB
1400 0.5 -0.53 dB 0.37 dB

25 1400 0.6 0.15 dB 0.43 dB
600 0.7 0.51 dB 0.47 dB
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Figure 5.15: Overlap between the segmented waveguide mode and the SMF28 mode
for different DCm. Measurements (continuous line with crosses) are compared to
simulation results (dashed line with circles).

Besides the reduction of the insertion losses, the use of segmented waveguide tapers
offers the advantage of a wider cross-correlation function with the mode fiber. Figure
5.16 shows the sections of the measured bidimensional cross-correlation function be-
tween SMF28 and continuous waveguide (continuous line) and between SMF28 and
segmented waveguide with DCm = 0.5 and W = 5 µm (dashed line). The resolu-
tion of these measurements is 16 nm, and is limited by the piezoelectric positioning
system we used. The wider cross-correlation function, obtained using segmented
waveguide, is the signature of a less critical alignment, which is important for in-
dustrial applications as it relaxes the constraints on the fiber pigtailing process and
therefore its cost.

5.6 Tapers in quantum relay

These results are not only important in view of their practical applications in
classical devices but promise also a lot of attracting features for many applications.
For example, the so called quantum cryptography systems use a cryptography key,
shared through a quantum channel, assuring a secure link between two individuals
[6, 118]. In quantum communication the information is carried by single photons.
For this reason, optical amplifiers can not be used, as in classical systems, to increase
system performances (maximum distance of connection and bit-rate) and one can
then only reduce losses. Moreover, as detectors are noisy and fibers lossy, the signal-
to-noise ratio decreases with distance, and the maximum distance for a given fidelity
is thus limited. Quantum relays have been used by Guillaume Bertocchi [119, 120]
to overcome this problem using the photon entanglement in time bin [121]. Figure
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Figure 5.16: Lateral (a) and vertical (b) section of bidimensional cross-correlation
function between SMF28 and continuous waveguide (continuous line) and between
SMF28 and segmented waveguide (dashed line) with P = 15µm,W = 5µm and
DCm = 0.5.

A BR
Quantum channel

Trigger

Figure 5.17: Quantum communication system with relay.

5.17 shows a schematic representation of the system. A is the photon source. When
a single photon is transmitted on the quantum channel a second electrical trigger
is launched too. In order to the maximum allowed distance between A and B
a quantum relay R is placed before the receiver B. The quantum relay is based
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on the photon teleportation phenomena [122]. A scheme of the integrated device
realized by Bertocchi is shown in figure 5.18. Photons at 0.775 µm come from

PPLN
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Pump

A

B

3

4

5

Figure 5.18: Schematic of the quantum relay.

the port 2; a Periodically Poled Lithium Niobate (PPLN) stage converts a single
input photon into two photons at 1.55 µm. This entangled pair is separated by a
splitter and one photon is sent to a further coupler which perform the interaction
with the photon coming from port 1. It is then necessary to perform a coincidence
measurement of the two photons at the output of the second beam splitter (Bell
state measurement). When a coincidence occurs we have the teleportation of the
quantum state from input photon of port 1 to the output photon of port 5. The
advantage is that an identical copy of the input photon is created and sent to B
obtaining an improvement in terms of the signal to noise ratio. The performances
of quantum relay are extremely penalized by system losses. In this case four of the
five port interact with standard telecommunication fibers (ports 1,3,4,5) at 1.55 µm
and the presence of tapers to improve coupling efficiency is mandatory. Preliminary
results obtained by Bertocchi with classical characterization techniques of this device
confirm an insertion losses reduction of 0.64±0.25 dB when a taper is present. This
value is in good agreement with ours results.
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6

Segmented waveguide mode filter

6.1 Introduction

In this chapter a further application of segmented waveguides will be presented:
the so called mode filters. These devices eliminate the higher order modes propagat-
ing in a multimode waveguide. They can be used, for example, in frequency conver-
sion applications based on non linear effects, where a pump at a lower wavelength
should interact with a signal to generate an idler with a new wavelength. Usually the
waveguide becomes multimode at the pump frequency and the contribution of the
higher order modes can perturb the output spectrum. After illustrating the working
principles of these devices and a simple model based on the Couple Mode Theory
which proved very useful both for device design and analysis, some results proving
the good performances of these devices will be presented and discussed [123].

