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INTRODUCTION AND PROBLEM DEFINITION
______________________________________________________________________________________________________________________________________________________________

Especially in the last 50 years of industrial development, the amount and 

variety of hazardous substances has drastically increased. It is estimated that the 

human-made chemicals presently in use amount to 100.000, and hundreds of new 

ones are produced every year. Due to the increase in industrial and agricultural 

activities and exports of wastes, not only the traditional industrialized countries, 

but  all  nations  are  confronted  with  widespread  soil  pollution.  A  significant 

number of synthetic compounds persist in the environment, particularly those with 

no relation to natural ones.

Essentially, there are three major categories of sites with polluted soils: (a) 

sites  that  have  been  polluted  by  either  spillage  or  leakage  during  production, 

handling  or  use  of  industrial  material  (including  mining  and  oil  drilling);  (b) 

locations that have been used as disposal sites for diverse waste; (c) farmlands 

that have been excessively exposed to pesticides.

Contaminated land  sites  are  seriously  dangerous  for  human beings  and 

therefore  unsuitable  for  housing  or  agriculture.  The  downward  migration  of 

pollutants  from  the  soil  into  the  groundwater  is  especially  problematic  in 

developing  countries,  where  groundwater  is  often  directly  drunk,  without  any 

prior treatment.

The  halocarbons,  both  halogenated  compounds  and  solvents,  are 

widespread  air,  water,  soil,  and  sediment  pollutants;  they  are  recalcitrant 

molecules resistant to mineralization due to the stability of their carbon-halogen 

bond. The stability and chemical inertness of many halogenated compounds is 

part  of  their  appeal  in  many  industrial  processes,  but  it  also  makes  their 

degradation extremely slow.

Halogenated  compounds  have  been  used  for  a  variety  of  purposes  for 

hundreds of different industrial processes over the last 50 years, although they are 

dangerous for human health and include known toxins and potential carcinogens 
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as dioxins, pesticides and PCBs. One prevalent example of a halogenated organic 

compound  is  the  widely  used  pesticide  DDT,  which  has  been  shown  to 

bioaccumulate  in  animal  fat  tissue,  disrupt  hormone  function,  and  damage 

ecosystems.  PCBs,  polychlorinated  biphenyls,  are  another  type  of  halogenated 

organic compound widely used for industrial applications as coolants, lubricants, 

plasticizers, and dies. PCBs are toxic chemicals and their carcinogenicity has been 

shown through laboratory studies. PCBs may also adversely affect human health 

by contributing to neurological, immune system, reproductive system, and other 

organs damage.

Among  halogenated  compounds,  chlorinated  solvents  and  their  natural 

transformation products are prevalent ground water organic contaminants in the 

U.S. These solvents, consisting primarily of chlorinated aliphatic hydrocarbons 

(CAHs), have been widely used in factory processing as fumigants, pesticides, 

degreasing  agents  and  solvents.  They  may  pollute  the  environment  through 

accidental spills and leaks or illegal dumping. Their relative solubility in water 

and their  poor  sorption,  causes them to migrate  downward through soils,  thus 

contaminating groundwater. Many CAHs and their transformation products are 

defined  as  possible  human  carcinogens  by  the  United  States  Environmental 

Protection Agency (U.S. EPA).

A major problem with halogenated compounds is  that they belong to a 

class  of  molecules  known  as  persistant  organic  pollutants,  which  tend  to 

biodegrade  very  slowly.  It  was  originally  thought  that  there  were  no  natural 

sources of halogenated compounds in the environment, hence no organisms had 

evolved to exploit  them. On the contrary, it  has recently been shown that this 

assumption was uncorrect (organisms as well as volcanic eruptions can produce 

these  compounds),  and  that  natural  production  of  chlorinated  phenols  may 

actually be greater than anthropogenic sources. Since these compounds have in 

fact existed for millions of years, there are naturally occurring strains of bacteria 

which have evolved to break down halogenated compounds, thus opening up the 

possibility for bioremediation treatment of contaminated sites.
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Bioremediation principles

Biological  cleaning  procedures  make use  of  the  fact  that  most  organic 

chemicals are subject to enzymatic attack by living organisms. These activities are 

summarized under the term biodegradation. However, the end products of these 

enzymatic processes might differ drastically. For instance, an organic substance 

might be mineralized (i.e. transformed to carbon dioxide and water), but it might 

also be converted to a product that binds to natural materials in the soil, or to a 

toxic substance. 

Bioremediation refers to the productive use of micro-organisms to remove 

or  detoxify pollutants  contaminating  soils,  water  or  sediments  and  threatening 

public  health.  Bioremediation is  not  new:  micro-organisms have  been used  to 

remove organic  matter  and  toxic  chemicals  from domestic  and  manufacturing 

waste discharge for many years. Indeed, micro-organisms are frequently the only 

means, biological or non-biological, to convert synthetic chemicals into inorganic 

compounds. What is new is the emergence of bioremediation as an industry that is 

driven  by  its  particular  usefulness  for  sites  contaminated  with  petroleum 

hydrocarbons.

Over the past decade, opportunities for applying bioremediation to a much 

broader  set  of  contaminants  have  been  identified.  Indigenous  and  enhanced 

organisms  have  been  shown  to  degrade  industrial  solvents,  polychlorinated 

biphenyls (PCBs),  explosives, and many different agricultural chemicals. Pilot, 

demonstration, and full-scale applications of bioremediation have been carried out 

on  a  limited  basis.  Equally  importantly,  microorganisms  that  transform  and 

sequester heavy metals and radionuclides have been identified and employed, to a 

limited  extent,  for  in  situ  bioremediation.  However,  the  full  benefits  of 

bioremediation have not been realized, because processes and organisms effective 

in  controlled  laboratory  tests  are  not  always  equally  effective  in  full-scale 

applications. The failure to perform optimally in the field setting stems from a 

lack of predictability due, in part, to inadequacies in the fundamental scientific 

understanding of how and why these bioremediation processes work.

3
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Content and objectives

Chlorinated  aliphatic  and  aromatic  hydrocarbons  are  among  the  most 

common contaminants of soils, groundwaters and sediments, and most of them 

are known or suspected carcinogen. Several studies showed that most of these 

pollutant  can  be  biodegraded  by  single  bacterial  strains  or  mixed  microbial 

populations via aerobic direct metabolism or cometabolism using aromatic and 

aliphatic hydrocarbons such as methane, propane, butane, phenol or toluene as 

growth  substrates.  In  general,  applications  of  in  situ bioremediation  can  be 

grouped into enhanced bioremediation and intrinsic bioremediation. In enhanced 

bioremediation  amendment  such  as  oxygen,  nutrients  or  even  exogenous 

microorganisms  (bioaugmentation)  are  provided  to  manipulate  the  microbial 

environment and facilitate biodegradation of contaminants. Conversely, intrinsic 

bioremediation  depends  on  indigenous  microflora  to  degrade  contaminants 

without any amendments, exclusively relying on natural physical, chemical, and 

biological processes to reduce or attenuate contaminant concentrations.

In this thesis, two studies have been carried out concerning different situations 

where bioremediation processes of chlorinated hydrocarbons were involved. The 

first one dealt with an enhanced bioremediation situation while the second was 

related to intrinsic bioremediation.

1) The first experimental work (enhanced bioremediation) consisted in the study 

of microbial consortia able to degrade a mixture of 6 CAHs (chlorinated 

aliphatic hydrocarbons) via aerobic cometabolism. Several aspects of the long-

term growth of these consortia were investigated. Biomass was grown in batch 

bioreactors for 150 days and, during this period, the maintenance of the ability 

to degrade the 6 CAHs mixture was tested. Furthermore the effectiveness of 

these  consortia  as  inocula  for  the  bioaugmentation  of  different  types  of 

aquifers  was  investigated.  The  reason  why  we  were  interested  in  the 

characterization  of  the  behavior  of  these  consortia  was  their  potential 

usefulness as inocula in bioaugmentation treatment (in field scale or in pilot 

scale).

2) The second study (intrinsic bioremediation) dealt with  monochlorobenzene 

biodegradation in the interface between groundwater and surface water. 

4
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It  aimed  at  investigating  the  natural  pollutant  degradation  capacity  of  the 

aquifer  zone representing this  interface.  The interface can be  considered a 

zone with changing redox conditions  characterized by specific  degradation 

potential for pollutants passing through as a result of steep physico-chemical 

gradients.  Molecular  techniques  (PCR-DGGE)  were  also  applied  to 

characterize  the  structure  of  the  microbial  community  harboured  in  the 

interface.

5



CHAPTER 1

1. VOLATILE ORGANIC COMPOUNDS
______________________________________________________________________________________________________________________________________________________________

1.1 INTRODUCTION

Within a  physico-chemical  context  volatile  organic compounds (VOCs) 

are defined as “any chemical compound based on carbon chains or rings (and also 

containing hydrogen)  with  a  vapour  pressure  greater  than 2  mm Hg at  25°C. 

These compounds may contain oxygen, nitrogen and other elements. Substances 

that  are  specifically  excluded are:  carbon dioxide,  carbon monoxide,  carbonic 

acid, carbonate salts, metallic carbides and methane” (Australian Department of 

Environment and Heritage, 2003). Within a regulatory context, USEPA provides 

this  definition  (under  the  Clean  Air  Act,  published  in  the  Code  of  Federal 

Regulation):  “any  compound  of  carbon,  excluding  carbon  monoxide,  carbon 

dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, 

which participates in atmospheric photochemical reactions”. The IUPAC naming 

convention  identifies  two classes  of  VOCs:  aliphatic  hydrocarbons,  having  an 

open chain of carbon atoms (alkanes and alkenes) and aromatic hydrocarbons, 

characterized by an alternating carbon-carbon single and double bonds arranged in 

a  ring  structure.  An  alkane  is  a  straight  chain  or  cyclic  (ring-like,  such  as 

cycloalkane) structure that consists of carbon-carbon and carbon-hydrogen single 

bonds. An alkene is typically a straight-chain structure that contains at least one 

carbon-carbon  double  bond.  These  double  bonds  impart  more  stability  to  the 

compound than the single bond in an alkane compound. A chlorinated alkane or 

alkene also contains at least one chlorine-carbon single bond while chlorinated 

aromatic compounds also contain one chlorine-carbon single bond (for example, 

chlorobenzene). Aromatic compounds are typically more resistant to degradation 

(more stable) than the alkane and alkene compounds.
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The aliphatic and the aromatic  hydrocarbons are  commonly sub grouped even 

further  based  on  the  presence  of  attached  halogen  atoms (chlorine  as  chloro, 

bromine as bromo, or fluorine as fluoro) or functional groups including, but not 

limited to, alkyl radicals. The VOC subgroups include the alkyl benzenes (such as 

methylbenzene),  chlorinated  alkanes  (such  as  1,2-dichloroethane),  chlorinated 

alkenes (such as 1,1-dichloroethene), and the chlorinated aromatics (such as 1,2-

dichlorobenzene).

Halogenated or alkylated aromatics such as chlorobenzene or toluene are more 

easily degraded than benzene in aerobic and anaerobic ground water because the 

stability of the benzene ring is reduced and the ring is weakened (Borden and 

others, 1997). Adding halides or alkyl groups to the ring structure disperses the 

electrical  charges from the carbon-carbon bonds on the ring and weakens that 

bond.

1.2 VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUNDWATER

A  relatively  large  amount  of  literature  exists  that  describes  VOCs  in 

groundwater at specific, known areas of contamination. Few documents, however, 

describe  VOC contamination in  a  regional  or  national  context.  One report  by 

Arneth and others (1989) lists the top 15 VOCs detected in ground water near 

landfills in the United States and in Germany (table 1.1). This list shows that the 

VOCs contaminating  groundwater  near  landfills  are  similar  in  both  countries. 

Most  of  these  VOCs  are  chlorinated  solvents  and  gasoline  compounds. 

Furthermore, the frequency of VOCs detected in representative studies completed 

on  national,  regional,  and  site-specific  scales  in  the  United  States  show  a 

remarkable similarity to those in table 1.1 (table 1.2; Delzer and Ivahnenko, 2003; 

Moran,  2006;  Zogorski  and  others,  2006).  Although  the  number  of  VOCs 

analysed in ground-water samples is large for national and regional studies, the 

most commonly detected compounds, primarily chlorinated solvents and gasoline 

compounds,  are  similar  to  those  at  site-specific  studies  completed  at  U.S. 

Department of Defence installations (table 1.3).

7
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The ten most commonly detected VOCs in the studies summarized in tables 1.2 

and  1.3  are  methyl  tert-butyl  ether  (MTBE),  tetrachloroethene  (PCE),  1,1,2-

trichloroethene  (TCE),  methylbenzene  (toluene),  1,1,1-trichloroethane,  (1,1,1-

TCA),  benzene,  cis-1,2-dichloroethene  (1,2-cDCE),  1,1-dichloroethane  (1,1-

DCA),  trans-1,2-dichloroethene  (1,2-tDCE),  the  dimethylbenzenes  (m-,  o-,  p-

xylenes).

Table 1.1. Volatile organic compounds ranked by those frequently detected in groundwater 
near landfills and hazardous waste dumps in the United States and the Federal Republic of 
Germany1. 

8
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Table 1.2. Volatile organic compounds detected in regional and national groundwater studies in the United States.

9
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Table 1.3. Volatile organic compounds detected in groundwater case studies at selected U.S. 
Department of Defence installations.

1.3 CHLORINATED ALIPHATIC HYDROCARBONS (CAHs)

1.3.1 Sources of CAHs

CAHs  are  manmade  organic  compounds,  typically  manufactured  from 

methane, ethane, ethene and chlorine through various processes that substitute one 

or  more  hydrogen  atoms  with  a  chlorine  atom,  or  selectively  dechlorinate 

chlorinated compounds to a less chlorinated state.

CAHs  are  typically  used  in  the  manufacturing  of  industrial,  chemical, 

electronic,  and  consumer  goods  (Smith  and others,  1988;  U.S.  Environmental 

Protection Agency,  2005b).  In  addition,  these compounds are  heavily  used as 

solvents in cleaning and degreasing products. For example, 1,1,1-TCA is used as a 

solvent  for  adhesives  and  in  metal  degreasing,  pesticides,  textile  processing, 

cutting fluids, aerosols, lubricants, cutting oil formulations, drain cleaners, shoe 

polishes, spot cleaners, printing inks, and stain repellents. Carbon tetrachloride 

10
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(CTET) was used as feedstock for the production of chlorofluorocarbon gases, 

such as dichlorodifluoromethane (F-12) and trichlorofluoromethane (F-11), which 

were used as aerosol propellants in the 1950s and 1960s (Holbrook, 1992). During 

1974, the U.S. Food and Drug Administration (FDA) banned the sale of CTET in 

any  product  used  in  the  home  and  the  USEPA  regulated  the  use  of 

chlorofluorocarbon gases as aerosols or propellants. By 2000, CTET production 

for no feedstock purposes was phased-out completely.

Chemical  manufacturing  is  the  largest  use  of  1,1-DCA  and  1,2-

dichloroethane (1,2-DCA). Both compounds serve as an intermediate during the 

manufacture of  chloroethene  (vinyl  chloride,  VC),  1,1,1-TCA,  and to  a  lesser 

extent  high-vacuum rubber.  Both DCA isomers also are  used as a  solvent  for 

plastics, oils, and fats, and in cleaning agents and degreasers (Agency for Toxic 

Substances and Disease Registry, 1990c, p. 51; 2001, p.160). About 98% of the 

1,2-DCA  produced  in  the  United  States  is  used  to  manufacture  VC.  Smaller 

amounts of 1,2-DCA are used in the synthesis of vinylidene chloride, TCE, PCE, 

aziridines,  and  ethylene  diamines,  and  in  other  chlorinated  solvents  (U.S. 

Environmental ProtectionAgency, 1995).

1,1,1-TCA  was  initially  developed  as  a  safer  solvent  to  replace  other 

chlorinated  and  flammable  solvents.  The  compound  is  used  as  a  solvent  for 

adhesives  (including  food  packaging  adhesives)  and  in  metal  degreasing, 

pesticides,  textile  processing,  cutting  fluids,  aerosols,  lubricants,  cutting 

formulations, drain cleaners, shoe polishes, spot cleaners, printing inks, and stain 

repellents, among other uses (Agency for Toxic Substances and Disease Registry, 

2004,  p.  181).  The  other  TCA isomer,  1,1,2-trichloroethane  (1,1,2-TCA),  has 

limited use as a common, general-use solvent but is used in the production of 

chlorinated rubbers (Archer, 1979). In some cases, 1,1,2-TCA may be sold for use 

in consumer products (Agency for Toxic Substances and Disease Registry, 1989, 

p.59).

Before 1979, the single largest use of chloroethane was in the production 

of tetraethyl lead. As recently as 1984, the domestic production of tetraethyl lead 

accounted for about 80 percent of the chloroethane consumed in the United States, 

whereas  about  20  percent  was  used  to  produce  ethyl  cellulose,  and  used  in 

11
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solvents,  refrigerants,  topical  anaesthetics,  and  in  the  manufacture  of  dyes, 

chemicals, and pharmaceuticals. Since the 1979 ban on tetraethyl lead in gasoline 

and its subsequent phase out in the mid-1980, the production of chloroethane in 

recent years has declined substantially in the United States (Agency for Toxic 

Substances and Disease Registry, 1998, p. 95).

Among  the  chloroethenes,  PCE  and  TCE  are  two  of  the  most 

widely used and distributed solvents in the United States and Europe. The textile 

industry uses the largest amount of PCE during the processing, finishing of raw 

and  finished  textiles,  and  for  industrial  and  consumer  dry  cleaning  (U.S. 

Environmental  Protection  Agency,  2005b,  Web  page: 

http://www.epa.gov/opptintr/chemfact/f_perchl.txt, accessed May 23, 2006). Most 

of the TCE used in the United States is for vapour degreasing of metal parts and 

some  textiles  (U.S.  Environmental  Protection  Agency,  2005b,  Web  page: 

http://www.epa.gov/OGWDW/dwh/t-voc/trichlor.html,  accessed May 23,  2006). 

Other  uses  of  PCE and TCE include  manufacturing of  pharmaceuticals,  other 

organic compounds, and electronic components, and in paint and ink formulations 

(Smith and others, 1988).

Historical  management  of  wastes  containing  CAHs  has  resulted  in 

contamination of soil and groundwater, with CAHs present at many contaminated 

groundwater sites in the United States. TCE and PCE are the most prevalent of 

those  contaminants  (U.S.  Air  Force  1998).  In  addition,  CAHs  and  their 

degradation  products,  including  dichloroethane  (DCA),  dichloroethene  (DCE), 

and vinyl chloride (VC) tend to persist in the subsurface. Table 1.4 lists the CAHs 

more commonly identified as  environmental  contaminants,  their  abbreviations, 

their  common  names,  and  the  types  of  waste  from  which  they  commonly 

originate. Figure 1.1 presents the molecular structure of those CAHs.

12
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Table 1.4. CAHs commonly identified as environmental contaminants
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Figure 1.1. Molecular structures of common CAHs

Chlorinated Ethenes

Chlorinated Ethanes

Chlorinated Methanes
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1.3.2 Physical and chemical properties

The  physical  and  chemical  properties  of  CAHs  govern  their  fate  and 

transport in the subsurface environment;  the number of chlorine atoms directly 

affects the physical and chemical behaviour of the compound: as the number of 

substituted  chlorine  atoms  increases,  molecular  weight  and  density  generally 

increases, and vapour pressure and aqueous solubility generally decreases. In table 

1.5 the major physical and chemical data for the CAHs commonly identified as 

subsurface contaminants are listed.

1.3.3 Transport processes

The extent of the contaminant spreading into the environment is affected 

by the physical and chemical properties of the compound (in particular solubility, 

volatility and density), besides the specific characteristics of the site.

A CAH released to the subsurface as a pure organic liquid (NAPL – Non 

Aqueous  Phase  Liquid)  will  reach  phase  equilibrium,  and  it  will  remain  as  a 

NAPL , adsorb to soil,  dissolve in groundwater, or volatilise to soil gas to the 

extent defined by the physical and chemical properties of the individual CAH and 

the subsurface environment. Figure 1.2 shows the mechanisms by which CAHs 

transfer phases in the attempt to reach equilibrium conditions. 
Figure 1.2. Phase equilibrium mechanisms and defining properties of CAHs
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In particular it can be observed that:

• partition  coefficient  (related  to  the  hydrophobicity  and  the  solubility) 

define the extent to which a CAH will partition between NAPL and soil, 

and NAPL adsorbed to soil and the groundwater;

• the aqueous solubility of a CAH defines the equilibrium between NAPL 

and groundwater;

• CAHs dissolved in the groundwater will partition themselves between the 

dissolved phase and the vapour phase, as defined by the Henry’s constant;

• vapour  pressure  describes  the  equilibrium  between  NAPL  or  NAPL 

adsorbed to soil and the soil gas.

Most of the CAHs are denser than water (referred to as dense non-aqueous phase 

liquids  -  DNAPLs)  and  tend  to  sink  through  both  unsaturated  and  saturated 

permeable  soils  until  they  reach  the  impermeable  layer  at  the  bottom  of  the 

aquifer.  Those  kinds  of  free  phases  are  located  in  the  deepest  layers  and  are 

therefore extremely difficult to identify and locate, thus making both biological 

and  physico-chemical  remediation  more  difficult.  Moreover  the  dense  non-

aqueous  phase  (NAPL  o  DNAPL)  acts  as  a  local  polluting  source  gradually 

releasing the contaminant in the aquifer. The contaminant concentrations observed 

next to NAPL (next to water solubility) could then be toxic for microorganisms, 

thus making a biological intervention more difficult or even impossible.

In  addition  to  transferring  phases  in  an  attempt  to  reach  equilibrium 

conditions, CAHs can migrate in the subsurface in their non-aqueous, aqueous and 

vapour  phase  by  both  active  and  passive  processes.  In  active  processes  such 

advection and dispersion , CAHs migrate along with the flow of the groundwater 

or soil gas to which they are partitioned. Passive processes, such as diffusion, are 

the result  of  concentration gradients,  which cause the CAH to seek phase and 

concentration equilibrium with its surrounding environment. Typically, releases of 

CAH to the groundwater result in the formation of a plume and advection is one of 

the most important processes affecting the transport of the contaminants.
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Table 1.5. Chemical and physical properties of CAHs.
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1.3.4 Transformation of CAHs

In the natural environment CAHs may undergo chemical and biological 

transformations.  The chlorinated alkanes can be degraded by  abiotic processes 

through hydrolysis or dehydrohalogenation (with no external transfer of electrons) 

or  by  biotic  processes through  reductive  dechlorination  or  (direct  and 

cometabolic)  aerobic  oxidation;  (oxidation-reduction  reactions,  requiring  an 

external  transfer  of  electrons).  These degradation processes can proceed under 

either aerobic or anaerobic conditions (Vogel and McCarty, 1987a; Vogel, 1994). 

According to McCarty (1997), 1,1,1-TCA is the only chlorinated compound that 

can be degraded in groundwater within 20 years under all likely groundwater or 

aquifer conditions. Oxidation-reduction reactions are the dominant mechanisms 

driving  VOC  degradation  and  most  of  these  reactions  are  catalyzed  by 

microorganisms  (Wiedemeier  and  others,  1998;  Azadpour-Keeley  and  others, 

1999). Substitution reactions that can remove chlorine atoms, such as hydrolysis, 

can degrade some chlorinated alkanes (trichloroethane) to nonchlorinated alkanes 

(ethane) with or without a microbial population catalyzing the reaction (Vogel and 

others, 1987; Olaniran and others, 2004).

While aerobic oxidation and anaerobic reductive dechlorination can occur 

naturally under proper conditions, enhancements such as the addition of electron 

donors, electron acceptors, or nutrients help to provide the proper conditions for 

aerobic  oxidation  or  anaerobic  reductive  dechlorination  to  occur.  In  general, 

highly chlorinated  CAHs degrade primarily  through reductive reactions,  while 

less  chlorinated  compounds  degrade  primarily  through  oxidation  (Vogel  and 

others  1987b).  Highly chlorinated CAHs are  reduced relatively easily  because 

their  carbon  atoms  are  highly  oxidized.  During  direct  reactions,  the 

microorganism  causing  the  reaction  gains  energy  or  grows  as  the  CAH  is 

degraded  or  oxidized.  During  cometabolic  reactions,  the  CAH degradation  or 

oxidation  is  caused  by  an  enzyme  or  cofactor  produced  during  microbial 

metabolism of another compound. CAH degradation or oxidation does not yield 

any energy or growth benefit for the microorganism mediating the cometabolic 

reaction. The degradation mechanisms that typically occur in the degradation of 
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each  CAH  are  summarized  in  table1.6  while  table  1.7  shows  biological 

degradation mechanisms.

19
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Table 1.7. Chemical and physical properties of CAHs.

1.3.4.1 Abiotic degradation processes

The abiotic processes occurring most frequently under either aerobic or anaerobic 

conditions  are  hydrolysis  and  dehydrohalogenation.  Abiotic  transformations 

generally result only in a partial transformation of the compounds that are either 

more readily or less readily biodegraded by microorganisms.

Hydrolysis  and dehydrohalogenation are  two abiotic  processes that may 

degrade  chlorinated  ethanes  under  either  aerobic  or  anaerobic  conditions.  The 

tendency for a chlorinated ethane to degrade by hydrolysis depends on the ratio of 

chlorine to  carbon atoms (figure 1.3) or  the location of  chlorine atoms on the 

number  2  carbon  in  the  compound.  Chlorinated  alkanes  are  more  easily 

hydrolyzed when the chlorine-carbon ratio is less than two or when chlorine atoms 

are only located on the number 1 carbon atom (Vogel and McCarty, 1987b; Vogel, 
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1994). For example, chloroethane and 1,1,1-TCA have half-lifes that are measured 

in days or months (Vogel and others, 1987; Vogel, 1994; table 1.8). Conversely, 

the more chlorinated ethanes such as 1,1,1,2-tetrachloroethane (PCA) and those 

with chlorine atoms on the number 2 carbon tend to have half-lifes measured in 

decades or centuries (table 1.8). Dehydrohalogenation is the removal of one or two 

halogen  atoms  from  an  alkane  (Vogel  and  McCarty,  1987a).  The 

dehydrohalogenation of two chlorine atoms is called dichloroelimination.

Figure 1.3. Relation between degree of chlorination and anaerobic reductive-dechlorination, 
aerobic degradation and sorption onto subsurface material. Degree of chlorination is number 
of chloride atoms divided by number of carbon atoms.

Table 1.8. Laboratory half-lives and by-products of the abiotic degradation (hydrolysis or 
dehydrohalogenation) of chlorinated alkane compounds detected in groundwater
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Chen and others (1996) show that PCA can be abiotically transformed to 

TCE  under  methanogenic  conditions  (figure  1.4).  In  addition,  the  abiotic 

degradation of 1,1,1-TCA has been well studied in the scientific literature (figure 

1.5;  Jeffers  and  others,  1989;  McCarty  and Reinhard,  1993;  Chen and others, 

1996;  McCarty,  1997).  McCarty  and  Reinhard  (1993)  indicate  that  the 

transformation  of  111-TCA  by  hydrolysis  is  about  four  times  faster  than  by 

dehydrochlorination. During abiotic degradation, about 80 percent of 1,1,1-TCA is 

transformed to acetic acid by hydrolysis (McCarty, 1997), and the remaining 20 

percent is transformed to 1,1-DCE by dehydrochlorination (Vogel and McCarty, 

1987b; McCarty, 1997). The presence of 1,1-DCE in contaminated groundwater is 

probably the result of the dehydrochlorination of 1,1,1-TCA (McCarty, 1997).

Figure  1.4.  Laboratory-derived  pathway  for  the  abiotic  degradation,  anaerobic  and 
methanogenic biodegradation of 1,1,2,2-tetrachloroethane; 1,1,2-trichloroethane; and 1,1,2-
trichloroethane.
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Figure  1.5.  Laboratory-derived  pathway  for  the  abiotic  degradation,  anaerobic  and 
methanogenic biodegradation of 1,1,1-trichloroethane.
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1.3.4.2 Biotic degradation processes

Bacteria transform environmentally available nutrients to forms that are 

useful  for  incorporation  into  cells  and  synthesis  of  cell  polymers.  Biotic 

transformations occur through reactions involving a transfer of electrons between 

the chlorinated solvents and an external agent; energy is made available when an 

electron donor transfers its electrons to a terminal electron acceptor. The energy 

gained  is  stored  as  high  energy  compounds,  such  as  ATP  and  low-energy 

compounds, such as nicotinamide adenine dinucleotide (NAD). A portion of the 

stored  energy  is  used  to  conduct  to  biological  processes  necessary  for  cell 

maintenance  and  reproduction.  In  addition,  cell  building-block  materials  are 

required in the form of carbon and other nutrients (such nitrogen and phosphorus). 

The  terminal  electron  acceptor  used  during  metabolism  is  important  for 

establishing  the  redox  conditions,  and  therefore  the  type  of  zone  that  will 

dominate in the subsurface. Common terminal electron acceptors include oxygen 

under aerobic conditions and nitrate, Mn(IV), Fe(III), sulphate and carbon dioxide 

under anaerobic conditions.

The typical electron-acceptor classes of bacteria are listed in table 1.9 in 

the order of those causing the largest energy generation during the redox reaction 

to  those  causing  the  smallest  energy  generation  during  the  redox  reaction.  A 

bacteria  electron  acceptor  class  causing  a  redox  reaction  generating  relatively 

more energy will dominate over a bacteria electron acceptor class causing a redox 

reaction  generating  relatively  less  energy  (Table  1.9).  Aerobic  biotic 

transformations generally are oxidations: they are classified as “hydroxilations”, 

in  the  case  of  a  substitution  of  a  hydroxyl  group  on  the  molecule,  or 

“epoxidations”, in the case of unsaturated CAHs. The anaerobic biotic processes 

generally are reductions that involve either hydrogenolysis, the substitution of a 

hydrogen atom or  chlorine  on  the  molecule,  or  dehaloelimination,  where  two 

adiacent  chlorine  atoms  are  removed,  leaving  a  double  bond  between  the 

respective carbon atoms.
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Table 1.9. Typical electron-acceptor classes of bacteria

1.3.4.2.1 Anaerobic biodegradation
Organic compounds can be transformed by microorganisms through two 

basically different processes:  direct metabolism and  cometabolism. In the first 

process the organism consumes the organic compound as a primary substrate to 

satisfy its energy and carbon needs. The compound serves as an electron donor 

and  as  a  primary  growth  substrate  for  the  microbe  mediating  the  reaction. 

Electrons that are generated by the oxidation of the compound are transferred to 

an  electron  acceptor  such  as  oxygen.  In  addition  a  microorganism can  obtain 

energy for cell maintenance and growth from the oxidized compound. In general 

only the less chlorinated CAHs (with one or two chlorine atoms) can be used 

directly by microorganism as electron donors. The CAHs are oxidized into carbon 
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dioxide,  water,  chlorine  and  electrons,  in  conjunction  with  the  reduction  of 

oxygen to water.

Few CAHs have been shown to serve as primary substrates for energy and 

growth.  Pure  cultures  have  been  isolated  that  can  grow  aerobically  on 

dichloromethane (DM) as sole carbone and energy source. VC and 1,2-DCA have 

also been shown to be available as primary substrates under aerobic conditions 

(Hartmans et al, 1992, Verce et al, 2000, Klier et al, 1998). Other CAH that can 

oxidized directly include DCE, DCA, CA, MC and CM (Bradley 1998; RTDF 

1997; Harknessvand others 1999). These few exceptions suggest that only the less 

halogenated one- and two-carbon CAHs might be used as primary substrates, and 

that the organisms that are capable of doing this are not necessarily widespread in 

the environment. Figure 1.6.shows an example of aerobic oxidation of a CAH.

Figure 1.6. Aerobic oxidation (direct). 

Most  of  the  CAHs  can  be  biologically  transformed  by  the  process  of 

cometabolism.  Cometabolism  is  the  fortuitous  transformation  of  an  organic 

compound by non specific enzymes, produced for other purposes during microbial 

metabolism  of  another  compound.  Most  of  the  enzymes  involved  in  the 

degradation of chlorinated solvents determine a sequence of reactions that oxidize 

NADH to NAD+, but do not catalyse the opposite reduction process of NAD+ to 

NADH. Thus, in the cometabolic transformation the microorganisms do not get 

energy  or  carbon  from  the  process;  The  transformation  does  not  provide  the 
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organisms  any  direct  benefit,  indeed  it  may  be  harmful  to  them,  resulting  in 

increased maintenance requirements and decay rates (Criddle, 1992). A primary 

growth substrate must be at least intermittently available to prevent the depletion 

of energy and maintain a viable microbial population.

The CAHs that have been observed to be oxidized cometabolically under 

aerobic conditions include TCE, DCE, VC, TCA, DCA, CF and MC (Munakata-

Marr  1997;  McCarty  and  others  1998;  RTDF 1997;  Edwards  and  Cox  1997; 

McCarty 1997a; Bradley and Chapelle 1998; Travis and Rosenberg 1997). The 

electron  donors  observed  in  aerobic  cometabolic  oxidation  include  methane, 

ethane,  ethene,  propane,  butane,  aromatic  hydrocarbons  (such  as  toluene  and 

phenol), and ammonia Under aerobic conditions a moooxygense enzyme mediates 

the electron donation reaction. That reaction has the tendency to convert CAHs 

into unstable epoxides (Anderson and Lovley 1997). Unstable epoxides degrade 

rapidly in water to alcohols and fatty acids, which are readily degradable. Figure 

1.7 shows an example of aerobic cometabolic oxidation of a CAH.

Figure 1.7. Aerobic oxidation (cometabolic).

Aerobic biodegradation of chlorinated alkanes.  According to the degradation 

pathway constructed by Sands and others (2005) and Whittaker and others (2005), 

the  dichloroethanes  are  not  a  by-product  of  1,1,1-TCA  or  1,1,2-TCA 

biodegradation under aerobic conditions (figure 1.5). Apparently, the only source 

of  1,1-DCA  and  1,2-DCA  via  a  degradation  pathway  is  the  reductive 
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dechlorination  of  1,1,1-TCA  and  1,1,2-TCA,  respectively,  under  anaerobic 

conditions (figures 1.4 and 1.5). Under aerobic conditions, however, 1,2-DCA can 

be degraded when used as a carbon source by microorganisms. The intermediate 

by-product  of  this  degradation  is  chloroethanol,  which  is  then  mineralized  to 

carbon dioxide and water (figure 1.8; Stucki and others, 1983; Janssen and others, 

1985; Kim and others, 2000; Hage and others, 2001).

Figure  1.8.  Laboratory-derived  pathway  for  the  aerobic  biodegradation  of  1,2-
dichloroethane.

Aerobic biodegradation of chlorinated alkenes. Several studies have shown that 

chlorinated  ethenes,  with  the  exception  of  PCE,  can  degrade  under  aerobic 

conditions by oxidation (Hartmans and De Bont, 1992; Klier and others, 1999; 

Hopkins and McCarty,  1995;  Coleman and others,  2002) and by co-metabolic 

processes (Murray and Richardson, 1993; Vogel, 1994; McCarty and Semprini, 

1994). Studies describing the degradation of PCE under aerobic conditions were 

not found in the peer-reviewed literature. In one study, aerobic biodegradation of 
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PCE was not measurable beyond analytical precision after 700 days of incubation 

(Roberts and others, 1986). Furthermore, Aronson and others (1999) indicate that 

PCE is not degraded when dissolved oxygen (DO) is greater than 1.5 mg/L, the 

approximate  boundary  between  aerobic  and  anaerobic  conditions  (Stumm and 

Morgan, 1996). Chen and others (1996) suggest the structure and oxidative state 

of PCE prevents its aerobic degradation in water.

According  to  the  aerobic  biodegradation  pathway  constructed  by 

Whittaker and others (2005), the dichloroethenes are not a by-product of TCE 

degradation under aerobic conditions (figure. 1.5). Rather, TCE is degraded along 

three  different  pathways  by  different  microorganisms  (figure.  1.9).  These 

pathways do not form any of the dichlorothene compounds and the only apparent 

source of 1,2-DCE is by the reductive dechlorination of TCE under anaerobic 

conditions (figures. 1.4 and 1.12). The compounds 1,2-DCE and VC, however, 

can  be  degraded  under  aerobic  conditions  by  microorganisms  utilizing  the 

compounds as a primary carbon source (figure. 1.8; Bradley and Chapelle, 1998).

Although  PCE is  not  known to  degrade  through  cometabolism under  aerobic 

conditions,  co-metabolism is  known to degrade TCE, the dichloroethenes,  and 

VC. The rate of cometabolism increases as the degree of chlorination decreases on 

the ethene molecule (Vogel, 1994). During aerobic cometabolism, the chlorinated 

alkene  is  indirectly  dechlorinated  by  oxygenase  enzymes  produced  when 

microorganisms use other compounds, such as BTEX compounds, as a carbon 

source (Wiedemeier  and others,  1998).  The co-metabolic  degradation of  TCE, 

however,  tends  to  be  limited  to  low  concentrations  of  TCE  because  high 

concentrations in the milligram per litre range are toxic to microbes catalyzing 

this  reaction  (Wiedemeier  and  others,  1998).  In  field  studies  by  Hopkins  and 

McCarty  (1995),  VC  is  shown  to  degrade  by  co-metabolism  under  aerobic 

conditions when phenol and toluene were used as a carbon source.
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Figure 1.9. Laboratory-derived pathway for the aerobic biodegradation of trichloroethane.

1.3.4.2.2 Anaerobic biodegradation

Under  anaerobic  conditions,  reductive  dechlorination  mechanisms  can 

effectively  biodegrade  CAHs.  This  process  generally  involves a  series  of 

decarboxylations  and oxidation-reduction  (redox)  reactions  catalyzed  either  by 

single microorganisms or by a consortium of microorganisms (Dolfing, 2000). In 

direct anaerobic reductive dechlorination the mediating bacteria use the CAH 

directly  as  an  electron  acceptor  in  energy-producing  redox  reactions. 

Cometabolic anaerobic  reductive  dechlorination occurs  when  bacteria 
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incidentally dechlorinate a CAH in the process of using another electron acceptor 

to generate energy.

Theoretically,  reductive  dechlorination  is  the  sequential  replacement  of 

one  chlorine  atom  on  a  chlorinated  compound  with  a  hydrogen  atom.  The 

replacement continues until the compound is fully dechlorinated. For example, 

PCE can undergo reductive dechlorination to less-chlorinated compounds, such as 

TCE or  1,2-DCE, or  to  nonchlorinated  compounds such  as  ethene,  ethane,  or 

methane (methanogenesis). Each successive step in the dechlorination process is 

theoretically  slower  than the preceding step.  The dechlorination process  slows 

because as chlorines are removed the energy costs  to remove another chlorine 

atom increases (free energy of the reaction decreases; Dolfing, 2000). As a result, 

biodegradation  may  not  proceed  to  completion  in  some  aquifers  leaving 

intermediate  compounds  (for  example,  dichloroethenes  and  vinyl  chloride)  to 

accumulate  in  ground  water  (Azadpour-Keeley  and  others,  1999).  Other 

constraints on biodegradation such as a reduction in or loss of primary substrate, 

or microbial suppression also can play a role in the accumulation of intermediate 

compounds. This is a particular concern with VC because it is a known human 

carcinogen (Agency for Toxic Substances and Disease Registry,  2005) and its 

accumulation may create a health issue that might not be a concern during the 

early stages of groundwater contaminated by TCE.

Reductive  dechlorination  theoretically  is  expected  to  occur  under  most 

anaerobic conditions, but has been observed to be most effective under sulfate-

reducing and methanogenic conditions (EPA 1998).  As in  the case of aerobic 

oxidation, the direct mechanism may biodegrade CAHs faster than cometabolic 

mechanism (McCarthy and Semprini, 1994).

In direct anaerobic reductive dechlorination bacteria gain energy and grow 

as one or more chlorine atoms on a chlorinated hydrocarbon are replaced with 

hydrogen. In that reaction, the chlorinated compound serves as electron acceptor, 

and hydrogen as electron donor (Fennel and others 1997). Hydrogen used in the 

reaction  typically  is  supplied  indirectly  through  the  fermentation  of  organic 

substrates  (lactate,  acetate,  methanol,  glucose,  toluene).  The  reaction  is  also 

referred to halorespiration or dehalorespiration (Gosset and Zinder 1997). Direct 
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anaerobic reductive dechlorination has been observed  in anaerobic systems in 

which PCE, TCE, DCE, VC and DCA are used directly by a microorganism as an 

electron-acceptor  in  their  energy-producing  redox  reactions.  The  mechanism 

generally results in the sequentiql reduction of a chlorinated ethene or chlorinated 

ethane to ethene or ethane. Figure 1.10 shows the step-by-step dechlorination of 

PCE.

Figure 1.10. Anaerobic reductive dechlorination of PCE.

Several  CAHs  have  been  observed  to  be  reductively  dechlorinated  by 

cometabolic  mecanisms.  In  those  instances,  the  enzymes  that  are  intended  to 

mediate the electron-accepting reaction “accidentally” reduce and dehalogenate 

the CAH. Cometabolic anaerobic reductive dechlorination has been observed for 

PCE, TCE, DCE, VC, DCA and CT under anaerobic conditions (Fathepure 1987; 

Workman 1997; Yager and others 1997).

Anaerobic  biodegradation  of  chlorinated  alkanes.  While  researching  the 

scientific literature for their report, Wiedemeier and others (1998) did not find 

published studies describing anaerobic biodegradation of chlorinated ethanes in 

ground water. Since the publication of Wiedemeier and others (1998), however, 

numerous published studies describe the anaerobic biodegradation of chlorinated 

ethanes. McCarty (1997) indicates that carbon tetrachloride was transformed to 

chloroform under denitrifying conditions and mineralized to carbon dioxide and 

water under sulfate-reducing conditions (figure 1.11). Adamson and Parkin (1999) 

show that under anaerobic conditions, carbon tetrachloride and 1,1,1-TCA tend to 

inhibit the degradation of each other. Adamson and Parkin (1999) also show that 

32



Chapter 1 Volatile Organic Compounds

carbon tetrachloride was rapidly degraded by cometabolism when acetate was the 

carbon source.

Chen  and  others  (1996)  describe  how  methanogenic  conditions  in  a 

municipal sludge digester allowed the degradation of TeCA to 1,1,2-TCA, and 

1,1,2-TCA to 1,2-DCA through dehydrohalogenation (figure 1.4). De Best and 

others (1999) report  that  cometabolic transformations of 1,1,2-TCA will  occur 

under  methanogenic  conditions.  In  this  study,  1,1,2-TCA  was  degraded  to 

chloroethane when sufficient amounts of the carbon source were present (figure 

1.4). This transformation was inhibited by the presence of nitrate, but not nitrite.

