
Alma Mater Studiorum University of Bologna

Ph.D. in Control System Engineering and
Operational Research

MAT/09

XXIII Cycle

The Cutting Stock Problem

in the Wood Industry
Rosa Daniela Medina Durán

Coordinator Relators
Prof. Paolo Toth Prof. Paolo Toth

Final exam 2011

Contents

Acknowledgments iii

Keywords v

Abstract vii

List of figures ix

List of tables xi

1 Introduction 1
1.1 Problem Description . 2
1.2 Literature Review . 3
1.3 Heuristics for solving the subproblems . 5

2 Constructive Heuristic Algorithms 7
2.1 Strip Generation . 8
2.2 Pattern Generator . 9
2.3 Pattern Filling . 9
2.4 Cycle Reduction . 10
2.5 Remaining Items Insertion . 10
2.6 Residual Problem . 11
2.7 Computational Results . 12

2.7.1 Instances . 13
2.7.2 Constructive Heuristic Parameters . 15

3 Column Generation 19
3.1 Nested BKP . 21
3.2 Modified GRASP . 21
3.3 Diving Heuristic . 21
3.4 Column Generation and Diving Heuristic Settings 23

4 Post Optimization 27
4.1 Local Search . 27
4.2 Local Search Settings . 28
4.3 Tabu Search . 31
4.4 Tabu Search Parameters . 31

i

CONTENTS ii

5 Experiments 35
5.1 GNCutter32 . 35
5.2 CutLogic2D . 36
5.3 Plus 2D . 37
5.4 Merick Calc 3000 . 37
5.5 Computational Results . 38

6 Summary 41

Bibliography 42

Appendix:

A ILP Models for 2DCSP 45
A.1 Model 1 . 45
A.2 Model 2 . 46
A.3 Computational Results . 47

Acknowledgments

First of all I would like to express my sincere gratitude to Prof. Paolo Toth, for his continuing
support, his helpful suggestions and important advice, and to Ing. Enrico Malaguti, for his
instructions and patience, I would have been lost without them. I really appreciate their
direct cooperation on the development of this study.

I would like to thank Nirvanatec, TMachines, Optimalon Software and Soft Consult who
agreed to compare their software with the algorithms proposed.

I would like to extend my thanks to those who have helped me during the doctorate
program. In particular, to Prof. Lorena Pradenas for her confidence that led me to start the
program. I also wish to express my appreciation to the Operational Research Group DEIS -
UNIBO, specially my officemates, Albert E. Fernandes M., Fabio Furini and Alfredo Persiani
with whom I have shared academic activities and support.

Finally, I would like to thank my family and friends, specially those friendly people I have
met during my stay in Bologna, thank you for enriching my experience.

This work was partially supported by MIUR, Italy and the Beca Presidente de la República
- CONICYT, Government of Chile, 2008.

iii

iv

Keywords

Combinatorial Optimization, Two-Dimensional Cutting Stock Problem, Column Generation.

v

vi

Abstract

This thesis proposes a solution for board cutting in the wood industry with the aim of usage
minimization and machine productivity. The problem is dealt with as a Two-Dimensional
Cutting Stock Problem and specific Combinatorial Optimization methods are used to solve it
considering the features of the real problem.

The thesis is organized as follows:

Chapter 1 The Introduction contains a detailed overview of the problem and a theoretical
and methodological review of the literature.

Chapter 2 The second chapter, Constructive Heuristic Algorithms, presents detailed heuris-
tic algorithms to solve the problem.

Chapter 3 The third chapter, Column Generation, presents a column generation approach
to solve the linear relaxation of the problem and strategies to obtain an integer solution.

Chapter 4 The fourth chapter, Post Optimization, presents two techniques to improve the
solutions.

Chapter 5 The fifth chapter, Experiments, presents the comparison of the developed algo-
rithm with commercial software packages.

Chapter 6 The last chapter, Summary, provides some concluding remarks on the study.

vii

viii

List of Figures

1.1 Cutting Patterns Examples . 3

2.1 PreCut and stack items . 10

5.1 GNCutter XYZ-cutting . 36
5.2 CutLogic2D 3-stage exact . 37

ix

x

List of Tables

2.1 Instance Area . 14
2.2 Constructive Heuristic Parameters . 16
2.3 Constructive Heuristic: α = 1.0, β = 0.05, γ = 0.05 17

3.1 Column Generation and Diving Heuristic Settings 24
3.2 Column Generation and Diving Heuristic: Second Branching 25

4.1 Local Search Selection Criteria . 29
4.2 Local Search: LS10.7 . 30
4.3 Tabu Search Parameters . 32
4.4 Tabu Search: {15,5,15} . 33

5.1 Comparison of algorithms to commercial packages 39

A.1 Comparison of Tabu Search to Models . 48

xi

xii

As this emotion represents a drive to know new things,
curiosity is the fuel of science and all other disciplines of human study.

“Curiosity”, Wikipedia, The Free Encyclopedia

xiii

Chapter 1

Introduction

In the wood industry, the raw material is present as rectangular wood boards that must
be cut to obtain the required dimensions of the rectangular items used in further processes.
The boards are all of the same material in different sizes, called classes of boards, and are
available in a large number so as to consider them infinite. The rectangular items to be
obtained are of different dimensions, smaller than the boards, and have specific demands that
must be satisfied. Some items have a fixed orientation, according to the grain of the wood,
while others can be orthogonally rotated, this means that the dimensions of the item can be
swapped.

Before starting the cutting process, it is necessary to decide the appropriate layout of the
items on the board, namely cutting patterns, for an appropriate use of the resources: the raw
material, the cutting machine and the processing time. Consequently, the cutting patterns
and their repetition must be determined considering the characteristics of the cutting machine
in order to satisfy the demand for the items.

Unlike other cutting machines, wood cutting machines make it possible to stack the boards,
in order to cut more than one board at a time, all of them with the same pattern, thus
improving machine productivity. Note the difference between the number of boards to be cut
(the required stocks to satisfy the demand), the number of different patterns and the number
of processes of the machine, namely cycles. At each cycle, the machine follows a single pattern
at least once. The maximum number of boards simultaneously cut depends on the boards’
thickness and the machine maximum load.

The wood cutting machine performs only straight cuts from edge to edge, parallel to
the board edges, called guillotine cuts. Some cutting machines can cut in two directions,
i.e., the machine automatically turns the board 90◦ to perform a new cut; but usually, it is
necessary for a worker to turn the board in the other direction, increasing the workload and
processing time, and consequently the maximum number of cutting directions, called stages,
is usually restricted. In the first stage, the board is cut by its length, or width, obtaining
strips (horizontal or vertical respectively). Second orthogonal cuts are performed to obtain
the items in the second stage. Third stages can be performed on the items to obtain smaller
items or remove waste.

Another feature of the cutting machine is the possibility to perform a pre-cut in the board
and process each part independently; in particular, one part can have horizontal strips while
the other can have vertical strips.

1

Problem Description 2

For some boards, a trimming cut is necessary to polish the edges. Moreover, each time the
blade of the machine performs a cut, a thin strip of board is removed. The machines have a
precision of 10−4 meters, but for most instances the dimensions are expressed in millimeters.

We dealt with this problem as a Combinatorial Optimization Problem and used specific
techniques to solve it with the aim of minimizing the stocks usage and maximizing the machine
productivity. The problem is formally defined in Section 1.1, and the theory and methodology
of the literature are reviewed in Sections 1.2 and 1.3.

1.1 Problem Description

In a formal definition, an instance of board cutting in the wood industry has:
A set B of b classes of rectangular boards. Each board class k (k = 1, . . . , b) has dimensions

(Lk,Wk), length and width respectively. All the board classes have the same thickness and
there are an infinite number of them. Knowing the thickness of the boards and the maximum
load of the machine, we define κ as the maximum number of boards that the machine can cut
simultaneously.

A set I of m classes of rectangular items. Each item class i (i = 1, . . . ,m) has dimensions
(li, wi), length and width respectively, demand di and a binary attribute ri that indicates if
the item class has a fixed orientation, i.e., if ri = 1 the item class can not be orthogonally
rotated. The item classes can be cut from at least one board class and all the item classes
have different dimensions. If there are item classes with the same dimensions and rotation
attribute, in a preprocessing step, the classes are merged, thus decreasing the number of
classes and increasing the corresponding demand.

With no loss of generality, we do not consider blade width or trim cut. For the blade width,
it is sufficient to add the blade width to each item dimension and to each board dimension
vertically and horizontally. For the trim cut, it is sufficient to subtract the trim to the board
dimension twice vertically and horizontally.

A solution for the problem has:
A set P∗ of n∗ different feasible cutting patterns, see Figure 1.1 where the lines represent

the cuts in a board to obtain the items. A feasible cutting pattern has only guillotine cuts
parallel to the board edges, generating strips. If the first cut is parallel to the board length, it
generates horizontal strips; otherwise, a first cut parallel to the board width generates vertical
strips. Subsequent guillotine cuts are necessary to obtain the items, with a maximum of three
cuts. The third stage is allowed for trimming, i.e., to obtain the desired item dimensions
(black dashed line in the strip at the top of Figure 1.1a); or to separate two small items
(black dashed lines in the strip at the bottom of Figure 1.1a). A pre-cut in the board is also
admissible to combine two feasible patterns of different directions (black dashed line in Figure
1.1b). Besides the layout to obtain the items, for each cutting pattern j (j = 1, . . . , n∗),
the board class used (Bj), the repetition of the pattern in the solution (Rj), the number of
third-stage cuts in the pattern (Zj) and the set of items in the pattern (Ij) are also known.

Different solutions for a given instance are compared considering the stock usage and
machine productivity. The stock usage is evaluated with the total used area, while machine
productivity is evaluated considering the number of cycles and the number of third-stage cuts
at each cycle. We minimize a weighted function (called index) of the area (A), machine cycles
(C) and third-stage cuts (Z), (see Equation 1.1).

Literature Review 3

(a) third-stages (b) pre-cut

Figure 1.1: Cutting Patterns Examples

index =
⌊

10
3
·A
⌋

+
8
3
· C + 0.3 · Z (1.1)

A =
∑n∗

j=1A
k
j is the sum of the area of all the boards used in the solution, calculated in

square meters, with Akj the area of board Bj = k. C =
∑n∗

j=1d
Rj

κ e are the machine cycles,
calculated as the number of times that the machine starts a process, i.e., whether it reaches
κ boards or it changes the cutting pattern. Z =

∑n∗

j=1d
Rj

κ e · Zj are the third-stage cuts,
calculated as the sum of the of third-stage cuts of the cycles.

1.2 Literature Review

According to the Combinatorial Optimization literature, the problem belongs to the family of
Cutting Stock Problems specifically, the Two-Dimensional Cutting Stock Problems (2DCSP)
where rectangular stocks (raw material) might be cut to obtain the required dimensions.
These problems are NP-hard [9], this means that all algorithms currently known for finding
optimal solutions require a number of computational steps that may grow exponentially with
the problem size rather than according to a polynomial function. Following the literature
nomenclature, the wood industry problem can be further classified as Multiple Stock, because
the stock boards have different dimensions, and Two-Stages Non Exact Guillotine because
only guillotine cuts are admissible and a third guillotine cut is feasible to separate an item
from waste. In practice, a third cut is also admissible to separate two small items, but as far
as we know this feature has not been described in the literature.

To solve the 2DCSP, exact and heuristic approaches have been proposed. The heuristic
methods are more flexible for considering specifics constraint of the problem and to have a
good trade-off between the quality of a solution and its computational effort. One of the most
common approaches to deal with the 2DCSP is the column generation approach proposed
by Gilmore and Gomory [10], [11], [12]; they proposed the k − staged pattern version and
also considered the version with bins of different sizes. This approach is very effective in

Literature Review 4

minimizing the number of cutting patterns or the area. The solution of this approach is
fractional, and to obtain an integer solution many techniques have been developed. Alvarez-
Valdes et al. [2] developed and compared several heuristic methods for solving the 2DCSP,
based on column generation. Riehme et al. [22] considered the two staged version of the
problem in the case where boards of different sizes are available and the item demands differ
in a large range. Vanderbeck [26] considered the 2DCSP with three stages, whereby unused
parts of some stock can be used later as new stock. The author developed an approximate
solution method based on a nested decomposition of the problem. Each subproblem is solved
by column generation and then a rounding heuristic finds an integer feasible solution. Cintra et
al. [4] considered several 2DCSPs with guillotine cuts and their variants in which orthogonal
rotations are allowed and boards of different sizes are available. They presented dynamic
programming algorithms for the Rectangular Knapsack Problem, which were then used to
generate patterns in approaches for the 2DCSP based on column generation.

A preliminary work was presented In Furini et al. [7] and in Furini et al. [8], where we
developed heuristic procedures based on a column generation approach to solve the general
2DCSP having bins of different sizes with the objective of minimize the used area. A further
contribution consists in the definition of a Mixed Integer Linear Programming Model for
the solution of this Knapsack Problem, as well as a heuristic procedure based on dynamic
programming. In Malaguti et al. [17], we considered the heuristics propose in this study and
presented a complete method for solving the real world 2DCSP optimizing a weighted function
of the used area, cycles and third stage cuts. We give here a more detailed description of the
algorithms.

For the objective of minimizing Equation 1, we noted that minimizing the stock usage is
partially in contrast with the maximization of the machine productivity. While minimizing
the stock usage requires an effective use of the boards (minimum waste), machine productivity
requires an efficient distribution of the items in the patterns in order to minimize the cycles
and the third-stage cuts. To minimize the number of cycles, it is desirable to have a reduced
number of patterns with a high repetition to take advantage of cutting more than one pattern
each time. A repetition of the pattern near to, although smaller than, a multiple of κ is also
desirable.

To generate two stages guillotine patterns, we used the strip approach, considering first
grouping the items into strips and then grouping the strips to create a pattern. This approach
can be generalized to generate three-stage guillotine patterns by considering, in the first step,
items of different sizes.

The development of the algorithms is done in an empiric manner, The components are
added one at a time and the parameters are set on the basis of systematic and thorough
testing. Many combinatorial optimization techniques are used. First, a Constructive Heuristic
Algorithm is developed and used as a starting solution for a Column Generation procedure.
Strategies to obtain integer solutions are studied and Local Search techniques are used to
improve it. Many of these procedures solve other classic combinatorial optimization problems
as subproblems, in Section 1.3 we present the algorithms to solve these subproblems that are
used later by the proposed algorithm.

Heuristics for solving the subproblems 5

1.3 Heuristics for solving the subproblems

The Bounded Knapsack Problem (BKP) aims to solve the following problem:

max{ṗẋ : ẇẋ ≤ ċ, 0 ≤ ẋ ≤ ḋ, ẋ ∈ Zṅ} (1.2)

where ṗ, ẇ ∈ Rṅ
+, ḋ ∈ Zṅ+ and ċ ∈ R+ are given. Each object i (i = 1, . . . , ṅ) has a weight ẇi

and a profit ṗi and is available in ḋi copies. The variable ẋi denotes the number of objects
of class i in the solution. The BKP can be interpreted as the selection among ṅ objects
that maximizes the profit without exceeding the capacity ċ. The BKP is a generalization of
the classic 0-1 Knapsack Problem, which is known to be NP-hard. In the literature, we find
many algorithms to solve this problem (see, e.g., [18] and [14]). We implemented the Greedy
Algorithm which is fast and generally gives good solutions.

The Greedy Algorithm considers the ratio ṗi/ẇi (i = 1, . . . , ṅ), measuring the convenience
of an object, and sorts the objects according to this ratio in a non increasing way. The
items are inserted following this order until the capacity is reached, i.e., no other item can be
inserted without exceeding the capacity. If the items are ordered, the algorithm provides a
good solution to the problem in O(ṅ) time.

The Bin Packing Problem (BPP) aims to find the minimum number of bins of capacity c̈
that contains all the given m̈ objects. Each object i (i = 1, . . . , m̈) has a weight ẅi. The BPP
is NP-hard. Solving the BPP to optimality may be a very difficult and time consuming task
[6]. We found good solutions by solving it heuristically with the Best-Fit Decreasing Heuristic
(BFD) [25].

