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UNIVERSITÀ DEGLI STUDI DI BOLOGNA

DIPARTIMENTO DI

SCIENZE STATISTICHE ‘‘PAOLO FORTUNATI”

Dottorato di ricerca in

metodologia statistica per la ricerca

scientifica

Data: 15 Marzo 2007

Research Supervisor: Angela Montanari

Coordinator: Daniela Cocchi

External Examiner: Ernst Wit

Scientific Committee: Silvano Bordignon

Carla Rampichini

Maurizio Vichi

ii
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Chapter 1

Introduction

The problem of dimensionality reduction arises in many fields of information

processing, including machine learning, scientific visualization, pattern recogni-

tion and neural computation. Dimensionality reduction is an important operation

to deal with multi-dimensional data. Its goal is to obtain a compact representa-

tion of the original high-dimensional data while eliminating noisy factors which

dramatically hide meaningful relationship and correlations. Since a part of in-

formation is lost during the dimensionality reduction, it is important for the

resulting low-dimensional data to preserve the original structure and relation-

ship of the high-dimensional data. It is highly desirable that the low-dimensional

projected space preserves the local geometry of the original space, that is, close

points in the high dimensional space must remain close in the embedded space.

When the embedded structures are linear subspaces, linear techniques such as

Principal Component Analysis (PCA) and MultiDimensional Scaling (MDS) can

be used. Both PCA and MDS are eigenvector methods designed to model linear

structures in high-dimensional data. In PCA, second order statistics (variance

and covariance) of the data are considered, by searching for directions in which

the variances are maximised. In classical (or metric) MDS, low-dimensional em-

bedding that best preserves pairwise distances between data points is computed.

If these distances correspond to euclidean distances, the result of metric MDS is

1



CHAPTER 1. INTRODUCTION 2

equivalent to PCA. Both methods are simple to implement, and their optimiza-

tions do not involve local minima. These virtues account for the widespread use

of PCA and MDS, despite their inherent limitations as linear methods.

When the observed data can not be properly modelled by linear structures,

linear dimensionality reduction performed by PCA and MDS fail to preserve the

global geometry of the high-dimensional space. In other words, they often map

distant points in the original space into close points in the embedded space.

Thus, in case of nonlinear manifolds one needs to seek some methods reducing

the dimensionality of the data in a nonlinear manner. Several methods are suit-

able for this purpose. Among them are Sammon’s Mapping (SM) [37, 26] which

is inspired to Multidimensional Scaling techniques [11], Curvilinear Component

Analysis (CCA) and Curvilinear Distance Analysis (CDA) [15, 35], Generative

Topographic Mapping (GTM) [8], Self-Organizing Map (SOM) [29] and Visual-

ization Induced Self-Organizing Map (ViSOM) [49].

All these methods, though are workable, have too many parameters to be set

by the user and in addition, some of these, were tested on rather artificial than

real world data.

Two more recents unsupervised learning algorithms that allow to perform

dimensionality reduction based on the idea that global geometry of the high-

dimensional data can be retained in a collection of local geometries when pro-

jecting the data to a low-dimensional space, are the “isomap” (J. B. Tenenbaum

et al., 2000) and the “local linear embedding” (LLE) (S.T. Roweis and L.K. Saul,

2000).

The “isomap” [46] uses easily measured local metric information to learn the

underlying global geometry of a data set. The approach builds on classical MDS

but seeks to preserve the intrinsic geometry of the data as captured in the geodesic

manifold distances between all pairs of data points.

The other procedure has been proposed in the same year by Roweis and Saul.

The goal of their “local linear embedding” [43, 45] is to recover the nonlinear

structure of high-dimensional data. The idea behind this algorithm is that nearby
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points in the high-dimensional space remain nearby and similarly co-located with

respect to one another in the low-dimensional embedding. Starting from this

intuitive consideration, authors proceed by approximating each data point by a

weighted linear combination of its neighbours. The algorithm derives its name

from the nature of these local and linear reconstructions: it is local, in the sense

that only neighbours contribute to each reconstruction, and linear, in the sense

that reconstruction are confined to linear subspaces. The LLE algorithm is an

attractive method for the following main reasons: 1) a good preservation of the

local geometry of the high-dimensional space in the low-dimensional space, 2) only

two parameters to be set, 3) a single global coordinate system of the embedded

space, 4) avoids the problems with local minima that plague many other iterative

techniques. Since LLE method has recently developed, is possible to seek still

few literature in [43, 45, 1, 7, 20, 34, 30, 31, 33, 32, 41].

This thesis focuses on some extensions of Local Linear Embedding algorithm

and applications to microarray data and simulated data.

The first purpose is to develop a procedure for the automatic selection of the

two free parameters of the model. The first natural question is how choosing the

optimal number of k nearest neighbours since this parameter noticeably influences

the final data projection. If one chooses a large k, it produces smoothing or

eliminates the scale structure in the data, as well as if one chooses a small k,

it can falsely divide the continuous data manifold into disjointed components.

In order to overcome this issue some criteria for the automatic selection of the

optimal number of k nearest neighbours are proposed.

The dimensionality d of the projection space is the second free parameter of the

algorithm. Initially the LLE method emerged with the purpose of visualizing the

high-dimensional datasets. Since human observer can not visually perceive a high-

dimensional representation of the data, its dimensionality was reduced to one,

two or three and so the dimensionality of the projection space was automatically

fixed. In general, when the goal of the dimensionality reduction technique is

not confined to data visualization, the dimensionality of the embedded space can
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not be a priori fixed. Thus, some procedures for the automatic selection of the

parameter d are proposed.

The second purpose of the thesis is to test the proposed criteria for the auto-

matic determination of the model parameters on simulated datasets. The data

was created by randomly sampling from two uniform independent variables and

by generating nonlinear combinations of them. Several simulations have been

conducted to test the proposed procedures by providing similar results. Thus,

the results on just one simulation study are presented.

The finally purpose is to apply the procedures on datasets arisen from mi-

croarray study. DNA Microarray technology leads to a new class of biological

experiments where data acquisition of gene activity is possible on a large scale.

A typical microarray data matrix contains the expression levels of thousands of

genes across different experimental samples. In this context, where the number of

D genes is much greater than the experimental conditions n, the standard tech-

niques are difficult to employ and dimensionality reduction methods are required

in order to obtain a compact representation of the high-dimensional data in fewer

dimensions.

The thesis is structured as follows.

The second chapter deals with the original Local Linear Embedding method.

After a brief introduction to the main idea behind the method, we present the

LLE algorithm by reproducing some classical examples in which the powerful

of LLE against the PCA technique is compared. The major extensions of LLE

method are presented. In particular we propose a review on some techniques for

the automatic determination of the model parameters.

The third chapter deals with our proposal for the automatic selection of the

optimal number of k nearest neighbours. After an introduction about the ref-

erence context in which we work, the three different criteria for the automatic

determination of the model free parameter are proposed and their formulation in

the work context derived.

The fourth chapter deals with our proposal for the automatic determination



CHAPTER 1. INTRODUCTION 5

of d embedded coordinates able to represent the high-dimensional original data

space. We propose three criteria for the determination of the model free param-

eter afterward the reference context has been illustrated.

The fifth chapter deals with the simulation study. After a brief description on

the data generation we present the results for the choice of the optimal number of

k neighbours and we propose a validation measure based on the Procustes Anal-

ysis. This technique compares the shape differences between two configurations

after that, location, scale and rotational effect are filtered out by minimizing

distance. Once computed the optimal number of k neighbours, we proceed by

presenting the results over the three proposed criteria for the automatic selection

of d embedded coordinates.

The next chapter concerns with an introduction to microarray data analysis.

We review a description of the microarray technology process, by illustrating a

typical measure to detect differentially expressed genes in order to obtain the final

microarray data matrix. Finally, the analysis of gene expression data is treated.

The seventh chapter deals with the results obtained by the application of the

methods proposed on three public available microarray data sets: the mammary

data set of Wit and McClure (2004), the lymphoma data set of Alizadeth et al.

(2000), the leukemia data set of Golub et al. (1999).

In the last chapter the conclusions of the thesis are presented.



Chapter 2

Locally Linear Embedding

2.1 Introduction

Dimensionality reduction can be done either by feature selection or by fea-

ture extraction. Feature selection methods choose the most informative features

among those given, therefore low-dimensional data representation possesses a

physical meaning. Feature extraction methods, indeed, obtain informative pro-

jection by applying certain operation to the original features. The advantage of

feature extraction over feature selection methods is that, given the same dimen-

sionality of reduced data representation, the transformed features might provide

better results in further data analysis.

There are two possibilities to reduce dimensionality of data: supervised, when

data labels are provided, and unsupervised when no data labels are given. In most

cases in practice, no prior knowledge about data is available, since it is very ex-

pensive to assign labels to the data samples. Therefore, nowadays, unsupervised

methods discovering the hidden structure of the data are of prime interest.

Here, we describe the Locally Linear Embedding algorithm (S.T. Roweis and

L.K. Saul, 2000) [43]. This is an unsupervised non linear feature extraction tech-

nique that analyses high-dimensional data sets and reduces their dimensionalities

while preserving local topology, that is, close points in the high dimensional space

remain close in the low-dimensional space. LLE obtains a low dimensional data

6
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representation by assuming that even if the high-dimensional data forms a non

linear manifold it still can be considered locally linear if each data point and

its neighbours lie on or close to a locally linear patch of the manifold. Because

of the assumption that local patches are linear, then each of them can be ap-

proximated by a linear hyperplane and each data point can be represented by a

weighted linear combination of its k nearest neighbours. The coefficients of this

approximation characterize local geometries in the high-dimensional space and

they are used to find low-dimensional embeddings preserving the geometries in

the low-dimensional space.

Sections 2.2 and 2.3 introduce LLE by stating initial conditions to be satisfied

and by explaining the main idea of this method.

Section 2.4 describes in details the LLE algorithm and some classical non lin-

ear dimensionality reduction examples in which the power of LLE method against

linear technique as PCA is shown. In this section particular attention is given to

the regularization problem which arises when the number of k nearest neighbours,

needed to reconstruct each data point, outnumber the input dimensionality of the

data.

In section 2.5 some extensions of the LLE technique are presented. They try

to overcome the main drawbacks that affect the original LLE algorithm.

2.2 Initial Conditions

LLE produces a low-dimensional data representation by assuming that even

if the high dimensional data forms a non linear manifold it still can be considered

locally linear if each data point and its neighbours lie on or close to a locally linear

patch of the manifold. The simplest example of such cases, proposed in [31], is

the Earth. Its global manifold is a sphere which is described by a non linear

equation x2 +y2 +z2 = r2 where (x, y, z) are the coordinates of three dimensional

space and r is the radius of the sphere, while locally it can be considered as a
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linear two dimensional plane ax + by = 0 where (x, y) are the coordinates and

a, b are the coefficients. Hence, the sphere can be locally approximated by linear

planes instead of convex ones. Unfortunately, LLE cannot deal with closed data

manifolds such as sphere. In this case, one should manually cut the manifold

before applying the LLE algorithm, for example by deleting a pole from the

sphere. In Fig. 2.1 are proposed two examples of “good” manifolds satisfying

to this requirement. In other words, we assume that n points embedded in a

D-dimensional space are sampled from some d-dimensional manifold (d � D)

so that the sampled points represent the manifold sufficiently well. We want to

emphasize that the data come from one manifold. The internal structure of this

manifold must be flat in a sense that it cannot be anything like a sphere. In this

case, when unfolded, it becomes flat.

Figure 2.1. Flat 2-D manifolds embedded in 3-D space .

