
Dottorato di Ricerca in Informatica
Università di Bologna, Padova

INF/01 INFORMATICA

Formalizing languages for
Service Oriented Computing

Claudio Guidi

March 2007

Coordinatore: Tutore:

Prof. Özalp Babaoğlu Prof. Roberto Gorrieri

Campioni del mondo!

Campioni del mondo!

Campioni del mondo!

(Nando Martellini, 1982)

“L’ultima volta che raccolsi una sfida

mi ripromisi di non farlo mai piú.

Non sono ancora riuscito a

mantenere quella promessa.”

(Anonimo)

iii

Abstract

Service Oriented Computing is a new programming paradigm for addressing distrib-

uted system design issues. Services are autonomous computational entities which can

be dynamically discovered and composed in order to form more complex systems able

to achieve different kinds of task. E-government, e-business and e-science are some ex-

amples of the IT areas where Service Oriented Computing will be exploited in the next

years. At present, the most credited Service Oriented Computing technology is that of

Web Services, whose specifications are enriched day by day by industrial consortia with-

out following a precise and rigorous approach. This PhD thesis aims, on the one hand,

at modelling Service Oriented Computing in a formal way in order to precisely define

the main concepts it is based upon and, on the other hand, at defining a new approach,

called bipolar approach, for addressing system design issues by synergically exploiting

choreography and orchestration languages related by means of a mathematical relation

called conformance. Choreography allows us to describe systems of services from a global

view point whereas orchestration supplies a means for addressing such an issue from a

local perspective. In this work we present SOCK, a process algebra based language in-

spired by the Web Service orchestration language WS-BPEL which catches the essentials

of Service Oriented Computing. From the definition of SOCK we will able to define a

general model for dealing with Service Oriented Computing where services and systems

of services are related to the design of finite state automata and process algebra con-

current systems, respectively. Furthermore, we introduce a formal language for dealing

with choreography. Such a language is equipped with a formal semantics and it forms,

together with a subset of the SOCK calculus, the bipolar framework. Finally, we present

JOLIE which is a Java implentation of a subset of the SOCK calculus and it is part of the

bipolar framework we intend to promote.

iv

Acknowledgements

This Ph.D. thesis is the final result of three years of graduate studies which represent for

me a beautiful life experience and a very interesting professional growing. During this

period there was the difficult moments and the beautiful ones and it will take a lot of

time to me for appreciating and understanding all the things I lived.

First of all, I would like to thank my friend and colleague Roberto Lucchi who shared

with me difficult moments and enthusiastic scientific discussions. This work would not

have been possible without him.

A special thanks goes to my supervisor Prof. Roberto Gorrieri who gave me very

valuable comments and suggestions with his experience in coordination models. I also

thank him for the travel opportunities and the possibility he gave me to participate

within the EU integrated Project SENSORIA (contract n. 016004) which partially funded

this work of thesis.

I am grateful to other people in Bologna who gaves me scientific and human support

as Gianluigi Zavattaro, Nadia Busi and Mario Bravetti.

I want to thank other students and colleagues that I met during these years who

shared with me moods and some appearently insignificant philosophical dicussions:

Manuel Mazzara, Laura Bocchi, Stefano Cacciaguerra, Matteo Roffilli, Giulio Manzonetto,

Andrea Pescetti, Cinzia Di Giusto, Fabrizio Montesi and all the others that, for the sake

of brevity, I cannot mention here.

I would like to mention also the reviewers, Martin Wirsing and Kohei Honda whose

observations have been very helpful during the final revision of the document.

Last but not least, I am grateful to my girlfriend. Even if we met during the last

months of this Ph.D. period, it seems to me to have shared with her all the time I passed

on this work.

v

Contents

Abstract iv

Acknowledgements v

List of Figures xii

1 Introduction 1

1.1 Can Service Oriented Computing be

considered as a new programming paradigm? 3

1.2 Service design and service composition . 6

1.2.1 Service design . 6

1.2.2 Service composition . 7

1.3 Aims of the thesis . 8

1.4 Outline . 14

1.5 Related Pubblications . 15

2 Background 16

2.1 Web Services . 16

2.1.1 Overview . 17

2.1.2 WSDL . 19

2.1.3 WS-BPEL . 23

2.1.4 WS-CDL . 58

2.2 Process Algebras . 76

2.2.1 CCS syntax . 77

2.2.2 Rooted Labelled Transition Systems 80

2.2.3 Operational semantics . 81

2.2.4 Bisimulation equivalence . 82

vi

2.3 General assumptions . 82

2.3.1 Asynchronous communications . 84

2.3.2 Error and Faults . 85

2.3.3 Starting application . 86

2.3.4 Bipolar approach with no sessions 87

I From the informal specifications to a general model for

Service Oriented Computing 89

3 SOCK: Service Oriented Computing Kernel 90

3.1 Service behaviour calculus . 92

3.1.1 External input and output actions 93

3.1.2 The syntax . 95

3.1.3 Semantics. 97

3.1.4 Example . 101

3.1.5 Service and starting application . 101

3.2 Service engine calculus . 102

3.2.1 State . 103

3.2.2 Correlation sets . 103

3.2.3 Service declaration . 108

3.2.4 The service engine calculus syntax 109

3.2.5 Semantics. 112

3.2.6 Example . 116

3.3 Services system calculus . 119

3.4 Example . 120

3.4.1 Informal specification. 120

3.4.2 Formal specification. 121

3.5 Discussion on the semantics . 129

3.5.1 Concurrent sessions with a persistent state 129

3.5.2 System deadlock . 131

3.5.3 Request-Response and Solicit-Response 134

3.6 Comparing SOCK and WS-BPEL . 136

3.6.1 Service behaviour calculus . 137

3.6.2 Service engine calculus . 139

vii

3.6.3 Modelling a WS-BPEL example with SOCK 140

3.6.4 Comments . 144

3.7 Related works . 145

4 Mobility mechanisms 147

4.1 Four kind of mobility mechanisms . 148

4.1.1 The mobility mechanisms . 148

4.2 Using SOCK for discussing the mobility mechanisms 149

4.2.1 Extending operation definition with templates 150

4.2.2 SOCK as a workbench . 152

4.2.3 State mobility . 158

4.2.4 Location mobility . 159

4.2.5 Interface mobility . 162

4.2.6 Behaviour mobility . 166

4.3 Mobility mechanisms in Web Service technology 168

4.4 Mobility mechanisms in process calculi . 170

4.5 Discussion . 171

5 A general model for Service Oriented Computing 173

5.1 Service behaviour . 174

5.2 Service engine . 175

5.2.1 Example. 176

5.3 Services system . 177

5.4 Starting application. 179

5.5 Example. 180

II Toward a new set of concrete languages for services system de-

sign:

the bipolar approach 182

6 Choreography 183

6.1 Communication mechanisms . 184

6.2 A formal model for choreography . 185

6.2.1 Static part . 186

viii

6.2.2 Dynamic part . 188

6.2.3 Choreography execution . 190

6.2.4 The choreography . 196

6.3 Connected choreographies. 196

6.4 Error-free choreographies . 201

6.5 Discussion. 204

6.6 A choreography example . 206

6.7 Comparing CL and WS-CDL . 210

6.7.1 Static part . 210

6.7.2 Dynamic part . 211

6.7.3 Modelling a WS-CDL example by using CL 212

6.8 Related works . 218

7 Orchestration 220

7.1 The syntax . 221

7.2 The semantics. 223

7.2.1 The service behaviour lts layer . 223

7.2.2 The service engine state lts layer. 227

7.2.3 The service engine location lts layer. 229

7.2.4 The services system lts layer. 229

7.3 Orchestrator abstract process . 230

7.4 Orchestration example . 233

7.4.1 The customer . 234

7.4.2 The market . 235

7.4.3 The supplier . 236

7.4.4 The bank . 236

7.4.5 The system . 237

ix

8 Conformance 238

8.1 The joining function . 240

8.2 The joined labelled transition system . 242

8.3 Conformability . 244

8.4 Conformance . 245

8.5 Examples . 246

8.5.1 Example A . 246

8.5.2 Example B . 250

8.5.3 Example C . 253

8.5.4 Example D . 257

8.6 Related works . 262

9 System design with a bipolar framework 263

9.1 Hospital reservation example . 265

9.1.1 Step 1 (a first choreography). 266

9.1.2 Step 2 (introducing a reservation service). 268

9.1.3 Step 3 (Interaction modification). 270

9.1.4 Step 4 (introducing an archive service) 272

9.1.5 Step 5 (interaction changing). 274

9.2 Market example . 277

9.2.1 Step 1 (the customer) . 278

9.2.2 Step 2 (the market) . 281

9.2.3 Step 3 (the bank and the supplier) 286

10 New languages for programming SOC applications 290

10.1 JOLIE language overview . 291

10.1.1 Identifiers . 291

10.1.2 Program structure . 291

10.1.3 Statements . 296

10.1.4 Statement composers . 298

10.1.5 Example . 299

10.2 JOLIE interpreter architecture . 300

10.2.1 Structure overview . 300

10.2.2 Parser and Object Oriented Interpretation Tree 301

x

10.2.3 The communication core . 303

10.3 Modelling a WS-BPEL service with JOLIE 305

10.4 The market example . 306

10.4.1 The client . 308

10.4.2 The market . 310

10.4.3 The register . 311

10.4.4 The suppliers . 313

10.4.5 The bank . 315

11 Conclusions and future works 318

References 321

xi

List of Figures

1.1 Services callback composition. 5

1.2 An orchestrator service . 7

1.3 Soccer example . 8

1.4 The bipolar framework . 13

2.1 WS-BPEL partnerLinkType construct . 25

2.2 Purchase order service . 40

2.3 Auction service . 47

2.4 Request Dispatch Flowchart of the Active Bpel engine 58

2.5 Message exchange protocol stack . 84

2.6 Starting application and services system . 88

3.1 Operation relationships among the services of the example 123

4.1 Business scenario example . 161

5.1 Design and composition formal framework 174

6.1 Graphical representation of communication links 187

6.2 Interactions among the roles . 207

8.1 More orchestrators can enrole a choreography role 241

8.2 Choreography labelled transition system 248

8.3 Orchestrated system labelled transition system 249

8.4 Orchestration system EC . 254

8.5 Choreography communication links of the example D 258

8.6 Choreography labelled transition system: answer = yes 261

8.7 Choreography labelled transition system: answer = no 261

9.1 The bipolar framework . 265

xii

9.2 Hospital reservation example communication links Step 1 266

9.3 Hospital reservation example communication links Step 2 269

9.4 Hospital reservation example communication links Step 3 270

9.5 Hospital reservation example communication links Step 4 273

9.6 Hospital reservation example communication links Step 5 275

9.7 Market Example communication links Step 1 278

9.8 Market Example communication links Step 2 282

9.9 Market Example communication links Step 3 286

10.1 JOLIE architecture . 301

10.2 Objects tree representing a = 1 ;; out(a) 303

10.3 Communication medium and data protocols 304

10.4 The JOLIE Market Example . 307

xiii

Chapter 1

Introduction

In the last decades, Internet has spread its connections all over the world introducing a

new means for communicating. The world economy and the social behaviours of the

majority of the world population have been strongly affected by it and new technolo-

gies have been developed in order to address the issues raised by the growth of the

network. On the one hand, physical and hardware aspects have been studied for incre-

menting communication speed and bandwidth whereas, on the other hand, computer

scientists have dealt with interoperable and distributed applications complexities. In-

deed, although there exist different protocol layers which allow for the abstraction from

physical locations, software applications over the Internet are intrinsecally distributed

because data are distributed and computational functionalities are distributed. Service

Oriented Computing, SOC for short, is a new programming paradigm which addresses

such an issue whose main concept it is based upon is the design and the composition

of services. A service is an autonomous interoperable platform-independent compu-

tational entity which can be dynamically discovered and composed in order to obtain

different systems which achieve different tasks. Services can be accessed by public in-

terfaces which are standardized and stored within service registers that aim at being

queried by other applications for retrieving, at run-time, a specific service for a specific

task. Services can be reused and replaced depending on the execution context of the spe-

cific distributed application and they can be exploited by different application systems

at the same time. E-government, e-business and e-science are some examples of the IT

areas where Service Oriented Computing will be exploited in the next years. Nowadays,

big industries and consortia like Microsoft, IBM, W3C, OASIS only to mention a few, are

putting several efforts and moneys for developing tools which deal with SOC applica-

tions. Service Oriented Computing indeed, aims at being the right solution for different

2 Chapter 1. Introduction

kind of problems both at the level of intranet company information system, where ap-

plication scalability and flexibility are important issues to deal with, and at the level of

business protocol designing among different companies which want to make business by

interoperating their own application over the Internet [DMK+, CHT, Koc]. In these years

some frameworks like Corba [OMG], Java RMI [Suna] and Web Services [W3Cb] have

been proposed in order to deal with such a kind of issues. Corba and Java RMI extend

the object-oriented paradigm to network applications by supplying a framework where

objects can be created and accessed remotely, whereas Web Services is the most credited

technology which deals with Service Oriented Computing paradigm. The Web Services

are a standardized XML-based technology [W3Ca] defined by means of several specifi-

cation documents developed by different organizations, consortia and industries. One

of the most important goal of Web Services, is the interoperability achievement. Such

a kind of technology indeed, was born for addressing the necessity to supply a shared

application framework layer on which different subjects, such as enteprises, universities,

private citizens, etc., can built their own applications and make them easily interopera-

ble over the Internet [Coh]. There are three specifications that are commonly considered

the cornerstone of the Web Services technology: WSDL [Word], SOAP [Wora] and UDDI

[Oasb]. The WSDL specification deals with a language which allows for the descrip-

tion of a Web Service interface, the SOAP specification defines a protocol for message

exchanges among Web Services and the UDDI one deals with the dynamic discovery

of a Web Service. Although Service Oriented Computing raises a lot of interests in the

computer science and business communities, at the present, there not exists any kind

of shared formal definition for SOC. This is probably due to the fact that the issues ad-

dressed by SOC, such as interoperability, dynamic discovery, composition, etc., were

born before developing and deeply studying such a kind of approach. The rapidly grow-

ing of the Internet indeed, has forced industries to immediately tackle its dynamics and

complexities. As a first response, the new developed technologies, such as Web Services,

have been developed without following a formal approach so that specifications are of-

ten ambiguous and redundant. Summarizing, Service Oriented Computing was not born

by following a rigorous developing method but it is the consequence of an immediate re-

Chapter 1. Introduction 3

sponse to some real problems. This fact implies that the main concepts SOC paradigm

is based upon can be extracted only from practical experiences and case studies as in

[AKR+05, CNM06, BCNR06], only to mention a few, technology documentations and in-

formal documents released by industrial consortia like in [OASa, W3Cc]. Although the

present technologies provide powerful means for dealing with SOC application design,

the fact that SOC is not precisely defined in terms of formal definitions is becoming, day

by day, a strong limit for its development. Features like dynamic discovery and com-

position indeed, need a common understanding on the basic mechanisms SOC is based

upon in order to be achieved by different designers by exploiting different tools. Nowa-

days, it is possible to observe a common interest of the industrial world and the academic

one to investigate formal models for describing Service Oriented Computing approach

[CFNS05, WCG+06, FLB06]. To this end, conferences and workshops are organized for

sharing both industrial and academic investigations such as [DL06, BKZ05, DFS06] and,

recently, the European Union has started an integrated project, called SENSORIA, in order

to develop both theoretical foundations for SOC and tools for designing SOC applica-

tions. In this context, the present thesis must be considered. Here, the Service Oriented

Computing is approached as a new programming paradigm and in the remainder of this

work we will focus on the formalization of the SOC basic mechanisms which deal with

service design and composition upon which, we are developing a new concrete language

for dealing with SOC applications.

1.1 Can Service Oriented Computing be

considered as a new programming paradigm?

Here, we consider Web Services as the most credited representative for SOC and, in the

following, we will use the term service by implicitly considering that defined by Web

Services technology. Namely, a service is a loosely coupled application whose interface

description is standardized and public. In its interface a service exhibits all of its access

points, called operations, on which it is possible to interact with by sending a request mes-

4 Chapter 1. Introduction

sage and, when defined, receiving a response. Each operation defines exactly the data

structure of the exchanged message and the protocol to use for communicating it.

A service is not an object because it is loosely coupled that is, there are not explicit links

between the invoker and the service. In an object-oriented model indeed, when an object

is created, a reference is relased to the object owner. The reference allows for access to all

the data and methods exhibited by that object. The state of the object is strictly related to

its reference and it is mantained until its destruction. Each time the object owner wants

to interact with its object, it has to supply the reference in order to be enabled to access

to it. In the same way, a service can have a state related to a specific invoker but the

mechanism for accessing it does not exploit a reference, rather the so-called correlation

data. Correlation data are a set of incoming data which allows the service for correlating

a specific invocation to a specific service state. For example, let us consider the case of a

travel agency which requests the name and the surname of a client in order to retrieve

his booking information. Every time the client wants to access his data, he has to supply

his name and his surname. The main difference between an object-oriented model and a

service-oriented model can be found in the fact that, in the former case, the class designer

is not aware of the reference mechanism because it is managed by the object framework,

whereas, in the latter case, the designer must be aware of the correlation data and he has

to decide which data must be exploited for correlation.

A service is not a remote procedure call nor a function because services can be composed in

a so-called callback configuration. A callback is a service invocation which needs a reply

that is not performed on the same operation where the invocation is performed but it

needs that the invoker exhibits a specific operation for receiving the response. With re-

gard to this, let us consider Fig. 1.1 where operations are represented by the black vertical

lines and symbol • represents a computational step. In i) is shown a service invocation

which resembles a remote procedure call, service A invokes service B and waits for its

reply. When invoked, service B executes its code and then, by means of the same opera-

tion, sends the response to service A. On the contrary, in case ii) a callback composition

Chapter 1. Introduction 5

is represented. Service A invokes service B and then continues to execute its code. When

finished, service B will send the response to an operation of A by performing an explicit

invocation of service A. Finally, the example iii) represents a more complex case where

there is not a callback but there is a particular composition where three services are in-

volved. Service A sends a requests to service B which, at the end of its execution, invokes

a service C that will sends the response to the service A.

Figure 1.1: Services callback composition.

A service is not only an application able to send and receive messages as in the message passing

paradigm. A service is not limited to the communication patterns send and receive where

the former means that an access point is provided for receiving a message and the latter

means that a message is sent to another application. As far as Service Oriented Com-

puting is considered, in accordance with [BDtH, BB05], other communication patterns

are provided such as the Request-Response and the Solicit-Response one where the former

deals with the reception of a message and the sending of the reply whereas the latter

deals with the sending of a message and the reception of the reply from the invoked

application. Furthermore, public interfaces, which can be discovered at run-time by al-

6 Chapter 1. Introduction

lowing for service composition within a system, and the correlation data mechanism,

can be considered SOC features that are not necessary supported by the message passing

paradigm.

In light of these observations, a service can be considered as the new concept of a new

programming paradigm, the service-oriented one, that can be exploited for designing

internet distributed applications.

1.2 Service design and service composition

Service design and service composition are two different but complementary aspects of

Service Oriented Compunting. Here we exploit the terms service design for denoting the

design of the behaviour of a service and we use the term service composition for represent-

ing the design process which allows for the creation of a services system by starting from

simple services.

1.2.1 Service design

Service design deals with the design of the service behaviour that is the computational

procedures it exploits for supplying its functionalities to the invoker. Since services have

to exhibit a standardized interface (namely, a WSDL document for a Web Service), ser-

vice design can in general be approached by using different programming languages.

The only aspect that has to be taken into account is the interface which has to be public

and standardized. The usual languages like Java, C++, C, etc. does not supply specific

primitives for service oriented communication that explicitly models operations, and, at

the same time, they do not support specific constructs for data correlation. This fact raises

difficulties when the design of the so-called orchestrators is considered. An orchestrator

is a particular kind of service which is able to coordinate other services by performing dif-

ferent invocations. In Fig. 1.2 service B represents an orchestrator service which receives

a request from service A and, before sending the response, it invokes in sequence service

C and service D. As far as Web Services are concerned, specific languages for designing

Chapter 1. Introduction 7

Figure 1.2: An orchestrator service

orchestrators have been developed by international consortia: WSCI1 [Con] developed

by the W3C, and WS-BPEL [OASc] developed by OASIS. Such a kind of languages have

specific constructs for performing invocations on Web Services operations and they are

equipped of workflow constructs like sequence, parallel and choice; furthermore they

support data correlation.

1.2.2 Service composition

Service composition deals with the fact that more than one service can be exploited to-

gether in order to achieve a specific task. Such a kind of issue raises some difficulties

related to the fact that, usually, services can be retrieved at run-time and they can be

replaced during the execution of a system and, moreover, their behaviours must be co-

herent with the message protocol defined for the overall system. At the state of the art,

as far as service composition is concerned, the approach is twofold. On the one hand,

the languages for designing orchestrators, orchestration languages for short, are exploited

for composing services. By means of orchestrators indeed, it is possible to invoke and

coordinate the services involved into a system in order to achieve a specific task. On

the other hand, the so-called choreography languages allows for the description of a ser-

1WSCI does not allow for the design of an executable version of an orchestrator but it supplies a means

for giving an abstract definition of it.

8 Chapter 1. Introduction

vices system in a top view manner where it is possible to define the rules which govern

a system by designing the interactions among the different involved participants. As far

as Web Services are considered, the most credited choreography language is WS-CDL

[Worc] of the W3C. Considering the terminology introduced by Honda et al. in [MCY],

we say that orchestration languages allows for the composition of services by means of

a local view point which is that of the orchestrators involved into a system, whereas the

choreography ones supply a means for describing a system from a global view point. In or-

Figure 1.3: Soccer example

der to explain the different approaches of orchestration and choreography let us consider

the case of a soccer team where players can be intended as services. In this context, the

game strategies are the choregraphy whereas the coach well represents an orchestrator.

Complex systems could have more than one orchestrators, for instance the goalkeeper

could be the orchestrator of the defense line whereas the center field player could be the

orchestrator of the forward line. It is worth noting that the orchestrators must follow

the strategies represented within the choreography and the other players will follow the

orchestrator signals in order to score the goal.

1.3 Aims of the thesis

The aims of this thesis are twofold. On the one hand, it aims at supplying a reasoning

about the main concepts the Service Oriented Computing paradigm is based upon by

Chapter 1. Introduction 9

following a formal approach, that we believe it is the only way which allow for a precise

definition of SOC mechanisms. By means of formal models indeed, it is possible to de-

fine the peculiarities of services and services systems without ambiguity that allow for

an easy reasoning about the characteristics of SOC paradigm. On the other hand, the

thesis aims at supplying a new set of concrete languages for dealing with service design

and composition that are based upon a formal model. These languages allow a human

designer to deal with services system design by following a new approach, called bipolar

approach, where two languages are exploited together for achieving the system design.

In light of these purposes, the present thesis could be considered as a sort of bridge be-

tween a pure theoretical approach and a software engineering one. In this context, the

main contribution of this work must be intended. In particular, in this thesis, a lot of

work has been done in order to pave the way for a complete formal framework which

deals with all the aspects of the Service Oriented Computing paradigm, and some signif-

icant steps have been done toward such a visionary result. Furthermore, an open source

project has been started in order to develop a new orchestration language for SOC [Ope].

The starting point from which Service Oriented Computing paradigm has been investi-

gated in this thesis is the Web Services technology that we have also exploited for con-

tinously tracing a comparison between our work and the industry trend. Web Services

specifications are enriched, day by day, by industrial consortia which are investing a

lot of money on their development. They are generally defined by exploiting XML lan-

guage without following a formal approach and they are often verbose and ambiguous.

In particular, we have focused on composition languages, such as WS-BPEL and WS-

CDL, that are not equipped with a formal semantics, in order to understand the informal

mechanisms they are based upon. Web Services composition languages indeed, directly

deals with service design and composition and they provide an exhaustive background

on which it is possible to extract a formal representation of SOC basic concepts such as

communication patterns, mobility mechanisms and composition issues.

The roadmap of our work can be divided into two main steps that correspond to the two

parts of this thesis:

• From the informal specifications to a general model for Service Oriented Comput-

10 Chapter 1. Introduction

ing

• Toward a new set of concrete languages: the bipolar approach

Within the former step, three main contributions can be distinguished: i) development

of SOCK which is a calculus for Service Oriented Computing, ii) analysis of the mobility

mechanisms in Service Oriented Computing and iii) a general model for Service Oriented

Computing.

i) As far as SOCK is concerned, we have developed it by analyzing the most impor-

tant Web Services specifications which deal with the service design and composi-

tion such as WSDL, WS-BPEL and WS-CDL. SOCK deals with the basic mecha-

nisms which characterize the SOC paradigm as communication mechanisms, data

correlation, workflow operators and services system composition. Communica-

tion mechanisms and data correlation are at the basis of data exchanging in SOC,

whereas workflow operators and services system composition represent the main

concepts service design and composition are based upon. The main contribution

of SOCK is twofold. On the one hand it allows us to distinguish and formalize

some fundamental concepts of Service Oriented Computing such as the design of a

service behaviour, its deployment in an executing enviroment and the composition

of services within a system. For each of these topics, by means of SOCK, we are

able to precisely define the basic mechanisims they are characterized by and it will

be possible to reason about them in a formal way. On the other hand, we promote

SOCK as a full concrete and formalized SOC language for dealing with all the as-

pects of service design and composition. SOCK is three-layered structured and it

is composed of the service behaviour, the service engine and the services system. The

service behaviour deals with the design of the behaviour of the service, the service

engine deals with the actual deployment of a service behaviour within a machin-

ery ables to execute it and the services system deals with the composition of service

engines within a system.

ii) Starting from SOCK we analyze the different kinds of mobility within Service Ori-

ented Computing. We distinguish among the internal state mobility, the location

Chapter 1. Introduction 11

mobility, the interface mobility and the behaviour mobility. The internal state mobil-

ity models the data exchange between the states of two services by means of a

communication message. The location mobility models the possibility to pass, by

means of a message exchange, service locations. The interface mobility allows for

the representation of the communication of information related to the interface of

the service. Finally, the behaviour mobility represents a sort of code mobility where

the exchange information represent a piece of service behaviour to execute by the

receiver. This investigation is useful to the end of the system design issues because

different kind of mobility mechanisms need different language primitives which

straightforwardly affect the composition of a system.

iii) The general model we propose for Service Oriented Computing follows the three-

layered structure proposed for SOCK by modelling the three concepts of service

behaviour, service engine and services system by means of formal machineries which

abstract away, as much as possible, from the language details. The service behav-

iour deals with the representation of the behaviour of a service by means of a finite

state automaton where both computational and communication capabilities are ex-

ploited, the service engine deals with the formalization of a machinery which is

able to execute a service behaviour infinitely often and, finally, the services system

deals with the representation of a system composed by more than one service en-

gine by means of a language inspired by a process algebra such as CCS [Mil89] and

CSP [Hoa85].

Within the latter step we introduce the bipolar approach by presenting the formal frame-

work it is based upon that is composed of two calculi, the choreography and the orches-

tration one, and a conformance notion between them. Finally, we present an implemen-

tation of the orchestration language called JOLIE. The choreography language which is

called CL, has been developed by analyzing the WS-CDL specifications and it allows for

the management of a system from a global view point. The main concepts the choreog-

raphy language is based upon, are those of role and interaction. The former represents

a system participant in an abstract way without focusing on its implementation details

12 Chapter 1. Introduction

but focusing only on the operations it provides, whereas the latter expresses a message

exchange between two roles and it can be composed by exploiting workflow constructs

as sequence, parallel and choice. On the contrary, the orchestration language, which is

a subpart of SOCK, it is inspired by WS-BPEL and it allows for the representatiion of a

services system from a local view point where it is possible to design the behaviour of the

services by composing communication and computational activities. Both languages are

equipped with a formal semantics which are related by a notion, called conformance, that

is a sort of bisimulation between their labelled transition systems. The conformance no-

tion exploits the so-called joining function in order to map the services on the orchestration

side with the roles on the choreography one and it tests if all the interactions described

within the choreography are performed by the services within the orchestration system.

The choreography language, the orchestration language and the conformance notion are

the elements of the bipolar framework which we exploit for addressing the system design

issue by considering the so-called bipolar approach. The idea the bipolar approach is based

upon is that a difficult thing in orchestration is an easy thing in choreography and vice versa. In

order to give the intuition we can trace a comparison with signal analysis. A signal can be

processed in the time domain or in the frequency one and the Fourier transform allows

for the change from one domain to the other one. It is well known that some things are

easy in the frequency domain (e.g. filter design) and other things are easy in the time do-

main (e.g. signal sampling). In the same way, orchestration and choreography languages

supply different domains for representing composed systems whereas the conformance

relation plays the role of the Fourier transform. Such a kind of framework could be ex-

ploited as it follows: a first coarse system can be designed as a choreography from which

it is possible to extract a conformant orchestrated system skeleton that, subsequently,

can be enhanced by adding other services or by enriching the behaviour of the existing

ones. Afterward, it is possible to rebuild a conformant choreography from the previous

system and then adjust or enhance it for introducing more details; then, from the new

choreography it will be possible to come back to the orchestrated system and so on. We

can describe the bipolar framework by means of Fig 1.4 where the relation between the

orchestration domain and the choreography one is given by the conformance notion and

Chapter 1. Introduction 13

two different algorithms, the Extracting Choreography and the Extracting an Orchestra-

tion, allow for the generation of a choreography starting from an orchestrated system

and the generation of an orchestrated system starting from a choreography respectively.

At the present, we are focusing on the orchestration and choreography domains devel-

Figure 1.4: The bipolar framework

opment and on the conformance relation between them. As far as the two algorithms

are concerned, we have started to analyze them even if, so far, we cannot present results

related to them.

Finally, at the end of the second step, we have defined and developed a new orches-

tration language based on SOCK which aims at supplying an easy tool for designing

orchestrator services. The language is called JOLIE (Java Orchestration Language Inter-

preter Engine) and its syntax resembles that of C which is a more intuitive language w.r.t.

the XML based ones. JOLIE is an open source project and its code is published in [Ope].

Here, we intend to promote JOLIE as a good candidate for becoming a powerful orches-

tration language for Service Oriented Computing. Joint to the fact that JOLIE provides

a very easy and intuitive syntax, there is the most important fact that it is fully based

upon SOCK thus it is equipped of a formal semantics which allows us to reason about

it in a formal way. Recalling the general aims of this thesis, JOLIE could be considered

14 Chapter 1. Introduction

as the bridge between the theoretical approach and the software engineering one, on the

one hand indeed, it is precisely defined in a formal way and, on the other hand, it is a

concrete language for designing orchestrators.

1.4 Outline

The outline of the thesis follows:

• In Chapter 2 we recall the main features of Web Service technology specifications

with a particular regard to the specification which deal with service design and

composition: WSDL, WS-BPEL and WS-CDL. Furthermore, we provide a brief in-

troduction to process algebra and we discuss some general assumptions adopted

within the thesis.

• In Chapter 3 we present the SOCK calculus.

• In Chapter 4 we discuss the mobility mechanism in SOC.

• In Chapter 5 we present a general model for Service Oriented Computing based

upon the definitions of service behaviour, service engine, services system.

• In Chapter 6 we present the choreography language.

• In Chapter 7 we present the orchestration language.

• In Chapter 8 we present the conformance notion.

• In Chapter 9 we discuss two examples in order to show how the bipolar approach

can be exploited for addressing system design issues.

• In Chapter 10 we present JOLIE.

• In Chapter 11 conclusions and future works are reported.

Chapter 1. Introduction 15

1.5 Related Publications

The main contribution on which some of the chapters of this thesis are based, have al-

ready been published during the Ph.D. studies.

• As far as chapter 3 is concerned, the paper SOCK: a calculus for service oriented com-

puting [GLG+06] presents the syntax and the semantics of the SOCK calculus and it

has been accepted at the fourth international conference on Service Oriented Com-

puting of 2006 (ICSOC ’06)

• The paper Mobility mechanisms in Service Oriented Computing [GL06] deals with the

discussion about the mobility mechanisms in Service Oriented Computing and it

has been published in the proceedings of the eighth IFIP International Conference

on Formal Methods for Open Object-Based Distributed Systems (FMOODS’06).

• As far as chapter 6 is concerned, the choreography language has been firstly intro-

duced within the paper [BGG+05a].

• The bipolar framework has been introduced in the papers Choreography and Or-

chestration: a synergic approach for system design [BGG+05b] and Choreography and

Orchestration conformance for system design [BGG+06] published in the proceedings

of the third international conference on Service Oriented Computing of 2005 (IC-

SOC’05) and in the proceedings of the eighth International Conference on Coordi-

nation Models and Languages (COORDINATION’06), respectively.

• The language JOLIE has been presented in the paper [MGLZ].

Chapter 2

Background

In this chapter we provide the background which is necessary to understand the remain-

der of the thesis. We introduce Web Service technology with a particular regard to those

specifications which are related to service design and composition. Furthermore, we re-

call process algebra theory and we comment some necessary assumptions we made in

order to develop such a work of thesis.

2.1 Web Services

Web Services are characterized by a pletora of XML [W3Ca] based specifications which

deal with different aspects of such a kind of technology. Some distinctions can be done

in order to categorized the specifications into different layers. Here, we distinguish three

main specification layers:

• Base-level specifications

• Quality of Service specifications

• Composition specification

It is worth noting that other specifications there exist but, for the sake of brevity, here we

discuss only the most important ones which allows us to give a comprehensive overview

of the technology.

Chapter 2. Background 17

2.1.1 Overview

2.1.1.1 Base-Level specifications

In this category there are three main specifications which characterize Web Services:

WSDL, SOAP, UDDI.

• WSDL: Web Service Description Language [Word]. This specification deals with the

description language which allows for the standard definition of a Web Service in-

terface. It is a fundamental specification which fixes the basic communication prim-

itives, the operations, exploited by a Web Services for exchanging messages. There

are four kind of operations: One-Way, Request-Response, Notification and Solicit-

Response. In a One-Way operation a message is received, in a Request-Response

operation a message is received and a response is sent to the invoker, in a Notifica-

tion a message is sent and, finally, in a Solicit-response a message is sent to another

Web Service and a response is received. Since WSDL specification is strictly related

to service design, we will deeply discuss it in the following.

• SOAP: Simple Object Access Protocol [Wora]. This specification describes the basic

format of an exchanged message between two Web Services. A message is an XML

document composed by two different parts: the header and the body. The former

part is an optional part which can contain special control information which char-

acterize the communication such as, e.g., security references for retrieving cryp-

tographic keys or reliability tags for guaranteeng message delivery, whereas the

latter part contains the information to be communicated. Since the SOAP specifica-

tion does not directly deal with service design and composition, for the sake of this

thesis, we do not present in a more detailed way such a kind of specification. The

reader who is interested in this topic may consult [Wora].

• UDDI: Universal Description Discovery and Integration [Oasb]. This specification deals

with the programming interface exhibited by a discovery registry which is a partic-

ular kind of service that allows for the retrieving of Web Service depending on their

18 Chapter 2. Background

functionalities. The UDDI specification introduces the concept of dynamic discov-

ery of a Web Service. At run-time a Web Service can be potentially discovered by

performig a query on the discovery registry. This thesis does not explicitly deal

with dynamic discovery even if the topic is indirectly treated when mobility mech-

anisms in SOC will be discussed. Moreover, from a service design perspective, in

SOCK service location communication is permitted and there are primitives which

model operation invocation that are a sufficient means for roughly modelling dy-

namic discovery. For this reason, the UDDI specifications will not be commented

in detail.

2.1.1.2 QoS specifications

This group of specifications are based upon the basic ones and they deal with other char-

acteristics which can be implemented in order to allow the service to supply extra func-

tionalities such as, e.g., security or transactional aspects. It is out of the scope of this

thesis to supply an exhaustive list of such a kind of specifications and, in the following,

we list only the most important ones.

• Specifications which deal with security aspects: security is achieved by extending the

SOAP specifications. The header part of a message indeed, can be enriched by in-

troducing nonce and references to cryptographic keys. WS-Security [OASe] deals

with the security aspects of a message exchange between two dialoguers. WS-Trust

[IBMb] and WS-SecureConversation [IBMa] deal with the security aspects in a do-

main where security credentials must be distributed and trusted by participants.

• Specifications which deal with transactional aspects: transactions are fundamental for

designing e-business applications. WS-Coordination [Mica] defines a Web Services

framework where different participants can interact by exploiting specific transac-

tion protocols which are defined within WS-Transactions [Micb] specifications.

• Specifications which deal with message reliability: In general, the HTTP protocol, which

usually underlies the SOAP one, is not sufficient for guaranteeing the message re-

liability. The WS-Reliability specification [OASd] deals with such a kind of issues.

Chapter 2. Background 19

2.1.1.3 Composition specification

This group of specifications deal with the composition issue which allows for definition

of systems where several services can interact each other in order to fulfill a specific task.

• WS-BPEL [OASc]. It is an Oasis specification where an XML-based language for

dealing with Web Services orchestration is defined. WS-BPEL is the evolution of

BPEL4WS [CGK+] which was a first attempt, developed by Microsoft, IBM and

other software industries, to define an orchestration language which merges to-

gether some features of WSFL (Web Service Flow Language) by IBM [Ley] and

XLANG by Microsoft [Tha]. Such a kind of specification will be discussed deeply

in the following.

• WS-CDL [Worc]. It is a W3C specification which defines an XML-based language

for dealing with Web Services choreography. The development of such a language

is followed by both industry and academic experts. WS-CDL will be discussed in

detail in the following.

• WS-Addressing [W3Cd]. This specification deals with the definition of all the nec-

essary information which represent a conversation end-point and it indirectly al-

lows for the end-point reference exchange. Such a feature, from a system design

point of view, allows for the design of Web Services which receives at run-time the

address of a dialoguer by allowing a dynamically composition of services during

their execution. The end-point mobility topic will be discussed in Section 4 where

we analyze mobility mechanisms in service oriented computing. In such a section

the end-point mobility will be related to the location one. Here, we do not comment

deeply WS-Addressing specification because we are not interested in modelling all

the communication details of Web Services message exchange.

2.1.2 WSDL

The WSDL specification deals with the definition of a Web Service interface by intro-

ducing an XML-based language which allows for the description of the access points of

20 Chapter 2. Background

the service, called operations. Each Web Service must public its own WSDL document in

order to allow other invokers to access its operations. In the following we present the

structure of a WSDL document:

<w s d l : d e f i n i t i o n s name=”nmtoken” ? targetNamespace=” u r i ” ?>

<import namespace=” u r i ” l o c a t i o n =” u r i ”/>∗

<wsdl:documentation /> ?

<wsdl : types> ?

<wsdl:documentation />?

<xsd:schema />∗

<−− e x t e n s i b i l i t y e l e m e n t −−> ∗

</wsdl : types>

<wsdl:message name=”nmtoken”> ∗

<wsdl:documentation />?

<part name=”nmtoken” element=”qname” ? type=”qname”?/> ∗

</wsdl:message>

<wsdl:portType name=”nmtoken”>∗

<wsdl:documentation />?

<wsdl :operat ion name=”nmtoken”>∗

<wsdl:documentation /> ?

<wsdl : input name=”nmtoken” ? message=”qname”>?

<wsdl:documentation /> ?

</wsdl : input>

<wsdl:output name=”nmtoken” ? message=”qname”>?

<wsdl:documentation /> ?

</wsdl:output>

<w s d l : f a u l t name=”nmtoken” message=”qname”> ∗

<wsdl:documentation /> ?

</ w s d l : f a u l t>

</wsdl :operat ion>

</wsdl:portType>

<wsdl:binding name=”nmtoken” type=”qname”>∗

<wsdl:documentation />?

Chapter 2. Background 21

<−− e x t e n s i b i l i t y e l e m e n t −−> ∗

<wsdl :operat ion name=”nmtoken”>∗

<wsdl:documentation /> ?

<−− e x t e n s i b i l i t y e l e m e n t −−> ∗

<wsdl : input> ?

<wsdl:documentation /> ?

<−− e x t e n s i b i l i t y e l e m e n t −−>

</wsdl : input>

<wsdl:output> ?

<wsdl:documentation /> ?

<−− e x t e n s i b i l i t y e l e m e n t −−> ∗

</wsdl:output>

<w s d l : f a u l t name=”nmtoken”> ∗

<wsdl:documentation /> ?

<−− e x t e n s i b i l i t y e l e m e n t −−> ∗

</ w s d l : f a u l t>

</wsdl :operat ion>

</wsdl:binding>

<w s d l : s e r v i c e name=”nmtoken”> ∗

<wsdl:documentation />?

<wsdl :port name=”nmtoken” binding=”qname”> ∗

<wsdl:documentation /> ?

<−− e x t e n s i b i l i t y e l e m e n t −−>

</wsdl :port>

<−− e x t e n s i b i l i t y e l e m e n t −−>

</ w s d l : s e r v i c e>

<−− e x t e n s i b i l i t y e l e m e n t −−> ∗

</ w s d l : d e f i n i t i o n s>

• Tag <definitions> is the main tag of a WSDL document. It includes all the other tags

of the document.

• Tag <import> allows for the inclusion of other WSDL documents. WSDL docu-

ments indeed, can be obtained by composing other documents.

22 Chapter 2. Background

• Tag <types> allows for the definition of data types by means of the definition of

XML-Schemas. Such a kind of types can be exploited for defining the content of the

exchanged messages.

• Tag <message> allows for the definition of the exchanged messages. Each message

exchanged by the Web Service indeed, must be declared by means of this tag and it

is formed by the so-called part. Each part has a specific content whose type can be

defined by exploiting the XML-Schema declared in the previous tag.

• Tag <portType> describes an abstract collection of operations which will be de-

ployed at the same location under the same protocol. The operation describes the

access points exhibited by the Web Service. There are four kinds of operations:

– One-Way: the Web Service receives a message

– Request-Response: the Web Service receives a message and sends a response to

the invoker

– Notification: the Web Service sends a message to another service.

– Solicit-Response. the Web Service sends a requets message to another service

and waits for its response.

Usually, the Notification and the Solicit-Response are not declared within a WSDL

document. For each operation the input and the output messages are defined by

referring to the ones declared within the tags <message>. Moreover, it is possible

to define a fault message in the case an application error occurs.

• Tag <binding> allows for the binding of a specific protocol to each portType. For

each message of each portType indeed, it is possible to define the message exchange

protocol to follow. Usually, SOAP over HTTP is exploited but there are no restric-

tions about the protocol to use and, moreover, WSDL can be extended in order to

introduce new protocols.

• Tag <service> allows for the declaration of the Web Services ports that are the real

access points of the Web Service. Each port has its own portType, its binding and it

Chapter 2. Background 23

is deployed to a specific address.

By specification, WSDL can be extended depending on the application context, some

other tags, indeed, can be defined and added in order to enrich the interface descrip-

tion of a Web Service. This is the case, for example, of the WS-BPEL specification that

introduces the <partnerLinkType> tag which will be discussed in detail in Section 2.1.3.1.

2.1.3 WS-BPEL

It is an Oasis specification where an XML-based language for dealing with Web Services

orchestration is defined. WS-BPEL is the evolution of BPEL4WS [CGK+] which was a

first attempt, developed by Microsoft, IBM and other software industries, to define an

orchestration language which merges together some features of WSFL (Web Service Flow

Language) by IBM [Ley] and XLANG by Microsoft [Tha]. A WS-BPEL process is called

business process an it describes the behaviour of an orchestrator by means of workflow

constructs and communication primitives. A business process can actually be executed

by the so-called orchestrator engines. An orchestrator engine is an execution environment

which takes in input a WS-BPEL specification and then animates it. In the following, we

present the main characteristics of the WS-BPEL language, the reader who is interested in

WS-BPEL details may consult ([OASc]). Furthermore, we present two business process

examples extracted from the specifications that we exploit in the following of this thesis

for tracing some comparisons with the developed calculi, and we briefly introduce some

WS-BPEL engines provided by different producers.

2.1.3.1 The language

A WS-BPEL business process is formed by two main tags: <definitions> and <process>.

The former represents the WSDL document of the business process which contains all

the portTypes exhibited by it and all the portTypes exhibited by the other services it

will interact with. The latter contains all the activities that have to be executed by the

business process. In the following we discuss the two main tags by highlighting the

most important features.

24 Chapter 2. Background

<definitions> Tag <definitions> contains the WSDL document related to the WS-BPEL

business process and its document structure follows that defined within the WSDL spec-

ification. The WSDL of a WS-BPEL process is extended with somke other tags in order

to deal with specific aspects of the business process. These tags are: <partnerLinkType>,

<property> and <propertyAlias>.

The tag <partnerLinkType> is exploited for describing all the peer-to-peer relationships

where the business process is involved. In general, we call a partner a service which

interacts with the business process. A business process can have several partners and,

for each of them, can have several interactions. In particular, the tag <partnerLinkType>

allows for the description of a two dialoguers relationship where each partnerLinkType is

characterized by two roles that participate within the relationship and, for each of them,

a portType where the message exchanges are performed is declared. In the following, we

present a partnerLinkType example extracted from the specifications:

<plnk:partnerLinkType name=” invoicingLT ”>

<p l n k : r o l e name=” i n v o i c e S e r v i c e ” portType=” pos:computePricePT ”/>

<p l n k : r o l e name=” invoiceRequester ” portType=” pos : invoiceCal lbackPT ”/>

</plnk:partnerLinkType>

Here, a partnerLinkType, named invoicingLT, is defined with two roles: invoiceService and

invoiceRequester. The former role is joined with the portType computerPricePT whereas

the latter is joined with the portType invoiceCallbackPT1. In Fig. 2.1 we abstractly rep-

resent the partnerLinkType of the example where the dotted double arrow represents

the relationship between the two roles. Such a kind of relationship is defined on the

two portTypes represented as a black rectangle. Intuitively, the partnerLinkType defines

an abstract relationship between two ports of two different dialoguers. Since the part-

nerLinkType definition does not allow for the joining of specific services to the roles,

each business process must declare the role it plays within each partnerLinkType it is

involved in. As we will see in the next section, such a declaration is performed within

the tag <partnerLink> contained within the tag <process>. It is worth noting that, in a

case where one of the two dialoguers is a priori unknown, a partnerLinkType may con-

1For the sake of brevity we do not report the portType definitions.

Chapter 2. Background 25

Figure 2.1: WS-BPEL partnerLinkType construct

tain only one role. This is the case of a business process, for example, which supplies a

service by means of a single Request-Response operation. Such a kind of service indeed,

does not need to know the portType of the invoker because its Request-Response oper-

ation is sufficient to successfully complete the interaction with it. On the contrary, it is

fundamental to declare the portType of both the participants when different messages

are exchanged during the execution of the service (e.g. a callback configuration between

two services).

The tags <property> and <propertyAlias> allow for the management of subparts of mes-

sage data structures which will be used for correlating the incoming messages2. The

former tag allows for the definition of a unique name, a property, for an XML Schema

type whereas the latter tag allows for the association of a subpart of a message with a

property. When a propertyAlias is defined on a subpart of a message, within the busi-

ness process it is possible to refer to that subpart by using the corresponding property.

Let us consider the following example where the part identification of the message taxpay-

erInfoMsg is joined to the property taxpayerNumber by means of the propertyAlias tag.

<w s d l : d e f i n i t i o n s . . .>

. . .

<wsdl:message name=” taxpayerInfoMsg ”>

<wsdl :par t name=” i d e n t i f i c a t i o n ” element=” txtyp: taxPayerInfoElem ” />

</wsdl:message>

2The correlation mechanism will be presented in the following.

26 Chapter 2. Background

<vprop:property name=”taxpayerNumber” type=” txtyp:SSN ” />

. . .

<vprop:propertyAl ias propertyName=” tns:taxpayerNumber ”

messageType=” txmsg:taxpayerInfoMsg ”

part=” i d e n t i f i c a t i o n ”>

. . .

</vprop:propertyAl ias>

</ w s d l : d e f i n i t i o n s>

It is worth noting, that the type of the message part must be coherent with the type

defined within the property.

<process> The tag <process> allows for the definition of the activities executed by the

business process. The structure of a process tag is represented in the following where,

for the sake of brevity, some details are omitted:

<process name=”NCName” . . .>

. . .

<partnerLinks>?

<partnerLink name=”NCName”

partnerLinkType=”QName”

myRole=”NCName” ?

partnerRole=”NCName” ? . . .>+

</partnerLink>

</partnerLinks>

. . .

<v a r i a b l e s>

<v a r i a b l e name=”BPELVariableName” . . .>

</ v a r i a b l e>

</ v a r i a b l e s>

Chapter 2. Background 27

<c o r r e l a t i o n S e t s>?

<c o r r e l a t i o n S e t name=”NCName” p r o p e r t i e s =”QName− l i s t ” />+

</ c o r r e l a t i o n S e t s>

<faul tHandlers>?

. . .

</faul tHandlers>

<eventHandlers>?

. . .

</eventHandlers>

a c t i v i t y

In the following we comment each tag contained within the process one.

<partnerLinks> For each partnerLinkType where the business process is involved, it

has to be declared which role is enroled by the business process and which by its partner.

The <partnerLinks> tag allows for such a kind of declaration by means of the attributes

myRole and partnerRole where the former specifies the role of the business process and

the latter that of the partner. If we consider the partnerLinkType example presented

in the previous section, the related partnerLink for an orchestrator which enroles the

invoiceRequester role can be defined as follows:

<partnerLinks>

<partnerLink name=” i n v o i c i n g ”

partnerLinkType=” l n s : i n v o i c i n g L T ”

myRole=” invoiceRequester ”

partnerRole=” i n v o i c e S e r v i c e ” />

</partnerLinks>

Each partner within a partnerLink is joined with an endpoint reference which is the ac-

tual means for identifying an orchestrator and interacting with it. The endpoint reference

association is differently managed depending on the engine which animates the specifi-

cation.

28 Chapter 2. Background

<variables> The tag <variables> allows for the definition of the variables exploited

within the business process. Variables will be exploited for storing the received messages

and for manipulating data. In the following we present an example of variable declara-

tion where the attribute messageType refers to a message defined within the WSDL and

specifies that the type of the variable must be the same of that of the declared message:

<v a r i a b l e s>

<v a r i a b l e name=”PO” messageType=” lns:POMessage ”/>

<v a r i a b l e name=” Invoice ” messageType=” lns: InvMessage ”/>

<v a r i a b l e name=” shippingRequest ” messageType=” lns:shippingRequestMessage ”/>

<v a r i a b l e name=” shippingInfo ” messageType=” lns :shippingInfoMessage ”/>

<v a r i a b l e name=” shippingSchedule ” messageType=” lns:scheduleMessage ”/>

</ v a r i a b l e s>

<correlationSets> Different intances of a business process can be executed concur-

rently on the same engine. Each instance executes the same business process but with

a different set of data. Usually, a business process instance is initiated by a message re-

ception and it is identified by a particular set of the received data. The data which allows

for the identification of each instance are defined within the so-called correlation set. Let

us consider, for example, the case of a business process which starts its execution by re-

ceiving a message that contains the nickname of a user. Moreover, let us assume that

the nickname is declared within the correlation set of the business process and that the

nicknames univocally identify a user. If such a kind of business process is concurrently

invoked by two users which have different nicknames as, for example, Micky Mouse and

Homer Simpson, two instances will be created and each instance will be identify by the

corresponding nickname. The tag <correlationSets> allows for the definition of all the

data which are used for identifying a specific instance of the business process. In the

following we present an example of correlation sets declaration:

<c o r r e l a t i o n S e t s xmlns:cor=” h t t p : //example . com/supplyCorre lat ion ”>

<c o r r e l a t i o n S e t name=” PurchaseOrder ”

p r o p e r t i e s =” cor:customerID cor:orderNumber” />

<c o r r e l a t i o n S e t name=” Invoice ”

p r o p e r t i e s =” cor:vendorID cor:invoiceNumber ” />

</ c o r r e l a t i o n S e t s>

Chapter 2. Background 29

It is worth noting that, in order to define correlation sets, WS-BPEL exploits the property

and the propertyAlias constructs described in the previous section. In the example above,

two correlation sets are defined: the former is named PurchaseOrder and it is joined to the

properties cor:customerID and cor:orderNumber whereas the latter is named Invoice and it

is joined with the properties cor:vendorID and cor:invoiceNumber.

<faultHandlers> and <eventHandlers> The tags <faultHandlers> and <eventHandlers>

allow for the definition of the handlers which manages faults and events. Faults can be

logically generated during the process execution or received within a message exchange

whereas some event reactions can be programmed when a message reception or an alarm

occur. Since faults and events are out of the topic of this thesis, here we do not present

such a kind of constructs in detail.

activity Each business process has an initial activity and a terminating one. In the fol-

lowing we list all the activities and we present some usage examples for the ones which

are relevant to the end of the understanding of this thesis.

• Activities which deal with communication

– receive: it allows the business process to receive a message on an One-Way or

Request-Response operation. Within a receive it is possible to define a correla-

tion set for identifying the right instance to which route the incoming message.

In the following we present an example of the receive activity:

<r e c e i v e partnerLink=” purchasing ”

portType=” lns:purchaseOrderPT ”

operat ion=” sendPurchaseOrder ”

v a r i a b l e =”PO”

c r e a t e I n s t a n c e =” yes ”>

</ r e c e i v e>

It is worth noting that the partnerLink, the portType and the operation on

which the message reception is performed are declared. Moreover, the vari-

able (PO) where the message content will be stored is defined. The attribute

30 Chapter 2. Background

createInstance set to yes means that a new business process instance is created

when the message is received.

– reply: it allows the business process to send a reply message in a Request-

Response message exchange. The reply activities must be logically executed

after a receive activity declared on the same operation. In the following an

example of a reply activity is reported:

<reply partnerLink=” purchasing ”

portType=” lns:purchaseOrderPT ”

operat ion=” sendPurchaseOrder ”

v a r i a b l e =” Invoice ”>

</reply>

In this case, the attribute variable identifies the variable from which the mes-

sage content will be taken.

– invoke: it allows the business process to invoke a One-Way or a Request-Response

operation of another business process. In the case of a Request-Response in-

vocation the invoke activity will be blocked until the response message will be

received. In the following a Request-Response invocation is presented.

<invoke partnerLink=” shipping ”

portType=” lns :shippingPT ”

operat ion=” requestShipping ”

inputVar iab le=” shippingRequest ”

outputVariable=” shippingInfo ”>

</invoke>

It is worth noting that the attributes inputVariable and outputVariable specify

the variables where the incoming message will be stored and from which will

be taken the outcoming one respectively.

In general, within a communication primitive a correlation set may be defined in

order to route a received message to the right instance depending on the contained

values. In the following, we present an example where a receive activity is corre-

lated with the correlation set auctionIdentification:

<r e c e i v e name=” a c c e p t S e l l e r I n f o r m a t i o n ”

partnerLink=” s e l l e r ”

Chapter 2. Background 31

portType=” a s : s e l l e r P T ”

operat ion=”submit ”

v a r i a b l e =” s e l l e r D a t a ”

c r e a t e I n s t a n c e =” yes ”>

<c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =” a u c t i o n I d e n t i f i c a t i o n ”/>

</ c o r r e l a t i o n s>

</ r e c e i v e>

• Activities which deal with computational aspects:

– assign: it allows the business process to assign a value or an expression result

to a variable furthermore, the assign activity can also be used to assign an

endpoint reference to a partnerLink. In the following we present an assign

example where the tag <copy> specifies that some values must be copied from

a source specified within the tag <from> to the target defined within the tag

<to>. In this example, the source is an endpoint reference whereas the target

is a partnerLink.

<ass ign>

<copy>

<from>

< l i t e r a l>

<s r e f : s e r v i c e −r e f>

<addr:EndpointReference>

<addr:Address>

h t t p : //example . com/auct ion/ R e g i s t r a t i o n S e r v i c e /

</addr:Address>

<addr:ServiceName>

a s : R e g i s t r a t i o n S e r v i c e

</addr:ServiceName>

</addr:EndpointReference>

</ s r e f : s e r v i c e −r e f>

</ l i t e r a l>

</from>

<to partnerLink=” a u c t i o n R e g i s t r a t i o n S e r v i c e ” />

</copy>

32 Chapter 2. Background

</ass ign>

– validate: it allows the business process to check the validation of the values

contained within a variable w.r.t. the joined WSDL data definition.

• Activities which deal with activity composition:

– sequence: it allows for the sequential composition of activities. In the following

we present a sequence example where an invoke activity is performed after

two assign activities:

<sequence>

<ass ign>

<copy>

<from>$ s e l l e r D a t a . endpointReference</from>

<to partnerLink=” s e l l e r ” />

</copy>

<copy>

<from>

< l i t e r a l>Thank you !</ l i t e r a l>

</from>

<to>$ sellerAnswerData . thankYouText</to>

</copy>

</ass ign>

<invoke name=” respondToSel ler ”

partnerLink=” s e l l e r ”

portType=” as :sel lerAnswerPT ”

operat ion=”answer”

inputVar iab le=” sellerAnswerData ” />

</sequence>

– flow: it allows for the parallel composition of activities. In the following we

present an example where a sequence of an invoke and a receive activity are

composed in parallel with a sequence of two invoke activities.

<flow>

<sequence>

<invoke partnerLink=” shipping ”

Chapter 2. Background 33

portType=” lns :shippingPT ”

operat ion=” requestShipping ”

inputVar iab le=” shippingRequest ”

outputVariable=” shippingInfo ”>

</invoke>

<r e c e i v e partnerLink=” shipping ”

portType=” lns :shippingCal lbackPT ”

operat ion=” sendSchedule ”

v a r i a b l e =” shippingSchedule ”>

</ r e c e i v e>

</sequence>

<sequence>

<invoke partnerLink=” i n v o i c i n g ”

portType=” lns:computePricePT ”

operat ion=” i n i t i a t e P r i c e C a l c u l a t i o n ”

inputVar iab le=”PO”>

</invoke>

<invoke partnerLink=” i n v o i c i n g ”

portType=” lns:computePricePT ”

operat ion=” sendShippingPrice ”

inputVar iab le=” shippingInfo ”>

</invoke>

</sequence>

</flow>

It is worth noting that the activities programmed to be executed in parallel can

be synchronized by means of internal synchronization signals expressed by

means of the tag <links>. The tags <source> and <target> allows for the spec-

ification of the activity which sends the synchronizing signal and the activity

which receives it respectively. In the following we present the same example

above where the signal ship-to-invoice is introduced. The source activity is the

first invoke activity of the first sequence whereas the target is the last invoke

activity of the second sequence.

<flow>

<l i n k s>

<l i n k name=” ship−to−i n v o i c e ” />

34 Chapter 2. Background

</ l i n k s>

<sequence>

<invoke partnerLink=” shipping ”

portType=” lns :shippingPT ”

operat ion=” requestShipping ”

inputVar iab le=” shippingRequest ”

outputVariable=” shippingInfo ”>

<sources>

<source linkName=” ship−to−i n v o i c e ” />

</sources>

</invoke>

<r e c e i v e partnerLink=” shipping ”

portType=” lns :shippingCal lbackPT ”

operat ion=” sendSchedule ” v a r i a b l e =” shippingSchedule ”>

</ r e c e i v e>

</sequence>

<sequence>

<invoke partnerLink=” i n v o i c i n g ”

portType=” lns:computePricePT ”

operat ion=” i n i t i a t e P r i c e C a l c u l a t i o n ”

inputVar iab le=”PO”>

</invoke>

<invoke partnerLink=” i n v o i c i n g ”

portType=” lns:computePricePT ”

operat ion=” sendShippingPrice ”

inputVar iab le=” shippingInfo ”>

<t a r g e t s>

<t a r g e t linkName=” ship−to−i n v o i c e ” />

</ t a r g e t s>

</invoke>

</sequence>

</flow>

It is important to highlight the fact that the tags <source> and <target> allow

also for the specification of an inner guard (a boolean expression) which can

block or not the sending and the receiving of the synchronizing signal.