Dolfing (2000) discusses the thermodynamics of reductive dechlorination 

during the degradation of chlorinated hydrocarbons and suggests that fermentation 

of chloroethanes to ethane or acetate may be energetically more favorable than 

“classic”  dechlorination  reactions.  Moreover,  polychlorinated  ethanes  may 

degrade  preferentially  by  reductive  dechlorination  under  strongly  reducing 

conditions.  Dichloroelimination,  however,  may  actually  be  the  dominant 

degradation reaction for polychlorinated ethanes because more energy is available 

to  microorganisms  than  is  available  during  reductive  dechlorination  (Dolfing, 

2000). During anaerobic biodegradation, the mean half-lifes of the chloroethane 

compounds can be as short as three days, in the case of 1,1,1-TCA, or as long as 

165 days, in the case of 12-DCA (table 1.10).

Table 1.10. Mean half-life in days for the anaerobic biodegradation of selected chlorinated 
alkane and alkene compounds.
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Figure  1.11.  Laboratory-derived  pathway  for  the  anaerobic  biodegradation  of 
tetrachloromethane.

Anaerobic biodegradation of chlorinated alkenes.  Many laboratory and field 

studies  have  shown  that  microorganisms  degrade  chlorinated  ethenes  under 

anaerobic conditions (Bouwer and others, 1981; Bouwer, 1994, Dolfing, 2000). 

Groundwater is considered anoxic when the dissolved oxygen concentration falls 

below 1.0–1.5 mg/L (Stumm and Morgan, 1996; Christensen and others, 2000). 

Under anoxic conditions, anaerobic or facultative microbes will use nitrate as an 

electron acceptor, followed by iron (III), then sulphate, and finally carbon dioxide 

(methanogenesis; Chapelle and others, 1995; Wiedemeier and others (1998). As 

the  concentration  of  each  electron  acceptor  sequentially  decreases,  the  redox 
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potential of the ground water becomes greater (more negative) and biodegradation 

by reductive dechlorination is favoured.

Anaerobic conditions in ground water can be determined by measuring the 

vertical and spatial concentrations of oxygen, iron (II), manganese (II), hydrogen 

sulfide or methane in groundwater and using that data as a qualitative guide to the 

redox status (Stumm and Morgan, 1996;  Christensen and others,  2000).  Other 

measurements  of  anaerobic  conditions  involving  microorganism  biomarkers 

include  volatile  fatty  acids,  ester-linked  phospholipid  fatty  acid  (PLFA), 

deoxyribonucleic  acid  (DNA),  and  ribonucleic  acid (RNA) probes,  and  TEAP 

bioassay (Christensen and others, 2000). The reduction of iron (III) to iron (II), 

manganese  (IV)  to  manganese  (II),  sulfate  to  hydrogen  sulfide,  and  carbon 

dioxide to methane during the microbial reduction of CAHs can have a major 

influence on the distribution of iron (II), manganese (II), hydrogen sulfide, and 

methane  concentrations  in  ground  water  (Stumm and  Morgan,  1996;  Lovley, 

1991; Higgo and others, 1996; Braun, 2004).

The highly chlorinated alkenes are commonly used as electron acceptors 

during anaerobic biodegradation and are reduced in the process (Vogel and others, 

1987). The primary anaerobic process driving degradation of CAHs, except VC, is 

reductive dechlorination (figures 1.4 and 1.12; Bouwer and others, 1981; Bouwer, 

1994).  Tetrachloroethene  and  TCE  are  the  most  susceptible  to  reductive 

dechlorination  because  they  are  the  most  oxidized  of  the  chlorinated  ethenes; 

however, the more reduced (least oxidized) degradation by-products such as the 

dichloroethenes and vinyl chloride are less prone to reductive dechlorination. The 

main by-product of anaerobic biodegradation of the polychlorinated ethenes is VC 

(figure 1.12), which is more toxic than any of the parent compounds (Agency for 

Toxic  Substances  and  Disease  Registry,  2004).  The  rate  of  reductive 

dechlorination  tends  to  decrease  as  the  reductive  dechlorination  of  daughter 

products  proceeds  (Vogel  and  McCarty,  1985;  Bouwer,  1994).  Murray  and 

Richardson  (1993)  suggest  that  the  inverse  relation  between  the  degree  of 

chlorination  and  the  rate  of  reductive  dechlorination  may  explain  the 

accumulation of 1,2-DCE and VC in anoxic groundwater contaminated with PCE 

and  TCE.  In  addition,  the  anaerobic  reduction  of  VC  to  ethene  is  slow  and 

35



Chapter 1 Volatile Organic Compounds

inefficient under weak reducing conditions, which favours the persistence of VC 

in anoxic groundwater (Freedman and Gossett, 1989).

Reductive dechlorination has been demonstrated under nitrate- and 

iron-reducing  conditions  (Wiedemeier  and  others,  1998).  Reductive 

dechlorination of the CAHs, however, may be more rapid and more efficient when 

oxidation-reduction  (redox)  conditions  are  below  nitrate-reducing  levels 

(Azadpour-  Keeley  and  others,  1999).  Sulfate-reducing  and  methanogenic 

groundwater  conditions  create  an  environment  that  facilitates  not  only 

biodegradation  for  the  greatest  number  of  CAHs,  but  also  more  rapid 

biodegradation rates (Bouwer, 1994). Reductive dechlorination of DCE and VC is 

most apparent under sulfate reducing and methanogenic conditions (Wiedemeier 

and others, 1998). Anaerobic biodegradation rates for the chlorinated alkenes can 

be as short as 45 minutes, in the case of VC, to as long as 9 years for PCE (table 

1.10).
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Figure  1.12.  Laboratory-derived  pathway  for  the  anaerobic  biodegradation  of 
tetrachloroethene.

1.4 CHLORINATED BENZENES

1.4.1 Sources of chlorinated benzenes

Four  chlorinated  benzenes  commonly  detected  in  groundwater 

contamination  studies  include  chlorobenzene  (CB),  1,2-dichlorobenzene  (1,2-

DCB), and two isomers of trichlorobenzene, 1,2,3-trichlorobenzene (1,2,3-TCB) 

and  1,2,4-trichlorobenzene  (1,2,4-TCB;  tables  1.2  and  1.3).  Chlorobenzene  is 

commonly used as a solvent for pesticide formulations, in the manufacturing of 

di-isocyanate,  as  a  degreaser  for  automobile  parts,  and  in  the  production  of 

nitrochlorobenzene. Solvent uses accounted for about 37 percent of chlorobenzene 

consumption in the United States during 1981 (Agency for Toxic Substances and 

Disease Registry,  1990a,  p.  45).  The compound 1,2-DCB is  used primarily to 

produce 3,4-dichloroaniline herbicides (Agency for Toxic Substances and Disease 

Registry, 1990b, p. 263). The two trichlorobenzene isomers are primarily used as 

dye  carriers  in  the  textile  industry.  Other  uses  include  septic  tank  and  drain 

cleaners, the production of herbicides and higher chlorinated benzenes, as wood 

preservatives, and in heat-transfer liquids (U.S. Environmental Protection Agency, 

2005b).

1.4.2 Biodegradation of chlorinated benzenes

Several  studies  have  shown  that  chlorinated  benzene  compounds 

containing up to four chlorine atoms can be degraded by microorganisms under 

aerobic  conditions  (Reineke  and Knackmuss,  1984;  Spain  and  Nishino,  1987; 

Sander  and  others,  1991).  Under  aerobic  conditions,  1,2,4-trichlorobenzene 

(1,2,4-TCB; Haigler and others, 1988) and chlorobenzene (CB; Sander and others, 

1991)  are  used  as  a  primary  carbon  source  during  biodegradation  by 

microorganisms  such  as  Burkholderia and  Rhodococcus species  (Rapp  and 

Gabriel-Jürgens, 2003). During biodegradation, these compounds are completely 

mineralized to carbon dioxide (CO2) (van der Meer and others, 1991). Rapp and 

Gabriel-Jürgens (2003) also indicate that all of the dichlorobenzene isomers were 
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biodegraded by  the  Rhodococcus  bacterium.  The biodegradation  pathways  for 

1,2,4-TCB, 1,4-DCB, 1,2-DCB, and CB, under aerobic conditions are shown in 

figures 1.13 to 1.15, respectively. These pathways are similar to that of benzene, 

except that one chlorine atom is eventually eliminated through hydroxylation of 

the  chlorinated  benzene  to  form a  chlorocatechol,  then  ortho  cleavage  of  the 

benzene ring (Van der Meer and others, 1998).

Calculated  and  published  degradation  half-lives  for  the  chlorobenzenes 

under aerobic conditions are shown in table 1.11. The compounds 1,2,4-TCB, 1,2-

DCB, and CB lose 50 percent of their initial mass within 180 days (table 1.11). 

Conversely, Dermietzel and Vieth (2002) show that chlorobenzene was rapidly 

mineralised to CO2 in laboratory and in situ microcosm studies, with complete 

mineralisation ranging from 8 hours to about 17 days. In addition, the compound 

1,4-DCB was  completely  mineralised  within  25  days.  Nevertheless,  under  the 

aerobic conditions of Dermietzel and Vieth (2002) study, 1,2,4-TCB, 1,2-DCB, 

and 1,3-DCB were only partially degraded after 25 days. In another laboratory-

microcosm study  by  Monferran  and  others  (2005),  all  isomers  of  DCB were 

mineralised  to  CO2 within  2  days  by  the  aerobe  Acidovorax  avenae.

Although Wiedemeir and others (1998) indicate that few studies existed 

that described the anaerobic degradation of the chlorobenzene compounds, a study 

by Ramanand and others (1993) did suggest that 1,2,4-TCB could be biodegraded 

to chlorobenzene with 1,4-DCB as an intermediate compound under anaerobic 

conditions. Moreover, Middeldorp and others (1997) show that 1,2,4-TCB was 

reductively dechlorinated to 1,4-DCB, then to chlorobenzene in a methanogenic 

laboratory  microcosm  in  which  chlorobenzene-contaminated  sediment  was 

enriched with lactate, glucose, and ethanol. These compounds served as carbon 

sources.  Furthermore,  the  microbial  consortia  facilitating  the  dechlorination of 

1,2,4-TCB  also  was  able  to  degrade  isomers  of  tetrachlorobenzene  to  other 

isomers  of  TCB  and  1,2-DCB.  More  recent  studies  show  that  a  strain  of 

Dehalococcoides,  can  reductively  dechlorinate  1,2,4-TCB  under  anaerobic 

conditions (Holscher and others, 2003; Griebler and others, 2004a). In addition, 

Adrian and others (1998) suggest that fermentation is  the primary degradation 

process  for  the  chlorobenzenes  under  anaerobic  conditions.  This  study  also 
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showed that  the cometabolism of  1,2,4-TCB was inhibited by the presence of 

sulfate, sulfite and molybdate.

Furthermore,  Ramanand  and  others  (1993)  show  that  1,2,4-TCB  had 

declined by 63% within 30 days under anaerobic conditions. Dermietzel and Vieth 

(2002) show that the anaerobic biodegradation of 1,4-DCB was markedly slower 

under  iron-reducing  conditions  than  under  aerobic  conditions.  In  general,  it 

appears  that  the  biodegradation  of  the  chlorinated  benzenes  is  slower  under 

anaerobic than under aerobic conditions.

Figure 1.13. Laboratory-derived pathway for the aerobic and anaerobic biodegradation of 
1,2,4-tricholorobenzene.
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Figure  1.14.  Laboratory-derived  pathway  for  the  aerobic  biodegradation  of  1,4-
dicholorobenzene.

Table  1.11.  Laboratory  or  environmental  half-lives  and by-products  for  the  aerobic  and 
anaerobic  biodegradation  of  selected  chlorinated  benzene  compounds  detected  in 
groundwater.
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Figure 1.15. Laboratory-derived pathway for the aerobic biodegradation of chlorobenzene 
and 1,2-dicholorobenzene.

41



Chapter 1 Volatile Organic Compounds

1.4.3 Bioegradation of monochlorobenzene

In  four  billion  years,  micro-organisms  have  evolved  an  extensive  range  of 

enzymes and control mechanisms to be able to degrade a wide array of naturally 

occurring  aromatic  compounds  including  chlorobenzene.  The  rate  of  naturally 

occurring  biodegradation  is  often  limited  by  either  the  concentration  of  an 

appropriate  electron-acceptor  or  the  availability  of  nutrients  for  cell  growth. 

Although chlorobenzene can be metabolyzed aerobically (Nishino  et al.,  1992; 

Reineke et al., 1984; Rochkind et al., 1986; Van der Meer et al., 1992), it has not 

been reported to be degraded through the use of other electron acceptors (Bouwer 

et al., 1983; Nishino et al., 1992; Reineke et al., 1984). Molecular oxygen appears 

necessary for ring fission. Some removal through reductive dechlorination may 

occur in conducive environments with excess chlorobenzene (Montgomery et al., 

1994).  In general,  intermediary metabolites of chlorobenzene appear similar to 

those documented for unhalogenated aromatic compounds. Biodegradation under 

microaerophilic conditions has also been reported (Vogt et al., 2003).

The main  enzymes  involved  in  chlorobenzene’s  catabolic  reactions  are 

oxygenases. Oxygen can be incorporated immediately into organic products by 

reactions catalyzed by enzymes such as oxygenases or hydroxylases (Gibson  et 

al., 1982; Harayama et al., 1992). These enzymes use metals to activate dioxygen 

that  is  not  reactive  in  its  original  state.  During  these  processes  oxygen  is 

metabolized into very reactive forms like singlet oxygen and hydroxyl radicals. 

Oxygenase enzymes play an important role in aromatic catabolic pathways. They 

initiate the degradation of aromatic compounds by hydroxylation of the aromatic 

ring  for  preparation  of  the  ring  fission  and  are  involved  in  ring  fission. 

Oxygenases  of  different  organisms  catalyzing  similar  reactions  share  similar 

features,  structures,  and  reaction  mechanisms.  By  means  of  the  amino  acid 

sequence, oxygenases can be divided into different families. Comparisons of the 

amino acid sequence of related enzymes can give information on amino acids of 

essential function including active sites, and on the evolution of the enzymes.

Oxygenases involved in initial attack of the aromatic compound can be 

divided in either mono-oxygenases or dioxygenases. Oxygenases that incorporate 
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only  one  oxygen  atom  into  the  structure  of  the  substrate  are  called  mono-

oxygenases. In that case, the remaining oxygen atom of the oxygen molecule is 

reduced into  H2O. Mono-oxygenases  are  multi-component  enzyme complexes. 

They consist of a combination of the following components, i.e., a hydroxylase 

component consisting of an -,  - and -subunit,  a ferredoxin component,  a 

small  oxygenase  subunit,  and  a  flavo-iron-sulfur  NADH-oxidoreductase 

component.  Some  mono-oxygenases  contain  additional  polypeptides  with 

unknown  function.  The  hydroxylase  component  is  the  protein  that  activates 

molecular oxygen and binds it to the substrate.

Oxygenases  that  incorporate  two  oxygen  atoms  into  the  substrate  are 

called dioxygenases. They are also multi-component enzyme complexes, and in 

most cases consist of four components including an iron-sulfur oxidase large a-

subunit,  a  ferredoxin component,  an iron-sulfur oxidase small  b-subunit  and a 

reductase component.

1.4.3.1 Degradation via the ortho-cleavage pathway

The  majority  of  the  microorganisms  able  to  mineralize  chlorinated 

aromatics do not posses enzyme systems capable of initial dechlorination. They 

transform chloroaromatics to chlorocatechols, which are further metabolyzed via 

the enzyme of the ortho-cleavage pathway, and dechlorination occurs after ring-

cleavage (Schlömann, 1984).

In 1983, Reineke et al. isolated a bacterium (strain WR136) able to grow 

on monochlorobenzene and proposed a degradative pathway on the basis of the 

enzyme  activities  found  (Figure  1.16).  3-Chlorocatechol  is  subject  to  ortho 

cleavage with formation of 2-chloro-cis,cis-muconic acid. This is cycloisomerized 

with  coincident  or  subsequent  elimination  of  chloride  yielding  4-

carboxymethylenebut-2-en-4-olide,  which  is  further  converted  by  use  of  a 

hydrolase. The resulting maleylacetate is reduced in an NADH-dependent reaction 

to  3-oxoadipate.  This  modified ortho pathway  is  the  only  pathway  currently 

known  for  the  aerobic  degradation  of  catechol  formed  from  chlorobenzene. 

Analogous pathways have been described for the dichlorocatechols derived by the 

transformation of dichlorobenzenes (de Bont  et al.,  1986; Haigler  et al.,  1988; 

43



Chapter 1 Volatile Organic Compounds

Schraa et al., 1986; Spain et al., 1987). In each instance, the initial attack is by a 

dioxygenase. The initial oxidation results in the formation of a  cis-dihydrodiol. 

Subsequent ring fission and elimination of chloride leads to the detoxification and 

mineralization of these compounds. The key enzime is the pyrocatechase II (Dorn 

et al., 1978; Reineke et al., 1984) that converts chlorocatechols to chloro-cis,cis-

muconic acids. Absence of this enzyme in organisms with initial oxygenases with 

broad substrate specificities may lead to the accumulation of chlorocatechols or to 

the  misrouting  of  chlorocatechol  down the  meta cleavage  pathway,  ultimately 

resulting in cell death.

Figure 1.16. Modified ortho pathway.
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In another study (Nishino  et al.,  1992), bacterial  isolates were obtained 

from groundwater and soils contaminated with chlorobenzene. The isolates were 

tested to determine whether the natural community could remove the groundwater 

contaminants. These isolates were identified and characterized as to their ability to 

grow  on  chlorobenzene  and  related  aromatic  compounds.  The  complete 

consortium could mineralize approximately 54% of the chlorobenzene within 7 

days,  with  no  accumulation  of  3-chlorocatechol.  Metabolic  pathways  were 

evaluated for several isolates. One phenotype was characterized by the ability to 

degrade chlorobenzene by the modified ortho pathway. One strain also degraded 

p-dichlorobenzene  by  using  the  same  pathway.  Isolates  exhibiting  a  second 

phenotype degraded p-cresol, benzene, and phenol by the classical ortho pathway 

and accumulated 3-chlorocatechol when grown in the presence of chlorobenzene. 

Strains  of  the  third  phenotype  grew  on  complex  media  in  the  presence  of 

chlorobenzene but did not transform any of the aromatic compounds tested.

1.4.3.2 Degradation via the meta-cleavage pathway

It  is  generally  accepted  that  degradation  of  chloroaromatics  does  not 

proceed via the meta-cleavage pathway (Knackmuss, 1981; Pettigrew et al., 1991; 

Rojo et al., 1987). An explanation for this has been found in the production of an 

acylchloride from 3-chlorocatechol by the catechol 2,3-dioxygenase of the meta-

cleavage  pathway,  which  leads  to  rapid  suicide  inactivation  of  the  enzyme 

(Bartels et al., 1984). Therefore, meta-cleavage is considered to be unsuitable for 

the mineralization of haloaromatics that are degraded via halocatechols. Whereas 

chlorocatechols  are  mineralized  via  ortho–cleavage  pathways,  methylaromatics 

are commonly mineralized via meta-cleavage routes. Simultaneous metabolism of 

chloro-  and  methylcatechols  often  creates  biochemical  anarchy.  Meta-cleavage 

leads to substrate misrouting in the case of 4-chlorocatechol or formation of a 

suicide  product  in  the  case  of  3-chlorocatechol.  Formation  of  dead-end 

methyllactones  can  occur  when  the  ortho-cleavage  pathway  is  dealing  with 

methylcatechols.

Consequently,  only  a  few  strains  which  can  grow  on  mixtures  of 

methylated and chlorinated aromatics are known (Haigler et al., 1992; Pettigrew 
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et al., 1991). They all use a modified ortho-cleavage pathway for the conversion 

of the chlorinated substrate. Pseudomonas putida GJ31 (Oldenhuis et al., 1989) 

and Pseudomonas sp. strains JS6 (Pettigrew et al., 1991) and JS150 (Haigler et 

al., 1992) are the only strains known to grow on a mixture of chlorobenzene and 

toluene.  Mars  et al. (1997) showed that  Pseudomonas putida GJ31 grows on 

chlorobenzene  via  a  meta-cleavage  pathway  which  allows  the  simultaneous 

utilization of toluene (Figure 1.17). In addition, 3-chlorocatechol was found to be 

the ring cleavage substrate formed from chlorobenzene, which was dehalogenated 

during ring cleavage to produce 2-hydroxymuconic acid. The authors observed 

that  the enzymes of  the modified  ortho-cleavage pathway were  never  present, 

while the enzymes of the  meta-cleavage pathway were detected in all cultures. 

Apparently,  Pseudomonas putida GJ31 has  a  meta-cleavage  enzyme (catechol 

2,3-dioxygenase) which is resistant to inactivation by the acylchloride, providing 

this strain with the exceptional ability to degrade both toluene and chlorobenzene 

via the meta-cleavage pathway.

Figure 1.17. Proposed catabolic pathway of chlorobenzene by  P.putida GJ31 by analogy to 
the  known  meta-cleavage  pathway.  Enzymes:  1,  chlorobenzene  dioxygenase;  2, 
chlorobenzene  dihydrodiol  dehydrogenase;  3,  catechol  2,3-dioxygenase;  4,  oxalocrotonate 
isomerase; 5, oxalocrotonate decarboxylase; 6, 2-oxopent-4-enoate hydratase; 7, 4-hydroxy-
2-oxovalerate aldolase.
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1.4.3.3 Biodegradation of mixtures of substituted benzenes

The degradation of a wide range of substituted aromatic compounds by a 

strain of Pseudomonas has been observed (Haigler et al., 1992). Pseudomonas sp. 

strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain 

JS1 that  contains  the  genes  for  the  degradative  pathways  of  a  wide  range  of 

substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, 

ethylbenzene,  toluene,  benzene,  naphthalene,  benzoate,  p-hydroxybenzoate, 

salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. Enzyme assays 

with cell extracts showed that the enzymes of the meta, ortho, and modified ortho 

cleavage  pathways  can  be  induced  in  strain  JS150.  Strain  JS150  contains  a 

nonspecific toluene dioxygenase with a substrate range similar to that found in 

strains  of  Pseudomonas  putida.  Chlorobenzene-grown  cells  of  strain  JS150 

degraded  mixtures  of  chlorobenzene,  benzene,  toluene,  naphthalene, 

trichloroethylene,  and  1,2-  and  1,4-dichlorobenzenes  in  continuous  culture. 

Results indicated that induction of appropriate biodegradative pathways in strain 

JS150 permits the biodegradation of complex mixtures of aromatic compounds.

1.4.3.4 Degradation under oxygen-limited conditions

Vogt  et  al.  (2002)  studied  the  monochlorobenzene  degradation  at  low 

oxygen  concentration  by  five  bacterial  strains  (Acidovorax  facilis  B517, 

Cellulomonas turbata  B529,  Pseudomonas veronii  B547,  Pseudomonas veronii 

B549, and Paenibacillus polymyxa B550) isolated on chlorobenzene as the sole 

source of carbon and energy. These strains were screened for the accumulation of 

the  putative  metabolic  intermediate  3-chlorocatechol  during  growth  on 

chlorobenzene under oxygen-limited conditions in the presence and absence of 

nitrate (1 mM). 3-Chlorocatechol  accumulated in the growth media of all  five 

strains,  but  accumulation  was  significantly  less  in  cultures  of  A.  facilis  B517 

compared to the other four strains. The presence of nitrate did not influence the 

biological conversion pattern. For P. veronii B549, a clear relationship between 

the presence of 3-chlorocatechol in the medium and low oxygen concentrations 

was  demonstrated.  The  authors  made  the  assumption  that  accumulation  of  3-

chlorocatechol  was due to the low enzymatic  turnover of the 3-chlorocatechol 

cleaving enzyme, catechol-1,2-dioxygenase, at low oxygen concentrations.
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Other strains able to degrade monochlorobenzene as a sole carbon source 

include  Escherichia Hermanii (Kiernicka  et al.,1999) and  Acidovorax avenae 

(Monferràn  et al., 2005).  Escherichia Hermanii  was isolated from sludge of an 

industrial wastewater treatment plant. High chlorobenzene concentrations (up to 

394 mg l-1) had low toxic effects towards this strain, which was able to degrade 

chlorobenzene without any previous adaptation.  Acidovorax avenae was isolated 

in  a  polluted  site  of  Suquìa  River  (Argentina)  from  a  subsurface  microbial 

community acclimatated during 15 days using 1,2-dichlorobenzene as  the sole 

carbone source (aerobic conditions). Acidovorax avenae was able to perform the 

complete  biodegradation  of  1,2-dichlorobenzene  in  two  days  affording 

stoichiometric  amounts  of  chloride.  This  pure  strain  was  also  tested  for 

biodegradation of chlorobenzene, 1,3- dichlorobenzene and 1,4- dichlorobenzene, 

giving similar results to the experiments using dichlorobenzene. The aromatic-

ring-hydroxylating  dioxygenase  (ARHDO)  α-subunit  gene  core,  encoding  the 

catalytic site of the large subunit of chlorobenzene dioxygenase, was detected by 

PCR amplification and confirmed by DNA sequencing. These results suggest that 

the  isolated  strain  of  A.  avenae  could  use  a  catabolic  pathway,  via  ARHDO 

system,  leading  to  the  formation  of  chlorocatecols  during  the  first  steps  of 

biodegradation, with further chloride release and subsequent paths that showed 

complete substrate consumption.

Cometabolic  biodegradation has  also  been  reported  (Jeckorek  et  al., 

2002).  The  degradation  of  chlorobenzene  was  investigated  with  the  specially 

chosen strain Methylocystis sp. GB 14 DSM 12955, in 23 ml headspace vials and 

in  a  soil  column filled  with  quaternary  aquifer  material  from a  contaminated 

location in Bitterfeld (Germany). A long-term experiment was carried out in this 

column: groundwater polluted by chlorobenzene was continuously fed through the 

column, bubbled with a 4% CH4-96% air mixture. Chlorobenzene was oxidized 

by up to 80% under pure culture conditions in the model experiments and was 

completely  degraded  under  the  mixed  culture  conditions  of  the  column 

experiments.  The enzyme responsible  for  this  ability  was the sMMO (soluble 

methane monooxygenase)
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CHAPTER 2

2. BIODEGRADATION TECHNOLOGIES FOR REMEDIATION 
OF CONTAMINATED SITES
___________________________________________________________________________________________________

_

2.1 INTRODUCTION

Bioremediation is a grouping of technologies that use microbiota to degrade or 

transform hazardous contaminants to compounds such as carbon dioxide, water, 

inorganic  salts,  microbial  biomass,  and  other  byproducts  that  may  be  less 

hazardous than the parent compounds. Numerous application of bioremediation 

are nowadays widely accepted as a remedial alternative and are in wide use at site 

contaminated  with  petroleum  products  and/or  hazardous  wastes.  Some 

bioremediation  technologies,  such  as  cometabolic  bioventing,  are  still  in 

development  and  should  be  considered  innovative.  Other  bioremediation 

technologies, such as anaerobic bioventing, are current topic of research.

The following contaminants have been bioremediated succesfully at many sites:

• Halogenated and non-halogenated volatile organic compounds (VOCs)

• Halogenated  and  non-halogenated  semi-volatile  organic  compounds 

(SVOCs).

Contaminants with a more limited bioremediation performance include:

• Polycyclic aromatic hydrocarbons (PAHs)

• Organic pesticides and herbicides

• Polychlorinated biphenils (PCBs).

Bioremediation remains an active field of technology research and development at 

both  the  laboratory  and  field  scale.  For  example,  applications  to  chlorinated 

aliphatic hydrocarbons (CAHs), perchlorate and methyl-tert-butyl ether (MTBE) 

were developed rapidly in recent years.
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The field of bioremediation can be divided in to several broad categories. For 

example, bioremediation technologies may be applied to in situ or ex situ media. 

In situ  processes treat soils and groundwater in place without removal while  ex 

situ processes involve the removal of the contaminated media to a treatment area.

Another way to divide the bioremediation field is based on additives to 

environmental media. Intrinsic bioremediation depends on indigenous microflora 

to degrade contaminants (EPA, 2000). This approach is used  in situ  and takes 

advantage  of  pre-existing  processes  to  degrade  hazardous  wastes.  Intrinsic 

bioremediation require careful site assessment and monitoring to make sure that 

the ongoing processes are protective of environmental receptors.  Alternatively, 

enhanced bioremediation facilitates biodegradation by manipulating the microbial 

environment, typically by supplying chemical amendments such as air, organic 

substrates, electron donors, nutrients and other compounds that affect metabolic 

reactions (EPA, 2000). Enhanced bioremediation may also called  biostimulation 

when only chemical amendments are added. Examples include bioventing, land 

farming, biopiles, composting. Biostimulation can be applied in situ or ex situ, to 

treat  soil  and  other  solids,  groundwater  and  surface  water.  Sometimes 

bioaugmentation (addition of microbial cultures) is used to enhance biotreatment. 

Bioaugmentation (almost always performed in conjunction with biostimulation) 

may be needed for specific contaminants that are not degraded by the indigenous 

microorganisms.

In bioremediation, fundamental biological activities are exploited to degrade or 

transform  contaminants  of  concern.  The  biological  activity  to  be  exploited 

depends  on  the  specific  contaminants  of  concern  and  the  media  where  the 

contamination is located. For example in  aerobic environments many microbes 

are able to degrade organic compounds, such as hydrocarbons. These microbes 

gain  energy  and  carbon  for  building  cell  materials  from  these  biochemical 

reactions. At many sites with fuel contamination, the amount of oxygen present 

limits  the  extent  of  biotreatment.  Thus,  by adding  oxygen in  the  form of  air, 

contaminant  degradation  proceeds  directly.  In  cometabolism,  microbes  do  not 

gain energy or carbon from degrading a contaminant. Instead, the contaminant is 

degraded  via  a  side  reaction.  Cometabolic  bioventing  is  an  example,  where 
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microbes may be fed with propane and degrade trichloroethyline (TCE) or less 

chlorinated ethenes.

Depending on the contaminant of concern and the media, a technology may 

exploit aerobic or anaerobic metabolism. Aerobic metabolism is more commonly 

exploited and can be effective for hydrocarbons and other organic compounds. 

Many  organisms  are  capable  of  degrading  hydrocarbons  using  oxygen  as  the 

electron acceptor and the hydrocarbons as carbon and energy sources. In some 

cases, contaminants are aerobically degraded to carbon dioxide and water, but in 

other  cases  the  microbes  do  not  completely  degrade  contaminants.  Aerobic 

technologies may also change the ionic form of metals. If a site contains mixed 

metal and organic wastes, it is necessary to consider whether theoxidized forms of 

the metal species will be environmentally acceptable.

Anaerobic metabolism involves microbial reactions occurring in the absence of 

oxygen,  and  encompasses  many  processes  including  fermentation, 

methanogenesis,  reductive  dechlorination,  sulfate-reducing  activities,  and 

denitrification.  Depending  on  the  contaminant  of  concern,  a  subset  of  these 

activities could be cultived. 

In  anaerobic  metabolism,  nitrate,  sulfate,  carbon  dioxide,  oxidized  metals,  or 

organic compounds may replace oxygen as the electron acceptor. For example, in 

anaerobic reductive dechlorination, chlorinated solvents may serve as the electron 

acceptor.

When selecting a bioremediation technology, it is important to consider the 

contaminants of concern, contaminated matrix, potential biological pathways to 

degrade a contaminant, and current condition of a site. For example, TCE can be 

degraded via aerobic and anaerobicmechanisms. If groundwater is contaminated 

with  TCE  current  groundwater  conditions  may  be  helpful  in  deciding  which 

biological  mechanism  to  exploit.  If  groundwater  is  already  anaerobic,  then 

anaerobic  reductive dechlorination may be the  best  approach.  However,  if  the 

TCE plume is diffuse and the groundwater is aerobic, it may be possible to use 

cometabolic technologies.

A key concept in evaluating all bioremediation technologies is microbial 

availability:  if  the contaminant is  so tightly  bound up in  the solid  matrix that 
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microorganism cannot access it, then it cannot be bioremediated. However, low 

microbial  availability  does  not  imply  an  absence  or  risk;  compounds  may  be 

available  to  environmental  receptors depending on the receptors  and routes of 

exposure.

Thus, when selecting a bioremediation technology for a specific site, it is prudent 

to consider the contaminants of concern, potential degradation intermediates and 

residual of the contaminants, co-contaminants, environmental receptors, routes of 

exposure, and buffer zones between contamination and receptors. Bioremediation 

technologies have proven to be protective and cost-effective solutions at many 

sites. However, conditions at a specific site may not be appropriate.

2.2 IN SITU BIOREMEDIATION

There are two major types of in situ bioremediation: intrinsic and enhanced. Both 

rely on natural  processes  to  degrade contaminants  with (enhanced)  or  without 

(intrinsic) amendments.

In recent years, in situ  bioremediation concepts have been applied in treating 

contaminated soil and groundwater. Removal rates and extent vary based on the 

contaminant of concern and site-specific characteristics. Removal rates also are 

affected  by  variables  such  as  contaminant  distribution  and  concentrations; 

indigenous microbial populations and reaction kinetics; and parameters such as 

pH, moisture content, nutrient supply and temperature. Many of these factors are a 

function  of  the  site  and  the  indigenous  microbial  community  and,  thus,  are 

difficult to manipulate.

When in situ  bioremediation is selected as a treatment, site monitoring activities 

should demonstrate  that  biologically mediated removal  is  the primary route of 

contaminant  removal.  Sampling strategies should consider  appropriate  analytes 

and tests, as well as site heterogeneity. In some cases, extensive sampling may be 

required  to  distinguish  bioremediation  from  other  removal  mechanisms  or 

statistical  variations.  Small-scale  treatability  studies  using  samples  from  the 

contaminated site may also be useful in the demonstrating the role that biological 

activity plays in contaminant removal (EPA, 1995B; EPA, 1998a; EPA, 2000).
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2.2.1 Intrinsic in situ bioremediation

Intrinsic bioremediation relies on natural processes to degrade contaminants 

without  altering  current  conditions  or  adding  amendments.  Intrinsic 

bioremediation may play a role in monitored attenuation (MNA) sites. Natural 

attenuation (NA) relies on natural physical, chemical and biological processes to 

reduce or attenuate contaminant concentrations. Under favorable conditions, NA 

will  reduce  the  concentrations,  mass,  toxicity,  mobility,  and/or  volume  of 

contaminants in soil and groundwater. Natural processes in NA include dilution, 

dispersion,  sorption,  volatilization,  chemical  reactions  such  as  oxidation  and 

reduction, biological reactions and stabilization. Some processes have undesirable 

results, such creation of toxic degradation products or the transfer of contaminants 

to other media.

Implementing natural attenuation requires a thorough site assessment and 

development of a conceptual model of the site. After determining the presence of 

a stable shrinking plume, site-specific, risk-based decisions using multiple lines of 

evidence  may  facilitate  implementation  of  MNA  at  a  site.  While  MNA  is 

somewhat passive in that nothing is being added to the contamination zone, it 

requires active monitoring , which should be included as part of the design plan 

for a site. In some cases, such long-term monitoring may be more expensive than 

active remediation. MNA is only applicable to carefully controlled and monitored 

sites and must reduce contaminant concentrations to levels that are protective of 

human  health  and  the  environment  in  reasonable  time  frames  (EPA,  1998a). 

Depending on site-specific conditions, MNA may be a reasonable alternative for 

petroleum hydrocarbons as well as chlorinated and non chlorinated VOCs and 

SVOCs (EPA, 1999a; EPA, 1999b).

Important observations related to the performance of natural attenuation 

technology are:

• it  is  a  relatively  simple  technology  compared  to  other  remediation 

technologies;

• it can be carried out with little or no site disruption;

• it  often  requires  more  time  to  achieve  cleanup  goals  than  other 

conventional remediation methods;
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• it requires a long-term monitoring program; program duration affects 

the costs;

• if natural attenuation rates are too slow, the plume could migrate;

• it is difficult to predict with high reliability the performance of natural 

attenuation;

Sites must meet one ore more of the following criteria:

• it  must be located in an area with little  risk to human health or the 

environment;

• the  contaminated  soil  or  groundwater  must  be  located  an  adequate 

distance from potential receptors;

• there must be evidence that natural attenuation is actually occurring at 

the site.

2.2.2 Enhanced in situ bioremediation

Enhanced  in situ bioremediation can be applied to groundwater, vadose 

zone soils or, more rarely, aquatic sediments. Exogenous microorganisms may be 

added  where  organisms  able  to  degrade  specific  contaminants  are  absent 

(bioaugmentation).  Additives  such  as  oxygen  (or  other  electron  acceptors), 

nutrients, biodegradable carbonaceous substrates, bulking agents, and/or moisture 

are added to enhance the activity of natural  occurring or indigenous microbial 

populations:

Bioaugmentation: involves the addition of supplemental microbes to the 

subsurface where organisms able to degrade specific contaminants are deficient. 

Microbes may be “seeded” from populations already present at a site and grown in 

aboveground reactors or from specially cultivated strains of bacteria known to 

degrade specific contaminants. The application of bioaugmentation technology is 

highly  site-specific  and  highly  dependent  on  the  microbial  ecology  and 

physiology of the subsurface (EPA 1998).

Nutrient addition: involves the addition of key biological building blocks, 

such  as  nitrogen  and  phosphorus  and  other  trace  nutrients  necessary  for  cell 

growth.  Addition  of  nutrients  generally  is  applied  as  a  supplement  to 
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bioaugmentation  or  addition  of  electron  donors  or  electron  acceptors,  so  that 

concentrations of nutrients in the subsurface do not become a limiting factor for 

an in situ bioremediation application.

Electron donor addition: involves the addition of a substrate that acts as a 

reductant in the redox reaction used by the CAH-degrading microbe to produce 

energy. A substrate such as toluene, propane, or methane may be added to act as a 

cometabolic  oxidant,  when  the  CAH  also  is  oxidized.  A  substrate  such  as 

hydrogen, a source of hydrogen, or a hydrogen release compound may be added to 

act as a direct reductant, when the CAH is reduced.

Electron acceptor addition: involves the addition of oxygen (for aerobic 

mechanisms) or an anaerobic oxidant such as nitrate (for anaerobic mechanisms), 

which is used by the CAH-degrading microbes present in the subsurface.

2.2.2.1 Vadose zone soil remediation

While the funadamental biological activities exploited by in situ bioremediation 

may occur naturally, many sites will require intervention to facilitate cleanup. For 

example  the  addition  of  organic  substrates,  nutrients  or  air  will  provide  the 

appropriate  environment  for  specific  microbial  activities  or  enhanced removal 

rates.  In  general,  hydrocarbons  and  lightly  chlorinated  contaminants  may  be 

removed through aerobic treatment while highly chlorinated species are degraded 

primarily through anaerobic treatment. Both anaerobic and aerobic treatment may 

occur through direct or cometabolic pathways (see 1.3.4.2).

The primary in situ biological technology applicable is bioventing (aerobic, 

cometabolic, or anaerobic).

Aerobic  bioventing is  useful  in  treating  aerobically  degradable 

contaminants  such  as  fuels.  Contaminated  unsaturated  soils  with  low  oxygen 

concentrations  are  treated  by  supplying  oxygen  to  facilitate  aerobic  microbial 

biodegradation. Oxygen is typically introduced by air injection wells that push air 

into the subsurface (figure 2.1); vacuum extraction wells , which draw air through 

the  surface,  may  also  be  used.  Extracted  gases  may  require  treatments  since 

volatile compounds may be removed from the ground. Compared with soil vapor 

extraction bioventing employs lower air flow rates that provide only the amount 

ofoxygen required to enhance removal. Operated properly the injection of air does 
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not  result  in  the  release  of  the  contaminants  to  the  atmosphere  through 

volatilization because of these low flow rates. Bioventing is designed primarily to 

trea  aerobically  degradable  contaminants,  such  as  non-chlorinated  VOCs  and 

SVOCs, that are located in the vadose zone of the capillary fringe. In addition to 

fuels  treatment,  aerobic  bioventing has treated a  variety of other contaminants 

including  non-halogenated  solvents  such  as  benzene,  acetone  ,toluene,  and 

phenol; lightly halogenated solvents such as 1,2-dichloroethane, dichloromethane, 

and  chlorobenzene;  and  SVOCs  such  as  low-molecular-weight  PAHs. 

Nevertheless  bioventing  has  some  limitations  involving  the  ability  to  deliver 

oxygen to the contaminated soil. For example, soils with extremely high moisture 

content may be difficult to biovent because of reduced soil gas permeability.

While it is relatively inexpensive, bioventing can take a few years to clean 

up a site depending on contaminant concentrations and site-specific removal rates.

Figure 2.1. Aerobic bioventing in injection mode.

Cometabolic bioventing has been used at a few sites to treat chlorinated 

solvents  such  as  trichloroethilene  (TCE),  trichloroethane  (TCA)  and 

dichloroethene (DCE). Similar to bioventing, cometabolic bioventing involves the 

injection of gases into the subsurface;  however cometabolic  bioventing injects 

both air and a volatile organic substrate, such as propane. This technology exploits 

competitive reactions mediated by monooxygenase enzymes which catalyze the 

oxidation of hydrocarbons, often through epoxide intermediates. These enzyme 

can  also  catalyze  the  dechlorination  of  chlorinated  hydrocarbons.  Thus,  by 
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supplying an appropriate organic substrate and air, production of monooxygenases 

may be stimulated resulting in the contaminants breakdown (see 1.3.4.2.1).

In addition to the variable discussed for the aerobic bioventing, the degradation 

rate and design of cometabolic bioventing systems are dependent on many factors 

including soil gas permeability, organic substrate concentration, type of organic 

substrate selected, and oxygen supply and radius of influence. As with aerobic 

bioventing,  difficulty  in  distributing  gases  in  the  subsurface  may  make  the 

application of this technology more complicated.

Anaerobic bioventing. While aerobic and cometabolic bioventing are useful for 

degrading  many  hydrocarbons  and  lightly  chlorinated  compounds,  some 

chlorinated species are not effectively treated aerobically. Microbes may degrade 

these  contaminants  directly  via  anaerobic  reductive  dechlorination  or  through 

anaerobic  cometabolic  pathways.  Anaerobic  reductive  dechlorination  is  a 

biological mechanism typically marked by sequential removal of chlorine from a 

molecule (see 1.3.4.2.2). Microbes possessing this pathway do not gain energy 

from this process. Anaerobic cometabolism is similar to aerobic cometabolism in 

that microbes fortuitously degrade contaminants while reducing other compounds 

(cometabolites).  Anaerobic bioventing may use both biological  mechanisms to 

destroy the contaminants of concern.