2.3 Main Idea

LLE takes a set of high-dimensional data and maps them into a low-dimensional

euclidean space preserving local structure of the data. The key assumption re-

lated to LLE is that even if the manifold embedded in a high-dimensional space

is nonlinear when considered as a whole, it still can be assumed locally linear if

each data point and its neighbours lie on or close to a locally linear patch of the
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manifold. That is, the manifold can be covered with a set of locally linear (pos-

sibly overlapping) patches which, when analyzed together, can yield information

about global geometry of the manifold. Because of the assumption that local

patches are linear, each of them can be approximated by a linear hyperplane so

that each data point can be represented by a weighted linear combination of its

nearest neighbours. Coefficients of this approximation characterize local geome-

tries in a high-dimensional space and they are then used to find low-dimensional

embeddings preserving the geometries in a low-dimensional space. The main

point in replacing the nonlinear manifold with the linear hyperplanes is that this

operation does not bring significant error, because, when locally analyzed, the

curvature of the manifold is not large so that the manifold can be considered to

be locally flat [31].

The implementation of the Locally Linear Embedding, proposed by Roweis

and Saul, consists of three steps. The first step of LLE consists in identifying the

neighborhood of each data point. In the simplest formulation of the algorithm, a

fixed number of nearest neighbours k per data point can be chosen as measured

by euclidean distance. Other criteria, however can also be used to choose the

neighbours. For example, by choosing all points within a ball of fixed radius.

The second step of LLE is to reconstruct each data point from its nearest

neighbours by computing a weight matrix that minimize the reconstruction er-

ror, which adds up the squared distances between all data points and their re-

constructions.

The final step of LLE is to compute a low-dimensional embedding yi based

on the reconstruction weights of the high-dimensional inputs xi. The goal of the

method is to find low-dimensional outputs that are reconstructed by the same

weights as the high-dimensional inputs. The only information used to construct

an embedding is that information captured by the weights.

The attractive features of the algorithm are that it avoids local minima

problems, it has only few tuning parameters and the local geometry of high-

dimensional data is preserved in the embedded space.
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2.4 The Algorithm

Suppose the data consist of n real-valued vectors xi, each of dimensionality D,

assembled in a data matrix X of size D×n, sampled from some smooth underlying

manifold. We assume each data point and its neighbours to lie on or close to some

smooth linear or nonlinear manifold. We characterize the local geometry of these

patches by linear coefficients that reconstruct each data point from its neighbours.

The results of LLE are typically stable over a range of neighborhood size. The

size of that range depends on various features of the data, such as the sampling

density and the manifold geometry. In the section 2.5.6 is presented a method to

determine the optimal number of nearest neighbours proposed in [32].

Once number of neighbours are chosen, we use the neighbours of a data point

i to reconstruct it in a linear fashion by means of a set of weights w(i). Consid-

ering a (D × 1) data vector xi with its associated k nearest neighbours matrix

X(i) = [x(i,1), x(i,2), . . . , x(i,j), . . . , x(i,k)], where x(i,j) is the j-th neighbours of xi,

we can compute the k-dimensional weight vector w(i). Each data point xi is re-

constructed by its locally linear reconstruction x̂i = X(i)w(i), where the weights

w(i) reconstruct the i-th data point. Reconstruction errors are then measured by

the cost function:

SS1(w, k) =
n
∑

i=1

∣

∣

∣

∣

∣

xi −
k
∑

j=1

X
(i)
j w

(i)
j

∣

∣

∣

∣

∣

2

, (2.1)

To compute the weights, we minimize the cost function in (2.1) subject to two

constraint: a sparseness constraint and an invariance constraint. The sparseness

constraint is that each data point is reconstructed only from its neighbours, en-

forcing w
(i)
j = 0 if x(i,j) does not belong to this set; the invariance constraint

is that the rows of the weight matrix sum to one
∑k

j=1 w
(i)
j = 1. The optimal

weights w(i) subject to these constraints are found by minimizing the square

problem in (2.1). Computing the reconstruction weights is typically the least ex-

pensive step of the LLE algorithm. The weight matrix can be stored as a sparse

matrix with nk non-zero elements.
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Note that, the constrained weights that minimize these reconstruction errors

obey important symmetries: for any particular data point, they are invariant to

rotations, rescalings, and translations of that data point and its neighbours. The

invariance to rotations and rescalings follows immediately from the form of (2.1);

the invariance to translations is enforced by the sum to one constraint on the rows

of the weight matrix. A consequence of these simmetries is that the reconstruction

weights characterize geometric properties that do not depend on a particular

frame of reference. Suppose the data lie on or near a manifold of dimensionality

d � D. We therefore expect that the local geometry in the original data space

is equally valid for local patches on the manifold: in particular, the same weights

w(i) that reconstruct the i-th data point in D dimensions should also be able to

reconstruct its embedded manifold coordinates in d dimensions [43].

LLE constructs a neighborhood preserving mapping based on this idea. In the

unusual case where the neighbours outnumber the input dimensionality (k > D),

(indicating that the original data is itself low dimensional), each data point can be

reconstructed perfectly from its neighbours, and the local reconstruction weights

are no longer uniquely defined. In this case some further regularization must

be added to break the degeneracy. A simple regularizer that authors consider

is to penalize the sum of squares of the weights which favors weights that are

uniformly distributed in magnitude [43, 44, 45].

In the final step of the algorithm, since the goal is to preserve a local linear

structure of a high-dimensional space as accurately as possible in a low dimen-

sional space, the weights w(i) are kept fixed and the following cost function is

minimized:

SS2(y, d) =

n
∑

i=1

∣

∣

∣

∣

∣

yi −
k
∑

j=1

Y
(i)
j w

(i)
j

∣

∣

∣

∣

∣

2

, (2.2)

where Y (i) is the d × k matrix of the k nearest neighbours of yi.

Note that the embedding is computed directly from the weight matrix. The

original inputs are not involved in this step of the algorithm. Thus the embedding

is determined entirely by the geometric information encoded by the weights.



CHAPTER 2. LOCALLY LINEAR EMBEDDING 12

The embedding cost in (2.2) defines a quadratic form in the vectors. This

cost function is minimized when the outputs yi are reconstructed (or nearly re-

constructed) by the same weighted linear combinations of neighbours as computed

for the inputs.

To make the problem well-posed, the following constraints are imposed:

n
∑

i=1

yi = 0d×1
(2.3)

1

n

n
∑

i=1

yiy
t
i = Id×d (2.4)

The equation (2.3) removes the translation degree of freedom by requiring the

outputs to be centered at the origin. The embedded coordinates have to have

normalized unit covariance as in (2.4) in order to remove the rotational degree of

freedom and to fix the scale. As a result, a unique solution is obtained. To find

the embedding coordinates minimizing (2.2) under the constraints given in (2.3)

and (2.4), a new matrix is constructed, based on the weight matrix w(i):

M = (In×n − w(i))t(In×n − w(i)) (2.5)

The cost matrix M is sparse, symmetrical and positive semidefinite. LLE then

computes the bottom (d + 1) eigenvectors of the matrix M , associated with the

(d+1) smallest eigenvalues. The first eigenvectors (composed of all elements equal

to 1) whose eigenvalue is close to zero is excluded. The remaining d eigenvectors

yield the final embedded coordinates.

Note, that while the reconstruction weights for each data point are computed

from its local neighborhood—independent of the weights for other data points—

the embedding coordinates are computed by an n× n eigensolver, a global oper-

ation that couples all data points in connected components of the graph defined

by the weight matrix.
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Because M is sparse, eigenvector computation is quite efficient, though for

large n it anyway remains the most computationally expensive step of the algo-

rithm.

Implementation of the algorithm is fairly straightforward, as the algorithm

has only one free parameter: the number of neighbours per data point, k. Once

neighbours are chosen, the optimal weights w(i) and coordinates yi are computed

by standard methods in linear algebra.

The algorithm involves a single pass through three steps and finds global

minima of the reconstruction and embedding costs in (2.1) and (2.2). No learning

rates or annealing schedules are required during the optimization and no random

or local optima affect the final results.

Thus, the LLE algorithm can be summarized as:

1. choose k and select the neighbours of each data point, xi;

2. Compute the weights w(i) that best reconstruct each data point xi from its

neighbours, minimizing the cost in (2.1) by constrained least squares;

3. Compute the vectors yi best reconstructed by the weights w(i), minimizing

the quadratic form in (2.2) by the bottom eigenvectors.

2.4.1 Step 2: an overview on regularization problem

In the second step of the LLE algorithm, each data point is reconstructed by

its nearest neighbours. Considering a particular data point xi of size D × 1 with

k nearest neighbours collected in a matrix X (i) of size D × k and the vector of

the reconstruction weights w(i) of size k × 1 that sum to one, is possible to write

the reconstruction error as:

SS
(i)
1 (w, k) =

∣

∣

∣

∣

∣

xi −
k
∑

j=1

X
(i)
j w

(i)
j

∣

∣

∣

∣

∣

2

, (2.6)
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i.e., how well each point xi can be linearly reconstructed in terms of its neigh-

bours. Since
∑k

j=1 w
(i)
j = 1 we can rewrite the Equation (2.6) as:

SS
(i)
1 (w, k) =

∣

∣

∣

∣

∣

k
∑

j=1

w
(i)
j (xi − X

(i)
j )

∣

∣

∣

∣

∣

2

=

k
∑

j=1

k
∑

h=1

w
(i)
j w

(i)
h G

(i)
jh , (2.7)

where G
(i)
jh = (xi−X

(i)
j )T (xi−X

(i)
h ) is the local Gram1 matrix where X

(i)
j and X

(i)
h

are neighbours of the point xi. By construction, this Gram matrix is symmetric

and semipositive definite.

The reconstruction error can be minimized analytically using a Lagrange mul-

tiplier to enforce the constraint that
∑k

j=1 w
(i)
j = 1. In terms of the inverse of

the Gram matrix the optimal weights are given by:

w
(i)
j =

∑k

h=1 G
(i)
jh

−1

∑k

l,m=1 G
(i)
lm

−1 , (2.8)

the solution, as written in Equation (2.8), appears to require an explicit inversion

of the Gram matrix. In practice, a more efficient and numerically stable way to

minimize the error (which yields to same results as above) is simply to solve the

linear system of equations [45]:

k
∑

h=1

G
(i)
jhw

(i)
h = 1. (2.9)

When the neighbours outnumber the input dimensionality, that is when k > D,

the local reconstruction weights are no longer uniquely defined since the Gram

matrix in Equation (2.9) is singular or nearly singular.

To break the degeneracy, a regularization for the Gram matrix is required,

which is done by adding a small positive constant to the diagonal elements of the

1given a set V of m vectors of points in <n, the Gram matrix G is the matrix of all possible
inner products of V, i.e. gij = v

T
i vj
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matrix [45]. In practice, a regularization parameter r will have to be used for the

matrix G(i) before computing its inverse (as its rank is D, certainly for k > D):

(G(i) + rI)−1. (2.10)

Since G(i) is symmetric and semipositive definite, the matrix G(i) + rI has its

eigenvalues in
[

r, r + G(i)2
]

and hence a condition number ≤ r+G(i)2

r
that becomes

smaller as r increases. This regularization is known as Tikonov regularization [39].

2.4.2 Examples

The embeddings discovered by LLE are easier to visualize for intrinsically

two dimensional manifolds. Consider an illustrative example of the nonlinear

dimensionality reduction problem which is demonstrated by the two-dimensional

manifold in Fig. 2.2. In this example, a linear method as PCA and a nonlinear

one as LLE are applied to the data in order to discover the true structure of

the manifolds. Figure 2.2(b) and 2.2(c), corresponding to the two-dimensional

PCA and LLE projections, allow us to conclude that LLE succeeds in recovering

the underlying manifolds whereas PCA creates local and global distortion by

mapping faraway points to nearby points in the planes.

Figure 2.2. Nonlinear dimensionality reduction problem: a)initial nonlinear data
manifold, b)result obtained with the PCA linear method and c)result obtained with the
LLE nonlinear method

Figure 2.3 shows another two dimensional manifold living in a much higher
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dimensional space. The authors, Roweis and Saul, generated these examples—

shown in the middle panel of the figure—by translating the image of a single

face across a larger background of random noise. The input to LLE consisted of

n = 961 grayscale images, with each image containing a 28×20 face superimposed

on a 59× 51 background of noise. The bottom portion of Fig. 2.3 shows the first

two components discovered by LLE, with k = 4 neighbours per data point. By

contrast, the top portion shows the first two components discovered by PCA. It

is clear that the manifold structure in this example is much better modeled by

LLE.