Chapter 2. Background 35

– pick: it allows for the representation of non-deterministic choice among a set

of events. Only the selected event will be executed whereas the other will be

discarded. The events that can be programmed within a pick activity are the

reception of a message, which resembles a receive activity, or an internal time

alarm. In the following, we present an example where two message receptions

and an alarm are programmed within a pick activity:

<pick>

<onMessage partnerLink=”buyer”

portType=” orderEntry ”

operat ion=” inputLineItem ”

v a r i a b l e =” l i n e I t e m ”>

</onMessage>

<onMessage partnerLink=”buyer”

portType=” orderEntry ”

operat ion=” orderComplete ”

v a r i a b l e =” complet ionDetai l ”>

</onMessage>

<onAlarm>

< !−− s e t an alarm t o go o f f

3 days and 10 hours a f t e r t h e l a s t o r d e r l i n e −−>

<f o r> ’P3DT10H ’</ f o r>

</onAlarm>

</pick>

– if : it allows for the selection of exactly one activity among a collection of

choices. It represents the usual if then else construct. An example where the

if activity is used follows:

< i f>

<condi t ion>

b p e l : g e t V a r i a b l e P r o p e r t y (’ s t o c k R e s u l t ’ , ’ i n v e n t o r y : l e v e l ’) > 100

</condi t ion>

<flow>

< !−− p e r f o r m f u l f i l l m e n t work −−>

</flow>

<e l s e i f>

<condi t ion>

36 Chapter 2. Background

b p e l : g e t V a r i a b l e P r o p e r t y (’ s t o c k R e s u l t ’ , ’ i n v e n t o r y : l e v e l ’) >= 0

</condi t ion>

< !−− p e r f o r m e l s e i f a c t i v i t i e s −−>

</ e l s e i f>

<e l s e>

< !−− p e r f o r m e l s e a c t i v i t i e s −−>

</ e l s e>

</ i f>

– while: it allows for the expression of repeated activities depending on a condi-

tion. The condition is evaluated before the execution of the inner activities. A

usage example follows:

<while>

<condi t ion>$ o r d e r D e t a i l s > 100</condi t ion>

<scope> . . .</scope>

</while>

– repeatUntil: as the while activity it allows for the expression of repeated activ-

ities. The condition is evaluated after the firs execution of the inner activities.

– forEach: it allows for the repetition of some activities. The inner activities are

repeated a specified number of times.

• Activities which deal with activity scoping

– scope: it allows for the definition of a nested activity scope where different part-

nerLinks, messageExchanges, variables, correlationSets, faultHandlers, com-

pensationHandler, terminationHandler can be defined.

• Activities which deal with faults

– exit: it allows for the immediate termination a business process instance.

– throw: it allows for the generation of a fault within the business process

– rethorw: it allows for the re-generation of a fault within the fault handler it is

processing it.

Chapter 2. Background 37

– compensate: it allows the business process to start a compensation activity

within all the inner scopes.

– compensateScope: it allows the business process to start a compensation activity

on a specific inner scope.

• Others:

– wait: it allows the business process to wait for a specified amount of time.

– empty: no activities are performed when this activity is executed.

– extensionActivity: it allows for the extension of WS-BPEL activiites with new

kind of activities.

2.1.3.2 Abstract process

A WS-BPEL business process can be programmed as a so-called abstract process. An ab-

stract process cannot be executed by an engine but it is exploited for representing a sort

of behavioural skeleton of the business process. Such a kind of processes are usually ex-

ploited for supplying a view of a business process where only the observable actions are

shown. Some opaque constructs are introduced for replacing executable statements with

a non-observable ones. In particular it is possible to have an opaque construct for:

• an activity: an activity can be replaced with an opaque one in order to not specify

its behaviour.

• an expression: an expression can be replaced with an opaque value. Such a kind

of feature implicitly inroduces non-determinism within choice constructs where

conditions are evaluated.

• an attribute: tag attributes can be replaced with an opaque value.

In the following we present an abstract process example where all the three kind of

opaque constructs are used:

38 Chapter 2. Background

<process . . .>

<partnerLinks>

<partnerLink name=” homeInfoVeri f ier ”

partnerLinkType=”##opaque”

myRole=”##opaque”

partnerRole=”##opaque”>

</partnerLink>

</partnerLinks>

<v a r i a b l e s>

<v a r i a b l e name=”commonRequestVar” element=”##opaque” />

</ v a r i a b l e s>

<sequence>

<opaqueActivity t e m p l a t e : c r e a t e I n s t a n c e =” yes ”>

<documentation>

Pick an a p p r a i s a l request from one of 3 customer r e f e r r a l channels .

</documentation>

</opaqueActivity>

<ass ign>

<documentation>

Transform one of these 3 a p p r a i s a l request i n t o our own format .

</documentation>

<from opaque=” yes ” />

<to v a r i a b l e =”commonRequestVar” />

</ass ign>

<opaqueActivity>

<documentation>

E x t r a c t customer and housing i n f o from our a p p r a i s a l

request i n t o a message understood by our home i n f o

v e r i f i c a t i o n partner .

</documentation>

</opaqueActivity>

<invoke partnerLink=” homeInfoVeri f ier ”

operat ion=”##opaque”

inputVar iab le=”##opaque”/>

</sequence>

Chapter 2. Background 39

</process>

2.1.3.3 Two examples

In the following we present two examples reported in the WS-BPEL specification. The

former describes a Purchase order service whereas the latter describes an Auction service

process which allows for the management of an auction between a seller and a buyer.

Purchase order Service This example models a purchase order service which starts

with a Request-Response operation sendPurchaseOrder. Between the request message and

the response one it coordinates three activities in parallel: one deals with the price cal-

culation process, one deals with the shipping activity and one deals with the production

scheduling activity. It is worth noting that links among parallel threads are exploited

for synchronizing the activities. No correlation sets are used within this example. In

Fig. 2.2 we present the graphical representation of the service, given within the specifi-

cations, where rectangles represent activities, the smooth rectangle represents a parallel

composition of the wrapped activities, dotted arrows represent a sequence of activities

and arrows represent a synchronization between two activities.

In the following we report the XML code of the Purchase order service as it is presented

within the specifications.

<w s d l : d e f i n i t i o n s

targetNamespace=” h t t p : //manufacturing . org/wsdl/purchase ”

xmlns:sns=” h t t p : //manufacturing . org/xsd/purchase ”

xmlns:pos=” h t t p : //manufacturing . org/wsdl/purchase ”

xmlns:wsdl=” h t t p : //schemas . xmlsoap . org/wsdl/”

xmlns:plnk=” h t t p : //docs . oas is −open . org/wsbpel /2.0/ plnktype ”

xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>

<wsdl : types>

<xsd:schema>

<xsd: import namespace=” h t t p : //manufacturing . org/xsd/purchase ”

schemaLocation=” h t t p : //manufacturing . org/xsd/purchase . xsd” />

</xsd:schema>

40 Chapter 2. Background

Figure 2.2: Purchase order service

</wsdl : types>

<wsdl:message name=”POMessage”>

<wsdl :par t name=” customerInfo ” type=” sns:customerInfoType ” />

<wsdl :par t name=” purchaseOrder ” type=” sns:purchaseOrderType ” />

</wsdl:message>

<wsdl:message name=”InvMessage”>

<wsdl :par t name=”IVC” type=” sns : InvoiceType ” />

</wsdl:message>

<wsdl:message name=” orderFaultType ”>

<wsdl :par t name=” problemInfo ” element= ” sns :OrderFaul t ” />

</wsdl:message>

<wsdl:message name=” shippingRequestMessage ”>

<wsdl :par t name=” customerInfo ” element=” sns :cus tomerInfo ” />

</wsdl:message>

<wsdl:message name=” shippingInfoMessage ”>

<wsdl :par t name=” shippingInfo ” element=” s n s : s h i p p i n g I n f o ” />

Chapter 2. Background 41

</wsdl:message>

<wsdl:message name=” scheduleMessage ”>

<wsdl :par t name=” schedule ” element=” s n s : s c h e d u l e I n f o ” />

</wsdl:message>

< !−− p o r t T y p e s s u p p o r t e d by t h e p u r c h a s e o r d e r p r o c e s s −−>

<wsdl:portType name=”purchaseOrderPT ”>

<wsdl :operat ion name=” sendPurchaseOrder ”>

<wsdl : input message=”pos:POMessage” />

<wsdl:output message=” pos:InvMessage ” />

<w s d l : f a u l t name=”cannotCompleteOrder”

message=” pos:orderFaultType ” />

</wsdl :operat ion>

</wsdl:portType>

<wsdl:portType name=” invoiceCal lbackPT ”>

<wsdl :operat ion name=” sendInvoice ”>

<wsdl : input message=” pos:InvMessage ” />

</wsdl :operat ion>

</wsdl:portType>

<wsdl:portType name=” shippingCallbackPT ”>

<wsdl :operat ion name=” sendSchedule ”>

<wsdl : input message=” pos:scheduleMessage ” />

</wsdl :operat ion>

</wsdl:portType>

< !−− p o r t T y p e s u p p o r t e d by t h e i n v o i c e s e r v i c e s −−>

<wsdl:portType name=”computePricePT ”>

<wsdl :operat ion name=” i n i t i a t e P r i c e C a l c u l a t i o n ”>

<wsdl : input message=”pos:POMessage” />

</wsdl :operat ion>

<wsdl :operat ion name=” sendShippingPrice ”>

<wsdl : input message=” pos:shippingInfoMessage ” />

</wsdl :operat ion>

</wsdl:portType>

< !−− p o r t T y p e s u p p o r t e d by t h e s h i p p i n g s e r v i c e −−>

<wsdl:portType name=” shippingPT ”>

<wsdl :operat ion name=” requestShipping ”>

<wsdl : input message=” pos:shippingRequestMessage ” />

42 Chapter 2. Background

<wsdl:output message=” pos:shippingInfoMessage ” />

<w s d l : f a u l t name=”cannotCompleteOrder”

message=” pos:orderFaultType ” />

</wsdl :operat ion>

</wsdl:portType>

< !−− p o r t T y p e s u p p o r t e d by t h e p r o d u c t i o n s c h e d u l i n g p r o c e s s −−>

<wsdl:portType name=” schedulingPT ”>

<wsdl :operat ion name=” requestProduct ionScheduling ”>

<wsdl : input message=”pos:POMessage” />

</wsdl :operat ion>

<wsdl :operat ion name=” sendShipingSchedule ”>

<wsdl : input message=” pos:scheduleMessage ” />

</wsdl :operat ion>

</wsdl:portType>

<plnk:partnerLinkType name=” purchasingLT ”>

<p l n k : r o l e name=” purchaseService ”

portType=” pos:purchaseOrderPT ” />

</plnk:partnerLinkType>

<plnk:partnerLinkType name=” invoicingLT ”>

<p l n k : r o l e name=” i n v o i c e S e r v i c e ”

portType=” pos:computePricePT ” />

<p l n k : r o l e name=” invoiceRequester ”

portType=” pos : invoiceCal lbackPT ” />

</plnk:partnerLinkType>

<plnk:partnerLinkType name=” shippingLT ”>

<p l n k : r o l e name=” shippingService ”

portType=” pos:shippingPT ” />

<p l n k : r o l e name=” shippingRequester ”

portType=” pos:shippingCallbackPT ” />

</plnk:partnerLinkType>

<plnk:partnerLinkType name=” schedulingLT ”>

<p l n k : r o l e name=” schedul ingServ ice ”

portType=” pos:schedulingPT ” />

</plnk:partnerLinkType>

</ w s d l : d e f i n i t i o n s>

Chapter 2. Background 43

<process name=” purchaseOrderProcess ”

targetNamespace=” h t t p : //example . com/ws−bp/purchase ”

xmlns=” h t t p : //docs . oas is −open . org/wsbpel /2.0/ process/executab le ”

xmlns : lns=” h t t p : //manufacturing . org/wsdl/purchase ”>

<documentation xml:lang=”EN”>

A simple example of a WS−BPEL process f o r handling a purchase

order .

</documentation>

<partnerLinks>

<partnerLink name=” purchasing ”

partnerLinkType=” lns :purchasingLT ”

myRole=” purchaseService ” />

<partnerLink name=” i n v o i c i n g ” partnerLinkType=” l n s : i n v o i c i n g L T ”

myRole=” invoiceRequester ” partnerRole=” i n v o i c e S e r v i c e ” />

<partnerLink name=” shipping ” partnerLinkType=” lns :shippingLT ”

myRole=” shippingRequester ” partnerRole=” shippingService ” />

<partnerLink name=” scheduling ”

partnerLinkType=” lns :schedul ingLT ”

partnerRole=” schedul ingServ ice ” />

</partnerLinks>

<v a r i a b l e s>

<v a r i a b l e name=”PO” messageType=” lns:POMessage ” />

<v a r i a b l e name=” Invoice ” messageType=” lns: InvMessage ” />

<v a r i a b l e name=” shippingRequest ”

messageType=” lns:shippingRequestMessage ” />

<v a r i a b l e name=” shippingInfo ”

messageType=” lns :shippingInfoMessage ” />

<v a r i a b l e name=” shippingSchedule ”

messageType=” lns:scheduleMessage ” />

</ v a r i a b l e s>

<faul tHandlers>

<catch faultName=” lns:cannotCompleteOrder ”

f a u l t V a r i a b l e =”POFault”

faultMessageType=” lns :orderFaul tType ”>

<reply partnerLink=” purchasing ”

portType=” lns:purchaseOrderPT ”

44 Chapter 2. Background

operat ion=” sendPurchaseOrder ” v a r i a b l e =”POFault”

faultName=”cannotCompleteOrder” />

</catch>

</faul tHandlers>

<sequence>

<r e c e i v e partnerLink=” purchasing ” portType=” lns:purchaseOrderPT ”

operat ion=” sendPurchaseOrder ” v a r i a b l e =”PO”

c r e a t e I n s t a n c e =” yes ”>

<documentation>Receive Purchase Order</documentation>

</ r e c e i v e>

<flow>

<documentation>

A p a r a l l e l flow to handle shipping , i n v o i c i n g and

scheduling

</documentation>

<l i n k s>

<l i n k name=” ship−to−i n v o i c e ” />

<l i n k name=” ship−to−scheduling ” />

</ l i n k s>

<sequence>

<ass ign>

<copy>

<from>$PO. customerInfo</from>

<to>$ shippingRequest . customerInfo</to>

</copy>

</ass ign>

<invoke partnerLink=” shipping ” portType=” lns :shippingPT ”

operat ion=” requestShipping ”

inputVar iab le=” shippingRequest ”

outputVariable=” shippingInfo ”>

<documentation>Decide On Shipper</documentation>

<sources>

<source linkName=” ship−to−i n v o i c e ” />

</sources>

</invoke>

<r e c e i v e partnerLink=” shipping ”

Chapter 2. Background 45

portType=” lns :shippingCal lbackPT ”

operat ion=” sendSchedule ” v a r i a b l e =” shippingSchedule ”>

<documentation>Arrange L o g i s t i c s</documentation>

<sources>

<source linkName=” ship−to−scheduling ” />

</sources>

</ r e c e i v e>

</sequence>

<sequence>

<invoke partnerLink=” i n v o i c i n g ”

portType=” lns:computePricePT ”

operat ion=” i n i t i a t e P r i c e C a l c u l a t i o n ”

inputVar iab le=”PO”>

<documentation>

I n i t i a l P r i c e C a l c u l a t i o n

</documentation>

</invoke>

<invoke partnerLink=” i n v o i c i n g ”

portType=” lns:computePricePT ”

operat ion=” sendShippingPrice ”

inputVar iab le=” shippingInfo ”>

<documentation>

Complete P r i c e C a l c u l a t i o n

</documentation>

<t a r g e t s>

<t a r g e t linkName=” ship−to−i n v o i c e ” />

</ t a r g e t s>

</invoke>

<r e c e i v e partnerLink=” i n v o i c i n g ”

portType=” l n s : i n v o i c e C a l l b a c k P T ”

operat ion=” sendInvoice ” v a r i a b l e =” Invoice ” />

</sequence>

<sequence>

<invoke partnerLink=” scheduling ”

portType=” lns :schedul ingPT ”

operat ion=” requestProduct ionScheduling ”

46 Chapter 2. Background

inputVar iab le=”PO”>

<documentation>

I n i t i a t e Production Scheduling

</documentation>

</invoke>

<invoke partnerLink=” scheduling ”

portType=” lns :schedul ingPT ”

operat ion=” sendShippingSchedule ”

inputVar iab le=” shippingSchedule ”>

<documentation>

Complete Production Scheduling

</documentation>

<t a r g e t s>

<t a r g e t linkName=” ship−to−scheduling ” />

</ t a r g e t s>

</invoke>

</sequence>

</flow>

<reply partnerLink=” purchasing ” portType=” lns:purchaseOrderPT ”

operat ion=” sendPurchaseOrder ” v a r i a b l e =” Invoice ”>

<documentation>Invoice Process ing</documentation>

</reply>

</sequence>

</process>

Auction Service This example models an auction service which waits for a seller and

a buyer message for managing an auction identified by a specific ID. Both the seller and

the buyer has to specify such an ID in order to be joined within the Auction service. A

correlation set is used for identifying the instances within the process. In particular, the

auction ID is exploited for denoting an instance and a property auctionId is defined in or-

der to retrieve such a value within the different incoming messages. In Fig. 2.3 we report

the graphical representation of the service which starts with a parallel composition be-

tween two receives, one from the buyer and one from the seller, and then continues with

a sequence of activities. The process ends with the parallel composition of two invoke

Chapter 2. Background 47

activities that it exploits for notifying both the buyer and the seller that the auction is

succesfully terminated. Within the activities composed in sequence, the Auction service

performs some internal computations which roughly model the management of the data

related to the auction and then sends such information to an Auction Registration ser-

vice by invoking it. Finally, it waits for a response from the Auction Registration service.

For the sake of brevity, here we do not model the Auction Registration service because

we are interested only to show how the correlation mechanism is concretely used in WS-

BPEL. In order to understand the behaviour of such a service it is sufficient to know that

it stores the received data and then it sends a response to the invoker.

Figure 2.3: Auction service

In the following we report the WS-BPEL code of the process. It is worth noting that

the two initial receive activities, which wait for a message from the buyer and the seller,

48 Chapter 2. Background

initiate the correlation set. Since it is impossible to predict which receive activity will

be executed firstly (that from the buyer or that form the seller) only the first received

message initiates a new instance by setting a new correlation set whereas the second one

will be routed to the right instance by correlating it. Such a feature is expressed within

WS-BPEL, by exploiting the attribute initiate=”join” within the tag correlation of the two

received activities.

<w s d l : d e f i n i t i o n s

targetNamespace=” h t t p : //example . com/auct ion/wsdl/ a u c t i o n S e r v i c e /”

xmlns:bpel=” h t t p : //docs . oas is −open . org/wsbpel /2.0/ process/executab le ”

xmlns:plnk=” h t t p : //docs . oas is −open . org/wsbpel /2.0/ plnktype ”

xmlns : tns=” h t t p : //example . com/auct ion/wsdl/ a u c t i o n S e r v i c e /”

xmlns:wsdl=” h t t p : //schemas . xmlsoap . org/wsdl/”

xmlns:xsd=” h t t p : //www. w3 . org /2001/XMLSchema”>

< !−− Messages f o r communicat ion with t h e s e l l e r −−>

<wsdl:message name=” s e l l e r D a t a ”>

<wsdl :par t name=”creditCardNumber” type=” x s d : s t r i n g ” />

<wsdl :par t name=” shippingCosts ” type=” x s d : i n t e g e r ” />

<wsdl :par t name=” auct ionId ” type=” x s d : i n t e g e r ” />

<wsdl :par t name=” endpointReference ” type=” bpel :ServiceRefType ” />

</wsdl:message>

<wsdl:message name=” sellerAnswerData ”>

<wsdl :par t name=”thankYouText” type=” x s d : s t r i n g ” />

</wsdl:message>

< !−− Messages f o r communicat ion with t h e buyer −−>

<wsdl:message name=”buyerData”>

<wsdl :par t name=”creditCardNumber” type=” x s d : s t r i n g ” />

<wsdl :par t name=”phoneNumber” type=” x s d : s t r i n g ” />

<wsdl :par t name=”ID” type=” x s d : i n t e g e r ” />

<wsdl :par t name=” endpointReference ” type=” bpel :ServiceRefType ” />

</wsdl:message>

<wsdl:message name=”buyerAnswerData”>

<wsdl :par t name=”thankYouText” type=” x s d : s t r i n g ” />

</wsdl:message>

< !−− Messages f o r communicat ion with t h e a u c t i o n r e g i s t r a t i o n s e r v i c e −−>

<wsdl:message name=” auctionData ”>

Chapter 2. Background 49

<wsdl :par t name=” auct ionId ” type=” x s d : i n t e g e r ” />

<wsdl :par t name=”amount” type=” x s d : i n t e g e r ” />

<wsdl :par t name=” auctionHouseEndpointReference ”

type=” bpel :ServiceRefType ” />

</wsdl:message>

<wsdl:message name=”auctionAnswerData ”>

<wsdl :par t name=” r e g i s t r a t i o n I d ” type=” x s d : i n t e g e r ” />

<wsdl :par t name=” auct ionId ” type=” x s d : i n t e g e r ” />

</wsdl:message>

< !−− Por tTypes f o r i n t e r a c t i n g with t h e s e l l e r −−>

<wsdl:portType name=” s e l l e r P T ”>

<wsdl :operat ion name=”submit ”>

<wsdl : input message=” t n s : s e l l e r D a t a ” />

</wsdl :operat ion>

</wsdl:portType>

<wsdl:portType name=” sellerAnswerPT ”>

<wsdl :operat ion name=”answer”>

<wsdl : input message=” tns : se l lerAnswerData ” />

</wsdl :operat ion>

</wsdl:portType>

< !−− Por tTypes f o r i n t e r a c t i n g with t h e buyer −−>

<wsdl:portType name=”buyerPT”>

<wsdl :operat ion name=”submit ”>

<wsdl : input message=” tns :buyerData ” />

</wsdl :operat ion>

</wsdl:portType>

<wsdl:portType name=”buyerAnswerPT”>

<wsdl :operat ion name=”answer”>

<wsdl : input message=” tns:buyerAnswerData ” />

</wsdl :operat ion>

</wsdl:portType>

< !−− Por tTypes f o r i n t e r a c t i n g with t h e

a u c t i o n r e g i s t r a t i o n s e r v i c e −−>

<wsdl:portType name=” auct ionRegis t ra t ionPT ”>

<wsdl :operat ion name=” process ”>

<wsdl : input message=” t n s : a u c t i o n D a t a ” />

50 Chapter 2. Background

</wsdl :operat ion>

</wsdl:portType>

<wsdl:portType name=” auctionRegistrationAnswerPT ”>

<wsdl :operat ion name=”answer”>

<wsdl : input message=” tns:auctionAnswerData ” />

</wsdl :operat ion>

</wsdl:portType>

< !−− Contex t t y p e used f o r l o c a t i n g b u s i n e s s p r o c e s s

v i a a u c t i o n Id −−>

<vprop:property name=” auct ionId ” type=” x s d : i n t e g e r ” />

<vprop:propertyAl ias propertyName=” t n s : a u c t i o n I d ”

messageType=” t n s : s e l l e r D a t a ” part=” auct ionId ” />

<vprop:propertyAl ias propertyName=” t n s : a u c t i o n I d ”

messageType=” tns :buyerData ” part=”ID” />

<vprop:propertyAl ias propertyName=” t n s : a u c t i o n I d ”

messageType=” t n s : a u c t i o n D a t a ” part=” auct ionId ” />

<vprop:propertyAl ias propertyName=” t n s : a u c t i o n I d ”

messageType=” tns:auctionAnswerData ” part=” auct ionId ” />

< !−− P a r t n e r L i n k T y p e f o r s e l l e r / auc t i onHouse −−>

<plnk:partnerLinkType name=” sellerAuctionHouseLT ”>

<p l n k : r o l e name=” auctionHouse ” portType=” t n s : s e l l e r P T ” />

<p l n k : r o l e name=” s e l l e r ” portType=” tns :se l lerAnswerPT ” />

</plnk:partnerLinkType>

< !−− P a r t n e r L i n k T y p e f o r buyer / auc t i onHouse −−>

<plnk:partnerLinkType name=”buyerAuctionHouseLT”>

<p l n k : r o l e name=” auctionHouse ” portType=” tns:buyerPT ” />

<p l n k : r o l e name=”buyer” portType=”tns:buyerAnswerPT ” />

</plnk:partnerLinkType>

< !−− P a r t n e r l i n k t y p e f o r a u c t i o n house / a u c t i o n

r e g i s t r a t i o n s e r v i c e −−>

<plnk:partnerLinkType

name=” auct ionHouseAuct ionRegistrat ionServiceLT ”>

<p l n k : r o l e name=” a u c t i o n R e g i s t r a t i o n S e r v i c e ”

portType=” t n s : a u c t i o n R e g i s t r a t i o n P T ” />

<p l n k : r o l e name=” auctionHouse ”

portType=” tns :auct ionRegis trat ionAnswerPT ” />

Chapter 2. Background 51

</plnk:partnerLinkType>

</ w s d l : d e f i n i t i o n s>

<process name=” a u c t i o n S e r v i c e ”

targetNamespace=” h t t p : //example . com/auct ion ”

xmlns=” h t t p : //docs . oas is −open . org/wsbpel /2.0/ process/executab le ”

x m l n s : s r e f =” h t t p : //docs . oas is −open . org/wsbpel /2.0/ s e r v i c e r e f ”

xmlns:addr=” h t t p : //example . com/addressing ”

xmlns:as=” h t t p : //example . com/auct ion/wsdl/a u c t i o n S e r v i c e /”>

<import importType=” h t t p : //schemas . xmlsoap . org/wsdl/”

l o c a t i o n =” a u c t i o n S e r v i c e I n t e r f a c e . wsdl”

namespace=” h t t p : //example . com/auct ion/wsdl/ a u c t i o n S e r v i c e /” />

<partnerLinks>

<partnerLink name=” s e l l e r ”

partnerLinkType=” as:sel lerAuct ionHouseLT ”

myRole=” auctionHouse ”

partnerRole=” s e l l e r ” />

<partnerLink name=”buyer”

partnerLinkType=” as:buyerAuctionHouseLT ”

myRole=” auctionHouse ”

partnerRole=”buyer” />

<partnerLink name=” a u c t i o n R e g i s t r a t i o n S e r v i c e ”

partnerLinkType=” as :auct ionHouseAuct ionRegis t rat ionServiceLT ”

myRole=” auctionHouse ”

partnerRole=” a u c t i o n R e g i s t r a t i o n S e r v i c e ” />

</partnerLinks>

<v a r i a b l e s>

<v a r i a b l e name=” s e l l e r D a t a ”

messageType=” a s : s e l l e r D a t a ” />

<v a r i a b l e name=” sellerAnswerData ”

messageType=” as :se l lerAnswerData ” />

<v a r i a b l e name=”buyerData”

messageType=” as:buyerData ” />

<v a r i a b l e name=”buyerAnswerData”

messageType=” as:buyerAnswerData ” />

<v a r i a b l e name=” auctionData ”

52 Chapter 2. Background

messageType=” as :auc t ionData ” />

<v a r i a b l e name=”auctionAnswerData ”

messageType=” as:auctionAnswerData ” />

</ v a r i a b l e s>

<c o r r e l a t i o n S e t s>

<c o r r e l a t i o n S e t name=” a u c t i o n I d e n t i f i c a t i o n ”

p r o p e r t i e s =” a s : a u c t i o n I d ” />

</ c o r r e l a t i o n S e t s>

<sequence>

< !−− P r o c e s s buyer and s e l l e r r e q u e s t c o n c u r r e n t l y

E i t h e r one can c r e a t e a p r o c e s s i n s t a n c e −−>

<flow>

< !−− P r o c e s s s e l l e r r e q u e s t −−>

<r e c e i v e name=” a c c e p t S e l l e r I n f o r m a t i o n ”

partnerLink=” s e l l e r ”

portType=” a s : s e l l e r P T ”

operat ion=”submit ”

v a r i a b l e =” s e l l e r D a t a ”

c r e a t e I n s t a n c e =” yes ”>

<c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =” a u c t i o n I d e n t i f i c a t i o n ”

i n i t i a t e =” j o i n ” />

</ c o r r e l a t i o n s>

</ r e c e i v e>

< !−− P r o c e s s buyer r e q u e s t −−>

<r e c e i v e name=” acceptBuyerInformation ”

partnerLink=”buyer”

portType=” as:buyerPT ”

operat ion=”submit ”

v a r i a b l e =”buyerData”

c r e a t e I n s t a n c e =” yes ”>

<c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =” a u c t i o n I d e n t i f i c a t i o n ”

i n i t i a t e =” j o i n ” />

</ c o r r e l a t i o n s>

</ r e c e i v e>

Chapter 2. Background 53

</flow>

< !−− I n v o k e a u c t i o n r e g i s t r a t i o n s e r v i c e by s e t t i n g t h e t a r g e t

e n d p o i n t r e f e r e n c e and s e t t i n g my own e n d p o i n t r e f e r e n c e

f o r c a l l b a c k and r e c e i v i n g t h e answer C o r r e l a t i o n o f

r e q u e s t and answer i s v i a a u c t i o n Id −−>

<ass ign>

<copy>

<from>

< l i t e r a l>

<s r e f : s e r v i c e −r e f>

<addr:EndpointReference>

<addr:Address>

h t t p : //example . com/auct ion/

R e g i s t r a t i o n S e r v i c e /

</addr:Address>

<addr:ServiceName>

a s : R e g i s t r a t i o n S e r v i c e

</addr:ServiceName>

</addr:EndpointReference>

</ s r e f : s e r v i c e −r e f>

</ l i t e r a l>

</from>

<to partnerLink=” a u c t i o n R e g i s t r a t i o n S e r v i c e ” />

</copy>

<copy>

<from partnerLink=” a u c t i o n R e g i s t r a t i o n S e r v i c e ”

endpointReference=”myRole” />

<to>$ auctionData . auctionHouseEndpointReference</to>

</copy>

<copy>

<from>$ s e l l e r D a t a . auct ionId</from>

<to>$ auctionData . auct ionId</to>

</copy>

<copy>

<from>1</from>

<to>$ auctionData . amount</to>

54 Chapter 2. Background

</copy>

</ass ign>

<invoke name=” r e g i s t e r A u c t i o n R e s u l t s ”

partnerLink=” a u c t i o n R e g i s t r a t i o n S e r v i c e ”

portType=” a s : a u c t i o n R e g i s t r a t i o n P T ”

operat ion=” process ”

wsbpel−s p e c i f i c a t i o n −draf t −01

inputVar iab le=” auctionData ” />

<r e c e i v e name=” r e c e i v e A u c t i o n R e g i s t r a t i o n I n f o r m a t i o n ”

partnerLink=” a u c t i o n R e g i s t r a t i o n S e r v i c e ”

portType=” as :auct ionRegistrat ionAnswerPT ”

operat ion=”answer”

v a r i a b l e =”auctionAnswerData ”>

<c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =” a u c t i o n I d e n t i f i c a t i o n ” />

</ c o r r e l a t i o n s>

</ r e c e i v e>

< !−− Send r e s p o n s e s b a c k t o s e l l e r and buyer −−>

<flow>

< !−− P r o c e s s s e l l e r r e s p o n s e by s e t t i n g t h e s e l l e r t o

t h e e n d p o i n t r e f e r e n c e p r o v i d e d by t h e s e l l e r

and i n v o k i n g t h e r e s p o n s e −−>

<sequence>

<ass ign>

<copy>

<from>$ s e l l e r D a t a . endpointReference</from>

<to partnerLink=” s e l l e r ” />

</copy>

<copy>

<from>

< l i t e r a l>Thank you !</ l i t e r a l>

</from>

<to>$ sellerAnswerData . thankYouText</to>

</copy>

</ass ign>

<invoke name=” respondToSel ler ”

Chapter 2. Background 55

partnerLink=” s e l l e r ”

portType=” as :sel lerAnswerPT ”

operat ion=”answer”

inputVar iab le=” sellerAnswerData ” />

</sequence>

< !−− P r o c e s s buyer r e s p o n s e by s e t t i n g t h e buyer t o

t h e e n d p o i n t r e f e r e n c e p r o v i d e d by t h e buyer

and i n v o k i n g t h e r e s p o n s e −−>

<sequence>

<ass ign>

<copy>

<from>$buyerData . endpointReference</from>

<to partnerLink=”buyer” />

</copy>

<copy>

<from>

< l i t e r a l>Thank you !</ l i t e r a l>

</from>

<to>$buyerAnswerData . thankYouText</to>

</copy>

</ass ign>

<invoke name=”respondToBuyer”

partnerLink=”buyer”

portType=”as:buyerAnswerPT”

operat ion=”answer”

inputVar iab le=”buyerAnswerData” />

</sequence>

</flow>

</sequence>

</process>

2.1.3.4 WS-BPEL engines

WS-BPEL engines architecture is not standardized and the implementations that exist

are the result of a free interpretation of the WS-BPEL specification made by the different

56 Chapter 2. Background

producers. A detailed description of these products and a comparison of the different

features they supply, is out of the scope of this thesis. It is not clear, for example, if

WS-BPEL orchestrators designed with different tools are compatible each other. Since

in the next sections we provide a model for service engines, that are machinery able to

execute services, here we are interested, for the sake of completeness, to list the most

credited ones and, in particular, we would to focus on their architecture. The documen-

tation about this topic lacks in details and it is often not available. For this reason, in the

following we comment a rough architecture extracted from the web pages of the Active

BPEL project [act] in order to catch the basic characteristics an engine is based upon.

• Open source projects:

– Active BPEL [act]. It implements an engine ables to animate WS-BPEL processes

which follows the specifications. It is written in Java and it is also equipped

with a visual support for designing BPEL processes by following a graphical

approach.

– Apache ODE [Apaa]. It is a Java open source project which implements WS-

BPEL specifications. It does not supply a visual support for designing processes.

• Commercial products:

– Oracle BPEL Process Manager [ora]. It is a proprietary product developed by

Oracle which supplies an execution environment for native WS-BPEL code

and a visual tool for designing processes in a graphical way.

– IBM WebSphere [web]. It is a complete infrastructure software for integrating

web applications. It also supplies a WS-BPEL enigine for executing Web Ser-

vices orchestrators.

In [act] a very short description of the Active BPEL architecture is provided. Here, we

try to summarize the basic concepts it is based upon3:

3The reader who is interested in details about this topic may consult [act].

Chapter 2. Background 57

• An active BPEL process is composed by different activities which correspond to

those defined within the WS-BPEL specifications.

• Activities can be Basic activities (e.g. receive, reply, invoke) or Structured activities

(e.g. sequence, flow, pick)

• Activities are joined by links and they have their own state which describe their

current behaviour (e.g. inactive, ready-to-execute, executing)

• Each activity is defined within a scope which contains the values of the variables,

fault handlers, event handlers, compensation handlers, etc. Each WS-BPEL process

has a global scope as defined within the specifications.

• An activity is a start activity if it initiates a new active BPEL process. When a start

activity is triggered a new process is created.

• The executing receive activities are queued in order to wait for an incoming mes-

sage.

• The receive queue contains also the incoming messages received from other ser-

vices that did not match at the moment of the reception.4 hese messages are queued

until a timeout period passes.

• The engine dispatches incoming messages to the correct process instance.

• If there is correlation data, the engine tries to find the correct instance that matches

the correlation data. On the contrary, if there is no correlation data and the request

matches a start activity, a new process instance is created. In Fig. 2.4 we report

the request dispatch flowchart provided by the web pages documentation of the

project which is essentially self-descriptive.

4Such a feature is at the basis of the asynchronous communication which charactersize Web Services.

We discuss this topic in the next section.

58 Chapter 2. Background

Figure 2.4: Request Dispatch Flowchart of the Active Bpel engine

2.1.4 WS-CDL

WS-CDL is a W3C specification where an XML-based language which deals with Web

Service choreography description is defined. A choreography, differently from a WS-

BPEL business process, cannot be executed. Thus, there are no engines able to animate a

WS-CDL specification. WS-CDL indeed aims at providing a means which allows for the

description of a services system from a global view point, focusing on the interactions

among the involved participants. In the following we present the main characteristics

of the language in order to give a good starting point for a WS-CDL comprehension.

Otherwise, this section does not aim at being an exhaustive presentation of the language.

The reader who is interested to focus on WS-CDL details may consult the specification

[Worc, Worb]. The structure of a WS-CDL document follows:

<package

name=”NCName”

author=” x s d : s t r i n g ” ?

Chapter 2. Background 59

version=” x s d : s t r i n g ” ?

targetNamespace=” u r i ”

xmlns=” h t t p : //www. w3 . org /2005/10/ cdl ”>

<informationType/>∗

. . .

<roleType/>∗

<re la t ionshipType/>∗

<part ic ipantType/>∗

<channelType/>∗

Choreography−Notation∗

</package>

where a package allows for the specification of WS-CDL type definitions as information-

Type, roleType, relationshipType, participantType and channelType. Moreover, a package con-

tains the description of the choreographies which refer to the specified types.

2.1.4.1 WS-CDL types

In general, WS-CDL types allows for the abstract representation of the participants in-

volved in a choreoghraphy where each participant can enrole more roles with more than

one behaviour. Furthermore, channel types define the nature of the means on which

interactions between participants can be performed.

roleType A role type allows for the enumeration of all the behaviours exhibited by a

role where a role abstractly represents a specific dialoguer within a system whereas a

behaviour represents a specific task within a role. In general, a behaviour is joined to a

WSDL document which represents the interface of the behaviour. In the following we

present an example where a BuyerRole with a behaviour BuyerBehaviour is defined.

<roleType name=” BuyerRole ”>

<d e s c r i p t i o n type=” documentation ”>

Role f o r Buyer

</ d e s c r i p t i o n>

<behavior name=” BuyerBehavior ” i n t e r f a c e =” BuyerBehavior Inter face ”>

60 Chapter 2. Background

<d e s c r i p t i o n type=” documentation ”>

Behavior f o r Buyer Role

</ d e s c r i p t i o n>

</behavior>

</roleType>

It is worth noting that tags description allows for the specification of human readable

descriptions.

relationshipType A relationship type describes a conversational relation between two

behaviours of two different roles. Intuitively we can consider a relationshipType as an

abstract communication link between two roles which allows for the accomplishment of

a specific task. In the following we present an example where a relationshipType between

a Buyer and a Seller is defined:

<re la t ionshipType name=” Buyer2Se l le r ”>

<d e s c r i p t i o n type=” documentation ”>

Buyer S e l l e r Re la t ionsh ip

</ d e s c r i p t i o n>

<roleType typeRef=” tns :BuyerRole ”/>

<roleType typeRef=” t n s : S e l l e r R o l e ”/>

</re la t ionshipType>

participantType In WS-CDL a participant abstractly represents an entity, usually a ser-

vice, which enroles some of the declared roleTypes. A participant can enrole more than

one role, this is the case, for example, of a service that interacts with different services.

With regard to this, let us consider the case of a market service which interacts both with

a client and a supplier. With respect to the client, the market will play the role of a seller

whereas, with respect to the supplier, it will play the role of a customer. In the following

we present a possible participant definition of such a kind of market service.

<part ic ipantType name=”Market”>

<d e s c r i p t i o n type=” documentation ”>

S e l l e r P a r t i c i p a n t

</ d e s c r i p t i o n>

<roleType typeRef=” t n s : S e l l e r R o l e ”/>

<roleType typeRef=” tns:CustomerRole ”/>

Chapter 2. Background 61

</part ic ipantType>

channelType A channelType describes where and how information between partici-

pantTypes can be exchanged. A channel is the abstract representation of the means on

which a message exchange can be performed. A channelType is associated to a roleType

and a behaviour. Within a channelType it is also possible to define the identity informa-

tion which allows for the definition of the correlation data contained within a message

exchange. In the following example a channelType within the role SellerRole is defined.

The information id is exploited for identifying the current conversation session of that

channel.

<channelType name=” Buyer2Sel lerChannel ”>

<d e s c r i p t i o n type=” documentation ”>

Buyer to S e l l e r Channel Type

</ d e s c r i p t i o n>

<roleType typeRef=” t n s : S e l l e r R o l e ”/>

. . .

< i d e n t i t y type=”primary”>

<token name=” t n s : i d ”/>

</ i d e n t i t y>

</channelType>

It is worth noting that the tag <token> represents a way for referencing a piece of data

within a message or a variable.

informationType The informationType allows for the definition of the type of variables

and messages. In general the informationType joins a name to a type defined within a

WSDL document or an XML Schema type. In the following we present an informa-

tionType definition where we suppose that the type pns:purchaseOrderMessage has been

previously defined within a WSDL Message type.

<informationType name=” purchaseOrder ” type=” pns:purchaseOrderMessage ”/>

62 Chapter 2. Background

2.1.4.2 WS-CDL choreography definitions

A choreography is defined within the tag <choreography>. In order to correctly define

a choreography it is necessary to declare the relationshipTypes involved, the used vari-

ables and the interactions to perform. Moreover, it is possible to define two blocks: the

exceptionBlock and the finalizerBlock. The former deals with the interactions to perform

when an exception occur whereas the latter allows for the specification of the finalizer

activities for a choreography. The description of these two blocks is out of the scope of

this work, the reader who is ineterested in this topic may consult [Worc].

<choreography name=”NCName” . . .>

<r e l a t i o n s h i p type=”QName” />+

v a r i a b l e D e f i n i t i o n s ?

a c t i v i t i e s

<except ionBlock name=”NCName” />

<f i n a l i z e r B l o c k name=”NCName” />

</choreography>

varibleDefinition The variableDefinition tag allows for the definition of the variables

used within a choreography. In general, each variable is declared to belong to a specific

roleType and an informationType or a channelType can be joined to it depending on the

fact that the variable describes an information or a channel. In the following we present

the definition of a channel variable and an information one:

<v a r i a b l e D e f i n i t i o n s>

<v a r i a b l e name=” Buyer2Sel lerC ”

channelType=” tns :Buyer2Se l lerChannel ”

roleTypes=” tns :BuyerRole t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Channel Var iab le

</ d e s c r i p t i o n>

</ v a r i a b l e>

<v a r i a b l e name=” quoteRequest ”

informationType=” tns:QuoteRequestType ”

roleTypes=” tns :BuyerRole t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Request Message

</ d e s c r i p t i o n>

Chapter 2. Background 63

</ v a r i a b l e>

</ v a r i a b l e D e f i n i t i o n s>

activities Here we distinguish the activities into two different categories: basic activi-

ties and structured activities.

• basic activities:

– interaction: the interaction is the basic construct of WS-CDL and it describes

a message exchange between two roles. An interaction is always performed

on a channel and it is finished when the message exchange completes success-

fully. Some elements and attributes of the tag interaction deserve to be com-

mented. The elements <participate> defines the participants involved in the

interactions by specifying the attributes relationshipType, fromRole and toRole.

The element <exchange> defines the variables exchanged by the sender and

the receiver. It contains two sub-elements <send> and <receive> where the

former defines the information sent by the sender whereas the latter defines

the information received by the receiver. The attribute action of the exchange

tag defines the direction of the interaction and has two possible values: re-

quest or respond. In the former case the interaction is performed from the role

fromRole, which is the sender, to the role toRole which is the receiver. In the

latter case the toRole is the sender and the fromRole is the receiver. One or

two exchange tags can be defined within the tag interaction. If there are two

exchange elements one must have action equal to request and the other must

assume the value respond. The former defines the information exchange dur-

ing the request interaction and the latter during the response one. The element

<record> allows for the specification of some variables which can be updated

when the interaction is performed. As far as the attributes of the interaction

tag are concerned, channelVariable and operation define the WS-CDL channel

and the WSDL operation on which the interaction is performed whereas the

attribute align defines if the interaction must be aligned or not w.r.t. the updat-

ing of the variables specified within the record element. If the attribute align is

set to true both the dialoguers should be assured of the variable changement

availability. In the following we present an example of an interaction where

there are two exchange tags defined one for the request message exchange and

the other for the response one.

64 Chapter 2. Background

< i n t e r a c t i o n name=” createPO ”

channelVariable=” t n s : r e t a i l e r −channel ”

operat ion=” handlePurchaseOrder ” >

<p a r t i c i p a t e re la t ionshipType=” tns :ConsumerReta i le rRe la t ionship ”

fromRoleTypeRef=” tns:Consumer ” toRoleTypeRef=” t n s : R e t a i l e r ”/>

<exchange name=” request ”

informationType=” tns:purchaseOrderType ” a c t i o n =” request ”>

<send v a r i a b l e =” c d l : g e t V a r i a b l e (’ tns:purchaseOrder ’ , ’ ’ , ’ ’) ” />

<r e c e i v e v a r i a b l e =” c d l : g e t V a r i a b l e (’ tns:purchaseOrder ’ , ’ ’ , ’ ’) ”

recordReference=” record−the−channel−i n f o ” />

</exchange>

<exchange name=” response ”

informationType=”purchaseOrderAckType” a c t i o n =”respond”>

<send v a r i a b l e =” . . . ” />

<r e c e i v e v a r i a b l e =” . . . ” />

</exchange>

</ i n t e r a c t i o n>

– assign: the assign activity allows for the creation or the changement of a vari-

able value within a roleType. The syntax is intuitive. In the following we

present an assignment example where the value of the variable CustomerAd-

dres, located within the message PurchaseOrderMsg and retrieved by using the

function getVariable, is stored within the variable CustomerAddres.

<ass ign roleType=” t n s : R e t a i l e r ”>

<copy name=” copyAddressInfo ”>

<source v a r i a b l e =” c d l : g e t V a r i a b l e (’ PurchaseOrderMsg ’

, ’ ’ , ’ /PO/CustomerAddress ’) ” />

<t a r g e t v a r i a b l e =” c d l : g e t V a r i a b l e (’ CustomerAddress ’ , ’ ’ , ’ ’) ” />

</copy>

</ass ign>

– silent action: the silent actions allows for the specification of a non-observable

action which is performed within a roleType. In the following we present an

example of a silent action performed within the role Buyer:

<s i l e n t A c t i o n roleType=”Buyer” />

Chapter 2. Background 65

• structured activities:

– workunit: the workunit allows for the collection of some activities which has

to be performed when some constraints are satisfied. The attributes guard and

repeat allows for the specification of boolean expressions where the former is a

condition to satisfy for performing the workunit content whereas the latter is a

condition to satisfy for repeating the activities contained within the workunit.

In the following we present an example where an interaction is defines within

a guarded workunit.

<workunit

name=”drawdown”

guard=” c d l : g e t V a r i a b l e (’ Chosen ’ , ’ ’ , ’ ’ , ’ Broker ’) = ’A’ ” >

< i n t e r a c t i o n name=” drawdownInteraction ”

channelVariable=” t n s : C r e d i t R e q u e s t o r ”

operat ion=”drawDown”>

. . .

</ i n t e r a c t i o n>

</workunit>

– sequence: the sequence allows for sequentially composing activities. In the

following we present an example where two interactions are defined to be

performed in sequence:

<sequence>

< i n t e r a c t i o n name=” i n t e r 1 ”>

. . .

</ i n t e r a c t i o n>

< i n t e r a c t i o n name=” i n t e r 2 ”>

. . .

</ i n t e r a c t i o n>

</sequence>

– parallel: the parallel activity allows for the parallel composition of activities.

An example follows:

<p a r a l l e l>

< i n t e r a c t i o n name=” i n t e r 1 ”>

. . .

66 Chapter 2. Background

</ i n t e r a c t i o n>

< i n t e r a c t i o n name=” i n t e r 2 ”>

. . .

</ i n t e r a c t i o n>

</ p a r a l l e l>

– choice: the choice construct allows for the specification of a choice among the

activities specified within its body where only one of them can be performed.

It is worth noting that it is possible to specify workunits inside a choice con-

struct in order to express a choice with guard conditions. Only the workunits

which satisfy their guards can be involved within the choice race. In the fol-

lowing, we present an example where a choice between two interactions is

defined:

<choice>

< i n t e r a c t i o n name=” processGoodCredit ”

channelVariable=” goodCredit−channel ”

operat ion=” doCredit ”>

. . .

</ i n t e r a c t i o n>

< i n t e r a c t i o n name=” processBadCredit ”

channelVariable=” badCredit−channel ”

operat ion=” doBadCredit ”>

. . .

</ i n t e r a c t i o n>

<choice>

2.1.4.3 A WS-CDL example

In the following we present an example presented in [Worb] where there are two roles

involved, the BuyerRole and the SellerRole. The BuyerRole starts for an bartering by send-

ing a request on the operation getQuote. The SellerRole sends a response to this request

by commnunicating the quoteResponse. Depending on the BuyerRole (there are no de-

finitions about the internal choice of the BuyerRole), it can accept the quote and then

sending an orderRequest or, contrarly, it does not accept it and it asks for an updating of

Chapter 2. Background 67

the quote on the operation updateQuote. The bartering is repeated until the variable Bar-

teringDone is set to false. Such a variable change its value when the BuyerRole requests

for an orderRequest.

<?xml version=” 1 . 0 ” encoding=”UTF−8” ?>

<package name=” IntermediateExample ” . . .>

<d e s c r i p t i o n type=” documentation ”>

Intermediate Example: Simple B a r t e r i n g Process

</ d e s c r i p t i o n>

<informationType name=”QuoteRequestType”

type=”primer:QuoteRequestMsg ”>

<d e s c r i p t i o n type=” documentation ”>

Quote Request Message

</ d e s c r i p t i o n>

</informationType>

<informationType name=”QuoteResponseType”

type=”primer:QuoteResponseMsg”>

<d e s c r i p t i o n type=” documentation ”>

Quote Response Message

</ d e s c r i p t i o n>

</informationType>

<informationType name=” QuoteResponseFaultType ”

type=” primer:QuoteResponseFaultMsg ”>

<d e s c r i p t i o n type=” documentation ”>

Quote Response Faul t Message

</ d e s c r i p t i o n>

</informationType>

<informationType name=” Ident i tyType ”

type=” x s d : s t r i n g ”>

<d e s c r i p t i o n type=” documentation ”>

I d e n t i t y A t t r i b u t e

</ d e s c r i p t i o n>

</informationType>

<informationType name=”URI” type=” x s d : u r i ”>

<d e s c r i p t i o n type=” documentation ”>

Reference Token For Channels

68 Chapter 2. Background

</ d e s c r i p t i o n>

</informationType>

<informationType name=”OrderRequestType”

type=” primer:OrderRequestMessage ”>

<d e s c r i p t i o n type=” documentation ”>

Order Request Message

</ d e s c r i p t i o n>

</informationType>

<informationType name=”OrderResponseType”

type=” primer:OrderResponseMessage ”>

<d e s c r i p t i o n type=” documentation ”>

Order Response Message

</ d e s c r i p t i o n>

</informationType>

<informationType name=” Boolean ”

type=” xsd:boolean ”>

<d e s c r i p t i o n type=” documentation ”>

Boolean type f o r use in loop c o n t r o l

</ d e s c r i p t i o n>

</informationType>

<token name=” id ” informationType=” t n s : I d e n t i t y T y p e ”>

<d e s c r i p t i o n type=” documentation ”>

I d e n t i t y token

</ d e s c r i p t i o n>

</token>

<token name=”URI” informationType=” tns:URI ”>

<d e s c r i p t i o n type=” documentation ”>

Reference Token f o r Channels

</ d e s c r i p t i o n>

</token>

<tokenLocator tokenName=” t n s : i d ” i

nformationType=” tns:QuoteRequestType ” query=”/quote/@id”>

<d e s c r i p t i o n type=” documentation ”>

I d e n t i t y f o r QuoteRequestType

Chapter 2. Background 69

</ d e s c r i p t i o n>

</tokenLocator>

<tokenLocator tokenName=” t n s : i d ”

informationType=” tns:QuoteResponseType ” query=”/quote/@key”>

<d e s c r i p t i o n type=” documentation ”>

I d e n t i t y f o r QuoteResponseType

</ d e s c r i p t i o n>

</tokenLocator>

<tokenLocator tokenName=” t n s : i d ”

informationType=” tns:QuoteResponseFaultType ”

query=”/quote/@key”>

<d e s c r i p t i o n type=” documentation ”>

I d e n t i t y f o r QuoteResponseFaultType

</ d e s c r i p t i o n>

</tokenLocator>

<tokenLocator tokenName=” t n s : i d ”

informationType=” tns:OrderRequestType ”

query=”/order/@orderId”>

<d e s c r i p t i o n type=” documentation ”>

I d e n t i t y f o r OrderRequestType

</ d e s c r i p t i o n>

</tokenLocator>

<tokenLocator tokenName=” t n s : i d ”

informationType=” tns:OrderResponseType ” query=”/order/@orderId”>

<d e s c r i p t i o n type=” documentation ”>

Id f o r OrderResponseType

</ d e s c r i p t i o n>

</tokenLocator>

<roleType name=” BuyerRole ”>

<d e s c r i p t i o n type=” documentation ”>

Role f o r Buyer

</ d e s c r i p t i o n>

<behavior name=” BuyerBehavior ”

i n t e r f a c e =” BuyerBehavior Inter face ”>

<d e s c r i p t i o n type=” documentation ”>

70 Chapter 2. Background

Behavior f o r Buyer Role

</ d e s c r i p t i o n>

</behavior>

</roleType>

<roleType name=” S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Role f o r S e l l e r

</ d e s c r i p t i o n>

<behavior name=” S e l l e r B e h a v i o r ”

i n t e r f a c e =” S e l l e r B e h a v i o r I n t e r f a c e ”>

<d e s c r i p t i o n type=” documentation ”>

Behavior f o r S e l l e r

</ d e s c r i p t i o n>

</behavior>

</roleType>

<re la t ionshipType name=” Buyer2Se l le r ”>

<d e s c r i p t i o n type=” documentation ”>

Buyer S e l l e r Re la t ionsh ip

</ d e s c r i p t i o n>

<roleType typeRef=” tns :BuyerRole ”/>

<roleType typeRef=” t n s : S e l l e r R o l e ”/>

</re la t ionshipType>

<part ic ipantType name=” S e l l e r ”>

<d e s c r i p t i o n type=” documentation ”>

S e l l e r P a r t i c i p a n t

</ d e s c r i p t i o n>

<roleType typeRef=” t n s : S e l l e r R o l e ”/>

</part ic ipantType>

<part ic ipantType name=”Buyer”>

<d e s c r i p t i o n type=” documentation ”>

Buyer P a r t i c i p a n t

</ d e s c r i p t i o n>

<roleType typeRef=” tns :BuyerRole ”/>

</part ic ipantType>

Chapter 2. Background 71

<channelType name=” Buyer2Sel lerChannel ”>

<d e s c r i p t i o n type=” documentation ”>

Buyer to S e l l e r Channel Type

</ d e s c r i p t i o n>

<roleType typeRef=” t n s : S e l l e r R o l e ”/>

<r e f e r e n c e>

<token name=” tns:URI ”/>

</ r e f e r e n c e>

< i d e n t i t y type=”primary”>

<token name=” t n s : i d ”/>

</ i d e n t i t y>

</channelType>

<choreography name=” IntermediateChoreography ” root=” true ”>

<d e s c r i p t i o n type=” documentation ”>

The Choreography f o r the degenerate use case

</ d e s c r i p t i o n>

<r e l a t i o n s h i p type=” t n s : B u y e r 2 S e l l e r ”/>

<v a r i a b l e D e f i n i t i o n s>

<v a r i a b l e name=” Buyer2Sel lerC ”

channelType=” tns :Buyer2Se l lerChannel ”

roleTypes=” tns :BuyerRole t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Channel Var iab le

</ d e s c r i p t i o n>

</ v a r i a b l e>

<v a r i a b l e name=” quoteRequest ”

informationType=” tns:QuoteRequestType ”

roleTypes=” tns :BuyerRole t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Request Message

</ d e s c r i p t i o n>

72 Chapter 2. Background

</ v a r i a b l e>

<v a r i a b l e name=” quoteResponse ”

informationType=” tns:QuoteResponseType ”

roleTypes=” tns :BuyerRole t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Response Message

</ d e s c r i p t i o n>

</ v a r i a b l e>

<v a r i a b l e name=” faultResponse ”

informationType=” tns:QuoteResponseFaultType ”

roleTypes=” tns :BuyerRole t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Faul t Message

</ d e s c r i p t i o n>

</ v a r i a b l e>

<v a r i a b l e name=” orderRequest ”

informationType=” tns:OrderRequestType ”

roleTypes=” tns :BuyerRole t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Order Request Message

</ d e s c r i p t i o n>

</ v a r i a b l e>

<v a r i a b l e name=” barteringDone ”

informationType=” tns :Boolean ” roleTypes=” t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Variable used to c o n t r o l the loop e x i t from

</ d e s c r i p t i o n>

</ v a r i a b l e>

</ v a r i a b l e D e f i n i t i o n s>

<sequence>

<ass ign roleType=” t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

I n i t i a l i s e Loop Var iable

</ d e s c r i p t i o n>

<copy name=” setBarter ingDone ”>

Chapter 2. Background 73

<d e s c r i p t i o n type=” documentation ”>

Set barteringDone to f a l s e

</ d e s c r i p t i o n>

<source express ion=” f a l s e () ”/>

<t a r g e t

v a r i a b l e =” c d l : g e t V a r i a b l e (’ barteringDone ’ , ’ ’ , ’ ’) ”/>

</copy>

</ass ign>

< i n t e r a c t i o n name=” Q u o t e E l i c i t a t i o n ” operat ion=” getQuote ”

channelVariable=” t n s : B u y e r 2 S e l l e r C ”>

<d e s c r i p t i o n type=” documentation ”>

E l i c i t a quote from the s e l l e r

</ d e s c r i p t i o n>

<p a r t i c i p a t e re la t ionshipType=” t n s : B u y e r 2 S e l l e r ”

fromRoleTypeRef=” tns :BuyerRole ”

toRoleTypeRef=” t n s : S e l l e r R o l e ”/>

<exchange name=”QuoteRequest ”

informationType=” tns:QuoteRequestType ”

a c t i o n =” request ”>

<d e s c r i p t i o n type=” documentation ”>

Quote Request Message Exchange

</ d e s c r i p t i o n>

<send

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteRequest ’ , ’ ’ , ’ ’) ”/>

<r e c e i v e

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteRequest ’ , ’ ’ , ’ ’) ”/>

</exchange>

<exchange name=”QuoteResponse”

informationType=” tns:QuoteResponseType ”

a c t i o n =”respond”>

<d e s c r i p t i o n type=” documentation ”>

Quote Response Message Exchange

</ d e s c r i p t i o n>

<send

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteResponse ’ , ’ ’ , ’ ’) ”/>

<r e c e i v e

74 Chapter 2. Background

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteResponse ’ , ’ ’ , ’ ’) ”/>

</exchange>

<exchange name=” QuoteResponseFault ”

informationType=” tns:QuoteResponseFaultType ”

a c t i o n =”respond” faultName=” Inval idProductFaul t ”>

<send

v a r i a b l e =” c d l : g e t V a r i a b l e (’ faultResponse ’ , ’ ’ , ’ ’) ”

causeException=” TerminalFai lure ”/>

<r e c e i v e

v a r i a b l e =” c d l : g e t V a r i a b l e (’ faultResponse ’ , ’ ’ , ’ ’) ”

causeException=” TerminalFai lure ”/>

</exchange>

</ i n t e r a c t i o n>

<workunit name=” WhileBarter ingIsNotFinished ”

guard=” c d l : g e t V a r i a b l e (” barteringDone ” , ”” , ””)= true () ”

repeat=” true () ”>

<d e s c r i p t i o n type=” documentation ”>

While barteringDone i s f a l s e

</ d e s c r i p t i o n>

<choice>

<sequence>

<d e s c r i p t i o n type=” documentation ”>

Accept the quote and place the order

</ d e s c r i p t i o n>

< i n t e r a c t i o n name=”QuoteAccept”

operat ion=” order ”

channelVariable=” t n s : B u y e r 2 S e l l e r C ”>

<d e s c r i p t i o n type=” documentation ”>

The Buyer accepts the quote and orders

the goods based on the l a s t p r i c e

</ d e s c r i p t i o n>

<p a r t i c i p a t e re la t ionshipType=” t n s : B u y e r 2 S e l l e r ”

fromRoleTypeRef=” tns :BuyerRole ”

toRoleTypeRef=” t n s : S e l l e r R o l e ”/>

<exchange name=” OrderRequest ”

informationType=” tns:OrderRequestType ”

Chapter 2. Background 75

a c t i o n =” request ”>

<send

v a r i a b l e =” c d l : g e t V a r i a b l e (’ orderRequest ’ . . .) ”/>

<r e c e i v e

v a r i a b l e =” c d l : g e t V a r i a b l e (’ orderRequest ’ . . .) ”/>

</exchange>

</ i n t e r a c t i o n>

<ass ign roleType=” t n s : S e l l e r R o l e ”>

<d e s c r i p t i o n type=” documentation ”>

Break out of the loop

</ d e s c r i p t i o n>

<copy name=” setBarter ingDone ”>

d e s c r i p t i o n type=” documentation ”>

Set barteringDone to true

</ d e s c r i p t i o n>

<source express ion=” true () ”/>

<t a r g e t

v a r i a b l e =” c d l : g e t V a r i a b l e (’ barteringDone ’ . . .) ”/>

</copy>

</ass ign>

</sequence>

<sequence>

<d e s c r i p t i o n type=” documentation ”>

R e j e c t the quote and ask f o r a new quote

</ d e s c r i p t i o n>

< i n t e r a c t i o n name=” Q u o t e R e e l i c i t a t i o n ”

operat ion=”updateQuote”

channelVariable=” t n s : B u y e r 2 S e l l e r C ”>

<d e s c r i p t i o n type=” documentation ”>

B a r t e r based on previous quote

</ d e s c r i p t i o n>

<p a r t i c i p a t e re la t ionshipType=” t n s : B u y e r 2 S e l l e r ”

fromRoleTypeRef=” tns :BuyerRole ”

toRoleTypeRef=” t n s : S e l l e r R o l e ”/>

<exchange name=”QuoteRequest ”

informationType=” tns:QuoteRequestType ”

76 Chapter 2. Background

a c t i o n =” request ”>

<d e s c r i p t i o n type=” documentation ”>

Quote re−request based on amended quoteRequest

</ d e s c r i p t i o n>

<send

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteRequest ’ . . .) ”/>

<r e c e i v e

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteRequest ’ . . .) ”/>

</exchange>

<exchange name=”QuoteResponse”

informationType=” tns:QuoteResponseType ”

a c t i o n =”respond”>

<send

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteResponse ’ . . .) ”/>

<r e c e i v e

v a r i a b l e =” c d l : g e t V a r i a b l e (’ quoteResponse ’ . . .) ”/>

</exchange>

</ i n t e r a c t i o n>

</sequence>

</choice>

</workunit>

</sequence>

</choreography>

</package>

2.2 Process Algebras

Process algebras [Mil89, Hoa85, BW90] are algebraic languages which support composi-

tional description of concurrent systems and the formal verification of their properties.

