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Introduction

A Gelfand model of a finite group G is a G-module affording each irreducible
representation of G exactly once. The study of Gelfand models found its roots
in [4] and awoke a wide interest in the case of reflection groups and other related
groups (see, e.g.,[1, 2, 3, 12, 14, 15, 16]).

In the present work we will provide a refinement for a Gelfand model due
to F. Caselli (see [6]). Such model applies to all involutory reflection groups
G(r,p,n) and to all their quotients modulo a scalar subgroup. Let us briefly
introduce to this topic.

Given a vector space V of finite dimension over C, we say that r € GL(V) is
a reflection if it has finite order and fixes a hyperplane of V' pointwise. A finite
complex group G < GL(V) is a reflection group if it is generated by reflections.
Irreducible finite complex reflection groups were completely classified in the
fifties [19]. They consist of:

e an infinite family of groups G(r, p,n) depending on the three parameters

r,p,n, where p|r;
e 34 more sporadic groups.

We may mention that the infinite families of irreducible Coxeter groups are
of the form G(r,p,n): S, = G(1,1,n), B, = G(2,1,n), D,, = G(2,2,n), I5(r) =
G(r,r,2). Whenever p = 1, we have the wreath product G(r,1,n) = C, 1.5,
which we will denote with G(r,n).

We will deal with the groups G(r,p,n), and, eventually, with the bigger
family of groups G(r, p, q,n) (see Section 2.1) which is a generalization of them.
Projective reflection groups, first introduced by F. Caselli in [5], can be roughly
described as quotients - modulo a scalar group - of finite complex reflection
groups. If we quotient a group G(r,p,n) modulo the cyclic scalar subgroup Cy,
we find a new group G(r,p, q,n), so that in this notation we have G(r,p,n) =

*

G(r,p,1,n). We define the dual group G(r,p,q,n)* as the group G(r,q,p,n)

obtained by simply exchanging the parameters p and ¢. It turns out that many



vi INTRODUCTION

objects related to the algebraic structure of a projective reflection group G can
be naturally described by means of the combinatorics of its dual G* (see [5, 6]).
For example, its representations.

A finite subgroup of GL(n,C) is involutory if the number of its absolute
involutions, i.e. elements g such that ¢gg = 1, coincides with the dimension of
its Gelfand model. A group G(r,p,n) turns out to be involutory if and only if
GCD(p,n) = 1,2 (Theorem 2.4.5).

The model (M, g) provided in [6] works for every group G(r,p,q,n) with
GCD(p,n) = 1,2 and looks like this:

e M is a formal vector space spanned by all absolute involutions I(r, p, g, n)*

of the dual group G(r,p,q,n)*:

M @ CCy;

vel(r,p,q,n)*

e 0:G(r,p,q,n) — GL(M) works, basically, as an absolute conjugation of
G(r,p,q,n) on the elements indexing the basis of M:

0(9)(Cy) = (9, 0)Clgpulg 1+ (0)

¥ (g,v) being a scalar and |g| being the natural projection of g in the

symmetric group S, .

Let us now give an account of the new result appearing in this thesis. Our
main goal is to refine the above model. If g, h € G(r, p, q,n)* we say that g and
h are S, -conjugate if there exists o € S,, such that g = cho~!, and we call S,,-
conjugacy classes the corresponding equivalence classes. If ¢ is a S,-conjugacy
class of absolute involutions in I(r,p,q,n)* we denote by M(c) the subspace
of M spanned by the basis elements C,, indexed by the absolute involutions v

belonging to the class ¢. Then it is clear from () that we have a decomposition

M= @M(C) as G(r,p, q,n)-modules,

where the sum runs through all S;,-conjugacy classes of absolute involutions in
I(r,p,q,n)*. It is natural to ask if we can describe the irreducible decomposi-
tion of the submodules M(c), and our main goal is to answer to this question.
The final description of the irreducible decomposition of the modules M(c) has a
rather elegant formulation due to its compatibility with the projective Robinson-
Schensted correspondence. Namely, the irreducible subrepresentations of M (c)
are indexed by the shapes which are obtained when performing this correspon-

dence to the elements in c¢. The special case of this result for the symmetric
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group S, = G(1,1,n) was established in [12]. Our task will be to furnish a much
more general version of it, concerning all those groups for which the model [6]
was constructed. We will do it step by step, from the easiest case up to the

general one.

Chapter 0 contains some basic notation, as well as an introduction about
finite complex reflection groups, their representations, and an account of the

generalized Robinson-Schensted correspondence.

After the exposition of the necessary background in Chapter 0, we imme-
diately turn to state and prove our main results about the decomposition of
the model. Since the case of S,, was afforded in [12], the simplest new case to
study is that of wreath products G(r,n). This is done in Chapter 1, first for
the special case of B, then for all groups G(r,n). The description of Caselli’s
model for G(r,n) is considerably more linear than in the more general setting
of G(r,p,n). This is due to the fact that G(r,n) coincides with its dual.

Chapter 2 is devoted to the introduction of projective reflection groups
G(r,p, q,n) and their representations. After characterizing the involutory groups
G(r,p,q,n), we present the model built in [6] in its full generality.

In Chapter 3, the irreducible decomposition of the model for type D is af-
forded. Notice that, when n is even, GCD(p,n) = 2, thus the group D,, furnishes
a very good example of the main difficulties one meets when GCD(p,n) is not 1
anymore (as it was the case for G(r,n)). The decomposition of the submodules
M (c) in this wider setting is much more subtle. Indeed, when GCD(p,n) = 2,
the Gelfand model M splits first of all as the direct sum of two distinguished
modules: the symmetric submodule Mgy, which is spanned by the elements
C, indexed by symmetric absolute involutions, and the antisymmetric submod-
ule Magym, which is defined similarly. This decomposition is compatible with
the one described above: every submodule M (c) is contained either in the sym-
metric or in the antisymmetric submodule. The existence of the antisymmetric
submodule and of the submodules M(c) contained therein will reflect in a very
precise way the existence of split representations for these groups.

Chapter 4 treats the general case G(r,p,n) with GCD(p,n) = 1,2. The
study of the irreducible decomposition of M (c), when ¢ is made up of antisym-
metric elements, requires a particular machinery developed in Sections 4.2-4.5.
Such tools were not needed in the case of wreath products G(r,n), where the
antisymmetric submodule vanishes and so the Gelfand model coincides with its
symmetric submodule. Once our main result is achieved for all groups G(r, p,n)
satisfying GCD(p,n) = 1,2, our arguments are generalized furtherly to the quo-
tients G(r,p,q,n).
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Finally, we would like to highlight that the results appearing in this work

were obtained in collaboration with F. Caselli.

Projective reflection groups

34 exceptional

Classical irreducible finite complex reflection groups are represented in the
yellow set, involutory reflection groups in the red set, projective reflection groups
in the green set. The lower part of the green set contains all projective reflection
groups of the form G(r,p, g, n). Thus, the upper part of the green set is made up
of all the other projective reflection groups: namely, those obtained as quotients,
modulo a scalar subgroup, of the 34 exceptional groups and of all classical non-

irreducible finite complex reflection groups.



Chapter 0

Notation and prerequisites

In this chapter we collect some well-known results that will be essential to
our exposition. First of all, in Section 0.1, we set some basic notation and we
describe the sets Fer and 8T of Ferrers diagrams and Young tableaux, which
will be met continuously in what follows. In Section 0.2 we outline some general
results concerning all finite complex reflection groups. Section 0.3 is entirely
devoted to the description of the groups G(r,p,n) and to the notation used for
their elements. In Section 0.4 we focus on the groups G(r,n), to parametrize
their conjugacy classes and their irreducible representations. Finally, in Sec-
tion 0.5, we introduce the generalized Robinson-Schensted correspondence for
G(r,p,n). This is a tool of crucial importance for our aims. In fact, the Gelfand
model given in [6] will be decomposed in a way (see Theorem 1.1.3) which is

well-behaved with respect to such correspondence.

0.1 Basic notation

We let Z be the set of integer numbers and N be the set of nonnegative
integer numbers. For a,b € Z, with a < b we let [a,b] = {a,a + 1,...,b} and,

for n € Nyn # 0, we let [n] e [1,n]. For r € N, r > 0, we let Z, e Z/rZ. We

27

denote by (. the primitive r-th root of unity (. def g2zt

Definition. Let n € N, [ € N;I # 0. A partition of n is a [-tuple A\ of the
form A = (A\,...,\;), where Ay > ... > ) > 0 and each \; € N, such that
22:1 A; = n. [ is called the length of X\ and it is denoted by £(\); n is the size
of X and is denoted by |)|.

A partition A can be represented by the Ferrers diagram of shape \: it is

a collection of boxes, arranged in left-justified rows, with \; boxes in row i.
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Since a Ferrers diagram represents a partition, it is clear that the number of
boxes on its rows must be not increasing. Given a partition A, we denote by
A its conjugate partition, i.e. the partition obtained by A exchanging rows and

columns of its Ferrer diagram.

Example 0.1.1. Consider the partition A = (5, 3,2) of size |\| = 10. Its length
is £(A) = 3 and A can be visualized as the Ferrers diagram @EFD Its conjugate

M is represented by ?

Let now consider a r-tuple A = (A ... A=) of partitions such that
STIA®| = n. Notice that we use a subscript to denote the row of a single
partition and a superscript in round brackets to denote the index of a partition
inside a r-tuple. Thus, the ht* row of the j*® partition of a r-tuple of partitions
A is denoted )\53_1).

Occasionally, each partition of a r-tuple may be denoted with a different
greek letter. For example, when dealing with pairs of partitions, it will be
convenient to refer to them as to objects of the form (A, u).

In its turn, an r-tuple A = (/\(0), ey /\(“1)) can be represented by means
of a r-tuple of Ferrers diagrams. We denote by Fer(r,n) the set of r-tuples of
Ferrers diagrams A such that 3 |A(®)| = n. In this case, n is called the total size
of A.

Example 0.1.2. If A = ((37 2),(4,2,2),(5,1, 1))7 the relevant notation in Fer-

rers diagrams is
(H}ﬂ @E ﬁm) € Fer(3,20)

Let us now introduce some notation concerning standard Young tableaux.
If u € Fer(r,n) we denote by 8T, the set of all possible fillings of the boxes in
w with all the integers from 1 to n appearing once, in such way that rows are
increasing from left to right and columns are increasing from top to bottom in ev-
ery single Ferrers diagram of . We also say that 87, is the set of standard mul-
titableauz P of shape Sh(P) = p. Moreover we let $T(r, n) def UpeFer(r,n) STy

Example 0.1.3. The multitableau

913]4]
412] -,
18]

5[1]
6

is not standard, whereas the following multitableau P is:

112[5] 10 ) € 87 g ) C ST(2,8);

P(PO,P1)<
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the pair (H,HH) € Fer(2,8) is the shape Sh(P) of P.

We conclude this section with a few more definitions.

Definition. Let A = (A ... A=) € Fer(r,n). The color of \ is z(\) e

PPN
If p|r we let Fer(r,p,n) def {\ € Fer(r,n) : 2(A\) = 0 mod p}. Finally, as
above, we can associate to Fer(r, p,n) a set of multitableaux:
def
8T(r,p,n) = UeRer(rpin) STy

Example 0.1.4. The element of Fer(2,6) given by (H-,(T11) does not belong
to Fer(2,2,6), whereas (Ej,lj\]) € Fer(2,2,6). Here is a possible filling of it,
belonging to 87(2,2,6):

0.2 Finite complex reflection groups

5

;1114

‘@‘C’O \}

All through this section, V stands for a finite-dimension vector space over

C, and GL(V) is the group of its endomorphisms.

Definition. Let s be an element of finite order of GL(V). s is a reflection if it

fixes a hyperplane of V' pointwise.

Definition. A group G < GL(V) is a complex reflection group if it is generated

by reflections.

Definition. A finite reflection group G < GL(V) is called reducible if G =
G1 X G2 and V admits a non-trivial decomposition V = V; @ V4, G; acting on

V1, G2 acting on V5. When such decomposition is not possible, G is irreducible.

Irreducible finite complex reflection groups were completely classified in the
fifties by Shephard and Todd [19]:

Theorem 0.2.1. Irreducible finite complex

reflection groups consist of:

e an infinite family of groups G(r,p,n),
where T,p,n are nonnegative integers

and p|r;

e 3/ more exceptional groups.
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If G is a reflection group, its action on V induces an action on its dual V* and
hence on its polynomial algebra S[V*]. We denote with S[V*]¢ the subalgebra
of S[V*] given by the polynomials on V that are invariant under the action of
G. Finite complex reflection groups admit the following characterization, due
to Chevalley [9] and Shephard-Todd [19]:

Theorem 0.2.2. Let G be a finite subgroup of GL(V). Then G is a reflection
group if and only if the invariant ring S[V*]¢ is generated by n = dim(V)

algebraically independent polynomials.

0.3 The family G(r,p,n)

34 exceptional

In the present work, we will not deal
with the 34 sporadic groups mentioned
in Theorem 0.2.1. We will focus on the
infinite family G(r,p,n). So let us turn

to describe these groups.

When r = p = 1, the group G(1,1,n)
is simply the symmetric group S,, of the
n X n permutation matrices, i.e. matri-
ces with exactly one 1 in every row and
every column, and all the other entries
equal to 0.

When p = 1, the group G(r,n) def G(r,1,n), also called the generalized
symmetric group, is the wreath product C, 1 .S,, where C. is the cyclic group
of order r. G(r,n) consists of all the n x n complex matrices satisfying the

following conditions:
e there is exactly one non-zero entry in every row and every column;

e the non-zero entries are r-th roots of unity.

Example 0.3.1. The group B, def G(2,n) of the signed permutations on n

elements. For example, the matrix g given by

010 0
o000 -1
1001 o0
100 0

belongs to Bj.
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Let now p|r. The group G(r,p,n) is the subgroup of G(r,n) of the elements

verifying one extra condition:

e if we write every non-zero element as a power of (., the sum of all the

exponents of (. appearing in the matrix is a multiple of p.

Example 0.3.2. Consider the group D,, = G(2,2,n) < G(2,n) = B,,. Given
g € By, it belongs to D,, if —1 appears in the matrix of g an even number of

times. For example, the following matrix g € By

01 0 O
B 0 0 0 -1
g 0 01 O
1 0 0 O
does not belong to Dy, while
01 0
0 0 -1
h =
0 0 -1
1 0 0

does.

Definition. Given g € G(r,p,n), we denote by z;(g) € Z, the exponent of (.
appearing in the i'" row of g. We say that z;(g) is the color of i in g and the
sum z(g) L (g) + -+ 4 zn(g) will be called the color of g.

Thus, an element g € G(r,n) belongs to G(r,p,n) if and only if z(g) = 0
mod p.
It is sometimes convenient to use alternative notation to denote an element

in G(r,n), other than the matrix representation.

Notation 0.3.3. We write g = [(01,...,04);21,-..,2,] meaning that, for all
j € [n], the unique nonzero entry in the ;" row appears in the O’;»h column and
equals (7 (i.e. zj(g) = zj). We call this the window notation of g.

Observe that [(o1,...,04,);0,...,0] is actually a permutation in S,, - namely,
it is the element of S,, obtained from g forgetting its colors. We denote it by
|g]-

Elements of G(r,n) also have a cyclic decomposition which is analogous to
the cyclic decomposition of permutations. A cycle ¢ of g € G(r,n) is an object
of the form ¢ = (a?‘1 ey az,""’"' ), where (a1, ...,ax) is a cycle of the permutation

lgl, and z,, = z,,(g) for all i € [k]. Notice that we use square brackets (and
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round brackets on the permutation side) for the window notation and round
brackets only for the cyclic notation.

We let k be the length of ¢, z(c) e Zay + ++ + 2q, be the color of ¢, and
Supp(c) def {a,...,ar} be the support of c. We will sometimes write an element

g € G(r,n) as the product of its cycles.

Example 0.3.4. Let g € G(3,6) be the matrix

0 01 0 O
000G 0 0
o oo o0 0 ¢
“l o100 0 o0
000 0 ¢
200 0 0
Then:
e |g| is the matrix
001 00O
00 0 1 00
000001]
i 010000
00 0010
1 0 00 0 O
e g has window notation g = [(3,4,6,2,5,1);0,1,1,0,2,2];

e the cyclic decomposition of g is given by g = (1°,3%,62)(2%,49)(52).

0.4 The groups G(r,n) and their irreducible rep-

34 exceptiona

resentations

In this section we provide a
parametrization for both the con-
jugacy classes and the irreducible
representations of the group G(r,n).
These will turn up to be an essential

tools in what follows.
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The set of conjugacy classes of G(r,n) is naturally parametrized by Fer(r, n)
in the following way (see, for example, [13, §4]). If (a(9),..., a("=1D) € Fer(r,n)

we let m; ; be the number of parts of a® equal to j. Then the set
cly©  oe-n = {g € G(r,n) : g has m; ; cycles of color 7 and length j}
is a conjugacy class of G(r,n), and all conjugacy classes are of this form.

Example 0.4.1. The element g given by g = (2°,5',72)(11,49)(3')(6?) belongs
to the G(3,7)-conjugacy class (D:\:I,B:‘,D) .

For what concerns the irreducible representations of G(r,n), we have the

following result:

Proposition 0.4.2. Let Irr(r,n) be the set of the irreducible representations of
G(r,n). Then

Irr(r,n) = {prw© -1, with MO XYY € Fer(r,n)},

where the irreducible representation pywo) -1 of G(r,n) is given by

r—1
a(r, P
PAO) . A1) = IndGE;Zi)X,..XG(nm_l) (@(Vﬁz ®Px<i>)> :

=0
with:
o n; = [\9;
® Dy 18 the natural extension to G(r,n;) of the irreducible (Specht) repre-

. S def
sentation py) of Sn,, i.e. Py (9) = pr(lg]) for all g € G(r,n;).

Yn, 8 the 1-dimensional ’color’ representation of G(r,n;) given by

Yn; : G(r,n;) — C*
9= G

Furthermore, the dimension of the representation pyo) . \¢-1) is given by |St()\(o)7__'7)\(7»71)) |.

)

For the proof, see, for example, [13, §4], [20, §4].

Notation 0.4.3. Occasionally, a representation py will be simply denoted by
a A. Also, sometimes we drop the round bracket on the subscript: pyo)  yo-1
stands for py . ae-1). This clarification is not redundant. It is important
to remark that representations of G(r,n) are parametrized by ordered r-tuples
of diagrams. In the following chapters, we will also come across representations

indexed by unordered pairs!
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Example 0.4.4. The irreducible representations of B, are parametrized by

ordered pairs of Ferrers diagrams
{A©,AD) such that MO+ AP | =n} c Fer(2,n).

For example, here is a parametrization for the irreducible representations of
B3Z

(o0) (o) (Ho) (mo) @0
(eem) @) (0F) (em) @H).

The representation indexed by (EF‘, (7)) has, for example, dimension |St (Bj @) | =
2; the representations p( 17,9y and p(p77) have dimension 1.

Notice that, in the case of G(r,n), the conjugacy classes and the irreducible
representations are parametrized by the same objects. This remark will be
essential for the results exposed in the following chapter.

The parametization of the irreducible representations of the groups G(r, p,n)
finds a smart description by means of projective reflection groups and their dual.
Thus, it is deferred to Chapters 2-4, as well as the treatment about G(r,p,n)-
conjugacy classes for the involutory case, which we could not find anywhere else

in literature.

0.5 The generalized Robinson-Schensted corre-
spondence

The Robinson-Schensted correspon-

dence will be met in more than one set-

34 exceptional

ting all along our treatment. In this
section, we are going to see its classi-
cal version for the symmetric group and
a first generalization of it to the case of
G(r,p,n). This will be immediately use-
ful to provide a motivation for the form
assumed by the Gelfand model due to
F. Caselli [6]. Also, it will be of cru-
cial importance to expose the nature of
the refinement of such model (see sec-
tion 1.1).
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Recall the classical Robinson-Schensted correspondence. It is a bijection
between S,, and the set of pairs of standard Young tableaux of size n of the

same shape:

RS : S, — 87T, x 87,
o (P;Q),

where Sh(P) = Sh(Q) (see section 0.1 for the notation). An algorithm allows
to construct P and @ from o and vice versa (see [21, Section 7.11]).

It is possible to generalize the function RS to the case of wreath products:
this was first done in [22]. The new bijection will be denoted with RS:

RS : G(r,n) — 8T (r,n) x 8T (r,n).
RS is defined as follows:
e split g into r double-rowed vectors gy, ..., g-—1 according to the color;
e perform RS to the r double-rowed vectors;

e glue the images of gg,...,g,_1 together, thus obtaining one pair of ele-

ments of 8T(r,n) x 8T (r,n) with the same shape.