Finally, in addition to these examples, for which the true manifold structure

was known, the authors also applied LLE to images of lips used in animation of

talking heads. The database contained n = 8588 color images of lips at 108 ×
84 resolution. The top and the bottom panel of Figure 2.4 show the first two

components discovered, respectively, by PCA and LLE with k = 16 neighbours

per data point. If the lip images described a nearly linear manifold, these two

methods would yield similar results; thus, the significant differences in these

embeddings reveal the presence of nonlinear structure. Is possible to note that

while the linear projection by PCA has a somewhat uniform distribution about

its mean, the LLE has a distinctly spiny structure, with the tips of the spines

corresponding to extremal configurations of the lips.

2.5 Related works and Extension of the Locally

Linear Embedding

Locally Linear Embedding was designed for unsupervised learning. This sec-

tion starts with a description of some other unsupervised techniques as “isomap”

presented in Section 2.5.1 and its variant, “c-isomap” described in Section 2.5.2,

and a comparison of them with LLE.
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Figure 2.3. The result of PCA (top) and LLE (bottom) applied to images of a single
face translated across a two dimensional background of noise. Note how LLE maps the
images with corner faces to the corners of its two dimensional embedding, while PCA
fails to preserve the neighborhood structure of nearby images.

Besides, the LLE is constructed to deal with data mining problems, where

the number of classes and relationship between elements of different classes are

unknown. To complement the original LLE, a supervised LLE (SLLE), extending

the concept of LLE to multiple manifolds is proposed Section 2.5.3.

The original LLE algorithm possesses a number of limitation that make it to
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Figure 2.4. Images of lips mapped into the embedding space described by the first
two coordinates of PCA (top) and LLE (bottom). Representative lips are shown next to
circled points in different parts of each space. The difference between the two embeddings
indicate the presence of nonlinear structure in the data.

be less attractive for the scientist. Thus, in the last parts of the section we review

some methods in order to overcome the main drawbacks of the LLE algorithm:

i) the conventional LLE algorithm operates in a batch mode, that is, it obtains

a low-dimensional representation for a certain number of high-dimensional data
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points to which the algorithm is applied. When new data points arrive, one

needs to completely rerun the algorithm. An extension which allows dealing with

sequentially incoming data is presented in Section 2.5.4;

ii) the LLE algorithm does not result robust and efficient when the data

present some noise or outliers, thus, we consider an approach to make LLE algo-

rithm more robust in Section 2.5.5;

iii) a natural question is how does one choose the number of nearest neighbours

k to be considered in LLE since this parameter dramatically affects the resulting

projection?. To answer this question a procedure for automatic selection of the

optimal value for the parameter k is proposed in Section 2.5.6;

iv) the second LLE parameter to be set is a dimensionality of the projected

space, d. It is natural, for visualization purposes that d is 1, 2 or 3; but different

choices are required when one needs to preprocess data before applying subse-

quent operations. In the Section 2.5.7 we present LLE approach for calculating an

approximate intrinsic dimensionality (Polito and Perona, 2002) and we compare

it with one of the classical methods (Pettis et al., 1979).

2.5.1 Isomap

LLE illustrates a general principle of manifold learning, elucidated by Tenen-

baum et al., that overlapping local neighborhoods can provide information about

global geometry. Many virtues of LLE are shared by the “isomap” algorithm,

which has been successfully applied to similar problems in nonlinear dimension-

ality reduction.

“Isomap” is a nonlinear generalization of Multi Dimensional Scaling in which

embeddings are optimized to preserve “geodesic” distances between pairs of data

points. Like LLE, the “isomap” algorithm has three steps: (i) construct a graph

in which each data point is connected to its nearest neighbours, (ii) compute the

shortest distance between all pairs of data points among only those paths that

connect nearest neighbours, (iii) embed the data via MDS so as to preserve these
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distances, as is possible to see from the example represented in Fig. 2.5 [46].

Though similar in its aims, “isomap” is based on a radically different philoso-

phy than LLE. In particular, “isomap” attemps to preserve the global geometric

properties of the manifold, as characterized by the geodesic distances between

faraway points, while LLE attemps to preserve the local geometric properties of

the manifold as characterized by the linear coefficients of local reconstructions.

Depending on the application, one algorithm or the other may be most appropri-

ate.

Figure 2.5. The “Swiss roll” data set, illustrating how “isomap” exploit geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points (circled)
on a nonlinear mainifold their euclidean distance in the high-dimensional input space
(length of dashed line) may not accurately reflect their intrinsic similarity, as measured
by geodesic distance along the low-dimensional manifold (length of solid curve). (B)
the neighborhood graph constructed in step one of “isomap” allows an approximation
(red segment) to the true geodesic path to be computed in step two, as the shortest
path. (C) The two dimensional embedding recovered by “isomap” in step three, which
best preserves the shortest path distances in the neighborhood graph. Straight lines in
the embedding (blue) represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

2.5.2 c-isomap

“Isomap” was designed to learn nonlinear mappings which are isometric em-

beddings of a flat, convex data set, while, under appropriate conditions, LLE

can recover conformal mappings, that is, mappings which locally preserve angles

but not necessarily distances. Such mappings cannot generally be recovered by
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“isomap”, whose embeddings explicitily aim to preserve the distance between the

inputs.

Noting this, de Silva and Tenenbaum, proposed in 2002 a variant of “isomap”

that is able to recover conformal mappings, under the assumption that the data

is distributed uniformly or with known density in the low dimensional embedding

space. The authors extended the “isomap” approach to a class of intrinsically

curved data sets that are conformally equivalent to euclidean space. This allows

to learn the structure of manifolds like a fishbowl, as well as the other more

complex data manifolds where the conformal assumptions may be approximately

valid. The algorithm, called “c-isomap”, uses the observed density in the high

dimensional input space to estimate and correct for the local neighborhood scaling

factor of the conformal mapping. In general, the effect of “c-isomap” is to magnify

regions of the data where the point density is high, and to shrink regions where

the point density is low.

However, in those situations where both “isomap” and “c-isomap” are ap-

plicable it may be preferable to use “isomap”, being less susceptibile to local

fluctuations in the sample density.

2.5.3 Supervised Locally Linear Embedding

To extend the concept of LLE to multiple manifolds, each representing data

of one specific class, two supervised variants of LLE were independently proposed

in [31, 42]. Being unsupervised, the original LLE does not make use of the class

membership of each point to be projected.

To complement the original LLE, a supervised LLE is proposed. Its name

implies that membership information influences which points are included in the

neighborhood of each data point. That is, the supervised LLE employs prior

information about a task to perform feature extraction. The supervised LLE

is useful since it can deal with data sets containing multiple and often disjoint

manifolds, corresponding to classes. Two approaches to the supervised LLE have
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been proposed. The first approach, known as 1-SLLE consists in forming the

neighborhood of a data point only from those points that belong to the same

class [31]. The second approach, α-SLLE, expands the interpoint distance if the

points belong to different classes; otherwise, the distance remains unchanged [42].

Either approach modifies only the first step of the original LLE, while leaving the

other two steps unchanged. The first step is modified by changing the distance

matrix computation, that is, the distances between samples belonging to different

classes are increased, but they are left unchanged if samples are from the same

class:

∆ = ∆ + αmax(∆)Λ where α ∈ [0, 1]

where Λij = 0 if the points xi and xj belong to the same class and 1 otherwise.

When α = 0 we obtain the original LLE, while when α = 1 we get the fully

supervised LLE (1-SLLE). As α varies between 0 and 1 a partial SLLE (α-LLE)

is obtained. Applying the supervised LLE to a number of benchmark data sets,

the results confirm that SLLE generally leads to better classification performance

than LLE. This is to be expected, as SLLE can extract nonlinear manifolds in a

supervised way, and is thereby the most general of the feature extraction methods.

2.5.4 Generalization to new data

Another important weak point of the original LLE is that it is stationary with

respect to the data, that is, it requires a whole set of points as an input in order

to map them into the embedded space, that is, it operates in a batch mode [31].

When new data points arrive, the only way to map them is to pool both

old and new points and rerun LLE again for this pool. In other words, the

original LLE lacks generalization to new data. It means that it is not suitable in

a changing, dynamic environment [31].

To overcome this weakness, in 2001, an attempt was made by Kouropteva

to adapt LLE to a situation when the data come incrementally point by point.

It assumed that the dimensionality of the embedded space does not grow after
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projecting a new point to it, that is, d remains constant. A simple technique

was proposed where the adaptation of the embedded space to a new point can be

done by means of the weight matrix w. Suppose that the old data, consisting of n

points constitute the matrix xold. For a new point xn+1, the euclidean distances to

all points in xold are computed. Indices of nearest neighbours for other points in

xold do not change and thus neither the recomputation of the matrix of neighbours

is needed. Let wold be the weight matrix associated with the original data. In

step 2 of LLE, xn+1, instead of the whole matrix x and its neighbours are used

to compute wn+1, which is then added to wold by forming the matrix wnew =

wold∪wn+1. Step 3 of LLE is then performed using wnew. Experiments conducted

by Kouropteva demonstrated that is obtained approximately identical output

matrix y as if the original LLE were applied to the matrix xnew = xold ∪ xn+1.

When calculating a square sum of differences between LLE projections in both

cases, error was of order 10−5 [30].

2.5.5 Robust Locally Linear Embedding

The ability of LLE to deal with large sizes of high dimensional data and non-

iterative way to find the embedding makes it more and more attractive to several

researchers. All the studies which investigated and experimented this approach

have concluded that LLE is a robust and efficient algorithm when the data lie on

a smooth and well sampled single manifold [20].

Recently, Hadid and Pietikäinen explored the behavior of the LLE algorithm

when the data include some noise or outliers and proposed a method to make

LLE more robust. Their method is based on the assumption that all outliers are

very far away from the data on the manifold and they themselves form distinct

connected components in the neighborhoood graph. Hence the outliers have

no effect on the reconstruction of the manifold data points. Apparently, this

assumption is not always true for many real-world applications.

To overcome this restricted assumption and make LLE more robust, in 2005
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Chang and Yeung proposed a different approach to the problem of outliers. They

believed it is crucial to be able to identify the outliers and reduce their influence

on the embedding result. Their robust version of LLE, or RLLE, first performs

local robust PCA [47] on the data points in the manifold using a weighted PCA

algorithm. A reliability score is then obtained for each data point to indicate how

likely it is a clean data point (i.e., non-outlier). The reliability scores are then

used to constrain the locally linear fitting procedure and generalize the subsequent

embedding procedure by incorporating the reliability scores as weights into the

cost function. The undesirable effect of outliers on the embedding result can

thus be largely reduced. Experimental results on both synthetic and real-world

data show the efficacy of RLLE. The RLLE algorithm makes LLE more robust

from two aspects. In the first step of the algorithm, the probability of choosing

outliers as neighbours is reduced so that the reconstruction weights reflect more

accurately the local geometry of the manifold. In the second step, the undesirable

effect of outliers on the embedding result is further reduced by incorporating the

reliability scores as weights into the cost function.

2.5.6 Automatic determination of the optimal number of

nearest neighbours

The algorithm of LLE has two parameters to be set: the number of nearest

neighbours k for each data point and the dimensionality of the embedded space

d, that is, the intrinsic dimensionality of a manifold or equivalently the minimal

number of degrees of freedom needed to generate the original data [34]. One

of the aims of multidimensional data analysis is visualization, which often helps

to see clustering tendencies in underlying data. Visualization, frequently con-

sidered in previous works, mean that d is fixed (1, 2 or 3) for the purpose of a

better visualization, so that the only parameter to be estimated is k. The reason

for choosing the right k is that a large number of nearest neighbours produces

smoothing or eliminating of small-scale structures in the manifold. In contrast,
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too small number of nearest neighbours can falsely divide the continuous manifold

into disjointed sub-manifolds [34].

