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1 INTRODUCTION 

Everyone, in some way, gets in contact with acrylonitrile (ACN) every day. 

Annual worldwide production of ACN outstrips 6,2 million tons (in 2008), with an 

European capacity of 1,25 million tons, for such manufacture of polymers and co-

polymers as synthetic fibres, plastics and elastomer. 

ACN is nowadays produced by sohio process, which in the late '50s superseded the 

old acetylene-hydrocyanic acid route, by means of gas phase ammoxidation of 

propylene; then new processes based on ammoxidation of a cheaper starting resource 

propane have been developed, so  that has been reached an industrial scale. Today 

more than 95% of the world acrylonitrile is produced with Sohio process. 

Propane ammoxidation:  

CH3-CH2-CH3 + NH3 + 2O2 → CH2-CH-CN + 4H2O 

Propene ammoxidation: 

CH3-CH-CH2 + NH3 + 3/2O2 → CH2-CH-CN + 3H2O 

Ammoxidation (also known as ammonoxidation, oxyamination or oxidative 

ammonolysis) describes the nitriles production by means of alkanes and alkenes 

oxidation in presence of ammonia. 

Two main systems are active in gas ammoxidation of propane and propene to 

acrylonitrile: (i) Multy Metal Molybdate containing Bi, Fe, Ni, Co, Mo and additives 

like Cr, Mg, Rb, K, Cs, P, B, Ce, Sb and Mn; (ii) Rutile-type antimonate containing 

Sb, Sn, Nb, Fe, V, Cr, U, Ga. 

Studies on the rutile-type structure and relative catalytic properties are not 

extensive, so it is interesting to get information about the new systems based on rutile-

type antimonate which is able to operate as a catalyst or as a promoter in complex 

molybdenum-based system. 
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1.1 Acrylonitrile 

1.1.1 History, use and market 

After its discovery by hand of C. Moureau via dehydrogenation with phosphorous 

pentoxide of acrylamide (or ethylene cyanohydrin), ACN offered no application but its 

use as a copolymer in synthetic rubber shortly before the Second World War in 

Germany (Buna-N) and U.S. (GR-A, NBRNitrile rubber) mainly because of its high 

resistance to fuel and other apolar substances. Then this expensive and multistep 

process has been overtaken by a new one discovered and developed by Sohio with a 

considerable costs reduction; after its war-time application, this process fulfilled the 

needs of fibre factory, main field of market supply from '50s to date, along with a 

minor use in resins, thermoplastics, elastomer and intermediate in productions of nylon 

and acrylamide. 

Fibres manufacture uses ACN as a copolymer (with vinyl acetate or methyl 

acrylate) in two different ways, acrylic (>85% w/w) and Modacrylic (50 - 85% w/w), 

to produce textile; acrylic fibres are useful as a precursor in production of carbon 

fibres, which is a suitable material for high technology use (army, aerospace, 

automotive). 

Resins containing ACN are relevant in different and wide fields of application: 

SAN (styrene-ACN) is a copolymer known for its glass replacement ability due to its 

mechanical properties and transparency; ABS (SAN in polibutadyene matrix) is a 

strategic material in Electronics and in automotive applications because of its high 

rigidity and endurance12. 

Nylon 6,6 is a well known polyamide which is used mainly in textile production, 

above all collant and clothing3. ACN is a raw material for production of adiponitrile, 

which reacts with esamethilendyammine to form the amide. 
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Fig. 1.1 ACN Worldwide employment 

Annual worldwide production of ACN has grown from 118 thousand tons in 1960 

to more than 5,2 million tons in 2005 (Fig.1.1 shows the ACN world use, in terms of 

production.), with higher growth rate in developing Countries (South America and 

China)4 while its demand in western Countries is still around the same as in 2005.  

1.1.2 Properties 

Acrylonitrile (also known as 2-propenenitrile, propenenitrile, vinyl cyanide, 

cyanoethene, ACN) is a chemical compound with formula CH2=CH-CN registered 

with the CAS number 107-13-156. It consists of a vinyl group linked to a nitrile and it 

looks like a clear colourless or slightly yellow liquid with a pungent odour; in tab 1.1 

the chemical-physical data for acrylonitrile5 are reported. 

Melting point -83°C 

Boiling point 77°C 

Solubility (water) 70g/Kg 

Specific gravity 0.81 

Vapour pressure 11KPa at 20°C 

Flesh point 0°C 

Explosion limits 3-17% 

Autoignition temperature 480°C 

Tab. 1.1 Chemical-Physical data of ACN 
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ACN is a dangerous reactant which requires a high level of attention when 

manipulated or disposed: R45 (may cause cancer, carcin class 2), R11 (highly 

flammable), R23/24/25 (toxic by inhalation, in contact with skin and if swallowed), 

R37/38 (irritating to respiratory system and skin), R41 (risk of serious eyes damage), 

R43 (may cause sensitisation by skin contact), R51/53 (toxic to aquatic organisms, 

may cause long-term adverse effects in the aquatic environment)5. 

The conjugated system composed by vinilyc and cyano group results in double 

bond activation from polar nitrile group; it gives to ACN high reactivity which brings 

spontaneous exothermic polymerization (induced by light or bases), which is why this 

nitrile has to be stored and packed with inhibitors of polymerization (4-

methoxyphenol)5. The double bond in ACN can undergo different reactions: Dies-

Alder, Hydrogenation, Cyanoethylation, hydrodimerization, hydroformilation. The 

nitrile in ACN can undergo hydrolysis to acrylamide (partial hydrolysis) and to acrylic 

acid; ACN and primary alcohol react in presence of acids to acrylic esters7.  

1.1.3 Processes for the synthesis of ACN7 

Before the discovery of the Sohio process (which will be thoroughly illustrated 

later) there were many ways to produce ACN: 

• Ethylene Cyanohydrin process has first produced acrylonitrile in Germany 

and in America on industrial scale. Ethylene oxides react with aqueous 

hydrocyanic acid at 60°C to yield ethylen cyanhydrin; ACN is produced by 

its dehydration in liquid phase at 200°C. 

 C2H2O + HCN → HO-CH2-CH2-CN → CH2=CH-CN + H2O (1) 

• Catalytic addition of hydrocyanic acid to Acetylene was the major route of 

ACN supply before the beginning of ammoxidation processes (in the 70s); 

commercially it was performed at 80°C in dilute hydrochloric acid in 

presence of cuprous chloride. 

 H-CC-H + HCN → CH2-CH-CN (2) 

• Addition of hydrocyanic acid to acetaldehyde, did not reach industrial scale  
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 CH3CHO + HCN → CH3-CHOH-CN → CH3CHCN + H2O (3) 

• Nitrosation of propene, never achieved commercial status 

 CH2=CH-CH3 + NO → CH2=CH-CN + H2 (4) 

• Dehydrogenation of propionitrile, has never been commercially developed 

 CH3-CH2-CN → CH2=CH-CN + H2  (5) 

• Ammoxidation of propene (SOHIO process) displaced the processes (2) 

practised by Du Pont, American Cyanamid and (3) performed by Union 

Carbide, American Cyanamid and BASF.  

 H2C=CH-CH3 + 3/2O2 + NH3 → H2C=CH-CN + 3H2O (6) 

1.1.4 Propene ammoxidation and Sohio Process8-10 

Performing the main reaction (6), during ammoxidation of propene other product 

are produced as described by reaction (7)(8)(9)(10)(11)(12) 

 H2C=CH-CH3 + 9/2 O2 → 3CO2 + 3H2O (7) 

 H2C=CH-CH3 + 3 O2 → 3CO + 3H2O (8) 

 H2C=CH-CH3 + O2 → CH2-CH-CHO +3H2O (9) 

 H2C=CH-CH3 + 3O2 +3NH3 → 3H-CN + 6H2O (10) 

 H2C=CH-CH3 + 3/2O2 +3/2NH3 → 3/2CH3-CN + 3H2O (11) 

 NH3 + 3/4O2 → 1/2N2 + 3/2H2O (12) 

Although the high number of undesired reactions, even favourite in oxidant 

atmosphere at high temperature, the continuous development of the catalytic system 

leads to a rise in ACN selectivity  from 50% up to 80%. 

The SOHIO process uses a fluid bed reactor (necessary to remove efficiently the 

heat of reaction) where in a single pass is possible to reach a conversion of propene 

over 95%  with a selectivity in ACN near 80%. Ammonia and olefin are fed highly 

pure (>90% for propene and 99,5% for ammonia) and preheated (150-200°C) to the 

reactor separately to avoid homogeneous reactions; ammonia to propene molar ratio is 
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between 1.05 and 1.2 and oxygen to propene molar ratio is between 1,9 and 2,1. 

Reactor works at a temperature between 420 and 450°C with a residence time of 3-8s 

with a superficial linear gas velocity between 0,2 and 0,5 m/s. The system operates at 

around atmospheric pressure because ACN from propene formation is a first order 

reaction, while undesiderable products are of higher order; low pressure is in favour of 

the target molecules, but overpressure is necessary to maintain fluidized condition.  

In a reactor 10m large and 7/8m high, catalyst average load is 75tons with a particle 

size lower than 40µm in diameter. 

The outcoming flow (Tab.1.2) oversteps a cyclone to lose finer solid particles and to 

reach a refrigerated water absorber (5°C) in which N2, COx and unreacted propene exit 

and reach incineration. Ammonia is neutralized with sulphuric acid and it is separated 

as solid while nitriles remain dissolved. After tricky distillation and settling it is 

possible to separate water and organic phases; water solution is concentrated (97%) 

and refluxed, while the organic one, rich in ACN and HCN and containing also traces 

of acetone, acetaldehyde, propionaldehyde and acrolein, carries on to purification step 

in which the liquid flow undergoes a double distillation and vacuum ultra purification 

so that ACN reaches more than 94% purity grade. 

Product Amount 

Acrylonitrile 5.2 

Hydrocyanic acid 1.8 

Acetonitrile 0.7 

Carbon monoxide 1.0 

Carbon oxide 1.6 

High Nitriles - 

Heavy compounds 1.0 

Propane 0.8 

Propene 0.5 

Water 26.3 

Ammonia 0.2 

Oxygen 2.2 

Nitrogen 59.7 

Tab. 1.2 Typical fluid bed reactor effluent composition (loaded with Sohio 41 catalyst)  
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1.2 Propane Vs Propene 

Only in the last decade came along the right conditions to take into account propane 

technology for ACN production. The development of new catalysts, correlated with 

new technologies of process along with the increase of propylene feedstock (up to 300 

$/tons more expensive than saturated molecula), made alkane ammoxidation 

competitive on the market, especially if we consider that the price of olefin engraves 

on full cost in the amount of 67%. The need to substitute old plant along with the 

easily way to revamp the old ones made the challenge appealing.  

In January 2007 Asahi Kasei Corporation started with a production based on 

propane technology and originated with the modification of an existing 70000ton/y 

ACN plant. 

Some considerations are useful to understand this topic: 

• Propane ammoxidation is a reaction composed of two theoretical steps: 

o An endothermic process in which propane is dehydrogenated to 

propene 

o An exothermic process in which propene is ammoxidated to ACN 

Esothermicity of ammoxidation is greater than endothermicity of 

dehydrogenation; the overall process is an exothermic auto-sustained 

reaction. To start from propene means splitting this reaction in two steps in 

which it is necessary to supply heat for propene production (i.e. in cracking 

technology, the actual main route of alkene yield) and to drain heat for ACN 

production, with a consequent energetic inefficiency. 

• To Split a reaction in many steps means that we have the opportunity to tune 

“easily” and thoroughly a catalyst so obtaining the better results which is 

possible to reach (right temperature, pressure, reactor, catalyst, precursors, 

contact time). Being able to condensate many stages and eventually to reach 

the single step means to strike a balance. In the first case high full costs 

reflect high production (high gain); in the latter one low production means 

high transformation efficiency and lower plant costs. 
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• An effective process for propane conversion to ACN has been developed 

over 30 years ago. It works at a higher temperature than the propene process 

and it needs the use of gas-phase precursors (causing problems in materials 

resistance and the increase of purification/recycling apparatus and costs). A 

strategic choice in ammoxidation to develop a successful replacing process is 

the conversion of an existing plan as long as the reactor conditions are the 

same. 

• As far as the economical factor is concerned, many things have to be taken 

into consideration: the reaction conditions, productivity and process costs. 

Propane works at a temperature 100-150°C higher than propene (due to an 

increase of homogeneous phase reactions), at a contact time 4-6 times longer, 

at lower conversion and selectivity, with a fixed investment 10-15% more 

expensive and with a feedstock 5-6 times cheaper. These parameters have 

some aftermaths such as higher ammonia consumption (due to the higher 

contact time, which leads to a higher oxidation to nitrogen) and more 

difficulties in reaction management (higher temperature and low ACN 

selectivity lead to higher deep oxidation products, which have strong effects 

on reaction heat and system temperature). 

• Choosing the starting materials it is not the final goal: different technological 

solutions have been developed to increase propane productivity and to 

enlarge the gain gap between alkane and alkene technologies. 

The actual situation lies on the borderline defined with these two different 

processes, so that a little improvement in catalysts and processes or market changes 

may lead to prefer one feedstock or the other. 
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1.3 Ammoxidation 

1.3.1 Ammoxidation of Hydrocarbons11 

Ammoxidation is an oxidative process in which an Oxygen, Ammonia and 

Hydrocarbon mixture is selectively converted to nitrile and water; deep oxidation and 

unwanted nitriles are parallel and consecutive reaction products. 

It is possible to feed every kind of hydrocarbon, even though alkanes, alkenes and 

aromatics are the main carbon source converted. It is possible to feed pure oxygen, but 

most commonly air is used. 

 R-CH3 + 1,5O2 + NH3 → R-C≡N + 3H2O  (13) 

The reaction is characterized by high exothermicity (AH° propene ammoxidation  = 

-515KJ/mol) and increasing amount of moles (0,5) which makes the ammoxidation 

favourite at every temperature. The exothermic character of this class of reactions is 

increasing due to secondary products, such as carbon dioxide, which proceeds with 

higher energy release. 

The ammoxidation reaction involves three consecutive steps: 

• Hydrocarbon oxidation to form the intermediates on the active site; this is the 

tricky step due to the hydrocarbon thermodynamic tendency to be over-

oxidated to degradation and/or combustion products 

• Nitrogen insertion; the activated ammonia on the catalytic site in presence of 

oxygen can overcome combustion to produce N2 as main nitrogen-waste 

product whereas the insertion of oxygen rather than nitrogen gives aldehyde 

in place of nitrile 

• Oxidative dehydrogenation of the N-bonded species 

The oxidative activation of the substrate is the main step, so it is crucial to design a 

system which is able to dehydrogenate with high efficiency and high selectivity in 

order to avoid over oxidation. This is why a catalyst for ammoxidation is usually also 

effective as a catalyst for dehydrogenation, but not the other way around. 
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1.3.2 Ammoxidation of propene8,10 

Analyzing the alkene ammoxidation in literature almost every paper ascribes to 

propene. 