Example 0.5.1. ¢ =[(2,4,3,1);0,1,0,0] € G(2,4) = By.
(134 (2
9o = 9 3 1 91 = 4

90—’(P0,Q0) (i?)‘; i 3‘)

g1 22 (P Q) = (4);:[2]))

9 2 (Py, Pi;Qo, Q1) = ( ; 3‘,; }1 3,>

Notation 0.5.2. Given g il (Poy---, Pro1;Qo, - -, Qr_1), we denote by Sh(g)
the element of Fer(r,n) which is the shape of Py, ..., P._; and of Qq, ..., Qr—_1.

The generalized Robinson-Schensted correspondence satisfies the properties

collected in the following lemma.
Lemma 0.5.3. If g+ (Py,...,Pr_1;Qo,...,Qr_1) via RS, then:

g (Q07"'7Q7’71;P07-~’7P’I“71)7'
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° CTgH(P17"'7PT717P0;Q1V"7QT713Q0)'

Furthermore, given g € G(r,p,n), it is easy to check that RS(g) € 8T (r,p,n) x
8T (r,p,n), so the function

RS : G(r,p,n) — 8T (r,p,n) x 8T(r,p,n)
s well defined.

Proof. The first point is an immediate consequence of the analogous result for
the case of S,,. The second and the third can be easily derived by the way the

correspondence is generalized to coloured permutations. O



Chapter 1

The model and its

decomposition for the

groups G(r,n)

The aim of this chapter is to provide a refinement for the Gelfand model
constructed in [6] for wreath products G(r,n).

For our purpose, the groups G(r,n) present an important advantage if com-
pared to the groups of the more general form G(r, p,n): they coincide with their
dual. This circumstance simplifies a lot both the description of the model built
in [6], and its refinement. The concepts of projective reflection group and of
duality will not be required to read this chapter, which provides a complete,
self-contained treatment for the special case of the groups G(r,n), and gives the
opportunity to shed some light on the subject without affording the background
needed in the following chapters.

In Section 1.1, after describing the model constructed in [6] for the special

11
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case of G(r,n), we state the main result of this chapter, Theorem 1.1.3. Such
theorem provides a refinement of the model which is coherent with the gener-
alized Robinson-Schensted correspondence. In the following section, we prove
Theorem 1.1.3 for the particular case of B,,: this well-known example will give
the reader a precise idea of our arguments. Finally, in the last section of this
chapter, we will generalize the results already exposed for B,, to the case of all

the groups G(r,n).

1.1 A first statement

In the present section, we will illustrate the Gelfand model constructed in [6]
for wreath products G(r,n). With the model at hands, we will be able already

to state our main result for what concerns the groups G(r,n).
Definition. Let G < GL(n,C) and let ¢ € G. We say that g is an absolute
involution if gg = Id. We set

I(r,n) o {g € G(r,n)| g is an absolute involution}.

Proposition 1.1.1. Let g € G(r,n). Then g € I(r,n) if and only if g —
(P07"'aPT—l;PO)"'ap’r’—l) m’aﬁ.

Proof. This follows immediately from the analogous result for S,, and the way
RS is constructed. O

Our first remark is the following.

Remark 1. Let G = G(r,n) and let M be a Gelfand model for G. Then
dim M = t{absolute involutions of G}. (1.0)

Proof. We know from Proposition 0.4.2 that
dimM =Y dimpy= Y [8T,|
A€Fer(r,n) A€Fer(r,n)

Thanks to Proposition 1.1.1, the absolute involutions of G(r,n) are exactely as

many as elements in 8J(r,n). This proves the remark. O

The last observation gives a hint about a possible vector space structure on
which one can build a Gelfand model for G: we can consider the formal vector

space spanned by the absolute involutions of G,

ME P co,. (1.0)

vel(r,n)
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Let us now turn to describe the representation p that will give M the structure
of a G-module. To this aim, we need some more notation.

If g, ¢’ € G(r,n) we define
def
<99 >= Y z(9)zld) €2, -
i
it is a sort of a scalar product between the color vectors of g and ¢’.

If o,7 € S, with 72 = 1 we let

Inv(o) € {{i, 5} : (7 — ) (0(j) — o(i)) < 0};
Pair(r) < {{i,5} : (i) = j #i};
inv, (o) = [{Inv(e) N Pair(r)}

Finally, if g,v € G(r,n) with vo = 1, we let inv,(g) o inv,(|g])-

Theorem 1.1.2. Consider the group G = G(r,n). Let M be as in (1.1), and
let o be the representation of G given by

0:G— GL(M)
gr—olg): M —M

Cy = 0(9)C, &

Cr<g7v>(_1)invv(g)c|g\v|g|*1'
Then (M, o) is a G-model.

Proof. See [6, Theorem 3.2]. O

Let us have a closer look at the model. There is an immediate decomposition

into smaller submodules.

Definition. If g,h € G(r,n), g and h are S,-conjugate if there exists o € S,
such that g = cho ™!, and we call S, -conjugacy classes, or symmetric conjugacy

classes, the corresponding equivalence classes.

If ¢ is a S,-conjugacy class of absolute involutions in I(r,n) we denote by
M (c) the subspace of M spanned by the basis elements C, indexed by the

absolute involutions v belonging to the class ¢, and it is clear that

M = @ M(c) as G-modules,
c

where the sum runs through all S,-conjugacy classes of absolute involutions in

I(r,n). We are now ready to state the main result of this chapter.
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Theorem 1.1.3. Consider the G(r,n)-model (M, o) described in Theorem 1.1.2.
Let ¢ be a Sp-conjugacy class of absolute involutions in G(r,n). Let M(c) be
the submodule of M spanned by the elements of c¢. Let Sh(c) def UyeeSh(v) (see

the notation in 0.5.2). Then the following decomposition holds:

M(c) = @ PA©), L Ar=1) -

(A©@ A= D)eSh(c)

In words: if a submodule M (c) of M is spanned by involutions whose images
via RS have certain shapes, M(c) affords the irreducible representations of
G(r,n) parametrized by those shapes.

We will first prove this result for the group of the signed permutations B,, =
G(2,n). We will devote to this the following section. The proof of the general

case of G(r,n) is in Section 1.3.

1.2 The case of B,

34 exceptional We will now focus on the group

B, = G(2,n). In particular, in Sec-

tion 1.2.1 we prove a result (Propo-
sition 1.2.5) which will be exploited
in Section 1.2.2 to describe the irre-
ducible decomposition of some partic-
ular submodules of the model. In Sec-
tion 1.2.3 we complete the irreducible

decomposition.

1.2.1 Some tools in B, combinatorial representation

theory

The main result of this section is Proposition 1.2.5 which is an extension of
an idea appearing in [12] and will be of crucial importance to prove Theorem
1.1.3.

First of all we observe that, since B,, is given by real matrices, the abso-
lute involutions in B, are exactly the involutions in B,. So, to understand

our results, we need to describe and parametrize the S,-conjugacy classes of
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involutions in B,, explicitly. To this aim, for all v € I(2,n) we let

fixo(v) < [{i s i > 0 and v(i) = i}];

fixy (v) < |[{i:i>0and v(i) = —i}|;

(v)
(v)
(v)
(v)

o

S {(6,4) : 0 < i < j, v(i) = j and v(j) = i}];

pair; (v) < [{(,5) : 0 < i < 4, v(i) = —j and v(j) = —i}].

pairg (v

Example 1.2.1. Ifv =[(3,2,1,8,9,6,7,4,5);1,0,1,0,1,1,0,0, 1], we have fixg(v) =
2, fix1(v) = 1, pairy(v) = 1 and pair, (v) = 2.

Proposition 1.2.2. Two involutions v, w of B, are S,-conjugate if and only

if
fixg(v) = fixg(w), pairy(v) = pairy(w),
fixy (v) = fix; (w), pairy(v) = pair; (w).
Furthermore, given an involution v in B,, let Sh(v) = (A, u) (see Notation

0.5.2). Then A has fixg(v) columns of odd length and fixg(v) + 2 pairy(v) bozes,
while p has fix; (v) columns of odd length and fix,(v) + 2 pairy(v) bozes.

Proof. The first part is clear, since conjugation of a cycle by an element in
S, does not alter the number of negative entries in the cycle. The second
part follows easily from the corresponding result for the symmetric group due
to Schiitzenberger (see [18] or [21, Exercise 7.28]) and the definition of the

generalized Robinson-Schensted correspondence given in Section 0.5. O
We can thus name the S,,-conjugacy classes of the involutions of B,, in this

fi = fi -
Cfo,f1.p0,p1 déf v e 1(2, n)‘ XO(U) fO X1(1}) fl ’
pairg(v) = po pair; (v) = p1

where foy, f1,p0,p1 € N are such that fy 4+ f1 + 2pg + 2p1 = n. The description

way:

given of the S),-conjugacy classes ensures that the subspace of M generated by
the involutions v € B,, with fixg(v) = fix;(v) = 0 - which is non trivial if n is
even only - is a B,-submodule. The crucial step in the proof of Theorem 1.1.3
is the partial result regarding this submodule.

Given X € Fer(1,n) we let

R, = {o€Fer(n—1):0isobtained by deleting one box from A}
R = {o€Fer(n+1):0 is obtained by adding one box to A}.

Moreover, if (A, ) € Fer(2,n), we let

Ry, e {(oypn) € Fer(2,n—1):0 € Ry }U{(\,7) EFer(2,n—-1): 7€ R}

Ry, ® {(o,m)€Fer(2,n+1):0€R{IU{(\7)€Fer(2,n+1):7€ R}
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We always identify B,, as a subgroup of B, as follows:
B,={9€Bp+1:9(n+1)=n+1}.

Theorem 1.2.3 (Branching rule for B,). Let (A, u) € Fer(2,n). Then the
following holds:

PX,u an,lz @ Po,r

(o,7)€E R;\,u
B
pap Tt = @ Po,r-

(o,7)€E R;“

Proof. See [11, §3]. O

Before stating the main result of this section we need some more notation:

Notation 1.2.4. A pair of diagrams (A, u) € Fer(2,n) will be called even if
both A and p have all rows of even length. If ¢ and 1 are representations of a

group G, we say that ¢ contains 9 if ¢ is isomorphic to a subrepresentation of

o.

Proposition 1.2.5. Let II,, be representations of Boy,, m ranging in N. Then

the following are equivalent:

a) for every m, Il,, is isomorphic to the direct sum of all the irreducible
representations of Bay, indezed by even diagrams of Fer(2,2m), each of

such representations occurring once;
b) for every m,

bo) Mg is 1-dimensional (and By is the group with one element);

bi) the module II,,, contains the irreducible representations p,, ¢ and
P0.15, Of Bam, where 1, denotes the single-rowed Ferrers diagram

with k boxes;

ba) the following isomorphism holds:

Wy IByp 1= 1 TBmel . (1.—4)

We explicitly observe that we are dealing here with even diagrams, i.e., with
rows of even length. What we will need later are diagrams with columns of even
length. This is a harmless difference which simplifies our computations and will
be solved in §1.2.2.
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Proof. a)=b). Conditions bg) and by) follow immediately.

Let us now compare I, |p,, _, and II,,_; 1B2»-1. The branching rule
ensures that I, |p,,, , contains exactly the py ,’s where the diagram (A, )
has exactly one row of odd length. Furthermore, the pair («, ) such that
R, 52 (A, i) is uniquely determined: to obtain it, it will only be allowed to add
a box to the unique odd row of the diagram (A, p). This means that I1,,, |p,, _,
is the multiplicity-free direct sum of all the representations of Bs,,_; indexed
by diagrams in Fer(2,2m — 1) with exactly one row of odd length.

Arguing analogously for II,,,_; 1521, we can infer that it contains exactly

the same irreducible representations with multiplicity 1 and it is thus isomorphic

to Hm lBZm71 .

b)= a) Let us argue by induction.

The case m = 0 is given by bg). Let us see also the case m = 1. We know
that IT; |p, = Il 1B P ®po,, . But II; contains p,, g and pg,, by by),

and the isomorphism

(pm,@ 2] p@,Lz) lB1g P10 D PO,y =1l TBl

ensures that

Hl = Puiy,0 EBP@,L2~

Let us show that, if IT,,, 1 is the direct sum of all the representations indexed

by even diagrams, the same holds for II,,. For notational convenience, we let
A,y {(A\,p) € Fer(2,2m) : py, is a subrepresentation of II,, }

First we shall see that, if (X, ) € Fer(2,2m) is an even diagram, then (A, u) €
A

The set Fer(2, 2m) is totally ordered in this way: given two pairs (A, u), (o, 7) €
Fer(2,2m), we let (A, u) < (o, 7) if one of the following holds:

i) A < o lexicographically;

ii) A = o and p < 7 lexicographically.

We observe that (t9,,,0) is the maximum element of Fer(2, 2m) with respect

to this order.

Claim. If (A, u) € Fer(2,2m) is such that:

i) (A, p) is even;
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it) (A 1) & {(tam,0), (0, 2m) };
1) (o,7) € Ay, for all (o,7) € Fer(2,2m) such that (o,7) is even and (o, 7) >
(A ),
then (A, p) € Ap,.

As we already know that (2., 0) and (0, t2,,) are contained in A,,, once we
have proved the claim, all the even pairs will be too.
Proof of the claim. Let (A, u) € Fer(2,2m) be an even diagram satisfying %), )
and 4ii). Then the pair (A, u) has at least two rows. We let (o,7) € Fer(2,2m)
be the pair obtained from (A, 1) by deleting two boxes in the last non zero row
and adding two boxes to the first non zero row.

As (o,7) > (A, ), we have (0,7) € Ay, so the isomorphism (1.2.5), the
induction hypothesis and the branching rule lead to the following:

v (n,0) € R,

o R:;e NA, ={(o,7)}. (1.-4)

Now let («,3) € Fer(2,2m — 1) be obtained from (A, u) by deleting one
box in the last nonzero row. Our induction hypothesis ensures that p, s is
a subrepresentation of II,,,_; 15?m-1 with multiplicity 1. So the isomorphism

(1.2.5) implies that

there exists a unique (7, d) € Fer(2,2m) such that {(v,d)} = R;B NAn,.
(1.-4)
The claim will be proved if we show that (vy,d) = (A, p).

The pair (7, d) is obtained from («, 3) by adding a single box, since (v, d) €
R; - 1 such a box is not added in the first or in the last non zero rows of («, 3)
then (v, d) has two rows of odd length and one can check that R’ 5 contains at
least a diagram with three rows of odd length. This contradicts (1.2.5).

Now assume that (7, 0) is obtained by adding a box in the first nonzero row
of (o, B). If we let (n,6) be the pair obtained from (A, u) by deleting two boxes
in the last nonzero row and adding one box in the first nonzero row, we have
(n,0) € R, and R;e N Ay 2 {(0,7),(v,0)} which contradicts (1.2.1).

Therefore (v, §) is obtained by adding a box in the last nonzero row of («, 3),
ie. (7,0) = (A p) and the claim is proved. O

We have just proved that if we let IIV°" be the multiplicity-free sum of all
irreducible representations of Bs,, indexed by even diagrams we have that IISY°"
is a subrepresentation of IL,,. The result follows since we also have

I I

Bop —
melgHM71T 2m 17

and so, in particular, dim(II¢V*") = dim(IL,,).
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1.2.2 A partial result for B,

In the process of proving our main result we use the following auxiliary

representation of B, on M:

o(g) : M — M
Cv — (—1><9’U>C|g|v‘g‘71.

Notice that the representation ¢ is just like the representation g of the model
(M, o), apart from the factor (—1)mve(9),
Let M, be the subspace of M spanned by the elements C,, as v varies among

all involutions in Bag,, such that fixg(v) = fix; (v) = 0:

M S B M(coopom)-
Po+p1=m
The main task of this section is to show that the representations (M,,, ¢) satisfy
the conditions of Proposition 1.2.5.

We first prove that the representation (M,,, ) satisfies condition b;) of
Proposition 1.2.5. In fact, we will show explicitly that (M,,,¢) contains all
irreducible representations indexed by an even pair of 1-rowed Ferrers diagrams.
Recall from Proposition 0.4.2 that the irreducible representations of B, are

parametrized by pairs (A, u) € Fer(2,n), and that we have in this case

Prp = Indg:xBn,s (ﬁA © (’Ynfs ® ﬁu)) ) (1~'4)

where s = |Al.
For S C [2m)] let

Ag def {9 € I(2,2m) : fixo(g9) = fix1(9) = 0 and {i € [n] : z;(g) =0} = S},

and

Cs= > C,€M.

vEAg
Lemma 1.2.6. For all pg,p1 € N such that pg + p1 = m, the subspace of
M, spanned by all Cs with |S| = 2po, is an irreducible submodule of (M, p)

affording the representation P tapgriapy -

Proof. Let us consider the 1-dimensional subspace CCla),) of My,.

Let us identify the subgroup Ba,, X Bap, of B, with the group of the
elements permuting ”separately” the first 2py integers and the remaining 2p;
integers:

Bap, X Bap, =~ {g € Bam : |g](i) € [2po] Vi € [2po]}.
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Let ¢ = ¢|p,,, x Ba,, - We have

U(g1,92)(Ciape) = Ylg1,02)( Y. Co)= Y (g1,92)(Co)

’UEA[gpo] UEA[2PO]
= Z (_1)<gz’v>|9192|U|9192|_1: Z (_1)Z(92)|9192|U|9192|_1
vEA[2p) CISTANEY S|
= (1)) Z |g192[v]g1g2] " = (=1)792) Cpap ),
VEA[2p0]

since, clearly, the map v — |g1g2|v|g192|~" is a permutation of Ajgp,)- There-
fore, we have that (CClap,1, 1) is a representation of Ba,, X By, and that it is
isomorphic to the representation p,,, © (y2p, ® pi,,, ). By the description of

the irreducible representations of B,, given in (1.2.2) we have that

B m (&™)
Indepo X Bap, ((CC[QPO] ’ w) = Papgitap; -

Now we can observe that, by construction, By, X Bap, is the stabilizer in By,

of v with respect to the absolute conjugation and that
{CS : |S| = 2p0} = {C eM,:C= Z C‘g‘v|g|—1 for some g € Bgm}.
UGA[QPO]
From these facts we deduce that we also have
Bam
Idg2” g (CCpapy)s ) = b cos,
SC[2m],|S|=2po

and the proof is complete. O

Proposition 1.2.7. For all m > 0, we have

(M @) 1Bap 1= (Min—1, ) TBZ'"HI .

Proof. For brevity, for all pg,p1 € N such that py + p1 = m, we denote the
Bom-module M(co0,p,p,) With M, ,,. Via the representation ¢, the vector

space M,, naturally splits as a Bs,,-module as it does via p:

Mm = @ Mpo,pr

po+pi=m

We consider the action of Ba,,—1 on each class cg 0 ,p,,p, and it is clear that
2om (V) = 2om(|glv]g|™t) for all v € Ba, and g € Ba,,_1. In particular, each
M, py splits, as a Ba,,—1-module, into two submodules according to the color

of 2m. More precisely, if we denote by

def

So’pl =  Span{C, : v € c0,0,py.p; and 2, (v) = 0};
def

1 = Span{C, : v € c0,0.py.p; and 2o (v) = 1},

Po,P1
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we have

M =M @ M!

Po,P1 Po,P1 Po,P1

as Bo,,_1-modules, and hence we also have the following decomposition of M,

as a Bsy,,_1-module

_ 0 1
My, lem_l— @ (Mpoym @ Mpo,pl) '
pPo+pi=m

with pg # 0, and v} with p; # 0,

Let us consider the involutions v bopr
:

Po,p1’
given by

’USO ” déf[(Q, 1,4,3,...,2m,2m —1);0,0,...0,1,...,1,0,0];
’ —— N —
2(po—1)  2p1

b o €(2,1,4,3, .., 2m,2m — 1);0,0,...0, 1, .., 1].
’ N— N~

2po 2p1

0 1
We observe that M, , and M, . are spanned by all the elements C, as v

varies in the Ss,,_1-conjugacy classes of USO,p , and v11707P , respectively, and so
we can express them as induced representations of linear representations of the
stabilizers of these elements with respect to the absolute conjugation in Ba,,—1.