The BFD considers the objects ordered by non-increasing weight and all the bins empty,
i.e., with residual capacity c̈. Following the order of the objects, each object is inserted in the
bin with smallest residual capacity from among those that can accommodate this object.

The Two-Stage Two-Dimensional Knapsack Problem (2TKP) [15] determines a cutting
pattern for a rectangle

...
S , maximizing the global profit of the rectangular pieces obtained

with two cuts and allowing a third-cut for trimming, i.e., separating a piece from waste.
The rectangle

...
S has dimensions (

...
L,

...
W), length and width respectively. The rectangular

pieces are selected from
...
m classes, each class i having dimensions (

...
l i,

...
wi), length and width

respectively, profit
...
p i and a positive availability

...
d i. The dimensions of the pieces are feasible

for the rectangle, i.e.,
...
l i ≤

...
L and

...
wi ≤

...
W ∀ i = 1, . . . ,

...
m. The cuts must be of the

guillotine type, i.e., edge to edge straight cuts parallel to one of the rectangle edges. We
found many heuristic and exact algorithms to solve this problem.

A Greedy Randomized Adaptive Search Procedure (GRASP) and a Path Relinking Pro-
cedure were developed by Alvarez-Valdes et al. [1] for the 2TKP. Briefly, the GRASP is an
iterative process in which each iteration consists of two phases. The construction phase builds
a feasible solution, whose neighborhood is explored until a local optimum is found after appli-
cation of the local search phase. The procedure can be “strip-oriented” or “piece-oriented”.

The construction phase of the “strip-oriented” procedure (GRASP Strip), solves a series of
BKP for each different

.̄..
ws ∈

.̄..
W = {.̄..ws : ∃...wi =

.̄..
ws, i = 1, . . . ,

...
m} with pieces having a smaller

or equal width, using
...
li as weight and

...
L as capacity. The solution of the BKP determines

the strip profit. A strip is randomly selected between the strips with profits larger than a
threshold and the strip is added to the rectangle, the piece availability is updated and the
cycle is repeated until the remaining rectangle width is too small or no piece is available.

Heuristics for solving the subproblems 6

The threshold depends on the current largest strip profit, ensuring at least one strip. The
improvement phase selects a strip to be removed from the current rectangle and the emptied
space, merged with the strip of waste if it exists, is filled with a greedy procedure which inserts
the pieces, ordered by their non increasing widths, on the most possible bottom-left corner.
The procedure checks that the removed strip is not regenerated.

The construction phase of the “piece-oriented” procedure (GRASP Pieces) has two stages.
The first stage selects a suitable width, i.e., width not greater than the current free width of
the rectangle, to create a strip while the second stage fills the strip with pieces. Each suitable
width has a value defined as the average profit of the pieces with width smaller than or equal
to the suitable width. A width is randomly selected among the suitable widths with a value
larger than a threshold. The threshold depends on the current largest width value, ensuring
at least one width. In the second stage, a list is created with pieces having lengths smaller
than or equal to the remaining strip length and profits larger than a threshold (defined by the
current largest piece profit). A piece on this list is randomly selected to be added to the strip
and the piece availability is updated. The second stage is repeated until the remaining strip
length is too small or no piece is available. Then a new strip is created with the first stage,
repeating the stages until no strip can be created because the rectangle width is too small or
no piece is available. The improvement phase selects each piece to be considered for a move.
In detail, for each piece in the solution and each piece not in the solution but with positive
demand and feasible dimensions (width smaller than or equal to the strip width and length
smaller than or equal to the selected piece plus the remaining strip length) an improvement
index defined by the difference of the pieces profits is calculated. The piece that provides the
largest positive improvement index is selected for the replacement; if no such piece exists (all
improvement indexes are negative) the piece in the solution is not replaced.

The Path Relinking Procedure generates new solutions by exploring trajectories that con-
nect high quality solutions. In particular, starting from a solution, called an initiating solution,
the strips of a better solution, called a guiding solution, are added one by one. The strips
in the initiating solution that exceed the rectangle capacity are eliminated. Moreover, the
strips of the initiating solution containing pieces that produce an excess of the availability are
also eliminated. All the empty spaces produced in these moves are merged into a waste strip
that is filled with a greedy procedure which inserts the remaining pieces, ordered by their non
increasing widths, on the most possible bottom-left corner. The combinations of strips from
GRASP Strip or GRASP Pieces can be very fruitful in the search for solutions of even higher
quality.

Chapter 2

Constructive Heuristic Algorithms

In this chapter we propose heuristic algorithms to solve the Two-Dimensional Cutting Stock
Problem. The algorithms consider the stack of the boards and third-stage guillotine cuts
in order to furnish a suitable solution for the problem in the wood industry. The aim of
the algorithms is to minimize the area of used boards, the number of cutting cycles and the
number of third-stage cuts.

Minimizing the area of used boards is equivalent to reducing the waste of the solution.
However, waste minimization could imply a large number of patterns which affects the number
of cycles as it depends on the number of cutting patterns and the pattern repetition in the
solution. To minimize the number of cutting cycles, a small number of cutting patterns with
a repetition near to, although not larger than, a multiple of the maximum stack capacity of
the machine would be desirable .

The minimization of the number of third-stage cuts is achieved through a strip approach.
In the strip approach a pattern is built by joining strips that contain the items. In this
manner, the guillotine cut type is ensured and a third-stage cut is needed only to remove
waste from an item or to obtain smaller items.

Briefly, given an instance of the 2DCSP and the maximum number of stack boards, the
stripGenerator procedure creates a list of strips for each board and direction, horizontal
or vertical. The strips are created by combining the items, and those strips with a filling
percentage above a specified threshold are selected. The items in the selected strips are
removed from the set of items. With each list, the patternGenerator procedure fills the boards.
Within this procedure, the patternFilling procedure tries to insert some of the remaining items
in the empty space of the boards. All the patterns, with a waste below a specified threshold,
are selected for the final solution. The other patterns are unpacked, i.e., the items in the
pattern are included in the set of remaining items. If there are still remaining items after the
termination of the patternGenerator procedure, the remainingItemsInsertion procedure tries
to insert the remaining items in any pattern in the solution. If there are still remaining items,
a residualProblem procedure combines those items into patterns.

To increase the pattern repetition, the stripGenerator and patternGenerator procedures
are iteratively solved by limiting the item class demand to a fictitious number that depends
on the maximum stack boards in the machine, as described in Algorithm 1. The pattern
repetition is set to the maximum number that does not generate overproduction, defined as:
Oj = mini∈Ij{b

di

pi
j
c} where pij is the number of items of class i in pattern j.

7

Strip Generation 8

Algorithm 1 Constructive Heuristic
Input: Instance of 2DCSP and maximum stack κ
Output: Set of cutting patterns
t = κ
repeat

Call stripGenerator procedure with d̃i = bdi
t c for items with di ≥ t

for board and direction do
Call patternGenerator procedure

end
Unpack patterns not used and increase di for the items in those patterns
t← t− 1

until t ≤ 0
if ∃di > 0(i = 1, . . . ,m) then

Call remainingItemsInsertion procedure
end
if ∃di > 0(i = 1, . . . ,m) then

Call residualProblem procedure
end

In this chapter, we describe the procedures presented before. Section 2.1 describes the
procedure to generate the strips. Section 2.2 describes the procedure to make the patterns.
Section 2.3 describes the procedure that fills an empty rectangle. Section 2.4 describes the
iterative cycle used to increase the pattern repetition. Section 2.5 describes how the items
are inserted into patterns in the solution. Section 2.6 describes the heuristic used to solve the
remaining problem, i.e., a small 2DCSP. Finally, Section 2.7 presents computational results
and the study of the parameters of the algorithm.

2.1 Strip Generation

Given the set of items, the stripGenerator Procedure creates a list of strips for each board class
and direction, vertical or horizontal. The strips in the list have a waste below a prescribed
threshold β. The waste is calculated as a percentage of the strip area. Given a board with
length L and width W ; in the horizontal direction, L determines the length of the strips, this
means that the items, placed end to end, can not exceed it. To determine the set of items in
the strip, we solve a BKP [3].

In the BKP, the capacity corresponds to L. The objects are the items using its length
(width for rotated items) as weight and a function of its area as profit. As larger items are
more difficult to place later in the algorithm, we privilege these items by using as profit the
α-power of their percentage area with respect to the area of the board, with α a parameter.

First, a list of strip widths is determined with all different item widths, or item lengths for
items that can be rotated. The cycle starts by solving a BKP for each direction, board type
and strip width using the items that do not exceed the dimensions of the board and the strip
width. For example, considering a horizontal direction, the item length must be not larger
than L and the item width must be equal to the actual strip width, or, if the item can be
rotated, the item width must be not larger than L and the item length must be equal to the

Pattern Generator 9

actual strip width. By solving the BKP, a strip is created, and its waste and repetition are
computed. The strip with minimum waste is selected among all the strips, and, if its waste is
below the threshold β, it is added to the strip list corresponding to the board and direction.
The items in the selected strip are no longer available according to the strip repetition. All
the other strips are discarded. The described cycle stops as soon as the minimum strip waste
is larger than or equal to the threshold.

The BKP is solved several times and many of its solution are discarded; we use the Greedy
Algorithm to reduce the computation time, see Section 1.3.

2.2 Pattern Generator

As stated before, the patternGenerator Procedure creates patterns with the strip list generated
by the stripGenerator Procedure (Section 2.1) associated with a board class and a direction,
vertical or horizontal. Beside the strip list, the procedure requires the board class to be filled
and the γ parameter for the pattern waste threshold. In order to use the least number of
boards and minimize the number of patterns, a BPP is solved.

Consider a list of horizontal strips for a board with width W . In the BPP, the capacity
of the bins is the board width and the objects are the strips, where the strip width is used as
weight. The BPP is heuristically solved using the BFD, see Section 1.3, and the solution is
improved through the tabu search algorithm proposed by Fernandes Muritiba et al. [19].

Briefly, the tabu search algorithm starts by choosing one bin, say h and, iteratively, tries
to empty the bin by randomly choosing a strip which is moved from this bin to another bin
where it fits. If the strip cannot fit in any bin, it is included in the bin, say l, with the largest
empty space. Feasibility is maintained by moving strips from l to h. An anti-cycling rule
forbids one strip to enter a bin it left during the last T iterations (where T is a parameter).
Even if bin h is not emptied, its filling is minimized, and the empty space can be filled with
the available items through the patternFilling Procedure. Only the patterns with waste below
γ are kept, calculating their maximum repetition and the items placed by the patternFilling
Procedure are no longer available. The patternFilling Procedure is described in the next
section.

2.3 Pattern Filling

The patternFilling Procedure tries to fill an empty rectangle with strips by using the remaining
items. The strips can be horizontal or vertical, generating a preCut when the direction is
different to the pattern direction (black dashed line in Figure 2.1). To minimize the waste,
we solve a 2TKP using the empty rectangle of the patterns, the items area as profits and
maximizing the sum of the area of the items in the rectangle.

To solve the 2TKP, we use the Greedy Randomized Adaptive Search Procedure (GRASP)
and the Path Relinking Procedure developed by Alvarez-Valdes et al. [1], see Section 1.3.

We modify the procedures, making it possible to stack in the strips more than one item
of the same length (width if the item is rotated) when the strip dimension admits it, dark
items in Figure 2.1. In this case, the third-stage cut is used to separate the items and each
third-stage cut is counted in the objective function. Also, in order to place more items in
the strip, the feasible orientation of the items with minimum length is kept, i.e., if the item

Cycle Reduction 10

Figure 2.1: PreCut and stack items

can be rotated and the item length is larger than the item width, the item is rotated when
its new dimensions are feasible for the rectangle dimensions. We obtain five solutions with
the GRASP Strip and keep the best three, also for the GRASP Pieces. The six solutions
set is ordered by non increasing profit and the solutions with the same profit are discarded.
The solution with largest profit is memorized as the best solution. Each solution is used in
the Path Relinking Procedure as a guiding solution for all the initiating solutions after it in
the ordered set. If a better solution is found, the best solution is updated. Finally, the best
solution is returned and is added to the original pattern.

2.4 Cycle Reduction

As mentioned before, the previous procedures are solved by bounding the item demands so
as to increase the repetition of the resulting patterns and reduce the number of cycles.

At the beginning, the maximum number of boards that the machine is able to cut si-
multaneously is considered, t = κ. The procedures are invoked with a fictitious demand
d̃i = bdi/tc (i = 1, . . . ,m), the patterns obtained are fixed to the maximum repetition that
does not exceed the demand of the items and the items are removed accordingly. As a result,
the obtained pattern j has a repetition Rj at least equal to the current t but no larger than
mini∈Ij{b

di

pj
i

c}, where pji is the number of items of item class i in pattern j. The procedures

are repeated for t = t − 1, until t = 1 and the original or remaining demand of the items is
considered.

2.5 Remaining Items Insertion

The remainingItemsInsertion Procedure tries to insert items with positive demands into a
pattern in the solution in order to reduce the waste of the pattern and complete the demand
of the items. In the following, we describe the insertion of an item in a horizontal strip; the
vertical case is analogous.

Whenever possible, we try to insert the item using the least length of the remaining strip
length; thus, if the item length is larger then the item width, the item is inserted rotated, if
it fits in the strip. Moreover, if the item can not be inserted in any strip, but the item width
is smaller than the residual width of the pattern, a new strip with the item is created and
added to the pattern.

Residual Problem 11

2.6 Residual Problem

As anticipated, the residualProblem Procedure is called when there are still remaining items
after trying to insert items into the patterns in the solution, remainingItemsInsertion Proce-
dure. These items come from unselected strips or unpacked patterns. It is necessary to solve
a further 2DCSP to place these items, but this time the input size is significantly smaller. We
solve the small 2DCSP using three heuristics, and choose the set of patterns with minimum
waste; we then merge these patterns with the previous patterns to obtain a global solution.

Iterative Heuristic A The first heuristic solves the 2TKP iteratively until all the items are
placed. The area of the items is considered as profit in order to minimize the waste.
For each board class and direction, the internal procedure generates a pattern. The
pattern with minimum waste, among all the board classes, is memorized and fixed to
the maximum repetition that does not exceed the items availability; the items in the
pattern are removed from the available set accordingly.

The internal procedure generates four patterns for a given board class (L,W) and direc-
tion, and the pattern with minimum waste is returned. We present the version for the
horizontal direction; the version with vertical strips is obtained similarly by swapping
the board length and width.

The internal procedure starts removing the infeasible items for the board class and
appropriately setting the orientation of the available item classes. When the items can
be rotated, the items are oriented with its narrower dimension to reduce the use of
capacity, i.e., if the item length is larger than the item width, the item is rotated if it
fits in the board. For each procedure, we consider a local availability of the item classes.

The procedure for the first pattern, based on the BKP, starts by determining all the
feasible strip widths according to the item classes. While there are unplaced items, the
strips are obtained by solving a BKP for each strip width with capacity L using the
items of the same width (length for rotated items). The strip with maximum profit
(the sum of the area of the items in the strip) is selected and its repetition is fixed to
the maximum number that does not generate overproduction; the items in the selected
strip are removed accordingly. Once all the items are placed in a strip, a further BKP is
solved with capacity W using the strips generated before considering the strip width as
weight, to obtain the pattern. The second pattern is obtained by repeating the previous
procedure, but this time the third stage cut is allowed, i.e., the items in the strip can
have a width (length for rotated items) smaller than or equal to the strip width, but at
least one item must have the same width (length for rotated items) as the strip width.

The procedure for the third pattern starts by ordering the items in non increasing width
(length for the rotated items). The strips are created by solving the BPP with capacity
L using the item length (width for the rotated items) as weight and banning the third
stage cuts, i.e., all the items in the strip have the same width. To obtain the pattern, a
BKP is solved with capacity W and using the strips generated before with its width as
weight and the sum of the area of the items in the strip as profit. The fourth pattern is
obtained by repeating the procedure for the third pattern but allowing the three-stage
cuts when solving the BPP, i.e. the items in the strip can have different widths (length
for rotated items) and the first item inserted in the strip defines the strip width.

Computational Results 12

The BKPs are solved using the Greedy Algorithm [18], see Section 1.3.