The basic elements of any process algebra are its actions, which represent activities car-

ried out by the system being modeled, and its operators which are used to compose

algebraic descriptions. In this section, we recall the theory of the process algebras by in-

troducing CCS [Mil89] that will serve as a basis for the development of the process calculi

Chapter 2. Background 77

introduced in the rest of the thesis.

2.2.1 CCS syntax

Here we introduce the syntax of CCS. Let Names be the set of channel names ranged

over by a, b, c, ... and let CoNames be the set of the channel co-names ranged over by

a, b, c, ... where a = a. Let Act be the set of actions ranged over by α defined as follows:

Act ::= Names ∪ CoNames ∪ {τ}

where τ is the action, called silent action, which denotes unobservable activities. Finally, let

Const be a set of constants ranged over by A,B, ... Let P be the set of processes generated

by the following syntax where L ⊆ Act − {τ}.

P ::= 0 | α.P | P/L | P + P | P ‖ P | A

• The null term "0" is the term that cannot execute any action.

• The action prefix operator "α. " denotes the sequential composition of an action and a

term. Term α.P can execute action α and then behaves as term P.

• The abstraction operator " /L" makes actions unobservable. Term P/L behaves as term

P except that each executed action α is hidden, i.e. turned into τ, whenever α ∈ L.

This operator provides a means to encapsulate or ignore information.

• The alternative composition operator " + " expresses a non-deterministic choice be-

tween two terms. Term P1 + P2 behaves as either term P1 or term P2 depending on

whether an action of P1 or an action of P2 is executed.

• The parallel composition operator " ‖ " expresses the concurrent execution of two

terms according to the following synchronization discipline: two actions α ∈ Names

and β ∈ CoNames can synchronize if and only if α = β.

• Let partial function Def : Const →◦ P be a set of constant defining equations of the

form A
△
= P. It is worth noting that recursive definitions like "A

△
= α.β.A" can also

78 Chapter 2. Background

be denoted by means of a recursion operator "recX. ", where the meaning of "recX.P"

is the same as that of "A
△
= P{A/X}", with "E{A/X}" being the term obtained from P

by replacing A for X. The two constructs are shown to be equivalent in [Mil89].

In order to guarantee the correctness of recursive definitions, we restrict ourselves to

terms that are closed and guarded w.r.t. Def, i.e. those terms such that each constant

occurring in them has a defining equation and appears in the context of an action prefix

operator. This rules out undefined constants, meaningless definitions such as A
△
= A,

and infinitely branch terms such as A
△
= α.0 ‖ A whose executable actions cannot be

computed in finite time. Let us denote by " ≡ " the syntactical equality between terms

and by " st " the relation subterm-of.

Chapter 2. Background 79

Definition 2.1 The term P < A := P ′ > obtained from P ∈ P by replacing each occurrence of A

with P ′, where A
△
= P ′ ∈ Def, is defined by induction on the syntactical structure of P as follows:

0 < A := P ′ > ≡ 0

(α.P) < A := P ′ > ≡ α.P < A := P ′ >

P/L < A := P ′ > ≡ P < A := P ′ > /L

(P1 + P2) < A := P ′ > ≡ P1 < A := P ′ > +P2 < A := P ′ >

(P1 ‖ P2) < A := P ′ > ≡ P1 < A := P ′ >‖ P2 < A := P ′ >

B < A := P ′ > ≡

P ′ if B ≡ A

B if B ≡/ A

Definition 2.2 The set of terms obtained from P ∈ P by repeatedly replacing constants by the

right hand side terms of their defining equations in Def is defined by

SubstDef(P) =
⋃

n∈N

Substn
Def(P)

where

Substn
Def(P) =

=

{E} if n = 0

{F ∈ P | F ≡ G < A := P ′ > ∧G ∈ Substn−1
Def(P) ∧ A st G ∧ A

△
= P ′ ∈ Def} if n > 0

Definition 2.3 The set of constants occurring in P ∈ P w.r.t. Def is defined by

ConstDef(P) = {A ∈ Const | ∃F ∈ SubstDef(P).A st F}

Definition 2.4 A term P ∈ P is closed and guarded w.r.t. Def if and only if for all A ∈

ConstDef(P)

• A is equipped in Def with defining equations A
△
= P ′, and

• there exists F ∈ SubstDef(P
′) such that, whenever an instance of a constant B satisfies

B st F, then the same instance satisfies B st α.G st F.

we denote with G the set of terms in P that are closed and guarded w.r.t. Def.

80 Chapter 2. Background

2.2.2 Rooted Labelled Transition Systems

In this section we present the definition of labelled transition system together with some

related notions. These mathematical models, which are essentially state transition graphs,

are commonly adopted when defining the semantics for a process algebra in the opera-

tional style [Plo81].

Definition 2.5 A rooted labelled transition system (LTS) is a tuple

(S,U,→, s0)

where:

• S is a set whose elements are called states.

• U is a set whose elements are called labels.

• →⊆ S × U × S is called transition relation.

• s0 ∈ S is called the initial state.

In the graphical representation of a LTS, states are drawn as black dots and transitions

are drawn as arrows between pairs of states with the appropriate labels; the initial state

is pointed to by an unlabeled arrow.

Below we recall two notions of equivalence defined for LTSs. The former, isomorphism,

realtes two LTSs if they are structurally equal. This is formalized by requiring the exis-

tence of a label preserving relation which is bijective, i.e. a bijection between the two state

spaces sich that any pair of corresponding states have identically labelled transitions to-

ward any pair of corresponding states. The latter equivalence, bisimilarity, is coarser

than isomorphism as it relates also LTSs which are not structurally equal provided that

they are able to simulate each other. This is formalized by requiring the existence of a

label preserving relation between the two state spaces which is not necessarily bijective.

Definition 2.6 Let Zk = (Sk, U,→k, s0k), k ∈ {1, 2}, be two LTSs.

• Z1 is isomorphic to Z2 if and only if there exists a bijection β : S1 → S2 such that:

Chapter 2. Background 81

– β(s01) = s02

– for all s, s ′ ∈ S1 and u ∈ U

s
u→1 s ′ ⇐⇒ β(s)

u→2 β(s ′)

• Z1 is bisimilar to Z2 if and only if there exists a relation R ⊆ S1 × S2 such that:

– (s01, s02) ∈ R

– for all (s1, s2) ∈ R and u ∈ U

∗ whenever s1
u→1 s ′

1, then s2
u→2 s ′

2 and (s ′
1, s

′
2) ∈ R

∗ whenever s2
u→2 s ′

2, then s1
u→1 s ′

1 and (s ′
1, s

′
2) ∈ R

2.2.3 Operational semantics

The semantics of the presented process algebra is defined following the structured op-

erational approach [Plo81]. This means that inference rules are given for each operator

which defines an abstract interpreter for the language. More precisely, the semantics is

defined through the transition relation → which is the least subset of G ×ActG satisfying

the inference rules is Table 2.1. Such rules, which formalize the meaning of each operator

informally presented in the previous Section, yield LTSs where states are in correspon-

dance with terms and transitions are labelled with actions. Given a term P, the outgoing

transitions of the state corresponding to P are generated by proceeding by induction on

the syntactical structure of P applying at each step the appropriate semantics rule until

an action prefix operator is encountered or no rule can be used. This can be done in finite

time because of the restriction to closed and guarded terms.

We recall that the abstraction operator and the parallel composition operator are called

static operators because they appear also in the derivative term of the consequence of the

related semantics rules. By contrary, the acton prefix operator and and the alternative

composition operator are classified as dynamic operators. We say that a term is sequen-

tial if every occurrence of static operators is within the scope of an action prefix operator.

It is worth noting that the LTS underlying P ∈ G is finite if all of the subterms of terms in

SubstDef(P) whose outermost operator is static contains no recursive constants.

82 Chapter 2. Background

Definition 2.7 The operational interleaving semantics of P ∈ G is the LTS

[P] = (SP, Act,→P, P)

where:

• SP is the least subset of G such that:

– P ∈ SP.

– if S1 ∈ SP and P1
α→ P2, then P2 ∈ SP.

• →P is the restriction of → to SP × Act × SP.

2.2.4 Bisimulation equivalence

In this section we define a notion of equivalence for the presented process algebra and we

provide its equational and logical characterizations. The purpose of such an equivalence

is to relate those therms representing systems which, though structurally equivalent, be-

have the same from the point of view of an external observer. Following [Mil89], the

equivalence is given in the bisimulation style.

Definition 2.8 A relation R ⊆ G×G is a strong bisimulation if and only if, whenever (P1, P2) ∈

R, then for all α ∈ Act:

• whenever P1
α→ P ′

1, then P2
α→ P ′

2 and (P ′
1, P

′
2) ∈ R

• whenever P2
α→ P ′

2, then P1
α→ P ′

1 and (P ′
1, P

′
2) ∈ R

The union of all the strong bisimulations can be shown to be an equivalence relation

which coincides with the largest strong bisimulation.

2.3 General assumptions

This section is devoted to discuss some general assumptions this work of thesis is based

upon. In particular, we discuss asynchronous communications and faults and errors

management.

Chapter 2. Background 83

(ACTION PREFIX)

α.P
α→ P

(ABSTRACTION 1)

P
α→ P ′

P/L
α→ P ′/L

ifα /∈ L

(ABSTRACTION 2)

P
α→ P ′

P/L
τ→ P ′/L

ifα ∈ L

(ALTERNATIVE 1)

P1
α→ P ′

P1 + P2
α→ P ′

(ALTERNATIVE 2)

P2
α→ P ′

P1 + P2
α→ P ′

(PARALLEL 1)

P1
α→ P ′

1

P1 ‖ P2
α→ P ′

1 ‖ P2

(PARALLEL 2)

P2
α→ P ′

2

P1 ‖ P2
α→ P1 ‖ P ′

2

(SYNCHRO)

P1
a→ P ′

1 P2
a→ P ′

2

P1 ‖ P2
τ→ P1 ‖ P ′

2

(DEF)

P
α→ P ′

A
α→ P ′

ifA
∆
= P

Table 2.1: Operational semantics for CCS

84 Chapter 2. Background

2.3.1 Asynchronous communications

Service Oriented Computing message exchanges are intrinsecally asynchronous that is

messages are not necessarily received when they are sent. The reason is twofold:

• In general, message exchanges are managed by a middleware infrastructure which

underlies Service Oriented applications that does not guarantee that messages are

always delivered when they are sent.

• It cannot be assumed that messages are processed by the applications when they are

delivered to their middleware infrastructure but they can be queued before they are

consumed. This is the case, for example, of an active BPEL engine which receives a

message without a corresponding queued receive activity that is waiting for it.

In Fig. 2.5 we summarize a message exchange architecture between two applications

where two engines and/or two middleware infrastructures underlie the applications and

dispatch messages to them.

Figure 2.5: Message exchange protocol stack

In general when a message is sent from an application A to an application B, firstly the

message is delivered to the engine/middleware infrastructure of application A, then it is

Chapter 2. Background 85

communicated to the engine/middleware infrastructure of the application B and finally,

it is delivered to the application B. Asynchronous communication deals with the fact that

a message can be sent by the sender that can continue its activities without knowing if it

is received by the receiver. The receiver can consume the message in a different moment.

In the following, we abstract away from asynchronous communication when we will

deal with SOCK. This is due to the fact that, with SOCK, we want to focus on design

and composition aspects of Service Oriented Computing without focusing on any kind

of verification issue. This choice will allow us to present a lighter semantics for SOCK

in order to reason about the main concepts it is based upon. On the contrary, as far as

the bipolar framework in concerned, we model asynchronous communication in the or-

chestration calculus, which is a subpart of SOCK, because we are interested to verify the

conformance relation between a choreography and an orchestrated system. In this case,

asynchronous communication plays a fundamental role and it can alter the conformance

test which is the cornerstone of the bipolar framework. It is worth noting that, intuitively,

it is possible to enhance the semantics rules of SOCK in order to consider asynchronous

communication by following the same approach we will adopt in the orchestration cal-

culus. In this sense, we consider asynchronous communcation exhaustively modelled.

2.3.2 Error and Faults

For the sake of this thesis, we do not deal with errors and faults because we intend to

focus only on the main concepts Service Oriented Computing is based upon. In SOC

different errors and faults can be considered:

• Computational errors: they deal with internal application errors raised by computa-

tional primitives such as, e.g. division by zero. We assume that no computational

errors occur.

• Network errors: they deal with the fact that a message cannot be delivered because

the network is not available. Here we assume that messages are always delivered.

• Application faults: they deal with logic faults that can be programmed at the level of

the application. Such a kind of faults, in Service Oriented Computing, are usually

86 Chapter 2. Background

related to compensation mechanisms for restoring the system during a long run-

ning transaction. Here, we do not provide any specific primitive for dealing with

such a kind of issues.

2.3.3 Starting application

In this section we introduce a simple distinction among Service Oriented Computing ap-

plications. In particular, we distinguish between service and starting application. Such a

classification does not have a strong impact on the models and languages we develop

in this thesis but it simply allows us to reason about services system by differentiating

between those applications that serve from those that fire (i.e. start) a system execution.

On the one hand, a service always starts its activities when it is invoked by another appli-

cation, that is to say that each service is always triggered by an external message sent to

it whereas, on the other hand, a starting application is able to start its activities by send-

ing a message to another service. Someone can argue that the client/server paradigm

can well describe such a classification without introducing new concepts, but there is an-

other observation that has to be taken into account: the key fact of service composition

is that a composition of services is a service. The client/server paradigm indeed, it is always

defined between two dialoguers, whereas here we also consider a system of services.

Since a service is always trigerred by an external message, also a system obtained as a

composition of services will start its activities by receiving one or more messages from

other applications. Summarizing, a starting application is able to initiate the execution of

a services system by sending a message that also will start its own activities. In Fig. 2.6

we summarize such a distinction between starting application and service by means of

a simple example where a services system is represented by a configuration of dominos

cards whereas the starting application is depicted by a red ball able to start the game.

The dominos cards space placement indeed, represent the dependencies among the ser-

vices of the system that can start its execution only if it is fired by an external application

(the red ball). In Chapter 3, we exploit SOCK for formalizing both services and starting

applications.

Chapter 2. Background 87

2.3.4 Bipolar approach with no sessions

Sessions are an interesting Service Oriented Computing topic. Several Web Services spec-

ifications deal with service sessions (called also instances) and the session identification

mechanism (the correlation set) is a particular characteristic of the SOC paradigm. Here,

we deal with sessions within the SOCK calculus. In particular, in SOCK, we will define

a session as an execution path of a service behaviour where the service behaviour is a

means for describing all the possible execution paths of a service. On the contrary, as

far as the bipolar approach is considered, at the state of the art, we do not deal with the

session issue. For this reason, we do not consider sessions within both the choreography

language and orchestration one. In our future works, we will investigate such a topic

also in the bipolar approach setting.

88 Chapter 2. Background

Figure 2.6: Starting application and services system

Part I

From the informal specifications to a

general model for

Service Oriented Computing

89

Chapter 3

SOCK: Service Oriented Computing Kernel

In this chapter we present SOCK (Service Oriented Computing Kernel) which is a formal

language, inspired by WS-BPEL, equipped with a formal semantics. The main contribu-

tion of SOCK is twofold. On the one hand it allows us to distinguish and formalize some

fundamental concepts of Service Oriented Computing such as the design of a service

behaviour, its deployment in an executing enviroment and the composition of services

within a system. For each of these topics, by means of SOCK, we are able to precisely

define the basic mechanisims they are characterized by and it will be possible to reason

about them in a formal way. On the other hand, we intend to promote SOCK as a full

concrete and formalized SOC language for dealing with all the aspects of service design

and composition. To this end, in Chapter 10, we will present an implementation of a

subpart of SOCK, called JOLIE, which supplies an easy tool for programming services

by means of a simple and intuitive syntax that resembles those of C and Java.

SOCK is three-layered structured and it allows for the distinction of three main concepts

that characterize SOC systems: the service behaviour, the service engine and the services sys-

tem. The service behaviour deals with the design of the behaviour of the service, the ser-

vice engine deals with the actual deployment of a service behaviour within a machinery

ables to execute it and the services system deals with the composition of service engines

within a system. Each of them is represented by means of a specific calculus, where the

service behaviour one underlies the service engine calculus and the service engine one

underlies the services system calculus. The three-level layering allows us to reason about

Chapter 3. SOCK: Service Oriented Computing Kernel 91

the different aspects of Service Oriented Computing in a separate way. Such a kind of

approach is new and it is not provided by any Web Service specification (e.g. WS-BPEL).

In particular, the distinction between service behaviour and service engine is not triv-

ial and it allows us to reason about the main characteristics a language for describing the

behaviour of a service has to satisfy and the different features a service engine has to pro-

vide. At the best fo our knowledge, no formal and informal specification which describe

orchestrator engines exist and, in this sense, SOCK can be considered as a first attempt

towards a complete standard specification for orchestration engines. Furthermore, by

considering also the services system calculus, the SOCK three-level layering approach

supplies a complete formal framework for dealing with both the design and composi-

tion issues. From the technical point of view, the service behaviour calculus supplies all the

communication primitives and workflow constructs for describing the internal behav-

iour of the service. As we discuss later, the semantics of the service behaviour calculus

is expressed in terms of a labelled transition system [Kel76] that allows us to introduce

the concept of service behaviour session. Given a service behaviour indeed, a session is

represented by an execution path of its lts. The service engine calculus is built on top of the

previous one and it is composed of two main parts: the declaration and the execution envi-

ronment. The former part allows both for the specification of the service behaviour whose

sessions have to be executed and for the specification of the deployment characteristics

the service engine has to supply, whereas the latter environment provides a means for

actually executing sessions. In particular, the declaration specifies the way the sessions

will be executed by programming three orthogonal service engine features: the execution

modality, the persistent state flag and the correlation sets. The execution modality deals

with the possibility to execute a service in a sequential order or in a concurrent one; the

persistent state flag allows to declare if each session (of the service engine) has its own

independent state or if the state is shared among all the sessions of the same service en-

gine; the correlation sets allows for the specification of the correlation data which allow

us to identify the different sessions that are executing within a service engine. Finally, the

services system calculus allows for the composition of different service engines in order

to obtain a system where services can interact each other.

92 Chapter 3. SOCK: Service Oriented Computing Kernel

The semantics of the calculi are defined in terms of labelled transition systems (lts for

short) and they are organized as follows. There are six lts layers:

1. service behaviour lts layer

2. service engine state lts layer

3. service engine correlation lts layer

4. service engine execution modality lts layer

5. service engine location lts layer

6. services system lts layer

The first layer is the lowest one. Each lts layer catches the actions raised by the underlying

one and will enable or disable them. If an action is enabled by an lts layer, it will be raised

to the overlying one. The service behaviour lts layer describes all the possible execution

paths generated by a service behaviour. The service engine state lts layer defines the

rule for joining a service behaviour with a service engine local state. The service engine

correlation lts layer deals with correlation set mechanism, the service engine execution

modality lts layer represents rules for executing sessions concurrently or in a sequential

order and the service engine location lts layer deals with the rules for deploying a service

engine at a specific location. Finally, the services system lts layer deals with a composed

service engine system.

3.1 Service behaviour calculus

This section is devoted to present the service behaviour calculus. Before introducing it,

we discuss some important issues such as the external input and output actions and the

service locations.

Chapter 3. SOCK: Service Oriented Computing Kernel 93

3.1.1 External input and output actions

The external input and output actions deal with those actions that are exploited by the

service behaviour for communicating with other services. Communication in service

oriented computing is always a peer-to-peer communication. In accordance with the

interaction patterns proposed in [BDtH, BB05], the primitives related to such a kind of

actions are called operations which explicitly model those of WSDL. Each operation is

described by a name and an interaction modality. There are four kinds of peer-to-peer

interaction modalities divided into two groups:

• Operations which supply a service functionality, Input operations:

– One-Way : it is devoted to receive a request message.

– Request-Response : it is devoted to receive a request message which implies a

response message to the invoker.

• Operations which request a service functionality, Output operations:

– Notification : it is devoted to send a request message.

– Solicit-Response : it is devoted to send a request message which requires a

response message.

The input operations are published by a service behaviour in order to receive messages

on them. The output operation, on the contrary, are exploited for sending messages to the

input ones exhibited by the service behaviour to invoke. Here we group the operations

into single message operations and double message operations. The former deal with the One-

Way and the Notification operations whereas the latter with the Request-Response and

the Solicit-Response ones. Let O and OR be two mutually disjoint sets of operation names

where the former represent the single message operation names and the latter the double

message ones. Let InOp = {(o, ow) | o ∈ O} ∪ {(or, rr) | or ∈ OR} be the set containing all

the input operations where ow and rr represent One-Way and Request-Response opera-

tions, respectively. Let OutOp = {(o, n) | o ∈ O}∪{(or, sr) | or ∈ OR} be the set containing

94 Chapter 3. SOCK: Service Oriented Computing Kernel

all the output operations where n and sr denote Notification and Solicit-Response oper-

ations. Let Op = InOp ∪ OutOp be the set of all the possible operations. Informally,

we represent a One-Way (o, ow) with the symbol o and a Notification (o, n) with the

symbol o. In the same way, we represent a Request-Response operation (or, rr) with the

symbol or whereas we represent a Solicit-Response operation (or, sr) with the symbol or.

We say that two operations o and o ′ are dual if o = o ′. Analogously, we say that two

operations or and or
′ are dual if or = o ′

r. In Table 3.1 we briefly summarize the operation

classification by reporting dual operations within the same row.

Input operations Formal and informal Output operations Formal and informal

representation representation

One-Way (o, ow) ∈ InOp Notification (o, n) ∈ OutOp

o o

Request-Response (or, rr) ∈ InOp Solicit-Response (or, sr) ∈ OutOp

or or

Table 3.1: Operation classification

3.1.1.1 Locations

In our framework locations represent the address (let it be a logical or a physical one)

where a service is located. In order to perform an output operation it is fundamental to

make explicit both the operation name and the location of the receiver in order to achieve

a correct message delivery. In the following, locations will appear into the output oper-

ation primitives of the service behaviour calculus and, since they deal with the external

Chapter 3. SOCK: Service Oriented Computing Kernel 95

communication, they will be exploited into the services system calculus for synchroniz-

ing external inputs with the corresponding output ones. Formally, let Loc be a finite set

of location names ranged over by l.

3.1.2 The syntax

In the following we present the Syntax of the calculus devoted to represent services. Let

Signals be a set of signal names exploited for synchronizing processes in parallel within

a service behaviour. Let Var be a set of variables ranged over by x, y, z and Val, ranged

over by v, be a generic set of values on which it is defined a total order relation. We

exploit the notations ~x = 〈x0, x1, ..., xi〉 and ~v = 〈v0, v1, ..., vi〉 for representing tuples of

variables and values respectively. Let k ranges over Var∪ Loc where Var∩ Loc = ∅. The

syntax follows:

P, Q, . . . ::= processes

0 null process

ǫ output

ǫ input

x := e assignment

χ?P : Q if then else

P;P sequence

P|P pararallel
∑+

i∈W ǫi;Pi non-det. choice

χ ⇋ P iteration

ǫ ::= output

s output signal

ō@k(~x) Notification

or@k(~x,~y) Solicit-Response

96 Chapter 3. SOCK: Service Oriented Computing Kernel

ǫ ::= input

s input signal

o(~x) One-Way

or(~x,~y, P) Request-Response

We denote with SC the set of all possible processes ranged over by P and Q. 0 is the null

process. Outputs can be a signal s̄, a notification ō@k(~x) or a solicit-response or@k(~x,~y)

where s ∈ Signals, o ∈ O and or ∈ OR, k ∈ Var ∪ Loc represents the receiver location

which can be explicit or represented by a variable1, ~x is the tuple of the variables which

store the information to send and ~y is the tuple of variables where, in the case of the

solicit-response, the received information will be stored. Dually, inputs can be an input

signal s, a one-way o(~x) or a Request-Response or(~x,~y, P) where s ∈ Signals, o ∈ O and

or ∈ OR, ~x is the tuple of variables where the received information are stored whereas ~y

is the tuple of variables which contain the information to send in the case of the Request-

Response; finally P is the process that has to be executed between the request and the

response. x := e assigns the result of the expression e to the variable x. For the sake of

brevity, we do not present the syntax for representing expressions, we assume that they

include all the arithmetic operators, values in Val and variables. χ?P : Q is the if then else

process, where χ is a logic condition on variables whose syntax is:

χ ::= x ≤ e | e ≤ x | ¬χ | χ ∧ χ

It is worth noting that conditions such as x = v, x 6= v and v1 ≤ x ≤ v2 can be defined as

abbreviations; P is executed only if the condition χ is satisfied, otherwise Q is executed.

P;P, P | P represent sequential and parallel composition respectively, whereas
∑+

i∈W ǫi;Pi

is the non-deterministic choice restricted to be guarded on inputs. Such a restriction is

due to the fact that we are not interested to model internal non-determinism in service

behaviour. Our calculus indeed aims at supplying a basic language for designing ser-

vice behaviours where designers have a full control of the internal machinery and the

1It is worth noting that, in order to fullfil location mobility, k must be a variable and it has to contain a

location. Location mobility will be discussed deeply in Section 4

Chapter 3. SOCK: Service Oriented Computing Kernel 97

only non-predictable choices are those driven by the external message reception. Finally,

χ ⇋ P is the construct to model guarded iterations.

3.1.3 Semantics.

As far as the semantics is concerned, here we consider the extension of SC which in-

cludes also the the terms ōr@l(~x), ōr@z(~x) and or(~x). These terms allows us to limit the

semantics rules for the Request-Response message exchange mechanism. In the seman-

tics indeed, we will consider the response message as a One-Way message exchange as

well. It is worth noting that the service behaviour calculus does not deal with the ac-

tual values of variables and locations but it models all the possible execution paths for

all the possible variable values and locations. The semantics follows this idea by means

of an infinite set of actions where external inputs, external outputs and assignment ac-

tions report all the value substitutions for both variables and locations except the actions

ō@l(~v/~x), ōr@l(~v/~x) and or@l(~v/~x,~y) where locations are defined. It is worth noting that

each external input actions and the output actions related to the request message2 in

a Request-Response message exchange, report the location where the primitive is per-

formed that is the location where the service behaviour is actually executed. Such a

location is not known at the level of service behaviour but it will be joined at the level of

the service engine; within the action it is always followed by the symbol : (e.g. l:o(~v/~x))

and it will be fundamental, at the level of services system, for synchronizing the com-

muncation among different service engines. Formally, let ω range over O ∪ OR and let

Act, defined as Act = In∪Out∪ Internal, be the set of actions ranged over by a where:

In = {

l:ω(~v/~x), One-Way input

l ′:or(~v/~x,~y, P)@l Request-Response input

}

2In the case of the Request-Response, the location of the sender must be included within the action

because it will be exploited by the receiver for sending the reply.

98 Chapter 3. SOCK: Service Oriented Computing Kernel

Out = {

ω̄@l/z(~v/~x), One-Way output

ω̄@l(~v/~x), located One-Way output

l ′:or@l/z(~v/~x,~y), Solicit-Response output

l ′:or@l(~v/~x,~y) located Solicit-Response output

}

Internal = {

s, input signal

s̄, output signal

x := v/e, assignment

χ?, satisfied condition

¬χ? not satisfied condition

}

The action One-Way input l: ω(~v/~x), represents the reception of a request message on a

One-Way operation or the reception of a response message on a Solicit-Response oper-

ation; l is the location of the receiver, ω is the operation name on which the message is

received and ~x is the vector of variables which are updated with the received values ~v.

The action Request-Response input l ′ : or(~v/~x,~y, P)@l represents the reception of request

message on a Request-Response operation where l ′ is the location of the receiver, or is

the operation name, ~x is the vector of variables which are updated with the received val-

ues ~v, ~y is the vector of variables from which the response values will be taken, P is the

process to execute between the request and the response message and l is the location of

the sender. The actions One-Way output ω̄@l/z(~v/~x) and located One-Way output ω̄@l(~v/~x)

represent the sending of a request message by exploiting a Notification operation or the

sending of a response message in a Request-Response operation. The former deals with

an action related to a process where the receiver location l is contaned within the variable

z whereas the latter is related to a process where the location l is specified as a constant; ω

is the operation name on which the message is sent and ~x is the vector of variables from

which the sent values ~v are read. The actions Solicit-Response output l ′:or@l/z(~v/~x,~y) and

Chapter 3. SOCK: Service Oriented Computing Kernel 99

located Solicit-Response output l ′: or@l(~v/~x,~y) represent the sending of a request message

from a Solicit-Response operation. The former deals with an action related to a process

where the receiver location l is contaned within the variable z whereas the latter is related

to a process where the location l is specified as a constant; l ′ represents the location of

the sender, ~x is the vector of variables from which the sent values ~v are read and ~y is the

vector of variables which will be updated with the value received within the response

message. The actions input signal s and output signal s represent the reception and the

sending of a signal s which allows for the synchronization among parallel processes, re-

spectively. The action assigment x := v/e represent an assignment where the variable x is

updated with the value v that is the result of the evaluation of the expression e. Finally,

the actions satisfied condition χ? and not satisfied condition ¬χ? represent a positive or a

negative evaluation of the condition χ, respectively.

3.1.3.1 The labelled transition system

We define →⊆ SC×Act×SC as the least relation which satisfies the axioms and rules of

Table 3.2 and closed w.r.t. ≡, where ≡ is the least congruence relation satisfying the ax-

ioms at the end of Table 3.2. The rules are divided into axioms and rules for defining com-

position operators that are quite standard. Rules ONE-WAYOUTLOC and REQ-OUTLOC

deals with output operations where the location l is explicit whereas rules ONE-WAYOUT

and REQ-OUT deal with output operations where the location is represented by the vari-

able z. Rule REQIN produces a process which executes P and then performs a notification

joined with the sender location l. It is worth noting that the actual location will be joined

at the level of the services system lts layer where synchronizations among service engines

are defined. Rule SYNCHRO defines the synchronization between signals which allows

us to exploit them for synchronizing parallel processes of the same service behaviour.

Finally, rules ITERATION and NOT ITERATION model iteration in a way which resembles

that of imperative programming.

100 Chapter 3. SOCK: Service Oriented Computing Kernel

(IN)

s
s→ 0

(OUT)

s̄
s̄→ 0

(ONE-WAYOUT)

ω̄@z(~x)
ω̄@l/z(~v/~x)

−→ 0

(ONE-WAYOUTLOC)

ω̄@l(~x)
ω̄@l(~v/~x)
−→ 0

(ONE-WAYIN)

ω(~x)
l:ω(~v/~x)→ 0

(ASSIGN)

x := e
x:=v/e→ 0

(REQ-OUT)

or@z(~x,~y)
l′:or@l/z(~v/~x,~y)

−→ or(~y)

(REQ-OUTLOC)

or@l(~x,~y)
l′:or@l(~v/~x,~y)

−→ or(~y)

(REQ-IN)

or(~x,~y, P)
l′:or(~v/~x,~y,P)@l→ P; ōr@l(~y)

(IF THEN)

χ?P : Q
χ?→ P

(ELSE)

χ?P : Q
¬χ?→ Q

(ITERATION)

χ ⇋ P
χ?→ P;χ ⇋ P

(NOT ITERATION)

χ ⇋ P
¬χ?→ 0

(SYNCHRO)

P
s→ P ′, Q

s̄→ Q ′

P | Q
τ→ P ′ | Q ′

(SEQUENCE)

P
a→ P ′

P;Q
a→ P ′;Q

(PARALLEL)

P
a→ P ′

P | Q
a→ P ′ | Q

(CHOICE)

ǫi
a→ 0 i ∈ I

∑+

i∈I ǫi;Pi
a→ Pi

STRUCTURAL CONGRUENCE

P | Q ≡ Q | P P | 0 ≡ 0 P | (Q | R) ≡ (P | Q) | R 0;P ≡ P

Table 3.2: Rules for service behaviour lts layer

Chapter 3. SOCK: Service Oriented Computing Kernel 101

3.1.4 Example

In the following we present a simple example which describes the service behaviour

(PREG) of a register service.

PREG := getData(id, serData, serData := read(id))

+getIdByQuery(query, id, id := search(query))

The service supplies two Request-Response operations on which it is possible to re-

trieve some kind of data. In particular, geData receives an id and return the data con-

tained within the variable SerData whose calculation is modelled by means of a func-

tion read(id) whereas getIdByQuery receives a query (here we abstract away from

the query formalization) and it returns an id which depends on the query. The function

search(query) abstractly models some kind of search for retrieving the right id.

3.1.5 Service and starting application

As we will see in the following, a services system is always obtained as a composition of

service engines which execute service behaviours. It is worth noting that each service en-

gine always starts its actitivities by means of an exetrenal input operation, in other words

the execution of each service engine is always enabled by an external invocation. From

such a consideration, it trivially descends that also the system, obtained as a composi-

tion of service engines, will start its activities by receiving a message from an external

application. Here, we distinguish between a service behaviour which describes a service

and a service behaviours which describes a starting application. The former will always

starts with an external input operation whereas the latter starts with all the processes

except the input operations. In the following, we will refer to the service behaviour of

a service by exploiting the terms service behaviour whereas we will use the term starting

application service behaviour for denoting that which describes a starting application. The

well-formedness definition for the service behaviour follows.

102 Chapter 3. SOCK: Service Oriented Computing Kernel

Definition 3.1 (Service behaviour well-formedness) Let P ∈ SC be a service behaviour cal-

culus process. Let Ψ the set of all the possible external input operation terms. We say that P is a

well-formed service behaviour process if:

∃a1, ..., an ∈ Ψ,∃Q1, ..., Qn ∈ SC, P = a1;Q1 + ... + an;Qn

We denote the set of all the well-formed service behaviour processes with the symbol XSC.

The condition above states that a service behaviour process is well-formed if it is formed

by a set of processes, composed by means of an alternative choice, which start with an

input operation. By defintion it follows that XSC ⊆ SC. In the following we define a

session of a service behaviour as a trace which ends in a null process.

Definition 3.2 Let P ∈ XSC, we say that the trace a∗ of P is a session iff:

P
a∗

→ 0

In the following we present the well-formedness definition for a starting application.

Definition 3.3 (Starting application service behaviour well-formedness) Let P ∈ SC be

a service behaviour calculus process and let A be the set of all its traces. We say that P is a

well-formed starting application service behaviour process if for each trace of A the first external

operation occurence is always an output external operation. We denote the set of all the well-

formed starting application service behaviour processes with the symbol XSTA.

The condition above states that, differently from a service, the first external communica-

tion for a starting application is always an output towards another service.

3.2 Service engine calculus

This section is devoted to present the service engine calculus. Before presenting its syn-

tax, we introduce some basic concepts such as state, correlation sets and service declaration.

In a service engine indeed, all the executed sessions of a service behaviour are joined by

a state and a correlation set. Furthermore, a service engine always executes sessions by

following the specifications defined within the service declaration.

Chapter 3. SOCK: Service Oriented Computing Kernel 103

3.2.1 State

A state is represented by a function S : Var → Val∪{⊥} from variables to the set Val∪{⊥}

ranged over by w. Val, ranged over by v, is a generic set of values on which it is defined

a total order relation3. S(x) represents the value of variable x in the state S (S(x) = ⊥

means that x is undefined) while S[v/x] denotes the state S where x holds value v (we

use S[~v/~x] when dealing with tuples of variables), formally:

S[v/x] = S ′ S ′(x ′) =

v if x ′ = x

S(x ′) otherwise

Conditions can be evaluated over states. We exploit the notation S ⊢ χ for denoting

that the state S satisfies the condition χ. The satisfaction relation for ⊢ is defined by the

following rules, where e denotes an expression and e →֒S v denotes that, when the state

is S, the expression e is evaluated into the value v or, when some variables within the

expression are not instantiated, into the symbol ⊥:

1. e →֒S v,S(x) ≤ v ⇒ S ⊢ x ≤ e

2. e →֒S v, v ≤ S(x) ⇒ S ⊢ e ≤ x

3. S ⊢ χ ′ ∧ S ⊢ χ ′′ ⇒ S ⊢ χ ′ ∧ χ ′′

4. ¬(S ⊢ χ) ⇒ S ⊢ ¬χ

3.2.2 Correlation sets

Sessions often require to be distinguished and accessed only by those dialoguers which

hold some specific references. In the object oriented paradigm such a reference is the

object reference guaranteed by the object oriented framework. In service oriented com-

puting in general, we cannot assume the existence of an underlying framework which

guarantees references management. Correlation sets allows us to address such an issue

by introducing a specific programming construct. Given a service engine, it is possible to

3We extend such an order relation on the set Val ∪ {⊥} considering ⊥ < v, ∀v ∈ Val.

104 Chapter 3. SOCK: Service Oriented Computing Kernel

define a correlation set which allows for the identification of the different sessions depend-

ing on the incoming message values. In particular, a correlation set is a set of variables

called correlated variables. Formally, let CSet = P(Var) be the set of all the correlation sets

ranged over by c. In a service engine a session is identified by the values assigned to

the correlated variables within the current state. In other words, a session is identified

by its own state and a correlation set c implicitly identifies the service engine states by

means of the correlated variable store contents. Thus, all the service engine states that

share the same store contents for the correlated variables, defined within a correlation set

c, can be considered equal from the point of view of the correlation on c. For example, if

we consider a correlation set c defined as c = {x} and two possible service engine states

S[1/x, 6/y] and S ′[1/x, 8/y] where only the variables x and y are initialized, we can say

that S and S ′ are equal from the point of view of the correlation on c because they share

the same value for the store content of the correlated variable x. Moreover we can say

that S and S ′ are different states from the point of view of the correlation on the correla-

tion set c ′ defined as c ′ = {y}. Moreover, the session identification issue is raised when

a message is received on an input operation, that is correlation set mechanism is always

triggered by a One-Way input action or a Request-Response input one at the level of ser-

vice behaviour. Since there should be several sessions that are waiting on the same input

operation, the right session to which the message is delivered is only identified by means

of the correlated variables values involved within the input action. This fact implies that

there could be input operations that receive values only for variables that represent a

subset of the correlation set. In this case, it is not possible to distinguish the session states

by considering the store contents of all the variables contained within the correlation set

but it is necessary to consider only those correlated variables that are specified within

the One-Way operation or the Request-Response one. Let us consider, for example, a ser-

vice engine where the following two sessions are waiting for a message on the One-Way

operation a and each session is joined with a different state:

i) a(〈x, y〉),S[5/x, 2/y, 1/z]

ii) a(〈x, y〉),S[6/x, 2/y, 0/z]

Chapter 3. SOCK: Service Oriented Computing Kernel 105

The One-Way operation a is waiting for two values that will be stored within the vari-

ables x and y respectively. Session i) is joined with a state where variable x is initialized

with value 5, variable y with value 2 and variable z with value 1, whereas session ii) is

joined with a state where the variable x is initialized with value 6, variable y with value

2 and variable z with value 0. Now, let us consider the following different cases:

a) a correlation set c = {x} is defined for the service engine

b) a correlation set c ′ = {y} is defined for the service engine

c) a correlation set c ′′ = {y, z} is defined for the service engine

In case a) it is possible to distinguish the two sessions because they have a different store

content for the variable x which is contained within both the correlation set and the re-

ceiving variables of the One-Way operation a. In case b) it is not possible to distinguish

the two sessions because they are identified by the store content of the variable y which

is equal to 2 in both states. Since variable x is not contained within the correlation set it

is not relevant to the end of correlation. In case c), although it is possible to distinguish

the two sessions by considering the correlation set c ′′ because it contains the correlated

variables y and z where the latter one has different values within the two states, sessions

i) and ii) cannot be distinguished when a message is received on the operation a. This is

due to the fact that only the correlated variable y is specified within the receiving vari-

ables of the operation a and only its store contents can be exploited for distinguishing

session states. Since y has a value equal to 2 in both cases, it does not allow for the iden-

tification of the session. In the following we present a formal judgement which allows

us to state if an incoming message value is correlated to a variable content when a given

correlation set is specified. Given a variable x, two values v and w and a correlation set c,

where x is the receiving variable name included within a not specified input operation,

v is the received value that will update the content of x, w is the store content of x be-

fore receiving the value v and c is the correlation set to be considered, we say that v is

correlated to x , whose actual state value is w, on the correlation set c, v/x ⊢c w, if:

a) the variable x belongs to c and its actual value is w = v

106 Chapter 3. SOCK: Service Oriented Computing Kernel

b) the variable x belongs to c and w = ⊥

c) the variable x does not belong to c

Condition a) states that only a variable which is contained within the correlation set can

be considered to the end of correlation. Correlation takes place only if the store content

of the correlated variable corresponds to the incoming value. Condition b) states that

correlated variables which are not initialised, are not relevant to the end of correlation.

Condition c) states that all the variables that do not belong to the correlation set are not

relevant to the end of correlation. Formally we exploit the following notation:

v/x ⊢c w ⇐⇒ (x ∈ c ∧ (v = w ∨ w = ⊥)) ∨ x /∈ c

We extend such a definition to vector of variables and values:

~v/~x ⊢c ~w ⇐⇒ ∀xi, vi/xi ⊢c wi

3.2.2.1 Example

In order to clarify the correlation set mechanism let us consider the following simple ex-

ample where we consider a system with three services involved: a Flight Reservation

Service (FRS) which offers the possibility to book flights and Alice and Bob that repre-

sent two different service clients that invoke the Flight Reservation Service. Here, we

assume that both the clients have already initiated some sessions on the FRS service by

sending their personal account IDs (1234 for Alice and 5678 for Bob). In particular, we

assume that Alice has started two sessions by requesting for two different flight numbers

and Bob has started a session by requesting for a flight number. Here, we consider the

case where the FRS service is waiting for a flight confirmation from both the clients by

exploiting the same input operation within all the sessions. In the following, we present

Chapter 3. SOCK: Service Oriented Computing Kernel 107

the formalization of the sessions that are executed within the FRS service engine4.

{ID, fNum} ⊲ (

(confirm(〈ID, fNum, resp〉);booking(),S[1234/ID,H543/fNum])

|

(confirm(〈ID, fNum, resp〉);booking(),S[1234/ID,H798/fNum])

|

(confirm(〈ID, fNum, resp〉);booking(),S[5678/ID, F821/fNum])

)

where variable ID contains the personal account ID of a client and variable fNum con-

tains the flight number. The ⊲ operator means that the correlation set {ID, fNum} guards

the three concurrent sessions represented by the couples:

I)(confirm(〈ID, fNum, resp〉);booking(),S[1234/ID,H543/fNum])

II)(confirm(〈ID, fNum, resp〉);booking(),S[1234/ID,H798/fNum])

III)(confirm(〈ID, fNum, resp〉);booking(),S[5678/ID, F821/fNum])

confirm is the name of the One-Way operation on which the sessions are waiting for a

confirmation from the clients. The operation confirm receives three values where the

former one represents the ID which denotes the client, the second one represents the

flight number and the third one represents the actual confirmation response. The func-

tion booking() models all the computational steps necessary for booking a flight. It is

worth noting that in session I) the state is initialised with the variable ID set on the value

1234, which corresponds to the Alice personal account, and the variable fNum is set on

the value H543 which, we assume, is the first flight number selected by Alice. In session

II) variable ID is set on the personal account number of Alice whereas variable fNum is

set on the value H798, which corresponds to the second flight number selected by Alice.

Analogously, in session III) the state is initialised with variable ID set on the value 5678

4It is worth noting that, here, we exploit in advance a subpart of the syntax of the service engine calculus

which will be explained in the next section.

108 Chapter 3. SOCK: Service Oriented Computing Kernel

which corresponds to Bob and variable fNum set on the value F821 which, we assume, is

the number of the flight selected by Bob. Now, let us consider the case that Alice invokes

the One-Way confirm by performing a Notification confirm(〈1234,H798, yes〉). In this

case the message is correctly delivered to session II) because the store contents of the cor-

related variables ID and fNum correspond to the incoming values. In the following we

show the formal correlation judgements for the three sessions:

i) 〈1234,H798, yes〉 / 〈ID, fNum, resp〉 ⊢/{ID,fNum} 〈1234,H543,⊥〉

ii) 〈1234,H798, yes〉 / 〈ID, fNum, resp〉 ⊢{ID,fNum} 〈1234,H798,⊥〉

iii) 〈1234,H798, yes〉 / 〈ID, fNum, resp〉 ⊢/{ID,fNum} 〈5678, F821,⊥〉

3.2.3 Service declaration

A service engine supplies a support for executing service behaviour sessions and it is

composed of a service declaration and an execution environment. The service declaration

contains all the necessary information for executing sessions. In particular, the service

declaration specifies:

• the service behaviour whose sessions are executed by the service engine.

• if each session has its own state or if there is a common state shared by all the ses-

sions. In the former case the state is renewed each time the execution of a session

starts and it expires when the session terminates: we say that the state is not persis-

tent. In the latter case, the state is never renewed and the variables hold their values

after the termination of the sessions: we say that the state is persistent.

• the correlation set which guards the executed sessions

• if the sessions are executed in a sequential order or in a concurrent one (execution

modality).

• the location where the service engine is deployed.

Chapter 3. SOCK: Service Oriented Computing Kernel 109

The syntax follows:

U ::= P× | P•

W ::= c ⊲ U

L ::= !W | W∗

D ::= L@l

where P ∈ XSC is a service behaviour, flag × denotes that P is equipped with a not persis-

tent state and flag • denotes that P is equipped with a persistent one. c is the correlation

set which guards the execution of the sessions, !W denotes a concurrent execution of the

sessions and W∗ denotes the fact that sessions are executed in a sequential order. D is a

service declaration and l is the location where the service engine is deployed.

3.2.4 The service engine calculus syntax

Here we present the service engine calculus syntax which exploits the service behaviour

calculus and the service declaration syntax. The syntax is obtained as a composition of

four different syntactic elements: the service behaviour state coupled element, the execution

environment element, the executing service engine element and the service engine one. Each

syntactic element represents a set of processes characterized by a specific feature of the

service engine. In particular, the former deals with processes composed by a service be-

haviour and a state whereas the second one deals with the execution of sessions guarded

by a correlation set, the executing service engine element deals with the session execu-

tion modalities (concurrent or sequential) and, finally, the service engine element allows

us to define a located service engine by exploiting the previous elements. The syntax of

the service behaviour coupled state element follows:

PS ::= (P,S)

PS represents a service behaviour session actually executed on a service engine (P ∈ XSC)

coupled with a state (S). We denote with YS the set of all the service behaviour state

110 Chapter 3. SOCK: Service Oriented Computing Kernel

coupled processes, ranged over by PS. The syntax of the execution environment element

follows:

H ::= c ⊲ PPS

PPS ::= PS | PS | PS

where PPS can be a service behaviour coupled with a state or the parallel composition

of them. H is the execution environment which is a composition of service behaviour

state coupled processes guarded by a correlation set c and it represents the actual ses-

sions which are running on the service engine. It is worth noting that a service engine is

not correlated when c = ∅. We denote with YH the set of all the execution environment

processes ranged over by H. The syntax of the executing service engine follows:

M ::= D[H]

M is a not located service engine and it is composed of a service declaration D and an

execution environment H. It represents an executing service engine without consider-

ing any specific location. We denote with YM the set of all the executing service engine

processes ranged over by M. The syntax of the service engine element follows:

Y ::= Ml

where l is the actual location where the service engine is deployed. We denote with YY,

ranged over by Y, the set of all the service engine processes.

3.2.4.1 Starting application syntax

Since a starting application never starts with an external input, we do not consider cor-

relation set and execution modality when it is deployed within a service engine. Corre-

lation set and execution modality indeed, are service engine features directly related to

Chapter 3. SOCK: Service Oriented Computing Kernel 111

(IN)

P
s→ P ′

(P,S)
s→S (P ′,S)

(OUT)

P
s̄→ P ′

(P,S)
s̄→S (P ′,S)

(SYNCHRO)

P
τ→ P ′

(P,S)
τ→S (P ′,S)

(ONE-WAYOUT)

P
ω̄@l/z(~v/~x)→ P ′,S(z) = l,S(~x) = ~v

(P,S)
ω̄@l(~v)
−→ S (P ′,S)

(ONE-WAYOUTLOC)

P
ω̄@l(~v/~x)→ P ′,S(~x) = ~v

(P,S)
ω̄@l(~v)
−→ S (P ′,S)

(ONE-WAYIN)

P
l:ω(~v/~x)→ P ′

(P,S)
l:ω(~v/~x)7→S(~x)

−→S (P ′,S[~v/~x])

(REQ-IN)

P
l′:or(~v/~x,~y,P)@l→ P ′

(P,S)
l′:or(~v/~x,~y,P)@l7→S(~x)

−→S (P ′,S[~v/~x])

(REQ-OUT)

P
l′:or@l/z(~v/~x,~y)→ P ′,S(z) = l,S(~x) = ~v

(P,S)
l′:or@l(~v,~y)
−→S (P ′,S)

(REQ-OUTLOC)

P
l′:or@l(~v/~x,~y)→ P ′,S(~x) = ~v

(P,S)
l′:or@l(~v,~y)
−→S (P ′,S)

(ASSIGN)

P
x:=v/e→ P ′, e →֒S v

(P,S)
τ→S (P ′,S[v/x])

(SATISFACTION)

P
χ?→ P ′, χ ⊢ S

(P,S)
τ→S (P ′,S)

(NOT SATISFACTION)

P
¬χ?→ P ′, χ ⊢/S

(P,S)
τ→S (P ′,S)

Table 3.3: Rules for service engine state lts layer

112 Chapter 3. SOCK: Service Oriented Computing Kernel

the management of new sessions that can only be initiated by external messages. For this

reason, a starting application is always deployed within a service engine equipped with

a state only. The syntax which describes a service engine that executes a starting appli-

cation deals only with the execution environment composed with a couple of a starting

application service behaviour and a state:

Yst ::= [(P,S)]l

where P ∈ XSTA. Here we do not discuss the semantics for the starting application be-

cause it strictly descends from that of the service engine. In the following we will use the

term starting application for denoting a service engine which executes a starting applica-

tion service behaviour and the terms service engine in the other cases.

3.2.5 Semantics.

The semantics is defined in terms of different label transition system layers presented in

Tables 3.3, 3.5, 3.6 and 3.7. Table 3.3 deals with the rules for the service engine state lts

layer which defines the semantics for a couple of a service behaviour process and a state,

Table 3.5 deals with the rules for service engine correlation lts layer where it is defined the

semantics for managing correlation sets, Table 3.6 deals with the service engine execution

modality lts layer which defines the semantics for executing sessions in a concurrent or

in a sequential way and, finally, Table 3.7 deals with the rules for joining a service engine

with a location. Since the semantics is defined in terms of different lts layer where each

layer enables the actions for the overlying one, for each layer we define a specific set of

actions: ActS, ranged over by γ, is the set of actions raised by a service behaviour state

coupled process, ActH, ranged over by η, is the set of actions raised by an execution

environment process, ActM, ranged over by ν, is the set of actions raised by an executing

service engine process and ActY, ranged over by α, is the set of actions raised by a service

engine. The action sets are defined as follows:

ActS = {s, s, τ,ω@l(~v), l:ω(~v/~x) 7→ S(~x), l ′:or(~v/~x, P)@l 7→ S(~x), l ′:or@l(~v,~y)}

Chapter 3. SOCK: Service Oriented Computing Kernel 113

ActH = {s, s, τ,ω@l(~v), l:ω(~v), l ′:or(~v, P)@l, l ′:or@l(~v,~y)}

ActM = {τ,ω@l(~v), l:ω(~v), l ′:or(~v, P)@l, l ′:or@l(~v,~y)}

ActY = ActM

Furthermore, for each lts layer we define a specific relation which allows for the genera-

tion of the lts. We define →S⊆ YS×ActS×YS as the least relation which satisfies the rules

of Table 7.3, →H⊆ YH × ActH × YH as the least relation which satisfies the rules of Table

3.5 closed w.r.t. the structural congruence, →M⊆ YM × ActM × YM as the least relation

which satisfies the rules of Table 3.7 and →Y⊆ YY × ActY × YY as the least relation which

satisfies the rules of Table 3.7. We formally represent the relationship among the different

labelled transition systems by exploiting the following relation:

∆ ⊆ → × →S × →H × →M × →Y

where an element δ = ((p, a, p ′), (pS, γ, p ′
S), (h, η, h ′), (m,ν,m ′), (y, α, y ′)) with p, p ′ ∈

XSC, pS, p
′
S ∈ YS, h, h ′ ∈ YH, m,m ′ ∈ YM and y, y ′ ∈ YY, belongs to ∆ if the following

conditions are satisfied:

• (p, a, p ′) ⇒ (pS, γ, p ′
S) w.r.t. the rules of Table 3.3.

• (pS, γ, p ′
S) ⇒ (h, η, h ′) w.r.t. the rules of Table 3.5

• (h, η, h ′) ⇒ (m,ν,m ′) w.r.t. the rules of Table 3.6.

• (m,ν,m ′) ⇒ (y, α, y ′) w.r.t. the rules of Table 3.7.

The relation ∆ implicitly defines a relationship among the actions raised by the differ-

ent lts layers which is reported In Table 3.4. In general, an action when raised to the

overlying lts layer, will be modified in order to forward only the needed information. In

particular, as far as Table 3.3 is concerned, an action is enabled if the current state con-

tains variables values which correspond to those reported into the action. An action is

disabled, i.e. it is not raised to the overlying lts layer, when the variables values into the

state do not correspond to those reported into the action. Indeed, considering Table 3.4,

actions a), b) are not altered since they do not deal with the state whereas actions g) are

114 Chapter 3. SOCK: Service Oriented Computing Kernel

Act ActS ActH ActM = ActY

a) s s s τ

b) s s s τ

c) ω̄@l/z(~v/~x) ω̄@l(~v) ω̄@l(~v) ω̄@l(~v)

ω̄@l(~v/~x)

d) l:ω(~v/~x) l:ω(~v/~x) 7→ S(~x) l:ω(~v) l:ω(~v)

e) l ′:or@l/z(~v/~x,~y) l ′:or@l(~v,~y) l ′:or@l(~v,~y) l ′:or@l(~v,~y)

l ′:or@l(~v/~x,~y)

f) l ′:or(~v/~x,~y, P)@l l ′:or(~v/~x,~y, P)@l 7→ S(~x) l ′:or(~v,~y, P)@l l ′:or(~v,~y, P)@l

g) χ?,¬χ?, x := v/e, τ τ τ τ

Table 3.4: Lts layer action relation

Chapter 3. SOCK: Service Oriented Computing Kernel 115

replaced with a τ action because they do not carry any information needed by the over-

lying layer. Actions c) and e) are related to the output operations and, when enabled,

they resolve the values of the variables and locations. Indeed, if we consider rules ONE-

WAYOUT and REQ-OUT they contain the conditions S(z) = l and S(~x) = ~v which allows

for the verification of the actual values of the variables within the current state. In partic-

ular, rules ONE-WAYOUTLOC and REQ-OUTLOC do not resolve locations because they

are explicitly represented. Actions d) and f) deal with the input operations (rules ONE-

WAYIN, REQ-IN) and, when enabled, they do not resolve the values of the variables but

they forward the actual values of the variables involved into the action (7→ S(~x)). This is

due to the fact that some variables could be correlated and it will be necessary to verify

if they satisfy the current correlation set. Such a control will be done in the overlying

layer whose rules are reported in Table 3.5 where rules CORRELATEDONE-WAYIN and

CORRELATEDREQ-IN deal with the actions d) and f) of Table 3.4. In particular, in rule

CORRELATEDONE-WAYIN we assume that PS has a transition labelled with the action

d), that means that a message which contains the values ~v is received on the operation

ω trying to update the variables ~x which are set on values ~w within the state. Such a

transition can be enabled at the service engine execution modality layer only if the cor-

relation judgement ~v/~x ⊢c ~w is satisfied; in other words, the message can be received

only if the store contents ~w of the correlated variables specified within ~x correspond to

the related incoming values specified within ~v. Analogously, rule CORRELATEDREQ-IN

models the same behaviour but considering the action f) instead of action d). In rule NOT

CORRELATED premises, we assume that PS performs an action which differs from those

treated in rules CORRELATEDONE-WAYIN and CORRELATEDREQ-IN (i.e. input opera-

tion actions) and, as a conclusion, we state that all the actions, which do not deal with

the input operation ones, can be raised to the overlying layer because they do not deal

with the correlation mechanism. Rule PARALLEL allows for the evolving of the parallel

composition of PS processes guarded by a correlation set c. As far as Table 3.6 is con-

cerned, the actions are enabled at the level of the service engine (rule EXECUTION) and

session execution modalities, concurrent or sequential with a persistent or a not persis-

tent state, are defined within rules CONCURRENTNOTPERSISTENT, CONCURRENTPER-

116 Chapter 3. SOCK: Service Oriented Computing Kernel

SISTENT, SEQUENTIALNOTPERSISTENT and SEQUENTIALPERSISTENT. Rule CONCUR-

RENTNOTPERSISTENT deals with a concurrent execution of the sessions and with a not

persistent state. In particular, each session has its own state, that is initially fresh (S⊥),

and it is executed concurrently with the other ones. It is worth noting that condition

∃6 Si ∈ PS c ⊲ (P,Si)
γ→ c ⊲ (P ′,S ′

i)
5 states that it is not possible to start a new session with

a set of values for the correlated variables that belong to another running session. Rule

CONCURRENTPERSISTENT deals with the concurrent execution of sessions which share

a common state. Rule SEQUENTIALNOTPERSISTENT deals with the sequential execution

of sessions which have their own state. In this case there is always no more than one

executed session at a time. The state is not persistent and it is renewed each time a new

session is spawned. Rule SEQUENTIALPERSISTENT deals with the sequential execution

of the sessions where the state is shared and it does not expire after session termination.

It is worth noting that the actions s and s are replaced with a τ only at the level of the

service engine because internal synchronization are exploited for synchronizing sessions

which share the same state. Such an issue is discussed deeply in Section 3.5. Finally,

rules of Table 3.7 state that only the actions whose location corresponds to that where the

service engine is deployed can be raised.

3.2.6 Example

Here, as a an example of service engine, we consider the register service behaviour pre-

sented in the previous section:

PREG := getData(id, serData, serData := read(id))

+getIdByQuery(query, id, id := search(query))

REG := (∅ ⊲ PREG•)
∗@REG[∅ ⊲ (0,SREG0)]REG

In this case, the service engine REG is declared to sequentially execute the service behav-

iour PREG with a persistent state and without correlated variables. Indeed, it is reasonable

to model a service register with a persistent state (SREG0) because it usually manages data

5We abuse of the notation Si ∈ PS for meaning that it exists a couple (P,Si) within the term PS

Chapter 3. SOCK: Service Oriented Computing Kernel 117

(NOT CORRELATED)

PS
γ→S P ′

S

c ⊲ PS
γ→H c ⊲ P ′

S

γ 6=

l:ω(~v/~x) 7→ (~w)

l ′:or(~v/~x,~y, P)@l 7→ ~w

(PARALLEL)

c ⊲ PS
γ→H c ⊲ P ′

S

c ⊲ PS | QS
γ→H c ⊲ P ′

S | QS

(CORRELATEDONE-WAYIN)

PS

l:ω(~v/~x)7→(~w)→S P ′
S,~v/~x ⊢c ~w

c ⊲ PS

l:ω(~v)
−→H c ⊲ P ′

S

(CORRELATEDREQ-IN)

PS

l′:or(~v/~x,~y,P)@l7→(~w)→S P ′
S,~v/~x ⊢c ~w

c ⊲ PS

l′:or(~v,~y)@l
−→H c ⊲ P ′

S

STRUCTURAL CONGRUENCE

c ⊲ PS | QS ≡ c ⊲ QS | PS c ⊲ PS | (QS | RS) ≡ c ⊲ (PS | QS) | RS

c ⊲ PS | (0,S) ≡ c ⊲ PS

Table 3.5: Rules for service engine correlation lts layer

118 Chapter 3. SOCK: Service Oriented Computing Kernel

that do not depend on the single executed session but they must be remain available for

all the possible sessions. Furthermore, we do not need correlated variables because the

service behaviour only provides two Request-Response operations without any other

message exchange.