Namely, if we let

def _
Hgn,m = {g € BQm*l : |g|v;20,:01|g| t= 020,,’01}’
! def B . 1 -1 _ .1
Po,P1 {g € bom—1: |g|vp0,p1|g| - vp07P1}7
we have
Bom— Bam—
(MZ?O’pl ’ S0) = IndH% ' (Wgo’l)l) and (MZ;O,:DN(P) = IndH21 ' (ﬂ—;o,m)7
PO,P1 PO,P1
where
0 . 0 1 . 1
7TP07P1 : HPO;PI - C o and WPO:PI : HPO;PI - C .
g o ()R> g ()T,

Let us now turn to M,,_1: arguing as in M,,, we have
Mp1= P Myq-
go+q1=m—1

As above, My, 4, can be written by means of an induction from the stabilizer
of an involution in c¢g g,q,,4, With respect to the absolute conjugation. For every

go, q1 such that go + ¢ = m — 1, let us consider the vector ug, 4, given by

Ugo.an ©10(2,1,4,3,...,2m — 2,2m — 3);0,0,...,0,1,...,1]

2qo0 2q1
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and let
Koo,q1 « {9 € Bam—2: |g|uq0’q1|g| = Ugo,q1 }-
Then
(Myo.q1,0) = Ind2" (40,0,
where

. *
Tqo,q1 * KQO)LH - C

g — (_1)<97“q0,111>_

Summing up, observing that M§,, = M}, , = {0}, we have

— 0 1 _ 0
Mm “LBZ'"L*I - @ (M:DO P1 & Mpo pl) - @ (Mqurl,lh © M 07(11+1)
po+pi=m go+gq1=m—1
B27n 1 B27n 1 1
= @ () ) @ ()
qo+qi=m—1 qo+1 a1 qo q1+1
and

Bov Bam-—1 Bam—2
M,,_q Bem-1 Ind32m72< @ Ind Kagoay (qu,ql)).

go+qi=m—1

So, to prove the statement it is enough to show that

Bom— Bom -
@ (I d 2 ' ( Tgo+1, th) @Ind i (W;O’Q1+1)>

+1, +1
dotarmm1 qo a1 qo a1
~ B2m 1 B2m 2
= Indp ( @ Ind (ﬂ.QOvlh)
go+gq1=m—1

As the induction commutes with the direct sum and has the transitivity prop-
erty, the last equality is equivalent to
BZm 1 Bzm 1 1 ~ Bam -1
@ (I d ,1 +1.qq ( Tgo+1, ‘11) @ Ind q @ +1( QO7Q1+1)) = @ Ind Kqg,q1 ( 407611)'
go+gq1=m—1 0 > qot+q1=m—1

(1.-11)

: 0 1 .
The choice of the vectors vy, ., , v, . and ug, 4, leads to:

HI(7)07P1 = {9 € Bam—1:19| € Sa(py—1) X S2p,,19l(i + 1) = [g](4) £ 1Vi odd, 0 < i < 2m};
H) o =1{9 € Bam—1 19| € Sapy X Sa(py—1), |g](i + 1) = |g|(d) £1Vi odd, 0 < i < 2m};

Kgo.q0 = {9 € Bam—2 : 19| € S2qy X Sa(g,-1), |9](i +1) = |g|(i) £1Vi odd, 0 <i < 2m — 2}

where, as usual, Sy, X S, = {0 € Shti : (i) < hfor all i < h}. We therefore

make the crucial observation that

_ 7l
qu+1,q1 - HQ07Q1+17

so that to prove (1.2.2) it is enough to show that

Bom— ~ Bam—
Ind " (70 11 0 D Taars1) = Ind 2™ (g0 4,)- (1.-11)

90,91 +1 Kag.a1
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Now we also observe that K, 4, is a subgroup of H}

go.q1+1 (of index 2),

1
so that the right-hand side of (1.2.2) becomes Indff"{"‘1 <Ind£‘;‘;:2“ (qu,ql))

90,91 +1
and therefore we are left to prove that

1
o (Tgo.qn)- (1-11)

H
0 1 _
Tgo+1,q1 @ Tg0,q1+1 = Inqumh

If we let x1 be the character of 7r20+1,q1® W;mql_’_l and x2 be the character of

Hl
IndKZE:ZTl (go.q,) we only have to show that x1(g) = x2(g) forallg e Hj , ;.

We have

xi(g) = (—1)<97“30+1‘q1> + (_1)<g,véo,q1+1>
= (-1 g 7i(9) 4 (—1) o1 #i(9)
= (14 (=1)7m1@) (1) Ziagg 71 (0),

where we have used the fact that z9,,(g9) = 0, since g € Boy,—1.
As for the character xo, we observe that K, 4, is the subgroup of Hy . 1

of all the elements g with z9,,-1(g) = 0. So we may take

C={ldp,, ,, 0% [(1,2,....,2m —2,—(2m —1),2m);0,...,0]},
as a system of coset representatives of Hy . /K, q,- Therefore the induced

character o is given by

X2(9) = D Xeuga (R gh).
heC
h™'gh€Kpy p,

Since g(2m — 1) = £(2m — 1) we have that g ¢ K,

Kg,.q4,, and hence

& Vhe C,hmligh ¢

0,491

X2(g) =0Vge H(}o,q1+1|22m—1(g) =1,

which agrees with x1(g).
So we are left to compute x2(g), where g satisfies z9,,—1(g) = 0. In this case we

have g(2m — 1) = 2m — 1 which implies 0 ~'go = g, and hence

X2(9) = (_1)<97uqo=tn>+(_1)<07190,uq01q1>
= 2(_]_)<9’“<101L11>

2m—2

= 2(—1)Fita+ 29,

We conclude that x;(g) = x2(g) for all g € H}

do.q1+1> 50 (1.2.2) is satisfied

and the proof is complete. O
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Theorem 1.2.8. For allm € N, (M,,,¢) is a Bay,-module isomorphic to the
direct sum of all the irreducible representations of Ba,, indexed by the even

diagrams of Fer(2,2m), each of such representations occurring once.

Proof. Tt is enough to check that the representations (M,,, ¢) satisfy the condi-
tions bg), b1 ), ba) of Proposition 1.2.5.

Condition byg) is trivial.

In order to check condition by), we have to find two submodules of M,,
which are isomorphic to the representations indexed by (t2m,,0) and (0, tapm,).

By Lemma 1.2.6, they correspond respectively to

Prom,d = ((C C[Qm] ) 90) and POom — ((C C(Z)a 90)-

Condition by) is the content of Proposition 1.2.7 and the proof is complete.
O

We are now in a position to fully describe the irreducible decomposition of

the submodules My, ,, of M, via the representation ¢.

Theorem 1.2.9. We have

(MPO,PN 90) = @ Pxp

[A|=2po,|u|=2p1
A, with no odd rows

Proof. We start by showing that there exist representations o of Ssp, and 7 of
Sap, such that

(Mpo p1s ) = Ind2m . (5 © (y2p, © 7)), (1-17)

where & and 7 are the natural extensions of o and 7 to Bsp, and to Bsp,,
respectively.

Recall the definition of Ag given before the statement of Lemma 1.2.6. If
we let Mg % Span{C, : v € Ag}, it is clear that

Bam
Mpg,pr = Mizp,) TBzPO XBap,
Now, since
Afgpy) = {v € Bay, : v is an involution in Sap X —(S2p,) }

= {v:v=1"v"with v involution in Ss,, and —v" involution in Ss,, },
we deduce the isomorphism of vector spaces M, = M’ ® M", where

M’ = Span{C, : v" is an involution in S, }
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and

M" = Span{C,» : v" is an involution in S, },

the isomorphism being given by Cyryr < Cyy @ C_yr. If g = (¢, ¢") € Bap, X

Bsp, and v = v'(=v") € Ay, we have

‘P(Q)C?/@Cv” = 90(9>Cv
= (=D Clgppg
= (=1~ 7" 7 Cly g -1g7 (—om))g |

= Clgpig— @ (=1)79)Clg, (g, -

and equation (1.2.2) follows. Now the full result is a direct consequence of the
irreducible decomposition of the representations o and 7, the description of the

irreducible representations given in (1.2.2), and Theorem 1.2.8. O

The next goal is to describe the relationship between the irreducible decom-
position of the representations ¢ and p.

Recall that o(g)(C,) = (=1)"™*@p(g)(C,); we will show that the factor
(—1)v+(9) simply exchanges the roles of rows and columns of the Ferrers dia-
grams appearing in the irreducible decomposition of the Bs,,-modules (M,,, p)
and (M,,, o).

Lemma 1.2.10. For pg,p1 € N with po +p1 = m let up, p, and Ky, », be (as
in Proposition 1.2.7):
Upe.pr = 1(2,1,4,3,...,2m,2m — 1);0,0,...0, 1, ..., 1];
——— ——
2po 2p1

Ky py = {9 € Bam : |g| € Sapy X S2p,, lgl(i + 1) = |9](d) £1Vi odd, 0 < i < 2m}.
Then, for every g € Ky, p,, we have
invy,, , (¢9) =inv(|g]) mod 2.

Proof. We can clearly assume that g = |g|. Let {4,j} be in Inv(g), but not in
Pair(|tupy,p, |)- AS Up, p, 1s an involution satisfying fixg(up, p, ) = fix1 (Upy,p,) = 0,
there exist unique h and k such that {i,h} and {j, k} belong to Pair(|up, p,|)-
We will show that {h, k} - which does not belong to Pair(|up, p, |) - is an element
of Inv(g). In this way, every pair {7, j} € Inv(g)\Pair(|uy, p,|) can be associated
to exactly another, so [Inv(g) \ Pair(|uy, ,,|)| is even and we get the result.

We can assume that ¢ < j (hence g(i) > g(j)) throughout. Observe that
we know from the form of up, p,, that i = h£1, and j = kK £+ 1, depending on

the parity of ¢ and j. Nevertheless, in all cases, we always obtain h < k (since
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the four integers 4, 7j, h,k are distinct), so that the claim to prove is always
g(h) > g(k). But the definition of K, ,, ensures that g(h) = g(i) £ 1 and
g(k) = g(j4) £ 1. The result follows from g(i) > g(j), and from the fact that the
four integers ¢(¢), g(j), g(h), g(k) are distinct. O

We recall the following general result in representation theory. Let G be a
finite group, H < G. Let 9, T be representations respectively of G and of H.
We have

0 lg@71)1%=200 (r19). (1.-23)

Let us denote by o, the linear representation of B,, given by o,,(g) = (—1)"™v(9D,

Lemma 1.2.11. For all (A, p) € Fer(2,n) we have

on(9) © pap = Py,
where X' and u' denote the conjugate partitions of X and p respectively (see the

definition on page 2).

Proof. We recall the following well-known analogous fact for the symmetric
group. We have
€® px = px, (1.-23)

where €(g) def (—1)"v(9) denotes the alternating representation. If we let k = ||

then, by Equations (1.2.2) and (1.2.2), we have

On® Pap=0n® dE" 5 (Px @ (Ynek ® pp))
=Ind, 5. (00 BB« @ (A O (Ynk © )
=Ind}" 5 (00 1B, ®Pr) © (00 LB, ), @ Vnek ® Bu))

:Indgsz ( €®PA (Y-t ® (e ® pu)))

=Indg", 5 (An © (Yn-k ® )

2
and the proof is complete. O

Theorem 1.2.12. The submodule My, ,, = M(co,0.po.p.) 0f (M, 0) satisfies

(MP(LPNQ) = @ P+

IA=2po,|p|=2p1
A, with no odd columns

Proof. Let us consider the linear representation of Kp, p,

(=1 eros Dy, (g) = (—1) om0 (9 (=) Sostr0m >,
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We have
inv,, Bam inv Bam
(Mpy. 1, 0) = (1) 0 Dy, T2 = ()™ 0Dmy, ) TR
inv B m
- ((_1) (Igl)lew1 ® 7rp07p1)> Kio,pl

1%

(_l)inv(\g\) ® (71-1107;01 TBzm) = (_1)inv(|g|) ® (MPO;P1’¢)7

where we have used Lemma 1.2.10 in the first line and equation (1.2.2) in the
last line of the previous equalities. Now the result follows from Lemma 1.2.11
and Theorem 1.2.9. O

1.2.3 B,: the proof of the full result

In this section we will give a complete proof in the case of B,, of Theorem
1.1.3 that, by Proposition 1.2.2, can be restated in the following slightly different

but equivalent form.

Theorem 1.2.13. For all fy, f1,p0,p1 € N such that fo + f1 + 2po +2p1 = n

@ P+

[A=2po+ fo,|n|=2p1+f1
A with exactly fo odd columns
p with exactly f1 odd columns

we have

1%

(M(Cf07.f17po7p1 )7 Q)

Proof. Let m = po+p1 and consider the space M (co,0,po.p,): it is & Bay,-module

via the representation

def Bom
Wpopr = (M(€0,0,p0,0)0) = IndKio,pl (Tho.p1 )

where 7, ,, is the linear K, ,, representation given by 7,, ,, (9) = (—=1)"™vU9Dx, . (g).
From Theorem 1.2.12, we know that it is the multiplicity-free direct sum of all
representations indexed by pairs of diagrams (A, ) where A and p have even
columns only, and |A| = 2po, |u| = 2p1.

We will first show that

(M(Cfmfl ,P0,P1 )7 Q) = IndggmxBn,gm (Hpmpl © Prgg,es, ) (1'_23)

Let us argue with the same strategy as in §1.2.2. We define the involution u

representing the S,-conjugacy class cy, £, po,p: as follows:

u=1[(2,1,4,3,...,2m,2m—1,2m+1,...,n);0,...,0,1,...,1,0,...,0,1,...,1].
——— —— ——— —

2po 2p1 fo f1
We have that the stabilizer of u with respect to the absolute conjugation is

{g € By, : |g|ulg|™" = u} = Kp, p, X By, x By,, and we can easily check that

By,
(M(cfo,f1.p0,p1)> 0) = Inde,pl XBgy X By, (Tpo,pl OPu0© p(b,tfl)'
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We recall the following identity of induced representations: if H < G and
H' < G we have

Ind33% (p ® p) = Ind§ (p) © Ind§, (), (1.-23)

where p is a representation of H and p’ a representation of H’'. So we have

B‘H,
(M(Cfoﬁflypoypl)a Q) = IndeO,pl X By, X By, (TP07P1 © poO,V) © PQ),L,»I)

_ B™ Bom X Bn—2m
Indszm X By —2m (In Kpy.py XBgy x By, (Tpo,m © Py, .0 O Py, ))

B™ Bam Bn_2m
= Ind32m XBpn_2m (Indkiom1 (Tpo.ps) © IndBf ><ZBf1 (p Lis® © POy, ))

B"L
= IndBZm XBn_om (Hp07p1 © P Lfosts )

and equation (1.2.3) is achieved. Now the result follows from Theorem 1.2.12
and the following result which is the analogue in type B of the well-known Pieri

rule:

Proposition 1.2.14. Let py , be any irreducible representation of Bj,. Then

Biix
IndBZ;ABk (PAu © povbk-—f) = @pv,&

where the direct sum runs through all (v,€) € Fer(2, h+k) such that v is obtained
from X by adding f bozes to its Ferrers diagram, mo two in the same column,
and £ is obtained from u by adding k — f boxes to its Ferrers diagram, no two

in the same column.

For the proof, see [10, Lemma 6.1.3]. O

Example 1.2.15. For every fo, f1 € [0,n], with fo + f1 = n let us consider
the set Sh(cy,,f,,0,0). Since ¢ is the only k-boxed diagram with k odd columns,
Sh(ey,.f,,0,0) contains the pair (tf,,ty ) only. Thus we can explicitly find in
(M, o) the subspace V,

orem 1.1.3,

forth affording the representation p, forth thanks to The-

B,
Visgun = M{eho.f1.00) = Indg} <5, (CCusgsy.00)-
ug,.,,0,0 being the involution

Uso. 1,00 = [(1,2,...,n);0,...,0,1,...,1].

In other words

Vigyis, =Span{Cy : v € By, [v| =1d, #{i : 2(i) = 0} = fo, #{i: 2(i) = 1} = f1}.
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Example 1.2.16. Let v = [(6,4,3,2,5,1);1,0,0,0,1,1] € Bgs. In this case,
fo = f1 =po=p1 =1 and the S,-conjugacy class c of v has 180 elements. The
By-module M (c) is given by the sum of the irreducible representations indexed
by (A, 1) € Fer(2,n) such that both A and u have size 3, and exactly one column
of odd length:

e R e ) " es)

1.3 The general case of wreath products G(r,n)

In this section we will treat the general case G = G(r,n). To prove Theorem
1.1.3, we will be handling the same tools already used in the case of B,,. Nev-
ertheless, as some of the results need to be slightly generalized, we will provide
an outline of the whole argument in this wider setting.

Let M be the model for G(r,n) described in Theorem 1.1.2. Let ¢ be the

representation defined analogously to the case of B,:

e(g) :M — M
Ov — (*1)<g’v>0|g‘v|g|71.

The S,-conjugacy classes of absolute involutions of G(r,n) are indexed by 2r-

tuples (fO» sy f?“*lvp(% s 7pr71) satisfying f0+ : '+fr71+2(p0+' : '+pr71) =n.
These are given by

Chororifrr porpr_1 = 10 € I(r,n) : fix;(v) = f;, pair;(v) = p; Vi € [0,r — 1]}.

where

fix;(v) {j € n]:v(j) = ¢}
pair;(v) = [{(h,k):1<h<k<n,vh)=Ckand v(k) = h}.

The main idea is, again, focusing on the submodule with no fixed points first.

Our half-way result is

Theorem 1.3.1. Let My, , be the subspace of M spanned by the elements C,, as
v varies among all involutions in G(r,2m) such that fixg(v) = fix;(v) = ... =

ﬁXT,1 (U) =0:

pot-+pr—1=m

Then (M, r, ) s a G(r,2m)-module isomorphic to the direct sum of all the

irreducible representations of G(r,2m) indexed by the diagrams of Fer(r,2m)
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whose rows have an even number of boxzes, each such representation occurring

once.

We state here the G(r, n)-generalized version of Proposition 1.2.5, which will

be applied to M, .

Proposition 1.3.2. Let 1", be representations of G(r,2m), m ranging in N.

Then the following are equivalent:

a) for every m, IV, is the direct sum of all the irreducible representations of
G(r,2m) indezed by r-tuples of even diagrams, each of such representa-

tions occurring once;
b) for every m,

bo) I is unidimensional;

by ) the module I, contains the irreducible representations of G(r,2m)

indexed by the v r-tuples of diagrams (0,...,0, t2m,0,...,0).

by ) the following isomorphism holds:

Hrm lG('r‘,ZWL*l)g H:n_l TG(T72m_1); (1—29)

Here is the generalization of the branching rule for G(r,n), which is an

essential ingredient for the proof of Proposition 1.3.2.

Lemma 1.3.3 (Branching rule for G(r,n)). Let (A0, ... X\"=D) € Fer(r, n).
Then the following holds:

PA© A1 LG(rm—1)= @ Pu . pur=1;
0 r—1 -
(N( >,...,;1,( ))GRA(O),___,)\(T*U
G(ryn+1) _
PA© . Ae-n T (rn+1)— @ Pu©) . =15
0 r—1 +
(BO,pT=ERT iy

,,,,,

where we denote by R;\QO) . the set of diagrams in Fer(r,n+1) obtained by

LLAC=D)

adding one boz to the diagram (A, ..., X0=D) and similarly for Rl yo-n-

Proof of Theorem 1.3.2. a)=b). by and by are trivial. So let us now turn to

1G(r2m=1) " The branching rule ensures

compare I, » lg(r2m—1) and Iy, 1
that I, » lG(r,2m—1) contains exactly the py, . x._,’s where one of the Ferrers
diagrams is 1-odd. Furthermore, the r-tuple whose restriction contains the pair
(Mo, - -+, Ar—1) is uniquely determined: to obtain it, it will only be allowed to

add a box on the odd row of the right A;. This means that II,, , lar2m—1)
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is the multiplicity-free direct sum of all the representations of G(r,2m — 1) in-
dexed by r-tuples of Ferrers diagrams with one 1-odd Ferrers diagram. Arguing

16G(r2m=1) " we can infer that it contains exactly the

analogously for IL,,_1 ,
same irreducible representations with multiplicity 1 and it is thus isomorphic to

Hm,r lG(r,Qm—l)'
b)=- a) Let us argue by induction.

The case m = 0 is given by b3). Let us also see the case m = 1. We know
that
i, loen= o 1902 (@0,...,0)@...00,...,0,0).
But I, contains (C13,0, ..., 0)®...&(0, ..., 0,C10) by by), and the isomorphism
(@0,....,00@...a0,....0,00) leen= (@,0,....00..00,...,0,0 =1, 1901

ensures that
I, =2 ([3,0,....,0)®...oO,...,0,0).

Let us show that, if II,,_;, is the direct sum of all the representations
indexed by r-tuples of even Ferrers diagrams, the same holds for II,,,. For

notational convenience, we let

Ay def {(Mos .-, Ar1) € Fer(r,2m) : px,....n,_, is a subrepresentation of II,, ,}

.....