The accepted general mechanism refers to the catalytic cycle (Fig.1.2) composed of 

three main steps: 

• α-H abstraction (operated by Bi3+, Sb3+, Te4+) 

• Olefin chemisorption and N/o insertion (over Mo6+, Sb5+) 

• Lattice reoxidation (on redox couple Fe2+/Fe3+, Ce3+/Ce4+) 

 

Fig. 1.2 Alkene ammoxidation Cycle 

The cycle starts from the active site composed by two contiguous metal atoms in a 

solid system: the first (M1) bonded to bridge oxygen and the second (M2) bonded with 

oxygen by means of double bond. The site interacts with ammonia and forms an imino 

group (M2) after the expulsion of a molecule of water. Propene co-ordinates on M2 

while Oxygen on M1 brakes the bridge bounding with the allylic hydrogen (α-H) to 

form allylic complex (coordinated by way of π bond on M2); it is possible to catch a 
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radical hydrogen if the O-abstractor has a partial radical character too, conveyed by 

some electron density present on the metal (M1). Insertion of nitrogen is now possible 

and after a final oxidation ACN can leave the catalytic site along with a couple of 

water molecules. The reduced catalytic sites send vacancies to the reoxidation site, 

which is able to dissociate bimolecular oxygen in lattice oxygen (O2-), which moves 

toward the O-deficient metal and so neutralizes the vacancy. 

The mechanism described above is possible in a solid system which is able to 

accommodate different metal cations arranged in complex bifunctional catalytic sites 

and in which oxygen, electron and anion vacancies are free to move in the lattice. 

Multifunctionality which is needed in propene as well as in propane ammoxidation, 

can be achieved in two ways: 

• Phase cooperation (antimonate): two different catalytic sites related to two 

different phases operate very close to each other, so that the molecules 

undergo the first reaction, desorb from the active site and then reach the 

second reaction to complete the transformation. Sometimes the phase 

boundary is not sharp-cut, but it is connected by a midway phase which 

settles the mismatch by means of nonstoichiometry. 

• Element cooperation (multi metal molybdate): the sites which are able to 

transform the hydrocarbon lie in the same phases so that the molecule does 

not need to desorb from a site to complete the ammoxidation, but it just 

needs to move from an element to another on the same lattice. 

1.3.3 Catalysts for propene ammoxidation8-10 

There are two classes of solid systems which are able to match with the properties 

listed above and actually used to perform propane ammoxidation: 

• Multi metal molybdate (MMM) constituted of Mo Bi Fe Ni Co and 

additivated with Cr, Mg, Rb, K, Cs, P, B, Ce, Sb and Mn, dispersed in silica 

(50%w/w) for fluid bed reactor application. The active site, as described in 

par. 1.2.2, is composed of Bi (M1) and Mo (M2) and can be described with 

Be2MoO6 (Fig.1.3). Bi-O-Mo bridging oxygen, which belongs more to Bi 
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than to Mo, is active in α-H abstraction and Mo=O is responsible for NH-to-

O substitution and NH insertion. The two electron pairs associated with two 

Bi atoms in Bi-O-Bi group or redox couple made by Fe, Ce, U and Cu are 

responsible for the O2 dissociation. 

 

Fig. 1.3 Bi-Mo Catalytic Site of Bi2MoO6: O’ represents the Bi-oxygen active in α-H 

abstraction and O’’ represents the oxygen substituted by nitrogen. Two lone pairs 

between Bi are the hypothetic site which is able to dissociate bimolecular oxygen for the 

solid state re-oxidation mechanism. 

• Antimonate with rutile-type structure. The catalytic site is made of four 

metal antimonate cations: two bonded Sb5+ in the centre with two external 

Sb3+, as shown in Fig.1.4. Sb5+ activates and inserts ammonia as well as 

coordinating the olefin; the oxygen associated with the trivalent antimony is 

responsible for the α-H abstraction. In addition to antimony, at least one of 

the redox couple made by Fe, Ce, Cr and U is present to replenish the oxygen 

vacancy which had been created during the ammoxidation cycle. 
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Fig. 1.4 Antimony based catalytic site for propene ammoxidation. Starting from the 

oxidated site (in the square), the cycle represented in Fig. 1.2 is accurate: after the N-

activation, propene is co-ordinated on Sb5+ and transformed in allylic intermediate by 

means of H-abstraction made by Sb3+; N-insertion is then operated by Sb5+ and after 

partial oxidation, ACN is desorbed and the catalytic site is re-oxidated. 

1.3.4 Ammoxidation of propane 

As already seen above, the activation of hydrocarbon is the crucial step in the 

ammoxidation process, especially the one in which alkane is converted due to the well 

known paraffin inertia. 

The propene coordination, previously analyzed, starts with olefin allocation on the 

catalytic site thanks to the electron surplus due to the double bond which is not present 

in propane.  

The key step in propane ammoxidation is the C-H bond dissociation, to form 

activated complex which is subjected to further H abstraction and propene formation. 

The activation proceeds via carbocation or carbanion formation by means of 

homolitical or eterolitical dissociation. Carbocation is more stable in central position 

(tertiary>secondary>primary) while, on the contrary, carbanion is more stable in 

pheripherical position (primary>secondary>tertiary). Propene is composed of 2 

primary and 1 secondary carbons while isobutene is composed by 3 primary and 1 
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tertiary carbons, so that the reactivity of these probe molecules is associated with the 

carbon character. It seems reasonable to claim that to compare the conversion rate of 

propane and isobutene reflects the stability of the associated carbocation (CH3-

C+(CH3)-CH3 is more stable than CH3-CH+-CH3) and carbanion(CH3-CH2-CH2
- is 

more stable than CH3-CH(CH3)-CH2
-). Conversion data are in favour of propane hence 

the mechanism seems to occur via carbanion formation12. 

In a two stage configuration of propane ammoxidation, hypothetically conducted in 

two different reactors, the reaction sequence is the following: 

Propane → Propene → Acrylonitrile 

It is reasonable to imagine that the same mechanism occurred in a single stage 

configuration, in which the transformation happened consecutively on two catalytic 

sites, without an effective desorption mechanism after alkene formation13: 

[Propane → Propene] desorption → re-adsorption [Propene → Acrylonitrile] 

Another possible way of propane activation, proposed by Centi and co-workers14, 

was investigated by IR studies on probe molecules adsorbed on Vanadium antimonate. 

Propane can undergo H- abstraction on Lewis acid site (represented by coordinatively 

unsaturated vanadium) and subsequent nucleofilic oxygen attack. The obtained 

intermediate undergoes secondary H-abstraction and oxidation to form the propionate 

species. Oxidative dehydrogenation yields acrylate, which is the succeeding step in 

ACN formation. In this mechanism the key step of H- abstraction can be disturbed by 

ammonia adsorption on Lewis sites. 

Catalysts active in propene ammoxidation are not able to convert effectively 

propane given their inability to abstract methylen hydrogen of paraffin in place of 

allylic one in olefin, mainly because of the higher C-H bond energy (89kcal/mol Vs 77 

kcal/mol).  

It is indeed necessary to implement the catalytic system with an oxidative enhancer 

(halogen promoter or strong oxidant such as Vanadium) or to develop new catalysts13. 
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1.3.5 Catalysts for propane ammoxidation8 

As in propylene ammoxidation, molybdate and rutile-type antimonate are effective 

in transformation of propane in acrylonitrile. Nowadays, the most active system is 

represented by Mo/V/Nb/Te/O, which is able to reach yield in ACN up to 62%. It has 

been developed by Mitsubishi Kasei and it is composed of two phases called M1 and 

M2 whose preparation is very difficult and relevant, along with the composition, the 

synthesis, the activation, the modality of doping and the nucleation/growth of the 

phases8. 

Other catalysts have been developed by different Companies who claim very 

different reaction condition: propane rich and propane lean conditions, such as 

maximum conversion and low conversion with recycle, remain mostly unknown. 

• Mo/V/Te/Nb/O: in the propane ammoxidation catalyst the metal cations are 

arranged in more than one phase, mutually consistent in structure. Each 

phase is pure obtainable and tunable preparations are developed to reach 

desired solid system composition. M1 phase (Mo7.8V1.2NbTe0.94O28.9 

orthorhombic, in Fig1.5) is able to transform independently propane to 

acrylonitrile with good performance but co-catalyst M2 phase 

(Mo4.67V1.33Te1.82O19.82 pseudo-hexagonal) is required to promote the 

unconverted-desorbed propene  to ACN; catalyst is composed of 60% M1 

phases and 40% M2 phases with traces of other phases. The general metals 

role is listed after: 

o V is necessary to obtain the required crystalline structure, forming 

VO6 lattice network; it is the metal responsible for the alkane 

dehydrogenation; the lack of vanadium in M2 make the co-catalyst 

unable in alkane activation. 

o Mo, like V, forms MoO6 lattice network; catalytically it provides to 

allylic co-ordination and nitrogen insertion. 

o Te is located in the hexagonal ring and promotes the α-H abstraction 

in propene conversion to ACN. 



New catalysts for acrylonitrile synthesis 

 16 

o Nb occupies the same position of Vanadium and improves the 

selectivity in ACN. 

 

Fig. 1.5 M1 ammoxidation catalyst phase: O atoms are shown as brown spheres in the 

middle of each coloured four sided. In rectangular boxes are shown four active sites; 

looking at the upper one: the side lone sphere is Te4+, around central site composed bi 

the V4+
0.8/Mo5+

0.2 couple. Two opposite pitched sites are made by V5+
0.5/Mo6+

0.5 (bonded 

out of the square with Mo6+) while the other two ones are made by Mo6+
0.5/Mo5+

0.5 

(bonded out of the square with Mo6+ and Mo5+). The pentacoordinated site, made by 

four Mo 6+ external site and one Mo5+, is occupied by Nb5+ and finally the site opposite to 

Te4+ bond site and between 4 Mo6+ sites is composed by V4+
0.8/Mo5+

0.2 

• Bimetallic antimonate catalysts are solid systems typified by 

nonstoichiometry, composed by Sb5+ and a metal in 3+ oxidation state (Cr3+) 

or a couple of the same metal in different oxidation state (V4+/V5+, 

Fe2+/Fe3+,) in which the electro-neutrality is maintained by cation vacancies 

creation. V antimonate is one of the more investigated systems: a catalyst 

with a molar ratio equal to 1 gives a solid system in which cation-deficient 

structure is achieved with 0.04 cationic position unoccupied per O2- anion 

and electro neutrality is maintained by means of different V oxidation state 

(V0.92Sb0.92O4 is indeed V3+
0.28V

4+
0.64Sb0.92O4). Preparation methods 

engrave on V(III) to V(IV) ratio so that it is possible to obtain system with 

V/Sb molar ratio equal to one in the V3+
xV

4+
ySbzO4 range x=1 y=0 z=1 / x=0 
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y=0.89 z=0.89 (that is V3+
1Sb1O4  to V4+

0.89Sb0.89O4). However it is possible 

to obtain catalyst with V/Sb ratio different from 1:  

o To keep unitary the coefficient of antimony, excess of Vanadium can 

be inserted in the structure with a mechanism related to an 

hypothetical insertion of V3+ atoms in the cation vacancies made on a 

quasi- V4+
0.89Sb0.89O4 high defective compound (the higher the 

V4+/V3+ ratio, the higher the cation vacancy amount) so that each V 

inserted is 3+ and, to maintain electro neutrality, three V4+ atoms 

reduce to V3+: this way, starting from a mainly V4+ formula, a mainly 

V3+ formula is reached. In the same way, in iron antimonate, the 

cation is placed in specific position and iron is reduced to evolve the 

rutile structure of FeSbO4 (FeIII) in tri-rutile superstructure FeSb2O6 

(FeII). 

o It is possible to increase the Sb to V ratio, but α or β Sb2O4 are formed 

in crystalline or amorphous forms 
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1.4 Rutile-type structure 

1.4.1 Rutile Structure 

Rutile refers to a structure composed by metal fluoride (Me2+) or metal oxide (d-

incomplete transition and XIV group Me) in a tetragonal cell in which metal is bonded 

with six oxygen in octahedric coordination (Fig.1.7) and oxygen is in planar 

coordination with three metals (Fig.1.6). 

 

Fig. 1.6 Rutile unit cell: in the centre and in the edge there are octahedric metals and 

on the other position the oxygens are placed in planar coordination 

 

Fig. 1.7 Octahedric coordination of centred metals in rutile structure. Compared to 

Fig 1.6, the structure here is 90° rotated in the sheet plane and 90° perpendicularly. 

It is possible to show another structural view considering a hexagonal coordination 

instead of tetragonal, as shown in Fig.1.8  

Metal ions and oxygen hybridization cause distortion in the rutile structure: 

• Highly charged vicinal ions repel each other and destabilize the structure 

inducing distortion. 
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• Oxygen bonded to 3 metal atoms reaches pure sp2 hybridization (from a 

quasi-sp2 one) so that a triangular planar configuration is achieved. 

 

Fig. 1.8 HCP rutile lattice. Full circles in metal cation and empty circles represent 

oxygen ions. 

Octahedra are linked by vertex (c axe) and by edge (a and b axes, 90° rotated) to 

form infinite chain in c directions, as shown in Fig.1.8 and Fig.1.9. Considering all the 

octahedral site formed by oxygen (not shown in Fig. 1.9, but existing early in the 

empty spaces), half of the whole cavity is occupied by metal atoms (Fig.1.10). 

 

Fig. 1.9 Octahedra connection by edge  (a and b directions) and vertex (c axe) 
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Fig. 1.10 Octahedra edge-linked rotation and half-filled site arrangement. 

 

Rutile systems can be classified as: 

• Oxide (TiO2, SnO2) 

• Rutile-type (FeSbO4, VSbO4, CrSbO4, AlSbO4, GaSbO4, CrNbO4, FeNbO4, 

RhVO4) and trirutile (NiSb2O6) 

• Solid solution (VxTi1-xO4, VxSn1-xO4) 

• Non stoichiometric solid solution (typical in Sb-rutile with the formation of 

Sn oxides) 

Trirutile structure (Me1Me2O6) mentioned above is a superstructure in which Me1 

and Me2 are alternatively accommodated in an ultra ordered network (Fig.1.11). 

 

Fig. 1.11 Rutile and tri-rutile structure 

1.4.2 Rutile structure properties 

• Cationic Radius (Pauling) of cations (Me4+) which are able to get rutile 

structure are plotted versus the related number of d electrons (Fig.1.12); it is 

therefore clear that the existence range is 0.52<rc<0.78 Å. The 

cationic/anionic radius ratio (0.37<rc/ra<0.56 considering the previous data 
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and the oxygen radius in III coordination, 1.36 angstrom) is usually useful to 

predict the coordination geometry: 0.414 as minimum radius ratio in 

octahedric and 0.732 for cubic. The data are thus coherent but it is important 

to remember that this theory is applicable only for full ionic compound. This 

is a constraining factor for the rutile structure, in which covalent partial 

character is crucial in energetic stabilization. Moreover, the ionic model is 

unsuitable because of the prediction of four short and two long bonds, which 

is just the opposite of the real configuration. The loss in ionic character is 

mainly due to the cationic charge made by the oxygen. 
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Fig. 1.12 Ionic radiuses (angstrom) versus number of d electron 15. All data refer to 

charge 4+ and coordination VI.  

