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Introduction

A Gelfand model of a finite group G is a G-module affording each irreducible

representation of G exactly once. The study of Gelfand models found its roots

in [4] and awoke a wide interest in the case of reflection groups and other related

groups (see, e.g.,[1, 2, 3, 12, 14, 15, 16]).

In the present work we will provide a refinement for a Gelfand model due

to F. Caselli (see [6]). Such model applies to all involutory reflection groups

G(r, p, n) and to all their quotients modulo a scalar subgroup. Let us briefly

introduce to this topic.

Given a vector space V of finite dimension over C, we say that r ∈ GL(V ) is

a reflection if it has finite order and fixes a hyperplane of V pointwise. A finite

complex group G < GL(V ) is a reflection group if it is generated by reflections.

Irreducible finite complex reflection groups were completely classified in the

fifties [19]. They consist of:

• an infinite family of groups G(r, p, n) depending on the three parameters

r, p, n, where p |r;

• 34 more sporadic groups.

We may mention that the infinite families of irreducible Coxeter groups are

of the form G(r, p, n): Sn = G(1, 1, n), Bn = G(2, 1, n), Dn = G(2, 2, n), I2(r) =

G(r, r, 2). Whenever p = 1, we have the wreath product G(r, 1, n) = Cr o Sn,

which we will denote with G(r, n).

We will deal with the groups G(r, p, n), and, eventually, with the bigger

family of groups G(r, p, q, n) (see Section 2.1) which is a generalization of them.

Projective reflection groups, first introduced by F. Caselli in [5], can be roughly

described as quotients - modulo a scalar group - of finite complex reflection

groups. If we quotient a group G(r, p, n) modulo the cyclic scalar subgroup Cq,

we find a new group G(r, p, q, n), so that in this notation we have G(r, p, n) =

G(r, p, 1, n). We define the dual group G(r, p, q, n)∗ as the group G(r, q, p, n)

obtained by simply exchanging the parameters p and q. It turns out that many
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vi INTRODUCTION

objects related to the algebraic structure of a projective reflection group G can

be naturally described by means of the combinatorics of its dual G∗ (see [5, 6]).

For example, its representations.

A finite subgroup of GL(n,C) is involutory if the number of its absolute

involutions, i.e. elements g such that gḡ = 1, coincides with the dimension of

its Gelfand model. A group G(r, p, n) turns out to be involutory if and only if

GCD(p, n) = 1, 2 (Theorem 2.4.5).

The model (M,%) provided in [6] works for every group G(r, p, q, n) with

GCD(p, n) = 1, 2 and looks like this:

• M is a formal vector space spanned by all absolute involutions I(r, p, q, n)∗

of the dual group G(r, p, q, n)∗:

M
def=

⊕
v∈I(r,p,q,n)∗

CCv;

• % : G(r, p, q, n) → GL(M) works, basically, as an absolute conjugation of

G(r, p, q, n) on the elements indexing the basis of M :

%(g)(Cv)
def= ψ(g, v)C|g|v|g|−1 , (0)

ψ(g, v) being a scalar and |g| being the natural projection of g in the

symmetric group Sn.

Let us now give an account of the new result appearing in this thesis. Our

main goal is to refine the above model. If g, h ∈ G(r, p, q, n)∗ we say that g and

h are Sn-conjugate if there exists σ ∈ Sn such that g = σhσ−1, and we call Sn-

conjugacy classes the corresponding equivalence classes. If c is a Sn-conjugacy

class of absolute involutions in I(r, p, q, n)∗ we denote by M(c) the subspace

of M spanned by the basis elements Cv indexed by the absolute involutions v

belonging to the class c. Then it is clear from () that we have a decomposition

M =
⊕
c

M(c) as G(r, p, q, n)-modules,

where the sum runs through all Sn-conjugacy classes of absolute involutions in

I(r, p, q, n)∗. It is natural to ask if we can describe the irreducible decomposi-

tion of the submodules M(c), and our main goal is to answer to this question.

The final description of the irreducible decomposition of the modules M(c) has a

rather elegant formulation due to its compatibility with the projective Robinson-

Schensted correspondence. Namely, the irreducible subrepresentations of M(c)

are indexed by the shapes which are obtained when performing this correspon-

dence to the elements in c. The special case of this result for the symmetric
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group Sn = G(1, 1, n) was established in [12]. Our task will be to furnish a much

more general version of it, concerning all those groups for which the model [6]

was constructed. We will do it step by step, from the easiest case up to the

general one.

Chapter 0 contains some basic notation, as well as an introduction about

finite complex reflection groups, their representations, and an account of the

generalized Robinson-Schensted correspondence.

After the exposition of the necessary background in Chapter 0, we imme-

diately turn to state and prove our main results about the decomposition of

the model. Since the case of Sn was afforded in [12], the simplest new case to

study is that of wreath products G(r, n). This is done in Chapter 1, first for

the special case of Bn, then for all groups G(r, n). The description of Caselli’s

model for G(r, n) is considerably more linear than in the more general setting

of G(r, p, n). This is due to the fact that G(r, n) coincides with its dual.

Chapter 2 is devoted to the introduction of projective reflection groups

G(r, p, q, n) and their representations. After characterizing the involutory groups

G(r, p, q, n), we present the model built in [6] in its full generality.

In Chapter 3, the irreducible decomposition of the model for type D is af-

forded. Notice that, when n is even, GCD(p, n) = 2, thus the group Dn furnishes

a very good example of the main difficulties one meets when GCD(p, n) is not 1

anymore (as it was the case for G(r, n)). The decomposition of the submodules

M(c) in this wider setting is much more subtle. Indeed, when GCD(p, n) = 2,

the Gelfand model M splits first of all as the direct sum of two distinguished

modules: the symmetric submodule MSym, which is spanned by the elements

Cv indexed by symmetric absolute involutions, and the antisymmetric submod-

ule MAsym, which is defined similarly. This decomposition is compatible with

the one described above: every submodule M(c) is contained either in the sym-

metric or in the antisymmetric submodule. The existence of the antisymmetric

submodule and of the submodules M(c) contained therein will reflect in a very

precise way the existence of split representations for these groups.

Chapter 4 treats the general case G(r, p, n) with GCD(p, n) = 1, 2. The

study of the irreducible decomposition of M(c), when c is made up of antisym-

metric elements, requires a particular machinery developed in Sections 4.2-4.5.

Such tools were not needed in the case of wreath products G(r, n), where the

antisymmetric submodule vanishes and so the Gelfand model coincides with its

symmetric submodule. Once our main result is achieved for all groups G(r, p, n)

satisfying GCD(p, n) = 1, 2, our arguments are generalized furtherly to the quo-

tients G(r, p, q, n).
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Finally, we would like to highlight that the results appearing in this work

were obtained in collaboration with F. Caselli.

G(r, p, n)

G(r, p, q, n)

G(r, n)

involutory

34 exceptional

Sn•
•Bn

Dn•

Projective reflection groups

G(r, p, n)

G(r, p, q, n)

G(r, n)

Sn•
•Bn

proj. ref.

groups 6= G(r, p, q, n)

proj. ref.

groups 6= G(r, p, q, n)

Classical irreducible finite complex reflection groups are represented in the

yellow set, involutory reflection groups in the red set, projective reflection groups

in the green set. The lower part of the green set contains all projective reflection

groups of the form G(r, p, q, n). Thus, the upper part of the green set is made up

of all the other projective reflection groups: namely, those obtained as quotients,

modulo a scalar subgroup, of the 34 exceptional groups and of all classical non-

irreducible finite complex reflection groups.



Chapter 0

Notation and prerequisites

In this chapter we collect some well-known results that will be essential to

our exposition. First of all, in Section 0.1, we set some basic notation and we

describe the sets Fer and ST of Ferrers diagrams and Young tableaux, which

will be met continuously in what follows. In Section 0.2 we outline some general

results concerning all finite complex reflection groups. Section 0.3 is entirely

devoted to the description of the groups G(r, p, n) and to the notation used for

their elements. In Section 0.4 we focus on the groups G(r, n), to parametrize

their conjugacy classes and their irreducible representations. Finally, in Sec-

tion 0.5, we introduce the generalized Robinson-Schensted correspondence for

G(r, p, n). This is a tool of crucial importance for our aims. In fact, the Gelfand

model given in [6] will be decomposed in a way (see Theorem 1.1.3) which is

well-behaved with respect to such correspondence.

0.1 Basic notation

We let Z be the set of integer numbers and N be the set of nonnegative

integer numbers. For a, b ∈ Z, with a ≤ b we let [a, b] = {a, a + 1, . . . , b} and,

for n ∈ N, n 6= 0, we let [n] def= [1, n]. For r ∈ N, r > 0, we let Zr
def= Z/rZ. We

denote by ζr the primitive r-th root of unity ζr
def= e

2πi
r .

Definition. Let n ∈ N, l ∈ N, l 6= 0. A partition of n is a l-tuple λ of the

form λ = (λ1, . . . , λl), where λ1 ≥ . . . ≥ λl > 0 and each λi ∈ N, such that∑l
i=1 λi = n. l is called the length of λ and it is denoted by `(λ); n is the size

of λ and is denoted by |λ|.

A partition λ can be represented by the Ferrers diagram of shape λ: it is

a collection of boxes, arranged in left-justified rows, with λi boxes in row i.

1



2 0. Notation and prerequisites

Since a Ferrers diagram represents a partition, it is clear that the number of

boxes on its rows must be not increasing. Given a partition λ, we denote by

λ′ its conjugate partition, i.e. the partition obtained by λ exchanging rows and

columns of its Ferrer diagram.

Example 0.1.1. Consider the partition λ = (5, 3, 2) of size |λ| = 10. Its length

is `(λ) = 3 and λ can be visualized as the Ferrers diagram . Its conjugate

λ′ is represented by .

Let now consider a r-tuple λ = (λ(0), . . . , λ(r−1)) of partitions such that∑
|λ(i)| = n. Notice that we use a subscript to denote the row of a single

partition and a superscript in round brackets to denote the index of a partition

inside a r-tuple. Thus, the hth row of the jth partition of a r-tuple of partitions

λ is denoted λ
(j−1)
h .

Occasionally, each partition of a r-tuple may be denoted with a different

greek letter. For example, when dealing with pairs of partitions, it will be

convenient to refer to them as to objects of the form (λ, µ).

In its turn, an r-tuple λ = (λ(0), . . . , λ(r−1)) can be represented by means

of a r-tuple of Ferrers diagrams. We denote by Fer(r, n) the set of r-tuples of

Ferrers diagrams λ such that
∑
|λ(i)| = n. In this case, n is called the total size

of λ.

Example 0.1.2. If λ =
(
(3, 2), (4, 2, 2), (5, 1, 1)

)
, the relevant notation in Fer-

rers diagrams is (
, ,

)
∈ Fer(3, 20)

Let us now introduce some notation concerning standard Young tableaux.

If µ ∈ Fer(r, n) we denote by STµ the set of all possible fillings of the boxes in

µ with all the integers from 1 to n appearing once, in such way that rows are

increasing from left to right and columns are increasing from top to bottom in ev-

ery single Ferrers diagram of µ. We also say that STµ is the set of standard mul-

titableaux P of shape Sh(P ) = µ. Moreover we let ST(r, n) def= ∪µ∈Fer(r,n)STµ.

Example 0.1.3. The multitableau 9 3 4
4 2
8

, 5 1
6


is not standard, whereas the following multitableau P is:

P = (P0, P1) =
(

1 2 5
3

, 4 6
7 8

)
∈ ST( , ) ⊂ ST(2, 8);
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the pair
(

,
)
∈ Fer(2, 8) is the shape Sh(P ) of P .

We conclude this section with a few more definitions.

Definition. Let λ = (λ(0), . . . , λ(r−1)) ∈ Fer(r, n). The color of λ is z(λ) def=∑
i i|λ(i)|.

If p|r we let Fer(r, p, n) def= {λ ∈ Fer(r, n) : z(λ) ≡ 0 mod p}. Finally, as

above, we can associate to Fer(r, p, n) a set of multitableaux:

ST(r, p, n) def= ∪µ∈Fer(r,p,n)STµ.

Example 0.1.4. The element of Fer(2, 6) given by ( , ) does not belong

to Fer(2, 2, 6), whereas
(

,
)
∈ Fer(2, 2, 6). Here is a possible filling of it,

belonging to ST(2, 2, 6):  2 5
3
6

, 1 4

 .

0.2 Finite complex reflection groups

All through this section, V stands for a finite-dimension vector space over

C, and GL(V ) is the group of its endomorphisms.

Definition. Let s be an element of finite order of GL(V ). s is a reflection if it

fixes a hyperplane of V pointwise.

Definition. A group G < GL(V ) is a complex reflection group if it is generated

by reflections.

Definition. A finite reflection group G < GL(V ) is called reducible if G =

G1 ×G2 and V admits a non-trivial decomposition V = V1 ⊕ V2, G1 acting on

V1, G2 acting on V2. When such decomposition is not possible, G is irreducible.

Irreducible finite complex reflection groups were completely classified in the

fifties by Shephard and Todd [19]:

Theorem 0.2.1. Irreducible finite complex

reflection groups consist of:

• an infinite family of groups G(r, p, n),

where r, p, n are nonnegative integers

and p|r;

• 34 more exceptional groups.

G(r, p, n)G(r, p, n)

34 exceptional
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If G is a reflection group, its action on V induces an action on its dual V ∗ and

hence on its polynomial algebra S[V ∗]. We denote with S[V ∗]G the subalgebra

of S[V ∗] given by the polynomials on V that are invariant under the action of

G. Finite complex reflection groups admit the following characterization, due

to Chevalley [9] and Shephard-Todd [19]:

Theorem 0.2.2. Let G be a finite subgroup of GL(V ). Then G is a reflection

group if and only if the invariant ring S[V ∗]G is generated by n = dim(V )

algebraically independent polynomials.

0.3 The family G(r, p, n)

34 exceptional

G(r, p, n)G(r, p, n)

G(r, n)G(r, n)

34 exceptional

Sn• •Bn

Dn•

In the present work, we will not deal

with the 34 sporadic groups mentioned

in Theorem 0.2.1. We will focus on the

infinite family G(r, p, n). So let us turn

to describe these groups.

When r = p = 1, the group G(1, 1, n)

is simply the symmetric group Sn of the

n× n permutation matrices, i.e. matri-

ces with exactly one 1 in every row and

every column, and all the other entries

equal to 0.

When p = 1, the group G(r, n) def= G(r, 1, n), also called the generalized

symmetric group, is the wreath product Cr o Sn, where Cr is the cyclic group

of order r. G(r, n) consists of all the n × n complex matrices satisfying the

following conditions:

• there is exactly one non-zero entry in every row and every column;

• the non-zero entries are r-th roots of unity.

Example 0.3.1. The group Bn
def= G(2, n) of the signed permutations on n

elements. For example, the matrix g given by

g =


0 1 0 0

0 0 0 −1

0 0 1 0

1 0 0 0


belongs to B4.
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Let now p |r. The group G(r, p, n) is the subgroup of G(r, n) of the elements

verifying one extra condition:

• if we write every non-zero element as a power of ζr, the sum of all the

exponents of ζr appearing in the matrix is a multiple of p.

Example 0.3.2. Consider the group Dn = G(2, 2, n) < G(2, n) = Bn. Given

g ∈ Bn, it belongs to Dn if −1 appears in the matrix of g an even number of

times. For example, the following matrix g ∈ B4

g =


0 1 0 0

0 0 0 −1

0 0 1 0

1 0 0 0


does not belong to D4, while

h =


0 1 0 0

0 0 0 −1

0 0 −1 0

1 0 0 0


does.

Definition. Given g ∈ G(r, p, n), we denote by zi(g) ∈ Zr the exponent of ζr
appearing in the ith row of g. We say that zi(g) is the color of i in g and the

sum z(g) def= z1(g) + · · ·+ zn(g) will be called the color of g.

Thus, an element g ∈ G(r, n) belongs to G(r, p, n) if and only if z(g) ≡ 0

mod p.

It is sometimes convenient to use alternative notation to denote an element

in G(r, n), other than the matrix representation.

Notation 0.3.3. We write g = [(σ1, . . . , σn); z1, . . . , zn] meaning that, for all

j ∈ [n], the unique nonzero entry in the jth row appears in the σth
j column and

equals ζzjr (i.e. zj(g) = zj). We call this the window notation of g.

Observe that [(σ1, . . . , σn); 0, . . . , 0] is actually a permutation in Sn - namely,

it is the element of Sn obtained from g forgetting its colors. We denote it by

|g|.
Elements of G(r, n) also have a cyclic decomposition which is analogous to

the cyclic decomposition of permutations. A cycle c of g ∈ G(r, n) is an object

of the form c = (aza11 , . . . , a
zak
k ), where (a1, . . . , ak) is a cycle of the permutation

|g|, and zai = zai(g) for all i ∈ [k]. Notice that we use square brackets (and
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round brackets on the permutation side) for the window notation and round

brackets only for the cyclic notation.

We let k be the length of c, z(c) def= za1 + · · · + zak be the color of c, and

Supp(c) def= {a1, . . . , ak} be the support of c. We will sometimes write an element

g ∈ G(r, n) as the product of its cycles.

Example 0.3.4. Let g ∈ G(3, 6) be the matrix

g =



0 0 1 0 0 0

0 0 0 ζ3 0 0

0 0 0 0 0 ζ3

0 1 0 0 0 0

0 0 0 0 ζ2
3 0

ζ2
3 0 0 0 0 0


Then:

• |g| is the matrix

|g| =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0


;

• g has window notation g = [(3, 4, 6, 2, 5, 1); 0, 1, 1, 0, 2, 2];

• the cyclic decomposition of g is given by g = (10, 31, 62)(21, 40)(52).

0.4 The groups G(r, n) and their irreducible rep-

resentations

In this section we provide a

parametrization for both the con-

jugacy classes and the irreducible

representations of the group G(r, n).

These will turn up to be an essential

tools in what follows.

34 exceptional

G(r, p, n)G(r, p, n)

G(r, n)G(r, n)

34 exceptional

Sn• •Bn

Dn•
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The set of conjugacy classes of G(r, n) is naturally parametrized by Fer(r, n)

in the following way (see, for example, [13, §4]). If (α(0), . . . , α(r−1)) ∈ Fer(r, n)

we let mi,j be the number of parts of α(i) equal to j. Then the set

clα(0),...,α(r−1) = {g ∈ G(r, n) : g has mi,j cycles of color i and length j}

is a conjugacy class of G(r, n), and all conjugacy classes are of this form.

Example 0.4.1. The element g given by g = (20, 51, 72)(11, 40)(31)(62) belongs

to the G(3, 7)-conjugacy class
(

, ,
)
.

For what concerns the irreducible representations of G(r, n), we have the

following result:

Proposition 0.4.2. Let Irr(r, n) be the set of the irreducible representations of

G(r, n). Then

Irr(r, n) = {ρλ(0),...,λ(r−1) , with (λ(0), . . . , λ(r−1)) ∈ Fer(r, n)},

where the irreducible representation ρλ(0),...,λ(r−1) of G(r, n) is given by

ρλ(0),...,λ(r−1) = IndG(r,n)
G(r,n0)×···×G(r,nr−1)

(
r−1⊙
i=0

(γ⊗ini ⊗ ρ̃λ(i))

)
,

with:

• ni = |λ(i)|;

• ρ̃λ(i) is the natural extension to G(r, ni) of the irreducible (Specht) repre-

sentation ρλ(i) of Sni , i.e. ρ̃λ(i)(g) def= ρλ(i)(|g|) for all g ∈ G(r, ni).

• γni is the 1-dimensional ’color’ representation of G(r, ni) given by

γni : G(r, ni)→ C∗

g 7→ ζz(g)r .

Furthermore, the dimension of the representation ρλ(0),...,λ(r−1) is given by |St(λ(0),...,λ(r−1))|.

For the proof, see, for example, [13, §4], [20, §4].

Notation 0.4.3. Occasionally, a representation ρλ will be simply denoted by

a λ. Also, sometimes we drop the round bracket on the subscript: ρλ(0),...,λ(r−1)

stands for ρ(λ(0),...,λ(r−1)). This clarification is not redundant. It is important

to remark that representations of G(r, n) are parametrized by ordered r-tuples

of diagrams. In the following chapters, we will also come across representations

indexed by unordered pairs!
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Example 0.4.4. The irreducible representations of Bn are parametrized by

ordered pairs of Ferrers diagrams

{(λ(0), λ(1)) such that |λ(0)|+ |λ(1)| = n} ⊂ Fer(2, n).

