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Preface

With this work we would like to investigate some particular phenomena appearing
messy and without control. In fact a “prima facie” behavior of phenomena looks like
without rules and principles. The aim of the research is to understand phenomena
which it is possible to meet in nature. The starting point of the research in this sense
can be found in the investigation the falling stars and the eclipses. Isaac Newton was
the first one to define laws governing phenomena for planet motion and he found out
“deterministic” laws. A law is called deterministic if future and past are made unique by
present state. The main discover is that perfect deterministic law can create a chaotic
and unpredictable motion. This kind of motion is called “deterministic chaos” and it
could represented the third scientific revolution after theory of relativity and quantum
mechanics.

One of the main characteristic of chaotic deterministic systems is the absence of
making forecast in a long period, furthermore the propriety depends on the system
complexity. The found solutions are so complicated to look like random. Therefore
we can assert: “chaos” is not so far away from “determinism”. Concepts of “chaos”
and "determinism" have been developed in a short period of time because of multiple
interests in several fields of science (examples of such systems include the atmosphere,
the solar system, the plate tectonics, the turbulent fluids, economics, and the population
growth).

The thesis is organized as follows.
In the introduction we will discuss some general aspects of the time series analysis

related to chaotic time series, theory of dynamical system, ergodic theory and some
invariant aspects of the time series. Chapter 2 will give a review of some widely used
methods for estimation of the fractal dimension of a chaotic attractor from a corre-
sponding time series.

Chapter 3 will describe the open question about the choice of values for the scaling
region. Some methods to carry out the region will also be discussed. The main purpose
of this section is how the identification problem is related to the scaling region. Chapter
4 will introduce the U-Statistics theory and some basic results. Chapter 5 will present
some theoretical results using the U-Statistic theory to Gaussian Correlation Integral
and the Takens estimator. Chapter 6 will focus on a problem of estimating the variance
of the sample gaussian correlation integral using the U-Statistics. The results are sup-
ported by the literature. Then, aim of the chapter is to find the correlation dimension
distribution.

Analysis have been obtained using the software Matlab.
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Chapter 1

Introduction

The meaning of “chaos” is connected to the idea that small causes can sometimes have
large effects; a clear example is given in this popular sentence “for want of a nail . . . a
kingdom was lost” as ancient people said.

The presence in nature1 of phenomena appearing without rules gave the idea of find-
ing out some methods to understand the behaviors. In this section, we will show what
happens for some phenomena by using the physical field, in fact everyone experienced
once in life some physical laws which produce a periodic and regular evolutions. In
the reality there are phenomena with unseen rules. The answer to this problem can be
found in the use of the phase space2 which provides answers to a large set of questions
for example how one can extract useful physical information from observations of chaos.
Formally, chaos theory is defined as the study of complex nonlinear dynamic systems,
the word nonlinear implies recursion and higher mathematical algorithms and dynamic
implies non-constancy and non-periodicity. Thus, chaos theory is the study of complex
systems based on mathematical concept of recursion, whether in the form of a recursive
process or a set of differential equations modelling a physical system.

The most commonly held misconception is that chaos theory is about disorder.
Nothing could be further from the truth. It does not disprove determinism or dictate
that ordered systems are impossible; it does not invalidate experimental evidence or
claim that modelling complex systems is useless. The “chaos” in chaos theory is order
not simply order, but the very essence of order.

It is true that chaos theory dictates that minor changes can cause huge fluctuations.
But one of the central concepts of chaos theory is that while it is impossible to exactly

1We refer to Physics, Biology, Sociology and Economics.
2Phase space: particular space where it is possible to observe the evolution see next paragraph.
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8 CHAPTER 1. INTRODUCTION

predict the state of a system, it is generally quite possible, even easy, to model the
overall behavior of a system. Thus, chaos theory lays emphasis not on the disorder of
the system or the inherent unpredictability of a system, but on the inherent order in
the system (the universal behavior of similar systems).

Thus, it is incorrect to say that chaos theory is about disorder. To take an exam-
ple, consider Lorenz’s Attractor. The Lorenz Attractor is based on three differential
equations, three constants and three initial conditions. The attractor represents the
behavior of gas at any given time and its condition depends on a previous time. If
the initial conditions are changed by even a tiny amount, say as tiny as the inverse
of Avogadro’s number (a heinously small number with an order of 1 · 10−24), checking
the attractor at a later time will yield numbers totally different. This is because small
differences will propagate themselves recursively until numbers are entirely dissimilar
to the original system with the original initial conditions. However, the plot of the
attractor will look very much the same. Both systems will have totally different values
at any given time and the plot of the attractor (the overall behavior of the system) will
be the same. This system will be consider in the following.

The basic idea of chaos theory is that complex nonlinear systems are inherently
unpredictable. At the same time, chaos theory also insures that the way to express such
an unpredictable system does not often lie in exact equations, but in representations of
the system behavior in terms of strange attractors or in fractals. Many people think
that chaos theory is about unpredictability instead of chaos theory is at the same time
about predictability even in the most unstable systems.

1.1 Definition of chaos

A more precise definition of chaos is given in this section, by using working definitions.
In fact we will look at certain nonlinear dynamical systems that, under certain condi-
tions, show “chaotic” behavior. Among the characteristics of chaotic systems, described
below, the sensitivity to initial conditions is the more evident. A result of the sensitivity
condition is that the behavior of system appears to be random, even though the system
is deterministic in the sense that it is well defined and contains no random parameters.

The working definitions used focus on the general characteristics of chaos motion so
it is possible to describe the setting in which we will work. The main characteristics of
chaos are summarized as follows:

. Determinism
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Theoretically, the chaos motion must be generated by one or more deterministic
equations that do not contain any random factors. The system states of past,
present and future are controlled by deterministic rules. Many scientists have
found stochastic-like behavior in completely deterministic system so they have
been attracted to probe into the secrets of the system.

. Nonlinearity
Nonlinearity is a necessary, but not sufficient condition for the appearance of
chaos. Chaos motions must come from a nonlinear system but nonlinearity does
not necessarily imply chaos.

. Sensitive Dependence on Initial Conditions (SIDC)
Generally, the evolution of a system depends on its initial state. When our interest
focuses on the whole dissipative attractor, the evolution seems not sensitively
dependent on its initial states because all trajectories fall onto the attractor. But
if our interest focuses on the inner structure of the strange attractor, we can induce
that the path of trajectories diverge and converge exponentially. For a chaotic
system, this property must be valid for nearly almost all possible initial states.
Under this constraint, a possible geometrical explanation for chaotic structures
is stretching and folding. The chaotic trajectories move within the finite phase
space3 forever.

. Aperiodicity
Chaotic motion is a new topological type of motion that is very different from
fixed point, limit cycle and limit torus. Its orbits are non-periodic. This means
that a chaotic orbit can never join another one or repeat its history. But not all
non-periodic orbits are chaotic orbits. Almost periodic motions and quasi-periodic
motions are aperiodic but not chaotic.

. Stability with Some Tension and Boundness
There are different approaches towards the requirements of the chaos stability. In
pure mathematics a definite chaos without consideration of stability is convenient.
In Physics the stability is so important that it is better to include stable constraints
in defining chaos motions. In fact, scientists tend to understand the chaos motion
physically. In their eyes, chaos is bound and involves a kind of loose stability.
The chaos motion on the strange attractor is locally unstable but globally stable.

3see pag. 13
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Lastly, the classic chaos can be defined as a recurrent, random-like and aperiodic
behavior generated from deterministic nonlinear equations with sensitive dependence
on initial conditions of the system. The statistical interest is justified by the random-
like behaviors of phenomena. For this reason there will be the possibility to estimate
characteristics of chaos and its accuracy levels.

1.2 Examples

We are interested to show some simple and famous examples and to look at what above
proprieties mean. First of all we can take into account a mathematical function given
by the sine wave f(t) = Asin(t). See in the one dimension Figure 1.1(a) (the f(t)

space) this oscillates between ±A.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(b)

Figure 1.1. Sine wave in one and two dimension space for A = ±1.5

Two points in this line which are close in the sense of Euclidean or other distance
may have quite different values of ḟ(t). So two close points in one dimension may
be moving in opposite directions along the single spatial axis chosen for viewing the
dynamics. Seen in two-dimensional space [f(t), f(t+Tτs)] the ambiguity of the velocity
of the points is resolved, and the sine wave is seen to be motion on a figure topologically
equivalent to a circle. It is generically an ellipse whose depends on the value of T see
Figure 1.1(b). The overlap of orbit points due to projection onto the one-dimensional
axis is undone by the creation of the two-dimensional space.

Another example of chaos is given by the logistic model popularized in a seminal
1976 paper by the biologist Robert May. The logistic model was originally introduced
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as a demographic model by Pierre François Verhulst. Later it was applied on surplus
production of the population biomass of species in the presence of limiting factors such
as food supply or disease, and so two causal effects:

. reproduction means the population will increase at a rate proportional to the current
population

. starvation means the population will decrease at a rate proportional to the value
obtained by taking the theoretical “carrying capacity” of the environment less the
current population.

For example, the spread of disease can be modelled by a relatively simple function
called the Logistic Equation. The spread of disease depends on many things: the
number of people initially infected, the number of carriers (people who have the virus
but do not show symptoms), the number of people not infected, whether or not the
disease is curable, etc..It is possible to write this model mathematically so we have

xt+1 = rxt(1− xt), t = 1, 2, . . . (1.1)

where:

. xt is a number between zero and one, and represents the population at year t, and
hence x0 represents the initial population (at year 0)

. r is a positive number, and represents a combined rate for reproduction and starva-
tion.

The relative simplicity of the logistic map makes it an excellent point of entry into
a consideration of the concept of chaos. When we plot points of known system, the
behavior looks like an uniform distribution. It is possible to see what we have said in
the Figure 1.2.

A rough description of chaos is that chaotic systems exhibit a great sensitivity to
initial conditions – a property of the logistic map for most values of r between about
3.57 and 4 (as noted above). A common source of such sensitivity to initial conditions
is that the map represents a repeated folding and stretching of the space on which
it is defined. In the case of the logistic map (1.1), the quadratic difference equation
describing it may be thought of as stretching and folding operation on the interval [0, 1].
To see the behavior we use the scatter-plot of the logistic map which is a special case of
the phase space reconstruction using the embedding theorem (Th.1 14). Two and three
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Figure 1.2. Logistic map in different space: (a) Logistic map in the original space, (b)
Scatter-plot of Logistic map (2 dimension), (c) Logistic map in 3 dimension

dimensional phase diagrams show the stretching and folding structure of the logistic
map.

The Figure 1.2 illustrates the stretching and folding over a sequence of iterates of
the map. Figure in the middle gives a two-dimensional phase diagram of the logistic
map for r = 4, and clearly shows the quadratic curve of the difference equation (1.1).
However, we can embed the same sequence in a three-dimensional phase space, in order
to investigate the deeper structure of the map. The last figure demonstrates this,
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showing how initially nearby points begin to diverge, particularly in those regions of xt

corresponding to the steeper sections of the plot.

This stretching and folding does not just produce a gradual divergence of the se-
quences of iterates, but an exponential divergence (see Lyapunov exponents), evidenced
also by the complexity and unpredictability of the chaotic logistic map. In fact, expo-
nential divergence of sequence of iterates explains the connection between chaos and
unpredictability: a small error in the supposed initial state of the system will tend
to correspond to a large error later in its evolution. Hence, predictions about future
states become progressively (indeed, exponentially) worse when there are even very
small errors in our knowledge of the initial state.

It is often possible, however, to make precise and accurate statements about the
likelihood of a future state in a chaotic system. If a (possibly chaotic) dynamical
system has an attractor, then there exists a probability measure that gives the long-
run proportion of time spent by the system in the various regions of the attractor.
In the case of the logistic map with parameter r = 4 and an initial state in (0, 1), the
attractor is also in the interval (0, 1) and the probability measure corresponds to the beta
distribution with parameters a = 0.5 and b = 0.5. Unpredictability is not randomness,
but in some circumstances looks very much like it. Hence, and fortunately, even if
we know very little about the initial state of the logistic map (or some other chaotic
system), we can still say something about the distribution of states a long time into the
future, and use this knowledge to inform decisions based on the state of the system.
In the Logistic model example we use the scatter-plot as a new space to see the evolution
of the system. In nonlinear time series and in particular in chaotic ones the analysis is
made using the concept of phase space. It is used in mathematics and physics where
phase space is the space in which all possible states of a system are represented, with
each possible state of the system corresponding to one unique point in the phase space.

In phase space, every degree of freedom or parameter (number of variables needed to
explain the system) of the system is represented as an axis of a multidimensional space.
For every possible state of the system, or allowed combination of values of the system’s
parameters, a point is plotted in the multidimensional space. Often this succession of
plotted points is analogous to the system’s state evolving over time.

For simple systems, such as a single particle moving in one dimension for example,
there may be as few as two degrees of freedom, (typically, position and velocity), and
a sketch of the phase portrait may give qualitative information about the dynamics of
system.
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The theoretical justification of the phase space is given by the Takens4 theorem
also called delay embedding theorem. The theorem establishes conditions under which
a chaotic dynamical system can be reconstructed from a sequence of observations of
the state of a dynamical system. The reconstruction preserves the properties of the
dynamical system that do not change under smooth coordinate changes, but it does
not preserve the geometric shape of structures in phase space.