First we shall see that, if (Ag,...,Ar—1) € Fer(r,2m) is an even diagram, then
(Aos -y Arc1) € Ay

The set Fer(r, 2m) is totally ordered in this way: given two r-tuples (Ao, ..., Ar—1),
(0, -+ s pr—1) € Fer(r,2m), we let (Mg, ..., Ar—1) < (lo, ..., pr—1) if one of the
following holds:

i) A\, < o lexicographically;

ii) there exists k < r — 1 such that A\; = u; for every i < k and A\ < p
lexicographically.

We observe that (tam,0,...,0) is the maximum element of Fer(r,2m) with

respect to this order.

We claim that if (Ao, ..., Ar—1) € Fer(r,2m) is such that:
i) (Noy.--,Ar_1) is even;
11) ()\0,...7)\7",1) 75 (@,...7®,L2m,@,...,@);

iii) (po,.- s fir—1) € A for all (uo, ..., tr—1) € Fer(r,2m) such that

(:an s a,uT—l) is even and (:an s 7,“7'—1) > (A07 s )\7‘—1)'
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Then ()\07 ey )\rfl) € Am,r~

As we already know that all the representations of the form (@, ..., 0, tom,0,. ..

are contained in A,, ., once we prove the claim, all the even r-tuples will.
Proof of the claim. Let ()Xo, ..., A\r—1) € Fer(r,2m) be an even diagram satisfy-
ing i), ii) and iii). Then the r-tuple (Ao, ..., Ar—1) has at least two rows. We let
(10, -+ pir—1) € Fer(r,2m) be the pair obtained from (g, ..., Ar_1) by deleting
two boxes in the last non zero row and adding two boxes in the first non-zero
row. As (fo, ..., tr—1) > (Ao, ..., Ar—1), we have (po, ..., tr—1) € Ay, s0 the
isomorphism (1.3.2) leads to the following:

V(00,...0m1) €Ry s RE o 0 A = {(po, - o)} (1-29)

Now let (ag,...,q,—1) € Fer(r,2m — 1) be obtained from ()Xo, ..., \,—1) by
deleting one box in the last nonzero row. Our induction hypothesis ensures that

16@m=1r) with multiplicity one.

Pao,....ar_, is a subrepresentation of IL,,_1
So the isomorphism (1.3.2) implies that there exists a unique (yg,...,%—1) €

Fer(r,2m) such that

{(Yor- )} = RE, 0 N A (1.-29)

The claim will be proved if we show that (yo,...,Vr—1) = Aoy .-+, Ar_1).
The pair (7o,...,7%—1) is obtained from (ag,...,a,—1) by adding a single

box, since (yg,...,v—1) € RY _,- If such box is not added in the first or

QQ;y-- O
in the last non zero rows of (ag,...,a,—1) then (y9,...,7v-—1) has two rows of
odd length and one can check that RZ . |

three rows of odd length. This contradicts (1.3.2).

contains at least a diagram with

Now assume that (yo,...,7-—1) is obtained by adding a box in the first

nonzero row of (ag,...,a.—1). If we let (0g,...,0.—1) be the pair obtained
from (Mg, ..., Ar—1) by deleting two boxes in the last nonzero row and adding
one box in the first nonzero row, we have (og,...,0.—1) € R, and

R;-"_07,,,,g-7,71 N Am,r 2 {(MOa R 7/”/7‘71)7 (fYOa s 7'77“71)}

which contradicts the unicity of (7, ...,¥r—1) in (1.3). Therefore (o, ..., ¥r—1)
is obtained by adding a box in the last nonzero row of («ag,...,q.—1), i.e.
(Y0, -+ s¥r—1) = (Xos - -+, 4r—1) and the claim is proved.

We have just proved that if we let II77C" the multiplicity free sum of all
irreducible representations of G(2m,r) indexed by even diagrams we have that

IIgYe™ is a subrepresentation of II,, . The result follows since we also have

Gem—1,r
qug,ern lG(Qm—l,T’)g Hmfl,r T (2m T)7
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and so, in particular, dim(II575") = dim(IL,, ;). O
Let us check that M,, . satisfies properties b) of Proposition 1.3.2, so that
Theorem 1.3.1 follows.
Property bg) is trivial and so we look at property by): for Sp,...,S,—1
disjoint subsets of [2m] such that US; = [2m] we let

AN def {v] v is an absolute involution of G(r,2m) with:

r—

fixg(v) = ... =fix,_1(v) = 0;2;(v) =5 iff i € S;},
and
Csy,...5._1 = Z C, € M.
VEASs,,...,S,_

Lemma 1.3.4. The subspace of My, , spanned by all Cs, .. s, ,, with |S;| = p;,

is an irreducible submodule of (My, -, @) affording the representation P Lapyreestiop, -

Proof. This proof can be carried on in the same way as in the case of By, relying
on Proposition 0.4.2. O
Let us turn to property bs). We have to check that

Mm,r l,G(an_l)% Mmfl,r TG(T’2m71) .

We let My, .. p
tion holds:

= M(co....0,po,...pr_1 ). First of all, the following decomposi-

r—1

Mm,r iG(r,Qm,—l) = @ Mpo ..... Pr—1 iG(r,Qm,—l)

po+-+pr_1=m

r—1
J
@ @Mpowwprq’

po+-+pr—1=m j=o

Mgo ,,,,, p._, being the submodule of My, ;. , spanned by the absolute involu-

tions v such that zo,,(v) = j.

As the module M , is trivial whenever p; = 0, we can reduce ourselves

5o Pr—

r—1
J
@ @Mi]o7~»-»q_7‘+17~»-~,qr—1

Go+++++ar-1=m—1 j=o

to

We introduce the absolute involution

Ugowquil def [(2,1,4,3,...,2m,2m—1);0,0,...0,1, ..., 1,...,5,. .., J,...,r = 1,...,r = 1,4,7].
—— —— —— | S ——
240 2q1 2q; 2qr—1
Its stabilizer with respect to the absolute conjugation does not depend on j: it

is the subgroup of G(r,2m — 1) given by

Hyooonn =19 € G g| € SagyX...%S2, 1, lg|(i4+1) = |g|(i)£1Vi odd, 0 < i < 2m}.
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Thus, our module can be written as

r—1 r—1 ( )
i i G(r,2m—1
J _ J ’
@ @Man-,qJ‘-ﬁ'lw-,qT—l - @ @(C UL‘J07~~-7¢17~—1) Hgo..qpq
go++qr_1=m—1 j=o qo+-+gqr—1=m—1 j=o

As for the right side of the isomorphism, we have

r2m— G(r,2m—
Mm—l,r TG( 2 R @ ng,...,qr_lT (r2 1)-

qo+-+qr—1=m—1

We choose this time

Uggoars 2 (2,1,4,3,..,2m—2,2m—3);0,0,..0,1,...,1,...,r —1,...,r — 1],
—— N — [ ——
2qo 2q1 2qr—1

whose stabilizer with respect to the absolute conjugation in G(r,2(m — 1)) is
Kgo.qonn ={9 € G:lg| € SagyX...XS2,._,,|g|(i+1) = |g|(i)£1Vi 0odd, 0 < i < 2m—2}.

We observe that Ky, . 4., is a subgroup of index r in Hy,, . 4._,, and a system

of coset representatives is given by
def .
C= {Ui = [(1’ AR 2m)1 07 ] 07 2 0]}7;:0,...,7“—1-
N——
2(m—1)

So we can split the induction into two steps, and we get

G(r,2m—1) __ G(r,2m—1)
Mmfl,r 7 ( ) = @ MQO,-qu-—lT
qo+:+gr—1=m—1

G(r,2m—1)
= @ (Cuq(h---a(h‘—l) qu

gottar_1=m—1

R S (G e A

got+-+gr—1=m—1

We are enquiring if

r—1 ( )
; G(r,2m—1

@ @ (CU; =
0y-++9dr—1 quw.,qril

Go++++aqr—1=m—1 j=o
G(r,2m—1
O (CowTi )
q0,---;4r—1 qu ar_1 H ’

got-tar_1=m—1

and all we need to show is that

r—1
(C’Uj ~ ((Cu ) Hyqq,..., ar—1
qo,--sqr—1 q05--sqr—1 Ky,
j=o
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as Hgy,,. . q,_,-modules. Let us compare their characters. The character x; of

.....

the representation on the left is given by

r—1 j r—1
Xl(g) _ ZC:QVU(;O,---,QT71> _ Cfg»“(m ----- ar_1> ZcﬂzQM,—l(g)
j=0 j=0

_J o if zom-1(g) # 0;
rGr ' ” if ng_l(g) =0.

As for the character yo of the representation on the right, we have

xa2(9) = > x(h™'gh)

heC
h_lghquo ,,,,, ar—1
B 0 if Z2m—1(g) 7é 0;
7‘<g7uq0 """ dr—1 if ng,l(g) = O;

so the two characters agree and the representations are isomorphic.

So we know that the modules M, , satisfy the conditions of Proposition
1.3.2 and to complete the proof of Theorem 1.3.1, generalizing what was done
for B, it suffices to show that there exist representations og of Sap,...,00—1
of Sy, , such that

~ G(r,2m ~ ~ r— -
(Mpo,..‘,pr,l ’ (’0) = IndG’Er,2po))><...G(r,2p,.,1) (UOQ(’}/Q(Pl)@Ul)@' ’ '®(72(p171)®0'r71))7

(1.-29)
where the &;’s are the natural extensions of o; to G(r, 2p;).
If we set S; def po+ -+ pi-1 +1,p0 + -+ + pi—1 + pi], we consider the
vector space Mg, . s._, def Span{C, : v € Ag,,....s._, - We have

r,2m)

_ G(
Mpo,m,pr = Ms,,.8,. 4 TG(T,Q})Q)X---XG(T’,Q;DT,I) .

Let us define M; % Span{C,, : v; is an involution in Ss,,}. Then

Ms,....5._1 = My x - x M,y

Cugyosvros 7 Cup ® (:Coy @+ & (T,
Arguing as for By, let g = go,91,...,9-—1 € G(r,2po) X --- X G(r,2p,_1). We
get
0(g)Cu @ - @ Cy,_, > 9(9)Cyp = (¢) <97 Clg)g|-1
< Claoluolgol -1 ® (6r)* 9 Clgy g gy 1 @+ @ (G)TTDHDCy o, g,y
and equation (1.3) is achieved. Our claim follows from the irreducible decompo-

sition of the representations o;, the description of the irreducible representations
of G(r,n) in Proposition 0.4.2, and Theorem 1.3.1.
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Before leaving the module M, , with no fixed points and going on to study
the decomposition of the whole model M, we only need to show that stepping
from ¢ to g is just like exchanging rows and columns. Up to obvious modifica-
tions, this result can be attained just as it was done in the case of B,,, so we
will not treat it.

Summing up, at this point we can give for granted that:

(Mypy,...p, 1, 0) = b Prords s (1.-31)

[Xi[=2p;
A; with no odd columns

Let us take a step forward towards the proof of Theorem 1.1.3: we are now
dealing with the modules M (cyy.... ¢, 1 po,....pr_1), Where fo+.. .+ fr_14+2po, ...+
2p—1 =mn. Let pg + ...+ pr.—1 = m and let us consider the G(r, 2m)-module

def
Hpowwpr—l = (Mp()a'“aprfl’Q)'
We know its irreducible decomposition from (1.3). Arguing as above, we can
infer that

~ G(ryn) yeeesDr—
(M(Cfo,---fr—l7PU7~--P;,1 )’ Q) = IndG(r,gm)XG(r,nfhn) (HIT)V[ZW Pt o Pigortin_y )’
(1.-31)

and Theorem 1.1.3 follows from the G(r,n)-version of Pieri rule:

Proposition 1.3.5 (Pieri rule for G(r,n)). Let px,,.a,._, be any irreducible
representation of G(r,h). Then

G(r,h+k
IndGE:,h)XC)}(r,k) (p)\07~~)w~71 © Puyssts, ) = @ Pro,ecovr—1s
where the direct sum runs through all (vo,...,vy—1) € Fer(r,h + k) such that
v; is obtained from A\; by adding f; boxes to its Ferrers diagram, no two in the

same column.



Chapter 2

The model for involutory

reflection groups

Our next goal is to state and prove a generalized version of Theorem 1.1.3,
holding for a much bigger family of groups, including all those of the form
G(r,p,n) with GCD(p,n) = 1,2. Though, before doing this, we need to give a
complete account of the Gelfand model constructed in [6] for these groups. This
will be less immediate than it was for G(r,n), because we are not dealing with
autodual groups anymore. Therefore, the present chapter is entirely devoted to
this explanation.

The description of the model will require, first of all, an introduction about
projective reflection groups (Section 2.1). We will then immediately focus on
the groups G(r,p,q,n) (Section 2.2), and provide a parametrization for their
irreducible representations. In Section 2.3 we explain how to generalize the
Robinson-Schensted correspondence to all groups G(r,p,q,n). In Section 2.4,
we give the definition of involutory reflection group, and necessary and sufficient
conditions for a group G(r,p,q,n) to be involutory. Finally, in Section 2.5, we
explicitly show the model constructed in [6] for all involutory reflection groups
G(r,p,n) and for all their quotients G(r, p,q, n).

Projective reflection groups, jointly with the concept of duality (see Defi-
nition 2.2), are of crucial importance to describe the model of all involutory
reflection groups. In this sense, projective reflection groups will be first of all
used as a tool to prove results concerning classical reflection groups G(r,p,n).
Nevertheless, the results appearing here also hold for some projective reflection
groups that are not classical reflection groups (see Theorems 2.5.1, 4.7.1). Fur-

thermore, we may mention that the importance of projective reflection groups

37
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goes far beyond the aim of this work. For an outline of the many applications

they have, we refer the reader to [5].

2.1 Projective reflection groups

The biggest circle represents
all projective reflection groups

A projective reflection group G is obtained as a quotient of some finite
complex reflection group W modulo a scalar subgroup. Notice that, so far, we
are not requiring W to be of the form G(r,p,n).

More precisely, let W be a finite complex reflection group acting on the finite-
dimension complex vector space V. Let S;(V') be the q"" symmetric power of

V. Consider the natural injection
1 : GL(V) — GL(S4(V)),

whose kernel is C; = ((,Id). Once restricted to W, 1 induces the isomorphism

W ~Y
e = V).

When Cj is contained in W, this allows to see the quotient G def Cﬂq as a
subgroup of GL(S,(V)), and G acts naturally on S,(V). Thus we can give the

following

Definition. Let G < GL(S4(V)). The pair (G,q) is a projective reflection
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group if and only if there exists a finite complex reflection group W containing
C, and such that G = #-.
q

The dual action of G can be extended to S,[V*], the algebra of polynomial
functions on V' generated by homogeneous polynomial functions of degree g.
Theorem 0.2.2, characterizing classical reflection groups, generalizes to the case

of projective reflection groups in the expected way:

Theorem 2.1.1. Let V be a finite-dimension vector space over C. Let G be
a finite group of graded automorphisms Sy[V*]. (G,q) is a projective reflection
group if and only if its invariant algebra S,[V*|¢ is generated by n = dimV/

algebraically independent homogeneous polynomials.

Proof. See [5, Theorem 2.1]. d

2.2 The groups G(r,p,q,n) and their irreducible

representations

From now on we will only consider projective reflection groups Cmq with

W = G(r,p,n). More precisely:

proj. ref.
groups # G(r,p,q,n)

Definition. Let r,p,q,n € N such
that p|r, q|r and pg|rn. Then we de-
fine the projective reflection group
G(r,p,q,n) as
Glr.p.qm) 2 LT
Cq

We observe that the first con-
dition is required for the group
G(r,p,n) to exist, while the remain-
ing two assure that the scalar group
C,; = (¢ 1d) is actually contained in
G(r,p,n).

In what follows we will always deal with projective reflection groups inde-
pendently from their action on S,(V). We will therefore refer to a projective
reflection group simply as the abstract group G itself, dropping the pair nota-

tion (G, q). Concerning this, we remark that two abstract projective reflection
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groups G(r,p,q,n) and G(7, P, G, n) may be isomorphic even if their parameters
are not the same.

Notice that the conditions of existence of the group G(r,p,q,n) given in
Definition 2.2 are symmetric in p and ¢. This allows to give the following

crucial

Definition. Let G = G(r,p, q,n). We denote by G* the group G(r,q, p,n) and
we call it the dual group of G.

We have seen in Chapter 1 that some objects related to the algebra of the
groups G(r,n) (namely, their irreducible representations and their conjugacy
classes) can be described by means of Fer(r,n). Also, the generalized Robinson-
Schensted correspondence associates to an element of G(r, p,n) a pair of multi-
tableaux in 8T (r, p,n) (see lemma 0.5.3). With this motivation, let us introduce
the new sets Fer(r,p, q,n) and 8T (r,p,q,n).

Let the conditions of Definition 2.2 be satisfied. Consider the set Fer(r, p,n)
and let the cyclic group Cj; act on it by means of a shift of the diagrams of g
places:

Cq O Fer(r,p, n) (2.0)

G A AT @) A= D A©@ G D,
To check that the action is well posed, see [5, Lemma 6.1].

Example 2.2.1. Consider, for any A € Fer(r, p,n), its stabilizer Stabg, (A) with
respect to the action 2.2 of the group Cy. Given X = ((MOHD), if ¢ = 2 we
have Stabe, (A) = Cy; if ¢ = 4, Stabe, (M) = Cs again.

Definition. We call Fer(r, p, g, n) the quotient set Fer(r, p, n) modulo the action
(2.2). Similarly, we define 8T(r,p,q,n) as the quotient - modulo an analogous

action - w
q

Example 2.2.2. The two elements of Fer(4,2,6) (HOrmD) and (trooHO)
coincide as elements of Fer(4, 2,2, 6).

The two elements of §T(4,2,4) () and () coincide

as elements of 8T(4,2,4,4), but not as elements of 8J(4,2,2,4).

Notation 2.2.3. Since all elements in Fer(r, p, ¢, n) and 8T(r, p, ¢, n) are equiv-
alence classes of Fer(r,p,n) and 8T (r, p, n) respectively, we will denote them by
means of any of their lifts in square brackets. The two elements considered in
Example 2.2.2 will be denoted with

[ DD]D} = [EDDED} € Fer(4,2,2,6);
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As for standard tableaux, an example may be

[D21B]E] = B[R] € 87¢4,2,2.4).

Notation 2.2.4. In analogy with what was done for the groups G(r,p,q,n),

we define the following dual sets:

L4 Fer(/r’ p’ q7 n)* déf Fer(r7 q7 p’ n)

o 8T(r,p,q,n)" = 8T(r,q,p,n).

With this tools at hands, our aim is to provide a parametrization for the
irreducible representations of the groups G(r,p,q,n), as it was done for the
groups G(r,n) (see Proposition 0.4.2). The step from G(r,n) to its quotient
%;") = G(r,1,q,n) is actually quite easy. In fact, Irr(r,1,¢q,n) is given by
those representations of G(r, n) whose kernel contains the scalar cyclic subgroup

Cy. It follows from this observation and Proposition 0.4.2 that
Irr(r,1,q,n) = {pr : A € Fer(r,q,1,n) = Fer(r,q,n)*}.

The following step, from G(r,1,q,n) to G(r,p,q,n), is a little more subtle.
Once restricted to G(r,p,q,n), the irreducible representations of G(r,1,¢q,n)
may not be irreducible anymore. We need to find out which of them split into
more than one G(r, p, ¢, n)-module. This is the content of the following theorem,
which fully descibes the parametrization of the irreducible representations of the
groups G(r,p,¢q,n). Here and in what follows, if A € Fer(r, p, n) we let mq(\) =
|Stabc, (A)|. Observe that if [A\] = [u] € Fer(r, p, ¢,n) then mg(X) = mg(p).

Theorem 2.2.5. The set of irreducible representations Irr(r,p,q,n) of G(r,p,q,n)
can be parametrized in the following way

II‘I'(T’7p, q, TL) = {pfA] : [)\] € Fer(T7Qap7 Tl) = Fer(r,p, q, n)* (an .] € [O7mP(>\) - 1]}’
so that the following conditions are satisfied:

. dim(p'[jA]) = |8T | for all [A] € Fer(r,q,p,n) = Fer(r,p,q,n)* and j €
[Oamp(/\) - 1]7'

. Resgg::;:ZZZ;(pA) =P, p{)\] for all X € Fer(r,q,n)* = Fer(r,1,q,n)*.