The BPP is solved using the Best-Fit Decreasing Heuristic (BFD) [25] with capacity L
and the items as objects, using the item length (width for rotated items) as weight. We
keep the non increasing width order of the items and for those having the same width,
we order them by their length. The first item inserted in a strip determines the strip
width. As the items are ordered in non increasing width, they can be inserted in any
strip created before if the capacity is enough.

As mentioned, the internal procedure selects and returns the pattern with minimum
waste between these four patterns. The procedures are then repeated for the other
directions and boards. Between all these patterns (two for each board class) the one with
minimum waste is fixed to its maximum repetition that does not generate overproduction
and the items are removed accordingly. The whole process is repeated until the demand
of all the items is satisfied.

Iterative Heuristic B The second heuristic solves the 2DCSP for each direction and the
solution with minimum waste is returned. Inspired in the third patterns obtained during
the internal procedure of Heuristic A, a solution is created for a given direction by solving
two nested BPP.

The internal procedure starts by setting the item classes appropriate to a feasible ori-
entation that improves the strip usage, i.e., if the item length is larger than the item
width, the item is rotated if it fits in at least one board.

Once the item classes are set, the procedure orders the item classes according to non
increasing width (length for the rotated items), then the first BPP is solved, using BFD
(see Section 1.3), considering the length of the boards as capacity of different bins and
the item class length (width for rotated items) as weight, obtaining a set of feasible
strips for different board classes. The first item class inserted in a strip, determines the
strip width. The strip length is determined by the board length.

To create the patterns a further BPP is solved, using BFD, considering the width of the
boards as capacity of the bins and the strip width as weight. The strips can be placed in
any board class with length not smaller than the strip length if it minimizes the residual
capacity of the bin. Finally, the procedure checks the repetition of the patterns and
calculates their trim loss.

Iterative Heuristic C The last heuristic considers each item independently, i.e. having
demand equal to 1; and calls the stripGenerator Procedure and patternGenerator Pro-
cedure. If necessary, it calls Iterative Heuristic A at the end.

The solution of the heuristics for the small 2DCSP having minimum waste is selected and
merged with the set of patterns to obtain the global solution of the problem.

2.7 Computational Results

The aim of this section is to select the group of parameters that improves the performance of
the algorithms described in the previous sections. All the algorithms were implemented in C
and run on one core of an Intel Core 2 Quad 2.50 GHz, with 7.7 GB shared memory, under

Computational Results 13

Linux Ubuntu 9.04 operating system. Below we present the set of instances used to test the
algorithms and the computational results for different sets of parameters.

2.7.1 Instances

We create 30 instances considering the dimensions and characteristics of real instances repre-
sentative of real problems from the wood industry. The item classes length and width are in
the range [108, 3512] and [65, 1606] respectively and the board classes length and width are
in the range [1844, 5300] and [1020, 2200] respectively. All the items can be rotated and κ is
set to 6.

Each instance is defined by the total number of items (t), the number of item classes (m)
and the number of board classes (b). For the total number of items t the values are: 25,
50, 75, 100, 150, 200, 300, 400, 600 and 800. For the number of item classes m the values
are: 10, 40 and 80. The number of board classes b is set to two for each combination; for
the larger combinations we also create instances with three board classes (40x600, 40x800,
80x600 and 80x800). Unfeasible combinations are not considered, for example 25 total number
of items and 40 item classes. The name of the instance defines its features: instancemxt or
3instancemxt for the instances with 3 board classes.

Below we describe how the instances are generated using the dimensions of the real in-
stances. In order to have item classes with related dimensions, we create an adjacent list with
the items that are not in the instance and have at least one dimension in common with an
item class in the instance. The first new item class is selected randomly among the real item
dimensions and the adjacent list is initialized with real items having a common dimension to
the selected item class. With 0.3 of probability, or if the adjacent list is empty, the following
new item class is selected randomly among the real items that have not been selected yet.
The new item class is removed from the adjacent list, when it corresponds, and the real items
having a common dimension to the new class are added to the adjacent list. With 0.7 of
probability, the following item class is selected randomly among the items in the adjacent list.
As before, the new item class is removed from the adjacent list and the real items adjacent to
the new one are added. The cycle is repeated until all the required item classes are created.
The demand of the item classes is given by the random distribution of the total number of
items in the item classes. In detail, first we assign one item to each item class. Then, until
the total number of items is reached, an item class is randomly selected and its demand is
increased by one item. The dimensions of the board class are selected randomly among the
real boards and it is verified that all the item classes fix into at least one of them.

Table 2.1 describes the area of the instances. The first column is the instance name, the
second column is the total area of the items, the third column is the area of the smaller board
class and the last column is the area of the largest board class. All the areas are expressed
in square millimeters. Note that, on average, the area of the items is 56.36 and 38.72 times
larger than the smallest and largest board, respectively; this means that, on average, at least
39.2 boards are needed with a minimum of 3 boards for instance10x25 and a maximum of
106 boards for instance40x800.

Computational Results 14

Table 2.1: Instance Area

Instance Items Board Class Board Class
Name Total Area Min Area Max Area
instance10x25 16318798.00 5264900.00 7585000.00
instance10x50 32611165.00 2972897.28 5692960.00
instance10x75 49044502.00 2972897.28 8487000.00
instance10x100 67039086.00 4407500.00 6232000.00
instance10x150 100132569.00 4407500.00 5264900.00
instance10x200 133307896.00 3721000.00 5692960.00
instance10x300 201648432.00 4732381.00 6232000.00
instance10x400 268079317.00 3672000.00 4262074.60
instance10x600 401779496.00 3721000.00 6282450.00
instance10x800 535119701.00 4407500.00 7215000.00
instance40x50 30515946.00 2852668.00 5692960.00
instance40x75 48686155.00 5692960.00 6232000.00
instance40x100 62687851.00 4262074.60 8487000.00
instance40x150 91291288.00 5264900.00 5299200.00
instance40x200 122173479.00 4554000.00 6282450.00
instance40x300 193671225.00 4732381.00 4761771.02
instance40x400 246017180.00 3066445.48 3672000.00
instance40x600 373084474.00 4732381.00 5299200.00
instance40x800 502610017.00 3672000.00 4761771.02
instance80x100 63821867.90 3791768.20 8487000.00
instance80x150 92195705.90 4554000.00 7215000.00
instance80x200 122551279.80 4554000.00 6232000.00
instance80x300 184769095.40 4761771.02 5264900.00
instance80x400 250513251.40 5299200.00 6251400.00
instance80x600 381326953.20 7585000.00 8487000.00
instance80x800 512594067.70 5692960.00 8487000.00
3instance40x600 373084474.00 3791768.20 5299200.00
3instance40x800 502610017.00 3672000.00 5299200.00
3instance80x600 381326953.20 2852668.00 8487000.00
3instance80x800 512594067.70 3066445.48 5692960.00

Computational Results 15

2.7.2 Constructive Heuristic Parameters

The parameters of the heuristic algorithms are the power of the item classes α, the strip
acceptance threshold β and the pattern acceptance threshold γ. As mentioned before, we
presumed that a high value of α privileges the insertion of large items in the first phases of
the algorithm and, therefore, leaves a small area of remaining items for the final 2DCSP. In
relation to the threshold parameters, we expect that smaller values lead to smaller areas of
used boards and larger computation times; as well as higher values lead to larger areas of
used boards but shorter computation times.

With the objective of studying the behavior of the algorithm to changes in the parameters
and to find the set of parameters that improves the performance of the algorithm in terms
of the Equation 1.1, we study three values for each parameter: α ∈ {1.0, 1.1, 1.2}, β ∈
{0.05, 0.10, 0.15} and γ ∈ {0.05, 0.10, 0.15}.

Table 2.2 shows the average of the solutions of the experiments. The first three columns
show the value of each parameter α, β and γ respectively. Column 4 is the average of the
computational time T , in seconds, to solve each instance. Column 5 is the average of the
percentage area, in square meters, of the items placed with the residualProblem procedure,
items. Column 6 is the average of the board used area A in square meters. Column 7 is the
average of the number of cycles C. Column 8 is the average of the number of third stage cuts
Z. The last column is the average of Equation 1.1, index of each solution.

We observe that when α increases and the other parameters remain invariable, on average,
the area of the items placed with the residualProblem Procedure decrease for the parameters
{β = 0.05, γ = 0.15}, {β = 0.10, γ = 0.05}, {β = 0.10, γ = 0.10} and {β = 0.10, γ = 0.15}
as we expected; for the parameters {β = 0.15, γ = 0.05} the algorithm presents the opposite
behavior. Note that the computational time is directly related to the percentage area of the
items placed with the residualProblem Procedure.

We observe that when β increases and the other parameters remain invariable, on aver-
age, the area of used boards increases for the parameters {α = 1.0, γ = 0.10} and {α =
1.1, γ = 0.15}; instead, for the parameters {α = 1.0, γ = 0.05}, {α = 1.2, γ = 0.05},
{α = 1.2, γ = 0.10} and {α = 1.2, γ = 0.15} the area of used boards decreases. In relation to
the computational time, when β increases and the other parameters remain fixed, on average,
the computational time decreases for the parameters {α = 1.0, γ = 0.05}, {α = 1.0, γ = 0.10},
{α = 1.0, γ = 0.15}, {α = 1.1, γ = 0.10}, {α = 1.1, γ = 0.15}, {α = 1.2, γ = 0.10} and
{α = 1.2, γ = 0.15}. Surprisingly, we observe that, on average, the number of third stage
cuts decreases whenever β increases and the other parameters remain invariable; this fact is
explained because a larger β increases the number of strips selected during the stripGenerator
Procedure, where the third stage cuts are banned.

We observe that when γ increases and the other parameters remain invariable, on average,
the area of used boards behaves contrary to expectations, i.e., the area of used boards decreases
for the parameters {α = 1.0, β = 0.15}, {α = 1.1, β = 0.05}, {α = 1.1, β = 0.10}, {α =
1.1, β = 0.15}, {α = 1.2, β = 0.05}, {α = 1.2, β = 0.10} and {α = 1.2, β = 0.15}. Instead, on
average, the computational time decreases when γ increases and the other parameters remain
invariable as we expected. Unexpectedly, we observe that when γ increases and the other
parameters remain fixed, on average, the area of the items placed with the residualProblem
Procedure decreases for the parameters {α = 1.0, β = 0.05}, {α = 1.0, β = 0.10}, {α =
1.0, β = 0.15}, {α = 1.1, β = 0.10}, {α = 1.1, β = 0.15}, {α = 1.2, β = 0.05}, {α = 1.2, β =

Computational Results 16

Table 2.2: Constructive Heuristic Parameters

α β γ T items A C Z index

1.0 0.05 0.05 9.76 75.80 273.20 25.63 28.00 986.82
1.0 0.05 0.10 7.79 66.97 274.26 29.33 28.23 1000.39
1.0 0.05 0.15 7.17 65.14 273.52 28.87 28.90 996.81
1.0 0.10 0.05 8.77 74.56 273.11 26.57 25.77 988.34
1.0 0.10 0.10 6.49 65.56 275.87 29.17 23.47 1003.88
1.0 0.10 0.15 6.01 59.59 274.44 28.73 24.37 998.20
1.0 0.15 0.05 8.24 72.61 272.28 28.47 22.97 989.83
1.0 0.15 0.10 3.47 54.58 276.09 26.70 19.90 997.04
1.0 0.15 0.15 2.79 44.76 276.17 27.57 18.97 999.37
1.1 0.05 0.05 10.29 56.24 272.71 28.40 28.03 992.68
1.1 0.05 0.10 6.95 66.92 274.64 28.60 24.10 998.46
1.1 0.05 0.15 5.92 62.69 276.33 28.87 24.27 1004.89
1.1 0.10 0.05 8.18 74.28 274.51 29.03 23.67 998.99
1.1 0.10 0.10 5.18 64.29 274.91 27.63 23.03 996.43
1.1 0.10 0.15 4.19 58.15 275.57 28.30 23.30 1000.62
1.1 0.15 0.05 9.68 73.93 273.27 26.43 23.53 987.88
1.1 0.15 0.10 3.04 52.77 274.41 28.10 19.60 994.98
1.1 0.15 0.15 2.03 43.85 276.65 28.30 19.17 1002.92
1.2 0.05 0.05 10.99 76.65 273.98 27.67 28.80 995.15
1.2 0.05 0.10 7.02 67.17 275.67 28.67 26.23 1002.65
1.2 0.05 0.15 5.72 62.23 277.84 26.70 25.67 1004.57
1.2 0.10 0.05 8.59 73.63 273.40 28.67 25.30 994.80
1.2 0.10 0.10 5.34 63.77 275.32 27.67 23.67 998.14
1.2 0.10 0.15 4.16 57.92 276.98 28.00 21.57 1003.94
1.2 0.15 0.05 9.50 74.00 272.32 28.00 24.43 989.16
1.2 0.15 0.10 3.25 53.82 273.78 28.23 20.33 993.52
1.2 0.15 0.15 2.14 44.39 276.48 29.97 19.50 1006.83

Computational Results 17

0.10} and {α = 1.2, β = 0.15}; this fact is explained because a larger γ means a larger waste in
the patterns selected during the first phase of the algorithm, therefore, the number of patterns
accepted and consequently the number of items placed increase.

In the next experiments, we choose the configuration of minimum index {α = 1.0, β =
0.05, γ = 0.05} for the Constructive Heuristic which has a computation time of 9.76 seconds
on average. Table 2.3 presents the results of this configuration for all the instances. The
first column is the name of the instance. Column 2 is the computational time in seconds,
(T). Column 3 is the area of the used boards, (A). Column 4 is the number of cycles, (C).
Column 5 is the number of third-stage cuts, (Z). The last column is the value of Equation
1.1, (index). The last row reports average values.

Table 2.3: Constructive Heuristic: α = 1.0, β = 0.05, γ = 0.05

instance T A C Z index

instance10x25 0.06 26.32 4 0 97.67
instance10x50 0.15 43.58 10 3 172.57
instance10x75 0.15 65.79 11 3 249.23
instance10x100 0.20 89.83 14 0 336.33
instance10x150 0.70 133.46 8 1 465.63
instance10x200 2.03 179.95 12 1 631.30
instance10x300 4.10 245.25 12 10 852.00
instance10x400 11.29 322.67 20 0 1128.33
instance10x600 27.46 515.25 24 2 1781.60
instance10x800 18.40 815.30 24 0 2781.00
instance40x50 0.20 42.72 8 5 164.83
instance40x75 0.58 60.16 10 8 229.07
instance40x100 0.58 76.53 13 11 292.97
instance40x150 1.18 105.57 19 31 410.97
instance40x200 1.11 138.68 21 25 525.50
instance40x300 2.92 241.68 23 12 869.93
instance40x400 8.98 329.99 30 23 1185.90
instance40x600 6.56 419.63 47 38 1534.73
instance40x800 61.55 573.50 39 36 2025.80
instance80x100 1.08 70.78 10 44 274.87
instance80x150 1.50 101.37 17 46 396.13
instance80x200 2.14 136.62 23 49 531.03
instance80x300 5.85 206.03 40 63 811.57
instance80x400 5.83 275.72 44 49 1051.03
instance80x600 12.75 412.46 45 92 1521.60
instance80x800 16.76 555.71 64 106 2054.47
3instance40x600 8.03 446.09 35 12 1582.93
3instance40x800 34.20 567.50 37 27 1997.77
3instance80x600 16.50 410.35 50 81 1524.63
3instance80x800 40.01 587.65 55 62 2123.27
average 9.76 273.20 25.63 28.00 986.82

Computational Results 18

In this chapter, we have presented Constructive Heuristic Algorithms to solve the 2DCSP
considering the requirements of the wood industry. The algorithms are based on the con-
struction of strips that are subsequently grouped into patterns. We study the parameters of
the algorithms, and set them to the value that improves the performance of the algorithm.
We are interested in obtaining a fast solution with these algorithm, and use it as the initial
solution in more complex procedures described in the next Chapters.