Delay embedding theorem is simpler to state for discrete time dynamical systems.
The main idea of the theorem is to use a multidimensional space instead of the original
one to observe the time series. The main idea is to use the scalar observation and to go
from this space to multivariate phase space thanks the embedding theorem.

Let (X, T ) be a dynamical system with finite-dimensional state space X and bound
positive orbits {Tnx}n≥0. Let f : X→ R be a real-out function. Usually f(x) represents
a real-valued measurement made on a point x ∈ X. If (x0, Tx0, T

2x0, . . .) is an orbit
of the dynamical system with initial state x0, then the corresponding time series is
obtained by applying to each point of the orbit: (f(x0), f(Tx0), f(T 2x0), . . .).

Let both T and f be continuously differentiable. Define the vector-valued recon-
struction map y : X→ Rm by

yi = (f(xi), f(Txi), . . . , f(Tm−1xi)) ∈ Rm (1.2)

Theorem 1 (Takens-Mañé). In the cartesian product of the space of C1-mapping on

X and the space of C1-functions from X to R there exists an open and dense subset U ,

such that if (T, f) ∈ U , then the reconstruction map yi, defined in 1.2, is an embedding,

whenever m > 2 · dim(X).

These y replace the scalar data measurements with data vectors in an Euclidean
m-dimensional space in which the invariant aspects of the sequence of points x are
captured with no loss of information about the proprieties of the original system.

The new space is related to the original space of the x by smooth, differentiable
transformations. The smoothness is essential in allowing the demonstration that all the
invariants of the motion as seen in the reconstructed time delay space with data y which
are the same as if they were evaluated in the original space. This means we can work
in the reconstructed time delay space and learn essentially as much as we could about

4Next to Takens even Mañé showed same results.
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the system at the source of our observations as if we were able to make our calculation
directly in the true space.

1.3 Chaotic dynamical system and ergodicity

In the above section we will show some characteristics and definitions related to chaos
systems. Here we want to discuss in a more formal way some aspects of chaotic dynam-
ical systems. We will focus on systems with discrete time.

A discrete time dynamical system (X, T ) is a pair consisting of the state space X,
the set of all possible values, and the time evolution map T : X→ X, the law according
to which a state evolves to other states at later times. For an initial state x0 ∈ X, the
iterations of T give rise to a trajectory, or an orbit {Tmx0}n∈N (or, if T is invertible,
n ∈ Z)

A dynamical system is related to a time series by means of the read-out function,
or the observable function f : X → R which assigns to each possible state in X the
recorded value when the system is in that state.

The absence of unique definition of chaos is showed in formal way by the lack
of unique definition of attractor on dynamical systems. An attractor is the limiting
set where the experimental orbits {Tmx}n∈N accumulate for large n. A more precise
definition is that of an attracting set. The set A is called attracting set with fundamental
neighborhood U, if it satisfies the following properties:

1. Attractivity : for every open set V : A ⊂ V we have {Tmx : x ⊂ U} ⊂ V for all
sufficiently large n;

2. Invariance: for all x ∈ A and all n we have Tnx ∈ A

The notion of invariant measures is associated with a dynamical system. A fi-
nite measure µ on the Borel σ-field F of X is called T -invariant if, for any set B ∈
F, µ(T−1B) = µ(B). Since µ is finite, we can assume without loss of generality that µ

is a probability measure, i.e. that µ(X) = 1. To indicate the link between the dynamical
system and the corresponding invariant measure we shall sometimes write (X, T, µ) for
a dynamical system.

A transformation T (if it is a homeomorphism) always has at least one invariant
measure associated with it (if the state space is compact); in fact it can have more.
Typically, there are many invariant measures on an attractor. Of particular interest for
us are the so-called ergodic measure.
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A T-invariant measure µ is called ergodic if all T-invariant sets in X (i.e. all A ∈ F
for which T−1(A) = A) have measure µ(A) either 0 or 1.

An attractor and an invariant measure provide us a global description of the asymp-
totic behavior of a dynamical system. The dynamic on the attractor itself does not need
to be simple. For some dynamical systems the evolution on the neighborhood of the
attractor may depend sensitively on initial conditions, i.e. the trajectories starting in
nearby initial points diverge from each other at an exponential rate and after some time
can be found in totally different parts of the attractor. This property is what we mean
with the sensitive dependence on initial conditions.

Recall that a dynamical system together with an invariant measure is called ergodic
if all T-invariant sets have the measure µ of 0 or 1. An ergodic dynamical system may
possess some mixing property with respect to the invariant measure. Many different
types of mixing conditions can be considered, such as weak or strong mixing condition,
weak Bernoulli, etc. The essential meaning of mixing is that the future evolution be-
comes almost independent of the past, as time goes by. In particular the convergence of
mixing coefficients indicates that the fact that, when taken far apart, the past and the
future of the process become almost independent, and the sequence of data is expected
to exhibit an asymptotic behavior which is close to that of an independent sequence.

1.4 Invariants

The presence of a smooth phase space gives us the possibility to study some invariant
quantities in a easier way. So in this new space we can study some proprieties known as
fractal structural and its direct consequence the fractal dimension, Lyapunov exponents
which are defined in the state space. In the next we will show a short presentation
about fractal dimension and Lyapunov exponents.

1.4.1 Fractal dimension

The term fractal has no precise meaning in the scientific literature, although most people
even somewhat familiar with the expression. Probably they associate it with compli-
cated irregular subsets of the plane. Fractal dimension can be regarded as one measure
of the complexity or irregularity of these striking images; it can also be interpreted as
the degree to which a set fills the Euclidean space in which it is embedded. Notions
of fractal dimension have been connected to probability distributions and dynamical
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systems and found use as tools in helping scientists and data analysis distinguishes de-
terministic processes from stochastic phenomena.
The term fractal originated with Benoit Mandelbrot who noted that many objects oc-
curring in nature are highly irregular in structure (e.g. coastlines, snowflakes, crystal)
yet in possession of a certain degree of self-similarity. By the latter we mean that the
object, viewed at increasing levels of manifestation, appears to be a union of many ever
smaller “copies” of itself. Irregular self-similar sets provide the simplest, most basic
examples of fractals.

Example The standard mathematical example of an irregular self-similar object is the
ternary Cantor set in [0, 1]. It is constructed by a very simple algorithm. First remove
the open middle third (1

3 , 2
3) from [0, 1], then remove the open middle thirds (1

9 , 2
9) and

(7
9 , 8

9) from the resulting two line segments. Continue this process indefinitely, at each
stage removing the open middle thirds from any remaining line segments from the pre-
vious stage. The set of points that remains in the limit is called the Cantor set, and it
is frequently referred to as Cantor dust, to emphasize its relative scarcity in [0, 1]. It
is a closed set (being the intersection of a sequence of closed sets) and with Lebesgue
measure equal to zero (this seen by observing that the lengths of the removed open
intervals in the construction sum to 1). We also note that it is self-similar, since it can
be split as the disjoint union of two smaller copies of itself. The geometric irregularity
of the Cantor set is perhaps less obvious, since we cannot actually see the set. However,
topologically, it can be described as abundant yet “full of holes”. Note that a point
belongs to the Cantor set if and only if it has a base 3 expansion consisting entirely of
0’s and 2’s (removing the middle third intervals eliminates the 1’s). Hence, in terms
of cardinality, the Cantor set is uncountable and every point of the set is a limit point
of a sequence of other points of the set. This indicates abundance of a sort, on both
a global and local level. Yet the construction also shows that any two points of the
set are separated by a missing open, interval, so the set is full of gaps. We can see an
example in the Figure 1.3

The example uses a line segment but it is possible to expand the method for a square
or cube, etc. . . and recursively removing portions of the set remaining at each stage is
often called a Cantor-like construction. Here we can consider the unit square Figure 1.4
. We can divide the unit square into a 3 × 3 grid of nice smaller squares, each of side
length 1/3. We then remove the four corner squares and the middle square, producing
another set. We can do the same n−times removing the corner and the middle squares.
It can easily see that the set is rapidly vanishing while becoming more irregular and
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Figure 1.3. Cantor set in R

fractured. The self-similarity is also evident. In this case the set is a union of four
non-overlapping copies of itself, each copy reduced by the factor one-third. Every set
which follow this construction structure is called Cantor-like set.

Here we want to give an idea about the fractal dimension, there a lot of definitions.
One of the definitions is the Box-dimension and this is the simplest one.

Definition 1 (Box Dimension or Box-Counting Definition). Let E be a nonempty

bounded subset of RN , and Nε(E) is the minimum number of closed balls of diameter ε

required to cover E. Then the lower and the upper box dimension of E are defined to be

∆−(E) = lim inf
ε→0

log Nε(E)
log 1/ε

∆+(E) = lim sup
ε→0

log Nε(E)
log 1/ε

(1.3)

If ∆−(E) = ∆+(E) then we call this common value the box dimension of E and denote

it by ∆(E).

The box dimension is defined via the minimum number of closed balls required to
cover the attractor. Using this definition we can compute the box dimension for the
Cantor set C in Figure 1.3. The middle-third construction of C suggests to cover [0, 1]

with the family of grids consisting of the triadic intervals [j3−n, (j + 1)3−n]. We then
easily count Nn(C) = 2n and ∆(C) = log 2n/ log 3n = log 2/ log 3 = 0.6309.

Other dimensions studied in the literature are: the Haussdorf dimension, the in-
formation dimension, the correlation dimension. For a good review on the question of
dimension see Cutler [1993].

For purpose of statistical estimation, the correlation dimension is most appropriate
because it characterizes the invariant measure on the attractor, and it is relatively easy
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Figure 1.4. Cantor set in R2

to estimate. So we decide to focus on the correlation dimension.

1.4.2 Lyapunov exponents

A quantitative measure of the sensitive dependence on the initial conditions is the
Lyapunov exponent λ. It is the averaged rate of divergence (or convergence) of two
neighboring trajectories. Quantitatively, two trajectories in phase space with initial
separation δZ0 diverge following the next relation:

|δZ(t)| ≈ eλt|δZ0|

The rate of separation can change for different orientations of initial separation vector.
Thus, there is a whole spectrum of Lyapunov exponents the number of them is equal to
the number of dimensions of the phase space. It is common to just refer to the largest
one, because it determines the predictability of a dynamical system.

For a dynamical system with evolution equation f t in a m−dimensional phase space,
the spectrum of Lyapunov exponents

{λ1, λ2, · · · , λm}

in general, depends on the starting point x0. This behavior can be shown in the
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Figure 1.5, taken two close points after a period of time t their distance is not constant
but it grows exponentially.
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Figure 1.5. Example of divergence for two close points during the trajectory.

The Lyapunov exponents describe the behavior of vectors in the tangent space of
the phase space and they are defined from the Jacobian matrix

J t(x0) =
df t(x)

dx

∣∣∣∣
x0

The J t matrix describes how a small change at the point x0 propagates to the final
point f t(x0). The limit

lim
t→∞(J t · (J t)T )1/2t

defines a matrix L(x0) (the conditions for the existence of the limit are given by the
Oseldec theorem). If Λi(x0) are the eigenvalues of L(x0), then the Lyapunov exponents
Λi are defined by

λi(x0) = log Λi(x0)

The set of Lyapunov exponents will be the same for almost all starting points of an
ergodic component of the dynamical system. If the system is conservative (i.e. there
is no dissipation), a volume element of the phase space will stay the same along a
trajectory. Thus the sum of all Lyapunov exponents must be zero. If the system is
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dissipative, the sum of Lyapunov exponents is negative.
If the system is a flow, one exponent is always zero the Lyapunov exponent corre-

sponding to the eigenvalue of L with an eigenvector in the direction of the flow.
Generally the calculation of Lyapunov exponents, as defined above, cannot be car-

ried out analytically, and in most cases one must resort to numerical techniques. The
commonly used numerical procedures estimates the L matrix based on averaging sev-
eral finite time approximations of the limit defining L. For the calculation of Lyapunov
exponents from limited experimental data, various methods have been proposed.

Whereas the (global) Lyapunov exponent gives a measure for the total predictability
of a system, it is sometimes interesting to estimate the local predictability around a point
x0 in phase space. This may be done through the eigenvalues of the Jacobian matrix
J0(x0). These eigenvalues are also called local Lyapunov exponents. The eigenvectors
of the Jacobian matrix point in the direction of the stable and unstable manifolds.
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Chapter 2

Review of correlation dimension

estimators and methods

In this chapter we want to investigate the most popular estimators for the correlation
integral and the correlation dimension. The analysis of one of these quantities is re-
lated with the other one because correlation dimension is a function on the correlation
integral. For this reason we will give both estimators definitions in this chapter. For
each estimators it is possible to associate a particular estimating method. The differ-
ences between these methods will also be the object of this chapter. Among the various
notions of the dimension, the correlation dimension receives the most attention in the
literature, mainly because of its relatively easy computation.