In Kouropteva et al. (2002), a procedure for the automatic selection of the

optimal value for the parameter k is proposed. Thus, the aim was to find a

measure which could faithfully estimate the quality of input-output mapping, that

is, how well the high dimensional structure is represented in the embedded space.

The authors considered the residual variance to be suitable for this purpose.

It is defined as 1 − ρ2
DxDy

where ρ is the standard linear correlation coefficient

taken over all entries of Dx and Dy where Dx and Dy are the matrices of euclidean

distances (between pairs of points) in the high dimensional and embedded spaces,

respectively. The lower the residual variance is, the better high dimensional data

are represented in the embedded space. Hence, the optimal value for k, kopt, can

be determined as:

kopt = arg mink(1 − ρ2
DxDy

)

In order to select the value of kopt, first a set of potential candidates to become

kopt is selected without proceeding through all steps of LLE, followed by com-

puting the residual variance for each candidate and picking that candidate for

which this measure is minimal. As a result, the most time-consuming operation

of LLE, that is, the eigenvector computation, is carried out only few times, which

leads to a significant speed up. Result obtained with face images and with wood

images demonstrate that the method is accurate [32]. Details of the method can

be found in [34].

2.5.7 Estimation of the Intrinsic Dimensionality

In the situation where the intrinsic dimensionality of a high dimensional data

set is not enforced to 1, 2 or 3 for a better visualization purpose, one might be in-

terested in estimating the intrinsic dimensionality . As evidenced above, the goal

of this intrinsic dimensionality estimation is to find the number of independent

parameter needed to represent a data sample.
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The PCA strategy to find the intrinsic dimensionality for linear manifolds

is based on computing the linear projections of greatest variance from the top

eigenvectors of the covariance matrix for the data.

In 2002, Polito and Perona, proposed a similar strategy for LLE, that is,

they try to estimate d by the number of eigenvalues that are appreciable in mag-

nitude to the second smallest nonzero eigenvalue of the cost matrix M , from

Equation (2.5). The main difference between PCA and LLE is that the former

method concentrates on finding eigenvectors corresponding to the largest eigen-

values, while the latter one searches for the bottom eigenvectors. Hence, in the

case of LLE, one has to deal with ill-conditioned eigenvalues and eigenvectors.

In spite of the ill-conditioning of the individual eigenvectors, those correspond-

ing to a cluster of close eigenvalues are better conditioned together, and they span

the invariant subspace [7]. As evidenced by foregoing, it is natural to estimate

the intrinsic dimensionality of the data manifold by the number of the smallest

eigenvalues that form a cluster as illustrated in [34].

In Saul and Roweis (2003), it was empirically shown that sometimes this pro-

cedure of estimating the intrinsic dimensionality does not work for data that

has been sampled in a non uniform way. This situation might occur in a case

where a gap between ill-conditioned eigenvalues is large. Hence, the eigenspace

obtained with the eigenvectors corresponding to the cluster formed by the clos-

est eigenvalues is no longer invariant, leading to wrong intrinsic dimensionality

estimations [34].

Thus, they have found more useful to rely on classical methods [27] which

should be used prior to the final step of LLE for estimating the intrinsic dimen-

sionality d of a data set. Further details can be found in [34].



Chapter 3

Automatic determination of k
neighbours

In this chapter we deal with the determination of the optimal number of k

nearest neighbours since this parameter dramatically affects the resulting projec-

tion of the high dimensional data into a low dimensional space. In fact a large

number of nearest neighbours causes smoothing or eliminates the scale structures

in the data whereas a small number of nearest neighbours can falsely divide the

continuous manifold into disjoint sub-manifolds.

3.1 Our proposal for the choice of k neighbours

For each data point let us assume that

xi = X(i)w(i) + 1ei

where 1ei ∼ N (0, Σ) and Σ is the diagonal covariance matrix that doesn’t de-

pend on a particular data point i and for which we assume the homoscedasticity

27
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assumption:

ΣD×D =















σ2 0 0 0

0 σ2 0 0

0 0
. . . 0

0 0 0 σ2















.

Thus, for a data matrix of size D × n, we deal with n models of multiple

regression and we want to solve a problem of model selection in order to identify

the best number of k neighbours able to reconstruct each data point by minimizing

the error.

In order to solve this issue we investigate three criteria for the automatic

determination of the optimal number of nearest neighbours:

• R̄2, the adjusted coefficient of multiple determination,

• The Akaike’s Information Criterion,

• The Bayesian’s Information Criterion.

3.1.1 The adjusted coefficient of multiple determination

The adjusted R̄2 is a measure of how well the independent variables predict the

dependent variable. The adjusted R̄2 penalizes R2 for the number of explanatory

variables included into the model, in fact, the determination index R2 has the

disadvantage that always increases when a new regressor is added to the model.

As regressors are added to the model, each predictor will explain some of the

variance in the dependent variable simply due to chance.

Therefore, the adjusted R̄2 is a better comparison between models with dif-

ferent number of independent variables and it is required when the number of

regressors is high relative to the number of points. It is computed as:

R̄2 = 1 −
[

(1 − R2)
n − 1

n − p − 1

]
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where n are the points and p the number of regressors included into the model.

As is possible to note from the above formula, when the number of observation is

small and the number of regressor is large, there will be a much greater difference

between R̄2 and R2 because the ratio n−1
n−p−1

will be less than 1. By contrast, when

the number of observation is very large compared to the number of regressor the

value of R̄2 and R2 will be much closer because the ratio n−1
n−p−1

will approach

to 1.

For these reasons the adjusted R̄2 seems to be suitable for model selection

where each of n model considered has a number of points relative small respect

to the number of regressors included in the model at each time.

Assuming a model xi = X(i)w(i) + 1ei, where the point xi is a D-dimensional

vector, the adjusted R̄2 is defined as:

R̄2 = 1 −







∑D

d=1

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

)2

/(D − k)
∑D

d=1 (xid − x̄i)
2 /(D − 1)






,

where SSE =
∑D

d=1

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

)2

is the residual sum of squares and

(D − k) its degrees of freedom and SST =
∑D

d=1 (xid − x̄i)
2 is the total sum of

squares of the model with (D − 1) degrees of freedom. A higher adjusted R̄2

indicates a better model.

3.1.2 The Akaike’s Information Criterion

The Akaike’s information criterion (AIC), developed by Hirotugu Akaike in

1971 and proposed in 1974, is a measure of the goodness of fit of an estimated

statistical model. It is grounded in the concept of entropy and it is an operational

way of trading off the complexity of an estimated model against how well the

model fits the data. It is defined as:

AIC = −2 max log likelihood + 2p
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where p is the number of the model free parameters. Details can be found in [2].

In 1951 Kullback and Leibler had been addressed the issue of finding which

model would be best approximate reality given the data recorded. In other words,

they had been tried to minimize the loss of information and so they had been

developed a measure, the Kullback–Leibler Information, 1 to represent the infor-

mation lost, when approximating reality.

Hirotugu Akaike in 1971 has been developed a measure for model selection

using Kullback–Leibler Information. This establishes a relationship between the

maximum likelihood, which is an estimation method used in many statistical

analysis, and the Kullback–Leibler Information. Later in 1981, he declared in [4]:

[ ...On the morning of March 16, 1971, while taking a seat in a com-

muter train, I suddenly realized that the parameters of the factor anal-

ysis model were estimated by maximizing the likelihood and that the

mean value of the logarithmus of the likelihood was connected with the

Kullback-Leibler Information number. This was the quantity that was

to replace the mean squared error of prediction. A new measure of

the badness of a statistical model with parameters determined by the

method of maximum likelihood was then defined by the formula AIC =

(−2)loge(maximum likelihood) + 2(number of parameters). AIC is an

acronym for “an information criterion” and was first introduced in

1971. A model with a lower value of AIC is considered to be a better

model. ... ].

1In probability theory and information theory, the Kullback-Leibler divergence (or infor-
mation divergence) is a natural distance measure from a true probability distribution P to an
arbitrary probability distribution Q. Typically P represents data, observations, or a precise
calculated probability distribution. The measure Q typically represents a theory, a model, a
description or an approximation of P.For probability distributions P and Q of a discrete variable

the KullbackLeibler divergence of Q from P is defined as:DKL(P ||Q) =
∑

i P (i)log P (i)
Q(i) . For

distributions P and Q of a continuous random variable the summations give way to integrals,

so that: DKL(P ||Q) =
∫

∞

−∞
p(x)log p(x)

q(x) dx where p and q denote the densities of P and Q.

(Wikipedia)
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Considering a model xi = X(i)w(i)+1ei we proceed to compute the log likelihood

of the model:

l(Σ \ x, w) =

n
∑

i=1

D
∑

d=1



− log(σ
√

2π) − 1

2

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

σ

)2




=

n
∑

i=1

D
∑

d=1



−log
√

2π − logσ − 1

2

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

σ

)2




= C − nD

2
logσ2 − 1

2

n
∑

i=1

D
∑

d=1

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

)2

σ2

where C stands for a constant equal to −log
√

2π.

Then, we proceed to maximize the log likelihood over σ2:

δ

δσ2
l(Σ \ x, w) = −nD

2σ2
+

1

2

∑

i,d

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

)2

(σ2)2
.

In order to obtain the maximum estimate of σ2, we set it to zero obtaining

the following log likelihood estimate:

−nD

2σ2
+

1

2

∑

i,d

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

)2

(σ2)2
= 0

=⇒ σ̂2 =

∑

i,d

(

xid −
∑k

j=1 X
(i)
j w

(i)
j

)2

nD
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Finally, we obtain the maximum log likelihood as:

l(Σ̂, \x, w) = C − nD

2
log
∑

i,d

(

xid −
k
∑

j=1

X
(i)
j w

(i)
j

)2

− log(nD) − 1

2

∑

i,d

nD

= C + C∗ − nD

2
log
∑

i,d

(

xid −
k
∑

j=1

X
(i)
j w

(i)
j

)2

where C∗ is the constant equal to
(

−log(nD) − 1
2

∑

i,d nD
)

.

Replacing the maximum log likelihood in the Akaike’s Information Criterion

we achieve:

AIC(k) = nDlog
n
∑

i=1

D
∑

d=1

(

xid −
k
∑

j=1

X
(i)
j w

(i)
j

)2

+ 2(nk + 1)

where nk + 1 is the number of the model free parameters, that is w
(i)
j for

i = 1, . . . , n; j = 1, . . . , k and σ2.

In order to select the optimal number of nearest neighbours we choose those

k∗ that minimize the AIC value:

k∗ = arg min(1≤k≤n−1)AIC(k)

3.1.3 The Bayesian’s Information Criterion

The Bayesian’s Information Criterion (BIC) proposed by Akaike in 1978 has

become a popular criterion for model selection in the last few years [3]. The BIC

was developed to provide a measure of the weight of evidence favoring one model

over another, or Bayes factor.

To combine the maximum likelihood (data fitting) and the choice of model,

the maximum log likelihood would be penalized with a term related to the model
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complexity. The typical penalty term is like αp where p is the number of the

model free parameters.

When α = 2 the Akaike’s Information Criterion formula is obtained as de-

scribed in the previous section.

When α = logn the Bayesian’s Information Criterion is achieved:

BIC = −2 max log likelihood + p log n

which is characterized by a higher penalty term respect AIC since it involves

also the sample dimension n.

For the model xi = X(i)w(i) + 1ei the Bayesian’s Information Criterion results:

BIC(k) = nDlog
n
∑

i=1

D
∑

d=1

(

xid −
k
∑

j=1

X
(i)
j w

(i)
j

)2

+ (nk + 1)log(n).

In order to select the optimal number of nearest neighbours we choose those k∗

that minimize the BIC value:

k∗ = arg min(1≤k≤n−1)BIC(k).