Proof. See [6, Proposition 6.2]. O
If mp(A\) = 1 we sometimes write ppy instead of p?A] and we say that this

is an unsplit representation, meaning that, once restricted from G(r,1,¢,n) to

G(r,p,q,n), A remains irreducible and thus does not split into more than one
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irreducible representation. On the other hand, whenever m,(\) > 1, we say
that all representations of the form p{/\] are split representations. We will come
back to the description of the irreducible representations in Section 4.2 with
more details.

Notice that the irreducible representations of both G(r,1,¢,n) and of its
subgroup G(r,p,q,n) can be described by means of the dual set Fer(r,p, ¢, n)*.
This is consistent with what happens in the case of G(r,n), since this group and

its related sets Fer(r,n) and 8T (r,n) coincide with their dual.

2.3 The projective Robinson-Schensted correspon-

dence

Let us now turn to give a brief account of the projective Robinson-Schensted
correspondence, which is an extension of the generalized Robinson-Schensted
correspondence [22] we presented in Section 0.5. While the generalized Robinson-
Schensted correspondence works on the groups G(r, p, n), the projective Robinson-
Schensted correspondence applies to all projective reflection groups of the form
G(r,p,q,n).

There is a quite natural way to build this new function. Recall one of the
properties of the generalized Robinson Schensted correspondence (see Proposi-
tion 0.5.3) :

lfg = (POa---aPr—l;QOa---er—l) Viam,
then CTg — (PI;-~-aPr—laPO;Q17~-~,QT—17QO) via m

For example, let g € B, = G(2,1,n):

g € B, 25 (Py, P1;Qo, Q1). Then

RS
—g € B, — (P1, Py; Q1, Qo).

Now consider the quotient group %2 = (G(2,1,2,n). If we choose the equivalence
class g of g modulo the action of Cb, it is natural to associate to it one (ordered)
pair of unordered pairs of tableaux:

B,
+1d

g e

B3, (P, P} {Qo. Q1))

In the above example, we get unordered pairs because ¢ = r = 2. In the general
case, we will not obtain pairs of unordered sets of tableaux, but pairs of elements
of 8T(r,p,q,n).
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The projective Robinson-Schensted correspondence is a surjective map RS,

RS(I : G(TvpaQ7n) - ST(Tvpaan) X S“T(Tvp7Qan)
g — ([Pl;[Q]),

where [P] and [Q] are determined as follows:
e choose any lift g of g in G(r,p, n);

e perform the generalized Robinson-Schensted correspondence RS to g, so

obtaining a pair of tableaux (P; Q) € 8T(r,p,n) x 8T(r,p,n);

e take the classes [P], [Q] of P, @ modulo C; w.r.t. its action on 8T (r, p, n);

def
o set RSy(9) = ([P];[Q))-
Proposition 2.3.1. The projective Robinson-Schensted correspondence satis-
fies the following property: if [P], [Q] € 8T then the cardinality of the inverse
image of ([P],[Q]) is equal to my(X). In particular we have that this correspon-
dence is a bijection if and only if GCD(¢,n) = 1.

Proof. See [5, Theorem 10.1]. O

Notation 2.3.2. Given g g ([Po,--, Pr—1];[Qo, - - -, @r_1]), we denote by

Sh(g) the element of Fer(r,p,q,n) which is the shape of [P,..., P._1] and of
[QO) sy QT—I]-

Notice that while in Theorem 2.2.5 we meet elements [A] € Fer(r,q,p,n) =
Fer(r,p,q,n)*, in the projective Robinson-Schensted correspondence the ele-
ments [A] involved belong to Fer(r, p,¢,n). This is one of the reasons why it is
natural to look at the dual groups when studying the combinatorial representa-

tion theory of any projective reflection group of the form G(r,p, ¢, n).

2.4 Involutory projective reflection groups

Recall Definition 1.1: g € G(r,n) is an absolute involution if gg = Id, g
being the complex conjugate of g. It is clear that the same definition holds for
G(r,p,n), since it is a subgroup of G(r,n). Since complex conjugation stabi-
lizes the cyclic scalar group Cj, we can give the same definition for projective

reflection groups too:

Definition. Let G be a projective reflection group and let g € G. g is an

absolute involution if gg = 1.
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Notation 2.4.1. We denote by I(r, p, g, n) the set of the absolute involutions of
the group G(r,p,q,n). The notation I(r,p,n) stands for the set of the absolute

involutions of G(r, p,n). Moreover, we let

I(r,p,n)* def {absolute involutions of G(r,p,n)*}

I(r,p,q,n)* def {absolute involutions of G(r,p,q,n)*}.

The absolute involutions in I(r, p,g,n) can be either symmetric or antisym-

metric, according to the following definition:
Definition. Let v € G(r,p, q,n). We say that it is:
e symmetric, if every (any) lift of v in G(r,n) is a symmetric matrix;

e antisymmetric, if every (any) lift of v in G(r,n) is an antisymmetric ma-

trix.

We observe that while a symmetric element is always an absolute involution,
an antisymmetric element of G(r,p,q,n) is an absolute involution if and only
if ¢ is even (see [6, Lemma 4.2]). Antisymmetric elements of G(r,n) can also
be characterized in terms of the Robinson-Schensted correspondence (see [6,
Lemma 4.3]):

Lemma 2.4.2. Let v € G(r,n). Then the following are equivalent
1. v is antisymmetric;

2. ris even and v — (Po,..., P15, Pz, .., Pr1, Po, ..., Pz 1) for some
(Po,...,Pr_1) € 8Ty and X\ € Fer(r,n) by the Robinson-Schensted corre-

spondence.

Now we can deduce the following combinatorial interpretation for the number

of antisymmetric elements in a projective reflection group.

Notation 2.4.3. Since we often deal with even integers, here and in the rest

. def . .
of this work we let k' = g, whenever k is an even integer.

Proposition 2.4.4. Let asym(r,q,p,n) be the number of antisymmetric ele-

ments in G(r,q,p,n). Then
asym(r, q,p,n) = Z ST )
(n,u]€Fer(r,q,p,n)
where [p, ] € Fer(r,q,p,n) means that [u, u] varies among all elements in

Fer(r,q,p,n) of the form
@, ..., pr' =0, pO 7u(r/_1)], for some = (u®, ... 7u(r/_l)) € Fer(r',n').



2.4 Involutory projective reflection groups 45

Proof. Observe that if v € G(r,q,n) is antisymmetric and (Py, ..., P._1) and
A are as in Lemma 2.4.2, then necessarily A € Fer(r,q,1,n) is of the form
A= (u, ), for some p € Fer(r’,n’). So, if v — (P; Q) is antisymmetric we have
that P is an element in 8T, ) for some p € Fer(r’,n’) whilst Q is uniquely
determined by P. So we deduce that

asym(r,q,1,n) = Z 8T (up)-
(p,p)E€Fer(r,q,1,n)
The result now follows since every antisymmetric element in G(r, ¢, p, n) has
p distinct lifts in G(r,¢,n) and any element in 87T, ) has p distinct lifts in

Ul 8T (v,) -
O

We are now ready to define and characterize involutory projective reflection

groups G(r,p, ¢, n).

Definition. A projective reflection group G is involutory if the dimension of
its Gelfand model coincides with the number of its absolute involutions. When

G = G(r,p,q,n), G is involutory if

> dim¢ = [I(r,q,p,n)|.

Ppelrr(G)

proj. ref.

e The biggest circle represents

all projective reflection groups
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Theorem 2.4.5. Let G = G(r,p,q,n). Then G is involutory if and only if
either GCD(p,n) = 1,2, or GCD(p,n) =4 andr =p =g =n =4 mod 8.
In particular, a classical reflection group G(r,p,n) is involutory if and only if
GCD(p,n) =1,2.

Proof. See [6, Theorem 4.5]. d

2.5 The model

In [6], & uniform Gelfand model is constructed for all involutory projective

reflection groups G(r,p, ¢,n) with GCD(p,n) = 1,2.

proj. ref.
groups # G(r,p,q,n)
The model concerns all involutory

3 e projective reflection groups G(r,p, ¢, n),

except those satisfying GCD(p,n) =4

GCD(p,n) =4

Before describing the model, we recall some notation from Chapter 1 and

introduce some new objects. If o, 7 € S,, with 72 = 1 we let
o Iov(o) & {{i,5} : (j — )(0(j) — o)) < O}
o Pair(r) € {{i,j} : 7(i) =j £ i}
o inv.(0) ¥ [{Inv(c) N Pair(r)].

If g € G(r,p,q,n), v € I(r,q,p,n), g any lift of g in G(r,p,n) and ¥ any lift

of v in G(r,q,n), we let

. def .
e inv,(g) = inv,(|g]);
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o (g.0) T Y0 2(9)2i(0) € Zs

def ~ ~
(] a(g,v) = Zl(’U) - Z|g|71(1)(11) € Ly

The verification that (g,v) and a(g,v) are well-defined is straightforward. We

are now ready to present the Gelfand model constructed in [6].

Theorem 2.5.1. Let GCD(p,n) = 1,2 and let

M(rgpn) < @ cc,

vel(r,q,p,n)

and o : G(r,p,q,n) — GL(M(r,q,p,n)) be defined by

(9,v) (__1\inv,(g) . . .
def | G (-1) DC\givlal-1  if v is symmetric
Q(g)(cv) = (g,v) ~a(g,v) lglvlsl . . . . (2_1)
GG Clglvlgl-1 if v is antisymmetric.
Then (M(r,q,p,n), 0) is a Gelfand model for G(r,p,q,n).
Proof. See [6, Theorem 5.4]. O

We explicitely remark that, as can be seen from the figure, this theorem also

concerns some groups that are not classical reflection groups.
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Chapter 3

Decomposition of the model

for type D

involutory

Dye

We use this chapter to present our main result for the group D,,. Recall
that D, is the subgroup G(2,2,n) of index 2 of the group B, = G(2,n) and
observe that its dual group is given by D} = G(2,1,2,n) = B,/ £ Id. Thus,
the model space of theorem 2.5.1 is spanned by the absolute involutions in
B,/ £ 1d. Since we are now dealing with real matrices, absolute involutions
are now simply involutions. Furthermore, if n is even, we observe that the
antisymmetric involutions come into play. For this reason, the example of D,
is particularly enlightening.

The advantage of affording this particular case before the general one is
twofold. On the one hand, we will shed some light on our arguments by means
of a well-known example the reader is probably familiar with. On the other

hand, we will make use here of some combinatorial results that, for D,,, are

49
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already known in literature. The general case will require to generalize such
results - namely, the study of the split conjugacy classes (section 4.1) and of
the characters of the split representations (Sections 4.2-4.3) of G(r,p,n) with
GCD(p,n) =1,2.

As mentioned above, when n is even, the model constructed in Theorem
2.5.1 is spanned by both symmetric and antisymmetric involutions. Since a
symmetric and an antisymmetric involution cannot be S,-conjugate, we can

immediately split the model into two natural submodules:
M = MSym 3] MAsymu

where Mgy, is spanned by symmetric involutions of D}, and Magym is spanned
by antisymmetric involutions of Dj,. When n is odd, Masym vanishes and M
coincide with Mgym,.

In Section 3.1 we will quickly revise the split conjugacy classes and the split
characters of D,,.

In Section 3.2 below we will determine the irreducible representations af-
forded by the submodule Magym; thus, this section only concerns the case of n
even. Observe that an antisymmetric element in Bs,, is necessarily the product
of cycles of length 2 and color 1, i.e. cycles of the form (a®,b'). It follows that
the antisymmetric elements of Ba,,, and hence also those of Bs,,/ &+ I, are all
Sp-conjugate. For this reason, the submodule Magym will not furtherly decom-
pose. This is a special feature of this case and is not true for generic involutory
reflection groups (see Section 4.5).

The submodule Mgy, on the other hand, admits a finer natural decompo-
sition, which we will study in Section 3.3. This section, unlike the preceeding

one, concerns both the case of n odd and the case of n even.

3.1 Split representations and split conjugacy classes

Recall from Proposition 2.2.5 that the representations of B,,, when restricted
to D,,, always remain irreducible except for those of the form pj x, which exist
if n is even only: in this case the representation splits into two irreducible
representations that we denote, according to Theorem 2.2.5, p?)\)\] and p[l)\,/\].
We will show that the simultaneous occurring of these two phenomena, the
existence of antisymmetric elements and of the split representations when n is
even, is not accidental.

Recall the parametrization of the conjugacy classes of the group G(r,n) as
seen in Section 0.4. It is easy to check that the conjugacy classes of B,, belonging

to D,, are indexed by ordered pairs of partitions («, 3), with |3 =0 mod 2.
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Proposition 3.1.1. Let cly g be a conjugacy class of By, satisfying |5] = 0

mod 2, so that cly g s contained in D, as well. Then cly g splits into two

n
2
B =10. In particular, if n is odd there are no By,-conjugacy classes that split as

different D,,-conjugacy classes if and only if a = 2 for some v + and

D,,-conjugacy classes.
For the proof, see [20, 17].

Notation 3.1.2. The pairs of the form (2a, () label two D,,-conjugacy classes
denoted cly,, and cl},,. A representative of the conjugacy class cl9,, is any element
in S, of cycle-type 2a. A representative of the conjugacy class cléa is given by

any element g such that |g| € S,, has cycle type 2a and

1 ifk=1ij
Zk:(g)Z{

0 otherwise
for some 4, j € [n] such that |g|(i) = j.

Example 3.1.3. The element [(4,7,5,3,1,8,2,6);1,0,0,1,0,0,0,0] € Dg be-

longs to the class Cl%ﬂ:\j-

The characters of the unsplit representations are clearly the same as the cor-
responding representations of the groups B,, (being the corresponding restric-
tions). The characters of the split representations are given by the following
result (see [20, 17]).

Lemma 3.1.4. Let g € Ds,y,, and ut=m. Then

c _ 3 X () (20, 0) + (—D)erm2ie=ly (o), ifg € cl,;
X[#yﬂ]( ) - 1 )
3 X () (9), otherwise.
where €,m = 0,1, X(u,) 8 the character of the Boy,-representation p(, .y, Xu S

the character of Sy, indexed by p and £(«) is defined as in notation 0.3.3.

3.2 The case of n even: the submodule Mgy,

All through this section, we assume n = 2m. This section fully clarifies which
of the irreducible representations of D,, are afforded by the submodule Magym.
The crucial observation here is the following result, which is a straightforward

consequence of Lemma 3.1.4.

Remark 2. Let g € Dy, Then

Z (X?u,u] - X[lu,u])(g) = (3.0)

pEm

()72 3 xu(@), i g € cljy;
0, otherwise.
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In order to study the representation (Masym,0) we will need the following

auxiliary representations of Do, :
(Masym, ¢*)  and  (Masym,¢7),
given by
61 (9)(Co) = (=19 Clgpaggrs 6 (9)(C0) = (=)< (1) C gy gy

(notice that ¢~ (g) = 0(9)|Mawm)- The main result that we need to describe the
irreducible decomposition of (Masym, 0) is an explicit combinatorial description
of the difference character x4+ — X~ (Proposition 3.2.5). To this end we recall
some ideas developed in [6] and some preliminary lemmas.

For every g € Dy, consider the set

Alg) ™ {w € Bop : w? = —1d and |glw|g| ™" = +w}.

In other words, A(g) is the set of antisymmetric elements w in B,, (the condition
w? = —Id is equivalent to w being antisymmetric) whose corresponding class
in B,/ +1d is fixed by conjugation by |g|. Since any element in B,/ &+ Id has

exactly two lifts in B,,, we have

Xor9) ~ X (9) =5 D (FDII- (S (30)
weA(g)

The set A(g) was described in [6] and we recall here some of the needed notation.

Let IT1%1(g) be the set of partitions of the set of disjoint cycles of g into:
e singletons;
e pairs of cycles having the same length.

Recall the definition of Supp given on page 5. Any w € A(g) determines a
partition 7(w) € I*!(g): a cycle ¢ is a singleton of m(w) if the restriction of
|w| to Supp(c) is a permutation of Supp(c) and {¢,c’'} is a pair of w(w) if the
restriction of |w| to Supp(c) is a bijection between Supp(c) and Supp(c’). Finally,
let A, & {w € A(g) : m(w) = w}. Then the set A(g) can be decomposed into
the disjoint union

Alg)= |J A~ (3.0)

w€ell2:1(g)

Looking at the definition of the set A(g), for € € Zy, we can also define

¢ def — €
A7 = {w € Ar :glwlgl ™" = (=1)%w},
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so that partition (3.2) can be made still finer:

Alg)= |J A4 (3.0)

we? ! (g)
e=0,1

end equation (3.2) can be rewritten as

Xor (@) —xo-(9) = D Fxly), (3.0)

mell?:1(g)

where

Notation 3.2.1. If S C [n], we let
G(r,S) = {[o5*,...,02"] € G(r,n) : o7 =i° for all i ¢ S}.

Given 7 = {s1,...,sp} € I*'(g), we have AS = A5 x ... x A5,

sets AS C G(2,Supp(s)) are described in Table 3.1. In the first column of the

table we have all possible structures of the “absolute value” of a part s. It is

where the

clear from the definition that the sets A% and Al depend on |g| only. Moreover
the indices of the i’s and of the j’s should be considered mod d, k € Zy and
[ € [d]. For example, if |s| = {(i1,...,%a), (J1,-..,Jq)} with d odd then

A= |J UfveG@Sup(s)) : vin) = (—=1)¥jnr and v(jn) = —(=1)¥in_}.

k€Zo l€Zq

Remark 3. Tt is a straightforward verification based on a case by case analisys
of the table (see also [6, Proof of Lemma 5.7]) that

0, ifwe A%g);
a(g,w) =

1, ifwe Al(g).

It is an immediate consequence of this remark that we can restrict the sum

in (3.2) to all w € AL. In particular the definition of F,(g) can be pretty much

simplified
1 <g,w> a(g,w)] _ <g,w>
Felg) =5 (DI - ()Mo = Y (—1)Te, (3.0)
weAL weAL
Now, if 7 = {s1,...,8n}, every w in AL can be written as w = wy - ... wp, with

w; € Aii and viceversa, if w; € A; then w = wy ---wy, € AL. This will also
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5] AL Aj
{(i1,...,1q)} with d odd | 0 0
{(r, .. ia)}
0 in — (=1)k(=1) ipyd
with d =2 mod 4
i1y--yig
{(ia )} 0 0
with d =0 mod 4
{(i1,- - yia), G- g}y | in = (1) i ’
with d odd and jp — —(—1)ki,_y
{(ila"'vid)v(jlv"'ajd)}a ih = (71)kjh+l Il:h = (71)k(71)hjh+l
with d even and jj, — —(=1)%ip,_; | and jj — —(=1)F(=1)""i,_,

Table 3.1: The sets AS as |s| varies.
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allow to focus on the single sets Al, via the identity

Filg) = Y (=)0~ (3.1)

weAL

= Z Z (_1)<ng1"'wh>

’UJ1€Agl thAgh

= Z Z (—1)Zi<giwi>

1 1
wleASl wheASh

h
_ H Z (_1)<91‘;w1‘>7
=1 w; EAéi
where g; € G(r, Supp(s;)) is the restriction of g to Supp(s;) (if s € II*1(g), we
let Supp(s), the support of s, be the union of the supports of the cycles in s).

Lemma 3.2.2. Let m € 11>1(g) and assume that one of the following conditions

is satisfied:
1. 7 has a part which is a singleton of odd length;
2. 7 has a part which is a singleton of length =0 mod 4;
3. 7 has a part which is a pair of cycles of odd length;
Then Fr(g) = 0.

Proof. By Table 3.1 we have that m has a part s such that Al = (). Therefore
the result follows from Equation (3.1). O

So we are left to consider those m € 11! (g) having only singletons of length

=2 mod 4 and pairs of cycles of even length.

Lemma 3.2.3. Let m € 11>'(g) having only singletons of length = 2 mod 4
and pairs of cycles of even length. Assume further that g has at least one cycle
¢ such that z(¢) = 1. Then

Fr (g) =0

Proof. We split this result into two cases. Assume that the cycle of color 1
is a singleton s; = {c} of m. In this case we have Al = {v,—v} for some
v € G(2,Supp(s;)) (see Table 3.1). So, in this case the restriction of g; to
Supp(s;) is the cycle c itself and therefore g; has an odd number of negative
signs. It follows that < g;,v > and < g;, —v > have opposite parity and we
deduce that

Z (_1)<gi,w1> _ (_1)<gi,v> + (_1)<gi,fv> =0

w; €EAL
i
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and the result follows from Equation (3.1). Assume now that the cycle ¢ belongs
to a pair s; = {c1,c} of m. To fix the ideas we let |c1| = (i1,...,%q) and
lel = (41,---,7a4). In this case we can consider the involution ¢ with no fixed

points on A} determined by

¢.{z’w<—1>’f<—1>hjh+z }H{ihw—w’f(—lwmﬂ }
) h—1-1;

Jh = _(_1)k(_1)h_lih—l Jn —(—1)k(—1) Th—1—1

for all I = [2d] even. In this case we have z;, (w) = z;, (¥ (w)) and zj, (w) =
zj, (W(w)) + 1 for all w € Al and so (—1)<9:%> 4 (=1)<9:%()> = 0 for all
w € A} and the result now follows as in the previous case. O

If 7= {s1,...,sn} € II*'(g) we let £(r) = h and pair;(7) be the number of

parts of m which are pairs of cycles of length j.