Anaerobic bioventing uses the same type of gas delivery system as the 

other bioventing technologies, but injects nitrogen and an electron donor, instead 

of air, to establish reductive anaerobic conditions. The nitrogen displaces the soil 

oxygen, and small amounts of an electron donor gas (such as hydrogen and carbon 

dioxide)  produce  reducing  conditions  in  the  subsurface,  thereby  facilitating 

microbial dechlorination. Volatile and semi-volatile compounds may be produced 

during anaerobic bioventing. Some of these compounds may be slow to degrade 

under  anaerobic  conditions.  These  compounds  may  be  treated  in  two  ways. 

Volatile compounds may diffuse into the soils surrounding the treatment zone, 

where  aerobic  degradation  may  occur.  SVOCs  and  VOCs  remaining  in  the 

treatment zone may be treated by following anaerobic bioventing with aerobic 

bioventing.  Since  aerobic  and  anaerobic  bioventing  share  similar  gas  delivery 

systems, the switch can be made by simply changing the injected gas.
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Anaerobic  bioventing  is  an  emerging  technology  that  has  been 

demonstrated in several laboratory and field studies. This process may be useful 

in treating highly chlorinated compounds such as tetrachloroethene (PCE), TCE, 

RDX,  pentachlorophenol,  and  pesticides  such  as  lindane  and 

dichlorodiphenyltrichloroethane  (DDT).  As  with  the  other  bioventing 

technologies, the ability to deliver gases to the subsurface is important. Soils with 

high moisture content or low gas permeability may require careful system design 

to deliver appropriate levels of nitrogen and the electron donor. Sites with shallow 

contamination or nearby buildings are also a challenge since this technology is 

operated by injecting gases. In addition, anaerobic bioventing can take a few years 

to clean up a site depending on the contaminant concentrations and site-specifi c 

removal rates.

2.2.2.2 Surficial soil remediation

If contamination is shallow, soil may be treated in place using techniques similar 

to land treatment or composting. Variations of these technologies involve tilling 

shallow soils and adding amendments to improve aeration and bioremediation. 

Since  these  treatments  do  not  include  an  impermeable  sublayer,  contaminant 

migration  may  be  a  concern  depending  on  the  contaminants  of  concern  and 

treatment amendments. A more prudent approach would be to excavate soils and 

treat them in lined beds.
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2.2.2.3 Groundwater and saturated soil remediation

In situ bioremediation techniques applicable to ground water and saturated 

soil include dechlorination using anaerobic reducing conditions, enhanced aerobic 

treatment, biological reactive barriers that create active remediation zones, and 

bioslurping/biosparging techniques that promote aerobic degradation.

Anaerobic reductive dechlorination has been used at many sites where the 

ground water has been contaminated with chlorinated solvents, such as TCE or 

PCE. In this treatment, organic substrates are delivered to the subsurface where 

they are fermented. The fermentation creates an anaerobic environment in the area 

to  be  remediated  and  generates  hydrogen  as  a  fermentation  byproduct.  The 

hydrogen  is  used  by  a  second  microbial  population  to  sequentially  remove 

chlorine atoms from chlorinated solvents (see 1.3.4.2.1). If PCE were degraded 

via  reductive dechlorination,  the  following sequential  dechlorination  would be 

observed: PCE would be converted to TCE, then to DCE, vinyl chloride (VC), 

and/or dichloroethane (EPA, 1998a). 

Anaerobic  dechlorination  may  also  occur  via  cometabolism  where  the 

dechlorination is incidental to the metabolic activities of the organisms. In this 

case, contaminants are degraded by microbial enzymes that are metabolizing other 

organic substrates. Cometabolic dechlorination does not appear to produce energy 

for  the  organism.  At  pilot-  or  full-scale  treatment,  cometabolic  and  direct 

dechlorination may be indistinguishable,  and both processes may contribute to 

contaminant removal. The microbial processes may be distinguished in the more 

controlled environment of a bench-scale system (EPA, 1998a). 

Anaerobic reductive dechlorination is primarily used to treat halogenated 

organic  contaminants,  such  as  chlorinated  solvents.  As  well  as  the  variables 

discussed initially, the treatment rate and system design are dependent on several 

factors including site hydrology and geology, type and concentration of organic 

substrates,  and  site  history.  As  with  cometabolic  bioventing,  the  selection  of 

organic substrate and the concentration used are controllable and can be important 

to the removal rate. Treatability or bench-scale testing can be useful in selecting 

the best  organic substrate and concentration for a site. In addition, small-scale 

testing can demonstrate that full dechlorination is possible at a site. In some cases, 
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dechlorination may stall at DCE despite the presence of sufficient electron donors. 

If a site does not demonstrate full dechlorination (either as part of site assessment 

or  in  microcosm  testing),  a  combined  treatment  strategy,  such  as  anaerobic 

treatment  followed  by  aerobic  treatment,  may  be  successful.  Alternatively, 

bioaugmentation may improve the dechlorination rate.

Aerobic Treatment. Similar to bioventing, enhanced in situ aerobic ground water 

bioremediation  processes  are  used  in  situations  where  aerobically  degradable 

contaminants, such as fuels, are present in anaerobic portions of an aquifer. In 

these situations, air or other oxygen sources are injected into the aquifer near the 

contamination (figure 2-2). As the oxygenated water migrates through the zone of 

contamination,  the  indigenous  bacteria  are  able  to  degrade  the  contaminants 

(EPA, 1998a; EPA, 2000).

Aerobic treatment may also be used to directly or cometabolically degrade 

lightly chlorinated species, such as DCE or VC. In the direct aerobic pathway, air 

is injected into the aquifer. The microbes appear to generate energy by oxidizing 

the  hydrocarbon  backbone  of  these  contaminants,  resulting  in  the  release  of 

chloride  (EPA,  2000).  This  process  has  been  used  to  complete  contaminant 

removal following anaerobic treatment at several sites (EPA, 1998a; EPA, 2000).

Cometabolic  aerobic  treatment  is  founded  on  the  same  biological 

principles as  cometabolic  bioventing and involves the addition of  oxygen and 

organic substrates, such as methane, to the aquifer. As with other cometabolic 

processes, these organic substrates are metabolized by enzymes that incidentally 

degrade the contaminant. In this treatment, sufficient oxygen must be present to 

fuel the oxidation of both the substrate and contaminant.
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Figure 2.2. Aerobic treatment.

Amendment Delivery.  In situ groundwater treatment,  either aerobic or 

anaerobic, may be configured as direct injection of air or aqueous streams or as 

ground  water  recirculation.  In  direct  injection,  amendments,  such  as  organic 

substrates, oxygen sources, or nutrients, are directly injected into the aquifer. For 

example, oxygen may be sparged into the aquifer as a gas. Lactate or hydrogen 

peroxide  may  be  injected  as  a  liquid  stream;  when  using  hydrogen  peroxide, 

caution should be used as it may act as a disinfectant. In some cases, both liquids 

and  gases  are  added.  The  ground  water  recirculation  configuration  involves 

extracting ground water, amending it as needed, and then re-injecting it back into 

the aquifer. Recirculation may also be conducted below the ground surface by 

extracting  ground  water  at  one  elevation,  amending  it  in  the  ground,  and  re-

injecting it into another elevation (EPA, 1998a; EPA, 2000).

In  addition  to  the  variables  discussed  initially,  the  treatment  rates  and 

system  design  are  the  result  of  several  factors  including  site  hydrology  and 

geology, amendment to be added, solubility of air or oxygen sources, and site 
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history. The low solubility of air in water often limits reaction rates and may make 

this process impractical if cleanup time is short.

Biological  reactive  barriers  consist  of  an  active  bioremediation  zone 

created  in  the  contamination  zone.  The  use  of  in  situ  treatment  walls  for 

remediation is an emerging technology that has been developed and implemented 

only  within  the  last  few  years.  Treatment  walls  are  structures  installed 

underground to treat the contaminated groundwater found at hazardous waste sites 

(figure 2.3).Treatment walls rely on the natural movement of water to carry the 

contaminants  through  the  wall  structure.  As  contaminated  groundwater  passes 

through the treatment wall, the contaminants are either trapped by the treatment 

wall or transformed into harmless substances that flow out of the wall (USEPA, 

1996d).  Target  contaminant  groups  for  passive  treatment  walls  are  VOCs, 

SVOCs, and inorganics. The specific filling chosen for the wall is based on the 

contaminant  found  at  the  site.  Wall  fillings  work  through  different  chemical 

processes,  of which the three most common are (USEPA, 1996d; Birke et  al., 

2003): 

• Sorption barriers contain fillings that remove contaminants from 

the  groundwater  by  physically  removing  contaminants  from the 

groundwater and holding them on the barrier surface. Zeolites and 

activated carbon are two examples of sorption barriers.

• Precipitation barriers contain fillings that react with contaminants 

in the groundwater as they pass through the treatment wall.  The 

reactions  cause  the  contaminants  dissolved  in  groundwater  to 

become  insoluble  and  to  precipitate  out.  The  barrier  traps  the 

insoluble products and clean groundwater flows out the other side.

• Degradation  barriers  cause  reactions  that  break  down  the 

contaminants  in  the  groundwater  into  harmless  products.  Filling 

walls with iron granules helps ton degrade certain VOCs, and walls 

filled with a mixture of nutrients and oxygen sources can stimulate 

the activity of the microorganisms found in the groundwater.
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Two main types of treatment walls exist:

• Permeable reactive trench: this is the simplest form of treatment 

walls and it consists of a trench that extends across the entire width 

of the plume. The system is installed by digging a trench and filling 

it  with  permeable  material.  As  the  contaminant  plume  moves 

through  the  wall,  contaminants  are  removed  by  various  mass 

transfer processes such as air stripping, SVE, and adsorption.

• Funnel  and  gate  systems: used  primarily  when  contaminated 

plumes are too large or too deep to dig a trench across its width. To 

overcome this problem, a system consisting of low permeability 

cut-off walls are installed to funnel contaminated groundwater to a 

smaller reactive wall to treat the plume. When dealing with funnel 

and  gate  systems,  the  gate  is  used  to  pass  contaminated 

groundwater through the reactive wall, and the funnel is integrated 

into  the  system to  force  water  through  its  gates.  Plumes  which 

contain  a  mixture  of  contaminants  are  funnelled  through a  gate 

with multiple reactive walls in series 

Important  observations  related  to  the  performance  of  passive/reactive 

treatment technology are:

• It is limited to a subsurface lithology that has a continuous aquitard 

at  a  depth  that  is  within  the  vertical  limits  of  the  trenching 

equipment.

• Passive  treatment  walls  have  a  tendency  to  lose  their  reactive 

capacity  over  time,  and  require  replacement  of  the  reactive 

medium.

• Large and deep plumes are more difficult to remediate than small 

and shallow plumes. The complete cost of using treatment walls to 

remediate contaminated groundwater is not available. However, the 

cost  is  believed  to  be  dependent  on  the  reactive  media  and  the 

contaminant concentration in the groundwater.
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Figure 2.3. Permeable reactive barrier.

Biosparging  and  bioslurping.  Biosparging  (similar  to  air  sparging) 

involves the injection of a gas (usually air or oxygen) and occasionally gas-phase 

nutrients,  under  pressure,  into  the  saturated  zone  to  promote  aerobic 

biodegradation. In air sparging, volatile contaminants also can be removed from 

the saturated zone by desorption and volatilization into the air stream. Emphasis 

on the biological degradation rate over physical removal, as well as lower rates of 

air injection, are what distinguishes this technology from air sparging.

Typically,  biosparging is  achieved by injecting air  into a  contaminated 

subsurface formation through a specially designed series of injection wells. The 

air creates an inverted cone of partially aerated soils surrounding the injection 

point.  The  air  displaces  pore  water,  volatilizes  contaminants,  and  exits  the 

saturated  zone  into  the  unsaturated  zone.  While  in  contact  with  groundwater, 

oxygen dissolution from the air into the groundwater is facilitated and supports 

aerobic biodegradation. 

A  number  of  contaminants  have  been  successfully  addressed  with 

biosparging technology, including gasoline components such as benzene, toluene, 

ethylbenzene,  and  xylenes  (BTEX)  and  SVOCs.  Biosparging  is  most  often 

recommended  at  sites  impacted  with  mid-weight  petroleum  hydrocarbon 

contaminants, such as diesel and jet fuels. Lighter contaminants, such as gasoline, 
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tend to be easily mobilized into the unsaturated zone and physically removed. 

Heavier contaminants, such as oils, require longer remedial intervals because of 

reduced  microbial  bioavailability  with  increasing  carbon  chain  length  (EPA, 

2004b). Care must be taken to determine whether contaminant concentrations in 

soil gas and released vapors resulting from biosparging require treatment. For this 

reason,  biosparging  may  be  implemented  along  with  SVE or  bioventing  as  a 

remedy for  increased contaminant  concentrations  in  the unsaturated zone.  The 

SVE wells  are  designed to  capture  the introduced air  and contaminant  vapors 

(EPA, 2004b). Figure 2.4 depicts a typical biosparging system with optional SVE 

system. Alternatively, a lower-flow bioventing system may be added to facilitate 

bioremediation of volatilized contaminants in the vadose zone. 

One  specialized  form of  biosparging  involves  the  injection  of  organic 

gases into the saturated zone to induce cometabolic biodegradation of chlorinated 

aliphatic hydrocarbons (analogous to cometabolic bioventing). The injection of 

gases below the water table distinguishes biosparging from bioventing. In contrast 

to cometabolic bioventing, the solubility of organic gases in water limits delivery 

of the primary substrate during cometabolic biosparging applications.

Figure 2.4. Biosparging system.
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Bioslurping  (also  known  as  multi-phase  extraction)  is  effective  in 

removing  free  product  that  is  floating  on  the  water  table  (Battelle,  1997). 

Bioslurping combines the two remedial approaches of bioventing and vacuum-

enhanced free-product recovery. Bioventing stimulates aerobic bioremediation of 

contaminated soils in situ, while vacuum-enhanced free-product recovery extracts 

light, nonaqueous-phase liquids (LNAPLs) from the capillary fringe and the water 

table. A bioslurping tube with adjustable height is lowered into a ground water 

well and installed within a screened portion at the water table (see Figure 2.5). A 

vacuum is applied to the bioslurping tube and free product is “slurped” up the tube 

into a trap or oil water separator for further treatment. Removal of the LNAPL 

results in a decline in the LNAPL elevation, which in turn promotes LNAPL flow 

from  outlying  areas  toward  the  bioslurping  well.  As  the  fluid  level  in  the 

bioslurping  well  declines  in  response  to  vacuum  extraction  of  LNAPL,  the 

bioslurping tube also begins to extract vapors from the unsaturated zone.  This 

vapor extraction promotes soil gas movement, which in turn increases aeration 

and enhances aerobic biodegradation (Miller, 1996).

Figure 2.5. Bioslurping technology.
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2.3 EX SITU BIOREMEDIATION

Ex situ bioremediation technologies can most easily be classified by the 

physical state of the medium to which they are typically applied: solids, solid–

liquid mixtures, and liquids. Also common to the ex situ remediation technologies 

are  the  processes  for  removing  contaminated  materials  for  treatment. 

Contaminated media are excavated or extracted (e.g., ground water removal by 

pumping) and moved to the process location, which may be within or adjacent to 

the contamination zone.

2.3.1 Solids

The most common types of solids bioremediation are (1) land farming or 

land treatment, (2) composting, and (3) biopiles, cells, or mounds.

2.3.1.1 Land Treatment

Land treatment, also called land farming, is useful in treating aerobically 

degradable contaminants. This process is suitable for non-volatile contaminants at 

sites where large areas for treatment cells are available. Land treatment of site-

contaminated soil usually entails the tilling of an 8-to 12-inch layer of the soil to 

promote  aerobic  biodegradation  of  organic  contaminants.  The  soils  are 

periodically tilled to aerate the soil, and moisture is added when needed. In some 

cases, amendments may be added to improve the tilth of the soil, supply nutrients, 

moderate  pH,  or  facilitate  bioremediation.  Typically,  full-scale  land  treatment 

would be conducted in a prepared-bed land treatment unit (see Figure 2.6)—an 

open,  shallow reactor  with an impermeable lining on the bottom and sides  to 

contain  leachate,  control  runoff,  and  minimize  erosion  and  with  a  leachate 

collection system under  the soil  layer  (EPA, 1993).  In  some cases,  hazardous 

wastes (such as highly contaminated soils) or process wastes (such as distillate 

residues) may be treated in land treatment units. In these cases, the waste may be 

applied to a base soil layer. 

The  performance  of  land  treatment  varies  with  the  contaminants  to  be 

treated. For easily biodegradable contaminants, such as fuels, land treatment is 

68



Chapter 2 Biodegradation Technologies for Remediation of Contaminated Sites

inexpensive  and effective.  Contaminants  that  are  difficult  to  degrade,  such  as 

PAHs, pesticides, or chlorinated organic compounds, are topics of research.

Figure 2.6. Land treatment.

2.3.1.2 Composting

Composting  is  a  controlled  biological  process  that  treats  organic 

contaminants  using microorganisms under thermophilic  conditions  (40°–50°C). 

For  some practitioners,  the  creation  of  thermophilic  conditions  is  the  primary 

distinction between composting and biopiles (which operate at less than 40°C), 

although  others  use  composting  as  a  term that  encompasses  both  temperature 

ranges.

In  composting,  soils  are  excavated and mixed with bulking agents and 

organic amendments, such as wood chips and vegetative wastes, to enhance the 

porosity of the mixture to be decomposed. Degradation of the bulking agent heats 

up  the  compost,  creating  thermophilic  conditions.  Oxygen  content,  moisture 

levels, and temperatures are monitored and manipulated to optimize degradation. 

Oxygen content usually is maintained by frequent mixing, such as daily or weekly 

turning of windrows. Surface irrigation often is used to maintain moisture content. 

Temperatures are controlled, to a degree, by mixing, irrigation, and air flow, but 

are  also  dependent  on  the  degradability  of  the  bulk  material  and  ambient 

conditions.

There are three designs commonly applied for composting: 
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• aerated static  piles:  compost  is  formed into  piles  and aerated  with 

blowers or vacuum pumps;

• mechanically  agitated in-vessel  composting:  compost  is  placed in  a 

reactor vessel, in which it is mixed and aerated;

• windrow composting:  compost  is  placed in  long,  low,  narrow piles 

(i.e., windrows) and periodically mixed with mobile equipment. 

Windrow composting is the least expensive method, but has the potential 

to emit larger quantities  of  VOCs.  In-vessel  composting is  generally the most 

expensive type, but provides for the best control of VOCs. Aerated static piles, 

especially  when  a  vacuum  is  applied,  offer  some  control  of  VOCs  and  are 

typically in an intermediate cost range, but will require offgas treatment. Berms 

may also be needed to control runoff during composting operations. Runoff may 

be managed by retention ponds, provision of a roof, or evaporation.

Composting  has  been  successfully  applied  to  soils  and  biosolids 

contaminated  with  petroleum  hydrocarbons  (e.g.,  fuels,  oil,  grease),  solvents, 

chlorophenols, pesticides, herbicides, PAHs, and nitro-aromatic explosives (EPA, 

1998b; EPA, 1997; EPA, 2004b). Composting is not likely to be successful for 

highly chlorinated substances, such as PCBs, or for substances that are difficult to 

degrade biologically (EPA, 1998b).

2.3.1.3 Biopiles 

Biopiles involve the mixing of excavated soils with soil amendments, with 

the mixture placed in  a  treatment  area  that  typically  includes an impermeable 

liner, a leachate collection system, and an aeration system. Biopiles are typically 

2–3 meters high, and contaminated soil is often placed on top of treated soil (see 

figure 2.7). Moisture, nutrients, heat, pH, and oxygen are controlled to enhance 

biodegradation.  This  technology  is  most  often  applied  to  readily  degradable 

species, such as petroleum contaminants. Surface drainage and moisture from the 

leachate collection system are accumulated,  and they may be treated and then 

recycled to the contaminated soil. Nutrients (e.g., nitrogen and phosphorus) are 

often added to  the recycled water.  Alkaline  or  acidic  substances  may also  be 
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added to the recycled water to modify or stabilize pH to optimize the growth of 

select microbes capable of degrading the contaminants of concern.

An air distribution system is buried in the soil as the biopile is constructed. 

Oxygen exchange can be achieved utilizing vacuum, forced air, or even natural 

draft  air  flow.  Low  air  flow  rates  are  desirable  to  minimize  contaminant 

volatilization. If volatile constituents are present in significant concentrations, the 

biopile may require a cover and treatment of the offgas. 

Biopile treatment lasts from a few weeks to a few months, depending on 

the contaminants present and the design and operational parameters selected for 

the biopile. Biopiles are typically mesophilic (10°–45°C).

Figure 2.7. Typical biopile system.

2.3.2 Solid–liquid mixtures

Solid-liquid mixtures consist of materials such as slurries and sludges. One 

technology for treating such mixtures is discussed below.

2.3.2.1 Slurry Bioreactors

Slurry bioreactors are utilized for soil, sediments, sludge, and other solid 

or semi-solid wastes. Slurry bioreactors are costly and, thus, are likely to be used 

for more difficult treatment efforts. 
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Typically, wastes are screened to remove debris and other large objects, 

then mixed with water in a tank or other vessel until solids are suspended in the 

liquid phase.  If  necessary,  further  particle  size  reduction can be  accomplished 

before the addition of water (by pulverizing and/ or screening the wastes) or after 

the addition of water (through use of a sheering mixer). Suspension and mixing of 

the solids may increase mass transfer  rates and may increase contact  between 

contaminants  and  microbes  capable  of  degrading  those  contaminants  (EPA, 

1990). Mixing occurs in tanks or lined lagoons. Mechanical mixing is generally 

conducted in tanks. Typical slurries are 10–30% solids by weight. Aeration, with 

submerged  aerators  or  spargers,  is  frequently  used  in  lagoons  and  may  be 

combined with mechanical mixing to achieve the desired results. Nutrients and 

other  additives,  such  as  neutralizing  agents,  surfactants,  dispersants,  and  co-

metabolites  (e.g.,  phenol,  pyrene)  may  be  supplied  to  improve  handling 

characteristics and microbial degradation rates. Indigenous microbes may be used 

or microorganisms may be added initially to seed the bioreactor or may be added 

continuously to maintain proper biomass levels. Residence time in the bioreactor 

varies with the matrix as well as the type and concentration of contaminant (EPA, 

1990). 

Once  contaminant  concentrations  reach  desired  levels  on  a  dry-weight 

basis, the slurry is dewatered. Typically, a clarifier is utilized to dewater the slurry 

by  gravity.  Other  dewatering  equipment  may  be  used  depending  on  slurry 

characteristics and cost considerations (Olin et al.,  1999). Water, air emissions 

from all process steps, and oversize materials may require additional treatment.

2.3.3 Liquids 

Liquids, such as surface water, groundwater, mine drainage, and effluent 

from  other  treatment  operations,  can  undergo  ex  situ  bioremediation  in 

constructed wetlands. Note that surface water and groundwater have important 

differences,  such  as  concentrations  of  contaminants  and  degradable  organic 

material, than may be found in waste streams from other treatment operations.

2.3.3.1 Constructed wetlands
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Constructed wetlands provide for biological assimilation, breakdown, and 

transformation  of  contaminants;  chemical  breakdown  and  transformation  of 

contaminants; and physical sedimentation and filtration (USDA and EPA 1994a), 

as  shown in figure 2.8.  Biological  processes  associated with wetlands include 

bioremediation  (microbially-based  remediation)  and  phytoremediation  (plant-

based remediation). Microbes attached to the surfaces of plants, plant litter, and 

the wetland substrate degrade and/or sorb the organic substances present in the 

water  undergoing  treatment  (USDA and  EPA,  1994a).  Phytoremediation  uses 

plants to remove, transfer, stabilize, or destroy contaminants through biological, 

chemical, and physical processes that are influenced by plants and their roots (i.e., 

rhizosphere) that include degradation, extraction through accumulation in plant 

roots/shoots/leaves,  metabolism  of  contaminants,  and  immobilization  of 

contaminants at the interface of roots and soil (EPA, 2004a).

Wetlands inherently have a higher rate of biological productivity/activity 

than  many  other  natural  ecosystems  and  are  thus  capable  of  efficiently  and 

economically transforming many common contaminants to harmless byproducts 

(Kadlec and Knight, 1996). Constructed wetlands have been applied successfully 

to remove contaminants such as metals, petroleum hydrocarbons, and glycols; to 

decrease  metal  concentrations  via  chemical  or  microbial  precipitation;  and  to 

neutralize  acidity.  Recent  research  also  has  demonstrated  applicability  to 

explosive-contaminated water (Bader, 1999). However, wetlands are sensitive to 

high ammonia levels, herbicides, and contaminants that are toxic to the plants or 

microbes.

Constructed wetlands are well  suited for the treatment of contaminated 

groundwater  emerging  from  surface  and  mine  seeps,  pump-and-treat  waste 

streams  with  low  concentrations  of  easily  biodegradable  contaminants,  and 

contaminated surface waters  (EPA, 2001c).  Constructed wetlands may also be 

used to pretreat contaminated water prior to conventional treatment or to further 

treat a waste stream prior to disposition or discharge (USDA and EPA, 1994b). 

However, applicability to highly acidic waste streams may not be cost-effective 

(USDA and EPA, 1994b). Discharges must meet applicable effluent limitations 

and  related  regulatory  requirements.  Discharges  that  do  not  meet  these 
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requirements  may  be  required  to  undergo  further  treatment  or  may  be  found 

suitable for recycling into the wetland as a supplemental water source.

There are various types of constructed wetlands, depending on the type of 

flow (surface or subsurface), contaminant of concern, or type of substrate, which 

can include limestone, organic material such as compost, or gravel. The chemical 

and  microbial  processes  may  proceed  either  in  an  anaerobic  or  aerobic 

environment.

Since constructed wetlands function both as macroscopic and microscopic 

ecosystems to promote contaminant treatment, the biological characteristics of the 

system must be taken into account during the design phase. The chemistry of the 

waste stream and how the passive chemical, physical, and biological processes 

affect  this  or  are,  in  turn,  affected  by  the  waste  stream are  important  design 

factors. The chemical characteristics of the waste stream can affect sizing of the 

system for adequate retention time and whether  the waste  stream may require 

pretreatment to (1) address concentration, ammonia, nutrient, and organic loads 

that may damage vegetation, or (2) remove solids or materials, such as grease, that 

may clog the wetland (USDA and EPA, 1994a). In addition, pH adjustment may 

be necessary, either prior to waste stream treatment or through use of limestone 

substrate (USDA and EPA, 1994b). Climatic and seasonal circumstances as well 

as waste stream characteristics are important considerations when selecting the 

types of plants to use in a constructed wetland. Salinity, either in the waste stream 

or as a result of treatment, can harm or destroy the wetland vegetation if the plants 

are not salt tolerant. In addition, cold weather can reduce microbial activity, and 

hail or other weather events can damage the plants (USDA and EPA, 1994a). 

The low cost, passivity (i.e., lack of dependence on power or mechanical 

components),  and  efficacy  for  treating  many  common  contaminants  are  key 

advantages of constructed wetland treatment systems. Constructed wetlands are 

often visually attractive, but can require more space than other remedial systems. 

The wetlands should be sized with an understanding that both plant-based and 

bacterial-based  remediation  will  decline  during  colder  seasons.  A  key  design 

element  is  sizing  to  achieve  adequate  retention  time to  enable  the  biological, 

chemical,  and  physical  processes  to  be  effective  (USDA  and  EPA,  1994a). 
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Seasonal, climatological, and waste stream factors that control the water balance 

in the wetland also must be considered during design to achieve project goals. 

Constructed wetlands require a continuous supply of water. While tolerant 

of fluctuating flows, constructed wetlands cannot withstand complete drying. A 

slow water flow must be maintained to prevent the development of stagnant water 

that can lead to performance and vector difficulties. Recycling wetland water can 

supplement  inflow,  but  this  can  increase  salinity  over  time,  which  can  affect 

design and cost (USDA and EPA, 1994a).

Figure 2.8. Constructed wetland.

75



CHAPTER 3

3. KINETIC MODELS FOR COMETABOLISM
____________________________________________________________________________________________________

Cometabolic biotransformation models most often stem from Michaelis 

Menten and Monod enzyme kinetics. These expressions have been expanded to 

include processes such as substrate inhibition (Broholm at al., 1992; Ely et al., 

1995a; and Kim et al., 2002a), product toxicity (Chang and Criddle, 1997; 

Alvarez-Cohen and McCarty, 1991; Kim et al., 2000) and reducing energy 

limitations (Chang and Alvarez-Cohen, 1995a; Sipkema et al., 2000). Alvarez-

Cohen and Speitel (2001) provided a review and discussion of these processes and 

the models representing them.

3.1 ENZYMATIC REACTIONS: MICHAELIS-MENTEN KINETICS

In  1913  Michaelis  and  Menten  proposed  a  kinetic  model  to  describe 

enzyme catalyzed reactions: with some simplifications, this model can be adopted 

to  simulate  most  of  the  reactions  occurring  in  the  biological  systems  with  a 

limited number of parameters. The model is based on the hypothesis that the free 

enzyme (E) and ths substrate (S) bind in an activated complex (ES), generating 

the product (P) and the enzyme (E):

                                                              k1              k2 

                                                  E + S  ⇔  ES  →  E + P                                

                                                              k-1

The parameters k1,  k2,  k-1  represent  the reaction constants;  the first  reaction is 

assumed at equilibrium, while the second is considered irreversible.
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Assuming  that  the  process  of  formation  and  disruption  of  the 

activatedcomplex follow a second order and a first order kinetics respectively, the 

reaction rates can be expressed by thr following equations:

(3.1)

 (3.2)

where the expressions in the square brackets represent the concentrations of the 

corresponding reagents.

The enzyme mass balance assumes the following form, where E0 is the 

total enzyme concentration:

[E] + [ES] = E0 = const  (3.3)

The system can be analitically solved with the hypothesis that the mass of 

the activated complex is conservative, as expressed by the following equation:

  (3.4)
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This  assumption,  known  as  quasi-stationary  state  approximation,  is 

correct if the ratio of the total enzyme concentration E0 to the initial substrate 

concentration S0 is  sufficiently  low.  This  condition is  satisfied in  most  of  the 

practical applications, with the exception of a short initial transitory state. With 

these  hypotheses,  the  analytical  solution  for  the  product  formation  rate, 

corresponding to the substrate degradation rate, assumes the form:

  (3.5)

where KS, known as “affinity constant” or “half saturation constant, is defined:

   (3.6)

For the application of this model to the microbial mediated reactions , [E0] 

can  be  assumed  as  a  constant  among  different  microorganisms;  thus,  [E0]  is 

proportional to the microbial concentration X. The substrate degradation velocity 

can be rewritten, omitting the brackets for simplicity, as:

  (3.7)

The  substrate  specific  degradation  velocity  per  unit  of  biomass,  also 

known as “degradation rate” (qs = r s / X), is expressed by the following equation:

  (3.8)
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The parameter kmax,s  accounts for both the constant k2  and the factor of 

proportionality  between  E0 and  X;  this  constant  is  generally  recognized  as 

“maximum specific degradation rate” of substrate consumption, and corresponds 

to the maximum degradation velocity that can be achieved by a unitary mass of 

microorganisms.  This  condition,  expressed  by  Eq.  2.9,  is  verified  when  the 

affinity constant Ks can be neglected in comparison to the substrate concentration 

S;  in  this  concentration  range,  the  substrate  degradation  follow  a  zero  order 

kinetic:

  (3.9)

The  kinetic  parameters  are  specific  for  the  microbial  culture  and  the 

substrate.  When  the  degradation  is  sustained  by  a  microbial  consortium,  the 

kinetic  constants  kmax and  Ks  are  obtained  from  a  weighed  average  of  the 

characteristic values of each species.

The  following  equation  represents  the  microbial  growth  (mg  L−1 d−1) 

according  to  the  Monod  model,  and  introduces  the  cell  growth  yield  Y  (mg 

cell/mg  substrate)  and  the  cell  decay  coefficient  b  (d-1),  representing  the 

endogenous cell inactivation:

  (3.10)
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3.2 SUBSTRATE INHIBITION

Microorganisms  capable  of  transforming  CAHs  through  aerobic 

cometabolism have catabolic oxygenases that catalyze the initial oxidation step of 

their  respective primary growth substrates and have potential  for initiating the 

oxidation of CAHs. The oxygenases are often non specific and fortuitously initiate 

oxidation of a variety of compounds including most  of the CAHs. In general, 

oxygenases act on unsaturated CAHs such as TCE by adding oxygen across the 

double bond to form an epoxide. With saturated CAHs such as CF or TCA, a 

hydroxyl group is generally substituted for one of the hydrogen atoms in the CAH 

molecule. Frequently, the resulting products from CAHs oxidation are chemically 

unstable: they decompose yielding products that are further metabolized by other 

microorganisms present in nature.

Because a single enzyme is responsible for the oxidation of both types of 

substrates, the presence of the growth substrate can inhibit the oxidation rate of 

the  non  beneficial  substrate  and  vice  versa.  Substrate  inhibition  describes  the 

hindrance of substrate transformation or utilization due to the competition for, or 

alteration of degradative enzymes. There are several types of inhibition, including 

self  ,  competitive,  noncompetitive,  and  mixed-inhibition.  Self  inhibition may 

result when the growth substrate itself is inhibitory at high concentrations. When 

an  enzyme  lacks  specificity,  competitive  inhibition may  occur  in  which  one 

substrate  binds  to  the  catalytic  site  of  the  enzyme,  thus  preventing  another 

substrate from reacting. A substrate may also bind to a non-reactive site on the 

enzyme, altering its conformation and creating  noncompetitive inhibition which 

reduces  the  utilization  of  another  substrate.  Competitive  and  noncompetitive 

inhibition may occur simultaneously, causing a condition termed mixed inhibition 

(Rittman and McCarty, 2001). Competition between the growth substrate and the 

cometabolic  substrate  for  oxygenase  enzymes  may  significantly  affect 

cometabolic degradation rates.

A single enzyme may thus be able to catalyze the degradation of two or 

more substrates; this scenario, which includes the cometabolic processes, can be 
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described by the following reaction scheme, where A and B represent distinct 

substrates:

  (3.11)

With the same assumptions as presented in the case of one substrate, the 

following degradation rates are obtained for the two substrates:

The half-saturation portion of each equation becomes a  function of the 

inhibitor competitive inhibition constant (Kc,A and Kc,B respectively). This model is 

known as “competitive inhibition” and describes the most frequent inhibition type 

included in mathematical modeling of cometabolic biotransformations (Broholm 

et al., 1992; Chang and Alvarez-Cohen, 1995; Chang and Criddle, 1997; Lee et 

al., 2000). The competitive inhibition constant has often been approximated with 

the  competing  substrate  half-saturation  constant.  Kim  et  al.  (2002),  however, 

noted various studies where this appeared to be an incorrect assumption and, in 

response,  presented  a  method  for  determining  the  inhibition  type  and  the 

respective constants. Kim focused on butane utilization by a mixed culture with 

cometabolic transformation of 1,1-DCE, 1,1-DCA, and 1,1,1-TCA and observed 

that competitive and mixed inhibition occurred. CAHs competitively inhibited the 
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degradation of the other CAHs and butane, while butane showed mixed inhibitory 

effects toward the CAHs.

Noncompetitive  inhibition  more  specifically  influences  the  maximum 

degradation rate, and equation 2.7 may be transformed to:

  (3.12)

where Iu = aqueous concentration of noncompetitive inhibitor (mg/L)

          KI,u = constant for noncompetitive inhibition (mg inhibitor/L)

In the case of mixed inhibition, the equation assumes a combined form of 2.11 

and 2.12, resulting in:

  (3.13)

Competitive and non competitive inhibition may or may not be caused by 

the  same  inhibitor.  Terms  for  competitive  and  non  competitive  inhibition  are 

additive and equation 2.13 may be extended to include several inhibitors.
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3.3 CAHs DEGRADATION PRODUCT TOXICITY

The oxidation of  chlorinated organics by oxygenase enzymes generates 

short lived toxic intermediate products that may damage cells,  causing cellular 

inactivation: this phenomenon is known as “product toxicity”. Alvarez-Cohen and 

McCarty verified that some oxidation products of chlorinated aliphatics, such as 

fosgene in the oxidation of chloroform, and epoxides in oxidation of chlorinated 

ethenes, irreversibly bind to proteins and lipids, thus inactivating some cellular 

functions.

The capability  of microbial  cultures to  oxidize compounds which exert 

product  toxicity  can  be  quantified  using  the  “transformation  capacity”  (TC) 

parameter, defined as the maximum mass of solvent that can be transformed by a 

given amount of cells before they are completely inactivated.

In  the  cometabolic  processes,  after  the  initial  oxidation  step,  growth 

substrates are  further  degraded to  regenerate  reducing energy (NADH),  which 

promotes more substrate oxidation. In the absence of growth substrates, methane 

oxidizers  are  capable  of  using  both  internal  energy  sources,  such  as  poly-

hydroxylbutirate (PHB), and methane catabolic intermediates, such as formate, to 

regenerate NADH; oxidation of non beneficial substrates can be carried out in the 

absence of growth substrate as long as some source of NADH regeneration is 

available.  As  oxygenase  expressing  cultures,  such  as  propane  and  phenol 

oxidizers,  may  also  exhibit  similar  responses  since  they  have  similar  enzyme 

mechanisms. However, the oxidation of non beneficial substrates in the absence 

of growth substrates can cause the depletion of NADH in cells, since NADH is 

not  regenerated.  Organisms  in  the  absence  of  growth  subtrate  are  referred  as 

“resting cells”.

When cometabolic substratessuch as chlorinated organics are oxidized by 

resting cells, the degradation may be limited by both the depletion of endogenous 

cellular reducing energy and the product toxicity; it follows that TC measured in 

these conditions is a function of both NADH level and toxicity. If the external 

reducing energy runs out before the cells are completely inactivated by toxicity, 

the  reaction  is  interupted  because  of  the  absence  of  NADH,  resulting  in  an 

artificially low TC.
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To estimate the effects of toxicity alone, TC should be measured in the 

presence  of  a  NADH  regenerant;  a  comparison  of  TC measured  in  the  two 

conditions may reflect the amount of endogenous reducing energy available to 

cells. However some NADH regenerant may exert additional effect on cells which 

may also bias the measured TC: for example, growth substrates would promote 

additional  enzyme  production,  whereas  other  amendments  may  be  toxic 

themselves.

Chang and Alvarez-Cohen (1995b) tested the effect of amendments on the 

tranformation capacities of four oxidizing cultures. The TC values of chlorinated 

organics could be significantly increased by the addition of low concentrations of 

growth substrates; this effect was overcome at higher concentrations for two of 

the cultures, pressumably by toxicity of the growth substrates. No better results 

were obtained providing as amendments catabolic  intermediates of  the growth 

substrate.  These  results  suggest  that  although  TC may be  a  good  tool  for  the 

comparison of the toxic effects of chlorinated organic degradations, care must be 

taken  to  minimize  the  effects  of  reducing  energy  limitations  and  amendment 

interference. The measurement of TC in the presence of growth substrate avoids 

errors due to energy limitations, but the potential for confounding factors such as 

substrate  toxicity  and  enzyme  regeneration  should  be  cosidered.  The  use  of 

nontoxic  NADH  regenerant  which  is  not  a  growth  substrate  may  result  in 

TC.measurements which more directly reflect the effect of degradation toxicity.

Further  research  performed  by  Chang  and  Alvarez-Cohen  gave  deeper 

insight into the phenomenon of toxicity:

• All  the  experiments  demonstrated  that  toxicity  is  caused  by  the 

degradation products rather than the solvent themselves; this was 

verified in batch microcosms with four CAHs and three different 

substrates. In the first phase, the solvent degradation was inhibited, 

thus  exposing  the  cells  to  the  solvent  in  the  absence  of  their 

degradation  products;  in  the  second  phase  the  solvent  were 

stripped. The growth substrate degradation was evaluated prior and 

after the exposure to the solvent: the measured value did not differ 

significantly;
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• the transformation capacity of a given chlorinated solvent changes 

with the primary substrate used for growing the culture; thus TC is a 

good parameter for comparing the potential of different substrates 

to address a specific contaminant;

• in  mixed  bacterial  consortia,  the  transformation  capacity  may 

change in time, following shifts in the composition of the microbial 

population;

• the  transformation  capacity  relative  to  a  specific  chlorinated 

solvent  and  a  growth  substrate  is  independent  from  the  initial 

concentrations of both biomass and contaminant;

• the transformation capacity of cells grown on a specific substrate 

decreases with the chlorine- to carbon- atoms numerical ratio in the 

solvent molecule;

• the transformation yield Ty is  proportional  to  the transformation 

capacity TC through the growth yield Y: Ty = Tc x Y.

Alvarez-Cohen and Speitel (2001) reviewed the interpretations for approximating 

inactivation, separating them into two classes. One class (1) represents loss of full 

cellular function, while the other class (2) assumes the loss of specific enzyme 

activity. Among the second class models, important contributions were provided 

by  Ely  in  1995.  The  model  incorporates  enzyme  inhibition,  caused  by  the 

presence of a cometabolic compound, inactivation, resulting from toxicity of a 

cometabolic  product,  and  recovery  associated  with  bacterial  sinthesis  of  new 

enzyme in response to inactivation. The first class is the most commonly used in 

modelling biodegradation.

In  1991  Alvarez-Cohen  and  McCarty  proposed  the  kinetic  model 

introducing the transformation capacity in order to account for the toxic effects of 

the degradation products on the biomass. The transformation capacity Tc was thus 

defined as the quantity of a compound that a specific mass of microorganisms can 

degrade before it is inactivated by toxicity fromtransformation products. Units of 

transformation capacities are tipically mass of degraded substrate per mass of cell.
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Assuming  that  the  degradation  of  the  chlorinated  solvents  follows  the 

Michaelis-Menten kinetics, as described in 3.1, and that the biomass concentration 

decreases  in  time  as  a  consequence  of  both  product  toxicity  and  endogenous 

decay,  the following model can be applied in the absence of growth substrate 

(Alvarez-Cohen and McCarty, 1991):

  (3.14)

where:

rx (mg protein/L/h), cell decay rate

rc (g/mg protein/h), contaminant degradation rate

b (h-1), cell endogenous decay coefficient

Tc (mg/mg), contaminant transformation capacity

X (mg protein/L), specialized cell concentration

Successive  studies  (Chang  and  Alvarez,  1995a,  b)  evidenced  that  the 

oxidation of chlorinated organics by resting cells is also limited by the depletion 

of reducing energy. Cometabolic degradation rates were observed to increase with 

the  addition  of  external  energy  sourcrs;  on  the  other  hand,  the  degradation 

performances were found to be affected by substrate inhibition, when the external 

energy was provided through the addition of growth substrate.