2.1 Introduction

Let F be an ergodic probability measure for a dynamical system {Xt, t ∈ Z+} that
lives on attractor A ⊆ Rm. The spatial correlation related to the dynamical system
can be describe in terms of the correlation integral CF (ε) which is the probability
distribution function of the inter-point distance |X−Y | where X andY are independent
and identically distributed with F as their common probability measure. This can seen
from the following identities:

P (|X − Y | ≤ ε) = E(P (|X − Y | ≤ ε|Y )) = CF (ε) (2.1)

23
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Note that it is common in the dynamical literature to adopt the maximum norm
in the case of vector variables because the computation is more convenient because the
correlation dimension does not depend on which vector norm is adopted. Correlation
integral represents the probability that the distance between the pairs of points (xi, xj)

is less than ε.

As an example, let the natural measure be U(0.1), the uniform distribution on
[0, 1]. Then it can be found the value of C(r). First note that the joint distribution
of X and X ′ is the uniform distribution on the square [0, 1] × [0, 1]. On the axis it is
possible to find the single event, so if events have distance equals to zero, all possible
combinations lie over the diagonal. Otherwise all possible combinations of points with
maximum distances less than r lie in the black area in Figure 2.1. The probability that
|X−X ′| ≤ r, (black area) is equals one minus the area of the two white triangle corners.
So, C(r) = P (|X −X ′| ≤ r) = 1− (1− r)2 = 2r − r2

Figure 2.1. Probability that |X −X ′| ≤ r is equal the inner (black) area two dashed lines

In general the computation of invariants is made considering {xi} as an embedding
time series of a particular system with an appropriate embedding dimension m and
time delay τ . So the correlation integral is defined in terms of the distribution fm(x)

of delay vectors as

CF (ε) =
∫ ∫

Θ(ε− |x− y|)fm(x)fm(y)dxdy (2.2)
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The correlation dimension α is defined as the exponent appearing in the scaling law:

CF (ε) ∼ εα (2.3)

To be more specific, the above scaling law requires that

lim
ε→0

log CF (ε)
log ε

= α (2.4)

A log-log plot of CF (ε) is approximately linear for small ε and the asymptotic slope
being defined as the correlation dimension. Note that α can be any real number between
0 and m. It is revealing to assign the scaling law in the product form:

CF (ε) = Φ(ε)εα (2.5)

where the pre-factor Φ(ε) satisfies the requirement that

lim
ε−→0

log Φ(ε)
log ε

= 0 (2.6)

The scaling law is said to be exact if the pre-factor Φ is constant over the range 0 ≤
ε ≤ ε0 for some positive ε0. Ordinarily, the scaling law is not exact. The condition
needed is that the pre-factor should be asymptotically constant and it may oscillate
or even become unbounded as ε goes to zero. The phenomenon of an asymptotically
non-constant pre-factor is referred to as lacunarity.

The term lacunarity was first introduced by Maldelbrot as a measure of the texture of
a fractal set. Lacunarity represents a counterpart to the fractal dimension and describes
the degree of gappiness of a fractal. It is strongly related to the size distribution of the
holes on the fractal and to its deviation from translation invariance; roughly speaking,
a fractal is very lacunar if its holes tend to be large, in the sense that they include
large region of space. If a fractal has large gaps or holes, it has high lacunarity; on
the other hand if a fractal is almost translationally invariant, it has low lacunarity.
Different fractals can be constructed that have the same dimension but that look widely
different because they have different lacunarity. For this reason an oscillating pre-factor
complicates the estimation of the correlation dimension. A graphic explanation of
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lacunarity is given by Figure 2.1

Figure 2.2. Example of lacunarity in a set: the holes represent the degree of gappiness

When lacunarity is absent it is possible to define the background as the ideal case
so it is simple to have some estimators without consider this factor. One of these is the
Takens estimator where Φ(ε) is assumed constant. Therefore, an efficient and unbiased
estimate for α exists.

Formula (2.1) and (2.4) are the definitions for quantities which represent our interest;
in the next part we will see the most popular estimators.

2.2 Grassberger-Procaccia Estimator

The correlation integral (2.1) was initially introduced by Grassberger-Procaccia as an
efficient estimator to Box-counting dimension ∆ε(E) see page 18. It is easy and com-
paratively quick to compute, and allows the experimentalist to probe the attractor at
much smaller distances than does box-counting. Consequently, the correlation integral
method (usually in conjunction with the time-delay embedding) remains one of the
most popular of the dimension estimation techniques currently in use.
If x1,x2, . . . is a sequence of random vectors1 in Rm, the sample correlation integral is
defined to be the observed proportion of distinct pairs (xi,xj), 1 ≤ i < j ≤ n, which
are no more than distance ε apart. i.e.

Cn(ε) =
2

n(n− 1)

∑

i≤j

1{|xi−xj|≤ε} (2.7)

In the case that x1,x2, . . . ,xn are i.i.d. with distribution F , we note that Cn(ε) is
the obvious choice for an estimator of the spatial correlation integral CF (ε) = F ×

1We can obtained vectors using delay method because we use a multidimensional space instead of
one-dimensional.
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F({(x,y) ∈ Rm ×Rm| |x− y| ≤ ε}). In fact it is trivial to see that E(Cn(ε)) = CF (ε),
and we would to observe w.p. 1 convergence of Cn(ε) to CF (ε) as well as asymptotic
normality of suitably rescaled Cn(ε), as n →∞. This is indeed the case, although the
asymptotic do not fall under the trivial i.i.d. format for the sample proportions. The
terms in the summation comprising Cn(ε) are not independent, due to the presence
of overlapping pairs i.e. pairs (xi,xj) and (xi,xk) that have a member in common.
However, we know that Cn(ε) is an U-Statistic and so its convergence behavior can be
studied through the theory of U-Statistics2. Such an analysis has been carried out by
Denker and Keller, who establish the consistency and asymptotic normality of Cn(ε) in
the more general case of mixing3 x1,x2, . . . with distribution F .

Given a stationary sequence x1,x2, . . . ,xn in Rm, the standard estimation procedure
is to plot log Cn(ε) vs log ε and carry out a least squares analysis over an ε-range where
the curve appears linear. The hope is that n is large enough that Cn(ε) ≈ CF (ε) in an
ε-range where CF (ε) ≈ φεα. Obviously this is a double limit problem, since in general
we require both n →∞ and ε → 0.

As an example we can consider a data set of 1000 consecutive iterates from the
Henon map. The Hènon map is a discrete-time dynamical system. It is one of the most
studied examples of dynamical systems that exhibit chaotic behavior. The Hènon map
takes a point (x, y) in the plane and maps it to a new point, for more details related to
the map see 69. For the canonical values the Hènon map is chaotic. For other values
the map may be chaotic, intermittent, or converge to a periodic orbit. Distances were
computed using the square metric.
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Figure 2.3. Log-log plot for Henon map on X axis using the square metric.

The example would be considered unusual in practice, because the equation govern-
ing the system is known, and we are able to observe the system evolving in its natural

2Next sections for more details
3For a brief definition of the term see page 16
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phase space. The equations associated with real systems are rarely known and data usu-
ally arises as a real-valued time series {xi} i = 1, . . . , n, obtained by measuring some
component of the system. In such case, the method of time-delay embedding is used.
For a positive m, we construct the embedded vectors xi = (xi, xi+1, · · · , xi+(m−1)) i =

1, . . . , (n − m + 1), in Rm is then computed, and an estimate α̂m of the correlation
dimension obtained, using the least square method. This procedure is carried out for
a sequence of m values, m = 1, 2, . . . until it is clear that the estimates α̂m are no
longer changing. If the estimates α̂m do approach a finite asymptotic as m increases,
this asymptote is taken as the estimate of the correlation dimension of the underlying
system. This procedure, as a whole, is known as the Grassberger-Procaccia algorithm.

However, the effect of embedding dimension on estimate quality is relatively minor
in the case of the Henon mapping because the Henon attractor is a very low-dimensional
object. If the underlying system is high-dimensional (or stochastic), the effect due to
increasing embedding dimension rapidly becomes serious - the ε-range over which suffi-
cient data is available shrinks quickly. This phenomenon occurs because the components
of the embedded vectors act almost independently until m nears the dimension of the
underlying system. Using the square metric in Rm, the independence hypothesis im-
plies that the proportion Cm(ε) of m-vectors within ε of each other is related to the
proportion C1(ε) of 1-vectors within ε of each other by Cm(ε) = C1(ε)m. This means
that, for a given initial sample size, the unstable ε-range in Rm may be very small (or
even nonexistent) when m is large. In addition, as it is the smallest ε values that are
lost, the lower bound of the potential scaling range shifts further and further away from
zero as m increases. Since correlation dimension is defined as a limit as ε → 0, this can
mean that slopes obtained over the available scaling region are invalid.

An important role is given by estimate method, in this case Grassberger-Procaccia
algorithm uses the least squares method. The main issue is to estimate parameters
and obtain an accurate variance estimate. It is clear that the variance estimate for
the line slope based on least squares methods is not appropriate to show an estimated
variance because of the absence of independence distances assumption. Here, we show
some results by Cutler related to Grassberger-Procaccia estimator and in particular we
focus on the variance computation, considering the dependence of the distances. Let
x1, . . . ,xn be a sequence of random vectors in Rm.The sample correlation integral Cn(ε)

takes the form:

Cn(ε) =
(

n

2

)−1 ∑

i

∑

i>j

h(xi,xj)
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where the function h(u, v) = 1|u−v|≤ε is symmetric in its arguments (h is called the kernel
function4). In the case that the original variables X1, . . . , XN are i.i.d the consistency
and the asymptotic normality of U-statistics is well known and can be found. These
results have been extended by Yoshihara to stationary absolutely regular processes. In
Grassberger-Procaccia estimator h function is the indicator function.

Theorem 2. Suppose X1, . . . , XN is a stationary, absolutely regular sequence in Rm

with the marginal distribution F . Let 0 < ε1 < ε2 < . . . < εk be fixed and let Cn(ε) and

CF (ε) denote the vectors of sample correlation integrals and the real correlation integral

for each ε-value. Then

Cn(ε) → CF (ε) w.p.1

and

logCn(ε) → logCF (ε) w.p.1 (2.8)

there exist nonnegative definite matrices U and V such that

√
n(Cn(ε)−CF (ε)) d→ Nk(0,U) as n →∞

and

log
√

n(Cn(ε)− logCF (ε)) d→ Nk(0,V) as n →∞ (2.9)

The notation Nk(0,U) denotes a k-variate normal distributions with mean 0 and
covariance matrix U, and d→ indicates convergence in distribution. The components
of the matrix U can also be determined from the U-statistics theory and the matrix

4See U-Statistics Theory section
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V = [vij ] is related to the matrix U = [uij ] by

vij =
uij

CF (εi)CF (εj)

If x1, · · · ,xn are i.i.d. then

[uij ] = 4τ(εi, εj) = Cov(F(B(x, εi))F(B(x, εj)))

=
∫
F(B(x, εi))F(B(x, εj))F(dx)− CF (εi)CF (εj) (2.10)

where F(B(x, εi)) is the mass of a random ball of radius εi. In the special case εi =

εj , τ(εi, εj) reduces to the variance of the mass in a random ball of radius εi. If
x1, . . . ,xn are correlated but sufficiently mixing [uij ], in particular the sequence has to
satisfy the hypothesis of (Theorem 2) then variance computation must be modified
considering covariance between observations:

[uij ] = 4τ(εi, εj) + 8
∞∑

m=1

k(m, εi, εj) (2.11)

where k(m, εi, εj) = Cov(F(B(x1, εi))F(x1+m, εj)).

These quantities are estimated by:

p(t, ε) =
1

n− 1

n∑

i6=t

1||xi−xt||≤ε fixed xt (2.12)

this represents the proportion of points near xt with a distance equal or less than ε, so
τ̂ and k̂ become:

τ̂(εi, εj) =
1
n

n∑

t=1

p(t, εi)p(t, εj)− Cn(εi)Cn(εj)

k̂(m, εi, εj) =
1

n−m

n−m∑

i=1

p(t, εi)p(t + m, εj)− Cn(εi)Cn(εj)
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where Cn(εi) is the sample correlation integral computed with the indicator function
and in this way it is possible to estimate τ̂ and k̂ using p(t, εi) computed for different
εi.

The correlation dimension estimated for Cutler is the same shown by Grassberger-
Procaccia. Least squares method is used. If we consider xi = log εi and yi = log Cn(εi)

then the slope of ordinary least squares line through data pairs (xi, yi), i = 1, · · · , k is
given by

b̂ =
∑k

i=1(xi − x)yi∑k
i=1(xi − x)2

(2.13)

Here the model is considered without intercept so E(y) = 0 this estimation is possible
if the "exact power law" holds so that the log-relation is linear. Now the variance of b

can be compute. Since yi = yi(n) → log CF (εi) as n →∞, it easy to see that b̂ = b̂(n)

converges to α(ε) where α(ε) is the slope of the ordinary least squares line through the
parameter pairs xi = log εi, yi = log Cn(εi), i = 1, . . . , k. In general α(ε) 6= αF due to
the lacunar behaviour of CF (ε).