• Electro-negativity, according to radius data, supports the pure ionic bond 

character mismatch: the electro-negativity difference between O2- and Me4+ 

describes the character so that values lower than 1,7 define the bond as 

covalent while values upper than 1,7 define the bond as ionic. As it is well 

known, it is wrong to consider “pure” a character  only on that grounds but it 

is widely accepted to consider medium a character which is  near the 

borderline value and pure a character clearly far from the borderline. As 

shown in Fig.1.13, rutile structure lies on the entire range of electro-

negativity. 
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Fig. 1.13 Difference in electronegativity between metal and oxygen versus the number 

of d electron 

• Cell Volume: Rutile structure is able to accommodate cations with very 

different size, condition which underline the elasticity of the lattice. As 

already said above, in some cases metal-metal interaction can occur and so 

the distortion of the cell happens: two ions accommodate on the same plane 

on “c” direction and attract one another (Fig.1.14). Cation interaction causes 

a lattice contraction along “c” parameters and a consequent “a” parameter 

stretching; these events modify the cell geometry but the volume remains the 

same. Vegard’s law is still valid in every rutile composition range (cell 

volume increases linearly with the ionic radius of the cation, as shown in Fig. 

1.15). 

 

Fig. 1.14 Metal-Metal coupling in vicinals octahedric site in “c” plane direction 
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Fig. 1.15 The cell volume value (cubic Angstrom) versus the ionic radius (Angstrom) 

shows linearity, as stated in Vegard’s law. 

• Rutile-type structure solid solution can be theoretically formed as interstitial 

or substitutional: 

o Interstitial solid solution is formed by the insertion of a cation in an 

empty cavity. Many processes can compensate the positive excess of 

charge, such as cation vacancy formation, anion interstitial insertion 

or redox process on original lattice cation. 

o Substitutional solid solution is formed by a substitution of an original 

cation with another one. To maintain a lattice stability the substitute 

and the expelled metal have usually to be similar in radius and charge; 

however it is possible a larger cation insertion, which creates a lattice 

distortion, but the insertion of a differently charged cation is only 

possible if accompanied with redox reaction or vacancies creation, so 

that to maintain electro neutrality. 

As far as  the half octahedric empty sites are concerned, rutile-type interstitial solid 

solution has never been prepared, mainly because of the high instability created by the 
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positive ions inclusion. On the contrary, substitutional rutile can be easily synthesized 

provided that the general concept of similarity between the metal ions is observed in 

order to reach homogeneous solid solution; this means that similar cations may be un-

soluble and very different metal may be miscible. It is impossible to make previsions 

and usually only a small range of composition may be obtained. 

This structure gives a wide range of possible modifications which lead to different 

redox, electric and surface properties. 

1.4.3 Heterogeneous ammoxidation catalyst design 

The efficiency of a catalyst can be described with many parameters such as 

conversion, productivity and yield, but the power of a solid system in which a 

transformation of a molecule into another occurs, is mainly described with selectivity. 

Seven basic principles describe the features that a compound must have in order to 

drive efficiently a heterogeneous catalytic reaction. 

• Lattice oxygen: catalytic mechanism can be shortly defined with the word 

“coordination”. In gas phase oxidation, the gaseous oxygen is able to attack a 

molecule without hanging location preferences, so O2 is intrinsically 

unselective. The power of catalysis is due to the coordination activated on 

the reactants by the lattice. Reciprocal positions and the distance between the 

coordination site and the oxygen site allow the oxygen to attack the substrate 

only in specific position. Oxygen is present as O2- and it is exposed to 

gaseous phase to get in contact with the reductant; the vacation left by the 

reacted oxygen moves toward re-oxidation site and oxygen is replenished 

with bulk O2-. 

• Metal-oxygen bond: the strength which keeps the oxygen bonded to the 

catalysts is a key factor. A weak bond means that the oxygen is very reactive 

and available to different substrate sites, while, on the other hand, a hard 

bond highlights a low reactivity or even unreactivity. It is very important to 

tune the oxygen-lattice bond strength in order to obtain a mild condition 
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between the two extreme situations “selective/unreactive” and 

“reactive/unselective”. 

• Redox properties: in order to define a reaction as “catalytic”, the reactive 

mechanism has to be repeated more than once on the catalytic site. The lack 

of Oxygen, occurred during the reaction on the catalytic surface, is 

replenished by bulk oxygen while the vacancy moves toward the reoxidation 

site, in which molecular oxygen is adsorbed from the gas phase, then it is 

cleaved and introduced in the solid system as O2-. The vacancy is thus 

neutralized and the redox catalytic cycle is now complete. 

• Multifunctionality: the whole mechanism of substrate transformation is made 

up in different steps: adsorption, activation, N-inserption and, oxidation. 

Different metals are involved in such reactions in different catalytic sites, so 

that multifunctionality is often synonymous of multimetallicity. Different 

metals are different elements with different atomic number (i.e. Bismuth 

molybdate composed by Bi3+ and Mo6+) or the same element with different 

oxidation state (i.e. antimonate catalyst made of Sb3+ and Sb5+) 

• Site isolation: it is necessary to achieve selectivity, which can be obtained 

with spatial separation among the surface sites, usually the oxygen ones. The 

number of vicinal oxygens reflects the reaction stoichiometry achieved in the 

catalytic mechanism: less oxygen than necessary leads to a hydrocarbon 

activation without complete transformation; higher amount of vicinal oxygen 

can push the activated substrate to over-oxidation. 

• Cooperation of phases: as already seen before, multifunctionality is reached 

with the aim of placing different catalytic sites in one single phase or in more 

than one. The mechanism of substrate transformation starts from adsorption 

and activation; if the multifunctionality occurs in different phases, the 

intermediate has to move on the surface from a site to another, in adsorbed 

(or quasi-adsorbed) conditions. To reach effective cooperation the site has do 

be near and, consequently, the phases must be intimately linked; it means 
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that different phases must form a coherent interface, which is usually reached 

only in similar structures or by means of intermediate lattice. 
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2 EXPERIMENTAL 

2.1 Catalysts 

Rutile-type antimonates are catalysts which are active in ammoxidation of 

hydrocarbons. In order to increase the substrate activation properties of the catalyst, a 

secondary element (such as vanadium or others active in dehydrogenation) is often 

added to form a binary system. These elements are able to increase the conversion rate 

of olefins or to allow the activation of the paraffins.  

2.1.1 Catalysts preparations 

Many preparations are claimed to be active in the synthesis of such systems and the 

choice depends on many important factors, like the final product features and the scale 

applications (lab scale or industrial scale). Generally speaking, the main steps are the 

following: 

• Raw material selection: antimony and the second component can be used in 

different oxidation state and associated to different anions; preparation 

claimed to be active in rutile synthesis starts from Carbon oxides (Sb2O3, 

Sb2O5, V2O4, V2O5, Cr2O3,…) or from soluble salt (SbCl3, SbCl5, Cr (NO3)3, 

VO(acac2), SnCl4, NH4VO3…). 

• Component mixing: there are basically two ways, a dry one (oxide mixing) 

and wet one (water solution). The aim of this step is to reach a homogenous 

intimate-contact mixture.  

• Precursor preparation consists of evaporation of the solvent and/or redox 

reactions. 

• Thermic treatment involves phase changes and reactions necessary to obtain 

rutile structure. 

The dry way of catalyst preparation consists of oxide mixture made by graining or 

milling and subsequent heat treatment; typical preparation made by solid reaction is 

the formation of vanadium antimonate rutile. It is desirable to obtain a catalyst in this 
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way because of the easy operation, the absence of liquid reflue and the economic 

factor; the container and the balls have to be made by materials selected in order to 

avoid corrosion or element migrations. On the other hand it is difficult to control 

reaction parameters such as real temperature produced by the reaction itself, pressure 

impressed on grains by the spheres in the mill, influence of speed induced by the mill. 

As claimed by Berry et al., the operation described above on Sb2O3 and V2O5 is easily 

conducted, but very condition sensitive: the preparation consists of equimolar mixing 

and a very slow heating rate composed by (i) heating to 600°C in 12 hours, (ii) still 

600°C for 12h, (iii) temperature increasing to 750°C in 6 hours and (iiii) isothermal 

treatment at 750°C for 24h. This reaction, performed in oxygen-free nitrogen, leads to 

a monophasic vanadium-rich rutile phase (V1.05Sb0.95O4) and sublimation of 

antimony(III) oxide; no reagents residue are observed. The same reaction made in 

commercial nitrogen results in a rutile antimony-deficient phase and a α-Sb2O4 phase 

formed by oxidation of antimony by molecular oxygen; in presence of oxygen, 

vanadium oxide is subjected to a redox reaction, due to the antimony which reduces 

V2O5 to form the tetroxide. Oxygen excess in the gas phase leads to an initial antimony 

oxidation to α-Sb2O4 which is unable to react with vanadium. In all preparation 

methods an excess of antimony leads to the formation of surplus antimony oxide phase 

while an excess of vanadium results in presence of V2O5 as unreacted reagent. 16. Solid 

state reaction of Chromium and antimony trioxides are described by Filipek at al. to 

obtain rutile phase in long-time thermic condition (from 500°C to 1000°C in almost 12 

days)17.  

The wet way consists of a suspension of Sb2O3 in water in which NH4VO3 is 

dissolved. After solvent evaporation the precursor is dried and calcined at 900K. 

Starting from equimolar V and Sb, rutile phase and traces of α-Sb2O4 are obtained; an 

excess of antimony leads to an increasing amount of antimony tetroxide18. Similar 

preparations are described by Cavani and co-workers starting from Antimony(III) 

oxide and Vanadium pentoxide pre-treated with hydrogen peroxide to obtain 

monoperoxovanadium cation (VO(O2)
+); also in this case rutile phase is obtained19. 
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Another wet way consists of the dissolution of the soluble salt containing the metal 

to be incorporated into the structure (VCl3, SnCl4, SbCl3, SbCl5, Cr(NO3)3, Fe(NO3)3 

and so on), in absolute ethanol and the subsequent drip in water buffered at pH 7. 

Separation, dryness and calcinations complete the synthesis.  

2.1.2 Rutile Phase 

As already said before, rutile phase occurs during the precursor calcination. Centi 

and co-workers claim that in vanadium antimony rutile phase, the cation redox 

reaction takes place in the 350-500°C range20. Cavani et al., studying the solid state 

reactions between different antimony oxides and vanadium pentoxide, observed the 

absence of rutile formation at 400°C calcination temperature, traces of SbVO4 at 

500°C (using Sb2O3) and complete transformation to rutile phase at 600°C (using 

Sb2O3). At the latter temperature, rutile formation in Sb2O4 synthesis is detected in 

small amount.19. To obtain rutile phase with good confidence, temperature has to keep 

in the range of 700-800 °C. Temperatures above 800°C break the rutile lattice to form 

Carbon oxides more stable. 

It is necessary to stress the relevance of the time needed for the rutile formation: 

intimate contact reached in wet way synthesis corresponds to an easy diffusion of a 

cation to another phase to give redox reaction. Solid state reactions are related to a 

spatial separation between the cations placed in different (although intimately mixed 

and grained) physically separated grains, so that the mutual diffusion needs a great 

deal of time and sometimes a higher temperature. Actually, in solid state reactions, the 

higher temperature holds on the order of days (24 hours or more) while in 

coprecipitation temperature holds on the order of hours (usually 3 hours). 

Rutile phases are detectable and usually studied by means of X-ray spectroscopy 

and Raman spectroscopy: 

• In X-ray spectroscopy the antimonate chromium and vanadium rutile lattice 

cell shows four main lines around 28, 35, 54 and 68 2θ and minor line 

around 39, 41, 57, 61 and 64 2θ. As observed before, rutile structure owns a 

very flexible lattice, which is able to accommodate vacancies and excess of 
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cations by means of non-stoichiometry. This variation results in lines-shift: 

an expansion of the cell induces a shift of the lines to lower angles and the 

extent of the movement is different from line to line. Different cations 

incorporated in the rutile lattice may induce a variation in the crystallinity 

and in the crystal size; this effect is recognised in XRD spectroscopy 

observing the lines shape. Scherrer formula relates the crystal size to the 

peak width at half height: 

B(2θ) = Kλ/Lcosθ 

• Raman spectroscopy is a very useful technique, as it is easy and fast. 

Unluckily the spectra collected are often of low quality, so sometimes they 

are difficult to be interpreted. It has often been noticed that an improvement 

in the crystals quality leads to a better peaks resolution. Three bands at about 

760, 670, 540 cm-1 are typical of the rutile structure and a broad band placed 

in the 800 – 900 cm-1 range is usually assigned to defects in the Sb-O-Sb 

chain.  

2.1.3 Antimony oxides phases21-23  

Antimony is a silvery lustrous grey metalloid, present in oxidation states III and V, 

found in nature mainly as the sulphide mineral stibnite (Sb2S3). Oxides formed by 

antimony, included often in oxidation catalysts preparation, are difficult to be studied 

because of the different existing stoichiometry and different polymorph. The active 

phase in catalysis is the most stable oxide Sb2O4, but oxide described with the formula 

Sb2O3, Sb2O5 and Sb6O13 may also be obtained. 

• Sb2O3 may be found in two different allotropes, both stable at room 

temperature: (i) cubic colourless senarmonite consists of dimeric units highly 

volatile which is able to sublimate above 775K; (ii) orthorhombic valentinite 

has a layered structure formed by chains hold together by weak Sb-O 

interactions. There is no evidence of differences in catalysts preparation 

between the two polymorphs. Volatility of senarmonite leads to use aqueous 

media in the oxidation reactions. Preparation of antimony trioxide is possible 
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by oxidation of Sb (or Sb2S3) in air or by hydrogenation of higher oxides In 

Raman spectroscopy, senarmonite shows a main peak around 261 cm-1 and 

secondary remarkable peaks at 197 and 84 cm-1; Valentinite shows peaks at 

140, 294, 223 and 502 cm-1. 

• Sb2O5 is the other full antimony oxidation state oxide and there is no 

evidence for the existence of the anhydrous powder. It is possible to 

synthesize the pentoxide starting from lower oxides in drastic conditions. 

Preparation of pure Sb2O5 starting from Sb2O5*nH2O, is often claimed to be 

possible; the heat necessary for the water evaporation is enough for the 

partial dehydration coupled with the oxygen loss, with the consequent 

formation of Sb6O13. Only two Raman bands have been recognized in 

pentoxide at 502 and 620 cm-1. 