Proposition 3.2.4. If g € cl5, then

X+ (g) — X¢- (g) =€ Z 2@(7r)dpai1rd(7r)7
rel21(g)
where the sum is taken over all m € II*'(g) having singletons of length = 2

mod 4 (and pairs of cycles of even length).

Proof. If g € cl9, then we may assume that g = |g| (since the left hand side is
a class function) and it is clear that in this case (—1)<9¥> =1 for all v € A(g).

Therefore, by Lemma 3.2.2, we have

Z Fr(g)

21 (g)

- > v

mell21(g) we AL

Xg+(9) — Xo-(9)

h

> AL
1

(81,...,81) €T 1 (g) 1=

b

where the sum is taken over all 7 € I1?!(g) having singletons of length = 2
mod 4 and pairs of cycles of even length. The result follows since, by Table 3.1,
we have |Al| = 2 if s is a singleton and |Al| = 2d if s is a pair of cycles of length
d.

If g € cl},, then we may assume that there exists a cycle (i1, ...,iq) of |g| such
that z;,(g9) = zi,(g) = 1 and 2;(g) = 0 for all ¢ # i1,72. From the description
of AL given in Table 3.1 it follows that (—1)<9v> = —1 for all v € AL and the

result follows as in the previous case. O

We can now complete our description of the difference character x4+ — x¢--
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Proposition 3.2.5. We have

Xo+ (9) = Xo-(9) = D_Oha —Xxha)(@ Vg€ Do
AFm

Proof. Let g belong to an unsplit class. Then g has at least a cycle of odd length
or a cycle of color 1. It follows from Lemmas 3.2.2 and 3.2.3 that F(g) = 0 for
all m € II*!(g) and therefore x4+ (g9) — X4- (9) = 0 by Equation (3.2). Since we
also have Z/\Fm(x([)&/\] — X[l/\’/\])(g) = 0 by Proposition 2 the proof is complete
in the case of g in an unsplit class.

If g belongs to the class cl5, we make the simple observation that £(a) =

() + >, pair;(m) for all m € [1>1(g) and we have, by Proposition 3.2.4,

Xot(9) = Xo-(9) = € Y 2fm(gj)paira(m
n€ll21(g)

= ¢ Z 25(71-) (Qj)pairzj(‘rr)
w€ell?1 (2a)

— 62@(204) Z jpaiij (m)
well?:1(2a)

— 62€(o¢) Z jpairj (m)
mell?1 (o)

where the sum in the first three lines is taken over all 7 € II1%1(g) having
singleton of length = 2 mod 4 and the sum in the last line is over all = € I1%!(«)

having singletons of odd length. The result now follows from Proposition 2 since

Y= e,

Abn mellz! ()

it is known that

the sum being taken over all = € I1?!(a) having singletons of odd length (see,

e.g., [6, Proposition 3.6] specialized to the case r = 1). O
We are now ready to state and prove the main result of this section.

Theorem 3.2.6. Let (M, ) be the Gelfand model of Day,, constructed as in
Theorem 2.5.1. Let Masym be the submodule of M spanned by antisymmetric

tnvolutions of D). We have

Masym = @ p[lu,u]'
pukEm
Proof. By Proposition 3.2.5 we have

Z xpoape (9) + xe-(9) = Z Xpoa(9) +xe+(9) Vg€ Do (3-10)
AFm AFm
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Now, recalling the linear independence of the characters of the irreducible repre-
sentations of any finite group we deduce that ¢ has a subrepresentation isomor-
phic to @,.,, p?AN, and ¢~ has a subrepresentation isomorphic to @,,,, p[lA}A].
By Proposition 2.2.5 we have

. 1
> dim(ppap) = D 18Tyl = 3 D 18Tl
AFm AFm AFm
On the other hand we have

. . 1
dim(¢™) = dim(Magym) = 3 Z 18T (x|
AFm

since, by Lemma 2.4.2, v € By, is antisymmetric <= v BS (Py, P1; P1, Py) (see
also Proposition 2.4.4). Therefore dim(¢™) = 3", dim(p[x zj0) and the proof

is now complete. O

Example 3.2.7. If G = Dy, Magsym is spanned by the antisymmetric elements
in By/ £ 1. These are

[(2’17473);071707 1]7 [(27 ]"473);07 ]" 170]7 [(3’47172);0707171]7
[(3,4,1,2);0,1,1,0], [(4,3,2,1);0,0,1,1], [(4,3,2,1);0,1,0,1],

50 MaAsym has dimension 6 and the theorem says that as a D4-module
~ 1 1
MAsym = p[[E],ED] S ,O[E], EH

3.3 The submodule Mgy,

An immediate consequence of Theorem 3.2.6 is the following

Theorem 3.3.1. Let Mgy be the submodule of M spanned by symmetric in-
volutions of D},. As a consequence of the natural decomposition M = Mgym @

Magym, we obtain

MSym = @ p?,u”u] D @ Piru]-

ukm (A p)Fm
AFp

In this section we will provide the description of the irreducible decomposi-
tion of the D,-modules M (c), where ¢ is any S,,-conjugacy class of symmetric
involutions in B,/ £ 1Id. Let v be a symmetric involution in B,/ + Id. Recall
the notation 2.3.2: we let Sh(v) be the element of Fer(2,1,2,n) which is the
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shape of the tableaux of the image of v via the projective Robinson-Schensted

correspondence. Namely, Sh(v) def [\, 1] where

v 2% ([P];[P)), P €87(2,1,2,n), P ofshape [X,pu].

If ¢ is a Sp-conjugacy class of symmetric involutions in B,/ & Id, we also let

Sh(e) = U Sh(v).
vEc
Recall the analogous analysis made for B,,. In that setting, the S,,-conjugacy
classes were parametrized as cy,, , po,p.- Lhe corresponding S,-conjugacy classes
in the quotient B,,/ = Id are indexed by unordered pairs {(fo,p0), (f1,p1)} sat-
isfying fo + f1 + 2po + 2p1 = n. Paralleling the proof in the case of B,, one can
show that if ¢ is indexed by {(fo,po), (f1,p1)} then

P‘a/u’] € Fer(2, 1527n) PAE (fO + 2p0),/l = (fl + 2171)7
Sh(c) = A has exactly fy columns of odd length,
u has exactly f; columns of odd length.

We can state the main result of this section.

Theorem 3.3.2. Let ¢ be an Sy-conjugacy class of symmetric involutions in
B,/ +£1d. Then

Me)= B mu® D rha

[\,u]€Sh(c) [A\,A]€Sh(c)
AFp

Proof. We first tackle the (easier) case (fo,p0) # (f1,p1). In this case we let
€ = Cfy,f1,p0,p: 1D the notation of Section 1.2.1, be one of the two S,,-conjugacy
classes in B, whose projection to B,/ + Id is ¢. Then the projection map
¢ — c is a bijection, and it easily follows that M(c) = M(¢) |p,. The result
now is a consequence of Theorem 1.2.13 and the discussion on the irreducible
representations of D,, given in Section 3.1.

Now assume that fy = f1 and that pg = p;. We denote by ¢ = ¢y, 7, po.p: the
unique S,-conjugacy class in B,, whose projection to B,/ £1d is ¢. We remark
in this case that the projection ¢ — ¢ is 2:1. Nevertheless we may notice that
M(c) =2 M’ |p, where M’ is the D,-submodule of M (¢) given by

M’ = Span{C, + C_, : v € ¢}.

Therefore, by Theorem 1.2.13 and the same discussion on the irreducible repre-

sentations of D,, cited above, we have that the irreducible components of M (c)
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are some of the pp ), with [\, 4] € Sh(c) and A # p, and some of the split
representations p?A’)\] and p[lA’A], with [A, A] € Sh(c).

But now we need to recall that, in the overall, ®.M/(c) is a Gelfand model
for D,. Theorem 3.3.1 says that, as we already know that the split represen-
tations p[1>\7>\] appear in Magym, they cannot appear in M (c). And as the other
irreducible representations listed above can appear in this submodule only (the
sets Sh(c) are clearly all disjoint), they actually have to appear here (and with
multiplicity 1) and the proof is complete. O

Example 3.3.3. Let ¢ € Bg given by |0| = [(6,4,3,2,5,1);1,0,0,0,1,1]. Let
v be the projection of ¥ in B,,/ & Id. Then the S,,-conjugacy class ¢ containing
v has 90 elements and the decomposition of the D,-module M (c) is given by
all representations indexed by [A,u] € Fer(2,1,2,6) where both A and u are
partitions of 3 and have exactly one column of odd length, with the additional
condition that if A = p the split representation to be considered is [\, )\]0.
Therefore

M(C) o~ 0 0

g Rt =5



Chapter 4

Decomposition of the model

for the involutory groups

G(r,p,n)

This chapter contains the main result of this work in its most general form.
So far, we met it in various phrasings: for B,, (Theorem 1.2.13), for G(r,n)
(Theorem 1.1.3), for D,, (Theorems 3.2.6 and 3.3.2). In each of these occasions,
we provided a proof which made somehow use of the special form of the group

analyzed.
In the first part of this chapter, we

will afford the general case of all invo-
lutory reflection groups G(r,p,n), i.e.
all G(r,p,n) such that GCD(p,n) =
1,2 (see Theorem 2.4.5). Though the
main result of this section is a gener-
alization of Theorem 1.1.3, we should
mention that the proof is not, in the
sense that we will make use here of
the main results of Chapter 1. This
fact can also be observed in the proof
of Theorem 3.3.2 for D,,, where the

results already proved for B,, were ac-

tually exploited.

The strategy of our proof will be, in fact, similar to the one followed for D,,.

Nevertheless, the general case presents some more difficulties if compared to the

61
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example of D,,. First of all, a characterization of those G(r, n)-conjugacy classes
that split as G(r, p, n)-conjugacy classes is necessary. This is known for D,, but
we could not find it in literature for the other involutory G(r,p,n), and is the
content of Section 4.1. Secondly, a study of characters of split representations
is needed (see Sections 4.2-4.3), which was only known for D,, as well.

In Section 4.4, concerning the case GCD(p,n) = 2, we are in a position
to determine the irreducible representations appearing in the antisymmetric
submodule. This result is furtherly refined in Section 4.5. Section 4.6, in-
stead, is devoted to refining the symmetric submodule, and concerns both cases
GCD(p,n) = 1,2. This completes our analysis for the groups G(r,p,n).

In the very last section of this chapter we make a further generalization. We
show how the results attained for the involutory G(r,p,n) can also be extended
to their quotients G(r, p,q,n). This means that our main theorem in its final
version (Theorem 4.7.1) concerns all involutory reflection groups G(r,p,n) and
their quotients modulo scalar sugroups, i.e. all G(r,p,q,n) with GCD(p,n) =
1,2. In other words, we are dealing with all involutory projective reflection

groups G(r,p,q,n) except those satisfying GCD(p,n) = 4 (see Theorem 2.4.5).

proj. ref.

The last section concerns all involutory
projective reflection groups G(r,p,q,n),
except those satisfying GCD(p, n) = 4.

GCD(p,n) =4

4.1 On the split conjugacy classes

Recall the parametrization of the G(r, n)-conjugacy classes given on page 7.
In the case of any involutory reflection group G(r,p,n), we have not been able
to find the nature of the conjugacy classes that split from G(r,n) to G(r,p,n)

in the literature. This is the content of the present section.
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Definition. Let r be even. Let ¢ be a cycle in G(r,n) of even length and even
color. Recall the cyclic notation on page 5. If ¢ = (zil , Z;2 Y ,i;ff") we define

the signature of ¢ to be
. def
sign(c) = zi, + 2iy + o+ Zigyy = Ziy + Ziy + oo+ 21y, € Lo,

so that the signature of ¢ can be either 0 or 1. If g is a product of disjoint cycles
of even length and even color we define the signature sign(g) of g as the sum of

the signatures of its cycles.

Proposition 4.1.1. Let r be even and let ¢ be a cycle in G(r,n) of even length

and even color. Let h € G(r,n). Then
sign(h~'ch) = sign(c) + Z zj(h) € Zo
J€lh]=*(Supp(e))

(see the definition of Supp(c) on page 5). In particular, if g € G(r,n) is a

product of cycles of even length and even color, then
sign(h™*gh) = sign(g) + z(h) € Zy.

Proof. Let |¢| = (i1,ia,...,4924). We have that h=1ch is a cycle and |h~1ch| =
(171(i1),...,7 7 (i24)), where 7 = |h|. Therefore
sign(h~'ch) = Z zrl(i_j)(h_lch)
7 odd

= Z ZTfl(’i]') (h’) + Z’L’j (C) - ZTfl(ij+1) (h’)
j odd

—sign(@)+ Y. (k).

JEIR|=1(Supp(c))
where the sums in the first two lines are meant to be over all odd integers
j € [2d]. O

As a consequentce of Proposition 4.1.1, we have the following

Corollary 4.1.2. The conjugacy classes of G(r,n) contained in G(r,p,n) of

the special form
ClQa = CI(QQ(U),(Z),2a(2>,@,...,204“*2),0)a
split in G(r, p,n) into (at least) two conjugacy classes, according to the signature.

Let us now afford the G(r, n)-conjugacy classes of a different form, to deter-

mine if they split as G(r, p, n)-classes.

Notation 4.1.3. If G is a group and g € G we denote by Clg(g) the conjugacy
class of g and by C¢(g) the centralizer of g in G.
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If g € G(r,p,n) then the G(r,n)-conjugacy class Clg(,n)(g) of g splits into

more than one G(r, p,n)-conjugacy class if and only if

|CIG(T',7L) (g)| _ [G(T‘, TL) : G(T’p’ n)} _ p > 1.

|CIG(r,p,n) (g)‘ [OG(r,n) (g) : CG(r,p,n) (g)} [CG(T,n) (g) : CG(r,p,n) (g)}

Thus, Clg(r,n)(g) splits if and only if [Ce(rny(9) @ Carpn)(9)] < p. The fol-
lowing proposition clarifies which conjugacy classes of G(r,n) split in G(r, p, n),

for every involutory G(r,p,n).

Proposition 4.1.4. Let g € G(r,p,n) and let Cl(g) be its conjugacy class in
the group G(r,n). Then the following holds:

1. if GCD(p,n) =1, Cl(g) does not split as a class of G(r,p,n);

2. if GCD(p,n) = 2, Cl(g) splits up into two different classes of G(r,p,n) if
and only if all the cycles of g have:

e cven length;

e ceven color,
i.e., if g € (2209,0,2a2,0,...,2a"=2) ).

Proof. Let G = G(r,n) and H = G(r,p,n). We first make a general observation.
If Ci(g) contains an element x such that z(x) =1 mod p, we can split the group
C¢(g) into cosets modulo the subgroup (z): in each coset there is exactly one

element having color 0 mod p every p elements. Thus,

[Calg): Culg) =p

and Cl(g) does not split in H.

Now let GCD(p,n) = 1. Thanks to Bézout identity, there exist a,b such
that an + bp = 1, i.e. there exists a such that the scalar matrix (?Id has color
1 mod p, so that Cl(g) does not split thanks to the observation above.

Assume now that GCD(p,n) = 2. Arguing as above, there exist a, b such
that ap+bn = 2, so we know that C(g) contains at least an element (?Id with
color 2 mod p.

If there exists at least an element z of odd color in Cg(g), the matrix ((21d)*-
z has color 1 for some 4, so again Cl(g) does not split in H.

On the other hand, if there are no elements of odd color in C(g), every coset
of (¢€*1d) has exactly one element belonging to G(r,p,n) out of p’ elements (p’
standing for § as in Notation 2.4.3). Thus,

[Ca(g): Culg)] =7
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and Cl(g) splits into p/p’ = 2 classes.

Let us see when this happens according the the cyclic structure of g.

1. If ¢ has at least a cycle of odd color, say ¢, ¢ is in Cg(g) and Cl(g) does
not split.

22d+1

2. If g has a cycle of odd length, say (ai',... a5 ), then (af,... ,a3;,,)
has odd color and is in Cg(g), so Cl(g) does not split.

3. We are left to study the case of g being a product of cycles all having even
length and even color. Thanks to Lemma 4.1.1, every element in Cg(g)
has even color, so by the above argument Cl(g) splits into exactly two

classes, and we are done.

O

Notation 4.1.5. If 2a = (2a(9,0,2a®,0,...,2a("=2) ) is such that the
G(r,n)-conjugacy class cly, is contained in G(r,p,n) (i.e. if > 2il(ag) =0
mod p), we denote by cl, the G(r,p,n)-conjugacy class consisting of all ele-
ments in cly, having signature 0, and we similarly define cléa. This choice is
coherent with Notation 3.1.2 adopted for D,,.

4.2 The discrete Fourier transform

As we have seen in Section 2.2, there is an action of the cyclic group of order p
on the set Fer(r,n), giving place to the quotient set Fer(r,p,n)* = Fer(r, 1, p, n).
We will now illustrate explicitely how this action can be constructed in terms
of representations. Thus, the cyclic group will be acting not on the diagrams of
Fer(r,n), but on the irreducible representations of G(r,n). This action gives us
the opportunity of introducing the concept of discrete Fourier transform, which
will be essential in what follows about the case GCD(p,n) = 2. We will parallel
and generalize in this section an argument due to Stembridge [20, Sections 6
and 7B.

Notation 4.2.1. Given ny,...,n; € N such that ng + ... + ngy = n, consider
the k-tuplet v = (no,...,nk). Welet G(r,v) o G(r,ng) x --» X G(r,ng) be the
(Young) subgroup of G(r,n) given by

G(r,v) ={[(o1,.--,00); 21, .- 2] € G(r,n) :

0; <ng+---+n;ifand only if i <ng+---+n;}.
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Consider the color representation -, mentioned in Proposition 0.4.2:

Y : G(r,n) — C*

g G

The representation 7, has, of course, order r. Consider the G(r,n) represen-
tation p(yo), A1), where INi| = n;. If v = (ng,...,np—1), {Vn) acts on

PO, A=) in this way:

.....

r—1
G(r,n ;i ~
T ® P(AO) A=) :IndGET V))7”|G(T7V) ® <©(%§?f ® pA(i))>
=0

~Tndg) ((%o ® fr) OO (Y&, ® Py ))

=PA=1) A(0) A1) A(=2)).

Since p|r, the group (7,) contains a cyclic subgroup T def (v&) of order p, which,

on its turn, acts on the set of the irreducible representations of G(r, 1, ¢,n):

r G(r,n
VP @ poror, a1y = IndGEW; ((% lG(rw)) ® @ Tl @ Paco ) (4.1)

P(Ar=r/p) | A= 1),)\(0),__47,\& 1-r/p)),

and so it corresponds to a shift of r/p of the indexing partitions.

We recall, according to [20], the following

Definition. Let A = (A ... A"=1) ¢ Fer(r,n), and let (V,p,) be a con-
crete realization of the irreducible G(r, n)-representation py on the vector space
V. Let v be a generator for Stabr(py). An associator for the pair (V,v) is
an element S € GL(V) exhibiting an explicit isomorphism of G(r,n)-modules

between
(Vipx) and  (V,7® py).

By Schur’s lemma S"»() is a scalar, and therefore S can be normalized in such
a way that ™M) = 1.

Recall form Theorem 2.2.5 that a representation p) of G(r,n) splits into

exactly mp(A) irreducible representations of G(r, p,n).

Definition. Let A € Fer(r,n) and let S be an associator for the G(r, n)-module
(V, px). Then the discrete Fourier transform with respect to S is the family of
G(r,p,n)-class functions A} : G(r,p,n) — C* given by

AL () tr(STon), i€ [0,my(N) —1].
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A more accurate analysis of the associator shows that the irreducible repre-
sentations pfA] are exactly the eigenspaces of the associator S, and we make the
convention that, once an associator S has been fixed, the representation pf/\] is

the one afforded by the eigenspace of S of eigenvalue Cfnp( NS Therefore

mp(A)—1
Aj) = 3¢y, (4.0)
Jj=0

for all h € G(r,p,n), X{A] being the character of the split representation p{A] of
G(r,p,n).