Using theorem 2 it is possible to obtain the correct standard error of b̂ as an estimator
of α5:

V (b̂) = V

(∑k
i=1(xi − x)yi∑k
i=1(xi − x)2

)
=

1(∑k
i=1(xi − x)2

)2 V
( k∑

i=1

(xi − x)yi

)

=
1(∑k

i=1(xi − x)2
)

k∑

i=1

V
(
(xi − x)yi

)

=
1(∑k

i=1(xi − x)2
)2

∑
(xi − x)(xj − x)V (yi)

=
1(∑k

i=1(xi − x)2
)2

∑
(xi − x)(xj − x)

vij

n
(2.14)

An asymptotic 95% confidence interval for α is then given by:

[b̂− 2
√

V̂ (b̂); b̂ + 2
√

V̂ (b̂)] (2.15)

5In the identification, we delete the m embedding dimension because values should not change for
different m, so we can adopt α instead of αm.
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We can remember that the variance estimator by OLS is:

V (b̂) =
σ2

∑
(xi − x)2

(2.16)

if σ2 is unknown an unbiased estimate is given by the sum of errors divided the degrees
of freedom:

σ̂2 =
∑

(yi − y)2 − b̂2
∑

(xi − x)2

n− 2
(2.17)

It is clear the estimators for the variance are different because (2.16) consider the
observation independent but this is false on the other side the estimator (2.14) is based
on dependence of observations.

Knowledge of the form of the asymptotic covariance matrix V make generalized
least squares an option. Let X be the k×2 matrix whose first column consists of all 1’s
and whose second column is the vector x where xT = (x1, . . . , xk) then the generalized
least squares estimate b̂∗ of the slope is given by the second entry in the 2 column
vectors:

b̂∗ = (XT V̂−1X)−1XT V̂−1y (2.18)

where yT = (y1, . . . , yk). It is not clear however, that generalized least squares will be of
benefit here. While b̂∗ will have reduced variability compared to b̂, it will also likely have
increased bias in the estimate of the asymptotic quantity αF . This is because the matrix
V will weight in favor of those observations yi at larger εi even though it is the smaller ε

values of CF (ε) that more accurately produce αF . In a paper Keller and Kunzle [1992]
consider the problem in the manner we have just done here. They do however suggest
a preliminary chi-square test of the strict linear relationship log CF (ε) = φ + αF log(ε)

in an ε-neighborhood of the origin. If it can be concluded that the parameter pairs
(log ε, log CF (ε)) are likely to lie on a straight line i.e. that lacunarity is absent or
negligible, then the generalized least squares becomes a good choice for estimating αF
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2.3 Role of noise

In general the observed signal xn is obtained from a true trajectory yn and noise rn.
Observed time series are corrupted by noise and for this reason one of the issue in time
series analysis is to reduce noise rn to know the true signal xn. Any noise reduction
method must assume that the time series to be cleaned can be unambiguously separated
into noise and signal on the basis of some objective criterion.
Conventional methods do not work well with chaotic time series. One has somehow
to use the fact that deterministically chaotic (and dissipative) motion takes place on
attractors which are smooth sub-manifolds of the total available phase space. This
implies that state vectors constructed from delay variables are constrained to fall onto
geometrical objects which are locally linear.

When adding noise to an otherwise deterministic system, we have to distinguish
between dynamic and measurement noise. Assume that the noise-free dynamics would
be:

yn+1 = f(yn) (2.19)

We define measurement noise if there exists a trajectory satisfying this exact dynamics,
but the measured trajectory is corrupted by additive noise,

xn = yn + rn (2.20)

Dynamic noise, in contrast, is added already during the evolution,

xn+1 = f(xn) + rn (2.21)

so that no near-by trajectory satisfying the exact dynamics needs to exist a priori. The
shadowing problem deals just with the question whether such a trajectory does exist
and how to find it. It is clear the shadowing problem is harder than the problem of
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removing measurement noise.

The characterization of nonlinear time series in the presence of measurement noise
is a problem of great current interest. For the ideal case of noise-free deterministic time
series, the reconstruction theorem has led to a number of powerful characterization
methods ( here we will use the method of delay time). Measurement noise, however,
is known to put severe limitations on the estimation of dynamical invariants from time
series with these methods.

The most famous method used to characterized noise-free time series is the Grassberger-
Procaccia estimator studied in the last paragraph.

Basically two approaches can be distinguished concerning the analysis of time series
with measurement noise. The first is to separate the noise and the underlying time series
with a noise reduction method see [Kostelich and Schriber, 1993] and [Grassberger et al.,
1993]. The second is based on characterizing the modified delay vector distribution. By
calculating the effect of noise on the correlation integral [Shouten et al., 1994], obtained
a method for estimating the correlation dimension in the case of bounded independent,
identically distributed (IID) noise. Schriber [1993] has proposed a method for estimating
the noise level of a deterministic time series contaminated with unbounded IID Gaussian
measurement noise. The effect of this noise on the correlation integral has also been
investigated by see [Smith, 1992], who used an approximation of the correlation integral
to estimate the correlation dimension for small noise levels. The analytic difficulties
which prevent the estimation of invariants at higher noise levels appear to be related to
the contrast between the smooth Gaussian noise distribution on the one hand and the
abrupt nature of the kernel function in the correlation integral on the other.

2.4 Gaussian Correlation Integral

In the 1996 Diks proposed an estimator for the correlation integrals. The basic idea
of this new estimator was the same to the C(ε) but in that view there is a difference
about the weights to give at all inter-point distances pairs. In particular the weight
system follows the gaussian distribution. In this way pairs (xi, xj) which have a small
distances weight more than those with large distances. So the contrast between the
Gaussian noise and the kernel function should be go over. In Figure 2.4(a) it is possible
to see the main differences between two weight systems. Using the indicator function
a precise and defined cut-off is visible so distances less than ε are considered. The
Gaussian system considers all pairs distances given several weight in this sense it is
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impossible to find a precise cut-off, as figure shows.
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Figure 2.4. Different systems weight. (a) Indicator function and (b) normalized Gaussian
function

The correlation integral defined by Grassberger-Procaccia can be generalized to

Tm(ε) =
∫ ∫

w(|x− y|/ε)fm(x)fm(y)dxdy (2.22)

where w(•) is a kernel function. The parameter ε will be referred to as the band-
width. Using the Gaussian kernel function

w(x) = e−x2/4 (2.23)

a version of the correlation integral,

Tm(ε) =
∫ ∫

exp

{
−|x− y|2

4ε2

}
fm(x)fm(y)dxdy (2.24)

is obtained which will be referred to as the Gaussian kernel correlation integral; in
particular when we use Tm(ε) we consider the Gaussian correlation integral otherwise
in case of Grassberger-Procaccia correlation integral we adopt C(ε).

Now, we are interested to show the model of Tm(ε) in the noise-free case. At first,
we take m fixed and consider a deterministic time series with correlation dimension α,
then the scaling law

T (ε) ∼ εα ε → 0 for m fixed (2.25)

More generally, any kernel w(x) which decreases monotonically in x for x ≥ 0 and for
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which limε→0 ε−pw(x/ε) = 0 pointwise for x > 0 and for any p ≥ 0 implies the scaling
law (2.25). It is possible to show the m-dependence of (2.25) by expressing Tm(ε) as:

Tm(ε) =
∫

w(r/ε)ρm(r)dr (2.26)

where ρm(r) = dCm(r)
dr is the distribution of the inter-point distances r. It is shown

that the correlation integral calculated with the Euclidean norm behaves as Cm(ε) ∼
e−Kτm(r/

√
m)α for r → 0, m → ∞ which implies ρm(r) ∼ e−Kτmm−α/2 for fixed r.

The factor e−Kτmm−α/2 describes the m dependence. We therefore find

Tm(ε) ∼ e−Kτm(r/
√

m)αεα for r → 0, m →∞ (2.27)

for Gaussian correlation integral in the noise-free case with the Euclidean norm. We
could remove the factor m−α/2 in (2.27) by defining and m-dependent bandwidth. There
is, however, a practical reason for not using this freedom and proceeding with (2.27).
Due to the finiteness of the attractor there usually is an upper bandwidth up to which
the behavior (2.27) is observed, and it is approximately independent of m.

A Gaussian kernel member is picked from this class and it is possible to derive ana-
lytically its behaviour in presence of Gaussian measurement noise of this form N(0, σ2).
The new estimator becomes:

Tm(ε) =
∫ ∫

exp
{
− |x− y|2

(4ε2 + 4σ2)

}
fm(x)fm(y)dxdy (2.28)

here σ represents the measurement (additive) noise and f is the underlying noise-free
distribution. The behaviour of the double integral is found from the definition given in
(2.24) together with the noise-free scaling law (2.5), leading to

Tm(ε) ∼= φ

(
ε2

ε2 + σ2

)m/2

e−Kτmm−α/2
√

ε2 + σ2
α

(2.29)

where K is the correlation entropy define as K = τ−1 limε→0 limm→∞
− log Cm(ε)

m and φ

is a normalization constant.

In practice, the standard deviation σ of the noise level is fixed at a nonzero value.
We are not able to let

√
ε2 + σ2 go to zero. Nevertheless, we expect relation (2.29) to

hold good in a range of small values in ε if the noise level σ is not too large. For small



2.5. TAKENS ESTIMATOR 37

values of ε and m fixed the Gaussian correlation integral behaves as Tm(ε) ∼ εm which
is a manifestation of the m-dimensionality of the set of noisy delay vectors. Taking the
limit σ → 0 on the other hand, gives back the scaling relation of noise-free case:

Tm(ε) ∼ e−Kmm−α/2εα for ε → 0, m →∞ (2.30)

The Gaussian kernel correlation integrals Tm(ε) can be consistently estimated by re-
placing the integrals over the delay vectors distributions in (2.28) with an average over
delay vectors are assumed to be independently distributed according to fm(ε). The
estimate Tm(ε) becomes

T̂m(ε) =
1

n(n− 1)

∑

i

∑

i6=j

exp
[
−|xi − xj|2

4ε2

]
(2.31)

=
1

n(n− 1)

∑

i

∑

i6=j

ψi,j(ε) (2.32)

For different values of the noise level, a Marquardt non-linear fit procedure for the
parameters φ, α, D and σ is used. For each m, the values T̂m(ε) and T̂m+1(ε) were fitted
simultaneously to the model function (2.29). The standard deviations of the estimates
T̂m(ε) are taken as the weights in the fit procedure. Assuming independence of the
distances, the variances V(T̂m(ε)) is estimated as:

V(T̂m(ε)) =
1

n(n− 1)
[ψ2

i,j(ε)− ψi,j(ε)2] (2.33)

where the bars denote average over the pairs (i, j).
The main assumption is the independence of distances but this is not reasonable assump-
tion because the pair distances are dependent because (i, j) and (i, k) are correlated, so
it will be needed to use a different variance formula.

2.5 Takens estimator

We now examine a maximum likelihood approach to obtain dimension estimates. This
approach is based on the exact power law model 2.5. This model features two unknown
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parameters φ and α and we are interested in α.

Let D1, D2, . . . , Dn be i.i.d. nonnegative real-valued random variables with distri-
bution function F and suppose that F follows an exact power law for small ε,

F(ε) = φεα for 0 < ε ≤ ε0 (2.34)

The conditional distribution of Dj , given that Dj ≤ ε0 is then

F(d|ε) =
(

d

ε0

)α

for 0 < d ≤ ε0 (2.35)

which has probability density function

f(ε) = αε−α
0 dα−1 for 0 < d ≤ ε0 (2.36)

Note that the parameter φ has disappeared from the conditional model, leaving only
α, the dimension quantity of interest. Therefore, if we select from the original sample
only those Dj ’s satisfying Dj ≤ ε0 (for convenience we will label these as D1, . . . , Dt

and assume that t ≥ 1) then the likelihood of this selected sub-sample is given by

L(d1, . . . , dt; α) = αtε−tα
0 (d1, . . . , dt)α−1 (2.37)

Maximizing L(d1, . . . , dt; α) with respect to α is equivalent to solving the likelihood
equation

t

α
− tα log ε0 + (α− 1)

t∑

i=1

log di (2.38)

which yields the maximum likelihood estimate (MLE):

α̂ =
t∑t

i=1 log(ε0/di)
(2.39)

This estimator is often called Takens estimator because he was first noted that
the method of maximum likelihood could be applied to the estimation of correlation
dimension. If some suitable transformation can be applied to the original observations
X1, . . . , Xn to produce random variables D1, . . . , Dt which are i.i.d. with distribution
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H(ε), then we may consider using maximum likelihood, with H(ε) in the role of F (ε).
Of course an exact power law generally does not hold for fractal data, and the effect of
lacunarity on the quality and consistency of maximum likelihood estimates is a point
of considerable interest. In 1985 Takens initially considered maximum likelihood in the
context of correlation dimension under two working assumptions. The first working
assumption is that the scaling relation is CF (ε) = F ×F(|x− y| ≤ ε) = φ(ε)εα again a
distribution function in ε. In this case, given i.i.d. observations X1, . . . , Xn from F , we
compute t =

(
n
2

)
pairwise distances Dij = |Xi −Xj |. The second working assumptions

is to consider the independence of observations: of course the Dij ’s are not i.i.d., due
to the statistical dependence between pairs (Xi, Xj) and (Xi, Xk) having a component
Xi in common. However for a small radius of ε0 , the problem of overlapping pairs is
relatively insignificant, so in many cases it may be reasonable to treat the Dij as i.i.d.
Lacunarity is also a factor in the behaviour of the correlation integral, although the fact
that CF (ε) is a global quantity averaged over all points in the phase space mitigates
this effect to some degree.