Chapter 4

Automatic Determination of d
coordinates

The original LLE algorithm was proposed in the context of visualizing the

speech and audio signals characterized by a high dimensionality. Since is not

possible for the human observer visually perceive a high dimensional represen-

tation of the data, the dimensionality was automatically reduced to one, two or

three. In each other situations where the purpose of the dimensionality reduction

technique can not reduced to data visualization, is needed to determine the in-

trinsic dimensionality of the data, that is, the number of free parameters needed

to represent the original high-dimensional space. In this chapter we propose some

criteria to solve the issue.

4.1 Proposal for the automatic determination of

parameter d

Once the optimal number of nearest neighbours able to reconstruct each data

point has been chosen, the purpose is that nearby points in the high-dimensional

space remain nearby and similarly co-located in the low-dimensional embedding.

Effectively we want that the location between points in the low-dimensional space

34
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is similar to the location between points in the original space.

The idea was to measure the location between points in order of distances.

Thus, let DX and DY be the n × n euclidean distance matrices measured in the

input and output spaces respectively. We will typically use the euclidean dis-

tance, but one can also make other choice. Then, we transform the matrices into

the H-dimensional vectors δX and δY by considering only the distances between

the points and their neighbours1. The dimension of the vectors depends by the

number of points and neighbours considered, so that it results H ≤ kn.

We assume that:

δY = b + cδX + 2e,

where b is the intercept of the model and 2e ∼ N (0, σ2
d).

As the dimensionality of X and Y are intrinsically different, it is crucial to

introduce a constant c, which is able to capture the difference in scale, in fact, if

δY = cδY , then Y is a good representation of X. When d increases, we expect σ2
d

to decrease as a result of an increasingly better fit.

We propose three different indices to evaluate the decrease of the error 2e:

1. the coefficient of determination R2,

2. The Akaike’s Information Criterion,

3. The Bayesian’s Information Criterion.

1Let dij the euclidean distance between pairs of points xi and xj . We assume dij = 0 if the
points xi and xj are not close to each other; otherwise, we assume dij = 1 if xi is close to xj

but xj is not close to xi and again we suppose dij = 1 if xi is close to xj and vice versa. The
sum of these distances define the dimensionality of the vectors δX and δY .
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4.1.1 The coefficient of determination

As already said in Section 3.1.1, the coefficient of determination R2 is a statis-

tic widely used to determine the goodness of the fit. It can be computed as:

R2 =
Dev(Y )regr

Dev(Y )
= 1 − Dev(Y )disp

Dev(Y )
.

R2 can also be computed as:

R2 =
Codev(X, Y )2

Dev(X)Dev(Y )
.

Following the latter formulation we determine the expression of R2 for the

regression model δY = cδX + 2e :

R2 =
Codev(δX, δY )2

Dev(δX)Dev(δY )
,

where

Codev(δX , δY ) =
H
∑

h=1

δX
h δY

h − Hδ̄X δ̄Y ,

Dev(δX) =

H
∑

h=1

(δX
h )2 − H(δ̄X)2,

Dev(δY ) =

H
∑

h=1

(δY
h )2 − H(δ̄Y )2,

and H is the set of all the neighbours (with H ≤ kn).

In order to select d∗ embedded coordinates able to represent in a lower space

the high-dimensional data by minimizing the error, we choose the larger value of

R2 as:

d∗ = arg max(1≤d≤D)R
2.
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4.1.2 The Akaike’s Information Criterion

In order to compute the AIC value for the model δY = b + cδX + 2e where

2e ∼ N (0, σ2
d) we proceed to determine the log likelihood of the model:

l(σ2
d \ δX) =

H
∑

h=1

[

−log
(

σd

√
2π
)

− 1

2

(

δY
h − cδX

h

)2

σ2
d

]

Then, we maximize the log likelihood over σ2
d:

δ

δσ2
d

l(σ2
d \ δX) = − H

2σ2
d

+
1

2

∑H

h=1

(

δY
h − cδX

h

)2

(σ2
d)

2

To obtain the maximum estimate of σ2
d, we set it to zero obtaining the fol-

lowing log likelihood estimate:

− H

2σ2
d

+
1

2

∑H

h=1

(

δY
h − cδX

h

)2

(σ2
d)

2 = 0

=⇒ σ̂2
d =

1

H

H
∑

h=1

(

δY
h − cδX

h

)2

Thus, we can write the Akaike’s Information Criterion as:

AIC(d) = −2 max log likelihood + 2p

⇓

AIC(d) = −2

H
∑

h=1

[

− log
(

σ̂d

√
2π
)

− 1

2

(

δY
h − cδX

h

)2

σ̂2
d

]

+ 2∗3

where c and σ2
d are the model free parameters.

We choose that number of d∗ embedded dimensions that satisfies the following
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relationship:

d∗ = arg min(1≤d≤D)AIC(d).

4.1.3 The Bayesian’s Information Criterion

For the model δY = b + cδX + 2e representing the distances in the low dimen-

sional embedding as expression of the distances in the high dimensional space

plus an error with Normal distribution 2e ∼ N (0, σ2
d) we derive the formulation

for the Bayesian’s Information Criterion as:

BIC(d) = −2 max log likelihood + p log n

⇓

BIC(d) = −2

H
∑

h=1

[

− log
(

σ̂d

√
2π
)

− 1

2

(

δY
h − cδX

h

)2

σ̂2
d

]

+ 3∗ log(H)

where c and σ2
d are the model free parameters. The value of the parameter that

satisfies the following relationship:

d∗ = arg min(1≤d≤D)BIC(d)

represents the d∗ embedded coordinates that the Bayesian’s Information Crite-

rion indicates as better reconstruction of the original high dimensional space by

minimizing the reconstruction error in term of the distances.



Chapter 5

Simulation Study

In order to test the proposed criteria for the automatic selection of the two

free parameters of the model, some simulation studies over a different synthetic

high-dimensional data sets have been conducted.

Section 5.1 presents the creation of several data sets by generating the d-

dimensional manifold embedded in a D-dimensional space with d � D.

Section 5.2 illustrates the regularization problem for the simulation study,

pointing out the choice for the penalty term in order to obtain an accurate selec-

tion for the parameter k.

Section 5.3 describes the results over a simulation study for the automatic

determination of the optimal number of k nearest neighbours by applying the

three proposed criteria. In this section a validation measure for the three methods

computed, is proposed and described in details.

Section 5.4 presents the results for the automatic selection of the intrinsic

dimensionality of the data manifold. The results are shown over the same simu-

lation study generated for the choice of the optimal number of nearest neighbours.

39
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5.1 Simulation data

The data have been generated by randomly sampling from two independent

uniform variables as u1 ∼ U(0, 1) and u2 ∼ U(0, 1) and by generating 10 nonlin-

ear combinations of the two-dimensional manifold.

Each data set consists of n = 500 points embedded in D = 10 non linear dimen-

sions and 100 different data sets have been simulated. In other words, the points

can be considered as a 2-dimensional manifold embedded in a 10-dimensional

space. The true dimension of this manifold is represented by the two indepen-

dent uniform variables, whereas other dimensions might be safely ignored.

For each data set and for each data point xi, i = 1, . . . , n, we proceed by

ordering all other n − 1 points in according to their proximity to xi, based on

euclidean distance. Proximity indices for all points are collected in a matrix

“index” of size n × n. Columns of this matrix correspond to points and rows

correspond to the nearest neighbours, the smaller row index correspond to the

nearest neighbours. For example, index3,4 = 7 means that the third nearest

neighbour of the point x4 is the point x7.

The distance between pairs of point xi and xj is computed as:

dij =

D
∑

d=1

(xid − xjd)
2,

that corresponds to the quadratic euclidean distance. We will typically use the

euclidean distance as in the original formulation of LLE algorithm, but other

choices are however possible.

Once the distances among the data points have been computed, k nearest

neighbours for each data point can be found by an automatic determination of

the model parameter.
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5.2 The regularization problem on simulation

study

Having found k nearest neighbours for each data point, the next step is to

assign a weight to every point of neighbouring points. This weight characterizes

a degree of closeness of two points [31].

As mentioned in Section 2.4.1, the LLE algorithm reconstructs each data point

xi from k neighbours of xi by means of the weight matrix as x̂i = X(i)w(i), where

x̂i is the estimate of the data point xi, X(i) is the matrix of k neighbours of a

data point and w(i) is the vector of the weights of i-th point. The optimal weights

w(i) are found by solving a least squares problem minimizing the reconstruction

error:

SS1(w, k) =
n
∑

i=1

∣

∣xi − X (i)w(i)
∣

∣

2
. (5.1)

Considering a (D× 1) data vector xi with its associated k nearest neighbours

matrix X (i) = [x(i,1), x(i,2), . . . , x(i,j), . . . , x(i,k)], where x(i,j) is the j-th neighbours

of xi, we compute the k-dimensional weight vector w(i) as:

w(i) =
(X

(i)t
c X

(i)
c + Λ)−11

1t(X
(i)t
c X

(i)
c + Λ)−11

,

where X
(i)
c = [x(i,1)−xi, . . . , x(i,k)−xi] is the centralized nearest-neighbour matrix

and Λ is a diagonal matrix where the elements of the diagonal are λ = ε
∑k

j=1 λj

where λj is the j-th eigenvalue of X
(i)t
c X

(i)
c and ε a small given tolerance. In

order to define the solution for k > D a regularization Λ is needed. In the

original algorithm, this regularization was only applied in those circumstances.

However, in order to make a fair choice of the appropriate number of neighbours

k, we apply the regularization for any k. We typically use a small tolerance equal

to ε = 0.001, as proposed by Roweis and Saul in the original LLE, but one can

also make other choices.
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5.3 Simulation results for the parameter k

5.3.1 Results on R̄2

In order to choose the optimal number of nearest neighbours we proceed by

computing for each value of k that varies between 1 up to 20 and for every data

point xi, (i = 1, . . . , n), n value of the adjusted coefficient R̄2 in according with

the following formula:

R̄2 = 1 −
[

∑D

d=1(xid − X
(i)
d w

(i)
d )2/D

∑D

d=1(xid − x̄i)2/(D − 1)

]

, (5.2)

where D are the resulting degrees of freedom1 of the residual sum of squares

when the regularization term is applied for every k. We use the regularization

term for any k in order to avoid to favour those k > D, in fact, if we apply the

regularization term only when k become greater than D, follows that

SSE

SST

(D − 1)

D
<

SSE

SST

(D − 1)

(D − k)

and so R̄2
k>D > R̄2

k<D. Thus, by applying the regularization term only when

k > D the method would select those neighbours greater than dimension.

Once obtained n = 500 values of R̄2, we consider the mean value of R̄2 over

n data points in order to summarize the percentage of variation that can be

explained by k neighbours, in other words, how well k neighbours can faithfully

describe the entire data set. After k = 20 values of R̄2 are achieved for each

simulation, it is necessary to compute for every k considered, the mean value of R̄2

over 100 simulations. In Figure 5.1 the results are presented. Figure 5.1(a) shows

1When the regularization term is applied for every k and not only when k > D, the degrees
of freedom of the residual sum of square results equal to D. In fact, the resulting degrees of
freedom are obtained as the sum of (D − k) effective degrees of freedom of the model plus k

bonds needed to estimate each data point when the regularization is introduced. Hence the
resulting degrees of freedom are: (D − k) + k = D
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the mean values of R̄2 for k = 1, . . . , 20 by revealing the decreasing structure of

the adjusted coefficient, whereas the Figure 5.1(b) shows the histogram of the

relative frequency for every k over 100 simulations.
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Figure 5.1. The mean values of R̄2 for 1 ≤ k ≤ 20 and the relative frequency of k
over 100 simulations.