(CONCURRENTNOTPERSISTENT)

c ⊲ (P,S⊥)
η→H c ⊲ (P ′,S ′),∃6 Si ∈ PS c ⊲ (P,Si)

η→H c ⊲ (P ′,S ′
i)

!(c ⊲ P×)@l[c ⊲ PS]
η→M !(c ⊲ P×)@l[c ⊲ PS | (P ′,S ′)]

(CONCURRENTPERSISTENT)

c ⊲ (P,S)
η→H c ⊲ (P ′,S ′)

!(c ⊲ P•)@l[c ⊲ (Q,S)]
η→M !(c ⊲ P•)@l[c ⊲ (Q | P ′,S ′)]

(SEQUENTIALNOTPERSISTENT)

c ⊲ (P,S⊥)
η→H c ⊲ (P ′,S ′)

(c ⊲ P×)∗@l[c ⊲ (0,S ′′)]
η→M (c ⊲ P×)∗@l[c ⊲ (P ′,S ′)]

(SEQUENTIALPERSISTENT)

c ⊲ (P,S)
η→H c ⊲ (P ′,S ′)

(c ⊲ P•)
∗@l[c ⊲ (0,S)]

η→M (c ⊲ P•)
∗@l[c ⊲ (P ′,S ′)]

(EXECUTION)

H
η→H H ′

D[H]
ν→M D[H ′]

η = s, s, τ ⇒ ν = τ

η 6= s, s, τ ⇒ ν = η

Table 3.6: Rules for service engine execution modality lts layer

Chapter 3. SOCK: Service Oriented Computing Kernel 119

(LOCATED ONEWAY-IN)

M
l:ω(~v)→M M ′

Ml

l:ω(~v)→Y M ′
l

(LOCATED REQ-IN)

M
l′:or(~v,~y,P)@l→M M ′

Ml′
l′:or(~v,~y,P)@l→Y M ′

l′

(LOCATED REQ-OUT)

M
l′:or@l(~v,~y)→M M ′

Ml′
l′:or@l(~v,~y)→Y M ′

l′

(NOT LOCATED ACTIONS)

M
ν→M M ′

Ml′
ν→Y M ′

l′

ν 6=

l : ω(~v)

l ′ : or(~v,~y, P)@l

l ′ : or@l(~v,~y)

Table 3.7: Rules for service engine location lts layer

3.3 Services system calculus

Here we present the services system calculus which is based on the service engine one

and it allows for the composition of different engines into a system. The calculus syntax

follows:

E ::= Y | E ‖ E

A service engine system E can be a service engine Y or a parallel composition of them.

We define XE the set of all the possible services systems ranged over by E.

Semantics. Let ActE = ActY be the set of services system actions, ranged over by ρ.

The semantics is defined in terms of a labelled transition system built on the relation

→E⊆ XE×ActE×XE whose rules are described in Table 3.8 and closed w.r.t. the structural

congruence. In particular, rules ONE-WAYSYNC and REQ-SYNC describe synchroniza-

tions among different service engines. The former models a One-Way message exchange

and the latter models the request message exchange in the case of a Request-Response. It

is worth noting, that the response message exchange, in the case of a Request-Response,

is modelled by the ruleONE-WAYSYNC indeed, by means of rules of Table 3.2, Request-

120 Chapter 3. SOCK: Service Oriented Computing Kernel

Response operations can be externally seen as two One-Ways.

(ONE-WAYSYNC)

Y
ω̄@l(~v)→E Y ′ , Z

l:ω(~v)→E Z ′

Y ‖ Z
τ→E Y ′ ‖ Z ′

(REQ-SYNC)

Y
l:or@l′(~v,~y)→E Y ′ , Z

l′:or(~v,~z)@l→E Z ′

Y ‖ Z
τ→E Y ′ ‖ Z ′

(PAR-EXT)

E1
α→E E ′

1

E1 ‖ E2
α→E E ′

1 ‖ E2

(ENGINEACT)

Y
ν→Y Y ′

Y
ν→E Y ′

(STRUCTURAL CONGRUENCE OVER E)

E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

Table 3.8: Rules for services system lts layer

3.4 Example

In this section we want to model a typical business scenario by exploiting the calculi dis-

cussed in the previous section. Firstly, we give an informal description of the business

activity that abstracts away from some details and then we present a formal representa-

tion of it.

3.4.1 Informal specification.

There are five participants involved:

• a bank

• a supplier

• a market

Chapter 3. SOCK: Service Oriented Computing Kernel 121

• a service register

• a customer

The customer wants to buy a given product and it asks for its price to the market. The

market queries the register in order to obtain a supplier which is able to satisfy the cus-

tomer and then it requests the supplier for the price. The market forwards the price to the

customer that decides to buy or not. If it decides to buy, the market requests for the order

to the supplier and, concurrently, it asks to the bank to perform the financial transaction.

In order to do that, the bank will request both the customer and the supplier for the bank

data. At the end, the bank will notify the customer, the supplier and the market for the

transaction termination.

3.4.2 Formal specification.

The business activity is represented by means of a services system where, for the sake of

brevity, we abstract away from some details. We model the bank service and the supplier

service by means of two service engines where the former models the necessity to have

a persistent memory for dealing with all the data that must be always available and the

latter models the necessity to have a session for each invoker that requests for a service.

The services system is composed by the following service engines:

• the Register Service6

• the Bank Service composed by the Bank Information Service and the Bank Master

Service

• the Supplier Service composed by the Supplier Information Service and the Sup-

plier Master Service

• the Market Service

• the Customer (it is the starting application)

6For the sake of this example we call a service engine with the term service

122 Chapter 3. SOCK: Service Oriented Computing Kernel

For the sake of clarity, in the following we report the temporal evolution of the system:

1. the customer requests for a product price to the Market Service by sending also its

personal data (modelled with the variable pdata that we assume it represents the

name, the surname, the date and the place of birth).

2. the Market Service queries the Register Service in order to obtain a supplier service

for fulfilling the customer request.

3. after it has received the supplier location, the Market Service invokes the Supplier

Information Service in order to ask for the product price.

4. the Market Service replies to the customer with the price

5. depending on the price the customer decides to buy. If it decides to not to buy the

business activity terminates. On the contrary, if it decides to buy, it confirms the

order to the market service.

6. when the Market Service has received the order confirmation it performs the fol-

lowing actions in a concurrent way:

(a) it invokes the Supplier Master Service for starting the purchase order

(b) it invokes the Bank Master Service for starting a financial transaction

7. the Bank Master Service requests both the customer and the supplier for their own

bank data

8. the Bank Master Service performs a financial transaction by invoking the Bank In-

formation Service

9. the Bank Master Service sends a commit to the customer, the supplier and the mar-

ket

10. the Market Service sends a commit message to the customer

Chapter 3. SOCK: Service Oriented Computing Kernel 123

Before presenting the code for each service we report in Fig. 3.1 a sort of roadmap which

can be useful for the reader in order to understand the relationships among the service

operations. An operation exhibited by a service is represented by a rectangle and an

operation invocation is represented by an arrow. Black ractangles represent Request-

Response operations whereas white rectangles represent the One-Way ones. In the fol-

lowing we abstract away from some internal computation function and we represent

them by exploiting the typewriter font.

Figure 3.1: Operation relationships among the services of the example

Register Service: The Register Service stores a sort of service database where a unique id

is joined to a set of general service information (for example the service location and the

service semantics7) which are modelled by means of the variable serData. In the fol-

lowing we present the service engine code where SREG0 is the initial state of the register

where we assume it contains a not specified number of registered services.

7the modelling of the service semantics is out of the scope of this paper.

124 Chapter 3. SOCK: Service Oriented Computing Kernel

PREG := getData(id, serData, serData := read(id))

+getIdByQuery(query, id, id := search(query))

REG := (∅ ⊲ PREG•)
∗@REG[∅ ⊲ (0,SREG0)]REG

• The Request-Response operation getData allows us to obtain the data joined with

a specific id. The function read returns the service data joined with an id.

• The Request-Response operation getIdByQuery models the possibility to receive

a service id by querying the register about the general data. The function search

allows us to model an id search based on a query. For teh sake of brevity we assume

that the query must be specified by exploiting some kind of language.

Bank Service: It is composed of two services: The Bank Information Service (BI) and

the Bank Master Service (B). The former processes the transactions and it is modelled

with a sequential and persistent service engine whereas the latter manages transactions

between two participants. It is modelled with a concurrent and not persistent service

engine. It is worth noting that the Bank Master Service distinguishes sessions by means

of the correlation set {data1, data2, idorder} where data1 and data2 model all the data

required for performing a financial transaction between the two particpants and idorder

is the supplier purchase order id. The code follows:

PBI := transac(〈data1, data2, idorder, euro〉 , 〈data1, data2, idorder, idtran〉 ,

idtran := trans(data1, data2, idorder, euro)

)

BI := (∅ ⊲ PBI•)
∗@BI[∅ ⊲ (0,SBI0)]BI

PB := pay(〈data1, data2, idorder, loc1, loc2, locI, euro〉);

transac@BI(〈data1, data2, idorder, euro〉 , 〈data1, data2, idorder, idtran〉);

(receipt@loc1(〈idorder, idtran〉)

| receipt@loc2(〈idorder, idtran〉)

Chapter 3. SOCK: Service Oriented Computing Kernel 125

| receipt@locI(〈idorder, idtran〉)

)

B := !({data1, data2, idorder} ⊲ PB×)@B[{data1, data2, idorder} ⊲ 0]B

• The Request-Response operation transac receives the request for processing a trans-

action denoted by the data contained in data1, data2, idorder and euro and re-

turns an id (idtran) for the transaction. The function trans processes the transac-

tion.

• SBI0 models the state of the Bank Information Service that we assume it is initiated

with some not specified data.

• The One-Way operation pay starts a new session correlated by means of the vari-

ables data1, data2 and idorder. The variable euro represents the amount of money

to process within the transaction whereas loc1, loc2 and locI represent the location

of the first participant, the location of the second participant and the location of the

intermediary respectively.

• The Solicit-Response transac allows to invoke the Bank Information Service for

processing the transaction.

• The Notification operations receipt sends the receipt to the service located at the

received location loc1, loc2 and locI.

Supplier Service: The Supplier Service models a supplier of a certain set of products. The

service is built on two services: the Supplier Information Service (SI) and the Supplier

Master Service (S). As for the Bank Service, the former stores all the persistent informa-

tion whereas the latter manages different correlated sessions.

PSI := getEuro(product, euro, euro := calc(product))

+getOrder(〈id, product〉 , idorder, idorder := calcord(id, product))

126 Chapter 3. SOCK: Service Oriented Computing Kernel

+execOrder(〈idorder, idtran〉);store(idorder, idtran);ex(idorder)

SI := (∅ ⊲ PSI•)
∗@SI[∅ ⊲ (0,SSI0)]SI

PS := order(〈data, product〉 , idorder, getOrder@SI(〈data, product〉 , idorder));

receipt(〈idorder, idtran〉);

execOrder@SI(〈idorder, idtran〉)

S := !({data, product, idorder} ⊲ PS×)@S[{data, product, idorder} ⊲ 0]S

• The Request-Response operation getEuro returns the price in euros of a given prod-

uct by means of the function calc.

• The Request-Response operation getOrder returns, by means of the function calcord,

the id of the order to supply.

• The One-Way operation execOrder receives the data of the financial transaction

related to a given order (represented by the variable idtran) and then, by means of

the functions store and ex, it stores the received data and it executes the order.

• The Request-Response operation order allows to initiate a new session correlated

by the variables data, product and idorder and returns an id order obtained by

exploiting the solicit-response operation getOrder.

• The One-Way operation receipt receives the payment receipt from the Bank Master

Service. It is worth noting that on the order Request-Response operation the vari-

ables data and product drive the correlation whereas in the receipt operation the

variable idorder does it.

• The Notification operation execOrder invokes the execution of the order.

Market Service: It is the central service of the system which manages the customer re-

quests and invokes the other services.

Chapter 3. SOCK: Service Oriented Computing Kernel 127

PM := getPrice(〈pdata, loc, product〉 , euro,

getIdByQuery@REG(product, supId);

getData@REG(supId, supData);

supLocEuro := extractLoc(supData, Euro);

supLocOrder := extractLoc(supData,Order);

myLoc := M;

getEuro@supLocEuro(product, euro)

);

(timeout | (timeout

+

buy(〈pdata, conf〉); conf = yes?(

order@supLocOrder(〈pdata, product〉 , idorder) |

pay@B(〈pdata, supData, idorder, loc, supLocOrder,myLoc, euro〉)

); receipt(〈idorder, idtran〉); commit@loc(∅)

))

M := !({pdata} ⊲ PM×)@M[{pdata} ⊲ 0]M

• The Request-Response operation getPrice receives a customer request for the price

of a product. It receives the variables pdata, which models the personal data of the

customes and drives the correlation, and loc which is the location of the customer

where the receipt will be sent. Such a location must be explicitly required because it

will be used within the Market Service behaviour after the execution of the getPrice

operation. Indeed, as we will discuss in Section 3.5, a Request-Response operation

implicitly acquires the location of the sender for replying but such a location cannot

be used at the level of service behaviour. Before replying to the customer with the

product price the Market Service executes the following processes:

– it queries the Register Service, by means of the Solicit-Responses

getIdByQuery and getData, for finding a service which is able to supply the

requested product.

128 Chapter 3. SOCK: Service Oriented Computing Kernel

– it extracts the supplier locations for requesting the product price and perform-

ing an order, by means of the function extractLoc and it stores it within the

variables supLocEuro and SupLocOrder.

– it invokes the supplier for receiving the product price by means of the Solicit-

Response operation getEuro.

• When the price is sent to the customer the service starts an internal race between the

internal signal timeout and the One-Way operation buy. Since, for the sake of this

thesis, we do not model time passing we exploit the signal timeout for modelling

a sort of timeout alarm after which the session is finished.

• The One-Way operation buy receives the confirmation from the customer for buy-

ing the selected product.

• If the customer confirms to buy the product (conf = yes?), the Market Service

concurrently invokes the Supplier Master Service in order to initiate the order and

the Bank Master Service for requesting a transaction for the customer.

• At the end, it sends a commit to the customer by means of the Notification opera-

tion commit.

Customer. The customer is a starting application8. It invokes the Market Service by exploit-

ing the Solicit-Response getPrice and it receives the price of the product carrot. If the

price is less than 10 euros it decides to buy by invoking the buy operation of the market

service. Then, it waits for the receipt from the Bank Master Service and for a commit

from the Market Service.

C := [(getPrice@M(〈pdata,C, carrot〉 , price);price <= 10?

buy(〈pdata, yes〉); (receipt(〈idorder, idtran〉) | commit(∅))

8We remind that service behaviour starting application well-formedness rules are defined in Definition

3.3.

Chapter 3. SOCK: Service Oriented Computing Kernel 129

,SC0)]C

Services system. The system is modelled by exploiting the services system calculus and it

is represented by the following process:

Sys := REG ‖ C ‖ B ‖ BI ‖ M ‖ S ‖ SI

3.5 Discussion on the semantics

In this section we discuss some interesting issues raised by the semantics of the presented

calculi.

3.5.1 Concurrent sessions with a persistent state

Considering a service engine which allows to execute sessions in a concurrent way with

a persistent state (ref. CONCURRENTPERSISTENT rule of Table 3.6) it is possible to no-

tice that sessions can communicate each other by means of the shared state. In this case

mutual exclusion could be necessary for accessing variables. In order to achieve it, it is

possible to deploy the service engine equipped with a process in addition for supporting

critical section implementation. Let us consider the following example:

Q := true ⇋ (locky;unlocky)

P := in(∅, y, locky;y := y + 5);unlocky; 0

Y := !({∅} ⊲ P•)@L[{∅} ⊲ (Q,S[0/y])]L

Q is a looping process9 which allows us to implement mutual exclusion on accessing y by

means of signals locky and unlocky. The session P is formed by the Request-Response

in which does not receive any value and it replies by sending the information contained

within valriable y. Between the request and the response the service behaviour takes the

lock of the variable y by means of the signal locky, then it executes the process y := y+ 5

9For the sake of this example, true models a condition which is always verified.

130 Chapter 3. SOCK: Service Oriented Computing Kernel

and, at the end, it waits for the unlocking signal. The service engine Y is initialized with a

state where y = 0 and with the process Q that is running. Let us consider the case where

two sessions are initiated by two other services located at l and l ′ respectively:

Y := !({∅} ⊲ P•)@L[{∅} ⊲ (locky;y := y + 5; in@l(y);unlocky; 0

| locky;y := y + 5; in@l ′(y);unlocky; 0 | Q,S[0/y])]L

Depending on the first session which takes the lock of y the invokers will receive differ-

ent values (y = 5 or y = 10). It is worth noting that mutual exclusion can be required also

on the variables received within the first action. Indeed, let us consider the case above

modified as follows:

P := in(x, y, locky;y := x + y + 5);unlocky; 0

Now, let us consider the case where a first session is initiated with x = 3:

Y := !({∅} ⊲ P•)@L[{∅} ⊲ (locky;y := x + y + 5; in@l ′(y);unlocky; 0 | Q,

S[0/y, 3/x])]L

If in the meantime another session is initiated with x = 4 we have that:

Y := !({∅} ⊲ P•)@L[{∅} ⊲ (locky;y := x + y + 5; in@l ′(y);unlocky; 0

| locky;y := x + y + 5; in@l ′(y);unlocky; 0 | Q,S[0/y, 4/x])]L

In this case the value x = 3 has been lost because x is directly accessed when the mes-

sage is received on the operation in. Mutual exclusion on variables received on the first

actions can be achieved by exploiting correlation sets. The example above becomes:

P := in(x, y, locky;y := x + y + 5);unlocky; x := ⊥; 0

Y := !({x} ⊲ P•)@L[{x} ⊲ (Q,S[0/y])]L

Chapter 3. SOCK: Service Oriented Computing Kernel 131

When the first session is initiated the service engine Y appears as it follows:

Y := !({x} ⊲ P•)@L[{∅} ⊲ (locky;y := x + y + 5; in@l ′(y);unlocky; 0 | Q,

S[0/y, 3/x])]L

In this case, the second session cannot be initiated because the variable x is correlated on

the value 3. In order to allow for a new session starting, it is necessary to assign the value

⊥ to the variable x. In this case indeed, the correlation does not take place because x is

not initialized and a new session with a new value for x can be initiated. Clearly, this is

a short example where the engine acts like a sequential one but it is possible to imagine

more complicated service behaviours where the sessions run concurrently and mutual

exclusion is fundamental for accessing variables in a suitable way.

3.5.2 System deadlock

A services system can reach a deadlock depending on the service engine execution modal-

ities. Indeed, if an invoker does not take into account the fact that the service it is inter-

acting with is deployed in a sequential order or in a concurrent one, a system deadlock

is possible. Thus, to the end of service composition, it is not sufficient to consider only

service behaviour but it is necessary to take into account deployment features too. Let us

consider the following example where we assume that the Bank Master Service and the

Bank Information Service of Section 3.4 are modified as follows:

PBI := transac(〈data, idorder, euro〉 , 〈data, idtran〉 ,

idtran := trans(data, idorder, euro)

)

+verify(〈data, euro〉 , 〈data, ver〉 ,

ver := verif(data, euro)

)

BI := (∅ ⊲ PBI•)
∗@BI[∅ ⊲ (0,SBI0)]BI

132 Chapter 3. SOCK: Service Oriented Computing Kernel

PB := pay(〈data, idorder, loc, euro〉 , ver,

verify@BI(〈data, idorder, euro〉 , 〈data, ver〉)

);

; confirm(〈conf, data〉)

; conf = yes?

transac@BI(〈data, idorder, euro〉 , 〈data, idtran〉)

; receipt@loc(idtran)

B := ({data} ⊲ P∗
B)@B[{data} ⊲ 0]B

The services has been redesigned and they work as it follows:

• The Bank Information Service does not process a transaction between two partici-

pants but it process only a participant for each invocation of the Request-Response

operation transac. The Request-Response operation verify checks the availability

of the bank account of the participant described by the variable data.

• The Bank Master Service will start a session for each participant. The operation pay

is a Request-Response operation where, between the request and the response, the

Bank Master Service invokes the Request-Response operation verify for verifying

if the transaction can be performed, as a response the Bank Master Service sends the

verification result to the invoker. Furthermore, on the operation confirm, the Bank

Master Service waits for a confirmation from the invoker and, if the confirmation is

positive, it continues to perform the transaction by invoking the Request-Response

operation transac. It is worth noting that in this example the engine is defined as

a sequential engine and we assume the variable data is sufficient for correlating

sessions.

• A transaction between two participants can be achieved as it follows: let us con-

sider another e-commerce service eCS which, at a given time, invokes twice the

Bank Master Service for performing two transactions for a seller and a buyer lo-

cated at l1 and l2 respectively:

Chapter 3. SOCK: Service Oriented Computing Kernel 133

eSC ::= ...[...; (pay@B(〈dataS, 1234, l1, 100〉 , ans1);ans1 = yes?

confirm(〈dataS, yes〉)

| pay@B(〈dataB, 1234, l2,−100〉 , ans2);ans2 = yes?

confirm(〈dataB, yes〉)...]eSC

The eSC executes two parallel threads where, within the former, it invokes the Bank

Master Service by sending the data of the seller and, within the latter, it sends the

data of the buyer. The amount of the transaction is 100 euros and the idorder is

1234. As far as of the seller is concerned, the eSC asks for adding 100 euros to

its bank account whereas, as far as the buyer is concerned, it asks for subtracting

100 euros. Since the Bank Master Service is executed in a sequential order, the two

parallel threads of the eSC service will be processed sequentially.

Now, it is reasonable to design the eSC service in a way that it waits for the verifications

of both the buyer and the seller accounts before continuing the transaction. Such an is-

sue can be achieved by introducing an internal synchronization between the two parallel

threads. In particular, we introduce the signal sync as it follows:

eSC ::= ...[...; (pay@B(〈dataSeller, 1234, l1, 100〉 , ans1);ans1 = yes?

sync; confirm(〈dataS, yes〉)

| pay@B(〈dataBuyer, 1234, l2,−100〉 , ans2);ans2 = yes?

sync; confirm(〈dataB, yes〉)...]eSC

In this case, the e-commerce service starts two transactions by invoking the Request-

Response operation pay. If both the transactions can be performed (because they are

verified within the Bank Information Service), it internally synchronizes them by exploit-

ing the signal sync. After that, it proceeds with the confirmation. The composed system

eSC ‖ B ‖ BI reaches a deadlock because B is executed in a sequential order. Indeed, let

us consider the eCS service when the seller theread is initiated and the ans1 variable is

yes:

134 Chapter 3. SOCK: Service Oriented Computing Kernel

eSC ::= ...[...sync; confirm(〈dataS, yes〉)

| pay@B(〈dataBuyer, 1234, l2,−100〉 , ans2);ans2 = yes?

sync; confirm(〈dataB, yes〉)...]eSC

The eCS service has two concurrent processes, the former is waiting for internally syn-

chronizing on the sync signal whereas the latter has to initiate the second transaction.

The deadlock is reached because the Bank Master Service is waiting for a confirmation in

the session opened for the seller and the eCS service is waiting for an internal synchro-

nization which can not be fulfilled because it needs to initiate also a buyer session on

the Bank Master Service. But it is impossible to start the buyer session because the Bank

Master Service is executed in a sequential order.

3.5.3 Request-Response and Solicit-Response

The service oriented computing basic communication mechanisms are the operations.

A SOC application must be developed over a communication framework layer which

guarantees that message exchanges are based upon the operation mechanisms. As far

as the double message operations are concerned, there is an implicit location mobility10

related to the request message. In a Request-Response message exchange indeed, the

location of the sender is coupled to the receiver in the moment of the request reception.

This is due to the fact that the receiver needs to know the communication channel, pro-

vided by the sender, it has to exploit in order to send its reply message. At the present,

the Request-Response mechanism in service oriented computing has not been formally

defined yet and there is an interesting issue which deserves to be discussed. It is not

clear if the exchanged location can be used at the level of the application or it has to

be hidden into the communication mechanism. Such a choice has a deep impact on the

semantics of the service oriented application languages primitives. In WS-BPEL, when

a request message of a Request-Response is received, the sender reference is automati-

cally bound to the partnerLink construct which represents the sender service within

10Location mobility will be deeply discussed in the Section 4. Briefly, it deals with the communication of

a service location by means of a message exchange.

Chapter 3. SOCK: Service Oriented Computing Kernel 135

the WS-BPEL workflow. Since in WS-BPEL it is not possible to manage such a kind of

information at the level of the application, here we have modelled this feature within

rule REQ-IN of Table 3.2 and rule REQ-SYNC of Table 3.8 where the location is hidden

within the Request-Response mechanism. Such a kind of issue can be observed in the ex-

ample of the Market Service 3.4 where the getPrice Request-Response requires also the

location loc of the sender. In order to reply to the customer as far as the getPrice opera-

tion is concerned, the Market Service does not need the location loc because it is implicit

in the Request-Response mechanism but it requires it for performing the Notification

commit@loc operation and for invoking the Bank Master Service by means of the pay

Notification. The fact that the exchanged location, in a Request-Response operation, is

not visible at the level of the application has a consequence also for the Solicit-Response

primitive. Let us consider the following case:

P := a(x, y, y = x + 1)

Y := !(∅ ⊲ P×)@L[∅ ⊲ 0]L

W := !(∅ ⊲ Q×)@L ′[∅ ⊲ (...a(h, z)@L...,S[5/h]) | (...a(h, k)@L...,S[6/h])]L′

where Y is a service engine which exhibits only a Request-Response operation a that

adds 1 to the passed variable x and stores the result into the variable y which will be

sent within the response. W is a service sketch where, for the sake of this example, we

do not explicit Q. Here we assume that, at a given point, two Solicit-Response a are per-

fomed by two sessions in parallel11. After the two requests of the two Request-Response

processes are performed the services become as follows:

P := a(x, y, y = x + 1)

Y := !(∅ ⊲ P×)@L[∅ ⊲ (a@L ′(y),S[6/y]) | (a@L ′(y),S[7/y])]L

11For the sake of clarity, we have represented the passed values by means of the constants 5 and 6 even

if, formally, there should be two variables which refer to the current state.

136 Chapter 3. SOCK: Service Oriented Computing Kernel

W := !(∅ ⊲ Q×)L ′[∅ ⊲ (...a(z)...,S[5/h]) | (...a(k)...,S[6/h])]L′

In this case, there is nothing which allows us to couple the replies to the right Solicit-

Response because the only reference we use to synchronize the message exchange are

the name of the operation and the location. Such a situation can be avoided by exploit-

ing correlation sets:

P := a(x, 〈x, y〉 , y = x + 1)

Y := !(∅ ⊲ P×)@L[∅ ⊲ 0]L

W := !({h} ⊲ Q×)@L ′[{h} ⊲ (...a(h, 〈h, z〉)...,S[5/h]) | (...a(h, 〈h, k〉)...,S[6/h])]L′

This solution implies that both services must be modified. It is a solution at the level

of services system and there should be cases where it is not possible to modify all the

services involved in a system. In those cases it is possible to design W with a persistent

state and, by means of shared variables, synchronize the Solicit-Responses in order to

execute them sequentially.

3.6 Comparing SOCK and WS-BPEL

This section is devoted to compare SOCK and WS-BPEL expressiveness in order to high-

light the differences and the similarities between the two languages. Such a kind of

comparison will be traced considering the service behaviour calculus constructs and the

service engine calculus mechanisms. The services system calculus will be not taken into

account because it does not directly deal with the WS-BPEL language constructs. It is

worth noting that the comparison that follows will not take into consideration faults and

long running transaction mechanisms which are not modelled within SOCK.

Chapter 3. SOCK: Service Oriented Computing Kernel 137

3.6.1 Service behaviour calculus

In Tables 3.9 and 3.10 are reported the corresponding relationships between the con-

structs of the SOCK language an those of WS-BPEL. In the following we discuss the

constructs:

• The input signal and the output one are mapped with the tags <sources> and

<targets> respectively. In WS-BPEL it is possible to specify some boolean guard

within the source and the target tags. Such a kind of guard aims at enabling or

disabling the link depending they are true or false. In SOCK it is not possible to

directly join a condition with a signal but it is possible to exploit the if then else

process in order to obtain the same result. In the following we present an example

where, after the execution of a message on the One-Way rec, an output signal sync

is executed only if the variable x is greater than zero. Such a kind of signal will

enable the notification send defined in a parallel process.

EX ::= rec(x); x > 0?sync : 0 | sync; send@l(x)

It is worth noting that in WS-BPEL the source and target links must be defined

within an activity. The example above can be translated as follows:

<flow>

<r e c e i v e . . . operat ion=” rec ” v a r i a b l e =”x”>

<sources>

<t r a n s i t i o n C o n d i t i o n . . .> x > 0 </ t r a n s i t i o n C o n d i t i o n>

<source linkName=” sync ” />

</sources>

</ r e c e i v e>

<invoke operat ion=”send” outputVariable=”x”>

<t a r g e t s>

<t a r g e t linkName=” sync ” />

</ t a r g e t s>

</invoke>

</flow>

138 Chapter 3. SOCK: Service Oriented Computing Kernel

• The One-Way is mapped in WS-BPEL with a receive activity. It is worth noting

that a receive activity needs to specify both the partnerLink and the portType. The

former is not modelled in SOCK where partnerLink are trivially modelled by con-

sidering the fact that a One-Way exhibited by a service engine can be invoked only

by a service engine which knows the name of the operation and the location of the

receiver. The latter is not mapped in SOCK because in our calculus we abstract

away from such a kind of construct, indeed in SOCK engine all the operations are

deployed within the same location without any distinction.

• The Notification is mapped in WS-BPEL with an invoke activity where only the

output variable is specified. In SOCK a location is needed in order to deliver the

message to the right receiver, in the invoke activity such an information is retrieved

by following the partnerLink reference.

• The Request-Response in SOCK is modelled with a single primitive whereas in WS-

BPEL it is formed by a receive activity followed by a reply one. Between the receive

and the reply the body P of the Request-Response is executed. It is worth noting

that in WS-BPEL the reply is related to the receive by exploiting the partnerLink,

the portType and the operation references.

• The Solicit-Response in WS-BPEL is modelled by exploiting an invoke activity where

both the input variables and the output ones are specified. As for the Notification

the location in WS-BPEL is retrieved by exploiting the partenrLink reference.

• The assignment, the if then else, the sequence, the parallel and the iteration are easy

to determine from the tables and they do not need to be commented.

• The non deterministic choice is modelled in WS-BPEL with the activity pick. In a

pick activity is possible to define a non-deterministic choice only on a set of in-

coming messages, whereas in SOCK there is the possibility to specify also an input

signal. This fact fact allows for the specification of a race condition between an ex-

ternal message reception and an internal activity which is not possible in WS-BPEL.

Let us consider the following example where a non determinitic choice is defined

Chapter 3. SOCK: Service Oriented Computing Kernel 139

between a One-Way rec and the signal sync.

EX ::= ((rec(x) + (sync; x := 3)); send@l(x)) | sync

Depending on the fact that the output signal is executed before the One-Way the

Notification send will send the value 3 or that received on the rec operation. We

remind that, in Table 3.10, the partnerLink construct and the portType one

allow for the identification of the operation and the partnerLinkType on which the

message is received.

The WS-BPEL constructs repeatUntil and forEach are not explicitly modelled in SOCK but

they can be easily mapped by exploiting the iteration process as it follows:

repeatUntil ::= P;χ ⇋ P

forEach ::= x < N ⇋ (P; x := x + 1)

3.6.2 Service engine calculus

The service engine calculus allows for the specification of the state modality (shared or

not shared), the correlation set and the execution modality (sequence or concurrent). In

the following we discuss such a kind of features w.r.t. WS-BPEL.

• State modality: WS-BPEL does not allow for the specification of a shared state or a

not shared one. Each instance has always its own state.

• Correlation set: WS-BPEL has a specific construct for defining the correlation set

which identifies an instance. Every activity that must be correlated has to specify

the correlation set to use for correlating. Differently, In SOCK the correlation set is

expressed by a set of variables whose values determine the session and the rout-

ing mechanism is intrinsic within the reception primitives without specifying the

correlated data. In the following we present an example where a receive activity in

WS-BPEL specifies the correlation data:

140 Chapter 3. SOCK: Service Oriented Computing Kernel

. . .

<r e c e i v e name=” r e c e i v e A u c t i o n R e g i s t r a t i o n I n f o r m a t i o n ”

partnerLink=” a u c t i o n R e g i s t r a t i o n S e r v i c e ”

portType=” as :auct ionRegistrat ionAnswerPT ”

operat ion=”answer”

v a r i a b l e =”auctionAnswerData ”>

<c o r r e l a t i o n s>

<c o r r e l a t i o n s e t =” a u c t i o n I d e n t i f i c a t i o n ” />

</ c o r r e l a t i o n s>

</ r e c e i v e>

. . .

In this example the correlation set auctionIdentification refers to a variable auctionId

which is a part of the variable auctionAnswerData. Such a variable indeed contains

two parts: auctionId and CreditCardNumber. The corresponding SOCK engine is:

P := ...;answer(〈auctionId,CreditCardNumebr〉); ...

Eng ::= !({auctionId} ⊲ P×)@l[{auctionId} ⊲ 0]

• Execution modality: such a feature is not mentioned within the WS-BPEL specifica-

tion and depends on the engine which executes the process even if, at the best of

our knowledge, there are no engines which distinguish between the two modalities,

the instances are always executed in a concurrent way.

3.6.3 Modelling a WS-BPEL example with SOCK

In this section we present the WS-BPEL Auction service of Section 2.1.3.3 modelled with

the SOCK calculus where, for the sake of simplicity, we use short variable names. In the

following we show the variable name correspondances:

$sellerData.CreditCardNumber 7→ CCNS

$sellerData.ShippingCosts 7→ ShipC

Chapter 3. SOCK: Service Oriented Computing Kernel 141

SOCK WS − BPEL

input signal s

<sources>

<source linkName=” ship−to−i n v o i c e ” />

</sources>

output signal s

<t a r g e t s>

<t a r g e t linkName=” ship−to−i n v o i c e ” />

</ t a r g e t s>

One-Way o(x)

<r e c e i v e partnerLink =?

portType =?

operat ion=”o”

v a r i a b l e =”x”>

</ r e c e i v e>

Notification ō@k(x)

<invoke partnerLink =[k]

portType =?

operat ion=”o”

outputVariable=”x”>

</invoke>

Request-Response or(x, y, P)

<r e c e i v e partnerLink =?

portType =?

operat ion=” o r ”

v a r i a b l e =”x”>

</ r e c e i v e>

P

<reply partnerLink= [rece ived l o c a t i o n]

portType =?

operat ion=” o r ”

v a r i a b l e =”y”>

</reply>

Solicit-Response or@k(x, y)

<invoke partnerLink =[k]

portType =?

operat ion=” o r ”

inputVar iab le=”y”

outputVariable=”x”>

</invoke>

Table 3.9: Comparing communication primitives between SOCK and WS-BPEL

142 Chapter 3. SOCK: Service Oriented Computing Kernel

SOCK WS − BPEL

Assigment x := e

<ass ign>

<copy>

<from expressionLanguage=”anyURI”>

e

</from>

<to v a r i a b l e =”x”/>

</copy>

</ass ign>

If then else χ?P : Q

< i f>

<condi t ion>ch i</condi t ion>

P

<e l s e> Q </ e l s e>

</ i f>

Sequence P;Q

<sequence>

P

Q

</sequence>

Parallel P|Q

<flow>

P

Q

</flow>

Non-det. choice
∑+

i∈W ǫi;Pi

<pick>

. . .

<onMessage partnerLink =? portType =?

operat ion=” e p s i l o n i ”>

P i

</onMessage>

. . .

</pick>

Iteration χ ⇋ P

<while>

<condi t ion> ch i </condi t ion>

P

</while>

Table 3.10: Comparing constructs of SOCK and WS-BPEL

Chapter 3. SOCK: Service Oriented Computing Kernel 143

$sellerData.auctionId 7→ auctionId

$sellerData.endpointReference 7→ EPRS

$buyerData.CreditCardNumber 7→ CCNB

$buyerData.phoneNumber 7→ phN

$buyerData.ID 7→ auctionId

$buyerData.endpointReference 7→ EPRB

$auctionData.amount 7→ amount

$auctionAnswerData.registrationId 7→ regId

It is worth noting that the variable auctionId maps both the variable

$sellerData.auctionId and the variable $buyerData.ID. This is due to the fact that

such a variable it will be used for correlating the sessions. We remind that in WS-BPEL

such a kind of correspondance is obtained by exploiting the property construct and the

propertyAlias one. Indeed, in the example of section 2.1.3.3 the variables

$sellerData.auctionId and $buyerData.ID refer to the same property by means of a

propertyAlias declaration. The SOCK example code follows:

Bh ::= (submitS(〈CCNS, ShipC, auctionId, EPRS〉)

; submitB(〈CCNB, phN, auctionId, EPRB〉)

+

submitB(〈CCNB, phN, auctionId, EPRB〉)

; submitS(〈CCNS, ShipC, auctionId, EPRS〉)

)

amount := 1;RS := ref;myLoc := AD

; process@RS(amount, auctionId,myLoc)

;AuctionRegInf(regId, auctionId);msg := ′ Thank you ′

;

(answer@EPRS(msg)

|

answer@EPRB(msg)

)

144 Chapter 3. SOCK: Service Oriented Computing Kernel

Engine ::= !({auctionId} ⊲ Bh×)[{auctionId} ⊲ 0]

The service behaviour starts with a non-determinist choice between the two One-Ways

submitS and submitB. In this case indeed, it is not possible to predict which One-Way

will be firstly executed but both contain the correlated variable acutionId. In this way

the first One-Way will initiate a session and the second one will refer to it by means of the

variable auctionId. Such a construct in WS-BPEL is modelled by exploiting a parallel

composition between two receives where the correlation set tag has the attribute initiate

set on the value join. This means that the first receive will set the correlation set value

and the second will refer to it for routing the message to the right instance. Moreover, in

the example we model the endpoint reference of the Registration Service with the value

ref and we store it into the variable RS.

3.6.4 Comments

Here we want to briefly summarize the differences between SOCK and WS-BPEL as

languages for representing service orchestrators. The fact that WS-BPEL is defined by

exploting XML, implies that the code is verbose and difficult to be read by a human de-

signer. Indeed, WS-BPEL engines are always released with visual tools for designing or-

chestrators for its high level of management complexity. On the contrary, SOCK supplies

a limited set of constructs which allows for a short, clear and immediate comprehension

of the code. In particular, the non-deterministic choice of SOCK introduce the possibility

to program a race between an external message reception and an internal signal that it is

not possible within WS-BPEL. SOCK models and give constructs for directly represent-

ing engine features such as the persistent state and the execution modality that are not

considered within WS-BPEL and the correlation set mechanism in SOCK is very concise

w.r.t. that of WS-BPEL. Furthermore, SOCK is equipped with a formal semantics that

it is not supplied for WS-BPEL and that allows us to supply a precise implementation

of SOCK. In Chapter 10 indeed, we will present JOLIE that is an implementation of the

service behaviour part of SOCK which we intend, in the future, to promote as a good

alternative w.r.t. WS-BPEL for designing services. Moreover, we also intend to develop

Chapter 3. SOCK: Service Oriented Computing Kernel 145

an algorithm for traslating SOCK in WS-BPEL in order to provide an easy means for

programming WS-BPEL orchestrators. By exploiting such a kind of algorithm indeed,

it will be possible to design an orchestrator in JOLIE and then traslating it in WS-BPEL.

Furthermore, SOCK formalization can be exploited to the end of the WS-BPEL specifi-

cation development in order to eliminate code redudancy. WS-BPEL indeed, provides

a lot of constructs whose behaviour can be altered by adding some specific attributes.

Such a fact raises difficulties when WS-BPEL orchestrators must be designed for dealing

with complex tasks that involve a lot of services. For instance, let us consider the case

of the Auction Service example presented in Section 2.1.3.3 where, within the correlation

tag contained into the two initial concurrent receives, it is necessary to include the tag

initiate="join" in order to specify that only the first activity which receives the

message can initialize the correlation set. In SOCK we have formalized such a behaviour

by exploiting the existing non-deterministic choice, as presented in Section 3.6.3, without

adding any particular construct.

3.7 Related works

There are other works which exploit formal models for representing services and service

composition. In general, they use different models for representing service behaviours

and service composition but they do not deal with service deployment features as per-

sistent or not persistent state and concurrent or sequential execution modality. In [DD04]

the authors use Petri Nets for describing service behaviours, called provider behaviour,

but they focus only on workflow aspects without distinguishing among the different

kind of operations (single message exchange and double message exchange). In [LM07]

Mazzara and Lucchi define the semantics of WS-BPEL in terms of pi-calculus processes

where operations, scopes and componing operators are defined even if they do not deal

with correlation sets. In [MC06] the authors present a language, called Orc, where ser-

vices are considered as functions and they are called sites. In Orc communication mech-

anisms abstract away from operations primitives and a service invocation is expressed

by a function call, namely a site call. In [BBC+06], the authors propose a calculus for

146 Chapter 3. SOCK: Service Oriented Computing Kernel

service design and composition based on the pi-calculus without dealing with the de-

ployment aspects as the variable state, the correlation sets and the execution modalities.

In [LPT06] the authors present a calculus inspired to WS-BPEL, which does not take into

account the Request-Response operations, and they propose a type system for enforcing

many of the constraints imposed by WS-BPEL and WSDL specifications. Finally, as far as

correlation sets are concerned, in [Vir04] Viroli propose a first formalization of the mech-

anism specified within BPEL4WS specifications. Viroli distinguishes between variables

and properties where the former are syntactic elements related to some variables which

allows for the identification of a session.

Chapter 4

Mobility mechanisms

Starting from SOCK we analyze the different kind of mobility within Service Oriented

Computing. We distinguish among the state mobility, the location mobility, the interface

mobility and the behaviour mobility. The state mobility models the data exchange between

the states of two services by means of a communication message. The location mobil-

ity models the possibility to pass, by means of a message exchange, service locations.

The interface mobility allows for the representation of the communication of informa-

tion related to the interface of the service. Finally, the behaviour mobility represents a

sort of code mobility where the exchange information represent a piece of service be-

haviour to execute by the receiver. This chapter is devoted to discuss such a kind of

mobility mechanisms. This investigation is useful to the end of the system design is-

sues because different kind of mobility mechanisms need different language primitives

which straightforwardly affect the composition of a system. Moreover, these kinds of

mobility mechanisms will be discussed within the Web Services technology where only

the internal state mobility and the location one are actually implemented.

The chapter is organized as follows:

• we discuss mobility mechanisms by starting from the general model and the SOCK

calculus presented in the previous section

• we exploit a subpart of the SOCK calculus for showing as the mobility mechanisms

could affect Service Oriented Computing systems

148 Chapter 4. Mobility mechanisms

• we discuss the mobility mechanisms w.r.t. the Web Services technology

4.1 Four kind of mobility mechanisms

Here we discuss mobility mechanisms by starting from SOCK calculus investigation pre-

sented in the previous section from which we extract the different parts a service is based

upon. Then, for each of them we investigate its mobility mechanism exploiting a subpart

of the SOCK calculus as a workbench. In particular, for the sake of this chapter, we can

generally refer to the term service by considering a computational entity located at a

specific unique location which has a state and is able to perform some functionalities. A

service can receive a message by means of an input operation and it can send a message

by means of an output one. The set of all the input and output actions of a service repre-

sents the interface of the service. Let Loc, ranged over by l, be the set of locations where

Loc ⊆ Val. Formally, here we represent a service by means of the following tuple:

Service := (I,M, Pf, l)

where I is the interface containing all the input and output actions it can use, M is the

state of the service we use to represent all the information it manages (e.g. variables,

databases), Pf is the service behaviour encoded by exploiting the formalism f and l ∈ Loc

is the location where the service is deployed. We remark that, in order to be as general

as possible, in this section we abstract away from the specific formalism f and the repre-

sentation of the state; in the next section such notions will be represented by exploiting a

subset of SOCK.

4.1.1 The mobility mechanisms

In this section we describe the mobility mechanisms related to each element of the service

tuple previously described, that is: state mobility, location mobility, interface mobility

and behaviour mobility.

Chapter 4. Mobility mechanisms 149

• State mobility: The mobility of the state is strongly related to the SOC commu-

nication mechanism which is based on message exchange. Indeed, the content of

a sent message is part of the information contained in the state of the sender that

the receiver acquires and stores in its state. In other words, a message exchange

between two services can be seen as an information mobility from the sender state

to the receiver one.

• Location mobility: Location mobility deals with the possibility to receive a location

by means of a message exchange and to exploit it to access the service deployed at

that location. In this way, for instance, a service can acquire, at run-time, the exact

location of a service whose functionalities are known.

• Interface mobility: Interface mobility means that a service can acquire at run-time

all the infomation about an input or an output action and then it can exhibit it in its

interface. In other words, it can receive an input or an output action and execute it

as it belongs to its interface.

• Behaviour mobility: The mobility of this component implies that a service behav-

iour can be communicated within a message exchange and executed by the service

which receives it. In this case the receiver can enrich its internal behaviour by exe-

cuting the received one. It is important to highlight the fact that the receiver must

be able to execute the received behvaiour by exploiting the specific formalism used

for encoding it (the issues related to this aspect are out of the scope of this thesis).

It is worth noting that there exist a correspondence between some of these notions and

those from process calculi, on which we shall discuss in Section 4.4.

4.2 Using SOCK for discussing the mobility mechanisms

This section is devoted to model the mobility mechanisms discussed above by exploiting

a subpart of the SOCK language. In particular, we proceed as it follows:

150 Chapter 4. Mobility mechanisms

• we extend the operation definition in order to consider the operation templates

which allow for the definition of the expected data type joint to a message. Opera-

tion will be identified by a name and a template

• we define the subpart of SOCK that we will exploit as a workbench for reasoning

about the mobility mechanisms

• we formalize all the mobility mechanisms by extending the selected subpart of the

SOCK calculus and we describe how services are affected by them.

4.2.1 Extending operation definition with templates

In Service oriented computing, messages are structured containers of typed data. Here

we start by considering a single data type we name information which represents a gen-

eral information exploited by a SOC application and, in the following, we will introduce,

step by step, additional data types which will be exploited to support mobility; in par-

ticular the location, the operation, the template and the behaviour data types. Informally,

locations univocally identify the services in the system, operations and templates define

the interface of services and, finally, behaviours represent the internal behavior of ser-

vices. For the sake of this work, we abstract away from a detailed classification of types

even if it is possible to refine types classification by considering other data types (e.g.

integer, float, string). As far as the message structure is concerned, for the sake of gener-

ality, here we consider a flat structure where messages are seen as arrays of typed data.

In the following message structures will be described by introducing the notion of mes-

sage template where a template describes the expected sequence of data types contained

within a message.

Let inf be the type denoting the generic information, T , ranged over by ~t, be the set of

templates defined as arrays of type elements. For example ~t ′ = 〈inf, inf, inf〉 represents

the structure of a message with three elements whose type is inf. Let Val, ranged over

by v, be the set of values on which is defined a total order relation, InfVal ⊆ Val, ranged

over by δ, be the set of generic information and Type be the function that, given v ∈ Val,

returns the type of v. Since currently we are considering only the generic information

Chapter 4. Mobility mechanisms 151

type, we define Type(v) = inf if v ∈ InfVal; the remaining cases where v 6∈ InfVal

will be defined in the following where additional types are introduced. We denote with

~v = 〈v0, v1, ..., vn〉 an array of values.

Let~t = 〈t1, . . . , tn〉 be a template and ~v = 〈v1, . . . , vs〉 be an array of values, we say that ~v

satisfies~t, denoted as~t ⊢ ~v, if the following conditions hold:

1. n = s,

2. ∀vi, Type(vi) = ti.

So far, we have distinguished the operation names into two different sets: O and OR

where the former identifies the single message operation names and the latter the double

message operation ones. Now, we consider a single set of operation names because sin-

gle message and double message operations will be univocally distinguished by means

of the associated templates. Formally, let O ⊆ Val be a set of operation names and let Op

be the set of operations defined as it follows:

Op =
{
(o, ow,~t) | o ∈ O,~t ∈ T

}

∪
{
(o, n,~t) | o ∈ O, ~t ∈ T

}

∪
{

(o, rr,~t, ~t ′) | o ∈ O, ~t, ~t ′ ∈ T
}

∪
{

(o, sr,~t, ~t ′) | o ∈ O, ~t, ~t ′ ∈ T
}

an operation is identified by a name (o), an interaction modality (ow, n, rr and sr repre-

sent One-Way, Notification, Request-Response and Solicit-Response interaction modali-

ties respectively) and one or two templates (~t, ~t ′) depending on the fact that the opera-

tion deals with a single message (One-Way and Notification operations) or two messages

(Request-Response or Solicit-Response operations). In the former case, ~t represents the

template of the exchanged message whereas in the latter one ~t represents the template

of the request message and ~t ′ represents the template of the reply one. In the following

we use o~t, o~t, o~t,~t′ and o~t,~t′ to range over Op where o~t represents a One-Way operation

whose name is o and the joint template is~t, o~t represents a Notification operation whose

152 Chapter 4. Mobility mechanisms

name is o and the joint template is~t, o~t,~t′ represents a Request-Response operation whose

name is o and the joint templates are ~t for the receiving message and ~t ′ for the sending

one and, finally, o~t,~t′ represents a Solicit-Response operation whose name is o and the

joint templates are ~t for the sending message and ~t ′ for the receiving one. We say that

two operations o~t and o ′
~t′ are dual if o = o ′ and ~t = ~t ′. Analogously, we say that two

operations o~t,~t′ and o ′
~t′′,~t′′′ are dual if o = o ′, ~t = ~t ′′ and ~t ′ = ~t ′′′. Formally we define

duality in the following way:

o~t ⊲⊳ o ′
~t′ ⇔ o = o ′ ∧~t = ~t ′

o~t,~t′ ⊲⊳ o ′
~t′′,~t′′′ ⇔ o = o ′ ∧~t = ~t ′′ ∧~t ′ = ~t ′′′.

It is worth noting that the Interface I is a subset of the operation set: I ⊆ Op. Further-

more, if we reconsider the Interface mobility considering the new definition of operations

we can see Interface mobility as the feature which allows for the communication of the

templates and the operation names as usual information. Such a characteristic, from a

designing point of view, allows a human designer to program an input or an output op-

eration without specifying its name and/or its templates by considering the fact that they

can be acquired dynamically during the execution of the service.

4.2.2 SOCK as a workbench

In the following we present a limited set of the SOCK syntax extended with the new de-

finition of operation that we will use for analyzing the different aspects of each kind of

mobility:

P,Q ::= 0 | x := e | ǫ | ǫ | χ?P : Q

| P;P | P | P |
∑+

i∈W ǫi;Pi | χ ⇋ P

ǫ ::= s | o~t(~x) | o~t,~t′(~x,~y, P)

ǫ ::= s̄ | ō~t@l(~x) | ō~t,~t′@l(~x,~y)

PS := (P,S)

Chapter 4. Mobility mechanisms 153

E ::= [PS]l | E ‖ E

where a service-based system E consists of the parallel composition of services. A service

[PS]l is a couple of a process P and a state S identified by a location l ∈ Loc. It is worth

noting that, here, all the service engine features introduced within the SOCK calculus

are omitted. All the other primitives have been defined in Chapter 3 where, as far as the

operations are concerned, the process o~t(~x) represents a One-Way operation where o is

the name of the operation, ~t is the template of the received message and ~x is the array

of variables where the received information will be stored. o~t,~t′(~x,~y, P) represents the

Request-Response operation where o is the name of the operation, ~t is the template of

the received message and ~t ′ is the template of the sent message. ō~t@l(~x) represents the

Notification operation where o is the name of the operation, ~t is the template of the sent

message, l is the location of the invoked service and ~x is the tuple of variables which

contain the sent message. Finally, ō~t,~t′@l(~x,~y) represents the Solicit-Response operation,

where o is the name of the operation, ~t is the template of the sent message, ~t ′ is the

template of the received message, l is the location of the invoked service.

The semantics of such a language is redefined in a restrict way w.r.t. that of SOCK in

order to deal with the introduction of the templates. It is defined in terms of a labelled

transition system whose axioms and rules are reported in Tables 4.1, 4.2 and 4.3. In Table

4.1 we present the rules realted to the communication primitives where each rule requires

that a received or a sent message must satisfy the current operation template in order to

be performed. Table 4.2 deals with the rules over PS where the behaviour of a process

coupled with a state is expressed. Rule ASSIGN deals with variable assignment within

the services; e →֒S w means that the evaluation process of the expression e within state

S reduces to w. Rule INT-SYNC deals with internal synchronization over signals and

CONGRP with internal structural congruence denoted by ≡P. PAR-INT and SEQ describe

the behaviour of processes composed in parallel and sequentially respectively, whereas

CHOICE and ITERATION 1/2 describe the behavior of the non-deterministic choice and

the guarded iteration respectively. The former one non-deterministically selects an input

guarded process among the ones listed in the choice operator, while the latter ones model

154 Chapter 4. Mobility mechanisms

(IN)

(s,S)
s→ (0,S)

(OUT)

(s̄,S)
s̄→ (0,S)

(NOTIFICATION)

~t ⊢ S(~x)

(ō~t@l(~x),S)
ō~t@l(S(~x))
−→ (0,S)

(ONE-WAY)

~t ⊢ ~v

(o~t(~x),S)
o~t(~v)
→ (0,S[~v/~x])

(SOLICIT)

~t ⊢ S(~x)

(ō~t,~t′@l(~x,~y),S)
ō~t,~t ′@l(S(~x),~y)

−→ (o~t,~t′@l(~y),S)

(REQUEST)

~t ⊢ ~v

(o~t,~t′(~x,~y, P),S)
o~t,~t ′@l(~v,~y)

→ (P;o~t,~t′@l(~y),S[~v/~x])

(RESPONSE-OUT)

~t ′ ⊢ S(~x)

(ō~t,~t′@l(~x),S)
ō~t,~t ′@l(S(~x))

−→ (0,S)

(RESPONSE-IN)

~t ′ ⊢ ~v

(o~t,~t′@l(~x),S)
o~t,~t ′@l(~v)

→ (0,S[~v/~x])

Table 4.1: Communication rules

Chapter 4. Mobility mechanisms 155

iteration behaviour. Finally, IF THEN and ELSE rules express the if-the-else semantics. In

Table 4.3 the rules at the level of services system are considered. Rule ONE-WAYSYNC

deals with the synchronization on a One-Way operation between two services whereas

rules REQ-SYNC and RESP-SYNC deal with the request and the response message ex-

changes between a Solicit-Response operation and a Request-Response one. PAR-EXT

deals with external parallel composition and CONGRE is for external structural congru-

ence denoted by ≡. INT-EXT expresses the fact that a service behaves in accordance with

its internal processes.

Now, we remind the service formalization presented in the previous section where a

service is represented by the tuple (I,M, Pf, l) and we show how a service [P,S]l is related

to it:

• M is modeled by S.

• l represents the location within both the service model and the subpart of the SOCK

language.

• Pf is represented by a process P where the formalism f corresponds to the subpart

of the SOCK language.

• I represents the interface of a service and it is not explicitly modeled in the subpart

of the SOCK language but it can be extracted from the process P. Indeed, by con-

sidering a service [P,S]l, its interface I is defined by the function Θ(P) where Θ is

inductively defined by the following rules:

156 Chapter 4. Mobility mechanisms

(ASSIGN)

e →֒S v

(x := e,S)
τ→ (0,S[v/x])

(INT-SYNC)

(P,S)
s→ (P ′,S) , (Q,S)

s̄→ (Q ′,S)

(P | Q,S)
τ→ (P ′ | Q ′,S)

(CONGRP)

P ≡P P ′ , (P ′,S)
γ→ (Q ′,S ′), Q ′ ≡P Q

(P,S)
γ→ (Q,S ′)

(PAR-INT)

(P,S)
γ→ (P ′,S ′)

(P | Q,S)
γ→ (P ′ | Q,S ′)

(SEQ)

(P,S)
γ→ (P ′,S ′)

(P;Q,S)
γ→ (P ′;Q,S ′)

(CHOICE)

(ǫi;Pi,S)
γ→ (P ′,S ′) i ∈ W

(
∑+

i∈W ǫi;Pi,S)
γ→ (P ′,S ′)

(ITERATION 1)

S ⊢ χ

(χ ⇋ P,S)
τ→ (P;χ ⇋ P,S)

(ITERATION 2)

S ⊢/χ

(χ ⇋ P,S)
τ→ (0,S)

(IF THEN)

S ⊢ χ

(χ?P : Q,S)
τ→ (P,S)

(ELSE)

S ⊢/χ

(χ?P : Q,S)
τ→ (Q,S)

(STRUCTURAL CONGRUENGE OVER P)

P | 0 ≡P P 0;P ≡P P

(P | Q) ≡P (Q | P) (P | Q) | R ≡P P | (Q | R)

Table 4.2: Rules over PS

Chapter 4. Mobility mechanisms 157

(ONE-WAYSYNC)

[PS]l
ō~t@l′(~v)

→ [P ′
S]l , [QS]l′

o′

~t ′
(~v)

→ [Q ′
S]l′, ō~t ⊲⊳ o ′

~t′

[PS]l ‖ [QS]l′
τ→ [P ′

S]l ‖ [Q ′
S]l′

(REQ-SYNC)

[PS]l
σ

−→ [P ′
S]l , [QS]l′

σ′

−→ [Q ′
S]l′

[PS]l ‖ [QS]l′
τ

−→ [P ′
S]l ‖ [Q ′

S]l′

σ = ō~t,~t′@l ′(~v,~y)

σ ′ = o ′
~t′′,~t′′′

@l(~v,~y)

ō~t,~t′ ⊲⊳ o ′
~t′′,~t′′′

(RESP-SYNC)

[PS]l
ō~t,~t ′@l′(~v)

→ [P ′
S]l , [QS]l′

o~t,~t ′@l(~v)
→ [Q ′

S]l′

[PS]l ‖ [QS]l′
τ→ [P ′

S]l ‖ [Q ′
S]l′

(CONGRE)

E1 ≡ E ′
1 , E ′

1

γ→ E ′
2, E ′

2 ≡ E2

E1
γ→ E2

(PAR-EXT)

E1
γ→ E ′

1

E1 ‖ E2
γ→ E ′

1 ‖ E2

(INT-EXT)

PS
γ→ P ′

S

[PS]l
γ→ [P ′

S]l

(STRUCTURAL CONGRUENCE OVER E)

P ≡P Q

[P,S]l ≡ [Q,S]l

E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

Table 4.3: Rules over E

158 Chapter 4. Mobility mechanisms

1. Θ(0) = φ

2. Θ(x := e) = φ

3. Θ(s) = φ

4. Θ(s) = φ

5. Θ(ō~t@l(~x)) = {(o, n,~t)}

6. Θ(ō~t,~t′@l(~x,~y)) = {(o, sr,~t,~t ′)}

7. Θ(o~t(~x)) = {(o, ow,~t)}

8. Θ(o~t,~t′(~x,~y, P)) = {(o, rr,~t,~t ′)} ∪ Θ(P)

9. Θ(P;P ′) = Θ(P) ∪ Θ(P ′)

10. Θ(P | P ′) = Θ(P) ∪ Θ(P ′)

11. Θ(
∑+

i∈W ǫi;Pi) =
⋃

i∈W Θ(ǫi;Pi)

12. Θ(χ?P : Q) = Θ(P) ∪ Θ(Q)

13. Θ(χ ⇋ P) = Θ(P)

It is worth noting that the interface Θ(P), during the evolution of a service [P,S]l, is

monotonically reduced dependently on the consumption of P. Indeed, let us consider

the following example:

[ā~t(x),S[4/x]]l ‖ [a~t(y),S ′]l′
τ

−→
[0,S[4/x]]l ‖ [0,S ′[4/y]]l′

Before the synchronization the interfaces of the two services are Il = {(a, n,~t)} and Il′ =

{(a, ow,~t)} respectively, whereas after the synchronization they are Il = φ and Il′=φ.