A  modification  of  Michaelis-Menten/Monod  kinetics  was  proposed  to 

describe  the  kinetics  of  cometabolic  degradation,  incorporating  the  effects  of 

product toxicity, depletion of oxygen and reducing energy, competition between 

growth  substrate  and  cometabolic  substrate.  The  model,  summarized  in  the 

equations 3.15 – 3.17, was able to predict the experimental results. The factors 

R/(R+KR) and O2/(KO2+ O2),  included in the growth substrate and contaminant 

degradation rate equations, take into account oxygen and reducing energy sources 
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as possibly limiting reactants. When they are supplied in large excess, such that R 

>> KR and O2 >> KO2, the corresponding Monod terms approach 1 and the specific 

degradation  rates  become  functions  of  substrate,  contaminant  and  biomass 

concentration alone.

Where:
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CHAPTER 4

4. MOLECULAR BIOLOGY TECHNIQUES USED IN THE ANALYSIS OF 
THE MICROBIAL DIVERSITY IN CONTAMINATED SOILS
____________________________________________________________________________________________________

Identification  of  microorganisms  by  conventional  methods  requires  the 

isolation  of  pure  cultures  followed  by  laborious  characterization  experiments. 

These procedures are therefore inadequate for study of the diversity of a natural or 

engineered ecosystem. A new set of molecular techniques developed during the 

1990s  revolutionized  microbial  ecology  research.  Among  these  techniques, 

cloning and the creation of a gene library, denaturant gradient gel electrophoresis 

(DGGE) and fluorescent in situ hybridization with DNA probes (FISH) stand out. 

Cloning provides very precise taxonomical information, but it is time consuming 

and requires specialized personnel whereas DGGE is a rapid and simple method 

that  provide  characteristic  band patterns  for  different  samples,  allowing quick 

sample  profiling,  while  retaining  the  possibility  of  a  more  thorough  genetic 

analysis  by  sequencing  of  particular  bands.  FISH  makes  possible  to  identify 

microorganisms at any desired taxonomical level, depending on the specificity of 

the probe used. It is the only quantitative molecular biology technique, although 

quantification is either complex or tedious and subjective. Combination with a 

confocal laser-scanning microscope allows the visualization of three-dimensional 

microbial  structures.  These  methods  have  deepened  our  understanding  of  the 

microbiology of contaminated soils. Both DGGE and FISH have been extensively 

employed.
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4.1 MICROBIAL ECOLOGY OF CONTAMINATED SOILS

 

4.1.1 Phenotypic analysis of soil bacterial communities

The  diversity  of  bacterial  communities  in  contaminated  soils  has  been 

based  in  the  1980-1990’s  on  CFU  counting  and colony  morphology  typing. 

Colony morphology typing relies on grouping of bacterial colonies cultured on 

plates containing relevant media according to their colony appearance (Haldeman 

and Amy, 1993). Latest years, community-level physiological profiles (CLPPs) or 

sole-carbon-source  utilization  profiles  have  been  used  as  an  indicator  of 

community structure and function (Becker and Stottmeister, 1998; Degens, 1998; 

Gamo and Shoji, 1999; Garland and Mills, 1991; Garland and Mills, 1994; Smalla 

et al., 1998; Wünsche et al., 1995). CLPP is based on metabolic response patterns 

of communities extracted from environmental samples, inoculated into a 96 wells 

BIOLOG plate. The 96-well microtiter plates contain nutrients and a tetrazolium 

dye. When a bacterial community is capable of oxidizing the carbon substrate, the 

dye turns purple, and a spectrophotometric plate reader quantifies the response. 

However, these patterns not always reflect the organisms directly involved in the 

mainstream energy flux of the ecosystem (Boon, 2002). Wünsche et al.  (1995) 

applied these techniques to examine the effect of hydrocarbon contamination on 

microbial community structure and function and found that characteristic shifts of 

the substrate utilization patterns followed changes in hydrocarbon content in soils. 

Furthermore, the altered patterns of substrate utilization corresponded to similar 

changes  in  abundance  of  hydrocarbon-utilizing  bacteria  determined  by  plate 

counts. Strong-Gunderson and Palumbo (1994)  adapted this  CLPP method for 

rapidly screening the metabolic potential of bacteria to oxidize semi-volatile and 

volatile compounds as a sole carbon source. 

Although the CLPP assay has been proposed as a measure of functional 

diversity, assay responses are attributed mainly to a small subset of heterotrophic 

bacteria in the tested environmental sample (Ibekwe et al., 2001).  Difficulties in 

analyzing  the  complexity  of  bacterial  communities  by  classic  methods  of 
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cultivation and subsequent  physiological  characterization have necessitated the 

development of new approaches for community and functional analysis. 

4.1.2 Culture-independent analysis of microbial communities by lipid-based 

tools

White  and  Findlay  (1988)  developed  a  community-level  approach  to 

characterize microbial community structure by evaluating shifts in phospholipid 

fatty acids (PLFA) from environmental samples. Different groups of bacteria are 

characterized by specific PLFA profiles. Therefore, a change in the phospholipid 

pattern in soil would indicate a change in the bacterial composition of that soil. 

The polar lipid fraction of environmental samples is composed primarily of PLFA 

of “viable” micro-organisms present in the sample (assuming rapid degradation of 

intact phospholipids after cell death) (Ringelberg et al., 2001; White and Findlay, 

1988). For complex matrices such as soil, PLFA analysis has been shown to be a 

valuable  tool  for  detecting  changes  in  microbial  communities  in  response  to 

pollution  of  alkanes  (Ringelberg  et  al.,  1989)  and  chlorinated  hydrocarbons 

(Phelps  et  al.,  1988).  Recently,  analysis  of  13C-labeled  PLFAs  resulting  from 

incorporation of  13C during cell growth  from  13C-labeled C substrates has been 

used to define the groups of organisms utilizing those substrates (Boschker et al., 

1998; Padmanabhan et al., 2003). Therefore, 13C-labeled substrates are introduced 

into the soil where bacteria use them as a C-source and after PLFA extraction the 

active micro-organisms are identified by analyzing  13C-labeled PLFA.  Hanson et 

al.  (1999)  identified  the  indigenous  population(s)  responsible  for  toluene 

degradation  in  Yolo  silt  loam,  by  employing  both  traditional  culture-based 

approaches and PLFA and 13C-PLFA analysis. After 119 h of incubation with 13C-

toluene,  96%  of  the  incorporated 13C  was  detected  in  only  16 of  the  total 

59 PLFAs (27%) extracted from the soil. Of the total  13C-enriched PLFAs, 85% 

were  identical  to  the  PLFAs  contained  in a  toluene-metabolizing  bacterium 

isolated from the same soil, showing that this strain was one of the main toluene 

degraders in that soil. In contrast, the majority of the soil PLFAs (91%) became 

labeled when  the  same  soil  was  incubated  with  13C-glucose. In  laboratory 
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microcosms,  Pelz et  al. (2001a,  2001b) incubated sediments from a petroleum 

hydrocarbon  (PHC)  contaminated  aquifer  and  a  nearby  pristine  aquifer  under 

anoxic sulfate-reducing conditions with methyl-14C-toluene to determine the 14C-

mass balances and with methyl-13C-toluene to follow the flow of carbon from 

toluene  into  PLFA.  14C quantification  revealed  that  61.6% of  the  methyl-14C-

toluene  was  mineralized  and  2.7%  was  assimilated,  while  13C-labeled  PLFA 

analysis linked toluene degradation to the metabolic activity of Desulfobacter-like 

populations. These populations could play an important role in the clean-up of 

aromatic PHC contaminated aquifers. 

4.1.3 Culture-independent analysis of the bacterial communities by nucleic 

acid-based tools

Conventional  microbiological  techniques,  based  on  isolation  of  pure 

cultures  and  morphological,  metabolic,  biochemical  and  genetic  assays,  have 

provided extensive information on the biodiversity of microbial communities in 

natural  and  engineering  systems.  However  the  drawbacks  of  the  existing 

conventional methods, such as incomplete knowledge about their physiological 

needs and the complex syntrophic and symbiontic relations, which are abundant in 

nature, make impossible to obtain pure cultures of most microorganisms in natural 

environments. Moreover, most culture media tend to favor the growth of certain 

groupso  of  microorganisms,  whereas  others  that  are  important  in  the  original 

sample do not proliferate. It  is  therefore generally accepted nowadays that the 

number of known prokaryotic species (including the two domains  Bacteria  and 

Archaea)  is  very  small  compared  to  the  diversity  of  microorganisms  and 

illustrates how difficult it is to get a full picture of the bacterial diversity of an 

ecosystem by relying only on conventional methodology. At present, about 7000 

bacterial species have been described, but according to molecular and ecological 

estimates, the real number must be several order of magnitude higher (Amman et 

al,  1995).  This  small  known  fraction  does  not  reflect  the  composition  and 

diversity of a microbial community.
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One  suitable  solution  to  this  problem  is  to  use  molecular  biology 

approaches. The techniques are based on the RNA of the small ribosomial subunit 

(16SrRNA  for  prokaryotes)  or  their  corresponding  genes,  considering  it  as  a 

“molecular  clock”  or  “evolutionary  chronometer”.  This  molecule  was  chosen 

because  of  its  universality  and  abundance  in  al  living  beings  (103 to  105 

ribosomes/cell)  and the fact  that  it  is  a  highly conserved molecule  throughout 

evolution  although  bears  some  highly  variable  regions.  These  features  allow 

comparison of organisms within the same domain, as well as differentiation of 

strains of the same species. Moreover, the gene sequence is sufficiently long to 

generate  statistically  relevant  data  and  can  be  easily  sequenced  with  current 

technology.

As a consequence of the necessity to also address non-culturable members 

of the bacterial community, more and more molecular gene probe methods have 

been developed that are based on the analysis of nucleic acids extracted from soil 

(Akkermans et al., 1995; Amann et al., 1995; Holben and Harris, 1995; Sayler and 

Layton,  1990;  Shi  et  al.,  1999;  Stapleton et  al.,  1998;  Trevors  and van Elsas, 

1995). The  development  of  methods  for  directly  extracting  DNA  from 

environmental samples bypassed the need to culture organisms, thus providing a 

more  representative  sampling  of  microbial  constituents  within  a  complex 

community (Akkermans et al., 1995; Leahy and Colwell, 1990; Shi et al., 1999; 

Stapleton et al., 1998; Trevors, 1992; Trevors and van Elsas, 1995).

Cloning and sequencing of the gene that codes for 16S rRNA is still the 

most  widely used molecular  technique in  the field  of  microbial  ecology.  This 

methodology implies the extraction of nucleic acids, amplification and cloning of 

the  16S  rRNA genes,  followed  by  sequencing  and,  finally,  identification  and 

affiliation  of  the  isolated  clone  with  the  aid  of  phylogenetic  software.  While 

amplicons generated from pure cultures of bacteria could be sequenced directly, in 

the case of genomic DNA extracts from microbial communities, the cloning step 

has to be included. This is necessary in order to separate the different copies of 

16SrDNA, as a mixed template cannot be sequenced. Because this aproach is so 

widwspread, half of the approximately 240000 sequences deposited in the 16S 

rDNA  NCBI-database  (April  2006),  belong  to  non-cultured  and  unknown 
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organisms, that is, organisms detected by 16S rDNA cloning. This illustrates how 

extensively  and  succesfully  the  cloning  strategy  has  been  employed  since  its 

introduction in the beginning of the 1990s (Ward et al, 1990). However cloning is 

time consuming and so less apt for analyzing larger sets of samples, for example, 

when monitoring changes in natural or engineered microbial communities over 

time, particularly if several time points are required. The main advantages and 

disadvantages  of thi approach can be summarized as follows:

• Advantages:

− complete 16S rRNA sequencing allows:

very  precise taxonomic  studies  and  phylogenetic  trees  of  high 

resolution to be obtained;

design of primers (for PCR) and probes (for FISH);

− if  time  and  effort  is  not  a  limiting  factor,  the  approach  cover  most 

microorganisms, including minority groups, which would be hard to detect 

with genetic fingerprinting methods;

− identification  of  microorganisms  that  have  not  been  yet  cultured  or 

identified.

• Disadvantages:

− very time consuming and laborious, making it unpractical for high samples 

throughput;

− extraction of a DNA pool representative of the microbial community can 

bedifficult when working with certain sample types (e.g. soil, sediments).

− many clones have to be sequenced to ensure most of individual species in 

the sample are covered;

− it  is  not  quantitative.  The  PCR  step  can  favor  certain  species  due  to 

differences in DNA target site accessibility.

Denaturing  gel  electrophoresis  (DGGE) is  based  on  the  different 

mobility  on  a  gel  of  denaturated  DNA-fragment  of  the  same  size  but  with 

different nucleic acid sequences, thus generating band patterns that directly reflect 
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the genetic biodiversity of the sample. The number of bands corresponds to the 

number of dominant species. Coupled with sequencing and phylogenetic analysis 

of the bands, this method can give a good overview of the composition of a given 

microbial  community.  DGGE  is  the  method  of  choice  when  the  desired 

information does not have to be as phylogenetically exhaustive as that provided 

by cloning, but still relatively precise to determine the dominant members of a 

microbial community with medium phylogenetic resolution.

The most important application of DGGE is monitoring dynamic changes 

in microbial communities, especially when many samples have to be processed. 

For community analysis, the variable areas of the 16S rRNA gene are often used 

as bioindicator (Maidak et al., 1997; Stackebrandt et al., 1993; Woese, 1987). A 

great  number  of  16S  rRNA gene  sequences  are  accessible  via  databases  and 

sequence comparisons allows the identification of areas with unique sequences for 

specific bacterial groups (Maidak et al., 1997; van Elsas et al., 1998). 

As such, primers can be designed for PCR detection of specific groups of 

bacteria  by amplifying the  corresponding 16S rRNA gene.  The obtained PCR 

fragments can then be cloned and sequenced (Amann et al., 1995; Hugenholtz and 

Pace, 1996) or they can be separated and visualized by fingerprinting techniques 

allowing direct diversity analysis (Dejonghe et al., 2001). Community fingerprints 

are generated by separating the amplified nucleic acid fragments based on their 

sequence variability as in Denaturing Gradient Gel Electrophoresis/Temperature 

Gradient Gel Electrophoresis (DGGE/TGGE) (Muyzer et  al.,  1993) and Single 

Strand Conformation Polymorphism (SSCP) analysis  (Lee  et  al.,  1996),  or  by 

their size as in Terminal Restriction Fragment Length Polymorphism (T-RFLP) 

(Liu et al., 1997) and Amplified Ribosomal DNA Restriction Analysis (ARDRA) 

(Massol-Deya et al., 1995). Using DGGE/TGGE,  Muyzer et al.  (1993) showed 

that  it  is  possible  to  identify  constituents  of  the  microbial  population  which 

represent only 1% of the total population. There are unfortunately some constrains 

related to these techniques, i.e., the occurrence of multiple bands relating to one 

bacterium (e.g.  multiple  16S rDNA sequences)  or  one  band corresponding  to 

more than one strain. Ralebitso et al. (2000) enriched and isolated in the presence 

of  different  selection  pressures,  particularly  based  on  pH  and  electron  donor 
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concentration,  indigenous  microbial  associations  which  catabolize  selected 

petroleum hydrocarbon components (benzene, toluene and  o-,  m- and  p-xylene 

(BTX), from a petroleum hydrocarbon contaminated sandy soil. PCR and 16S 

rDNA fingerprinting  by  DGGE were  employed  to  explore  the  diversities  and 

analyse  the  structures  of  the  isolated  microbial  associations.  Pearson  product-

moment  correlation  indicated  that  different,  but  chemically  similar,  petroleum 

hydrocarbon molecules, effected the isolation of different associations. However, 

some similar numerically-dominant bands characterized the associations. A 30% 

similarity  was  evident  between  the  m-  and  o-xylene  catabolizing  associations 

regardless of the molecule concentration and the enrichment pH. PCR-DGGE was 

also used to complement conventional culture-based microbiological procedures 

for  environmental  parameter  optimisation.  Band  pattern  differences  indicated 

profile variations of the isolated associations, which possibly accounted for the 

growth rate changes recorded in response to pH and temperature perturbations. 

Currently,  no  reports  are  available concerning  TGGE,  SSCP  or  T-RFLP 

application  to  follow  up  the  microbial  diversity  at  petroleum  hydrocarbon 

contaminated sites polluted with prevalently BTEX. Massol-Deya et al.  (1997) 

used ARDRA to compare community composition, succession, and performance 

in fluidized bed reactors (FBR) treating BTX contaminated water. One reactor 

was  inoculated  with  the  toluene  degrading  strains  P. putida mt-2  (PaW1),  B. 

cepacia G4, and B. pickettii PKO1. Strain mt-2 was found to outcompete the other 

two strains. When groundwater strains were allowed to challenge the steady-state 

biofilm developed by the inoculated strains, they readily displaced the inoculated 

strains and further reduced the toluene effluent concentration.  ARDRA of 16S 

rRNA  gene  amplicons  from  the  reactor  community  showed  a  succession  of 

populations into a pattern that was stable for at least 4 months of operation. The 

convergence of communities to the same composition from three different starting 

conditions and their constancy over several months suggested that a rather stable 

community was selected.

Alternatively,  16S  rDNA  group  specific  probes  can  be  designed  for 

DNA:DNA hybridization targeting 16S rRNA. However, the polymerase chain 

reaction technique is much more sensitive (by 3 orders of magnitude), permitting 
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the detection of 1 cell per g of sediment sample (Steffan and Atlas, 1988; Leahy et 

al., 1990). To quantify hybridization signals and determine the amount of DNA in 

each  sample,  a  regression  equation  is  generated  from  hybridization  signal 

intensities  of  known  DNA  standards,  included  on  each  vacuum  blot.  Signal 

intensities are obtained by computer-aided analysis of autradiogram images (Guo 

et al., 1997; Stapleton et al., 1998; Shi et al., 1999).  The relative abundance of 

domains or subgroups is determined by normalizing hybridization signals to the 

signal generated from hybridization to a universal 16S rDNA probe (Zheng et al., 

1996).  Shi et al.  (1999) used phylogenetic probes in hybridization analysis to (i) 

determine  in situ microbial community structures in regions of a shallow sand 

aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and non-

contaminated (NC) and (ii) examine alterations in microbial community structures 

resulting  from  exposure  to  toluene  and/or  electron-acceptor  supplementation 

(nitrate). The latter  objective  was addressed by  using the NC and FC aquifer 

materials for anaerobic microcosm studies in which phylogenetic probe analysis 

was complemented by microbial  activity assays. Domain probe analysis of the 

aquifer  samples  showed  that  the  communities  were  predominantly  Bacteria, 

Eucarya and Archaea were not detectable. At the phylum and subclass levels, the 

FC and NC aquifer material showed similar relative abundance distributions of 43 

to 65% β- and γ-Proteobacteria (B+G), 31 to 35% α-Proteobacteria (ALF), 15 to 

18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. 

Compared to that of the NC region, the community structure of the FC material 

differed mainly in an increased abundance of B+G relative to that of ALF. The 

microcosm communities were similar to those of the field samples. Addition of 

nitrate and/or toluene stimulated microbial activity in the microcosms, but only 

supplementation of toluene alone significantly altered community structure. For 

the NC material, the dominant subclass shifted from B+G to ALF, while in the FC 

microcosms 55 to 65% of the Bacteria community was no longer identifiable by 

the  phylum  or  subclass  probes  used.  The  latter  result  suggested  that  toluene 

exposure  fostered  the  proliferation  of  phylotype(s)  that  were  otherwise  minor 

constituents  of  the  FC  aquifer  community.  These  studies  demonstrated  that 

alterations in aquifer microbial communities resulting from specific anthropogenic 
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perturbances can be inferred from microcosm studies integrating chemical and 

phylogenetic probe analysis and in the case of hydrocarbon contamination may 

facilitate  the  identification  of  organisms  important  for  in  situ biodegradation 

processes.

The main advantages and disadvantages of this technique are summarizing 

as follows:

• Advantages:

− Permits rapid and simple monitoring of the spatial-temporal variability of 

microbial populations if just band patterns are considered;

− it  is  relatively easy to obtain an overview of the dominant species of an 

ecosystem;

− it  is  adequate  for  analysis  of  a  large  number  of  samples  (far  more  than 

cloning).

• Disadvantages:

− depending  on  the  nature  of  the  sample,  extraction  and  amplification  of 

representative genomic DNA can be difficult (as in cloning);

− after the PCR amplification, the DNA copy number – which depends on 

abundance of a particular microorganism and the ease of amplification of 

the 16SrRNA – can be very different (as in cloning). The intensity the 

bands obtained on a DGGE gel may therefore vary (not quantitative);

− the number of detected bands is usually small, which implies:

the number of identified species is also small;

the bands correspond, although not ncessarily, to the predominant 

species in the original sample;

− the sequences of the bands obtained from a gel correspond to short DNA 

fragments (200 – 600 bp), and so phylogenetic relations are less reliably 

established than with cloning of the whole 16SrRNA gene. In addition, 

short  sequences are less useful for designing new specific primers and 

probes.
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The latest  advance  in  molecular  technology is  the use of  nucleic  acid 

microarrays or  DNA chips in which the probes are immobilized (Blohm and 

Guiseppi-Elie, 2001; Cho and Tiedje, 2001; Koizumi et al., 2002; Sergei et al., 

2001; Small et al., 2001; Urakawa et al., 2003; Wilson et al., 2002). This method 

allows the simultaneous study of thousands of genes or messenger RNAs under 

various physiological states. Both methods place a variety of single strand DNA 

probes of interest on glass computer chips (or microscope slides). However the 

use of this technique for environmental samples is still limited. Recently, Koizumi 

et  al. (2002) characterized  a  mesophilic,  sulfate-reducing,  toluene-degrading 

consortium (TDC) and an ethylbenzene-degrading consortium (EDC) by DGGE 

fingerprinting  of  PCR  amplified  16S  rRNA  gene  fragments,  followed  by 

sequencing.  The sequences of the major bands were affiliated with the family 

Desulfobacteriaceae. Another major band from EDC was related to an uncultured 

non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S 

rRNAs of target organisms corresponding to the major bands were designed, and 

hybridization conditions  were optimized for  two analytical  formats,  membrane 

and DNA microarray hybridization. Both formats were used to characterize the 

TDC and EDC, and the results of both were consistent with the DGGE analysis. 

In  order  to  assess  the  utility  of  the  microarray  format  for  analysis  of 

environmental  samples,  oil-contaminated  sediments  from the  coast  of  Kuwait 

were analyzed. The DNA microarray successfully detected bacterial nucleic acids 

from  these  samples,  but  probes  targeting  specific  groups  of  sulfate-reducing 

bacteria did not give positive signals. 

Application of  quantitative PCR techniques such as competitive PCR 

and real-time PCR allow to obtain a quantitative picture of the specific groups of 

bacteria. Recently, due to the development of methods for total extraction of RNA 

from environmental samples of different origin RT-PCR can be used to amplify 

cDNA derived from 16S rRNA from a RNA extract. This allows to amplify 16S 

rRNA  from  metabolically  active  populations  in  a  community  and  to  get 

information about the active members of a  community.  However,  no RT-PCR 

studies concerning 16S rRNA diversity to detect the active bacterial community 

present in BTEX contaminated soils are reported.
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In  case  sequence  information  exist  about  functional  genes  involved  in 

degradation  of  xenobiotic  compounds,  this  information  can  be  used  to  design 

specific primers or DNA probes for direct PCR detection of or hybridization with 

the  corresponding  genes.  Application  of  such  techniques  can  provide a  more 

detailed  picture  of  the  catabolic  gene  structure  and  sequence  diversity  in 

environmental samples, which will  increase significantly our knowledge of the 

functional  potential  of  the  microbial  community  in  the  studied  environment. 

Moreover,  shifts  in  catabolic  gene  structure  allow  the  deduction  of  the 

evolutionary fitness of catabolic genes, operons and their respective hosts (Junca 

and Pieper, 2004). Recently, many studies reported the design of PCR primers to 

detect and/or quantify by PCR the presence of genotypes, encoding key steps in 

bacterial BTEX biodegradation pathways in soil DNA extracts. Moreover, RT-

PCR on RNA extracts allows to see if the genes are actively transcribed in the 

sample. Ogram et al. (1995) designed primer pairs to specifically detect the genes 

encoding the α-subunit of the hydroxylase component (TmoA) of the toluene 4-

mono-oxygenase  of  P.  mendocina KR1 and the  iron-sulfur  oxidase  α-subunit 

(TodC1) of the toluene dioxygenase of P.  putida F1. The primers were used for 

the detection of the expression of these genes and hence their activity in low-

biomass deep subsurface BTEX contaminated sediments by employing RT-PCR 

on mRNA extracted  from the  aquifer.  They detected  tmoA  homologous  RNA 

transcripts. Recently,  Baldwin  et  al.  (2003)  designed  degenerate  primers  to 

specifically  detect  genes  encoding  two  groups  of  α-subunits  of  the  diiron 

hydroxylase component of different multi-component mono-oxygenases and the 

gene encoding the hydroxylase component (XylM) of the side chain xylene mono-

oxygenase. The primer sets were used for detection and enumeration of aromatic 

oxygenase genes by multiplex and real-time PCR on pure cell DNA, but they have 

no data available on aquifer samples. Primer sets for the detection of C23O genes 

specific for the  meta-cleavage of the aromatic catechol structure in fluorescent 

Pseudomonas  or  Sphingomonas were reported by Hallier-Soulier  et  al.  (1996), 

Okuta et al.  (1998), Meyer et al.  (1999), Mesarch et  al.  (2000) and Junca and 

Pieper  (2004).  Cavalca  et  al.  (2003)  analyzed the  functional  and phylogenetic 
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biodiversity of bacterial communities in a BTEX-polluted aquifer treated by air-

sparging. Five months of air injection reduced species diversity in the cultivable 

community (as calculated by the Shannon-Weaver index), while little change was 

noted in the degree of biodiversity in the total bacterial community, as monitored 

by DGGE analysis of PCR amplified 16S rRNA genes. BTEX-degrading isolates 

belonged to the genera Pseudomonas, Microbacterium, Azoarcus, Mycobacterium 

and  Bradyrhizobium.  The  degrading capacities  of  three strains  in  batch liquid 

cultures were also studied. In some of these micro-organisms different pathways 

for toluene degradation seemed to operate simultaneously.  Pseudomonas strains 

of the P24 operational taxonomic unit, able to grow only on catechol and not on 

BTEX, were the most abundant, and were present in the groundwater community 

at all  stages of treatment,  as evidenced both by cultivation approaches and by 

DGGE  profiles.  The  presence  of  different  tmo-like  genes  in  phylogenetically 

distant strains of  Pseudomonas,  Mycobacterium and  Bradyrhizobium suggested 

recent horizontal gene transfer in the groundwater. Junca et al. (2004) used PCR-

SSCP for  determining the diversity of  C23O genes in  environmental  samples. 

These PCR-SSCP results were assessed by comparing sequence data from PCR-

DNA clone libraries and C23O sequences and metabolic performance of micro-

organisms exhibiting C23O activity. PCR-SSCP was demonstrated to be a reliable 

and rational tool to rapidly determine sequence diversity within a catabolic gene 

family in environmental samples obtained from a BTEX contaminated site.  In 

another  study,  Junca  et  al.  (2003)  used  an  approach  identical  to  ARDRA  or 

amplified functional DNA restriction analysis (AFDRA) to rapidly characterize 

C23O subfamily I.2.A genes,  known to be of  crucial  importance for  aromatic 

degradation.  Restriction  of  the  genes  by  Sau3A1  theoretically  produced 

characteristic profiles from each subfamily I.2.A member and their  similarities 

reassembled  the  main  divergent  branches  of  C23O  gene  phylogeny.  Cluster 

analyses of the restriction fragment profiles obtained from isolates from a BTEX 

contaminated site showed patterns with distinct similarities to the reference strain 

profiles,  allowing  to  distinguish  four  different  groups.  Sequences  of  PCR 

fragments  from  isolates  were  in  close  agreement  with  the  phylogenetic 

correlations  predicted  with  the  amplified  functional  DNA  restriction  analysis 

100



Chapter 4 Molecular Techniques in The Analysis of Microbial Diversity in Contaminated Soils

(AFDRA) approach. AFDRA thus provided a quick assessment of C23O diversity 

in a strain collection and insights of its gene phylogeny affiliation among known 

family  members,  but  may  also  define  the  predominant  polymorphism  of  a 

functional gene present in environmental DNA extracts. This approach may be 

useful to differentiate functional genes also for many other gene families. 

The microbial diversity or presence and activity of functional genes may 

also be assessed by techniques like hybridization by application of specific DNA 

probes using the whole microbial DNA, DNA amplified by PCR or even at the 

rRNA level. Guo et al. (1997) studied concentrations of selected genes, including 

several involved in the degradation of BTEX (tmoABCDE, todC1C2BA, xylE) by 

quantitative  DNA:DNA hybridization  on  DNA extracted  from subsurface  soil 

samples  collected  along  a  gradient  of  BTEX  concentrations  at  a  fuel  oil-

contaminated site. DNA from contaminated samples was significantly enriched in 

most  of  the catabolic  genes,  relative to  DNA from the non-contaminated site. 

Hybridization  of  tmo  and  xylE  were  significantly  higher  in  the  contaminated 

samples than in the non-contaminated samples. The level of hybridization was, in 

descending order, as follows: xylE > tmoABCDE. No hybridization was observed 

with  todC1C2BA. Hybridization  of  xylE  increased  with  increasing  aromatic 

concentration  up  to  approximately  100  mg  aromatics  g-1  soil.  Above  that 

concentration, the hybridization of xylE generally decreased. In an assessment of 

the  microbiological  potential  for  the  natural  attenuation  of  petroleum 

hydrocarbons in a shallow aquifer system, Stapleton and Sayler (1998) performed 

a quantitative DNA:DNA hybridization molecular analysis on 60 uncontaminated 

aquifer samples (only 15 had previous exposure to low levels of hydrocarbons) 

using DNA probes targeting genes encoding degradative enzymes such as toluene 

dioxygenase  (todC1C2),  toluene  mono-oxygenase  (tomA),  and  xylene  mono-

oxygenase  (xylA).  Each  target  sequence  was  present  in  nearly  all  samples. 

Hydrocarbon degrading genotypes from previously exposed samples did not differ 

from the other 45 samples that had no prior contaminant exposure, suggesting that 

the microbial  community of  previously exposed sediments had re-equilibrated. 

The level of hybridization was, in descending order, as follows: todC1C2 > tomA 

> xylA. The genotype consistently found in the lowest abundance was xylA. From 
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the same samples, they isolated and characterized 26 indigenous micro-organisms 

capable of biodegrading fuel-related compounds such as BTEX (Stapleton et al., 

2000). Only one isolate hybridized with the todC1C2 gene probe and two isolates 

hybridized with the xylA gene probe, while no isolates hybridized with the tomA 

gene probe. To monitor changes in the molecular microbial ecology as well as 

stimulation  of  natural  biodegradative  processes  under  transient  field  study 

conditions, Stapleton and Sayler (2000) introduced a large, synthetic “model” jet 

fuel mixture containing BTEX compounds and naphthalene in a decane carrier 

into the subsurface. Over time they took subsurface samples at different places of 

the spreading petroleum hydrocarbon plume and monitored changes in subsurface 

catabolic  gene  frequencies  during  natural  attenuation  of  the  petroleum 

hydrocarbons  by  quantitative  DNA:DNA  hybridization  using  the  same  DNA 

probes. Each of the target genotypes showed significant responses to hydrocarbon 

exposure.  At first  only significant  enrichment for degradative micro-organisms 

was seen for the  todC1C2 genotype. Then both degradative genotypes  todC1C2 

and  xylA  significantly  increased  in  samples  collected  from  the  source.  After 

reaching a certain peak population level,  both genotypes underwent significant 

decreases  followed by a  stabilization of  both the plume front  and degradative 

genotypes. 

Methods  allowing  the  direct  (whole  cell  hybridization,  applied  on  the 

sample  without  nucleic  acid  extraction  as  preceding  step)  characterization  of 

microbial  communities  and  specific  nucleic  acid  sequences  have  been  long 

awaited and include in situ (RT-)PCR (Amann and Kühl, 1998), and fluorescent 

in situ hybridization (FISH) (Amann et al., 2001). FISH is a technique where 

fluorescent oligonucleotides (16-20 nucleotides) recognize 16S rRNA sequences 

in fixed cells and hybridize with them in situ (DNA-RNA matching). It involves: 

(i) fixation and permeabilisation of the sample, (ii) hybridization by fluorescently 

labeled,  rRNA  targeted  oligonucleotide  probes,  (iii)  washing  steps  to  remove 

unbound probe, and (iv) detection of labeled cells by microscopy (epifluorescence 

or  confocal  laser  scanning  microscopy)  or  flow cytometry  (Boon,  2002).  The 

fluorescence signal emitted by a cell also indicates the physiological state of the 
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cell. The more active a cell, the more ribosomes are present that can serve as a 

target for the oligonucleotides.

Microorganisms can be identified, localized and quantified in almost every 

ecosystem with hybridization (Amann et  al,  1990).  The specifity  of the probe 

enables  detection/identification  of  any  desired  taxonomic  level,  from  domain 

down to a resolution suitable for differentiating between individual species. The 

main  shortcoming  of  this  technique  lies  in  the  lack  of  availability  of  probes 

targeting the desired bacterial taxon or group. Although it is possible, in theory, to 

design  the  most  apt  probe  for  each  application  thanks  to  the  growing  rRNA 

sequence database (16/18S and 23/28S rRNA), it may be impossible to develop a 

probe  that  specifically  detects  certain  groups  of  microorganisms  that  share 

metabolic  properties  (for  example,  sulfate-reduction  or  halo-respiration). 

Furthermore,  some previous knowledge of the expected microorganisms in the 

sample is often required to apply this method succesfully. To target a particular 

species,  a  specific  probe  must  be  ready  or  its  16S  rRNA  sequence  must  be 

available. FISH is exclusively a taxonomic method that is most commonly used to 

examine whether members of a specific phylogenetic affiliation are present in a 

sample. It cannot, however, reveal information about the function or metabolic 

features of the microorganisms detected with phylogenetically-related bacteria.

In  situ (RT-)PCR involves  amplification  of  specific  nucleic  acid 

sequences  inside  intact  prokaryotic  cells  followed  by  color  or  fluorescence 

detection  of  the  localized  PCR  product  via  bright-field  or  epifluorescence 

microscopy (Chen et al., 2000; Hodson et al., 1995).  Chen et al.  (2000) coupled 

prokaryotic  in situ RT-PCR with flow cytometry to detect mRNA transcripts of 

the toluene dioxygenase (todC1) gene in intact cells of the bacterium P. putida F1. 

The combination of flow cytometry and a prokaryotic  in situ RT-PCR approach 

allowed  the  rapid  detection  and  enumeration  of  functional  populations  of 

microbial  cells. Tani  et  al.  (2002)  injected  Ralstonia  eutropha KT1,  which 

degrades TCE, into an aquifer after activation with toluene, and then monitored 

the number of bacteria by in situ PCR targeting the phenol hydroxylase gene and 

by  FISH  targeting  16S  rRNA.  Recently,  a  combination  of  FISH  and 
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microautoradiography was developed to determine in situ the identities, activities 

and specific substrate uptake profiles of individual bacterial cells within complex 

microbial  communities,  but  to  our  knowledge,  this  has  not  been  applied  for 

detection  of  BTEX  degrading  bacteria  in  environmental  samples  (Lee  et  al., 

1999).

As an alternative to DGGE as a community profiling method, terminal 

restriction fragment lenght polymorphism (tRFLP) can be applied when trating 

complex, species-rich samples. This technique is also PCR based but the further 

procedure differs from PCR/DGGE or PCR/cloning. In tRFLP the 16S gene is 

amplified with universal primers, one of them being fluorescently labelled, and 

the product is digested with frequently cutting restriction enzymes.  Given that 

each species in the sample has differences in the amplified gene sequences , the 

terminal  restriction  fragment  will  differ  in  size,  so  can  be  separated 

electrophoretically.  Furthermore,  it  is  possible  to  sequence  and  identify  the 

generated fragments via comparison with a sequence database. The strenght of the 

fluorescent  signal  yields  additional  information  on  the  abundance  of  different 

species, though this feature should be regarded with caution, just like the band 

intensity in patterns of a DGGE gel.
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CHAPTER 5

5.  GROWTH  OF  CHLORINATED  SOLVENT-DEGRADING  MICROBIAL 

CONSORTIA IN METHANE- AND PROPANE-FED BIOREACTORS AND 

TESTING  OF  THEIR  EFFECTIVENESS  AS  INOCULA  FOR  THE 

BIOAUGMENTATION OF DIFFERENT TYPES OF AQUIFERS
______________________________________________________________________________________________________________________________________________________________

ABSTRACT

In this work we studied the long-term growth process of two microbial consortia 

effective in the aerobic cometabolic biodegradation of a mixture of 6 chlorinated 

aliphatic hydrocarbons (CAHs), and the effectiveness of these consortia as inocula 

for the bioaugmentation of different types of microcosms. The main goals of the 

study were to verify the maintenance of  the consortia’s  capacity  to  degrade a 

CAH mixture during a prolonged growth process in the absence of the CAHs, and 

to verify the consortia’s effectiveness in CAH biodegradation upon inoculation in 

slurry microcosms set up with different types of aquifer materials. The propane-

utilizing  consortium  generally  proved  the  most  effective  one,  being  able  to 

biodegrade vinyl chloride, cis- and trans-1,2-dichloroethylene, trichloroethylene, 

1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane at all the CAH concentrations 

tested. Both consortia maintained unaltered CAH degradation capacities during a 

300-day growth period in the absence of the CAHs and were effective in inducing 

the rapid onset of CAH depletion upon inoculation in slurry microcosms set up 

with 5 types of aquifer materials. A consortium developed in microcosms supplied 

with both methane and propane combined the best degradation capacities of the 

two single-substrate  consortia.  The  degree  of  conversion  of  the  organic  Cl  to 

chloride ion was equal as an average to 90%.
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5.1 INTRODUCTION

Chlorinated solvents,  or chlorinated aliphatic hydrocarbons (CAHs), are 

among the most common contaminant of soils,  groundwaters and wastewaters, 

and most of them are known or suspected carcinogens (Gossett, 2005). Of over 

1200 hazardous waste sites included in the U.S. EPA 2002 National Priority List, 

47%  are  contaminated  by  trichloroethene  (TCE),  42%  by  perchloroethylene 

(PCE) and 37% by 1,1,1-trichloroethane (1,1,1-TCA) (U.S. EPA, 2002). Since the 

1980s, numerous literature studies documented the successful biodegradation of 

CAHs by means of both aerobic and anaerobic processes. In particular, research 

on  aerobic  CAH  cometabolism  tested  primarily  the  utilization  of  methane 

(Andersen and McCarty, 1996; Chang and Alvarez-Cohen, 1996), toluene, phenol 

(Hopkins and McCarty, 1995; McCarty  et al.,  1998) and ammonia (Ely  et al., 

1997; Keener and Arp, 1993) as growth substrates, whereas a limited number of 

studies  focused  on propane.  These  studies  showed that  propane-grown single-

strains (Wackett et al., 1989; Wilcox et al., 1995) and mixed cultures can trasform 

TCE,  cis-  and  trans-1,2-dichloroethylene  (cis-  and  trans-DCE),  1,1-

dichloroethylene  (1,1-DCE),  vinyl  chloride  (VC),  1,1,2,2-tetrachloroethane 

(1,1,2,2-TeCA), 1,1,2- and 1,2,2-trichloroethane (1,1,2- and 1,2,2-TCA), 1,1- and 

1,2-dichloroethane (1,1- and 1,2-DCA) and chloroform (CF).

Despite the encouraging results of the experimental studies, practitioners 

are still reluctant to utilize aerobic cometabolism for the full-scale remediation of 

CAH-contaminated  sites  (Semprini,  2001).  One  of  the  reasons  for  this  is 

represented by thr long lag-time that is sometimes required for the onset of the 

aerobic  cometabolic  process  by the  indigenous biomass  of  CAH-contaminated 

sites (Frascari et al.,2006). As a result of an extended lag period, a fraction of the 

contaminated plume may pass  through the  treatment  zone  and reach sensitive 

targets. When preliminary lab-scale investigations indicates the presence of long 

lag-phases, bioaugmentation, consisting of the introduction of a suitable microbial 

inoculum into the treatment system, can represent a very effective tool (Gentry et 

al., 2004; Vogel, 1996). Several studies of lab-scale and in-situ biodegradation of 

CAHs report  the  successful  application  of  this  technology (Jitnuyanont  et  al., 
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2001;  Harkness  et  al.,1999;  Munakata  et  al.,1996;  Steffan  et  al.,1999). 

Bioaugmentation can be performed both with a single bacterial strain and with a 

microbial consortium; if a site is polluted with a complex contaminant mixture, 

the  latter  solution  may  be  preferred,  the  combined  action  of  different 

microorganisms being required to achieve a complete clean-up. In this case, in 

order to perform a full-scale bioaugmentation, it is necessary to develop a suitable 

initial microbial inoculum, and to grow it in a bioreactor so as to produce the 

amount  of  biomass  required  to  colonize  an  appropriate  fraction  of  the 

contaminated  area.  The  inoculum  growth  process  should  be  operated  in  an 

economically feasible way, but at the same time it must guarantee the stability of 

the microbial  consortium, and consequently the maintenance of its degradation 

capacities. The characteristics required by the growth process in order to satisfy 

these two conditions represent an important theme of investigation. For example, 

growing  the  inoculum  on  the  primary  substrate  in  the  absence  of  the  target 

contaminants would represent a significant simplification of the production plant 

and a reduction of the fixed and operational costs; however, this solution might 

lead  to  a  loss  of  the  consortium’s  degradation  abilities.  Moreover,  inoculated 

strains often survive poorly and may loose their in mixed microbial ecosystems. 

Several factors have been implicated in the survival, activity and maintenance of 

introduced strains. Some factors are of physicochemical nature, such as presence 

or absence of oxygen, pH or temperature. Other factors reflect the physiological 

adaptability of the bacterium, such as kinetics of substrate utilization, nutrients 

and  trace  elements  scavenging.  Some  bacteria  may  be  particularly  prone  to 

predation by protozoa when they maintain a freely suspended state rather than 

attach  themselves  easily  to  surfaces  or  form sticky  material  (McClure  et  al., 

1991). Most inoculation studies have shown that the population size of introduced 

strains decline strongly in  mixed microbial  ecosystems (McClure  et al.,  1989; 

Watanabe et  al.,  1998).  On  the  other  hand,  some  strains  were  shown  to  be 

particularly effective in colonizing and maintaining themselves (McClure  et al., 

1991; Megharaj et al., 1997), Which was attributed to the fact that the strains were 

“preadapted”  to  the  prevailing  conditions  or  originating  from  the  same 

environment. Some concern also exists that under some conditions the genetic 
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information for degradation of the pollutants may not be stable in the introduced 

organism  and  be  lost  or  altered  after  some  time  (Kuar  and  Schugerl,  1990; 

Proctor, 1994). Thus, effective assessment of the capabilities of bacteria requires 

the study of their maintenance and activity. Therefore we were very interested in 

evaluating the maintainance of degradation abilities of mixed consortia after long-

term growth in batch bioreactors and in assessing their capacity to quickly start 

and  maintain  the  contaminant’s  degradation  process  in  environments  differing 

from the one they had been isolated from.