6.2 Mode filter operation

Using the equivalent waveguide theorem for segmented waveguides we can argue
that it is possible to tailor the device characteristics in such a way that if many
modes are propagating in a waveguide, only the fundamental mode is preserved,
while all the other modes are led to cutoff. That theorem suggests in fact that
the cutoff wavelength of the propagating mode can be reduced by modifying the
DC [19]. Figure 6.1, shows the cutoff wavelengths of the fundamental and the first
higher order modes as a function of the DC of the segmented waveguide. Assuming,
for example, a working wavelength of 0.85 µm, one can see that, for DC < 0.39, the
higher order mode is no longer guided, while the fundamental one still propagates
until the DC becomes 0.29.

So, for a fixed wavelength, it is then possible to determine the DC interval
for which only the fundamental mode can propagate. The transition between the
multimode continuous waveguide to the segmented waveguide and vice versa can not
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Figure 6.1: Cutoff wavelength for two modes of a segmented waveguide as a function
of the duty cycle DC.

be abrupt but tapered to minimize losses. Moreover, in this case, the taper avoids
the formation of unwanted higher order mode after the filtering process. A rapid
transformation after the segmented waveguide can excite once again the modes of
the multimode structure making useless the filter.

A schematic representation of a mode filter based on segmented waveguides pro-
posed by Chou et all. [34] is shown in figure 6.2. In this solution, the segmented
waveguide (SWG), which works as a mode filter, is placed at the entrance of the sam-
ple in order to obtain the double advantage of filtering the higher order modes and
also of improving the overlap between the external mode fiber and the fundamental
mode of the segmented waveguide.

TAPER WaveguidePSW

Figure 6.2: Schematic representation of a mode filter based on segmented waveguide
proposed by Chou et al. [34].

The experimental results presented by Chou et all. are interesting, but in their
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work the rules used for the taper design are not discussed. Knowledge of these rule
would be important for best design and minimization of the excitation of the higher
order mode. For this reason, we have developed a model based on the coupled mode
theory (CMT) and the equivalent waveguide theorem able to study the coupling
phenomena inside a segmented waveguide taper. This allows to predict the behavior
of the taper and to fix its parameters to obtain the desired features.

6.3 Coupled Mode Theory for segmented wave-

guide mode filters

A continuous straight dielectric waveguide transmits any of its guided modes
without coupling their energy to any other guided or radiation mode, as modes
are mutually orthogonal [37]. It is possible to extend this orthogonality condition
for modes of ideal segmented waveguide [24]. But any imperfection of the wave-
guide, such as a local change of its refractive index destroys the condition of perfect
straightness or an imperfection of the interface between two regions with different
refractive index of a segmented waveguide couples modes each other (guided and
radiation). Imperfections of this type are unavoidable.

In our case both unwanted imperfections and segmentations with variable DC
are present. Then, the modes that propagates trough a taper are not orthogonal
and coupling phenomena occurs. The coupled mode theory (CMT) [38] can be used
to understand how to design a taper in order to reduce the excitation of higher order
modes. Such a theory is based on some simplifying assumptions. Usually, we call
unperturbed structure, the structure for which we know a complete set of solutions,
for example the continuous waveguide. Then, we consider a second structure, the
so called perturbed structure, which is very similar to the unperturbed one, but with
unknown solutions. In our case this second structure is the taper with imperfections.
This second structure can be obtained modifying the unperturbed one by a physical
or geometrical parameter that we call ∆ε defined as the difference between the
dielectric distribution for the two structures. In the following we indicate with suffix
1 the unperturbed solutions, while we use the suffix 2 for the perturbed solutions. In
harmonic regime and without sources, the Maxwell equations for the unperturbed
structure can be written as:

∇× E1 = −jωµH1

∇×H1 = jωεE1 (6.1)

while, in the case of perturbed structure, they become:

∇× E2 = −jωµH2

∇×H2 = jω(ε + ∆ε)E2. (6.2)
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Indicating with (Eν(x, y), Hν(x, y)) the complete set of solutions for the unperturbed
structure, considering only small perturbations, it can also be assumed that, the
unknown field of the perturbed structure can be expressed as:

E2t(x, y, z) =
∑

ν

(aν + bν)Etν(x, y) (6.3)

H2t(x, y, z) =
∑

ν

(aν − bν)H tν(x, y) (6.4)

where the unknown coefficients:

aν(z) = Aν(z) e−jβνz (6.5)

bν(z) = Bν(z) ejβνz (6.6)

refer to the modes, which propagate in the positive direction and negative direction
of the z axis. Note also that the mode propagation constants are assumed not to
depend on the propagation coordinate z because of the small perturbations, while
the mode amplitude depends on z as we are looking for coupling effects.