Chapter 3

Column Generation

Given an instance for the Cutting Stock Problem, the classic approach to find a good solution
is based on the model of Gilmore and Gomory [10] [12], (given by Equations (3.1)–(3.3)) that
implicitly considers all the feasible cutting patterns P, which are exponentially many. Each
pattern j ∈ P (j = 1, . . . , η) is characterized by a cost Ej and a vector Pj = [p1

j . . . p
i
j . . . p

m
j] ∈

Zm representing the items in the pattern, where pij is the number of items of class i (i =
1, . . . ,m) that are in the pattern j. A variable xj (column in the model) is associated with
each pattern and its value indicates the number of times that the pattern is in the solution.

O.F. := min
∑η

j=1Ejxj (3.1)

subject to
∑η

j=1 p
i
jxj ≥ di i = 1, . . . ,m (3.2)

xj ∈ Z+, j = 1, . . . , η (3.3)

Relaxing the integrality constraint, equation (3.3), allows us to find the optimal solu-
tion, possibly fractional, without considering all the feasible patterns by using the column
generation approach.

In the column generation approach, the relaxed model that considers a small set of pat-
terns is called Restricted Model, and the patterns needed to find the optimal solution of the
continuous relaxation must be determined and added. These patterns, needed to improve the
solution, have a negative reduced cost, i.e., the profit of the pattern is larger than the pattern
cost, where the profit of the pattern depends on the value of the current optimal dual solution
πi associated with each item class i (i = 1, . . . ,m). Each time a new pattern is added to the
Restricted Model, the profit of the patterns changes because of the new optimal dual solution.
If the pattern with the maximum profit has a positive reduced cost, the current solution of
the Restricted Model corresponds to the optimal solution of the continuous relaxation of the
model (3.1)–(3.3). Otherwise, not all the patterns to solve the relaxed problem are known.
To find these patterns a pricing subproblem is solved in order to identify the feasible pattern
with maximum profit.

In particular, for the 2DCSP in the wood industry, the pricing subproblem corresponds
to the 2TKP, allowing a third stage for trimming or to separate smaller items and using the
dual variables, associated with each item class, as profits.

Note that model (3.1)–(3.3) does not consider the machine cycles. In Appendix A we
propose two ILP models that explicitly consider the cycles, but these models are difficult to

19

20

solve, therefore we use the model of Gilmore and Gomory, considering the usage minimization
and machine productivity in the objective function. In detail, each pattern is assigned a cost
that represents the contribution of each pattern to the performance index (Equation 1.1).
Unlike the area, the cycles as well as the third-stage cuts do not depend linearly on the
value of the x variable, i.e., the contribution to the cost changes according to κ; therefore we
appropriately estimate the number of cycles for each pattern and consider the contribution
of each pattern in the cycle in the objective function. This means that for each pattern the
cost is given by Equation 3.4, where w1 = 10

3 , w2 = 8
3 and w3 = 0.3 are the weights of the

performance index (Equation 1.1), Akj is the area of the board Bj = k, Zj is the number of
third-stage cuts and C̃j is an approximation of the number of cycles for that pattern.

Ej = w1 ∗Akj +
w2 + w3 ∗ Zj

C̃j
(3.4)

To estimate the number of cycles, we consider the items in the pattern and set C̃j to the
maximum number of patterns that does not exceed the item classes demand (Equation 3.5),
consequently the patterns that are more appropriate for high repetition have a larger C̃j and,
therefore, a smaller value in the second part of Equation 3.4.

C̃j = mini∈Ij

{⌊
di
pij

⌋}
(3.5)

We initialize the Restricted Model with a feasible solution found by the Constructive
Heuristic (Chapter 2). Using the optimal dual solution of the Restricted Model πi (i =
1, . . . ,m), the pricing subproblem generates the patterns. All the patterns with negative
reduced cost are candidates to improve the objective function. Since each pattern is associated
with a board, we need to solve the pricing subproblem for each board class.

As solving the 2TKP to optimality may be very time consuming and as the solution is
only optimal in the marginal sense [5], we solve the subproblem quickly by using a nested
BKP, similar to the procedure presented in [12], and a Modified GRASP [1] procedure.

Before adding a candidate column, we check that it is not in the restricted master problem
by using a hashing function that considers the area of the items in the column. The generation
process is stopped when no column is found for any board class or when the time limit for
the column generation is reached. The solution of the relaxed model is, in general, fractional;
we propose a heuristic procedure based on this solution to find an integer solution for the
problem.

In order to find an integer solution, a rounding procedure followed by the solution of
the remaining problem is usually used. In the context of column generation, the rounding
heuristic destroys the structure of the subproblem and is doomed to fail because the columns
in the Restricted Master Problem typically do not contain an optimal integer solution [25].
We propose an approach guided by the continuous relaxation of the model to obtain an integer
solution

In the following we explain the procedure to solve the pricing subproblem and the heuristics
to find an integer solution.

Nested BKP 21

3.1 Nested BKP

The nested BKP solves two BKPs for a given board class and direction (horizontal or vertical).
The inner BKP creates the strips while the second join the strips to make a pattern. We
present the version of the procedure for a given board class of dimensions (L,W) and the
horizontal direction. The vertical direction is obtained by swapping the board length and
width and the items dimensions.

Before calling the procedure, a set of all the feasible strip widths W̄ = {w̄s : ∃wi = w̄s∧wi ≤
W, i = 1, . . . ,m}, for the given board class and direction is calculated according to the item
classes. Moreover, the set of feasible items for these widths Iw̄s is calculated, i.e., the item
classes with item width no larger than w̄s and length no larger than L, or items classes that
can be rotated and have widths no larger than L and lengths no larger than w̄s.

The inner BKP is solved for each w̄s considering L as capacity and the set of feasible item
classes Iw̄s as objects. The optimal dual solution πi associated with each item class i is used
as profit and the item class length, or item class width for the rotated items, is used as the
weight. The solution of the inner BKP is a feasible strip for the board with maximum profit.
Note that the items in the strip do not exceed the item class demand. The profit of each strip
is the value of objective function of the BKP, i.e., the sum of the profit of the items in the
strip.

In the outer BKP, the aim is to make a pattern with maximum profit using the previous
strips. The capacity is the board class width W , the object weights are the strip widths
and the object profits are the profit of the strips. The solution is a pattern with feasible
dimensions. The BKPs are solved using the Greedy Algorithm presented in Section 1.3.

Note that the pattern solution might be infeasible because the items in the pattern might
exceed the item class demand. We replace the extra items with available items and update
the profit of the pattern. In order to improve the pattern profit, a procedure tries to insert
some available items in the pattern allowing third-stage cuts.

3.2 Modified GRASP

The GRASP [1] as explained in Section 1.3 heuristically solves the 2TKP, i.e., it returns a
pattern with a high profit. Internally, it uses the GRASP Strip and GRASP Pieces to create
patterns and the Path Relinking Procedure to generate new solutions.

As explained in Section 2.3, we modified the procedures in order to allow third-stage cuts
for trimming or to separate small items when the strip width allows it. The orientation of the
items is also selected in order to place the maximum number of them.

Moreover, in the procedure used during the column generation, we add all the intermediate
patterns generated by the GRASP Strip and GRASP Pieces having negative reduced cost to
the set of columns of the Restricted Model.

The GRASP is also invoked a second time, banning the third-stage cuts.

3.3 Diving Heuristic

We propose a Diving Heuristic Algorithm guided by the continuous relaxation of the model
(3.1)–(3.3). The algorithm begins with the fractional solution found with the column gener-

Diving Heuristic 22

ation approach. New columns are added to the Restricted Master Problem at each node and
the integer solution is obtained by fixing variable bounds.

Starting from the relaxed model and the original vector of demands, each node is examined
in three main steps: obtain the relaxed solution, solve the remaining problem and select the
branching variable.

For a general node, in the first step, we solve the master problem and obtain the primal
and dual solutions. If the primal solution is integer, the procedure stops returning the best
memorized solution. Otherwise we continue with the second step in which we use the con-
structive heuristic, Chapter 2, with the dual solution as profit of the item classes and find
a solution for the remaining problem, i.e., the items that are not contained in the bounded
variables. Joining this partial solution with the bounded variables of the model we obtain a
new solution for the problem. In the last step, we consider the values of the primal solution
different from zero. We select a variable for branching and fix its value appropriately. The
demand of the items in the variable is updated accordingly.

We propose three strategies to select the variable and fix its value:

First Branching Select the variable with the largest fractional part. The variable value
is fixed to its value rounded up, if the column generation of the master problem has
finished. Otherwise, the variable value is fixed to the largest integer that does not exceed
the current demand of the items in the pattern.

Second Branching Select the largest fractional variable. The variable value is fixed to
its value rounded up, if the column generation of the master problem has finished.
Otherwise, the variable value is fixed to the largest integer that does not exceed the
current demand of the items in the pattern.

We improve the Second Branching by bounding the variables with larger value. In detail,
for all the variables with a value larger than or equal to κ, we fix the lower bound of the
variable to the largest multiple of κ that does not exceed the variable value and update
the demand according to the lower bound. We called this strategy Second Branching +
Big Variables.

Third Branching Select the variable with largest fractional part and fix it to the variable
value rounded up, if the current demand of the items in the pattern is not exceeded
or if there is no column generation. Otherwise, select the variable with the smallest
fractional part and fix it to the variable value rounded down.

We improve the Third Branching by fixing the value of the integer variables and bound-
ing the variables with a value larger than or equal to κ to the largest multiple of κ that
does not exceed the variable value. We update the vector of demand accordingly. We
called this strategy Third Branching + Integer Variables.

We also propose the version in which the value of the variable with the largest fractional
part is not fixed but its lower bound is set to the variable value rounded up. We
called this strategy Third Branching Bounding and it can be combined with the Integer
Variables strategy.

Note that fixing the variable to a value smaller than its value would regenerate the variable
in the next iteration of column generation and thus the algorithm could go in a loop. To

Column Generation and Diving Heuristic Settings 23

prevent the regeneration of a pattern, whenever a bound is fixed, the availability of the items
in the pattern is updated and the heuristics used to solve the pricing subproblem considers
only the current availability of the items. In addition, we verify the regeneration with a
hashing function that considers the area of the items in the column and does not add the
column if it matches any of the other columns in the Restricted Model. Moreover, the second
time that the variable is regenerated, the hashing function forbids bounding the variable to
its value rounded down. Furthermore, if the time for the column generation has been reached,
this procedure could generate infeasibility, i.e., some items may not be covered by any column.
To avoid this, we allow the rounding down of the variables only when the time limit for the
column generation has not yet been reached.

3.4 Column Generation and Diving Heuristic Settings

The purpose of this section is to study the Column Generation procedure and the approaches
to obtain an integer solution and determine which configuration achieves the best performance
of the algorithm. We used the instances presented in Section 2.7.1. All the algorithms were
implemented in C and run on one core of an Intel Core 2 Quad 2.50 GHz, with 7.7 GB shared
memory, under Linux Ubuntu 9.04 operating system. The linear programs were solved using
the callable library GLPK (GNU Linear Programming Kit) Version 4.34.

We initialize the Restricted Model with a feasible solution founded with the Constructive
Heuristic Chapter 2, with the parameter states in Section 2.7. For solving the remaining
problem at each node, we select the fastest configuration of the Constructive Heuristic, {α =
1.1, β = 0.15, γ = 0.15}.

The first approach to obtain an integer solution consists in solving the integer model
(3.1)–(3.3) using the ILP solver of GLPK with the columns obtained to solve the continuous
relaxation of the model during the Column Generation procedure. In order to respect the 10
minutes of the wood industry maximum computational time, we set the Column Generation
time limit to 500 seconds and the ILP solver time limit to 100 seconds.

Table 3.1 shows the average of the results of the experiments. We present the different
strategies to obtain an integer solution in Column 1. Column 2 is the average of the com-
putational time T , in seconds, to solve each instance. Column 3 is the average of the board
used area A in square meters. Column 4 is the average of the number of cycles C. Column 5
is the average number of third stage cuts Z. The last column is the average of Equation 1.1,
index of each solution.

Note that all the Diving strategies have an average index smaller than the average index
obtained with the ILP Solver.

The Second Branching achieves the best performance of the Diving Heuristic, improving
the starting solution given by the Constructive Heuristic. On average, the area is improved
in 9.10% and the cycles are improved in 18.49%, instead the third-stage cuts are increased
in 34.17%; however, the index is improved in 9.51% with a 93.65% increasing in the compu-
tational time. Table 3.2 presents the results of this configuration for all the instances. The
first column is the name of the instance. Column 2 is the computational time to solve the
continuous relaxation of the model (T0). Column 3 is the value of the continuous relaxation of
the model (LB). Column 4 is the number of columns used to solve the continuous relaxation
of the model (NCol). Column 5 is the computational time in seconds, (T). Column 6 is the

Column Generation and Diving Heuristic Settings 24

area of the used boards, (A). Column 7 is the number of cycles, (C). Column 8 is the number
of third-stage cuts, (Z). The last column is the value of Equation 1.1, (index) The last row
reports average values.

We observe that the time limit is reached only for the largest instance. In the following
chapter we present two techniques of local search, with the aim of improving these solutions,
using as time limit the remaining time to complete the 600 seconds computational time limit
of the wood industry.

In this chapter, we have used the Column Generation approach to improve the solution
obtained with the Constructive Heuristic proposed in Chapter 2. The model used in the
column generation considers the main features of the wood industry and the required objective
of stock usage and machine productivity. Moreover, several strategies to find an integer
solution were studied. As the computational time limit of wood industry is not reached for
all the instances, in the next chapter, we will use local search techniques until the time limit
is reached, to further improve the solutions.

Table 3.1: Column Generation and Diving Heuristic Settings

Integer Strategy T A C Z index

ILP Solver 304.79 256.58 28.07 39.43 941.37
First Branching 329.66 254.50 24.73 34.53 924.18
Second Branching 321.43 252.67 22.30 31.90 910.67
Second Branching + Big Variables 319.65 252.63 22.70 31.80 911.57
Third Branching 336.46 253.39 26.97 36.03 926.82
Third Branching + Integer Variables 295.98 255.76 27.20 37.80 935.91
Third Branching + Bounding 335.13 253.77 26.47 34.87 926.40
Third Branching + Bounding + Integer Variables 304.53 252.57 25.83 36.10 921.15

Column Generation and Diving Heuristic Settings 25

Table 3.2: Column Generation and Diving Heuristic: Second Branching

instance T0 LB NCol T A C Z index

instance10x25 1.46 63.89 160 3.99 23.38 3 4 86.20
instance10x50 3.23 124.48 81 7.61 40.36 6 7 152.10
instance10x75 4.11 181.33 71 9.85 57.73 7 9 213.37
instance10x100 1.88 244.56 52 6.69 74.78 8 11 273.63
instance10x150 1.60 404.22 64 7.24 124.64 10 0 441.67
instance10x200 3.55 529.75 107 12.33 162.64 11 5 572.83
instance10x300 6.01 732.10 122 23.24 221.82 12 15 775.50
instance10x400 5.99 987.55 56 49.21 302.87 19 3 1060.57
instance10x600 6.33 1462.21 51 64.78 440.93 20 17 1527.43
instance10x800 7.88 2323.00 72 57.94 704.26 23 18 2413.73
instance40x50 29.93 108.28 690 121.50 34.16 6 17 134.10
instance40x75 101.47 167.06 927 213.94 53.93 9 10 206.00
instance40x100 272.76 215.59 932 503.90 67.97 10 39 264.37
instance40x150 93.48 315.18 751 290.50 100.17 17 30 387.33
instance40x200 115.22 415.78 734 344.93 130.67 19 24 492.87
instance40x300 155.89 678.72 621 469.65 208.46 23 43 768.23
instance40x400 69.07 919.90 553 484.05 277.98 29 34 1013.53
instance40x600 99.55 1288.71 440 388.40 390.67 27 41 1386.30
instance40x800 250.57 1745.21 665 575.24 533.27 40 47 1897.77
instance80x100 503.59 220.08 1542 505.34 69.88 11 28 269.73
instance80x150 511.77 315.37 1651 516.08 99.47 16 38 385.07
instance80x200 501.94 417.40 1620 512.52 131.59 22 54 512.87
instance80x300 505.50 630.51 1390 530.37 195.27 30 71 751.30
instance80x400 518.28 849.86 1387 548.37 270.43 43 34 1025.87
instance80x600 503.71 1300.78 1088 548.43 404.88 38 64 1469.53
instance80x800 500.10 1742.66 898 599.72 541.74 49 71 1956.97
3instance40x600 222.37 1288.65 755 515.57 393.52 29 38 1399.73
3instance40x800 264.19 1726.56 745 548.65 528.45 37 43 1872.57
3instance80x600 509.78 1296.92 1163 576.47 406.67 40 80 1485.67
3instance80x800 516.38 1755.07 1437 606.36 587.65 55 62 2123.27
average 209.59 815.05 694.17 321.43 252.67 22.30 31.90 910.67

26

Chapter 4

Post Optimization

In Chapters 2 and 3, we have developed a Constructive Heuristic, a Column Generation
Approach and a Diving Heuristic to find a good solution for the 2DCSP in wood industry.
Briefly, once the continuous relaxation of the model is solved, through the column generation
approach, the Diving Heuristic searches for an integer solution in a search tree where each
node is defined by a partial solution obtained after bounding some fractional variables. The
search tree is explored in a depth-first fashion until an integer solution is found, because the
exhaustive exploration may be very expensive from the computational viewpoint; however,
a better solution could exist in the unexplored nodes of the search tree. With this idea, in
this chapter, we present two approaches to improve the solution obtained after the Diving
Heuristic, considering the Restricted Model and the previously generated patterns.