4.2.3 State mobility

Considering Table 4.1 and Table 4.3, such a kind of mobility is expressed by the rules

which deal with operation primitives. In particular, let us consider rules NOTIFICATION

and ONE-WAY of Table 4.1 in order to clarify how it works. In the former the state in-

formation ~v contained within the variables ~x are sent by exploiting a message whereas

in the latter the received information ~v are stored into the variables ~x contained within

Chapter 4. Mobility mechanisms 159

the state of the receiver. Rule ONE-WAYSYNC of Table 4.3 couples the two rules by corre-

lating the receiver location to that explicited within the notification process. In this case

the message content is represented by the tuple of values ~v. Summarizing, state mobility

is modeled as an information exchange between the state of the sender and the state of

the receiver. Such a mobility mechanism is the cornerstone of service-based systems and

supplies the basic layer on which the other mobility mechanisms can be implemented.

4.2.4 Location mobility

So far the subpart of SOCK we have proposed, does not deal with location mobility. Lo-

cations, indeed, are statically explicited within the Notification and the Solicit-Response

primitives. In order to deal with location mobility we modify the syntax by introducing

the possibility to express the location as the content of a variable. To this end we add two

new primitives for the Notification and the Solicit-Response where z is a variable:

P ::= . . . | ō~t@z(~x) | ō~t,~t′@z(~x,~y) | . . .

These new primitives allow us to dynamically bind the receiver location when perform-

ing the Notification and Solicit-Response operations by evaluating the content of variable

z. Since locations will be acquired by means of an input operation, we introduce a new

data type, we call loc, representing the type used for identifying a location. Furthermore,

we introduce the set LocVal ⊆ Val, ranged over by l, which represents the set of all the

locations. The function used to test the conformance between tuples of values and tem-

plates will be enriched by considering that, given v ∈ Val, Type(v) = loc if v ∈ LocVal

(we assume that the set of values of each type is disjunct with each other).

The semantics follows:

(NOTIFICATION WITH LOCATION MOBILITY)

~t ⊢ S(~x), Type(S(z)) = loc

(ō~t@z(~x),S)
ō~t@S(z)(S(~x))

−→ (0,S)

160 Chapter 4. Mobility mechanisms

(SOLICIT WITH LOCATION MOBILITY)

~t ⊢ S(~x), Type(S(z)) = loc

(ō~t,~t′@z(~x,~y),S)
ō~t,~t ′@S(z)(S(~x),~y)

−→ (o~t,~t′@S(z)(~y),S)

Variable z is evaluated when the processes are executed. In that phase we exploit types

in order to prevent the execution of bad processes: in the case z does not hold a loca-

tion value, the primitive is not performed. This mechanism allows us to design a service

which does not know a priori the locations of the services to be invoked that can be ac-

quired during the execution.

4.2.4.1 Example

In order to clarify how location mobility works, let us consider the business scenario

example depicted in Fig. 4.1 where a customer purchases a good invoking a shopping

service, the shopping service invokes a bank service for performing the payment and

the bank service invokes the customer for sending the invoice. In Fig. 4.1 we have ex-

ploited an informal graphical representation where services are represented by circles,

the symbol @uri expresses the fact that the service is available at the location uri, the

input operations exhibited by a service are represented by a black line whose name is

shown within a rectangle and the arrows represent a message exchange. The shopping

service exhibits the One-Way BUY, the Bank service exhibits the One-Way PAY and the

Customer service exhibits the One-Way REC.

In the following we formalize such a scenario by supposing that the bank service does

not know the location of the customer. For the sake of simplicity, we make a syntax abuse

by expliciting the known locations as constants.

~t = 〈loc〉 ~t ′ = 〈inf〉

C ::= [add := uri1; inv := ⊥; BUY~t@uri2(add); REC~t′(inv),Sc]uri1

SH ::= [fwadd := ⊥; BUY~t(fwadd); PAY~t@uri3(fwadd),Ss]uri2

B ::= [z3 := ⊥; invoice := msg; PAY~t(z3); REC~t′@z3(invoice),Sb]uri3

Chapter 4. Mobility mechanisms 161

Figure 4.1: Business scenario example

System ::= C ‖ SH ‖ B

The shopping service SH located at uri2 receives on the One-Way operation BUY the

location of the customer C (uri1) and stores it within the variable fwadd. Moreover, it

forwards it to the bank service B (at uri3) by exploiting the Notification operation PAY.

The bank service receives on PAY the customer location and then exploits it for invoking

the REC operation of the customer sending the invoice here represented by the value

msg. Finally, the customer receives the invoice on REC and stores the message content

within the variable inv.

4.2.4.2 Comments

Location mobility introduces a powerful mechanism for designing services in a flexible

way. If we consider the Bank service of the example indeed, it exploits the operation

REC~t′@z3(invoice) in order to be independent from the customer address. The Bank

service can send invoices to all the customers which exhibit a One-Way whose name

is REC and has a template ~t ′. On the contrary, if we do not exploit location mobility

the Bank service should know the customer address before its execution binding the

service to interact to a specific customer. This is the case of the shopping service that,

by exploiting the operation PAY~t@uri3(fwadd), is designed for sending the payment

request always to the same Bank service. Furthermore, the example shows that location

162 Chapter 4. Mobility mechanisms

mobility is built on top of the state mobility because the acquired locations are stored

within the state.

4.2.5 Interface mobility

Interface mobility deals with the mobility of all the information related to an operation

that is the name of the operation and the templates joint to it. In general, all these in-

formation can be acquired dynamically. We model interface mobility by introducing the

following primitives where z, u, k and j are variables:

P ::= . . . | ū~k@z(~x) | u~k(~x)

| ū~k,~j@z(~x,~y) | u~k,~j(~x,~y, P) | . . .

The name of the operations and the templates are evaluated at run-time by reading them

from the state. To this end, we introduce two new data types op and t which are used

to represent the type of operation names and of templates, respectively. Let v ∈ Val, the

function Type is extended by defining the following cases: i) Type(v) = op if v ∈ O, ii)

Type(v) = t if v ∈ T . We will exploit this data types to test that the values stored in the

variables are in accordance with the expected data types. The semantics follows:

(NOTIFICATION WITH INTERFACE MOBILITY)

Type(S(k)) = t, Type(S(u)) = op,
−→
S(k)⊢ S(x̃), Type(S(z)) = loc

(ū~k@z(x̃),S)
S(u)−→

S(k)
@S(z)(S(x̃))

−→ (0,S)

(ONE-WAY WITH INTERFACE MOBILITY)

Type(S(k)) = t, Type(S(u)) = op,
−→
S(k)⊢ S(x̃)

(u~k(x̃),S)
S(u)−→

S(k)
(S(x̃))

−→ (0,S)

Chapter 4. Mobility mechanisms 163

(SOLICIT WITH INTERFACE MOBILITY)

Type(S(k)) = Type(S(j)) = t, Type(S(u)) = op,
−→
S(k)⊢ S(x̃), Type(S(z)) = loc

(ū~k,~j@z(x̃, ỹ),S)
α

−→ (S(u) −→
S(k),

−→
S(j)

@S(z)(ỹ),S)

α = S(u) −→
S(k),

−→
S(j)

@S(z)(S(x̃), ỹ)

(REQUEST WITH INTERFACE MOBILITY)

Type(S(k)) = Type(S(j)) = t, Type(S(u)) = op,
−→
S(k)⊢ S(x̃)

(u~k,~j(x̃, ỹ, P),S)
α

−→ (P;S(u) −→
S(k),

−→
S(j)

@l(ỹ),S)

α = S(u) −→
S(k),

−→
S(j)

@l(S(x̃), ỹ)

It is worth noting that the introduction of the interface mobility allows us to distinguish

the concept of operation programming from that of the information which characterize

it. The former expresses the service capability to perform a One-Way, a Notification, a

Request-Response or a Solicit-Response operations represented by the processes u~k(~x),

ū~k
@z(~x) u~k,~j

(~x,~y, P) and ū~k,~j
@z(~x,~y) respectively, whereas the latter deals only with the

information that are necessary for performing an operation represented by the content of

the variables u, k and j.

In this case the interface can change during the evolution of the service, thus we need

to modify some rules of the inductive definition of Θ. To this end we first introduce the

functions tN : Val → Val ∪ {?} and tT : Val → Val ∪ {?} for testing if the content of a

variable is an operation name or a template respectively. We exploit the symbol ? for ex-

pressing the fact that an information related to an operation is unknown. The definition

of the functions follows:

tN(v) =

v if v ∈ O

? otherwise

tT(v) =

v if v ∈ T

? otherwise

164 Chapter 4. Mobility mechanisms

For the sake of brevity, we report below only the rules that change w.r.t. the original

definition of Θ that are the 5, 6, 7 and 8 ones. It is worth noting that here we extend the

domain of Θ by considering also the state. This is due to the fact that now the interface

depends on the contents of the variables.

5. Θ(ū~k@z(~x),S) = {tN(S(u)), n, tT(S(k))}

6. Θ(ū~k,~j@z(~x,~y),S) =

{tN(S(u)), sr, tT(S(k), tT(S(j))}

7. Θ(u~k(~x),S) = {tN(S(u)), ow, tT(S(k))}

8. Θ(u~k,~j
(~x,~y, P),S) =

{tN(S(u)), rr, tT(S(k), tT(S(j))} ∪ Θ(P)

4.2.5.1 Example

Let us consider the example of Fig. 4.1 where we suppose that the Bank service does not

know a priori both the location and the One-Way operation of the customer:

~t = 〈loc, op, t〉 ~t ′ = 〈inf〉

C ::= [add := uri1;opN := REC;opT := ~t ′; inv := ⊥

; BUY~t@uri2(add, opN, opT); REC~t′(inv),Sc]uri1

SH ::= [fwadd := ⊥; fwopN := ⊥; fwopT := ⊥;

; BUY~t(fwadd, fwopN, fwopT)

; PAY~t@uri3(fwadd, fwopN, fwopT),Ss]uri2

B ::= [z3 := ⊥;op := ⊥; tp := ⊥; invoice = msg

; PAY~t(z3, op, tp);op ~tp@z3(invoice),Sb]uri3

System ::= C ‖ SH ‖ B

Chapter 4. Mobility mechanisms 165

The customer sends, by means of the variable opN and opT , the operation name (REC)

and the operation template (~t ′) on which it will wait for receiving the invoice. The bank

service receives from the shopping service the location, the name of the operation and the

template of the operation of the customer and stores them in z3, op and tp respectively.

4.2.5.2 Comments

The example shows how is possible to design a service (in this case the bank one) with

a functionality which deals with an output operation without statically knowing its in-

terface. In general, it is possible to have scenarios where a service partially knows the

interface information that is, for example, it knows the name of the operation but it does

not know the template or, viceversa, it knows the template but it does not know the

name of the operation. In particular, the mobility of the information related only to the

templates raise some interesting designing issues. A designer that does not know the

template of an operation is able to program an input or an output operation but he is

not able to predict the structure of the received (or sent) data and, as a consequence, he

cannot exactly specify the variables related to the received (sent) data. Let us consider,

for example, the output operation of the bank service:

op ~tp@z3(invoice)

in this case, even if the content of the variable tp is unkwon, there is an implicit knowl-

edge of the template because it can be indirectly extracted by considering the variable

invoice which is programmed as the variable that contain the data to send. In general,

a full interface mobility cannot be supported without considering a mechanism which

allows a designer to formulate some kinds of predictions about the received (sent) data.

We can imagine indeed, that the designer could be able to program some kinds of speci-

fications about the variables from which it should be possible to build a sort of dynamic

adaptor for binding the variables with the received template. The discussion and the for-

malization of such a kind of machinery is out of the scope of this work and, at the best

of our knowledge, it is an open issue. As a first attempt towards this direction, works on

166 Chapter 4. Mobility mechanisms

component adaption can be taken into consideration. For example, in [BCPV04, BP06]

Brogi et al. discuss the problem of the adaption between Web Services and WS-BPEL in-

terfaces where adaptor specifications are discussed for composing different services with

different interfaces.

4.2.6 Behaviour mobility

In order to deal with behaviour mobility we extend the subpart of the SOCK language

by introducing the following primitive:

P ::= . . . | run(x)

run(x) allows us to execute the code contained within the variable x. As previosly done

for the other kinds of mobility, we introduce a new data type representing processes. Let

proc be the data type denoting processes, v ∈ Val: Type(v) = proc if proc is defined by

the term P presented in Section 4.2.2. The semantics of such a primitive is expressed by a

new rule that must be added to those presented in Table ??:

(RUN)

Type(S(x)) = proc

(run(x),S)
τ→ (S(x),S)

Since the received code can be formed by operation processes, we add a new rule for in-

ductively defining the function Θ which allows us to extract the interface of the service:

13. Θ(run(x),S) =

Θ(S(x)) if S(x) 6= ⊥

φ otherwise

Service functionality mobility directly deals with code mobility. In particular it allows us

to design services where a specific part of its functionalities are unknown at design time

and they are acquired during the execution of the service.

Chapter 4. Mobility mechanisms 167

4.2.6.1 Example

In order to clarify how service behaviour mobility works, let us consider the example of

the shopping service again where we suppose that the customer, that wants to interact

with the shopping service, does not know a priori the conversation rules to follow. In

other words, the customer does not know that it has to exhibit the REC operation in or-

der to receive the invoice from the bank service.

~t = 〈loc, proc〉 ~t ′ = 〈inf〉 ~t ′′ = 〈loc〉

C ::= [add := uri1; code1 := ⊥; BUY~t@uri2(add, code1);run(code1),Sc]uri1

SH ::= [fwadd := ⊥; code2 :=“inv := ⊥; REC~t ′(inv)”; BUY~t(fwadd, code2)

; PAY~t′′@uri3(fwadd),Ss]uri2

B ::= [z3 := ⊥; invoice = msg; PAY~t′′(z3); REC~t′@z3(invoice),Sb]uri3

System ::= C ‖ SH ‖ B

Here, the customer invokes the operation BUY of the shopping service which is mod-

eled as a Request-Response operation. The customer receives as a response a piece of

code and stores it within the variable code1, then it executes it by exploiting the primi-

tive run(code1). After the execution of the code stored within code1 the system behaves

as the example presented in the location mobility section. It is worth noting that the cus-

tomer receives the input operation REC which enriches at run-time its interface similarly

to the case of the interface mobility. Even if the two kind of mobility could appear similar

w.r.t. the effects on the interface, they are different from a system design point of view. In

the case of interface mobility the designer must specify that an input or an output opera-

tion has to be performed without knowing its name and its templates on the contrary, in

the case of internal process mobility, the designer does not know the process which will

be executed at all.

168 Chapter 4. Mobility mechanisms

4.2.6.2 Comments

Some considerations about code mobility issues are necessary. On the one hand, when

a service executes a process which has been acquired at run-time, it does not know how

it behaves. On the other hand, when programming a process which will be executed by

another service the internal behavior of such a service is not known. This fact implies

a number of issues. First of all, internal processes share the variables state thus the ac-

quired process could interfere with the behavior of the other ones. Moreover, an acquired

process could exploit a certain name s to perform internal synchronizations but the same

name could be already used by other internal processes, thus alterating also in this case

the behavior of the other processes. A formal analysis of these issues is out of the scope

of this work but we consider that, to avoid at least the issues listed above, a mechanisms

which syntactically renames all the variables and names of the acquired process which

interferes with the ones of the internal processes is necessary before executing it.

4.3 Mobility mechanisms in Web Service technology

This section is devoted to discuss the four kind of mobility mechanisms w.r.t. the Web

Service technology. It will emerge that only the state mobility and the location one are

actually implemented in such a kind of technology. Here, we hope to open a discussion

about the opportunity to introduce the other kind of mobility also in the Web Service

technology.

• State mobility: Web Services are a technology based upon the message exchange

thus, they fully support the state mobility as we have formalized it in the previous

sections. In particular, an information exchange between two services is an XML

document whose schema is defined within the SOAP specification.

• Location mobility: As we have shown, location mobility is strictly related to the

communication primitives of the service behaviour that we have formalized by ex-

ploiting SOCK. Although that, Web Services are platform independent and there

is not a standard formalism for describing the service behaviour, here we consider

Chapter 4. Mobility mechanisms 169

orchestration languages as a class of languages which can be used for expressing

it. Indeed, they deal with service coordination aspects which are fundamental to

the end of location mobility. In particular, WS-BPEL supports location mobility by

managing endpoints within its internal variables. An endpoint, which is defined

within WS-Addressing [W3Cd] specification, is a data structure which contains all

the information required for invoking a service, that is the operation and the loca-

tion.

• Interface mobility: The interface mobility, as the location one, is strictly related to

the communication primitives of the service behaviour process. Following the same

approach of location mobility we consider WS-BPEL. As previously mentioned,

WS-BPEL is able to manage endpoints which contain the information related to

the operations. However it does not support interface mobility because the opera-

tions it exploits for invoking and receiving messages are defined statically at design

time and they cannot be bound at run-time. To the best of our knowledge interface

mobility is not supported by the Web Services technology even if it is possible to

consider other solutions that indirectly allows us to partially achieve it. Several

programming languages, at a low-level w.r.t. the orchestration ones, are equipped

of libraries which permit to simplify the service composition. In particular, there

exist libraries in Java [Apac, Apab, Sunb] that, given a WSDL document1, automat-

ically produce the corresponding classes which allow for the invocation of all the

operations supplied by the Web service described in that document. Such a kind of

libraries allows us to partially achieve interface mobility. The interfaces indeed are

not communicated as information but extracted from a WSDL document. Further-

more, they cannot be joint automatically with the service internal variables but, at

the state of the art, they require to be joint by considering the presence of a human

designer.

1A WSDL interface could be modeled by exploiting the service interface I but there are some relevant

issues to take into account: a WSDL document is statically defined and cannot change dynamically dur-

ing the evolution of the service by adding or removing some of the exhibited operations and, generally,

Notification and Solicit-Response operations are unused

170 Chapter 4. Mobility mechanisms

• Behaviour mobility: To the best of our knowledge Web Services technology does

not explicitly support such a kind of mobility. Nevertheless, we trace a comparison

between service functionality mobility and some languages for describing conver-

sational behaviours of service-based systems as, for instance, choreography lan-

guages. As we have said, such a kind of languages are exploited for describing the

communication protocols services have to follow in order to participate to a given

service-based system. We can imagine that a service which is willing to access that

system could download the related choreography document and extracts a piece of

code which allows it to follows the protocol.

4.4 Mobility mechanisms in process calculi

This section is devoted to illustrate the existing correspondances between the different

kinds of Service Oriented Computing mobility mechanisms and the characteristics of

some process calculi.

• State mobility: state mobility can be easily compared to the standard value passing

proposed within CCS [Mil89] and CSP [Hoa85]. In CCS and CSP abstractions in-

deed, values represent the data contained within a process that are communicated

by means of static input and output channels.

• Location mobility: location mobility can be related to the name passing mechanism

of the π-calculus [MPW92]. In pi-calculus indeed, there is no distinction between

channels and variables but there are only names that can be exploited both as vari-

ables and channels. Such a feature allows for the communication of channel names

among processes. As for service locations, in π-calculus when a process receives a

channel name, it can exploit it for sending a message over that channel.

• Interface mobility: at the best of our knowledge, it does not exist a process calculus

that directly provides a communication mechanism which can be compared to that

of interface mobility.

Chapter 4. Mobility mechanisms 171

• Behaviour mobility: As we have noticed, the behaviour mobility is strongly re-

lated to code mobility. Such a kind of mechanism has been formalized by Davide

Sangiorgi in [San93], where the author proposed a calculus named Higher-Order

π-calculus (HOπ). In HOπ, the simple communication paradigm proposed within

the π-calculus has been enriched in order to allow for the transmission of processes

as well as channel names.

4.5 Discussion

The investigation about mobility mechanisms we have presented in this chapter has

shown that there are four kinds of mobility mechanisms where only two of them are

actually implemented in Web Services technology. They are the state mobility and the

location mobility. SOCK models both of them and, in particular, it also models a hidden

location mobility related to the Request-Response primitive (Section 3.5.3). The other

two kinds of mobility mechanisms, the interface mobility and the service behaviour one,

are not implemented. Here, we intend to open the discussion about the opportunity to

consider also these kinds of mobility mechanisms within Service Oriented Compunting

technologies. As we have briefly commented in the previous sections, their implementa-

tion raises a lot of technical difficulties to address. Nevertheless, as far as interface mo-

bility is concerned, it will allow designers to be indipendent from the service interface

design. Service interfaces indeed, could be received at run-time. In this way, services

could be more context adaptable and their composition could be achieved easily because

there are less constraints related to the interfaces. On the other hand, as far as service

behaviour mobility is concerned, it could be useful in those cases where a service has

to automatically join an unknown services system. In this case indeed, the service is

not aware about the conversation protocol it has to fulfilll in order to interact with the

other services of the system. In order to do that, it could download the code necessary

to follow the system requirements and then execute it. Such a kind of issue could be also

addressed by downloading a choreography of the system from which the service will

self-extract the code. In our opinion, the best trade-off will exploit both choreography

172 Chapter 4. Mobility mechanisms

description and service behaviour mobility in the sense that choreography could be used

for a security verification of the downloaded code. The choreography of a system in-

deed, could be a public document which declares how the system works. A service that

wants to join the system could download the code and then perform a trusting check on

the public choreography in order to verify if the downloaded code is conformant with it

2. We believe the issues raised by this investigation deserve to be discussed within the

computer science community in order to define and standardized the basic concepts the

SOC paradigm is based upon. As far as our opinion is concerned, we believe both the in-

terface mobility and the service behaviour one are useful to be considered within Service

Oriented Computing paradigm and we think they deserve to be implemented within the

SOC technologies.

2In the second part of this thesis we will investigate the issue related to the conformance between a

choreography and an orchestrated system.

Chapter 5

A general model for Service Oriented Computing

The general model we propose for Service Oriented Computing follows the three-layered

structure proposed for SOCK by modelling the three concepts of service behaviour, service

engine and services system by means of formal machineries which abstract away, as much

as possible, from the language details. The service behaviour deals with the representa-

tion of the behaviour of a service by means of a finite state automaton where both compu-

tational and communication capabilities are exploited, the service engine deals with the

formalization of a machinery which is able to execute a service behaviour infinitely often

and, finally, the services system deals with the representation of a system composed by

more than one service engine by means of a language inspired by a process algebra such

as CCS [Mil89] and CSP [Hoa85]. By definition, there exists a hierarchic dependency

that allow for the wrapping of the service behaviour within the service engine and the

service engine within the services system. All the capabilities of the service behaviour,

represented by means of service behaviour actions, are exploited by the service engine to

perfom actions at the level of the services system (services system actions). In this sense

the service engine plays the role of connection between the service behaviour and the

services system. In general, the service oriented computing design issue formalization is

related to the concepts of service behaviour and service engine whereas the composition

one is related to the concepts of the service engine and services system. In Fig. 5.1 we

abstractly show the relationship between the service behaviour, the service engine and

the services system w.r.t. the design and composition issues.

174 Chapter 5. A general model for Service Oriented Computing

Figure 5.1: Design and composition formal framework

In the following, we formally define the sets of actions for the service behaviour and the

services system. Let AB = InB∪OutB∪InternalB, ranged over by a, b, c, ..., be the set1 of

service behaviour actions on which is defined a total order relation, where InB is the set

of the external input actions which are related to the reception of outer messages, OutB

is the set of the external output actions which are related to the sending of messages and

InternalB is the set of the internal ones. Let AS = InS ∪ OutS ∪ {τ}, ranged over by

α,β, γ, ..., be the set of services system actions where InS is the set of input actions, OutS

is the set of the output actions and τ is the not-observable action. In the following we

present the definition of service behaviour, the service engine and the services system.

5.1 Service behaviour

A service behaviour is represented by the following finite state automaton:

X := (AB, I, i0, if, g)

where AB is the set of service behaviour actions, I is a finite set of states, i0 ∈ I is the

initial state, if is the final state and g is the transition relation g ⊆ (I×AB× I), obviously

extended to sequences of actions, that satisfies the conditions:

a) ∀(i0, a, i ′) ∈ g, a ∈ In

1The set of actions could be possibly infinite.

Chapter 5. A general model for Service Oriented Computing 175

b) ∀a ∈ AB,∃6 i ′ ∈ I.(if, a, i ′) ∈ g

Condition a) states that each session starts with an external input action. Condition b)

states that the final state is a terminal state, i.e. there is no transition that starts from it.

Let tB be a trace of X, we exploit the following notation for denoting that the automaton X

reaches the state i ′ starting from the initial one (i0) by performing the sequence of actions

tB:

i0
tB→ i ′

We call session a trace of X after which the automaton reaches a final state. Formally, let

tB be a trace of X, we say that tB is a session of X if:

i0
tB→ if

We denote with ΣX the set of all the sessions of X. It is worth noting that the external

input actions and the external output ones are those actions which allow a service for the

communication with other services. In light of this observation condition a) states that a

service behaviour always starts when a message is received.

5.2 Service engine

A service engine is a service container for sessions under execution. Essentially, it is

able to manage session execution by following different modalities, for example sessions

can be executed in a sequential order or in a concurrent one. In particular, a service

engine is always composed by a service behaviour and a formal machinery which al-

lows for the execution of the sessions where for each action performed at the level of

the service behaviour an action at the level of services system is performed. Formally,

let X := (AB, I, i0, if, g) be a service behaviour. Let SX be the set of all the suffixes of ΣX

ranged over by σ and let M(SX) be the set of all the multisets on SX. By definition it

follows that ΣX ⊆ SX. Let σ ◦ σ ′ be the concatenation of the strings σ and σ ′. A service

engine is described by the following tuple:

Y := (X,AS, T, t0, r)

176 Chapter 5. A general model for Service Oriented Computing

where AS is the set of services system actions, T ⊆ M(SX) is a (finite or infinite) set of

states where a state is represented by a multiset of suffixes of ΣX. Each suffix within a

state represent the remaining part of a session which can be executed in that state. The

initial state is t0 ∈ T and it contains only sessions of X (t0 ⊆ ΣX) because at the beginning

only not initiated sessions can be executed. r is a transition relation r ⊆ (T ×AB×AS×T)

which satisfies the following conditions:

a) ∀(t, a, α, t ′) ∈ r, a ∈ InB ⇒ α ∈ InS

b) ∀(t, a, α, t ′) ∈ r, a ∈ OutB ⇒ α ∈ OutS

c) ∀(t, a, α, t ′) ∈ r, a ∈ InternalB ⇒ α = τ

d) ∀(t ′, a, α, t ′′) ∈ r,∃σ ∈ t ′,∃θ ⊆ ΣX.σ = a ◦ σ ′, t ′′ = t ′ − {σ}
⊎

{σ ′} − ΣX

⊎
θ

e) ∀t ∈ T,∃t ′ ∈ T,∃a ∈ AB,∃α ∈ AS. (t, a, α, t ′) ∈ r

Conditions a) and b) state that external input actions and external output actions, at the

level of service behaviour, must be mapped with input and output actions respectively,

at the level of services system. Condition c) states that service behaviour internal actions

must be mapped with a not-observable action at the level of services system. Condition

d) states that, in a given state t ′, an action a can be performed only if it is the first action

of a suffix (σ) that belongs to that state. The next state t ′′ must contain the suffix σ ′, in

place of σ, because the action a has been consumed; moreover, it contains a subset (θ) of

ΣX because, in general, when an action is performed some new sessions can be enabled

to be executed whereas other previously available sessions can be disabled (−ΣX

⊎
θ).

Condition e) states that a service engine is always willing to perform an action, that is, a

service engine is deadlock-free. Such a feature allows us to model the fact that a service

engine must be able to execute infinitely some of its sessions. Summarizing, a service

engine is a machinery which infinitely often executes finite service behaviours.

5.2.1 Example.

In order to clarify these concepts, let us consider the case of a service behaviour X whose

sessions are ΣX = {abcd, efgh} with a, d, e, f ∈ InB b, h ∈ OutB and c, g ∈ InternalB,

Chapter 5. A general model for Service Oriented Computing 177

and a service engine described by the following states and transitions:

t0 = {abcd, efgh} t1 = {bcd} t2 = {cd} t3 = {d}

t4 = {fgh} t5 = {gh} t6 = {h}

(t0, a, α, t1) (t1, b, β ′, t2) (t2, c, τ, t3) (t3, d, δ, t0)

(t0, e, ǫ, t4) (t4, f, φ, t5) (t5, g, τ, t6) (t6, h, κ ′, t0)

where α, δ, ǫ, κ ∈ InS and β ′, κ ′ ∈ Outs. The conditions on the transition relation r are

all satisfied. In t0 the service engine can perform an a or an e by exploiting transitions

(t0, a, α, t1) and (t0, e, ǫ, t4), thus in t0 the service engine is able to execute both sessions

abcd and efgh. In t1 the service engine can only continue to execute the trace bcd of the

initiated session abcd whereas in t4 it can continue to execute fgh. In t3 and t6 the service

engine terminates sessions abcd and efgh respectively and it goes to state t0 where it will

be able to perform both sessions again.

5.3 Services system

A services system is a formal machinery which allows for the representation of a finite

number of service engines that interact each others. A services system can evolve by

performing two kind of actions:

• A synchronization between two service engines. A synchronization can be per-

formed when an input action which belongs to the set InS of an involved engine

corresponds to an output action, which belongs to the set OutS, of another engine.

• An internal action. Each service engine involved in the system can perform an inter-

nal action (τ) that is not observable to the other engines.

In order to formalize synchronizations among the service engines, we define the follow-

ing relation R ⊆ (InS × OutS) between the sets InS and OutS. We say that an action

α ∈ InS can synchronize itself with an action β ∈ OutS iff αRβ. We define a services

178 Chapter 5. A general model for Service Oriented Computing

system as a process by following a CCS-like approach. Here, we report the syntax that

we will exploit for representing services systems.

P = 0 | α.P | P | P | P + P | A

where 0 is the null process, α.P is the prefix, P | P is the parallel composition of processes,

P + P is the choice composition of processes and A ranges over a set of constants where

we suppose each constant equipped with a process definition. We consider that α ranges

over the set of actions AS. The calculus semantics is that defined by Milner except the

synchronization rule which is parameterized w.r.t. a synchorization relation R as it fol-

lows:

(SYNCHRONIZATION RULE)

P
α→ P ′, Q

β→ Q ′, αRβ

P | Q
τ→ P ′ | Q ′

In general, a services system composed by the service engines Y1, Y2, ..., Yn can be seen as

the parallel composition of processes as it follows:

PY1
| PY2

| ... | PYn

where the processes PY1
, PY2

, ..., PYn
describe the service engines Y1, Y2, ..., Yn respectively.

Given a service engine Y = (X,AS, T, t0, r) indeed, it is always possible to express it by

exploiting a process. In order to do that, we express each state t ∈ T of the service engine

as a process (Pt) and then we take the process related to the initial state t0 as the service

engine process. Each state t ∈ T can be represented by ordering2 the suffixes it contains

in the following way:

t = {a1,1a1,2...a1,n1
, a2,1a2,2...a2,n2

, ... , am,1am,2...am,nm
}

where ai,j is a service behaviour action and i, j are two labels which denote the suffix and

the position of the action within the suffix respectively. For example the action a1,2 is the

second action of the first suffix. Now, let t be a state of Y and let

(t, a1,1, α1, t1), (t, a2, α2,1, t2), ..., (t, am, αm,1, tm)

2The ordering can be obtained by applying the Cantor dovetailing over the suffixes and their occur-

rences.

Chapter 5. A general model for Service Oriented Computing 179

the transitions in r where t is the starting state, t1, ..., tm are the target states of the transi-

tions and α1, ..., αm are the services system actions raised by each transition. Since in the

state t the service engine can choose to preform the first actions of its own suffixes, we

represent it by exploiting a process Pt defined in terms of an equation as it follows:

Pt = α1.Pt1
+ α2.Pt2

+ ... + αm.Ptm

where Pt1
, Pt2

, ..., Ptm
are the processes joined with the states t1, t2, ..., tm respectively. A

service engine Y is represented by the process joined with its initial state t0. Its definition

equation follows:

PY := Pt0

5.4 Starting application.

It is worth noting that, by definition, a service behaviour always starts with an external

input action. It descends that a services system process cannot evolve because all the

startintg actions of the involved service engines are input actions. As we have introduced

in Section 2.3.3, a starting application is an application able to starts a services system

by performing an output action which fires one of the involved service engines at least.

Here, we assume that in a services system there exists one or more starting applications.

In particular, we say that each services system needs at least a starter application for beginning

its evolution. A starter application is not a service engine because starts with an output

operation, although it can be modelled by exploiting a service engine which executes a

sort of service behaviour that starts with an external output operation. Here, for the sake

of brevity, we do not present a formal definition of starter application because it can be

easily extracted from those of service behaviour and service engine. In the context of

the services system we treat a starter application as a CCS process which starts with an

output operation.

180 Chapter 5. A general model for Service Oriented Computing

5.5 Example.

In order to clarify these concepts, let us consider a services system example where, firstly,

we model the service engine presented in the previous section as a CCS process (we call

it Pt0
) and then we introduce two other service engines (Qt0

and Rt0
) and a starter appli-

cation (SAt0
)3:

Pt0
= α.Pt1

+ ǫ.Pt4
Qt0

= ρ.Qt1
Rt0

= ω.Rt1

Pt1
= β.Pt2

Qt1
= α.Qt2

Rt1
= ǫ.Rt2

Pt2
= τ.Pt3

Qt2
= δ.Qt0

Rt2
= φ.Rt3

Pt3
= δ.Pt0

Pt4
= φ.Pt5

Pt5
= τ.Pt6

Pt6
= κ.Pt0

where the actions β, ρ,ω, κ belong to the set InS, the actions α, δ, ǫ, φ, ρ,ω belong to the

set OutS and the synchronization relation is:

R = {(α, α), (β,β), ..., (ω,ω)}

The starter application is:

SAt0
= ρ.β.0 | ω.κ.0

The services system is modelled by the following CCS process:

SerSystem = Pt0
| Qt0

| Rt0

The evolution of such a services system, fired by the application SAt0
, can be analyzed

3For the sake of this example, we denote the output actions by using overlined letters and we consider

the usual CCS synchronization relation where not overlined letter actions synchronize themselves with the

overlined ones

Chapter 5. A general model for Service Oriented Computing 181

by considering the following CCS process:

FiredSystem = SAt0
| Pt0

| Qt0
| Rt0

Depending on the first action (ρ or ω) performed by the process SAt0
will be enabled the

process Qt0
or the Rt0

one. Now let us discuss the case where Qt0
is enabled, the other

case plays similarly. When Qt0
is enabled, it synchronizes itself with Pt0

on the actions

(α, α) and Pt0
goes into Pt1

. Then, Pt1
synchronizes itself with the starter application on

the action (β,β). Finally, Qt2
synchronizes itself with Pt2

and both the processes restarts

from Qt0
and Pt0

. Now, Pt0
is able to continue by synchronizing itself with Rt0

. The

final state of the FiredSystem is equal to the SerSystem because the starter application

is consumed and the service engines are all at the initial state.

Part II

Toward a new set of concrete languages

for services system design:

the bipolar approach

182

Chapter 6

Choreography

In this chapter we introduce a formal representation of choreography. Such a kind of for-

malization is based upon the concepts of roles, conversations, and knowledge. The roles

abstractly represent the participants involved within a choreography that are able to

interact with other participants by means of operations. The conversations allows us

to express the evolution of the interactions among the roles by means of a language

equipped with a formal semantics and the knowledge expresses the information known

by each role that can be communicated during the execution of a choreography. In par-

ticular, roles formalization deals with the so-called static part of the choreography where

each participant is denoted by a name and a set of operations it is able to execute. The

formalization of the conversations denotes the dinamic part of the choreography and it

is represented in terms of a process calculus where its main constructs are inspired to

those of WS-CDL specification. Precisely, it provides primitives for expressing a single

or a double message exchange between two roles and it provides operators for com-

posing in sequence, parallel and non-deterministic choice the basic primitives. Finally,

the knowledge formalization directly deals with the execution part of the choreography

where knowledges are distributed among the involved roles and a semantics is given to

the choreography in terms of a labelled transition system. Moreover, in the following, we

introduce the definition of connected choreographies and error-free choreographies. The

former ones are choreographies where for every interaction the sender role corresponds

to the receiver one of the interaction that logically precedes it, whereas the latter ones

184 Chapter 6. Choreography

are choreographies where the information are correctly communicated among the roles

i.e. information are communicated only if they are known by the senders. These kinds

of choreographies will be exploited in Chapter 9 where we use the bipolar approach for

designing systems. In general we can say that a designer must always obtain a system

choreography which is connected and error-free. Finally, we compare the choreography

formal model with WS-CDL specification and we discuss an example extracted from the

specification by representing it with our formal model.

6.1 Communication mechanisms

The choreography language exploits the same basic communication mechanisms of SOCK:

the operations. Here, we consider the operation definition as extended in section 4.2.1

where message templates are introduced and where we consider only the location mo-

bility mechanism. For the sake of clarity, we remind some definitions: let inf denote the

type information and let loc denote the type location. Let T , ranged over by~t, be the set

of templates defined as arrays of type elements. For example ~t ′ = 〈inf, inf, inf, loc, inf, loc〉

represents the structure of a message where the fourth and the sixth elements are loca-

tions and the other elements are information. Let Val, ranged over by v, be the set of

values on which is defined a total order relation, InfVal ⊆ Val, ranged over by δ, be the

set of generic information and LocVal ⊆ Val, ranged over by l, be the set of the locations.

Let Type be the function that, given v ∈ Val, returns the type of v. Since currently, we are

considering only the generic information type and the location one we define:

Type(v) = inf if v ∈ InfVal

Type(v) = loc if v ∈ LocVal

We denote with ~v = 〈v0, v1, ..., vn〉 a tuple of values. Let ~t = 〈t1, . . . , tn〉 be a template

and ~v = 〈v1, . . . , vs〉 be a tuple, we say that ~v satisfies~t, denoted as~t ⊢ ~v, if the following

conditions hold:

1. n = s,

Chapter 6. Choreography 185

2. ∀vi, Type(vi) = ti.

Let O be a set of operation names and Op be the set of operations defined as follows:

Op =
{
(o, ow,~t) | o ∈ O,~t ∈ T

}

∪
{
(o, n,~t) | o ∈ O, ~t ∈ T

}

∪
{

(o, rr,~t, ~t ′) | o ∈ O, ~t, ~t ′ ∈ T
}

∪
{

(o, sr,~t, ~t ′) | o ∈ O, ~t, ~t ′ ∈ T
}

An operation is identified by a name (o), an interaction modality (ow, n, rr and sr repre-

sent One-Way, Notification, Request-Response and Solicit-Response interaction modali-

ties respectively) and one or two templates (~t, ~t ′) depending on the fact that the opera-

tion deals with a single message (One-Way and Notification operations) or two messages

(Request-Response or Solicit-Response operations). In the former case, ~t represents the

template of the exchanged message whereas in the latter one ~t represents the template

of the request message and ~t ′ represents the template of the reply one. In the following

we use o~t, o~t, o~t,~t′ and o~t,~t′ to range over Op for denoting the operations. We say that

two operations o~t and o ′
~t′ are dual if o = o ′ and ~t = ~t ′. Analogously, we say that two

operations o~t,~t′ and o ′
~t′′,~t′′′ are dual if o = o ′,~t = ~t ′′ and~t ′ = ~t ′′′. Duality is defined in the

following way:

o~t ⊲⊳ o ′
~t′ ⇔ o = o ′ ∧~t = ~t ′

o~t,~t′ ⊲⊳ o ′
~t′′,~t′′′ ⇔ o = o ′ ∧~t = ~t ′′ ∧~t ′ = ~t ′′′.

6.2 A formal model for choreography

Choreography allows for the representation of a closed service oriented system in a top

view manner. Each choreography is composed by three main parts: the static part, the

dynamic part and the execution part.

186 Chapter 6. Choreography

• the static part allows for the definition of the roles where a role is an abstract repre-

sentation of a system participant.

• the dynamic part allows for the description of the interactions evolution performed

within a choreography where an interaction represents a message exchange be-

tween two roles.

• the execution part allows for the representation of the behavior of a choreography

by means of a set of labelled transition systems.

6.2.1 Static part

The static part allows for the definition of the participants involved in a choreography,

called roles, and the definition of the exchanged information.

• Role definition: a role is represented by a name and a set of operations. Let RName

be the set of the role names, ranged over by ρ and Role be the set of all the possible

roles defined as follows:

{(ρ,ω) | ρ ∈ RName, ω ⊆ Op}

where each role is univocally identified by its name ρ. The set ω contains both input

and output operations. The input operations must be intended as the operations

exhibited by the roles whereas the output ones must be considered as a knowledge

which allows the role for invoking other services. In particular, a role can invoke

only the operations which are dual of the output ones it knows. For example, let us

consider the following roles:

(A, {a ~t1
, b ~t2

}) (B, {b ~t2
, c ~t2,~t3

}) (C, {a ~t1
, c ~t2,~t3

})

Role A can invoke role B on operation b. Role B can invoke role C on operation

c and role C can invoke role A on operation a. The fact that two roles are able

to communicate through a couple of dual operations (in the following called com-

munication link), does not imply that the interaction will be performed during the

Chapter 6. Choreography 187

execution of the choreography. Interactions are designed within the dynamic part,

the static part supplies only the description of the possible interactions that can be

performed. Given a set of roles it is possible to represent the communication links

by exploiting a graphical representation. In Fig. 6.1 is reported the graphical repre-

sentation of the example above. The circles represent the roles, the black segments

represent the operation exhibited by a role, a single arrow represents that a role can

invoke a One-Way operation exhibited by another role by exploiting the dual notifi-

cation and, analogously, a double arrow represents a Request-Response invocation.

Figure 6.1: Graphical representation of communication links

• Information definition: in a message exchange some data are communicated from a

role to another one by means of an operation. Data can be information or loca-

tions where the former represent all the application information exchanged among

the roles whereas the latter represent the role locations1. Both information and loca-

tions are represented by two disjunct set of names. In particular, since in choreogra-

phy we abstract away from physical locations, we represent locations by exploiting

role names. Formally, let IC, ranged over by i, be a set o of names which represent

information and RName be the set which corresponds to the set of locations and let

x range over IC ∪ RName.

1The possibility to express the locations as an exchanged data differently from application information,

will allow us to model the location mobility within the choreography language.

188 Chapter 6. Choreography

6.2.2 Dynamic part

The dynamic part allows for the design of the evolution of the choreography by means

of conversations. Conversations are programmed by exploiting a language, called CL, and

they allows for the representation of interactions among the involved roles. We denote

with ~x a vector of information and/or locations. The syntax of CL follows:

C ::= 0 | η | i :=ρ e | C;C | C|C |
∑+

i∈H ηi;Ci

| if χρ then C else C | while(χρ, C)

η ::= ρA ⇀~x
o~t

ρB | ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C) | int(ρ)

0 represents the null conversation and η represents the basic conversations. In particular,

ρA ⇀~x
o~t

ρB is a One-Way interaction between the role ρA and the role ρB on the operation

o~t where the exchanged message is represented by the vector ~x whose elements are both

information and locations, ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C) represents a Request-Response interaction be-

tween role ρA and role ρB on the operation o~t,~t′ where the request message is represented

by the vector ~x whereas the response one by the vector ~y. The elements of the vectors

are both information and locations and the conversation C within the brackets represent

the conversation to be executed between the request and the response message. int(ρ)

represents an internal action performed by the role ρ. Such a kind of primitive allows for

the modelling of some internal tasks, performed by a role, whose nature is unknown to

the designer. i :=ρ e represents the assignment where e denotes an expression which can

contain numerical constants and information names and ρ denotes the role where the

assignment is performed. The ; and | operators represent sequence and parallel com-

position respectively whereas
∑+

i∈H ηi;Ci represents the non-deterministic choice among

choreographies where H is a set of indexes. It is worth noting, that all the branches of

the non-deterministic choice start with an interaction η. Such an operator, indeed, allows

for the representation of conversations where it is not possible to predict which inter-

action has to be performed in a given moment but it depends on the system run-time

configuration. By definition, η can be also an internal action; such a fact implies that the

Chapter 6. Choreography 189

non-deterministic choice can be designed by considering a race among interactions and

internal actions of some involved role. In this case a role can internally choose to select

a branch of the choreography discarding the other ones. if χρ then C elseif C rep-

resents a deterministic choice where χρ is a condition evaluated within the role ρ. The

conditions can be expressed only on information and they are expressed by exploiting

the following grammar:

χ ::= i ≤ e | e ≤ i | ¬χ | χ ∧ χ

It is worth noting that conditions such as i = v, i 6= v and v1 ≤ i < v2 can be defined

as abbreviations. Finally, while(χρ, C) allows us to express iteration where the chore-

ography C is executed until the condition χρ is true, ρ is the role where the condition is

evaluated. In the following we present the well-formedness rules for conversations.

6.2.2.1 Well-formedness.

Well-formedness rules deal with the One-Way interaction and the Request-Response one.

If they are satisfied, the interaction can be potentially performed because the transmitted

information satisfy the operation template and both the sender and the receiver are able

to exploit the operation on which the message exchange has to be performed. Let length

be a function which returns the number of elements of an array. Given a template ~t and

a vector ~x we say that the vector ~x satisfies the template~t (~x ⊢ ~t) if :

~x ⊢ ~t ⇒ length(~t) = length(~x)∧

∀i < length(~t),

if t[i] = inf ⇒ x[i] ∈ IC

if t[i] = loc ⇒ x[i] ∈ RName

We say that a conversation is well formed if the following conditions hold:

a) for any interaction ρA ⇀~x
o~t

ρB

– ~x ⊢ ~t

190 Chapter 6. Choreography

– o~t ∈ ωB

– o~t ∈ ωA

b) for any interaction ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C)

– ~x ⊢ ~t,~y ⊢ ~t ′

– o~t,~t′ ∈ ωB

– o~t,~t′ ∈ ωA

where ωA and ωB represent the sets of the operations of the roles ρA and ρB respectively.

The conditions state that:

• within an interaction the exchanged message has to satisfy the operation template

• the operation on which the interaction is performed has to belong to the receiver

and the dual one has to belong to the sender.

6.2.3 Choreography execution

Choreography execution deals with the semantic representation of a choreography. The

semantics is given in terms of a set of labelled transition systems [Kel76] whose nodes are

tuples of three elements (C,K, γ): the conversation (C), the knowledge (K) and the state

(γ). The former is expressed by exploiting the language CL and represents the actual con-

versation to perform, the knowledge supplies a formal representation of the information

and the locations known by each role, and the state represents the actual values of each

information exploited within the choreography. Each choreography is equipped with a

logic condition on the information called initial constraints which allows us to bound the

range of the values of each information. For each configuration of information values

which satisfies the initial constraints, a labelled transition system is generated starting

from a tuple (C0,K0, γ0) where C0 represents the initial conversation, K0 represents the

initial knowledge and γ0 is the initial state coherent with the given configuration of in-

formation values.

Chapter 6. Choreography 191

6.2.3.1 The knowledge.

The knowledge for a choreography represents:

• the set of all the information known by each involved role

• the set of all the locations known by each involved role

Formally, the knowledge is defined as follows:

K = (I, Λ)

where I and Λ are two functions:

1. I : RName → P(IC)

2. Λ : RName → P(RName)

the function I is called information function and joins each role to a set of known informa-

tion, the function Λ is called location function and represents all the locations known by

each role. In the following, given a distribution of knowledge K, we exploit the notation

KI for denoting the function I and KΛ for denoting the function Λ. The update operators

for a knowledge K is defined as follows:

K[~x/ρ] = K ′ ∀i ≤ length(~x),

KI ′(ρ) = KI(ρ) ∪ xi if xi ∈ IC

KI ′(ρ ′) = KI(ρ ′)

KΛ′
(ρ) = KΛ(ρ) ∪ xi if xi ∈ RName

KΛ′
(ρ ′) = KΛ(ρ ′)

The operator K[~x/ρ] allows for the updating of the knowledge of a role ρ with the in-

formation and the locations contained within the vector ~x. If the element xi is an in-

formation, the function I will be updated by adding it to the known information of ρ

and, if the element xi is a location, the function Λ will be updated by adding it to the

known locations of ρ. Furthermore, we exploit the following notation for representing

the information and the locations known by a role:

K(ρ) = I(ρ) ∪ Λ(ρ)

192 Chapter 6. Choreography

6.2.3.2 The state.

The state of a choreography is represented by the following function which holds the

actual values of the infotmation used within the choreography:

γ : IC → InfVal

The update operator for γ is defined as follows:

γ[δ/i] = γ ′ γ(j) =

γ ′(j) = γ(j) if j 6= i

γ ′(j) = δ if j = i

Let x be a vector of information and/or locations, we exploit the following notation for

expressing its actual content:

ẋ = γ(x) if x ∈ IC

ẋ = x if x ∈ RName

We extend such a notation for a vector of elements as follows:

~x = 〈x1, x2, ..., xn〉 ⇒ ~̇x = 〈ẋ1, ẋ2, ..., ẋn〉

Furthermore, we exploit the notation γ ⊢ χ for denoting that the function γ satisfies the

logic condition χ. The satisfaction relation for ⊢ is defined by the following rules:

1. e →֒γ δ, γ(i) ≤ δ ⇒ γ ⊢ i ≤ e

2. e →֒γ δ, δ ≤ γ(i) ⇒ γ ⊢ e ≤ i

3. γ ⊢ χ ′ ∧ γ ⊢ χ ′′ ⇒ γ ⊢ χ ′ ∧ χ ′′

4. ¬(γ ⊢ χ) ⇒ γ ⊢ ¬χ

where e →֒γ δ means that the expression e is evaluated into δ under the state γ.

Chapter 6. Choreography 193

6.2.3.3 The labelled transition system.

The labelled transition system of a choreography is defined by exploiting the semantic

rules of CL which describe the evolution of a conversation joined with a knowledge and

a state. Let ActC = {µ | µ = (ρA, ρB, ot,~x)} ∪ {µ | µ = (ρA, ρB, ot,t′,~x, dir)} ∪ {τ, π(ρ)}

be the set of actions ranged over by ν where µ represents parameterized interactions

and dir ∈ {↑, ↓} is the set whose elements ↑, ↓ describe the direction of a message ex-

change in a Request-Response interaction: ↑ is the request message and ↓ is the response

one. τ represents an unobservable action whereas π(ρ) represents an internal action

performed by a role ρ. It is worth noting that, to the end of the conformance we will

present in Chapter 8, the action π(ρ) will be observable even if, considering the language

CL, it models an action performed by a role whose nature is unknown for the designer.

(C,K, γ)
ν→ (C ′,K ′, γ ′) means that the conversation C with the knowledge K and the

state γ, evolves in one step in a configuration (C ′,K ′, γ ′) performing the action ν. Let KC

be the set of all possible knowledge couples and let ΓC be the set of all the possible states.

We define →⊆ (CL, KC, ΓC) × ActC × (CL, KC, ΓC) as the least relation which satisfies the

axioms and rules of Table 6.1 and closed w.r.t. ≡, where ≡ is the least congruence relation

satisfying the axioms at the end of Table 6.1. The structural congruence ≡, which equates

the conversations whose behaviour cannot be distinguished, expresses that (C, |) is

an abelian monoid where 0 is the null element. Furthermore, the rule 0;C ≡ C means

that when a conversation completes then the other one which follows in sequence can be

performed. It is worth noting that, in order to model the Request-Response message ex-

change, we have introduced the syntactic term: ρA ↽~x
o

~t, ~t ′
ρB which represents a response

message interaction.

The description of axioms and rules follows. The axiom ONE-WAY describes the evo-

lution of a One-Way interaction. It is worth noting that the interaction is performed in

an atomic way: the message is sent and received and the knowledge is updated adding

the message ~x to the knowledge of the receiver role ρB, the label µ reports the actual

values of the vector ~̇x which will be fundamental to the end of conformance. Axioms

REQUEST and RESPONSE deal with the Request-Response interaction pattern. The for-

mer one deals with the request interaction whereas the latter one deals with the response

194 Chapter 6. Choreography

(ONE-WAY)

(ρA ⇀~x
o~t

ρB,K, γ)
µ→ (0,K[~x/ρB], γ), µ = (ρA, ρB, o~t, ~̇x)

(REQUEST)

(ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C),K, γ)

µ→ (C; ρA ↽~y
o

~t, ~t ′
ρB,K[~x/ρB], γ), µ = (ρA, ρB, o~t,~t′, ~̇x, ↑)

(RESPONSE)

(ρA ↽~x
o

~t, ~t ′
ρB,K, γ)

µ→ (0,K[~x/ρA], γ), µ = (ρA, ρB, o~t,~t′ , ~̇x, ↓)

(INTERNAL)

(int(ρ),K, γ)
π(ρ)→ (0,K, γ)

(ASSIGN)

e →֒γ δ

(i :=ρ e,K, γ)
τ→ (0,K, γ[δ/i])

(SEQUENCE)

(C,K, γ)
ν→ (C ′,K ′, γ ′)

(C;D,K, γ)
ν→ (C ′;D,K ′, γ ′)

(PARALLEL)

(C,K, γ)
ν→ (C ′,K ′, γ ′)

(C | D,K, γ)
ν→ (C ′ | D,K ′, γ ′)

(CONGR)

C ′ ≡ C, (C,K, γ)
ν→ (D,K ′, γ ′), D ≡ D ′

(C ′,K, γ)
ν→ (D ′,K ′, γ ′)

(CHOICE)

(ηi,K, γ)
ν→ (D,K ′, γ ′), i ∈ H

(
∑+

i∈H ηi;Ci,K, γ)
ν→ (D;C ′

i,K
′, γ ′)

(IF THEN)

γ ⊢ χ

(if χρ then C else D,K, γ)
τ→ (C,K ′, γ ′)

(ELSE)

γ ⊢/χ

(if χρ then C else D,K, γ)
τ→ (D,K ′, γ ′)

(WHILE 1)

γ ⊢ χ

(while(χρ, C),K, γ)
τ→ (C;while(χρ, C),K ′, γ ′)

(WHILE 2)

γ ⊢/χ

(while(χρ, C),K, γ)
τ→ (0,K, γ)

(STRUCTURAL CONGRUENGE)

0;C ≡ C C | 0 ≡ C

C | D ≡ D | C (C | D) | F ≡ C | (D | F)

Table 6.1: Semantics rules for choreography execution

Chapter 6. Choreography 195

interaction where the syntactic element ρA ↽~y
o

~t, ~t ′
ρB describes that a response interaction

must be performed. The labels µ of the request interaction and the response one differs

for the direction represented by the arrows: the arrow ↑ represents the request and the ar-

row ↓ represents the response. Rule ASSIGN describes how the state is updated when an

assignment is performed2. Rules SEQUENCE, PARALLEL and CONGR are standard. Rules

IF THEN and ELSE deal with deterministic choice whereas rules WHILE 1 and WHILE

2 deal with the while construct. Rule CHOICE deals with the non-deterministic choice

where the construct ηi;Ci guarantees that each branch of the choice always starts with an

interaction between two roles or an internal action.

6.2.3.4 Initial constraints.

The initial constraints, denoted with X, are expressed in terms of a logic condition on the

information which follows the rules of the χ condition presented in Section 6.2.3.1. For

each initial configuration of the information values which satisfies the initial constraints

X an initial state γ will be generated. For example let us consider a choreography where

the information named apple and banana are defined. The initial constraints could be

defined as follows:

X := apple > 0 ∧ apple < 3 ∧ banana >= 0 ∧ banana < 2

Four different initial states will be generated:

γ0[1/apple, 0/banana]

γ1[2/apple, 0/banana]

γ2[1/apple, 1/banana]

γ3[2/apple, 1/banana]

2The role ρ of the assign primitive i :=ρ e will be exploited in the following for defining the error-free

choreographies.

196 Chapter 6. Choreography

It is worth noting that the initial constraints are considered only for the generation of the

initial states and they will be ignored during the different executions of the choreography.

Given an initial constraint X we define the set of all the possible initial states as follows:

γX := {γi | γi ⊢ X}

where, with the term γi ⊢ X we denote a state γi which satisfies the initial constraints

defined in X.

6.2.4 The choreography

Now we are ready to define a choreography. A choreography, denoted by C, is defined

by the tuple (Σ,C0,K0, X) where Σ ⊆ Role is a finite set containing the involved roles,

C0 ∈ CL, K0 is the initial knowledge and X is a logic condition which expresses the

variables constraints of the initial state. The execution of a choreography C is expressed

by the set of all the labelled transition systems generated starting from a tuple (C0,K0, γi)

where γi ranges over γX.

6.3 Connected choreographies.

A choreography is connected when its conversation is connected. Intuitively, a conversa-

tion is connected when for every interaction the sender role corresponds to the receiver

one of the interaction that logically precedes it. For example, let us consider the follow-

ing not-connected conversation:

ρA ⇀x
o~t

ρB; ρC ⇀y

o′

~t ′

ρD

In this example, the first interaction is performed when the role ρB receives the message

whereas the following one performs a message exchange from ρC to ρD. The conversation

is not connected because there are any logical connections between the first interaction

and the second one. Indeed, the first one finishes on role ρB whereas the latter one starts

Chapter 6. Choreography 197

from role ρC which is the sender role of the second interaction and ρC cannot be aware of

the termination of the first interaction. In order to be connected, the conversation could

be modified as follows by adding a new interaction:

ρA ⇀x
o~t

ρB; ρB ⇀z
o′′

~t ′′

ρC; ρC ⇀y

o′

~t ′

ρD

Such a conversation is connected because the first interaction finishes on role ρB where

starts the second one. Moreover, the second one finishes on role ρC where starts the third

one. The connection issue in the choreography setting has been proposed by Honda et

al. in [MCY] where the authors introduce such a definition in order to limit the set of

the accepted choreographies to those that are connected. Here, we introduce connected

choreographies in order to deal with system design without limiting the accepted chore-

ographies to the accepted ones. Such an aspect will be explained in Chapter 9 where we

present a design system example which exploits a not-connected choreography.

Before defining connected conversations we introduce the sets Final and Init which al-

lows us to define, for any syntactic element of a conversation, the set of the roles where

it finishes and begins respectively. The set Final is inductively defined as it follows:

1. Final(ρA ⇀~x
o~t

ρB) = {ρB}

2. Final(ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C)) = {ρA}

3. Final(int(ρ)) = {ρ}

4. Final(i :=ρ e) = {ρ}

5. Final(C;C ′) = Final(C ′)

6. Final(C | C ′) = Final(C) ∪ Final(C ′)

7. Final(
∑+

i∈H ηi;Ci) =
⋃

i∈H Final(Ci)

8. Final(if χρ then C else C ′) = Final(C) ∪ Final(C ′)

198 Chapter 6. Choreography

9. Final(while(χρ, C)) = Final(C) ∪ {ρ}

In general the set Final, given a conversation, contains all the roles on which the con-

versation ends. For instance, let us consider rule 1 which deals with the One-Way in-

teraction: in this case the set Final contains the receiver role ρB because the interaction

is completed only when the message is received by role ρB. On the contrary, in rule 2,

where the Request-Response interaction is taken into account, the set Final contains the

sender role ρA because all the interaction is completed only when the response message

is received by the sender role. Rule 3 and 4 deal with the internal action and the assign-

ment respectively; in both cases the set Final contains the role where the conversation is

performed. In rule 5 the sequence composion of two conversation is taken into account;

it is worth noting that, obviously, only the set Final of the latter conversation takes rel-

evance. Rule 6 deals with the parallel composition where the set Final is obtained as

the union of the set Final of the two conversations; this is due to the fact that a parallel

conversation can be considered completed when both the conversations are completed.

Rules 7, 8 and 9 deal with the non-deterministic choice, the if then else and the while con-

structs respectively. It is worth noting that in while construct the set Final is represented

by the union of the set Final of the body conversation C, and the role ρ where the condi-

tion is evaluated; this is due to the fact that the condition could be immediately evaluated

to false without never executing the body C. In the following we present the inductive

definition of the set Init:

1. Init(ρA ⇀~x
o~t

ρB) = {ρA}

2. Init(ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C)) = {ρA}

3. Init(int(ρ)) = {ρ}

4. Init(i :=ρ e) = {ρ}

5. Init(C;C ′) = Init(C)

6. Init(C | C ′) = Init(C) ∪ Init(C ′)

Chapter 6. Choreography 199

7. Init(
∑+

i∈H ηi;Ci) =
⋃

i∈H Rec(ηi),

Rec(ρA ⇀~x
o~t

ρB) = Final(ρA ⇀~x
o~t

ρB)

Rec(ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C)) = {ρB}

Rec(int(ρ)) = Final(int(ρ))

8. Init(if χρ then C else C ′) = {ρ}

9. Init(while(χρ, C)) = {ρ}

In general, the set Init contains all the roles which initiate a conversation. The rules for

generating the set Init follow the same approach exploited for the set Final generation

with the exception that conversation initial roles are considered. In particular, the set

Init of the non-deterministic choice, defined in rule 7, deserves to be commented. By

definition a non deterministic choice always starts with a conversation ηi that can be

an interaction or an internal action. Since the interactions are always performed in an

atomic way, it descends that only the receiver is able to non-deterministically select the

branch to execute. In other words, the choice is always performed by the receiver roles of

the ηi interactions. In order to be clear as much as possible, let us consider the following

conversation where there is a non-deterministic choice between two conversations:

ρA ⇀~x
o~t

ρB;C + ρC ⇀~y

o′

~t ′

ρB;C ′

depending on the first interaction received (from ρA or from ρC) the conversations C

or C ′ are executed. The choice is performed within the role ρB that is the receiver of

both interactions and can evaluate which message is firstly received. In light of these

observations, the set Init of the non-deterministic choice corresponds to the union of the

receiver roles of the interactions ηi. Now, we inductively define the following function

Conn : CL → Bool which allows us to state if a conversation is connected or not where

with the notations #Final(C) and #Init(C) we denote the cardinality of the sets Final

and Init respectively.