In our case, the α estimator for the correlation dimension is

α̂T = −

 2

n(n− 1)

∑

i<j

log
|xi − xj|

ε0



−1

(2.40)

and it is called Takens estimator for correlation dimension. The central part is composed
by a kernel function made in that form:

h(xi, xj) =
∑

i 6=j

log
|xi − xj |

ε0
(2.41)

The variance of the estimate in the limit normal law can be expressed through the
Fisher information:

IF (αT ) = E

(
∂ ln L

∂α

)2

(2.42)

where L is the likelihood function defined as (2.37). The quantity represents the infor-
mation contents about the parameter of interested α when we look at the sample of the
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distances d1, d2, . . . , dk. The asymptotic variance of α̂ is then:

Var∞(α̂T ) =
1

IF (αT )
=

α2
T

k
(2.43)

Note that the value of ε0 should be taken small enough in order to validity of (2.40).
The expression of the (2.43) will change in presence of dependent distances {di}.

***

It is possible to look at the Takens estimator as a tail estimator, in fact if a power
law hold and if the sequence of random variables have the same marginal distribution
function F and if the F = 1 − F is regularly varying at ∞, ,namely exists an α > 0,
such that

F(tx)/F(x) → t−α as x →∞ for all t > 0 (2.44)

F(x) = x−αφ(x) x > 0 for some slowly varying function φ.

The class of the distributions having this behavior, called tail behavior, is infinitely large,
and it is known to coincide with the maximum domain of attraction of the extreme value
distribution exp(−x−α), x > 0.

What we want to investigate is the estimate of −α, called regular variation index,
when observing X1, . . . , Xn. It is intuitively clear that if little or no additional structural
information on F is available, which we assume to be the case, any inference on α should
be made with the tail portion of the empirical distribution of the sample. For 1 ≤ j ≤ n,
write X(j) = X(n:j) for the j -th largest value of X1, . . . , Xn, for x > 0 let be x∗ = log x.
Hill Hill [1975] was first to propose an estimator for −α:

Hn = m−1
m∑

j=1

X∗
(j) −X∗

(m+1) (2.45)

Asymptotic proprieties of Hn, including consistency and asymptotic normality, were
studied by letting m vary with n such that

m →∞ and m/n → 0 as n →∞.

This estimator does not work well in presence of depending data, but it is possible to
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introduce a little change to obtain an estimator which converges to the Hill’s estimator
[Hsing, 1991].

The tail index is well linked with the correlation dimension because of the presence
of region where the scaling law (2.5) holds. Here, it is possible to define the distances set
such that |xi−xj | = δ(ij) and ordering δ(n:1), δ(n:2), . . . , δ(n:n) and let be δ∗(n:j) = log δ(n:j).
The Hill’s estimator (2.45) is:

Hn =
1
m

m∑

j=1

δ∗(n:j) − δ∗(n:m+1) (2.46)

Because δ∗(n:m+1) is fixed so we can consider it as log ε so Hn:

Hn = 1
m

∑m
j=1 log δ(n:j) − log ε

= 2
n(n−1)

∑
i,j log |xi−xj |

ε (2.47)

The estimator (2.47) looks like to the Takens estimator for the correlation dimension
(2.40).

2.6 The Beta-Binomial Estimator

If the correlation integral satisfies an exact power law in some neighborhood (0, ε0) of
the origin, then assuming the independence of distances, Takens maximum likelihood
method is the optimal estimation procedure and leads to accurate asymptotic confidence
intervals. However, if an exact power law fails to hold, the MLE can perform poorly and
may produce invalid confidence intervals. The presence of lacunarity in the correlation
integral may make these intervals inapplicable to αF . It would be desirable to have an
estimation method that could detect, and compensate for, the presence of lacunarity in
the underlying model, yet perform nearly as well as Takens’ procedure when in fact an
exact power law does not.

Smith has suggested the use of beta-binomial mixture model to achieve this goal.
Such mixtures are used frequently in statistics to compensate for possible extra variation
in a model. We begin by setting the notation and showing how the problem can be cast
in the form of binomial model.
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We will write

CF (ε) = φ(ε)εαF (2.48)

where, in general, φ(ε) is an oscillating function. We select a sequence 0 < εk < . . . <

ε1 < ε0 of ε values according to the geometric ration εj = ε0γ
j for j = 1, . . . , k, where

0 < γ < 1. At each εj we count the observed number Nj of distinct pairs (Xi, Xj)

satisfying |Xi−Xl| ≤ εj . We then note that Nj+1 given Nj has a binomial distribution
with parameters Nj and pj+1 = CF (εj+1)

CF (εj)
i.e.

P (Nj+1 = n|Nj) =
(

Nj

n

)
pn

j+1(1− pj+1)Nj−n

for n = 0, 1, . . . , Nj . Applying the scaling law (2.48) and the identity εj = ε0γ
j , we see

that in fact:

pj =
φ(εj)

φ(epsj−1)
γαF (2.49)

If an exact power law holds aver (0, ε0) that means that φ(ε) may be replaced by a
constant φ in (2.48) then we obtain a binomial model with pj = p = γαF for all j. In
this case, the common value p can be estimated by maximum likelihood. The likelihood
function

L(N1, N2, . . . , Nk|N0; p) = P (Nk|Nk−1)P (Nk−1|Nk−2) . . . P (N1|N0) (2.50)

that is proportional to

p(Nk+Nk−1+...N1)(1− p)(N0−Nk) = p
∑k

j=1 Nj (1− p)(N0−Nk) (2.51)

The log-likelihood becomes

log L(N1, N2, . . . , Nk|N0; p) ∝
k∑

j=1

Nj log p + (N0 −Nk) log(1− p) (2.52)

Maximizing (2.52) with respect to p, the MLE estimate p̂ =
∑k

j=1 Nj∑k−1
j=0 Nj

. From the identity
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p = γαF we then obtain the estimate α̂ = log p̂
log γ . While this estimate is not quite

as optimal as the Takens MLE, Smith points out that α̂ performs nearly as well as
Takens estimator when k (the number of ε values) is large and γ is close to 1. This can
be understood by observing that Takens estimator uses detail information from every
single observation; that above discrete binomial method does not, but when k is large
enough and γ is close to 1, the resulting ε-mesh is so fine that we essentially recover the
individual observation.

In the general lacunar case, however, the pj ’s are distinct quantities, and the differ-
ences among them will introduce added variability into the data. In the beta-binomial
model, the pj ’s are treated as i.i.d. beta random variables with mean p. The probability
density function of a beta variable has two parameters (β > 0 and δ > 0) and is given
by

f(pj ; β, δ) =
Γ(β + δ)
Γ(β)Γ(δ)

pβ−1
j (1− pj)δ−1 for 0 < pj < 1 (2.53)

Now the conditional likelihood of N1, . . . , Nk given N0 and p1, . . . , pk is proportional to

k∏

j=1

p
Nj

j (1− pj)(Nj−1−Nj) (2.54)

The unconditional likelihood is then obtained by integrating out p1, . . . , pk from (2.54),
leaving only the dependence on the underlying parameters β and δ i.e.

L(N1, N2, . . . , Nk|N0; β, δ) =

1∫

0

. . .

1∫

0

k∏

j=1

p
Nj

j (1− pj)(Nj−1−Nj)

×
k∏

j=1

f(pj ; β, δ)dp1 . . . dpk

(2.55)

A prime reason for choosing the beta distribution is that the integration in (2.55)
can be accomplished in closed form. The resulting likelihood is a function of β and δ

and can be maximized numerically to obtain the estimated β̂ and δ̂. The mean of the
beta distribution is given by β/(β + δ), so the estimate of the average value p = E(pj)

becomes β̂/(β̂ + δ̂). We then again take α̂ = log p̂
log γ . From the beta model, the variance of

pj is given by p(1− p)τ where τ = (β + δ + 1)−1 represents the additional variability in
the model due to the variations among the pj ’s. On the basis of preliminary results, the
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beta-binomial estimator appears to perform well in most situation. In the lacunar case
its bias remains fairly small, and wider confidence intervals are produced to compensate
for the added variability. When an exact power law does hold, τ is generally estimated
close to 0, and the results approximate those of the binomial model. However the
beta-binomial estimator does not work well in the presence of noise.

For other estimator see Theiler and Lookman [1993] for the chord estimator and the
Ellner’s estimator.



Chapter 3

An open question: choice of the

scaling region

One of the most important open question is the choice of scaling region over which the
estimate of the correlation dimension is done. This represents an unsolved and open
question, because "of course the procedure is not entirely objective, and estimation of
the correlation dimension α is often as much an art as it is a science" pag. 21 in Diks
[1999]

Only if the scaling law holds then it is possible to find an unbiased estimate for the
correlation dimension.

When the correlation dimension is estimated using the (2.4) on a finite set, the
choice of ε plays an important role. Typical log-log plots of Ĉ(ε) against ε exhibit the
following pattern: at large values of ε the slope is nearly horizontal; at medium values
of ε there is a range of ε for which the slope is constant; and for small values of ε the
graph gets very ragged with a sharp break downwards. The slope of the graph in the
middle range of ε’s is used as an estimate of α. When we use the formula (2.4) we
introduce a bias in the estimate of the dimension of the data set.

There are a lot of studies and proposals to find the "true" scaling region over that it
is possible to estimate the correlation dimension α. In particular here we will consider
just two or three of them. The first method takes in consideration proprieties of U-
Statistics, the second starts from the BDS test used in the independence hypothesis
testing and the third is based on the chi-square test of the scaling region search. Aim
of the studies is the same: find the range of the values for ε because a lot of empirical

45
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analysis were made with important outcomes. In particular in Kocenda and Briatka
[2005] we can find a complete reference about the ε values choice.

3.1 Some considerations

It is important to remember some guidelines as we can find in Diks [2004]. It is known
from chaotic time series analysis that estimates of the correlation dimension can vary
with the embedding dimension and the selected range of ε values. Examining the
estimated correlation dimension as a function of m is often informative. Estimates which
do not saturate with m indicate that either the underlying assumptions are wrong, the
scaling region used is not appropriate or, the number of data are insufficient.

In the choice of the scaling region there are two practical limitations. First of all, the
theoretical or model correlation integral is derived for small ε values, which indicates
that one might expect an upper length scale above which this model performs poorly.
In fact, for sufficiently large ε the model predicts correlation integrals which are larger
than one, which is impossible. On the other hand, statistical fluctuations dominate the
estimated when the correlation integral is small. This puts a practical lower limit on
the values of the estimated correlation integrals that provide useful information. For
the traditional hard kernel correlation integral do not pose a problem. There a natural
lower limit is set on correlation integral, equal to one over the number of distances
among all points, the smallest possible nonzero value of the correlation integral. For
the Gaussian kernel such a natural lower bound does not exist. However, it is clear that
small estimates of the correlation integral might suffer from large relative statistical
errors.

Dechert [2003] proposed a systematic way of choosing ε which is based on the sta-
tistical proprieties of U-Statistics. It is a method for choosing a sequence of {εn} such
that εn → 0 and for which some particular statistical results still hold.

The consequence of theorem 8 in [Dechert, 2003] is that if εn converges slowly enough
to 0 so that a quantity1 diverges , then limn→∞ |Fn(·; ε) − Φ|∞ = 0 i.e. the empirical
distribution function Fn converges to the Normal distribution function Φ.

1Let be Cn(ε1, ε2) = 2
n(n−1)

∑ ∑
1≤<i6=<j≤n 1{|xi−xj |≤ε1}1{|xi−xj |≤ε2}, then a new quantity is define

Sn = Cn(ε1, ε2)− Cn(ε1)Cn(ε2)

and for n → 0 converges to 0.
Let be K(ε) = E[(F (X1 +ε)−F (X1−ε))2], if K(εi)−C(εi)

2 > 0 for o = 1, 2 and if random variables
{Xt} are independent then,
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In particular if data {xn} are corrupted by noise {rn} as follows:

yn+1 = f(yn)

xn = yn + ζrn (3.1)

where {rn} ∼ IID(0, 1) then for a large ζ one would expect that the sequence {xn}
would behave like a random sequence and that Sn(ε, k1+c+...+cm−1

εcm
) would converge to

zero. For small ζ one would expect that the sequence would behave like deterministic
data and that Sn(ε, k1+c+...+cm−1

εcm
) would converge to a positive constant, where

c and k are two constant.
The second approach is based on the use of BDS test which uses a range for hypoth-

esis testing. This test is a nonparametric method of testing for nonlinear patterns in
time series. It is based on the Correlation Integral and it is unique in ability to detect
nonlinearities independent of linear dependencies in the data. The null hypothesis is
that data in a time series are independently and identically distributed (i.i.d.) and
an alternative is not specified. In order to conduct the BDS test, two free variables -
m embedding dimension and ε values of the scaling region - must be chosen ex ante.
We know that chaotic system of low dimensionality can generate seemingly random
numbers that may give an impression of white noise, thereby hiding their true nature.
Under presumed randomness, a nonlinear pattern can hide without detected. Detection
of nonlinear hidden pattern in such time series provides important information about
their behaviour and improves forecasting ability over short time periods.