Now let us consider a representation p). Looking at the action described in
(4.1), we see that m,(\) = [Stabr(py)| = s only if A\ = (A\(®) ... A\~ consists
of a smaller pattern repeated s times. It follows that m,()) is necessarily a
divisor of both n and p.

In particular, if GCD(p,n) = 2, my(A) = 1,2 and so the stabilizer of a
representation with respect to I' can either be trivial or be {Id,~ } (we recall

once more that &’ stands for §7 according to Notation 2.4.3).

Notation 4.2.2. From now on, when r is even, we use for the representation
’)’,’;’ (9) = (=1)*9 the notation 5(g).

When Stabr(py) = {Id, 6}, we are dealing with representations of the form
P(u,u)> With p € Fer(r’,n'). Notice that u may be considered as belonging to
Fer(r',1,p’,n'): acting on p with an element of Cp corresponds to acting on
(i, 1) with an element of €}, and we know that elements of Fer(r, n) in the same
class modulo C,, parametrize the same irreducible representation of G(r,p,n).
These p(,,,) are the representations of G(r,n) that split as G(r, p, n)-modules.
As in the case of D,,, they split into two different representations that we denote
by p?u’ 4l and p[lu, ul We also denote by X([)/u 4l

characters. Then the discrete Fourier transform of p(, ,) is given by the two

and X[lm ] the corresponding

functions

0 _ 0 1 ) 1 0 1
Ay (1) = X, (B) + X (R); Ay (1) = X,y (B) = Xy (R)-

4.3 The difference character

In this section, we exploit the definition of A%N w to provide an explicit
computation of the difference character X([)u W= X[l,t . for every G(r,p,n) with
(p,n) = 2. This computation will turn up to be of crucial importance in the

proof of Theorem 4.4.1.
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Recall that when GCD(p,n) = 2, the conjugacy classes of G(r,n) of the
form cla, split into two distinct G(r,p,n)-classes cly, and clj,, where 2a =
(209, 0,2a@ .0, ... 2072 }) (see Section 4.1).

Notation 4.3.1. In what follows, we often need to compute class functions on
G(r,p,n). For this reason, it will be useful to fix one special element, that we
call normal, for each G(r,p,n)-conjugacy class. If the conjugacy class is not of

the form clj,,, the normal element b is defined as follows:

e the elements of each cycle of h are chosen in increasing order, from the

cycles of smallest color to the cycles of biggest color;

e in every cycle of color 4, all the elements have color 0 but the biggest one

whose color is 1.

If the class is of the form cl}, the normal element h is defined similarly with
the unique difference that if the cycle containing n has color 2j then the color

of n is 25 — 1 and the color of n — 1 is 1. For example, if

2oy — (Dj,@, T, 0, EBE,@)

Then the normal element in clga is (1,2)(3,4,5,6%)(7,8,9,10%)(11,12%) and the
normal element in cly,, is (1,2)(3,4,5,62)(7,8,9,10%)(111,123), where we have

omitted all the exponents equal to 0.

Proposition 4.3.2. Let g € G(r,p,n), and p € Fer(r',n’). Let x,, denote the
character of the representation of G(r',n’) indexed by p. Then

(—1)7726(&)9(#(@(0)7 a(2), . ,OC(T72)), ifg € Clga;

1 _
A(l‘v/‘)(‘g) - { 0

where, if a = (a9 0,a@ 0,..., a2 ), £(a) = > €(aP) (see the definition
of ¢ in Notation 0.3.3).

otherwise

Proof. When g does not belong to a split conjugacy class, A%u,u) (9) =0. In
fact, X([)u,u} and X[lmu] are conjugate characters, so they must coincide on every
element belonging to an unsplit class.

When g does belong to a split conjugacy class, this proof consists of three

steps:
1. Provide an explicit description for the G/(r,n)-module p(, ).
2. Build an associator S for the G(r,n)-module p(, ).

3. Compute the trace tr(S(g)) = Abw) (g)-
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Let us start with the first step.

Notation 4.3.3. For brevity, we set 7 = (tg,...,t_1), where t; = |u(?| and
G(r,(1,7) & G(r,to) x -+« X G(r,tp_1) x G(r,tg) X - - X G(r,ty_1) < G(r,n).

Our representation p, ,) looks like this (see Theorem 0.4.2):

G(r,n ~ ~ r— ~
Plpp)y = IndG’ET,(:,T)) (p,u(O) © (’ynl ® pu(l)) ©-0 (’7;?7“/711 ® pﬂ(r’*l))

OO @ puo) © (VI T @ ) @0 (VN @ puer )

Splitting the induction into two steps, using the intermediate subgroup G (r, n’) x

G (r,n’), we obtain

G(r, G(r,n')xG(r,n') /. e -
IndGEr,Z2)><G(r,n’) (Inda((r,(T,)T)) ( )(pu“’) ©--0 (7?,-/711 ® pu“’—“)))

_ G(r,n)
fIndg(r,n/)Xg(T)n/) (pu ® (5 ® p#)).
We need to give an explicit description of this representation of G(r,n). Con-

tq

tars1 .o tn
{1,...,n} and the ¢;’s increase on each of the two rows. Each element in © can

tn
sider the set © of two-rowed arrays [ " ] such that {t1,...,t,} =

be identified with the permutation whose window notation is [(¢1, .. .,%,);0,...,0].

Proposition 4.3.4. Let g € G(r,n). Then
1t €O :g="t(x1,22) with (x1,22) € G (r,n') x G (r,n’).

Proof. Existence. Let g = [(01,...,0n);21,.-.,2n], and let ¢ be the tabloid
whose first and second line are filled with the (reordered) integers o1, ..., 05/,
and o/ 41, ..., 0, respectively. Since we need to obtain g = ¢(x1,x2) with (21, 22) €
G (r,n’) x G (r,n"), we have to check that t~1g € G (r,n') x G (r,n’), i.e.,
1<t gl(i) =t oy </, ifi € [n]
n <t Hg|(i)t oy <, ifien +1,n],

and this is an immediate consequence of the way ¢ was constructed.

Uniqueness. This is due to cardinality reasons:
011G (r,n') x G (r,n)] = (”) (n'%r™)? = |G(r,n)|.
n

O

Thanks to Proposition 4.3.4, a set of coset representatives for the quotient

G(r,n)
G(r,n') x G(r,n’)
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is given by ©. Let T be the vector space spanned by the elements of ©. The vec-
tor space associated to the representation we are dealing with can be identified

with T® V @V, and the action of p(, ,) on it is given by

Py » G(r,n) — GL(T @V @V)
T puw (@) TOVOV —TeVeV
t® v @ vy — §(z2)t' ® pu(z1)(v1) @ ppulw2)(v2),

where ¢/, 1 and x5 are uniquely determined by the relation at = t'(x1, 22) with
te o, (r,z2) € G(r,n') x G(r,n).

We are now ready for the second step.

Proposition 4.3.5. The automorphism S € GL(T @ V ® V) so defined:
StRv @) =ty vy,

where t is the element of © obtained from t by exchanging its rows, is an asso-
ciator for TRV ® V.

Proof. For brevity, all through this proof we set p := p(, ). All we have to

show is that S is an isomorphism of representations between p and § ® p, i.e.,

Sop(g)=3d(g)p(g)oS.

The set of permutations together with the diagonal matrix [(1,2,...,n);0,0,...,0, 1]
generate G(r,n), so this verification can be accomplished when g is one of these
elements only.

Let g be a permutation first. In this case, g1 and g» are permutations as
well, so §(g) = 6(g2) = 1. Furthermore, notice that = ts if s is the tabloid

D41 ...
2t "1 Thus

%
Slp(g)(t ® v1 ® v2)] = S[0(g2)t' @ gr1v1 ® gava]

— 7 ® gava ® gro1 Z [p(9)](F® v2 © v1)
()] (S(t ® v ®s)) = [8(9)p(9)](S(t @ v1 ®v2)),

where equality Y follows from

gt = gts =t'(g1,92)s = t's(g2, 91) = t'(g2. 1)

Let us now choose as g the diagonal matrix [(1,2,...,n);0,0,...,0,1]. In

this case, |gt| = t, while the colors of gt are all 0 but one: z,-1(,(gt) = 1. We
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have gt = t(x1,x2), where |(x1,x2)] is the identity, and, again, all the colors are

0 but one: z;-1(, (21, 22) = 1. So 6(x2) = £1 according to the value of ¢t~ (n):

d(wg) = { 0, if t7(n) < 3

1 otherwise.

Therefore, if 6(g2) = —1,

S[p(g)(t ® v1 ® va)] = S[6(g2)t @ g1v1 ® gava]
= S(~t® g1v1 ® gov) = —t @ gava @ g1
= —p(9)(t @ v ® v1) = [6(9)p(9)](S(t ® v1 ® v2)).

If 6(g2) =

Slp(g)(t ® v1 ® v2)] = S[6(g2)t @ grv1 ® gav2]
= 5(t® g1v1 ® gav2) =L ® gava ® g1v1
—(—t® gov2 ® g1v1) = —p(g)E @ v2 ® 1)
= [6(9)p(9)](S(t ® v1 ® v2)).

In both cases, we used the equalities

gt = gts = t(g1,92)s = ts(g2, g1) = (g2, 01)-
O

Finally, the last step: let us compute A%ﬂﬁ ) (g), for every g belonging to a
split conjugacy class. Since A(lu,u) is a class function, we can choose g to be the
normal element of each G(r,p,n)-conjugacy class. In fact, even less is needed:
it will be enough to choose the normal elements of the classes clga only, because

of the useful relation (see [20], Proposition 6.2)
A%Na#«) (gh’g_l) = 6(9)A%p,,p,) (h‘) v.g € G(T, n)v h € G(Tapv ’I’L) (4_2)

So we compute Al (h), where h is the normal element of the class cly,. By

(#31)
definition, A%ﬂyﬂ)(h) = tr(S o h). Now, given t' € © and (hy,hs) € G(r,n') x

G (r,n') satisfying ht = ¢'(hq, he), if v;, v; are vectors of a basis of V,
S[h(t RU; ’Uj)] = S[(S(hg)t/ & hl’l)i X hg’l)j]
= 5(h2)£/ X hg’Uj ® hlvi
= ® hov; ® h1v;,

where the last equality depends on the special way we chose h. Namely, since
(h1,h2) = (')~ ht with t,t’ € S,,, the colors of (hy, he) are the same as in h and
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they are simply permuted, so in (h1, ha) the colors are all even. So the trace we

are computing is given by

tr(Soh)= > (ouh2))ijlpu(hn))si = > x*(haha).

i,j=1,...,n' t=t t=t'
Recall the way ¢’ is constructed in the proof of Proposition 4.3.4: t' = ¢ if and
only if |h|(t;) belongs to {tu/11,...,tan} for every i € [n/]:

{tws1, - tan} = {IA]() br<ic<ns,

and, viceversa,
{tr, -t t = {IRI(t) o <izn.

So the t’s satisfying ¢t = t' are those ¢ such that, for every cycle of h, the
consecutive numbers are in opposites rows. We have two possibilities for each
cycle, so they are 2¢()

Furthermore, suppose h contains a cycle of length 2k and color 2j. Then,
according to which of the two possible choices is made for ¢, a cycle of length k
and color j will be contained either in hy or in hy. Thus, hihs belongs to the

G (r',n')-class cly0) 42 a-2. So our final result is

,,,,,

A(llwt)(h) = QZ(Q)XM(OL(O)’ a? . 706(7‘72))'

Let us now turn to the elements belonging to the other split conjugacy class
cly,,. If h belongs to cly,,, thanks to Lemma 4.1.1,

2000
ghg~tecl, = 2(9) =1 mod2=4(g) = —1,
therefore (see equality (4.3))

A%p,”u,) (ghg_l) = 6(9)A%/,1,,y,) (h) = _QK(Q)XH(O[(O)7 01(2), B a(T—Q)).

4.4 The antisymmetric submodule

In this section we study the irreducible decomposition of the antisymmet-
ric submodule Magym (and hence also of the symmetric submodule Mgy, ) of
the Gelfand model M(r,1,p,n) of the group G(r,p,n) constructed in Theorem
2.5.1. More precisely we will show that Magsym affords exactly one representa-
tion of each pair of split irreducible representations of G(r,p,n); namely, the
one labelled with 1. If GCD(p,n) = 1 the antisymmetric submodule vanishes
(and there are no split representations) so in this section and in the following

we can always assume GCD(p,n) = 2.
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Theorem 4.4.1. Let Magym be the antisymmetric submodule of the Gelfand
model M (r,1,p,n) of G(r,p,n). Then

1

(MAsynu Q)

@ p[lu,u]'

[p,p] €Fer(r,1,p,n)

Proof. The strategy in this proof is the one outlined for the case of Weyl groups

of type D. So we consider the two representations of G(r, p,n)

(MASyrrn ¢+) and (MAsyma ¢)_)7

given by

def v —_ def o) ~alg.v
¢+(g)(cv) = Cr(g7 >Clg|v\g\*1a ¢ (g)(Cv) = Cag‘% )Cr(% )C|g|v\g\*1

(notice that ¢~ (g9) = 0(9)|Mauym)- The main idea of this proof is to exploit
Proposition 4.3.2 to show that

Xor @) =xe- (@ = D Xpu@— D Xuw(@) (4-2)
[u]€Fer(r/,1,p" ,n") [u]€Fer(r’,1,p",n’)
where we observe that if [u] ranges in Fer(r’,1,p',n') then [u,p] ranges in
Fer(r,1,p,n). First of all, we will compute the right-hand side of (4.4). We
already know that it vanishes on every g belonging to an unsplit conjugacy
class. Solet g € clg,.

Let xar denote the character of a model for the group G(r',n’). Then

1
0 1 _ 0 1
Z (X{pupl = Xpu)(9) = I Z (X{puon] = X, (9)
[u]€Fer(r’,1,p",n’) uEFer(r’,n’)
1
= 17(—1)77 > 2

pEFer(r’,n’)

1
= H(_l)ngf(a)XM(a)’

where the first equality holds because the contribution of every u € Fer(r’,n’)
provides p’ copies of the same irreducible representation of G(r, p,n), the second
one follows from Proposition 4.3.2, and y ps(«) denotes the value of the character

xum of a Gelfand model of G(r’,n’) on any element of the conjugacy class cl,.

Notation. We recall here some notation, which is used in [6] and which we
already met in Chapter 3. For g € G(r,n) we denote by I1*1(g) the set of

partitions of the set of disjoint cycles of g into:
e singletons;

e pairs of cycles having the same length.
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If m € I1*'(g) we let £(m) be the number of parts of = and pair;(r) be the
number of parts of m which are pairs of cycles of length j. Moreover, if s € 7 is
a part of ™ we let z(s) be the sum of the colors of the (either 1 or 2) cycles in
s. If g and ¢’ belong to the same conjugacy class cl, there is clearly a bijection
between 1! (g) and II>'(g’) preserving the statistics /() and pair;(r), and
the colors z(s) of the parts of 7; therefore we sometimes write I1%'! (o) meaning
1% (g) for some g € cl,.
If S C [n], we let

G(r,S) ={[o},...,0i"] € G(r,n) : o

K2

i =4 foralli ¢ S}.

If s € T1%1(g), we let Supp(s), the support of s, be the union of the supports
of the cycles in s (when s is a cycle, see the definition of Supp(s) in Notation
0.3.3).

The set I1%'! () can be used to describe the character of a Gelfand model of
G(r',n’) (see [6, Proposition 3.6]):

o -pair.. (7
() = 3 ()7 T e (4-4)
w j
for all a € Fer(r’,n’), where the sum is taken over all elements of I1?'! () having
no singletons of even length and such that z(s) =0 € Z,» for all s € 7.

Let us now evaluate x4+ (g9) — X~ (g). To this aim, we recall some further

notation used in [6]. Consider, for every g € G(r,p,n) and € € Zs, the set

A¢(g) o {w € G(r,n) : w is antisymmetric and |g|lw|g|™* = (—1)“w}.
Any w € A¢(g) determines a partition 7(w) € II>!(g): a cycle ¢ is a singleton of
7(w) if the restriction of |w| to Supp(c) is a permutation of Supp(c) and {¢, ¢’} is
a pair of m(w) if the restriction of |w| to Supp(c) is a bijection between Supp(c)
and Supp(¢’). Finally, if 7 € II21(g), we let A< % {w € A°(g) : n(w) = 7}.

Then the set A¢(g) can be decomposed into the disjoint union

A= | A (4-4)

well2:1(g)

Remark 4. With the above notation, we have

Xo+(9) — xo-(9) = 1 Z Z Cﬁg,w>(1 _ C”‘}(.(Lw)).

P retri(g) A00AL
Since (see [6, Lemma 5.7])

(0.0) 0, ifwe AX(g);
a(g,w) =
g v, ifwe Al(g),
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|s] A5

{(i1,...,1q)} with d odd | 0
{(i1,...,1a)}

with d =2 mod 4
{(i1y..-,1a)}

with d #Z 2 mod 4

{(ih cee 7id)7 (jl» oo 1jd)}7

with d odd

{Gi1y e evia), (Gis-- o da)}s | in = CF(=1)"dnp

with d even and jj, — —CF(—=1)" "ty

Table 4.1: The sets Al as |s| varies.

we find
1 L
Xor(9) = xo-(9) = S gl
Tellz1(g) weAL
If 7 = {s1,..., 8}, it is shown in [6, Section 5] that the set AL has a natural
decomposition AL = Al x...x Al | ie. every win AL can be written as a
product w = wy - ... wp, with w; € A} . The sets A} depend on the structure

of |s;| only, and are described in Table 4.1. The table is analogous to Table
3.1, but in the present case, thanks to Remark 4, we focus on Al only. The
indices of i1, ...,%4,j1,---,jqd should be considered in Z,; and in any box of the
table the parameters k € Z, and [ € Z4 are arbitrary but fixed. For example, if
s={(1,2),(3,4)}, and r = 4, then Al consists of the 8 elements having either
the form (1%+2 3F)(2% 4%+2) or the form (1512 4F)(2F 3%+2)}, as k varies in
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{0,1,2,3}. This allows to focus on the single sets Al, via the identity

ORTICIEND DI s

weAL w1 €AL .. wpEAL
Sh

510"

_ Z CTEQ (gi,wi)

w1 EAél ,...,whEAih

:f[ PO E

i=1w;eAl
where g; € G(r, Supp(s;)) is the restriction of g to Supp(s;).

Lemma 4.4.2. If g € G(r,n) has at least one cycle ¢ of odd length, then

> G =0

weAL

for all m € TI*1(g).
Proof. This is trivial since in these cases AL = () (see Table 4.1). O

By Lemma 4.4.2 we can restrict our attention to those elements g having all

cycles of even length.

Lemma 4.4.3. If g € G(r,p,n) has at least one cycle ¢ of odd color, then

>3 g

7T€H2’1(g) ’LUEA}\_

for all m € II51(g).

Proof. Since the left-hand side is a class function (by equation (4)) we can
assume that g is normal. We prove in this case the stronger statement that
D weal ¢ = 0 for all 7 € II51(g). By Lemma 4.4.2, we can assume that
the cygle ¢ has even length. We split this result into two cases. Assume that
the cycle ¢ of odd color - say j - is a singleton s; = {c} of m. Then Table 4.1
furnishes the structure of Aii. In particular, if £(¢) £ 2 mod 4, Aii = () and we
are done; if £(c) =2 mod 4, we find

T gl — S gt o,
k=0

weAL

since j is odd and cannot be a multiple of 7.
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Now assume that the cycle ¢ belongs to a pair s; of w. Let us call @ and b

the two colors of the cycles in s;, with b odd. Again, looking at Table 4.1,

E : C(giawi> _ Cak+b(k+(l+1)r/)
r T
w;€AL, k=0 1=0

|
—
\
B3
5]
+
N
o
+
|
b
o
+
X
o
+
ﬁ\
Nt

r—1
(14 Y ¢k,

k=0

Since b is odd, the factor 1 + Cfrl vanishes and so does the whole sum. O

Lemma 4.4.4. Let g € G(r,p,n) be normal and such that all cycles of g have

even color and even length. Then, for all = € TI%1(g),

Z <<g7w> B { (71)sign(9)‘A}r|7 if 2(s) = 0 for all s € 7;

weal 0, otherwise.

Proof. We first assume that sign(g) = 0. If s; is a singleton of 7 of color 25 and
length # 2 mod 4, then A, is empty and the result clearly follows. So we can
assume that ¢(s;) =2 mod 4 and we can derive the value of (g;,w;) from Table

4.1, and we obtain

0, if 2j Z0 mod 7;

r—1
iHWi) 2jk __
S o = gt -
w,ieAii k=0 r= ‘Al

sih

if2j =0 modr.