For example, here is a parametrization for the irreducible representations of

B3: (
, ∅
) (

, ∅
) (

, ∅
) (

,
) (

,
)

(
∅,

) (
∅,

) (
∅,

) (
,

) (
,
)
.

The representation indexed by
(

, ∅
)

has, for example, dimension |St“
,∅
”| =

2; the representations ρ( ,∅) and ρ( ∅, ) have dimension 1.

Notice that, in the case of G(r, n), the conjugacy classes and the irreducible

representations are parametrized by the same objects. This remark will be

essential for the results exposed in the following chapter.

The parametization of the irreducible representations of the groups G(r, p, n)

finds a smart description by means of projective reflection groups and their dual.

Thus, it is deferred to Chapters 2-4, as well as the treatment about G(r, p, n)-

conjugacy classes for the involutory case, which we could not find anywhere else

in literature.

0.5 The generalized Robinson-Schensted corre-

spondence

The Robinson-Schensted correspon-

dence will be met in more than one set-

ting all along our treatment. In this

section, we are going to see its classi-

cal version for the symmetric group and

a first generalization of it to the case of

G(r, p, n). This will be immediately use-

ful to provide a motivation for the form

assumed by the Gelfand model due to

F. Caselli [6]. Also, it will be of cru-

cial importance to expose the nature of

the refinement of such model (see sec-

tion 1.1).

34 exceptional

G(r, p, n)G(r, p, n)

G(r, n)G(r, n)

34 exceptional

Sn• •Bn

Dn•



0.5 The generalized Robinson-Schensted correspondence 9

Recall the classical Robinson-Schensted correspondence. It is a bijection

between Sn and the set of pairs of standard Young tableaux of size n of the

same shape:

RS : Sn → STn × STn

σ 7→ (P ;Q),

where Sh(P ) = Sh(Q) (see section 0.1 for the notation). An algorithm allows

to construct P and Q from σ and vice versa (see [21, Section 7.11]).

It is possible to generalize the function RS to the case of wreath products:

this was first done in [22]. The new bijection will be denoted with RS:

RS : G(r, n)→ ST(r, n)× ST(r, n).

RS is defined as follows:

• split g into r double-rowed vectors g0, . . . , gr−1 according to the color;

• perform RS to the r double-rowed vectors;

• glue the images of g0, . . . , gr−1 together, thus obtaining one pair of ele-

ments of ST(r, n)× ST(r, n) with the same shape.

Example 0.5.1. g = [(2, 4, 3, 1); 0, 1, 0, 0] ∈ G(2, 4) = B4.

g0 =

(
1 3 4

2 3 1

)
g1 =

(
2

4

)

g0
RS−→ (P0;Q0) =

(
1 3
2

; 1 3
4

)
g1

RS−→ (P1;Q1) =
(

4 ; 2
)

g
RS−→ (P0, P1;Q0, Q1) =

(
1 3
2

, 4 ; 1 3
4

, 2
)

Notation 0.5.2. Given g RS7→ (P0, . . . , Pr−1;Q0, . . . , Qr−1), we denote by Sh(g)

the element of Fer(r, n) which is the shape of P0, . . . , Pr−1 and of Q0, . . . , Qr−1.

The generalized Robinson-Schensted correspondence satisfies the properties

collected in the following lemma.

Lemma 0.5.3. If g 7→ (P0, . . . , Pr−1;Q0, . . . , Qr−1) via RS, then:

• ḡ−1 7→ (Q0, . . . , Qr−1;P0, . . . , Pr−1);
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• ζrg 7→ (P1, . . . , Pr−1, P0;Q1, . . . , Qr−1, Q0).

Furthermore, given g ∈ G(r, p, n), it is easy to check that RS(g) ∈ ST(r, p, n)×
ST(r, p, n), so the function

RS : G(r, p, n)→ ST(r, p, n)× ST(r, p, n)

is well defined.

Proof. The first point is an immediate consequence of the analogous result for

the case of Sn. The second and the third can be easily derived by the way the

correspondence is generalized to coloured permutations.



Chapter 1

The model and its

decomposition for the

groups G(r, n)

34 exceptional

G(r, p, n)G(r, p, n)

G(r, n)G(r, n)

34 exceptional

Sn• •Bn

Dn•

The aim of this chapter is to provide a refinement for the Gelfand model

constructed in [6] for wreath products G(r, n).

For our purpose, the groups G(r, n) present an important advantage if com-

pared to the groups of the more general form G(r, p, n): they coincide with their

dual. This circumstance simplifies a lot both the description of the model built

in [6], and its refinement. The concepts of projective reflection group and of

duality will not be required to read this chapter, which provides a complete,

self-contained treatment for the special case of the groups G(r, n), and gives the

opportunity to shed some light on the subject without affording the background

needed in the following chapters.

In Section 1.1, after describing the model constructed in [6] for the special

11
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case of G(r, n), we state the main result of this chapter, Theorem 1.1.3. Such

theorem provides a refinement of the model which is coherent with the gener-

alized Robinson-Schensted correspondence. In the following section, we prove

Theorem 1.1.3 for the particular case of Bn: this well-known example will give

the reader a precise idea of our arguments. Finally, in the last section of this

chapter, we will generalize the results already exposed for Bn to the case of all

the groups G(r, n).

1.1 A first statement

In the present section, we will illustrate the Gelfand model constructed in [6]

for wreath products G(r, n). With the model at hands, we will be able already

to state our main result for what concerns the groups G(r, n).

Definition. Let G < GL(n,C) and let g ∈ G. We say that g is an absolute

involution if gḡ = Id. We set

I(r, n) def= {g ∈ G(r, n)| g is an absolute involution}.

Proposition 1.1.1. Let g ∈ G(r, n). Then g ∈ I(r, n) if and only if g 7→
(P0, . . . , Pr−1;P0, . . . , Pr−1) via RS.

Proof. This follows immediately from the analogous result for Sn and the way

RS is constructed.

Our first remark is the following.

Remark 1. Let G = G(r, n) and let M be a Gelfand model for G. Then

dimM = ]{absolute involutions of G}. (1.0)

Proof. We know from Proposition 0.4.2 that

dimM =
∑

λ∈Fer(r,n)

dim ρλ =
∑

λ∈Fer(r,n)

|STλ|.

Thanks to Proposition 1.1.1, the absolute involutions of G(r, n) are exactely as

many as elements in ST(r, n). This proves the remark.

The last observation gives a hint about a possible vector space structure on

which one can build a Gelfand model for G: we can consider the formal vector

space spanned by the absolute involutions of G,

M
def=

⊕
v∈I(r,n)

CCv. (1.0)
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Let us now turn to describe the representation % that will give M the structure

of a G-module. To this aim, we need some more notation.

If g, g′ ∈ G(r, n) we define

< g, g′ >
def=
∑
i

zi(g)zi(g′) ∈ Zr :

it is a sort of a scalar product between the color vectors of g and g′.

If σ, τ ∈ Sn with τ2 = 1 we let

Inv(σ) def= {{i, j} : (j − i)(σ(j)− σ(i)) < 0};

Pair(τ) def= {{i, j} : τ(i) = j 6= i};

invτ (σ) def= |{Inv(σ) ∩ Pair(τ)}|

Finally, if g, v ∈ G(r, n) with vv̄ = 1, we let invv(g) def= inv|v|(|g|).

Theorem 1.1.2. Consider the group G = G(r, n). Let M be as in (1.1), and

let % be the representation of G given by

% : G→ GL(M)

g 7→ %(g) : M →M

Cv 7→ %(g)Cv
def= ζ<g,v>r (−1)invv(g)C|g|v|g|−1 .

Then (M,%) is a G-model.

Proof. See [6, Theorem 3.2].

Let us have a closer look at the model. There is an immediate decomposition

into smaller submodules.

Definition. If g, h ∈ G(r, n), g and h are Sn-conjugate if there exists σ ∈ Sn
such that g = σhσ−1, and we call Sn-conjugacy classes, or symmetric conjugacy

classes, the corresponding equivalence classes.

If c is a Sn-conjugacy class of absolute involutions in I(r, n) we denote by

M(c) the subspace of M spanned by the basis elements Cv indexed by the

absolute involutions v belonging to the class c, and it is clear that

M =
⊕
c

M(c) as G-modules,

where the sum runs through all Sn-conjugacy classes of absolute involutions in

I(r, n). We are now ready to state the main result of this chapter.
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Theorem 1.1.3. Consider the G(r, n)-model (M,%) described in Theorem 1.1.2.

Let c be a Sn-conjugacy class of absolute involutions in G(r, n). Let M(c) be

the submodule of M spanned by the elements of c. Let Sh(c) def= ∪v∈cSh(v) (see

the notation in 0.5.2). Then the following decomposition holds:

M(c) ∼=
⊕

(λ(0),...,λ(r−1))∈Sh(c)

ρλ(0),...,λ(r−1) .

In words: if a submodule M(c) of M is spanned by involutions whose images

via RS have certain shapes, M(c) affords the irreducible representations of

G(r, n) parametrized by those shapes.

We will first prove this result for the group of the signed permutations Bn =

G(2, n). We will devote to this the following section. The proof of the general

case of G(r, n) is in Section 1.3.

1.2 The case of Bn

34 exceptional

G(r, p, n)G(r, p, n)

G(r, n)G(r, n)

34 exceptional

Sn• •Bn

Dn•

We will now focus on the group

Bn = G(2, n). In particular, in Sec-

tion 1.2.1 we prove a result (Propo-

sition 1.2.5) which will be exploited

in Section 1.2.2 to describe the irre-

ducible decomposition of some partic-

ular submodules of the model. In Sec-

tion 1.2.3 we complete the irreducible

decomposition.

1.2.1 Some tools in Bn combinatorial representation

theory

The main result of this section is Proposition 1.2.5 which is an extension of

an idea appearing in [12] and will be of crucial importance to prove Theorem

1.1.3.

First of all we observe that, since Bn is given by real matrices, the abso-

lute involutions in Bn are exactly the involutions in Bn. So, to understand

our results, we need to describe and parametrize the Sn-conjugacy classes of
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involutions in Bn explicitly. To this aim, for all v ∈ I(2, n) we let

fix0(v) def= |{i : i > 0 and v(i) = i}|;

fix1(v) def= |{i : i > 0 and v(i) = −i}|;

pair0(v) def= |{(i, j) : 0 < i < j, v(i) = j and v(j) = i}|;

pair1(v) def= |{(i, j) : 0 < i < j, v(i) = −j and v(j) = −i}|.

Example 1.2.1. If v = [(3, 2, 1, 8, 9, 6, 7, 4, 5); 1, 0, 1, 0, 1, 1, 0, 0, 1], we have fix0(v) =

2, fix1(v) = 1, pair0(v) = 1 and pair1(v) = 2.

Proposition 1.2.2. Two involutions v, w of Bn are Sn-conjugate if and only

if

fix0(v) = fix0(w), pair0(v) = pair0(w),

fix1(v) = fix1(w), pair1(v) = pair1(w).

Furthermore, given an involution v in Bn, let Sh(v) = (λ, µ) (see Notation

0.5.2). Then λ has fix0(v) columns of odd length and fix0(v) + 2 pair0(v) boxes,

while µ has fix1(v) columns of odd length and fix1(v) + 2 pair1(v) boxes.

Proof. The first part is clear, since conjugation of a cycle by an element in

Sn does not alter the number of negative entries in the cycle. The second

part follows easily from the corresponding result for the symmetric group due

to Schützenberger (see [18] or [21, Exercise 7.28]) and the definition of the

generalized Robinson-Schensted correspondence given in Section 0.5.

We can thus name the Sn-conjugacy classes of the involutions of Bn in this

way:

cf0,f1,p0,p1
def=

{
v ∈ I(2, n)

∣∣∣∣ fix0(v) = f0 fix1(v) = f1

pair0(v) = p0 pair1(v) = p1

}
,

where f0, f1, p0, p1 ∈ N are such that f0 + f1 + 2p0 + 2p1 = n. The description

given of the Sn-conjugacy classes ensures that the subspace of M generated by

the involutions v ∈ Bn with fix0(v) = fix1(v) = 0 - which is non trivial if n is

even only - is a Bn-submodule. The crucial step in the proof of Theorem 1.1.3

is the partial result regarding this submodule.

Given λ ∈ Fer(1, n) we let

R−λ
def= {σ ∈ Fer(n− 1) : σ is obtained by deleting one box from λ}

R+
λ

def= {σ ∈ Fer(n+ 1) : σ is obtained by adding one box to λ}.

Moreover, if (λ, µ) ∈ Fer(2, n), we let

R−λ,µ
def= {(σ, µ) ∈ Fer(2, n− 1) : σ ∈ R−λ } ∪ {(λ, τ) ∈ Fer(2, n− 1) : τ ∈ R−µ }

R+
λ,µ

def= {(σ, µ) ∈ Fer(2, n+ 1) : σ ∈ R+
λ } ∪ {(λ, τ) ∈ Fer(2, n+ 1) : τ ∈ R+

µ }.
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We always identify Bn as a subgroup of Bn+1 as follows:

Bn = {g ∈ Bn+1 : g(n+ 1) = n+ 1}.

Theorem 1.2.3 (Branching rule for Bn). Let (λ, µ) ∈ Fer(2, n). Then the

following holds:

ρλ,µ ↓Bn−1=
⊕

(σ,τ)∈R−λ,µ

ρσ,τ

ρλ,µ ↑Bn+1=
⊕

(σ,τ)∈R+
λ,µ

ρσ,τ .

Proof. See [11, §3].

Before stating the main result of this section we need some more notation:

Notation 1.2.4. A pair of diagrams (λ, µ) ∈ Fer(2, n) will be called even if

both λ and µ have all rows of even length. If φ and ψ are representations of a

group G, we say that φ contains ψ if ψ is isomorphic to a subrepresentation of

φ.

Proposition 1.2.5. Let Πm be representations of B2m, m ranging in N. Then

the following are equivalent:

a) for every m, Πm is isomorphic to the direct sum of all the irreducible

representations of B2m indexed by even diagrams of Fer(2, 2m), each of

such representations occurring once;

b) for every m,

b0) Π0 is 1-dimensional (and B0 is the group with one element);

b1) the module Πm contains the irreducible representations ρ ι2m,∅ and

ρ ∅,ι2m of B2m, where ιk denotes the single-rowed Ferrers diagram

with k boxes;

b2) the following isomorphism holds:

Πm ↓B2m−1
∼= Πm−1 ↑B2m−1 . (1.-4)

We explicitly observe that we are dealing here with even diagrams, i.e., with

rows of even length. What we will need later are diagrams with columns of even

length. This is a harmless difference which simplifies our computations and will

be solved in §1.2.2.
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Proof. a)⇒ b). Conditions b0) and b1) follow immediately.

Let us now compare Πm ↓B2m−1 and Πm−1 ↑B2m−1 . The branching rule

ensures that Πm ↓B2m−1 contains exactly the ρλ,µ’s where the diagram (λ, µ)

has exactly one row of odd length. Furthermore, the pair (α, β) such that

R−α,β 3 (λ, µ) is uniquely determined: to obtain it, it will only be allowed to add

a box to the unique odd row of the diagram (λ, µ). This means that Πm ↓B2m−1

is the multiplicity-free direct sum of all the representations of B2m−1 indexed

by diagrams in Fer(2, 2m− 1) with exactly one row of odd length.

Arguing analogously for Πm−1 ↑B2m−1 , we can infer that it contains exactly

the same irreducible representations with multiplicity 1 and it is thus isomorphic

to Πm ↓B2m−1 .

b)⇒ a) Let us argue by induction.

The case m = 0 is given by b0). Let us see also the case m = 1. We know

that Π1 ↓B1
∼= Π0 ↑B1∼= ρ ι1,∅ ⊕ ρ ∅,ι1 . But Π1 contains ρ ι2,∅ and ρ ∅,ι2 by b1),

and the isomorphism(
ρ ι2,∅ ⊕ ρ ∅,ι2

)
↓B1
∼= ρ ι1,∅ ⊕ ρ ∅,ι1 ∼= Π0 ↑B1

ensures that

Π1
∼= ρ ι2,∅ ⊕ ρ ∅,ι2 .

Let us show that, if Πm−1 is the direct sum of all the representations indexed

by even diagrams, the same holds for Πm. For notational convenience, we let

Λm
def= {(λ, µ) ∈ Fer(2, 2m) : ρλ,µ is a subrepresentation of Πm}

First we shall see that, if (λ, µ) ∈ Fer(2, 2m) is an even diagram, then (λ, µ) ∈
Λm.

The set Fer(2, 2m) is totally ordered in this way: given two pairs (λ, µ), (σ, τ) ∈
Fer(2, 2m), we let (λ, µ) < (σ, τ) if one of the following holds:

i) λ < σ lexicographically;

ii) λ = σ and µ < τ lexicographically.

We observe that (ι2m, ∅) is the maximum element of Fer(2, 2m) with respect

to this order.

Claim. If (λ, µ) ∈ Fer(2, 2m) is such that:

i) (λ, µ) is even;
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ii) (λ, µ) /∈ {(ι2m, ∅), (∅, ι2m)};

iii) (σ, τ) ∈ Λm for all (σ, τ) ∈ Fer(2, 2m) such that (σ, τ) is even and (σ, τ) >

(λ, µ),

then (λ, µ) ∈ Λm.

As we already know that (ι2m, ∅) and (∅, ι2m) are contained in Λm, once we

have proved the claim, all the even pairs will be too.

Proof of the claim. Let (λ, µ) ∈ Fer(2, 2m) be an even diagram satisfying i), ii)

and iii). Then the pair (λ, µ) has at least two rows. We let (σ, τ) ∈ Fer(2, 2m)

be the pair obtained from (λ, µ) by deleting two boxes in the last non zero row

and adding two boxes to the first non zero row.

As (σ, τ) > (λ, µ), we have (σ, τ) ∈ Λm, so the isomorphism (1.2.5), the

induction hypothesis and the branching rule lead to the following:

∀ (η, θ) ∈ R−σ,τ , R+
η,θ ∩ Λm = {(σ, τ)}. (1.-4)

Now let (α, β) ∈ Fer(2, 2m − 1) be obtained from (λ, µ) by deleting one

box in the last nonzero row. Our induction hypothesis ensures that ρα,β is

a subrepresentation of Πm−1 ↑B2m−1 with multiplicity 1. So the isomorphism

(1.2.5) implies that

there exists a unique (γ, δ) ∈ Fer(2, 2m) such that {(γ, δ)} = R+
α,β ∩ Λm.

(1.-4)

The claim will be proved if we show that (γ, δ) = (λ, µ).

The pair (γ, δ) is obtained from (α, β) by adding a single box, since (γ, δ) ∈
R+
α,β . If such a box is not added in the first or in the last non zero rows of (α, β)

then (γ, δ) has two rows of odd length and one can check that R−γ,δ contains at

least a diagram with three rows of odd length. This contradicts (1.2.5).

Now assume that (γ, δ) is obtained by adding a box in the first nonzero row

of (α, β). If we let (η, θ) be the pair obtained from (λ, µ) by deleting two boxes

in the last nonzero row and adding one box in the first nonzero row, we have

(η, θ) ∈ R−σ,τ , and R+
η,θ ∩ Λm ⊇ {(σ, τ), (γ, δ)} which contradicts (1.2.1).

Therefore (γ, δ) is obtained by adding a box in the last nonzero row of (α, β),

i.e. (γ, δ) = (λ, µ) and the claim is proved.

We have just proved that if we let Πeven
m be the multiplicity-free sum of all

irreducible representations of B2m indexed by even diagrams we have that Πeven
m

is a subrepresentation of Πm. The result follows since we also have

Πeven
m ↓B2m−1

∼= Πm−1 ↑B2m−1 ,

and so, in particular, dim(Πeven
m ) = dim(Πm).
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1.2.2 A partial result for Bn

In the process of proving our main result we use the following auxiliary

representation of Bn on M :

ϕ(g) :M →M

Cv 7→ (−1)<g,v>C|g|v|g|−1 .

Notice that the representation ϕ is just like the representation % of the model

(M,%), apart from the factor (−1)invv(g).

Let Mm be the subspace of M spanned by the elements Cv as v varies among

all involutions in B2m such that fix0(v) = fix1(v) = 0:

Mm
def=

⊕
p0+p1=m

M(c0,0,p0,p1).

The main task of this section is to show that the representations (Mm, ϕ) satisfy

the conditions of Proposition 1.2.5.

We first prove that the representation (Mm, ϕ) satisfies condition b1) of

Proposition 1.2.5. In fact, we will show explicitly that (Mm, ϕ) contains all

irreducible representations indexed by an even pair of 1-rowed Ferrers diagrams.