For simplicity we will assume also that no radiation mode is considered (this is
compatible with the hypothesis of small perturbations) and that only two guided
modes can propagate. After some well known algebra (see for example [38]) the
equations to be solved to determine the unknown amplitude coefficients are found
to be:

dA1

dz
= −jκA2 e−j(β2−β1)z

dA2

dz
= −jκ∗A1 e−j(β1−β2)z (6.7)

where

κ =
ω

4

∫ ∫ ∞

−∞
∆ε Etν · E∗

tµ dx dy (6.8)

is the so called coupling coefficient between the transversal component of the mode
of the perturbed structure Etµ and the ν-th mode of the unperturbed structure. In
our case the only value to consider for ν and µ are for both of them 1 and 2.

The solution of the equations 6.7 is:

A1 = ej ∆β
2

z ·
(
A
′
1e

jSz + A
′′
1e
−jSz

)

A2 = e−j ∆β
2

z ·
(
A
′
2e

jSz + A
′′
2e
−jSz

)
(6.9)

where

∆β = β1 − β2 (6.10)
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Type Parameter
Depth profile Exponential 2.2 µm (@1/e)
Width profile Gaussian 3 µm (@1/e)
δn 0.018

Table 6.1: Parameters of the refractive index profiles used to calculate ∆β.

and S is defined as:

S =

√(
∆β

2

)2

+ |κ|2. (6.11)

Constants A
′
1,A

′′
1 ,A

′
2 and A

′′
2 can be determined imposing the initial exciting condi-

tion for the two modes. The taper is placed after the mode filter and for this reason
the power of the higher order mode is zero A2(z = 0) = 0 and all the power is in
the fundamental one. The guided powers of the two modes in the taper are found
to be:

P1(z) = |A1(z)|2 = P0

[(
∆β

2S

)2

sin2(Sz) + cos2 Sz)

]
(6.12)

P2(z) = |A2(z)|2 = P0
|κ|2
S2

sin2(Sz) (6.13)

where P0 is the initial section power.
To characterize the coupling phenomena it is then necessary to know both the

values of ∆β between the two propagating modes and of the coupling coefficient κ.
∆β can be calculated with good approximation starting from the equivalent wave-
guide theorem and using a mode solver. Determining κ is a more difficult problem
as the value of the coupling coefficient is related to the structure imperfections.

In particular, for what concerns the calculation of ∆β, we have considered the
model of the SPE waveguides obtained with the m-lines measurement and the IWKB
method presented in chapter 3. The index profile has then been modified considering
the dispersion relation for both the substrate and the δn for the working wavelength
λ = 840 nm, which has been used in the measurement. The details of the used pro-
files are summarizes in table 6.1. This waveguide for DCm = 1 1 and λ = 840 nm is
multimode, using the mode solver and the equivalent waveguide theorem it is possi-
ble to calculate the evolution of the effective index of the modes during propagation
along the taper. In figure 6.3 for example is shown the effective index evolution for
a cubic taper which passes from DCm = 0.3 to DCm = 1 with L = 2000 µm. Note
that, at the beginning of the structure, only one mode is in propagation, the second

1See chapter 5 for the difference between DC and DCm.
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Figure 6.3: Effective index of the fundamental (red line) and higher order (blue
dashed line) modes in propagation trough a cubic taper. The mode transformation
is obtained passing from DCm = 0.3 to DCm = 1 with L = 2000 µm.

one come out from the cutoff condition for z > 0.2 mm. The relative distance be-
tween the two effective indices during propagation is increased and as a consequence
also ∆β increase. Figure 6.4 shows the evolution of ∆β in the taper.

The coupling coefficient κ has been evaluated assuming a sinusoidal profile to ap-
proximate the waveguide surface roughness, using the results published by Marcuse
in [124]. This model provides value of the coupling coefficient of about κ = 4000m−1

in the case of continuous waveguide with perturbation amplitude equal to 1% of the
transversal waveguide size. We have used this value of κ only for tapers of theoret-
ically infinite length and for this reason it will be indicated as κ∞ in the following.
In this case in fact, the DC variation is so slow that we can consider only the effect
of the roughness. Reducing the taper length, this value of κ must be increased to
take into account also the perturbation induced by the variable DC.