• Sb2O4 is the main mixed valency oxide, made of equimolar proportion of 

Sb(III) and Sb(V) and it should be responsible for the catalytic activity in 

oxidation. It is prepared via Sb2O3 oxidation (at temperature above 870K) or 

via decomposition of higher oxide (upper than to 1000K). “α” orthorhombic 

(also known as cervantite) and “β” monoclinic allotropes are available, but 

the first one is the most common and it is prepared by Sb (or Sb2O3) 

oxidation at 873K or higher oxide decomposition at 1223K. Lower reduction 

temperature leads to β allotropes formation, also achievable from α one at 

1233K in sealed tubes. Cervantite is observed by means of Raman 

spectroscopy through bands at 200, 62, 43, 140 and 403 cm-1; β form shows 

band at 212, 79 and 405 cm-1. 

• Sb6O13 is the mixed oxide made by Sb(V) and Sb(III) in 2:1 ratio. It is made 

by Sb2O5 decomposition at 973K or by Hydrogen peroxide oxidation and it 

shows a Raman band on 470 cm-1 This oxide has a structure between Sb2O4 

and Sb2O5.The formation of Sb2O4 is a thermal evolution of Sb2O5, as 

described by the following steps: 

o Sb2O5 – Sb6O13 non-stoichiometric amorphous (723K). 
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o Sb6O13 non-stoichiometric amorphous - Sb6O13 non-stoichiometric 

crystalline (977K) 

o Sb6O13 non-stoichiometric crystalline - Sb6O13 (977 – 1026K) 

o Sb6O13 – α-Sb2O4 (>1026K) 

2.1.4 Rutile – antimony oxide phase cooperation 

Once analysed the great properties of rutile as lattice host structure, his synthesis 

and the phase characteristics of the antimony oxide, some consideration are needed in 

order to understand the behaviour of the antimonate catalysts. 

It is widely accepted that an excess of antimony in rutile catalysts is needed to form 

an antimony tetroxide phase, which is able to enhance ACN selectivity. This effect has 

been discussed by Andersson and co-workers: SbVO4 is unselective in propane 

ammoxidation to acrylonitrile while cervantite is not active in alkane conversion; as 

shown in Fig.2.1, the increase of Sb to V ratio up to 1, leads to a clear decrease in 

propane conversion and in propene selectivity with a clear increase in ACN selectivity.  

 

Fig. 2.1 Catalytic properties of rutile with increasing of nominal Antimony amount. 

Moving from 50 to 33.3 (from Sb/V = 1/1 to Sb/V = 2/1), the increase in ACN selectivity 

is drastic; higher Sb quantity influences significantly the selectivity and affects 

negatively the activity. 

In order to understand the behaviour of the phases inside the catalyst, has been 

made a comparison of the following solid systems:  

• pure SbVO4 (a) 
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• mixture of SbVO4 and α-Sb2O4 after co-calcination at 800°C, (b) 

• SbVO4 after co-calcination with α-Sb2O4 and sub-sequent sieve separation 

(c)  

• α-Sb2O4 after co-calcination with SbVO4 and sub-sequent sieve separation 

(d) 

This study (Fig. 2.2) points out the effective activity and selectivity in ACN of (b) 

compared to (a), according to the phase cooperation theory mentioned above. The  

increase in selectivity of (c) in comparison to (a) is remarkable, which is 

understandable if an antimony cation migration has been considered; the mechanism 

of migration, on vanadium cations, is crucial to explain the activity loss and the 

selectivity improvement on the usually unselective antimony tetroxide (d). 

 

Fig. 2.2 Comparison of the solid systems described above: (a) pure SbVO4, (b) 

mixture of SbVO4 and α-Sb2O4 after co-calcination at 800°C, (c) SbVO4 after co-

calcination with α-Sb2O4 and sub-sequent sieve separation, (d) -Sb2O4 after co-

calcination with SbVO4 and subsequent sieve separation.  

2.1.5 Synthesis 

Chromium antimonate has been synthesized with two different preparation 

methods: 

• Co-precipitation, developed for preparation of SnO2 based systems by 

Rhodia24: different weights of starting material (different soluble salt have 

been tested) have been calculated to obtain 10g of the desired Sb/Cr ratio. 
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SbCl5 (or i.e. SbCl3) and the other cation (Cr(NO3)3, Ga(NO3)3) are dissolved 

in absolute ethanol (usually 100mL of solvent are used); the first gives a pale 

yellow solution which becomes transparent and Cr3+ salt gives an intense 

blue mixture. Vigorous stirring has been kept for 15 minutes, at room 

temperature, to guarantee sufficient homogeneity of the solution. The 

mixture is then dropped in 100mL of water solution buffered with 

ammonium acetate (10%w/w) and kept at pH 7±0.2 by means of ammonia 

aqueous solution (10% w/w). After its separation from the supernatant, the 

solid has been washed 3 times with distilled water. The precursor is then 

dried at 120°C for 12 hours and calcined in air at 700°C for 3 hours. A 

crucial step of this preparation is the managing and accurately weighting the 

antimony chloride for its very tendency to hydrolyze, also with air moisture, 

to give gaseous hydrochloric acid and a white solid.  

• Slurry, in 100mL of the water solution of Cr(NO3)3, or Ga(NO3)3, antimony 

trioxide is kept in suspension by stirring at room temperature. After 15 

minutes mixing, the solution is dried in rotavapor at 70°C and low pressure, 

then it is calcined in air. Varying time and temperature of the heat treatment 

allows obtaining different solid systems. 

• High-energy milling is an easy technique already available to prepare 

vanadium antimonate: the oxides of the cation (Sb2O3 or Sb2O5 and Cr2O3) 

are weighed and premixed in ethanol to ensure good homogeneity of the 

sample. After the liquid removal (3 hours at 120°C), the solid mixture is 

milled for the time needed to complete the solid-state reaction. The milled 

powder is then calcined for 3 hours at 700°C. In our case carborum 

tungstenate balls and container were used to avoid contamination or 

corrosion. Raman analyses of these samples did not point out considerable 

rutile bands and for this reason no test in ammoxidation has been performed. 

Further investigations are needed to understand the solid state reaction 

mechanism in rutile synthesis. 
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2.1.6 Catalysts characterization 

The catalysts prepared with the methods described above are characterized with 

Raman spectroscopy, EDX probe, XRD spectroscopy, XPS, BET and AAS analysis. 

• Raman Spectroscopy analyses are performed on a Renishaw 1000, with 

confocal microscope confocal Leika DMLM (zoom 5X, 20X e 50X) coupled 

with a CCD camera. Excitement is made by green Argon at 514nm. The 

instrument works in reflectivity within an area of 1 µm2 (considering a 50X 

zoom) and 2 µm deep, so Raman spectroscopy is considered a technique for 

superficial investigation. Raman analysis is fast, in the order of minutes, very 

punctual and non invasive (usually non destructive, but sometimes bonds 

rupture occurs due to the high energy of the light source).  

• EDX probe INCA Oxford mod 350 SEM Zeiss. Evo 50: the sample is 

analyzed in powder or tablets form. During the analysis it is possible to 

collect SEM images of the catalyst. 

• XRD diffraction analysis are conducted on an automatic powder 

difractometer Phillips X’ Pert 9/29 with Bragg Brentano geometry, using Cu 

Kα (λ= 1,5416 Å) radiation and 1,5kw power. Analysis are performed in the 

range of 5° - 90° (2θ) with 0,02° (2θ) steps of 40 seconds each. Inorganic 

phase searching is based on Hanawalt on PDF-2 (Powder  Diffraction File, 

ICDD) data. Quantitative analysis and structural data are calculated by 

means of GSAS software (Generalized System Analysis System). Scherrer 

formula is used for particle size estimation. 

• XPS analysis are conducted in ultra high vacuum at 2x10-9 Torr, 200kV in 

“Survey” modality (surface atomic concentrations) and “Multi” modality 

(signals shape). The analysis works within an area of about 0,5mm2 and 

10nm depth. 

• BET measurements are made on a Carlo Erba Sorpty 1750 instrument, using 

nitrogen as adsorption gas. The method of analysis consists of an initial 

evacuation of adsorbed substances in vacuum conditions at around 200°C 
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and nitrogen pulses at ca 77K (by means of liquid nitrogen). The pressure is 

measured during the pulse and gives indication of the monolayer formation; 

the number of pulses indicates the amount of nitrogen adsorbed as well as the 

area covered by the molecules. 

• ICP-AAS: the sample is dissolved in TFM and hydrochloric acid by means 

of a Milestone Ethos1 microwave (power around 1500W and at 220°C). 

Analysis are performed on an ICP PERKIN ELMER “OPTIMA 4300∆V”. 
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2.2 Catalytic tests 

2.2.1 Plant 

In Fig.2.3 it is shown the plant employed in gas phase ammoxidation of propane 

and propene. 

 

Fig. 2.3 Schematic representation of the gas phase ammoxidation plant 

Gas flows are measured by means of Mass Flow Meter (MFM) and are mixed 

joining together the exit pipes. MFMs are reliable in a fixed range, so the values set 

around the lower borderline lead to instability of the flow. V1+M1 and V2+M2 are 

two separated lines useful to spill out part of the reaction stream in order to decrease 

the total flow. That way it is possible to reach a lower flow than the MFM range or to 

change the stream (therefore the contact time) during the reaction. The feed line and an 

air line enter in a 4-way valve (V4) from which two lines come out: one headed to the 

reactor and the other to the gaschromatograph (GC). In one position of the valve the 

reaction feed goes to the analysis system while air passes through the reactor; in the 
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other position the reactant reaches the reactor and the air goes to the (GC). In the first 

case it is possible to maintain the reactor hot and the catalyst in air environment while 

the feed undergoes analysis. This is crucial because an oxide kept at high temperature 

in oxygen-free atmosphere may undergo to irreversible surface modifications and 

therefore lose the lattice oxygen. In the second case the feed runs to the reactor while 

air cleans the analysis system lines. V4 is important for the reaction safety because, if 

some problems occur and a security arrange is necessary, an easy and immediate valve 

switching quenches the reactor and puts the plant in safe conditions. 

Following the analysis line, M4 is useful to waste part of the flow (like M1 and 

M2): little pressure is necessary to allow the flow feed the GC, but overpressure is 

unwanted. To handle the pressure of the GC, M4 is adjusted.  

The reactor line crosses V5, a three way valve which is able to direct the flow to a 

soap flow meter (F1) for the flow measurement. That way the reactor has not been 

crossed by reaction feed, or by other gases so it is fully isolated. This is a way to 

interrupt the reaction (like in the case already seen with V4), but in this situation the 

catalyst has not been crossed by air so that it may undergo reduction and surface 

modification. 

The flow that passes through the reactor is subjected to friction loss, which is nearly 

absent in the soap flow meter. The measured and the real flows are different; we claim 

that the over pressure induced by the friction loss is negligible so that measured and 

real flows may be considered equals; it is not possible to measure the stream in the 

outflow because of the condensation of some products due to the lower temperature 

and the crossing of the soap. 

The flow passes through the reactor and it is parted: a portion reaches the GC, dosed 

by M5, and the other goes to vent. 

Each flow coming out bubbles in a water basic absorber so that products and acids 

are stopped by condensation or neutralization. Only gases such as carbon oxides, 

nitrogen, helium, unreacted oxygen and negligible amount of hydrocarbon are released 

to atmosphere. 
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2.2.2 Analysis 

The plant is integrated with an on-line GC AGILENT 7890 A and an at-line GC 

able to separate propane and propene 

The analysis of the flows is carried on with 3 columns: 

• Col 1 leads to a chromatogram like the one shown in Fig.2.4, in which the 

first peak is formed by O2, N2 and CO while the others are related to CO2 

(1.3’), NH3 (3.8’), Propane/Propene (5.7’), H2O (12.9’), HCN (15.1’), 

Acrolein (19.3’), AcCN (20.5’) and ACN (22.1’). 

 

Fig. 2.4 Gas-Chromatogram obtained with the column 1; peaks are resolved except 

for the ammonia one(3.7s), which shows a long tail on which propene peak is formed. 

• Col 2 is a pre-separation column, in which O2, N2 and CO pass un-held at the 

same time. 

• Col 3 makes the separation of the previously un-separated peaks eluted in 

Col 2 (Fig.2.5): O2 (2.4’), N2 (3.2’) and CO (6.6’). 
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Fig. 2.5 Gas-Chromatogram obtained on Column 3: Nitrogen (3.2’) comes out as 

oxygen shoulder. 

The sample insertion in the GC occurs by means of pneumatic valves handled with 

the instrument software. Three valves are required, as shown in Fig. 2.6. 

 

Fig. 2.6 The sampling valves needed to feed the columns. 

V3 is the first-six-way-valve in which the flow coming from the line before the 

reactor (react in) and the flow coming out of the reactor (react out) are selected to be 

sent to the other valves or to be joined to the vent line. 

V2 is a ten-way-valve in which the flow selected in V3 and two separated flows of 

Helium enter and then may be connected to a loop (loop V2), to the vent line or to the 

column 2. The last one is then directed to the vent line, to the other valve or to the 

column 3. In the “off” position, the flow coming from V3 crosses the loop and reaches 

V1; at the same time an He feed washes the column 2 counter-current and goes to vent 
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while the other He feed passes through column 3/TCD. In the “on” position the flow 

coming from V3 is joined to the V1 line directly and a helium line crosses the loop and 

reaches the column 2, the column 3 and eventually the detector. The other He line goes 

to vent. This system is useful because in column 3 it is possible to separate oxygen, 

nitrogen and carbon monoxide, but at the same time the column filler can not get in 

contact with ammonia. In fact, the gas feed injected by loop V2 is pre-separated in 

column 2, in which O2, N2 and CO exit all together not restrained (retention time is 

indeed dead column time) and go to column 3; after these substances retention time, 

the valve switches so that gases not eluted have been washed away by an helium flow. 

This way Oxygen, nitrogen and carbon monoxide in the column 3 have been separated 

and reach the detector TCD front.  

In V1 the flow coming from the second valve and helium are fed; a loop and the 

column 1 line may be joined with the inner line. Gases coming out from column1 and 

the loop may be connected to the back detector or to the vent line. In the “off” position 

the feed crosses the loop while the column and TCD have been crossed by Helium. In 

the “on” position the loop V3 is washed by helium and the content goes to back 

detector after having been separated in column 3. 

The normal position of valves 1 and 2 is “off”, which means that loop is loading 

and helium is cleaning the columns and the detectors. When analysis starts, the valves 

automatically turn in “on” position and the sample reaches the columns. After ca. 3 

minutes valve 2 repositions itself on “off” position, as well as valve 1 at the end of the 

analysis after 25 minutes. 

In ammoxidation of propene , no other device is required. 

In propane ammoxidation, however, along with unreacted alkane, propene is present 

in reacted flow. In the analysis system described above, propane and propene are not 

separated, so they have been revealed at the same elution time (same peak). The 

quantification of propane and that of propene are operated on another instrument 

equipped with a Flame Conductivity Detector (FID) by means of sample injection with 

syringe, drown by a septa inserted in the line coming out of the reactor and directed to 

vent. The response factors of propane and propene are the same both in TCD and in 
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FID detector, so that it is possible to analyze the flow in the FID GC and to use the 

data collected as ratio amount with the parameter calculated on the other GC. 