As is possible to note from Figure 5.1(a), R̄2 rapidly increases until a value

of k = 8 neighbours, it presents maximum values for 8 ≤ k ≤ 10, after that

R̄2 shows a decreasing behaviour. This suggests an interval of k values in which

every value seems to be able to represent the whole data set by minimizing the

reconstruction error. Furthermore, the Figure 5.1(b) shows the relative frequency

for every value of k. For example, it explains that in 24% simulations, k = 7

neighbours maximize the R̄2 value and in 19% simulations the value of R̄2 is

maximized when k = 8. Summarizing the results for the histogram, is possible

to note that for 64% of the simulations conducted on 100 different data sets the

value of R̄2 results maximum for 7 ≤ k ≤ 10. Further analysis will deal us to

choose only one value to be used in LLE algorithm as presented in Section 5.3.3.
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5.3.2 Results on AIC and BIC

In order to define an optimality choice for the parameter2 k, the Akaike and

Bayesian’s Information Criteria are computed for every simulated data set in

according with the following formula3:

AIC(k) = nDlog
n
∑

i=1

D
∑

d=1

(

xid − X
(i)
d w

(i)
d

)2

+ 2(nk + 1),

BIC(k) = nDlog
n
∑

i=1

D
∑

d=1

(

xid − X
(i)
d w

(i)
d

)2

+ (nk + 1)log(n).

Thus, the mean values of Akaike and Bayesian’s Information Criteria over 100

simulations are calculated, obtaining the results shown in Figure 5.2.

The Akaike’s Information Criteria, reported in Figure 5.2(a), rapidly decreases

until to achieve the minimum value for k = 6 neighbours; after that it presents

an increasingly behaviour as k increases. Likewise, as shown in Figure 5.2(b), the

Bayesian’s Information Criterion achieves the minimum value when k = 4 and a

very close value to the minimum when k = 5; after that it increases as well as k

grows.

In both plots the existence of a global minimum for small values of k is caused

by the fact that for the data set with many points, their first few neighbours are all

close to them and so adding a new neighbour it decreases the reconstruction error

every time; but, once achieved the minimum value, the penalty term included into

the model works to generate a trade off between the complexity of the model and

the goodness of the fit, with the result that the values tend to increase.

The optimal number of neighbours identified by minimizing the Akaike and

Bayesian’s Information Criteria are different to each other and furthermore they

2for computational problems the value of possible k neighbours included into the model is
considered up to k = 20. This value is enough to define an optimality choice of the model free
parameter.

3We calculate the Akaike and Bayesian’s Information Criteria by introducing, for any k, the
small given tolerance term equal to ε = 0.001 as applied to compute R̄2.
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Figure 5.2. (a)The mean values of Akaike (b) and Bayesian’s Information Criteria
for 1 ≤ k ≤ 20 over 100 simulations.

are quite dissimilar to the optimality choice of the model free parameter based

on R̄2, which has been selected an interval of optimal values equal to k ∈ [8, 10].

Since we deal with synthetic data sets for which the true 2-dimensional manifold

is known, we can obtain a validation measure for the three criteria in order to

identify which is the best choice of the optimal number of nearest neighbours. In

order to solve this issue we use the Ordinary Procrustes Analysis.

5.3.3 Validation measure to the proposed methods

Effectively, at this point, we want to provide a validation measure by compar-

ing the configurations of the true two-dimensional manifold with those discovered

by LLE algorithm for every value of k (with k ∈ [1, 20]). The Ordinary Procrustes

Analysis (OPA) seems to be suitable for this purpose.

The Ordinary Procrustes Analysis is a method commonly used for comparing

the shape differences between two objects with m landmarks. The shape of an

object is defined in a mathematical context as all the geometrical informations
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that remain after location, scale and rotational effect are filtered out, that is the

shape of an object is invariant under the euclidean similarity transformation of

translation, scaling and rotation. Each shape is described by a finite number of

points which are called landmarks. This Procrustes method estimates the op-

timal similarity transformation (translation, scale and rotation) parameters by

minimizing a least squares criterion. Before comparing two shapes, the location,

scale and rotation effect must to filter out.

The translational components can be removed by translating the object so that

the mean of all points lie at the origin. The translation essentially moves the

shapes to a common center. The origin (0, 0) is the most likely candidate to

become that common center, yet not exclusively so.

The scale component can be removed by scaling the object so that the sum of

the squared distances from the points to the origin is 1, in other words, the iso-

morphic scaling is a manipulation technique that transform a shape smaller or

larger while maintaining the ratio of the shapes proportion.

When the matrices are aligned and scaled it is time for the rotation step. Remov-

ing the rotational components is more complex. Considering two objects with

scaling and translational effect removed, let the points of these be ((x1, y1), . . . )

and ((z1, t1), . . . ). Fix one of these and rotate the other around the origin so that

the sum of the squared distances between the points is minimized. This distances

can be minimized by finding the angle θ which gives the minimum distance.

Thus, let X1 the reference configuration and X2 the shape which is to be

transformed, the Ordinary Procrustes Analysis finds the similarity transformation

to be applied to X2 which minimize its euclidean distance from the configuration

X1. It finds the similarity parameters s, R and t which minimize:

D2
OPA(X1,X2) = (X1 − (sX2R + 1mtt))2

where s is a scaling parameter, R is a rotation parameter and t is a translation

vector. The minimum of the above equation is denoted by OSS(X1,X2) which
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stands for the Ordinary Procrustes sum of squares error.

For every value of k ∈ [1, 20] we proceed by comparing, on the generated 100

data sets, the true data configurations with those obtained by LLE and in this

way we compute the mean values of the Ordinary Procrustes sum of squares error

over 100 simulations. The results are represented in Figure 5.3.
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Figure 5.3. The mean values of the Procrustes sum of squares error on 100 simula-
tions for every value of k ∈ [1, 20].

The Ordinary Procrustes sum of squares error quickly decreases until a value

of k = 8 neighbours, after this, the imperceptible decrease in the error does not

justify the increase in the number of neighbours to include into the model. Thus,

the plot identifies a value of k = 8 neighbours as the optimal neighborhood choice

able to minimize the squared error between the true data configurations and those

obtained by LLE algorithm.

In the light of the Procrustes Analysis, we can compare this result with those

obtained by the three different proposed criteria for the choice of k neighbours.
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A summarizing scheme is shown in Table 5.1.

number of

k neighbours

R̄2 [8, 10]

AIC(k) 6

BIC(k) 4

Procrustes 8

Table 5.1. The optimal choice of k nearest neighbours for the three proposed criteria
and for the Procrustes Analysis validation.

The Akaike and Bayesian’s Information Criteria underestimate the true pa-

rameter value, since their values are equal to k = 6 and k = 4 respectively.

Otherwise the optimal number of nearest neighbours proposed by R̄2 technique

seems to be in accordance with the best choice of k suggested via the Procrustes

Analysis. In fact, R̄2 identifies an interval of k ∈ [8, 10] which provides maximum

values for the multiple coefficient of determination. The differences among the in-

terval values of k are so imperceptible that we can safely choose k = 8 neighbours

to be used in the LLE algorithm.

5.4 Simulation results for the parameter d

The intrinsic dimensionality of the data manifold can be expressed as the

minimal number of degrees of freedom needed to generate the original data. In
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order to select the intrinsic dimensionality4 of the generated 100 data sets with

k = 8 neighbours per data point, we consider for each data set and for each

dimension d ∈ [1, 10] the euclidean distances matrices, DX and DY , of the input

and output data spaces respectively. Then, we transform the matrices into the

H-dimensional vectors δX and δY by extracting only the distances between the

points and their neighbours.

After that, we compute for each dimension the mean values over 100 simu-

lations of R2, AIC(d) and BIC(d) in accordance with the formula described in

Sections 4.1.1, 4.1.2 and 4.1.3:

R2 =
Codev(δX, δY )2

Dev(δX)Dev(δY )
,

AIC(d) = −2
H
∑

h=1

[

− log
(

σ̂d

√
2π
)

− 1

2

(

δY
h − cδX

h

)2

σ̂2
d

]

+ 2∗3,

BIC(d) = −2
H
∑

h=1

[

− log
(

σ̂d

√
2π
)

− 1

2

(

δY
h − cδX

h

)2

σ̂2
d

]

+ 3∗ log(H),

obtaining the results shown in Figure 5.4.

As the Figure 5.4(a) highlights, the coefficient of determination achieves the

maximum value for d = 2 dimensions and then decreases as well as d increases,

putting in evidence that it is able to reveal the true intrinsic data dimensionality.

Moreover, the Akaike and Bayesian’s Information Criteria (Figures 5.4(a) and

5.4(b), respectively) are minimized when the dimensionality is equal to 2 implying

that also these criteria can faithfully reveal the real structure of the original data

sets by detecting the minimal number of degrees of freedom needed to generate

the original data spaces. A validation measure to the results provided by three

proposed criteria is not needed in this case, since we deal with simulated data

sets for which the true intrinsic data dimensionality is known. We conclude

4In this part we are not constraining the intrinsic dimensionality to 1, 2 or 3 for visualization
purpose, but we are searching for the true 2-dimensionality data space.
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Figure 5.4. The mean values of (a) R2, (b) Akaike’s Information Criterion and (c)
Bayesian’s Information Criterion over 100 generated data sets.

that for simulated data, the proposed methods for finding the intrinsic data

dimensionality are quite accurate.



Chapter 6

An Introduction to Microarray

Data Analysis

In the last decade, molecular biology has seen the rise of a new technology

known as DNA microarrays (simplified as microarrays) [28]. DNA microarrays

involves monitoring the expression levels of thousands of genes simultaneously

under a particular condition, called gene expression analysis.

This chapter provides an overview of DNA microarrays technology.

6.1 Nucleic Acids: DNA and RNA

Genes are specific sequences of DNA that determine, for instance, our eye

color, hair color, height, etc. DNA is described as a double helix. It looks like a

twisted long ladder. The sides of the ‘ladder’ are formed by a backbone of sugar

and phosphate molecules, and the ‘crosspieces’ consist of two nucleotide bases

joined weakly in the middle by hydrogen bonds. On either side of the ‘rungs’

lie complementary bases. Every Adenine base (A) is flanked by a Thymine (T)

base, whereas every Guanine base (G) has a Cytosine partner (C) on the other

side. Therefore, the strands of the helix are each other’s complement. It is this

basic chemical fact of complementarity that lies at the basis of each microarray.

Microarrays have many single strands of a gene sequence segment attached to

51
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their surface, known as probes [48]. Ribonucleic Acid (RNA) delivers DNA’s

genetic message to the cytoplasm of a cell where proteins are made. Chemically

speaking, RNA is similar to a single strand of DNA. The purpose of a microarray

is to measure for gene in the genome the amount of message that was broad-

cast through the RNA. Roughly speaking, colour-labelled RNA is applied to the

microarray, and if the RNA finds its complementary sibling on the array, then

it naturally binds and sticks to the array. By measuring the amount of colour

emitted by the array, one can get a sense of how much RNA was produced for

each gene [48].

6.2 Microarrays technology

Microarrays technology has become one of the major tools that many re-

searchers use to monitor genome wide expression levels of genes in a given or-

ganism. The goal of many microarray experiments is to identify the genes that

are differentially transcribed with respect to different biological conditions of cell

cultures or tissue samples.

A microarray is typically a glass (or some other material) slide on to which

DNA molecules are fixed in an ordered manner at specific locations called spots

(or features). A microarray may contain thousands of spots and each spot may

contain a few milion copies of identical DNA molecules that uniquely correspond

to a gene. The DNA in a spot may either be genomic DNA or short stretch of

oligo-nucleotide strands that correspond to a gene. The spots are printed on to

the glass slide by a robot or are synthesised by the process of photolithography [6].