Recall from Proposition 0.4.2 that the irreducible representations of Bn are

parametrized by pairs (λ, µ) ∈ Fer(2, n), and that we have in this case

ρλ,µ ' IndBnBs×Bn−s (ρ̃λ � (γn−s ⊗ ρ̃µ)) , (1.-4)

where s = |λ|.
For S ⊆ [2m] let

∆S
def= {g ∈ I(2, 2m) : fix0(g) = fix1(g) = 0 and {i ∈ [n] : zi(g) = 0} = S},

and

CS =
∑
v∈∆S

Cv ∈M.

Lemma 1.2.6. For all p0, p1 ∈ N such that p0 + p1 = m, the subspace of

Mm spanned by all CS with |S| = 2p0, is an irreducible submodule of (Mm, ϕ)

affording the representation ρ ι2p0 ,ι2p1 .

Proof. Let us consider the 1-dimensional subspace CC[2p0] of Mm.

Let us identify the subgroup B2p0 × B2p1 of B2m with the group of the

elements permuting ”separately” the first 2p0 integers and the remaining 2p1

integers:

B2p0 ×B2p1 ' {g ∈ B2m : |g|(i) ∈ [2p0]∀ i ∈ [2p0]}.



20 1. The model and its decomposition for the groups G(r, n)

Let ψ = ϕ|B2p0×B2p1
. We have

ψ(g1, g2)(C[2p0]) = ψ(g1, g2)
( ∑
v∈∆[2p0]

Cv
)

=
∑

v∈∆[2p0]

ψ(g1, g2)(Cv)

=
∑

v∈∆[2p0]

(−1)<g2,v>|g1g2|v|g1g2|−1 =
∑

v∈∆[2p0]

(−1)z(g2)|g1g2|v|g1g2|−1

= (−1)z(g2)
∑

v∈∆[2p0]

|g1g2|v|g1g2|−1 = (−1)z(g2)C[2p0],

since, clearly, the map v 7→ |g1g2|v|g1g2|−1 is a permutation of ∆[2p0]. There-

fore, we have that (CC[2p0], ψ) is a representation of B2p0 ×B2p1 and that it is

isomorphic to the representation ρ̃ ι2p0 � (γ2p1 ⊗ ρ̃ ι2p1 ). By the description of

the irreducible representations of Bn given in (1.2.2) we have that

IndB2m
B2p0×B2p1

(CC[2p0], ψ) ∼= ρ ι2p0 ,ι2p1 .

Now we can observe that, by construction, B2p0 ×B2p1 is the stabilizer in B2m

of v with respect to the absolute conjugation and that

{CS : |S| = 2p0} = {C ∈Mm : C =
∑

v∈∆[2p0]

C|g|v|g|−1 for some g ∈ B2m}.

From these facts we deduce that we also have

IndB2m
B2p0×B2p1

(CC[2p0], ψ) =
⊕

S⊆[2m],|S|=2p0

CCS ,

and the proof is complete.

Proposition 1.2.7. For all m > 0, we have

(Mm, ϕ) ↓B2m−1
∼= (Mm−1, ϕ) ↑B2m−1 .

Proof. For brevity, for all p0, p1 ∈ N such that p0 + p1 = m, we denote the

B2m-module M(c0,0,p0,p1) with Mp0,p1 . Via the representation ϕ, the vector

space Mm naturally splits as a B2m-module as it does via %:

Mm =
⊕

p0+p1=m

Mp0,p1 .

We consider the action of B2m−1 on each class c0,0,p0,p1 and it is clear that

z2m(v) = z2m(|g|v|g|−1) for all v ∈ B2m and g ∈ B2m−1. In particular, each

Mp0,p1 splits, as a B2m−1-module, into two submodules according to the color

of 2m. More precisely, if we denote by

M0
p0,p1

def= Span{Cv : v ∈ c0,0,p0,p1 and z2m(v) = 0};

M1
p0,p1

def= Span{Cv : v ∈ c0,0,p0,p1 and z2m(v) = 1},
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we have

Mp0,p1 = M0
p0,p1 ⊕M

1
p0,p1

as B2m−1-modules, and hence we also have the following decomposition of Mm

as a B2m−1-module

Mm ↓B2m−1=
⊕

p0+p1=m

(
M0
p0,p1

⊕
M1
p0,p1

)
.

Let us consider the involutions v0
p0,p1 , with p0 6= 0, and v1

p0,p1 , with p1 6= 0,

given by

v0
p0,p1

def= [(2, 1, 4, 3, ..., 2m, 2m− 1); 0, 0, ...0︸ ︷︷ ︸
2(p0−1)

, 1, ..., 1︸ ︷︷ ︸
2p1

, 0, 0];

v1
p0,p1

def= [(2, 1, 4, 3, ..., 2m, 2m− 1); 0, 0, ...0︸ ︷︷ ︸
2p0

, 1, ..., 1︸ ︷︷ ︸
2p1

].

We observe that M0
p0,p1 and M1

p0,p1 are spanned by all the elements Cv as v

varies in the S2m−1-conjugacy classes of v0
p0,p1 and v1

p0,p1 respectively, and so

we can express them as induced representations of linear representations of the

stabilizers of these elements with respect to the absolute conjugation in B2m−1.

Namely, if we let

H0
p0,p1

def= {g ∈ B2m−1 : |g|v0
p0,p1 |g|

−1 = v0
p0,p1},

H1
p0,p1

def= {g ∈ B2m−1 : |g|v1
p0,p1 |g|

−1 = v1
p0,p1},

we have

(M0
p0,p1 , ϕ) ∼= IndB2m−1

H0
p0,p1

(π0
p0,p1) and (M1

p0,p1 , ϕ) ∼= IndB2m−1

H1
p0,p1

(π1
p0,p1),

where

π0
p0,p1 : H0

p0,p1 → C∗

g 7→ (−1)<g,v
0
p0,p1

>
and

π1
p0,p1 : H1

p0,p1 → C∗

g 7→ (−1)<g,v
1
p0,p1

>.

Let us now turn to Mm−1: arguing as in Mm, we have

Mm−1 =
⊕

q0+q1=m−1

Mq0,q1 .

As above, Mq0,q1 can be written by means of an induction from the stabilizer

of an involution in c0,0,q0,q1 with respect to the absolute conjugation. For every

q0, q1 such that q0 + q1 = m− 1, let us consider the vector uq0,q1 given by

uq0,q1
def= [(2, 1, 4, 3, . . . , 2m− 2, 2m− 3); 0, 0, . . . , 0︸ ︷︷ ︸

2q0

, 1, . . . , 1︸ ︷︷ ︸
2q1

]
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and let

Kq0,q1
def= {g ∈ B2m−2 : |g|uq0,q1 |g|−1 = uq0,q1}.

Then

(Mq0,q1 , ϕ) = IndB2m−2
Kq0,q1

(πq0,q1),

where
πq0,q1 : Kq0,q1 → C∗

g 7→ (−1)<g,uq0,q1>.

Summing up, observing that M0
0,m = M1

m,0 = {0}, we have

Mm ↓B2m−1 =
⊕

p0+p1=m

(M0
p0,p1 ⊕M

1
p0,p1) =

⊕
q0+q1=m−1

(M0
q0+1,q1 ⊕M

1
q0,q1+1)

∼=
⊕

q0+q1=m−1

(
IndB2m−1

H0
q0+1,q1

(π0
q0+1,q1)

⊕
IndB2m−1

H1
q0,q1+1

(π1
q0,q1+1)

)
and

Mm−1 ↑B2m−1∼= IndB2m−1
B2m−2

( ⊕
q0+q1=m−1

IndB2m−2
Kq0,q1

(πq0,q1)
)
.

So, to prove the statement it is enough to show that⊕
q0+q1=m−1

(
IndB2m−1

H0
q0+1,q1

(π0
q0+1,q1)

⊕
IndB2m−1

H1
q0,q1+1

(π1
q0,q1+1)

)
∼= IndB2m−1

B2m−2

( ⊕
q0+q1=m−1

IndB2m−2
Kq0,q1

(πq0,q1)
)
.

As the induction commutes with the direct sum and has the transitivity prop-

erty, the last equality is equivalent to⊕
q0+q1=m−1

(
IndB2m−1

H0
q0+1,q1

(π0
q0+1,q1)

⊕
IndB2m−1

H1
q0,q1+1

(π1
q0,q1+1)

) ∼= ⊕
q0+q1=m−1

IndB2m−1
Kq0,q1

(πq0,q1).

(1.-11)

The choice of the vectors v0
p0,p1 , v1

p0,p1 and uq0,q1 leads to:

H0
p0,p1 = {g ∈ B2m−1 : |g| ∈ S2(p0−1) × S2p1 , |g|(i+ 1) = |g|(i)± 1 ∀ i odd, 0 < i < 2m};

H1
p0,p1 = {g ∈ B2m−1 : |g| ∈ S2p0 × S2(p1−1), |g|(i+ 1) = |g|(i)± 1 ∀ i odd, 0 < i < 2m};

Kq0,q1 = {g ∈ B2m−2 : |g| ∈ S2q0 × S2(q1−1), |g|(i+ 1) = |g|(i)± 1 ∀ i odd, 0 < i < 2m− 2}

where, as usual, Sh × Sk = {σ ∈ Sh+k : σ(i) ≤ h for all i ≤ h}. We therefore

make the crucial observation that

H0
q0+1,q1 = H1

q0,q1+1,

so that to prove (1.2.2) it is enough to show that

IndB2m−1

H1
q0,q1+1

(
π0
q0+1,q1

⊕
π1
q0,q1+1

) ∼= IndB2m−1
Kq0,q1

(πq0,q1). (1.-11)
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Now we also observe that Kq0,q1 is a subgroup of H1
q0,q1+1 (of index 2),

so that the right-hand side of (1.2.2) becomes IndB2m−1

H1
q0,q1+1

(
Ind

H1
q0,q1+1

Kq0,q1
(πq0,q1)

)
and therefore we are left to prove that

π0
q0+1,q1

⊕
π1
q0,q1+1 = Ind

H1
q0,q1+1

Kq0,q1
(πq0.q1). (1.-11)

If we let χ1 be the character of π0
q0+1,q1

⊕
π1
q0,q1+1 and χ2 be the character of

Ind
H1
q0,q1+1

Kq0,q1
(πq0,q1) we only have to show that χ1(g) = χ2(g) for all g ∈ H1

q0,q1+1.

We have

χ1(g) = (−1)<g,v
0
q0+1,q1

> + (−1)<g,v
1
q0,q1+1>

= (−1)
P2m−2
i=2q0+1 zi(g) + (−1)

P2m
i=2q0+1 zi(g)

= (1 + (−1)z2m−1(g))(−1)
P2m−2
i=2q0+1 zi(g),

where we have used the fact that z2m(g) = 0, since g ∈ B2m−1.

As for the character χ2, we observe that Kq0,q1 is the subgroup of H1
q0,q1+1

of all the elements g with z2m−1(g) = 0. So we may take

C = {IdB2m−1 , σ
def= [(1, 2, . . . , 2m− 2,−(2m− 1), 2m); 0, . . . , 0]},

as a system of coset representatives of H1
q0,q1+1/Kq0,q1 . Therefore the induced

character χ2 is given by

χ2(g) =
∑
h∈C

h−1gh∈Kp0,p1

χπq0,q1 (h−1gh).

Since g(2m − 1) = ±(2m − 1) we have that g /∈ Kq0,q1 ⇔ ∀h ∈ C, h−1gh /∈
Kq0,q1 , and hence

χ2(g) = 0 ∀ g ∈ H1
q0,q1+1|z2m−1(g) = 1,

which agrees with χ1(g).

So we are left to compute χ2(g), where g satisfies z2m−1(g) = 0. In this case we

have g(2m− 1) = 2m− 1 which implies σ−1gσ = g, and hence

χ2(g) = (−1)<g,uq0,q1> + (−1)<σ
−1gσ,uq0,q1>

= 2(−1)<g,uq0,q1>

= 2(−1)
P2m−2
i=2q0+1 zi(g).

We conclude that χ1(g) = χ2(g) for all g ∈ H1
q0,q1+1, so (1.2.2) is satisfied

and the proof is complete.



24 1. The model and its decomposition for the groups G(r, n)

Theorem 1.2.8. For all m ∈ N, (Mm, ϕ) is a B2m-module isomorphic to the

direct sum of all the irreducible representations of B2m indexed by the even

diagrams of Fer(2, 2m), each of such representations occurring once.

Proof. It is enough to check that the representations (Mm, ϕ) satisfy the condi-

tions b0), b1), b2) of Proposition 1.2.5.

Condition b0) is trivial.

In order to check condition b1), we have to find two submodules of Mm

which are isomorphic to the representations indexed by (ι2m, ∅) and (∅, ι2m).

By Lemma 1.2.6, they correspond respectively to

ρ ι2m,∅ = (CC[2m], ϕ) and ρ ∅,ι2m = (CC∅, ϕ).

Condition b2) is the content of Proposition 1.2.7 and the proof is complete.

We are now in a position to fully describe the irreducible decomposition of

the submodules Mp0,p1 of Mm via the representation ϕ.

Theorem 1.2.9. We have

(Mp0,p1 , ϕ) ∼=
⊕

|λ|=2p0,|µ|=2p1
λ,µ with no odd rows

ρλ,µ.

Proof. We start by showing that there exist representations σ of S2p0 and τ of

S2p1 such that

(Mp0,p1 , ϕ) ∼= IndB2m
B2p0×B2p1

(σ̃ � (γ2p1 ⊗ τ̃)), (1.-17)

where σ̃ and τ̃ are the natural extensions of σ and τ to B2p0 and to B2p1 ,

respectively.

Recall the definition of ∆S given before the statement of Lemma 1.2.6. If

we let MS
def= Span{Cv : v ∈ ∆S}, it is clear that

Mp0,p1 = M[2p0]

xB2m

B2p0×B2p1
.

Now, since

∆[2p0] = {v ∈ B2m : v is an involution in S2p0 ×−(S2p1)}

= {v : v = v′v′′with v′ involution in S2p0 and −v′′ involution in S2p1},

we deduce the isomorphism of vector spaces M[2p0]
∼= M ′ ⊗M ′′, where

M ′ = Span{Cv′ : v′ is an involution in S2p0}
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and

M ′′ = Span{Cv′′ : v′′ is an involution in S2p1},

the isomorphism being given by Cv′v′′ ↔ Cv′ ⊗ C−v′′ . If g = (g′, g′′) ∈ B2p0 ×
B2p1 and v = v′(−v′′) ∈ ∆[2p0] we have

ϕ(g)Cv′ ⊗ Cv′′ ↔ ϕ(g)Cv

= (−1)<g,v>C|g|v|g|−1

= (−1)<g
′′,−v′′>C|g′|v′|g′|−1|g′′|(−v′′)|g′′|−1

↔ C|g′|v′|g′|−1 ⊗ (−1)z(g2)C|g2|v′′|g2|−1 .

and equation (1.2.2) follows. Now the full result is a direct consequence of the

irreducible decomposition of the representations σ and τ , the description of the

irreducible representations given in (1.2.2), and Theorem 1.2.8.

The next goal is to describe the relationship between the irreducible decom-

position of the representations ϕ and %.

Recall that %(g)(Cv) = (−1)invv(g)ϕ(g)(Cv); we will show that the factor

(−1)invv(g) simply exchanges the roles of rows and columns of the Ferrers dia-

grams appearing in the irreducible decomposition of the B2m-modules (Mm, ϕ)

and (Mm, %).

Lemma 1.2.10. For p0, p1 ∈ N with p0 + p1 = m let up0,p1 and Kp0,p1 be (as

in Proposition 1.2.7):

up0,p1 = [(2, 1, 4, 3, ..., 2m, 2m− 1); 0, 0, ...0︸ ︷︷ ︸
2p0

, 1, ..., 1︸ ︷︷ ︸
2p1

];

Kp0,p1 = {g ∈ B2m : |g| ∈ S2p0 × S2p1 , |g|(i+ 1) = |g|(i)± 1∀ i odd, 0 < i < 2m}.

Then, for every g ∈ Kp0,p1 , we have

invup0,p1 (g) ≡ inv(|g|) mod 2.

Proof. We can clearly assume that g = |g|. Let {i, j} be in Inv(g), but not in

Pair(|up0,p1 |). As up0,p1 is an involution satisfying fix0(up0,p1) = fix1(up0,p1) = 0,

there exist unique h and k such that {i, h} and {j, k} belong to Pair(|up0,p1 |).
We will show that {h, k} - which does not belong to Pair(|up0,p1 |) - is an element

of Inv(g). In this way, every pair {i, j} ∈ Inv(g)\Pair(|up0,p1 |) can be associated

to exactly another, so |Inv(g) \ Pair(|up0,p1|)| is even and we get the result.

We can assume that i < j (hence g(i) > g(j)) throughout. Observe that

we know from the form of up0,p1 that i = h ± 1, and j = k ± 1, depending on

the parity of i and j. Nevertheless, in all cases, we always obtain h < k (since
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the four integers i, j, h, k are distinct), so that the claim to prove is always

g(h) > g(k). But the definition of Kp0,p1 ensures that g(h) = g(i) ± 1 and

g(k) = g(j)± 1. The result follows from g(i) > g(j), and from the fact that the

four integers g(i), g(j), g(h), g(k) are distinct.

We recall the following general result in representation theory. Let G be a

finite group, H < G. Let ϑ, τ be representations respectively of G and of H.

We have

(ϑ ↓H ⊗ τ) ↑G∼= ϑ⊗ (τ ↑G). (1.-23)

Let us denote by σn the linear representation of Bn given by σn(g) = (−1)inv(|g|).

Lemma 1.2.11. For all (λ, µ) ∈ Fer(2, n) we have

σn(g)⊗ ρλ,µ = ρλ′,µ′ ,

where λ′ and µ′ denote the conjugate partitions of λ and µ respectively (see the

definition on page 2).

Proof. We recall the following well-known analogous fact for the symmetric

group. We have

ε⊗ ρλ = ρλ′ , (1.-23)

where ε(g) def= (−1)inv(g) denotes the alternating representation. If we let k = |λ|
then, by Equations (1.2.2) and (1.2.2), we have

σn ⊗ ρλ,µ = σn ⊗ IndBnBk×Bn−k(ρ̃λ � (γn−k ⊗ ρ̃µ))

∼= IndBnBk×Bn−k
(
σn ↓Bk×Bn−k ⊗ (ρ̃λ � (γn−k ⊗ ρ̃µ))

)
= IndBnBk×Bn−k

(
(σn ↓Bk ⊗ ρ̃λ)� (σn ↓Bn−k ⊗ γn−k ⊗ ρ̃µ)

)
= IndBnBk×Bn−k

( ˜(ε⊗ ρλ)� (γn−k ⊗ ˜(ε⊗ ρµ))
)

= IndBnBk×Bn−k
(
ρ̃λ′ � (γn−k ⊗ ρ̃µ′)

)
= ρλ′,µ′ ,

and the proof is complete.

Theorem 1.2.12. The submodule Mp0,p1 = M(c0,0,p0,p1) of (M,%) satisfies

(Mp0,p1 , %) ∼=
⊕

|λ|=2p0,|µ|=2p1
λ,µ with no odd columns

ρλ,µ.

Proof. Let us consider the linear representation of Kp0,p1

(−1)invup0,p1
(g)πp0,p1(g) = (−1)invup0,p1

(g)(−1)<g,up0,p1>.
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We have

(Mp0,p1 , %) = ((−1)invup0,p1
(g)πp0,p1)

xB2m

Kp0,p1
= ((−1)inv(|g|)πp0,p1)

xB2m

Kp0,p1

=
(

(−1)inv(|g|)y
Kp0,p1

⊗ πp0,p1)
)xB2m

Kp0,p1

∼= (−1)inv(|g|) ⊗ (πp0,p1 ↑B2m) = (−1)inv(|g|) ⊗ (Mp0,p1 , ϕ),

where we have used Lemma 1.2.10 in the first line and equation (1.2.2) in the

last line of the previous equalities. Now the result follows from Lemma 1.2.11

and Theorem 1.2.9.

1.2.3 Bn: the proof of the full result

In this section we will give a complete proof in the case of Bn of Theorem

1.1.3 that, by Proposition 1.2.2, can be restated in the following slightly different

but equivalent form.

Theorem 1.2.13. For all f0, f1, p0, p1 ∈ N such that f0 + f1 + 2p0 + 2p1 = n

we have

(M(cf0,f1,p0,p1), %) ∼=
⊕

|λ|=2p0+f0,|µ|=2p1+f1
λ with exactly f0 odd columns
µ with exactly f1 odd columns

ρλ,µ.