This  study  represents  the  continuation  of  a  previous  microcosm  study 

(Frascari et al., 2006) where we had developed a methane-utilizing and a propane-

utilizing microbial consortium able to perform the long-term biodegradation of a 

mixture of VC, trans- and cis-DCE, TCE, 1,1,2-TCA and 1,1,2,2-TeCA (a high-

chlorinated solvent generally considered non-biodegradable in aerobic conditions) 

via aerobic cometabolism in slurry conditions.

The goals of the study were (i) to study the long-term aerobic biodegradation 

of  the  CAH  mixture  above  mentioned;  (ii)  to  investigate  the  efficacy  of 

bioaugmentation with two types of internal inocula obtained from the indigenous 

biomass  of  the  studied site;  (iii)  to  identify  the CAH-degrading bacteria.  VC, 

methane  and  propane  were  utilized  as  growth  substrates. The  biodegradation 

process was investigated at both 25 and 17°C by means of bioaugmented and non-

bioaugmented  sediment-groundwater  slurry  microcosm  tests.  The  non-

bioaugmented microcosms were characterized, at 25 ◦C, by an average 18-day 

lag-time for the direct metabolism of VC (accompanied by the cometabolism of 

cis- and trans-DCE) and by long lag-times (36–264 days) for the onset of methane 

or propane utilization (associated with the cometabolism of the remaining CAHs).

In  the inoculated microcosms the lag-phases for  the onset  of  growth substrate 

utilization and CAH cometabolism were significantly shorter (0–15 days at  25 

°C). Biodegradation of the 6-CAH mixture was successfully continued for up to 

410 days. The low-chlorinated solvents were characterized by higher depletion 

rates.  The  composition  of  the  microbial  consortium  of  a  propane-utilizing 

microcosm was determined by 16s rDNA sequencing and phylotype analysis.
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This study showed that the indigenous biomass of the investigated aquifer 

material proved able to grow on VC 18–43 days (depending on the temperature) 

after the establishment of aerobic conditions, and to degrade via cometabolism 

cis- and trans-DCE but not TCE, 1,1,2-TCA or 1,1,2,2-TeCA present. Conversely, 

the supply of methane or propane led to the biodegradation of the entire 6-CAH 

mixture.  Moreover  the  bioaugmentation  treatments,  performed  with  internal 

inocula  obtained  from the  site’s  indigenous  biomass,  were  highly  effective  in 

reducing the long and variable lag-phases required for the onset of propane or 

methane  uptake  in  the  non-augmented  microcosms.  In  all  the  propane-  or 

methane-fed  microcosms  the  biodegradation  of  each  CAH  rapidly  reached  a 

stationary condition with higher rates in the low-chlorinated solvents. Besides this 

was, to the best of our knowledge, the first study that documented the long-term 

aerobic biodegradation of 1,1,2,2-TeCA.

In this work we investigated several aspects relative to the feasibility of 

utilizing  the  two  above-mentioned  microbial  consortia  as  inocula  for 

bioaugmentation treatments of CAH-contaminated sites with different physical-

chemical characteristics. In particular, the goals of the study were: 

i) to verify the maintenance of the consortia’s capacity to degrade the 6-

CAH mixture during a prolonged process of microbial growth in the presence as 

well as in the absence of the 6-CAH mixture; 

ii) to verify the consortia’s ability – after a prolonged growth process - to 

lead to the rapid onset of biodegradation of the CAH mixture upon inoculation in 

slurry microcosms set up with aquifer materials taken from sites with different 

physical-chemical characteristics; 

iii) to develop a third consortium able to combine the best characteristics 

of the methane-utilizing and of the propane-utilizing consortia object of the study: 

in fact, the previous study had shown that, while both consortia were effective in 

the aerobic cometabolic biodegradation of VC and cis-DCE, the methane-utilizing 

biomass  had  a  higher  capacity  to  transform trans-DCE,  whereas  the  propane-

utilizing  one  was  more  effective  towards  1,1,2-TCA,  1,1,2,2-TeCA  and, 

secondarily, TCE; 
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iv) to characterize in terms of specific CAH depletion rates and degree of 

mineralization of the organic Cl the best methane-utilizing and the best propane-

utilizing consortium obtained as a result of the inoculation in the microcosms set 

up with different aquifer materials.

In order to evaluate the consortia’s ability and the maintenance of their 

degradation capacities during the prolonged growth process , we chose to start 

with a “black box” empirical method consisting in the inoculation – at different 

times during the growth process – of small amounts of the wo consortia in slurry 

microcosms  containing  aquifer  materials  from  different  sites,  and  in  the 

subsequent evaluation of the lag-times for the onset of biodegradation of the CAH 

mixture and of the long-term CAH depletion rates obtained.

5.2 MATERIALS AND METHODS

5.2.1 Overview of the experimental scheme

This paragraph provides a short description of the experimental scheme, 

whereas the details relative to the set-up and operation of each microcosm and 

growth  reactor  are  presented  in  the  following  paragraphs.  The  experimental 

scheme of the study is shown – limitedly to the bioaugmented microcosms and 

growth  reactors  –  in  Figure  5.1.  In  addition,  a  non-bioaugmented  control 

microcosm was set  up for  each type  of  aquifer  material  and for  each growth 

substrate,  and  two  sterile  control  microcosms  were  set  up  to  monitor  abiotic 

reactions,  losses  through  caps  and  losses  due  to  the  microcosm  sampling 

procedures.

As explained afterwards the study involved the following steps:

- inoculation  of  growth  bioreactors and  set  up  of  Time  0  slurry 

microcosms  in  order  to  characterize  the  biodegradation  abilities  of  the 

initial inoculum;

- inoculation  at  different  times  of  slurry  microcosms with  biomass 

sampled from the growth bioreactors in order to verify the maintenance of 

the  consortia’s  capacity  to  degrade  the  6-CAH  mixture  during  the 
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prolonged growth process in the presence as well in the absence of the 6-

CAH mixture;

- inoculation of slurry microcosms set up with aquifer materials taken 

from sites with different  physical-chemical-biological  characteristics 

with biomass sampled from the growth reactors, in order to evaluate the 

effectiveness of bioaugmentation in different types of aquifers;

- development  of  a  new  consortium  able  to  combine  the  best 

characteristics  of  the  two  studied  consortia by  inoculation  of  slurry 

microcosms  with  both  the  methane-utilyzing  and  the  propane-utilyzing 

biomass;

- inoculation of liquid-phase microcosms in order to characterize in terms of 

specific CAH depletion rates and degree of mineralization of the organic Cl 

the best consortia obtained in the microcosms set up with different aquifer 

materials.

As explained in section 5.2.4,  the performace of the studied consortia was 

evaluated in terms of:

- lag-time required for the onset of the aerobic cometabolic biodegradation of 

the 6-CAH mixture;

- long term degradation rate of the 6-CAH mixture.
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Figure  5.1.  Graphical  representation  of  the  experimental  scheme  of  the  bioaugmented 

microcosms.  The  first  group  of  letters  indicates  the  type  of  bioreactor:  GB,  growth 
bioreactor; S,  slurry microcosm; L, liquid-phase microcosm. The second group of letters 
indicates the type of biomass initially inoculated as well as the growth substrate supplied: M, 
inoculation of methane-utilizing biomass and supply of methane; P, inoculation of propane-
utilizing biomass and supply of  propane; MP: inoculation of  both types of  biomass and 
supply  of  both  substrates.  The  third group of  letters  indicates  the  condition  of  biomass 
growth (in the case of the growth bioreactors) or the type of inoculum introduced (in the 
case of the slurry microcosms)(this group of letters is not included in the labelling of the 
liquid-phase microcosms):  NC, inoculum growth in the absence of  the CAH mixture; C, 
inoculum growth in the presence of the CAH mixture. The number indicates the time the 
microcosm was set up and inoculated (the time is not specified for the growth bioreactors, 
which were set up only at time zero). The last letter – present only in the labelling of the 
slurry microcosms – indicates the type of  aquifer material  and groundwater utilized for 
microcosm set up. Duplicate microcosms are indicated with the subscript “1,2”.
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With  regard  to  the  methane-utilizing  consortium,  the  initial  inoculum 

object of the study was obtained by sampling 25 mL of suspension from each of 

three methane-fed slurry microcosms of the previous study (Frascari et al., 2006) 

with a sterile syringe after 30 seconds of intense agitation, whereas the propane-

utilizing initial inoculum was obtained from three propane-fed microcosms of the 

above-mentioned study, following the same procedure. The initial concentration 

of both inocula was equal to 2.7 x 107 colony forming units (CFU) per mL.

At  time  zero  (onset  of  this  study),  the  methane-grown  inoculum  was 

introduced  into  two  liquid-phase  methane-fed  growth  bioreactors  where  the 

consortium was grown for 150-300 days in the presence (bioreactor GB-M-C) and 

in the absence (bioreactor GB-M-NC) of the same 6-CAH mixture object of the 

previous study (VC, trans- and cis-DCE, TCE, 1,1,2-TCA and 1,1,2,2-TeCA). 

The growth process was continued in reactor GB-M-C for 150 days and in reactor 

GB-M-NC  for  300  days,  by  supplying  methane  pulses  corresponding  to  an 

average feed of 37 mmolC/week. In addition, in order to characterize the initial 

methane-grown inoculum in  terms  of  its  ability  to  lead  to  the  rapid  onset  of 

biodegradation of the 6-CAH mixture upon inoculation in slurry microcosms set 

up with the same aquifer material object of the previous study (soil + groundwater 

type  A),  two  duplicate  slurry  microcosms  (S-M-C-0A)  set  up  with  the  same 

aquifer material  were bioaugmented with the same inoculum introduced in the 

growth bioreactors. These microcosms were then spiked with methane and with 

the 6-CAH mixture,  at  the same initial  concentrations utilized in  the previous 

study and typical of aquifer A (methane 125 µM; VC 25 µM; trans-DCE 3.4 µM; 

cis-DCE 3.1 µM; TCE 1.9 µM; 1,1,2-TCA 0.30 µM; 1,1,2,2-TeCA 0.15 µM).

Similarly, at time zero the propane-grown inoculum was introduced into 

two propane-fed bioreactors  where the consortium was grown  in the presence 

(bioreactor  GB-P-C)  and in  the  absence  (bioreactor  GB-P-NC)  of  the  6-CAH 

mixture, and two slurry microcosm (S-P-C-0A) set up with soil and groundwater 

type A were bioaugmented with the same inoculum, spiked with propane and with 

the  6-CAH  mixture  (propane  46  µM; same  CAH  initial  concentrations  as  in 

methane-fed  microcosms  S-M-C-0A)  and  subsequently  operated  by  adding 
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consecutive propane and CAH pulses to evaluate the propane and CAH lag-times 

and the CAH depletion rates. 

After 30 days of growth of the two consortia in the four bioreactors (time 

1), four slurry microcosms were set up with soil and groundwater from site A and 

spiked  with  propane  and  with  the  6-CAH  mixture  (at  the  same  initial 

concentrations utilized for the previous propane-fed microcosms). Of these, two 

duplicates  (S-P-NC-1A)  were  augmented  with  2  mL  of  biomass  suspensions 

sampled from bioreactor GB-P-NC, and two (S-P-C-1A) were augmented with 2 

mL from bioreactor GB-P-C.

After  150  days  of  growth  of  the  two  consortia  (time  2),  six  slurry 

microcosms were set up with aquifer material from site A and spiked with the 6-

CAH  mixture  (at  the  same  initial  concentrations  utilized  for  the  previous 

microcosms).  Of  these,  two  (S-M-NC-2A  and  S-M-C-2A)  were  spiked  with 

methane (125 µM) and augmented respectively from bioreactors GB-M-NC and 

GB-M-C, and two (S-P-NC-2A and S-P-C-2A) were spiked with propane (46  µ

M) and augmented from bioreactors GB-P-NC and GB-P-C; finally, in the attempt 

to  develop  a  third  consortium able  to  combine  the  best  characteristics  of  the 

methane-utilizing and of the propane-utilizing consortia object of the study, two 

duplicate microcosms (S-MP-NC-2A) were spiked with both methane (62.5 µM) 

and propane (23 µM) and augmented from both GB-M-NC and GB-P-NC.

All the slurry microcosms set up at times 0, 1 and 2 with aquifer material 

type A were operated by adding consecutive pulses of methane or propane (or 

both  in  the  case  of  S-MP-NC-2A)  and  of  the  6-CAH  mixture,  at  the  same 

concentration supplied for each compound in the initial pulse, for a total of 5-7 

CAH pulses. As an example, the plot of CAH aqueous phase concentration versus 

time  relative  to  the  first  4  days  of  operation  of  one  of  the  two  duplicate 

microcosms S-M-C-0A is shown in Figure 5.2. The growth substrate and CAH 

concentrations measured in these microcosms were utilized to evaluate the lag-

times for the onset  of  substrate  utilization and of  biodegradation of  the entire 

CAH mixture and the long-term CAH depletion rates, as explained in detail in 

section 5.2.4. The results were compared with those obtained respectively in the 

methane-fed and propane-fed non-bioaugmented slurry microcosms set up with 
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the same aquifer material, described in the previous study (Frascari  et al., 2006) 

and utilized as the source of the initial inoculum. With the exception of S-MP-

NC-2A, the microcosms of time 2, as well as the following ones, were not set up 

as duplicates, as the results from the microcosms set up at times 0 and 1 indicated 

a  high  reproducibility  of  the  data  obtained  in  the  duplicate  microcosms  (as 

reported in more detail in section 5.3.2 and in Figure 5.3). Conversely S-MP-NC-

2A, as well as the double-substrate microcosms set up at later times, was set up in 

duplicate,  in  order  to  have  the  possibility,  after  a  consistent  number  of  CAH 

pulses sustained by the supply of both substrates, to perform a final period of 

operation characterized by the supply of only methane in one duplicate and only 

propane in the other one.

On the basis of the positive results obtained in the microcosms set up at 

times 1 and 2 with regard to  the possibility  to  grow either  consortium in the 

absence of the CAH mixture and to utilize it to bioaugment slurry microcosms 

identical - in terms of type of aquifer material as well as type and concentration of 

contaminants - to those where the two consortia had initially been developed (see 

section 5.3.3), at time 3 (300 days of consortium growth in the bioreactors) we set 

up a further group of microcosms (S-M-NC-3A, B, C, D and E; S-P-NC-3A, B, C, 

D and E) aimed at investigating the potential of utilization the two consortia as 

inocula for the bioaugmentation of different CAH-contaminated aquifers. These 

microcosms, inoculated respectively from growth reactors GB-M-NC and GB-P-

NC (consortia grown in the absence of the CAH mixture), were constructed with 

soil and groundwater taken from different sites: aquifers C and D, similarly to A, 

are CAH-contaminated sites containing sandy/silty soils, whereas aquifers B and 

E are uncontaminated sites containing respectively a sandy soil and a humic soil 

characterized  by  a  high  fraction  of  organic  carbon  (1.5%).  The  purpose  of 

utilizing  aquifer  materials  from  uncontaminated  sites  was  to  simulate  a 

bioremediation  treatment  conducted  right  after  the  occurrence  of  the 

contamination  with  the  CAH mixture:  in  this  condition,  the  site’s  indigenous 

biomass  has  not  been  subjected  to  the  selective  pressure  of  the  chlorinated 

compounds. In order to give a more general scope to this section of the work, the 

microcosms of time 3 were spiked both at set-up and in the subsequent pulses 
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with an equal molar concentration (set to 4 µM) of the different CAHs. Besides, 

VC was not included in the CAH mixture, as numerous studies showed that this 

compound is easily biodegraded by several bacteria via both direct metabolism 

and cometabolism (Frascari et al., 2006; Verce et al., 2002; Coleman et al., 2005; 

Hartmans et al., 1992).

Figure 5.2. Aqueous phase concentrations of the 6 CAHs versus time during the first 40 days 
of operation of microcosm S-M-C-0A1. For higher clarity the methane pulses, supplied daily 
at 125 µM and rapidly consumed, are not represented.

In addition to the ones above-listed, a further microcosm (S-MP-NC-3E) 

was set up in duplicate at time 3 with aquifer material from site E, bioaugmented 

from both GB-M-NC and GB-P-NC and spiked with the 5-CAH mixture (no VC) 

at 4 µM as well as with both methane (62.5 µM) and propane (23 µM). Besides, a 

non-bioaugmented control microcosm was set up for each substrate and for each 

aquifer material, for a total of 10 tests (K-M-A, B, C, D and E; K-P-A, B, C, D 

and E), and additioned with the 5-CAH mixture at 4 µM and with methane (125 µ

M) or propane (46 µM).

The microcosms of time 3, similarly to the previous ones, were operated 

by addition of consecutive pulses of  methane or propane (or both in the case of S-
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MP-NC-3E) and of the 6-CAH mixture, at the same concentration supplied for 

each compound in the initial pulse, for a total of 3 CAH pulses (7 for the E-type 

microcosms). The results, elaborated in terms of substrate and CAH mixture lag-

time  and  of  CAH  depletion  rates,  were  compared  to  those  obtained  in  the 

corresponding non-bioaugmented control microcosms.

Finally, at time 4 (390 days: 300 days of consortium growth in bioreactors 

GB-M-NC  and  GB-P-NC  in  the  absence  of  CAHs  +  90  days  of  consortium 

growth in the slurry microcosms of time 3 in the presence of the 5-CAH mixture), 

four liquid-phase microcosms were set up with a chloride-free mineral medium 

and spiked with the 5-CAH mixture (4 µM for each compound): one (L-M-4) was 

inoculated from slurry microcosm S-M-NC-3E and spiked with methane (125 µ

M), one (L-P-4) was inoculated from S-P-NC-3E and spiked with propane (46 µ

M), whereas two duplicates (L-MP-4) were augmented from S-MP-NC-3E and 

spiked  with  both  methane  (62.5  µM)  and  propane  (23  µM).  The  purpose  of 

operating microcosms in the absence of soil was to obtain an evaluation of the 

long-term  CAH  specific depletion  rates  (in  the  slurry  microcosms,  given  the 

difficulty of performing a precise valuation of active biomass, specific depletion 

rates cannot be evaluated with high accuracy). The reason why the liquid-phase 

microcosms were inoculated from the slurry microcosms containing soil from a 

site not characterized by a historical CAH contamination (site E) is that we were 

interested in investigating the characteristic of the consortia obtained from the 

interaction  between  the  CAH-degrading  methane-utilizing  or  propane-utilizing 

inoculated  consortium and  an  indigenous  biomass  not  affected  by  a  previous 

selective  pressure  due  to  CAH  contamination.  The  liquid-phase  microcosms, 

similarly to the slurry ones, were operated by addition of consecutive pulses of 

growth substrate (methane or propane or both) and of the 5-CAH mixture, at the 

same concentration of each compound as in the initial pulse.

5.2.2 Growt bioreactors set up and operation

Growth bioreactors (Figure 5.3) consisted of 5-l glass bottles sealed with Teflon-

lined septa and containing 1 L of sterile mineral medium (Table 5.1).
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Figure 5.3.  Batch growth reactors with the two different biomasses: a)  metanotrophs; b) 
propanotrophs

Table 5.1. Mineral medium composition

Compound Concentration (µM)

(NH4)2SO4 797

MgSO4·7H2O 244

CaCl2 132

K2HPO4 8902

NaH2PO4·H2O 5355

FeSO4·7H2O 22.6

NaNO3 9000

MnCl2·4H2O 1.52

ZnSO4·7H2O 0.510

H3BO3 1.00

Na2MO4·2H2O 0.450

NiCl2·2H2O 0.144

CuCl2·2H2O 0.100

CoCl2·6H2O 0.100

(a) (b)
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As shown in Table 5.2, each bioreactor was inoculated with 30 ml of the 

starting  inoculum  (2.7  x  107 CFU/mL).  The  primary  substrate  (methane  or 

propane)  was  supplied  in  consecutive  spikes  (at  the  initial liquid-phase 

concentration  in  each  pulse  of  54  µM for  methane  and  20  µM for  propane.) 

corresponding  to  an  average  feed  rate  of  37  mmolC/week.  The  6  chlorinated 

solvents were introduced into bioreactors GB-M-C and GB-P-C by spiking 7.4 ml 

of gaseous VC and 900 µL of a concentrated aqueous solution of trans-DCE (14.8 

mM),  cis-DCE (8.1 mM), TCE (7.9 mM),  1,1,2-TCA (0.83 mM) and 1,1,2,2-

TeCA (0.12 mM) each time all of them had been completely degraded. The CAH 

initial concentrations in each pulse were : VC 25  µM; trans-DCE 3.4  µM; cis-

DCE 3.1  µM; TCE 1.9  µM; 1,1,2-TCA 0.30  µM; 1,1,2,2-TeCA 0.15  µM. As a 

result of this procedure, the CAH overall feed rate was equal to 0.1 mmol/week. 

Aerobic conditions were maintained by adding pure oxygen each time the primary 

substrate was added, and the reactor aqueous phase was periodically air-stripped 

in order to remove CO2 and possible volatile toxic degradation products A nutrient 

solution containing ammonium (as NH4Cl 918 mM) and phosphate (as KH2PO4: 

38 mM and K2HPO4: 45 mM) was periodically provided so as to maintain a C:N:P 

molar ratio in the bioreactors feed equal to 220:11:1. Every 120 days the culture 

medium was centrifuged and biomass resuspended in fresh medium.

The growth reactors,  equipped with baffles in order  to  increase the gas-liquid 

mass transfer rate, were kept in continuous agitation in an orbital shaker (130 

rpm) at 25 °C.

Table 5.2. Growth reactors set-up and operational data

Reactor

Growth substrate

Type

Initial 

aq.concentration

µM)

CAH 

mixture

Initial inoculum

Volume 

(ml)

Concentration

(107 CFU/ml)

GB-M-NC

GB-M-C
Methane 54

Not present 30 2,7

Present 30 2,7

GB-P-NC

GB-P-C
Propane 20

Not present 30 2,7

Present 30 2,7
5.2.3 Microcosms set up and operation
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Slurry and liquid phase microcosms were set up using 119 ml amber serum bottles 

sealed with Teflon-lined rubber septa. Each microcosm contained 20 g of soil and 

50 ml of groundwater. In the microcosms set up with soil from aquifers B and E, 

in  the absence of  groundwater  from the site,  we introduced the  same mineral 

medium  utilized  for  the  growth  bioreactors  (Table  5.3).  The  liquid-phase 

microcosms  contained  50  ml  of  a  Cl-free  mineral  medium  having  the  same 

composition as that of the bioreactors,  but containing CaSO4 instead of CaCl2 

(Table 5.4). Each inoculated microcosm was augmented with 2 mL of biomass 

suspension. The biomass concentrations in the growth bioreactors at the time of 

each inoculation are reported in Table 5.5. The primary substrate was supplied in 

consecutive spikes (initial liquid-phase concentration in each pulse: methane 125 

µM, propane 46 µM, methane 62.5 µM + propane 23 µM in the double-substrate 

tests), corresponding to an average feed rate of 1.1 mmolC/week. The CAH were 

introduced by spiking gaseous VC (except for the tests of times 3 and 4) and an 

aqueous solution of the remaining 5 CAHs (solution utilized for the tests of time 

0, 1 and 2: trans-DCE 11.1 mM, cis-DCE 9.1 mM, TCE 5.9 mM, 1,1,2-TCA 1.8 

mM, 1,1,2,2-TeCA 0.32mM; solutions for the tests of times 3 and 4: trans-DCE 

(7.9 mM), cis-DCE (6.5 mΜ), TCE (8 mΜ), 1,1,2-TCA (5.9 mΜ) and 1,1,2,2-

TeCA (5.7 mΜ)

Aerobic  conditions  were  maintained  by  adding  pure  oxygen  (9  ml)  with  a 

frictionless  glass  syringe  prior  to  each  primary  substrate  supply  and  the 

microcosms aqueous phase was air-stripped each time a new pulse of CAHs was 

added, in order to remove CO2 and possible volatile toxic degradation products. A 

nutrient solution containing ammonium (as NH4Cl 289 mM) and phosphate (as 

KH2PO4:  12  mM  and  K2HPO4:  14  mM)  was  periodically  provided  so  as  to 

maintain a C:N:P molar ratio in the feed equal to 220:11:1. The microcosms were 

maintained in agitation in a roller (3.3 rpm) at 25 ° C. To evaluate abiotic CAH 

depletion rates and losses through caps, four control microcosms were set up and 

sterilized with NaN3 57 mM: two (ST-A1,2) contained E-type aquifer materials and 

were spiked with the CAH mixture at the initial concentrations similar to those 

typical of site A (and utilized in the microcosms of times 0, 1 and 2), whereas two 
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(ST-E1,2)  contained E-type aquifer materials and were spiked with TCE, 1,1,2-

TCA and 1,1,2,2-TeCA at 4 µM.
Table 5.3. Set up data of the slurry microcosms

Time Label Composition Growth substrate Parent bioreactor Duplicates

T0 
S-M-C0A
S-P-C0A Soil A + water A Methane 2

Propane 2

T1 (30 d) S-P-NC-1A
S-P-C-1A Soil A + water A Propane GB-P-NC 2

GB-P-C 2

T2 (150 d)

S-M-NC-2A
S-M-C-2A
S-P-NC-2A
S-P-C-2A

S-MP-NC-2A

Soil A + water A

Methane GB-M-NC 1
GB-M-C 1

Propane GB-P-NC 1
GB-P-C 1

Methane + propane GB-P-NC/GB-M-NC 2

T3 (300 d)

S-M-NC-3A Soil A + water A
S-M-NC-3B Soil B + mineral medium
S-M-NC-3C Soil C + water C
S-M-NC-3D Soil D + mineral medium
S-M-NC-3E Soil E + mineral medium

Methane

GB-M-NC 1
GB-M-NC 1
GB-M-NC 1
GB-M-NC 1
GB-M-NC 1

S-P-NC-3A Soil A + water A
S-P-NC-3B Soil B + mineral medium
S-P-NC-3C Soil C + water C
S-P-NC-3D Soil D + mineral medium
S-P-NC-3E Soil E + mineral medium

Propane

GB-P-NC 1
GB-P-NC 1
GB-P-NC 1
GB-P-NC 1
GB-P-NC 1

S-MP-NC-3E Soil A + water A Methane + Propane GB-P-NC/GB-M-NC 2
    

N
on

 in
oc

ul
at

ed
 m

ic
ro

co
sm

s KMA Soil A + water A Methane - 2
KMB Soil B + mineral medium Methane - 2
KMC Soil C + water C Methane - 2
KMD Soil D + mineral medium Methane - 2
KPA Soil A + water A Propane - 2
KPB Soil B + mineral medium Propane - 2
KPC Soil C + water C Propane - 2
KPD Soil D + mineral medium Propane - 2

KMPE Soil E + mineral medium Methane + propane - 2

Table 5.4. Set up data of the liquid-phase microcosms

Label Growth substrate Parent microcosm Duplicates

L-MP-4 Methane + propane S-MP-NC-3E 2

L-M-4 Methane S-M-NC-3E 1

L-P-4 Propane S-P-NC-3E 1
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5.2.4 Estimation of lag times, degradation rates and rate/concentration ratios

The lag-times for the onset of growth substrate  consumption and CAH 

degradation were obtained by the intersection of the maximum slope line of the 

concentration-time  curve  with  the  horizontal  line  passing  through  the  initial 

concentration value. The lag-times are reported in the Results in terms of substrate 

lag-time and additional lag-time relative to the CAH mixture, measured from the 

onset of substrate consumption and defined as the longest of the additional lag-

times relative to the single CAHs.

Each  CAH  pulse  was  characterized  by  the  maximum degradation  rate 

relative  to  each  compound,  calculated  by  dividing  the  maximum slope  of  the 

mass-time curve by the volume of the liquid phase.  Each degradation rate was 

associated with the aqueous phase concentration corresponding to the initial value 

of the portion of the mass-time curve utilized to calculate the degradation rate. 

The CAH depletion rates were elaborated according to the method described in 

detail  in the previous study (Frascari  et al.,  2006):  the rates obtained for each 

compound in each microcosms were plotted versus the mass of growth substrate 

consumed;  Figure  5.4  shows  as  an  example  the  plot  degradation  rate  versus 

consumed carbon mass for the first 5 pulses of VC in duplicate microcosms S-M-

C-0-A1 and S-M-C-0-A2.  This elaboration indicated that, after about 4 - 5 pulses 

of  CAH  mixture  depletion,  each  microcosm  reached  a  roughly  stationary 

condition in terms of CAH depletion rates; therefore we calculated the average of 

the depletion rates evaluated – for each compound and for each microcosm – in 

Table 5.5. Viable biomass concentrations in the growth bioreactors at the times of inoculation of the 
slurry microcosms
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the  stationary  phase;  this  average  rate  was  divided  by  the  average  of  the 

concentrations associated with the depletion rates included in the average. The 

rate/concentration ratio obtained – indicate in the following with k* - was utilized 

as  an  index  to  compare  the  depletion  rates  obtained  in  a  given  microcosm 

relatively to the different CAHs, and in different  microcosms relatively to the 

same  CAH.  This  simplified  approach  allowed  to  compare,  within  each 

microcosm, the depletion rates obtained for the different CAHs at different initial 

concentrations; it also allowed to compare the rates obtained for a given CAH at 

time 3 (when all the CAHs were supplied at 4 M) with those obtained for the 

same  CAH  at  earlier  times  (when  the  different  CAHs  were  supplied  at  the 

concentrations typical of site A).

Fig 5.4. Plot of the degradation rate-growth substrate consumed for the first 5 VC pulses in 
duplicate microcosms S-M-C-0-A1, S-M-C-0-A2.
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The  ratio  of  depletion  rate  to  concentration  (k*)  can  be  considered  a 

pseudo first-order constant that includes biomass concentration), in the hypothesis 

that the biodegradation of each CAH followed a first-order kinetic model within 

the  concentration  ranges  tested  for  each  compound.  This  hypothesis  was 

confirmed – although within concentration ranges lower than those of this study, 

in particular for 1,1,2-TCA and 1,1,2,2-TeCA – by the results of the previous 

study (Frascari et al., 2006), where it was shown that, in each slurry microcosm, 

the  depletion  rates  obtained  for  each  CAH  at  a  roughly  constant  biomass 

concentration were proportional to the corresponding initial concentrations in the 

pulses. The assumption of first-order kinetic is in agreement with the observation 

that  the  CAH  half-saturation  constants  reported  in  the  literature  are  typically 

higher than the concentration ranges investigated in this study (Alvarez-Cohen et  

al., 2001; Arp et al., 2001; Oldenhuis et al., 1991).

The only exception to the above-described procedure for the elaboration of 

the CAH depletion rates was made for the slurry microcosms set up at time 3 with 

aquifer materials from sites A, B, C and D: because these tests were operated only 

for 3 CAH pulses, the plots of the depletion rates versus substrate mass consumed 

indicated  that  the  stationary  condition  had  not  been  achieved.  Therefore,  to 

characterize the rates achieved in these microcosms we chose, for each compound, 

the  ratio  of  the  depletion  rate  of  the  third  CAH  pulse  to  the  corresponding 

aqueous-phase concentration. Consequently, the microcosms set up at time 3 with 

aquifer  material  from  site  E  (which  were  operated  for  7  CAH  pulses)  were 

characterized  according  to  this  criterion  in  the  elaborations  where  they  were 

compared with the corresponding microcosms containing materials from sites A, 

B, C and D, whereas in the elaborations where they were compared with other 

microcosms that had achieved the stationary condition, they were characterized 

according to the general criterion of the stationary CAH depletion rate.

In the case of the liquid-phase microcosms, the procedure described with 

regard to the slurry microcosms was applied to  the CAH specific  degradation 

rates,  obtained  by  dividing  each  CAH  rate  by  the  corresponding  biomass 

concentration measured at the beginning of the CAH pulse. The ratio of specific 

depletion rate to concentration is indicated in this study with ksp*
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The lag-times and depletion rates reported in the Results relatively to the 

duplicate microcosm are averages of the corresponding values estimated in the 

two duplicates.

5.2.5 Analytical methods

Gas Chromatography Analysis

The  gas-phase  concentrations  of  methane,  propane  and  CAHs  were 

measured with a HP6890gaschromatograph equipped with a capillary HP-VOC 

column  connected  to  a  Flame  Ionisation  Detector  (FID)  for  the  analysis  of 

methane, propane and VC and to a micro Electron Capture Detector (-ECD) for 

the analysis of the remaining CAHs; the instrument and the method characteristics 

are  reported  in  Table  5.6.  Detection  limits  were  (M in  the  aqueous  phase): 

methane and propane, 0.007; VC, 1.2;   trans-DCE, 0.08;  cis-DCE, 0.15; TCE, 

4x10-6; 1,1,2-TCA, 0.01; 1,1,2,2-TeCA, 0.02.

Table 5.6. GC Method for methane, propane and the 6 CAHs mixture’s analysis

Instrument HP 6890 serie II plus
Column HP-VOC capillary column
Column I.D. 0.32 mm
Column length 30 m
Liner Splitless
Split ratio 10:1
Front detector µECD
Back detector FID
Carrier gas Helium
Make up gas Nitrogen
Flow 0.9 ml/min
Injection volume 500 μL
Pressure 1.6 Bar
Injector temperature 250°C
Detector temperature 250°C
Initial temperature 60°C (3 min)
Ramp 20°C/min to 230°C
Final temp 230°C (5 min)
Run time 16.5 min

Total  masses  and  aqueous  phase  concentrations  in  standards  and  slurry 

microcosms were calculated utilizing the gas/liquid and solid/liquid equilibrium 

constants estimated at 25°C. The following equations describe the equilibrium:
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mi = (cL,i • VL + cG,i • VG ) (5.1)

cG,i = Hi • cL,i (5.2)

that implies:

cL,i = mi /(VL + Hi  • VG) (5.3)

where:

VL, VG: liquid and gas volume in the standard

Hi : dimensionless Henry constant for the compound i (Sanders, 1999)

mi: mass of the compound i (mg)

cG,i, gas and liquid concentration of compound i

Concerning the evaluation of the compound concentration into the microcosms, 

these have been based on the gas-phase concentration by headspace analysis. Soil 

and  liquid-phase  concentration  have  been  evaluated  by  assuming  equilibrium 

between the phases. The calculation has been based on equation 5.2 and on the 

following linear absorption isotherm (Semprini, 2000):

cS,i  = Kd,i •  cL,i (5.4)

where:

cS,i : concentration of compound i in the solid phase (soil) related to dry soil mass 

(mg/kg dry soil)

Kd,i : adsorption constant of compound i (L/kg)

The adsorption constant has been evaluated on the basis of the soil organic carbon 

content (foc, dimensionless) and of the value of the carbon-water partition constant 

(Koc, L/kg):

Kd,i = foc  •  Koc,i (5.5)
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The amount of compound (substrate or contaminant) in the microcosm has then 

been measured (starting from the gas-phase concentration) through the following 

relation:

mi = cL,i  •  (VL + Hi • VG +   foc • Koc,i • MT) (5.6)

where MT (kg) is the soil mass in the microcosm, while  cL,i has been evaluated 

through the relation (5.2).

Bacterial counts

Serial  dilution of  biomass  suspension sampled from growth bioreactors 

were plated on Petri dishes containing R2A medium. Bacterial colonies grown on 

R2A agar plates were grouped in different clusters and were counted on the basis 

of their different morphologies after a 5-7 days incubation at 30°C; the viable 

cells concentration was expressed as colonies forming units per ml of suspension 

(CFU/ml). R2A medium contained: yeast extract (500 mg/L), caseine hydrolyzed 

(500 mg/L), thiotone/peptone (500 mg/L), Glucose (500 mg/L), Sodium Piruvate 

(300  mg/L),  Na2HPO4  (300  mg/L),  MgSO4·7H2O  (30  mg/L);  Agar  (gelificant 

agent, 15 g/L).

Measure of CO2 and O2 concentration in the headspace

In  order  to  evaluate  the  consumption  of  O2  and  the  release  of  CO2 

correlated  with  the  consumption  of  primary  substrate,  1  ml  of  microcosms 

headspace  gas  has  been  sampled  and  analysed  in  a  VARIAN  3300  gas 

chromatograph equipped with a TCD detector (Thermal Conductivity Detector) 

and a packed column CARBONSIEVE SII SS. Injector temperature was 150°C , 

filament temperature,  250°C and detector temperature,  220°C. The temperature 

program was as follows (Figure 5.5): 5 min at 60 °C; ramp to 220°C at 10°C/min; 

14 min at 220°C.
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Figure 5.5. Temperature oven ramp for CO2 and O2 analyses

Total protein concentration was evaluated as described by Peterson (1977).

Concentration of Cl- was measured by Ion Chromatography with the method 

described by Frascari et al.(2006).
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5.3 RESULTS

5.3.1 CAH depletion in the sterilized controls

The ratios of CAH initial abiotic depletion rate to initial concentration (kst*) 

evaluated  in  the  sterile  controls  are  reported  in  Table  5.7.  The  comparison 

between these rates and the corresponding rates obtained in the viable microcosms 

is  reported and commented in  sections  5.3.3 and 5.3.4.  CAH depletion in  the 

sterilized controls followed a first-order kinetic. The best estimates of the first-

order  constants,  reported  in  Table  2,  correspond  to  abiotic  half-lives  varying 

between 2 months (for TCE and 1,1,2,2-TeCA) and 2.5 years (for cis-DCE).

Table 5.7. Abiotic rate/concentrations ratios (kst*) esatimated in the sterilized controls  ST-
A1,2 and ST-E1,2  operated at 25°C (average values).
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5.3.2 Behaviour of the duplicate slurry microcosms

All the duplicate slurry microcosms led to equal results (with deviations < 

10%) in terms of both lag-times for the onset of CAH biodegradation and CAH 

depletion rates. As an example, the plot of CAH concentration versus time relative 

to the first 13 days of operation of microcosms S-P-NC-1A1 and S-P-NC-1A2 is 

shown in Figure 5.6.

Figure 5.6. Aqueous phase concentrations of the 6 CAHs versus time during the first 13 days 
of operation of duplicate microcosms S-P-NC-1A1 and S-P-NC-1A2. For higher clarity the 
propane pulses, supplied daily at 46 M and rapidly consumed, are not represented.

5.3.3  Effect  of  inoculum  growth  time  and  condition  (presence/absence  of 

CAHs)

The  lag-times  for  the  onset  of  substrate  utilization  and  CAH  mixture 

biodegradation obtained in the parent non-bioaugmented microcosms relative to 
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1 and 2 with aquifer materials from site A are reported in Figure 5.7, whereas the 

corresponding k* are shown in Figure 5.8 in normalized form, having equalized to 

1  the  values  corresponding  to  the  parent  non-bioaugmented  microcosms.  The 

actual ratios k* relative to these microcosms are reported in the left-hand part of 

Table 5.8.

Figure 5.7 shows in the first place that the both inocula utilized at time 

zero to set up the growth bioreactors led to a drastic decrease of the lag-time for 

the onset of biodegradation of the entire 6-CAH mixture upon introduction in the 

microcosms containing aquifer materials form site A (microcosms S-M-C-0A and 

S-P-C-0A: from 100-200 days in the non-bioaugmented tests to 2-4 days in the 

inoculated  ones).  This  important  result  indicates  that,  in  case  of  an  in-situ 

cometabolic  bioremediation  of  site  A,  the  utilization  of  either  inoculum  is 

fundamental in order to rely on a fast onset of the remediation process and on a 

significant  saving  on  substrate  costs.  Figure  5.7  also  shows  that,  for  both 

consortia, the 150-day growth process in the presence as well as in the absence of 

the selective pressure exerted by the CAH mixture did not lead to any significant 

loss  of  the  capacity  to  induce  the  rapid  onset  of  biodegradation  of  the  CAH 

mixture, indicating that an eventual process of production of large amounts of 

biomass to utilize for a real-scale bioaugmentation treatment can be operated in 

the absence of the CAHs, with a significant simplification of the production plant 

and a reduction of the fixed and operational costs. A possible explanation for this 

experimental  result  is the fact  that  the inocula initially supplied to the growth 

bioreactors  had  previously  been  subjected  to  a  prolonged  period  of  CAH 

biodegradation in the slurry microcosms operated within the previous study (410 

days for the methanotrophs, 310 days for the propanotrophs), during which they 

had been strongly  stabilized by  the  CAH selective  pressure.  Lastly,  it  can  be 

observed in Figure 5.7 that  in  the non-bioaugmented microcosms the lag-time 

basically coincides with the time required by the site’s indigenous biomass to start 

growing on the primary substrate, whereas in the inoculated tests the short lag-

time is in some cases a substrate lag, and in others a CAH lag.
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Figure  5.7.  Lag-times  for  the  onset  of  primary  substrate  utilization  and  CAH  mixture 
biodegradation by methane-utilizing (a) and propane-utilizing (b) biomasses in the parent 
non-bioaugmented microcosms, in the microcosms bioaugmented with the initial inoculum 
(time 0) and in those bioaugmented with biomass sampled from the growth reactors at times 
1 (30 days) and 2 (150 days). All the data refer to microcosms containing aquifer materials 
from site A, and to the CAH initial concentration typical of site A (Table 5.8).

The k* reported in Figure 5.8 show that, for both consortia, the prolonged 

growth process in the presence as well as in the absence of the CAH mixture did 

not lead to any decrease of the long-term CAH depletion rates obtained in the 

inoculated microcosms set up with materials from site A, in comparison with the 

rates obtained inoculating the same type of microcosms with the initial inoculum 

(tests  set  up at  time zero:  S-M-C-0A and S-P-C-0A).  Besides,  with  regard to 

trans- and cis-DCE, TCE and 1,1,2-TCA, in the microcosms inoculated at time 

zero we obtained depletion rates higher than those measured in the parent non-

bioaugmented microcosms: this result may be explained by considering that each 

of the initial inocula was obtained by mixing biomass samples from three slurry 

microcosms,  which  may  have  resulted  in  the  formation  of  two  consortia 

combining the best degradation capacities of the biomasses they originated from. 
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Figure  5.8.  Normalized  ratios  of  depletion  rate  to  concentration(k*)  relative  to  the 
biodegradation of  the 6 CAH mixture by methane-utilizing (a)  and propane-utilizing (b) 
biomasses in the parent non-bioaugmented microcosms, in the microcosms bioaugmented 
with the initial inoculum (time 0) and in those bioaugmented with biomass sampled from the 
growth reactors at times 1 (30 days) and 2 (150 days). The  k*relative to the parent non-
bioaugmented microcosms (knb*) were equalized to 1, and their actual value is reported in 
the left-hand part of Table 5.8. All the data refer to microcosms containing aquifer materials 
from site A, and to the CAH initial concentrations typical of site A (Table 5.8).
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Combining the results  shown in Figures 5.7 and 5.8,  it  can be stated that  the 

prolonged growth process of both inocula in the absence of CAHs allowed to 

attain,  as  a  result  of  the  inoculation  in  type-A  slurry  microcosms,  CAH 

biodegradation rates equal or higher than those obtained in the non-bioaugmented 

microcosms, with drastically shorter lag-times for the onset of the bioremediation 

process.