Microarrays may be used to measure gene expression in many ways. One of the

most popular application is to compare the expression of a set of genes from a cell

mantained in a particular condition (condition A) to the same set of genes from

a reference cell under a normal condition (condition B). First, RNA is extracted

from the cell and then, RNA molecules in the extract are reverse transcribed
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into cDNA by using an enzyme reverse transcriptase and nucleotides labelled

through the incorporation of radioactive markers, such as P, or of fluorescent

dyes, such as phy-coerythrin, Cy3, or Cy5. For example, cDNA from cells grown

in condition A may be labelled with a red dye and from cells grown in condition

B with a green dye. Once the samples have been differentially labelled, they are

allowed to hybridize onto the same glass slide. At this point any cDNA sequence

in the sample will hybridize to specific spots on the glass slide containing its

complementary sequence. The amount of cDNA bound to a spot will be directly

proportional to the initial number of RNA molecules present for that gene in

both samples [6].

Following the hybridization step, the spots in the hybridized microarray are

excited by a laser and scanned at suitable wavelengths to detect the red and

green dyes. The amount of fluorescence emitted upon excitation corresponds to

the amount of bound nucleic acid. For istance, if cDNA from condition A for a

particular gene was in greater abundance than that from condition B, one would

find the spot to be red. If it was the other way, the spot would be green. If

the gene was expressed to the same extent in both conditions, one would find

the spot to be yellow, and if the gene was not expressed in both conditions, the

spot would be black. Thus, what it seen at the end of the experiment stage is

an image of the microarray, in which each spot that corresponds to a gene has

an associated fluorescence value representing the relative expression level of that

gene [6]. An example of the microarray technology is provided in Figure 6.1.

6.2.1 Image processing and analysis

In the previous section, we saw that the relative expression level for each gene

(population of RNA in the two samples) can be stored as an image. The first step

in the analysis of microarray data is to process this image. Most manufacturers

of microarray scanners provide their own software; however, it is important to

understand how data is actually being extracted from images, as this represents
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Figure 6.1. Microarray technology process.

the primary data collection step and forms the basis of any further analysis.

Image processing involves the following steps:

1. Identification of the spots and distinguishing them from spurious signals.

The microarray is scanned following hybridization and an image file is nor-

mally generated. Once image generation is completed, the image is analyzed

to identify spots. In the case of microarrays, the spots are arranged in an

orderly manner into sub-arrays, which makes spot identification straightfor-

ward. Most image processing software requires the user to specify approx-

imately where each sub-array lies and also additional parameters relevant

to the spotted array. This information is then used to identify regions that

correspond to spots.

2. Determination of the spot area to be surveyed, determination of the local

region to estimate background hybridization.

After identifying regions that correspond to sub-arrays, an area within the

sub-array must be selected to get a measure of the spot signal and an

estimate for background intensity. There are two methods to define the

spot signal. The first method is to use an area of a fixed size that is centred

on the centre of mass of the spot. This method has an advantage that it
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is computationally less expensive, but a disadvantage of being more error-

prone in estimating spot intensity and background intensity. An alternative

method is to precisely define the boundary for a spot and only include pixels

within the boundary. This method has an advantage that it can give a

better estimate of the spot intensity, but also has a disadvantage of being

computationally intensive and time-consuming.

3. Reporting summary statistics and assigning spot intensity after subtracting

for background intensity.

Once the spot and background areas have been defined, a variety of sum-

mary statistics for each spot in each channel (red and green channels) are

reported. Typically, each pixel within the area is taken into account, and

the mean, median, and total values for the intensity considering all the

pixels in the defined area are reported for both the spot and background.

Most approaches use the spot median value, with the background median

value subtracted from it, as the metric to represent spot intensity [6].

6.2.2 Expression ratios: the primary comparison

We saw that the relative expression level for a gene can be measured as the

amount of red or green light emitted after excitation. The most common metric

used to relate this information is called expression ratio. It is denoted as Tl and

defined as:

Tl =
Rl

Gl

,

where l denotes each gene on the array, Rl represents the spot intensity metric

for the test sample and Gl represents the spot intensity metric for the reference

sample. As mentioned above, the spot intensity metric for each gene can be

represented as a total intensity value or a background subtracted median value.

If we choose the median pixel value, then the median expression ratio for a given
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spot is:

Tmedian =
Rspot

median − Rbackground
median

Gspot
median − Gbackground

median

.

The expression ratio is a relevant way of representing expression differences in

a very intuitive manner. For example, genes that do not differ in their expression

level will have an expression ratio of 1 [6].

6.3 Data normalization

In the last section, it was shown that expression ratio is a reasonable mea-

sure to detect differentially expressed genes. However, when one compares the

expression levels of genes that should not change in the two conditions, what one

quite often finds is that an average expression ratio of such genes deviates from

1. This may be due to various reasons, for example, variation caused by differen-

tial labelling efficiency of the two fluorescent dyes or different amounts of starting

mRNA material in the two samples. Thus, in the case of microarray experiments,

as for any large-scale experiments, there are many sources of systematic variation

that affect measurements of gene expression levels.

Normalization is a term that is used to describe the process of eliminating

such variations to allow appropriate comparison of data obtained from the two

samples. The first step in a normalization procedure is to choose a gene-set

(which consists of genes for which expression levels should not change under the

conditions studied, that is the expression ratio for all genes in the gene-set is

expected to be 1). From that set, a normalization factor, which is a number

that accounts for the variability seen in the gene-set, is calculated. It is then

applied to the other genes in the microarray experiment. One should note that

the normalization procedure changes the data, and is carried out only on the

background corrected values for each spot [6].
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6.4 Analysis of gene expression data

The processed data, after the normalization procedure, can then be repre-

sented in the form of a matrix, often called gene expression matrix. Each row

in the matrix corresponds to a particular gene and each column could either

correspond to an experimental condition or a specific time point at which ex-

pression of the genes has been measured. The expression levels for a gene across

different experimental conditions are cumulatively called the “gene expression

profile”, and the expression levels for all genes under an experimental condition

are cumulatively called the “sample expression profile”.

Once we have obtained the gene expression matrix, additional levels of anno-

tation can be added either to the gene or to the sample. Depending on whether

the annotation is used or not, analysis of gene expression data can be classified

into two different types, namely supervised or unsupervised learning. In the case

of a supervised learning, we do use the annotation of either the gene or the sam-

ple, and create clusters of genes or samples in order to identify ”objects” with

similar expression profiles. In the case of an unsupervised learning, the expres-

sion data is analyzed to identify patterns that can group genes or samples into

clusters without the use of any form of annotation [6].

6.5 Relating expression data to other biological

information

Gene expression profiles can be linked to external information to gain insight

into biological processes and to make new discoveries.
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6.5.1 Predicting binding sites

It is reasonable to assume that genes with similar expression profiles are reg-

ulated by the same set of transcription factors. If this happens to be the case,

then genes that have similar expression profiles should have similar transcription

factor binding sites upstream of the coding sequence in the DNA. Various re-

search groups have exploited this assumption. The steps involved in such studies

are the following:

1. Find a set of genes that have similar expression profiles.

2. Extract promoter sequences of the co-expressed genes.

3. Identify statistically over-represented sequence patterns.

4. Assess quality of the discovered pattern using statistical significance criteria.

6.5.2 Predicting protein interactions and protein func-

tions

Integrating expression data with other external information, for example evo-

lutionary conservation of proteins, have been used to predict interacting proteins,

protein complexes, and protein function. The Works by Ge et al. (2001) and

Jansen and Gerstein (2000) have shown that genes with similar expression pro-

files are more likely to encode proteins that interact. When this information is

combined with evolutionary conservation of proteins, meaningful predictions can

be made.

6.5.3 Predicting functionally conserved modules

Genes that have similar expression profiles often have related functions. In-

stead of studying co-expressed pairs of genes, one can view sets of co-expressed

genes that are known to interact as a functional module involved in a particular
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biological process (Madan Babuet al., 2004). This information, when integrated

with the evolutionary conservation of proteins in more than two organisms, pro-

vides knowledge of the significance of the functional modules that have been

conserved in evolution [6].



Chapter 7

Microarray Study

Due to the ultra high dimensionality nature of microarray data, data dimen-

sion reduction plays an important role for such type of data analysis.

Dimensionality reduction of microarray data consists in reducing a n × D input

matrix, where n represents the different experimental samples or patients, and D

the number of genes, in a new matrix of size n × d, with d � D, while striving

to retain much of the initial information contained in the whole data set.

Dimensionality reduction of microarray data can be applied by two different

and feasible approaches: (1) reducing the number of genes or dimensions in the

data while maintaining the number of samples constant, or (2) reducing the

number of samples while keeping the number of genes constant [28].

In this thesis we focus on the former approach and strive to reduce the di-

mensions of microarray data in order to obtain a smaller data set that is still

representative of the original.

In this chapter we present the results of dimensionality reduction analysis over

several public data sets: the mammary data set of Wit and McClure (2004), the

lymphoma data set of Alizadeth et al. (2000), the leukemia data set of Golub et

al. (1999). Detail descriptions of these data sets are provided in the Sections 7.1,

7.2 and 7.3 respectively.

60
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7.1 Results on Mammary data set

7.1.1 The data

In order to find out the key genetic determinants associated with aggressive

and non-aggressive breast cancer, the researcher John Bartlett of the University

of Glasgow, investigated differences in the genomic DNA of breast cancer patients

compares to that in controls.

In cancer cells, the genome can undergo change, such as obtaining additional

copies of certain genes and losing genetic material from other genes. An increase

in the gene number is known as gene amplification. When fewer copies are present

compared to the genome of normal cells, this is known as gene deletion. In

order to link gene amplification/deletion information to the aggressiveness of

the tumours in the experiment, clinical information is available about each of

the patients, such as their Nottingham prognostic index (NPI). This was used

to classify the tumours into different severity groups while controlling for non-

genomic influences. The work resulted in a sub-classification of breast cancer and

it suggested genes that have an effect on the aggressiveness of the cancer. The

result of the experiment are detailed in Witton et al. (2002).

Genomic DNA from cancer patients is extracted from stored frozen tumours

tissue and from female reference DNA. The arrays contain 59 clones, each spotted

three times. 57 genes are represented by these 59 clones, since two genes have

both 5′ and 3′ versions included. In each of the two-channel arrays, reference

female DNA is used as a control in one channel. The experiment involves the

genetic material from 62 breast cancer patients. To measure the gene profile in

all tumours, 62 arrays were used in the experiment. The amplification values are

calculated by taking the ratio of tumours samples versus a reference sample.

For each patient, there is also a variety of clinical information available, including

the following [48]:
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• their survival times (in years) after the tissue was removed;

• Their age at diagnosis (in years);

• The size of their tumours (in mm);

• whether they died from breast cancer;

• whether they are still alive;

• the severity grade of their breast cancer: 1 (low) to 3 (high)

• their NPI score.

In this study we deal with a data matrix consisting of 59 genes whose ampli-

fication profiles on 62 patients are considered.

7.1.2 Selection of the number of neighbours

In order to test the proposed criteria for the automatic determination of the

optimal number of nearest neighbours on the mammary cancer data we proceed

by computing for each k ∈ [1, 61] neighbours1 the values of the adjusted coefficient

of multiple determination2, Akaike and Bayesian’s Information Criteria as:

R̄2 = 1 −
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AIC(k) = nDlog
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(i)
d w

(i)
d

)2

+ 2(nk + 1),

1Given the relative small number of samples, in this study we compute the three criteria
for the choice of optimal number of k neighbours by considering every patients as possible
neighbour at each time.

2The regularization term is applied for any k. In this way D are the resulting degrees of
freedom of the residual sum of squares.
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BIC(k) = nDlog

n
∑

i=1

D
∑

d=1

(

xid − X
(i)
d w

(i)
d

)2

+ (nk + 1)log(n).

In this study we should apply the regularization term only when k > D.