GC is calibrated every 3 month by means of syringe injection using: pure oxygen, 

pure nitrogen, carbon oxide 4% and monoxide 4% in helium, pure propane, pure 

propene, water in acetone, hydrocyanic acid by argentometric titration, acrolein in 

water, acetonitrile and acrylonitrile in water. Calibrations of loops are made using 

oxygen and carbon oxides. 

2.2.3 Thermic system 

In order to avoid condensation of products such as water, AcCN and ACN, all the 

pipelines and the apparatus crossed by the flow coming out of the reactor are 

maintained at least at 150°C by means of heating ceramics resistance belt, resistance 

tape and resistance oven. The power supply along with temperature signal from 

thermocouple are handled and displayed with regulators and programmers. 

2.2.4 Calculation sheet 

Data are elaborated automatically by means of a Microsoft Excel programmed 

calculation sheet. 

• First data inserted refer to date, sample ID, sample characteristics, sample 

volume and weight. 

• The flow data are written as follows: MFM setting, flow, feed area, flow 

measure. The program automatically calculates the retention time and the 

feed composition. It is possible to calculate the amount of feed wasted in 

order to change the retention time and to recalculate the flux to the reactor. 

• The peaks areas are inserted and parameters of reaction such as conversion, 

yield, selectivity, carbon balance are calculated. The results are corrected on 

the flux changing due to the reaction stoichiometry. 

• In propane ammoxidation, the results given by FID are inserted and an 

ano/ene ratio is calculated; this ratio, which is applied to the hydrocarbon 
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area revealed on TCD, allows calculating the amount of propane unreacted 

and, of course, of propene produced. 

• If the carbon balance falls within 95% and 105%, data are considered as 

reliable and are normalized on balance and selectivity, i.e. sum of 

selectivities has to give 1 then every selectivity is divided for the sum of 

selectivities. If the carbon balance is out of range, data are rejected and the 

test is remade. 

• Data collected are plotted in graphs which are useful to represent the 

catalytic performance and to compare different catalysts. 
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3 RESULTS AND DISCUSSION 

3.1 Ga/Sb and Cr/Sb mixed oxides 

3.1.1 Characterization 

We chose Ga and Cr as the main component of single-metal antimonates because at 

variance with V in V/Sb/O systems, the most stable valence state for both metal ions is 

3+. With rutile V/Sb/O, the presence of a valence state higher than 3+ in the mixed 

oxide is the main reason for the generation of cationic defects, and of low-coordination 

O ions, that are recognized to play an important role in the activation of the alkane. On 

the other hand, in V/Sb/O systems the structure cannot accommodate antimony 

amount higher than the equiatomic ratio, 1/1; indeed, the various non-stoichiometric 

V/Sb series reported in the literature contain either a 1/1 atomic ratio between the two 

components, or an excess of V atoms. Any excess antimony is finally spread over the 

surface of the rutile V/Sb/O in the form of an amorphous antimony oxide, which also 

plays an important role for the ammoxidation of the intermediately formed propene 

into acrylonitrile.  

Different is the case for rutile Cr/Sb mixed oxide; in fact, non-stoichiometry is not 

so much due to the presence of Cr with oxidation state higher than 3+, but to the 

incorporation of excess Sb, in the form of either Sb3+ or Sb5+. In other words, the 

excess Sb, necessary to favour the transformation of the olefin intermediately formed 

to acrylonitrile, is not present as a separate phase, but indeed is incorporated inside the 

rutile framework. Due to the similar features of Cr3+ and Ga3+ cations (no oxidation 

state higher than 3+ stable at high temperature, similar ionic radius), we were 

wondering whether the same structural behaviour experimentally observed with 

Cr/Sb/O might be expected also in the case of Ga/Sb rutile mixed oxides. 
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Me/Sb  

at. ratios 

preparation 

Code Me/Sb  

at. ratios 

analysis 

S.S.A. 

m2/g 

Preparation procedure 

Ga/Sb 1/1 Ga1Sb1cp 1/1.17b 113 Co-precipitation 

Ga/Sb 1/2 Ga1Sb2cp 1/1.61b 91 Co-precipitation 

Ga/Sb 1/3 Ga1Sb3cp 1/4.12b 50 Co-precipitation 

Cr/Sb 1/1 Cr1Sb1cp 1/0.8b 37 Co-precipitation 

Cr/Sb 1/2 Cr1Sb2cp 1/1.6b 67 Co-precipitation 

Cr/Sb 1/3 Cr1Sb3cp 1/2.8b 54 Co-precipitation 

V/Sb 1/1 V1Sb1cp Nd 26 Co-precipitation 

V/Sb 1/2 V1Sb2cp Nd  Co-precipitation 

V/Sb 1/3 V1Sb2cp Nd 7 Co-precipitation 

Cr/Sb 1/1 Cr1Sb1cpw 1/1.15b 23 Co-prec.+ NH4Cl wash 

Cr/Sb 1/1.5 Cr1Sb1.5cpw 1/1.42a 

1/1.56b 22 

Co-prec.+ NH4Cl wash 

Cr/Sb 1/2 Cr1Sb2cpw 1/1.92a 

1/2.10b 27 

Co-prec.+ NH4Cl wash 

Cr/Sb 1/2.5 Cr1Sb2.5cpw 1/2.70b 23 Co-prec.+ NH4Cl wash 

Cr/Sb 1/3 Cr1Sb3cpw 1/3.50 b 34 Co-prec.+ NH4Cl wash 

Cr/Sb 2/1 Cr2Sb1asl Nd 53 Slurry aq. Sb acetate 

Cr/Sb1.5/1 Cr1.5Sb1asl Nd 47 Slurry aq. Sb acetate 

Cr/Sb 1/1 Cr1Sb1asl Nd 50 Slurry aq. Sb acetate 

Cr/Sb 1/1.5 Cr1Sb1.5asl Nd 37 Slurry aq. Sb acetate 

Cr/Sb 1/2 Cr1Sb2asl Nd 29 Slurry aq. Sb acetate 

Cr/Sb 1/2.5 Cr1Sb2.5asl Nd 22 Slurry aq. Sb acetate 

Cr/Sb 1/3 Cr1Sb3asl Nd 17 Slurry aq. Sb acetate 

CrSb 1/2 Cr1Sb2aosl Nd 29.0 Slurry aq. Sb2O3 

CrSb 1/2 Cr1Sb2bosl Nd 41.0 Slurry aq. Sb2O3 

CrSb 1/2 Cr1Sb2dosl Nd 45.6 Slurry aq. Sb2O3 

CrSb 1/2 Cr1Sb2fosl Nd 48.9 Slurry aq. Sb2O3 

CrSb 1/2 Cr1Sb2gosl Nd 53.1 Slurry aq. Sb2O3 

Tab. 3.1 Catalysts examined: the first row describes the catalysts composition and the 

hypothetic Me/Sb atomic ratio, the second row lists the sample I.D., the third row 

reports the Me/Sb atomic ratio (when available) found by means of (a) elementary AAS-

ICP analysis and or (b) SEM-EDX analysis, fourth row reports the specific surface area 

and the last row describes the synthesis method. 
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Tab.3.1 compiles the samples prepared and the specific surface area, after thermal 

treatment in air at 700°C. In the case of the Cr/Sb/O samples, different series of 

samples were prepared; one series was synthesized with the co-precipitation procedure 

from ethanolic solution, as reported in the previous works and also employed for the 

preparation of Sn/V/Sb/O rutile samples (the same procedure was adopted also for the 

preparation of the Ga/Sb/O samples). A second series also was synthesized with the 

co-precipitation procedure, but the precipitate was thoroughly washed with water 

before thermal treatment, an operation aimed at removing the ammonium chloride 

formed during the co-precipitation step. 

Another series was prepared by means of the conventional slurry method, in which 

Sb is not dissolved in the preparation medium, but indeed is present as a solid. In this 

procedure, two different raw materials can be used, either Sb oxide (Sb2O3 or even 

Sb2O5), or Sb(CH3COO)3. In the former case, Sb oxide is insoluble in the reaction 

medium, and hence a slurry develops; with Sb acetate, once added to the aqueous 

solution of the Cr salt, the immediate precipitate of an Sb compound (likely, an Sb 

oxohydrate) occurs. There are major differences between the various preparation 

methods, as will be clear after comparison of the characteristics of calcined samples 

having the same Cr/Sb ratios, but prepared using the different procedures. For 

example, the osl (slurry method from Sb3+ oxide) is hardly reproducible, and samples 

prepared with exactly the same amount of starting amount and using identical 

procedures, may finally show quite different features, e.g., a different amount of Sb 

incorporated in the rutile structure. This may be attributed to the fact that the 

reproducibility of the solid state reaction occurring in the precipitate between Cr 

oxohydrate and Sb oxide is negatively affected by the relatively large particle size of 

the latter compound. Indeed, the same irreproducibility was not observed in the case of 

the asl method (slurry redox from antimony acetate), probably because the Sb 

compound that precipitates  after dropping the Sb acetate in the aqueous solution is 

more reactive than Sb oxide, either because of the smaller particle size or because of 

the higher reactivity of an oxohydrate as compared to the oxide. 
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In regard to samples prepared with the co-precipitation procedure, the thermal 

treatment of unwashed precursors (cp method) finally led to samples having greater 

specific surface area than those prepared by preliminary removal of the salt (cpw 

method) (Tab.3.1). Since this treatment did not affect so much the crystallinity of 

calcined samples (that was the same for the two series of Cr/Sb/O samples, as inferred 

from X-ray diffraction patterns, see below), the effect on surface area was due to a 

different morphology of samples. It is possible that the decomposition of ammonium 

chloride, occurring at around 350°C, generates holes and cavities in the particle that 

finally are responsible for the higher surface area of samples obtained from the 

untreated precursors. The surface area of Cr/Sb/O samples prepared by means of the 

slurry procedure (asl) was higher than that of co-precipitated (cpw) samples for Cr/Sb 

atomic ratio values ranging from 1/1 to 1/1.5, but then became similar for the two 

series of samples when higher Sb contents were used for catalysts preparation. For 

what concerns the surface area of Ga/Sb/O samples, Tab.3.1 shows that is was 

systematically higher than that of Cr/Sb/O catalysts. In this case, the difference was 

due to the lower crystallinity of Ga/Sb/O samples (see XRD patterns, reported below).  

Chemical analysis was used to check the composition of samples; this is particularly 

important for co-precipitated samples, because the procedure adopted did not lead to 

the complete precipitation of all metal oxohydrates, and the surnatant solution, still 

containing dissolved metal cations, was removed by filtration before the thermal 

treatment of the precipitate. Furthermore, the comparison of ε vs pH diagrams 

highlighted remarkable differences between the metals used, the pH chosen finally 

representing a compromise aimed at obtaining the concomitant precipitation of 

corresponding oxohydrates. However, data reported in Tab.3.1 show that the atomic 

ratio between components, for all samples prepared, was not much different from that 

one used for the preparation of the starting solution. In the case of samples prepared by 

the slurry method (asl and osl), there was no need to make chemical analysis of 

samples, since the precipitation of the solid occurred by solvent evaporation; therefore, 

the chemical composition of calcined samples was identical of that of the starting 

solution.  
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Fig.3.1, Fig.3.2 and Fig.3.3 reports the X-Ray diffraction patterns of Ga1Sbxcp, 

Cr1Sbxcpw and V1Sbxcp samples. Patterns of Cr1Sbxasl and Cr1Sbxcp (the latter 

were also reported in a previous work) were quite similar to those of Cr1Sbxcpw, and 

are been reported for sake of brevity. 
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Fig. 3.1 XRD patterns of Ga1Sbxcp. * rutile (JCPDS 81-1219); # Sb6O13 (71-1091). 
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Fig. 3.2 XRD patterns of Cr1Sbxcpw. * rutile (JCPDS 81-1219). 
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Fig. 3.3 XRD patterns of V1Sbxcp. * rutile (JCPDS 81-1219); § Sb2O4 (80-0231). 
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Some major differences between the series of samples are evident: 

• The crystallinity of samples was very different; more crystalline samples 

were V1Sbx (average crystallite size 59 nm), the least crystalline Ga1Sbx 

(average crystallite size 7 nm). The crystallinity of the Cr1Sbx samples 

(crystallite size 20 nm) was not much affected by the method of preparation 

used. 

• In XRD patterns of all Cr1Sbxcpw and Cr1Sbxcp samples, the only 

crystalline compound was rutile CrSbO4 (JPCDF 35-1288)25, with the 

exception of sample Cr1Sb3cp, for which crystalline Sb6O13 also formed, and 

for the Cr1Sb3asl sample, which contained Cr2O3 also (Tab.3.2). Quite 

different was the situation for Ga1Sbx and V1Sbx samples; in the former 

case, crystalline Sb6O13 (JCPDF 71-1091) was present in the sample 

Ga1Sb3, that however did not form in Ga1Sb2, whereas crystalline Sb2O4 

formed in both V1Sb2 and V1Sb3 samples. Therefore, rutile V/Sb/O cannot 

accommodate excess Sb in its structure with respect to the stoichiometric 

atomic ratio, whereas rutile Cr/Sb/O may host a large excess Sb.  