Proof. Let m = p0 +p1 and consider the space M(c0,0,p0,p1): it is a B2m-module

via the representation

Πp0,p1
def= (M(c0,0,p0,p1), %) = IndB2m

Kp0,p1
(τp0,p1),

where τp0,p1 is the linearKp0,p1 representation given by τp0,p1(g) = (−1)inv(|g|)πp0,p1(g).

From Theorem 1.2.12, we know that it is the multiplicity-free direct sum of all

representations indexed by pairs of diagrams (λ, µ) where λ and µ have even

columns only, and |λ| = 2p0, |µ| = 2p1.

We will first show that

(M(cf0,f1,p0,p1), %) = IndB
n

B2m×Bn−2m
(Πp0,p1 � ρ ιf0 ,ιf1 ). (1.-23)

Let us argue with the same strategy as in §1.2.2. We define the involution u

representing the Sn-conjugacy class cf0,f1,p0,p1 as follows:

u = [(2, 1, 4, 3, . . . , 2m, 2m−1, 2m+1, . . . , n); 0, . . . , 0,︸ ︷︷ ︸
2p0

1, . . . , 1︸ ︷︷ ︸
2p1

, 0, . . . , 0︸ ︷︷ ︸
f0

, 1, . . . , 1︸ ︷︷ ︸
f1

].

We have that the stabilizer of u with respect to the absolute conjugation is

{g ∈ Bn : |g|u|g|−1 = u} = Kp0,p1 ×Bf0 ×Bf1 , and we can easily check that

(M(cf0,f1,p0,p1), %) = IndBnKp0,p1×Bf0×Bf1
(
τp0,p1 � ρ ιf0 ,∅ � ρ ∅,ιf1

)
.
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We recall the following identity of induced representations: if H < G and

H ′ < G′ we have

IndG×G
′

H×H′(ρ� ρ
′) = IndGH(ρ)� IndG

′

H′(ρ
′), (1.-23)

where ρ is a representation of H and ρ′ a representation of H ′. So we have

(M(cf0,f1,p0,p1), %) = IndBnKp0,p1×Bf0×Bf1
(
τp0,p1 � ρ ιf0 ,∅ � ρ ∅,ιf1

)
= IndB

n

B2m×Bn−2m

(
IndB2m×Bn−2m

Kp0,p1×Bf0×Bf1
(τp0,p1 � ρ ιf0 ,∅ � ρ ∅,ιf1

))
= IndB

n

B2m×Bn−2m

(
IndB2m

Kp0,p1
(τp0,p1)� IndBn−2m

Bf×Bf1
(ρ ιf0 ,∅ � ρ ∅,ιf1 )

)
= IndB

n

B2m×Bn−2m
(Πp0,p1 � ρ ιf0 ,ιf1 )

and equation (1.2.3) is achieved. Now the result follows from Theorem 1.2.12

and the following result which is the analogue in type B of the well-known Pieri

rule:

Proposition 1.2.14. Let ρλ,µ be any irreducible representation of Bh. Then

IndBh+k
Bh×Bk(ρλ,µ � ρ ιf ,ιk−f ) =

⊕
ρν,ξ,

where the direct sum runs through all (ν, ξ) ∈ Fer(2, h+k) such that ν is obtained

from λ by adding f boxes to its Ferrers diagram, no two in the same column,

and ξ is obtained from µ by adding k − f boxes to its Ferrers diagram, no two

in the same column.

For the proof, see [10, Lemma 6.1.3].

Example 1.2.15. For every f0, f1 ∈ [0, n], with f0 + f1 = n let us consider

the set Sh(cf0,f1,0,0). Since ιk is the only k-boxed diagram with k odd columns,

Sh(cf0,f1,0,0) contains the pair (ιf0 , ιf1) only. Thus we can explicitly find in

(M,%) the subspace Vιf0 ,ιf1 affording the representation ρ ιf0 ,ιf1 : thanks to The-

orem 1.1.3,

Vιf0 ,ιf1 = M(cf0,f1,0,0) = IndBnBf0×Bf1 (CCuf0,f1,0,0).

uf0,f1,0,0 being the involution

uf0,f1,0,0 = [(1, 2, . . . , n); 0, . . . , 0︸ ︷︷ ︸
f0

, 1, . . . , 1︸ ︷︷ ︸
f1

].

In other words

Vιf0 ,ιf1 = Span{Cv : v ∈ Bn, |v| = Id, #{i : z(i) = 0} = f0, #{i : z(i) = 1} = f1}.
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Example 1.2.16. Let v = [(6, 4, 3, 2, 5, 1); 1, 0, 0, 0, 1, 1] ∈ B6. In this case,

f0 = f1 = p0 = p1 = 1 and the Sn-conjugacy class c of v has 180 elements. The

Bn-module M(c) is given by the sum of the irreducible representations indexed

by (λ, µ) ∈ Fer(2, n) such that both λ and µ have size 3, and exactly one column

of odd length:

M(c) ∼= ρ„
,
« ⊕ ρ„

,
« ⊕ ρ„

,
« ⊕ ρ„

,
«.

1.3 The general case of wreath products G(r, n)

In this section we will treat the general case G = G(r, n). To prove Theorem

1.1.3, we will be handling the same tools already used in the case of Bn. Nev-

ertheless, as some of the results need to be slightly generalized, we will provide

an outline of the whole argument in this wider setting.

Let M be the model for G(r, n) described in Theorem 1.1.2. Let ϕ be the

representation defined analogously to the case of Bn:

ϕ(g) :M →M

Cv 7→ (−1)<g,v>C|g|v|g|−1 .

The Sn-conjugacy classes of absolute involutions of G(r, n) are indexed by 2r-

tuples (f0, . . . , fr−1, p0, . . . , pr−1) satisfying f0+· · ·+fr−1+2(p0+· · ·+pr−1) = n.

These are given by

cf0,...,fr−1,p0,...,pr−1 = {v ∈ I(r, n) : fixi(v) = fi,pairi(v) = pi ∀i ∈ [0, r − 1]}.

where

fixi(v) = |{j ∈ [n] : v(j) = ζirj}|

pairi(v) = |{(h, k) : 1 ≤ h < k ≤ n, v(h) = ζirk and v(k) = ζirh}|.

The main idea is, again, focusing on the submodule with no fixed points first.

Our half-way result is

Theorem 1.3.1. Let Mm,r be the subspace of M spanned by the elements Cv as

v varies among all involutions in G(r, 2m) such that fix0(v) = fix1(v) = . . . =

fixr−1(v) = 0:

Mm,r
def=

⊕
p0+···+pr−1=m

M(c0,...,0,p0,...,pr−1).

Then (Mm,r, ϕ) is a G(r, 2m)-module isomorphic to the direct sum of all the

irreducible representations of G(r, 2m) indexed by the diagrams of Fer(r, 2m)
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whose rows have an even number of boxes, each such representation occurring

once.

We state here the G(r, n)-generalized version of Proposition 1.2.5, which will

be applied to Mm,r.

Proposition 1.3.2. Let Πr
m be representations of G(r, 2m), m ranging in N.

Then the following are equivalent:

a) for every m, Πr
m is the direct sum of all the irreducible representations of

G(r, 2m) indexed by r-tuples of even diagrams, each of such representa-

tions occurring once;

b) for every m,

b0) Πr
0 is unidimensional;

b1) the module Πr
m contains the irreducible representations of G(r, 2m)

indexed by the r r-tuples of diagrams (∅, . . . , ∅, ι2m, ∅, . . . , ∅).

b2) the following isomorphism holds:

Πr
m ↓G(r,2m−1)

∼= Πr
m−1 ↑G(r,2m−1); (1.-29)

Here is the generalization of the branching rule for G(r, n), which is an

essential ingredient for the proof of Proposition 1.3.2.

Lemma 1.3.3 (Branching rule for G(r, n)). Let (λ(0), . . . , λ(r−1)) ∈ Fer(r, n).

Then the following holds:

ρλ(0),...,λ(r−1) ↓G(r,n−1)=
⊕

(µ(0),...,µ(r−1))∈R−
λ(0),...,λ(r−1)

ρµ(0),...,µ(r−1) ;

ρλ(0),...,λ(r−1) ↑G(r,n+1)=
⊕

(µ(0),...,µ(r−1))∈R+

λ(0),...,λ(r−1)

ρµ(0),...,µ(r−1) ,

where we denote by R+
λ(0),...,λ(r−1) the set of diagrams in Fer(r, n+1) obtained by

adding one box to the diagram (λ(0), . . . , λ(r−1)), and similarly for R−
λ(0),...,λ(r−1) .

Proof of Theorem 1.3.2. a)⇒ b). b0 and b1 are trivial. So let us now turn to

compare Πm,r ↓G(r,2m−1) and Πm−1,r ↑G(r,2m−1). The branching rule ensures

that Πm,r ↓G(r,2m−1) contains exactly the ρλ0,...,λr−1 ’s where one of the Ferrers

diagrams is 1-odd. Furthermore, the r-tuple whose restriction contains the pair

(λ0, . . . , λr−1) is uniquely determined: to obtain it, it will only be allowed to

add a box on the odd row of the right λi. This means that Πm,r ↓G(r,2m−1)
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is the multiplicity-free direct sum of all the representations of G(r, 2m− 1) in-

dexed by r-tuples of Ferrers diagrams with one 1-odd Ferrers diagram. Arguing

analogously for Πm−1,r ↑G(r,2m−1), we can infer that it contains exactly the

same irreducible representations with multiplicity 1 and it is thus isomorphic to

Πm,r ↓G(r,2m−1).

b)⇒ a) Let us argue by induction.

The case m = 0 is given by b3). Let us also see the case m = 1. We know

that
Π1,r ↓G(r,1)

∼= Π0 ↑G(r,1)∼= ( , ∅, . . . , ∅)⊕ . . .⊕ (∅, . . . , ∅, ).

But Π1,r contains ( , ∅, . . . , ∅)⊕. . .⊕(∅, . . . , ∅, ) by b2), and the isomorphism(
( , ∅, . . . , ∅)⊕. . .⊕(∅, . . . , ∅, )

)
↓G(r,1)

∼= ( , ∅, . . . , ∅)⊕. . .⊕(∅, . . . , ∅, ) ∼= Π0,r ↑G(r,1)

ensures that
Π1,r

∼= ( , ∅, . . . , ∅)⊕ . . .⊕ (∅, . . . , ∅, ).

Let us show that, if Πm−1,r is the direct sum of all the representations

indexed by r-tuples of even Ferrers diagrams, the same holds for Πm,r. For

notational convenience, we let

Λm,r
def= {(λ0, . . . , λr−1) ∈ Fer(r, 2m) : ρλ0,...,λr−1 is a subrepresentation of Πm,r}

First we shall see that, if (λ0, . . . , λr−1) ∈ Fer(r, 2m) is an even diagram, then

(λ0, . . . , λr−1) ∈ Λm,r.

The set Fer(r, 2m) is totally ordered in this way: given two r-tuples (λ0, . . . , λr−1),

(µ0, . . . , µr−1) ∈ Fer(r, 2m), we let (λ0, . . . , λr−1) < (µ0, . . . , µr−1) if one of the

following holds:

i) λo < µ0 lexicographically;

ii) there exists k < r − 1 such that λi = µi for every i < k and λk < µk

lexicographically.

We observe that (ι2m, ∅, . . . , ∅) is the maximum element of Fer(r, 2m) with

respect to this order.

We claim that if (λ0, . . . , λr−1) ∈ Fer(r, 2m) is such that:

i) (λ0, . . . , λr−1) is even;

ii) (λ0, . . . , λr−1) 6= (∅, . . . , ∅, ι2m, ∅, . . . , ∅);

iii) (µ0, . . . , µr−1) ∈ Λm,r for all (µ0, . . . , µr−1) ∈ Fer(r, 2m) such that

(µ0, . . . , µr−1) is even and (µ0, . . . , µr−1) > (λ0, . . . λr−1).
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Then (λ0, . . . , λr−1) ∈ Λm,r.

As we already know that all the representations of the form (∅, . . . , ∅, ι2m, ∅, . . . , ∅)
are contained in Λm,r, once we prove the claim, all the even r-tuples will.

Proof of the claim. Let (λ0, . . . , λr−1) ∈ Fer(r, 2m) be an even diagram satisfy-

ing i), ii) and iii). Then the r-tuple (λ0, . . . , λr−1) has at least two rows. We let

(µ0, . . . , µr−1) ∈ Fer(r, 2m) be the pair obtained from (λ0, . . . , λr−1) by deleting

two boxes in the last non zero row and adding two boxes in the first non-zero

row. As (µ0, . . . , µr−1) > (λ0, . . . , λr−1), we have (µ0, . . . , µr−1) ∈ Λm,r, so the

isomorphism (1.3.2) leads to the following:

∀ (σ0, . . . , σr−1) ∈ R−µ0,...,µr−1
, R+

σ0,...,σr−1
∩ Λm,r = {(µ0, . . . , µr−1)}. (1.-29)

Now let (α0, . . . , αr−1) ∈ Fer(r, 2m− 1) be obtained from (λ0, . . . , λr−1) by

deleting one box in the last nonzero row. Our induction hypothesis ensures that

ρα0,...,αr−1 is a subrepresentation of Πm−1,r ↑G(2m−1,r) with multiplicity one.

So the isomorphism (1.3.2) implies that there exists a unique (γ0, . . . , γr−1) ∈
Fer(r, 2m) such that

{(γ0, . . . , γr−1)} = R+
α0,...,αr−1

∩ Λm,r. (1.-29)

The claim will be proved if we show that (γ0, . . . , γr−1) = (λ0, . . . , λr−1).

The pair (γ0, . . . , γr−1) is obtained from (α0, . . . , αr−1) by adding a single

box, since (γ0, . . . , γr−1) ∈ R+
α0,...,αr−1

. If such box is not added in the first or

in the last non zero rows of (α0, . . . , αr−1) then (γ0, . . . , γr−1) has two rows of

odd length and one can check that R−γ0,...,γr−1
contains at least a diagram with

three rows of odd length. This contradicts (1.3.2).

Now assume that (γ0, . . . , γr−1) is obtained by adding a box in the first

nonzero row of (α0, . . . , αr−1). If we let (σ0, . . . , σr−1) be the pair obtained

from (λ0, . . . , λr−1) by deleting two boxes in the last nonzero row and adding

one box in the first nonzero row, we have (σ0, . . . , σr−1) ∈ R−µ0,...,µr−1
, and

R+
σ0,...,σr−1

∩ Λm,r ⊇ {(µ0, . . . , µr−1), (γ0, . . . , γr−1)}

which contradicts the unicity of (γ0, . . . , γr−1) in (1.3). Therefore (γ0, . . . , γr−1)

is obtained by adding a box in the last nonzero row of (α0, . . . , αr−1), i.e.

(γ0, . . . , γr−1) = (λ0, . . . , µr−1) and the claim is proved.

We have just proved that if we let Πeven
m,r the multiplicity free sum of all

irreducible representations of G(2m, r) indexed by even diagrams we have that

Πeven
m,r is a subrepresentation of Πm,r. The result follows since we also have

Πeven
m,r ↓G(2m−1,r)

∼= Πm−1,r ↑G(2m−1,r),
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and so, in particular, dim(Πeven
m,r ) = dim(Πm,r).

Let us check that Mm,r satisfies properties b) of Proposition 1.3.2, so that

Theorem 1.3.1 follows.

Property b0) is trivial and so we look at property b1): for S0, . . . , Sr−1

disjoint subsets of [2m] such that ∪Si = [2m] we let

∆S0,...,Sr−1

def= {v | v is an absolute involution of G(r, 2m) with:

fix0(v) = . . . = fixr−1(v) = 0; zi(v) = j iff i ∈ Sj},

and

CS0,...,Sr−1 =
∑

v∈∆S0,...,Sr−1

Cv ∈M.

Lemma 1.3.4. The subspace of Mm,r spanned by all CS0,...,Sr−1 , with |Si| = pi,

is an irreducible submodule of (Mm,r, ϕ) affording the representation ρ ι2p0 ,...,ι2pr−1
.

Proof. This proof can be carried on in the same way as in the case of Bn, relying

on Proposition 0.4.2.

Let us turn to property b2). We have to check that

Mm,r ↓G(r,2m−1)
∼= Mm−1,r ↑G(r,2m−1) .

We let Mp0,...,pr−1 = M(c0,...,0,p0,...,pr−1). First of all, the following decomposi-

tion holds:

Mm,r ↓G(r,2m−1) =
⊕

p0+···+pr−1=m

Mp0,...,pr−1 ↓G(r,2m−1)

=
⊕

p0+···+pr−1=m

r−1⊕
j=o

M j
p0,...,pr−1

,

M j
p0,...,pr−1

being the submodule of Mp0,...,pr−1 spanned by the absolute involu-

tions v such that z2m(v) = j.

As the module M j
p0,...,pr−1

is trivial whenever pj = 0, we can reduce ourselves

to ⊕
q0+···+qr−1=m−1

r−1⊕
j=o

M j
q0,...,qj+1,...,qr−1

We introduce the absolute involution

vjq0,...,qr−1

def= [(2, 1, 4, 3, ..., 2m, 2m−1); 0, 0, ...0︸ ︷︷ ︸
2q0

, 1, ..., 1︸ ︷︷ ︸
2q1

, . . . , j, . . . , j︸ ︷︷ ︸
2qj

, . . . , r − 1, . . . , r − 1︸ ︷︷ ︸
2qr−1

, j, j].

Its stabilizer with respect to the absolute conjugation does not depend on j: it

is the subgroup of G(r, 2m− 1) given by

Hq0,...,qr−1 = {g ∈ G : |g| ∈ S2q0×. . .×S2qr−1 , |g|(i+1) = |g|(i)±1 ∀ i odd, 0 < i < 2m}.
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Thus, our module can be written as

⊕
q0+···+qr−1=m−1

r−1⊕
j=o

M j
q0,...,qj+1,...,qr−1

=
⊕

q0+···+qr−1=m−1

r−1⊕
j=o

(C vjq0,...,qr−1
)
xG(r,2m−1)

Hq0,...,qr−1
.

As for the right side of the isomorphism, we have

Mm−1,r ↑G(r,2m−1)=
⊕

q0+···+qr−1=m−1

Mq0,...,qr−1

xG(r,2m−1)
.

We choose this time

uq0,...,qr−1

def= [(2, 1, 4, 3, ..., 2m−2, 2m−3); 0, 0, ...0︸ ︷︷ ︸
2q0

, 1, ..., 1︸ ︷︷ ︸
2q1

, . . . , r − 1, . . . , r − 1︸ ︷︷ ︸
2qr−1

],

whose stabilizer with respect to the absolute conjugation in G(r, 2(m− 1)) is

Kq0,...,qr−1 = {g ∈ G : |g| ∈ S2q0×. . .×S2qr−1 , |g|(i+1) = |g|(i)±1 ∀ i odd, 0 < i < 2m−2}.

We observe that Kq0,...,qr−1 is a subgroup of index r in Hq0,...,qr−1 , and a system

of coset representatives is given by

C = {σi
def= [(1, . . . , 2m); 0, ..., 0︸ ︷︷ ︸

2(m−1)

, i, 0]}i=0,...,r−1.

So we can split the induction into two steps, and we get

Mm−1,r ↑G(r,2m−1) =
⊕

q0+···+qr−1=m−1

Mq0,...,qr−1

xG(r,2m−1)

=
⊕

q0+···+qr−1=m−1

(Cuq0,...,qr−1)
xG(r,2m−1)

Kq0,...,qr−1

=
⊕

q0+···+qr−1=m−1

(
(Cuq0,...,qr−1)

xHq0,...,qr−1
Kq0,...,qr−1

)xG(r,2m−1)

Hq0,...,qr−1

We are enquiring if

⊕
q0+···+qr−1=m−1

r−1⊕
j=o

(
C vjq0,...,qr−1

)xG(r,2m−1)

Hq0,...,qr−1

∼=

⊕
q0+···+qr−1=m−1

(
(Cuq0,...,qr−1)

xHq0,...,qr−1
Kq0,...,qr−1

)xG(r,2m−1)

Hq0,...,qr−1

,

and all we need to show is that

r−1⊕
j=o

C vjq0,...,qr−1
∼= (Cuq0,...,qr−1)

xHq0,...,qr−1
Kq0,...,qr−1
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as Hq0,...,qr−1 -modules. Let us compare their characters. The character χ1 of

the representation on the left is given by

χ1(g) =
r−1∑
j=0

ζ
<g,vjq0,...,qr−1

>

r = ζ
<g,uq0,...,qr−1>
r

r−1∑
j=0

ζ
jz2m−1(g)
r

=

{
0 if z2m−1(g) 6= 0;

rζ
<g,uq0,...,qr−1>
r if z2m−1(g) = 0.