As evidenced in our previous study (Frascari et al., 2006), the k* obtained 

in the non-bioaugmented microcosms and reported in the left-hand part of Table 

5.8 are characterized by a tendency to a decrease as the number of chlorine atoms 

in the solvent increases, with – in the case of the methanotrophs – a difference of 

two order of magnitude passing from VC to 1,1,2,2-TeCA. This tendency was 

maintained during the consortia growth process in the four bioreactors.

Table 5.8. CAH depletion rate / concentration ratios relative to the microcosms utilized as 
references for the normalized data reported in Figures 5.8 and 5.10 (day-1).

CAH

Parent non-bioaugmented 
microcosms (Frascari et al., 2006)a

Slurry microcosms set up at time 3 
with soil E and inoculated from 

growth bioreactors GB-M-NC or 
GB-P-NCb,c

Methane-fed Propane-fed
S-M-NC-3E

(methane-fed)
S-P-NC-3E

(propane-fed)
VC 29 24 d d

trans-DCE 10 0.59 1.7 1.1
cis-DCE 3.1 8.3 1.6 12

TCE 0.40 1.6 1.8 6.1
1,1,2-TCA 0.44 5.7 1.5 9.2

1,1,2,2-TeCA 0.29 1.1 0 1.0
a Initial concentration in the pulses: VC 25 µM; trans-DCE 3.4 µM; cis-DCE 3.1 µM; TCE 1.9 µ

M; 1,1,2-TCA 0.30 µM; 1,1,2,2-TeCA 0.15 µM.

b Initial concentration in the pulses: 4 µM for all the 5 CAHs. 

c The CAH depletion rates utilized for the microcosms set up at time 3 are - unlike those utilized 

for the parent non-bioaugmented tests - those of the third CAH pulse, when the microcosms were 

not yet in a stationary conditions in terms of CAH rates.

d VC was not included in the microcosms set up at time 3.

134



Growth of CAH-degrading Consortia in Methane- and Propane-fed Bioreactors

5.3.4  Effect  of  the  type  of  aquifer  material  contained  in  the  inoculated 

microcosms

Figure 5.9 reports the substrate and CAH mixture lag-times obtained in the 

non-bioaugmented methane-fed and propane-fed microcosms containing aquifer 

materials from sites A, B, C, D and E (and spiked with the 5-CAH mixture, with 

each compound at 4 M) and in the corresponding microcosms inoculated at time 

3 from bioreactors GB-M-NC and GB-P-NC (300 days of consortia growth in the 

absence of CAHs). The CAH lags relative to the methanotrophs (Figure 5.9a) do 

not include 1,1,2,2-TeCA  as, after a monitoring time of at least  100 days, the 

biodegradation of this solvent (at the initial concentration of 4 M) was observed 

neither in the non-bioaugmented microcosms nor in the inoculated ones. Figure 

5.9  shows  that  the  inoculation  of  the  two  consortia  led  to  drastic  lag-time 

reductions in the case of aquifers A and E, and to less marked – but not negligible 

– reductions in the case of aquifers B, C and D (in the worst case, occurred with 

the inoculation of the propanotrophs in aquifer material type B, we observed a 2-

fold  lag-time  reduction).  The  short  lag-times  obtained  in  the  inoculated 

microcosms indicate that the prolonged growth process of the two consortia in the 

absence  of  CAHs  did  not  lead  -  with  the  exception  of  1,1,2,2-TeCA for  the 

methanotrophs - to any significant loss of their ability to induce the rapid onset of 

CAH biodegradation. The lack of 1,1,2,2-TeCA biodegradation in the methane-

fed  inoculated  microcosms  is  probably  to  be  ascribed  to  the  higher  initial 

concentration of this compound in the microcosms of times 3 with respect to those 

inoculated at previous times (4 versus 0.15 M), rather than to a loss of 1,1,2,2-

TeCA degradation capacity of the methane-utilizing consortium during the growth 

process in GB-M-NC. This hypothesis, although not fully demonstrated within 

this study, is partly supported by the observation that, while in the non-inoculated 

microcosms containing A-type aquifer material and 1,1,2,2-TeCA at 0.15 M we 

observed the biodegradation of this compound shortly after the onset of methane 

consumption, in the non-inoculated tests containing the same aquifer material and 

1,1,2,2-TeCA at 4 M no biodegradation of this solvent occurred, indicating that 

the microbial capacity to transform 1,1,2,2-TeCA is affected by its concentration.
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The  results  shown  in  Figure  5.9  relatively  to  the  non-bioaugmented 

microcosms containing soil E confirm the observation that when particularly long 

overall lag-times are observed, they are due mainly to  the time required by the 

site’s indigenous biomass to start growing on the primary substrate.

Figure  5.9.  Lag-times  for  the  onset  of  primary  substrate  utilization  and  CAH  mixture 
biodegradation  by  methane-utilizing  (a)  and  propane-utilizing  (b)  biomasses  in  non-
bioaugmented  microcosms  set  up  with  five  different  aquifer  materials  and  in  the 
corresponding microcosms bioaugmented with biomass sampled in growth reactors GB-M-
NC and GB-P-NC (microbial growth in the absence of CAHs) at time 3 (300 days of biomass 
growth). VC was not spiked in the microcosms of time 3. In part (a) the CAH lag-times refer 
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to the time for the onset of the transformation of trans- and cis-DCE, TCE and 1,1,2-TCA, as 
no 1,1,2,2-TeCA biodegradation was observed in the methane-fed tests of time 3.

Figure 5.10 reports  the  k* relative  to  the methane-fed and propane-fed 

microcosms set up with the different aquifer materials and inoculated at time 3 

from GB-M-NC and GB-P-NC. Given the wide ranges of variations obtained, the 

rate/concentration ratios relative to the microcosms containing E-type materials 

were made equal to 1, and their actual value is reported in the right-hand side of 

Table 5.8. As explained in section 5.2.4, the CAH depletion rates utilized to build 

Figure 5.10 are - unlike those of Figure 5.8 - those of the third CAH pulse, when 

the microcosms were not yet in a stationary condition in terms of CAH rates. The 

data summarized in Figure 5.10 and in Table 5.3 show that – with the exception of 

1,1,2,2-TeCA for the methanotrophs – the two inocula, after the prolonged growth 

process in the absence of CAHs, were able to induce in all the aquifer materials 

tested  CAH  depletion  rates  analogous  to  those  obtained  in  the  parent  non-

bioaugmented microcosms. Overall, the bioaugmented microcosms containing E-

type materials resulted in the highest CAH degradation rates; for this reason, as 

well as for our interest in site E as a non historically contaminated site, these 

microcosms  were  operated  for  a  significantly  longer  time  than  the  other 

microcosms of time 3 (7 versus 3 CAH pulses), and were eventually utilized as 

the source of the inocula for the liquid-phase microcosms of time 4.
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Figure 5.10. Normalized depletion rate to concentration ratios (k*) for the biodegradation of 
the  5-CAH  mixture  by  methane-utilizing  (a)  and  propane-utilizing  (b)  biomasses  in  the 
microcosms set up with different aquifer materials and bioaugmented with biomass sampled 
from growth reactors  GB-M-NC and GB-P-NC at time 3.  The  k* relative  to the  E-type 
microcosms (kE*) were equalized to 1 and their actual value is reported in the right hand 
part of Table 5.8.
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The ratio of the kst* evaluated in sterile controls ST-E1,2 (spiked with TCE, 

1,1,2-TCA and 1,1,2,2-TeCA at 4 M) to the corresponding  k* obtained in the 

microcosms of time is < 1% for 1,1,2-TCA, < 3% for 1,1,2,2-TeCA and < 5% for 

TCE. This result confirms the minor contribution of abiotic reactions and losses 

through the caps to the depletion rates observed in the viable microcosms.

The combined results shown in Figures 5.9 and 5.10 indicate that both the 

inocula  object  of  this  study have  a  high  potential  for  the  bioaugmentation  of 

CAH-contaminated sites, even in cases where the site’s indigenous biomass has 

not been previously affected by the selective pressure due to a historical CAH 

contamination.  The  lack  of  1,1,2,2-TeCA  biodegradation  at  4  M  by  the 

methanotrophs indicates, in agreement with numerous literature studies (Kim et  

al., 2000; U.S. E.P.A, 2000; Chen et al., 1996), that the aerobic biodegradation of 

TeCA is a problematic process and that propane is more effective than methane in 

inducing the microbial degradation of this compound.

5.3.5 Effect of the type of microbial consortium inoculated and growth 

substrate supplied

Figure 5.11a shows the k* relative to the three types of slurry microcosms 

set up with type-A aquifer material and inoculated at time 2 with biomass grown 

in the absence of the CAH mixture: S-M-NC-2A (inoculated with methane-grown 

biomass  and  fed  with  methane),  S-P-NC-2A  (inoculated  with  propane-grown 

biomass and fed with propane) and S-MP-NC-2A (inoculated with both methane-

grown and propane-grown biomass and fed with both substrates). Similarly, Fig. 

11b shows the ratios of depletion rate to concentration relative to the three types 

of slurry microcosms set up with type-E aquifer material and inoculated at time 3 

with biomass grown in the absence of the CAH mixture: S-M-NC-3E, S-P-NC-3E 

and S-MP-NC-3E. The CAH rates utilized to build Figure 5.11b, unlike those 

utilized for Figure 5.10 and for the right-hand part of Table 5.8, are long-term 

rates obtained when the microcosms were in a stationary condition in terms of 

CAH depletion rates. 
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It can be observed in the first place that the “single-substrate” consortia 

(methane-fed  and  propane-fed)  are  characterized  by  significantly  different 

biodegradation capacities with respect to the various CAHs. In particular, while 

the methanotrophs, at both inoculation times and with both aquifer materials, were 

14 times more effective on trans-DCE than the propanotrophs,  the latter  were 

significantly more effective than the methanotrophs on 1,1,2-TCA (with a 9-10 

fold  advantage),  1,1,2,2-TeCA (with  a  2-fold  advantage  at  time  2,  when  this 

compound was supplied at 0.15 µM, and with the lack of TeCA biodegradation by 

the methanotrophs at time 3, when it was supplied at 4 µM) and – limitedly to the 

A-type microcosms – TCE (with a 5-fold advantage). As for VC, while it was not 

supplied in the microcosms of time 3, at time 2 it was characterized by the similar 

ratio of depletion rate to concentration in the methane-fed and in the propane-fed 

consortia, as can be evinced by comparing the last VC bars in Figure 5.8a and b.

The different but complementary degradation capacities of the two single-

substrate  consortia  suggested  the  idea  to  test  the  characteristics  of  a  double-

substrate consortium. It can be observed in both Figure 5.11a and 5.11b that, for 

all the CAHs characterized by a different degradation ability of the two single-

substrate consortia, the mixed propane/methane-fed consortium behaved like the 

best single-substrate consortium.

Interestingly, the k* obtained, for each CAH and for each type of substrate, 

by  inoculating  A-type  microcosms  at  time  2  (Figure  5.11a)  and  E-type 

microcosms  at  time  3  (Figure  5.11b),  are  approximately  the  same,  with  the 

exception  of  TCE  and  1,1,2,2-TeCA  for  the  methanotrophs  (a  probable 

consequence of the increase of concentration, as discussed for TeCA in section 

5.3.4). This result indicates that neither the additional 150-day growth period of 

the inocula in the absence of the CAH mixture, nor the different type of aquifer 

material  (and consequently of indigenous biomass) contained in the inoculated 

microcosms  led  –  in  particular  for  the  propane-fed  and  methane/propane-fed 

consortia – to any significant difference in the type of consortium obtained as a 

result of the interaction between the inoculum and the microcosms’ indigenous 

biomass. Besides, considering that the A-type microcosms were spiked with CAH 

initial concentrations in the 0.15-3.4 µM range (excluding VC), while the E-type 
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tests  contained  each  CAH  at  4  µM,  the  similarity  of  the  k* represents  a 

confirmation of the validity of the utilization of the pseudo first-order constant k* 

as an index of CAH degradation capacity of the different consortia.

In order to further investigate the effect of the type of growth substrate on 

the CAH degradation capacity, in microcosms S-M-NC-3E, S-P-NC-3E, S-MP-

NC-2A1,2 and  S-MP-NC-3E1,2,  after  7  pulses  of  biodegradation  of  the  CAH 

mixture we operated a change of the type of substrate supplied: in particular, in 

the first two microcosms we inverted the growth substrate, feeding S-M-NC-3E 

with propane (46 µM) and S-P-NC-3E with methane (125 µM), whereas in each 

double-substrate test we started to feed one duplicate (S-MP-NC-2A1 and S-MP-

NC-3E1) with only methane (125 M), and the other (S-MP-NC-2A2  and S-MP-

NC-3E2) with only propane (46 µM). In each of these microcosm, after one week 

of  feed  with  the  new  substrate  in  the  absence  of  CAHs,  we  monitored  the 

biodegradation of one further pulse of the 5- or 6-CAH mixture (supplied at the 

same concentration of each compound as in the previous pulses). In the double-

substrate microcosms (S-MP-NC-2A and S-MP-NC-3E), the supply of only one 

substrate did not lead -  limitedly to the single CAH pulse monitored -  to any 

significant change of the CAH depletion rates (data not shown). Conversely, in 

microcosms  S-M-NC-3E  and  S-P-NC-3E  the  inversion  of  substrate  led  each 

consortium to  attain  CAH depletion  rates  analogous  to  those  observed  in  the 

corresponding  double-substrate  microcosm  S-MP-NC-3E:  in  other  words,  the 

supply of methane in S-P-NC-3E resulted in a marked increase of the trans-DCE 

rate and in the maintenance of the depletion rates relative to the other CAHs, 

whereas the supply of propane in S-M-NC-3E led to a marked increase of the 

1,1,2-TCA rate, to the onset of 1,1,2,2-TeCA biodegradation and, as in S-P-NC-

3E, to no significant loss of the degradation capacity relative to the other CAHs 

(data not shown). While the rapid development of new degradation capacities as a 

result  of  the  inversion  of  substrate  represents  an  interesting  result,  the 

maintenance of the degradation abilities characteristic of the previous substrate 

cannot be considered a definitive result:  in fact,  because it  was observed only 

relatively to one CAH pulse, it might be a residual of the CAH-transformation 

capacities acquired during the period of feed with the initial substrate.
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Figure 5.11. Depletion rate to concentration ratios (k*) for the biodegradation of the 5-CAH 
mixture by biomasses grown on methane, propane and methane + propane in microcosms 
set up at time 2 with aquifer material A (a) and at time 3 with aquifer material E (b), and 
bioaugmented  with  biomass  sampled  from  growth  reactors  GB-M-NC  and  GB-P-NC 
(microbial growth in the absence of CAHs).
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5.3.6 Results relative to the liquid-phase microcosms

Fig.  5.12 shows the ratios  of specific  CAH rate  to  concentration (ksp*) 

relative  to  the  methane-,  propane-  and  methane/propane-fed  liquid-phase 

microcosms, inoculated with biomass suspension sampled from the corresponding 

E-type microcosms after 90 days of CAH biodegradation and spiked with the 5-

CAH mixture at 4  µM for each compound. The results obtained in the liquid-

phase tests are highly similar to those of the E-type microcosms. In particular, 

with regard to each compound,  the mixed propane/methane-fed consortium (L-

MP-4) behaved like the best single-substrate consortium. Besides, for each CAH, 

the ratio of the ksp* of propane-fed L-P-4 to the corresponding ksp* of methane-fed 

L-M-4 is about equal to the same ratio calculated for slurry microcosms S-P-NC-

3E and S-M-NC-3E, as well as for microcosms S-P-NC-2A and S-M-NC-2A, in 

terms of non-specific depletion rates: 0.07–0.11 for trans-DCE, about 1 for cis-

DCE and TCE, 9-10 for 1,1,2-TCA, infinite for 1,1,2,2-TeCA (except the A-type 

slurries, possibly due to the lower TeCA concentration). This result suggests that 

the different degradation abilities shown in slurry tests – for any given CAH – by 

the methane-utilyzers in comparison with the propane-utilyzers are not the mere 

result of the attainment of different concentrations of active biomass in the two 

types  of  microcosms.  On  the  contrary,  they  reflect  actual  differences  in  the 

specific CAH transformation capacities of the two consortia.

In  the  liquid-phase  microcosms,  the  utilization  of  a  Cl-free  mineral 

medium allowed a  precise  evaluation of  the  increase  in  Cl  concentration as a 

result  of  CAH  dechlorination.  The  resulting  ratios  of  the  Cl- moles  actually 

produced to the Cl- moles corresponding to the complete dechlorination of the 

total amount of CAHs depleted, evaluated in correspondence of the degradation of 

6 CAH pulses, are equal to 0.88 for L-MP-4, 0.92 for L-P-4 and 0.90 for L-M-4. 

The missing 10% of Cl- moles indicates that further research is needed to evaluate 

the type of degradation products as a result of the aerobic cometabolism of CAHs.
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Figure  5.12.  Ratios  of  specific  depletion rate (ksp*)  for  the  biodegradation of  the  5-CAH 
mixture by biomasses grown on methane, propane and methane + propane in the liquid-
phase microcosms,
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In  this  work  we  studied  the  long-term  growth  process  of  two  CAH-

degrading microbial  consortia  under  different  experimental  conditions,  and we 

investigate  the  effectiveness  of  these consortia  as  inocula for  the operation of 
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biodegradable by means of aerobic  processes (U.S.  E.P.A.,  2000;  Chen et  al., 

1996). Its aerobic cometabolic biodegradation by methane-oxidizing cultures was 

evidenced  for  the  first  time  by  Chang  and  Alvarez-Cohen  (1996),  whereas 

Frascari  et  al. (2006)  had  documented  in  a  previous  study  its  long-term 

biodegradation  by  methane-fed  and  propane-fed  biomasses  in  the  0-0.65  µM 

range.

This study also evidenced that, in the case of a large-scale bioremediation 

with bioaugmentation, the production of large amounts of biomass starting from 

the two inocula object of the investigation can be operated in the absence of the 

CAH mixture,  with  a  significant  simplification  of  the  production  plant  and  a 

reduction  of  the  fixed  and  operational  costs.  A  possible  explanation  of  this 

experimental  result  id the fact that the inocula initially supplied to the growth 

bioreactors  had  previously  been  subjected  to  a  prolonged  period  of  CAH 

biodegradation in the slurry microcosms operated within the previous study (410 

days for the methanotrophs, 310 days for the propanotrophs), during which they 

had been strongly stabilized by the CAH selective pressure.

The CAH lag-times and depletion rates obtained in the non-bioaugmented 

microcosms  set  up  with  different  types  of  aquifer  materials  indicate  that  the 

indigenous biomasses of different sites can have significantly diverse capacities to 

grow on the primary substrate supplied and to start degrading the CAH mixture: 

in fact, out of five aquifer materials tested, two resulted in lag-phases of over three 

months  for  the  onset  of  substrate  utilization  (both  with  methane  and  with 

propane), whereas in the remaining three the overall lag-times (substrate + CAH 

mixture) were equal to two weeks at the most. Conversely, the introduction of 

either inoculum led in all the five types of aquifers to very short lag-times (< 4 

days) for the onset of CAH degradation. This result indicates, in agreement with 

the findings of the previous study (Frascari et al., 2006), that bioaugmentation can 

play a crucial role in the successful bioremediation of CAH-contaminated sites 

and that,  consequently,  further  research on the production and the  stability  of 

CAH-degrading inocula and on their interaction with the indigenous biomasses of 

different aquifers is needed.
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Interestingly,  in  the  inoculated  microcosms,  while  the  lag-times  were 

almost independent of the type of aquifer material  utilized, the depletion rates 

obtained for each CAH with the different aquifer materials differed in some cases 

by one order of magnitude, indicating that the chemical, physical and biological 

characteristics of the bioaugmented site play a significant role in the long-term 

CAH depletion rates achieved. Besides,  the short  lag-times and the high CAH 

depletion  rates  obtained  in  the  inoculated  E-type  microcosms  show  that 

bioaugmentation can be successful even in sites whose indigenous biomass has 

not been exposed to the selective pressure due to a previous CAH contamination 

and is not capable to grow on any of the primary substrates supplied.

Lastly,  in the microcosms supplied with both methane and propane we 

obtained a microbial consortium combining the degradation capacities of the two 

single-substrate consortia. This result suggests that the double-substrate approach 

– a novel technique not previously reported to the best of our knowledge in any 

study  of  cometabolic  biodegradation  –  can  find  useful  applications  for  the 

degradation of complex CAH mixtures.
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CHAPTER 6

6.  BIODEGRADATION  OF  CHLOROBENZENE:  STUDY  OF 

THE  CATABOLIC  POTENTIAL  AND  THE  STRUCTURE  OF 

THE  MICROBIAL  COMMUNITY  IN  THE  INTERFACE 

BETWEEN GROUNDWATER AND SURFACE WATER
_______________________________________________________________________________

ABSTRACT

The  catabolic  potential  and  the  structure  of  the  microbial  community 

present in the interface between groundwater and surface water were studied. The 

main goal of this study was to find out whether bacteria present in the interface 

are  involved  in  pollutants  degradation.  Therefore  batch  degradation  tests  and 

molecular  analyses (PCR-DGGE analysis  of  16S rRNA gene,  catabolic  genes, 

dsrA gene) were carried out on aquifer material extracted at different depths in the 

interface  in  three  locations  characterized  by  different  monochlorobenzene 

contamination  levels.  Batch  tests  were  performed  under  oxygen-limited 

conditions  in  order  to  study  chlorobenzene  degradation  under  the  in  situ 

conditions. The position in the interface did not have any effect on the process and 

biodegradation was exclusively limited by a lack of oxygen. Up to 50 mg/l of 

monochlorobenzene  were  consumed  in  20  days  in  both  aquifers,  and  also  in 

groundwater  and  surface  water,  when  sufficient  oxygen  was  available  (1.5–2 

mg/l). 16S rRNA PCR-DGGE analysis were carried out on undisturbed sediment 

cores  extracted  from  the  three  studied  locations  in  different  seasons.  Results 

indicated that the structure of the microbial community changed in function of 

depth. Moreover the structure of the community appeared different in the three 

locations while significant similarities were observed in samples extracted in each 

location  in  different  seasons.  Cloning  and  sequencing  allowed  to  identify  the 

dominant bands in the DGGE pattern as belonging to the group of Proteobacteria. 

It  is  still  unclear if  bacteria  corresponding  to  these  bands  play  a  role  in 
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chlorobenzene degradation. The only degradative gene detected until now is the 

mono-oxygenase tmoA. This gene is involved in the degradation of BTEX, which 

are structurally similar to monochlorobenzene, thus being probably involved in its 

degradation.  This  hypothesis  seemed to  be confirmed by the observation that, 

after 200 days of incubation, some bands became more visible in  tmoA-DGGE 

analyses of samples taken from the batch degradation tests.

6.1 INTRODUCTION

The widespread use of chlorobenzenes during the last decades led to their 

common occurrence  in  the  environment.  Chlorobenzenes  are  of  great  concern 

because of their toxicity, persistence and accumulation in the food chain (Aelion 

et al., 1987). Monochlorobenzene has been identified as priority pollutant by the 

U.S.  Environmental  Protection.  Chlorinated  aromatic  compounds  are  non-

degradable or slowly degradable by microorganism (van der Meer, 1997), thus 

being  considered  among  the  most  problematic  categories  of  environmental 

pollutants. Nevertheless,  bacteria that are able to use these compounds as sole 

source  of  carbon  and  energy  have  been  isolated  from  polluted  environments 

(Schraa et al., 1986; Spain and Nishino, 1987; van der Meer et al., 1987; Haigler 

et al., 1988; Sander et al., 1991; Spiess et al., 1995). Chlorobenzenes are readily 

mineralized under appropriate conditions in the laboratory by bacteria isolated 

from soil and water (de Bont  et al., 1986; Haigler  et al., 1988; Reineke  et al., 

1984;  Schraa  et  al.,  1986;  Spain  and  Nishino,  1987).  Field  studies  on 

contaminated sites have shown that river sediments exposed to chlorobenzenes 

degraded them faster than sediments from unpolluted sites (Aelion et al., 1987). 

Furthermore,  chlorinated  benzenes  are  chemically  stable  in  nature,  their 

photochemical degradation does not play an important role in soil and aquatic 

environment.  Biological  degradation  could  therefore  be  considered  a  feasible 

process to eliminate these compounds.

Polluted groundwater in urban and industrial areas often represents a 

continuous source of (diffuse) contamination of surface waters. However there are 
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strong indications that the interface between groundwater and surface water plays 

an important role in the natural degradation of organic contaminants. This is 

especially the case for mobile contaminants (such as monochlorobenzene) that are 

persistent in anaerobic subsurface environment, but relatively easily mineralised 

under more oxidized environmental conditions (Figure 6.1).

Figure 6.1. Natural attenuation at the reactive interface between groundwater and surface 
water

The interface is a dynamic ecotone where active exchanges of water and 

dissolved material between the stream and groundwater in many porous sand- and 

gravel-bed  rivers  occur  (Karaman,  1935;  Orghidan,  1959;  Sabater  and  Vila, 

1991). It contains a unique invertebrate fauna (Williams and Hynes, 1974) next to 

many forms of fungi and microbes that transfer, release, and stabilise different 

forms of transient nutrients (Hendricks, 1993). Interfaces are important storage 

zones  for  organic  carbon  (Bretschko  and  Moser,  1993)  and  are  generally 

characterised  by  sharp  physical  and  chemical  gradients  (Fraser  and  Williams, 

1998),  thus enabling a broad spectrum of metabolic processes to occur within 

small  spatial  scales.  As  a  consequence  the  interfaces  are  often  hot  spots  in 

productivity and diversity of organisms (Pusch et al., 1998) and may substantially 
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contribute  to  the  carbon,  nutrient  and  energy  flow  through  the  river  system 

(Naegeli and Uehlinger, 1997).

Although  nitrogen  (Valett  et  al.,  1997)  and  dissolved  organic  carbon 

biogeochemistry (Vervier  and Naiman,  1992)  have received much attention in 

relation to streambed hydrologic retention and surface/subsurface exchange, not 

much is known about the effect of the interface on the degradation of pollutants. 

Lendvay and Adriaens (Lendvay and Adriaens, 1999) observed, using multilevel 

arrays, that concentrations of methane and chloroethene decreased as groundwater 

became increasingly oxidised along the groundwater-surface water interface in 

sample  points  impacted  by  infiltration  of  oxygenated  surface  water. 

Schwarzenbach  et al. (1983)  observed the  enhanced removal  of  alkylated and 

chlorinated benzenes in the interface. Since under the conditions typical for the 

groundwater  environment  these aromatic  compounds do not  undergo chemical 

reactions at significant rates and since these compounds are also weakly sorbed, 

these  authors  presumed  that  any  elimination  must  be  attributed  to  biological 

transformation  and/or  mineralisation.  Fuller  and  Harvey  (Fuller  and  Harvey, 

2000)  observed  an  enhanced  metal  uptake  in  the  interface  by  the  analysis  of 

dissolved-metal streambed profiles and conservative solute tracers.

Although  previous  studies  (Schwarzenbach  et  al.,  1983;  Lendvay  and 

Adriaens, 1999) presumed that the decrease in the concentration of pollutants was 

due to the activity of the microbial community present in the interface, abiotic 

processes  (such  as  dispersion,  adsorption,  convection)  may as  well  have  been 

responsible for this decrease, which is in fact only a dilution of the pollutant, not 

resulting in a reduced risk for humanity and ecosystems.

This  study aims  at  investigating  the  presumed involvement  of  bacteria 

present in the interface in monochlorobenzene degradation in order to understand 

if interface can act as a biobarrier towards the infiltrating contaminants. If such 

condition really exists in the field and residence times of the polluted groundwater 

in the transitional zones are sufficient, the “naturally occurring biobarrier” could 

provide  a  valuable  guarantee  that  pollution  is  dealt  with  adequately,  thus  not 

requiring  “active”  and  expensive  remediation  technology  (such  as  pump  and 

threat or air-sparging).
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To investigate these issues we therefore carried out batch degradation tests using 

sediment material extracted at two different depths in the interface, from three 

sampling locations characterized by different level of contamination. Tests were 

operated  under  oxygen-limited  conditions  similar  to  those  observed in  situ. 

Furthermore we used different molecular techniques (Polymerase chain reaction-

Denaturing Gradient Gel Electrophoresis (PCR-DGGE)) to study the structure of 

the interface microbial community in three different locations throughout the year 

(analysis  of  seasonal  data).  We  chose  three  sampling  locations  with  different 

levels of contamination to investigate the effect of the presence/absence of the 

contaminant on the microbial community, and we analyzed samples extracted in 

different times of the year to evaluate the effect of seasonal variations. Due to the 

structural similarity between chlorobenzene and BTEX compounds we chose to 

investigate if BTEX catabolic genes were present in our samples. In addition we 

studied the diversity of sulfate-reducing bacteria in the same samples. Cloning and 

sequencing of the dominant DGGE-bands eventually enabled us to identify the 

dominant species in the microbial community.

6.2 MATERIALS AND METHODS

6.2.1 TEST SITE AND SAMPLING

We used three sampling places located in an industrial site in the Port of 

Amsterdam  (The  Netherlands),  mainly  polluted  with  monochlorobenzene  at 

different contamination levels (Figure 6.2). The first one is a ditch constructed by 

TNO  (Toegepast  Natuurwetenschappelijk  Onderzoek,  The  Netherlands)  and 

characterized by  high  monochlorobenzene  concentration in  groundwater  (5–10 

mg/l), the second one (Leendertgracht) is a canal representing a natural interface 

situation with lower monochlorobenzene concentration in groundwater (0,3 mg/l), 

the third one (Vijver) is a pond chosen as negative control,  due to the lack of 

monochlorobenzene in the sediment of the interface and in surface water.
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Figure 6.2. The three sampling places in the industrial site in the Port of Amsterdam (The 
Netherlands); (a), Artificial ditch; (b), Leendertgracht; (c), Vijver.

(a)

(b)

(c)
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Groundwater was sampled as close as possible to the interface sampling 

point.  Three  different  boreholes  were  used:  Q-32  (artificial  ditch),  A-31/1 

(Leendertgracht) and A-18/2 (Vijver). Due to the lack of a closer one we chose 

borehole A-18/2 for the Vijver; nevertheless this is one of the wells beside the 

canal.

Sediment  and  water  samples  were  used  for  molecular  tests  and  batch 

degradation tests;  physico-chemical  parameters  (pH,  redox potential,  dissolved 

oxygen concentration, conductivity, temperature) were also measured and water 

was  analysed  to  determine  the  concentration  of  chlorobenzenes,  benzene, 

chlorides, electron acceptors and metals.

Samplings  were  performed  on  24/11/2004,  22/03/2005,  31/05/2005, 

31/08/2005,  20/04/2006,  22/11/2006  in  order  to  have  sediment  samples 

representative for each season in the year and to study the microbial community 

seasonal variations. Table 6.1 shows the tests carried out for each sampling.

Table 6.1. Tests carried out on sediment cores

Date
Sampling point

Artificial ditch Leendertgracht Vijver

24/11/2004
(Autumn)

Molecular tests - -

22/03/2005
(Winter)

Molecular tests + 
batch degradation 

tests

Molecular tests + 
batch degradation 

tests

Molecular tests + 
batch degradation 

tests
31/05/2005

(Spring)
Molecular tests Molecular tests Molecular tests

31/08/2005
(Summer)

Molecular tests Molecular tests Molecular tests

20/04/2006
(Spring)

Batch degradation 
tests (only water)

Molecular tests + 
batch degradation 

tests

Molecular tests + 
batch degradation 

tests

22/11/2006 - - -
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6.2.2 Retrieval of the samples
Undisturbed  sediment  samples  were  obtained  by  hammering  a  4  cm 

diameter  plastic  tube  into  the  interface  (Figure  6.3).  Fresh  aquifer  material 

obtained from these cores was used in batch degradation tests: they were cut into 

two parts (top and bottom) which were homogenized and used in the setup of the 

microcosms. Some of the cores were frozen on dry ice immediately after sampling 

in the field in order to be used for molecular analyses. In the laboratory, these 

undisturbed frozen samples were cut into slices of approximately 1 cm by using 

an electrical saw. Great care was taken in the sterilisation of the saw between each 

different cut using ethanol. From each core all the slices from the first 7–10 cm 

were selected and those from 10 cm downwards were analysed every 4–5 cm. 

From each selected slice sub-samples were used for molecular tests (Figures 6.4 

and 6.5) and for the analysis of chlorobenzenes concentration (extraction with 

methanol followed by GC-MS analysis). Groundwater was withdrawn by means 

of  a  peristaltic  pump (Eijkelkamp,  Agrisearch  Equipment  BV,  Giesbeek,  The 

Netherlands);  dissolved oxygen, pH, redox, conductivity and temperature were 

measured on site using a multimeter (WTW Multiline P4, Weilheim, Germany) in 

a  flow  through  cell  (Eijkelkemp  Agrisearch  Equipment  BV,  Giesbeek,  The 

Netherlands) (Figure 6.6). The groundwater level was monitored by means of an 

Interface  Meter  (Eijkelkemp  Agrisearch  Equipment  BV,  Giesbeek,  The 

Netherlands). Groundwater and surface water were collected in 2,5 l bottles and in 

40  ml  tubes  containing  2  g  of  ascorbic  acid.  Chlorobenzenes  and  benzene 

concentrations were measured in the laboratory by GC-MS headspace analysis by 

pouring 5 g of water from the 40 ml tubes in 10 ml vials and adding 100 l of 

85% ortho-phosphoric acid, as explained in paragraph 6.2.5. In the laboratory, the 

pellets of a 150 ml sample obtained after centrifugation during 20 min at 7500 

rpm were re-suspended in  2  ml of  the same water  and used in  the  molecular 

analyses described in paragraph 6.2.6.
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Figure 6.3. Extraction of an undisturbed sediment sample
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Figure 6.4. Presentation of the strategy followed to study the presence of catabolic genes, 16S 
rRNA gene and dsrB gene at different depths in the interface.

Figure 6.5. Extraction of sub-samples for PCR-DGGE analyses from frozen sediment slices.
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Figure  6.6.  Sampling  of  surface  water  (a)  and  groundwater  (b)  and  measure  of  pH, 
temperature, redox potential,  dissolved oxygen and conducibility  in groundwater (c)  and 
surface water (d).

(a) (b)

(c) (d)
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6.2.3 Batch degradation tests of monochlorobenzene
Two groups of microcosms were set up using aquifer material and water 

sampled on 22/03/2005 and on 20/04/2006. Tests were performed in 160 ml glass 

bottles. 37,5 g of aquifer material were suspended in 70 ml of surface water or 

groundwater  (Figure  6.7).  Both  kinds  of  aquifer  materials  (top  and  bottom, 

obtained as explained above)  were used in  order  to  evaluate  the  effect  of  the 

position in the interface on the monochlorobenzene degradation potential. Each 

type of sediment tests were performed in two different conditions using surface 

water or groundwate. Degradation by the community present in groundwater and 

in the surface water was investigated in bottles containing just water (85 ml) and 

no aquifer material.  In the first  group of tests (22/03/2005) microcosms flasks 

were filled in addition with filter-sterile or non-filter-sterile groundwater to study 

monochlorobenzene degradation by bacteria present in the aquifer only. In order 

to consider the a-biotic removal of monochlorobenzene control tests were set up 

by adding 35 ml of groundwater and 35 ml of surface water to 19 g of each kind 

of  sediment  (top  and  bottom)  and  by  poisoning  bacteria  with  800  l  of 

formaldehyde.  Monochlorobenzene  was  added  to  the  microcosms  where  a 

concentration  lower  than  1  mg/l  was  detected,  in  order  to  reach  a  final 

concentration of 3 to 4 mg/l (the  in situ monochlorobenzene concentration) and 

the degradation process was followed in function of time by GC-analysis of the 

headspace.  Microcosms were set  up using materials sampled from each of the 

studied  locations  and  incubated  statically  at  room  temperature;  all  tests  were 

performed in duplicate. Details of the setup are showed in Table 6.2.

Microcosm  tests  were  carried  out  under  anaerobic  conditions  in  an 

anaerobic  glove  box thus  avoiding  oxygen concentration  raising  in  water  and 

sediment and starting the test at the same conditions present in the field.

Flasks of the first group of microcosms were incubated for 215 days. Since 

monochlorobenzene concentration was constant in all the bottles (except the ones 

containing only water) oxygen was added to try to stimulate biodegradation and 

the process was monitored for 200 further days. The second group of microcosms 
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(20/04/2006)  was  set  up  to  study  the  degradation  process  more  in  detail 

(specifically  regarding  the  effect  of  oxygen  concentration).  No  tests  were 

performed  with  sediment  from the  Artificial  Ditch,  since  on  20/04/06  it  was 

impossible to take samples from the interface; from this location tests were carried 

out  using only surface water or groundwater.  Monochlorobenzene and oxygen 

concentrations were monitored during the whole incubation period and, since the 

former remained stable for more than 30 days, small amounts of oxygen were 

added to one of the two duplicate flasks in order to reach the level of 2,5–3 mg/l, 

whereas the second duplicate was used as negative control.

Each  time  monochlorobenzene  was  completely  consumed,  microcosms 

were  re-spiked  at  the  initial  concentration.  Concentration  was  then  gradually 

increased up to 50 mg/l to test the microbial community capacity to degrade high 

contaminant  concentration.  At  the  end  of  the  experiment  DNA  extraction 

followed by PCR–DGGE analysis was performed on sediment material present in 

the bottles and on groundwater/surface water (for tests containing only water), as 

explained below. The results obtained were compared with the ones from PCR – 

DGGE analysis of sediment and water used to set up the microcosms (Time 0) in 

order to evaluate the differences in catabolic genes and changes in the microbial 

community, due to the exposure and degradation of monochlorobenzene during 

the 200 days.

Table 6.2. Setup of the batch degradation tests

Aquifer Water
- Surface water
- Groundwater

Top Surface water
Groundwater

Bottom Surface water
Groundwater

Top
Bottom

Filter-sterile groundwater

(only in 23/03/2005 tests)

Top + bottom
Groundwater + surface water 

+ formaldehyde
Figure 6.7. Batch degradation test
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6.2.4 GC-analysis of monochlorobenzene concentration in the microcosms
Monochlorobenzene concentrations were measured by headspace analysis 

on  a  CP  3800  Varian  gas  chromatograph  connected  with  a  flame  ionization 

detector  (FID)  (type  1079  at  a  temperature  of  250°C)  equipped  with  a  Rtx-

502,2:30 m x 0,53 mm x 3µm and a DB-1:30 m x 0,53 x 5 µm column. Split 

injection was implemented at an inlet temperature of 250 °C. Helium was used as 

carrier gas at a constant flow rate of 11,9 ml/min. Analyses were carried out using 

the following temperature gradient: 2 min at 50°C, ramp to 155°C at 10°C/min, 

ramp to 190°C at 20°C/min, 3 min at  190°C. An external standard calibration 

curve (one point) was used to calculate the concentrations of the analytes.

6.2.5 Analysis of dissolved oxygen concentration in the microcosms

Dissolved  oxygen  was  monitored  by  injecting  a  300  µL sample  in  an 

oxygen meter (Strath Kelvin Instruments, Glasgow, Scotland) and waiting 2 min 

for the stabilization of the instrument (Figure 6.8).

Figure 6.8. Analysis of dissolved oxygen concentration

160



Biodegradation of Monochlorobenzene in The Interface Between Groundwater and Surface Water

6.2.6 Methanol extraction of VOCs and GC-MS analyses
2,5 g of sediment were suspended in 2,5 g of methanol in 10 ml vials; 

internal  standard  (D4-1,2-dichloroethane,  D8-toluene,  D6-benzene,  D4-1,2-

dichlorbenzene) was added to the vials before putting them into an ultrasonic bath 

for 30 min. Methanol containing the extracted VOCs was then diluted by putting 

0,5 g of supernatant in 4,5 g water in new 10 ml vials. 100 l of 85 %  ortho-

phosphoric acid were also added to kill biomass.

Chlorobenzenes  and benzene  concentration  was  determined by  GC-MS 

headspace-analysis using a Thermo GC-MS equipped with a DB-5ms 60 m x 0,25 

mm x 0,25 µm column. The samples were injected into a split/splitless injector at 

220°C and put on to the column with a constant flow of 9 ml/min Helium. The 

GC-oven program works as follows: 3 min at 38°C, ramp to 175°C at 5°C/min. 

The analytes are then detected by the MS-detector.  The concentration of each 

analyte was calculated through internal standard calibration curve (including eight 

different concentrations).

6.2.7 DNA extraction from sediment and water samples
Total  genomic  DNA  from  soil  and  water  samples  was  extracted  and 

purified as previously described by Hendrickx et al. (2006). Two g of sediment or 

the pellet of 2 ml watersample was suspended in 4 ml Tris-glycerol buffer (10 

mM Tris, 15 % glycerol, pH = 7). The cells were mechanically lysed by beating 

with glass beads (diameter: 0,10 – 0,11 mm) for 2 x 30 sec in a MK4 bead beater 

apparatus (Braun Biotech International GmbH, Melsugen, Germany). Before lysis 

with proteinase K (32 µl, 20 mg/ml) and 20 % sodium dodecyl sulfate (120 µl) 

during 30 min at  50°C, cells  were subjected to an enzymatic  lysing step with 

lysozyme (160 µl, 50 mg/mL) in Tris-glycerol buffer (30 min at 37°C). This was 

followed by an addition of 2 ml of NaKPO4 buffer (conc.: 1,12 M, pH = 8) and a 

second bead-beating step for 2 x 30 sec. Glass beads, soil and cell debris were 

removed by centrifugation (10 min at 7000 rpm) and the DNA contained in the 

aqueous phase was extracted twice with 5 ml phenol/chloroform/isoamylalcohol 

(25:24:1),  and  purified  with  5  ml  chloroform/isoamylalcohol  (24:1).  0,1  g  of 

polyvinylpyrrolidone (Sigma-Aldrich, Germany) were added to the DNA solution 
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and vials were rotated on a rotating shaker for 30 min. Polyvinylpyrrolidone was 

eliminated by centrifugation (10 min at 6000 rpm) and the DNA was precipitated 

with 2 volumes of 100% ethanol (Merck KgaA, Darmstadt, Germany) at – 20 °C 

overnight. The crude DNA pellet was suspended in 500 µL of sterile water and 

purified  over  a  Wizard  column  (Wizard  DNA  Clean-Up  System,  Promega 

Corporation, Madison, USA). The purified DNA was recovered in 50  µL of TE 

buffer (10 mM Tris, 50 mM EDTA, pH 9) and stored at –20 °C

6.2.8 PCR amplification
Polymerase  chain  reaction  on  the  extracted  DNA  was  performed  in  a 

volume of 50 µL. A 495 bp eubacterial 16S rRNA gene fragment was amplified 

using the primer set GC-63F/518R, described by Marchesi et al. (1998). 1 µL of 

1:10 or 1:50 dilution of template DNA was added to 49 µl of PCR mix consisting 

of 5 µL of 10x exTaq reaction buffer (20 mM MgCl2), 0,25 µL exTaq Polymerase 

(5 U µL-1), 4 µl dNTP (deoxynucleoside triphosphate; 2,5 mM each), 0,25 µL of 

both primers and 39,25  µl  sterile demineralised water.  The  exTaq Polymerase, 

dNTPs and PCR reaction buffer were purchased from TaKaRa (TaKaRa Shuzo 

Co.,  Biomedical  Group,  Japan).  The  PCR  profile  consisted  of  an  initial 

denaturation of 5 min at 94°C, followed by 35 further denaturation cycles of 1 

min at 94 °C, annealing of 1 min at 55°C, and elongation for 1 min at 65°C. The 

last step included an extension for 5 min at 65°C. 