• As mentioned above, the slurry redox method carried out using Sb2O3 led to 

remarkable differences in the characteristics of samples, although all of them 

were prepared with the same Cr/Sb atomic ratio (1/2), and by means of 

identical procedure. This is evident from Tables 3.1 and 3.2; sample 

Cr1Sb2nosl, when prepared several times, gave a surface area that ranged in 

the interval between 29 and 53 m2/g (Table 1), whereas the amount of Sb2O4 

oxide (as inferred after Rietveld refinement of the corresponding XRD 

patterns) decreased and that of rutile correspondingly increased (Tab.3.2). At 

the same time, the volume of the tetragonal cell also varied remarkably, 

confirming that the amount of Sb incorporated in the structure was inversely 

proportional to the amount of extra framework Sb oxide.  
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Code Crystalline phases Cell volume (Å3), c/a 

Ga1Sb1cp Rutile Nd 

Ga1Sb2cp Rutile Nd 

Ga1Sb3cp Rutile + Sb6O13 Nd 

Cr1Sb1cp Rutile 64.43, 0.661 

Cr1Sb2cp Rutile 65.29, 0.658 

Cr1Sb3cp Rutile + Sb6O13 65.52, 0.655 

V1Sb1cp Rutile Nd 

V1Sb2cp Rutile + α-Sb2O4 Nd 

V1Sb2cp Rutile + α-Sb2O4 Nd 

Cr1Sb1cpw Rutile 64.03, 0.659 

Cr1Sb1.5cpw Rutile 64.60, 0.659 

Cr1Sb2cpw Rutile 65.24, 0.657 

Cr1Sb2.5cpw Rutile 65.59, 0.656 

Cr1Sb3cpw Rutile 65.68, 0.655 

Cr2Sb1asl 93% Rutile + 7% Cr2O3 62.76,  

Cr1.5Sb1asl Rutile Nd 

Cr1Sb1asl Rutile  63.96, 0.663 

Cr1Sb1.5asl Rutile 64.26, 0.658 

Cr1Sb2asl Rutile 65.48, 0.653 

Cr1Sb2.5asl Rutile 65.59, 0.651 

Cr1Sb3asl Rutile + Cr2O3 65.84, 0.665 

Cr1Sb2aosl 61.8% Rutile + 38.2% Sb2O4 Nd 

Cr1Sb2bosl 77.0% Rutile + 23.0% Sb2O4 Nd 

Cr1Sb2dosl 81.0% Rutile + 19.0% Sb2O4 64.62 

Cr1Sb2fosl  89.4% Rutile + 10.6% Sb2O4 Nd 

Cr1Sb2gosl 91.3% Rutile + 8.7% Sb2O4 64.78 

Tab. 3.2 features inferred from X-ray diffraction patterns of Cr/Sb/O calcined 

samples 

Fig.3.4, 3.5 and 3.6 also reports the crystallographic parameters (Tab 3.2), the 

volume of the tetragonal cell and the c/a ratio, evaluated by means of the Rietveld 

refinement. Corresponding values of volume cell for monophasic Cr1Sbxcpw and 

Cr1Sbxasl samples are also shown in Fig.3.4, in function of the Sb/Cr atomic ratio. 
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The incorporation of an excess Sb with respect to the stoichiometric composition 

CrSbO4 (volume cell 64.31 Å3)25] led to an evident expansion of the cell, with a slight 

decrease of the c/a ratio. This is similar to what experimentally observed for the 

Fe/Sb/O system, in which an increase of the Sb/Fe ratio leads to an increase of the cell 

volume of the tetragonal structure, with development of a trirutile like superstructure26. 

In that case, hosting of an excess Sb5+ is compensated for by a reduction of Fe3+ to 

Fe2+; the limit compound with stoichiometric FeSb2O6 is formed for a Sb/Fe atomic 

ratio of 2, in which Fe is in the divalent oxidation state. 
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Fig. 3.4 Cell volumes are reported versus the Sb/Cr atomic ratio. A tendency curve is 

added to clarify the trend. 

In the case of our Cr/Sb/O samples, two different hypotheses can be formulated. 

The first one, by analogy with the proposals of Berry, includes the development of a 

Sb5+-rich solid solution, with concomitant reduction of Cr3+ to Cr2+ and development 

of a trirutile-like cation ordering. The increase in cell volume might thus be due to the 

presence of the bigger Cr2+ cation (0.90 Å). The second hypothesis involves the 

development of a compound with stoichiometry Cr3+
1−ySb3+

ySb5+O4. In consideration 

of the ionic radii of the octahedral cations: Cr3+ (0.69 Å), Sb3+ (0.76 Å), Sb5+ (0.60 Å), 
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an increase in the cell volume with respect to that of CrSbO4 can be explained by 

hypothesizing a partial replacement of Cr3+ ions with the bigger Sb3+ ion.  
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Fig. 3.5 Specific surface area plotted on the relative amount of rutile in the 

framework. 

It is also interesting to note the relationship between the amount of extra framework 

Sb2O4 in Cr1Sb2nosl samples and the corresponding value of specific surface area, as 

well as the relationship between the former parameter and the volume of the tetragonal 

cell (Fig.3.5 and 3.6, respectively).  
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Fig. 3.6 Relative amount of rutile in the structure on the related cell volume. 
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Samples reported in the Figures are those compiled in Tab.3.2, and many others as 

well, that were prepared in the attempt to obtain a variable amount of Sb incorporated 

in the rutile lattice, while keeping the overall Cr/Sb ratio constant. It is evident that an 

increase of the rutile content in samples leads to an enhancement of the surface area of 

samples, which is an expected phenomenon because of the intrinsic low surface area of 

Sb2O4. Moreover, the higher was the amount of Sb incorporated in the rutile lattice 

(the lower being the amount of extra framework antimony oxide), the greater was the 

volume of the tetragonal cell of rutile, an observation that agrees with experimental 

results achieved with samples belonging to samples prepared with the other methods. 

Raman spectra of the Cr1Sbxcpw, Ga1Sbxcp, V1Sbxcp and Cr1Sbxasl are shown 

in Fig.3.7, Fig.3.8, Fig.3.9 and Fig.3.10. Raman bands of TiO2 rutile are at 143 cm-1 

(B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g), whereas SnO2 

rutile shows bands at around 470, 630 and 770 cm-1, corresponding to the Eg, A1g, 

and B2g vibration modes, respectively27 , which well correspond to bands observed at 

approximately 470 (or the very weak 560), 670 and 790 cm-1 in Ga1Sbxcp samples; an 

increase of the Sb content leads to a slight shift of the 670 cm-1 band towards lower 

energy, whereas the band at higher energy becomes broader and less defined. 

However, the position of Raman bands of rutile can be strongly affected by sample 

crystallinity and surface effects28,29. The band at 470 cm-1, however, can also be 

attributed to Sb6O13, and in fact its intensity increases when the Sb content increases 

also; it becomes the most intense one in sample Ga1Sb3cp, in which crystalline Sb 

oxide is also present. This sample however also shows a broad band at around 200 cm-

1, attributable to α-Sb2O4. 
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Fig. 3.7 Raman spectra of calcined Cr1Sbxcpw systems. 
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Fig. 3.8 Raman spectra of calcined Cr1Sbxasl systems. 
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Fig. 3.9 Raman spectra of calcined Ga1Sbxcp systems. 

 

 

Fig. 3.10 Raman spectra of calcined V1Sbxcpw systems. 
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Spectra of Cr1Sbxcpw samples have analogies with those of Ga1Sbxcp catalysts, 

and differences as well. Main rutile bands are at approx 750, 670, 565 and 467 cm-1; 

also in this case, the latter band might be attributable to Sb6O13, a compound that 

however is not observed in any X-ray diffraction pattern of the well-crystallized 

Cr1Sbx samples. It is worth noting that a part from a better resolution, hinting for a 

better crystallinity of the rutile compound (a phenomenon also observed in XRD 

patterns), and for the development of a shoulder at around 850 cm-1, an increase of the 

Sb content does not lead to any major modification of Raman spectra. A broad weak 

band at about 200cm-1, that can correspond either to the main band of α-Sb2O4 

(200cm-1) or the main band of β-Sb2O4 (212cm-1) shows a slight increase. Unluckily 

secondary bands useful to recognize the phase, are placed in uncollected area of the 

spectra (62cm-1 and 79cm-1) or are too weak to be observed, 30% and 25% of the main 

band intensity, at 403cm-1 and 405cm-1(data referred to α-Sb2O4 or β-Sb2O4, 

respectively). 

Raman spectra of samples Cr1Sbxasl show some major differences if compared 

with spectra of Cr1Sbxcpw samples. Specifically, the band at approx 750 cm-1 is 

shifted towards higher energy in Cr1Sb1cpw; then, an increase of the Sb amount leads 

to weakening of the intensity for this band, at the same time components at both higher 

(at about 860 cm-1) and lower (at about 740 cm-1) energy becoming progressively more 

intense. Finally, in Sb-richer samples a broad band, probably consisting of the three 

different components, dominates the spectrum in the 700-900 cm-1 spectral region. The 

band at 465 cm-1 is again attributable to Sb6O13; remarkably, this band is substantially 

absent in the Cr1Sb1cpw sample, it is well evident in Sb-richer samples, but it almost 

disappears in the Cr1Sb3cpw sample. Worth noting, the XRD pattern of this latter 

sample highlighted for the unexpected formation of Cr2O3; even in the Raman 

spectrum, a band at 550-555 cm-1 corresponds to the most intense band of Cr2O3.  

In literature, the high-energy band is attributed to the development of cationic 

vacancies in the rutile structure, and is specifically related to vibrations of Me-O bond 

involving coordinatively unsaturated O atoms. Therefore, Raman spectra indicate that 

major variations in the rutile structure because of excess Sb incorporation are obtained 
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with the slurry-redox procedure. In this case, the starting Sb compound is 

Sb(III)acetate, whereas in the co-precipitation procedure SbV pentachloride is used. 

With the latter procedure, the development of the rutile mixed oxide and the scarce 

amount of defects hints for the incorporation of excess Sb in the form of both Sb3+ and 

Sb5+, thus with formation of a stoichiometric solid solution of the type 

CrSbIII
xSbV

1+xO4+4x. The size of the trivalent cations explains the expansion of the 

tetragonal cell experimentally observed; the driving force for the reduction of Sb5+ to 

Sb3+ is the formation of the stable rutile compound, and is accounted for by the fact 

that the Sb2O5 self-reduces to Sb2O4 (a mixed-valence Sb3+/Sb5+ compound) at around 

800°C. The same expansion of the tetragonal cell is observed with the more defective 

samples obtained by the slurry-redox method, that also suggests either the 

incorporation of Sb3+ cation, or the formation of Cr2+; in this case, the presence of Sb3+ 

is quite expected, because of the starting compound used for the preparation of 

samples. We note that the formation of a non-stoichiometric structure may derive from 

various factors: (i) excess Sb is incorporated mainly as Sb5+, that would lead to the 

reduction of part of Cr3+ to Cr2+: CrIII 1-xCrIIxSbV
1+xO4+2x, up to the limit trirutile-like 

CrSb2O6 for a Sb/Cr atomic ratio of 2; (ii) Sb is incorporated mainly as Sb3+, that if 

taking the place of Sb5+ would lead to the development a corresponding amount of 

anionic vacancies, CrSbV1-xSbIII
xO4-x (this structure however might probably host a 

limited amount of Sb3+); (iii) excess Sb is incorporated as Sb3+, that would either lead 

again to the reduction of Cr3+ to Cr2+: CrIII 1-3xCrII3xSbVSbIII
xO4 (also in this case only a 

limited amount of excess Sb might be incorporated), or to the formation of cationic 

vacancies, or to the incorporation of excess O2-, for example in the interstitial positions 

(CrSbVSbIII
xO4+3/2x). However, the question arises how much Sb could be incorporated 

in all of these cases, while at the same time maintaining the (defective) rutile structure. 

One relevant experimental result is the behaviour shown by sample Cr1Sb3cpw; in this 

case, the presence of segregated Cr oxide and of rutile only, with no Sb oxide (as 

inferred from both XRD pattern and Raman spectrum) suggests that Sb in excess may 

finally take wholly the place of trivalent Cr in the rutile structure; the segregation of Cr 

might occur as a consequence of its reduction to Cr2+, whose size is too big to fit 



New catalysts for acrylonitrile synthesis 

 60 

within the rutile mixed oxide for a large amount of it; the reduced Cr would then be 

oxidized to Cr2O3 during the thermal treatment in air. 

In Fig.3.11 are shown Raman spectra of samples Cr1Sb2xosl in which the cations 

relative amount still much the same (Sb/Cr = 2), but low reproducibility of the 

synthesis method leads to differences in the rutile to antimony oxides ratio. Rietveld 

data extrapolated on XRD difractograms are collected in Tab.3.2: Cr1Sb2aosl 61.8% 

rutile, Cr1Sb2bosl 77.0% rutile, Cr1Sb2dosl 81.0% rutile, Cr1Sb2fosl 89.4% rutile and 

Cr1Sb2gosl 91.3% rutile.  
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Fig. 3.11 Raman spectra of calcined Cr1Sb2xosl systems. The rutile amount in the 

structure increases along with y-axis:  

Bands at 760 and 665 cm-1 are associated to rutile structure; weakness and 

broadness may be due to low crystallinity of the phase, as already treated previously. 

Other bands associated to Sb6O13 (468cm-1) and to Sb2O4 (200 and 400cm-1) are 

present, along with a band at 460cm-1, present also in vanadium antimonate spectra, is 

due to the presence of Sb2O3. In this case the presence of the trioxide is explained by 

the use of its in the catalysts preparation. All the bands correlated to the antimony 
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oxides decrease along with the increase of rutile percentage, obviously because the 

reminder to 100% is Sb2O4 (detected by XRD analysis). 

Fig.3.12 plots the Sb/Cr surface ratio as determined by XPS, in function of the 

Sb/Cr preparation ratio, for samples Cr1Sbxasl. The surface ratio was close to the 

preparation one for Cr1Sb1sl, but then increased exponentially when the Sb/Cr 

preparation ratio was increased, showing a considerable surface enrichment of Sb. The 

latter was mainly present as Sb5+, but an increase of the Sb content led to an increase 

of the relative amount of Sb3+. This effect might be attributed to the formation of 

pentavalent Sb oxide dispersed over the surface of rutile in samples having more Sb 

than the amount required for the stoichiometric formation of the rutile. However, we 

would like to note that Raman spectroscopy did not provide any evidence for the 

formation of free Sb2O5; the band at Raman shift 465 cm-1 might be attributed to 

Sb6O13 (containing 66.5% Sb5+ and 33.5% Sb3+), but we would like to note that the 

relative intensity of this band did not increase remarkably when the Sb content was 

increased, and that the relative amount of Sb3+ (as inferred from XPS) was much less 

than the 33%, and moreover it did increase when the amount of Sb was increased, that 

is not the expected effect if excess Sb were segregated at the rutile surface in the form 

of Sb6O13. Finally, it is evident that in sample Cr1Sb2.5sl, that should contain the 

greater amount of free antimony oxide, there are no experimental evidences neither 

from Raman spectrum nor from XRD pattern of the presence of such compound. 

Therefore, we propose here that the Raman band observed at 465 cm-1 indeed is 

attributable to Sb-O-Sb vibration for excess Sb incorporated in the rutile structure, and 

that the considerable surface enrichment of Sb is attributable to the fact that excess Sb 

accumulates towards the surface zone of rutile crystallites. 
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Fig. 3.12 Surface ratio calculated by XPS analysis plotted on theoretical atomic ratio 

More accurate data on antimony surface enrichment are showed in Fig.3.13, 

Fig.3.14 and Fig.3.15, in which sputtering XPS analysis of Cr1Sb1cpw, Cr1Sb2cpw 

and Cr1Sb2asl are illustrated. The estimated sputtering speed is 6 nm/min and 

collected results are reported as atomic percentage concentration.  
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Fig. 3.13 Atomic concentrations of oxygen, antimony and chromium in Cr1Sb1cpw 

sample plotted on sputtering depth. 
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Fig. 3.14 Atomic concentrations of oxygen, antimony and chromium in Cr1Sb2cpw 

sample plotted on sputtering depth. 
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Fig. 3.15 Atomic concentrations of oxygen, antimony and chromium in Cr1Sb2asl 

sample plotted on sputtering depth. 