As for the character χ2 of the representation on the right, we have

χ2(g) =
∑
h∈C

h−1gh∈Bq0,...,qr−1

χ(h−1gh)

=

{
0 if z2m−1(g) 6= 0;

rζ
<g,uq0,...,qr−1>
r if z2m−1(g) = 0,

so the two characters agree and the representations are isomorphic.

So we know that the modules Mm.r satisfy the conditions of Proposition

1.3.2 and to complete the proof of Theorem 1.3.1, generalizing what was done

for Bn, it suffices to show that there exist representations σ0 of S2p0 , . . . , σr−1

of S2pr−1 such that

(Mp0,...,pr−1 , ϕ) ∼= IndG(r,2m)
G(r,2p0)×...G(r,2pr−1)(σ̃0�(γ2(p1)⊗σ̃1)�· · ·�(γr−1

2(pr−1)⊗σ̃r−1)),

(1.-29)

where the σ̃i’s are the natural extensions of σi to G(r, 2pi).

If we set Si
def= [p0 + · · · + pi−1 + 1, p0 + · · · + pi−1 + pi], we consider the

vector space MS0,...,Sr−1

def= Span{Cv : v ∈ ∆S0,...,Sr−1}. We have

Mp0,...,pr−1 = MS0,...,Sr−1 ↑
G(r,2m)
G(r,2p0)×···×G(r,2pr−1) .

Let us define Mi
def= Span{Cvi : vi is an involution in S2pi}. Then

MS0,...,Sr−1
∼= M0 × · · · ×Mr−1

Cv0,...,vr−1 7→ Cv0 ⊗ ζrCv1 ⊗ · · · ⊗ ζr−1
r Cvr−1

Arguing as for Bn, let g = g0, g1, . . . , gr−1 ∈ G(r, 2p0)× · · · ×G(r, 2pr−1). We

get

ϕ(g)Cv0 ⊗ · · · ⊗ Cvr−1 ↔ ϕ(g)Cv = (ζr)<g,v>C|g|v|g|−1

↔ C|g0|v0|g0|−1 ⊗ (ζr)z(g1)C|g1|v1|g1|−1 ⊗ · · · ⊗ (ζr)(r−1)z(gr−1)C|gr−1|vr−1|gr−1|−1

and equation (1.3) is achieved. Our claim follows from the irreducible decompo-

sition of the representations σi, the description of the irreducible representations

of G(r, n) in Proposition 0.4.2, and Theorem 1.3.1.
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Before leaving the module Mm,r with no fixed points and going on to study

the decomposition of the whole model M , we only need to show that stepping

from ϕ to % is just like exchanging rows and columns. Up to obvious modifica-

tions, this result can be attained just as it was done in the case of Bn, so we

will not treat it.

Summing up, at this point we can give for granted that:

(Mp0,...,pr−1 , %) ∼=
⊕
|λi|=2pi

λi with no odd columns

ρλ0,...,λr−1 . (1.-31)

Let us take a step forward towards the proof of Theorem 1.1.3: we are now

dealing with the modulesM(cf0,...,fr−1,p0,...,pr−1), where f0+. . .+fr−1+2p0, . . .+

2pr−1 = n. Let p0 + . . .+ pr−1 = m and let us consider the G(r, 2m)-module

Πp0,...,pr−1

def=
(
Mp0,...,pr−1 , %

)
.

We know its irreducible decomposition from (1.3). Arguing as above, we can

infer that

(M(cf0,...fr−1,p0,...p′r−1
), %) ∼= IndG(r,n)

G(r,2m)×G(r,n−2m)(Π
p0,...,pr−1
m,r � ρ ιf0 ,...,ιfr−1

),

(1.-31)

and Theorem 1.1.3 follows from the G(r, n)-version of Pieri rule:

Proposition 1.3.5 (Pieri rule for G(r, n)). Let ρλ0,...,λr−1 be any irreducible

representation of G(r, h). Then

IndG(r,h+k)
G(r,h)×G(r,k)(ρλ0,...,λr−1 � ρ ιf0 ,...,ιfr−1

) =
⊕

ρν0,...,νr−1 ,

where the direct sum runs through all (ν0, . . . , νr−1) ∈ Fer(r, h + k) such that

νi is obtained from λi by adding fi boxes to its Ferrers diagram, no two in the

same column.



Chapter 2

The model for involutory

reflection groups

Our next goal is to state and prove a generalized version of Theorem 1.1.3,

holding for a much bigger family of groups, including all those of the form

G(r, p, n) with GCD(p, n) = 1, 2. Though, before doing this, we need to give a

complete account of the Gelfand model constructed in [6] for these groups. This

will be less immediate than it was for G(r, n), because we are not dealing with

autodual groups anymore. Therefore, the present chapter is entirely devoted to

this explanation.

The description of the model will require, first of all, an introduction about

projective reflection groups (Section 2.1). We will then immediately focus on

the groups G(r, p, q, n) (Section 2.2), and provide a parametrization for their

irreducible representations. In Section 2.3 we explain how to generalize the

Robinson-Schensted correspondence to all groups G(r, p, q, n). In Section 2.4,

we give the definition of involutory reflection group, and necessary and sufficient

conditions for a group G(r, p, q, n) to be involutory. Finally, in Section 2.5, we

explicitly show the model constructed in [6] for all involutory reflection groups

G(r, p, n) and for all their quotients G(r, p, q, n).

Projective reflection groups, jointly with the concept of duality (see Defi-

nition 2.2), are of crucial importance to describe the model of all involutory

reflection groups. In this sense, projective reflection groups will be first of all

used as a tool to prove results concerning classical reflection groups G(r, p, n).

Nevertheless, the results appearing here also hold for some projective reflection

groups that are not classical reflection groups (see Theorems 2.5.1, 4.7.1). Fur-

thermore, we may mention that the importance of projective reflection groups

37
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goes far beyond the aim of this work. For an outline of the many applications

they have, we refer the reader to [5].

2.1 Projective reflection groups

The biggest circle represents
all projective reflection groups

G(r, p, n)

G(r, p, q, n)

G(r, p, n)

G(r, p, q, n)

G(r, n)

34 exceptional

Sn• •Bn

Dn•

projective ref. groups
different from G(r, p, q, n)

A projective reflection group G is obtained as a quotient of some finite

complex reflection group W modulo a scalar subgroup. Notice that, so far, we

are not requiring W to be of the form G(r, p, n).

More precisely, let W be a finite complex reflection group acting on the finite-

dimension complex vector space V . Let Sq(V ) be the qth symmetric power of

V . Consider the natural injection

ψ : GL(V )→ GL(Sq(V )),

whose kernel is Cq = 〈ζqId〉. Once restricted to W , ψ induces the isomorphism

W

Cq ∩W
∼= ψ(W ).

When Cq is contained in W , this allows to see the quotient G def= W
Cq

as a

subgroup of GL(Sq(V )), and G acts naturally on Sq(V ). Thus we can give the

following

Definition. Let G < GL(Sq(V )). The pair (G, q) is a projective reflection
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group if and only if there exists a finite complex reflection group W containing

Cq and such that G ∼= W
Cq

.

The dual action of G can be extended to Sq[V ∗], the algebra of polynomial

functions on V generated by homogeneous polynomial functions of degree q.

Theorem 0.2.2, characterizing classical reflection groups, generalizes to the case

of projective reflection groups in the expected way:

Theorem 2.1.1. Let V be a finite-dimension vector space over C. Let G be

a finite group of graded automorphisms Sq[V ∗]. (G, q) is a projective reflection

group if and only if its invariant algebra Sq[V ∗]G is generated by n = dimV

algebraically independent homogeneous polynomials.

Proof. See [5, Theorem 2.1].

2.2 The groups G(r, p, q, n) and their irreducible

representations

From now on we will only consider projective reflection groups W
Cq

with

W = G(r, p, n). More precisely:

proj. ref.
groups 6= G(r, p, q, n)

34 exceptional

G(r, p, n)

G(r, p, q, n)

G(r, n)

34 exceptional

Sn• •Bn

Dn•

G(r, p, n)

G(r, p, q, n)

Definition. Let r, p, q, n ∈ N such

that p|r, q|r and pq|rn. Then we de-

fine the projective reflection group

G(r, p, q, n) as

G(r, p, q, n) def=
G(r, p, n)

Cq
.

We observe that the first con-

dition is required for the group

G(r, p, n) to exist, while the remain-

ing two assure that the scalar group

Cq = 〈ζqId〉 is actually contained in

G(r, p, n).

In what follows we will always deal with projective reflection groups inde-

pendently from their action on Sq(V ). We will therefore refer to a projective

reflection group simply as the abstract group G itself, dropping the pair nota-

tion (G, q). Concerning this, we remark that two abstract projective reflection
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groups G(r, p, q, n) and G(r̄, p̄, q̄, n̄) may be isomorphic even if their parameters

are not the same.

Notice that the conditions of existence of the group G(r, p, q, n) given in

Definition 2.2 are symmetric in p and q. This allows to give the following

crucial

Definition. Let G = G(r, p, q, n). We denote by G∗ the group G(r, q, p, n) and

we call it the dual group of G.

We have seen in Chapter 1 that some objects related to the algebra of the

groups G(r, n) (namely, their irreducible representations and their conjugacy

classes) can be described by means of Fer(r, n). Also, the generalized Robinson-

Schensted correspondence associates to an element of G(r, p, n) a pair of multi-

tableaux in ST(r, p, n) (see lemma 0.5.3). With this motivation, let us introduce

the new sets Fer(r, p, q, n) and ST(r, p, q, n).

Let the conditions of Definition 2.2 be satisfied. Consider the set Fer(r, p, n)

and let the cyclic group Cq act on it by means of a shift of the diagrams of r
q

places:

Cq 	 Fer(r, p, n) (2.0)

ζq : λ(0), . . . , λ(r−1) 7→ λ( rq ), . . . , λ(r−1), λ(0), . . . , λ( rq−1).

To check that the action is well posed, see [5, Lemma 6.1].

Example 2.2.1. Consider, for any λ ∈ Fer(r, p, n), its stabilizer StabCq (λ) with

respect to the action 2.2 of the group Cq. Given λ = ( ), if q = 2 we

have StabC2(λ) = C2; if q = 4, StabC4(λ) = C2 again.

Definition. We call Fer(r, p, q, n) the quotient set Fer(r, p, n) modulo the action

(2.2). Similarly, we define ST(r, p, q, n) as the quotient - modulo an analogous

action - ST(r,p,n)
Cq

.

Example 2.2.2. The two elements of Fer(4, 2, 6) ( ) and ( )

coincide as elements of Fer(4, 2, 2, 6).

The two elements of ST(4, 2, 4)
(

1 2 3 4
)

and
(

2 3 4 1
)

coincide

as elements of ST(4, 2, 4, 4), but not as elements of ST(4, 2, 2, 4).

Notation 2.2.3. Since all elements in Fer(r, p, q, n) and ST(r, p, q, n) are equiv-

alence classes of Fer(r, p, n) and ST(r, p, n) respectively, we will denote them by

means of any of their lifts in square brackets. The two elements considered in

Example 2.2.2 will be denoted with[ ]
=
[ ]

∈ Fer(4, 2, 2, 6);
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As for standard tableaux, an example may be[
1 2 3 4

]
=
[

3 4 1 2
]
∈ ST(4, 2, 2, 4).

Notation 2.2.4. In analogy with what was done for the groups G(r, p, q, n),

we define the following dual sets:

• Fer(r, p, q, n)∗ def= Fer(r, q, p, n)

• ST(r, p, q, n)∗ def= ST(r, q, p, n).

With this tools at hands, our aim is to provide a parametrization for the

irreducible representations of the groups G(r, p, q, n), as it was done for the

groups G(r, n) (see Proposition 0.4.2). The step from G(r, n) to its quotient
G(r,n)
Cq

= G(r, 1, q, n) is actually quite easy. In fact, Irr(r, 1, q, n) is given by

those representations of G(r, n) whose kernel contains the scalar cyclic subgroup

Cq. It follows from this observation and Proposition 0.4.2 that

Irr(r, 1, q, n) = {ρλ : λ ∈ Fer(r, q, 1, n) = Fer(r, q, n)∗}.

The following step, from G(r, 1, q, n) to G(r, p, q, n), is a little more subtle.

Once restricted to G(r, p, q, n), the irreducible representations of G(r, 1, q, n)

may not be irreducible anymore. We need to find out which of them split into

more than one G(r, p, q, n)-module. This is the content of the following theorem,

which fully descibes the parametrization of the irreducible representations of the

groups G(r, p, q, n). Here and in what follows, if λ ∈ Fer(r, p, n) we let mq(λ) =

|StabCq (λ)|. Observe that if [λ] = [µ] ∈ Fer(r, p, q, n) then mq(λ) = mq(µ).

Theorem 2.2.5. The set of irreducible representations Irr(r, p, q, n) of G(r, p, q, n)

can be parametrized in the following way

Irr(r, p, q, n) = {ρj[λ] : [λ] ∈ Fer(r, q, p, n) = Fer(r, p, q, n)∗ and j ∈ [0,mp(λ)− 1]},

so that the following conditions are satisfied:

• dim(ρj[λ]) = |ST[λ]| for all [λ] ∈ Fer(r, q, p, n) = Fer(r, p, q, n)∗ and j ∈
[0,mp(λ)− 1];

• ResG(r,1,q,n)
G(r,p,q,n)(ρλ) ∼=

⊕
j ρ

j
[λ] for all λ ∈ Fer(r, q, n)∗ = Fer(r, 1, q, n)∗.

Proof. See [6, Proposition 6.2].

If mp(λ) = 1 we sometimes write ρ[λ] instead of ρ0
[λ] and we say that this

is an unsplit representation, meaning that, once restricted from G(r, 1, q, n) to

G(r, p, q, n), λ remains irreducible and thus does not split into more than one
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irreducible representation. On the other hand, whenever mp(λ) > 1, we say

that all representations of the form ρj[λ] are split representations. We will come

back to the description of the irreducible representations in Section 4.2 with

more details.

Notice that the irreducible representations of both G(r, 1, q, n) and of its

subgroup G(r, p, q, n) can be described by means of the dual set Fer(r, p, q, n)∗.

This is consistent with what happens in the case of G(r, n), since this group and

its related sets Fer(r, n) and ST(r, n) coincide with their dual.

2.3 The projective Robinson-Schensted correspon-

dence

Let us now turn to give a brief account of the projective Robinson-Schensted

correspondence, which is an extension of the generalized Robinson-Schensted

correspondence [22] we presented in Section 0.5. While the generalized Robinson-

Schensted correspondence works on the groupsG(r, p, n), the projective Robinson-

Schensted correspondence applies to all projective reflection groups of the form

G(r, p, q, n).

There is a quite natural way to build this new function. Recall one of the

properties of the generalized Robinson Schensted correspondence (see Proposi-

tion 0.5.3) :

if g 7→ (P0, . . . , Pr−1;Q0, . . . , Qr−1) via RS,

then ζrg 7→ (P1, . . . , Pr−1, P0;Q1, . . . , Qr−1, Q0) via RS.

For example, let g ∈ Bn = G(2, 1, n):

g ∈ Bn
RS−→ (P0, P1;Q0, Q1). Then

−g ∈ Bn
RS−→ (P1, P0;Q1, Q0).

Now consider the quotient group Bn
C2

= G(2, 1, 2, n). If we choose the equivalence

class ḡ of g modulo the action of C2, it is natural to associate to it one (ordered)

pair of unordered pairs of tableaux:

ḡ ∈ Bn
±Id

RS−→ ({P0, P1}; {Q0, Q1}).

In the above example, we get unordered pairs because q = r = 2. In the general

case, we will not obtain pairs of unordered sets of tableaux, but pairs of elements

of ST(r, p, q, n).
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The projective Robinson-Schensted correspondence is a surjective map RSq

RSq : G(r, p, q, n)→ ST(r, p, q, n)× ST(r, p, q, n)

g 7→ ([P ]; [Q]),

where [P ] and [Q] are determined as follows:

• choose any lift ḡ of g in G(r, p, n);

• perform the generalized Robinson-Schensted correspondence RS to ḡ, so

obtaining a pair of tableaux (P ;Q) ∈ ST(r, p, n)× ST(r, p, n);

• take the classes [P ], [Q] of P,Q modulo Cq w.r.t. its action on ST(r, p, n);

• set RSq(g) def= ([P ]; [Q]).

Proposition 2.3.1. The projective Robinson-Schensted correspondence satis-

fies the following property: if [P ], [Q] ∈ ST[λ] then the cardinality of the inverse

image of ([P ], [Q]) is equal to mq(λ). In particular we have that this correspon-

dence is a bijection if and only if GCD(q, n) = 1.

Proof. See [5, Theorem 10.1].

Notation 2.3.2. Given g
RSq7→ ([P0, . . . , Pr−1]; [Q0, . . . , Qr−1]), we denote by

Sh(g) the element of Fer(r, p, q, n) which is the shape of [P0, . . . , Pr−1] and of

[Q0, . . . , Qr−1].

Notice that while in Theorem 2.2.5 we meet elements [λ] ∈ Fer(r, q, p, n) =

Fer(r, p, q, n)∗, in the projective Robinson-Schensted correspondence the ele-

ments [λ] involved belong to Fer(r, p, q, n). This is one of the reasons why it is

natural to look at the dual groups when studying the combinatorial representa-

tion theory of any projective reflection group of the form G(r, p, q, n).

2.4 Involutory projective reflection groups

Recall Definition 1.1: g ∈ G(r, n) is an absolute involution if gḡ = Id, ḡ

being the complex conjugate of g. It is clear that the same definition holds for

G(r, p, n), since it is a subgroup of G(r, n). Since complex conjugation stabi-

lizes the cyclic scalar group Cq, we can give the same definition for projective

reflection groups too:

Definition. Let G be a projective reflection group and let g ∈ G. g is an

absolute involution if gḡ = 1.
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Notation 2.4.1. We denote by I(r, p, q, n) the set of the absolute involutions of

the group G(r, p, q, n). The notation I(r, p, n) stands for the set of the absolute

involutions of G(r, p, n). Moreover, we let

I(r, p, n)∗ def= {absolute involutions of G(r, p, n)∗}

I(r, p, q, n)∗ def= {absolute involutions of G(r, p, q, n)∗}.

The absolute involutions in I(r, p, q, n) can be either symmetric or antisym-

metric, according to the following definition:

Definition. Let v ∈ G(r, p, q, n). We say that it is:

• symmetric, if every (any) lift of v in G(r, n) is a symmetric matrix;

• antisymmetric, if every (any) lift of v in G(r, n) is an antisymmetric ma-

trix.

We observe that while a symmetric element is always an absolute involution,

an antisymmetric element of G(r, p, q, n) is an absolute involution if and only

if q is even (see [6, Lemma 4.2]). Antisymmetric elements of G(r, n) can also

be characterized in terms of the Robinson-Schensted correspondence (see [6,

Lemma 4.3]):

Lemma 2.4.2. Let v ∈ G(r, n). Then the following are equivalent

1. v is antisymmetric;

2. r is even and v 7→ (P0, . . . , Pr−1; , P r
2
, . . . , Pr−1, P0, . . . , P r

2−1) for some

(P0, . . . , Pr−1) ∈ STλ and λ ∈ Fer(r, n) by the Robinson-Schensted corre-

spondence.

Now we can deduce the following combinatorial interpretation for the number

of antisymmetric elements in a projective reflection group.

Notation 2.4.3. Since we often deal with even integers, here and in the rest

of this work we let k′ def= k
2 , whenever k is an even integer.

Proposition 2.4.4. Let asym(r, q, p, n) be the number of antisymmetric ele-

ments in G(r, q, p, n). Then

asym(r, q, p, n) =
∑

[µ,µ]∈Fer(r,q,p,n)

ST[µ,µ],

where [µ, µ] ∈ Fer(r, q, p, n) means that [µ, µ] varies among all elements in

Fer(r, q, p, n) of the form

[µ(0), . . . , µ(r′−1), µ(0), . . . , µ(r′−1)], for some µ = (µ(0), . . . , µ(r′−1)) ∈ Fer(r′, n′).
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Proof. Observe that if v ∈ G(r, q, n) is antisymmetric and (P0, . . . , Pr−1) and

λ are as in Lemma 2.4.2, then necessarily λ ∈ Fer(r, q, 1, n) is of the form

λ = (µ, µ), for some µ ∈ Fer(r′, n′). So, if v 7→ (P ;Q) is antisymmetric we have

that P is an element in ST(µ,µ) for some µ ∈ Fer(r′, n′) whilst Q is uniquely

determined by P . So we deduce that

asym(r, q, 1, n) =
∑

(µ,µ)∈Fer(r,q,1,n)

ST(µ,µ).