1. Conn(ρA ⇀~x
o~t

ρB) = true

2. Conn(int(ρ)) = true

200 Chapter 6. Choreography

3. Conn(i :=ρ e) = true

4. Conn(ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C)) =

true if Init(C) = Final(C) = {ρB} ∧

Conn(C) = true

false otherwise

5. Conn(C;C ′) =

true if Final(C) = Init(C ′)∧

#Final(C) = #Init(C ′) = 1∧

Conn(C) = Conn(C ′) = true

false otherwise

6. Conn(C | C ′) =

true if Conn(C) = Conn(C ′) = true

false otherwise

7. Conn(
∑+

i∈H ηi;Ci) =

true if #Init(
∑+

i∈H ηi;Ci) = 1∧

∀i ∈ H,Conn(ηi;Ci) = true

false otherwise

8. Conn(if χρ then C else C ′) =

true if Init(C) = Init(C ′) = {ρ}

false otherwise

9. Conn(while(χρ, C)) =

true if Final(C) = Init(C) = {ρ}

false otherwise

One-Way interactions, internal actions and assignment are always connected whereas a

Request-Response is connected if the conversation C performed within the request and

the reply always starts and finishes with the receiver role ρB. A sequence between two

conversations, C and C ′, is connected only if the conversation C finishes in the same

role where the C ′ starts and the parallel composition of two conversations is connected

if the two components are connected. The non-deterministic choice is connected only

if the set Init contains only one role. The if then else construct is connected if the

conversation C and C ′ has a set Init that corresponds to the role on which the condition

χ is evaluated. In the same way the while primitive is connected if the role on which

Chapter 6. Choreography 201

the condition is evaluated is the same of that contained within the set Init of the body

conversation C, it is worth noting that also the set Final of the conversation C has to

correspond to the role on which the condition is evaluated. In the following we exploit

the function Conn for defining connected choreographies.

Definition 6.1 (Connected choreographies) Let C be a choreography where C is its conver-

sation. We say that C is a connected choreography if Conn(C) = true.

6.4 Error-free choreographies

The knowledge allows for the representation of the information flow among the roles.

The One-Way interactions and the Request-Response one allows for the communication

of the information from a role to another one. Since conversations are programmed in-

dipendently from the knowledge, it is possible to design choreographies where some

interactions try to perform an information exchange (or a location exchange) even if the

information does not belong to the sender knowledge. Moreover, it is possible to design

conversations where the sender role try to send a message to the receiver one without

knowing its location. In this cases, we say that the choreography has an error because it

allows for the communication of some information that cannot be communicated. For

example, let us consider the following knowledge and conversation:

KI(ρA) = {apple}

KI(ρB) = {banana}

KI(ρC) = ∅

KΛ(ρA) = {ρB}

KΛ(ρB) = KΛ(ρC) = ∅

ρA ⇀apple
o~t

ρB; ρB ⇀nuts
o′

~t ′

ρC

where IC = {apple, nuts, banana}. The first interaction, from role ρA to the role ρB,

can be performed because role ρA knows the information apple and it knows also the

202 Chapter 6. Choreography

location of role ρB (KΛ(ρA) = {ρB}), but the second interaction from role ρB to role ρC

cannot be performed for two reasons: on the one hand, ρB does not know the location

of ρC (the set KΛ(ρB) is empty) and, on the other hand, the information nuts does not

belong to the knowledge of the role ρB. Since we intend to manage choreographies where

the information can be sent only if they are known by the sender and the interaction can

be performed if the sender knows the location of the receiver, here we introduce the

defintion of the error-free choreography. An error-free choreography is a choreography

where, for each performed interaction, the communicated information and locations are

always known by the sender. In order to define it, we extend the semantics rules of Table

6.1 with the rules of Table 6.2 where we consider the set of actions extended with the

action err. It is worth noting that rule RESPONSE does not deal with the condition on

the location knowledge of the sender, that is the role ρB. This is due to the fact that we

consider a hidden location mobility within a Request-Response interaction, as we have

discussed within Section 3.5.3, which implies that the response sender is not aware of

the location of the response receiver because it is managed at the level of the Request-

Response primitive. Rule ASSIGN deserves to be commented:

• the assigned information (i) has to be known only by the declared role ρ. An as-

signment on an information shared by two or more roles indeed, would allow all

of them to access the new value immediately by implicitly representing a system

where such a new value is communicated among all the roles without any message

exchange.

• all the information contained within the expression e (represented by the symbol

ie) has to be known by the role ρ. In this case indeed, all the information needed

for computing the expression e must be available at the same role ρ where the in-

formation i to be assigned is known.

Rules IF THEN ELSE and WHILE specify that a condition can be evaluated only if all the

involved information belong to the specified role ρ. With abuse of the notation ie ∈ χ

for representing an information ie that is contained within the logic condition χ. The

definition of the error-free choreography follows:

Chapter 6. Choreography 203

(ONE-WAY)

∀xi ∈ ~x,∃xi /∈ K(ρA) ∧ ρB ∈ KΛ(ρA)

(ρA ⇀~x
o~t

ρB,K, γ)
err→ (0,K, γ)

(REQUEST)

∀xi ∈ ~x,∃xi /∈ K(ρA) ∧ ρB ∈ KΛ(ρA)

(ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C),K, γ)

err→ (0,K, γ)

(RESPONSE)

∀xi ∈ ~x,∃xi /∈ K(ρB)

(ρA ↽~x
o

~t, ~t ′
ρB,K, γ)

err→ (0,K, γ)

(ASSIGN)

i /∈ K(ρ) ∨ (∃ρ ′ ∈ Role, i ∈ K(ρ ′) ∨ (∃ie ∈ e, ie /∈ K(ρ))

(i :=ρ e,K, γ)
err→ (0,K, γ)

(IF THEN ELSE)

∃ie ∈ χ, ie /∈ K(ρ)

(if χρ then C else D,K, γ)
err→ (0,K ′, γ ′)

(WHILE)

∃ie ∈ χ, ie /∈ K(ρ)

(while(χρ, C),K, γ)
err→ (0,K ′, γ ′)

Table 6.2: Error Rules

204 Chapter 6. Choreography

Definition 6.2 (Error-free choreographies) Let C = (Σ,C0,K0, X) be a choreography and let

→err⊆ (CL, KC, ΓC)×ActC∪ {err}× (CL, KC, ΓC) be the least relation which satisfies the axioms

and rules of Tables 6.1 and 6.2 and closed w.r.t. ≡. We say that C is an error-free choreography

if it does not exists a state γ0 ∈ γX for which the relation →err, defined starting from the tuple

(C0,K0, γ0), contains a transaction labelled with err.

6.5 Discussion.

This section is devoted to reason about some interesting aspects raised by the choreogra-

phy approach.

• Choreography is receiver-centered. The most interesting aspect of the choreography

approach is the fact that an interaction is performed in an atomic way that is, the

interaction is performed only when the message is sent and received. Such a feature

has a strong impact from the designing point of view because it obliges the designer

to reason on the reception of the message and not on its sending. In this sense,

we say that choreography is receiver-centered. Let us consider, for example, the

following conversation:

ρA ⇀~x
o~t

ρB; ρB ⇀~y

o′

~t ′

ρC

Such a conversation describes a choreography where the message from the role ρB

to the role ρC can be sent only after the reception of the message from ρA to ρB. The

choreography forces the designer to implement the role ρB in a way that, firstly, it

receives the message from ρA and then it sends the message to ρC. The choreog-

raphy is finished when ρC has received the message and not when ρB has sent the

message to ρC. Moreover, let us consider the following not-connected conversation:

ρA ⇀~x
o~t

ρB; ρA ⇀~y

o′

~t ′

ρC

Such a conversation describes a system where role ρA sends a message to role ρB

and only when the role ρB has received the message, role ρA can send the message

to role ρC. Such a kind of choreography implicitly describes a system where there is

Chapter 6. Choreography 205

a hidden synchronization between the role ρA and the role ρB. Role ρA indeed, must

be aware of the reception of the message at ρB before sending the second message to

role ρC. In general, we can say that in a choreography interaction we have to always

include a receiver’s action together with a sender’s action even if we do not want

it. This fact directly implies that in a choreography it is not possible to design an

interaction where a participant in unknown, in conclusion a choreography system

is always closed w.r.t. the participants in the sense that all the roles involved within

a choreography must be known a priori. For instance, let us consider the SOCK

system presented in Section 3.4 where we do not consider the customer application:

Sys := REG ‖ B ‖ BI ‖ M ‖ S ‖ SI

Such a kind of system cannot be represented with a choreography because it is not

possible to represent the customer role.

• Silent actions and Internal actions. Here we want to highlight the difference between

silent actions and internal actions in choreography. The former is strictly related

to the computational actions and to the condition evaluation ones, it is performed

within a role but it is not relevant from the point of view of the message exchanges.

Indeed, it does not directly involve an interaction. On the contrary, the latter deals

with an internal action performed within a role which could involve a hidden com-

munication. A role indeed, can be enroled by more than one service which interact

each others or it can be implemented by an application where different threads are

executed concurrently. In this cases, it is possible that some interactions among

the internal services (or threads) exist. In general such a kind of interactions, here

represented by int(ρ), are not relevant to the end of the choreography but there

could exist some conversation where they take relevance: it is the case of the non-

deterministic choice. To this end, let us consider the following conversation exam-

ple:

ρA ⇀~x
o~t

ρB;C + ρC ⇀~y

o′

~t ′

ρB;C ′ + int(ρB);C ′′

206 Chapter 6. Choreography

Such a conversation implies a non-deterministic choice among two interactions

and an internal action. In this case the role ρB can perform an internal action (i.e.

an internal message exchange or synchronization within the role ρB) and choose

to execute the conversation C ′′. It is worth noting that the action int(ρB) is non-

deterministically predictable as well as the message receptions of the interactions

ρA ⇀~x
o~t

ρB and ρC ⇀~y

o′

~t ′

ρB. A possible implementation of role ρB can be given

by exploiting SOCK. In particular, we can imagine that the service behaviour of a

service which implements the role ρB is modelled as it follows where we abstract

away from operation templates:

PρB ::= (o(~z); ... + o ′(~z ′); ... + sync; ...) | ...sync...

The signal sync is an internal signal exploited for synchronizing internal threads

which is designed within the non-deterministic choice. If the synchronization on

sync happens before the reception of the messages on o and o ′, the branch which

starts with the primitive sync will be selected.

6.6 A choreography example

In this section we present a choreography example. Let us consider a business scenario

where a customer invokes a market service in order to buy some goods and it receives

the price as a response. Considering the price, the customer will buy or not the goods.

If the customer sends a message for buying the goods, the market will invoke a supplier

service for making the order. The supplier service will accept or not the order. In the case

the order can be fulfilled, the market service will invoke a bank service for the payment

and will return a positive answer to the customer. On the contrary, if the order is not ac-

cepted by the supplier service, the market service will notify the negative response to the

customer. In order to show a code as clean as possible, we exploit the following notation

for representing the One-Way interactions and the Request-Response ones:

ρA ⇀~x
o~t

ρB ≡ OW(ρA, ρB, o~t,~x)

Chapter 6. Choreography 207

ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C) ≡ RR(ρA, ρB, o~t,~t′ ,~x,~y,C)

In order to define the choreography let us consider four roles: ρC which represents the

customer behaviour, ρM which represents the market service, ρB which represents the

bank service for credit card payment and ρS which represents the supplier service. In the

following we define the templates, the operation sets, the information and the roles. In

Fig. 6.2 are graphically represented the communication links among the roles.

Figure 6.2: Interactions among the roles

We define the following templates:

t0 = t2 = 〈Inf, Inf〉

t ′0 = t ′2 = t3 = t5 = 〈Inf〉

t1 = t4 = 〈Inf, Inf, Inf, Loc〉

ωC = {PRICEt0,t′

0
, BUYt1

, RESULTt3
, RECEIPTt5

}

ωM = {PRICEt0,t′

0
, BUYt1

, ORDERt2,t′

2
, PAYt4

}

ωS = {ORDERt2,t′

2
}

ωB = {PAYt4
, RECEIPTt5

}.

IC = {good, num, price, buy, card, ncard, outcome, receipt}

208 Chapter 6. Choreography

Let Σ be the set of roles defined in the following way:

Σ = {(ρC,ωC), (ρM,ωM), (ρS,ωS), (ρB,ωB)}.

We define the following knowledge K = (I, Λ):

I(ρC) = {buy, good, num, card, ncard}

I(ρM) = {price}

I(ρS) = {outcome}

I(ρB) = {receipt}

Λ(ρC) = {ρC}

Λ(ρM) = {ρS, ρB}

Λ(ρS) = Λ(ρB) = ∅

Let Con be the following conversation:

Con ::= RR(ρC, ρM, PRICEt0,t′

0
, 〈good, num〉 , price, 0);

BuyChoice;

OW(ρC, ρM, BUYt1
, 〈buy, card, ncard, ρC〉);

ExOrder;

BuyChoice ::= if price ≥ 100ρC
then

buy :=ρC
cancelled

else

buy :=ρC
accepted

Chapter 6. Choreography 209

ExOrder ::= if buy == acceptedρM
then

RR(ρM, ρS, ORDERt2,t′

2
, 〈good, num〉 , outcome, 0);

(OW(ρM, ρC, RESULTt3
, outcome) | Payment)

else

0

Payment ::= if outcome == OKρM
then

OW(ρM, ρB, PAYt4
, 〈card, ncard, price, ρC〉);

OW(ρB, ρC, RECEIPTt5
, receipt)

Finally, we define the following initial constraints over the variables:

X = good ∈ {apple, banana, strawberry}

∧ 0 ≤ num ≤ 200

∧ card ∈ {visa,mastercard}

∧ ncard = 123456789

∧ buy = ⊥

∧ 50 ≤ price ≤ 200

∧ outcome ∈ {OK,REJECTED}

∧ receipt = receiptDoc

The choreography is defined by the tuple Chor = (Σ,Con,K, X) and it is error-free and

connected. It is worth noting that within the One-Way message exchange between the

customer role and the market one on the operation BUY, also the role name ρC is com-

municated. This means that a location mobility between the two roles is implicitly pro-

grammed. Indeed, the market role will communicate the location of the customer to the

bank role which will be able to have a message exchange with the customer. If we do

not program such a location mobility, the choreography does not satisfy the error-free

definition because the bank role will never have the knowledge of the customer location

because its initial knowledge is empty and it never receives such an information from

the market role. Moreover, the location knowledge of the supplier is initially empty and

it never receives any location from the other roles during the execution of teh choreog-

210 Chapter 6. Choreography

raphy. Despite of this the Request-Response communication exchange between the mar-

ket role and the supplier role can be performed because of the hidden location mobility

within the Request-Response primitive.

6.7 Comparing CL and WS-CDL

This section is devoted to compare the static part and the dynamic one. Since WS-CDL

is not equipped with a formal sematics, we do not discuss the execution part of CL but

we will make some considerations by exploiting an example extracted from the WS-CDL

specifications.

6.7.1 Static part

In CL the static part deals with the role and the information declarations. Each role is

joined with a name and a set of operations. We can compare such a part with the WS-

CDL types part where roleTypes, relationshipTypes, participantType, channelType and

InformationType are declared. In CL we do not distinguish the concepts of behaviour and

role but we model both within a unique concept which is that of role. Furthermore, CL

abstracts away from the relationshipType and the participantType concepts which can be

indirectly obtained by considering the declared operations within each role. For example,

let us consider Fig. 6.1 where there are three roles. It is possible to extract three differ-

ent relationshipType: a relationshipType between A and B, a relationshipType between B

and C and a relationshipType between C and A. Moreover, as far as the participantType

is concerned, each participantType corresponds with a role. In WS-CDL a channel can

correspond to a set of operations located at a specific role and, possibly, characterized

by conversation instance information (e.g. correlation data). At the present, CL does not

deal with conversation instances and the concept of channel is related to that of oper-

ation. Furthermore, it is worth noting that WS-CDL allows for the communication of

a channel between two roles. In CL such a feature can be partially modelled with the

possibility to express a location communication. In this case we do not communicate all

Chapter 6. Choreography 211

the information related to a channel but only the role name where it is located. Such a

feature is related to the fact that only location mobility is considered. Interface mobility

indeed, is not taken into account because it is not actually implemented by Web Services

specifications. As far as the informationType is concerned, it could be compared with

the information set IC of CL even if the latter represent an actual information whereas the

former is namely a type. The main difference is related to the fact that an information

which belongs to the set IC has the same value in every role it is known whereas the in-

formationType describes only a variable type that can have different values on different

roles.

6.7.2 Dynamic part

In Tab 6.3, 6.4 and 6.5 is reported a strict comparison betweeen the syntax constructs of

the CL language and those of WS-CDL. In the following we discuss each construct:

• One-Way: the One-Way is expressed in WS-CDL by exploiting the tag interaction

where there is only a tag exchange defined in. Such a tag has the attribute action set

to request. It is worth noting that the effect of a One-Way in CL is to communicate

the information x from the sender role to the receiver one. We have modelled such

a feature by indicating x both within the tag send and receive. The informationType

is set to the message template ~t because it deals with the representation of the ex-

changed data and it can be indirectly related to the type of the information. The tag

record of the interaction is not exploited because the One-Way of CL cannot have

effects on other information except those that are communicated.

• Request-Response: the Request-Response is modelled in WS-CDL by exploiting two

different interaction tags where the former deals with the request message whereas

the latter deals with the response one. In WS-CDL indeed, as we have discussed in

[GGL05] does not exist a unique construct which deals with the Request-Response.

• Internal activity: the internal activity is simply modelled with a silent action.

212 Chapter 6. Choreography

• Assign: the assign primitive is modelled by exploiting the WS-CDL activity. The

syntax is self-explaining.

• Sequence, Parallel and Choice: each of these constructs has a corresponding one in

WS-CDL. The syntax is self-explaining.

• Deterministic choice and Iteration: these constructs in WS-CDL are modelled by ex-

ploiting the workunit construct because it allows for the specification of guard con-

ditions.

It is worth noting that CL does not deal with the exceptionBlock and the finalizer one.

Such constructs are strictly related to faults management which is a topic out of the scope

of this work.

6.7.3 Modelling a WS-CDL example by using CL

In this section we model the WS-CDL example shown in section 2.1.4.3 where we do not

take into account fault messages. The system is composed by two roles whose names

are ρB and ρS and which represents the roles BuyerRole and SellerRole respectively. Role

ρS exhibits two Request-Response operations, getQuote and updateQuote and a One-Way

one order. We define the following template and operation sets:

~t = 〈inf〉

ωB = {getQuote~t,~t, order~t, updateQuote~t,~t}

ωS = {getQuote~t,~t, order~t, updateQuote~t,~t}

Let Σ be the set of roles defined in the following way:

Σ = {(ρB,ωB), (ρS,ωS)}

The information set is defined as follows where the name of the variables is the same of

the example presented in the WS-CDL section:

IC = {quoteRequest, quoteResponse, orderRequest, barteringDone}

As far as the conversation is concerned, by considering tables 6.3, 6.4 and 6.5, we can

initially translate it without taking into account the knowledge and the initial constraints

Chapter 6. Choreography 213

CL WS − CDL

One-Way ρA ⇀x
o~t

ρB

< i n t e r a c t i o n name=” . . . ”

channelVariable=” . . . ”

operat ion=”o” >

<p a r t i c i p a t e re la t ionshipType=” . . . ”

fromRoleTypeRef=”rhoA”

toRoleTypeRef=”rhoB”/>

<exchange name=” . . . ”

informationType=” t ”

a c t i o n =” request ”>

<send v a r i a b l e =”x” />

<r e c e i v e v a r i a b l e =”x”/>

</exchange>

</ i n t e r a c t i o n>

Request-Response ρA ⇋
x,y
o

~t, ~t ′
ρB(C)

< i n t e r a c t i o n name=”IntName”

channelVariable=” . . . ”

operat ion=”o” >

<p a r t i c i p a t e re la t ionshipType=” . . . ”

fromRoleTypeRef=”rhoA”

toRoleTypeRef=”rhoB”/>

<exchange name=” . . . ”

informationType=” t ” a c t i o n =” request ”>

<send v a r i a b l e =”x” />

<r e c e i v e v a r i a b l e =”x”/>

</exchange>

</ i n t e r a c t i o n>

C

< i n t e r a c t i o n name=”IntName”

channelVariable=” . . . ”

operat ion=”o” >

<p a r t i c i p a t e re la t ionshipType=” . . . ”

fromRoleTypeRef=”rhoB”

toRoleTypeRef=”rhoA”/>

<exchange name=” . . . ”

informationType=” t ’ ” a c t i o n =” response ”>

<send v a r i a b l e =”y” />

<r e c e i v e v a r i a b l e =”y”/>

</exchange>

</ i n t e r a c t i o n>

Table 6.3: Comparing communication primitives between CL and WS-CDL

214 Chapter 6. Choreography

CL WS − CDL

Internal activity int(ρ) <s i l e n t A c t i o n roleType=”rho” />

Assign i :=ρ e

<ass ign roleType=”rho”>

<copy name=” . . . ”>

<source v a r i a b l e =”e” />

<t a r g e t v a r i a b l e =” i ” />

</copy>

</ass ign>

Sequence C1;C2

<sequence>

C1

C2

</sequence>

Parallel C1|C2

<p a r a l l e l>

C1

C2

</ p a r a l l e l>

Choice
∑+

i∈H ηi;Ci

<choice>

. . .

<sequence>

e t a i

C i

</sequence>

. . .

</choice>

Table 6.4: Comparing constructs of CL and WS-CDL

Chapter 6. Choreography 215

CL WS − CDL

Det. choice if χρ then C1 else C2

<choice>

<workunit

name=””

guard=” chi ” >

C1

</workunit>

<workunit

name=””

guard=” not ch i ” >

C2

</workunit>

</choice>

Iteration while(χρ, C)

<workunit

name=””

guard=” chi ”

repeat=” true ” >

C

</workunit>

Table 6.5: Comparing constructs of CL and WS-CDL

216 Chapter 6. Choreography

that will be discussed in the following:

Bartering ::= barteringDone :=ρS
false

; ρB ⇋
quoteRequest,quoteResponse
getQuote~t,~t

ρS(0)

;while((barteringDone == false)ρS
, BodyW)

BodyW ::= (ρB ⇀orderRequest
order~t

ρS;barteringDone :=ρS
true)

+

(ρB ⇋
quoteRequest,quoteResponse
updateQuote~t,~t

ρS(0))

The conversation describes a bartering process which starts with a message exchange

between the buyer and the seller where the former asks for a quoteRequest and it receives

a quoteResponse. The bartering process continues starting a cycle which finishes only

when the buyer sends an order message on the order operation. If the buyer requests

for an updating of the quote the cycle continues waiting for the next interaction. The

information barteringDone maintains the state of the bartering process, if it is equal to

true the process is finished. Such a representation strictly follows that of WS-CDL but

some considerations about the non deterministic choice must be done. In CL the non-

deterministic choice models a race among the messages specified within the branches

where the first interaction that completes has the effect to disable the other ones. In the

example above, namely, there is not a real race between the two interactions because the

buyer internally decides to ask for an updating or not and the interaction to perform is a

consequence of that choice. In order to correctly model such an example in CL, we replace

the barteringDone information with another information, buyerOrder, which allows us to

establish if the buyer wants to perform an order or not. In other words, we shift the

knowledge of the bartering ending from the seller to the buyer. The variable buyerOrder

will range between two values true or false within the initial constraints and it allows

us to replace the non-deterministic choice with a deterministic one by means of an if then

else process where the condition tests if such a variable is true or not. In the following,

we present the new conversation where we do not consider the while construct which

Chapter 6. Choreography 217

we comment later.

Bartering ::= ρB ⇋
quoteRequest,quoteResponse
getQuote~t,~t

ρS(0)

; if (BuyerOrder == true)ρB
then

ρB ⇀orderRequest
order~t

ρS

else

ρB ⇋
quoteRequest,quoteResponse
updateQuote~t,~t

ρS(0)

where we define the information set and the knowledge K(I, Λ) as follows:

IC = {quoteRequest, quoteResponse, orderRequest, buyerOrder}

I(ρB) = {quoteRequest, orderRequest, buyerOrder}

I(ρS) = {quoteResponse}

Λ(ρB) = {ρS}

Λ(ρS) = {∅}

The initial constraints definition follows where msg1, msg2 and msg3 represent some

kind of message:

X ::= quoteRequest = msg1

∧quoteResponse = msg2

∧orderRequest = msg3

∧buyerOrder = {true, false}

If we consider the semantics rule of Table 6.1 such a choreography is represented by two

labelled transition systems where in the former one the variable buyerOrder has the initial

value set to true whereas in the latter one it is set to false. This fact implies that in the

former labelled transition system only the branch ρB ⇀orderRequest
order~t

ρS is executed whereas

in the latter one the branch ρB ⇋
quoteRequest,quoteResponse
updateQuote~t,~t

ρS(0) is executed. Now, let us

introduce the while construct:

218 Chapter 6. Choreography

Bartering ::= ρB ⇋
quoteRequest,quoteResponse
getQuote~t,~t

ρS(0)

;while((buyerOrder == false)ρS
, ρB ⇋

quoteRequest,quoteResponse
updateQuote~t,~t

ρS(0))

; ρB ⇀orderRequest
order~t

ρS

The semantics is represented by two labelled transition systems also in this case. It is

worth noting that, where the variable buyerOrder is set to true only the interaction

; ρB ⇀orderRequest
order~t

ρS is executed whereas where the variable buyerOrder is set to false,

it is always executed the interaction ρB ⇋
quoteRequest,quoteResponse
updateQuote~t,~t

ρS(0).

This example shows that the semantics of the non-deterministic choice in CL is different

from that informally given to the WS-CDL choice construct. In WS-CDL indeed, the

choice construct can model a race among some interactions but it can also model an

intrinsic non-determinism related to the fact that the value of an internal variable of a

role (e.g. the barteringDone variable) is a priori unknown. In CL the non-deterministic

choice only models a race among some interactions and the implicit non-determinism

about the value of a variables is modelled by considering all the possible values for that

variable within the initial constraints. Such a fact implies that the semantics of the given

choreography will be represented by more than one labelled transition system.

6.8 Related works

There are other works which deals with a formal representation of choreography. In

[CHY07] Honda et al. present a typed choreography language inspired by WS-CDL

called global calculus. Suck a kind of calculus is based upon the concept of service chan-

nels and sessions. Two dialoguers can start a communication by opening a session on

a channel. Differently from the approach proposed within this thesis where there are

no sessions and interactions are always performed by exploiting an operation that can

be seen as a communication channel, in the work of Honda et al. the session is a unique

name shared by two participants on which several message exchanges can be performed.

In [DZD06] Decker et al. present a graphical language for choreography where interac-

tions can be inter-related by three kind of relations: precedes, inhibits and weak-precedes.

Chapter 6. Choreography 219

The precede relationship allows for the specification of a sort of sequence between two

interactions, the inhibits allows for the inhibition of an interaction and the weak-precedes

expresses a weak sequence between two interactions where it is not necessary that the

first interaction is completely executed for starting the second one. Moreover it is pos-

sible to express guard conditions and repetitions. The execution semantics is given in

terms of pi-calculus processes. In this work the authors do not deal with any kind of

communication channels on which the communication is performed. In [Fos06] gives a

partial representation of choreographies, focussed on interaction modelling, in terms of

labelled transition systems. In [MS06] Montagero and Semini characterize choreography

as a pair formed by a logical theory, that expresses all the properties of the choreography,

and a formula holding in the theory which gives an abstract view of the behaviour of the

choreography. In [DD04] Dumas et al. present a choreography representation in terms

of Petri Nets but they only consider interactions as transitions without differentiating on

specific constructs for designing communication pattern as Request-Response or com-

posing operators like parlallel, non-deterministic choice, etc. Similarly, in [BBM+05b]

Baldoni et al. describe a choreography in terms of a state finite automata where message

exchanges are represented by labelled transitions, but they do not deal with language

aspects for its representation.

Chapter 7

Orchestration

In this chapter we introduce a formal language for orchestration based on the language

SOCK. In order to be coherent with SOCK, in the following we use the terms orchestrator

and service engine, and the terms services system and orchestrated system, as synony-

mous. The language is structured on three layers: the service behaviour, the service en-

gine and the services system. As we have described in section 3.1, the former deals with

the design of service behaviours by supplying computation and external communication

primitives where, in this case, the operation definitions are enriched by considering the

template definition given in section 4.2.1. Here, we introduce templates because in the

following they will be fundamental to the end of conformance where we will have to

distinguish between communicated location and information. The service engine layer

allows us to design a service engine that, differently from SOCK, here is limited to a ser-

vice behaviour joined with a state and a location. As far as the the bipolar framework is

concerned indeed, at the state of the art it does not deal with session management. Fi-

nally, the services system layer follows that defined within the SOCK calculus. It is worth

noting that here we model asynchronous communication which was not considered in

the previous sections. Asynchronous communications are a basic characteristic of SOC

systems and, to the end of conformance, they play a fundamental role. In general indeed,

the labelled transition system of an orchestrated system is different if asynchronous com-

munications are considered or not. It is worth noting, that the semantics rules which deal

with asynchronous communications can be easily applied to the SOCK calculus in order

Chapter 7. Orchestration 221

to enhance it with such a kind of communication model.

7.1 The syntax

Formally, let Signals be a set of signal names exploited for synchronizing processes in

parallel within a process. Let Var be a set of variables ranged over by x, y, z. We ex-

ploit the notations ~x = 〈x0, x1, ..., xi〉 for representing arrays of variables. Let k ranges

over Var ∪ Loc where Var ∩ Loc = ∅. The language is defined as it follows where we

intend W as a finite non-empty set of indexes, P and Q as service behaviour processes, PS

as a service behaviour joined with a state, Y as a service engine and E as a services system:

ǫ ::= s | o~t(~x) | o~t,~t′(~x,~y, P)

ǫ ::= s̄ | o~t@k(~x) | o~t,~t′@k(~x,~y)

P, Q, . . . ::= processes

0 null process

ǫ output

ǫ input

x := e assignment

χ?P : Q if then else

P;P sequence

P|P pararallel
∑+

i∈W ǫi;Pi non-det. choice

χ ⇋ P iteration

PS ::= (P, S)

Y ::= [PS]@l

E ::= Y | E ‖ E

222 Chapter 7. Orchestration

We denote with OL the set of all possible orchestrated systems ranged over by E. 0 is

the null process. Outputs can be a signal s̄, a Notification o~t@k(~x) or a Solicit-Response

o~t,~t′@k(~x,~y) where s ∈ Signals, o ∈ O, ~t, ~t ′ ∈ T , k ∈ Var ∪ Loc represents the receiver

location which can be explicit or represented by a variable1, ~x is the tuple of the variables

which store the information to send and ~y is the tuple of variables where, in the case of

the Solicit-Response, the received information will be stored. Dually, inputs can be an

input signal s, a One-Way o~t(~x) or a Request-Response o~t,~t′@k(~x,~y) where s ∈ Signals,

o ∈ O, ~t, ~t ′ ∈ T , ~x is the tuple of variables where the received information are stored

whereas ~y is the tuple of variables which contain the information to send in the case of

the Request-Response; finally P is the process that has to be executed between the request

and the response. x := e assigns the result of the expression e to the variable x. For the

sake of brevity, we do not present the syntax for representing expressions, we assume

that they include all the arithmetic operators, values in Val and variables. χ?P : Q is the

if then else process, where χ is a logic condition on variables whose syntax is:

χ ::= x ≤ e | e ≤ x | ¬χ | χ ∧ χ

It is worth noting that conditions such as x = v, x 6= v and v1 ≤ x ≤ v2 can be defined as

abbreviations; P is executed only if the condition χ is satisfied, otherwise Q is executed.

P;P, P | P represent sequential and parallel composition respectively whereas
∑+

i∈W ǫi;Pi

is the non-deterministic choice restricted to be guarded on inputs. χ ⇋ P is the construct

to model guarded iterations. PS represents a service behaviour P coupled with a state

of variables S which is a function S : Var → Val ∪ {⊥} mapping variables to values.

The term Y denotes a service engine which is a service behaviour coupled with a state

and joined to a specific location l. Finally, an orchestrated system E consists of the par-

allel composition of orchestrators. Before presenting the semantics of the language we

introduce the following satisfaction relation ⊢ between a template and a vector of values

where length is a function which returns the element number of a vector:

1It is worth noting that, in order to fullfil location mobility, k must be used as a variable and it has to

contain a location.

Chapter 7. Orchestration 223

~v ⊢ ~t ⇒ length(~t) = length(~v) ∧ ∀i < length(~t), t[i] = Type(v[i])

7.2 The semantics.

The semantics of the orchestration language follows the idea of that of SOCK language.

It is defined in terms of a labelled transition system structured into four layers: service

behaviour lts layer (Tables 7.1 and 7.2), the service engine state lts layer (Table 7.3), the service

engine location lts layer (Table 7.4) and the services system lts layer. Each lts layer catches

the actions raised by the underlying one and will enable or disable them. If an action is

enabled by an lts layer it will be raised to the overlying one. The service behaviour lts

layer describes all the possible execution paths generated by a service process. The ser-

vice engine state lts layer defines the rule for joining a service behaviour with a service

engine local state, the service engine location lts layer deals with the the rules for deploy-

ing a service engine at a specific location and, finally, the services system lts layer deals

with a composed service engine system. We assume as state definition that presented in

Section 3.2.1. In order to deal with asynchronous communication and Request-Response

message exchange, we extend the syntax by introducing the following terms:

P ::= . . . | 〈o~t@l(~v)〉 | 〈o~t,~t′@l(~v)〉 | 〈o~t,~t′@l(~v,~y)〉 | o~t,~t′@l(~y) | o~t,~t′(~y)

7.2.1 The service behaviour lts layer

We define →⊆ P × Act × P as the least relation which satisfies the axioms and rules of

Tables 7.1 and 7.2 closed w.r.t. ≡, where ≡ statisfies the structural congruence rules at the

end of the table. Let Act = In ∪ Out ∪ Internal be the set of actions ranged over by a

where the set In represents the set of the external input actions, the set Out respresents

the set of the exeternal output actions and Internal is the set of the internal actions. As

we have shown for SOCK, the service behaviour calculus does not deal with the actual

224 Chapter 7. Orchestration

(IN)

s
s→ 0

(OUT)

s̄
s̄→ 0

(ONE-WAYOUTASYN)

~v ⊢ ~t

o~t@z(~x)
o~t@l/z(~v/~x)

−→ 〈ō~t@l(~v)〉

(ONE-WAYOUTLOCASYN)

~v ⊢ ~t

o~t@l(~x)
o~t@l(~v/~x)
−→ 〈ō~t@l(~v)〉

(ONE-WAYOUT)

〈ō~t@l(~v)〉
o~t@l(~v)
−→ 0

(ONE-WAYIN)

~v ⊢ ~t

o~t(~x)
l:o~t(~v/~x)

→ 0

(REQ-OUTASYN)

~v ⊢ ~t

o~t,~t′@z(~x,~y)
l′:o~t,~t ′@l/z(~v/~x,~y)

−→ 〈ō~t,~t′@l(~v,~y)〉

(REQ-OUTLOCASYN)

~v ⊢ ~t

o~t,~t′@l(~x,~y)
l′:o~t,~t ′@l(~v/~x,~y)

−→ 〈ō~t,~t′@l(~v,~y)〉

(REQ-OUT)

〈ō~t,~t′@l(~v,~y)〉
l′:ō~t,~t ′@l(~v,~y)

−→ o~t,~t′(~y)

(REQ-IN)

~v ⊢ ~t

o~t,~t′(~x,~y, P)
l′:o~t,~t ′(~v/~x,~y,P)@l

→ P;o~t,~t′@l(~y)

(RESP-OUTLOCASYN)

~v ⊢ ~t

o~t,~t′@l(~x)
l′:o~t,~t ′@l(~v/~x)

−→ 〈ō~t,~t′@l(~v)〉

(RESP-OUT)

〈ō~t,~t′@l(~v)〉
l′:o~t,~t ′@l(~v)

−→ 0

(RESP-IN)

~v ⊢ ~t

o~t,~t′(~x)
l:o~t,~t ′(~v/~x)

→ 0

Table 7.1: Rules for service behaviour lts layer (1)

Chapter 7. Orchestration 225

(ASSIGN)

x := e
x:=v/e→ 0

(IF THEN)

χ?P : Q
χ?→ P

(ELSE)

χ?P : Q
¬χ?→ Q

(ITERATION)

χ ⇋ P
χ?→ P;χ ⇋ P

(NOT ITERATION)

χ ⇋ P
¬χ?→ 0

(SYNCHRO)

P
s→ P ′, Q

s̄→ Q ′

P | Q
π→ P ′ | Q ′

(SEQUENCE)

P
a→ P ′

P;Q
a→ P ′;Q

(PARALLEL)

P
a→ P ′

P | Q
a→ P ′ | Q

(CHOICE)

ǫi
a→ 0 i ∈ W

∑+

i∈W ǫi;Pi
a→ Pi

STRUCTURAL CONGRUENCE

P | Q ≡ Q | P P | 0 ≡ 0 P | (Q | R) ≡ (P | Q) | R 0;P ≡ P

〈ō~t@l(~v)〉 ;Q ≡ 〈ō~t@l(~v)〉 |Q

〈ō~t,~t′@l(~v,~y)〉 ;Q ≡ 〈ō~t,~t′@l(~v,~y))〉 |Q 〈ō~t,~t′@l(~v)〉 ;Q ≡ 〈ō~t,~t′@l(~v)〉 |Q

Table 7.2: Rules for service behaviour lts layer2

226 Chapter 7. Orchestration

values of variables and locations but it models all the possible execution paths for all the

possible variable values and locations. The action sets are represented as follows:

In = {l:o~t(~v/~x), l:o~t,~t′(~v/~x), l ′:o~t,~t′(~v/~x,~y, P)@l, l ′:o~t,~t′(~v/~x)}

Out = {ō~t@l/z(~v/~x), ō~t@l(~v/~x), ō~t@l(~v),

l ′:o~t,~t′@l/z(~v/~x,~y), l ′:o~t,~t′@l(~v/~x,~y), l ′:o~t,~t′@l(~v,~y),

l ′:o~t,~t′@l(~v/~x), l ′:o~t,~t′@l(~v)}

Internal = {s, s̄, x := v/e, χ?,¬χ?, π}

Rules IN, OUT and SYNCHRO deal with internal synchronizations among parallel processes.

It is worth noting that, differently from SOCK, here we label a synchronization between

signals with a π action which will be useful, to the end of conformance, for distinguish-

ing internal synchronizations from computational steps represented by the action τ 2.

In particular, the action π plays a fundamental role in the case of the non-deterministic

choice where, by syntax definition, some branches could be selected by internal synchro-

nizations; this fact becomes important if we consider the conformance with a choreog-

raphy where it is possible to design a non-deterministic choice among interactions and

internal actions. To this end, in the service engine location lts layer, the action π will be

joined with the location of the orchestrator and in Chapter 8, within the conformance

notion, it will be related with the choreography internal action (int(ρ)). Rules ONE-

WAYOUTASYN and ONE-WAYOUTLOCASYN deal with the asynchronous sending of a

message on the Notification operation o~t where, in the former case, the location is stored

within a variable (z) whereas in the latter one the location is statically explicited. Both

rules produce the term 〈o~t@l(~v)〉 which freezes the actual values of the variables and the

location. Such a term allows us to describe asynchronous communication (rule ONE-

WAYOUT) because, by means of the structural congruence rules, it is always executed in

parallel. Rule ONE-WAYIN deals with the reception of a message on a One-Way opera-

2The τ actions will be considered only at the level of the service engine.

Chapter 7. Orchestration 227

tion where the location l within the action represents the location of the receiver; such a

location will be joined within the service engine location lts layer and it will be exploited

within the services system lts layer for allowing communication among different ser-

vice engines. Rules REQ-OUTASYN, REQ-OUTLOCASYN and REQ-OUT follow the same

idea of the previous ones but they deal with a Solicit-Response operation o~t,~t′ instead

of a Notification one. It is worth noting that in rule REQ-OUT, after the message sent,

it is produced the term o~t,~t′(~y) which allows for the reception of the reply message on

the same operation. Rule REQ-IN describes the Request-Response operation behaviour:

when the message is received the process P is executed and the term o~t,~t′@l(~y) allows for

the sending of the reply message. The location l ′ within the produced actions, as well as

the location of the action produced in the ONE-WAYIN rule, represents the location of the

service engine which executes the primitive. Rules RESP-OUTLOCASYN and RESP-OUT

deal with the semantics of the sending of the reply message in a Request-Response mes-

sage exchange. It is worth noting that the location is always statically defined because

it is received within the request message of the Request-Response. Rule RESP-IN deals

with the reception of a reply message. Rule ASSIGN deals with the assignment whereas

rules IF THEN, ELSE, ITERATION and NOT ITERATION deal with if then else process and

iteration respectively. Finally, SEQUENCE, PARALLEL and CHOICE describe the sequence,

the parallel and the non-deterministic composition operators respectively.

7.2.2 The service engine state lts layer.

We define →S⊆ PS × ActS × PS as the least relation which satisfies the rules of Table 7.3

where the set of actions ActS = InS ∪ OutS ∪ InternalS is defined as follows:

InS = {l:o~t(~v), l:o~t,~t′(~v), l ′:o~t,~t′(~v,~y, P)@l}

OutS = {ō~t@l(~v), l ′:o~t,~t′@l(~v,~y), l ′:o~t,~t′@l(~v)}

228 Chapter 7. Orchestration

(SYNCHRO)

P
π→ P ′

(P,S)
π→S (P ′,S)

(ONE-WAYOUTASYN)

P
o~t@l/z(~v/~x)

→ P ′,S(z) = l,S(~x) = ~v

(P,S)
τ

−→S (P ′,S)

(ONE-WAYOUTLOCASYN)

P
o~t@l(~v/~x)

→ P ′,S(~x) = ~v

(P,S)
τ

−→S (P ′,S)

(ONE-WAYOUT)

P
o~t@l(~v)

→ P ′

(P,S)
o~t@l(~v)
−→S (P ′,S)

(ONE-WAYIN)

P
l:o~t(~v/~x)

→ P ′

(P,S)
l:o~t(~v)
−→S (P ′,S[~v/~x])

(REQ-OUTASYN)

P
l′:o~t,~t ′@l/z(~v/~x,~y)

→ P ′,S(z) = l,S(~x) = ~v

(P,S)
τ

−→S (P ′,S)

(REQ-OUTLOCASYN)

P
l′:o~t,~t ′@l(~v/~x,~y)

→ P ′,S(~x) = ~v

(P,S)
τ

−→S (P ′,S)

(REQ-OUT)

P
l′:ō~t,~t ′@l(~v,~y)

→ P ′

(P,S)
l′:ō~t,~t ′@l(~v,~y)

−→S (P ′,S)

(REQ-IN)

P
l′:o~t,~t ′(~v/~x,~y,P)@l

→ P ′

(P,S)
l′:o~t,~t ′(~v,~y,P)@l

−→S (P ′,S[~v/~x])

(RESP-OUTLOCASYN)

P
l′:o~t,~t ′@l(~v/~x)

→ P ′,S(~x) = ~v

(P,S)
τ

−→S (P ′,S)

(RESP-OUT)

P
l′:o~t,~t ′@l(~v)

→ P ′

(P,S)
l′:o~t,~t ′@l(~v)
−→S (P ′,S)

(RESP-IN)

P
l:o~t,~t ′(~v/~x)

→ P ′

(P,S)
l:o~t,~t ′(~v)
−→S (P ′,S[~v/~x])

(ASSIGN)

P
x:=v/e→ P ′, e →֒S v

(P,S)
τ→S (P ′,S[v/x])

(SATISFACTION)

P
χ?→ P ′, χ ⊢ S

(P,S)
τ→S (P ′,S)

(NOT SATISFACTION)

P
¬χ?→ P ′, χ ⊢/S

(P,S)
τ→S (P ′,S)

Table 7.3: Rules for service engine state lts layer

Chapter 7. Orchestration 229

InternalS = {τ, π}

Rule SYNCHRO deals with internal synchronization. Rules ONE-WAYOUTASYN and

ONE-WAYOUTLOCASYN enable the actions where the state contains variable whose val-

ues correspond to the values and the locations raised by the service behaviour lts layer

action. Such a kind of actions are replaced with τ actions at the level of the service en-

gine state lts layer because they are not relevant at the end of the communication. On

the contrary, rule ONE-WAYOUT defines the sending of a message and its action is raised

also at the overlying lts layer. All the other rules follow the same idea to enable only

the actions which have the values and the locations that correspond to those stored into

the state and to replace with τ actions all the actions which are not relevant to the end

of the communication. It is worth noting that symbols χ ⊢ S and χ ⊢/S denotes that the

condition χ is satisfied and not satisfied within the state S respectively.

7.2.3 The service engine location lts layer.

We define →L⊆ Y × ActY × Y as the least relation which satisfies the rules of Table 7.4

where the set of actions ActY = InS∪OutS∪{τ, π(l)}. All the rules of Table 7.4 allows us to

enable to the overlying lts layer only the actions where the primitive execution location

corresponds to that where the service engine is actually deployed.

7.2.4 The services system lts layer.

We define →E⊆ E × ActE × E as the least relation which satisfies the rules of Table 7.5

closed w.r.t. the structural congruence relation ≡ where the set of actions is ActE =

Actσ ∪ ActL and is ranged over by γ. The set Actσ is defined as follows:

Actσ = {(l, l ′, o~t,~v), (l, l
′, o~t,~t′,~v, ↑), (l, l ′, o~t,~t′ ,~v, ↓)}

230 Chapter 7. Orchestration

(SYNCHRO)

PS
π→S P ′

S

[PS]@l
π(l)→L [P ′

S]@l

(ONE-WAYIN)

PS

l:o~t(~v)
→S P ′

S

[PS]@l
l:o~t(~v)
→L [P ′

S]@l

(RESP-IN)

PS

l:o~t,~t ′@l(~v)
→S P ′

S

[PS]@l
l:o~t,~t ′@l(~v)

→L [P ′
S]@l

(REQ-IN)

PS

l′:o~t,~t ′(~v,~y,P)@l
→S P ′

S

[PS]@l ′
l′:o~t,~t ′(~v,~y,P)@l

→L [P ′
S]@l ′

(RESP-OUT)

PS

l′:o~t,~t ′@l(~v)
→S P ′

S

[PS]@l ′
l′:o~t,~t ′@l(~v)

→L [P ′
S]@l ′

(REQ-OUT)

PS

l′:ō~t,~t ′@l(~v,~y)
→S P ′

S

[PS]@l ′
l′:ō~t,~t ′@l(~v,~y)

→L [P ′
S]@l ′

(ONE-WAYOUT)

PS

o~t@l′(~v)
→S P ′

S

[PS]@l
o~t@l′(~v)
→L [P ′

S]@l

(SILENT)

PS
τ→S P ′

S

[PS]@l
τ→L [P ′

S]@l

Table 7.4: Rules for service engine location lts layer

(l, l ′, o~t,~v), (l, l ′, o~t,~t′,~v, ↑) and (l, l ′, o~t,~t′,~v, ↓) are parameterized actions where l, l ′ are

locations, o is an operation name, ~t and ~t ′ are operation templates, ~v is a vector of val-

ues and ↑ and ↓ represent the communication direction in a Request-Response message

exchange: ↑ represents the request message whereas ↓ represents the response one. Rule

ONE-WAYSYNC deals with the synchronization on a One-Way operation between two

orchestrators whereas the rules REQ-SYNC and RESP-SYNC deal with that on a Request-

Response one.

7.3 Orchestrator abstract process

This section is devoted to introduce the concept of orchestrator abstract process. An orches-

trator abstract process is a process which describes the orchestrator without expliciting

the initial values for some of the variables involved within it and where some computa-

tional aspects are omitted. In particular, an abstract process orchestrator is able to well

describe the behaviour of the orchestrator as far as the communication primitives are

Chapter 7. Orchestration 231

(ONE-WAYSYNC)

Y
ō~t@l′(~v)
→L Y ′ , Z

l′:o~t(~v)
→L Z ′

Y ‖ Z
σ→E Y ′ ‖ Z ′

, σ = (l, l ′, o~t,~v)

(REQ-SYNC)

Y
l:ō~t,~t ′@l′(~v,~y)

→L Y ′ , Z
l′:o~t,~t ′(~v,~y,P)@l

→L Z ′

Y ‖ Z
σ→E Y ′ ‖ Z ′

, σ = (l, l ′, o~t,~t′,~v, ↑)

(RESP-SYNC)

Y
l:o~t,~t ′@l′(~v)

→L Y ′ , Z
l′:o~t,~t ′@l(~v)

→L Z ′

Y ‖ Z
σ→E Y ′ ‖ Z ′

, σ = (l, l ′, o~t,~t′,~v, ↓)

(INTERNAL)

Y
π(l)→L Y ′

Y
π(l)→E Y ′

(SILENT)

Y
τ→L Y ′

Y
τ→E Y ′

(PAR-EXT)

E1
γ→E E ′

1

E1 ‖ E2
γ→E E ′

1 ‖ E2

(CONGRE)

E1 ≡ E ′
1 , E ′

1

γ→E E ′
2, E ′

2 ≡ E2

E1
γ→E E2

(STRUCTURAL CONGRUENCE OVER E)

E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

Table 7.5: Rules for services sytem lts layer

232 Chapter 7. Orchestration

concerned, but it lacks in details if we consider a specific configuration for a specific

execution of that orchestrator. In particular, let us consider the following example of a

supplier orchestrator which is implemented by means of a Request-Response operation:

S1 ::= [(ORDERt2,t′

2
(〈goodS, numS〉 , outcomeS,

outcomeS := execute(goodS, numS)

),SS[⊥/outcomeS])]S

ORDERt2,t′

2
is a Request-Response operation which receives values for the variables

goodS and numS that represent some kind of input for the supplier orchestrator. Between

the request and the response, the supplier orchestrator will calculate the result by means

of the function execute3 and it stores it within the variable outocomeS. outocomeS is

the variable which will be contained within the response and it is initialized to the value

⊥. Now, let us consider the same orchestrator modified as follows:

S2 ::= [(ORDERt2,t′

2
(〈goodS, numS〉 , outcomeS,

0

),SS[⊥/outcomeS])]S

Differently from S1, S2 is not able to compute a value for the variable outcomeS which

is initialized to ⊥. For this reason S2 always replies with a message whose content is

⊥. From an implementation point of view, although S2 is syntactically and semantically

correct, it does not represent a reasonable orchestrator to execute. But, if we consider S2

from a system design point of view it can be considered as the abstract representation

of the orchestrator S1. S2 indeed, models an orchestrator which receives two inputs and

then replies with an output variable even if we do not know nothing about the way such

a variable is calculated. S2 could be exploited at the design time within a complete system

by simply assuming some initial values for the variable outcomeS. For example, we can

put S2 within a system in the following way:

S2 ::= [(ORDERt2,t′

2
(〈goodS, numS〉 , outcomeS,

0

),SS[OK/outcomeS])]S

3For the sake of this example, we suppose the function execute is a total function whose co-domain is

represented by the set {OK,REJECTED} .

Chapter 7. Orchestration 233

In this case S2 is modelled in a way that its answer is always OK and we can test the

system where we assume a positive answer replied by the supplier orchestrator. In the

case we would to test a negative reply from the supplier we can initialize the outcomeS

variable of S2 with the value REJECTED.

Since the orchestrator abstract process does not introduce any syntactic or semantic mod-

ification in the orchestration language, in the following we do not formalize such a con-

cept but we will use the term abstract process orchestrator for identifying those orchestra-

tors whose behaviour is partially defined. In particular, we will use the notation S⊥ for

referring to a state where all the variables are initialized with the value ⊥. The orchestra-

tor abstract processes will be exploited when we will consider conformance; in that case

indeed, in order to test the conformance between an orchestrated system and a choreog-

raphy, we will join choreography information with orchestrators variable and, for each

possible initial state of the choreography, we will verify the conformance with the orches-

trated system. Finally, a comparison between the orchestrator abstract process and the

WS-BPEL abstract process (Section 2.1.3.2) can be traced. The WS-BPEL abstract process

models an orchestrator that cannot be executed and it allows for the definition of a sort

of skeleton of the orchestrator where internal details such as, for example, some variable

values are considered opaque that means they can assume any value. The orchestrator

abstract process is similar even if, here, we do not have any specific syntactic construct,

such as the WS-BPEL opaque one, for expressing not defined parts of the orchestrator

but we simply do not specify them.

7.4 Orchestration example

In the following we present an orchestrated system where there are four orchestrators

which enrole the roles of the choreography presented in section 6.6: C, M, S and B where

C represents the orchestrator of the customer, M the orchestrator of the market, S the or-

chestrator of the supplier and B that of the bank. In the following, for each orchestrator

we declare its own variables and we present its code in terms of an orchestrator abstract

process.

234 Chapter 7. Orchestration

7.4.1 The customer

7.4.1.1 Customer variables

goodC, numC, priceC, buyC, cardC, ncardC, receiptC, locC, resultC

The variable goodC and numC contain the type of the good and the quantity to purchase

respectively. For the sake of this example we will not initialize them in order to present a

general orchestrator able to manage each kind of request. The initialization can be easily

done by assigning some values to the variables by means of an assign primitive. The vari-

able priceC will store the price purchase order price received from the market whereas

the variable buyC will be assigned with the values accepted or cancelled depending on

the fact that the customer confirm the order or not. Variables cardC and ncardC model

the credit card data of the customer. Variable receiptC models the receipt received from

the bank whereas the variable locC contains the actual location of the customer. Finally,

within variable resultC will be stored the result message that will be sent from the market

for committing.

7.4.1.2 Customer orchestrator

C ::= [(locc := C; (PRICEt0,t′

0
@M(〈goodC, numC〉 , priceC);

; (priceC ≥ 100

?buyC := cancelled

: buyC := accepted)

; BUYt1
@M(〈buyC, cardC, ncardC, locC〉))

| RESULTt3
(resultC)

| RECEIPTt5
(receiptC),S⊥)]C

Initially, the customer sends a purchase order request to the market by exploiting the

Solicit-Response operation PRICEt0,t′

0
@M and it waits for the price. If the price is greater

that 100 it will not accept the order, on the contrary it will accept it. If it accepts the order,

Chapter 7. Orchestration 235

the customer will send a request to buy by exploiting the Notification BUYt1
@M where it

sends also its location (locC) for allowing the bank service to send the receipt. Finally, the

customer will wait for the bank receipt and the market commit message on the One-Way

operations RESULTt3
and RECEIPTt5

, respectively.

7.4.2 The market

7.4.2.1 Market variables

goodM, numM, priceM, buyM, cardM, ncardM, receiptM, locM, outcomeM

The variables goodM, numM, buyM, cardM, ncardM, receiptM and locM will contain

the values communicated by the customer and stored within the customer variables that

have the same names. The variable priceM models the price fro the requested order.

The variable outcomeM will store the result message from the supplier and it abstractly

models the fact that the supplier is able or not to fulfill the order.

7.4.2.2 Market orchestrator

M ::= [(PRICEt0,t′

0
(〈goodM, numM〉 , priceM, 0)

| (BUYt1
(〈buyM, cardM, ncardM, locM〉);buyM == accepted?Ord : 0),S⊥)]M

Ord ::= ORDERt2,t′

2
@S(〈goodM, numM〉 , outcomeM)

; (RESULTt3
@locM(outcomeM)

| outcomeM == OK?PAYt4
@B(〈cardM, ncardM, priceM, locM〉) : 0

)

Initially, the market is waiting for a price request from a customer on the Request-Response

operation PRICEt0,t′

0
. When invoked, the orchestrator replies by sending the price for the

given order. After that, it waits for a confirmation or a cancellation of the order on the

One-Way BUYt1
. The customer response is stored within the variable buyM and if it is

equal to accept the process Ord is executed. Such a kind of process forwards the order to

the supplier by exploiting the Solicit-Response ORDERt2,t′

2
@S and waits for a response

236 Chapter 7. Orchestration

from the supplier which will be stored within the variable outcomeM. If outcomeM is

equal to OK, that models a successful termination of the order, the market will invoke the

bank by means of the Notification PAYt4
@B in order to start a financial transaction, oth-

erwise it terminates its execution. Moreover, the market sends the value of the variable

outcomeM to the customer by means of the Notification RESULTt3
@locM. It is worth

noting that the location of the customer is contained within the variable locM whose

value is received during the execution of the One-Way BUYt1
.

7.4.3 The supplier

7.4.3.1 Supplier variable

goodS, numS, outcomeS

The variables goodS and numS model the data related to the order whereas the variable

outcomeS models the state of the order that is, if the order can be fulfilled or not.

7.4.3.2 Supplier orchestrator

S ::= [(ORDERt2,t′

2
(〈goodS, numS〉 , outcomeS, 0),S⊥)]S

The code of the supplier is very simple and it is represented by the Request-Response

ORDERt2,t′

2
which receives the order data and, as a response, sends the variable outcomeS.

7.4.4 The bank

7.4.4.1 Bank variables

cardB, ncardB, priceB, locB, receiptB

The variables cardB and ncardB model the credit card data of the bank account of the

customer on which the financial transaction must be performed. The variable priceB

contains the amount of money whereas the variable locB contains the location of the

Chapter 7. Orchestration 237

customer to which the receipt must be sent. Finally, the variable receiptB abstractly

models the receipt message.

7.4.4.2 Bank orchestrator

B ::= [(PAYt4
(〈cardB, ncardB, priceB, locB〉)

; RECEIPTt5
@locB(receiptB),S⊥)]B

Initially, the bank orchestrator waits for an invocation on the One-Way operation PAYt4
,

after that it sends the message receipt, to the customer located at the received location

stored within the variable locB, by means of the Notification RECEIPTt5
@locB.

7.4.5 The system

The system is described by the following process E where the four orchestrators are com-

posed in parallel:

E ::= C ‖ M ‖ S ‖ B

Chapter 8

Conformance

The conformance is a mathematical relation which allows us to formally relate the chore-

ography semantics with the orchestration one. As we have shown in the previous chap-

ters, the choreography and orchestration semantics are expressed in terms of labelled

transition systems where transitions represent a message exchange between two roles or

some internal or silent actions. The conformance aims at stating if all the interactions and

the internal actions expressed by a choreography are actually performed by the orches-

trated system. The following concepts are fundamental to the end of the conformance

between a choreography and an orchestrated system:

• A role in choreography can be enroled by one or more orchestrators into the orchestrated sys-

tem. We join each orchestrator of an orchestrated system with one or any role of a

choreography by means of a joining function, named Ψ, which allows us to associate

the orchestrators of an orchestrated system E to the roles of a choreography C. Such

a fact implies that more than one orchestrator can enrole a choreography role and

that there could be orchestrators that are not joined with any role, we call this kind

of orchestrators coordinators. As an example, let us remind the case of the choreog-

raphy reported in section 6.6 where there are four roles: the customer, the market,

the supplier and the bank, and, furthermore, let us consider the orchestration ex-

ample of section 7.4 where we have designed an orchestrated system where there

is an orchestrator for each role. In the following, we will show that there exists a

joining function which join each orchestrator to each choreography role so that the

Chapter 8. Conformance 239

orchestrated system is conformant to the choreography. Depending on the joining

function, different orchestrated systems can be conformant to the same choreogra-

phy. For instance, the orchestrated system of the example above, could be modified

by introducing some new orchestrators. In Fig. 8.1 we abstractly show the commu-

nication links of an orchestrated system where there are more than one orchestrator

which enrole both the supplier and the bank roles. Also in this case, it is possible

to construct a joining function in a way that the orchestrated system is conformant

to the choreography. Such a joining function joins the orchestrator C with the cus-

tomer role, the orchestrator M with the market role, the orchestrators S1, S2 and S3

with the supplier role and the orchestrators B1, B2 and B3 with the bank role. This

example will be deeply discussed in the following.