Let now s; = {¢1, 2} be a pair of cycles of length d, and colors respectively
2a and 20.

r—1d-1
Z Cﬁgmm _ Z Z Cgak+2b(k+(l+1)r’))
wiEAéi k=0 1=0
1 0, if2a+20#0 mod r;
_ dz CEak-&-Qbk _
k=0

= dr=|AL|, if2a+2b=0 modr.

The result follows from these computations together with equation (4.4). If

sign(g) = 1 the proof is similar and is left to the reader. O
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We are now ready to prove Theorem 4.4.1. Let first g belong to an unsplit
class. Then g has a cycle of odd length or a cycle of odd color, and then equation
(4), Lemmas 4.4.2 and 4.4.3 ensure that

Xo+(9) = Xo-(9) =0= > XD — > X{u(9)- (4-6)
[u]€Fer(r’,1,p’,n’) [u]€Fer(r’,1,p’,n’)

So let g belong to the split conjugacy class of the form cj.,. We are interested
in the evaluation of the sum appearing in (4) and so we can assume that g is
also a normal element. Thanks to Lemma 4.4.4, the only partitions 7 € 11> (g)
contributing to the sum (4) are those satisfying z(s) =0 mod r for all s € .
Thus,

S D D E

rEl21(g)

(=1)" Z () H(Qj)pair2j(7r),
J

Tell2:1(g)

Xo+(9) = Xo-(9) =

S

LS.

where, by Table 4.1, the sum is taken over all partitions of I1*!(g) such that:

e singletons have length = 2 mod 4;
e pairs have even length;

e 2(s) =0 mod r, for all s € 7.

Summing up, if g € clJ,, we have
1 T -\ pair, ; (7
Xo+(9) = Xo-(9) = 5 (=) > rHOJJ(2g)rara
P rEM?L (2a) j
1 £(m -\ pair, ; (7
=07 >0 ) U e
p m€ell?1 (2a) J
_ l(_l)n2£(ﬂ')+2j pairy; () Z (r/)f(ﬂ') ijairzj (m)
/
p rEI21 (20) j
1 « L(m spair ; (7
TS CACIED DGO R | i
p mell2:1(a) J

where « has to be considered as an element in Fer(r’,n’) and the last sum is
taken over all partitions of I1*!(«) whose singletons have odd length (and pairs
have any length), and z(s) =0 € Z,+ for all s € 7.

The above computation, together with equations (4.4), (4.4) and (4.4), leads

to

> X0 (9)+x0-(9) = > Xt (@)+xe+(9) Vg€ G(rpn).

cFer(r’',1,p’ ,n’ pl€Fer(r’,1,p’ ,n’
o

(4.-6)
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0 1
Now, Z,LGFQY(T/,LP/JL,) X, and ZﬂeFer(T,pr,m/) X}, @re orthogonal characters.

Therefore, by Theorem 2.2.5 and Proposition 2.4.4, we have that

> dim(pf, ;) = > 18T | = dim(Magym) = dim(¢T),
neFer(r’,1,p",n') p€EFer(r’,1,p",n')

and, analogously, 3=, cper(1,1,p/ n7) dim(p[lﬂ’ﬂ]) = dim(¢~), we can conclude that

> X)) =xs+(9) and S Xw(@ = xs-(9)-

n€Fer(r’,1,p' ') peFer(r’,1,p",n')

Recalling that ¢~ (g9) = 0(9)|m4.,m» the above equality means that

(MAsynu Q) = @ p[lmu]v

pukEm

and Theorem 4.4.1 is proved. O

4.5 The antisymmetric classes

An antisymmetric element of G(r,n) can be characterized by the structure
of its cycles, namely, an element v € G(r,n) is antisymmetric if and only if every

cycle ¢ of v has length 2 and is of the form ¢ = (a]**, a5"?) with za, = 24, + 1.

Definition. We say that the residue class of z,, and z,, modulo 7’ is the type
of c. If the number of disjoint cycles of type 4 of an antisymmetric element v of
G(r,n) is t;, then the integer vector 7(v) = (to,...,t—1) is called the type of

V.

It is easy to check the following

Remark 5. Two antisymmetric elements in G(r,n) are S,-conjugate if and only

if they have the same type.

Notation 4.5.1. We denote by AC(r,n) the set of types of antisymmetric el-
ements in G(r,n), i.e. the set of vectors (to,...,t) with nonnegative integer
entries such that tg +--- 4+ t_1 = n’. If GCD(p,n) = 2 we let v be the cyclic
permutation of AC(r,n) defined by y(to,...,t—1) = (tr/pstigr/p -+ s trr—144/p)
where the indices must be intended as elements in Z,. We observe that v has
order p’ and so we have an action of the cyclic group 01/7 generated by v on
AC(r,n). We denote the quotient set by AC(r,p,n)*. The type of an an-
tisymmetric element of G(r,p,n)* is then an element of AC(r,p,n)* and if
[t] € AC(r,p,n)* we let c[lﬂ be the S,-conjugacy class consisting of the anti-

symmetric absolute involutions in G(r,p,n)* of type [7].
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The main result of this section, Theorem 4.5.5, provides a compatibility
between the coefficients of 7 and the sizes of the indices of the irreducible com-

ponents of the module M (c[lT]). For this, it will be helpful the following criterion.

Proposition 4.5.2. Let v = (ng,...,n.—1) be a composition of n into r parts,

and p a representation of G(r,n). Then the following are equivalent:

1. The irreducible subrepresentations of p are all of the form pyo)  \e-1)
with |N9| = n; for all i € (0,7 —1];

2. There exists a representation ¢ of G(r,v) such that p = Indgg:’z)) (¢) and
0(9) = = ollgl), for all g = (g0, 9r-1) € G(r,v).

Proof. In proving that (1) implies (2) we can clearly assume that p is irreducible
and in this case the result is straightforward from the description in Proposition
0.4.2. In proving that (2) implies (1) we can assume that ¢ is irreducible. Then it
is clear that ¢ |g, is also irreducible, where S, = Sy, X -+ xSy, _,. In particular
there exist A©, ... A=V with |)\(i)| =n; such that ¢ | g, = pr0) @ - -Opye-1).

Now we can conclude that

¢ = (T, @ Pr) © - O (7, © pro),
and so the result follows again from Proposition 0.4.2. O

We now concentrate on the special case p = 2, so that p’ = 1. The general
case will then be a direct consequence. Since the index of G(r,2,n) in G(r,n) is 2
the induction ¢ = Indgg::;’)n) (M(cl), o) of the G(r, 2, n)-representation M (cl) to
G(r,n) is a representation on the direct sum V@V’ of two copies of V ©f (cl).
So a basis of V @ V' consists of all the elements C,, C!, as v varies in ct. If
xz = [(1,2,...,n);r — 1,0,...,0] is taken as a representative of the nontrivial
coset of G(r,2,n) and we impose that x - C,, = C!, the representation ¢ of

G(r,n) on V& V' will be as follows

4. C { Q{g,mCfl(v)*zlgrl<1)(v)C‘g‘U|g|71 it g€ G(r2.n),
v Qﬁ

DGO itg ¢ G(r.2,m),
and ~
g-C = { Cﬁgﬂ_ﬁcl/gw\gl*l ] ifg € Glr.2,m)
LG O i g ¢ Gl 2m);

where ¢ is any lift of v in G(r,n). Now we want to show that this represen-
tation ¢ of G(r,n) is actually also induced from a particular representation of
G(r,(r,7)) = G(r,to) x «-+ X G(rytp—1) X G(rytg) X -+ x G(r,t—1). With

this in mind we let € be the set of elements v € ¢l having a lift ¥ in G(r,n)
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satisfying the following condition: if (ai,b”r/) is a cycle of ¥ of type i, then
a € [tot---+ti+1,to+- -+t and b € [0/ +to+- -+t +1,n +to+- -+t
Then, if z def min{j : t; # 0} we let

wE e, + ¢y cvav

veC

Lemma 4.5.3. The subspace W is invariant by the restriction of v to G(r, (1,7)).
Proof. 1t is clear that if v € € and g € G(r,(7,7)), then |glv|g|~! € €. We
observe that, by definition, |g| permutes the elements in ¥ having the same
color, and in particular z1(?) = 2|g-1(1)(?). Moreover, by definition, we also
have z1(0) = z. In particular, if g € G(r,2,n) N G(r, (7, 7)) we have

zZ1 (IN))*

~ Z|g— (9) 5
g-(Co+GC) = MG O g+ GITC g
= G (Clgpulglr + G Clgrulgl-1)s

and if g € G(r, (7,7) but g ¢ G(r,2,n) we have

z ) ~21 (D z By~ Flgl— (@)
g (Co+ GOy = FRCEOC] 1+ GCED GO g
= Cr<g’v> (CfC\/gwgrl + Clglv\glfl)'

The proof is now complete. O

Lemma 4.5.4. We have VOV’ = Indgg:’?: T))(W)-

Proof. For this we need to prove that
VeV =g, (4.-10)
geK
where K is any set of coset representatives of G(r, (7,7)) in G(r,n). But

n!

[G(T, TL) : G(?”, (7_7 T))] = _. = Nz’

where 7! = tg!---t,_1!. Moreover

n—2 n /
(M) !
dim(V@V’):QdimV:Q(Q)( 2 )‘2 (2) :l' and dimW =7l,
7! 7!
so that [G(r,n) : G(r, (1, 7))] = %ﬁyl), and hence to prove (4.5) it is enough

to show that V & V' C G(r,n)W. To show this we take o = [n' + 1,n’ +
2,...,n,1,2,...,n'] € S,. Then it follows that conjugation by o stabilizes C,
although o ¢ G(r, (7,7)). Then we have

0 (GCHCY) = Gl + G
Cfcrrvn*1 + C:/(ﬁ)cl

ovo—1

= Cr%ca'ua_l - C/ 1.

ovo

vo—1
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Since also (?Cyyo-1 + C! _, € W we conclude that both Cy\p-1 and C7

ovo ovo~

belong to G(r,n)W for all v € €, and the proof is complete. O
We are now ready to prove the main result of this section.

Theorem 4.5.5. Let GCD(p,n) = 2 and [7] = [to,...,t] € AC(r,p,n)* (see
Notation 4.5.1). Then

1 - 1
M(epr) = S PIA@ A0 =D X)L AG =0
AO A D]eFer(r 1, n'):

XD |=t; vie[o,r' —1]
Proof. If p = 2 we need to give a closer look at the G(r, (7, 7))-representation
W. From the proof of Lemma 4.5.3 we have that gD, = Cﬁg’leglv‘gl,l =
IL sz(gi)D‘gwm_l, where D, def Cy + CZC) for v € € are the basis elements of
W. In particular, condition (2) of Proposition 4.5.2 are satisfied and the result
is a straightforward consequence of Theorem 4.4.1.

If p > 2 we simply have to observe that the G(r,p,n)-module M(c[lT])
is a quotient of the restriction to G(r,p,n) of the G(r,2,n)-module M(cl).
Since GCD(p,n) = 2, the irreducible representations of G(r,2,n) restricted to
G(r,p,n) remain irreducible (and are indexed in the “same” way). The result

is then a consequence of the case p = 2 and Theorem 4.4.1. O

4.6 The symmetric classes

In this section we complete our discussion with the description of the G(r, p, n)-
module M(c), where c¢ is any S,-conjugacy class of symmetric absolute invo-
lutions in G(r,p,n)*. Despite the case p = 1 considered in Chapter 1 and the
case of antisymmetric classes treated in Section 4.5, where a self-contained proof
of the irreducible decomposition of the module M(c) was given, we will need
here to make use of all the main results that we have obtained so far, namely
the construction of the complete Gelfand model in Section 2.5, the study of the
submodules M(c) for wreath products in Section 1.3, as well as the discussion
of the antisymmetric submodule in Section 4.4.

We first observe that, by Theorems 2.5.1 and 4.4.1, the symmetric submodule

has the following decomposition into irreducible representations

MSym = @ p?A] :
[A]€Fer(r,1,p,n)

Recall notation 2.3.2: if v is a symmetric absolute involution in G(r,p,n)* we
denote by Sh(v) the element of Fer(r, 1, p,n) which is the shape of the multi-
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tableaux of the image of v, via the projective Robinson-Schensted correspon-

dence. Namely, we let
Sh(v) = [A] € Fer(r,1,p,n),

where

v 2% (P, P),

with P € 877y. For notational convenience, if ¢ is a Sy,-conjugacy class of
symmetric absolute involutions in G(r,p,n)* we also let Sh(c) = Uye.Sh(v) C
Fer(r,1,p,n).

We are now ready to state the main result of this section.

Theorem 4.6.1. Let ¢ be a S,-conjugacy class of symmetric absolute involu-
tions in G(r,p,n)* and GCD(p,n) = 1,2. Then the following decomposition
holds:
Me)= P sy
[AJ€Sh(c)

Before proving this theorem we need some further preliminary observations.
Fix an arbitrary S,-conjugacy class ¢ of symmetric absolute involutions in
G(r,p,n)*, and let ¢1,...,cs be the S,-conjugacy classes of G(r,n) which are
lifts of ¢ in G(r,n) (one may observe that s can be either p or p/2, though this
is not needed). We will need to consider the following restriction to G(r,p,n)
of the submodule of the Gelfand model for G(r,n) associated to the classes
Cly .-y Cs)

M(c) = (M(cx) &+ & M(cs)) Lorpm)

Now the crucial observation is the following.

Lemma 4.6.2. The G(r,p,n)-module M (c) is a quotient (and hence is isomor-

phic to a subrepresentation) of M(c).

Proof. Let K (c) be the vector subspace of M (c) spanned by the elements C,, —
Cer/vy as v varies among all elements in ci,...,c5. Then it is clear that, as
a vector space, M(c) is the quotient of M(c) by the vector subspace K(c).
Moreover, if g € G(r,p,n) then

v inv /Py inv ., »
0(9)(Co = Cerrmy) = G (=)™ D0 g1 = G (1) D Oy
= (=)™ (Clgpoig-1 = Cerrmglotgl—):
since g € G(r,p,n) implies (g,("/Pv) = (g,v) . In particular we deduce that
K (c) is also a submodule of M (c) (as G(r, p, n)-modules). The fact that M (c) =

M(c)/K(c) is now a direct consequence of the definition of the structures of

G(r,p,n)-modules. O
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We are now ready to complete the proof of the main result of this section.

Proof of Theorem 4.6.1. By Theorem 1.1.3 the G(r,n)-module M(¢;) ® --- @
M (cs) is the sum of all representations py with A € Sh(c¢;), for some ¢ € [s]
or, equivalently, with [\] € Sh(¢). It follows that the restriction M(c) of this

representation to G(r,p,n) has the following decomposition

M= B h"e D 6hem)™? (4-15)
[A]J€Sh(c): [A]€Sh(c):
mp(A)=1 mp(A)=2

We recall that M(c) is a submodule of a Gelfand model for G(r,p,n) and also
a submodule of M (c) by Lemma 4.6.2, and hence, by equation (4.6), we have
that M (c) is isomorphic to a subrepresentation of

D e D hen

[A]€Sh(e): [A]€Sh(c):
mp(A)=1 mp(A)=2

Furthermore, we already know that the split representations p[lA] appear in the
antisymmetric submodule by Theorem 4.4.1 and so they can not appear in M (c).
For completing the proof it is now sufficient to observe that, if ¢ and ¢’ are two
distinct S,,-conjugacy classes of symmetric absolute involutions in G(r,p,n)*,
then the two sets Sh(c) and Sh(c’) are disjoint. O

We can also give an explicit combinatorial description of the set Sh(c) for a

given Sy,-conjugacy class of symmetric absolute involutions in G(r,p,n)*.

Notation 4.6.3. Let SC(r,n) = {(fo,-- -, fr—1,405-+-,qr—1) € N?": fo+---+
fr—1+2(qo+ -+ ¢—1) = n}. In fact, the set SC(r,n) has already been used
in Section 1.3 to parametrize the S,-conjugacy classes of absolute involutions
in G(r,n). Let v be the permutation of SC(r,n) defined by

V(an ceey fr—17q0a ceey QT—l) = (fr/;m fl-l—r/p teey 7"—1+r/;mq7"/pa Qi4r/p -+ qr—1+r/p)7

where the indices must be intended as elements in Z,. We observe that v has
order p and so we have an action of the cyclic group C, generated by v on
SC(r,n). We denote the quotient set by SC(r,p,n)*.

The set SC(r,p,n)* parametrizes the S,-conjugacy classes of symmetric
absolute involutions in G(r,p,n)* in the following way. Let v € I(r,p,n)* be

symmetric and ¥ be any lift of v in I(r,n). Then the type of v is given by
[fo(D), ..., fr=1(D),q0(D),...,q—1(D)] € SC(r,p,n)",
where
fie) = Hie€ln:9; =4}
a(®) = [{(hk):1<h<k<n, o, =k" and o) = h'}|.
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It is clear that this is well-defined and we have that two symmetric elements in
I(r,p,n)* are S,-conjugate if and only if they have the same type (see also [7,
§6] for the special case p = 1).

By Proposition 1.2.2 we can now conclude that, if

[V] = [an"waflaqu" .7qT,]_] € SC(Tapan)*

and
c={vel(r,p,n)*: vis symmetric of type [V]},
then
Shic) = { O AC=D] e Fer(r,p, n)*: forall i€ [0,r — 1], } .
|A\i| = fi +2¢; and A has exactly f; columns of odd length

Example 4.6.4. Consider v € G(6,6,14)* given by
v=1(1,3,2,4,5,7,6,8,10,9,11,12,14,13);0,1,1,1,1,2,2,3,4,4,4,4,5, 5].

Then the type of v is [v] =[1,2,0,1,2,0;0,1,1,0,1, 1]. Therefore if ¢ is the .S,-
conjugacy class of v in G(6,6,14)* we have that Sh(c) is given by all elements
A0 A®)] € Fer(6, 1,6, 14) such that A(®) and A®) have 1 box (and 1 column
of odd length), A and A\*) have 4 boxes and 2 columns of odd length, A\(?)

and A\(®) have 2 boxes and no columns of odd length, i.e.
Sh(c) = { [D, FoBO P g} 7 {D, PBEF g} 7 {D, 250D g] }

Therefore we have the following decomposition of M(c) into irreducible rep-

resentations

e B e Y e N S Rt )
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4.7 A final survey and a further generalization

proj. ref.

Theorem 4.7.1 concerns all involutory
xceptiona projective reflection groups G(r,p,q,n),
except those satisfying GCD(p, n) = 4.

GCD(p,n) =4

The aim of this section is to provide a statement containing all the results
that we have collected in this thesis and holding for all the groups G(r,p,n)
with GCD(p,n) = 1,2. Furthermore, we use this occasion to observe that
the above results apply, in fact, to all the projective groups G(r,p,q,n) with
GCD(p,n) = 1,2 : see the above diagram.

If v is an absolute involution in G(r,¢,p,n) and ¢ is any (symmetric or
antisymmetric) S,-conjugacy class of absolute involutions in G(r,q,p,n), we
define Sh(v) € Fer(r,q,p,n) and Sh(c) C Fer(r,q,p,n) as in Notation 2.3.2.
Moreover, we let ¢(¢) = 0 if the elements of ¢ are symmetric and ¢(¢) = 1 if the

elements of ¢ are antisymmetric.

Theorem 4.7.1. Let G = G(r,p,q,n) with GCD(p,n) = 1,2, and consider
its Gelfand model (M(r,q,p,n),0) defined in Theorem 2.5.1. Given an S,,-
conjugacy class ¢ of absolute involutions in G*, let M(c) = Span{C, : v € ¢}
so that M (r,q,p,n) naturally splits as a G-module into the direct sum

M(r,q,p,n EBM

Then the submodule M(c) has the following decomposition into irreducibles
) = €B g
A€Sh(c)
Proof. We have already established this result if ¢ = 1. In fact, if ¢(¢) = 0 this
is the content of Theorem 4.6.1, and, if ¢(c) = 1, the result follows directly from

Theorem 4.5.5 with the further observation that if v is an antisymmetric element
of type [to, - .., tw_1], then Sh(v) = [A@, ..., AC=D] with |A®| = [N+ = ¢,.
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If ¢ # 1 the result is straightforward since an S,-conjugacy class of absolute
involutions in G(r, g, p,n) is also an S,-conjugacy class of absolute involutions
in G(r,1,p,n) and the definition of the Gelfand models for G(r,p,q,n) and
G(r,p,1,n) are compatible with the projection G(r,p,1,n) — G(r,p,q,n). O
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