The result now follows since every antisymmetric element in G(r, q, p, n) has

p distinct lifts in G(r, q, n) and any element in ST[µ,µ] has p distinct lifts in

∪(ν,ν)∈[µ,µ]ST(ν,ν).

We are now ready to define and characterize involutory projective reflection

groups G(r, p, q, n).

Definition. A projective reflection group G is involutory if the dimension of

its Gelfand model coincides with the number of its absolute involutions. When

G = G(r, p, q, n), G is involutory if∑
φ∈Irr(G)

dimφ = |I(r, q, p, n)|.

proj. ref.
groups 6= G(r, p, q, n)

The biggest circle represents
all projective reflection groups

34 exceptional

G(r, p, n)

G(r, p, q, n)

G(r, n)

involutory

34 exceptional

Sn• •Bn

Dn•
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Theorem 2.4.5. Let G = G(r, p, q, n). Then G is involutory if and only if

either GCD(p, n) = 1, 2, or GCD(p, n) = 4 and r ≡ p ≡ q ≡ n ≡ 4 mod 8.

In particular, a classical reflection group G(r, p, n) is involutory if and only if

GCD(p, n) = 1, 2.

Proof. See [6, Theorem 4.5].

2.5 The model

In [6], a uniform Gelfand model is constructed for all involutory projective

reflection groups G(r, p, q, n) with GCD(p, n) = 1, 2.

proj. ref.
groups 6= G(r, p, q, n)

34 exceptional

G(r, p, n)

G(r, p, q, n)

G(r, n)

involutory

34 exceptional

Sn• •Bn

Dn•

The model concerns all involutory
projective reflection groups G(r, p, q, n),
except those satisfying GCD(p, n) = 4

The model concerns all involutory
projective reflection groups G(r, p, q, n),
except those satisfying GCD(p, n) = 4

GCD(p, n) = 4

Before describing the model, we recall some notation from Chapter 1 and

introduce some new objects. If σ, τ ∈ Sn with τ2 = 1 we let

• Inv(σ) def= {{i, j} : (j − i)(σ(j)− σ(i)) < 0};

• Pair(τ) def= {{i, j} : τ(i) = j 6= i};

• invτ (σ) def= |{Inv(σ) ∩ Pair(τ)|.

If g ∈ G(r, p, q, n), v ∈ I(r, q, p, n), g̃ any lift of g in G(r, p, n) and ṽ any lift

of v in G(r, q, n), we let

• invv(g) def= inv|v|(|g|);
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• 〈g, v〉 def=
∑n
i=1 zi(g̃)zi(ṽ) ∈ Zr;

• a(g, v) def= z1(ṽ)− z|g|−1(1)(ṽ) ∈ Zr.

The verification that 〈g, v〉 and a(g, v) are well-defined is straightforward. We

are now ready to present the Gelfand model constructed in [6].

Theorem 2.5.1. Let GCD(p, n) = 1, 2 and let

M(r, q, p, n) def=
⊕

v∈I(r,q,p,n)

CCv

and % : G(r, p, q, n)→ GL(M(r, q, p, n)) be defined by

%(g)(Cv)
def=

{
ζ
〈g,v〉
r (−1)invv(g)C|g|v|g|−1 if v is symmetric

ζ
〈g,v〉
r ζ

a(g,v)
r C|g|v|g|−1 if v is antisymmetric.

(2.-1)

Then (M(r, q, p, n), %) is a Gelfand model for G(r, p, q, n).

Proof. See [6, Theorem 5.4].

We explicitely remark that, as can be seen from the figure, this theorem also

concerns some groups that are not classical reflection groups.
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Chapter 3

Decomposition of the model

for type D

G(r, p, n)

G(r, n)

involutory

34 exceptional

Sn• •Bn

Dn•

We use this chapter to present our main result for the group Dn. Recall

that Dn is the subgroup G(2, 2, n) of index 2 of the group Bn = G(2, n) and

observe that its dual group is given by D∗n = G(2, 1, 2, n) = Bn/ ± Id. Thus,

the model space of theorem 2.5.1 is spanned by the absolute involutions in

Bn/ ± Id. Since we are now dealing with real matrices, absolute involutions

are now simply involutions. Furthermore, if n is even, we observe that the

antisymmetric involutions come into play. For this reason, the example of Dn

is particularly enlightening.

The advantage of affording this particular case before the general one is

twofold. On the one hand, we will shed some light on our arguments by means

of a well-known example the reader is probably familiar with. On the other

hand, we will make use here of some combinatorial results that, for Dn, are

49
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already known in literature. The general case will require to generalize such

results - namely, the study of the split conjugacy classes (section 4.1) and of

the characters of the split representations (Sections 4.2-4.3) of G(r, p, n) with

GCD(p, n) = 1, 2.

As mentioned above, when n is even, the model constructed in Theorem

2.5.1 is spanned by both symmetric and antisymmetric involutions. Since a

symmetric and an antisymmetric involution cannot be Sn-conjugate, we can

immediately split the model into two natural submodules:

M = MSym ⊕MAsym,

where MSym is spanned by symmetric involutions of D∗n and MAsym is spanned

by antisymmetric involutions of D∗n. When n is odd, MAsym vanishes and M

coincide with MSym.

In Section 3.1 we will quickly revise the split conjugacy classes and the split

characters of Dn.

In Section 3.2 below we will determine the irreducible representations af-

forded by the submodule MAsym; thus, this section only concerns the case of n

even. Observe that an antisymmetric element in B2m is necessarily the product

of cycles of length 2 and color 1, i.e. cycles of the form (a0, b1). It follows that

the antisymmetric elements of B2m, and hence also those of B2m/ ± I, are all

Sn-conjugate. For this reason, the submodule MAsym will not furtherly decom-

pose. This is a special feature of this case and is not true for generic involutory

reflection groups (see Section 4.5).

The submodule MSym, on the other hand, admits a finer natural decompo-

sition, which we will study in Section 3.3. This section, unlike the preceeding

one, concerns both the case of n odd and the case of n even.

3.1 Split representations and split conjugacy classes

Recall from Proposition 2.2.5 that the representations of Bn, when restricted

to Dn, always remain irreducible except for those of the form ρλ,λ, which exist

if n is even only: in this case the representation splits into two irreducible

representations that we denote, according to Theorem 2.2.5, ρ0
[λ,λ] and ρ1

[λ,λ].

We will show that the simultaneous occurring of these two phenomena, the

existence of antisymmetric elements and of the split representations when n is

even, is not accidental.

Recall the parametrization of the conjugacy classes of the group G(r, n) as

seen in Section 0.4. It is easy to check that the conjugacy classes of Bn belonging

to Dn are indexed by ordered pairs of partitions (α, β), with |β| ≡ 0 mod 2.
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Proposition 3.1.1. Let clα,β be a conjugacy class of Bn satisfying |β| ≡ 0

mod 2, so that clα,β is contained in Dn as well. Then clα,β splits into two

different Dn-conjugacy classes if and only if α = 2γ for some γ ` n
2 , and

β = ∅. In particular, if n is odd there are no Bn-conjugacy classes that split as

Dn-conjugacy classes.

For the proof, see [20, 17].

Notation 3.1.2. The pairs of the form (2α, ∅) label two Dn-conjugacy classes

denoted cl02α and cl12α. A representative of the conjugacy class cl02α is any element

in Sn of cycle-type 2α. A representative of the conjugacy class cl12α is given by

any element g such that |g| ∈ Sn has cycle type 2α and

zk(g) =

{
1 if k = i, j

0 otherwise
,

for some i, j ∈ [n] such that |g|(i) = j.

Example 3.1.3. The element [(4, 7, 5, 3, 1, 8, 2, 6); 1, 0, 0, 1, 0, 0, 0, 0] ∈ D8 be-

longs to the class cl1 .

The characters of the unsplit representations are clearly the same as the cor-

responding representations of the groups Bn (being the corresponding restric-

tions). The characters of the split representations are given by the following

result (see [20, 17]).

Lemma 3.1.4. Let g ∈ D2m, and µ ` m. Then

χε[µ,µ](g) =

{
1
2χ(µ,µ)(2α, ∅) + (−1)ε+η2`(α)−1χµ(α), if g ∈ clη2α;
1
2χ(µ,µ)(g), otherwise.

where ε, η = 0, 1, χ(µ,µ) is the character of the B2m-representation ρ(µ,µ), χµ is

the character of Sm indexed by µ and `(α) is defined as in notation 0.3.3.

3.2 The case of n even: the submodule MAsym

All through this section, we assume n = 2m. This section fully clarifies which

of the irreducible representations of Dn are afforded by the submodule MAsym.

The crucial observation here is the following result, which is a straightforward

consequence of Lemma 3.1.4.

Remark 2. Let g ∈ D2m. Then

∑
µ`m

(χ0
[µ,µ] − χ

1
[µ,µ])(g) =

{
(−1)η2`(α)

∑
µ`m χµ(α), if g ∈ clη2α;

0, otherwise.
(3.0)
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In order to study the representation (MAsym, %) we will need the following

auxiliary representations of D2m :

(MAsym, φ
+) and (MAsym, φ

−),

given by

φ+(g)(Cv)
def= (−1)<g,v>C|g|v|g|−1 , φ−(g)(Cv)

def= (−1)<g,v>(−1)a(g,v)C|g|v|g|−1

(notice that φ−(g) = %(g)|MAsym). The main result that we need to describe the

irreducible decomposition of (MAsym, %) is an explicit combinatorial description

of the difference character χφ+ −χφ− (Proposition 3.2.5). To this end we recall

some ideas developed in [6] and some preliminary lemmas.

For every g ∈ D2m, consider the set

A(g) def= {w ∈ B2m : w2 = −Id and |g|w|g|−1 = ±w}.

In other words, A(g) is the set of antisymmetric elements w in Bn (the condition

w2 = −Id is equivalent to w being antisymmetric) whose corresponding class

in Bn/ ± Id is fixed by conjugation by |g|. Since any element in Bn/ ± Id has

exactly two lifts in Bn, we have

χφ+(g)− χφ−(g) =
1
2

∑
w∈A(g)

(−1)<g,w>[1− (−1)a(g,w)]. (3.0)

The set A(g) was described in [6] and we recall here some of the needed notation.

Let Π2,1(g) be the set of partitions of the set of disjoint cycles of g into:

• singletons;

• pairs of cycles having the same length.

Recall the definition of Supp given on page 5. Any w ∈ A(g) determines a

partition π(w) ∈ Π2,1(g): a cycle c is a singleton of π(w) if the restriction of

|w| to Supp(c) is a permutation of Supp(c) and {c, c′} is a pair of π(w) if the

restriction of |w| to Supp(c) is a bijection between Supp(c) and Supp(c′). Finally,

let Aπ
def= {w ∈ A(g) : π(w) = π}. Then the set A(g) can be decomposed into

the disjoint union

A(g) =
⋃

π∈Π2,1(g)

Aπ. (3.0)

Looking at the definition of the set A(g), for ε ∈ Z2, we can also define

Aεπ
def= {w ∈ Aπ : |g|w|g|−1 = (−1)εw},
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so that partition (3.2) can be made still finer:

A(g) =
⋃

π∈Π2,1(g)
ε=0,1

Aεπ. (3.0)

end equation (3.2) can be rewritten as

χφ+(g)− χφ−(g) =
∑

π∈Π2,1(g)

Fπ(g), (3.0)

where

Fπ(g) =
1
2

∑
ε=0,1

∑
w∈Aεπ

(−1)<g,w>[1− (−1)a(g,w)].

Notation 3.2.1. If S ⊆ [n], we let

G(r, S) = {[σz11 , . . . , σ
zn
n ] ∈ G(r, n) : σzii = i0 for all i /∈ S}.

Given π = {s1, . . . , sh} ∈ Π2,1(g), we have Aεπ = Aεs1 × . . .×A
ε
sh

, where the

sets Aεs ⊂ G(2,Supp(s)) are described in Table 3.1. In the first column of the

table we have all possible structures of the “absolute value” of a part s. It is

clear from the definition that the sets A0
π and A1

π depend on |g| only. Moreover

the indices of the i’s and of the j’s should be considered mod d, k ∈ Z2 and

l ∈ [d]. For example, if |s| = {(i1, . . . , id), (j1, . . . , jd)} with d odd then

A0
s =

⋃
k∈Z2

⋃
l∈Zd

{v ∈ G(2,Supp(s)) : v(ih) = (−1)kjh+l and v(jh) = −(−1)kih−l}.

Remark 3. It is a straightforward verification based on a case by case analisys

of the table (see also [6, Proof of Lemma 5.7]) that

a(g, w) =

{
0, if w ∈ A0

π(g);

1, if w ∈ A1
π(g).

It is an immediate consequence of this remark that we can restrict the sum

in (3.2) to all w ∈ A1
π. In particular the definition of Fπ(g) can be pretty much

simplified

Fπ(g) =
1
2

∑
w∈A1

π

(−1)<g,w>[1− (−1)a(g,w)] =
∑
w∈A1

π

(−1)<g,w>. (3.0)

Now, if π = {s1, . . . , sh}, every w in A1
π can be written as w = w1 · . . . ·wh, with

wi ∈ A1
si and viceversa, if wi ∈ A1

si then w = w1 · · ·wh ∈ A1
π. This will also
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|s| A0
s A1

s

{(i1, . . . , id)} with d odd ∅ ∅

{(i1, . . . , id)}
∅ ih 7→ (−1)k(−1)hih+ d

2

with d ≡ 2 mod 4

{(i1, . . . , id)}
∅ ∅

with d ≡ 0 mod 4

{(i1, . . . , id), (j1, . . . , jd)}, ih 7→ (−1)kjh+l
∅

with d odd and jh 7→ −(−1)kih−l

{(i1, . . . , id), (j1, . . . , jd)}, ih 7→ (−1)kjh+l ih 7→ (−1)k(−1)hjh+l

with d even and jh 7→ −(−1)kih−l and jh 7→ −(−1)k(−1)h−lih−l

Table 3.1: The sets Aεs as |s| varies.
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allow to focus on the single sets A1
s, via the identity

Fπ(g) =
∑
w∈A1

π

(−1)<g,w> (3.1)

=
∑

w1∈A1
s1

· · ·
∑

wh∈A1
sh

(−1)<g,w1···wh>

=
∑

w1∈A1
s1

· · ·
∑

wh∈A1
sh

(−1)
P
i<gi,wi>

=
h∏
i=1

∑
wi∈A1

si

(−1)<gi,wi>,

where gi ∈ G(r, Supp(si)) is the restriction of g to Supp(si) (if s ∈ Π2,1(g), we

let Supp(s), the support of s, be the union of the supports of the cycles in s).

Lemma 3.2.2. Let π ∈ Π2,1(g) and assume that one of the following conditions

is satisfied:

1. π has a part which is a singleton of odd length;

2. π has a part which is a singleton of length ≡ 0 mod 4;

3. π has a part which is a pair of cycles of odd length;

Then Fπ(g) = 0.

Proof. By Table 3.1 we have that π has a part s such that A1
s = ∅. Therefore

the result follows from Equation (3.1).

So we are left to consider those π ∈ Π2,1(g) having only singletons of length

≡ 2 mod 4 and pairs of cycles of even length.

Lemma 3.2.3. Let π ∈ Π2,1(g) having only singletons of length ≡ 2 mod 4

and pairs of cycles of even length. Assume further that g has at least one cycle

c such that z(c) = 1. Then

Fπ(g) = 0

Proof. We split this result into two cases. Assume that the cycle of color 1

is a singleton si = {c} of π. In this case we have A1
si = {v,−v} for some

v ∈ G(2,Supp(si)) (see Table 3.1). So, in this case the restriction of gi to

Supp(si) is the cycle c itself and therefore gi has an odd number of negative

signs. It follows that < gi, v > and < gi,−v > have opposite parity and we

deduce that ∑
wi∈A1

si

(−1)<gi,wi> = (−1)<gi,v> + (−1)<gi,−v> = 0
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and the result follows from Equation (3.1). Assume now that the cycle c belongs

to a pair si = {c1, c} of π. To fix the ideas we let |c1| = (i1, . . . , id) and

|c| = (j1, . . . , jd). In this case we can consider the involution ψ with no fixed

points on A1
si determined by

ψ :

{
ih 7→ (−1)k(−1)hjh+l

jh 7→ −(−1)k(−1)h−lih−l

}
7→

{
ih 7→ (−1)k(−1)hjh+l+1

jh 7→ −(−1)k(−1)h−l−1ih−l−1

}

for all l = [2d] even. In this case we have zik(w) = zik(ψ(w)) and zjk(w) =

zjk(ψ(w)) + 1 for all w ∈ A1
si and so (−1)<gi,w> + (−1)<gi,ψ(w)> = 0 for all

w ∈ A1
si and the result now follows as in the previous case.

If π = {s1, . . . , sh} ∈ Π2,1(g) we let `(π) = h and pairj(π) be the number of

parts of π which are pairs of cycles of length j.

Proposition 3.2.4. If g ∈ clε2α then

χφ+(g)− χφ−(g) = ε
∑

π∈Π2,1(g)

2`(π)dpaird(π),

where the sum is taken over all π ∈ Π2,1(g) having singletons of length ≡ 2

mod 4 (and pairs of cycles of even length).

Proof. If g ∈ cl02α then we may assume that g = |g| (since the left hand side is

a class function) and it is clear that in this case (−1)<g,v> = 1 for all v ∈ A(g).

Therefore, by Lemma 3.2.2, we have

χφ+(g)− χφ−(g) =
∑

Π2,1(g)

Fπ(g)

=
∑

π∈Π2,1(g)

∑
w∈A1

π

1

=
∑

(s1,...,sh)∈Π2,1(g)

h∏
i=1

|A1
si |,

where the sum is taken over all π ∈ Π2,1(g) having singletons of length ≡ 2

mod 4 and pairs of cycles of even length. The result follows since, by Table 3.1,

we have |A1
s| = 2 if s is a singleton and |A1

s| = 2d if s is a pair of cycles of length

d.

If g ∈ cl12α then we may assume that there exists a cycle (i1, . . . , id) of |g| such

that zi1(g) = zi2(g) = 1 and zi(g) = 0 for all i 6= i1, i2. From the description

of A1
π given in Table 3.1 it follows that (−1)<g,v> = −1 for all v ∈ A1

π and the

result follows as in the previous case.

We can now complete our description of the difference character χφ+ −χφ− .
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Proposition 3.2.5. We have

χφ+(g)− χφ−(g) =
∑
λ`m

(χ0
[λ,λ] − χ

1
[λ,λ])(g) ∀ g ∈ D2m.

Proof. Let g belong to an unsplit class. Then g has at least a cycle of odd length

or a cycle of color 1. It follows from Lemmas 3.2.2 and 3.2.3 that Fπ(g) = 0 for

all π ∈ Π2,1(g) and therefore χφ+(g)− χφ−(g) = 0 by Equation (3.2). Since we

also have
∑
λ`m(χ0

[λ,λ] − χ
1
[λ,λ])(g) = 0 by Proposition 2 the proof is complete

in the case of g in an unsplit class.

If g belongs to the class clε2α we make the simple observation that `(α) =

`(π) +
∑
j pairj(π) for all π ∈ Π2,1(g) and we have, by Proposition 3.2.4,

χφ+(g)− χφ−(g) = ε
∑

π∈Π2,1(g)

2`(π)(2j)pair2j(π)

= ε
∑

π∈Π2,1(2α)

2`(π)(2j)pair2j(π)

= ε2`(2α)
∑

π∈Π2,1(2α)

jpair2j(π)

= ε2`(α)
∑

π∈Π2,1(α)

jpairj(π)

where the sum in the first three lines is taken over all π ∈ Π2,1(g) having

singleton of length ≡ 2 mod 4 and the sum in the last line is over all π ∈ Π2,1(α)

having singletons of odd length. The result now follows from Proposition 2 since

it is known that ∑
λ`n

χλ(α) =
∑

π∈Π2,1(α)

jpairj(π),

the sum being taken over all π ∈ Π2,1(α) having singletons of odd length (see,

e.g., [6, Proposition 3.6] specialized to the case r = 1).

We are now ready to state and prove the main result of this section.

Theorem 3.2.6. Let (M,%) be the Gelfand model of D2m constructed as in

Theorem 2.5.1. Let MAsym be the submodule of M spanned by antisymmetric

involutions of D∗n. We have

MAsym
∼=
⊕
µ`m

ρ1
[µ,µ].