The approaches are independent from each other and can be used in parallel to obtain
different solutions. Both approaches depend on a time limit that is calculated in order to not
exceed the industry maximum computational time of 600 seconds. The first approach is a
Local Search (Section 4.1) that continues the exploration of the search tree using the Diving
Heuristic. The second approach is a Tabu Search (Section 4.3) that uses the columns of the
Restricted Master Problem to find a better solution in a set covering fashion.

4.1 Local Search

The Local Search approach (LS) destroys part of a given solution in order to explore new
nodes of the search tree. Each iteration is composed of two phases. Given a solution, the first
phase selects the patterns to be unpacked, while the second phase explores the search tree
with the Diving Heuristic, see Section 3.3.

During the selection phase of the LS, the bounds of the variables (patterns) not selected
are fixed, i.e., the lower bound is set to the value of the variable in the solution and the items
in those patterns are removed from the available items. The variables selected and the other
variables in the Restricted Model have a lower bound equal to zero. The upper bound for all
the variables is equal to the total number of items.

With this partial solution, the exploration phase uses the Diving Heuristic Algorithm to
find an integer solution guided by the continuous relaxation of the model (3.1)–(3.3). At each
node of the Diving Heuristic, the Constructive Heuristic solves the remaining 2DCSP with
the current set of available items. The best solution is updated whenever a solution of less

27

Local Search Settings 28

index, Equation 1.1, is found by the Constructive Heuristic or at the bottom of the Diving
Heuristic.

When the exploration phase finishes, a new iteration starts with the selection of the
variables. The iterations stop when the time limit is reached or when the maximum number
of iterations is reached and the best solution is returned.

To select the variables in the solution, we propose the following criteria with different
parameters.

LS1 Assign a random probability to each variable with value larger than zero in the best
solution and destroy all the variables with a probability below a threshold.

LS2 Calculate the total waste for each variable with value larger than zero in the best solution
as the rate of the total unused area over the area of the used boards and destroy the
variables with a total waste above a threshold.

LS3 Calculate a similarity rate for each variable with value larger than zero in the best
solution. The similarity rate Si,j for patterns i and j is defined as the number of equal
items over the number of total items in the patterns.

Si,j =
| Ii ∩ Ij |
| Ii ∪ Ij |

(4.1)

A perturbation is randomly added to the similarity rate, specifically, with 0.3 of proba-
bility the rate is increased by 0.1. Order the variables by non increasing similarity rate
and, following this order, destroy a percentage of columns.

LS4 Calculate the total waste of each variable with value larger than zero in the last solu-
tion and order the variables by non increasing waste. Following this order, destroy a
percentage of variables.

LS5 For each variable with value larger than zero in the last solution calculate its reduced cost
using the optimal dual solution found at the end of the column generation. Order the
variables by no increasing reduced cost and, following this order, destroy a percentage
of variables.

4.2 Local Search Settings

The objective of this section is to study the Local Search performance and find the selection
criteria and the parameters that improve the solution found with the diving heuristic. The
procedures were implemented in C and run on one core of an Intel Core 2 Quad 2.50 GHz,
with 7.7 GB shared memory, under Linux Ubuntu 9.04 operating system. The linear programs
were solved using the callable library GLPK (GNU Linear Programming Kit) Version 4.34.
Starting from the Restricted Model at the end of the Diving Heuristic, see Chapter 3, the
time limit is set to complete the 600 seconds of computational time, with a minimum of 50
seconds. The maximum number of iterations is set to 1000.

The parameters of the selection criteria are set according to preliminary tests to 0.3, 0.5
and 0.7. For LS1, the parameter is the probability threshold. For LS2, the parameter is

Local Search Settings 29

the waste threshold. For LS3, LS4 and LS5, the parameter is the percentage of destroyed
patterns.

Table 4.1 presents the average values for the selection criteria. Column 1 is the selection
criteria name with the parameter value. Column 2 is the average of the total computational
time T , in seconds, to solve each instance. Column 3 is the average of the board used area
A in square meters. Column 4 is the average of the number of Cycles C. Column 5 is the
average of the number of third stage cuts Z. The last column is the average of Equation 1.1,
index of each solution.

Table 4.1: Local Search Selection Criteria

Criteria T A C Z index

LS10,3 369.00 255.46 23.37 26.37 921.22
LS10,5 601.08 252.08 21.80 30.03 906.81
LS10,7 601.22 251.97 21.57 31.13 906.15
LS20,3 405.68 260.99 22.07 26.40 936.16
LS20,5 561.13 252.31 22.23 31.97 909.31
LS20,7 379.27 260.72 21.73 25.53 934.15
LS30,3 378.88 255.27 23.47 26.63 920.87
LS30,5 601.94 252.06 22.13 30.10 907.65
LS30,7 467.76 254.03 22.47 27.70 914.45
LS40,3 587.98 252.45 22.30 31.50 909.82
LS40,5 412.18 258.72 24.07 27.77 934.27
LS40,7 471.18 256.02 23.17 28.13 922.98
LS50,3 605.93 252.16 22.10 32.70 908.64
LS50,5 411.56 259.51 23.60 26.63 935.39
LS50,7 452.13 258.18 22.60 26.40 928.15

The higher computational time is due to a few outlier run times caused by particularly
difficult instances.

The random selection (LS1) achieves the best performance for these parameters. The
selection based on waste (LS2 and LS4) achieves the worst performance, although it is very
fast. The LS30.5, that considers the similarity rate improves the number of cycles, on average,
by 1.4%. We observe that LS10,7 achieves the best performance, improving the area 0.86%,
the machine cycles 5.83%, the third-stage cuts 22.85% and the index 1.17% with respect to
the Diving Heuristic procedure. Table 4.2 presents the results of this configuration for all the
instances. The first column is the name of the instance. Column 1 is the computational time
in seconds, (T). Column 2 is the area of the used boards, (A). Column 3 is the number of
cycles, (C). Column 4 is the number of third-stage cuts, (Z). The last column is the value
of Equation 1.1, (index) The last row reports average values. Note that 19 instances improve
their index value with respect to the solution found with the Diving Heuristic procedure.

Local Search Settings 30

Table 4.2: Local Search: LS10.7

instance T A C Z index

instance10x25 600.07 20.43 3 5 77.50
instance10x50 600.03 40.36 6 2 150.60
instance10x75 600.02 54.76 6 4 199.20
instance10x100 600.03 74.78 7 3 268.57
instance10x150 600.19 124.64 6 2 431.60
instance10x200 600.06 160.90 11 5 566.83
instance10x300 600.06 221.35 12 10 772.00
instance10x400 599.54 297.43 16 2 1034.27
instance10x600 600.02 439.77 18 20 1519.00
instance10x800 600.14 699.86 20 12 2388.93
instance40x50 601.12 34.16 6 17 134.10
instance40x75 617.53 53.93 9 10 206.00
instance40x100 599.23 67.97 9 24 257.20
instance40x150 600.47 100.17 17 30 387.33
instance40x200 600.05 127.84 18 36 484.80
instance40x300 600.98 208.46 23 43 768.23
instance40x400 600.99 277.98 29 34 1013.53
instance40x600 608.39 390.67 27 41 1386.30
instance40x800 600.33 532.87 40 45 1896.17
instance80x100 600.01 69.88 11 27 269.43
instance80x150 600.23 99.47 16 33 383.57
instance80x200 600.04 131.59 22 54 512.87
instance80x300 600.22 195.27 30 67 750.10
instance80x400 600.75 271.38 38 55 1021.83
instance80x600 600.23 405.78 37 59 1468.37
instance80x800 600.18 541.74 49 71 1956.97
3instance40x600 600.23 392.95 29 38 1397.73
3instance40x800 600.68 528.45 37 43 1872.57
3instance80x600 600.14 406.67 40 80 1485.67
3instance80x800 604.58 587.65 55 62 2123.27
average 601.22 251.97 21.57 31.13 906.15

Tabu Search 31

4.3 Tabu Search

The Tabu Search tackles the problem in a set covering fashion using the columns of the
Restricted Master problem, where a covering means that the demand of each item class is
satisfied, and looks for a minimal solution that minimize the objective function. A minimal
solution is a set of columns such that if one of them is removed the demand of at least one of
the rows, item classes, is uncovered.

The algorithm starts with a greedy minimal cover of the rows. At each iteration a column
in the solution is randomly selected and its value is reduced according to the number of cycles,
i.e., the new value is a multiple of κ. In order to prevent the algorithm from cycling, once a
column is randomly selected and removed from the current solution, it is not considered for
insertion for a specified number of iterations (tenure), unless it is needed to obtain feasible
solutions. Then the algorithm reconstructs a complete cover by iteratively choosing the col-
umn j and the number of repetitions Rj such that the ratio RRj between the cost and the
profit of covered rows is minimized, see Equation 4.2.

RRj =

⌈
Rj

κ

⌉
· fj +Rj · vj∑

i∈Ij li · wi ·min{Rj · p
i
j , di}

0 ≤ Rj ≤ ubj , (4.2)

where: pij is the number of items of class i in the pattern j; ubj = maxi∈Ij{d
di

pi
j
e} is the

minimum number that exceeds the demands of all the items in the pattern; fj = 10
3 × A

k
j

is the component of the cost associated with the area Akj of the used board Bj = k; and,
vj = 8

3 + 0.3× Zj is the component of the cost associated with each cycle.
When the current solution is not improved for a specified number of iterations, a crossover

operator finds a new solution. The crossover operator selects two parent solutions from a
pool of greedy solutions created at the beginning of the procedure. The parent solutions are
different from the current solution and different from each other. The child solution is built
by keeping the smallest variable value of the parent solutions; consequently, some item classes
are not covered and a complete cover is reconstructed. The parent solution with largest value
is replaced by the current solution and the tabu iterations continue with the child solution
found.

4.4 Tabu Search Parameters

The parameters of the Tabu Search are the tenure, the number if iterations between two
crossovers and the number of solutions for the pool of the crossover. We study three different
values for each parameter: tenure ∈ {5, 10, 15}, iterations between two crossovers ∈ {5, 15, 35}
and number of solutions for the pool of the crossover ∈ {5, 15, 20}. All the algorithms where
implemented in C and run on one core of an Intel Core 2 Quad 2.50 GHz, with 7.7 GB shared
memory, under Linux Ubuntu 9.04 operating system. The linear programs were solved using
the callable library GLPK (GNU Linear Programming Kit) Version 4.34. The input of the
algorithm is the restricted model after the Diving Heuristic.

Tabu Search Parameters 32

Table 4.3 presents the average values for the different parameter sets. Column 1 is the
tenure value, tenure. Column 2 is the number of iterations between two crossovers, ItCross.
Column 3 is the number of solutions, nSol. Column 4 is the average of the board used area
A in square meters. Column 5 is the average of the cycles C. Column 6 is the average of the
number of third stage cuts Z. The last column is the average of Equation 1.1, index of each
solution.

Table 4.3: Tabu Search Parameters

tenure ItCross nSol A C Z index

5 5 5 251.20 21.10 29.53 901.89
5 5 15 250.99 21.07 30.37 901.35
5 5 20 251.01 21.10 30.00 901.40
5 15 5 251.14 21.27 30.40 902.36
5 15 15 250.98 21.30 30.10 901.83
5 15 20 251.40 21.00 29.10 902.20
5 35 5 251.18 21.70 30.73 903.79
5 35 15 251.39 21.37 30.50 903.53
5 35 20 251.33 21.43 30.83 903.57
10 5 5 251.16 20.87 30.03 901.29
10 5 15 251.07 21.17 29.93 901.76
10 5 20 251.04 21.13 29.97 901.58
10 15 5 251.34 21.13 30.10 902.62
10 15 15 251.24 21.07 30.37 902.15
10 15 20 251.13 21.20 29.90 902.04
10 35 5 251.16 21.37 30.87 902.90
10 35 15 251.44 21.23 30.33 903.29
10 35 20 251.21 21.40 30.73 903.05
15 5 5 251.22 21.07 29.50 901.83
15 5 15 251.07 20.90 30.13 901.11
15 5 20 251.07 21.07 30.07 901.53
15 15 5 251.29 21.13 30.30 902.48
15 15 15 251.25 21.23 30.63 902.75
15 15 20 251.22 21.07 29.90 901.95
15 35 5 251.09 21.63 31.30 903.45
15 35 15 251.58 21.10 30.00 903.30
15 35 20 251.55 21.03 29.90 902.93

In general, the solutions for all the parameter sets are similar, therefore, the sensitivity
of the algorithm to changes in the parameters seems negligible. However, we observe an
increase in the average index value when the number of iterations between two crossovers
grows; this fact implies that a diversification of the solution, given by the increased number
of crossovers, leads to better solutions. The best performance is obtained with tenure 15,
iterations between two crossovers 5 and number of solutions 15; improving the area 0.77%,
the cycles 8.00%, the third-stage cuts 18.43% and the index 1.11%, with respect to the solution

Tabu Search Parameters 33

of the Diving Heuristic. In Appendix A, the solutions of the best configuration are compared
with ILP models that explicitly consider area, cycles and third stage cuts. The results show
the efficiency of the Tabu Search to find a good solution.

Table 4.4 presents the results of the best configuration for all the instances. The first
column is the name of the instance. Column 2 is the time limit for the Tabu Search in
seconds, (TTS). Column 3 is the computational time in seconds, (T). Column 4 is the area
of the used boards, (A). Column 5 is the number of cycles, (C). Column 6 is the number of
third-stage cuts, (Z). The last column is the value of Equation 1.1, (index). The last row
reports average values. Note that 14 instances improve their index values with respect to the
solution found with the Diving Heuristic procedure.

Table 4.4: Tabu Search: {15,5,15}

instance TTS T A C Z index

instance10x25 596.01 600.00 20.43 3 3 76.90
instance10x50 592.39 600.00 40.60 5 5 149.83
instance10x75 590.15 600.00 57.72 6 6 209.80
instance10x100 593.31 600.00 74.78 8 9 273.03
instance10x150 592.76 600.00 124.64 7 2 434.27
instance10x200 587.67 600.00 160.90 10 3 563.57
instance10x300 576.76 600.00 223.32 10 6 772.47
instance10x400 550.79 600.00 296.23 16 3 1030.57
instance10x600 535.22 600.00 440.93 16 13 1515.57
instance10x800 542.06 600.00 699.86 19 6 2384.47
instance40x50 478.50 600.00 34.16 6 17 134.10
instance40x75 386.06 600.00 53.93 9 10 206.00
instance40x100 96.10 600.00 67.97 10 39 264.37
instance40x150 309.50 600.00 100.17 17 30 387.33
instance40x200 255.07 600.00 130.67 19 24 492.87
instance40x300 130.35 600.00 208.46 23 43 768.23
instance40x400 115.95 600.00 277.98 29 34 1013.53
instance40x600 211.60 600.00 390.67 27 41 1386.30
instance40x800 50.00 625.24 535.30 32 48 1883.73
instance80x100 94.66 600.00 69.88 11 28 269.73
instance80x150 83.92 600.00 99.47 16 38 385.07
instance80x200 87.48 600.00 131.59 22 54 512.87
instance80x300 69.63 600.00 195.27 30 71 751.30
instance80x400 51.63 600.00 270.43 43 34 1025.87
instance80x600 51.57 600.00 404.88 38 64 1469.53
instance80x800 50.00 649.72 541.74 49 71 1956.97
3instance40x600 84.43 600.00 396.17 26 31 1398.63
3instance40x800 51.35 600.00 528.93 33 32 1860.60
3instance80x600 50.00 626.47 406.67 40 80 1485.67
3instance80x800 50.00 656.36 548.37 47 59 1970.03
average 283.83 605.26 251.07 20.90 30.13 901.11

34

Chapter 5

Experiments

The purpose of this chapter is to compare the results obtained by the developed algorithms
with those obtained by commercial software packages available for the solution of 2DCSP.
The software packages are optimization tools used to obtain efficient patterns considering
technological and organizational parameters of production. Efficient patterns are critical to
reduce production cost, since small improvements in cutting patterns can result in major
savings in raw materials, workload and processing times.