Under the null hypothesis data are i.i.d. the correlation dimension given by the slope
estimate on log-log line, computed at each m value, should be equal to the respective
embedding dimension m i.e. αm = m.

In the choice of the range we have to consider this is closely related to the composi-
tion of the analyze data. Therefore it is possible that one range is more appropriate for
one kind of data and a different range for another one. In view of this situation some
authors found that the power and the size of the BDS test is maximized when ε is chosen
between 0.5 and 1.5 of the standard deviation of the sample using proportional incre-
ments. In Kocenda and Briatka [2005] they propose to use the interval (0.6σ − 1.90σ)

as optimal one, because over other intervals we can obtain biased estimator, where σ

√
n

Sn(ε1, ε2)

σ(ε1, ε2)

D→ N(0, 1)

where σ(ε1, ε2) is a function on K(ε) andC(ε). The quantity found is n[K(εn)−C(εn)2]3

C(εn)2
.
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represents the mean square error of the system.

The last method is based on the maximum likelihood principle used by Takens; t
is possible to derive the explicit expressions for the maximum likelihood estimate of α

and its asymptotic variance.

In the real setting we have to give up the pure power law, so a procedure to check
the presence of the scaling law is needed. One solution to do it is the use of χ2-test
based on a quantitative measure of validity of the power law distribution hypothesis.

Suppose for a given ε0 we have R non-overlapping independent pairs of points, the
distance within each pair being less than ε0. We can divide the interval of presumed
scaling [0, ε0] into k subintervals [a0, a1), [a1, a2), . . . , [ak−1, ak), where a0 = 0, ak = ε0.
The probability pi that a distance between two randomly chosen points lies within the
given interval is in according to (2.35) such that

p1 =
(

a1

ε0

)α

, p2 =
(

a2

ε0

)α

−
(

a1

ε0

)α

, . . . pt = 1−
(

at−1

ε0

)α

(3.2)

In a general interval [aj−1, aj) let mj be the number of the distances lying in, so that∑k
j=1 = R. Then the χ2-statistics is

χ2 =
k∑

j=1

(mj −Rpj)2

Rpj
(3.3)

In the limit N →∞ this statistics has the χ2-distribution with k−2 degrees of freedom,
since the number of fitting parameters is one. The number of the sub-intervals should
be not too large, especially for small R. Using the test theory we compare the empirical
value (3.3) with a theoretic one depending on the significance level λ. We accept the
hypothesis of behaviour such that in (2.35) when χ2 ≤ χ2

λ and reject it otherwise.

We can note the estimate of α must precede this test. On the other hand the χ2-
statistics and the probability associated with it can be used as the indicator in the
choice of the upper cutoff of the scaling range ε0.

The choice of ε0 can be made as follows. We can start with some initial value ε1

which is small enough, but at the same time the total number of distances R within the
radius ε1 must be sufficient to calculate the statistics. For this value of the upper cutoff
of the scaling range ε1 we compute α̂(ε1) and χ2(ε1). We can increase the value of the
cutoff and we can verify each time the power law distribution hypothesis with the help
of χ2-test. Finally, we choose as ε0 the maximal cutoff εi for which the hypothesis of
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the distribution (2.35) is still accepted.
There are some practical problems related to the χ2-test the most important are the

estimate’s determination of α which the unknown quantity to estimate, the absence of
a criterion to choose the initial value of ε. It is important to remember some features
of ε in particular the set of εi must be large enough to have the possibility to compute
distances, at the end the chosen value ε0 must be the smallest value such that power
law hold.



50 CHAPTER 3. AN OPEN QUESTION...



Chapter 4

U-Statistics Theory

The U-Statistics theory have been introduced independently by Halmos (1946), Ho-
effding (1948) and von-Mises introduced von-Mises-Statistics (1947). The reason to
introduce these new Statistics in each of these papers was rather different.

In general U-Statistics theory is quite-well known, so here we will describe in short
some basic elements. First of all we will start from definition, then examples are pro-
posed and the last step is about basic theorems. This chapter represents a tool chapter
because we will start from these considerations and results to expand our work in the
following sections.

4.1 Definition and Examples

It is possible to have a definition for U-Statistics considering (Xn)n∈N as a stationary
sequence of random vectors with marginal distribution function F , taking in Rm or a
subset of it. Hoeffding initially introduced U-Statistics as estimator for functionals of
the form:

θ(F ) =
∫

Rm

h(x1, . . . , xm)dF (x1) . . . dF (xm), (4.1)

where the kernel function h : Rm −→ R is symmetric in its arguments. Hoeffding
showed that, in case X1, X2. . . . are independent and the distribution F is completely
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unknown, the minimum variance unbiased estimator of θ(F ) is given by

Un(h) =
1(
n
m

)
∑

1≤i1<...<im≤n

h(Xi1 . . . Xim). (4.2)

Un(h) is called the U-Statistics of degree m corresponding to the kernel h.

All proprieties hold a generic m, in this work we show the case for m = 2 because this
is the degree used. Here we compare two similar statistics U and von-Mises Statistics.

Definition 2 (U and von-Mises Statistics when m = 2). Let h : R2 −→ R be a

measurable symmetric function, i.e. h(x, y) = h(y, x) for all x, y ∈ R2. We then define

the U-Statistic Un in case of m = 2 by

Un(h) =
1(
n
2

)
∑

1≤i<j≤n

h(Xi, Xj) (4.3)

and the von-Mises-Statistic Vn(h) by

Vn(h) =
1
n2

∑

1≤i<j≤n

h(Xi, Xj). (4.4)

h is the kernel function of both statistics.

We can easily extend the definition of U-Statistics and von-Mises-Statistics to kernels
such that h : Rm −→ R in which case Un(h) and Vn(h) are defined as averages of
h(Xi1, · · · , Xim).

By symmetry of kernel function h we can rewrite the U-Statistics as

Un(h) =
1

n(n− 1)

∑

1≤i6=j≤n

h(Xi, Xj) (4.5)

The essential difference between U-Statistics and von-Mises thus lies in the fact the
diagonal terms h(Xi, Xj) are included in the von Mises-Statistics and excluded in the
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U-Statistics. In fact the sum of diagonal terms is defined as follows

n2Vn(h)− n(n− 1)Un(h) =
n∑

i=1

h(Xi, Xi) (4.6)

and since the asymptotic behavior of the partial sum
∑n

i=1 h(Xi, Xi) is well understood,
one can fairly easily obtain results for U-Statistics from corresponding results for von-
Mises-Statistics and viceversa.
As we said before U-Statistics have been introduced independently by different people.
In particular Halmos was interested in the theory of unbiased estimation, noting that
in the case of i.i.d. observations X1, · · · , Xn

E(Un(h)) = Eh(X1, X2)

Hence Un(h) is unbiased estimator of the functional θ = θ(F) = EFh(X1, X2), where
EF indicates that each random variables {Xi} have the same marginal distribution
F. Hoeffding stressed the fact that U-Statistics are a generalized mean, namely of the
terms h(Xi, Xj), 1 ≤ i < j ≤ n, and that one could still show asymptotic normality
as in the case of ordinary means. Von Mises-Statistics originated in the theory of dif-
ferentiable statistical functionals, initiated by von-Mises. We will focus on U-Statistics
and many sample statistics can be expressed at least approximately as U-Statistics or
von-Mises-Statistics, thus providing a very practical reason for the study of these classes
of statistics. Below we list some examples from standard textbook examples to some
recent applications in the area of dimension estimation of distribution with a fractal
support.

SAMPLE VARIANCE

The sample variance is defined as

s2
x =

1
n− 1

n∑

i=1

(xi − x)2

where x is the sample mean. Some small calculations show that s2
x is a U-Statistic with
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kernel h(x, y) = 1
2(x− y)2. In fact

Un(h) =
2

n(n− 1)

∑
h(x, y) =

2
n(n− 1)

n

2

n∑

i=1

(xi − x)2 (4.7)

GRASSBERGER-PROCACCIA ESTIMATOR

One of the recent examples of U-Statistics concerns the estimation of fractal dimen-
sions. One such notion is the correlation integral, associated to distributions F on Rm.
In general we do not know the distribution F but we have only a finite sample x1, . . . , xn

of observations from a stationary process. In the chapter 2 we can find the correlation
integral definition in (2.7) and a natural estimator for C(ε) is the sample analogue

Cn(ε) =
1(
n
2

)#{1 ≤ i < j ≤ n : |xi − xj | ≤ ε}

=
1(
n
2

)
∑

1≤i<j≤n

1{|xi−xj |≤ε} = Ĉ(ε)
(4.8)

which is a U-Statistic with kernel h(x, y) = 1{|x−y|≤ε}.

As we said before the Grassberger-Procaccia correlation dimension is based on the
kernel function as indicator function h(x, y; ε) = 1{|x−y|≤ε} while gaussian correlation
integral is based on h(x, y; ε) = e−‖x−y‖2/4ε2 .The difference between kernel functions
consists in the form of kernel it is clear to understand that gaussian kernel is smoother
than hard one (see chapter 2); in this view also the Gaussian Correlation Integral is a
U-Statistics.

TAKENS ESTIMATOR

An alternative estimator to log-log procedure for the correlation dimension is the Takens
estimator. Under the assumption showed in the chapter 2 we obtain

α̂T = −

 2

n(n− 1)

∑

i<j

log
|xi − xj|

ε0



−1

(4.9)
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If we replace the independent copies D1, · · · , Dn by those dependent pair distances
|xi − xj |, 1 ≤ i, j ≤ n, that satisfy ||xi − xj || ≤ ε0, we obtain the Takens estimator
with kernel function as:

log
|xi − xj|

ε0
(4.10)

4.2 Proprieties and theorems

Here we will show proprieties and theorems related to U-Statistics. Strong consistency
of the U-Statistics of general stationary and ergodic sequences is established by the
following theorem of Aaronson et al.

Theorem 3 (Consistency - Aaronson et al. 1). Let (Xn)n∈N be a stationary

ergodic process with a marginal F , and let h : Rm −→ R be measurable bounded by an

F -continuous function. Then

lim
n−→∞Uh(X1, · · · , Xn) = θh(F ) a.s

In the case of absolutely regular sequences, a result similar to Theorem 3 was estab-
lished under milder conditions on the kernel function no continuity condition is required
in this case.

Theorem 4 (Consistency - Aaronson et al. 2). Let (Xn)n∈N be a stationary

absolutely regular process with a marginal F , and let h : Rm −→ R be measurable

bounded function. Then

lim
n−→∞Uh(X1, · · · , Xn) = θh(F ) a.s

One of the main tools in studying U-Statistics is the Hoeffding’s decomposition
also called projection method. It says that every U-Statistic can be written as a finite
weighted sum of degenerate U-Statistics. A U-Statistic of degree 2 can be decomposed
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as

Un(h) = θ(F ) +
2
n

n∑

i=1

[h1(Xi − θ(F ))] + Rn (4.11)

where

h1(x) =
∫

h(x, y)dF (y) (4.12)

for more precise comment see later.

The term Rn called remainder, is actually defined by the relation (4.11) in this case
it can be written as

Rn =
2

n(n− 1)

∑

1≤i<j≤n

[h(Xi, Xj)− h1(Xi)− h1(Xj) + θ(F )] (4.13)

If Un(h) itself is not a degenerate, Rn is small comparing to the leading term
2
n

∑n
i=1[h1(Xi − θ(F )), which dominates the asymptotic behaviour and the variance

of the U-Statistics.

To prove the the central limit theorem (CLT) for U-Statistics we can see two differ-
ent theorems, here we propose the Denker-Keller version1 because they consider some
additional conditions on the functional and the kernel h. This extension is of particular
importance for data from dynamical systems.

Theorem 5 (Denker-Keller). Let h : Rk×k −→ R be a non degenerate kernel. Then

the asymptotic distribution of
√

n
mσn

(Un(h) − θ) is N(0, 1) provided one of the following

conditions in satisfied:

1. (Xn)n≥1 is uniformly mixing in both directions of time, σ2
N −→ ∞ and for some

δ > 0

supE|h(Xt1, · · · , Xtm)|2+δ < ∞

2. (Xn)n≥1 is uniformly mixing in both directions of time with mixing coefficient φ(n)

1In independent way also Yoshihara [1976]. They found the same results using different tools.



4.2. PROPRIETIES AND THEOREMS 57

satisfying
∑

φ(n) < ∞, σ2 6= 0 and

supE|h(Xt1, · · · , Xtm)| < ∞

3. (Xn)n≥1 is absolutely regular with coefficients β(n) satisfying
∑

β(n)δ/2+δ for

some δ > 0, σ2 6= 0 and

supE|h(Xt1, · · · , Xtm)|2+δ < ∞

2

In this particular case we have that n is the number of observation in the time series,
m number of kernel elements equal to m = 2 and so we obtain:

√
n(Un(h)− θ) ∼ N(0, 4σ2)

and √
V ar(Un(h)) =

2σ√
n

The asymptotic variance of a U-Statistics is given by the Hoeffding decomposition

σ2 = Var[h1(X)] + 2
∞∑

k=1

Cov[h1(Xi), h1(Xk+i)] (4.14)

It is needed to define h1(x) that is a particular kernel function which is given by:

h1(x) =
∫

h(x, y)dF (y),

called degenerative U-Statistics. If we consider the hard kernel h(x, y) = 1{|x−y|leqε}
then h1(x) is:

h1(x) =
∫

1{|x−y|≤ε}dxF (y) = Py(|x− y| ≤ ε)

that is the mass of ball of radius ε around X. Given a sample x1, x2, . . . , xn, the sample
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quantity for h1(x) will be:

ĥ1(x) =
1

n− 1

n∑

i=1

1{|x−xi|≤ε}

When we use other kernel we loose clear meaning but the most important role of
h1(x) is to simplify variance computation using Hoeffding decomposition.