Proof. By Proposition 3.2.5 we have∑
λ`m

χ[λ,λ]0(g) + χφ−(g) =
∑
λ`m

χ[λ,λ]1(g) + χφ+(g) ∀ g ∈ D2m. (3.-10)
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Now, recalling the linear independence of the characters of the irreducible repre-

sentations of any finite group we deduce that φ+ has a subrepresentation isomor-

phic to
⊕

λ`m ρ
0
[λ,λ], and φ− has a subrepresentation isomorphic to

⊕
λ`m ρ

1
[λ,λ].

By Proposition 2.2.5 we have∑
λ`m

dim(ρ[λ,λ]0) =
∑
λ`m

|ST[λ,λ]| =
1
2

∑
λ`m

|ST(λ,λ)|.

On the other hand we have

dim(φ+) = dim(MAsym) =
1
2

∑
λ`m

|ST(λ,λ)|

since, by Lemma 2.4.2, v ∈ B2m is antisymmetric⇐⇒ v
RS7→ (P0, P1;P1, P0) (see

also Proposition 2.4.4). Therefore dim(φ+) =
∑
λ`m dim(ρ[λ,λ]0) and the proof

is now complete.

Example 3.2.7. If G = D4, MAsym is spanned by the antisymmetric elements

in B4/± I. These are

[(2, 1, 4, 3); 0, 1, 0, 1], [(2, 1, 4, 3); 0, 1, 1, 0], [(3, 4, 1, 2); 0, 0, 1, 1],

[(3, 4, 1, 2); 0, 1, 1, 0], [(4, 3, 2, 1); 0, 0, 1, 1], [(4, 3, 2, 1); 0, 1, 0, 1],

so MAsym has dimension 6 and the theorem says that as a D4-module

MAsym
∼= ρ1

[ , ] ⊕ ρ
1h

,
i

3.3 The submodule MSym

An immediate consequence of Theorem 3.2.6 is the following

Theorem 3.3.1. Let MSym be the submodule of M spanned by symmetric in-

volutions of D∗n. As a consequence of the natural decomposition M = MSym ⊕
MAsym, we obtain

MSym
∼=
⊕
µ`m

ρ0
[µ,µ] ⊕

⊕
(λ,µ)`m
λ 6=µ

ρ[λ,µ].

In this section we will provide the description of the irreducible decomposi-

tion of the Dn-modules M(c), where c is any Sn-conjugacy class of symmetric

involutions in Bn/ ± Id. Let v be a symmetric involution in Bn/ ± Id. Recall

the notation 2.3.2: we let Sh(v) be the element of Fer(2, 1, 2, n) which is the
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shape of the tableaux of the image of v via the projective Robinson-Schensted

correspondence. Namely, Sh(v) def= [λ, µ] where

v
RS2−→ ([P ]; [P ]), P ∈ ST(2, 1, 2, n), P of shape [λ, µ].

If c is a Sn-conjugacy class of symmetric involutions in Bn/± Id, we also let

Sh(c) =
⋃
v∈c

Sh(v).

Recall the analogous analysis made for Bn. In that setting, the Sn-conjugacy

classes were parametrized as cf0,f1,p0,p1 . The corresponding Sn-conjugacy classes

in the quotient Bn/± Id are indexed by unordered pairs {(f0, p0), (f1, p1)} sat-

isfying f0 + f1 + 2p0 + 2p1 = n. Paralleling the proof in the case of Bn one can

show that if c is indexed by {(f0, p0), (f1, p1)} then

Sh(c) =


[λ, µ] ∈ Fer(2, 1, 2, n) : λ ` (f0 + 2p0), µ ` (f1 + 2p1),

λ has exactly f0 columns of odd length,

µ has exactly f1 columns of odd length.


We can state the main result of this section.

Theorem 3.3.2. Let c be an Sn-conjugacy class of symmetric involutions in

Bn/± Id. Then

M(c) =
⊕

[λ,µ]∈Sh(c)
λ 6=µ

ρ[λ,µ] ⊕
⊕

[λ,λ]∈Sh(c)

ρ0
[λ,λ].

Proof. We first tackle the (easier) case (f0, p0) 6= (f1, p1). In this case we let

c̃ = cf0,f1,p0,p1 in the notation of Section 1.2.1, be one of the two Sn-conjugacy

classes in Bn whose projection to Bn/ ± Id is c. Then the projection map

c̃ → c is a bijection, and it easily follows that M(c) ∼= M(c̃) ↓Dn . The result

now is a consequence of Theorem 1.2.13 and the discussion on the irreducible

representations of Dn given in Section 3.1.

Now assume that f0 = f1 and that p0 = p1. We denote by c̃ = cf0,f1,p0,p1 the

unique Sn-conjugacy class in Bn whose projection to Bn/± Id is c. We remark

in this case that the projection c̃ → c is 2:1. Nevertheless we may notice that

M(c) ∼= M ′ ↓Dn where M ′ is the Dn-submodule of M(c̃) given by

M ′ = Span{Cv + C−v : v ∈ c̃}.

Therefore, by Theorem 1.2.13 and the same discussion on the irreducible repre-

sentations of Dn cited above, we have that the irreducible components of M(c)



60 3. Decomposition of the model for type D

are some of the ρ[λ,µ], with [λ, µ] ∈ Sh(c) and λ 6= µ, and some of the split

representations ρ0
[λ,λ] and ρ1

[λ,λ], with [λ, λ] ∈ Sh(c).

But now we need to recall that, in the overall, ⊕cM(c) is a Gelfand model

for Dn. Theorem 3.3.1 says that, as we already know that the split represen-

tations ρ1
[λ,λ] appear in MAsym, they cannot appear in M(c). And as the other

irreducible representations listed above can appear in this submodule only (the

sets Sh(c) are clearly all disjoint), they actually have to appear here (and with

multiplicity 1) and the proof is complete.

Example 3.3.3. Let ṽ ∈ B6 given by |ṽ| = [(6, 4, 3, 2, 5, 1); 1, 0, 0, 0, 1, 1]. Let

v be the projection of ṽ in Bn/± Id. Then the Sn-conjugacy class c containing

v has 90 elements and the decomposition of the Dn-module M(c) is given by

all representations indexed by [λ, µ] ∈ Fer(2, 1, 2, 6) where both λ and µ are

partitions of 3 and have exactly one column of odd length, with the additional

condition that if λ = µ the split representation to be considered is [λ, λ]0.

Therefore

M(c) ∼= ρ»
,
– ⊕ ρ0h

,
i ⊕ ρ0»

,
–.



Chapter 4

Decomposition of the model

for the involutory groups

G(r, p, n)

This chapter contains the main result of this work in its most general form.

So far, we met it in various phrasings: for Bn (Theorem 1.2.13), for G(r, n)

(Theorem 1.1.3), for Dn (Theorems 3.2.6 and 3.3.2). In each of these occasions,

we provided a proof which made somehow use of the special form of the group

analyzed.

proj. ref.
groups 6= G(r, p, q, n)

G(r, p, n)

G(r, p, q, n)

G(r, n)

involutory

34 exceptional

Sn• •Bn

Dn•

G(r, p, n)

G(r, p, q, n)

G(r, n)

involutory

34 exceptional

Sn• •Bn

Dn•
G(r, n)

G(r, p, q, n)G(r, p, q, n)G(r, p, q, n)

In the first part of this chapter, we

will afford the general case of all invo-

lutory reflection groups G(r, p, n), i.e.

all G(r, p, n) such that GCD(p, n) =

1, 2 (see Theorem 2.4.5). Though the

main result of this section is a gener-

alization of Theorem 1.1.3, we should

mention that the proof is not, in the

sense that we will make use here of

the main results of Chapter 1. This

fact can also be observed in the proof

of Theorem 3.3.2 for Dn, where the

results already proved for Bn were ac-

tually exploited.

The strategy of our proof will be, in fact, similar to the one followed for Dn.

Nevertheless, the general case presents some more difficulties if compared to the

61
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example of Dn. First of all, a characterization of those G(r, n)-conjugacy classes

that split as G(r, p, n)-conjugacy classes is necessary. This is known for Dn but

we could not find it in literature for the other involutory G(r, p, n), and is the

content of Section 4.1. Secondly, a study of characters of split representations

is needed (see Sections 4.2-4.3), which was only known for Dn as well.

In Section 4.4, concerning the case GCD(p, n) = 2, we are in a position

to determine the irreducible representations appearing in the antisymmetric

submodule. This result is furtherly refined in Section 4.5. Section 4.6, in-

stead, is devoted to refining the symmetric submodule, and concerns both cases

GCD(p, n) = 1, 2. This completes our analysis for the groups G(r, p, n).

In the very last section of this chapter we make a further generalization. We

show how the results attained for the involutory G(r, p, n) can also be extended

to their quotients G(r, p, q, n). This means that our main theorem in its final

version (Theorem 4.7.1) concerns all involutory reflection groups G(r, p, n) and

their quotients modulo scalar sugroups, i.e. all G(r, p, q, n) with GCD(p, n) =

1, 2. In other words, we are dealing with all involutory projective reflection

groups G(r, p, q, n) except those satisfying GCD(p, n) = 4 (see Theorem 2.4.5).

proj. ref.
groups 6= G(r, p, q, n)

34 exceptional

G(r, p, n)

G(r, p, q, n)

G(r, n)

involutory

34 exceptional

Sn• •Bn

Dn•

The last section concerns all involutory
projective reflection groups G(r, p, q, n),
except those satisfying GCD(p, n) = 4.

The last section concerns all involutory
projective reflection groups G(r, p, q, n),
except those satisfying GCD(p, n) = 4.

GCD(p, n) = 4

34 exceptional

4.1 On the split conjugacy classes

Recall the parametrization of the G(r, n)-conjugacy classes given on page 7.

In the case of any involutory reflection group G(r, p, n), we have not been able

to find the nature of the conjugacy classes that split from G(r, n) to G(r, p, n)

in the literature. This is the content of the present section.
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Definition. Let r be even. Let c be a cycle in G(r, n) of even length and even

color. Recall the cyclic notation on page 5. If c = (izi11 , i
zi2
2 , . . . , i

zi2d
2d ) we define

the signature of c to be

sign(c) def= zi1 + zi3 + · · ·+ zi2d−1 = zi2 + zi4 + · · ·+ zi2d ∈ Z2,

so that the signature of c can be either 0 or 1. If g is a product of disjoint cycles

of even length and even color we define the signature sign(g) of g as the sum of

the signatures of its cycles.

Proposition 4.1.1. Let r be even and let c be a cycle in G(r, n) of even length

and even color. Let h ∈ G(r, n). Then

sign(h−1ch) = sign(c) +
∑

j∈|h|−1(Supp(c))

zj(h) ∈ Z2

(see the definition of Supp(c) on page 5). In particular, if g ∈ G(r, n) is a

product of cycles of even length and even color, then

sign(h−1gh) = sign(g) + z(h) ∈ Z2.

Proof. Let |c| = (i1, i2, . . . , i2d). We have that h−1ch is a cycle and |h−1ch| =

(τ−1(i1), . . . , τ−1(i2d)), where τ = |h|. Therefore

sign(h−1ch) =
∑
j odd

zτ−1(ij)(h
−1ch)

=
∑
j odd

zτ−1(ij)(h) + zij (c)− zτ−1(ij+1)(h)

= sign(c) +
∑

j∈|h|−1(Supp(c))

zj(h),

where the sums in the first two lines are meant to be over all odd integers

j ∈ [2d].

As a consequentce of Proposition 4.1.1, we have the following

Corollary 4.1.2. The conjugacy classes of G(r, n) contained in G(r, p, n) of

the special form

cl2α = cl(2α(0),∅,2α(2),∅,...,2α(r−2),∅),

split in G(r, p, n) into (at least) two conjugacy classes, according to the signature.

Let us now afford the G(r, n)-conjugacy classes of a different form, to deter-

mine if they split as G(r, p, n)-classes.

Notation 4.1.3. If G is a group and g ∈ G we denote by ClG(g) the conjugacy

class of g and by CG(g) the centralizer of g in G.
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If g ∈ G(r, p, n) then the G(r, n)-conjugacy class ClG(r,n)(g) of g splits into

more than one G(r, p, n)-conjugacy class if and only if

|ClG(r,n)(g)|
|ClG(r,p,n)(g)|

=
[G(r, n) : G(r, p, n)]

[CG(r,n)(g) : CG(r,p,n)(g)]
=

p

[CG(r,n)(g) : CG(r,p,n)(g)]
> 1.

Thus, ClG(r,n)(g) splits if and only if [CG(r,n)(g) : CG(r,p,n)(g)] < p. The fol-

lowing proposition clarifies which conjugacy classes of G(r, n) split in G(r, p, n),

for every involutory G(r, p, n).

Proposition 4.1.4. Let g ∈ G(r, p, n) and let Cl(g) be its conjugacy class in

the group G(r, n). Then the following holds:

1. if GCD(p, n) = 1, Cl(g) does not split as a class of G(r, p, n);

2. if GCD(p, n) = 2, Cl(g) splits up into two different classes of G(r, p, n) if

and only if all the cycles of g have:

• even length;

• even color,

i.e., if g ∈ (2α(0), ∅, 2α(2), ∅, . . . , 2α(r−2), ∅).

Proof. Let G = G(r, n) and H = G(r, p, n). We first make a general observation.

If CG(g) contains an element x such that z(x) ≡ 1 mod p, we can split the group

CG(g) into cosets modulo the subgroup 〈x〉: in each coset there is exactly one

element having color 0 mod p every p elements. Thus,

[CG(g) : CH(g)] = p

and Cl(g) does not split in H.

Now let GCD(p, n) = 1. Thanks to Bézout identity, there exist a, b such

that an + bp = 1, i.e. there exists a such that the scalar matrix ζar Id has color

1 mod p, so that Cl(g) does not split thanks to the observation above.

Assume now that GCD(p, n) = 2. Arguing as above, there exist a, b such

that ap+ bn = 2, so we know that CG(g) contains at least an element ζar Id with

color 2 mod p.

If there exists at least an element x of odd color in CG(g), the matrix (ζar Id)i ·
x has color 1 for some i, so again Cl(g) does not split in H.

On the other hand, if there are no elements of odd color in CG(g), every coset

of 〈ζar Id〉 has exactly one element belonging to G(r, p, n) out of p′ elements (p′

standing for p
2 as in Notation 2.4.3). Thus,

[CG(g) : CH(g)] = p′
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and Cl(g) splits into p/p′ = 2 classes.

Let us see when this happens according the the cyclic structure of g.

1. If g has at least a cycle of odd color, say c, c is in CG(g) and Cl(g) does

not split.

2. If g has a cycle of odd length, say (az11 , . . . , a
z2d+1
2d+1 ), then (a1

1, . . . , a
1
2d+1)

has odd color and is in CG(g), so Cl(g) does not split.

3. We are left to study the case of g being a product of cycles all having even

length and even color. Thanks to Lemma 4.1.1, every element in CG(g)

has even color, so by the above argument Cl(g) splits into exactly two

classes, and we are done.

Notation 4.1.5. If 2α = (2α(0), ∅, 2α(2), ∅, . . . , 2α(r−2), ∅) is such that the

G(r, n)-conjugacy class cl2α is contained in G(r, p, n) (i.e. if
∑

2i`(α(i)) ≡ 0

mod p), we denote by cl02α the G(r, p, n)-conjugacy class consisting of all ele-

ments in cl2α having signature 0, and we similarly define cl12α. This choice is

coherent with Notation 3.1.2 adopted for Dn.

4.2 The discrete Fourier transform

As we have seen in Section 2.2, there is an action of the cyclic group of order p

on the set Fer(r, n), giving place to the quotient set Fer(r, p, n)∗ = Fer(r, 1, p, n).

We will now illustrate explicitely how this action can be constructed in terms

of representations. Thus, the cyclic group will be acting not on the diagrams of

Fer(r, n), but on the irreducible representations of G(r, n). This action gives us

the opportunity of introducing the concept of discrete Fourier transform, which

will be essential in what follows about the case GCD(p, n) = 2. We will parallel

and generalize in this section an argument due to Stembridge [20, Sections 6

and 7B].

Notation 4.2.1. Given n0, . . . , nk ∈ N such that n0 + . . . + nk = n, consider

the k-tuplet ν = (n0, . . . , nk). We let G(r, ν) def= G(r, n0)× · · · ×G(r, nk) be the

(Young) subgroup of G(r, n) given by

G(r, ν) = {[(σ1, . . . , σn); z1, . . . zn] ∈ G(r, n) :

σi ≤ n0 + · · ·+ nj if and only if i ≤ n0 + · · ·+ nj}.
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Consider the color representation γn mentioned in Proposition 0.4.2:

γn : G(r, n)→ C∗

g 7→ ζz(g)r .

The representation γn has, of course, order r. Consider the G(r, n) represen-

tation ρ(λ(0),...,λ(r−1)), where |λi| = ni. If ν = (n0, . . . , nr−1), 〈γn〉 acts on

ρ(λ(0),...,λ(r−1)) in this way:

γn ⊗ ρ(λ(0),...,λ(r−1)) =IndG(r,n)
G(r,ν)γn|G(r,ν) ⊗

(
r−1⊙
i=0

(γ⊗ini ⊗ ρ̃λ(i))

)
=IndG(r,n)

G(r,ν)

(
(γn0 ⊗ ρ̃λ(0))� · · · � (γ⊗rnr−1

⊗ ρ̃λ(r−1))
)

=ρ(λ(r−1),λ(0),λ(1),...,λ(r−2)).

Since p|r, the group 〈γn〉 contains a cyclic subgroup Γ def= 〈γ
r
p
n 〉 of order p, which,

on its turn, acts on the set of the irreducible representations of G(r, 1, q, n):

γr/pn ⊗ ρ(λ(0),...,λ(r−1)) = IndG(r,n)
G(r,ν)

((
γr

p

n |G(r,ν)

)
⊗
r−1⊙
i=0

(γ⊗ini ⊗ ρ̃λ(i))
)

(4.1)

= ρ(λ(r−r/p),...,λ(r−1),λ(0),...,λ(r−1−r/p)),

and so it corresponds to a shift of r/p of the indexing partitions.

We recall, according to [20], the following

Definition. Let λ = (λ(0), . . . , λ(r−1)) ∈ Fer(r, n), and let (V, ρλ) be a con-

crete realization of the irreducible G(r, n)-representation ρλ on the vector space

V . Let γ be a generator for StabΓ(ρλ). An associator for the pair (V, γ) is

an element S ∈ GL(V ) exhibiting an explicit isomorphism of G(r, n)-modules

between

(V, ρλ) and (V, γ ⊗ ρλ).

By Schur’s lemma Smp(λ) is a scalar, and therefore S can be normalized in such

a way that Smp(λ) = 1.

Recall form Theorem 2.2.5 that a representation ρλ of G(r, n) splits into

exactly mp(λ) irreducible representations of G(r, p, n).

Definition. Let λ ∈ Fer(r, n) and let S be an associator for the G(r, n)-module

(V, ρλ). Then the discrete Fourier transform with respect to S is the family of

G(r, p, n)-class functions ∆i
λ : G(r, p, n)→ C∗ given by

∆i
λ(h) def= tr(Si ◦ h), i ∈ [0,mp(λ)− 1].
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A more accurate analysis of the associator shows that the irreducible repre-

sentations ρi[λ] are exactly the eigenspaces of the associator S, and we make the

convention that, once an associator S has been fixed, the representation ρi[λ] is

the one afforded by the eigenspace of S of eigenvalue ζimp(λ). Therefore

∆i
λ(h) =

mp(λ)−1∑
j=0

ζijmp(λ)χ
j
[λ](h), (4.0)

for all h ∈ G(r, p, n), χj[λ] being the character of the split representation ρj[λ] of

G(r, p, n).

Now let us consider a representation ρλ. Looking at the action described in

(4.1), we see that mp(λ) = |StabΓ(ρλ)| = s only if λ = (λ(0), . . . , λ(r−1)) consists

of a smaller pattern repeated s times. It follows that mp(λ) is necessarily a

divisor of both n and p.

In particular, if GCD(p, n) = 2, mp(λ) = 1, 2 and so the stabilizer of a

representation with respect to Γ can either be trivial or be {Id, γr′n } (we recall

once more that k′ stands for k
2 , according to Notation 2.4.3).

Notation 4.2.2. From now on, when r is even, we use for the representation

γr
′

n (g) = (−1)z(g) the notation δ(g).

When StabΓ(ρλ) = {Id, δ}, we are dealing with representations of the form

ρ(µ,µ), with µ ∈ Fer(r′, n′). Notice that µ may be considered as belonging to

Fer(r′, 1, p′, n′): acting on µ with an element of Cp′ corresponds to acting on

(µ, µ) with an element of Cp, and we know that elements of Fer(r, n) in the same

class modulo Cp parametrize the same irreducible representation of G(r, p, n).