• The conformance is always tested up to a joining function.

• The conformance is based upon the conformability relation. The conformability is a re-

lation, which resembles a bisimulation one, between a labelled transition system

of the choreography and a joined labelled transition system of the orchestrated sys-

tem. The joined labelled transition system is the labelled transition system of the

orchestrated system where the joining function is applied in order to rename all

the interactions among the orchestrators. In particular, the renaming distinguishes

among the following interactions types:

– The observable interactions: they represent all the message exchanges among

orchestrators joined with different choreography roles.

– The internal interactions: they represent both the message exchanges between

orchestrators joined with the same role and internal synchronizations within

an orchestrator. They will be labelled with π actions.

– The coordinating interactions: they represent all the interactions which are not

considered in the choreography and are exploited only for coordinating the

240 Chapter 8. Conformance

orchestrators joined with a role. For example all the interactions where at least

one of the involved orchestrators is a coordinator. To the end of conformance

they will be labelled with τ actions as the internal computational actions.

• The conformance consists of a conformability relation test for each different initial state of

the choreography. In other words, we will generate a labelled transition system for

each initial state of the choreography coherent with its initial constraints and, for

each of them, we will consider the correspondant joined labelled transition system

then, we will test the conformability relation for each lts couple. More formally,

given a choreography C = (Σ,C,K, X) an orchestrated system E and a joining func-

tion Ψ, the idea is to consider all the possible choreography states which satisfy

the initial constraint X and for each of them test, up to Ψ, the conformability (⊲Ψ)

between the labelled transition system of the choreography and the joined labelled

transition system of the orchestrated system. Such a condition implies that the initial

values of the choreography information must be joined with the initial values of the

variables of the orchestrators. We will exploit the joining function both for joining

orchestrators to roles and orchestrator variables to choreography information.

8.1 The joining function

In the following we present the definition of the joining function which is composed by

two components where the former associates orchestrators (identified by their location)

to roles and the latter associates the orchestrator variables to the choreography informa-

tion.

Definition 8.1 (joining functions) A joining function is an element of the set

{Ψ | Ψ : Loc → RName ∪ {⊥} × (Var → IC ∪ {⊥})}

containing functions which associate to each orchestrator location a pair composed of a choreog-

raphy role (or the ⊥ value in case no role is associated) and a function from orchestrator variables

Chapter 8. Conformance 241

Figure 8.1: More orchestrators can enrole a choreography role

to choreography information (or the ⊥ value in case no variable is associated). We denote with Ψ1

the projection of Ψ on the first element of the pair (the associated role) and with Ψ2 the projection

on the second element (the variable mapping function).

Given a joining function Ψ and an action σ = (l, l ′, o~t,~v) or an action σ ′ = (l, l ′, o~t,~t′,~v, dir)

of a given orchestrated system where l and l ′ are orchestrator locations, o is an operation

name, ~t and ~t ′ are templates, ~v is a vector of values and locations and dir ∈ {↑, ↓}, we

denote with

Ψ[σ] = (Ψ1(l), Ψ1(l ′), o~t,~v)

Ψ[σ ′] = (Ψ1(l), Ψ1(l ′), o~t,~t′,~v, dir)

the renaming of the orchestrator locations with the joined roles. The projection Ψ2 will

be exploited for joining the initial values of the choreography information to the related

ones of the orchestrated system. Given a choreography lts label µ, an orchestrated system

lts label σ and a joining function Ψ we say that Ψ[σ] ≥ µ if the following conditiond hold:

• µ = (ρA, ρB, o~t, ~w) ∧ σ = (l, l ′, r~u,~v)

– Ψ1(l) = ρA ∧ Ψ1(l ′) = ρB

242 Chapter 8. Conformance

– o = r

– ~t = ~u

– ∀ti, ((ti = inf ⇒ wi = vi) ∨ (ti = loc ⇒ Ψ1(vi) = wi))

• µ = (ρA, ρB, o~t,~t′, ~w,dir) ∧ σ = (l, l ′, r~u,~u′,~v, dir ′)

– Ψ1(l) = ρA ∧ Ψ1(l ′) = ρB

– o = r

– ~t = ~u ∧~t ′ = ~u ′

– ∀ti, ((ti = inf ⇒ wi = vi) ∨ (ti = loc ⇒ Ψ1(vi) = wi))

– dir = dir ′

It is worth noting that the communicated values in a choreography interaction must

be equal to those communicated into the related interaction in the orchestrated system

where locations must correspond to role names.

8.2 The joined labelled transition system

In the following we present the definition of the joined labelled transition system where,

in this new transition system, the initial values of the variables of the orchestrated system

are joined with the choreography ones up to Ψ2. Furthermore, some hiding operators are

applied to the orchestrated system in order to observe only those interactions which are

relevant for the choreography. Hiding consists of replacing labels with τ or with a label

π(l) and it is applied to the following actions:

• Actions related to internal interactions are replaced with the label π(l) where l is

the location of the sender.

– the interactions which are performed between orchestrators joined with the

same role.

• Actions related to coordinating interactions are replaced with the label τ:

Chapter 8. Conformance 243

– the interactions that involve an orchestrator not joined with any role

– the interactions performed on operations not declared in the choreography. It

is also the case of interactions performed within two orchestrators joined with

different roles but on an operation not considered in choreography.

Definition 8.2 (Joined labelled transition system) Given a choreography C = (Σ,C,K0, X),

an orchestrated system E and a joining function Ψ such that Im1(Ψ) = Σ ∪ {⊥}1, let ωC be the

set of operations involved within the choreography C, let ωE be the set of operations exhibited by

the processes of E and let EOP = ωE/ωC be the set of operations exhibited by E and which do not

appear within the roles of C. Let E⊥ be the set of orchestrator locations l of E for which Ψ1(l) = ⊥.

Let γ ∈ γX. We denote the joined labelled transition system with:

E⌢Ψ2[γ]/Eρ//E⊥///EOP

where:

• E⌢Ψ2[γ] is an operator which associates the values of the choreography information in γ

to the corresponding variables in the states of E up to the joining function Ψ2. Formally

let ~xl and ~yl be the vectors of variables in Var which belong to the state of the orchestra-

tor located at l and for which the following conditions hold respectively: Ψ2(l)(~xl) 6= ⊥,

Ψ2(l)(~yl) = ⊥ and let ~vl be the vector of values of the choreography information joined

with the variables ~xl that is ~vl = γ(Ψ2(l)(~xl)). We have that the E⌢Ψ2[γ] is inductively

defined as follows:

- [P,S]⌢l Ψ2[γ] = [P,S[~vl/~xl,⊥/~yl]]l

- E⌢Ψ2[γ] = [P,S[~vl/~xl,⊥/~yl]]l ‖ E ′⌢Ψ2[γ]

• /Eρ hides, replacing with π(l) moves, all the interactions between the same role (the Ψ1(l)

of the sender located at a location l corresponds to the role Ψ1(l ′) joined with the receiver

located at a location l ′).

1Im1(Ψ) =
{
Ψ1(l) | l ∈ Loc

}

244 Chapter 8. Conformance

• //E⊥ is a hiding operator which hides, replacing with τ moves, all the transitions which

contain orchestrators not joined with any role.

• ///EOP is a hiding operator which hides, replacing with τ moves, all the transitions which

contain operations contained in EOP

8.3 Conformability

In the following we present the conformability relation between a labelled transition sys-

tem of a choreography and a joined labelled transition system of an orchestrated system.

Conformability is inspired by bisimulation [Mil89] but some differences exist. In par-

ticular, the conformability states if for each interaction µ within the choreography there

exists a corresponding one (σ) into the orchestrated one. Furthermore, it states if for each

internal action in the choreography π(ρ) there is an internal action into the orchestrated

system (π(l)) even if, such a condition is not symmetric in the sense that it is not relevant

to the end of conformability that, for each internal action performed at the level of the

orchestrated system, there exists an internal action at the level of choreography. Such a

condition allows us, on the one hand, to test if the internal actions declared within the

choreography are performed within the orchestrated system and, on the other hand, to

avoid a strict limit on the performed internal actions on the orchestration side. Indeed, in

a system with several orchestrators joined with the same roles, the internal actions could

be more than those defined within the choreography. Here, it is important to verify that

the orchestrated system performs at least the internal actions declared within the chore-

ography. Finally, the τ actions are not relevant to the end of the conformability and they

are ignored. It is worth noting that here, we are not interested to distinguish between

deadlock and termination states both in choreography and orchestration which are re-

lated in conformability by introducing the set of states Cδ(K, γ) and Eδ defined in the

following.

Definition 8.3 (Conformability) Let Ψ be a joining function. A relation RΨ ⊆ ((CL, KC, ΓC)×

OL) is a conformability relation if ((C,K, γ), E) ∈ RΨ implies that C ∈ Cδ(K, γ) and E ∈ Eδ or,

Chapter 8. Conformance 245

for all µ ∈ ActC and for all σ ∈ ActE, the following conditions hold:

1. (C,K, γ)
µ⇒ (C ′,K ′, γ ′) ⇒ E

σ⇒ E ′ ∧ ((C ′,K ′, γ ′), E ′) ∈ RΨ ∧ Ψ1[σ] ≥ µ

2. (C,K, γ)
π(ρ)⇒ (C ′,K ′, γ ′) ⇒ E

π(l)⇒ E ′ ∧ Ψ1(l) = ρ ∧ ((C ′,K ′, γ ′), E ′) ∈ RΨ

3. E
σ⇒ E ′ ⇒ (C,K, γ)

µ⇒ (C ′,K ′, γ ′) ∧ ((C ′,K ′, γ ′), E ′) ∈ RΨ ∧ Ψ1[σ] ≥ µ

4. E
π(l)⇒ E ′ ⇒ ((C,K, γ), E ′) ∈ RΨ ∨ ((C,K, γ)

π(ρ)⇒ (C ′,K ′, γ ′) ∧ ((C ′,K ′, γ ′), E ′) ∈

RΨ ∧ Ψ1(l) = ρ)

where the arrow
γ⇒ means the concatenation of the following transitions:

τ∗

→ γ→ τ∗

→ and Cδ(K, γ)

and Eδ are defined as follows:

• Cδ(K, γ) = {C ∈ CL | ∀C ′ ∈ CL ∃/ ν,K ′, γ ′.(C,K, γ)
ν→ (C ′,K ′, γ ′)}

• Eδ = {E ∈ OL | ∃/E ′ ∈ OL, l ∈ Loc .E
σ→ E ′ ∨ E

π(l)→ E ′ ∨ E
τ→ E ′}

We write (C,K, γ)⊲ΨE if there exists a conformability relation RΨ such that ((C,K, γ), E) ∈ RΨ.

8.4 Conformance

In this section we present the formal definition of the conformance between a choreogra-

phy and an orchestrated system. Given a choreography C = (Σ,C,K, X) an orchestrated

system E and a joining function Ψ, the idea is to consider all the possible choreogra-

phy states which satisfy the initial constraint X and for each of them test, up to Ψ, the

conformability (⊲Ψ) between the labelled transition system of the choreography and the

joined labelled transition system of the orchestrated system.

246 Chapter 8. Conformance

Definition 8.4 (Conformance) Given a choreography C = (Σ,C,K0, X), an orchestrated sys-

tem E ∈ OL and a joining function Ψ such that Im1(Ψ) = Σ∪ {⊥}, let ωC be the set of operations

involved within the choreography C, let ωE be the set of operations exhibited by the processes of E

and let EOP = ωE/ωC be the set of operations exhibited by E and which do not appear within the

roles of C. Let E⊥ be the set of orchestrator identifiers id of E for which Ψ1(l) = ⊥. We say that E

is conformant to C if the following condition holds:

∀γ ∈ γX, (C,K, γ) ⊲Ψ E⌢Ψ2[γ]/Eρ//E⊥///EOP

Observe that on the right hand side of ⊲Ψ the joined labelled transition system of the orchestrated

system defined in Definition 8.2 is considered.

8.5 Examples

In this section we report four examples, A, B, C and D, in order to show how confor-

mance works. As far as the examples A, B and C are concerned, we always consider

the same choreography Chor of Section 6.6 in order to show how different orchestrated

systems can be conformant to the same choreography depending on the selected joining

function, whereas we will exploit example D for showing how non-deterministic choice

in orchestration does not strictly correspond to the non-deterministic choice in choreog-

raphy.

8.5.1 Example A

Here we consider the choreography presented in Section 6.6 and the orchestrated system

presented in Section 7.4 where in the former there are four roles defined, the customer

(ρC), the market (ρM), the supplier (ρS) and the bank (ρB) whereas in the latter, there are

four orchestrators defined, C, M, S and B. In order to test the conformance between that

choreography and that orchestrated system, we consider a joining function ΨA whose

projection Ψ1
A allows us to join the orchestrators C, M, S and B to the roles ρC, ρM, ρS and

ρB, respectively. Ψ1
A is defined as it follows:

Chapter 8. Conformance 247

Ψ1
A(C) = ρC, Ψ1

A(M) = ρM, Ψ1
A(S) = ρS, Ψ1

A(B) = ρB,

Ψ1
A(l) = ⊥ for l /∈ {C,M, S, B}

We remind that the information set defined within the choreography is:

IC = {good, num, price, buy, card, ncard, outcome, receipt}

and that the initial constraints are defined in the following way:

X = good ∈ {apple, banana, strawberry}

∧ 0 ≤ num ≤ 200

∧ card ∈ {visa,mastercard}

∧ ncard = 123456789

∧ buy = ⊥

∧ 50 ≤ price ≤ 200

∧ outcome ∈ {OK,REJECTED}

∧ receipt = receiptDoc

To the end of conformance, we also define the joining function projection Ψ2
A which joins

the orchestrated system variables to the choreography information as it follows:

Ψ2
A(C)(goodC) = good

Ψ2
A(C)(numC) = num

Ψ2
A(M)(priceM) = price

Ψ2
A(C)(buyC) = buy

Ψ2
A(C)(cardC) = card

Ψ2
A(C)(ncardC) = ncard

Ψ2
A(S)(outcomeS) = outcome

Ψ2
A(B)(receiptB) = receipt

In Fig. 8.2 and 8.3 we have reported the labelled transition system of the choreography

and the orchestrated system respectively, generated starting from an initial state where

the information have the following values:

good = apple

num = 10

248 Chapter 8. Conformance

Figure 8.2: Choreography labelled transition system

Chapter 8. Conformance 249

Figure 8.3: Orchestrated system labelled transition system

250 Chapter 8. Conformance

price = 80

buy = ⊥

card = visa

ncard = 123456789

outcome = accepted

receipt = receiptDoc

The two labelled transition systems satisfy the conformability relation. Furthermore, for

each initial state of the choreography the labelled transition systems of the choreography

and those of the orchestrated system satisfy the conformability relation thus allowing us

to state that the orchestrated system of Section 7.4 is conformant to the choreography of

Section 6.6 up to the considered joining function ΨA. It is worth noting that an explicit

location mobility is exploited within the example. The bank indeed, needs to know the

location of the customer in order to send the receipt. Here, we want to notice that:

Ψ[(C,M, BUYt1
, 〈accepted, visa, 1223456789, C〉)] ≥

(ρC, ρM, BUYt1
, 〈accepted, visa, 1223456789, ρC〉)

Roles ρC and ρM indeed, are joined with orchestrators C and M and the operation BUYt1

and the exchanged values are the same in both interactions. It is worth noting that the

fourth exchanged value is a location ρC and, by the definition we gave of Ψ[σ] ≥ µ in

Section 8.1, it must be compared with the role joined with orchestrator C which is ρC.

8.5.2 Example B

Here we present an orchestrated system where some roles are joined with more than

one orchestrator. In particular, we consider an orchestrated system which follows the

communication links represented in Fig. 8.1 where there are three orchestrators which

enrole the supplier role (S1, S2 and S3) and three orchestrators which enrole the bank one

(B1, B2 and B3). The orchestrator S1 receive an order request on the operation ORDERt2,t′

2

and then, depending on the good, it forwards the request to S2 or S3. The orchestrator

B1 receives a request payment on the operation PAYt4
and then, depending on the card

Chapter 8. Conformance 251

type, it forwards the request to the orchestrator B2 or B3. B2 and B3 will send the receipt

to the customer. In the following we report the orchestrated system code:

EB ::= C ‖ M ‖ S1 ‖ S2 ‖ S3 ‖ B1 ‖ B2 ‖ B3

C ::= [(locc := C; (PRICEt0,t′

0
@M(〈goodC, numC〉 , priceC);

; (priceC ≥ 100

?buyC := cancelled

: buyC := accepted)

; BUYt1
@M(〈buyC, cardC, ncardC, locC〉))

| RESULTt3
(resultC)

| RECEIPTt5
(receiptC),S⊥)]C

M ::= [(PRICEt0,t′

0
(〈goodM, numM〉 , priceM, 0)

| (BUYt1
(〈buyM, cardM, ncardM, locM〉)

; buyM == accepted?Ord : 0),S⊥)]M

Ord ::= ORDERt2,t′

2
@S(〈goodM, numM〉 , outcomeM)

; (RESULTt3
@locM(outcomeM)

| outcomeM == OK

? PAYt4
@B(〈cardM, ncardM, priceM, locM〉) : 0

)

S1 ::= [(ORDERt2,t′

2
(〈goodS1, numS1〉 , outcomeS1, SelS),S⊥)]S1

SelS ::= goodS1 == apple

? ORDER2t2,t′

2
@S2(〈goodS1, numS1〉 , outcomeS1)

: ORDER3t2,t′

2
@S3(〈goodS1, numS1〉 , outcomeS1)

S2 ::= [(ORDER2t2,t′

2
(〈goodS2, numS2〉 , outcomeS2, 0),S⊥)]S2

S3 ::= [(ORDER3t2,t′

2
(〈goodS3, numS3〉 , outcomeS3, 0),S⊥)]S2

252 Chapter 8. Conformance

B1 ::= [(PAYt4
(〈cardB1, ncardB1, priceB1, locB1〉);

; (cardB1 = visa

? PAY2t4
@B2(〈cardB1, ncardB1, priceB1, locB1〉) : 0

; cardB1 = mastercard

? PAY3t4
@B3(〈cardB1, ncardB1, priceB1, locB1〉)),S⊥)]B1

B2 ::= [(PAY2t4
(〈cardB2, ncardB2, priceB2, locB2〉)

; RECEIPTt5
@locB2(receiptB2),S⊥)]B2

B3 ::= [(PAY3t4
(〈cardB3, ncardB3, priceB3, locB3〉)

; RECEIPTt5
@locB3(receiptB3),S⊥)]B3

Now, let us test the conformance between the choreography of Section 6.6 and the or-

chestrated system above, by exploiting the joining function ΨA defined in the example

A (8.5.1). The conformance test states that this orchestrated system is not conformant to

the choreography up to the joining function ΨA. Indeed, in ΨA the orchestrators S1, S2, B1

and B2 are not joined with any role (Ψ1
A(S1) = Ψ1

A(S2) = Ψ1
A(B1) = Ψ1

A(B2) = ⊥) thus,

the joined labelled transition system does not include the interactions between the or-

chestrators of the bank and the customer which are all replaced with τ actions. In this

orchestrated system indeed, the interactions between the bank role and the customer role

are performed by the orchestrators B2 and B3 on the operation RECEIPT but they are not

joined with any role and the interactions they performed are hidden by the operator //E⊥

so the orchestrated system EB is not conformant to the choreography up to ΨA because

the choreography interaction (ρB, ρC, RECEIPTt5
, receipt) never matches with any or-

chestrated interaction. Now, let us consider the following joining function ΨB where

orchestrators S2 and S3 are joined with role S and orchestrators B2 and B3 are joined with

role B:

Ψ1
B(C) = ρC

Ψ1
B(M) = ρM

Ψ1
B(S1) = ρS, Ψ

1
B(S2) = ρS, Ψ

1
B(S3) = ρS

Chapter 8. Conformance 253

Ψ1
B(B1) = ρB, Ψ1

B(B2) = ρB, Ψ1
B(B3) = ρB

Ψ1
B(l) = ⊥ for l /∈ {C,M, S1, S2, S3, B1, B2, B3}.

Ψ2
B(C)(buyC) = buy

Ψ2
B(C)(goodC) = good

Ψ2
B(C)(numC) = num

Ψ2
B(C)(cardC) = card

Ψ2
B(C)(ncardC) = ncard

Ψ2
B(M)(priceM) = price

Ψ2
B(S2)(outcomeS2) = outcome

Ψ2
B(S3)(outcomeS3) = outcome

Ψ2
B(B2)(receiptB2) = receipt

Ψ2
B(B3)(receiptB3) = receipt

It descends that the orchestrated system EB is conformant to the choreography Chor up

to ΨB. In this case indeed, the interactions between B2 (or B3) and the customer are not

hidden because the bank orchestrators are joined with the same role S. It is worth not-

ing that the message exchanges on the operations ORDER2t2,t′

2
and ORDER3t2,t′

2
, in the

joined labelled transition system, are renamed with the label π(S) by applying the oper-

ator /Eρ. Analagously, the message exchanges on the operations PAY2t4
and PAY3t4

are

renamed with the label π(B). These interactions indeed, are performed among orchestra-

tors joined with the same roles and they must be considered as internal actions.

8.5.3 Example C

In this example we consider an orchestrated system where the market service queries

a register service for obtaining the location of the supplier service and the bank one.

Depending on the goods to purchase the register service will answer with the location

of a supplier and, in the same way, depending on the card type it will answer with the

location of a bank service. Differently from the previous example where, for the supplier

and the bank, there is a central service that forwards the requests to the other ones, here

254 Chapter 8. Conformance

Figure 8.4: Orchestration system EC

we model a typical SOC scenario where the service to invoke is retrieved by quierying

a service register. This fact allows us to model all the supplier services and all the bank

services by exploiting the same interface. All of them indeed, will exhibit the operation

ORDERt2,t′

2
, as far as the supplier services are concerned, and the operation PAYt4

, as far

as the bank services are concerned. In particular, here we have considered three supplier

services and two bank services. The register service is modelled with a simple Request-

Response operation (DISCOVER) where we abstract away from the retrieving procedure

by representing it with the function queryDB(query). Let us consider that supplier S1

will be retrieved for apples, supplier S2 for bananas, supplier S3 for the strawberries,

bank B1 for visa cards and bank B2 for mastercard cards. In Fig. 8.4 we present the

communication links of this orchestrated system where dotted circles contain services

that have all the same interface. In the following we present the code of the orchestrated

system:

t6 = 〈inf〉

t ′6 = 〈loc〉

Chapter 8. Conformance 255

EC ::= C ‖ M ‖ R ‖ S1 ‖ S2 ‖ S3 ‖ B1 ‖ B2

C ::= [(locc := C; (PRICEt0,t′

0
@M(〈goodC, numC〉 , priceC);

; (priceC ≥ 100

?buyC := cancelled

: buyC := accepted)

; BUYt1
@M(〈buyC, cardC, ncardC, locC〉))

| RESULTt3
(resultC)

| RECEIPTt5
(receiptC),SC)]C

M ::= [(PRICEt0,t′

0
(〈goodM, numM〉 , priceM, 0) |

| ((BUYt1
(〈buyM, cardM, ncardM, client〉)

; buyM = accepted?Ord : 0)),SM)]M

Ord ::= DISCOVERt6,t′

6
@R(goodM, ordLoc)

; ORDERt2,t′

2
@ordLoc(〈goodM, numM〉 , outcomeM)

; (RESULTt3
@client(outcomeM)

| outcomeM = OK

? DISCOVERt6, t
′
6@R(cardM, payid);

; PAYt4
@payid(〈cardM, ncardMpriceM, client〉)

: 0

S1 ::= [(ORDERt2,t′

2
(〈goodS1, numS1〉 , outcomeS1, 0),SS1)]S1

S2 ::= [(ORDERt2,t′

2
(〈goodS2, numS2〉 , outcomeS2, 0),SS2)]S2

S3 ::= [(ORDERt2,t′

2
(〈goodS3, numS3〉 , outcomeS3, 0),SS3)]S3

B1 ::= [(PAYt4
(〈cardB1, ncardB1, priceB1, cidB1〉)

; RECEIPTt5
@cidB1(receiptB1),SB1)]B1

B2 ::= [(PAYt4
(〈cardB2, ncardB2, priceB2, cidB2〉)

; RECEIPTt5
@cidB2(receiptB2),SB2)]B2

256 Chapter 8. Conformance

R ::= [(tt ⇋ DISCOVERt6,t′

6
(query, l, l := queryDB(query)),SR)]B1

If we consider the joining function ΨB the orchestrated system EC is not conformant to

Chor because the variable outcomeS1
is not joint to any choreography information and it

is undefined (⊥). Considering all the labelled transition system generated for each state

of the choreography, there will be a transition system where the transition between the

supplier (S1) and the market will contain the value of the variable outcomeS1
(undefined)

that does not correspond to that of the choreograhy (contained within the information

outcome). For this reason EC is not conformant to Chor up to ΨB. Now, let us consider

the following joining function ΨC:

Ψ1
C(C) = ρC

Ψ1
C(M) = ρM

Ψ1
C(S1) = ρS, Ψ

1
C(S2) = ρS, Ψ

1
C(S3) = ρS

Ψ1
C(B1) = ρB, Ψ1

C(B2) = ρB

Ψ1
C(R) = ⊥

Ψ1
C(l) = ⊥ for l /∈ {C,M, S1, S2, S3, B1, B2}

Ψ2
C(C)(buyC) = buy

Ψ2
C(C)(goodC) = good

Ψ2
C(C)(numC) = num

Ψ2
C(C)(cardC) = card

Ψ2
C(C)(ncardC) = ncard

Ψ2
C(M)(priceM) = price

Ψ2
C(S1)(outcomeS1) = outcome

Ψ2
C(S2)(outcomeS2) = outcome

Ψ2
C(S3)(outcomeS3) = outcome

Ψ2
C(B2)(receiptB2) = receipt

Ψ2
C(B3)(receiptB3) = receipt

Chapter 8. Conformance 257

The orchestrated system EC is conformant to the choreography Chor up to the joining

function ΨC. It is worth noting that the register is not joined with any role but it colud be

joined with role M without compromising the conformance relation.

8.5.4 Example D

In this example we consider a choreography where a non-deterministic choice is de-

signed and we show a conformant orchestrated system where two non-deterministic

choices are programmed. We will show that the former choice corresponds with that de-

signed within the choreography whereas the latter one is not related to a non-determinism

at the level of the choreography. The choreography models a simple question system. A

player requests for a question to a questioner that replies with a question and then waits

for an answer. The only admitted answers are yes or not. Once received the answer, a role

that manages the question statistics receives the answer from the questioner. It is worth

noting that the questioner can be stopped by a master role before receiving the question

request from the player and, for the sake of simplicity, the choreography describes only

the evolution of the system for a question. The choreography is formed by four roles: the

Master (ρM), the Questioner (ρQ), the Player (ρP) and the Statistic role (ρS). In Fig. 8.5

we report the communication links of the system whereas in the following we define the

templates and the operations supplied by the different roles:

t0 = 〈〉

t1 = 〈Inf〉

ωM = {STOPt0
}

ωQ = {STOPt0
, QUESTIONt0,t1

, ANSWERt1
, YESt1

, NOt1
}

ωP = {QUESTIONt0,t1
, ANSWERt1

}

ωS = {YESt1
, NOt1

}

258 Chapter 8. Conformance

Figure 8.5: Choreography communication links of the example D

The information set contains the following information:

IC = {question, answer}

where question abstractly models a question and answer is the information which con-

tains the answer. Let Σ be the set of roles defined in the following way:

Σ = {(ρM,ωM), (ρQ,ωQ), (ρP,ωP), (ρS,ωS)}

The knowledge (K = (I, Λ)) is defined as it follows:

I(ρM) = {}

I(ρQ) = {question}

I(ρP) = {answer}

I(ρS) = {}

Λ(ρM) = {ρQ}

Λ(ρQ) = {ρS}

Λ(ρP) = {ρQ}

Λ(ρS) = ∅

Chapter 8. Conformance 259

In the following we present the conversation Con of the choreography where, for the

sake of clarity, we use the following notation for denoting One-Way and Request-Response

interactions:

ρA ⇀~x
o~t

ρB ≡ OW(ρA, ρB, o~t,~x)

ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C) ≡ RR(ρA, ρB, o~t,~t′ ,~x,~y,C)

Con ::= OW(ρM, ρS, STOPt0
, 〈〉) + (RR(ρP, ρS, QUESTIONt0,t1

, 〈〉 , question, 0);Ans)

Ans ::= OW(ρP, ρS, ANSWERt1
, answer);

if answer == yesρQ
then

OW(ρQ, ρS, YESt1
, question)

else

OW(ρQ, ρS, NOt1
, question)

The initial constraints are defined as it follows:

X = question = Aquestion

∧ answer ∈ {yes, no}

The choreography is defined by the tuple Chor2 = (Σ,Con,K, X). It is worth noting

that the choreography starts with a non-deterministic choice between the interactions

OW(ρM, ρS, STOPt0
, 〈〉) and RR(ρP, ρS, QUESTIONt0,t1

, 〈〉 , question, 0). In the follow-

ing, we present an orchestrated system for which it will be possible to define a joining

function in order to be conformant to the choreography Chor2. The orchestrated system

has an orchestrator for each role of the choreography.

ED ::= M ‖ Q ‖ P ‖ S

M ::= [(STOPt0
@Q(〈〉),S⊥)]M

Q ::= [(STOPt0
(〈〉) + (QUESTIONt0,t1

(〈〉 , questionQ), 0;Answ),S⊥)]Q

Answ ::= ANSWERt1
(answerQ);

answerQ == yes?

YESt1
@S(questionQ)

:

NOt1
@S(questionQ)

260 Chapter 8. Conformance

P ::= [(QUESTIONt0,t1
@Q(〈〉 , questionP); ANSWERt1

@Q(answerP),S⊥)]P

S ::= [(YESt1
(questionS) + NOt1

(questionS),S⊥)]S

If we consider the following joining function ΨD we obtain that the orchestrated system

ED is conformant to the choreography Chor2.

Ψ1
D(M) = ρM

Ψ1
D(Q) = ρQ

Ψ1
D(P) = ρP

Ψ1
D(S) = ρS

Ψ2
D(Q)(questionQ) = question

Ψ2
D(P)(answerP) = answer

It is worth noting that two non-deterministic choices has been designed within the or-

chestrated system ED. The former choice is programmed within the orchestrator Q

whereas the latter one is programmed within the orchestrator S. From an orchestration

point of view both the non-deterministic choices are reasonable to be designed because

both the orchestrator Q and the orchestrator S are not able to predict which message

they will receive first. But from a choreography view point only the former is a non-

deterministic choice whereas the latter is deterministically selected at the beginning of

the choreography by setting the variable answer to yes or to no. The non-deterministic

choice within the orchestrator S indeed, it is strictly related to the value of the variable

answer that, from a choreography view point, is deterministically set at the beginning

of each execution of the choreography. This example shows as the non-deterministic

choice at the level of the orchestration does not always correspond to a non-deterministic

choice at the level of the choreography. Such a difference can be observed if we con-

sider all the possible labelled transition systems for the choreography. There are two

labelled transition systems: the former (Fig. 8.6) is obtained by considering the initial

state question = Aquestion and answer = yes whereas the latter (Fig. 8.7) is obtained

by considering the initial state question = Aquestion and answer = no. It is possible

Chapter 8. Conformance 261

Figure 8.6: Choreography labelled transition system: answer = yes

Figure 8.7: Choreography labelled transition system: answer = no

262 Chapter 8. Conformance

to notice that the non-deterministic choice designed within the orchestrator Q is always

modelled, within the choreography labelled transition systems, by two transitions raised

from the initial state, whereas the non-deterministic choice, designed within the orches-

trator S, is modelled by two different interactions of the two labelled transition system:

(ρQ, ρS, YESt1
, Aquestion) and (ρQ, ρS, NOt1

, Aquestion).

8.6 Related works

Other works which deal with a conformance between a global approach, as the chore-

ography language, and a local view point, as the orchestration, exist. In [CHY07] the

authors propose a typed language, called global calculus, for describing a system in

a top view manner then, they present a precise machinery for making the so-called

Endpoint Projection. The Endpoint Projection extracts, from a global view description,

the behaviour of each participant in a way that it satisfies the global specification. In

[BBM+05a] Baldoni et al. present a conformance notion between a choreography de-

scription and an orchestration ones in terms of a similation between state finite automata

but they limited their analysis only to a choreography with two participants furthermore,

in [BBM+05b], the same authors extend their proposal to more participant choreography

and they present a notion of conformance based on two different simulations where they

distinguish between incoming messages and outcoming messages. In [KP06] the au-

thors extend our previous work [BGG+05b] without providing two formal languages for

choregraphy and orchestration but formalizing the semantics of WS-CDL and WS-BPEL

in terms of labelled transition systems. In [DD04] Dijkman and Dumas exploit Petri nets

for describing choreography, orchestration and service interface behaviours focusing on

the relationship between a single orchestrator w.r.t. a given choreography. Finally, in

[HM05] Heckel et al. indirectly deal with a conformance notion, intended as a relation-

ship between a global description wr.t. a local one, by focusing on automated testing of

behavioural contracts provided by a service.

Chapter 9

System design with a bipolar framework

In chapter 3, we have proposed a unique language, SOCK, for addressing both service

design and service composition issues. Such a language could be enough for dealing with a

services system design because it allows for the internal programming of a service and,

concurrently, it allows for its composition within a system. Although that, if we con-

sider a system where there are a lot of services, a designer could encounter difficulties in

managing both service design and composition with a unique approach. Let us consider,

for example, the case of the system presented in Section 3.4 which is formed of seven

services; a designer could start its design by programming the market service and, step

by step, it can modify the other involved services trying to approach the system design

by considering all the details of each service. When there is a great number of services,

such an activity could be very difficult with a high probability to make errors. In this

context, tools for managing a great number of services are needed. But, which kind of

facilities do they have to provide? How can they actually supply a more intuitive way

for approaching a complex system design?

In this chapter, we want to address the system design issue by considering the so-called

bipolar approach where the choreography and the orchestration languages we have dis-

cussed in Chapters 6 and 7, are exploited for dealing with different aspects of a services

system. The choreography language supplies a view of the system from a global per-

spective whereas the orchestration deals with a local view point. The bipolar approach

is based upon a mathematical liaison between the semantics representation of the two

264 Chapter 9. System design with a bipolar framework

languages called conformance which allows us to verify if a system described with the

orchestration language is conformant to that described with a choreography. The idea the

bipolar approach is based upon is that a difficult thing in orchestration is an easy thing in

choreography and vice versa. In order to give the intuition we can trace a comparison with

signal analysis. A signal can be processed in the time domain or in the frequency one and

the Fourier transform allows for the change from one domain to the other one. It is well

known that some things are easy in the frequency domain (e.g. filter design) and other

things are easy in the time domain (e.g. signal sampling). In the same way, orchestration

and choreography languages supply different domains for representing composed sys-

tems whereas the conformance relation plays the role of the Fourier transform. Such a

kind of framework could be exploited as it follows: a first coarse system can be designed

as a choreography from which it is possible to extract a conformant orchestrated system

skeleton that, subsequently, can be enhanced by adding other services or by enriching the

behaviour of the existing ones. Afterward, it is possible to rebuild a conformant chore-

ography from the previous system and then adjust or enhance it for introducing more

details; then, from the new choreography it will be possible to come back to the orches-

trated system and so on. It is reasonable to suppose that, as a final result, the design

steps must achieve a connected error-free choreography. We can describe the bipolar ap-

proach by means of Fig 9.1 where the relation between the orchestration domain and the

choreography one is given by the conformance notion and two different algorithms, the

Extracting Choreography and the Extracting an Orchestration, allow for the generation

of a choreography starting from an orchestrated system and the generation of an orches-

trated system starting from a choreography respectively. At the present, we are focusing

on the orchestration and choreography domains development and on the conformance

relation between them. As far as the two algorithms are concerned, we have started to

analyze them even if, so far, we cannot present results related to them.

In the remainder of this chapter, we aim at providing two examples where two services

system are designed by exploiting a bipolar approach. It is worth noting that there is not

a predetermined procedure to follow for achieving the design of a system by exploiting

the bipolar approach, but the designer is free to choose the view he prefers as he prefers

Chapter 9. System design with a bipolar framework 265

Figure 9.1: The bipolar framework

and when he prefers. The conformance notion supplies the mathematical machinery for

interpreting a view into the other one and the designer can exploit it as he wants. In this

context, the following examples do not show the best procedure for achieving a system

design but only some possible approaches that can be followed. As we have done within

the previous chapter, here, for the sake of clarity, we exploit the following notation for

representing the choreography One-Way interactions and the Request-Response ones:

ρA ⇀~x
o~t

ρB ≡ OW(ρA, ρB, o~t,~x)

ρA ⇋
~x,~y
o

~t, ~t ′
ρB(C) ≡ RR(ρA, ρB, o~t,~t′ ,~x,~y,C)

9.1 Hospital reservation example

In this example a hospital reservation exams service is designed where choreography

and orchestration views are alternatively used for adding new orchestrators or modify-

ing the system at the design time. The Hospital Reservation Exams Service, HRES for

short, receives a request for an exam reservation from a client service and it makes the

266 Chapter 9. System design with a bipolar framework

reservation. The HRES will exploit two other services: the reservation service which per-

forms the reservation and the archive service which stores all the personal data of the

clients.

9.1.1 Step 1 (a first choreography).

The design could start by programming a simple choreography with two roles: the client

(ρC) and the HRES (ρH). Thus, the set of the role names is:

RName = {ρC, ρH}

The communication links of the choreography could be formed by a Request-Response

operation exhibited by ρH for receiving a request from the client and then sending the

response back to it. The operation set follows:

Op := {(res, rr,~tr,~t
′
r), (res, sr,~tr,~t

′
r)}

where ~tr and ~t ′r are operation templates which we define after we will design the ex-

changed information. Once defined the operations, the set of roles follows:

Role := {(ρC, res~tr,~t′
r
), (ρH, res~tr,~t′

r
)}

Figure 9.2: Hospital reservation example communication links Step 1

In Fig. 9.2 the communication links are represented. Now, we consider the exchanged

information. To this end, let us consider that the client name (name), the client surname

(surname) and the exam type (type) are sufficient both for identifying the client and

Chapter 9. System design with a bipolar framework 267

reserving the exam. Furthermore, let the reservation data be identified by the unique

information rdata. The information set follows:

IC = {name, surname, type, rdata}

Since we suppose that the client sends to the HRES the information name, surname and

type and receives as a response the rdata information, we define the operation templates

as follows:

~tr = 〈inf, inf, inf〉 ~t ′r = 〈inf〉

Moreover, it descends that the initial distribution of knowledge is:

K = {I, Λ}

I(ρC) = {name, surname, type} I(ρH) = {rdata}

Λ(ρC) = Λ(ρH) = ∅

As initial constraints we exploit the following ones:

X ::= name = Aname ∧ surname = Asurname ∧ type = Atype ∧ rdata = Somedata

The conversation is formed by a Request-Response interaction between the client and the

HRES:

Con := RR(ρC, ρH, res~tr,~t′
r
, 〈name, surname, type〉 , rdata, 0)

From this choreography we can extract a conformant orchestrated system1. A confor-

mant orchestrated system could be the following one where we join the role ρC to the

orchestrator C and the role ρH to the orchestrator H:

C := [res~tr,~t′
r
@Hloc(〈nameC, surnameC, typeC〉 , rdataC),SC]@Cloc

H := [res~tr,~t′
r
(〈nameH, surnameH, typeH〉 , rdataH, 0),SH]@Hloc

The joining function we exploit in order to test the conformance follows:

1At the present we are developing algorithms for doing this step in an automatic way.

268 Chapter 9. System design with a bipolar framework

Ψ1(C) = ρC Ψ1(H) = ρH

Ψ2(C)(nameC) = name Ψ2(C)(surnameC) = surname

Ψ2(C)(typeC) = type Ψ2(H)(rdataH) = rdata

9.1.2 Step 2 (introducing a reservation service).

Now, we decide to introduce a reservation service (R) which actually performs the reser-

vation. The HRES will invoke the service R forwarding the data received by the client

and waiting for the reservation data where we abstract away from the internal computa-

tion steps of R. Finally, the reservation data will be forwarded to the client.

C := [res~tr,~t′
r
@Hloc(〈nameC, surnameC, typeC〉 , rdataC),S⊥]@Cloc

H := [res~tr,~t′
r
(〈nameH, surnameH, typeH〉 , rdataH, ReqRes),S⊥]@Hloc

ReqRes := reqres~tr,~t′
r
@Rloc(〈nameH, surnameH, typeH〉 , rdataH)

R := [reqres~tr,~t′
r
(〈nameR, surnameR, typeR〉 , rdataR, 0),S⊥]

Since at this step we consider the reservation service as a refinement of the HRES one, we

consider the service R joined with the same role ρH and we modify the joining function

as it follows:

Ψ1(C) = ρC Ψ1(H) = ρH Ψ1(R) = ρH

Ψ2(C)(nameC) = name Ψ2(C)(surnameC) = surname

Ψ2(C)(typeC) = type Ψ2(R)(rdataR) = rdata

The orchestrated system is conformant to the previous choreography because the inter-

actions between the service engine H and the service engine R are internal actions and

they do not alter the conformance. At this point, since we consider that the registration

service could be relevant from a global view point, we modify the choreography in order

to take into account the new service enigne R by introducing a new role ρR. Thus, the set

of the role names and the operation set are enriched as follows:

Chapter 9. System design with a bipolar framework 269

RName = {ρC, ρH, ρR}

Op := {(res, rr,~tr,~t
′
r), (res, sr,~tr,~t

′
r),

(reqres, rr,~tr,~t
′
r), (reqres, sr,~tr,~t

′
r)}

The set of roles follows:

Role := {(ρC, res~tr,~t′
r
), (ρH, {res~tr,~t′

r
, reqres~tr,~t′

r
}), (ρR, reqres~tr,~t′

r
)}

Figure 9.3: Hospital reservation example communication links Step 2

It is worth noting that the initial distribution of knowledge is modified because in this

new choreography the rdata is initially known by the role ρR and not by the role ρH:

K = {I, Λ}

I(ρC) = {name, surname, type} I(ρH) = ∅ I(ρR) = {rdata}

Λ(ρC) = Λ(ρH) = Λ(ρR) = ∅

The conversation is:

Con := RR(ρC, ρH, res~tr,~t′
r
, 〈name, surname, type〉 , rdata, RqRs)

Rqrs := RR(ρH, ρR, reqres~tr,~t′
r
, 〈name, surname, type〉 , rdata, 0)

We modify the joining function as it follows:

Ψ1(C) = ρC Ψ1(H) = ρH Ψ1(R) = ρR

Ψ2(C)(nameC) = name Ψ2(C)(surnameC) = surname

Ψ2(C)(typeC) = type Ψ2(R)(rdataR) = rdata

270 Chapter 9. System design with a bipolar framework

9.1.3 Step 3 (Interaction modification).

Now, by reasoning about the choreography, we want to modify the previous choreog-

raphy in order to allow the reservation service to send the reservation data directly to

the client without communicating it to the role ρH. In this case all the operations will be

changed into One-Way operations. The set of the role names is not modified whereas the

operation set is defined as follows:

Op := {(res, ow,~tr), (res, n,~tr),

(reqres, ow,~tr), (reqres, n,~tr)

(rd, ow,~t ′r), (rd, n,~t ′r)}

where the templates now are defined as:

~tr = 〈inf, inf, inf〉 ~t ′r = 〈inf〉

The communication links are represented in Fig. 9.4 and the set of roles follows:

Role := {(ρC, {res~tr
, rd~t′

r
}), (ρH, {res~tr

, reqres~tr
}), (ρR, {reqres~tr

, rd~t′
r
)}}

It is worth noting that the client has to exhibit a One-Way operation (rd) in order to re-

Figure 9.4: Hospital reservation example communication links Step 3

ceive the rdata information from ρR. The initial distribution of knowledge is unchanged

whereas the conversation is modified in order to take into account three One-Way inter-

actions:

Chapter 9. System design with a bipolar framework 271

Con := Res;RqRs;Rd

Res := OW(ρC, ρH, res~tr
, 〈name, surname, type〉)

Rqrs := OW(ρH, ρR, reqres~tr
, 〈name, surname, type〉)

Rd := OW(ρR, ρC, rd~t′
r
, rdata)

Such a choreography seems to satisfy our purposes but it is not error-free. Indeed, when

the role ρR try to send the rdata to role ρC, it does not know its location because it never

receives it from role ρH and its initial knowledge does not contain such an information.

In this case, we have to introduce a location mobility between ρH and ρR. To this end, we

modify the operation template~tr and the conversations as it follows:

~tr = 〈inf, inf, inf, loc〉

Con := Res;RqRs;Rd

Res := OW(ρC, ρH, res~tr
, 〈name, surname, type, ρC〉)

Rqrs := OW(ρH, ρR, reqres~tr
, 〈name, surname, type, ρC〉)

Rd := OW(ρR, ρC, rd~t′
r
, rdata)

Now, we consider a new orchestration system where each orchestrator is joined to a role

in choreography:

C := [l := Cloc; res~tr
@Hloc(〈nameC, surnameC, typeC, l〉)

; rd~t′
r
(rdataC),S⊥]@Cloc

H := [res~tr
(〈nameH, surnameH, typeH, locH〉)

; reqres~tr
@Rloc(〈nameH, surnameH, typeH, locH〉),S⊥]@Hloc

272 Chapter 9. System design with a bipolar framework

R := [reqres~tr
(〈nameR, surnameR, typeR, locR〉); rd~t′

r
@locR(rdataR),S⊥]

The joining function is not altered and we continue to exploit that of step 2.

9.1.4 Step 4 (introducing an archive service)

Now, we decide to introduce an archive service (A) which stores the personal data of

the clients. The reservation service will need the ID of the client in order to perform the

reservation and it will request for it forwarding the name and the surname to the archive

service. Since we consider the service A as a refinement of the service R, the orchestrated

system will be modified as it follows where we consider the service A joined with the

role ρR:

C := [l := Cloc; res~tr
@Hloc(〈nameC, surnameC, typeC, l〉); rd~t′

r
(rdataC),S⊥]@Cloc

H := [res~tr
(〈nameH, surnameH, typeH, locH〉)

; reqres~tr
@Rloc(〈nameH, surnameH, typeH, locH〉),S⊥]@Hloc

R := [reqres~tr
(〈nameR, surnameR, typeR, locR〉)

; id~ta,~t′
a
@Aloc(〈nameR, surnameR〉 , idR)

; rd~t′
r
@locR(rdataR),S⊥]

A := [id~ta,~t′
a
(〈nameA, surnameA〉 , idA, 0),S⊥]@Aloc

where

~ta = 〈inf, inf〉 ~t ′a = ~t ′r = 〈inf〉

Also in this case, since we consider that the service A is relevant from a global view point,

we modify the choreography in order to take into account the new service A. The set of

Chapter 9. System design with a bipolar framework 273

the role names and the operation set are enriched as follows:

RName = {ρC, ρH, ρR, ρA}

Op := {(res, ow,~tr), (res, n,~tr),

(reqres, ow,~tr), (reqres, n,~tr)

(id, rr,~ta,~t ′a), (id, sr,~ta,~t ′a)

(rd, ow,~t ′r), (rd, n,~t ′r)}

The set of roles follows:

Role := {(ρC, res~tr,~t′
r
), (ρH, {res~tr,~t′

r
, reqres~tr,~t′

r
}),

(ρR, {reqres~tr,~t′
r
, id~ta,~t′

a
, rd~t′

r
}), (ρA, id~ta,~t′

a
)}

Figure 9.5: Hospital reservation example communication links Step 4

We need to introduce a new information which models the ID of the client known by the

archive service. Thus, the information set and the initial distribution of knowledge are:

IC = {name, surname, type, rdata, id}

K = {I, Λ}

I(ρC) = {name, surname, type} I(ρH) = ∅ I(ρR) = {rdata} I(A) = {id}

274 Chapter 9. System design with a bipolar framework

Λ(ρC) = {ρC} Λ(ρH) = Λ(A) = ∅ Λ(ρR) = {ρA}

We suppose to enrich the initial constraints with the condition id = AnID. The conver-

sation must take into account the Request-Response interaction between the reservation

service and the archive one:

Con := Res;RqRs;Arch;Rd

Res := OW(ρC, ρH, res~tr
, 〈name, surname, type, ρC〉)

Rqrs := OW(ρH, ρR, reqres~tr
, 〈name, surname, type, ρC〉)

Arch := RR(ρR, ρA, id~ta,~t′
a
, 〈name, surname〉 , id, 0)

Rd := OW(ρR, ρC, rd~t′
r
, rdata)

The joining function is modified as it follows:

Ψ1(C) = ρC Ψ1(H) = ρH Ψ1(R) = ρR Ψ1(A) = ρA

Ψ2(C)(nameC) = name Ψ2(C)(surnameC) = surname

Ψ2(C)(typeC) = type Ψ2(R)(rdataR) = rdata Ψ2(A)(idA) = id

9.1.5 Step 5 (interaction changing).

Now we want to modify the interactions in order to increase the efficiency of the previ-

ous system. The requests for the ID indeed, can be performed directly by the HRES as it

is shown in the communication links picture reported in Fig. 9.6. In this case the archive

service receives the notification from the HRES service and then forwards the client id

directly to the registration service. The operation set and the role set are modified as it

follows where the operation id is that exploited by the HRES service for notifying the

archive service whereas the operation id2 is exhibited by the reservation service for re-

ceiving the client id from the archive one:

Op := {(res, ow,~tr), (res, n,~tr),

(reqres, ow,~tres), (reqres, n,~tres)

Chapter 9. System design with a bipolar framework 275

(id, ow,~ta), (id, n,~ta)

(id2, ow,~t ′a), (id2, n,~t ′a)

(rd, ow,~t ′r), (rd, n,~t ′r)}

Role := {(ρC, res~tr,~t′
r
), (ρH, {res~tr,~t′

r
, reqres~tr,~t′

r
, id~ta

}),

(ρR, {reqres~tr,~t′
r
, id2~t′

a
, rd~t′

r
}), (ρA, {id~ta

, id2~t′
a
)}}

where:

~tres = 〈inf, loc〉 ~ta = 〈inf, inf〉 ~t ′a = 〈inf〉

Figure 9.6: Hospital reservation example communication links Step 5

The initial distribution of the knowledge does not change w.r.t. step 4 whereas the con-

versation is changed as it follows:

Con := Res; (RqRs | (Arch1;Arch2));Rd

Res := OW(ρC, ρH, res~tr
, 〈name, surname, type, ρC〉)

Rqrs := OW(ρH, ρR, reqres~tres
, 〈type, ρC〉)

Arch1 := OW(ρH, ρA, id~ta
, 〈name, surname〉)

Arch2 := OW(ρA, ρR, id2~t′
a
, id)

276 Chapter 9. System design with a bipolar framework

Rd := OW(ρR, ρC, rd~t′
r
, rdata)

It is worth noting that conversations Arch1 and Arch2 are performed in parallel with the

conversation Rqrs and only when all the parallel composition is finished the conversa-

tion Rd can be performed. The orchestrated system is modified as it follows:

C := [l := Cloc; res~tr
@Hloc(〈nameC, surnameC, typeC, l〉)

; rd~t′
r
(rdataC),S⊥]@Cloc

H := [res~tr
(〈nameH, surnameH, typeH, locH〉)

; (reqres~tr
@Rloc(〈typeH, locH〉)

| id~ta
@Aloc(〈nameH, surnameH〉)),S⊥]@Hloc

R := [reqres~tr
(〈nameR, surnameR, typeR, locR〉)

; id~ta,~t′
a
@Aloc(〈nameR, surnameR〉 , idR)

; rd~t′
r
@locR(rdataR),S⊥]

A := [id~ta
(〈nameA, surnameA〉)

; id2~t′
a
@Rloc(idA),S⊥]@Aloc

We exploit the same joining function of step 5 and we test that such an orchestrated

system is conformant to the given choreography. The choreography is error-free and

connected and it satisfies our purposes. At this point, we can consider finished our de-

sign phase and we can add to the orchestration abstract processes some constructs for

specifying some internal computational steps as it follows:

C := [l := Cloc; res~tr
@Hloc(〈nameC, surnameC, typeC, l〉)

; rd~t′
r
(rdataC),S⊥]@Cloc

H := [res~tr
(〈nameH, surnameH, typeH, locH〉)

; (reqres~tr
@Rloc(〈typeH, locH〉)

Chapter 9. System design with a bipolar framework 277

| id~ta
@Aloc(〈nameH, surnameH〉)),S⊥]@Hloc

R := [reqres~tr
(〈nameR, surnameR, typeR, locR〉)

; id~ta,~t′
a
@Aloc(〈nameR, surnameR〉 , idR)

; rdataR := reservation(〈typeR, idR〉)

; rd~t′
r
@locR(rdataR),S⊥]

A := [id~ta
(〈nameA, surnameA〉); idA := query(〈nameA, surnameA〉)

; id2~t′
a
@Rloc(idA),S⊥]@Aloc

query ::= idA := query(〈nameA, surnameA〉)

where the functions reservation(〈typeR, idR〉) and query(〈nameA, surnameA〉) model

the reservation procedure and the database query respectively.

9.2 Market example

In this example we model a business scenario similar to that proposed in the example

of Section 6.6. In particular, a customer sends a request to a market service in order to

receive the price of a product. The market will forwards the request to the supplier of

the product and then replies to the customer with the price. Depending on the price

the market will decide to buy or not the product. If the customer decides to accept, it

will send an order request to the market. The market will initiate the order by sending

a request to the supplier and it will also initiate a financial transaction by invoking the

bank service. Then, the bank service will request for the bank account data by invok-

ing both the customer and the supplier. At the end, the bank service will send commit

messages to the market, to the customer and to the supplier. The supplier will finish by

sending a commit message to the customer. In order to show that the system design can

be achieved by exploiting the bipolar approach differently from the previous example, in

this case we will start by designing a not connected choreography by focusing before on

the interactions that involve the customer and then to those that involve the other roles.

278 Chapter 9. System design with a bipolar framework

9.2.1 Step 1 (the customer)

As a first step we design a not connected choreography which focuses only on the inter-

actions which deal with the customer. In particular, we consider four different roles: the

customer (ρC), the market (ρM), the supplier (ρS) and the bank (ρB). The set of role names

follows:

RName ::= {ρC, ρM, ρS, ρB}

The customer will interact with the market for requesting an order, it will interact with

the bank role for initiating the financial transaction and it will wait for a supplier commit

message. The set of the operations follows and the communication links are reported in

Fig. 9.7:

Op := {(price, rr, ~t1, ~t1

′
), (price, sr, ~t1, ~t1

′
)

(buy, ow, ~t2), (buy, n, ~t2)

(bankData, rr, ~t3, ~t3

′
), (bankData, sr, ~t3, ~t3

′
)

(bankCommit, ow, ~t4), (bankCommit, n, ~t4)

(suppCommit, ow, ~t5), (suppCommit, n, ~t5)}

Figure 9.7: Market Example communication links Step 1

Chapter 9. System design with a bipolar framework 279

where the operation price allows the customer to request for a product order by sending

a good type and a quantity. The operation buy is exploited for confirming or cancelling

the order and, if the order is confirmed, the customer will send its location in order to

allow the supplier and the bank roles to interact with it. The operation bankData allows

the bank role to retrieve all the necessary data for performing the financial transaction,

such as the credit card type and the credit card number. The operation bankCommit

allows the customer to receive a commit message from the bank role whereas the opera-

tion suppCommit allows it to receive a commit message from the supplier role. The set

of role is defined as it follows:

Role := {(ρC, {price ~t1,~t1
′ , buy ~t2

, bankData ~t3,~t3
′, bankCommit ~t4

, suppCommit ~t5
}),

(ρM, {price ~t1,~t1
′ , buy ~t2

})

(ρB, {bankData ~t3,~t3
′ , bankCommit ~t4

})

(ρS, {suppCommit ~t5
})}

In the following we list the information exploited within the choreography:

IC := {good, quantity, price, confirm, cctype, ccnumber, bcommit, scommit}

where good and quantity represent the good type and the quantity to purchase whereas

confirm represents the information which contains a customer confirmation or not. price

represents the order price. cctype and ccnumber represent the customer card credit

type and number respectively whereas bcommit and scommit represent the commit

messages from the bank and the supplier respectively. The operation templates follows:

~t1 = ~t3

′
= 〈inf, inf〉 ~t1

′
= ~t4 = ~t5 = 〈inf〉 ~t2 = 〈inf, loc〉 ~t3 = 〈〉

The conversation follows:

Con ::= RR(ρC, ρM, price ~t1,~t1
′, 〈good, quantity〉 , price, 0)

;OW(ρC, ρM, buy ~t2
, 〈confirm, ρC〉)

;RR(ρB, ρC, bankData ~t3,~t3
′, 〈〉 , 〈cctype, ccnumber〉 , 0)

; (OW(ρB, ρC, bankCommit ~t4
, bcommit) | OW(ρS, ρC, suppCommit ~t5

, scommit)

280 Chapter 9. System design with a bipolar framework

It is worth noting that, as we have said, the conversation is not connected but we accept

this fact because we are focusing on the customer. In the following we report the initial

knowledge:

K = {I, Λ}

I(ρC) = {good, quantity, confirm, cctype, ccnumber} I(ρM) = {price}

I(ρS) = {scommit} I(ρB) = {bcommit}

Λ(ρC) = {ρC, ρM} Λ(ρM) = ∅

Λ(ρS) = {ρC} Λ(ρB) = {ρC}

It is worth noting that the location knowledge of the bank role and the supplier one

contains the location of the customer. This is due to the fact that, at the present, we have

designed only the interactions of the customer thus the bank and the supplier, which will

receive the location of the customer from the market, for the sake of this step, must be

aware of its location from the beginning. The initial constraints follows:

X := good ∈ {apple, banana} ∧ 0 < quantity ≤ 100 ∧ confirm ∈ {yes, no}

∧cctype ∈ {visa,mcard} ∧ ccnumber = 1234 ∧ 50 < price < 200

∧scommit = SupMsg ∧ bcommit = BnkMsg

Now, before designing the orchestrated system we design the joining function where

four orchestrators are considered and some orchestrator variables are introduced:

Ψ1(C) = ρC Ψ1(M) = ρM

Ψ1(S) = ρS Ψ1(B) = ρB

Ψ2(C)(goodC) = good Ψ2(C)(quantityC) = quantity

Ψ2(C)(confirmC) = confirm Ψ2(C)(cctypeC) = cctype

Ψ2(C)(ccnumberC) = ccnumber Ψ2(M)(priceM) = price

Ψ2(B)(bcommitB) = bcommit Ψ2(S)(scommitS) = scommit

In order to be conformant the orchested system must introduce some coordinating inter-

actions. We can choose to introduce a new orchestrator not joined to any role or we can

introduce, for the sake of this step, some synchornization operations in order to follow

Chapter 9. System design with a bipolar framework 281

the choreography conversation. Here, we choose the latter solution because, in the next

steps we intend to exploit the synchronizing operations as a sort of roadmap which will

allow us to replace each coordinating interactions with actual message exchanges among

the roles. The orchestrated system follows:

C ::= [(myloc := C;price ~t1,~t1
′@M(〈goodC, quantityC〉 , priceC)

;buy ~t2
@M(〈confirmC,myloc〉)

;bankData ~t3,~t3
′(〈〉 , 〈cctypeC, ccnumberC〉 , 0)

; (bankCommit ~t4
(bcommitC) | suppCommit ~t5

(scommitC)),S⊥)]C

M ::= [(price ~t1,~t1
′(〈goodM, quantityM〉 , priceM, 0)

;buy ~t2
(confirmM, locM)

; s1t0
@B(〈〉),S⊥)]M

B ::= [(s1t0
(〈〉);bankData ~t3,~t3

′@C(〈〉 , 〈cctypeB, ccnumberB〉)

; s2t0
@S(〈〉);bankCommit ~t4

@C(bcommitB),S⊥)]B

S ::= [(s2t0
(〈〉); suppCommitt5

@C(scommitS),S⊥)]S

where s1 and s2 are the operation we exploit for performing the coordinating interactions

and t0 = 〈〉. At this point, by observing the orchestrated system, we can decide to modify

it, e.g. by introducing some new orchestrators as we have done in the previous example,

or if we are satisfied, we can decide to wnrich the choreography and continue the design.

For the sake of this example, we do not alter the orchestrated system, but we enhance the

choreography by analyzing all the interactions of the market role.

9.2.2 Step 2 (the market)

Within this step, we want to introduce all the interactions of the market role. In particu-

lar, the market will ask for the price to the supplier and then forward it to the customer.