However, following this way, the results are unstable and inaccurate just when

k > D. Thus, we propose to apply a small tolerance to any k in order to make a

fair choice of the parameter. The regularization applied is equal to ε = 10−6 even

if the choice of the optimal number of neighbours does not change as ε varies

between ε = 10−4 up to ε = 10−11. The results are presented in Figure 7.1.
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Figure 7.1. (a) R̄2, (b) Akaike’s Information Criterion and (c) Bayesian’s Informa-
tion Criterion for k ∈ [1, 61] for the mammary cancer data.
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The Figure 7.1(a) evidences that R̄2 always increases as the number of neigh-

bours grows, as the Akaike’s Information Criterion (Fig. 7.1(b)) always decreases

as k increases, detecting 61 neighbours as the optimal value of the model free

parameter. The behaviour of BIC is quite dissimilar to the others. It initially

decreases by achieving a local minimum for k = 4, then it grows until a value of

k = 50 neighbours and finally it rapidly tends to its global minimum for k = 61

neighbours in accordance with the other criteria, revealing that the higher penalty

term applied to BIC works more accurately than the others to penalize the error

for the increase of k.

All the criteria applied to this data sets detect k = 61 neighbours as the

optimal choice of the model free parameter. This suggests that all patients seem

to be informative and important to reconstruct the initial data space. In other

words, the amplification profile of a breast cancer tumour looks like similar for

each patient considered.

7.1.3 Selection of the number of dimensions

Once the optimal number of nearest neighbour have been identified, the pur-

pose of the study is, at this point, to conduct a dimensionality reduction of the

mammary data set in order to obtain a compact representation of the original

high-dimensional data.

We proceed by computing for each dimension d ∈ [1, 59] the euclidean dis-

tance matrices DX and DY of the input and output spaces, respectively, and

consequently the H-dimensional vectors δX and δY by extracting only those dis-

tances between nearby points and finally by obtaining for each dimension the

values of R2, AIC and BIC as:

R2 =
Codev(δX, δY )2

Dev(δX)Dev(δY )
,
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The results for the three proposed criteria are shown in Figure 7.23.
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Figure 7.2. (a) R2, (b) Akaike’s Information Criterion and (c) Bayesian’s Informa-
tion Criterion for d ∈ [1, 30] for the mammary cancer data.

The coefficient of determination (Fig. 7.2(a)) attains its maximum value for

d = 4 dimensions. Same results are provided by AIC (Fig. 7.2(b)) and BIC

3The results are presented just for d ∈ [1, 30] for a better visualization.
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(Fig. 7.2(c)) criteria, in which the error is minimized when the data are rep-

resented by 4 dimensions. This suggest that the high-dimensional original data

space can be faithfully described by considering just 4 coordinates, in other words,

the information contained in 59 genes can be carefully represented by 4 meta-

genes.

7.2 Results on Lymphoma data set

7.2.1 The data

Alizadeth et al. (2000) reported a genome-wide gene expression profiling anal-

ysis for diffuse large B-cell lymphoma (DLBCL) in which a total of 96 normal and

malignant lymphocites samples were profiled over 17.856 cDNA clones. Details

can be found in Alizadeth et al. [5]. None of the patients included in the study

has been treated before obtaining the biopsy samples. After biopsy, the patients

were treated at two medical centers using comparable standard chemotherapy

regimens. Among 42 patients, 40 of them had followup information, including 22

death with death time ranging from 1.3 to 71.9 months and 18 being still alive

with the followup times ranging from 51.2 to 129.9 months. Alizadeth et al. first

identified 4026 genes which showed large variations across all samples [36].

We deal with a data set consisting of 4026 genes over 62 samples.

7.2.2 Selection of the number of neighbours

By searching the optimal value of free parameter k, we compute for every

value of possible k the three criteria in according with the formulas presented in

Section 7.1.2, and we achieve the results shown in Figure 7.3.

Every techniques applied to the lymphoma data set identify as an optimal

value of the parameter 61 neighbours. In fact, the adjusted coefficient of mul-

tiple determination (Fig. 7.3(a)) always increases as k grows, as well as AIC
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Figure 7.3. (a) R̄2, (b) Akaike’s Information Criterion and (c) Bayesian’s Informa-
tion Criterion for k ∈ [1, 61] for the lymphoma data.

(Fig. 7.3(b)) and BIC (Fig. 7.3(c)) criteria decrease as the number of neighbours

increases and they attain the minimum error for k = 61 neighbours. Every in-

dices computed, suggest to keep 61 neighbours as the parameter value to be used

in LLE algorithm.

7.2.3 Selection of the number of dimensions

In order to reduce the high-dimensionality of the lymphoma data set and

to make the data more tractable for subsequent operations we calculate the sug-

gested techniques R2, AIC and BIC in according with the formulas in Section 7.1.3
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for several dimensions, achieving the plots presented in Figure 7.4.
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Figure 7.4. (a) R2, (b) Akaike’s Information Criterion and (c) Bayesian’s Informa-
tion Criterion for d ∈ [1, 20] for the lymphoma data.

As is possible to note, the intrinsic dimensionality identified is not the same

for the three computed criteria. In particular, for the coefficient of determination

the best fit to the data occurs when the original data space is projected into just

1 dimension, or in other words, R2 suggests that 4026 genes can be represented as

a linear combination of 1 meta-gene. Otherwise, AIC and BIC criteria provide a

more likely result for the low-dimensional space determination. Both techniques

propose, in fact, a dimensionality reduction of the high-dimensional data space

into a 5-dimensional space showing that the information contained in 4026 genes

can be faithfully represented across 5 meta-genes. We are inclined to favor the
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results provided by AIC and BIC criteria because even if the coefficient of deter-

mination is a widely used measure to determine how well a regression fit is, it

does not hold account of any penalty term to increasing of the dimensions. Thus,

even if the coefficient of determination seems to work well when the number of

dimensions is quite small as in the simulation study and still in the mammary

data set, this results underestimated when the number of dimension of a data set

is very large as for lymphoma data set in which we deal with 4026 dimensions.

7.3 Results on Leukemia data set

7.3.1 The data

Microarray data was obtained from patients having two types of leukemia,

acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The

data was taken from bone marrow samples and the samples were of different cell

types, for example B or T cells and different patients genders. Each sample was

analyzed using an Affimetrix microarrays containing expression levels of 7129

genes. The data was divided into 38 training data points and 34 test points [16].

Details can be found in Golub et al. (1999) [19].

We deal with a data matrix of 2226 genes over 72 patients.

7.3.2 Selection of the number of neighbours

For the leukemia data set the computation of R̄2, AIC and BIC in according

with the formulas described in Section 7.1.2 has provided the following results

presented in Figure 7.5.

As Figure 7.5 evidences, all techniques applied, select k = 71 neighbours as

the determination of the optimal number of nearest neighbours per data point

needed to reconstruct the initial leukemia data space by minimizing the error.
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Figure 7.5. (a) R̄2, (b) Akaike’s Information Criterion and (c) Bayesian’s Informa-
tion Criterion for k ∈ [1, 71] for the leukemia data.

7.3.3 Selection of the number of dimensions

Once identified 71 neighbours as the optimal value of the model free param-

eter, we compute for several dimensions the R2, AIC and BIC values following

the formulas in Section 7.1.3 obtaining the results shown in Figure 7.6.

The determination of the optimal number of dimensions provided by three

criteria is not the same. In fact, the coefficient of determination (Fig. 7.6(a))

identifies an optimal value of d = 5 dimensions, but, as explained in the previous

section, when the number of variables in a data set is very large, R2 represents

a biased measure of the fit to the data since it does not make use of any penalty
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Figure 7.6. (a) R2, (b) Akaike’s Information Criterion and (c) Bayesian’s Informa-
tion Criterion for d ∈ [1, 20] for the leukemia data.

term to increasing of dimensions. Instead, the other two examined criteria, AIC

(Fig. 7.6(b)) and BIC (Fig. 7.6(c)) provide the same result for the choice of the

model free parameter. In particular both identify as the intrinsic dimensionality

of the leukemia data set d = 9 dimensions. For the penalty term included in these

criteria, we are inclined to favour the result achieved by AIC and BIC techniques.

The original high-dimensional leukemia data set can be represented by a lower

9-dimensional space, that is, 9 meta-genes can be faithfully represent the original

2226 genes.

We then looked at genes that strongest correlate with the 9 discovered em-

bedded dimensions and we found that the D = 2226 genes most highly correlated
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with the new d = 9 meta-genes are the same genes identified by Golub et al.,

1999 [19], able to distinguish ALL from AML leukemia as represented in Fig-

ure 7.7.

Figure 7.7. The 50 genes most highly correlated with the ALL-AML class distinction.
Each row corresponds to a gene, with the columns corresponding to expression levels
in different samples. The top panel shows genes highly expressed in ALL, the bottom
panel shows genes more highly expressed in AML.
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Conclusion

Dimensionality reduction techniques have been used for visualization of high

dimensionality data sets. The aim is to obtain a low-dimensional representation

of high-dimensional data while preserving the most important characteristics of

the data. Dimensionality reduction can be done either by feature extraction or

by feature selection. The main advantage of feature extraction is that given the

same number of reduced features, the transformed features can provide better

results in further data analysis than the selected features [21].

In this thesis, an unsupervised non linear feature extraction technique called

Locally Linear Embedding was considered. Its ability to deal with large size of

high-dimensional data and its non-iterative way to find the embeddings make it

more and more attractive to researchers. Another advantage of LLE comes from

only two parameters to be set.

The purpose of the thesis was to develop a procedure for the automatic selec-

tion of the two free parameters of the model and to apply it to simulation studies

and microarray data.

The low-dimensional representation obtained by LLE algorithm describes the

true structure of the original data due to the properties of the reconstruction

weights preserving information about the local neighborhoods of the data in the

second step of the LLE algorithm. The natural question was how defining an

optimal partition of the data manifolds into local patches or in other words how

73
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choosing the optimal number of k nearest neighbours able to reconstruct the

original data space. In this thesis this problem is solved by proposing three

criteria presented in Section 3.

The other free parameter of the LLE algorithm is the number of dimensions

able to faithfully represent the high-dimensional data. It is clear that this param-

eter is set to be equal to two or three in case of visualization since human observer

can perceive at most 3D space. In general when the aim of the dimensionality

reduction technique is not confined to data visualization the dimensionality of

the projected data can not be a priori fixed equal to two or three. Therefore one

seeks to approximately estimate the intrinsic dimensionality of the data in order

to preserve the most important information and reduce the influence of noise and

outliers in the following steps of the data analysis. In this thesis some proce-

dures for the automatic extraction of the embedded dimensions are proposed in

Section 4.

The proposed criteria for the automatic selection of the two free model param-

eters have been applied to several simulation studies by generating 10 non linear

dimensions as combination of two independent uniform variables. The three pro-

cedures for the choice of k neighbours seem to work well. However, by comparing

the results with a validation measure as Procrustes Analysis we observed that R̄2

seems to provide a better result than Akaike and Bayesian’s Information Criteria

since the latter ones underestimate the true value of the parameter. Indeed, all

the proposed criteria for the choice of the intrinsic dimensionality of the data

seem to be able to reveal the real embedded structure of the high-dimensional

data sets.

The finally purpose was to apply the procedures on several data sets arisen

from microarray study. In fact, due to the ultra high-dimensionality nature of

microarray data, data dimensionality reduction plays an important role for such

type of data analysis. In this thesis we presented the results of dimensionality

reduction over three different public data sets: the mammary data set of Wit

and McClure (2004), the lymphoma data set of Alizadeth et al. (2000), the



CHAPTER 8. CONCLUSION 75

leukemia data set of Golub et al. (1999), characterized by different original

high-dimensionality. The proposed criteria for the choice of k neighbours always

select the maximum value for k, revealing that all patients seem to be informative

and important to reconstruct the original data space. It is crucial to note that

these results represent only a typical characteristic of the microarray data sets,

where the number of genes is much greater than the experimental conditions.

On the contrary, in the other data sets the proposed criteria for the choice of the

number of neighbours have not provide similar results. As far as the extraction of

the intrinsic dimensionality of microarray data sets we observed that the Akaike

and Bayesian’s Information Criteria seem to be able to reveal the real embedded

structure of the original data space, while, on the contrary, the R2 criterion seems

to provide satisfactory results just when the dimensionality of the original space

is quite small, while it appears underestimated for those data sets characterized

by a original high-dimensionality.
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