When comparing our results with commercial software packages, however, one must con-
sider that:

• Commercial software packages optimize an objective function similar to the one that
we consider, but weights are not given explicitly, thus some software packages may give
more importance to material usage, and some others to cycles or third cut minimization;

• Commercial software packages may optimize further features of the cutting patterns
that we do not consider in the objective function, e.g., cuts within a pattern may be
optimized in order to reduce the processing time.

The software tools descriptions, based on the work of Macedo et al. [16], are presented in
the following sections 5.1 to 5.4. In section 5.5, we compare the results of our algorithms and
the results of the software packages.

5.1 GNCutter32

GNCutter32 [21], by Optimalon Software with head office in Canada, is a Windows - based
software library written on C# for Microsoft .NET Framework. The prices for the license
per computer are in the range of 149 USD to 497 USD according to the features and size of
the problems that the package can hold and each additional license costs 100 USD. The opti-
mization objective of the package can be set to minimize the waste (default) or minimize the
number of different layouts. The package supports guillotine cuts and free cutting (including
cuts without the guillotine constraints), rotated or fixed orientations of the items, maximum
cut length, blade width consideration, reuse of cuts, safety margins, first cut orientation and
sheets of different sizes. The results can be output in CNC code for cutting machines. In
the solution, the coordinates of each item are indicated for the corresponding sheet, also the

35

CutLogic2D 36

number of different saw cuts and, optionally, the lines that indicate the cutting-out sequence
of each layout can be visualized.

Among these features we selected those admissible to the problem and similar to our
objectives:

• UseLayoutMinimization = true :“The GNCutter32 library tries to minimize the number
of different layouts during the calculations, which means that several sheets share the
same layout. This is very important for wood cutting because the sheets with the same
layout can be cut all together and hence the productivity can be increased dramatically.”

• SetAutoCutDirection() : “The calculation engine will automatically detect what direc-
tion produces the best results.”

• GuillotineSheet Z : “The calculation produces the layout shown in Figure 5.1.”

Figure 5.1: GNCutter XYZ-cutting

We run the program on a Pentium 4 2.8 Ghz 496 MB of RAM under Microsoft Windows
XP Professional

5.2 CutLogic2D

CutLogic2D [24], by TMachines, s.r.o, with head office in Slovakia, is a package specialized in
panel cutting optimization. The prices for the license per computer are in the range of 499
USD to 1499 USD according to the features and size of the problems that the package can
hold. The optimization objective of the package can be set to minimize the waste (default)
or minimize the number of different layouts. The package supports guillotine cuts and free
cutting (including cuts without the guillotine constraints), maximum cut length, blade width
consideration, reuse of cuts, safety margins, first cut orientation and sheets of different sizes.
The input data can be imported from CSV files and the results can be output in CSV files.
It is possible to calculate the total price of a project, based on a variety of inputs of direct or
indirect costs. In the solution, the coordinates of each item are indicated for the corresponding
sheet.

We used the trial version of CutLogic2D v.3.5.1.322 and set the type of cutting to 3-stage
exact as shown in figure 5.2.

We run the program on a Pentium 4 2.8 Ghz 496 MB of RAM under Microsoft Windows
XP Professional

Plus 2D 37

Figure 5.2: CutLogic2D 3-stage exact

5.3 Plus 2D

Plus2D [20], by Nirvana Technologies Private Limited, with head office in India, is a package
for generating optimized cutting plans and maximizing panel yields. The price for the license
per computer is e1400. The optimization objective of the package can be set to minimize the
waste (default) or minimize the cost, the package can also be used to determine the best sheet
dimensions for a given set of items. The package supports guillotine cuts, rotated or fixed
orientations of the items, maximum cut length, adjustable optimization level, blade width
consideration, reuse of cuts, safety margins, first cut orientation, sheets of different sizes and
edge banding calculation. The input data can be imported from CSV, TXT or DXF files and
the results can be output in DXF, CSV or XML files. The results can be output in CNC
code for cutting machines. It is possible to create a material database, keep have track of the
inventory, automatically create a document to present to potential customers and calculate
the total price of a project, based on a variety of inputs of direct or indirect costs. In the
solution, the coordinates of each item are indicated for the corresponding sheet, also the
number of different saw cuts and, optionally, the lines that indicate the cutting-out sequence
of each layout can be visualized.

The results were obtained with the version 8.82 The system requirements are a 1 GHz
32-bit (x86) processor, at least 2 GB of free Hard Disk space, at least 516 MB of RAM, 256
of colors display 800x600 and Windows XP (or higher) operating system.

5.4 Merick Calc 3000

Merick Calc 3000 [23], by Soft Consult, with head office in Czech Republic. The price for
the license per computer is e199 and each additional license cost e90. The optimization
objective of the package can be set to minimize the waste (default) or minimize the cost. The
package supports guillotine cuts, rotated or fix orientations of the items, maximum cut length,
adjustable optimization level, blade width consideration, reuse of cuts, first cut orientation,
sheets of different sizes and edge banding calculation. The results can be output in CNC code
for cutting machines. It is possible to create a material database, keep track of the inventory
and calculate the total price of a project, based on a variety of inputs of direct or indirect
costs.

The instances were tested using the version 1.1.27.1269 in a AMD Athlon 64 X2 Dual Core
Processor 5200+, 2GB RAM 2.7 GHz under Windows 7 operating system. The accuracy of
calculation was set to: 1, 3, 6 and 10.

Computational Results 38

5.5 Computational Results

Considering that the Local Search approach and the Tabu Search approach are independent
and can be invoked in parallel, we present the best solution between them as solution of the
Proposed Algorithm. These algorithms were run on one core of an Intel Core 2 Quad 2.50
GHz, with 7.7 GB shared memory, under Linux Ubuntu 9.04 operating system.

Table 5.1 presents the results for our algorithms and the four software packages. The first
column of the table is the name of the instance. Then, the table is divided into five parts,
and for each part the columns represent the computational time T , the area A, the cycles C,
the third-stage cut Z and the index index, Equation 1.1, for the solutions. The first part is
the best solution between the Local Search and Tabu Search procedures presented in Chapter
4. The next parts are the solutions of the software packages: GNCutter32, CutLogic2D, Plus
2D and Merick Calc 3000, respectively. For the last software package, Merick Calc 3000, the
number of third stage cuts was not provided, and, we therefore present only the computational
time T , the area A and the cycles C for the accuracy of calculation parameter equal to 3.
The last row of the table reports average values.

The results show that, on average, the proposed algorithms have the minimum number of
cycles, third-stage cuts and indexes compared with the software packages. The average area
obtained with Plus 2D is smaller than the area required for the algorithms, but the average
number of third stage cuts of the package is 3.66 times more than the average number of
third-stage cuts of the algorithms. The algorithms have an appropriated computational time,
although it is larger than the time required by Plus 2D, GNCutter32 and MerickCalc3000.

Computational Results 39

T
ab

le
5.