So we have that:

h1(x) =
∫

h(x, y)dF (y) =
∫

exp
(−‖x− y‖2

4ε2

)
dF (y)

using the Gaussian kernel we loose the precise meaning. The sample quantity to inves-
tigate is:

4σ̂2 = σ̂2
U = 4Var(ĥ1(x) + 8

M∑

k=1

Cov[ĥ1(xi)ĥ1(xk+i)] < ∞ (4.15)

where M is the lag of covariance function after that the function become flat.



Chapter 5

Results - Theoretic aspects

In this chapter we will show some asymptotic proprieties of Gaussian Correlation In-
tegrals and Takens Dimension. To do it we will use the conditions of Denker-Keller
theorem (th.5). We can use theorem because our quantities are kernel functions. So a
direct consequence of U-Statistics theorems are the proofs of normality distribution of
our quantities. Another characteristic to investigate is the consistency which is straight
to compute. So in this chapter we will start to show the consistency and later normality.
In the part we will show some practical results.

5.1 Gaussian Correlation Integral - Consistency and Normality

In this section we will prove consistency and normality of Gaussian Correlation Integral.

Strong consistency of the U-Statistics of general stationary and ergodic sequences
is established by the theorem of Aaronson et al. showed in the last chapter (th. 3) In
that way to prove the consistency we use the theorem conditions. It is straight to see
that under the conditions of the time series being stationary and ergodic the Gaussian
correlation integral is consistent because the kernel function is everywhere bounded and
continuous. Borovkova et al. [2001]showed the same property for the hard kernel and
for the kernel in the Takens estimator.

An interesting role here is taken by the asymptotic normal behavior of invariants.

If the consistency was investigated using Aaronson theorems as a prompt conse-
quence, this was not possible for normality. Actually the normality is also a very
straightforward application of Denker-Keller theorem (th. 5). We would not formulate
our results as separate theorem. Considering the second condition of the theorem we
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can show the normal distribution of the U-Statistics and in particular of the Gaussian
Correlation Integral Tm(ε).

Corollary 1 (Normality of Gaussian Correlation Integral Tm(ε)). Let h : R2 −→
R be a non-degenerate kernel. Then the asymptotic distribution of

√
n

2σn
(UT

n −θ) is N(0, 1)

if (Xn)n≥1 is absolutely regular σ2 6= 0 and

supE|h(Xt1, · · · , Xtm)|2+δ < ∞

The second condition focus on the asymptotic variance and on the bound of sup
of the kernel function expected value. In fact if (Xn)n≥1 is uniformly mixing in both
directions of time with mixing coefficient φ(n) satisfying

∑
φ(n) < ∞, σ2 6= 0 and

supE|h(Xt1, · · · , Xtm)| < ∞

then the Denker-Keller theorem hold.

PROOF Assuming that the process is uniformly mixing in both direction of time
with mixing coefficient φ(n), we know that

supE(h(xi, xj)) = supE
(
exp −|xi−xj |2

4ε2

)
(5.1)

and by the definition of expected value we obtain

E

(
exp

−|xi − xj |2
4ε2

)
=

∫
exp −|xi−xj |2

4ε2
f(xi)f(xj)dxidxj (5.2)

The function on the right side inner the sum, i.e. exp −|xi−xj |2
4ε2

, has the same form of
exp(−t) where t > 0 and ε constant. So we have that

0 < E

(
exp

−|xi − xj |2
4ε2

)
< 1

and it is finite and of course its sup. 2

Here we want to give the distribution of log Tm(ε) based on the U-Statistics. We
have already known that Tm(ε) is Normal distributed so we have to find new parameters
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for the distribution; to do it it is needed to apply Serfling theorem.

Theorem 6 (Serfling - univariate case). Suppose that Xn is AN(µ, σ2
n), with

σn → 0, where σ2
n means the variance depends on n. Let g be a real-valued function

differentiable at x = µ, with g(µ) 6= 0. Then

g(Xn) is AN(g(µ), [g8(µ)]2σ2
n)

2

From Denker-Keller theorem, we know:

√
n(Tm(ε)− θ) ∼ AN(0, 4σ2) (5.3)

where θ is
θ =

∫ ∫
h(xi, xj)dF (xi)dF (xj)

Tm(ε) ∼ AN(θ, 4σ2/n) (5.4)

considering the g-function is log(x) so applying the theorem the asymptotic distri-
bution of log Tm(ε) became:

log Tm(ε) ∼ AN
(

log(θ),
4σ2

nθ2

)
(5.5)

and θ and σ should be estimate.
In particular θ is estimated by the sample mean and σ is estimated using the ex-

pression of variance via h1(xi) =
∫

exp( |xi−xj |2
4ε2

)dF (xj). We will test in the next section
the role of h1-variance respect to the computation variance using the definition on the
basis of generated data using Hènon map, Lorenz system and independent data.

5.1.1 Application

An example of this distribution is given for the Uniform case. This is one of the most
popular example, in fact a lot of studies show how the Uniform distribution works. We
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generate a set B = 100 of Uniform distributions in the interval (0, 1) of length 1000 and
over each vector of 1000 points we compute the Gaussian Correlation Integral. So we
obtain a vector carried out 100 T (ε) value. In the Figure 5.1., we can see the behavior.
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Figure 5.1. Normal Distribution for (a) C(ε) and (b) T (ε) in Uniform distribution case

5.2 Takens estimator - Normality

As said before, the consistency was proved by Borovkova [1998], so here we investigate
the Normality. Another application of the Denker-Keller theorem is related to the
Takens estimator for the Correlation Dimension.

Again the Takens estimator is an example of U-Statistics1 so we can use the theorem

1We have consider it as an example of U-Statistics in the chapter 3
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to show the asymptotic distribution of UT
n and ˆ̂αT

n , where

UT
n = log

|xi − xj |
ε0

and

α̂T
n = −


 2

n(n− 1)

∑

i<j

log
|xi − xj|

ε0



−1

Corollary 2 (Normality of Takens estimator). Let h : R2 −→ R be a non-

degenerate kernel. Then the asymptotic distribution of
√

n
2σn

(UT
n −θ) is N(0, 1) if (Xn)n≥1

is absolutely regular σ2 6= 0 and

supE|h(Xt1, · · · , Xtm)|2+δ < ∞

PROOF If the process is absolutely regular then it is possible to use the kernel
function h(xi, xj) even if the kernel is not a bounded function. We have to investigate
the condition on the 2 + δ moment (as for T (ε)):

supE

∣∣∣∣log
|xi − xj |

ε0

∣∣∣∣
2+δ

< ∞

Let Xi ∈ A for all i, where A is some bounded subset of Rk. Note that, if the joint
density function of (xi, xj) has a density fij which is bounded by C, then:

E |(log |xi − xj |)|2+δ =
∫ ∫

|(log |xi − xj |)|2+δ fijdxidxj

≤ C

∫

A2

∫
|(log |xi − xj |)|2+δ dxidxj < ∞

It is true because of integration over a bounded set (A is a bounded set). If we
consider that ρij = |xi − xj | has density p(x) we can show that

∫ | log r|2+δp(r)dr is
finite for every p(x) such that p(x) ∼ O(x−δ) as x → 0 because we can divide the
integral in two parts and so we’ll have:
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∫
| log r|2+δ 1

rδ
dr =

ε∫

0

(log r)2+δ 1
rδ

dr +

r0∫

ε

(log r)2+δ 1
rδ

dr (5.6)

In [0, ε] it is known log x ∼ x so the integral is defined and finite. 2

After this theorem we know that:

UT
n ∼ N(θ, 4σ2/n) (5.7)

where σ2 = V ar[h1(X)] + 2
∑∞

k=1 Cov[h1(X1), h1(Xk+1)].
It is important to define

h1(x) =
∫

h(x, y)dF (y) =
∫

log
( |x− y|

r0

)
dF (y)

It is important to remember that the Takens estimator is − 1
UT

so it is necessary to
prove that this random variable is normally distributed. To have the right distribution
of αT

n we have to apply the Serfling theorem.
In our case we have prove that UT

n ∼ AN(θ, 4σ2/n). The transformation function
used to obtain d is g(x) = − 1

x and it is differentiable for every x such that x 6= 0. Now
this theorem can be applied to Takens’ estimator and we’ll obtain:

αT
n ∼ AN

(
− 1

θ
,
4σ2

nθ4

)

5.2.1 Application

Here we propose as an example applications related to the Lorenz system and the Hènon
map. Choosing the upper cut-off it is possible to find an estimate in agreement to the
literature for ε0 = 23.25 for Lorenz and ε0 = 2.1 for Hènon map. The histograms show
the behavior of the Takens estimator. The distributions satisfy the Lilliefors-test and
in Figure 5.2 it is possible to see the behaviors of the distribution.
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Figure 5.2. Histogram of α̂T
n fixed ε0 = 23.25 and m = 8 in the Lorenz system (a) and

histogram of α̂T
n fixed ε0 = 2.1 and m = 2 in the Henon Map (b)
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Chapter 6

Results - Practical aspects

In this section, practical results of our theoretic developments will be shown. In par-
ticular we consider well known systems in literature as Henon map, Lorenz system and
Uniform distribution to prove the theoretic results.

Using U-Statistics method, we are able to compute on one single time series an accu-
rate estimate both for the Correlation Integral Cm(ε) and for the Gaussian Correlation
Integral Tm(ε) and a reliable estimate of the standard deviation for its.

Results using U-Statistics tools will be compared to real data which represent the
benchmark value. The work is organized in the following way:

1. empirical proof of the Normal behavior for the T (ε). Takens normality can be
seen in Figure 5.2;

2. comparison with value related to Gaussian Correlation Integral values and its
variance using analytical method and the real data;

3. comparison between the distributions of the correlation dimension computed using
analytical method and real data.

The analysis starts choosing εi values then computing the Cm(εi) and Tm(εi). In-
variants values will be showed for some particular (in this case only three) εi values
taken in the interval of 5 − 10% of the length of the system. For each εi we create a
number of B replications of Cm(εi) and Tm(εi). Empirical distribution of the Correla-
tion and Gaussian Correlation Integral, fixed m and ε, are obtained. It is possible to
investigate the agreement to the Normal distribution. We can see the behavior plotting
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the histogram and its normal fit then the validity is given by testing the null hypoth-
esis of Normal distribution as Corollary 1 suggests. Our results show that for all ε

values, we accept the hypothesis that Cm(εi) and Tm(εi) are Normal distributed. This
consideration is supported by the Lilliefors test.

Lilliefors test is a single sample Lilliefors hypothesis test of composite normality.
It performs the Lilliefors modification of the Kolmogorov-Smirnov test to determine, if
the null hypothesis of composite normality is a reasonable, assumption regarding the
population distribution of a random sample X (in this case Cm(εi) or Tm(εi)).

The Lilliefors test is a 2-sided test of composite normality with sample mean and
sample variance used as estimates of the population mean and variance, respectively.
The test statistic is based on the ’normalized’ samples

We start the analysis considering free time series, then we add measurement noise
normal distributed with mean equal to 0 and different standard deviation values for each
system considered. The presence of noise should be smaller to avoid abrupt estimates.
In this work we consider well known systems described in the following sections.

6.1 Independent case

In this part we consider the independent situation. It is shown as an example. We have
already investigated the system in the last chapter so here we propose the agreement
with literature. Let continuous Uniform distribution be in [0, 1] interval, we create
independent time series from the distribution of length 1000. For several ε values we
compute the Gaussian Correlation Integral. In this situation we consider as region
scaling following values: ε = (0.1, 0.075, 0.05).

Values given in the table 6.1 are similar to values present in Theiler [1990]. In fact
using the ordinary metric1 the value for ε = 0.1 is equal to C(0.1) ' 0.19 as in our
computation, so we are able to give values using analytical method related to only one
time series.

We can observe normal distribution of the Gaussian Correlation Integral as theory
suggests. In the last chapter, we present an example of the Normal distribution behavior
see Figure 5.1 for a particular single value ε = 0.1 both Gaussian and Correlation
Integral.

1Euclidean metric
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ε CA(ε) sdC
A TA(ε) sdT

A

0.05 0.0982 7.7 · 10−4 0.1660 0.0015
0.075 0.1443 0.0012 0.2421 0.0025
0.1 0.1891 0.0018 0.3135 0.0035

Table 6.1. Values of C and T and its standard deviation using the analytical method
based on U-Statistics for Uniform distribution.