Each sample shows surface antimony enrichment along with chromium decrease; 

the contemporaneous surface oxygen enrichment means that the antimony in the 

surface is mainly present as pentavalent cation, so that oxygen surplus is needed to 

maintain electro neutrality (the Sb5+ substitutes the Cr3+). However, some antimony 
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may be present as trivalent cation, in order to form surface domes similar to Sb2O4 or 

Sb6O13, which are the structures commonly detected on rutile surface. 

Catalysts prepared with the same method (Cr1SWb1cpw and Cr1Sb2cpw) show a 

similar trend, but in the sample with Sb/Cr ratio equal to 2 the amount of oxygen is 

generally higher to compensate the great charge due to the excess of Sb5+. In both 

samples, the Cr amount in bulk is higher than the Sb one, despite of the excess of 

antimony in catalyst Cr1Sb2cpw. This effect may be explained with the following 

mechanism: during its formation, the structure starts from a situation of homogeneity, 

in which the cations are randomly dispersed in the lattice. The antimony surface 

enrichments, induced by energy lowering, draw Sb5+ and Sb3+ from the bulk to the 

surface while Cr3+ is pushed inside, in a cations exchange mechanism.  

Actually, the oxygen trend slope is clearly higher in the equimolar sample; it allows 

us to state that in samples with Sb/Cr ratio equal to 2, it is favoured the movement of 

the trivalent antimony (in exchange mechanism with trivalent chromium) in order to 

limit the oxygen displacement and save energy. 

It is also evident that even in the case of the equiatomic compound (Sb/Cr = 1), for 

which there is no accumulation of Sb oxide at the rutile surface", there are 

considerable intracrystalline gradients of the two elements. In other word, it is no 

longer possible to talk about random distribution of the two elements inside the rutile 

lattice, but of the preferential segregation of Sb towards the external/surface part of 

rutile crystallites (with predominance of Sb-O-Sb bonds), and of preferential 

segregation of Cr in the more internal part of rutile crystallites. The possible 

predominance of Cr-O-Cr bonds might also explain why sometimes we recorded the 

preferential segregation of chromia, during recording of Raman spectra with high-

energy laser (spectra not reported) 
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3.2 Catalytic results 

3.2.1 Cr1Sbxcpw - Propene ammoxidation 

Ammoxidation of propene is carried out in a quartz reactor at the following 

temperatures: 410, 420, 430, 440, 460°C. Feed composition is approximately propene 

7%, oxygen 17% and ammonia 10%. A total flow of about 45mL/min crosses 1mL of 

catalyst placed in the isotherm part of a tubular oven so that the contact time is about 

1,3s. 
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Fig. 3.16Conversion of propene (top left), oxygen (top right) and ammonia (bottom) 

on catalysts Cr1Sb1cpw (Sb/Cr 1.15), Cr1Sb1.5cpw (Sb/Cr 1.56), Cr1Sb2cpw (Sb/Cr 

2.10), Cr1Sb2.51cpw (Sb/Cr 2.70) and Cr1Sb3cpw (Sb/Cr 3.50) 

Conversions of propene, oxygen and ammonia, as showed in Fig.3.16, arise along 

with temperature and never overstep 50%. In each reagent, the activity rises with the 
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increases of the antimony content. Samples with Sb/Cr ratio higher than 2,0 show a 

lower conversion of reagents, with a grater effect on oxygen. The other samples (Sb/Cr 

= 1.15, 1.56 and 2.10) show similar values in every picture, so that it is difficult to 

observe a trend in conversion properties along with Sb/Cr ratio. 

In Fig.3.17, performances on ACN production are shown. The catalysts less active 

in conversion of the hydrocarbon exhibit the best efficiency in ACN formation. In 

samples with low Sb/Cr ratio (1,15 and 1.56), the selectivity drops linearly with the 

conversion increase. In catalysts with Sb/Cr ratio upper to 2, the selectivity trend is 

with maximum; in Cr1Sb2.5cpw and Cr1Sb3cpw samples the selectivity is much the 

same in all the conversion range (70 – 75%). This way ACN yield increases linearly 

with the conversion rise in high Sb samples (double in 50°C temperature gap, 12-22% 

in Sb/Cr=2,10 ca. 7-15% in Sb/Cr in 2.70 and 3.50) and it is much the same in others 

(ca. 13%). 
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Fig. 3.17 Selectivity in ACN plotted on conversion of propene for catalysts Cr1Sb1cpw 

(Sb/Cr 1.15), Cr1Sb1.5cpw (Sb/Cr 1.56), Cr1Sb2cpw (Sb/Cr 2.10), Cr1Sb2.51cpw (Sb/Cr 

2.70) and Cr1Sb3cpw (Sb/Cr 3.50). Scale on y-axis is in the range of 40-80% to evidence 

the difference. 
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In Fig.3.18 are shown selectivities in Carbon oxides (CO2, CO), Hydrogen cyanide 

(HCN), Acrolein (ACR), Acetonitrile (AcCN) and ACN of catalysts Cr1Sb1cpw 

(Sb/Cr 1.15), Cr1Sb2cpw (Sb/Cr 2.10) and Cr1Sb3cpw (Sb/Cr 3.5). Sample 

Cr1Sb1.5cpw (Sb/Cr 1.56) is omitted because it is in between the first two, while 

Cr1Sb2.5cpw (Sb/Cr 2.7) is left out because it is equal to the latter sample.  

Looking at the general trends of the products selectivity, it is clear that at low 

temperature the catalysts behave similarly. Increasing the amount of antimony in the 

structure, at 410°C, selectivity in ACN arises from ca. 60% to ca. 80% while CO2, 

HCN and AcCN are the main coproducts. CO and ACR are not produced (less than 

2% in selectivity). Upon 430°C, differences in reactivity are pointed out; the 

temperature favours the products of total oxidation, CO2, CO and HCN, which have 

much the same values and consequently the production of ACN is pulled down. 

Numerically, the arise in carbon dioxide corresponds to the drop of ACN. The 

oxidation properties given to the solid systems by chromium are clear at high 

temperatures, especially considering the higher conversion of propene. The 

mechanism on which lays this behaviour may be explained with the site isolation 

theory; antimony works as a chromium thinner and sets up the oxidation power of the 

system. 
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Fig. 3.18 Selectivities in CO2, CO, HCN, ACR, AcCN (left y-axis) and in ACN (right 

y-axis), for catalysts with Sb/Cr ratio 1.15 (up), 2.10 (middle) and 3.50 (bottom).  
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3.2.2 Cr1Sbxcpw - Propane ammoxidation 

Ammoxidation of propane is carried out in a quartz reactor, at the following 

temperatures: 420, 450, 480, 510, 540°C. Feed composition is approximately propane 

7%, oxygen 17% and ammonia 10%. A total flow of about 45mL/min crosses 1mL of 

catalyst placed in the isotherm part of a tubular oven so that the contact time is about 

1,3s. 

Propane ammoxidation, compared to propene, shows a lower catalysts activity, so 

that it is necessary to perform the reaction at higher temperatures in order to reach a 

considerable conversion of the hydrocarbon. However, the activity is very low, in fact 

in propene conversions at 410 – 460°C are 10 – 35%, while in propane conversions at 

420 – 540°C are 0 – 20%. 

In Fig.3.19 conversion and selectivity data are shown: conversion of the alkane rises 

linearly with temperature, but it never oversteps 20%. An increase in the temperature 

upon 540°C is unproductive because of the increase of selectivity in over-oxidation 

products with the consequent decrease in high value products (ACN, AcCN and 

Propene).  

As in propene ammoxidation, activity is higher in samples with low antimony 

amount, so it is possible to state that higher relative amount of chromium boosts the 

alkane activation and the related oxidative dehydrogenation. 

Selectivity in carbon oxides, not reported, is double compared to the one in alkene 

reaction (20-50%), because of the higher temperatures needed to activate the alkane. 

Selectivity in ACN does not differ much in this set, but the trend followed in activation 

is clear (better performance with low antimony in structure); an increase in Sb/Cr ratio 

leads to an increase in propene formation.  

The highest Sb sample is the most selective in propene, so it is presumable that high 

amounts of alkene are well converted to ACN by the most selective catalyst in propene 

ammoxidation; especially if we accept the theory of propene intermediate in propane 

ammoxidation. 

The data in Fig.3.19 show the opposite situation: catalysts more active in ACN 

formation from alkene are selective in propene, but not efficient in conversion to 
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ACN. This means that the ACN formation does not occur via propene desorption, but 

directly on adsorbed dehydrogenated/activated propane. 
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Fig. 3.19 Conversion of propene and selectivity in ACN and propene in alkane 

ammoxidation tested on samples Cr1Sb1cpw (Sb/Cr 1.15), Cr1Sb2cpw (Sb/Cr 2.10) and 

Cr1Sb3cpw (Sb/Cr 3.50). 

Propane undergoes activation and dehydrogenation operated by Cr3+. The 

dehydrogenation continues to form allylic intermediate, which is subjected to nitrogen 

insertion. The H-abstraction, needed to the allylic complex formation, is made by a 

trivalent cation. 

Equimolar catalyst consists of Cr3+ and Sb5+ while catalysts with higher amount of 

antimony consist of Cr3+, Sb3+ and Sb5+. In conclusion, the activated hydrocarbon 

placed on a Cr3+ may undergo to oxidation on Sb3+ or Cr3+; it seems that Cr3+ is more 
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active than Sb3+ in allyl-formation starting from the activated propane (adsorbed 

propene): Cr-O-Cr group is necessary so antimony excess does not increase selectivity 

like in propene ammoxidation. 

Selectivity in HCN from propane and from propene is much the same in samples 

Sb/Cr 2.10 and 3.50, while it is double in alkane if compared to alkene in equimolar 

catalyst. It means that probably the ammoxidation does not occur exclusively via 

adsorbed intermediate, but mainly via propene desorption. The mechanism is 

competitive and the first is more efficient in nitriles formation (also AcCN follows this 

trend). 
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3.2.3 Ga1Sbxcp – Propene ammoxidation 

Ammoxidation of propene is carried out in a quartz reactor at the following 

temperatures: 410, 420, 430, 440, 460°C. Feed composition is approximately propene 

7%, oxygen 17% and ammonia 10%. A total flow of about 45mL/min crosses 1mL of 

catalyst placed in the isotherm part of a tubular oven so that the contact time is about 

1,3s. 
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Fig. 3.20 Conversion of propene (top left), oxygen (top right) and ammonia (bottom) 

in Ga1Sbxcp samples. 

In Fig.3.20, conversions of propene, oxygen and ammonia are shown. The 

activation properties of the catalysts on hydrocarbon do not differ very much; the 

values recorded at different temperatures diverge of about 5%. The increase of Sb 

amount (from 1 to 3 times the amount of Ga) leads to halve the oxygen consumption 
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and to double the ammonia one. It means that Ga is very operative in oxygen 

activation and that the site isolation made by antimony is indeed necessary to slow 

down the oxidation. In the same way, Ga/Sb ratio affects the ammonia activation: an 

excess of antimony leads to better performances. 

As shown in Fig.3.21, the excessive oxygen activation on Ga1Sb1 leads to high 

carbon oxides production, mainly dioxide, near to 80%. At the same time, very low 

consumption of oxygen showed by Ga1Sb3 does not mean a low productivity (propene 

conversion is almost the same), but a good performance in ACN (ca. 80%). Secondary 

products are HCN (5-15%) and AcCN (ca.5%). Negligible amounts of acrolein are 

detected. 
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Fig. 3.21 Selectivity in ACN (left) and COx (right) along with reaction temperature of 

Ga1Sbxcp samples. 
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3.2.4 Ga1Sbxcp – Propane ammoxidation 

Ammoxidation of propane is carried out in a quartz reactor, at the temperatures in 

the 400 – 500°C range. Feed composition is approximately propane 20%, 0xygen 20% 

and ammonia 10%. A total flow of about 45mL/min crosses 1mL of catalyst placed in 

the isotherm part of a tubular oven so that the contact time is about 1,3s. 
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Fig. 3.22 Conversion of propane (top left) selectivity in ACN (top right) and selectivity 

in COx (bottom) in Ga1Sbxcp samples. 

As shown in Fig.3.22, in gallium antimonate, an increase in the antimony amount 

leads to a decrease in the hydrocarbon activity. The conversion of propane never 

oversteps 15% and Ga1Sb3 sample is double than the Ga1Sb1 one in all range 

temperatures. In the same way, oxygen conversion is higher at low Ga/Sb ratio. The 

strong oxygen consumption leads to high carbon oxides production and causes a 

worsening in ACN yield. The selectivity in ACN shows a trend with maximum, placed 

around 490°C, which reaches values around 50% in Ga1Sb3cp, 35% in Ga1Sb2cp and 
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20% in Ga1Sb1cp; upon 490°C overoxidation prevails on ammoxidation while below 

490°C HCN is a bit favoured and gains about 10% on ACN (5 – 20%). Selectivity in 

propene holds under 10% in every sample and remainder to 100% are practically only 

carbon oxides.  
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3.2.5 Cr1Sbxasl – propene ammoxidation 

Ammoxidation of propene is carried out in a quartz reactor, at the following 

temperatures: 410, 420, 430, 440, 460°C. Feed composition is approximately propene 

7%, oxygen 17% and ammonia 10%. A total flow of about 45mL/min crosses 1mL of 

catalyst placed in the isotherm part of a tubular oven so that the contact time is about 

1,3s. 
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Fig. 3.23 Conversion of propene (top left), oxygen (top right) and ammonia (bottom) 

of Cr1Sbxasl sample. 

In Fig.3.23 conversion of propene, oxygen and ammonia are shown. Conversions of 

reagents rise as well as temperature increasing in each sample, except for catalysts 

with Sb/Cr ratio equal to 3, in which complete oxygen conversion is reached at low 

temperature and further consumption of hydrocarbon and ammonia can not proceed. 

The reason can be ascribed to the presence of Cr2O3 (a strong oxidation catalyst). 
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As already seen in other samples, conversion performances increase linearly with 

the Cr/Sb ratio with a clear gap between samples near stoichiometry (Sb/Cr = 1 or 1,5) 

and samples in clear excess of antimony. 

In Fig.3.24, selectivities in ACN and conversions are reported. It is clear the low 

performances of catalysts with low antimony amount, in which selectivity deficit to 

100% is CO (ca. 10%) and CO2. Samples with high ACN selectivity (Sb/Cr 1, 1.5 and 

2) produce also HCN (ca. 10%), CO (less than 10%) and CO2; negligible amount of 

ACR and AcCN are detected. Good selectivity is reached at conversions lower than 

30%, but conversions higher than 50% are not allowed because of the oxygen 

depletion. 
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Fig. 3.24 Performances in propene conversion and ACN selectivity of Cr1Sbxasl. 
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3.2.6 Cr1Sb2xosl – propene ammoxidation 

Ammoxidation of propene is carried out in a quartz reactor, at the following 

temperatures: 410, 420, 430, 440, 460°C. Feed composition is approximately propene 

7%, oxygen 17% and ammonia 10%. A total flow of about 45mL/min crosses 1mL of 

catalyst placed in the isotherm part of a tubular oven so that the contact time is about 

1,3s. 
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Fig. 3.25 Conversion of Propene (top left), oxygen (top right) and ammonia (bottom) 

of Cr1Sb2aosl (62% rutile) , Cr1Sb2dosl (81% rutile), Cr1Sb2fosl (89% rutile), 

Cr1Sb2gosl (91% rutile).  