1:
C

om
pa

ri
so

n
of

al
go

ri
th

m
s

to
co

m
m

er
ci

al
pa

ck
ag

es

in
s
ta

n
c
e

P
ro

p
o
se

d
A

lg
o
ri

th
m

P
lu

s2
D

C
u
tL

o
g
ic

2
D

G
N

C
u
tt

e
r3

2
M

e
ri

c
k

C
a
lc

3
0
0
0

T
A

C
Z

in
d
e
x

T
A

C
Z

in
d
e
x

T
A

C
Z

in
d
e
x

T
A

C
Z

in
d
e
x

T
A

C
in

st
a
n
c
e
1
0
x
2
5

6
0
0
.0

0
2
0
.4

3
3

3
7
6
.9

0
3

2
0
.4

3
3

1
6

8
0
.8

0
6
9
.0

2
1
.0

6
4

8
8
3
.0

7
1
.4

5
2
0
.4

3
3

3
7
6
.9

0
3

2
1
.0

6
4

in
st

a
n
c
e
1
0
x
5
0

6
0
0
.0

0
4
0
.6

0
5

5
1
4
9
.8

3
2

4
3
.0

8
7

1
8

1
6
7
.0

7
2
0
1
.0

4
0
.3

5
7

7
1
5
4
.7

7
1
.3

3
4
0
.3

5
5

0
1
4
7
.3

3
2

4
0
.3

5
8

in
st

a
n
c
e
1
0
x
7
5

6
0
0
.0

2
5
4
.7

6
6

4
1
9
9
.2

0
7

6
3
.2

5
7

3
0

2
3
7
.6

7
7
6
.8

5
7
.7

2
7

7
2
1
2
.7

7
3
.2

5
7
5
.1

3
9

2
2
7
4
.6

0
7

5
4
.7

5
6

in
st

a
n
c
e
1
0
x
1
0
0

6
0
0
.0

3
7
4
.7

8
7

3
2
6
8
.5

7
4

7
4
.7

8
7

3
3

2
7
7
.5

7
3
1
0
.2

7
4
.7

8
7

9
2
7
0
.3

7
2
.2

3
8
7
.2

5
7

0
3
0
8
.6

7
7

7
9
.1

9
1
2

in
st

a
n
c
e
1
0
x
1
5
0

6
0
0
.1

9
1
2
4
.6

4
6

2
4
3
1
.6

0
3

1
2
4
.6

4
1
4

4
1

4
6
4
.6

3
2
7
0
.6

1
2
4
.6

4
1
1

1
4

4
4
8
.5

3
3
.3

8
1
3
1
.6

2
9

0
4
6
2
.0

0
4

1
2
5
.5

0
1
5

in
st

a
n
c
e
1
0
x
2
0
0

6
0
0
.0

0
1
6
0
.9

0
1
0

3
5
6
3
.5

7
3

1
6
1
.1

2
1
5

3
6

5
8
7
.8

0
1
5
4
.2

1
6
2
.8

7
1
3

1
3

5
8
0
.5

7
2
.8

9
1
7
6
.2

3
1
2

1
6
1
9
.3

0
3

1
6
9
.2

3
1
6

in
st

a
n
c
e
1
0
x
3
0
0

6
0
0
.0

6
2
2
1
.3

5
1
2

1
0

7
7
2
.0

0
4

2
2
4
.5

9
1
6

3
9

8
0
2
.3

7
8
8
.2

2
2
4
.0

2
1
5

2
1

7
9
2
.3

0
2
.1

7
2
4
2
.6

2
1
2

2
8
4
0
.6

0
8

2
2
6
.5

5
1
6

in
st

a
n
c
e
1
0
x
4
0
0

6
0
0
.0

0
2
9
6
.2

3
1
6

3
1
0
3
0
.5

7
1

2
9
9
.9

2
1
9

1
5

1
0
5
4
.1

7
6
5
.4

3
0
4
.8

9
2
0

1
9

1
0
7
5
.0

3
3
.9

5
3
1
3
.2

8
2
1

2
8

1
1
0
8
.4

0
1

3
1
0
.4

6
2
4

in
st

a
n
c
e
1
0
x
6
0
0

6
0
0
.0

0
4
4
0
.9

3
1
6

1
3

1
5
1
5
.5

7
3

4
3
9
.7

7
2
1

7
5

1
5
4
3
.5

0
8
2
.8

4
4
4
.4

1
2
0

4
1

1
5
4
6
.6

3
4
.0

3
5
0
6
.8

9
2
9

6
1
7
6
8
.1

3
7

4
5
3
.5

0
2
2

in
st

a
n
c
e
1
0
x
8
0
0

6
0
0
.0

0
6
9
9
.8

6
1
9

6
2
3
8
4
.4

7
5

6
9
9
.8

6
2
5

7
8

2
4
2
2
.0

7
7
2
.0

6
9
9
.8

6
2
0

2
9

2
3
9
4
.0

3
6
.0

2
7
7
6
.8

1
2
6

0
2
6
5
8
.3

3
1
1

6
9
9
.8

6
2
8

in
st

a
n
c
e
4
0
x
5
0

6
0
0
.0

0
3
4
.1

6
6

1
7

1
3
4
.1

0
6
0

3
4
.1

6
6

3
8

1
4
0
.4

0
4
8
7
.2

3
4
.1

6
6

2
0

1
3
5
.0

0
3
.6

4
4
2
.7

2
9

2
1
6
6
.6

0
1
6

3
4
.1

6
6

in
st

a
n
c
e
4
0
x
7
5

6
0
0
.0

0
5
3
.9

3
9

1
0

2
0
6
.0

0
7
5

5
3
.9

3
8

3
7

2
1
1
.4

3
4
4
1
.6

5
2
.3

1
9

2
0

2
0
4
.0

0
1
.8

3
5
6
.0

9
7

2
8

2
1
3
.0

7
3
7

5
3
.9

3
9

in
st

a
n
c
e
4
0
x
1
0
0

5
9
9
.2

3
6
7
.9

7
9

2
4

2
5
7
.2

0
6
6

6
7
.9

7
1
0

6
3

2
7
1
.5

7
5
1
4
.2

7
2
.1

6
7

4
1

2
7
0
.9

7
2
.5

8
7
6
.6

8
1
1

1
7

2
8
9
.4

3
7
9

6
8
.0

4
1
2

in
st

a
n
c
e
4
0
x
1
5
0

6
0
0
.0

0
1
0
0
.1

7
1
7

3
0

3
8
7
.3

3
5
4

1
0
0
.2

7
1
8

8
7

4
0
8
.1

0
1
3
3
2
.6

1
0
0
.0

7
1
7

5
1

3
9
3
.6

3
3
.6

6
1
1
1
.0

1
1
3

1
8

4
1
0
.0

7
6
7

1
0
0
.2

1
1
7

in
st

a
n
c
e
4
0
x
2
0
0

6
0
0
.0

5
1
2
7
.8

4
1
8

3
6

4
8
4
.8

0
5
0

1
2
7
.8

4
2
0

7
6

5
0
2
.1

3
6
7
9
.2

1
2
7
.8

4
2
2

4
0

4
9
6
.6

7
3
.0

9
1
3
7
.4

2
1
5

1
6

5
0
2
.8

0
9
1

1
3
1
.3

0
2
0

in
st

a
n
c
e
4
0
x
3
0
0

6
0
0
.0

0
2
0
8
.4

6
2
3

4
3

7
6
8
.2

3
4
0

2
0
0
.8

7
2
8

1
3
5

7
8
4
.1

7
5
0
8
.8

2
0
8
.5

3
2
3

5
9

7
7
4
.0

3
3
.7

5
2
2
2
.4

2
2
1

6
8

8
1
7
.4

0
9
3

2
0
8
.5

0
3
0

in
st

a
n
c
e
4
0
x
4
0
0

6
0
0
.0

0
2
7
7
.9

8
2
9

3
4

1
0
1
3
.5

3
4
6

2
8
7
.1

8
5
1

9
4

1
1
2
1
.2

0
4
5
3
.6

2
9
1
.4

0
2
7

4
5

1
0
5
6
.5

0
3
.5

6
3
1
7
.8

1
3
7

2
3

1
1
6
4
.5

7
2
7

2
9
2
.5

9
4
1

in
st

a
n
c
e
4
0
x
6
0
0

6
0
0
.0

0
3
9
0
.6

7
2
7

4
1

1
3
8
6
.3

0
5
6

3
8
7
.2

6
3
6

1
6
1

1
4
3
4
.3

0
6
0
4
.2

3
9
4
.8

3
3
8

7
0

1
4
3
8
.3

3
4
.2

2
4
3
2
.2

9
3
1

5
9

1
5
4
0
.3

7
1
1
6

3
9
4
.6

6
3
8

in
st

a
n
c
e
4
0
x
8
0
0

6
2
5
.2

4
5
3
5
.3

0
3
2

4
8

1
8
8
3
.7

3
4
4

5
2
5
.1

2
5
1

1
9
9

1
9
4
5
.7

0
7
4
5
.2

5
4
1
.5

6
4
3

5
2

1
9
3
5
.2

7
3
.0

0
5
6
0
.7

4
4
7

9
9

2
0
2
4
.0

3
1
1
2

5
5
8
.0

2
5
4

in
st

a
n
c
e
8
0
x
1
0
0

6
0
0
.0

1
6
9
.8

8
1
1

2
7

2
6
9
.4

3
2
2
7

7
0
.7

8
1
0

5
7

2
7
8
.7

7
9
1
8
.6

6
9
.8

8
1
1

4
0

2
7
3
.3

3
2
.6

1
7
1
.6

9
8

2
2
5
9
.9

3
1
2
5

6
8
.9

7
1
2

in
st

a
n
c
e
8
0
x
1
5
0

6
0
0
.2

3
9
9
.4

7
1
6

3
3

3
8
3
.5

7
2
5
9

9
7
.5

8
1
5

8
8

3
9
1
.4

0
1
2
9
1
.8

9
8
.7

1
1
7

5
3

3
9
0
.2

3
2
.6

7
1
1
0
.4

8
1
2

1
9

4
0
5
.7

0
1
5
6

9
9
.4

7
1
6

in
st

a
n
c
e
8
0
x
2
0
0

6
0
0
.0

0
1
3
1
.5

9
2
2

5
4

5
1
2
.8

7
2
4
7

1
2
8
.7

1
2
1

1
1
3

5
1
8
.9

0
1
8
0
8
.4

1
2
9
.4

3
2
1

5
6

5
0
3
.8

0
2
.7

0
1
3
8
.5

4
1
6

3
5

5
1
4
.1

7
1
8
5

1
2
9
.9

1
2
3

in
st

a
n
c
e
8
0
x
3
0
0

6
0
0
.2

2
1
9
5
.2

7
3
0

6
7

7
5
0
.1

0
2
3
8

1
9
3
.0

2
3
3

1
3
7

7
7
2
.1

0
2
2
8
7
.8

1
9
5
.7

4
2
8

1
0
0

7
5
6
.6

7
2
.4

1
2
0
4
.6

8
2
6

9
5

7
7
9
.8

3
3
0
4

1
9
5
.2

4
3
6

in
st

a
n
c
e
8
0
x
4
0
0

6
0
0
.7

5
2
7
1
.3

8
3
8

5
5

1
0
2
1
.8

3
2
7
8

2
5
7
.3

8
3
6

1
5
9

1
0
0
0
.7

0
1
3
9
7
.4

2
6
1
.3

2
4
3

9
8

1
0
1
5
.0

7
2
.9

2
2
7
6
.3

9
2
8

9
3

1
0
2
3
.5

7
4
2
5

2
6
8
.5

2
4
4

in
st

a
n
c
e
8
0
x
6
0
0

6
0
0
.2

3
4
0
5
.7

8
3
7

5
9

1
4
6
8
.3

7
2
2
5

3
9
2
.9

4
4
1

2
7
9

1
5
0
2
.0

3
1
4
6
3
.4

3
9
6
.9

2
4
4

1
2
6

1
4
7
8
.1

3
3
.1

7
4
1
0
.4

5
2
0

8
1

1
4
4
5
.6

3
9
6
3

4
0
4
.5

1
4
3

in
st

a
n
c
e
8
0
x
8
0
0

6
4
9
.7

2
5
4
1
.7

4
4
9

7
1

1
9
5
6
.9

7
2
5
3

5
2
6
.7

2
4
8

3
0
3

1
9
7
3
.9

0
2
2
4
1
.6

5
3
8
.4

2
4
8

1
4
6

1
9
6
5
.8

0
3
.8

6
5
6
3
.6

0
3
0

1
3
3

1
9
9
7
.9

0
9
4
8

5
3
6
.4

6
5
6

3
in

st
a
n
c
e
4
0
x
6
0
0

6
0
0
.2

3
3
9
2
.9

5
2
9

3
8

1
3
9
7
.7

3
6
4

3
5
6
.8

1
3
7

1
9
0

1
3
4
4
.6

7
6
8
4
.6

3
9
6
.5

7
3
1

7
8

1
4
2
7
.0

7
4
.1

3
4
3
6
.3

0
3
8

6
3

1
5
7
4
.2

3
1
4
1

3
9
6
.0

3
3
9

3
in

st
a
n
c
e
4
0
x
8
0
0

6
0
0
.0

0
5
2
8
.9

3
3
3

3
2

1
8
6
0
.6

0
5
7

5
2
1
.4

2
4
8

1
9
1

1
9
2
3
.3

0
7
4
2
.8

5
3
1
.0

3
5
4

1
1
3

1
9
4
7
.9

0
5
.8

4
5
6
0
.2

6
3
7

6
9

1
9
8
6
.3

7
2
4
6

5
2
5
.9

6
5
6

3
in

st
a
n
c
e
8
0
x
6
0
0

6
2
6
.4

7
4
0
6
.6

7
4
0

8
0

1
4
8
5
.6

7
1
7
1

3
9
1
.1

4
4
4

2
5
1

1
4
9
5
.6

3
1
2
1
8
.6

4
0
0
.9

6
3
7

9
2

1
4
6
2
.2

7
2
3
.7

8
4
7
5
.6

7
4
7

4
6

1
7
2
4
.1

3
1
0
8
0

3
9
9
.9

2
4
7

3
in

st
a
n
c
e
8
0
x
8
0
0

6
5
6
.3

6
5
4
8
.3

7
4
7

5
9

1
9
7
0
.0

3
2
0
7

5
2
9
.6

6
6
6

2
9
5

2
0
2
9
.5

0
3
7
4
1
.6

5
4
3
.1

0
6
8

1
3
6

2
0
3
2
.1

3
4
.6

6
5
8
5
.2

4
6
5

8
1

2
1
4
7
.6

3
4
5
9

5
3
8
.9

8
7
3

a
v
e
r
a

g
e

6
0
5
.3

0
2
5
0
.7

7
2
0
.7

3
3
0
.3

3
8
9
9
.6

9
9
1
.7

3
2
4
6
.7

4
2
5
.3

7
1
1
1
.1

3
9
2
2
.9

2
8
3
1
.7

8
2
5
1
.3

2
2
3
.9

3
5
3
.4

7
9
1
7
.1

6
3
.9

6
2
7
2
.0

3
2
1
.7

0
3
6
.3

0
9
7
5
.0

6
1
9
0
.7

7
2
5
2
.8

6
2
7
.4

3

40

Chapter 6

Summary

This work is devoted to the problem of cutting rectangular boards in the wood industry, to
obtain the desired items, and to the description of heuristic algorithms to solve the problem,
regarding usage minimization and machine productivity. Usage minimization is intended as
the minimization of the total raw material used, while the machine productivity is achieved
by considering special features of the cutting machine, like the number of stages performed
to obtain an item and the possibility of simultaneously cutting more than one board. The
development of the algorithms is done in an empirical manner. The components are added
one at a time and the heuristic parameters are set on the basis of systematic and thorough
testing. Moreover, the results are examined in order to find why certain configurations work
better than others.

In Chapter 2, Constructive Heuristic algorithms were presented to find a solution for the
problem in a short time. The algorithms are based in the construction of strips that are
subsequently grouped into patterns. We study the parameters of the algorithms, and set
them to the values that improve their performance.

In Chapter 3, the Gilmore and Gomory model and the Column Generation approach
were used to improve the solution found by the Constructive Heuristic algorithms. A Diving
Heuristic procedure to find an integer solution is proposed. Based on the continuous relaxation
of the model, the Diving Heuristic procedure explores a branch of the search tree by performing
a depth-first search. Several strategies for bounding the variables at the nodes of the search
tree are studied. The procedures results very effective improving the average performance of
the Constructive Heuristic solution of 9,51%.

In Chapter 4, two post optimization techniques were proposed to further improve the
solution. The Local Search approach continues the exploration of the search tree using the
Diving Heuristic. In detail, given a solution, some patterns are selected and removed, and
different branches of the search tree are examined. Different criteria for selecting the patterns
are studied. The Tabu Search approach tackles the problem in a set covering fashion. Given
a minimal covering solution, some patterns are added to the tabu list and a new solution is
built without considering the patterns in the tabu list. Moreover, when the solution is not
improved in a given number of iterations, a crossover operator is used to change the explored
region. We study the parameters of the algorithm and set them to the values that improve
its performance.

Finally, in Chapter 5, we compared the results obtained by the developed algorithms

41

42

with those obtained by commercial software packages available for the solution of 2DCSP.
Although commercial software packages may also consider other features of the production
process, and therefore a straight comparison can not be carried out, the results show the
effective performance of the algorithm for usage minimization and machine productivity.

Bibliography

[1] R. Alvarez-Valdes, R. Marti, J. Tamarit, and A. Parajon. Grasp and path relinking for
the two-dimensional two-stage cutting-stock problem. INFORMS Journal on Computing,
(2):261–272, 2008.

[2] R. Alvarez-Valdes, A. Parajon, and J. Tamarit. A computational study of lp-based
heuristic algorithms for two-dimensional guillotine cutting stock problems. OR Spectrum,
(2):179–192, 2002.

[3] N. Christofides. An algorithm for two-dimensional cutting problems. Operations Re-
search, (1):30–44, 1977.

[4] G. Cintra, F. Miyazawa, Y. Wakabayashi, and E. Xavier. Algorithms for two-dimensional
cutting stock and strip packing problems using dynamic programming and column gen-
eration. European Journal of Operational Research, (1):61–85, 2008.

[5] A. Farley. Practical adaptations of the gilmore-gomory approach to cutting stock prob-
lems. OR Spectrum, Jan 1988.

[6] S. Fekete and J. Schepers. New classes of fast lower bounds for bin packing problems.
Mathematical Programming, (1):11–31, 2001.

[7] F. Furini, A. E. Fernandes Muritiba, R. Medina Durán, and A. Persiani. Column gen-
eration approach for 2d guillotine cutting stock problems with bins of different shapes,
2009. In OPTIMA, Congreso Chileno de Investigación Operativa, 2009, Chillán. OP-
TIMA 2009.

[8] F. Furini, E. Malaguti, R. Medina Durán, A. Persiani, and P. Toth. A column genera-
tion heuristic for the two-dimensional two-staged guillotine cutting stock problem with
multiple stock size, 2011. submitted to an International Journal.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman &
Co Ltd, first edition edition, January 1979.

[10] P. Gilmore and R. Gomory. A linear programming approach to the cutting-stock problem.
Operations Research, (6):849–859, 1961.

[11] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock problem-
part ii. Operations Research, (11):863–888, 1963.

43

BIBLIOGRAPHY 44

[12] P. Gilmore and R. Gomory. Multistage cutting stock problems of two and more dimen-
sions. Operations Research, (13):94–120, 1965.

[13] IBM ILOG CPLEX v12.1. User’s Manual for CPLEX, 2011.
ftp://ftp.boulder.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps usrmancplex.pdf.

[14] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, Berlin, 2004.

[15] A. Lodi and M. Monaci. Integer linear programming models for 2-staged two-dimensional
knapsack problems. Mathematical Programming, (94):257–278, 2003.

[16] R. Macedo, E. Silva, C. Alves, F. Pereira e Alvelos, J. M. V. de Car-
valho, C. Arbib, F. Marinelli, F. Pezzella, L. de Giovanni, and L. Gam-
bella. 2d cutting stock optimization software survey, 2010. http://www.scoop-
project.net/DOCUMENTI/File/MacedoEtAlii 080715.pdf.

[17] E. Malaguti, R. Medina Durán, and P. Toth. Algorithms for the cutting stock problem
with multi-objective function and their application in the wood industry, 2011. submitted
to an International Journal.

[18] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Chichester, 1990.

[19] A. F. Muritiba, M. Iori, E. Malaguti, and P. Toth. Algorithms for the bin packing
problem with conflicts. INFORMS Journal on Computing, (22):401–415, 2010.

[20] Nirvana Technologies Private Limited. Plus2D.
http://www.nirvanatec.com/panel optimization wood.html.

[21] Optimalon Software. GNCutter32. http://www.tmachines.com/cutlogic-2d.htm.

[22] J. Riehme, G. Scheithauer, and J. Terno. The solution of two-stage guillotine cutting
stock problems having extremely varying order demands. European Journal of Opera-
tional Research, (91):543–552, 1996.

[23] Soft Consult. Merick Calc 3000. http://www.softconsult.cz/us/mc3k/index.htm.

[24] TMachines, s.r.o. CutLogic2D.
http://www.optimalon.com/cutting optimization library.htm.

[25] F. Vanderbeck. Computational study of a column generation algorithm for bin packing
and cutting stock problems. Mathematical Programming, (86):565–594, 1999.

[26] F. Vanderbeck. A nested decomposition approach to a three-stage, two-dimensional
cutting-stock problem. Management Science, Jan 2001.

Appendix A

ILP Models for 2DCSP

The model of Gilmore and Gomory, Equations (3.1)–(3.3), used before for the Column Gen-
eration, does not explicitly consider the cycles of the machines. We propose two ILP Models
for 2DCSP that explicitly consider the cycles of the machines. The first model considers a
variable to define the number of cycles of each pattern; while the second model considers each
feasible repetition of the patterns in the solution. The details of the models are given in the
following.

A.1 Model 1

The first model, Equations (A.1-A.4), considers an integer variable xj for each feasible pattern
j (j = 1, . . . , η). The value of the variable xj indicates the number of times that pattern j is
in the solution. In addition, for each pattern j, a variable yj determines its number of cycles
.

min
∑η

j=1(fj × xj + vj × yj) (A.1)

s.t.
∑η

j=1 p
i
jxj > di i = 1, . . . ,m (A.2)

yj > xj

κ j = 1, . . . , η (A.3)
xj ∈ Z+, yj ∈ Z+ j = 1, . . . , η (A.4)

As before, the vector Pj = [p1
j . . . p

i
j . . . p

m
j] ∈ Zm represents the items in the pattern,

where pij is the number of items of item class i (i = 1, . . . ,m) that are in the pattern j; the
cost associated with each variable xj depends on the area of the board Bj = k, calling Akj the
area of the board class k, the cost fj is defined as:

fj =
10
3
×Akj (A.5)

the cost vj associated with each variable yj is defined as:

vj =
8
3

+ 0.3× Zj (A.6)

45

Model 2 46

where Zj is the number of third-stage cuts in the pattern j.
In order to strengthen the model, we add the following constraints that impose a minimum

number of variables to cover each item class.

∑
j:i∈Ij

xj > minj

{⌈
di
pij

⌉}
i = 1, . . . ,m (A.7)

A.2 Model 2

The second model considers an integer variable xtj for each feasible pattern j (j = 1, . . . , η)
and each possible number of boards simultaneously cut in a cycle t = 1, . . . , κ.

min
∑η

j=1

∑κ
t=1C

t
j × xtj (A.8)

s.t.
∑η

j=1

∑κ
r=1 tp

i
jx
t
j > di i = 1, . . . ,m (A.9)

xrj ∈ {0, 1} j = 1, . . . , η r = 1, . . . , κ− 1 (A.10)
xκj ∈ Z+ j = 1, . . . , η (A.11)

Each variable has a cost Ctj that expresses the repetition cost and the cycles cost, calling
Akj the area of the board Bj = k, the cost is defined as:

Ctj = t
10
3
Akj +

8
3

+ 0.3Zj (A.12)

where Zj is the number of third-stage cuts in the pattern. Again, the vector Pj = [p1
j . . . p

i
j . . . p

m
j] ∈

Zm represents the items in the pattern, where pij is the number of items of item class i
(i = 1, . . . ,m) that are in the pattern.