Furthermore, if the customer will accept, the market will start the order by notifying the

supplier and it will initiate the financial transaction by notifying the bank. Finally it will

282 Chapter 9. System design with a bipolar framework

wait for a bank commit message from the bank role. We introduce the following opera-

tions:

Op := Op ∪ {(pricereq, rr, ~t1, ~t1

′
), (pricereq, sr, ~t1, ~t1

′
)

(order, ow, ~t2), (order, n, ~t4)

(pay, ow, ~t6), (pay, n, ~t6)}

where t6 = 〈inf, loc, loc〉 is the template of the operation pay that will be exhibited by

the bank role and which will receive the price and the locations of the customer and the

market. The two locations will be exploited by the bank role for sending the commit mes-

sages. In Fig. 9.8 we report the communication links enriched with the new operations.

It is worth noting that the market will receive the bank commit message on the operation

bankCommit previously defined.

Figure 9.8: Market Example communication links Step 2

The role definition changes as it follows:

Role := {(ρC, {price ~t1,~t1
′ , buy ~t2

, bankData ~t3,~t3
′, bankCommit ~t4

, suppCommit ~t5
}),

(ρM, {pricereq ~t1,~t1
′ , ordert2

, price ~t1,~t1
′ , buy ~t2

, payt6
, bankCommit ~t4

})

Chapter 9. System design with a bipolar framework 283

(ρB, {bankData ~t3,~t3
′ , bankCommit ~t4

, payt6
})

(ρS, {pricereq ~t1,~t1
′, ordert2

, buy ~t2
, price ~t1,~t1

′ , suppCommit ~t5
})}

Now we introduce the interactions related to the market within the conversation:

Con ::= RR(ρC, ρM, price ~t1,~t1
′, 〈good, quantity〉 , price, PriceRequest)

;OW(ρC, ρM, buy ~t2
, 〈confirm, ρC〉)

; (OW(ρM, ρS, order ~t2
, 〈confirm, ρC〉)

|

if confirm == yesρM
then

OW(ρM, ρB, pay ~t6
, 〈price, ρC, ρM〉)

;RR(ρB, ρC, bankData ~t3,~t3
′, 〈〉 , 〈cctype, ccnumber〉 , 0))

; (OW(ρB, ρC, bankCommit ~t4
, bcommit)

| OW(ρS, ρC, suppCommit ~t5
, scommit)

| OW(ρB, ρM, bankCommit ~t4
, bcommit))

else

0

)

PriceRequest ::= RR(ρM, ρS, pricereq ~t1,~t1
′ , 〈good, quantity〉 , price, 0)

The Request-Response interaction between the market and the supplier on the opera-

tion pricereq is performed within the first Request-Response interaction between the

customer and the market, and it is defined by means of the conversation PriceRequest.

Furthermore, the market notifies the confirmation message to the supplier and it will ini-

tiate the financial transaction with the bank only if the message contains the value yes. If

the financial transaction is initiated, the market will notifies the bank by means of the op-

eration pay and it will wait for the commint on the bankCommit operation. It is worth

noting that the conversation is still not connected because, after the interaction on the

pay operation, it starts the following conversation:

;RR(ρB, ρC, bankData ~t3,~t3
′, 〈〉 , 〈cctype, ccnumber〉 , 0))

; (OW(ρB, ρC, bankCommit ~t4
, bcommit)

284 Chapter 9. System design with a bipolar framework

| OW(ρS, ρC, suppCommit ~t5
, scommit)

| OW(ρB, ρM, bankCommit ~t4
, bcommit))

where the parallel composition of three interactions is enabled after the execution of

the Request-Response one. Within the parallel composition, the sender of the One-

Way OW(ρS, ρC, suppCommit ~t5
, scommit) is different from the last receiver (ρB) of the

Request-Response interaction peformed on the operation bankData, thus introducing

the not connection. This is due to the fact that, so far, we have not dealt with the interac-

tions between the bank role and the supplier one that remain unspecified.

The initial knowledge is modified in order to take into account the fact that, now, the

price is communicated by the supplier and the market only forwards it to the customer,

futrthermore as far as the location knowledge is concerned, the market must be aware

of the location of the supplier in order to interact with it, and the bank can be initialized

with an empty set because it receives both the location of the customer and the market

from the market itself by means of the notification pay. It is worth noting that, since

the market has to communicate its own location, it must initially know it. Finally, the

location knowledge of the supplier is initialized to the empty set because it will receive

the customer location from the market by means of the operation order:

K = {I, Λ}

I(ρC) = {good, quantity, confirm, cctype, ccnumber} I(ρM) = ∅

I(ρS) = {scommit, price} I(ρB) = {bcommit}

Λ(ρC) = {ρC, ρM} Λ(ρM) = {ρS, ρM}

Λ(ρS) = ∅ Λ(ρB) = ∅

The initial constraints remain unchanged whereas the joining function must be modified

in order to change the association of the information price. Now indeed, the price infor-

mation is contained within the supplier and the customer only receives it by means of the

operation pricereq, thus we join such an information with the variable priceS of the sup-

plier instead of the variable priceC of the customer. For this reason, we modify the join-

ing function definition of the previous step, by replacing the equation Ψ2(M)(priceM) =

Chapter 9. System design with a bipolar framework 285

price with the following one: Ψ2(M)(priceS) = price. Now, we can extract the orches-

tration system where we have introduced all the interactions of the market and we have

replaced the coordinating interaction on s1 with the One-Way interaction on the opera-

tion pay whereas the interaction on the operation s2 still remains.

C ::= [(myloc := C;price ~t1,~t1
′@M(〈goodC, quantityC〉 , priceC)

;buy ~t2
@M(〈confirmC,myloc〉)

;bankData ~t3,~t3
′(〈〉 , 〈cctypeC, ccnumberC〉 , 0)

; (bankCommit ~t4
(bcommitC) | suppCommit ~t5

(scommitC)),S⊥)]C

M ::= [myloc := M; supLoc := S

; (price ~t1,~t1
′(〈goodM, quantityM〉 , priceM, PriceRequestM)

;buy ~t2
(confirmM, locM)

; (order ~t2
@supLoc(confirmM, locM)

|

confirmM == yes?

payt6
@B(〈priceM, locM,myloc〉)

;bankCommit ~t4
(bcommitM))

: 0

),S⊥)]M

PriceRequestM ::= (pricereq ~t1,~t1
′@supLoc(〈goodM, quantityM〉 , priceM, 0)

B ::= [payt6
(〈priceB, loc1, loc2〉);bankData ~t3,~t3

′@loc1(〈〉 , 〈cctypeB, ccnumberB〉)

; s2t0
@S(〈〉)

; (bankCommit ~t4
@loc1(bcommitB)

| bankCommit ~t4
@loc2(bcommitB)),S⊥)]B

S ::= [pricereq ~t1,~t1
′(〈goodS, quantityS〉 , priceS);order ~t2

(confirmS, locS)

; confirmS == yes?

s2t0
(〈〉); suppCommitt5

@locS(scommitS)

: 0,S⊥)]S

As for the step 1, here we do not modify the orchestrated system but we decide to model

286 Chapter 9. System design with a bipolar framework

also the bank and the supplier interactions within the choreography.

9.2.3 Step 3 (the bank and the supplier)

Within this step, we introduce all the interactions that deal with the bank and the supplier

roles. In particular, we add the interaction between the bank and the supplier for retriev-

ing the bank data of the latter and, moreover, we introduce the bank commit interaction

between the bank and the supplier. In order to this, we do not need more operations

because it sufficient to exploit the existing ones. Indeed, the supplier must exhibit the

operations bankData and bankCommit as it is shown within the following definition

of the roles:

Role := {(ρC, {price ~t1,~t1
′ , buy ~t2

, bankData ~t3,~t3
′, bankCommit ~t4

, suppCommit ~t5
}),

(ρM, {pricereq ~t1,~t1
′ , ordert2

, price ~t1,~t1
′ , buy ~t2

, payt6
, bankCommit ~t4

})

(ρB, {bankData ~t3,~t3
′ , bankCommit ~t4

, payt6
})

(ρS, {pricereq ~t1,~t1
′ , ordert2

, buy ~t2
, price ~t1,~t1

′ , suppCommit ~t5

, bankCommit ~t4
, bankData ~t3,~t3

′})}

Figure 9.9: Market Example communication links Step 3

Chapter 9. System design with a bipolar framework 287

The communication links are represented within Fig. 9.9. It is worth noting that we only

modify the template t6 as it follows t6 = 〈inf, loc, loc, loc〉 in order to consider the fact

that, now, the bank requires also the supplier location in order to interact with it. Now,

we introduce two new information that are related to the bank data of the supplier by

redefining the information set as it follows:

IC := {good, quantity, price, confirm, cctype, ccnumber

, cctype2, ccnumber2, bcommit, scommit}

where cctype2 and ccnumber2 represent the credit card type and number of teh supplier

respectively. The final conversation, for the business scenario we are modeling, follows:

Con ::= RR(ρC, ρM, price ~t1,~t1
′, 〈good, quantity〉 , price, PriceRequest)

;OW(ρC, ρM, buy ~t2
, 〈confirm, ρC〉)

; (OW(ρM, ρS, order ~t2
, 〈confirm, ρC〉)

|

if confirm == yesρM
then

OW(ρM, ρB, pay ~t6
, 〈price, ρC, ρM, ρS〉)

; (RR(ρB, ρC, bankData ~t3,~t3
′, 〈〉 , 〈cctype, ccnumber〉 , 0)

|

RR(ρB, ρS, bankData ~t3,~t3
′ , 〈〉 , 〈cctype2, ccnumber2〉 , 0))

)

; (OW(ρB, ρC, bankCommit ~t4
, bcommit)

| (OW(ρB, ρS, bankCommit ~t4
, bcommit)

;OW(ρS, ρC, suppCommit ~t5
, scommit))

| OW(ρB, ρM, bankCommit ~t4
, bcommit)

)

else

0

)

PriceRequest ::= RR(ρM, ρS, pricereq ~t1,~t1
′ , 〈good, quantity〉 , price, 0)

288 Chapter 9. System design with a bipolar framework

The conversation is connected. The initial knowledge and the initial constraints are mod-

ified as it follows in order to take into account the supplier bank information:

K = {I, Λ}

I(ρC) = {good, quantity, confirm, cctype, ccnumber} I(ρM) = ∅

I(ρS) = {scommit, price, cctype2, ccnumber2} I(ρB) = {bcommit}

Λ(ρC) = {ρC, ρM} Λ(ρM) = {ρS, ρM}

Λ(ρS) = ∅ Λ(ρB) = ∅

X := X ∧ cctype2 ∈ {visa,mcard} ∧ ccnumber2 = 5678

As far as the joining funtion is considered, we must add the following definitions in order

to consider the new information intriduce within this step:

Ψ2(S)(cctypeS) = cctype2 Ψ2(S)(ccnumberS) = ccnumber2

The orchestrated system without coordinating interactions follows:

C ::= [(myloc := C; price ~t1,~t1
′@M(〈goodC, quantityC〉 , priceC)

;buy ~t2
@M(〈confirmC,myloc〉)

;bankData ~t3,~t3
′(〈〉 , 〈cctypeC, ccnumberC〉 , 0)

; (bankCommit ~t4
(bcommitC) | suppCommit ~t5

(scommitC)),S⊥)]C

M ::= [myloc := M; supLoc := S

; (price ~t1,~t1
′(〈goodM, quantityM〉 , priceM, PriceRequestM)

;buy ~t2
(confirmM, locM)

; (order ~t2
@supLoc(confirmM, locM)

|

confirmM == yes?

payt6
@B(〈priceM, locM,myLoc, suploc〉)

;bankCommit ~t4
(bcommitM))

: 0

Chapter 9. System design with a bipolar framework 289

),S⊥)]M

PriceRequestM ::= (pricereq ~t1,~t1
′@supLoc(〈goodM, quantityM〉 , priceM, 0)

B ::= [payt6
(〈priceB, loc1, loc2, loc3〉);

(bankData ~t3,~t3
′@loc1(〈〉 , 〈cctypeB, ccnumberB〉)

| bankData ~t3,~t3
′@loc3(〈〉 , 〈cctype2B, ccnumber2B〉)

)

; (bankCommit ~t4
@loc1(bcommitB)

| bankCommit ~t4
@loc2(bcommitB)

| bankCommit ~t4
@loc3(bcommitB)),S⊥)]B

S ::= [pricereq ~t1,~t1
′(〈goodS, quantityS〉 , priceS);order ~t2

(confirmS, locS)

; confirmS == yes?

bankData ~t3,~t3
′(〈〉 , 〈cctypeS, ccnumberS〉)

;bankCommit ~t4
(bcommitS); suppCommitt5

@locS(scommitS)

: 0,S⊥)]S

At this point, the abstract processes of the orchestrated system are completed and con-

formant w.r.t. the choreography. Other steps can be done, for example we can intro-

duce a register service joint with the market which can be exploited for retrieving dif-

ferent supplier locations. We can imagine indeed, that there exist different suppliers

for different kind of goods. Moreover, we can better specify other aspects of the busi-

ness scenario, such as the internal decision of the customer which chooses if it has to

accept or not depending on the price (e.g. by introducing a conversation if price <

100 then confirm :=ρC
yes else confirm :=ρC

no), etc. Here, for the sake of brevity,

we do not introduce other designing steps that, however, can be achieved by follow-

ing the same approaches we have used within the designing steps presented in the two

examples of this chapter.

Chapter 10

New languages for programming SOC

applications

In the previous chapters, we have analyzed orchestration and choreography as synergic

approaches for distributed system design by following a formal approach. As it emerges,

the orchestration represents, w.r.t. choreography, a refinement step towards the imple-

mentation of service oriented applications. Informally, if on the one hand choreogra-

phy does not produce executable systems, on the other hand the orchestration makes

it possible to program each service involved in the application. Here, we focus on or-

chestration, presenting JOLIE (Java Orchestration Language Interpreter Engine) which

we have developed in order to animate orchestration programs written in a language

based on SOCK. JOLIE ia an open source project1 [Ope] whose syntax is C/Java-like

in order to provide a more programmer friendly development environment differently

from WS-BPEL which has a less human readable XML-based syntax. The peculiar and

original characteristic of JOLIE is that it combines the solid mathematical basis provided

by SOCK with a programmer friendly development and execution environment. Such

a fact contrasts with most of the actual Web Services orchestration languages for which

the formal operational semantics has been investigated and (partially) defined after the

syntax. In particular, at the present, JOLIE implements the service behaviour part of

SOCK where some new constructs have been added in order to deal with implementa-

1The first implementation of the JOLIE Java code has been developed by Fabrizio Montesi for his master

degree at the Corso di Laurea in Scienze dell’informazione in Cesena.

Chapter 10. New languages for programming SOC applications 291

tive aspects. JOLIE, indeed, implements also a timing statement sleep(msec) for pro-

gramming processes that wait for a certain amount of milliseconds and it has contructs

in and out for communicationg with the user by console which is also a novelty in the

domain of orchestration languages. It is worth noting that JOLIE has been developed

in a modular way which allows us to be protocol and communication medium indepen-

dent. Such a fact, will allow us to simply extend the engine in order to run orchestrators

that exploit different and heterogeneous communication medium such SOAP, Internet

sockets, shared files, etc.

10.1 JOLIE language overview

JOLIE is an implementation of the service behaviour part of the SOCK language and it

provides a C-like syntax for designing orchestrator services. A C-like syntax makes the

language intuitive and easy to learn for a programmer customed to it. In the following we

introduce some basics of the JOLIE language, except expression and condition syntaxes

which are similar to that of C language.

10.1.1 Identifiers

An identifier (often abbreviated to id) is an unambiguous name stored in the orchestra-

tor shared memory which identifies a location, an operation, a variable or a link. An

identifier must match the following regular expression: [a-zA-Z]([0-9a-zA-Z])*.

Some JOLIE statements require that the programmer provides a list of identifiers, which

is formed by identifiers separated by commas (as ”identifier1, identifier2, a, b, c”). In the

following, we refer to the list of identifiers by using the name id list.

10.1.2 Program structure

A JOLIE program structure is represented by the following grammar:

292 Chapter 10. New languages for programming SOC applications

program::=

locations { Locations-definition∗ }

operations { Operations-declaration∗ }

variables { Variables-declaration }

links { Links-declaration }

definition∗

main { Process }

definition∗

definition:= define id { Process }

where we represent non-terminal symbols in italic and the Kleene star represents a zero

or more time repetition. For the sake of clarity, the non-terminals Locations-definition,

Operations-declaration, Variables-declaration, Links-declaration and Process are separately ex-

plained in the following.

10.1.2.1 Locations

JOLIE communications are socket based: an orchestrator waits for messages on a net-

work port (the default is 25552). In order to communicate with another orchestrator it is

fundamental to know its hostname (or ip address) and the port it is listening to: these

information are stored in a location. A location definition joins an identifier to a hostname

and a port. The non-terminal follows:

Locations-definition:= id=“hostname:port”

where we do not define the hostname and the port non-terminals which must be intended

as a representation of any hostname and any port respectively. In the following we

present program fragment which shows a possible location declaration:

2the default port can be overridden by command line

Chapter 10. New languages for programming SOC applications 293

locations {

localUri = "localhost:2555",

googleUri = "www.google.com:80",

ipUri = "192.168.0.1:2556"

}

10.1.2.2 Operations

The operations represent the way a JOLIE orchestrator exploits for interacting with other

orchestrators. We distinguish two types of operations:

• Input operations.

• Output operations.

The former represent the access points an orchestrator offers to communicate with it,

whereas the latter are used to invoke input operations of another orchestrator. We dis-

tinguish two groups of input operations: One-Way and Request-Response. A One-Way

operation simply waits for a message, while a Request-Response operation waits for a

message, executes a code block and then sends a response message to the invoker. As

far as output operations are concerned they can be a Notification or a Solicit-Response

operation. The former is used to invoke a One-Way operation of another orchestrator,

sending a message to it, while the latter is used to invoke a Request-Response operation.

It is worth noting that a Solicit-Response operation, after sending the request message,

is blocked until it receives the response one from the invoked service. The non-terminal

follows:

Operations-declaration:= OneWay:id list

| RequestResponse:id list

| Notification:id-assign list

| SolicitResponse:id-assign list

294 Chapter 10. New languages for programming SOC applications

id-assign:= id=id

By definition, input operations expect a list of identifiers, while the output ones expect a

list of pairs id=id (we have identified such a list by using the notation id-assign list). As

far as the output operations are concerned we distinguish between the operation name

used within the orchestrator and the bound operation name of the invoked one. In a

pair idA=idB, idA represents the internal operation name whereas idB the bound name of

the external one to be invoked. Such a language characteristic allows us to decouple the

orchestrator code from the external operation name binding. In the following a program

fragment shows an example of operation declaration.

operations

{

OneWay:

ow1

RequestResponse:

rr1, rr2

Notification:

n1 = serverOneWay1, n2 = serverOneWay2, n3 = serverOneWay3

SolicitResponse:

sr1 = serverRequestResponse1

}

10.1.2.3 Variables

JOLIE variables are typeless. Implicit supported types are integers and strings. The

variables declaration non-terminal requires only a list of identifiers which represent the

shared memory variables. The definition follows:

Variables-declaration:= id list

In the following example three variables, a, b and c are declared:

variables {

a, b, c

}

Chapter 10. New languages for programming SOC applications 295

10.1.2.4 Links

Links model the SOCK signals and are used for internal parallel processes synchroniza-

tion. As for variables the links declaration non-terminal requires only a list of identifiers

where the ids will represent internal links used for synchronization purposes.

Links-declaration:= id list

In the following example two links, link1 and link2, are declared:

links {

link1, link2

}

10.1.2.5 Definitions

Definitions allows to define a procedure which will be callable by another one by ex-

ploiting the call statement. Each definition joins an identifier to a Process. Syntactically,

a Process is a piece of code composed by JOLIE statements. Informally, the process de-

fined within a definition can be viewed as the body of a C function. In the following

we report an example where the procedure calc is defined. Its body is composed by two

assignments on variables a and b:

define calc

{

a = 5*2-9;;

b = a * (2-1)

}

10.1.2.6 Main

The main block allows to define the process which will be run at the start of the program

execution. Informally, it is comparable to the main function of a C program. In the fol-

lowing we report an example where, within the main procedure, the string Hello, world!

is printed out on the user concole and there is a call at the procedure calc defined above:

296 Chapter 10. New languages for programming SOC applications

main

{

out("Hello, world!");;

call(calc)

}

10.1.3 Statements

This paragraph shows a brief survey of JOLIE statements.

10.1.3.1 Program control flow statements

• call(id) : calls and executes the procedure which has been defined with the

given identifier.

• if (condition) {...} else if (condition) {...} else {...}: condition

statement

• while(condition) {...}: loop statement

10.1.3.2 Operation statements

• id<id list> : waits for a message for the OneWay operation declared in the opera-

tions block as id, and stores its values in the id list variables.

• id<id list> <id list> (Process) : waits for a message for the RequestResponse oper-

ation id, stores its values in the first id list variables, executes the code block Process

and sends a response message containing the values of the second id list variables.

• id@id<id list> : uses the Notification operation represented by the first id to send a

message which contains the values of the id list variables, to the orchestrator located

at the second id. The second id can be a location declared in the locations block,

or a variable containing a string that can be evaluated as a location. It is worth

noting that such a feature allows to implement the location mobility. It is possible,

Chapter 10. New languages for programming SOC applications 297

indeed, to receive a location which can be exploited for performing a Notification

or a Solicit-Response.

• id@id<id list> <id list> : uses the SolicitResponse operation represented by the first

id to send a message which contains the values of the first id list variables, to the or-

chestrator located by the second id (which can be, as for the Notification, a location

or a variable). Once the message is sent, it waits for a response message from the

invoked Request-Response and stores its values in the second id list variables.

10.1.3.3 Synchronizing statements

• linkIn(id) : linkIn and linkOut are used for parallel processes synchronization

and must be always considered together. In particular the linkIn waits for a linkOut

trigger on the same internal link identified by id. In case there are already one or

more linkOut processes triggering for the same internal link, it synchronizes itself

with one of them by following a non-deterministic policy.

• linkOut(id) : triggers for a linkIn synchronization on the same internal link

identified by id. In case there are already one or more linkIn processes waiting

for the same internal link, it synchronizes itself with one of them by following a

non-deterministic policy.

10.1.3.4 Console input/output statements

• in(variable id) : waits for a console user input and stores it in the given variable.

• out(expression) : writes the evaluation of the given expression on the console

(note that a variable can be considered as an expression).

10.1.3.5 Others

• sleep(n) : makes the current process sleeping for n milliseconds where n is a

natural.

298 Chapter 10. New languages for programming SOC applications

• nullProcess : no-op statement.3

10.1.4 Statement composers

As the SOCK calculus, JOLIE provides three ways to compose statements: sequence,

parallelism and non-deterministic choice.

10.1.4.1 Sequence

Sequences are composed by exploiting the ;; operator. Let x1, x2, . . . , xn−1, xn be state-

ments. Then, the sequential composition

x1; ; x2; ; . . . ; ; xn−1; ; xn

executes x1 and waits for it to terminate, then executes x2 and waits for it to terminate

and continues with this behaviour until it reaches the end of the sequence.

10.1.4.2 Parallel

Parallel processes are composed by exploiting the ‖ operator. The ‖ operator combines

sequences (note a single statement is a sequence of one element). Let s1, s2, . . . , sn−1, sn

be sequences. Then, the parallel composition

s1‖s2‖ . . .‖sn−1‖sn

executes every sequence in parallel. A parallel composition is terminated when all the

sequences are terminated.

3the nullProcess statement is usually exploited within the RequestResponse when there is no need

to execute anything before sending the response.

Chapter 10. New languages for programming SOC applications 299

10.1.4.3 Non-deterministic choice

A non-deterministic choice can be expressed among different guarded branches by using

the ++ operator. A branch guard can only be an input operation or a linkIn statement,

whereas the branch can be any process. Let

(g1, p1), (g2, p2), . . . , (gn−1, pn−1), (gn, pn)

be branches where g is the branch guard and p the guarded process. The syntax of the

non-deterministic choice follows:

[g1]p1++[g2]p2++...++[gn−1]pn−1++[gn]pn

The guards are defined within square brackets. When a non-deterministic choice is pro-

grammed it makes the interpreter waiting for an input on one of its guards. Once an

input has come, the related p process is executed and the other branches are deactivated.

10.1.4.4 Priority of the composers

The statement composers interpretation priority is: ;; ‖ ++. In the following example,

where A, B, C and D are statements, we show how priority works.

[req1<a>] A || B ;; C ++ [req2] D ;; C ;; B || D

In this code fragment there is a non-deterministic choice between two branches guarded

by two One-Way operations (req1<a> and req2). By considering the operator pri-

ority the same code would be explicited as follows.

[input1](A || (B ;; C)) ++ [input2] ((D ;; C ;; B) || D)

10.1.5 Example

As a practical example, consider a scenario in which we have an orchestrator which acts

as a service provider. The orchestrator declares a Request-Response operation, named

factorialRR, which has the purpose to receive a number and, as a response, to send its

factorial. Moreover, the orchestrator has to interact with a logging server in order to

communicate its activity for constructing a statistic of its usage. The following code snip-

pet shows the part of a possible implementation. For the sake of brevity, only the main

procedure is shown.

300 Chapter 10. New languages for programming SOC applications

main

{

while(1) {

[factorialRR< n >< result >(call(calcFactorial))]

servedClients = servedClients + 1

++

[linkIn(logLink)]

notifyActivity@logServerUri< servedClients >;;

servedClients = 0

}

||

while(1) {

sleep(60000);; /* 60 seconds */

linkOut(logLink)

}

}

The main is composed by two processes in parallel. The former defines a non-deterministic

choice between the One-Way on which the service can be accessed for returning the fac-

torial calculation and the linkIn process defined on the internal link logLink. The link-

Out process which triggers the internal link logLink is defined in the second parallel

process which, every 60 seconds, interrupts the service for sending the number of the

served clients to the logging service located at logServerUri.

10.2 JOLIE interpreter architecture

This section is devoted to briefly describe the architecture of JOLIE.

10.2.1 Structure overview

Figure 10.1 describes the JOLIE interpretation algorithm and the parts composing the

interpreter. In order to explain how JOLIE works we proceed by describing the main

Chapter 10. New languages for programming SOC applications 301

Figure 10.1: JOLIE architecture

steps of the run-time environment and then its main components: the Parser, the Object

Oriented interpretation tree and then the Communication core.

JOLIE interpreter behavior

• Step 1: initialize the communication core.

• Step 2: create an instance of the parser.

• Step 3: create the Object Oriented Interpretation Tree (OOIT).

• Step 4: invoke the run() method of the OOIT’s root node (that corresponds to the

main).

We will now examine the different parts composing the interpreter.

10.2.2 Parser and Object Oriented Interpretation Tree

JOLIE is based on an object oriented infrastructure created during the parsing of the or-

chestration to be executed, which is realized by a recursive descendant parser. The princi-

ple we follow is to create objects as small as possible, which will know –abstracting away

302 Chapter 10. New languages for programming SOC applications

from the context– how to execute the simple task they represent. This goal is obtained by

exploiting the encapsulation and composition mechanisms. In order to understand how

this is realized we first introduce the main components present in the Object Oriented

Interpretation Tree: the Process class and the Basic Process and Composite Process concepts.

The former is an object class present in the implementation, while the latter are concepts

which we will use to distinguish the general behaviour of Process objects.

10.2.2.1 The Process class

Process is a class representing a generic piece of JOLIE code. Process has a run() method

which performs the activities that the object represents.

10.2.2.2 Basic Process

A Basic Process is a Process composed by a single statement of the JOLIE language, like an

assignment operation, an output or an input one. The run() method in this case performs

such a statement.

10.2.2.3 Composite Process

A Composite Process is a Process composing other Process objects (by running them in par-

allel, in a sequence or in a non-deterministic choice). The run() method executes such

composition and, to this end, exploits the run() method of the enclosed Process objects.

Example 10.1 In order to illustrate how these concepts are used we use the following

example:

a = 1 ;; out(a)

The parser will create three Process objects (see Figure 10.2):

• A SequentialProcess (which is as a Composite Process) object that encloses the follow-

ing two processes:

– An AssignProcess (which is a BasicProcess) object that assigns the value 1 to a.

Chapter 10. New languages for programming SOC applications 303

Figure 10.2: Objects tree representing a = 1 ;; out(a)

– An OutProcess (which is a BasicProcess) object that prints on the console the

value of variable a.

When the runtime environment will interpret this code block, it will call the run() method

of the SequentialProcess object which will sequentially call the run() method of the Assign-

Process and the OutProcess objects it contains. It is worth noting that the SequentialProcess

object knows only that its children are Process instances; it simply invokes their run()

method without knowing anything about their behavior (e.g., they could be themselves

Composite Process objects).

Since this process encapsulation principle is followed in the entire OOIT, to start the

execution requires just the call of the run() method of the root node (which is the object

that contains the main process).

10.2.3 The communication core

The communication core provides an interface for supporting the communication be-

tween services that allows us to abstract away from the following aspects:

• The communication medium.

• The communication data protocol.

304 Chapter 10. New languages for programming SOC applications

Figure 10.3: Communication medium and data protocols

Figure 10.3 reports some examples of communication medium and of communication

data protocol. For instance the communication medium –which supports the communication–

can be a socket, a file or a pipe, while the communication data protocol, which defines

how the data should be formatted as well as the interaction modalities that should be

used to implement a message exchange, can be (we list the most significant ones in the

Internet context) HTTP, SMTP or SOAP.

The communication core supports such abstractions by means of the communication

channel CommChannel object. The runtime environment exploits the communication

channels to send and receive data. Once instantiated, a CommChannel object is able to

send and receive CommMessage (communication message) objects that are composed by:

• The operation name.

• An array of values.

The idea is that each communication channel must be associated to a communication

medium and a communication protocol. For instance consider a channel, say c, associ-

ated to the SOAP data protocol and to the FILE “host1@/home/services/op1.ss” com-

munication medium. In order to send a message M on that channel a process must write

on the file “host1@/home/services/op1.ss” the SOAP message containing M and, in or-

der to perform an input on that channel, the process must read (and consume the piece

of stream it reads) the “host1@/home/services/op1.ss” file by using the SOAP data pro-

tocol on the input stream. Although such a interface is designed to support such kind of

flexibility on communication medium and data protocol, the current available version of

the JOLIE interpreter supports only the socket communication medium and an internal

default data protocol.

Chapter 10. New languages for programming SOC applications 305

10.3 Modelling a WS-BPEL service with JOLIE

In this section we model the Purchase order service extracted from the WS-BPEL specifi-

cations and presented in section 2.1.3.3, by exploiting JOLIE. The aim of this example is

to show that JOLIE programs reveals more human readable and manageable than WS-

BPEL programs written in XML. The example models a service for handling a purchase

order. The service starts its activity after the reception of a message on the Request-

Response operation sendPurchaseOrder. Before sending the response message the service

executes concurrently three processes defined within the body subroutine. One process

selects a shipper by invoking the shipping service operation requestShipping, another

process starts the price calculation by invoking the invoice service operation InitiatePrice-

Calculation and the the third process starts the production scheduling by invoking the

operation requestProductionScheduling of the production scheduling service. It is worth

noting that we abstract away from service locations that are represented by the names

shippingServiceUri, InvoiceServiceUri and productionSchedulingService. Furthermore, we re-

mark the use of linkOut and linkIn statements for synchronizing concurrent processes.

locations {

shUri = shippingServiceUri, inUri = InvoiceServiceUri,

schUri = productionSchedulingService

}

operations {

OneWay: sendSchedule, sendInvoice

Notification:

InPr = InitiatePriceCalculation,

SnShPr = sendShippingPrice,

rqPrSch = requestProductionScheduling,

snShSch = sendShippingSchedule

RequestResponse: sendPurchaseOrder

SolicitResponse: reqShp = requestShipping

}

variables { customerInfo, purchaseOrder, IVC, shippingInfo, scheduleInfo }

links { ship-to-invoice, ship-to-scheduling }

306 Chapter 10. New languages for programming SOC applications

define body {

reqShp@shUri< customerInfo >< shippingInfo > ;;

linkOut(ship-to-invoice) ;; sendSchedule< scheduleInfo > ;;

linkOut(ship-to-scheduling)

||

InPr@inUri< customerInfo, purchaseOrder > ;;

linkIn(ship-to-invoice) ;; SnShPr@inUri< shippingInfo > ;;

sendInvoice< IVC >

||

rqPrSch@schUri< customerInfo, purchaseOrder > ;;

linkIn(ship-to-scheduling) ;; snShSch@schUri< shippingInfo >

}

main {

sendPurchaseOrder< customerInfo, purchaseOrder >< IVC >(call(body))

}

10.4 The market example

In this section we present a complete orchestrated system designed with JOLIE. The

business scenario resembles that presented in Section 9.2 where a market example is

presented. Here, we built a system with six orchestrators where we suppose that all the

orchestrators are hosted by the localhost but on different ports. The presented system

can be executed by downloading the JOLIE libraries at [Ope]:

• the client, port 2555

• the market, port 2556

• the register, port 2557

• the apple supplier, port 2558

• the banana supplier, port 2559

Chapter 10. New languages for programming SOC applications 307

Figure 10.4: The JOLIE Market Example

• the bank supplier, port 2560

In Fig. 10.4 we reppresent the communication links among the orchestrator where, for

the sake of this example, we do not explicit the operation names but we specify the

exchanged data and we exploit the green arrows for representing the commit messages.

The system behaviour can be summarized as if follows:

• the client asks to the user for inserting a good and a quantity and invokes the mar-

ket by forwarding these information

• the market invokes the register, by sending the good, in order to retrieve the loca-

tion of the supplier which is able to perform the order for that kind of good

• when the market receives the response from the register, it invokes the supplier by

sending the quantity in order to receive the price order

• the supplier replies to the market by sending the order price

• the market forwards the price to the client

• the client asks to the user if he accepts or not the order

308 Chapter 10. New languages for programming SOC applications

• if the client accepts the order, the market sends the order request to the supplier

by sending the quantity and the location of the client that will be used, by the sup-

plier, for sending the commit message. Concurrently, the market initiates a financial

transaction by invoking the bank

• the bank invokes both the client and the supplier for retrieving their bank data

• the client asks for the bank data to the user (credit card type and credit card number)

whereas the supplier is modelled in a way that it just contains the bank account

number

• when the bank has obtained all the data, it sends a commit message to the client, to

the market and to the supplier

• Finally, the supplier sends a commit message to the client.

In the following we report the code of each orchestrator with some comments.

10.4.1 The client

The code of the client follows:

locations {

marketLoc = "localhost:2556"

}

operations

{

OneWay:

BankCommitOW,

SupplierCommitOW

Notification:

PurchReqN = PurchReqOW

RequestResponse:

DoYouAccetptRR,

GetClientDataRR

SolicitResponse:

Chapter 10. New languages for programming SOC applications 309

}

links {}

variables {

good, quantity, price, answer, cardId, cardType, myLoc

}

main

{

myLoc = "localhost:2555" ;;

out("Good: ") ;; in(good) ;;

out("Quantity: ") ;; in(quantity) ;;

PurchReqN@marketLoc< good, quantity, myLoc >;;

DoYouAccetptRR<price><answer>(

out("The price is " + price + ". Do you accept?[yes/no]")

;; in(answer)

);;

if (answer=="yes"){

GetClientDataRR<><cardId, cardType>(

out("Insert your card Id: ");; in(cardId);;

out("Insert your card type ");; in(cardType)

)

;;

(

(BankCommitOW<>;;out("\n Received Bank Commit"))

||

(SupplierCommitOW<>

;;out("\n Received Supplier Commit"))

)

}

}

The client exploit the primitive in for requesting the good and the quantity to the user,

then it invokes the market by exploiting the Notification PurchReqN. After that, it waits

for the price on the Request-Response DoYouAccept and, before replying, it asks to

310 Chapter 10. New languages for programming SOC applications

the user if he wants to accept or not. If the user accepts the order, the client waits for a

request from the bank (on the Request-Response operation GetClientDataRR) in order

to provide its bank data and then waits for commit messages both from the bank (on

operation BankCommitOW) and the supplier (on operation SupplierCommitOW).

10.4.2 The market

The code of the market follows:

locations {

RegLoc = "localhost:2557",

bankLoc = "localhost:2560"

}

operations

{

OneWay:

PurchReqOW,

BankCommitOW,

RequestResponse:

SolicitResponse:

SuppLocSR = SuppLocRR,

GetPriceSR = GetPriceRR,

DoYouAccetptSR = DoYouAccetptRR

Notification:

PurchaseOrderN = PurchaseOrderOW,

TransactionN = TransactionOW

}

links {}

variables {

good, quantity, SupLoc, clientLoc, price, answer, myLoc

}

Chapter 10. New languages for programming SOC applications 311

main

{

myLoc="localhost:2556";;

PurchReqOW<good,quantity, clientLoc>;;

SuppLocSR@RegLoc<good><SupLoc>;;

GetPriceSR@SupLoc<quantity><price>;;

DoYouAccetptSR@clientLoc<price><answer>;;

if (answer=="yes"){

(

(PurchaseOrderN@SupLoc<quantity,clientLoc>;;

out("Sending Purchase order to "+good+" supplier"))

||

(TransactionN@bankLoc<price,SupLoc,clientLoc,myLoc>;;

out("\n Waiting for Bank Commit...");;

BankCommitOW<>)

)

}

}

The market starts its activities by receiving a request from a client on the operation

PurchReqOW. After that, it invokes the register in order to obtain the location of the sup-

plier joined to the order good (on the Solicit-Response operation SuppLocSR). Once re-

ceived the location, it asks to the supplier for the price (operation GetPriceSR) and then,

asks to the client for accepting or not the order (operation DoYouAcceptSR). If the client

accepts the order, the market invokes both the supplier (operation PurchaseOrderN)

and the bank (operation TransactionN) for starting the order and the financial transac-

tion, respectively. Finally, it waits for a commit from the bank on the operation BankCommitOW.

10.4.3 The register

The code of the register follows:

locations {}

312 Chapter 10. New languages for programming SOC applications

operations

{

RequestResponse:

SuppLocRR

}

links { stop }

variables {

good, SupLoc, exit, cmd

}

main

{

exit="true";;

(

in(cmd);;

if (cmd=="exit") {linkOut(stop)}

||

while(exit=="true"){

([SuppLocRR<good><SupLoc>(

if (good=="apple"){

SupLoc="localhost:2558"

};;

if (good=="banana"){

SupLoc="localhost:2559"

}

)]nullProcess

++

[linkIn(stop)]exit="false"

)

}

)

}

Chapter 10. New languages for programming SOC applications 313

This orchestrator represents a service register where, by sending a query, it is possible to

retrieve the location of a service which is able to perform a task realted to the sent query.

Here, we simply models such a kind of service with an orchestrator that receives a good

and then, by means of a simple if then else construct, replies with the supplier loca-

tion joined with that good. In particular, if the selected good is apple then the location of

the supplier is localhost:2558, whereas if teh selected good is banana the supplier

location is localhost:2559. It is worth noting that the main code is structured, by

exploiting a while construct, in a way that the service is always available except when

it is stopped by means of a console command (exit). The body of the while operator

indeed, contains a non-deterministic choice between the operation that supplies the re-

trieving location service (SupLocRR) and an internal synchronization signal on the link

stop. The latter link is raised when the user insert the console command exit. This par-

ticular characteristic of JOLIE cannot be implemented by using WS-BPEL because on the

one hand, WS-BPEL does not support primitives which deal with user interactions and,

on the other hand, it does not allow for a not-deterministic choice between an external

message and an internal link.

10.4.4 The suppliers

Here we present the code of the apple supplier. It is worth noting that all the suppliers

for different kind of good have always the same code.

locations {}

operations

{

OneWay:

PurchaseOrderOW,

BankCommitOW

RequestResponse:

GetSupplierDataRR,

GetPriceRR

Notification:

314 Chapter 10. New languages for programming SOC applications

SupplierCommitN = SupplierCommitOW

}

links {

stop

}

variables {

exit, quantity, price, cmd, clientLoc, accountNumber

}

main

{

accountNumber="123456";;

exit="true";;

(

in(cmd);;

if (cmd=="exit") {linkOut(stop)}

||

while (exit=="true"){

([GetPriceRR<quantity><price>(price=100*quantity)]

out("\n submitted price:" + price)

++

[PurchaseOrderOW<quantity,clientLoc>](

out("\n Received purchase order!");;

GetSupplierDataRR<><accountNumber>(nullProcess);;

out("\n Bank account number sent.

Waiting for Bank Commit...");;

BankCommitOW<>;;out("...received Bank Commit");;

SupplierCommitN@clientLoc<>;;

out("\n Client commit sent.")

)

++

[linkIn(stop)]exit="false"

)

Chapter 10. New languages for programming SOC applications 315

}

)

}

Similarly to the register, the supplier is structured, by exploiting a while and a not-

determistic constructs, in a way that it can be stopped by means of the console command

exit. In particular, within the non-deterministic choice the following branches can be

executed:

• it is possible, by means of the operation GetPriceRR, to request for an order price

• it is possible to purchase an order by means of the operation PurchaseOrderOW.

In particular, when the order is started, the supplier also waits for a request from the

bank in order to provide its bank account data (operation GetSupplierDataRR)

and, finally, it waits for the bank commit on operation BankCommitOW and then

sends teh commit message to the client (operation SupplierCommitN)

• it is possible to stop the execution of the orchestrator by inserting the console com-

mand exit

10.4.5 The bank

The code of the bank follows:

locations {}

operations

{

OneWay:

TransactionOW

Notification:

BankCommitN = BankCommitOW

SolicitResponse:

GetClientDataSR = GetClientDataRR,

GetSupplierDataSR = GetSupplierDataRR

316 Chapter 10. New languages for programming SOC applications

}

links {}

variables {

amount, SupLoc, clientLoc, marketLoc, cardId, cardType, accountNumber

}

main

{

TransactionOW<amount, SupLoc, clientLoc, marketLoc>;;

(

(GetClientDataSR@clientLoc<><cardId, cardType>;;

out("\n Received client data. CardId:" + cardId

+ ", card Type:" + cardType))

||

(GetSupplierDataSR@SupLoc<><accountNumber>;;

out("\n Received account number of supplier:"

+ accountNumber))

);;

out("\n Received both client and supplier data.

Processing transaction of " + amount + "euros...");;

/* internal check, not modelled */

(

(BankCommitN@clientLoc<>;;out("\n Client commit sent"))

||

(BankCommitN@SupLoc<>;;out("\n Supplier commit sent"))

||

(BankCommitN@marketLoc<>;;out("\n Market commit sent"))

);;

out("\n Transaction Completed Succesfully!")

}

The bank starts its activities when it is invoked for a financial transaction on the operation

TransactionOW. When the transaction is initiated, the bank requests for both the cliente

and the supplier data (operations GetClientDataSR and GetSupplierDataSR). Fi-

Chapter 10. New languages for programming SOC applications 317

nally, it sends commit messages to the client, the supplier and the market by means of

the same operation BankCommitN.

Chapter 11

Conclusions and future works

We have started this work from the perspective that Service Oriented Computing is a

new programming paradigm which deals with distributed applications over the Internet,

and we have considered Web Services as the most credited technology in this setting.

In particular, we have focused on service design and service composition issues where

the former deals with the design of the behaviour of a service, whereas the latter deals

with the composition of a number of services into a system. On the one hand, we have

investigated the basic characteristic of the SOC paradigm in a formal way, whereas, on

the other hand, we have proposed a new services system design approach, called bipolar

approach which is based upon a formal framework. In the following we remind the most

important contributes of this thesis:

• We have defined a core language, equipped with a formal semantics, which deals

with both service design and composition. It is called SOCK and it is structured

on three layers: the service behaviour, the service engine and the services system.

The service behaviour models the internal of a service, the service engine models

the execution of a service behaviour by means of an engine and the services system

models a system composed by more than one service.

• Starting from SOCK, we have discussed the mobility mechanisms in Service Ori-

ented Computing and we have shown that there are four kind of mobility mecha-

nisms: the internal state mobility, the location mobility, the interface mobility and

Chapter 11. Conclusions and future works 319

the service behaviour mobility. Furthermore, we have shown as Web Services tech-

nology supplies only internal state mobility and location mobility.

• From the experience of SOCK, we have extracted a general model for Service Ori-

ented Computing where the service design can be represented as a finite state au-

tomaton, the service engine as a formal machinery able to execute infinitely often

some service behaviour sessions and the services system as a concurrent system

modelled with a process algebra approach.

• We have considered the services system design issue by following the so-called

bipolar approach where two kind of languages are exploited for designing and

composing services: the choreography language and the orchestration one.

• We have presented a formal language, equipped with a formal semantics, which

deals with choreography. It is called CL and it is inspired to WS-CDL.

• We have exploited a subpart of SOCK for dealing with the orchestration language.

• We have developed a notion of conformance, which resembles a bisimulation re-

lation, that allows us to state if an orchestrated system is coherent with a given

choreography.

• Finally, we have started to develop an interpreter implementation for SOCK, called

JOLIE, which aims at being a concrete language for programming orchestrators.

JOLIE supplies a C/Java-like syntax in order to provide an easy way for dealing

with service design differently from XML-based languages like WS-BPEL. JOLIE is

an open source project.

In the future we intend to continue our investigation by following two directions: on

the one hand, we intend to continue the formalization of Service Oriented Computing

by considering all the other aspects which deal with security transactions, long running

transactions, etc, whereas on the other hand, we intend to develop a user-friendly tool

for dealing with the bipolar approach. In particular:

320 Chapter 11. Conclusions and future works

• We intend to enhance SOCK with primitives for dealing with faults, long running

transactions and security aspects.

• We intend to enhance CL and the conformance notion for dealing with session man-

agement and all the new future features of SOCK.

• We intend to develop a concrete language for choreography as we have done for

the orchestration one by means of JOLIE.

• As far as the bipolar approach is concerned, we intend to develop the folowing

algorithms:

– an algorithm for extracting an orchestrated system skeleton from a choreogra-

phy

– an algorithm for extracting a choreography from an orchestrated system

– an algorithm for testing the conformance between an orchestrated system and

a choreography

• We intend to enhance JOLIE in order to deal with all the aspects of the SOCK cal-

culus

References

[act] ActiveBPEL Open Source Engine. [http://www.active-

endpoints.com/active-bpel-engine-overview.htm].

[AKR+05] M. Acharya, A. Kulkarni, R.Kuppili, R. Mani, N. More, S. Narayanan, P. Pa-

tel, K. W. Schuelke, and S. N. Subramanian. Soa in the real world - expe-

riences. In Proc. of 3rd International Conference on Service Oriented Computing

(ICSOC’05), volume 3826 of LNCS, pages 437–449, 2005.

[Apaa] Apache ODE. [http://incubator.apache.org/ode/index.html].

[Apab] Apache. Axis (Java2WSDL). [http://ws.apache.org/axis/index.html].

[Apac] Apache. Axis (WSDL2Java). [http://www.w3.org/TR/ws-arch/].

[BB05] A. Barros and E. Borger. A compositional framework for service interaction

patterns and interaction flows. In Proc. of International conference on formal

engineering methods (ICFM 2005), LNCS, pages 5–35. Springer Verlag, 2005.

[BBC+06] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,

U. Montanari, A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro.

SCC: A Service Centered Calculus. In Proc. of Web Services and Formal Methods

Workshop (WS-FM’06), volume 4184 of LNCS, pages 38–56. Springer-Verlag,

2006.

[BBM+05a] M. Baldoni, C. Badoglio, A. Martelli, V. Patti, and C. Schifanella. Verifying

the conformance of web services to global interaction protocols: a first step.

322 References

In Proc. of Web Services and Formal Methods Workshop (WS-FM’05), volume

3670 of LNCS, pages 257–271. Springer-Verlag, 2005.

[BBM+05b] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti, and Clau-

dio Schifanella. Verifying the conformance of web services to global interac-

tion protocols: A first step. In EPEW/WS-FM, volume 3670 of LNCS, pages

257–271. Springer, 2005.

[BCNR06] Mario Bravetti, Adalberto Casalboni, Manuel Nunez, and Ismael Rodriguez.

From theoretical e-barter models to an implementation based on Web Ser-

vices. In In Proc. of thr first IPM international workshop on Foundations of soft-

ware Engineering (FSEN’05), volume 159 of ENTCS, pages 241–264. Elsevier-

Science, 2006.

[BCPV04] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web services

choreographies. In M. Bravetti and G. Zavattaro, editors, Proc. of 1st Inter-

national Workshop on Web Services and Formal Methods (WS-FM 2004), volume

105 of ENTCS. Elsevier, 2004.

[BDtH] A. Barros, M. Dumas, and A. H.M. ter Hofstede. Service interaction pat-

terns: Towards a reference framework for service-based business process in-

terconnection. Tech. Report FIT-TR-2005-02,Faculty of information Technology,

Queensland University of technology, Brisbane, Australia, March 2005.

[BGG+05a] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Towards a formal

framework for Choreography. In Proc. of 3rd International Workshop on Dis-

tributed and Mobile Collaboration (DMC 2005), pages 107–112. IEEE Computer

Society Press, 2005.

[BGG+05b] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi

Zavattaro. Choreography and orchestration: A synergic approach for system

design. In ICSOC’05, volume 3826 of LNCS, pages 228–240, 2005.

References 323

[BGG+06] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography

and orchestration conformance for system design. In Proc. of 8th International

Conference on Coordination Models and Languages (COORDINATION’06), vol-

ume 4038 of LNCS, pages 63–81, 2006.

[BKZ05] Mario Bravetti, Leı̈la Kloul, and Gianluigi Zavattaro, editors. Formal Tech-

niques for Computer Systems and Business Processes, European Performance Engi-

neering Workshop, EPEW 2005 and International Workshop on Web Services and

Formal Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceed-

ings, volume 3670 of Lecture Notes in Computer Science. Springer, 2005.

[BP06] Antonio Brogi and Razvan Popescu. Automated generation of bpel adapters.

In Service-Oriented Computing - ICSOC 2006, 4th International Conference,

Chicago, IL, USA, December 4-7, 2006, Proceedings, volume 4294 of LNCS,

pages 27–39, 2006.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University

Press, 1990.

[CFNS05] Francisco Curbera, Donald Ferguson, Martin Nally, and Marcia L. Stockton.

Toward a programming model for service-oriented computing. In Proc. of

3rd International Conference on Service Oriented Computing (ICSOC’05), volume

3826 of LNCS, pages 33–47, 2005.

[CGK+] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,

S. Thatte, and S. Weerawarana. Business Process Execution

Language for Web Services (BPEL4WS 1.1). [http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/], 2002.

[CHT] K. Channabasavaiah, K. Holley, and E. Tuggle. Migrating

to a Service Oriented Architecture, Part I. [http://www-

128.ibm.com/developerworks/library/ws-migratesoa], 16 December 2003.

324 References

[CHY07] M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred

Programming for Web Services. In ESOP, 2007. To appear.

[CNM06] Massimiliano Colombo, Elisabetta Di Nitto, and Marco Mauri. Scene: A ser-

vice composition execution environment supporting dynamic changed dis-

ciplined through rules. In Service-Oriented Computing - ICSOC 2006, 4th Inter-

national Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings, volume

4294 of LNCS, pages 191–202, 2006.

[Coh] F. Cohen. Understanding Web Service interoperability. [http://www-

128.ibm.com/developerworks/webservices/library/ws-inter.html], 1 Feb-

ruary 2002.

[Con] World Wide Web Consortium. Web service choreography interface (wsci)

1.0. [http://www.w3.org/TR/wsci], 2002.

[DD04] Remco Dijkman and Marlon Dumas. Service-oriented Design: a Multi-

viewpoint Approach. Int. J. Cooperative Inf. Syst., 13(4):337–368, 2004.

[DFS06] Schahram Dustdar, Jos Luiz Fiadeiro, and Amit P. Sheth, editors. Business

Process Management, 4th international conference, BPM 2006, Vienna, Austria,

September 5-7, 2006, Proceedings, volume 4102 of Lecture Notes in Computer

Science. Springer, 2006.

[DL06] Asit Dan and Winfried Lamersdorf, editors. Service-Oriented Computing -

ICSOC 2006, 4th International Conference, Chicago, IL, USA, December 4-7, 2006,

Proceedings, volume 4294 of Lecture Notes in Computer Science. Springer, 2006.

[DMK+] S. Durvasula, M.Guttmann, A. Kumar, J. Lamb, T. Mitchell,

B. Oral, Y. Pai, T. Sedlack, H. Sharma, and S.R. Sundaresan.

SOA Practitioners’ guide, Part 1, Why service oriented architec-

ture? [http://dev2dev.bea.com/pub/a/2006/09/soa-practitioners-

guide.html], Dev2Dev, 2006.

References 325

[DZD06] Gero Decker, Johannes Maria Zaha, and Marlon Dumas. Execution seman-

tics for service choreographies. In Mario Bravetti, Manuel Núñez, and Gi-

anluigi Zavattaro, editors, WS-FM, volume 4184 of Lecture Notes in Computer

Science, pages 163–177. Springer, 2006.

[FLB06] Jos Luiz Fiadeiro, Antonia Lopes, and Laura Bocchi. A formal approach to

service component architecture. In Proc. of Web Services and Formal Methods

Workshop (WS-FM’06), Vienna, Austria, September 2006, volume 4184 of LNCS,

pages 193–213. Springer-Verlag, 2006.

[Fos06] Howard Foster. A Rigorous Approach To Engineering Web Service Compositions.

PhD. thesis, Imperial College London, University of London, Department of

Computing, 2006.

[GGL05] R. Gorrieri, C. Guidi, and R. Lucchi. Reasoning on the interaction patterns

in choreography. In Proc. of Web Services and Formal Methods Workshop (WS-

FM’05), volume 3670 of LNCS, pages 333–348. Springer-Verlag, 2005.

[GL06] C. Guidi and R. Lucchi. Mobility mechanisms in service oriented computing.

In Proc. of 8th International Conference on on Formal Methods for Open Object-

Based Distributed Systems (FMOODS’06), volume 4037 of LNCS, pages 233–

250, 2006.

[GLG+06] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi

Zavattaro. Sock: A calculus for service oriented computing. In Service-

Oriented Computing - ICSOC 2006, 4th International Conference, Chicago, IL,

USA, December 4-7, 2006, Proceedings, volume 4294 of LNCS, pages 327–338,

2006.

[HM05] R. Heckel and L. Mariani. Automatic Conformance Testing of Web Services.

In Proc. of Fundmental Approaches to Software Engineering (FASE’05), volume

3442 of LNCS, pages 34–48. Springer-Verlag, 2005.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

326 References

[IBMa] IBM. Web Secure Conversation Language (WS-SecureConversation).

ftp://www6.software.ibm.com/software/developer/library/ws-

secureconversation.pdf.

[IBMb] IBM. Web Services Trust Language (WS-Trust).

ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf.

[Kel76] Robert M. Keller. Formal verification of parallel programs. Commun. ACM,

19(7):371–384, 1976.

[Koc] C. Koch. A new blueprint for the enterprise.

[http://www.cio.com/archive/030105/blueprint.html], 1 March 2005.

[KP06] Raman Kazhamiakin and Marco Pistore. Choreography conformance analy-

sis: asynchronous communication and information alignment. In Proc.

of Web Services and Formal Methods Workshop (WS-FM’06), volume 4184 of

LNCS, pages 227–241. Springer-Verlag, 2006.

[Ley] F. Leymann. Web Services Flow Language (WSFL 1.0). [http://www-

4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf], Member

IBM Academy of Technology, IBM Software Group, 2001.

[LM07] R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL.

Journal of Logic and Algebraic Programming, volume 70 Issue 1, Web Services

and Formal Methods:pages 96–118, January 2007.

[LPT06] A. Lapadula, R. Pugliese, and F. Tiezzi. A wsdl-based type system for ws-

bpel. In Springer and Verlag, editors, Proc. of 8th International Conference

on Coordination Models and Languages (COORDINATION’06), volume 4038 of

LNCS, pages 145–163, 2006.

[MC06] J. Misra and W. Cook. Computation orchestration, a basis for wide-area com-

puting. Journal of Software and Systems modeling, 2006. To appear.

References 327

[MCY] K. Honda M. Carbone and N. Yoshida. Programming interaction with types.

[http://www.w3.org/2002/ws/chor/5/06/F2FJune14.pdf], W3C WS-

CDL WG London F2F, June 14 2002.

[MGLZ] F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro. JOLIE: a Java Orchestra-

tion Language Interpreter Engine. In CoOrg06, volume to appear of ENTCS.

[Mica] Microsoft, BEA, IBM. Web Services Coordination. [http://www-

106.ibm.com/developerworks/library/ws-coor/].

[Micb] Microsoft, BEA, IBM. Web Services Transactions. [http://www-

106.ibm.com/developerworks/webservices/library/ws-transpec/].

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, parts 1 and 2. Inf. Comput., 100(1):1–77, 1992.

[MS06] Carlo Montangero and Laura Semini. A logical view of choreography. In

Paolo Ciancarini and Herbert Wiklicky, editors, COORDINATION, volume

4038 of Lecture Notes in Computer Science, pages 179–193. Springer, 2006.

[OASa] OASIS. Reference Model for Service Oriented Architecture v. 1.0.

[http://www.oasis-open.org/committees/download.php/19679/soa-

rm-cs.pdf], 2 August 2006.

[Oasb] Oasis. UDDI - Universal Description, Discovery and Integration of Web Services.

[http://www.uddi.org/specification.html].

[OASc] OASIS. Web Services Business Process Execution Language Version 2.0, Work-

ing Draft. [http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-

draft.pdf].

[OASd] OASIS. Web Services Relibility. [http://docs.oasis-open.org/wsrm/ws-

reliability/v1.1/wsrm-ws reliability-1.1-spec-os.pdf].

328 References

[OASe] OASIS. Web Services Security (WS-Security). [http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf].

[OMG] OMG, Object Management Group. Corba 3.0.

http://www.omg.org/technology/documents/formal/corba 2.htm.

[Ope] Open source project. JOLIE: Java Orchestration Language Intepreter Engine.

[http://sourceforge.net/projects/jolie].

[ora] Oracle BPEL process manager. [http://www.oracle.com/technology/

products/ias/bpel/index.html].

[Plo81] G. Plotkin. A structural approach to operational semantics. Tech. Rep. DAIMI

FN-19, Aarhus University (Denamrk), 1981.

[San93] Davide Sangiorgi. From pi-calculus to higher-order pi-calculus - and back.

In TAPSOFT’93: Theory and Practice of Software Development, International Joint

Conference CAAP/FASE, Orsay, France, April 13-17, 1993, Proceedings, volume

668 of Lecture Notes in Computer Science, pages 151–166. Springer, 1993.

[Suna] Sun Microsystems. Java Remote Method Invocation.

http://java.sun.com/products/jdk/rmi/.

[Sunb] Sun microsystems. Java Web Services Developer Pack.

[http://java.sun.com/webservices/downloads/webservicespack.html].

[Tha] S. Thatte. XLANG: Web Services for Business Process De-

sign. [http://www.gotdotnet.com/team/xml wsspecs/xlang-

c/default.htm], Microsoft Corporation, 2001.

[Vir04] M. Viroli. Towards a Formal Foundation to Orchestration Languages. In

M. Bravetti and G. Zavattaro, editors, Proc. of 1st International Workshop on

Web Services and Formal Methods (WS-FM 2004), volume 105 of ENTCS. Else-

vier, 2004.

References 329

[W3Ca] W3C. Extensible Markup Language (XML). [http://www.w3.org/XML/].

[W3Cb] W3C. Web Services Activity. http://www.w3.org/2002/ws/.

[W3Cc] W3C. Web Services Architecture. [http://www.w3.org/TR/2004/NOTE-

ws-arch-20040211], 11 February 2004.

[W3Cd] W3C member submission 10 august, 2004. Web Services Addressing.

[http://www.w3.org/submission/ws-addressing/].

[WCG+06] Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias Holzl, Alexander

Knapp, Nora Koch, and Andreas Shoroeder. Semantic-based development

of service-oriented systems. In Proc. of Formal Techniques for Networked and

Distributed Systems (FORTE 2006), Paris, France, September 26-39, 2006, vol-

ume 4229 of LNCS, pages 24–45, 2006.

[web] IBM Websphere. [http://www-306.ibm.com/software/websphere/].

[Wora] World Wide Web Consortium. SOAP Version 1.2 Part 1: Messaging Framework.

[http://www.w3.org/TR/soap12-part1/].

[Worb] World Wide Web Consortium. Web Services Choreography De-

scription Language: Primer. W3C Working draft 19 June 2006.

[http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/].

[Worc] World Wide Web Consortium. Web Services Choreography De-

scription Language Version 1.0. Working draft 17 December 2004.

[http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/].

[Word] World Wide Web Consortium. Web Services Description Language (WSDL) 1.1.

[http://www.w3.org/TR/wsdl].