Samples are showed in Fig.3.25 and labelled by rutile amount, as detected by XRD 

analysis, expressed in percentage units. Sample Cr1Sb2aosl, containing 62% of rutile 

and 38% of Sb2O4 is quite an inefficient catalyst in propane ammoxidation, in so far it 
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is very active in oxygen conversion and very selective in carbon oxides (Fig.3.25). 

This sample reaches a propene conversion of about 32% and can not go beyond 

because of the lack of oxygen (completely converted) . Sample Cr1Sb2dosl is the more 

active in propene conversion and it is also very efficient in oxygen activation; in 

Fig.3.26 selectivities in ACN and carbon oxides are reported and the tendency of this 

catalyst to burn the hydrocarbon to COx, especially CO2, is very clear.  

Samples with the higher amount of rutile in the structure (Cr1Sb2fosl and 

Cr1Sb2gosl) have shown similar conversion performances and the catalyst with 89% 

of rutile gives the best performance in ACN selectivity. This set of catalysts shows a 

trend with maximum and allows claiming that an excess of Sb2O4 effectively leads to a 

better performance in ACN synthesis. However, a large amount of antimony oxides 

makes the system unselective in nitriles formation. 

In all these samples the selectivity in HCN is surprisingly low, as in AcCN and 

ACR. 
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Fig. 3.26 Selectivity in ACN and carbon oxides of Cr1Sb2aosl (62% rutile) , 

Cr1Sb2dosl (81% rutile), Cr1Sb2fosl (89% rutile), Cr1Sb2gosl (91% rutile). 
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3.3 Catalysts comparation 

As already seen above, in propene ammoxidation gallium antimonate reaches higher 

conversion than chromium antimonate (10% higher in propene and ammonia and 20% 

higher in oxygen). In fig.3.27 selectivities in ACN and COx data for Cr1Sbxcp and 

Ga1Sbxcp catalysts are compared. Low antimony systems show big differences, 

mainly due to the relevance of the trivalent cation properties: chromium and gallium 

are added to the structure as oxidant compounds and, when their amount is high, this 

character is very pronounced. Ga is a strong oxidant, more than Cr, and this is clearly 

visible in COx selectivity. Along with the increase in the antimony amount, Ga needs 

more dilution than Cr in order to constraint oxidation features. High antimony systems 

show very similar performances, so X1Sb3cp catalyst reaches the same selectivities in 

ACN and in COx. This reflects the importance of the structure and the role of 

antimony in nitrogen insertion.  

An increase of the amount of antimony, starting from the equimolar structure of a 

catalyst, leads to better performances in ACN selectivity, hence lower Carbon oxides 

formation. Sb/X = 3 is the ratio limit at which COx selectivity stops decreasing and 

reaches the unbreakable limit of 10%. 
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Fig. 3.27 Selectivity data of Cr1Sbxcpw catalysts (top) and Ga1Sbxcp catalysts 

(bottom) 

In Fig.3.28 are shown the data of chromium and gallium antimonates catalysts 

along with the most popular Vanadium antimonate, with molar ratio equal to 1/1, 1/2 

and 1/3. Vanadium antimonate tests have been performed at the following conditions: 

O2 20%, NH3 9,5%, propane 25,5% and temperature from 350°C to 500°C. Data are 

sorted primary in the hosted cations and secondary in the antimony amount. 

Conversions at 420°C and 480°C are represented with thick black lines and the best 

selectivities in ACN (always attained around 480°C) are shown with black balls. 

Propane conversions in Ga1SbX and Cr1Sbx are almost the same, about half the 

V1Sbx ones. In the same cationic class of samples, activity falls along with antimony 

increase, especially at high temperatures, and it seems that heat works better on 

catalysts with great oxidant cation amount.  
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Fig. 3.28 Performances of chromium, gallium and vanadium antimonate sorted by 

hosted cation. In each group of catalysts antimony amount increases from 1 to 3 along 

with y-axis. Conversions of propane at 420°C and 480°C are showed with thick black 

lines and the best selectivities in ACN reached in the whole temperature range are 

represented with black balls linked by thin lines. 

The best selectivity (55%) is reached in Ga1Sb3 sample, while the other catalysts 

are around 30%. Focusing on the cationic groups in Cr and V systems there are not 

many differences in performances as the antimony amount changes, while in Ga1Sbx 

sample the antimony variance leads to an increase of 3 times in ACN selectivity (from 

ca. 20 to ca.60%). 

As shown in Tab.3.3, reagents conversion arises along with the temperature 

increase. Generally speaking, a decrease of antimony in the structure leads to a higher 

conversion of oxygen and hydrocarbon; this observation can not be applied to the 

vanadium samples because of the particular conditions created by the whole or quasi-

whole oxygen consumption. The ammonia conversion does not show many 

differences.  

Some values require paying particular attention: 
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• The remarkable change in ACN selectivity, observed in Fig.3.21 in gallium 

group, is linked with the high selectivity in COx of the equimolar sample, 

noticed also at low temperatures. Moreover, the oxygen conversion is quite 

lower than the vanadium catalysts one. Ga in large excess is very effective in 

oxygen activation and, even though the hydrocarbon activated is not much, 

yield in carbon oxides is high. The oxidation mechanism removes the 

substrate from ammoxidation, so that ACN production is low. The site 

isolation operated by antimony reduces the oxidation tendency and increases 

the selectivity in nitrogenated molecules. This effect is clear comparing the 

data collected at 420°C are because, while selectivity in Cr and V systems 

ACN is much the same, in Ga systems it is higher. 

• The fact that Ga samples show low selectivity in propene at low temperature 

is a further indication that the oxygen activated leads to overoxidation of 

activated alkane. 

• Poor oxygen concentration on V1Sb3 environment, due to its high 

conversion, makes the Carbon oxides production unfavoured, as it is 

particularly evident in COx selectivity. 

420°C 1 1 11 14 6 3

480°C 9 3 22 20 12 5
420°C 6 1 40 67 23 6

480°C 20 10 90 100 60 23
420°C 10 8 43 52 14 12

480°C 31 23 60 58 20 27
420°C 25 20 25 25 5 38

480°C 38 31 31 30 18 55
420°C 11 18 15 10 6 8

480°C 5 11 10 8 6 8
420°C 14 39 30 21 50 10

480°C 39 42 46 15 60 30
420°C 28 15 18 38 8 10

480°C 16 11 11 46 7 14HCN
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Tab. 3.3 Performances of Chromium, Gallium and Vanadium antimonates are 

reported: conversions of propane, oxygen and ammonia along with selectivities in 

Acrylonitrile, propene, carbon oxides and hydrocyanic acid in catalysts with equimolars 

and large excess of antimony. 
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To make it simpler the analysis of data, only samples with cation to antimony ratio 

equal to 1 and 3 have been showed in Tab.3.3. Observing all the catalytic data on 

propane which we have at our disposal, along with characterizations described in 

chap.3.1.1, it is possible to notice that: 

• Cr systems are structurally and catalytically coherent because samples are 

monophasic and catalytic properties change linearly in the whole Sb/Cr ratio 

range. The antimony increase leads to: 

o Decrease in activity. 

o Increase in Carbon oxides. 

o Similarity or slight decrease in N-containing products. 

• Ga systems show bad structural properties, in fact rutile crystals is small and, 

upon Sb/Ga = 2, antimony can not be incorporated and forms Sb6O13 domes. 

Data clearly show some changes passing from monophasic (Ga1Sb1 and 

Ga1Sb2) to biphasic (Ga1Sb3) lattice:  

o Carbon oxides halves (Ga1Sb1-Ga1Sb2-Ga1Sb3 = COx selectivity 

50-55-10 at 420°C and 60-59-30 at 480°C). 

o ACN selectivity increases from 3 to 8 times (Ga1Sb1-Ga1Sb2-

Ga1Sb3 = ACN selectivity 50-55-10% at 420°C and 18-33-55% at 

480°C). 

• V systems exhibit very high crystallinity, but they do not accept excess of 

antimony, in fact Sb2O4 is clearly visible and well crystallized starting from 

V1Sb2. Catalytic changes visibly happen: 

o Carbon oxides decrease considerably (V1Sb1-V1Sb2-V1Sb3 = COx 

selectivity 30-20-21% at 420°C and 46-10-15% at 480°C). 

o HCN increase more than double (V1Sb1-V1Sb2-V1Sb3 = HCN 

selectivity 18-43-38% at 420°C and 11-56-46% at 480°C). 
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o Oxygen conversion rises along with the antimony increase while the 

other reagents decrease everywhere but in VSb systems. 

• The decrease in COx selectivity noticed along with Sb2O4 and Sb6O13, may 

be seen from another point of view: monophasic rutile leads to Carbon 

oxides formation. In particular, as shown in Tab.3.4, rutile leads to a higher 

CO2 formation compared to CO: 

Cr1Sb1 Cr1Sb2 Cr1Sb3 V1Sb1 V1Sb2 V1Sb3 Ga1Sb1 Ga1Sb2 Ga1Sb3
Rutile Rutile Rutile Rutile Rutile Rutile Rutile Rutile Rutile

α-Sb2O4 α-Sb2O4 Sb6O13

COx 39 43 42 46 10 15 60 59 30

CO2/CO 10 10 6 3 3,5 3 14 18 5

Phases

 

Tab. 3.4 Carbon oxides selectivities and oxide/monoxide ratio related to the phases 

observed by means of XRD in Cr, V and Ga coprecipitated catalysts. All data refer to 

propane ammoxidation at 480°C. 

To sum up: 

• Sb2O4 comparison is related to higher HCN formation and higher O2 

consumption 

• Sb6O13 comparison is related to higher ACN formation 

• Rutile structure XSbO4 is related to higher carbon oxides formation, 

especially CO2. 
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3.4 Starting materials 

As described in the previous chapters, different synthesis methods and different 

starting materials are used in order to obtain rutile-type structure. In particular, CrSbO4 

structure may be obtained starting from Sb(III) and Sb(V). 

In order to check the influence of the starting materials on the final characteristics, 

catalysts have been synthesized by means of the coprecipitation method starting from 

SbCl3 and SbCl5 as antimony source; catalytic properties are tested in propane 

(Fig.3.1) and propene ammoxidation. No differences were pointed out, so that it is 

possible to state that the starting materials do not affect the rutile formation, as 

supported by Raman spectra. 
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Fig. 3.29 Conversion of propane and selectivity in acrylonitrile of catalysts AF04 

(circle) and AF05 (square), made respectively starting from SbCl5 and SbCl3 with the 

same antimony and chromium amount (Sb/Cr = 2,70). 

Other antimony sources have been tested with the coprecipitation method and no 

evidence of differences in catalytic performances has been carried out.  
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4 CONCLUSIONS 

The production of acrylonitrile is one of the most important reactions in the 

petrochemical manufacture and it is also so prolific that little developments in the 

processes and in the catalysts lead to big economical aftermath.  

Nowadays acrylonitrile is produced with very good efficiency starting from 

propene, but one of the bigger issue is the development of systems which are able to 

convert propane selectively.  

Rutile-type catalysts are effective systems in the ammoxidation of alkane and 

alkene to the relative nitrile but, except for vanadium antimonates, structural studies 

about these systems are not extensive. Vanadium is a very active component in 

hydrocarbon activation and it is useful to allow a good alkane conversion, but it yields 

too many carbon oxides. Chromium and gallium are elements with oxidant features, 

less active than vanadium  which are able to form rutile-type structures with antimony. 

Different preparation methods of rutile structures are present in literature and 

different raw materials may be used with this aim; each synthesis gives to the solid 

system different properties and the obtained catalysts behave differently into the 

reaction mechanism. One of the main catalyst features is the number and the kind of 

the formed phases along with rutile-type structures, especially if an excess of antimony 

is introduced in the system. 

In this work we have studied chromium and gallium antimonate obtained with 

coprecipitation method starting from antimony chlorides and slurry method starting 

from antimony oxide and antimony acetate. The hosted cations are added as soluble 

salt in each case. 

By means of chemical and physical analyses we found out that: 

• Each Cation leads to the formation of rutile crystallites with different 

dimensions, hence different phase qualities. 

• Each cation behaves differently with an excess of antimony and leads to the 

segregation of different antimony oxides. 
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• The method of preparation as well as the raw materials used lead to the 

formation of different solid systems, mainly as far as the quality of the 

crystals is concerned. This is probably due to the intimate contact within the 

reactants in the catalysts syntheses. 

• Solid state reaction is not a suitable method of preparation for chromium 

antimonates, contrary to vanadium systems. 

• The insertion of an excess of antimony leads to: 

o The formation of a monophasic sample in chromium antimonates 

(which points out that the lattice is very elastic). 

o The segregation of Sb6O13 in gallium antimonates (very active in 

ACN selectivity). 

o The segregation of Sb2O4 in vanadium antimonates, also at a very low 

excess of antimony (very active on carbon oxides and hydrocyanic 

acid yields) 

• Bulk and surface compositions are not equals in each cation/Sb ratio. Surface 

enrichments in antimony let us understand that the segregation of antimony 

oxides in the surface of the catalysts is due to the tendency of antimony to 

form Sb–O–Sb bonds. 

All the catalysts synthesized have been tested in propane and propene 

ammoxidation and they proved themselves to be active and selective in formation of 

acrylonitrile. In propene ammoxidation, an excess of antimony in Cr and Ga systems is 

needed to limit the oxidant features of the hosted cations. Selectivities of about 80% 

have been reached along with conversions up to 50%. In propene ammoxidation the 

activation of the alkane is the limiting step, so that conversions never overstep 20%; 

nevertheless, selectivities of about 40% are reached along with high production of 

carbon oxides due to the high temperature needed in alkane transformation. 

From the catalysts comparison it is clear that an excess of antimony oxides on the 

surface allows reaching better performances and gallium antimonate with a Ga/Sb 
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composition of 1/3 is the best catalyst in each ammoxidation reaction. The presence of 

a small amount of Sb6O13 is preferable to the presence of the antimony tetroxide. 

The formation of a good rutile crystal lattice does not lead to having better 

performances: the rutile structure is needed to operate good site isolation on the 

oxidant compound (which activates the substrate) and it allows, at the same time, the 

presence of Sb-O-Sb species (active in N-insertion). These features prescind from the 

phases, so that monophasic chromium antimonates are active systems and do not differ 

much from gallium antimonates; the monophasic lattice simply does not allow big 

domes of Sb-O-Sb sites. 

Data point out that probably the mechanism of propane ammoxidation occurs in 

adsorbed conditions and that a whole propene molecula desorbed from the systems and 

readsorbed to perform a “propane ammoxidation” is not so commonly found.  
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