The  primer  sets  for  detection  of  the  genotypes  tmoA,  xylE,  todC1-like 

genes, cdo, tbuE, and todE are reported in Table 6.3 and were applied in PCR as 

described by Hendrickx et al., (2006). Το allow DGGE analysis of the amplicons, 

PCR  products  obtained  with  the  catabolic  primer  set  tmoA-F/tmoA-R  were 

submitted to a semi nested PCR by using the same primer with a GC clamp at the 

forward primer (tmoA-F). These primer sets are used for the detection of catabolic 

genes  involved  in  the  aerobic  degradation  of  BTEX  compounds.  Due  to  the 

homology between the structure of the BTEX compounds and the structure of 

monochlorobenzene the same primers were also used to detect genes involved in 

the degradation of  the last  one.  Primer  sets  GC-P2060F/DSR4R, described by 
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J.Geets et al. (2006), amplifies a 350 bp fragment of the β-subunit dissimilatory 

sulfite  reductase  (dsrB)  gene  of  sulfate-reducing  bacteria.  The  PCR  profile 

consisted of  an  initial  denaturation of  5  min at  94°C,  followed by  40 further 

denaturation cycles of 1 min at 94 °C, annealing of 1 min at 55°C, and elongation 

for 1 min at 72°C. The last step included an extension for 8 min at 72°C. PCR was 

performed on a Biometra thermocycler (Biometra, Göttingen, Germany). 10 µL of 

the PCR products were analysed by agarose gel electrophoresis to evaluate their 

size and quality,  (1,5  % agarose  (Invitrogen,  Paisley,  Scotland,  UK),  1  x  EY 

running buffer (10 x EY-buffer: 0,4 M Tris, 0,02 M EDTA, on pH = 7,9 with 

acetate  in  H2O),  1  hour  at  85  V).  DNA  bands  were  visualized  by  ethidium 

bromide staining (1 mg/l) (Figure 6.9).
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Table 6.3. PCR primer sets used in this study.
*A 40 bp GC clamp (5’- CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG-3’) was attached to the 5’ end of forward primers TMOA-F, DSRp2060F and 63F (Muyzer et al., 1993)

Primer pair Proteins targeted Sequence Amplicon 
size (bp)

PCR 
annealing 
temp (°C)

Reference 

TBMD-F/TBMD-R Subfamily 1 of α-subunits of hydroxylase 
component  of  multi-component  mono-
oxygenases 

5’-GCCTGACCATGGATGC(C/G)TACTGG-3’
5’-CGCCAGAACCACTTGTC(A/G)(A/G)TCCA-3’

640 65.5 (Hendrickx et al., 2006)

(GC-)TMOA-F/TMOA-R* Subfamily 2 of α-subunits of hydroxylase 
component  of  multi-component  mono-
oxygenases 

5’-CGAAACCGGCTT(C/T)ACCAA(C/T)ATG-3’
5’-ACCGGGATATTT(C/T)TCTTC(C/G)AGCCA-3’

505 61.2 (Hendrickx et al., 2006a)

TOL-F/TOL-R Subfamily  5  of  hydroxylase  component 
of  two-component  side  chain  mono-
oxygenases

5’-TGAGGCTGAAACTTTACGTAGA-3’
5’-CTCACCTGGAGTTGCGTAC-3’

475 55 (Baldwin et al., 2003)

XYLA-F/XYLA-R Electron  transfer  component  of  two-
component side chain mono-oxygenases

5’-CCAGGTGGAATTTTCAGTGGTTGG-3’
5’-AATTAACTCGAAGCGCCCACCCCA-3’

291 64 (Hendrickx et al., 2006)

TODC1-F/TODC1-R Subfamilies  D.1.B  +  D.1.C  +  D.2.A  + 
D.2.B + D.2.C of  α-subunits of Type D 
iron-sulfur  multi-component  aromatic 
dioxygenases 

5’-CAGTGCCGCCA(C/T)CGTGG(C/T)ATG-3’
5’-GCCACTTCCATG(C/T)CC(A/G)CCCCA-3’

510 66 (Hendrickx et al., 2006)

XYLE1-F/XYLE1-R Subfamily  I.2.A  of  catechol  extradiol 
dioxygenases

5’-CCGCCGACCTGATC(A/T)(C/G)CATG-3’
5’-TCAGGTCA(G/T)CACGGTCA(G/T)GA-3’

242 61.5 (Hendrickx et al., 2006)

XYLE2-F/XYLE2-R Subfamily  I.2.B  of  catechol  extradiol 
dioxygenases

5’-GTAATTCGCCCTGGCTA(C/T)GTICA-3’
5’-GGTGTTCACCGTCATGAAGCG(C/G/T)TC-3’

906 64 (Hendrickx et al., 2006)

CDO-F/CDO-R cdo (U01826)  of  subfamily  I.2.C  of 
catechol extradiol dioxygenases

5’-CATGTCAACATGCGCGTAATG-3’
5’-CATGTCTGTGTTGAAGCCGTA-3’

255 58 (Hendrickx et al., 2006)

TBUE-F/TBUE-R tbuE  (U20258)  of  subfamily  I.2.C  of 
catechol extradiol dioxygenases

5’-CTGGATCATGCCCTGTTGATG-3’
5’-CCACAGCTTGTCTTCACTCCA-3’

444 60 (Hendrickx et al., 2006)

TODE-F/TODE-R todE  (Y18245),  todE (Y18245),  tobE 
(AF180147)  of  subfamily  I.3.B  of 
catechol extradiol dioxygenases

5’-GGATTTCAAACTGGAGACCAG-3’
5’-GCCATTAGCTTGCAGCATGAA-3’

246 58 (Hendrickx et al., 2006)

(GC-)63F/518R* Eubacterial 16S rRNA gene 5’-CAGGCCTAACACATGCAAGTC-3’
5’-TTACCGCGGCTGCTGG-3’

455 55 Marchesi et al. (1998)
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    Figure 6.9. Loading of an agareose gel
6.2.9 Denaturing gradient gel electrophoresis
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Bacterial  diversity  was  examined  by  denaturing  gradient  gel 

electrophoresis. In DGGE analysis DNA fragments of the same length but with 

different base-pair sequences can be separated, thus obtaining a band pattern in a 

denaturing polyacrylamide gel in which each band theoretically corresponds to 

one type of bacterium. Eubacterial 16S rRNA gene PCR products obtained with 

the primer set  GC-63F/518R were analysed in 8% polyacrylamide gels  with a 

denaturing  gradient  of  35%  to  65%  urea-formamide  (100%  denaturant  gels 

contain 7 M urea and 40% formamide).  PCR products obtained with the GC-

P2060F/DSR4R  primer  set  were  analysed  in  8%  polyacrylamide  gels  with  a 

denaturing  gradient  (40% to 70%).  In  both  cases,  DGGE was performed at  a 

constant  voltage of  120 V for  15 h in  1  x  TAE (Tris-acetate-EDTA) running 

buffer at 60°C. PCR products obtained with the GC-TMOA-F/TMOA-R primer 

set were analysed in 6% polyacrylamide gels with a denaturing gradient (40% to 

70%) at a constant voltage of 110 V for 16 h 40 min in1 x TAE running buffer at 

60°C. In all cases electrophoresis was performed on an INGENY phorU-2 DGGE 

apparatus  (INGENY  International  BV,  Goes,  The  Netherlands).  After 

electrophoresis, the gels were stained in a 1 x TAE buffer containing 1 x SYBR 

Gold nucleic acid stain (molecular Probes Europe BV, Leiden, The Netherlands) 

and photographed under UV light with a Pharmacia digital camera system with 

Liscap Image Capture 1.0, Pharmacia Biotech, UK). Photo files were processed 

and analysed with Bionumerics software (version 2.5, Applied Maths, Kortrijk, 

Belgium) (Figure 6.10).
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Figure  6.10.  DGGE  (Denaturing  Gradient  Gel  Electrophoresis).  Electrophoresis, 
polyacrylamide gel and capture of the DGGE image.
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6.2.10 Cloning, sequencing and analysis of PCR amplified 16S rRNA,  tmoA 

and dsrB gene

PCR products obtained with the 16S rRNA gene primer set 63F/518R and 

with  primer  sets  TMOA-F/TMOA-R  and  P2060F/DSR4R  were  cloned  into 

plasmid vector pCR2.1-TOPO using the TOPO TA cloning kit with the TOP10 

One Shot Electrocompetent cells (N.V. Invitrogen SA, Merelbeke, Belgium) as 

described  in  the  kit’s  protocol.  Clones  containing  recombinant  vectors  (blue 

colonies, Figure 6.11) and forming white colonies on selective agar medium (LB 

plates  containing  50  –  100 g/ml  ampicillin  and  40  mg/ml  X-gal  2%),  were 

examined for the presence of the exact  insert  by PCR using first  M13 primer 

(delivered with the kit) which confirms whether the exact insert had been found, 

followed by a semi nested primer with GC-63F/518R or TMOA-F/TMOA-R or 

GC-P2060F/DSR4R.

Cloned fragments were compared with the original soil sample fingerprint 

by  using  DGGE.  A  selection  of  clones  with  different  DGGE  patterns  was 

sequenced by VIB Genetic Service Facility (University of Antwerp, Belgium).

Figure 6.11. White and blue colonies on selective agar medium. White colonies contain the 
exact insert
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6.3 RESULTS

6.3.1 Monitoring of the in situ physico-chemical parameters

Tables  6.4,  6.5  and  6.6  show  the  physico-chemical  characteristics  of 

groundwater and surface water in the three studied locations measured at  each 

sampling.  Most  of  the  parameters,  except  water  temperature  and  oxygen 

concentration, remained quite stable in the three locations.

The temperature of the surface water was the lowest in November 2004 in 

the Artificial  Ditch (5.3°C) while  the maximum value was reached in  August 

2005 (20°C). At this time the difference was also maximum between the three 

locations (3°C between the Leendertgracht and the Vijver) while only very slight 

differences were noticed in Autumn (Figure 6.12a). In groundwater the lowest 

temperature was measured in Winter while in Summer values around 20°C were 

measured in all the three locations (Figure 6.12b). In groundwater anaerobic or 

microaerophilic  conditions  prevailed:  the  highest  oxygen  concentration  was 

measured in November 2006 in the Vijver (2.33 mg/l) and in the Artificial Ditch 

(2 mg/l). In surface water the oxygen level ranged from 2.15 mg/l (November 

2004) to 7.56 mg/l (April 2006) in the Artificial Ditch, from 1.76 mg/l (November 

2006)  to  9.64  mg/l  (March  2005)  in  the  Leendertgracht  and  from  3.75  mg/l 

(November 2006) to 13.09 mg/l (May 2005) in the Vijver. A very high chloride 

concentration (up to 3000 mg/L) was measured in the Artificial Ditch and in the 

Vijver (surface water). No significant concentrations of N were present in any of 

the locations (often behind the detection limit), while significant amounts of SO4
2 

(up to 450 mg/l) were found in the Artificial  Ditch and in the Vijver (surface 

water). Tables 6.4 and 6.5 show that the main pollutant was monochlorobenzene 

(up to 10000 g/L in the Artificial Ditch’s groundwater) and, to a lesser extent, 

1,4-dichlorobenzene  and  benzene.  No  VOC’s  contamination  was  present  in 

surface water in the Vijver.
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Figure 6.12. Monitoring of the temperature in surface water (a) and in groundwater (b) in 
different seasons in the three studied locations
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Table 6.4. Physico-chemical parameters of groundwater and surface water in the Artificial Ditch. ND: not detected.

Artificial Ditch

Groundwater (borehole Q-32) Surface water
Parameter November 

24, 2004
March 

22, 2005
May 

31, 2005
August 

31, 2005
April 

20, 2006
November 
22, 2006

November 
24, 2004

March 
22, 2005

May
31, 2005

August 
31, 2005

April 20, 
2006

November 
22, 2006

Surface water level (m) - - - - - - 0.3 0.3 - 0.4 >1 >1
Groundwater level (m-mv) 2 - 1.83 1.55 - 1 - - - - - -
O2 concentration (mg L-1) 0.84 0.23 0.95 1.57 0.88 2 2.15 6.1 4.25 7.42 7.56 3.4
Temperature (°C) 11.8 14.3 11.5 18.5 11.2 13.1 5.3 10.6 14.5 20 12.2 9.1
pH 6.46 6.97 7.08 6.84 7.1 7.37 7.13 6.90 7.89 7.42 8.49 7.65
Redox (mV) -33 -129 -158 - -131 - 89 -58 3 - 3 -
Conductivity (µS cm-1) 8020 - 1644 7830 1680 1810 2070 2490 2060 8490 1709 2220
Cl- (mg L-1) 2370 2400 1800 2200 1100 280 3590 1700 2600 2400 810 360
NO3

2-(mg L-1) 1.45 3.6 <0.23 <0.23 <0.23 <0.23 0.31 0.56 <0.23 <0.23 <0.23 <0.23
NO2

2-(mg L-1) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
SO4

2-( mg L-1) 399 390 450 410 240 150 580 409 360 370 280 200
SO3

2-( mg L-1) <0.1 0.34 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Fe (µg L-1) 3580 3240 2460 1040 <50 380 192 1220 845 2050 548 1000
monochlorobenzene (µg L-1) 5661 7251 10041 - 4493 - 6 162 209 - -
1,4-dichlorobenzene (µg L-1) 88 83 ND ND ND - ND ND ND ND ND -
benzene (µg L-1) 788 271 ND ND ND - ND ND ND ND ND -
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Table 6.5. Physico-chemical parameters of groundwater and surface water in the Leendertgracht.

Leendertgracht

Groundwater (borehole A-31/1) Surface water
Parameter November 

24, 2004
March 

22, 2005
May 

31, 2005
August 

31, 2005
April 

20, 2006
November 
22, 2006

November 
24, 2004

March 
22, 2005

May
31, 2005

August 
31, 2005

April 20, 
2006

November 
22, 2006

Surface water level (m) - - - - - - 0.5 0.7 - - - 0.35
Groundwater level (m-mv) 0.1 - 1.18 0.63 0.63 0.99 - - - - - -
O2 concentration (mg L-1) - - - - 0.15 0.62 3.35 9.64 - 4.13 2.8 1.76
Temperature (°C) - - 13.4 18.7 8.8 14.5 6.6 12.5 14.2 18.8 10.3 8.6
pH - - 7.3 7.15 7.59 7.29 7.06 8.07 7.56 7.3 7.4 7.53
Redox (mV) - - -104 - -203 - 50 108 -108 - 93 -
Conductivity (µS cm-1) - - 2250 2170 1151 1787 1390 1052 1415 1672 1415 1760
Cl- (mg L-1) - - 780 410 170 260 175 120 200 260 210 200
NO3

2-(mg L-1) - - <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23
NO2

2-(mg L-1) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 0.027
SO4

2-( mg L-1) - - 5.7 26 34 62 43.2 53 100 4.9 28 58
SO3

2-( mg L-1) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 1.25 <0.1 <0.1 <0.1
Fe (µg L-1) 0 0 536 <50 1870 4400 1030 587 7620 3660 1480 3700
monochlorobenzene (µg L-1) - 86 287 - 15 - 159 ND 1 ND 2 -
1,4-dichlorobenzene (µg L-1) - - - - - - 0.7 ND ND ND ND ND
benzene (µg L-1) - - - - - - 2.2 ND - - -
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Table 6.6. Physico-chemical parameters of groundwater and surface water in the Vijver

Vijver

Groundwater (borehole A-18/2) Surface water

Parameter March 
22, 2005

May 
31, 2005

August 
31, 2005

April 
20, 2006

November 
22, 2006

March 
22, 2005

May
31, 2005

August 
31, 2005

April 20, 
2006

November 
22, 2006

Surface water level (m) - - - - - - 0.86 0.55 0.43 0.65
Groundwater level (m-mv) - - - - 0.4 - - - - -
O2 concentration (mg L-1) 0.06 - 0.27 0.52 2.33 7.2 13.09 9.47 8.08 3.75
Temperature (°C) 9.9 13.7 19.2 11.2 13.7 13.5 17.7 21.6 11.2 8.6
pH 7.46 7.4 7.15 7.19 7.15 7.78 8.11 7.93 7.83 7.81
Redox (mV) -222 -143 0 -162 - - -10 - 60 -
Conductivity (µS cm-1) 1678 1604 1833 1555 1567 - 2420 7940 1834 8780
Cl- (mg L-1) 160 180 170 202 130 - 2800 2400 2000 2600
NO3

2-(mg L-1) <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 <0.23 1.4 <0.23
NO2

2-(mg L-1) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
SO4

2-( mg L-1) 15 3.1 3.7 2.4 11 - 440 370 330 410
SO3

2-( mg L-1) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Fe (µg L-1) 97 71 110 233 360 - 852 1060 379 450
monochlorobenzene (µg L-1) 86 62 - 92 - ND ND ND ND ND
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6.3.2 Pollutants concentration at different depths in the sediment cores
High  concentrations  of  monochlorobenzene  were  measured  in  cores 

extracted from the Artificial ditch. Concentration ranged from 50 to 1000 µg/kg in 

November 2004, from 60 to 6000 µg/kg in March 2005, from 500 to 18000 µg/kg 

in May 2005 and from 20 to 10000 µg/kg in August 2005. The lowest values were 

observed in slices close to the surface, and concentration increased depending on 

depth (Figure 6.13a). Not negligible but significantly lower concentrations of 1,4-

dichlorobenzene were also observed (up to 1000 µg/kg), showing the same trend 

in function of depth. Other chlorobenzenes (1,2- 1,3-dichlorobenzene; 1,2,3- 1,2,4 

and 1,3,5-trichlorobenzene) were present in low concentrations (mostly one order 

of magnitude lower). In March and May low concentrations of benzene were also 

measured  (up  to  100  µg/kg).  In  the  Leendertgracht  (Figure  6.13b) 

monochlorobenzene level generally decreased from the top to the bottom of the 

core. The lowest values were measured in cores sampled in August 2005 (0-150 µ

g/kg), while highest ones were observed in May 2005 (10 – 10000 µg/kg). 1,4-

dichlorobenzene did not exceed 400 µg/kg while the other compounds (1,2- 1,3-

dichlorobenzene;  1,2,3-  1,2,4  and  1,3,5-trichlorobenzene  and  benzene)  ranged 

between 10 and 50µg/kg. In general the other pollutant followed the same trend as 

monochlorobenzene, thus increasing in function of depth. No chlorobenzenes or 

benzene were detected in sediments cores extracted from the Vijver.

Figure  6.13.  Monochlorobenzene  concentration  in  undisturbed  sediment  cores  extracted 
from the Artificial Ditch (a) and the Leendertgracht (b).
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A direct  relation  was  moreover  observed  between the  concentration  of 

monochlorobenzene adsorbed to the sediment and the total organic matter. As an 

example Figure 6.14 shows organic matter and monochlorobenzene concentration 

in  function  of  depth  in  two cores  extracted  from the  Artificial  Ditch  and the 

Leendertgracht.

Figure 6.14 Total organic matter and monochlorobenzene concentration at different depths 
in cores extracted from the Artificial Ditch on 31/08/05 (a) and from the Leendertgracht on 
31/05/05 (b).

6.3.3 Degradation of monochlorobenzene under oxygen–limited conditions in 

batch degradation tests

Monochlorobenzene degradation was studied under the  in situ conditions 

by bringing the aquifer material (top or bottom) in contact with groundwater or 

surface water sampled in situ.

Tests set up with material sampled on 23/03/2005 
Figure 6.15 shows the time-concentration profiles of monochlorobenzene 

and oxygen for the microcosms constructed with sediment and water from the 

Artificial ditch.

A  small  decrease  in  monochlorobenzene  concentration  was  noticed  in 

these microcosms during the first 30 days of incubation both in the living and 

dead control conditions; after this initial period the degradation stopped and the 

concentration  did  not  change  significantly  for  215  days.  On  day  215,  after 
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living tests but not in the dead controls. The pollutant was in some cases (aquifer 

bottom +  surface  water  and  aquifer  bottom +  filter-sterile  groundwater)  even 

completely consumed. In the following 250 days no further oxygen was added 

and the contaminant’s concentration remained stable.

Analogous results were observed in the tests set up with material sampled 

from the other two locations (Leendertgracht and Vijver).

Figure 6.15. Monochlorobenzene and oxygen aqueous phase concentration in the batch tests 
carried out with sediment and water sampled in the Artificial Ditch on 23/03/2005.
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Tests set up with material sampled on 20/04/2006

The initial oxygen concentration in the microcosm tests containing both 

water  and  sediment  ranged  between  2  and  2,5  mg/l.  Figure  6.16  shows 

monochlorobenzene concentration in function of time in the tests carried out with 

material sampled from the Leendertgracht, during the first 35 days of incubation. 

Limited monochlorobenzene biodegradation took place during the first 6 days in 

all  microcosm,  then  it  stopped;  from  day  6  to  day  36  monochlorobenzene 

concentration remained stable and oxygen concentration stabilized at 1,5 – 2 mg/l. 

Figure 6.16. Monochlorobenzene and oxygen aqueous phase concentration in the batch tests 
carried out with sediment and water sampled in the Leendertgracht on 20/04/2006 (first 35 
days of incubation).
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On day 37 oxygen was therefore added (2.5-3 mg/l) to the first duplicate of 

each  type  of  microcosm (duplicate  1),  resulting  in  an  immediate  onset  of  the 

biodegradation, which stopped when the oxygen concentration dropped to 1,5–2 

mg/l. Each time degradation stopped the spiking with a low volume of oxygen (to 

increase  the  concentration  of  1  ppm)  proved  to  be  effective  to  stimulate 

biodegradation.  Surprisingly,  in  the  condition  “aquifer  top+groundwater”  we 

observed  a  slow  but  total  degradation  also  in  duplicate  2,  with  oxygen 

concentrations  below  1.5  mg/l.  The  complete  degradation  of  the 

monochlorobenzene originally present required the addition of 17 mg (average 

value of the 4 microcosms aquifer top/bottom + groundwater, aquifer top/bottom 

+  surface  water)  of  oxygen  altogether.  Considering  the  total  amount  of 

monochlorobenzene provided throughout the 200 days of incubation, 16 mg of 

oxygen were needed for eachmg of monochlorobenzene added (average value of 

the  microcosms  mentioned  above).  During  this  incubation  period 

monochlorobenzene  was  re-spiked  each  time  it  was  completely  degraded  and 

concentrations  were  gradually  increased  up  to  45–50  mg/l.  Even  at  these 

concentrations the contaminant was consumed with no evident inhibition effects.

Oxygen  concentration  was  apparently  the  only  factor  limiting 

biodegradation:  the  process  stopped  each  time  oxygen  concentration  dropped 

under 1,5–2 mg/l, regardless the position in the interface (top or bottom of the 

sediment) and the type of water (groundwater or surface water). On the contrary, 

no degradation was observed in the living microcosms without oxygen spiking, 

where the same behaviour as in the a-biotic controls was observed. (Figure 6.17).

Similar results were obtained in tests performed using samples from the 

non polluted location (Vijver), except for the smaller oxygen amount required to 

biodegrade monochlorobenzene: 3.3 mg of oxygen were necessary to oxidize the 

initial  amount  of  monochlorobenzene  and  2.5  mgoxygen/mgmonochlorobenzene were 

consumed on the whole. In the condition “aquifer top+groundwater” degradation 

only started when oxygen concentration was increased to 3.5-4 mg/l.
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Figure 6.17. Monochlorobenzene and oxygen aqueous phase concentration in the duplicate 
batch  tests  carried  out  with  sediment  and  water  sampled  in  the  Leendertgracht  on 
20/04/2006 (100 days of incubation).
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Tests carried out with groundwater or surface water (with no sediment), 

show  that  initial  oxygen  concentration  was  higher  than  in  microcosms  with 

sediment (2,5–5,5 mg/l) and oxygen was consumed more slowly, thus inducing 

very fast degradation of the added monochlorobenzene in water sampled from all 

the studied locations: 5 mg/l of monochlorobenzene were degraded in less than 5–

6 days; in most of the cases several monochlorobenzene pulses were degraded 

before  the  process  stopped,  with  oxygen  concentration  of  1,5–2  mg/l.  When 

monochlorobenzene concentration was increased to 40–45 mg/l degradation was 

fast  anyway:  it  took  20-30  days,  if  enough  oxygen  was  present  to  support 

biodegradation.  (Figure  6.18).  1.3  mgoxygen/mgmonochlorobenzene were  in  average 

necessary to oxidize monochlorobenzene.No remarkable differences were noticed 

depending on the location (Artificial ditch, Leendertgracht and Vijver) or the type 

of water used (groundwater or surface water).

Figure 6.18. Monochlorobenzene and oxygen aqueous phase concentration in the batch tests 
carried  out  with  groundwater  and  surface  water  sampled  in  the  Artificial  Ditch, 
Leendertgracht and Vijver on 20/04/2006. No degradation was observed in any of the dead 
controls (data not shown).
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A high monochlorobenzene degradation potential seems to be present in 

both  sediment  and  water:  apparently  groundwater  and  surface  water  and  both 

aquifer  materials  (top  and  bottom)  contained  a  microbial  community  able  to 

degrade monochlorobenzene very quickly. The aquifer material sampling depth in 

the interface did not  influence the biodegradation of monochlorobenzene,  and, 

during the 200 incubation days, the only limiting factor appeared to be the oxygen 

concentration.

6.3.4 Detection of catabolic genes at different depths of the interface

DNA extracts were used to investigate the spread of catabolic genes over 

the interface in the three studied locations, at different times of the year. Among 

all the studied catabolic genes (tmoA, xylE, todC1-like genes, cdo, tbuE, and todE) 

only the  tmoA gene was systematically detected.  This gene encodes the initial 

attack in the degradation of toluene and benzene, and has already been detected in 

soils polluted with BTEX compounds (Hendrickx et al., 2005).

As an example  Figure  6.19 shows the  gel  image of  the  PCR products 

obtained from a sediment core sampled on 24/11/2004 in the Artificial ditch. The 

fragment of the expected length (505 bp) is present with a bright signal down to 

approximately  10  cm;  from  12  to  16  cm  the  signal  becomes  weaker  and 

disappears completely at  higher depths.  The bright bands corresponding to the 

positive controls (+) confirmed the success of the reaction; the absence of signal 

corresponding to the negative controls shows that no interference had biased the 

amplification process. The universal marker (100 bp ladder) is necessary to know 

the exact size of the amplified amplicon.

181



Biodegradation of Monochlorobenzene in The Interface Between Groundwater and Surface Water

Figure 6.19, Gel image of the PCR products obtained with TMOA primer from a sediment 
core  sampled  in  the  artificial  ditch  on  24/11/2004.  Numbers  represent  the  depth  of  the 
analysed slice in the interface (cm), M indicates the universal marker, + and – the positive 
and negative controls.

Figures 6.20, 6.21, 6.22 shows the results of the PCR analyses carried out 

on sediment cores extracted respectively from the Artificial ditch, Leendertgracht 

and Vijver in the different seasons. In most cases, the tmoA gene is present at least 

down to 15-20 cm in the interface and is not detected at greater depths. Hoewever 

in some cases depths of even 35–40 cm were reached (in particular in Vijver in all 

seasons, except Winter).

Apparently a relation also exists between the presence of the gene and the 

season, since in Winter tmoA has been detected in the Artificial ditch only down 

to the depth of 10 cm and is completely absent in any other location. The highest 

depths are apparently reached in the samples collected in Summer. These results 

are summarized in Table 6.7 PCR targeting the  tmoA gene never gave positive 

results for groundwater samples, whereas in surface water the gene was present 

only in two cases (both sampled in Summer 2005).

Among  the  other  catabolic  genes,  only  tbmD,  cdo  and  tbuE  were 

occasionally detected in a few samples (data not shown).

8  7   6  5   4  3  2   1      +      -
M

M

M

22 20 18 16 14 12 10 9      +      -

41 38 35 32 30 28 26 24 +       -
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Figure 6.20. PCR results of the detection of the tmoA gene in sediment cores extracted from 
the  Artificial  ditch at  different  sampling times.  Boxes represent  sediment slices  obtained 
from the frozen sediment core, groundwater or surface water; White: not analysed samples, 
blue: strong amplification, light blue: weaker amplification, shaded: no amplification.
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Figure 6.21. PCR results of the detection of the tmoA gene in sediment cores extracted from 
the Leendertgracht at  different sampling times.  Boxes represent sediment slices obtained 
from the frozen sediment core, groundwater or surface water; White: not analysed samples, 
blue: strong amplification, light blue: weaker amplification, shaded: no amplification.
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Figure 6.22. PCR results of the detection of the tmoA gene in sediment cores extracted from 
the Vijver at different sampling times. Boxes represent sediment slices obtained from the 
frozen sediment core,  groundwater or surface water; White:  not analysed samples,  blue: 
strong amplification, light blue: weaker amplification, shaded: no amplification.
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Table  6.7.  Maximum depth  of  the tmoA gene  in  sediment  cores  from the  three  studied 
locations at different sampling times; NA: not analysed, ND: not detected.

6.3.5 Study of the structure of the eubacterial community by 16S rRNA gene 
PCR - DGGE analysis

Diversity of the eubacterial community at different depths in the interface: 

Figure 6.23 shows the PCR–DGGE results of a sediment core sampled on 

20/04/2006 from the Vijver as an example.

A  complex  DGGE  pattern  was  obtained  for  slices  from  the  different 

positions in the interface, thus indicating that different types of Eubacteria were 

present  and a high diversity of species exists  in these sediments;  however the 

degree of dominance of the bacteria seemed to be related with depth: a DGGE 

pattern mostly observed in the first 10 – 15 cm slightly changed in function of 

depth.

Some  bands  appeared  starting  from  the  depth  of  3  cm,  sometimes 

becoming brighter as the depth increased (for example band “a”) down to 19 cm 

and suddenly disappearing. None of the bands seemed to be present at every depth 

of  the interface.  In  addition,  the dominance of  certain  bacterial  species of  the 

microbial community diminished depending on depth and a DGGE pattern with a 

smaller number of bright and so dominant bands occurred in the slices obtained 

from a deeper position in the interface (from 19 cm to the bottom) and profiles 

differ  from each  other.  Surface  water  showed  a  less  complex  DGGE  pattern 

compared to that of sediment slices, characterized by the presence of 3 – 4 bright 

bands. Some of the bands present in these fingerprints were also observed in the 

underlying sediment slices. For instance band “b” was also present in slices 1 and 

2, thus indicating that surface water infiltrates down to 2 – 3 cm. On the other 

hand  bands  “c”  and  “d”  seemed  to  be  present  only  in  surface  water,  thus 

indicating the difference between the two microbial communities present in the 

Autumn 2004 Winter 2005 Spring 2005 Summer 2005 Winter 2006

Artificial ditch 16 cm 10 cm 15 cm 29 cm NA

Leendertgracht NA ND 10 cm 27 - 32 cm 14 cm

Vijver NA ND 35 – 45 cm 34 cm 29 cm
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surface water and the interface. In groundwater only a few and faded bands were 

observed, showing that this microbial community is much less diverse than those 

of the sediment and surface water with a very limited presence of bacteria.

Figure  6.23.  Eubacterial  16S  rRNA gene  PCR-DGGE profiles  of  the  surface  water  (S), 
groundwater  (S)  and  slices  of  an  undisturbed  sediment  core  sampled  in  the  Vijver  on 
20/04/2006. Numbers indicate the depth (cm) in the interface; L: DGGE marker.

Study of the microbial community in different locations.

Very low similarities were observed in the DGGE patterns obtained from 

sediment  samples  taken  at  the  same  time  from  the  three  different  sampling 

locations Artificial ditch, Leendert gracht and Vijver. In Figure 6.24 the results 

are shown from sediment cores sampled on 22/03/2005.

A high diversity  was present  in  slices  from the Artificial  ditch (Figure 

6.24a), we observed the appearance and disappearance of bands going from the 

L

1
2
3
4
5
6

8

L

14

19

45

29

37

25

33

41

S

L

10
12

16

7

49
53

G
L

L

1
2
3
4
5
6

8

L

14

19

45

29

37

25

33

41

S

L

10
12

16

7

49
53

G
L

L

1
2
3
4
5
6

8

L

14

19

45

29

37

25

33

41

S

L

10
12

16

7

49
53

G
L

a

bc d

187



Biodegradation of Monochlorobenzene in The Interface Between Groundwater and Surface Water

top to the bottom of the core. Band “a” was an example of a very bright band 

present down to 5 cm and disappearing downwards; band “b” appeared at  the 

depth of 3 cm and was present down to 7 – 8 cm but its abundance increased 

suddenly at 7 cm; band “c” was present at a depth from 3 to 10 cm, while a very 

bright band (“d”) was observed only at 16 cm. This band could correspond to the 

“d”  band  of  the  surface  water.  Apparently  more  dominant  bands  could  be 

observed in the first 10 cm of the core. From 20 cm to the bottom, a few dominant 

bands were observed. Several faint bands have been observed over the total core 

thus demonstrating considerable diversity.

In the core from Leendertgracht (Figure 6.24b), two bands (“e” and “f”) 

were  observed  almost  throughout  the  whole  sample,  while  a  third  one  (“g”) 

disappeared at 7 cm and returned at 13 cm; the dominance of a few bacteria was 

higher in the first layers where 8 – 9 dominant bands were present and decreased 

starting from the depth of 5–6 cm; in  the bottom layers  only very thin bands 

seemed to be present. Two bands (“h” and “i”) were unique at depths of 6 and 13 

cm respectively.

The observations we did in the two previous locations were confirmed in 

the third one (Vijver). The bacterial dominance in the DNA samples from Vijver 

appeared very low in the first 10 cm (only very thin bands) and slightly increased 

from 19 cm to the bottom (Figure 6.24c).

Results  of  PCR-DGGE  analyses  of  undisturbed  sediment  cores 

demonstrated the very low similarity observed on 16SrRNA level when the three 

different sampling locations are considered. The highest microbial diversity was 

observed  in  samples  from  the  Artificial  ditch,  whereas  a  much  less  diverse 

microbial community was present in the Leendertgracht, but almost present in the 

whole core. On the other hand samples from the Vijver showed in general a quite 

high diversity from a certain depth downwards.
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Figure 6.24. Eubacterial 16S rRNA gene PCR-DGGE profiles of undisturbed sediment cores 
slices obtained from Artificial ditch (a), Leendertgracht (b) and Vijver (c) on 22/03/2005. 
Numbers represent the depth in the interface (cm); L: DGGE marker.
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The cluster analysis of the community fingerprints (Figure 6.25) confirms 

that these communities are mostly different in the three places. Three main groups 

can thus be observed. The greatest differences can be observed between Artificial 

Ditch and Leendertgracht while a less marked difference can be observed between 

bacterial communities of Leendertgracht and Vijver. Moreover, Figure 6.25 shows 

that, for each location, the samples can be divided into two groups: the first one is 

composed by the slices from the first 5 – 10 cm, the second one is made up of the 

deeper slices, thus confirming that the structure of the community changes clearly 

depending on depth.
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Figure 6.25. Eubacterial 16S rRNA gene; UPGMA clustering of the DGGE fingerprints of 
undisturbed sediment core slices obtained from Artificial ditch (a), Leendertgracht (b) and 
Vijver  (c)  on 22/03/2005.  Numbers  represent  the depth in  the  interface  (cm);  L:  DGGE 
marker.  Clustering  was  performed  using  the  Cosine  similarity  coefficient  (processed  by 
Bionumerics, Applied Maths, Belgium).
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Study of the microbial community at different times.

The comparison  between PCR-DGGE profiles  of  sediment  cores  taken 

from the Artificial ditch throughout the year (Autumn, Winter, Spring, Summer) 

offered the chance to follow the evolution of the microbial community structure 

over time. For example, by comparing banding patterns referring to Autumn and 

Winter (Figure 6.26 a and b) some similarities can be observed: in both situations 

a dominant band is present from the surface to the depth of 5 cm; also profiles 

comprised between 5 and 10 cm showed significant similarities: bands b and c 

and region d appeared in both situations approximately at the same depth and a 

less complex pattern occurred in the slices from the approximate depth of 15 cm 

to 40 cm. In addition the same band “a” seemed to be present also in the profiles 

from sediment cores sampled in Spring and Summer. On the other hand also in 

Figure 6.26b (Winter) and c (Spring) similar elements are certainly present: the 

fingerprints corresponding to the first 10 cm in Figure 6.26c (rectangle and region 

d) showed a considerable similarity even with the samples  referring to Autumn 

and Winter, but the latter appeared brighter. In the deeper slices (starting from 15 

cm) diversity was much higher and more bands absent in the two other seasons 

clearly appeared. In Autumn, Winter and Spring the most important activity was 

certainly at the top of the core. In Spring, for example, we observed two blocks of 

bands:  in  DGGE fingerprints  derived from the top of  the core the high GC% 

bands were especially missing (lower denaturation range of the gel), while they 

were present in the cores from 15 cm to 39 cm ( approximatly 50% denaturation 

range).

In sediment cores extracted in Summer (Figure 6.26d) we observed only a 

few bright bands, but probably the diversity is so high that we only found thin 

bands. The “d” group of the summer sample is unique, but when we compared the 

gel with the others it was quite clear that the migration of this gel was different 

and probably we lost that group in the other cases. Even at the depth of 60 cm 

there was an important population present during Summer. Here the bands are 

dominant but fewer.
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In  undisturbed  sediment  cores  from  the  Leendertgracht  interesting 

analogies  between  the  different  seasons  were  also  observed  and  at  least  3-4 

common bands (sometimes at similar depths) were present in cores extracted in 

different periods. The dominance of a couple of bacteria in the microbial diversity 

was in general lower than in the Artificial ditch. In particular in Spring samples 

very few and thin bands were detected, whereas microbial community was very 

diverse in Summer samples, mostly down to the depth of 10 cm.

In cores extracted in Spring 2005 in the Vijver a low dominance of certain 

bacterial species (presented by very bright bands) was observed in the superficial 

layers and it increased from 15 cm downwards, while in Spring 2006 microbial 

dominance  seemed lower  in  the  first  3-4  cm than  in  the  deeper  layers  and  a 

sudden change in  the  banding  pattern  was observed  from 20 cm downwards. 

Moreover a greater degree of microbial dominance was detected in Summer: a 

very bright band was observed in the first slice (the same band, probably coming 

from surface water, was also present in Spring 2005), and only slight changes 

down to 5-6 cm. From this depth downwards the DGGE profile changed very 

frequently (at least every 4 cm) and diversity remained very high down to 54 cm, 

with an extremely high number of very thin bands.
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Figure 6.26. Eubacterial 16S rRNA gene PCR-DGGE profiles of undisturbed sediment cores 
slices obtained from Artificial ditch in Autumn 2004 (a), Winter 2005 (b), Spring 2005 (c) 
and Summer 2005(d). Numbers represent the depth in the interface (cm); L: DGGE marker.
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6.3.6 Study of the structure of the sulfate-reducing bacterial community by 
PCR - DGGE analysis

Study of the microbial community in different locations.

In  the  first  place  PCR-DGGE  analysis  showed  that  sulfate-reducing 

bacteria were present in all sediment cores extracted from the studied locations, 

regardless of their depth in the interface or of the sampling time.

The  comparison  between  the  results  obtained  from the  three  sampling 

locations on 22/03/05 shows that a very diverse community was present especially 

in the Artificial Ditch (Figure 6.27a) and mostly down to 7-10 cm, whereas at 

greater  depths  different  fingerprints  were  observed  and  diversity  significantly 

decreased. Moreover the structures of the bacterial communities observed in the 

three positions appeared markedly different from each other. In the sediment core 

extracted  from  the  Leendertgracht  (Figure  6.27b)  3-4  dominant  bands  were 

present throughout the core with only slight changes in the DGGE profile (for 

example bands “a” and “b” disappeared from 6 cm downwards).  Several  very 

faint bands were observed in DGGE patterns obtained from the core sampled in 

the  Vijver  (Figure  6.27c);  even  if  the  profile  did  not  change  significantly 

depending on depth some very dominant bands appeared starting from 16 cm 

(groups “c” and “d”),  while other bands became more important (for example 

“e”). All these bands suddenly disappeared at the depth of 34 cm.

Similar results were obtained - from samples extracted in the other seasons 

too:  it  was  clear  that  sediments  from  the  three  studied  locations  harboured 

different sulfate-reducing bacterial communities.
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Figure 6.27. Sulfate reducing bacteria PCR-DGGE profiles of undisturbed sediment cores 
slices obtained from Artificial ditch (a), Leendertgracht (b) and Vijver (c) on 22/03/2005. 
Numbers represent the depth in the interface (cm); L: DGGE marker.
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Study of the microbial community at different times:

Figure  6.28  shows  the  comparison  between  sulfate  reducing  bacteria 

DGGE profiles obtained from sediment cores taken from the Artificial Ditch in 

different seasons. Microbial diversity was very high in Autumn and Winter and 

gradually decreased in Spring and Summer, when fewer and thinner bands were 

observed.  In all these cores the banding patterns suddenly changed (sometimes 

thoroughly)  from  10-15  cm downwards  and  the  same  happened  in  the  cores 

extracted in the other two locations. Two or three dominant bands were present in 

the surface layers and they completely disappeared when the above cited depths 

were  reached.  Several  similar  bands  were  present  in  the  profiles  from  cores 

extracted in different seasons, mainly concerning those extracted in Winter and 

Autumn. For example band “a” was present in both Autumn and Winter, but also 

in Spring, from 1 to 10 cm deep. Also band “b” could be observed in Autumn and 

Winter.  Band “c” appeared in  Autumn,  in  Winter  and in  Spring,  band “d” in 

Winter, in Spring and in Summer, “e” was present in Spring and in Summer only 

and “f” in Winter and in Autumn, while “g” appeared in Spring, in Summer ,in 

Autumn and inWinter throughout the whole core. Data regarding the other two 

locations were similar (data not shown). 