In order to strengthen the model, we add the following constraints that impose a minimum
number of variables to cover each item class.

∑
j:i∈Ij

κ∑
t=1

xtj > min

{⌈
di
pij

⌉}
i = 1, . . . ,m (A.13)

Also for the binary variables, we add the following constraints to avoid the symmetry:

κ−1∑
t=1

xtj 6 1 j = 1, . . . , n (A.14)

Computational Results 47

A.3 Computational Results

Solving the models to optimality may be very difficult for non trivial instances, because of
the exponential number of patterns.

To study the models, we used the patterns generated after the Diving Heuristic procedure,
and compared the results of the models with the solution of the Tabu Search, see 4.3, that
use the same set of columns. To solve the models we used the ILP Solver of CPLEX 12 [13],
taking advantage of the advanced routines embedded in the ILP Solver.

Table A.1 presents the results of the best configuration of the Tabu Search, Model 1
and Model 2. The first column in the table is the name of the instances followed by the
computational time limit in the second column. Then, the Table has three main parts. The
first one reports the results of the Tabu Search, presenting the area of the solution (A), the
number of cycles (C), the third-stage cuts (Z) and the value of Equation 1.1, (index). The
second part of the Table reports the results of Model 1 and the last part reports the results
of Model 2. For the models, the columns present the computational time (T), the objective
function (obj), the optimality gap (gap), the area of the solution (A), the number of cycles
(C), the third-stage cuts (Z) and the value of Equation 1.1, (index). The last row presents
average values.

The Table shows that the Tabu Search is more efficient than the proposed models when
considering the average index value. However, Model 2 seems to be more effective in the
reduction of cycles and third-stage cuts; we observe that the average of cycles (C) and third-
stage cuts (Z) are smaller. With respect to the computational time of the models, Model 2
is faster than Model 1, but for many instances the time limit is reached. For those instances
where the time limit is not reached, the solutions of the models are the same and, for the
majority of the instances, equal to the solution of the Tabu Search.

Computational Results 48

T
ab

le
A

.1
:

C
om

pa
ri

so
n

of
T

ab
u

Se
ar

ch
to

M
od

el
s

in
s
ta

n
c
e

T
im

e
T
a
b
u

S
e
a
rc

h
M

o
d
e
l
1

M
o
d
e
l
2

L
im

it
A

C
Z

in
d
e
x

T
o
b
j

g
a

p
A

C
Z

in
d
e
x

T
o
b
j

g
a

p
A

C
Z

in
d
e
x

in
st

a
n
c
e
1
0
x
2
5

5
9
6
.0

1
2
0
.4

3
3

3
7
6
.9

0
1
.8

2
7
7
.0

2
0
.0

0
2
0
.4

3
3

3
7
6
.9

0
0
.0

7
7
7
.0

2
0
.0

0
2
0
.4

3
3

3
7
6
.9

0
in

st
a
n
c
e
1
0
x
5
0

5
9
2
.3

9
4
0
.6

0
5

5
1
4
9
.8

3
8
2
.8

5
1
5
0
.1

7
0
.0

1
4
0
.6

0
5

5
1
4
9
.8

3
0
.9

9
1
5
0
.1

8
0
.0

0
4
0
.6

0
5

5
1
4
9
.8

3
in

st
a
n
c
e
1
0
x
7
5

5
9
0
.1

5
5
7
.7

2
6

6
2
0
9
.8

0
1
9
1
.3

7
2
1
0
.2

0
0
.0

1
5
7
.7

2
6

6
2
0
9
.8

0
0
.8

2
2
1
0
.2

2
0
.0

0
5
7
.7

2
6

6
2
0
9
.8

0
in

st
a
n
c
e
1
0
x
1
0
0

5
9
3
.3

1
7
4
.7

8
8

9
2
7
3
.0

3
3
2
.0

3
2
7
3
.2

9
0
.0

1
7
4
.7

8
8

9
2
7
3
.0

3
3
.2

4
2
7
3
.3

0
0
.0

0
7
4
.7

8
8

9
2
7
3
.0

3
in

st
a
n
c
e
1
0
x
1
5
0

5
9
2
.7

6
1
2
4
.6

4
7

2
4
3
4
.2

7
5
9
2
.7

6
4
2
9
.8

7
1
.1

2
1
2
4
.6

4
7

2
4
3
4
.2

7
4
3
5
.5

7
4
3
4
.7

0
0
.0

1
1
2
4
.6

4
7

2
4
3
4
.2

7
in

st
a
n
c
e
1
0
x
2
0
0

5
8
7
.6

7
1
6
0
.9

0
1
0

3
5
6
3
.5

7
5
8
7
.6

7
5
6
2
.1

5
0
.2

5
1
6
0
.9

0
1
0

2
5
6
3
.2

7
5
8
7
.6

7
5
5
9
.0

1
0
.8

6
1
6
0
.9

0
1
0

3
5
6
3
.5

7
in

st
a
n
c
e
1
0
x
3
0
0

5
7
6
.7

6
2
2
3
.3

2
1
0

6
7
7
2
.4

7
5
7
6
.7

6
7
6
3
.6

5
0
.6

7
2
2
1
.8

2
1
0

9
7
6
8
.3

7
5
7
6
.7

6
7
6
2
.2

4
2
.1

0
2
2
3
.0

9
1
2

1
0

7
7
8
.0

0
in

st
a
n
c
e
1
0
x
4
0
0

5
5
0
.7

9
2
9
6
.2

3
1
6

3
1
0
3
0
.5

7
0
.8

4
1
0
2
7
.9

4
0
.0

1
2
9
6
.2

3
1
5

2
1
0
2
7
.6

0
7
.6

9
1
0
2
8
.0

4
0
.0

0
2
9
6
.2

3
1
5

2
1
0
2
7
.6

0
in

st
a
n
c
e
1
0
x
6
0
0

5
3
5
.2

2
4
4
0
.9

3
1
6

1
3

1
5
1
5
.5

7
5
3
5
.2

2
1
5
0
5
.4

9
0
.4

2
4
3
9
.7

7
1
5

2
0

1
5
1
1
.0

0
5
3
5
.2

2
1
5
0
3
.3

3
0
.9

2
4
4
0
.9

3
1
6

1
6

1
5
1
6
.4

7
in

st
a
n
c
e
1
0
x
8
0
0

5
4
2
.0

6
6
9
9
.8

6
1
9

6
2
3
8
4
.4

7
5
4
2
.0

6
2
3
7
1
.7

7
0
.3

8
6
9
9
.8

6
1
8

0
2
3
8
0
.0

0
5
4
2
.0

6
2
3
7
0
.6

3
0
.4

3
6
9
9
.8

6
1
8

0
2
3
8
0
.0

0
in

st
a
n
c
e
4
0
x
5
0

4
7
8
.5

0
3
4
.1

6
6

1
7

1
3
4
.1

0
4
7
8
.5

0
1
2
8
.5

6
1
0
.9

9
3
7
.0

1
7

8
1
4
4
.0

7
9
6
.4

3
1
3
4
.3

6
0
.0

0
3
4
.1

6
6

1
5

1
3
3
.5

0
in

st
a
n
c
e
4
0
x
7
5

3
8
6
.0

6
5
3
.9

3
9

1
0

2
0
6
.0

0
3
8
6
.0

6
1
8
9
.5

1
1
6
.1

6
5
9
.0

9
9

1
7

2
2
5
.1

0
3
8
6
.0

6
1
9
7
.1

7
4
.6

4
5
3
.3

9
9

1
6

2
0
5
.8

0
in

st
a
n
c
e
4
0
x
1
0
0

9
6
.1

0
6
7
.9

7
1
0

3
9

2
6
4
.3

7
9
6
.1

0
2
3
7
.1

8
1
9
.6

6
7
6
.5

3
1
2

2
7

2
9
5
.1

0
9
6
.1

0
2
4
7
.1

2
1
1
.1

4
7
2
.1

9
1
0

3
6

2
7
7
.4

7
in

st
a
n
c
e
4
0
x
1
5
0

3
0
9
.5

0
1
0
0
.1

7
1
7

3
0

3
8
7
.3

3
3
0
9
.5

0
3
4
2
.6

6
1
4
.5

1
1
0
5
.5

4
1
5

3
0

4
0
0
.0

0
3
0
9
.5

0
3
6
2
.5

5
7
.7

6
1
0
5
.5

4
1
3

2
2

3
9
2
.2

7
in

st
a
n
c
e
4
0
x
2
0
0

2
5
5
.0

7
1
3
0
.6

7
1
9

2
4

4
9
2
.8

7
2
5
5
.0

7
4
4
2
.7

9
1
3
.5

7
1
3
6
.9

5
1
8

2
6

5
1
1
.8

0
2
5
5
.0

7
4
6
1
.9

8
7
.4

9
1
3
5
.2

2
1
6

2
0

4
9
8
.6

7
in

st
a
n
c
e
4
0
x
3
0
0

1
3
0
.3

5
2
0
8
.4

6
2
3

4
3

7
6
8
.2

3
1
3
0
.3

5
7
1
0
.9

7
9
.6

6
2
1
3
.2

1
2
4

4
1

7
8
6
.3

0
1
3
0
.3

5
7
3
1
.2

9
6
.9

6
2
1
7
.8

8
1
9

3
0

7
8
5
.6

7
in

st
a
n
c
e
4
0
x
4
0
0

1
1
5
.9

5
2
7
7
.9

8
2
9

3
4

1
0
1
3
.5

3
1
1
5
.9

5
9
6
7
.4

0
4
.1

6
2
7
9
.7

5
2
6

2
5

1
0
0
8
.8

3
1
1
5
.9

5
9
7
6
.3

3
4
.8

7
2
8
5
.8

8
2
5

2
2

1
0
2
5
.2

7
in

st
a
n
c
e
4
0
x
6
0
0

2
1
1
.6

0
3
9
0
.6

7
2
7

4
1

1
3
8
6
.3

0
2
1
1
.6

0
1
3
3
5
.1

0
4
.9

0
3
9
5
.9

6
2
7

4
0

1
4
0
3
.0

0
2
1
1
.6

0
1
3
4
7
.1

4
4
.4

6
3
9
9
.0

0
2
7

2
7

1
4
0
9
.1

0
in

st
a
n
c
e
4
0
x
8
0
0

5
0
.0

0
5
3
5
.3

0
3
2

4
8

1
8
8
3
.7

3
5
0
.0

0
1
8
1
1
.5

0
4
.2

5
5
3
2
.7

2
3
8

4
8

1
8
9
0
.7

3
5
0
.0

0
1
8
1
5
.3

2
6
.9

1
5
5
9
.1

0
2
8

3
8

1
9
4
9
.0

7
in

st
a
n
c
e
8
0
x
1
0
0

9
4
.6

6
6
9
.8

8
1
1

2
8

2
6
9
.7

3
9
4
.6

6
2
5
1
.4

2
1
6
.2

0
7
6
.5

6
1
4

2
5

2
9
9
.8

3
9
4
.6

6
2
5
6
.5

7
6
.9

7
7
0
.7

8
1
0

4
4

2
7
4
.8

7
in

st
a
n
c
e
8
0
x
1
5
0

8
3
.9

2
9
9
.4

7
1
6

3
8

3
8
5
.0

7
8
3
.9

2
3
5
7
.7

3
2
2
.0

7
1
1
8
.4

6
1
9

4
5

4
5
8
.1

7
8
3
.9

2
3
6
5
.1

7
8
.0

2
1
0
1
.3

7
1
7

4
6

3
9
6
.1

3
in

st
a
n
c
e
8
0
x
2
0
0

8
7
.4

8
1
3
1
.5

9
2
2

5
4

5
1
2
.8

7
8
7
.4

8
4
6
7
.9

3
2
1
.0

1
1
5
1
.0

0
2
8

4
8

5
9
2
.0

7
8
7
.4

8
4
8
4
.1

8
8
.8

9
1
3
6
.6

2
2
3

4
9

5
3
1
.0

3
in

st
a
n
c
e
8
0
x
3
0
0

6
9
.6

3
1
9
5
.2

7
3
0

7
1

7
5
1
.3

0
6
9
.6

3
6
8
3
.0

1
1
8
.6

4
2
1
6
.8

0
3
6

6
9

8
3
8
.7

0
6
9
.6

3
7
1
3
.0

9
1
3
.3

9
2
1
9
.5

4
2
9

4
7

8
2
2
.4

3
in

st
a
n
c
e
8
0
x
4
0
0

5
1
.6

3
2
7
0
.4

3
4
3

3
4

1
0
2
5
.8

7
5
1
.6

3
8
9
3
.3

8
2
0
.5

3
2
9
9
.2

4
4
1

5
8

1
1
2
3
.7

3
5
1
.6

3
9
4
2
.8

3
1
2
.6

3
2
9
4
.4

8
3
4

2
3

1
0
7
8
.5

7
in

st
a
n
c
e
8
0
x
6
0
0

5
1
.5

7
4
0
4
.8

8
3
8

6
4

1
4
6
9
.5

3
5
1
.5

7
1
3
3
8
.5

7
1
6
.9

7
4
3
7
.9

2
4
5

1
0
8

1
6
1
1
.4

0
5
1
.5

7
1
3
9
0
.5

1
1
2
.3

3
4
4
1
.9

0
3
7

4
8

1
5
8
5
.0

7
in

st
a
n
c
e
8
0
x
8
0
0

5
0
.0

0
5
4
1
.7

4
4
9

7
1

1
9
5
6
.9

7
5
0
.0

0
1
7
8
7
.7

2
1
6
.4

2
5
8
6
.7

6
5
9

8
6

2
1
3
8
.1

3
5
0
.0

0
1
8
3
5
.3

4
1
0
.4

3
5
7
8
.4

8
4
0

4
7

2
0
4
8
.7

7
3
in

st
a
n
c
e
4
0
x
6
0
0

8
4
.4

3
3
9
6
.1

7
2
6

3
1

1
3
9
8
.6

3
8
4
.4

3
1
3
3
3
.1

9
5
.2

5
3
9
3
.9

2
3
1

3
8

1
4
0
7
.0

7
8
4
.4

3
1
3
4
4
.9

7
6
.9

0
4
0
6
.6

0
3
0

3
1

1
4
4
4
.3

0
3
in

st
a
n
c
e
4
0
x
8
0
0

5
1
.3

5
5
2
8
.9

3
3
3

3
2

1
8
6
0
.6

0
5
1
.3

5
1
7
8
5
.6

8
4
.7

4
5
2
9
.4

8
3
7

3
6

1
8
7
3
.4

7
5
1
.3

5
1
7
9
4
.2

4
7
.0

2
5
5
1
.3

4
3
1

3
0

1
9
2
8
.6

7
3
in

st
a
n
c
e
8
0
x
6
0
0

5
0
.0

0
4
0
6
.6

7
4
0

8
0

1
4
8
5
.6

7
5
0
.0

0
1
3
3
8
.6

5
1
8
.7

0
4
4
4
.8

1
5
1

9
3

1
6
4
5
.9

0
5
0
.0

0
1
3
9
0
.7

5
1
2
.5

2
4
3
9
.1

7
4
0

6
4

1
5
8
8
.8

7
3
in

st
a
n
c
e
8
0
x
8
0
0

5
0
.0

0
5
4
8
.3

7
4
7

5
9

1
9
7
0
.0

3
5
0
.0

0
1
8
2
4
.4

9
9
.8

8
5
5
1
.9

2
6
1

7
3

2
0
2
3
.5

7
5
0
.0

0
1
8
6
5
.9

2
1
0
.0

1
5
8
0
.3

8
4
6

5
4

2
0
7
2
.8

7
a

v
e
r
a

g
e

2
8
3
.8

3
2
5
1
.0

7
2
0
.9

0
3
0
.1

3
9
0
1
.1

1
1
9
6
.7

1
8
5
3
.3

0
9
.0

4
2
5
9
.3

5
2
3
.1

7
3
3
.3

0
9
3
5
.7

0
1
6
8
.8

6
8
6
7
.5

2
5
.5

9
2
6
0
.7

4
1
9
.6

7
2
5
.5

0
9
2
8
.6

0