Using equation 6.12 it is then possible to calculate the power evolution of the
higher order mode in the taper with L = 2000 µm. This is shown in figure 6.5. In
the taper, the higher order mode intensity presents decreasing oscillations during
propagation. This result is related to the ∆β evolution between the two modes
previously described: for increasing ∆β, in fact, coupling decreases.

For a taper design a more interesting result is the evolution of the mode intensity
at the output of the taper as a function of its length. Repeating the calculation for
different values of L and observing the output power, we obtain the results reported
in figure 6.6, for three different values of κ∞ = 5000, 4000, 3000m−1. Note that
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Figure 6.4: ∆β between the two modes in propagation trough the taper. For z <
0.2 mm ∆β is not defined because the taper is monomode.

0 0.5 1 1.5 2

x 10
−3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

z [m]

2nd
 m

od
e 

no
rm

al
iz

ed
 in

te
ns

ity

Figure 6.5: Power evolution of the higher order mode in the taper with L = 2000 µm
and κ∞ = 4000m−1.

the slope of the ∆β evolution depends on the value of the taper length L and this
explains the difference between figure 6.5 and figure 6.6. The figure shows clearly
that the oscillations are not constant and depend strongly on κ∞. These results
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Figure 6.6: Power evolution of the higher order mode at the output of the taper
as a function of the length L for κ∞ = 4000m−1 (continuous line), κ∞ = 5000m−1

(dashed line) and κ∞ = 3000m−1 (dotted line).

also suggest that even a relatively short taper, if correctly designed, can prevent
the excitation of the higher order mode. To do so, one must simply choose L in
correspondence of an higher order mode minimum. However, this solution is critical
because of the difficulty to evaluate correctly κ∞. In many cases, it is then much
better to design a longer taper working with strongly attenuated oscillations. In this
case, even if we don’t know exactly the κ∞ value, the higher order mode excitation
results small.

6.4 Experimental results

In order to confirm the working principle of a segmented waveguide mode filter
we have fabricated the devices sketched in figure 6.7. With respect the structure

WaveguidePSWInput TAPER Output TAPERWaveguide

Figure 6.7: Scheme of the fabricated mode filter. The segmented waveguide (SWG)
is placed between two continuous waveguide with two tapers to optimize coupling.

proposed by Chou et al. [34], the segmented waveguide is between two continuous
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DCm P [µm] W [µm] L [µm]
0.3 - 0.4 - 0.5 10 - 15 - 25 5 - 7 100 - 600 - 1000 - 1600 - 2000

Table 6.2: Geometrical parameters of the taper.

waveguides and not at the edge of the sample. The input and output tapers are
equal and the segmented waveguide is 5 mm long in order completely eliminate
the mode at cutoff. These devices have been fabricated with different characteristic
parameters. The values of the period P , the duty cycle DCm and the taper length
L combined to fabricate different structures are summarized in the following table
6.2.

In the sample, we have also fabricated continuous and segmented waveguides
(without tapers) in order to evidence respectively the multimodality and the filter
effect.

A schematic representation of the experimental setup adopted to characterize
the properties of our mode filters is shown in figure 6.8. The source is a diode laser,

V

Laser

840nm
Sample

Input

objective objective

Output

splitter

Beam

Detector

Hamamatsu camera

Piezo
controller

Figure 6.8: Experimental setup adopted to characterize the fabricated mode filters.

emitting at λ = 840 nm. The incident beam is end fire coupled to the sample
with an input microscope objective. The output signal is collected by an other
microscope objective and then split by a semi-reflecting mirror. One beam is sent
to an infrared camera (Hamamatsu) and the other one is sent to a detector for the
evaluation of the transmitted power. The camera allows to visualize in real time on
a monitor the shape of the near field and evaluate the possible presence of higher
order modes. The input microscope objective is mounted on a piezoelectric stage.
This system controls accurately the position of the objective allowing to modify the
exciting condition of the waveguides.

The characterization procedure determines the signal power at the output of
the sample as a function of the input objective position and records, at the same
time, the camera images. Figure 6.9 shows the results we have obtained comparing
the transmitted power in the case of continuous waveguide and of waveguide with
mode filter and input and output tapers with L = 600 µm. The exciting condition
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is modified horizontally in order to evidence the presence of a second order lateral
mode in the continuous waveguide. The curves are then normalized to 1 to simplify
comparisons.
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Figure 6.9: Measurement of the transmitted power as a function of the lateral dis-
placement of the input objective for a continuous and a filtered waveguide. Camera
images are placed to evidence the presence of the higher order mode at the output of
the continuous waveguide and only the fundamental mode for the filtered waveguide.