The comparison between sulphate reducing bacteria PCR-DGGE profiles 

of  undisturbed  sediment  cores  slices  obtained  from Artificial  ditch  over  four 

seasons indicated that a large diversity in bacteria exists, and several species were 

present during the whole year.

The selected regions represented our findings. Band “c” for example was 

present in nearly every slice, even in the surface water.

Sometimes  their  appearance  was  more  visible  in  one  season  than  in 

another (bands “g“ and “d“). During Winter we observed the clearest diversity 

with the presence og strong bands in the upper part of the core. In the rest of the 

year  fainter  fingerprints  were  found in  the  upper  part  and  some bright  bands 

appeared downwards.
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Figure 6.28. Comparison between sulfate reducing bacteria PCR-DGGE profiles of undisturbed sediment cores 
slices obtained from Artificial ditch in Autumn 2004, Winter 2005, Spring 2005 and Summer 2005 (processed 
by Bionumerics, Applied Maths, Belgium). Depths are indicated in brackets
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6.3.7 PCR - DGGE analysis of tmoA-like genes 

Study of the microbial community in different locations:

Figure 6.29 shows that in Summer 2005 the communities carrying tmoA-

like  genes  were  characterized by a  rather  low microbial  diversity.  In  addition 

significant  differences  were  observed  in  the  three  sampling  locations:  in  the 

Artificial Ditch two dominant bands were present, starting from the top of the core 

down to the depth of 24 and 59 cm (rectangle). These bands seemed to be present 

also  in  the  Leendertgracht  but  only  at  the  depths  of  5,  7  and  42  cm.  It  also 

appeared at 14 cm in the Vijver. In the analysis of tmoA-like gene band (or group 

of bands) “a” seemed very important and it was interestingly present in the Vijver 

too and very feebly in the Artificial ditch, in all cases approximately down to 30 

cm. In addition some further thin bands appeared in  Leendertgracht, down to a 

depth of 7-8 cm.

In  the  Vijver  a  series  of  very  close  bands can be  noticed,  while  three 

further isolated ones were observed at the depth of 14 cm.

Despite the similarities among the dominant bands of these communities 

we observed important differences between their fingerprints.

In  undisturbed  sediment  cores  extracted  in  other  seasons  a  very  low 

diversity of  tmoA-like genes and only slight  differences between the sampling 

places were observed. In both Spring 2005 and Spring 2006 band “a” was the only 

significant one (present in all the locations) while in Winter 2005 tmoA gene was 

absent in the Leendertgracht and Vijver (data not shown).
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Figure 6.29. TmoA gene PCR-DGGE profiles of undisturbed sediment cores slices obtained 
from  Artificial  ditch  (a),  Leendertgracht  (b)  and  Vijver  (c)  on  31/08/2005.  Numbers 
represent the depth in the interface (cm); L: DGGE marker.
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Study of the microbial community at different seasons:

Comparing the  tmoA  results  obtained from the Artificial Ditch in cores 

extracted  in  different  seasons  we  observed  that  two  dominant  bands  which 

appeared in Autumn (Figure 6.30a) were also present in Winter (Figure 6.30b) 

and in Summer (Figure 6.30c), but not in Spring. In the Spring samples another 

double band appeared and it was different from the one we observed in the other 

seasons.

These  observations,  concerning  the  tmoA-like  genes  in  function  of  the 

seasons showed us a very poor bacterial activity with some single extra bands in 

Summer and an extra double band in Autumn at the depths of 24 and 26 cm.

In the Leendertgracht and Vijver the diversity was higher in Summer 2005 

than in Spring 2005 and in Spring 2006, when the only dominant band was “a”, 

already shown in Figure 6.29 and only few and faint bands were observed (data 

not shown).
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Figure 6.30. TmoA gene PCR-DGGE profiles of undisturbed sediment cores slices obtained 
from Artificial  ditch in Autumn 2004 (a),  Winter 2005 (b),  Spring 2005 (c) and Summer 
2005(d). Numbers represent the depth in the interface (cm); L: DGGE marker.
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6.3.8  Batch  degradation  tests:  study  of  the  evolution  of  the  microbial 

community during the incubation period

Figure 6.31 shows 16S rRNA gene DGGE profiles obtained from sediment 

and  water  samples,  taken  from the  microcosms  at  the  end  of  the  incubation, 

compared with samples used in the set up at time 0. It was clear that in the tests 

where monochlorobenzene biodegradation occurred, new DGGE bands appeared.

Moreover  the  intensity  of  the  band  was  often  related  to  the  mass  of 

pollutant  consumed.  For  example  in  tests  set  up  with  surface  water  from the 

Artificial Ditch (1A and 1B), four very strong bands appeared at the end of the 

incubation, after 7 and 5 mg of monochlorobenzene were degraded respectively.

 These bands were apparently  absent  in  the  time 0 water  sample,  thus 

indicating that these bacteria probably grew on monochlorobenzene. The same 

has  been  observed  in  groundwater  samples  (2A  and  2B:  4.5  and  6.5  mg  of 

monochlorobenzene consumed) where only two very faint bands were detected in 

the time 0 sample, while 7 – 8 bands appeared at the end. Also in surface water 

and groundwater samples from the Leendertgracht (3A and 3B: 6.5 and 4.5 mg of 

monochlorobenzene;  4A and 4B: 5.5 and 3.5 mg of monochlorobenzene) new 

bands appeared. On the other hand in tests containing also sediment, some faint 

bands  appeared  in  microcosms  where  oxygen  was  added  to  stimulate 

biodegradation (6A and 8A: 1.2 and 1.7 mg of monochlorobenzene), while no 

bands  or  even  weaker  ones  (compared  to  time  0  samples)  appeared  where 

biodegradation  was  not  stimulated  (6B  and  8B:  0.2  and  0.3  mg  of 

monochlorobenzene). Batch tests carried out with sediment and water sampled in 

the Vijver gave DGGE patterns different from both the Artificial Ditch and the 

Leendertgracht.  New bands  were  detected  in  microcosms  set  up  with  surface 

water (10A: 5 mg of monochlorobenzene) and groundwater (11A and 11B: 11 mg 

and  8  mg)  and  one  band  appeared  in  the  conditions  “aquifer  bottom+surface 

water”  and  “aquifer  bottom+groundwater”  (13B  and  15B:  6  mg  of 

monochlorobenzene), where degradation was stimulated with oxygen, while no 

differences were observed with time 0 sediment samples, where degradation was 

not stimulated (13A and 15A: 1.5 mg of monochlorobenzene). The new bands 
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observed in the samples analysed at the end of the incubation (especially where 

considerable amounts of monochlorobenzene had been consumed) were mostly 

different from the ones observed in time 0 samples, where, in some cases, the 

signal was even absent.

These  findings  could  indicate  that  species  different  from  the  ones 

dominant  in  time  0  samples  probably  grew  utilising  monochlorobenzene  as 

growth substrate. No positive signals were obtained in the PCR performed with 

DNA extracted  from the  a-biotic  control,  thus  indicating the  inhibition of  the 

microbial activity by formaldehyde.

Figure 6.31. 16S rRNA gene PCR-DGGE profiles of sediment samples obtained from batch 
degradation tests at the end of the incubation period. Numbers represent the labels of the 
microcosms (Table 6.8); L: DGGE marker.
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Table 6.8. Labels used for batch degradation tests in Figures 6.31 and 6.32

Figure  6.32  shows  the  fingerprints  of  tmoA-like  genes  in  the  time  0 

samples  used  to  set  up  the  microcosms (water  and  sediment)  and  in  samples 

collected from the flasks at the end of the incubation.

• Artificial  ditch:  in  surface  water  the  gene  was  not  present  neither  at  the 

beginning nor at the end of the incubation, while in groundwater a faint band 

is  present  and became very thick at  the  end (band “a”).  Besides  two new 

strong bands appeared after  the 200 days incubation (samples 2A and 2B, 

band “b”).

• Leendertgracht: band “a” appeared in one duplicate in surface water (3A) 

while band “b” appeared in the second (3B). Band “a” was also present in 

groundwater at the end of the incubation. Band “b” was observed again in the 

time 0 top sediment and apparently became less important at the end of the 

Label Description
1A
1B artificial ditch – surface water

2A
2B artificial ditch – groundwater

3A
3B leendertgracht – surface water

4A
4B leendertgracht – groundwater

5A
5B leendertgracht – aquifer top + surface water

6A
6B leendertgracht – aquifer bottom + surface water

7A
7B leendertgracht – aquifer top + groundwater

8A
8B leendertgracht – aquifer bottom + groundwater

10A
10B vijver – surface water

11A
11B vijver – groundwater

12A
12B vijver – aquifer top + surface water

13A
13B vijver – aquifer bottom + surface water

14A
14B vijver – aquifer top + groundwater

15A
15B vijver – aquifer bottom + groundwater
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experiment  while  it  was  almost  absent  in  the  bottom  sediment  (end  of 

incubation and time 0).

• Vijver: band “b” appeared in surface water (10B) and groundwater (11A) at 

the end of the experiment and two dominant bands were noticed in two cases 

in microcosms set up with the top sediment (12A and 14B). Apparently the 

diversity  in  the  sediment  from the  Vijver  was greater  than  the  one of  the 

Leendertgracht.

These results showed that in most cases new and thick bands appeared at 

the  end  of  the  incubation  in  the  flasks  where  considerable  amount  of 

monochlorobenzene had been consumed (2A: 4.5 mg, 2B and 3A: 6.5 mg, 4B: 3.5 

mg, 12A: 11.5 mg, 12B: 6 mg), while very limited differences were observed 

when  comparing  the  time  0  samples  with  the  ones  where  small  amounts  of 

monochlorobenzene had been degraded (5B: 0.3mg; 6B, 8B, 14A: 0.2 mg; 15A: 

0.1 mg).
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Figure  6.32.  TmoA  gene  PCR-DGGE  profiles  of  sediment  samples  obtained  from  batch 
degradation tests at the end of the incubation period. Numbers represent the labels of the 
microcosms (Table 6.8); L: DGGE marker.
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6.3.9 Cloning and sequencing of tmoA gene fragments

Among the obtained samples extracted on 31/05/2005 and 31/08/2005 we selected 

the following ones for further research on cloning and sequencing of the  tmoA 

gene:

- 31/05/05 – Artificial Ditch – 6 cm deep;

- 31/05/05 – Leendertgracht – 7 cm deep;

- 31/08/05 – Leendertgracht – 17 cm deep;

- 31/08/05 – Vijver – 4 cm deep.

TmoA gene amplicons were then cloned to determine the gene sequences 

corresponding  to  the  DGGE  bands  and  those  clones  were  matched  with  the 

corresponding DGGE profiles  obtained  from sediment  slices.  For  all  samples, 

almost all dominant bands were recovered in the clone libraries.

Figure  6.33  shows  DGGE  profiles  obtained  with  sample  “31/08/05  - 

Leendertgracht  –  17 cm deep” (rectangles) and fingerprints  resulting from the 

cloning.  Clones  E3,  E5,  E11  and  E12  were  selected  for  sequencing  and  the 

deduced nucleotides sequences were blasted against the NCBI bank.

Figure 6.33. DGGE profiles obtained with sample “31/08/05 - Leendertgracht – 17 cm deep” 
(rectangles) and fingerprints resulting from the cloning.(tmoA gene).

E3
E5

E12 E11

Uncultured bacterium clone 
A4Z/3 alpha subunit 

monooxygenase protein gene

Dechloromon
as aromatica 

RCB

Uncultured 
bacterium clone 

Dechloromonas 
aromatica RCB
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As an example Figure 6.34 shows the result of the blast analysis for clone 

E5. Lines represent the sequences producing the best alignment.

Figure 6.34. Result of the blast analysis for clone E5

Table 6.9 summarizes the results of blast analysis for our sequences and 

shows  the  nearest  nucleotide  matches  based  on  blast  analysis  of  the  cloned 

sequences.

In the Artificial Ditch samples sequenced clones were similar to Pseudomonas 

Mendocina KR1 (a Pseudomonas strain able to metabolise toluene) while in the 

samples from Leendertgracht tmoA sequences were similar to those of Ralstonia 

Pickettii PKO1 (clone E3), also able to grow on BTEX. In several cases, clones 

obtained  from samples  taken  in  the  Leendertgracht  and  in  the  Vijver  seemed 

related  to  uncultured  bacteria  clones  obtained  from  samples  recovered  from 

Dechloromona
s aromatica 
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BTEX contaminated sites (clones E3, E12, F5, F6, F8, F10). Clone E3 was also 

related  with  Pseudomonas  JS150,  which  is  able  to  degrade  a  wide  range  of 

substituted  aromatic  compounds,  including chlorobenzene.  TmoA sequences  of 

clones  E5,  E11  and  F2  were  related  (90%  of  similarity)  to  the  sequence  of 

Dechloromonas aromatica strain RCB.

Dechloromonas aromatica strain RCB is the only organism in pure culture 

that can oxidize benzene in the absence of oxygen. It can also oxidize aromatics 

such as toluene, benzoate, and chlorobenzoate. D. aromatica couples growth and 

benzene  oxidation to  the  reduction of  either  O2,  or  chlorate,  or  nitrate.  These 

results showed that clones obtained in the three locations were mostly different.

Moreover, also in the not contaminated location (Vijver) sequences related 

with  the  metabolism  of  aromatics  were  found.  Clones  strongly  similar  to 

Dechloromonas aromatica RCB were recovered from both the Leendertgracht and 

the Vijver.
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Origin Clone 
designation

Nearest matches in BLAST analysis

Nucleotide
(Accession no.)

Host Nucleot.
identities

31/05/05 – Artificial Ditch – 6 cm 11 Toluene-4-monooxygenase  gene 
cluster (AY552601)
Monooxygenase  alpha  subunit 
gene (AY504976)

Pseudomonas mendocina KR1

Arthrobacter  polychromogenes  A1-
69

79%

80%

12 Toluene-4-monooxygenase  gene 
cluster (AY552601)
Monooxygenase  alpha  subunit 
gene (AY504976)

Pseudomonas mendocina KR1

Pseudomonas mendocina KR1

80%

80%

31/05/05 – Leendertgracht – 7 cm 16 seq. too short
31/08/05 – Leendertgracht – 17 cm E3 Alpha  subunit  monooxygenase 

protein gene (AY450333)
Toluene-para-monooxygenase 
gene cluster (AY541701)
Tbc2 gene cluster (AF282898)

Uncultured bacterium clone A4Z/3

Ralstonia pickettii strain PKO1

Burkholderia cepacia JS150

99%

87%

87%
E5 CP000089

Gene  for  putative  benzene 
monooxygenase (AB274231)

Dechloromonas aromatica RCB
Uncultured bacterium

90%
93%

E11 CP000089
Gene  for  putative  benzene 
monooxygenase (AB274231)

Dechloromonas aromatica RCB
Uncultured bacterium

90%
92%

E12 Alpha  subunit  monooxygenase 
protein gene (AY450315)
Alpha  subunit  monooxygenase 
protein gene (AY450318)

Uncultured bacterium clone A1Z/7

Uncultured bacterium clone A1Z/10

100%

99%

31/08/05 – Vijver – 4 cm F2 CP000089 Dechloromonas aromatica RCB 91%
F4 (CP00431) seq. too short (36 bp) Rhodococcus RHA1 96%
F5 Alpha  subunit  monooxygenase 

protein gene (AY450323)
Uncultured bacterium clone A3Z/3 97%

F6 Alpha  subunit  monooxygenase 
protein gene (AY450322)

Uncultured bacterium clone A3Z/2 94%

F7 Toluene-4-monooxygenase  gene 
cluster (AY552601)

Pseudomonas mendocina KR1 99%

F8 Alpha subunit monooxygenase
protein gene (AY450323)

Uncultured bacterium clone A3Z/3 98%

F10 Alpha subunit monooxygenase
protein gene (AY450323)

Uncultured bacterium clone A3Z/3 92%
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Table 6.9. Sequences from clones isolated from sediment slices (tmoA gene).
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6.3.10 Cloning and sequencing of dsrB and 16SrRNA gene fragments

DsrB  and  16SrRNA  gene  amplicons  obtained  from  sediment  cores 

extracted from the Leendertgracht on 31/08/2005 (7 cm and 32 cm) were cloned. 

Concerning  dsrB  gene  amplicons,  at  least  40  different  clones  were  obtained. 

Among these clones, the ones corresponding to the most dominant bands of the 

original  samples  were  sequenced.  Therefore  11  samples  were  selected:  7  for 

“31/08/05 – Leendertgracht – 32 cm deep” (clones C1, C5, C9, C10, C12, C19, 

C20 – Figure 6.35) and 4 for “31/08/05 – Leendertgracht – 7 cm deep” (clones 

D5, D7, D8 and D12). Rectangles indicate fingerprints of the original samples the 

clones came from.

Figure 6.35. DGGE profiles obtained with sample “31/08/05 - Leendertgracht – 32 cm deep” 
(rectangles) and fingerprints resulting from the cloning.(dsrB gene).

The  results  of  the  sequencing  are  summarized  in  Table  6.10.  All  the 

recovered clones were related to uncultured sulfate-reducing bacteria.

C1

C5

C9

C1
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Due to the high diversity of bands present in the original DNA sample, 

several  different  clones  were  obtained  resulting  in  a  great  differentiation  of 

sequences (except clones C20 and C10).

Table 6.10. Sequences from clones isolated from sediment slices (dsrB gene).
Origin Clone 

designation

Nearest match in BLAST analysis

Nucleotide

(Accession no.)

Host Nucleot.

identities
31/08/05 
Leendertgrachtde
pth: 32 cm 

C1 Dissimilatory  sulfite  reductase  beta 
subunit (dsrB) gene (EF064998)

Uncultured  sulfate-reducing 
bacterium  isolate  DGGE  gel 
band 09

94%

C5 Dissimilatory  sulfite  reductase  beta 
subunit (AY753141)

Uncultured  bacterium  clone 
ng7d1139

83%

C9 Dissimilatory  sulfite  reductase  alpha 

subunit (dsrA) and dissimilatory sulfite 

reductase  beta  subunit  (dsrB)  genes 

(EF065029)

Uncultured  sulfate-reducing 
bacterium clone LGWG24

97%

C10 Dissimilatory  sulfite  reductase  alpha 
subunit (dsrA) and dissimilatory sulfite 
reductase  beta  subunit  (dsrB)  genes 
(EF065024)

Uncultured  sulfate-reducing 
bacterium clone LGWG08

94%

C12 Seq. too short for sequencing
C19 Dissimilatory  sulfite  reductase  alpha 

subunit-like (dsrA) gene (DQ250756)
Uncultured  sulfate-reducing 
bacterium clone G-77

92%

C20 Sulfite reductase alpha subunit (dsrA) 
and dissimilatory sulfite reductase beta 
subunit (dsrB) genes (EF065024)

Uncultured  sulfate-reducing 
bacterium clone LGWG08

93%

31/08/05 
Leendertgracht 
depth: 7 cm 

D5 Dissimilatory  sulfite  reductase  alpha 
subunit (dsrA) and dissimilatory sulfite 
reductase  beta  subunit  (dsrB)  genes 
(EF065066)

Uncultured sulfate-reducing 
bacterium clone LGWK15

95%

D7 Dissimilatory sulfite reductase subunit 
B (dsrB) gene (AY015596)

Uncultured  sulfate-reducing 
bacterium  clone 
UMTRAdsr624-8

88%

D8 Dissimilatory  sulfite  reductase  alpha 
subunit-like (dsrA) gene (DQ250781)

Uncultured  sulfate-reducing 
bacterium clone I-70

91%

D12 Seq. too short for sequencing
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With  regard  to  16SrRNA gene  amplicons,  6  among  the  more  than  40 

obtained clones were sequenced (Table 6.11). Apparently Proteobacteria were the 

main group of resident bacteria, with 96% similarity (clone B15) and 98% (clone 

B19).

Table 6.11. Sequences from clones isolated from sediment slices (16S rRNA gene).

Origin Clone 
designation

Closest  relative in blast  analysis (Accession 
no.) (Class)

Similarity

31/08/05 
Leendertgracht 
depth: 32 cm 

A7 Uncultured Desulfosarcina  sp.  clone 
CBII140 (DQ831553)(Proteobacteria)

90%

A16 uncultured bacterium (AY711541) 93%
A18 uncultured actinobacterium (AY307865) 95%

31/08/05 
Leendertgracht 
depth: 7 cm 

B15 Uncultured beta proteobacterium clone JG36-
GS-10 (AJ582037)

96%

B16 Uncultured  delta  proteobacterium  clone 
Hyd89-52 (sequence too short)

-

B19 AY221613.1 98%

6.4 DISCUSSION

This work deals with the study of monochlorobenzene degradation in the 

interface between groundwater and surface water. The catabolic potential of the 

microbial community present in the interface was studied in batch degradation 

tests setup with sediments sampled from three different location operated at low 

oxygen  concentrations.  The  diversity  of  the  microbial  community  was  also 

studied using molecular techniques (PCR/DGGE) and the presence of catabolic 

genes was investigated.

Our results indicate that aquifer material (top and bottom) from the three 

studied  locations  are  characterised  by  a  high  degradation  potential. 

Monochlorobenzene biodegradation was only limited by a lack of oxygen: in the 

batch tests the indigenous microorganisms were able to degrade up to 50 mg/l 

monochlorobenzene when sufficient oxygen was available, with no need to add 
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nutrients  or  other  amendments.  Apparently,  no  degradation  occurred  below 

oxygen concentrations of 1.5-2 mg/l.  Moreover, the catabolic potential  seemed 

not  to  be  related  with  depth:  degradation  took  place  indifferently  in  the 

microcosms  containing  both  top  and  bottom  aquifer  material.  The  fact  that 

significantly different amounts of oxygen were required to degrade approximatly 

the  same amounts  of  monochlorobenzene  in  tests  setup  with  different  aquifer 

materials  (from  the  Leendert  gracht  and  the  Vijver)  could  be  explained 

considering that the total organic matter content was rather different in the two 

situations.  Sediment  material  used  to  setup  microcosms  contained  on  average 

2.45% organic matter in the Leendertgracht while only 0.95% in the Vijver. The 

probable presence of other potential carbon sources and their preferential use by 

microorganisms  could  have  resulted  in  a  fast  oxygen  consumption  preceding 

monochlorobenzene degradation. For the same reason oxygen concentrations in 

microcosms  containing  only  water  remained  higher  and  monochlorobenzene 

degradation went on quickly, requiring only a few oxygen spikings. The specific 

amount  of  oxygen  (mgoxygen/mgmonochlorobenzene)  needed  was  thus  even  lower 

compared to the sediment tests.

Surprisingly, a high degradation potential was present in sediment material 

from the Vijver too. This is in contrast with other studies (Van der Meer  et al., 

1998; Dermietzel and Vieth, 2001), isolating CB-degrading bacteria only within 

the contaminated zone, while degradation potential was very low or even absent 

in  uncontaminated  subsurface  material.  Possibly,  CB-degrading  bacteria  arose 

elsewhere and was transported to the Vijver zone because of the closeness of the 

two locations.

Unfortunately,  the  chloride  concentration  of  groundwater  and  surface 

water  samples  was  very  high  (up  to  3000  mg/l)  making  it  impossible  to  use 

chloride  release  analysis  to  determine  whether  complete  monochlorobenzene 

mineralization had occurred. Furthermore, a study (Vogt  et al., 2003) reporting 

chlorobenzene degradation in microaerophilic conditions by five strains isolated 

on chlorobenzene as sole carbon source, showed the accumulation of the toxic 

intermediate  3-chlorocatechol.  In  one  of  these  strains  a  clear  relationship  was 

demonstrated between the presence of 3-chlorocatechol in the medium and low 
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oxygen concentration. However, no 3-chlorocatechol was detected under oxygen-

limited reactor  operation in  liquid samples of  the Bitterfeld pilot  plant  in situ 

reactor (Vogt et al., 2004).

TmoA gene-PCR-DGGE analysis carried out at the end of the microcosms 

incubation on sediment contained in the flasks showed a different DGGE pattern 

between the aquifer materials from the two locations (Leendertgracht and Vijver), 

but also the presence of some common bands (band”b”-Figure 6.32). New bands 

appeared at the end of the incubation in some microcosms probably as a result of 

monochlorobenzene degradation by these microorganisms. Some of these bands 

are absent or not dominant in DNA extracted from the analyzed cores from the 

Leendertgracht and the Vijver. This could indicate that microorganisms present in 

situ are not active in monochlorobenzene degradation. Nevertheless this is not 

surprising,  because  no  chlorobenzene  was  detected  in  the  Vijver,  while  its 

concentration in the Leendertgracht was maybe too low to stimulate and sustain 

the growth of microorganisms. These findings seem confirmed by the observation 

that also in 16S rRNA DGGE pattern new bands (absent or very faint at Time 0) 

appeared  after  the  incubation  period  were,  thus  probably  indicating  that  these 

bacteria were present at concentrations below the detection limit and significantly 

grew using chlorobenzene as energy source.

Besides, the low oxygen concentration measured in groundwater and 

surface water seems to suggest that chlorobenzene degradation is scarcely 

probable in the sediment: results from batch degradation tests indicated that at 

least 1.5-2 mg/L of oxygen are required to sustain the degradation process but the 

contribution given by surface water is probably unsufficient due to its low oxygen 

concentration (often below 4 mg/l). Furthermore oxygen consumption by 

sediments has to be taken into account. This consumption, also depending on the 

organic matter concentration, can reach high levels and significantly reduce the 

oxygen amount available for chlorobenzene degradation. The prevailing redox 

conditions at different depths in the interface need investigation through further 

research. The very low chlorobenzene concentrations detected in surface water 

compared to groundwater are probably a result of dilution and sorption in the 

organic matter of the sediment (up to 15 mg/kg of MCB; Figures 6.13 and 6.14).
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Cloning and sequencing of tmoA sequences showed that cloned sequences 

were mostly related with microorganisms involved in the metabolism of BTEX. 

One sequence was related in third similarity with Pseudomonas JS150, which can 

grow on a wide variety of aromatic compounds, including monochlorobenzene. 

Possibly, these microorganisms have monoxygenases catilizing the first step of 

the reaction, but unable to completely mineralize chlorobenzene. Initial steps of 

chlorobenzene  degradation  give  rise  to  3-chlorocatechol  which  is  usually 

degraded via the  ortho  pathway described by Reineke and Knackmuss (1984). 

The initial attack is by a dioxigenase acting like toluene dioxygenase and benzene 

dioxygenase. The initial oxidation results in the formation of a  cis-dihydrodiol. 

Subsequent ring fission and elimination of chloride leads to the mineralization of 

these compounds. The key enzyme is the pyrocatechase II  (Dorn  et al.,  1978; 

Reineke  et  al.,  1984)  that  converts  chlorocatechols  into chloro-cis,cis-muconic 

acids.  The  absence  of  this  enzyme in  organisms  with  initial  oxygenases  with 

broad substrate specificities may lead to the accumulation of chlorocatechols or to 

the  misrouting  of  chlorocatechol  down the  meta cleavage  pathway,  ultimately 

resulting  in  cell  death. Further  research  should  focus  on  isolating  and 

characterizing chlorobenzene-degraders present in the interface.
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PCR-DGGE analysis of the eubacterial  16S rRNA gene showed, in the 

first place, that in general the structure of the microbial community is very diverse 

and changes depending on depth., significant changes were frequently observed 

from 5-10 cm downwards. Koizumi et al. (2003) also observed vertical changes of 

a bacterial community structure in a mesophilic lake sediment by DGGE analysis 

of  amplified 16S rDNA and reversely transcribed 16S rRNA fragments.  They 

noticed  that  the  diversity  indices  obtained  from the  16S rDNA-based  DGGE-

profiles  were  greater  than  those  obtained  from  the  16S  rRNA-based  DGGE 

profiles. The diversity of inactive bacteria (DNA level) did not change drastically 

in function of depth since they were only influenced by bacteria that accumulated 

in  association  with  sedimentation.  In  contrast,  the  diversity  of  active  bacteria 

(RNA level) decreases with sediment depth. More specifically, the rRNA-based 

dendrogram showed a significant difference between the upper layers (0-2, 2-5, 

and 5-8 cm) and the lower ones (8-11, 11-14, 14-17, and 17-20 cm).

In most cases a huge number of very faint bands was observed together 

with some dominant thick bands, thus confirming that a very diverse bacterial 

community,  dominated  by  a  few  species,  is  harboured  in  the  interface.  The 

depending-on-depth relevant changes in the community’s structure are probably 

related with the gradient in the redox conditions. The microbial communities from 

the  three  sampling  locations  appeared  considerably  different  although  some 

similar bands were observed. In the Artificial ditch diversity seemed higher and 

more dominant bands were present; this could be caused by the high concentration 

of chlorobenzene. The presence of high concentration of the contaminant could 

have stimulated the development and growth of microorganisms able to use it as 

carbon and energy source (evidenced by the presence of the dominant bands). 

This is in contrast with another study carried out in a BTEX-contaminated site 

(Hendricks  et  al.,  2005),  demonstrating  that  the  uncontaminated  area  was 

characterized by a much more diverse bacterial community than the contaminated 

one. Alfreider  et al., (2002) studied the microbial diversity in an  in situ reactor 

system  treating  MCB-contaminated  groundwater.  They  observed  that  the 

significance  of  specific  pollutants  for  the  structure  within  the  bacterial 

assemblages in contaminated groundwater ecosystems is hard to assess, because 
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various physical, chemical and biological factors may often mask anthropogenic 

effects.  They  also  observed  differences  in  the  microbial  community  structure 

between sediments and groundwater samples (as we did) and they explained it 

referring to the differences between these two habitats, attached and free-living 

bacteria. Very little is known about the differences in the microbial community 

structure between original sediment and groundwater. Roling et al., (2001) found 

that  pollution  in  a  landfill  leachate–contaminated  aquifer  did  not  affect  the 

particle-bound microorganisms, but groundwater community structure was clearly 

affected by pollution and redox processes,  thus supporting the hypothesis  that 

bacteria attached to sediment particles and forming biofilms usually consists of 

stable communities which are less influenced by changing environmental factors.

Conversely  the  Leendertgracht  and  the  Vijver  were  characterized  by  a 

great diversity and a more uniform distribution of vanishing bands.

The characterization of the bacterial community revealed the presence of 

sequences related to  Proteobacteria in  agreement  with Alfreider  et al.,  (2002) 

who  found  this  bacteria  in  chlorobenzene-contaminated  groundwater  and 

sediment samples from their in situ reactor.

PCR-DGGE analyses of 16S rRNA gene and tmoA gene showed a greater 

diversity in cores extracted in Summer. This is probably due to the more intense 

microbial activity depending on higher temperature (Figures 6.12, 6.26 and 6.30).

DsrB gene fragments cloning and sequencing confirmed that a very high 

diversity of sulfate-reducing bacteria is present in each of the three locations, in 

every season, regardless of depth. This seems in contrast with the presence of 

bacteria  carrying  tmoA like  genes  in  the  first  10-20  cm sediment  layers.  The 

presence  of  anaerobic  obligate  sulfate  reeducing  bacteria  can  be  explained 

assuming  that  the  sediment  might  contain  both  aerobic  and  anaerobic  micro-

niches. The co-occurrence of sulfate-reducing bacteria and aerobic organisms has 

been shown before in aerobic wastewater biofilms (Ito  et al., 2002b; Ito  et al., 

2002a; Kühl and Jorgensen, 1992; Okabe et al., 1999). Recently, Shi et al. (1999) 

showed  the  co-occurrence  of  these  organisms  in  a  fuel  contaminated  aquifer, 

where the conditions were micro-aerophilic to anaerobic.
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Anaerobic  bacteria  can  be  responsible  of  the  reduction  of  highly 

chlorinated  benzenes  to  chlorobenzene  and  of  the  accumulation  of 

monochlorobenzene in the aquifer. This could also provide an explanation for the 

detection  of  di-  and  especially  tri-chlorobenzenes  concentrations  which  were 

significantly lower if compared to monochlorobenzene.

Studies on the effect  of the interface between groundwater and surface 

water on the degradation of pollutants  is  limited.  Lendvay  et al. (1998, 1999) 

studied the biogeochemical  effects  of  a  large surface water  on a  chloroethene 

contaminated anaerobic groundwater at the groundwater/surface water interface 

(GSI) using spatially discretized multilevel arrays. Concentrations of methane and 

chloroethene decreased as the groundwater became increasingly oxidized along 

the GSI in  shallow sample  points  impacted by infiltration of  oxygenated lake 

water.  Cis-1,2-dichloroethene  remained  unchanged  or  increased  at  the  same 

locations indicating that the decrease in methane and chloroethene was not due to 

dilution  effects  from  lake  water  infiltration.  Schwarzenbach  et  al. (1983) 

investigated, by the installation of a network of observation wells, the transport 

and fate of chlorinated hydrocarbons, alkylated benzenes, and chlorinated phenols 

during natural infiltration of river water to groundwater. Biotransformation was 

observed  in  the  interface  for  all  alkylated  C1-C4-benzenes,  naphthalene,  the 

methylnaphthalenes,  and 1,4-dichlorobenzene.  Alkylated benzenes were always 

eliminated within the first few meters of infiltration, even at temperatures below 

5°C. The biotransformation of 1,4-dichlorobenzene occurred at a lower rate while 

chloroform, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene were 

not  degraded  in  the  interface.  With  respect  to  these  last  compounds,  bank 

infiltration is thus ineffective as a first step in the treatment of river water for 

water  supplies.  Feris  et  al. (2003)  investigated  through  the  use  of  microbial 

techniques (DGGE, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct 

microscopic enumeration, and quantitative PCR) the effect of a range of sediment 

metal  loads  on the  microbial  community inhabiting the hyporheic  zone  of  six 

different rivers.  They found that metal  stress in fluvial  environments does not 

reduce  biomass,  diversity,  or  productivity  rather  the  structure  of  microbial 

communities changes. It appeared that the hyphoreic-zone communities exhibited 
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a decrease in -proteobacteria but no significant change in -proteobacteria and 

an  increase  in  -proteobacteria  with  increasing  metal  contamination.  They 

concluded from their study that more studies are needed to define or describe the 

taxa that comprise the communities in the interface that are affected by pollutants 

and that this could be mainly achieved by the use of molecular techniques.

6.5 CONCLUSIONS

In this study we investigated the biodegradation of chlorobenzene in the 

interface between groundwater and surface water. Main goal was to understand if 

the microbial community present in the interface was involved in the degradation 

of pollutants passing through the sediment layer and if the interface can therefore 

have  an  active  role  in  the  breakdown  of  pollutant  in  groundwaters  reaching 

surface waters.

Therefore we carried out batch degradation tests and we applied molecular 

techniques (PCR-DGGE), in order to study the catabolic potential of the microbial 

community present in the interface, using sediment material extracted from the 

interface in three different locations and in different seasons.

Results of batch tests carried out at low oxygen concentrations (such as the 

presumed  in  situ conditions)  showed  that  a  high  chlorobenzene  degradation 

potential  is  present,  regardless  of  depth  in  the  interface.  Biodegradation  of 

chlorobenzene was only limited by a lack of oxygen. Furthermore we found the 

catabolic  gene  tmoA (involved in  the  initial  step of  the degradation of  BTEX 

compounds,  similar  to  monochlorobenzene)  everywhere.  This  gene  was  only 

present  down  to  a  depth  of  10-20  cm,  indicating  that  a  shortage  of  oxygen 

possibly prevents its presence in the microbial population of the deeper layers. 

Further research will have to investigate whether mineralization of chlorobenzene 

is  complete  or  if  it  is  a  partial  transformation,  possibly  resulting  in  the 

accumulation of the toxic metabolite chlorocatechol. Further research will  also 

have to investigate the real in-situ situation in order to assess the presence of the 

right conditions for biodegradation.
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Molecular  tests  also  indicated  that  the  structure  of  the  microbial 

community significantly changed depending on depth. Besides, communities from 

the three studied locations were mostly different, while similiraties were observed 

in each location throughout the whole year.
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Especially in the last 50 years of industrial development, the amount and 

variety  of  hazardous  substances  has  drastically  increased.  Among  them, 

halogenated compounds, are widespread air, water, soil, and sediment pollutants; 

they are recalcitrant molecules resistant to mineralization due to the stability of 

their carbon-halogen bond. Since these compounds have existed for millions of 

years,  there  are  naturally  occurring  strains  of  bacteria  which  have  evolved  to 

break  down  halogenated  compounds,  thus  opening  up  the  possibility  for 

bioremediation treatment of contaminated sites.

Chlorinated  aliphatic  and  aromatic  hydrocarbons  are  among  the  most 

common  contaminants  of  soils,  groundwaters  and  sediments.  Several  studies 

showed that most of these pollutant can be biodegraded by single bacterial strains 

or mixed microbial populations via aerobic direct metabolism or cometabolism.

In this thesis, two studies have been carried out concerning different situations 

where bioremediation processes of chlorinated hydrocarbons were involved.

The first experimental  work consisted in the  study of microbial consortia 

able to degrade a mixture of 6 CAHs (chlorinated aliphatic hydrocarbons) via 

aerobic cometabolism. We studied the long-term growth process of two microbial 

consortia using different primary substrates (methane and propane) and effective 

in the aerobic cometabolic biodegradation of a mixture of 6 chlorinated aliphatic 

hydrocarbons (CAHs), and the effectiveness of these consortia as inocula for the 

bioaugmentation of different types of aquifer materials.  The main goals of the 

study included:

• to verify  the maintenance of  the consortia’s  capacity to  degrade the 6-

CAH  mixture  during  a  prolonged  process  of  microbial  growth  in  the 

presence as well as in the absence of the 6-CAH mixture;
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• to verify the consortia’s ability – after a prolonged growth process - to lead 

to the rapid onset of biodegradation of the CAH mixture upon inoculation 

in slurry microcosms set up with aquifer materials taken from sites with 

different physical-chemical characteristics; 

• to develop a third consortium able to combine the best characteristics of 

the methane-utilizing and of the propane-utilizing consortia object of the 

study: in fact, a previous study had shown that, while both consortia were 

effective in the aerobic cometabolic biodegradation of VC and cis-DCE, 

the methane-utilizing biomass had a higher capacity to transform trans-

DCE, whereas the propane-utilizing one was more effective towards 1,1,2-

TCA, 1,1,2,2-TeCA and, secondarily, TCE;

• to characterize in  terms of specific  CAH depletion rates and degree of 

mineralization of the organic Cl the best methane-utilizing and the best 

propane-utilizing consortium obtained as a result of the inoculation in the 

microcosms set up with different aquifer materials.

The  propane-utilizing  consortium  generally  proved  the  most  effective  one, 

being  able  to  biodegrade  vinyl  chloride,  cis-  and  trans-1,2-dichloroethylene, 

trichloroethylene,  1,1,2-trichloroethane  and  1,1,2,2-tetrachloroethane  at  all  the 

CAH concentrations tested.

Both consortia maintained unaltered CAH degradation capacities during a 300-

day growth period in the absence of the CAHs and were effective in inducing the 

rapid onset of CAH depletion upon inoculation in slurry microcosms set up with 5 

types of aquifer materials.

A  consortium  developed  in  microcosms  supplied  with  both  methane  and 

propane  combined  the  best  degradation  capacities  of  the  two  single-substrate 

consortia.

The degree of conversion of the organic Cl to chloride ion was equal as an 

average to 90%.

These results indicated that a large amount of inoculum potentially useful in 

bioaugmentation tratments of CAH-contaminated sites could be grown in liquid-
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gas bioreactors in the absence of CAHs and soil, starting from small amounts of 

biomass suspension. The use of a methane-propane-utilizing consortium would 

result in the best degradative performances.

The  second  study  dealt  with  monochlorobenzene  biodegradation  in  the 

interface between groundwater and surface water. Soil remediation in practice 

often consists of the application of extensive techniques for the active removal of 

the contamination source and remediation of the plume. Objects of risk are often 

surface  water  systems.  There are  strong indications  that  the interface  between 

groundwater and surface water plays an important role in the natural degradation 

of organic contaminants. This is especially the case for mobile contaminants that 

are  persistent  in  anaerobic  subsurface  environment,  but  mineralized  relatively 

easy under more oxidized environmental conditions (e.g. chlorobenzene or vynil 

chloride).

Main goal was investigating the natural pollutant degradation capacity of the 

aquifer zone representing this interface. The interface can be considered a zone 

with changing redox conditions characterized by specific degradation potential for 

pollutants passing through as a result of steep physico-chemical gradients. Thus 

the catabolic potential and the structure of the microbial community present in the 

interface between groundwater and surface water were studied to find out whether 

bacteria present in the interface are involved in pollutants degradation. Therefore 

batch degradation tests and molecular analyses (PCR-DGGE) were carried out on 

aquifer material  extracted at different depths in the interface in three locations 

characterized  by  different  monochlorobenzene  contamination  levels. 

Chlorobenzene  degradation  was  studied  in  batch  tests  under  oxygen-limited 

conditions in  order  to  simulate  the  in situ conditions.  16S rRNA PCR-DGGE 

analysis were carried out on undisturbed sediment cores extracted from the three 

studied locations in different seasons to detect the presence of catabolic genes at 

different  depth  in  the  interface  and  to  study  the  structure  of  the  microbial 

community.
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Results  from  batch  degradation  tests  indicated  that  the  position  in  the 

interface  did  not  have  any  effect  on  the  chlorobenzene  degradation  and  the 

process  was  exclusively  limited  by  a  lack  of  oxygen.  Up  to  50  mg/l  of 

monochlorobenzene  were  consumed  in  20  days  in  both  aquifers,  and  also  in 

groundwater  and  surface  water,  when  sufficient  oxygen  was  available  (1.5–2 

mg/l)

The  structure  of  the  microbial  community  changed  in  function  of  depth. 

Moreover the structure of the community appeared different in the three locations 

while significant similarities were observed in samples extracted in each location 

in different seasons.  Cloning and sequencing allowed to identify the dominant 

bands in the DGGE pattern as belonging to the group of Proteobacteria. Bacteria 

carrying tmoA-like genes were mostly related to BTEX degraders: Pseudomonas 

Mendocina  KR1,  Ralstonia  Pickettii  PKO1,  Dechloromonas  aromatica  strain 

RCB.

It is still unclear if bacteria corresponding to these DGGE bands play a role in 

chlorobenzene degradation. The only degradative gene detected until now is the 

mono-oxygenase tmoA (involved in the degradation of BTEX, structurally similar 

to monochlorobenzene) thus being probably involved in its degradation.
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