6.2 Henon map

The Henon map is one of the most famous chaotic equation based on a particular system
of equations as follows:

xt+1 = yn+1 − ax2
t

yt+1 = bxt (6.1)

The map depends on two parameters a and b which for values of a = 1.4 and b = 0.3

the map behavior became chaotic. In the next figure we can see the Henon map and
then, using the suitable embedding parameters τ = 1 and m = 2 we can obtain the
embedded map knowing only the first component.
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Figure 6.1. Simple and Embedded Henon Map

Here we can see the agreement to the Corollary 1, so we can show the normal
distribution of the Gaussian and the Correlation Integral using k = 100 true time series
from the Hènon map; in Figure 6.2 we can see the behaviors.

In the table 6.2 we will show how is the agreement degree between the analytical and
real computation in several cases. In particular the analytical result is obtained using
the formula in (2.31); the computation of the T (ε) values and the standard deviation
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Figure 6.2. Henon Map. Normal Distribution for C (a) and T (b) for a fixed m = 2 and for
a fixed ε = 0.1 without noise.

is computed using (4.15). We choose M = 50 value for stopping covariance term; after
that lag the sum of covariance remains more or less constant. The main advantage of
the formula is that we are able to compute straight, and at the same time, the value
of the invariant and its standard deviation. Otherwise, using real data we are able to
compute over 100 time series the 100 values for the invariant but we obtain only one
estimated value of the variance, so we have needed to do this procedure several times
for obtaining the sample of the variance. In this work we indicate with "A" results
obtained by analytical approach and with "R" results by real data.

In Chapter 2 we showed the log-log plot then we had to find the estimate of the
correlation dimension as the slope of the line in the linear zone. It is possible to obtain
the log-log plot both Correlation and Gaussian Integral. The estimate of the correlation
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ε CR(ε) CA(ε) sdC
R sdC

A

0.05 0.0198 0.0134 5.8 · 10−4 6.05 · 10−4

0.075 0.0316 0.0216 7.1 · 10−4 8.42 · 10−4

0.1 0.0447 0.0306 9.0 · 10−4 1.00 · 10−3

TR(ε) TA(ε) sdT
R sdT

A

0.05 0.0398 0.0260 8.20 · 10−4 7.80 · 10−4

0.075 0.0645 0.0420 1.40 · 10−3 1.13 · 10−4

0.1 0.0916 0.0591 2.00 · 10−3 1.40 · 10−3

Table 6.2. Henon map case. Values of C(ε) and T (ε) using the analytic tools based on
U-Statistic and comparison with real data.

dimension using Gaussian Correlation Integral is α̂ = 1.18 in (0.02 − 1) which is close
to the known value 1.2.
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Figure 6.3. Comparison for the log-log using the Correlation Integral C(ε) (dot line) and
the Gaussian Correlation Integral T (ε) (star line) in the Henon map.

We can obtain the value of T (ε) and its s.d. by using one time series. In the next
step we will found the correlation dimension distribution from analytical method. In
fact, we know the scaling region over which the right correlation dimension is found.
We know how is the asymptotic distribution of the Gaussian Correlation Integral (5.4),
so we can generate B = 1000 log-log lines and over each line the correlation dimension
is estimated. Then, the correlation dimension histogram based on the analytical way is
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α sd
analytic 1.2089 0.0322
real 1.2087 0.0336

Table 6.3. Values of the distribution of the correlation dimension using the analytic method
in free case for Henon map.

obtained. The agreement to the reality is proved comparing the analytical method to
the results from real data. It is possible to look at the agreement in the Figure 6.4.
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Figure 6.4. Henon map. Histogram of the correlation dimension α using analytical method
(a) and real data (b).

In the table 6.3 we can observe the good agreement related to the estimate of location
(mean) and scale (s.d.) parameter of distributions; analytical and real approaches
produce the same conclusions.
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It is important to see how the correlation dimension estimates in the Henon map are
distributed in a range between 1.1 and 1.3, so the null hypothesis of fractal dimension
is accepted. This conclusion is not always obvious: an example of this situation is given
by the Lorenz system.

6.3 Lorenz system

Here we will make the same analysis using the Lorenz system. The attractor itself and
the equations are derived from the simplified equations of convection rolls arising in
the equations of the atmosphere. From a technical standpoint, the system is nonlinear,
three-dimensional and deterministic. The equations governing the Lorenz attractor are:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y (6.2)

dz

dt
= xy − βz

Usual chaotic values for parameters are σ = 10, β = 8/3 and ρ = 28. We consider
the embedding parameters given in literature i.e. τ = 8 and m = 3 and we apply these
parameters to the x-component of the system. In Figure 6.5 we show the component
useful for our analysis.
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Figure 6.5. x-component of the Lorenz system (a) used to obtain the embedding phase space
and the x-component plotted in the scatter-plot (b)

In the continuous space, Lorenz system is one of most popular example of dynamic
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system. Here we can see the agreement to the Corollary 1, so we can show the normal
distribution of the Gaussian and the Correlation Integral using k = 100 true time series
from the Lorenz system; in Figure 6.6 we can see the behaviors.
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Figure 6.6. Lorenz system. Normal Distribution for C (a) and T (b) for a fixed m = 3 and
for a fixed ε = 3.

As in Hènon map we can obtain the agreement to the invariants of the system
comparing the outcomes from analytical method to the outcomes based on the real
data. We choose M = 15 value for stopping covariance term; in fact after this lag, the
sum of covariance remains more or less constant.

In the table 6.4 we show results related to these approaches. In particular we can
see how the estimated values for the C(ε), T (ε) and their standard deviations are in
agreement in both cases. Here we consider Lorenz system of length n = 1000 and with
the sample rate 0.01 without measurement noise.
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ε CR(ε) CL(ε) sdR sdL

1.5 0.0050 0.0074 4.90 · 10−4 2.96 · 10−4

2.25 0.0138 0.0163 9.90 · 10−4 8.51 · 10−4

3 0.0246 0.0297 1.63 · 10−3 1.80 · 10−3

TR(ε) TL(ε) sdR sdL

1.5 0.0245 0.0284 0.0015 0.0015
2.25 0.0523 0.0609 0.0026 0.0025
3 0.0862 0.0991 0.0034 0.0029

Table 6.4. Lorenz system case. Values of C(ε) and T (ε) using the analytic tools based on
U-Statistic and comparison with real data.

The estimate of the correlation dimension is given by a log-log plot Figure 6.7 in
the linear zone. It is possible to find the estimate using both Gaussian and Correlation
Integral. It is needed to look the linear zone then the correlation dimension is found as
the slope of the line. As for Hènon, the estimated correlation dimension obtained using
the log-log plot is in agreement to the literature; our result is α = 2.067 in the linear
zone (0.08− 25) and the real value is around 2.06.
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Figure 6.7. Comparison for the log-log using the Correlation Integral C(ε) and the Gaussian
Correlation Integral T (ε).

We can find the distribution of the correlation dimension in the Lorenz system using
analytical and real approaches.

In the table 6.3 we can observe the good agreement between different approaches in
terms of values computed, in fact mean and standard deviation are close.
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Figure 6.8. Histogram of the correlation dimension using analytical method (a) and real
data (b) in Lorenz system.

α sd
analytical 2.066 0.088
real 2.078 0.084

Table 6.5. Values of the distribution of the correlation dimension using the analytic method
in free case for Lorenz system.

We can compare both approaches looking histograms. Graphs show an equal pro-
portion of 20% of α values that are less than 2: this means that we are not able to
assure that the system has a fractal dimension even if we know that the Lorenz system
is fractal. This conclusion represents a problem in the correlation dimension estimate
so it is needed to link the estimate to its standard deviation. The rejection of the
hypothesis of fractal dimension, even if we know that the system is fractal, is caused
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by a several factors. One of them is surely the time series length: each system and so
each time series have its length. In the real case we have short time series, so it would
be useful to check a practical method that could be efficient respect to the time series
length.

6.4 Noise Presence

In this section we want to show a first trial of the method proposed in noise presence.
In fact this situation is more common. In the real world, phenomena are the result of
a pure signal and a noise presence. Here, we add low noise level otherwise the system
could be change its equilibrium. We consider Hènon map and Lorenz system as in
above.

6.4.1 Noise presence - Hènon

Here we will investigate the Hènon map. We add to the signal a normal distributed
noise with mean equal to 0 and standard deviation equal to 1.

Considering, as in free time series, three values of ε = (0.1, 0.075, 0.05) so we obtain
the table 6.6 of values Tn(ε) and Cn(ε) and its standard deviation, where n represents
noise presence.

ε Tn(ε) sdT n Cn(ε) sdCn

0.05 1.6 · 10−3 1 · 10−4 1.4 · 10−3 5.3 · 10−5

0.075 3.5 · 10−3 2 · 10−4 1.9 · 10−3 9.0 · 10−5

0.1 6.3 · 10−3 4 · 10−4 2.6 · 10−3 1.3 · 10−4

Table 6.6. Hènon Map. Noise presence. Values of Cn(ε) and Tn(ε) computed using analytical
way and its standard deviation.

In the interval (0.01 − 0.7), it is possible to see the linear zone so the correlation
dimension estimate in this interval is equal to α = 1.94. Following the same procedure
used in absence of noise we compute for a set of ε (the same used in free noise case)
values of Gaussian Correlation Integral and its standard deviation. We obtain the
correlation dimension distribution Figure 6.9.

When we used the analytical method the distribution is related to B = 1000 valued
of α̂ while using real data we take in consideration just considered B = 100 values.
The stopping term used in the covariance sum was M = 50. The two distribution are
Normal distributed with mean and standard deviation summarized in the table 6.7.
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Figure 6.9. Distribution of α in Hènon map in noise presence computed using the analytical
method (a) and real data (a).

There is agreement in the values, so the procedure is good, but it is clear that the α

estimate goes far from the real value even if low noise presence.

αn sd
analytical 1.94 0.034
real 1.94 0.040

Table 6.7. Values of the distribution of the correlation dimension using the analytic method.

6.4.2 Noise presence - Lorenz

Here we want to investigate how our method works in noise presence time series. We
add a normal distributed noise with mean equal to zero and standard deviation equal
to 0.05. The noise level added is low because of the system instability. We consider the
same set of ε values used in free-noise time series. Here we will give table 6.8 of Tn(ε)

and Cn(ε) and its standard deviation.

ε Tn(ε) sdT n Cn(ε) sdCn

1.5 0.0285 0.0022 0.0074 0.0006
2.75 0.0611 0.0035 0.0164 0.0015
3 0.0992 0.0039 0.0298 0.0031

Table 6.8. Lorenz system. Noise presence. Values of Cn(ε) and Tn(ε) computed using
analytical method and its standard deviation.

In the interval (0.08 − 25) it is possible to find the linear zone and the correlation
dimension estimate is 2.051.
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The distribution of B = 1000 α values both using analytical method and real data
is Normal distributed with mean and standard deviation summarized in the table 6.9.
There is agreement in the values, so the procedure is good, but it is clear that the α

estimate goes far from the real value even if low noise presence. There are almost 20%
is less then 2, so

αn sd
analytical 2.10 0.07
real 2.06 0.08

Table 6.9. Lorenz system. Noise presence. Values of the distribution of the correlation
dimension using the analytic method and real data.
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Chapter 7

Conclusion

The intent of this work is to give an introduction to methods related invariants estimate.
Multiple interests of the argument in several fields of Science justify our choice to deal
without a surplus of formula and mathematical details. In this view it is possible
to address the work also for people unfamiliar in these topics but some people can
happen on some particular phenomena. In fact there are many phenomena that look
like without a precise structure so it is needed to use chaotic theory for the time series
analysis.

The work have given basic elements related to chaos theory and the most used
estimators for invariant quantities.

The estimate of the invariants is not simple because it depends on the scaling region.
There are some methods and considerations about this problem but none gives a precise
solution, such that the estimate process "is often as much an art as it is a science".
Diks [1999]. In fact, each system has a especially structure so it becomes hard to find
an unique rule.

The theoretic innovation of the thesis consists in the checking of some asymptotic
proprieties of invariant quantities: consistency and normality of Gaussian Correla-
tion Integral and normality of the Takens estimator. These conclusions result from
U-Statistics theorems and they are supported by empirically proof.

Practical innovations concern the computation of the correlation dimension distri-
bution based on the analytical method. It is possible to obtain the distribution using
only one time series. Then, we compare distribution comes from using the analytical
method to distribution from real data: several considerations can be done. The work
underlies that the main statistics problem is the need to give estimate precision, this is
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not always simple to obtain. The difficulty is shown by the presence in several studies
and work that confirm the fractal system existence without a precision value. For this
reason it is important the searching of standard deviation of the estimated quantity.
Methods used to compute the standard deviation thanks the analytic way consider ob-
servations not independent and it is realistic; on the other side the agreement to the
real data is clear so the U-Statistics procedure is realistic.

Problems are related to the inner composition of the system, in fact we can found
systems that produce always fractal dimension but sometimes it is not done. In general
we are not able to distinguish between fractal or not-fractal set without the confidence
interval. An example is given by Lorenz system that is a fractal system, but compu-
tations are not able to assert it in free time series. In the noise time series case, the
results get worse, in terms of estimation, even if low noise level.

Future developments can be summarized as follows. It would be important to study
other well-known systems and to come out agreement between two methods; another
important step should be to add noise and to understand what happen; to check the
using method with shorter time series.
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