The curve obtained for a waveguide with mode filter (dashed line) is sharper
than that of the continuous waveguide as the contribution of the higher order mode
is filtered. The camera images show in fact that the field at the output of the filtered
waveguide is only the fundamental mode while the presence of the higher order mode
appears clearly for the continuous waveguide. To quantify this effect we calculate
the standard deviation (square root of the variance) σ defined as:

σ =

√∑
j

Ij |∆xj − µ|2 (6.14)

where the sum is extended to the measured intensity Ij obtained in correspondence
of a lateral displacement ∆xj and µ is the arithmetic mean defined as:
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µ =

∑
j

∆xjIj

∑
j

Ij.
(6.15)

We found that σ = 3.55µm for the waveguide with mode filter and σ = 8.2µm for the
waveguide without mode filter. We have then repeated the measurement for different
values of taper length L. In particular, when L = 2000 µm we have obtained the
results reported in figure 6.10. As expected for a taper of length L = 2000 µm the
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Figure 6.10: Measurement of the transmitted power as a function of the lateral
displacement of the input objective for a continuous and two filtered waveguides
with taper length L = 600 µm (dashed line) and L = 2000 µm (dotted line).
The camera images confirm the monomodality of the filtered waveguide also for
L = 2000 µm.

output field presents only the fundamental mode. However, rather surprisingly, the
width of the transmission curve as a function of the lateral displacement is larger
than in the case of a taper with L = 600 µm. For L = 2000 µm, in fact, the value
of σ become 5.79 µm. The surprising result is that σ increases despite we would
have expected a decrease as larger taper are expected to provide better filtering
conditions.

A possible explanation can come from the role played by the input taper. This
taper are expected to convert efficiently the energy of the fundamental mode of the
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input continuous waveguide into the fundamental mode of the segmented one. In
practice, the coupling phenomenon discussed for the output taper occurs also for the
input taper. Applying the CMT equations in this case, the coupling effect occurring
between taper modes can justify the result of figure 6.10. Assuming that we excite
only the higher order mode of the input continuous waveguide, using the equations
6.12, we can calculate the evolution of the fundamental mode power intensity in the
taper. This result is shown in figure 6.11.
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Figure 6.11: Calculation of the normalized fundamental mode intensity in the input
taper.

Repeating the calculation for different taper lengths L and collecting the fun-
damental mode intensity at the output taper, we obtained the results reported in
figure 6.12, which shows that the beneficial effect of the input taper is that part of
the energy of the excited higher order mode can couple to the fundamental one and
can be transmitted unperturbed through the mode filter. The result presented in
figure 6.12 shows that the transfered power from the excited higher order mode and
the fundamental one can vary from 0 to 22-29 % as a function of L. This numerical
prediction of our model is quantitativelly confirmed by the measurements shown in
figure 6.10. When the lateral displacement of the exciting beam is 6µm, in fact, the
fundamental mode is almost absent as the transmitted power through the filter with
taper length L = 600µm is zero. At the same lateral displacement condition, using
the filter with taper length L = 2000µm, we meadured an output power improuve-
ment, related to the mode conversion, of about 30%, which is in good agreament
with the model previsions. This also means that, in our case, the chosen κ∞ value
of 4000m−1 corresponding to a roughness of about 1% of the waveguide width is
approximatively correct.
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Figure 6.12: Calculation of the normalized fundamental mode intensity at the output
of the taper as a function of the taper length L.

The power transfer from the higher order mode to the fundamental one increases
the width σ of the transmission curves as a function of the lateral displacement,
explaining the result of figure 6.10. For this reason, oscillations of the fundamental
mode intensity (figure 6.12) must correspond to oscillations of the width σ. This
has been experimentally verified characterizing mode filters with different periods
P and length L and obtaining the results reported in figure 6.13. The value of σ
varies as a function of the taper length L. Moreover, it is important to note also
that increasing the period P , the oscillation period is reduced. This behavior can
be explained using the equivalent waveguide theorem. In fact increasing the period,
the real DC increases and the equivalent waveguide presents a larger step index.
As a consequence ∆β between the modes increases and the coupling length and σ
are reduced. A period P decrease reduces also the filter capability and this explains
why the minimum of the curves corresponds to higher values of σ.

The coupling phenomenon observed at the input taper that allows to transfer
energy from an higher order mode to the fundamental one can be used to improve the
coupling efficiency of an integrated waveguide with external component like fibers or
objectives. Note however that coupling is a reversible phenomena. This means that
if we excite perfectly the fundamental mode, part of the energy will be transferred
to the higher order modes, contributing to the losses.

In conclusion, a solution without input taper (see Chou et al. [34]) requires a
perfect alignment to obtain high transmitted power, with the drawback that small
misalignments with respect to the optimum condition introduce losses. In solution
proposed here, in case of perfect alignment the device is affected by losses, but has
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Figure 6.13: Measurement of the width σ as a function of the taper length L for
different period P . The red line corresponds to the reference width σ obtained in
the case of multimode continuous waveguide.

better coupling tolerances with external devices. This is important in case of fiber
optics pigtailing where the cost of the system is related to the desired alignment
precision.

The drawback of this structure is that device behavior is strongly dependent
on the coupling coefficient κ, which depends on technological imperfections. As a
consequence, the design of the structure may be very difficult and the results not
reproducible. To overcome this problem we propose a new structure that can be
obtained introducing a purpose surface roughness (figure 6.14).
The periodicity of the lateral profile of the input taper can be used to obtain the

Taper
Continuous
waveguide

Segmented
waveguide

Figure 6.14: Schematic of mode filter with controlled artificial irregularity at the
input taper.

phase matching condition between the modes we want to couple. In this case, propa-
gation losses would not be increased because the matching condition will be between
propagating mode instead of radiating modes. Note also that being ∆β variable in
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the taper also the periodicity of the lateral profile must change longitudinally.
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Conclusions

In this thesis, we have reported the main results achieved during my work con-
cerning new devices for photonics applications. The research has been developed
following all the steps which lead to the realization of a device prototype in inte-
grated optics: its design, developing and using suitable numerical tools, the choice
of the substrate material in which the device is fabricated and the relevant tech-
nology, and its characterization, with a suitable experimental setup. Following all
these steps allowed me to merge the interest for physical insight into the basics of
device behavior, which animates the doctorate “Spécialité Physique” of the Univer-
sity of Nice-Sophia Antipolis, and the engineering oriented search of feasible and
cost effective components, underlying the activities of the doctorate in “Ingegneria
Elettronica, Informatica e delle Telecomunicazioni” of the University of Bologna.
This is in fact a co-tutored PhD made possible by the “Unversità Italo-Francese”,
who provided a fellowship in the framework of the Vinci Program.

The problem to tackle and hopefully to solve concerned possible devices able to
reduce losses when connecting waveguides of different shape and/or materials. This
is still a challenging issue in optical telecommunication systems, either to reduce
coupling losses, or to allow less critical, and then less expensive, coupling between
different devices.

Physics of periodic, or almost periodic, structures has been chosen as basic prin-
ciple for device operation as it seemed that properties of these waveguides fitted well
both simplicity and possibility of tailoring device functionality. So, after studying
their main characteristics of light propagation in these structures, an investigation
on their many applications in optics has been done, evidencing their possible appli-
cations to our purposes.

The characteristics of these structures prevent the use of analytical approaches,
except that for preliminary or simplified analysis. So some numerical tools have been
developed, aiming at studying propagation in these structures. In particular, a Finite
Difference 3D-Beam Propagation Method (3D-BPM), based on the electric field
formulation of the Helmholtz equations, previously developed in the Italian group,
has been improved and adapted for the study of segmented waveguide structures.
Moreover, we have completely developed a second version of this tool, based on the
magnetic field formulation, to solve some numerical instability problems intrinsic of
the previous version. In both cases we have implemented Perfect Matched Layer
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(PML) boundary conditions and Padé approximants for wild angle propagation
analysis. In parallel to this, we have also developed a mode solver, able to study
longitudinally invariant structures, such as optical fibers and continuous waveguides.
This tool can also be used to determine the input field necessary to run BPM
simulations.

A second step to do was the choice of the material and the technology to be
used for waveguide fabrication. Lithium Niobate substrate and Soft Proton Ex-
change (SPE) technology have been chosen. Lithium Niobate is in fact one of the
favorite materials in integrated optics because of its very good linear and nonlinear
properties. The SPE technique is routinely used in the French laboratory where
the experimental part of the work has been developed. Using this technique and
using CAD assisted design, we have then fabricated segmented waveguide tapers
and mode filters. This part required a merge of the two different expertises. In
fact numerical modelling of waveguides depends strongly on the used material and
fabrication technology, also to include a realistic model of the structure. This al-
lowed, for example, to identify in the roughness of the sample’s surface a fabrication
problem to be considered to improve the present fabrication technology.

Once waveguides have been fabricated, they have also to be characterized. We
have then identified the main parameters to be measured (propagation losses, effec-
tive group index and mode size) and set up an apparatus to measure them. The
system is controlled by a computer with a Labview program which allows to perform
automatic measurements. Precautions have been adopted to avoid systematic errors
(spurious cavities between sample and fibers, mechanical changes due to operator
induced temperature variations, etc.). Possible ways for further improvement of
precision and accuracy of the setup have been identified: lasers with stable internal
or external polarization control to guarantee good polarization stability for wide
wavelength ranges, positioning control of the piezoelectric adjuster with capacitive
probes to increase spatial scanning resolution up to nanometric precision and to
eliminate the hysteresis problems and the temporal drift.

The versatility and the possibilities offered by the proposed setup have been
confirmed by the results of measurements performed on various samples, either in-
tegrated optical waveguides or optical fibers. Using this setup we have characterized
segmented waveguide tapers fabricated in LiNbO3 by the SPE process. Experimen-
tal results have been obtained at telecom wavelengths. We have found that when
one uses the SPE parameters necessary to reach the maximum confinement of the
guided mode, preserving non-linear and electro-optical coefficients, the introduction
of an adapted taper allows reducing by 0.78 dB the coupling losses with a standard
SMF-28 fiber. For a complete device, presenting optimized tapers at input and out-
put, the benefit could then reach 1.5 dB. All the experimental results are in good
agreement with the numerical analysis confirming the precision of the developed
numerical tools and the quality of the model. This structure has been introduced in
a more complicated structure, a quantum relay developed at LPMC by Guillaume
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Bertocchi to be used in quantum transmission experiments, obtaining the expected
improvement in terms of insertion losses.

We have also designed, realized and characterized a segmented waveguide acting
as a mode filter operating at λ = 840 nm. A new structure has been proposed and a
semi-analytical formulation, based on the Coupled Mode Theory, has been used to
design the filter parameters. The measurement setup able to characterize this device
uses a camera to acquire the near field at the output of the sample, evaluating the
presence of higher order modes, while the position of the input microscope objective,
used to launch the light in the waveguide, is modified through a piezoelectric system.
The output power is also measured as a function of the exciting condition in order
to evaluate the coupling sensibility. Experimentally, the second higher order mode
has been successfully eliminated from a multimode continuous waveguide. During
the characterization procedure we have obtained interesting result on the output
power measurements as a function of the objective position. We have proposed an
explanation, considering the mode coupling at the entrance of the filter, obtaining
agreements with experimental results.

These devices should hopefully be useful to improve coupling between fibers and
integrated optical devices allowing both mode mismatch and alignment tolerance
reduction. The mode filter has also interesting applications in non linear optics
experiments, eliminating higher order pump modes as their presence can perturb
the non linear process efficiency and the output spectrum by generating undesired
wavelengths.
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Studio, fabbricazione e caratterizzazione di guide segmentate
per componenti fotonici avanzati su Niobato di Litio

In questa tesi di dottorato descriviamo il progetto, la fabbricazione e la caratterizzazione di
componenti basati su guide segmentate per applicazioni di ottica integrata. Una guida segmentata
è una struttura ottica caratterizzata da una variazione longitudinale dell’indice di rifrazione.

Tra le numerose applicazioni in cui le guide segmentate possono essere inserite apportando dei
miglioramenti, descriviamo con magior dettaglio il taper e il filtro modale. Il primo componente
è in grado di migliorare l’efficienza dell’accoppiamento tra fibra e guida. Il secondo permette di
rimuovere i modi di ordine superiore in propagazione in una guida multimodo.

Per capire il comportamento fisico delle guide segmentate, descriviamo inizialmente in maniera
analitica la propagazione del campo elettromagnetico per strutture periodiche e successivamente
eseguiamo uno studio numerico utilizzando il 3D Beam Propagation Method. Questo strumento
numerico permette di progettare i componenti a guide segmentate e lo schema della mascera per
la fotolitografia.

Al termine dello studio analitico e numerico abbiamo fabbricato i dispositivi utilizzando la
tecnica del Soft Proton Exchange su un substrato di Niobato di Litio.

Per determinare le prestazioni dei dispositivi fabbricati è richiesta una completa caratteri-
zazione. Per fare questo, abbiamo sviluppato un banco di misura in grado di valutare le perdite
alla propagazione, il comportamento dispersivo e la forma del modo nelle guide ottiche. I risul-
tati delle caraterizzazioni mostrano che introducendo un taper in un sistema di telecomunicazioni
standard è possibile ottenere una riduzione delle perdite di inserzione fino a 1.5 dB. Per quanto
riguarda il filtro modale, mostriamo che i modi di ordine superiore vengono filtrati da una guida
multimodo a 840 nm lasciando inalterato il modo fondamentale. Questa funzionalità può produrre
vantaggi nelle operazioni di conversione di frequenza basate su interazioni non lineari. Per en-
trambe i componenti i risultati sperimentali sono in buon accordo con le previsioni fornite dalle
simulazioni numeriche.



Etude, réalisation et caractérisation des guides segmentés
pour composants photoniques avancés sur Niobate de Lithium

Dans cette thèse de doctorat nous décrivons l’étude, la fabrication et la caractérisation des
composants basés sur les guides d’onde segmentés pour des applications d’optique intégré. Un
guide segmenté est une structure optique caractérisé par une variations longitudinal de l’indice de
réfraction.

Parmi les nombreuses applications dans lesquelles les guides segmenté peuvent être utilement
introduites, nous décrivons avec plus de détail le taper et le filtre modal. Le premier composant
peut augmenter l’efficacité du couplage entre fibre et guide d’ondes. Le deuxième permet d’eliminer
les modes d’ordre supérieur en propagation dans un guide multimode.

Afin de comprendre le comportement physique des guides segmentés, nous décrivons d’abord
de façon analytique la propagation du champ dans les structures périodiques et par la suite nous
faisons des analyses numériques en utilisant la méthode développée 3D Beam Propagation Method.
Cet outil numérique permet de designer les composants basés sur guides segmentés et aussi le plan
du masque de photolithographie.

Après l’étude analytique et numérique, nous avons fabriqué les dispositifs en utilisant la tech-
nique du Soft Proton Exchange sur un substrat de Niobate de Lithium.

Pour déterminer les prestations des dispositifs fabriqués est nécessaire de faire une complète
caractérisation. Pour ça, nous avons développé un banc de mesure pour l’évaluation des pertes
à la propagation, le comportement dispersif et la reconstruction de la forme du mode des guides
d’onde. Les résultats de la caractérisation montrent que en introduisant des tapers dans un système
standard de télécommunication, on peux obtenir des avantages en termes de réduction des pertes
d’insertion d’environ 1.5 dB. Pour ce qui concerne le filtre modal, nous prouvons que les modes
d’ordre supérieur sont filtrés d’un guide d’onde mulimodal à 840 nm en laissant inaltéré le mode
fondamental. Cette fonctionnalité peut induire des avantages dans des opérations de conversion
de fréquence basées sur les interactions non linéaires. Pour les deux composants fabriqués, les
résultats expérimentaux sont en bon accord avec les prévisions numériques.



Study, fabrication and characterization of segmented wave-
guides for advanced photonic components on Lithium Nio-
bate

In this PhD thesis we describe the design, the fabrication and the characterization of compo-
nents for integrated optic applications based on segmented waveguides. A segmented waveguide is
an optical structure with longitudinal variations of the refractive index.

Among the numerous applications in which segmented waveguides can be usefully introduced,
we describe with more detail tapers and mode filters. The former component can increase the fiber-
to-waveguide coupling efficiency. The latter can remove higher order modes from the propagation
in multimode waveguides.

In order to understand the physical behavior of segmented waveguides, we first describe analyt-
ically the propagation characteristics of periodic structures and then perform a numerical analysis
using the developed 3D Beam Propagation Method. This numerical tool allows to design the seg-
mented waveguide components and the photomask draft. After developing the analytical and the
numerical investigation, we have fabricated the devices using the Soft Proton Exchange technique
on Lithium Niobate substrate.

To determine the performances of the fabricated devices a complete characterization is required.
To do that, we have developed an all-in-one experimental setup for the evaluation of the propagation
losses, the dispersive behavior and the mode shape reconstruction of integrated optical waveguides.
The results of the characterization show that inserting the taper in a standard telecommunication
system, it is possible to obtain advantages in terms of insertion losses reduction of about 1.5 dB.
Concerning the modal filter, we show that the higher order modes are filtered from a multimode
waveguide at 840 nm leaving unchanged the fundamental one. This functionality can induce
advantages in frequency conversion operations based on non linear interactions. For both the
components the experimental results are in good agreement with numerical predictions.
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