These ρ(µ,µ) are the representations of G(r, n) that split as G(r, p, n)-modules.

As in the case of Dn, they split into two different representations that we denote

by ρ0
[µ,µ] and ρ1

[µ,µ]. We also denote by χ0
[µ,µ] and χ1

[µ,µ] the corresponding

characters. Then the discrete Fourier transform of ρ(µ,µ) is given by the two

functions

∆0
(µ,µ)(h) = χ0

[µ,µ](h) + χ1
[µ,µ](h); ∆1

(µ,µ)(h) = χ0
[µ,µ](h)− χ1

[µ,µ](h).

4.3 The difference character

In this section, we exploit the definition of ∆1
(µ,µ) to provide an explicit

computation of the difference character χ0
[µ,µ] − χ

1
[µ,µ] for every G(r, p, n) with

(p, n) = 2. This computation will turn up to be of crucial importance in the

proof of Theorem 4.4.1.
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Recall that when GCD(p, n) = 2, the conjugacy classes of G(r, n) of the

form cl2α split into two distinct G(r, p, n)-classes cl02α and cl12α, where 2α =

(2α(0), ∅, 2α(2), ∅, . . . , 2α(r−2), ∅) (see Section 4.1).

Notation 4.3.1. In what follows, we often need to compute class functions on

G(r, p, n). For this reason, it will be useful to fix one special element, that we

call normal, for each G(r, p, n)-conjugacy class. If the conjugacy class is not of

the form cl12α, the normal element h is defined as follows:

• the elements of each cycle of h are chosen in increasing order, from the

cycles of smallest color to the cycles of biggest color;

• in every cycle of color i, all the elements have color 0 but the biggest one

whose color is i.

If the class is of the form cl12α the normal element h is defined similarly with

the unique difference that if the cycle containing n has color 2j then the color

of n is 2j − 1 and the color of n− 1 is 1. For example, if

2α =
(

, , , , ,∅ ∅ ∅
)

Then the normal element in cl02α is (1, 2)(3, 4, 5, 62)(7, 8, 9, 104)(11, 124) and the

normal element in cl12α is (1, 2)(3, 4, 5, 62)(7, 8, 9, 104)(111, 123), where we have

omitted all the exponents equal to 0.

Proposition 4.3.2. Let g ∈ G(r, p, n), and µ ∈ Fer(r′, n′). Let χµ denote the

character of the representation of G(r′, n′) indexed by µ. Then

∆1
(µ,µ)(g) =

{
(−1)η2`(α)χµ(α(0), α(2), . . . , α(r−2)), if g ∈ clη2α;

0, otherwise

where, if α = (α(0), ∅, α(2), ∅, . . . , α(r−2), ∅), `(α) =
∑
`(α(i)) (see the definition

of ` in Notation 0.3.3).

Proof. When g does not belong to a split conjugacy class, ∆1
(µ,µ)(g) = 0. In

fact, χ0
[µ,µ] and χ1

[µ,µ] are conjugate characters, so they must coincide on every

element belonging to an unsplit class.

When g does belong to a split conjugacy class, this proof consists of three

steps:

1. Provide an explicit description for the G(r, n)-module ρ(µ,µ).

2. Build an associator S for the G(r, n)-module ρ(µ,µ).

3. Compute the trace tr(S(g)) = ∆1
(µ,µ)(g).
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Let us start with the first step.

Notation 4.3.3. For brevity, we set τ = (t0, . . . , tr′−1), where ti = |µ(i)| and

G(r, (τ, τ)) def= G(r, t0)× · · · ×G(r, tr′−1)×G(r, t0)× · · · ×G(r, tr′−1) < G(r, n).

Our representation ρ(µ,µ) looks like this (see Theorem 0.4.2):

ρ(µ,µ) = IndG(r,n)
G(r,(τ,τ))

(
ρ̃µ(0) � (γn1 ⊗ ρ̃µ(1))� · · · � (γ⊗r

′−1
nr′−1

⊗ ρ̃µ(r′−1))

�(γ⊗r
′

n0
� ρ̃µ(0))� (γ⊗r

′+1
n1

⊗ ρ̃µ(1))� · · · � (γ⊗r−1
nr′−1

⊗ ρ̃µ(r′−1))
)

Splitting the induction into two steps, using the intermediate subgroupG (r, n′)×
G (r, n′), we obtain

IndG(r,n)
G(r,n′)×G(r,n′)

(
Ind

G(r,n′)×G(r,n′)
G(r,(τ,τ))

(
ρ̃µ(0) � · · · � (γ⊗r−1

nr′−1
⊗ ρ̃µ(r′−1))

))
=IndG(r,n)

G(r,n′)×G(r,n′)

(
ρµ � (δ ⊗ ρµ)

)
.

We need to give an explicit description of this representation of G(r, n). Con-

sider the set Θ of two-rowed arrays

[
t1 . . . tn′

tn′+1 . . . tn

]
such that {t1, . . . , tn} =

{1, . . . , n} and the ti’s increase on each of the two rows. Each element in Θ can

be identified with the permutation whose window notation is [(t1, . . . , tn); 0, . . . , 0].

Proposition 4.3.4. Let g ∈ G(r, n). Then

∃ ! t′ ∈ Θ : g = t′(x1, x2) with (x1, x2) ∈ G (r, n′)×G (r, n′) .

Proof. Existence. Let g = [(σ1, . . . , σn); z1, . . . , zn], and let t be the tabloid

whose first and second line are filled with the (reordered) integers σ1, . . . , σn′ ,

and σn′+1, . . . , σn respectively. Since we need to obtain g = t(x1, x2) with (x1, x2) ∈
G (r, n′)×G (r, n′), we have to check that t−1g ∈ G (r, n′)×G (r, n′), i.e.,

1 ≤ t−1|g|(i) = t−1σi ≤ n′, if i ∈ [n′]

n′ < t−1|g|(i)t−1σi ≤ n, if i ∈ [n′ + 1, n],

and this is an immediate consequence of the way t was constructed.

Uniqueness. This is due to cardinality reasons:

|Θ| |G (r, n′)×G (r, n′)| =
(
n

n′

)
(n′!rn

′
)2 = |G(r, n)| .

Thanks to Proposition 4.3.4, a set of coset representatives for the quotient

G(r, n)
G(r, n′)×G(r, n′)
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is given by Θ. Let T be the vector space spanned by the elements of Θ. The vec-

tor space associated to the representation we are dealing with can be identified

with T ⊗ V ⊗ V , and the action of ρ(µ,µ) on it is given by

ρ(µ,µ) : G(r, n) −→ GL(T ⊗ V ⊗ V )

x 7−→ ρ(µ,µ)(x) : T ⊗ V ⊗ V −→ T ⊗ V ⊗ V

t⊗ v1 ⊗ v2 7−→ δ(x2)t′ ⊗ ρµ(x1)(v1)⊗ ρµ(x2)(v2),

where t′, x1 and x2 are uniquely determined by the relation xt = t′(x1, x2) with

t ∈ Θ, (x1, x2) ∈ G (r, n′)×G (r, n′).

We are now ready for the second step.

Proposition 4.3.5. The automorphism S ∈ GL(T ⊗ V ⊗ V ) so defined:

S(t⊗ v1 ⊗ v2) = t̂⊗ v2 ⊗ v1,

where t̂ is the element of Θ obtained from t by exchanging its rows, is an asso-

ciator for T ⊗ V ⊗ V .

Proof. For brevity, all through this proof we set ρ := ρ(µ,µ). All we have to

show is that S is an isomorphism of representations between ρ and δ ⊗ ρ, i.e.,

S ◦ ρ(g) = δ(g)ρ(g) ◦ S.

The set of permutations together with the diagonal matrix [(1, 2, . . . , n); 0, 0, . . . , 0, 1]

generate G(r, n), so this verification can be accomplished when g is one of these

elements only.

Let g be a permutation first. In this case, g1 and g2 are permutations as

well, so δ(g) = δ(g2) = 1. Furthermore, notice that t̂ = ts if s is the tabloid[
n
2 + 1 . . . n

1 . . . n
2

]
. Thus

S[ρ(g)(t⊗ v1 ⊗ v2)] = S[δ(g2)t′ ⊗ g1v1 ⊗ g2v2]

= t̂′ ⊗ g2v2 ⊗ g1v1
F
= [ρ(g)](t̂⊗ v2 ⊗ v1)

= [ρ(g)](S(t⊗ v1 ⊗ v2)) = [δ(g)ρ(g)](S(t⊗ v1 ⊗ v2)),

where equality F follows from

gt̂ = gts = t′(g1, g2)s = t′s(g2, g1) = t̂′(g2, g1).

Let us now choose as g the diagonal matrix [(1, 2, . . . , n); 0, 0, . . . , 0, 1]. In

this case, |gt| = t, while the colors of gt are all 0 but one: zt−1(n)(gt) = 1. We
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have gt = t(x1, x2), where |(x1, x2)| is the identity, and, again, all the colors are

0 but one: zt−1(n)(x1, x2) = 1. So δ(x2) = ±1 according to the value of t−1(n):

δ(x2) =

{
0, if t−1(n) ≤ n

2

1 otherwise.

Therefore, if δ(g2) = −1,

S[ρ(g)(t⊗ v1 ⊗ v2)] = S[δ(g2)t⊗ g1v1 ⊗ g2v2]

= S(−t⊗ g1v1 ⊗ g2v2) = −t̂⊗ g2v2 ⊗ g1v1

= −ρ(g)(t̂⊗ v2 ⊗ v1) = [δ(g)ρ(g)](S(t⊗ v1 ⊗ v2)).

If δ(g2) = 1,

S[ρ(g)(t⊗ v1 ⊗ v2)] = S[δ(g2)t⊗ g1v1 ⊗ g2v2]

= S(t⊗ g1v1 ⊗ g2v2) = t̂⊗ g2v2 ⊗ g1v1

= −(−t̂⊗ g2v2 ⊗ g1v1) = −ρ(g)(t̂⊗ v2 ⊗ v1)

= [δ(g)ρ(g)](S(t⊗ v1 ⊗ v2)).

In both cases, we used the equalities

gt̂ = gts = t(g1, g2)s = ts(g2, g1) = t̂(g2, g1).

Finally, the last step: let us compute ∆1
(µ,µ)(g), for every g belonging to a

split conjugacy class. Since ∆1
(µ,µ) is a class function, we can choose g to be the

normal element of each G(r, p, n)-conjugacy class. In fact, even less is needed:

it will be enough to choose the normal elements of the classes cl02α only, because

of the useful relation (see [20], Proposition 6.2)

∆1
(µ,µ)(ghg

−1) = δ(g)∆1
(µ,µ)(h) ∀g ∈ G(r, n), h ∈ G(r, p, n). (4.-2)

So we compute ∆1
(µ,µ)(h), where h is the normal element of the class cl02α. By

definition, ∆1
(µ,µ)(h) = tr(S ◦ h). Now, given t′ ∈ Θ and (h1, h2) ∈ G (r, n′) ×

G (r, n′) satisfying ht = t′(h1, h2), if vi, vj are vectors of a basis of V ,

S[h(t⊗ vi ⊗ vj)] = S[δ(h2)t′ ⊗ h1vi ⊗ h2vj ]

= δ(h2)t̂′ ⊗ h2vj ⊗ h1vi

= t̂′ ⊗ h2vj ⊗ h1vi,

where the last equality depends on the special way we chose h. Namely, since

(h1, h2) = (t′)−1ht with t, t′ ∈ Sn, the colors of (h1, h2) are the same as in h and
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they are simply permuted, so in (h1, h2) the colors are all even. So the trace we

are computing is given by

tr(S ◦ h) =
∑

i,j=1,...,n′,t=t̂′

(ρµ(h2))i,j(ρµ(h1))j,i =
∑
t=t̂′

χµ(h1h2).

Recall the way t′ is constructed in the proof of Proposition 4.3.4: t′ = t̂ if and

only if |h|(ti) belongs to {tn′+1, . . . , t2n} for every i ∈ [n′]:

{tn′+1, . . . , t2n} = {|h|(ti)}1≤i≤n′ ,

and, viceversa,

{t1, . . . , tn′} = {|h|(ti)}n′<i≤n.

So the t’s satisfying t = t̂′ are those t such that, for every cycle of h, the

consecutive numbers are in opposites rows. We have two possibilities for each

cycle, so they are 2`(α).

Furthermore, suppose h contains a cycle of length 2k and color 2j. Then,

according to which of the two possible choices is made for t, a cycle of length k

and color j will be contained either in h1 or in h2. Thus, h1h2 belongs to the

G (r′, n′)-class clα(0),α(2),...,α(r−2) . So our final result is

∆1
(µ,µ)(h) = 2`(α)χµ(α(0), α(2), . . . , α(r−2)).

Let us now turn to the elements belonging to the other split conjugacy class

cl12α. If h belongs to cl02α, thanks to Lemma 4.1.1,

ghg−1 ∈ cl12α ⇒ z(g) = 1 mod 2⇒ δ(g) = −1,

therefore (see equality (4.3))

∆1
(µ,µ)(ghg

−1) = δ(g)∆1
(µ,µ)(h) = −2`(α)χµ(α(0), α(2), . . . , α(r−2)).

4.4 The antisymmetric submodule

In this section we study the irreducible decomposition of the antisymmet-

ric submodule MAsym (and hence also of the symmetric submodule MSym) of

the Gelfand model M(r, 1, p, n) of the group G(r, p, n) constructed in Theorem

2.5.1. More precisely we will show that MAsym affords exactly one representa-

tion of each pair of split irreducible representations of G(r, p, n); namely, the

one labelled with 1. If GCD(p, n) = 1 the antisymmetric submodule vanishes

(and there are no split representations) so in this section and in the following

we can always assume GCD(p, n) = 2.
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Theorem 4.4.1. Let MAsym be the antisymmetric submodule of the Gelfand

model M(r, 1, p, n) of G(r, p, n). Then

(MAsym, %) ∼=
⊕

[µ,µ]∈Fer(r,1,p,n)

ρ1
[µ,µ].

Proof. The strategy in this proof is the one outlined for the case of Weyl groups

of type D. So we consider the two representations of G(r, p, n)

(MAsym, φ
+) and (MAsym, φ

−),

given by

φ+(g)(Cv)
def= ζ〈g,v〉r C|g|v|g|−1 , φ−(g)(Cv)

def= ζ〈g,v〉r ζa(g,v)
r C|g|v|g|−1

(notice that φ−(g) = %(g)|MAsym). The main idea of this proof is to exploit

Proposition 4.3.2 to show that

χφ+(g)− χφ−(g) =
∑

[µ]∈Fer(r′,1,p′,n′)

χ0
[µ,µ](g)−

∑
[µ]∈Fer(r′,1,p′,n′)

χ1
[µ,µ](g), (4.-2)

where we observe that if [µ] ranges in Fer(r′, 1, p′, n′) then [µ, µ] ranges in

Fer(r, 1, p, n). First of all, we will compute the right-hand side of (4.4). We

already know that it vanishes on every g belonging to an unsplit conjugacy

class. So let g ∈ clη2α.

Let χM denote the character of a model for the group G(r′, n′). Then∑
[µ]∈Fer(r′,1,p′,n′)

(χ0
[µ,µ] − χ

1
µ,µ)(g) =

1
p′

∑
µ∈Fer(r′,n′)

(χ0
[µ,µ] − χ

1
[µ,µ])(g)

=
1
p′

(−1)η
∑

µ∈Fer(r′,n′)

2`(α)χµ(α)

=
1
p′

(−1)η2`(α)χM (α),

where the first equality holds because the contribution of every µ ∈ Fer(r′, n′)

provides p′ copies of the same irreducible representation of G(r, p, n), the second

one follows from Proposition 4.3.2, and χM (α) denotes the value of the character

χM of a Gelfand model of G(r′, n′) on any element of the conjugacy class clα.

Notation. We recall here some notation, which is used in [6] and which we

already met in Chapter 3. For g ∈ G(r, n) we denote by Π2,1(g) the set of

partitions of the set of disjoint cycles of g into:

• singletons;

• pairs of cycles having the same length.



74 4. Decomposition of the model for the involutory groups G(r, p, n)

If π ∈ Π2,1(g) we let `(π) be the number of parts of π and pairj(π) be the

number of parts of π which are pairs of cycles of length j. Moreover, if s ∈ π is

a part of π we let z(s) be the sum of the colors of the (either 1 or 2) cycles in

s. If g and g′ belong to the same conjugacy class clα there is clearly a bijection

between Π2,1(g) and Π2,1(g′) preserving the statistics `(π) and pairj(π), and

the colors z(s) of the parts of π; therefore we sometimes write Π2,1(α) meaning

Π2,1(g) for some g ∈ clα.

If S ⊆ [n], we let

G(r, S) = {[σz11 , . . . , σ
zn
n ] ∈ G(r, n) : σzii = i0 for all i /∈ S}.

If s ∈ Π2,1(g), we let Supp(s), the support of s, be the union of the supports

of the cycles in s (when s is a cycle, see the definition of Supp(s) in Notation

0.3.3).

The set Π2,1(α) can be used to describe the character of a Gelfand model of

G(r′, n′) (see [6, Proposition 3.6]):

χM (α) =
∑
π

(r′)`(π)
∏
j

jpairj(π) (4.-4)

for all α ∈ Fer(r′, n′), where the sum is taken over all elements of Π2,1(α) having

no singletons of even length and such that z(s) = 0 ∈ Zr′ for all s ∈ π.

Let us now evaluate χφ+(g) − χφ−(g). To this aim, we recall some further

notation used in [6]. Consider, for every g ∈ G(r, p, n) and ε ∈ Z2, the set

Aε(g) def= {w ∈ G(r, n) : w is antisymmetric and |g|w|g|−1 = (−1)εw}.

Any w ∈ Aε(g) determines a partition π(w) ∈ Π2,1(g): a cycle c is a singleton of

π(w) if the restriction of |w| to Supp(c) is a permutation of Supp(c) and {c, c′} is

a pair of π(w) if the restriction of |w| to Supp(c) is a bijection between Supp(c)

and Supp(c′). Finally, if π ∈ Π2,1(g), we let Aεπ
def= {w ∈ Aε(g) : π(w) = π}.

Then the set Aε(g) can be decomposed into the disjoint union

Aε(g) =
⋃

π∈Π2,1(g)

Aεπ. (4.-4)

Remark 4. With the above notation, we have

χφ+(g)− χφ−(g) =
1
p

∑
π∈Π2,1(g)

∑
A0
π∪A1

π

ζ〈g,w〉r (1− ζa(g,w)
r ).

Since (see [6, Lemma 5.7])

a(g, w) =

{
0, if w ∈ A0

π(g);

r′, if w ∈ A1
π(g),
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|s| A1
s

{(i1, . . . , id)} with d odd ∅

{(i1, . . . , id)}
ih 7→ ζkr (−1)hih+ d

2

with d ≡ 2 mod 4

{(i1, . . . , id)}
∅

with d 6≡ 2 mod 4

{(i1, . . . , id), (j1, . . . , jd)},
∅

with d odd

{(i1, . . . , id), (j1, . . . , jd)}, ih 7→ ζkr (−1)hjh+l

with d even and jh 7→ −ζkr (−1)h−lih−l

Table 4.1: The sets A1
s as |s| varies.

we find

χφ+(g)− χφ−(g) =
1
p′

∑
π∈Π2,1(g)

∑
w∈A1

π

ζ〈g,w〉r .

If π = {s1, . . . , sh}, it is shown in [6, Section 5] that the set A1
π has a natural

decomposition A1
π = A1

s1 × . . . × A
1
sh

, i.e. every w in A1
π can be written as a

product w = w1 · . . . ·wh, with wi ∈ A1
si . The sets A1

si depend on the structure

of |si| only, and are described in Table 4.1. The table is analogous to Table

3.1, but in the present case, thanks to Remark 4, we focus on A1
s only. The

indices of i1, . . . , id, j1, . . . , jd should be considered in Zd and in any box of the

table the parameters k ∈ Zr and l ∈ Zd are arbitrary but fixed. For example, if

s = {(1, 2), (3, 4)}, and r = 4, then A1
s consists of the 8 elements having either

the form (1k+2, 3k)(2k, 4k+2) or the form (1k+2, 4k)(2k, 3k+2)}, as k varies in



76 4. Decomposition of the model for the involutory groups G(r, p, n)

{0, 1, 2, 3}. This allows to focus on the single sets A1
s, via the identity∑

w∈A1
π

ζ〈g,w〉r =
∑

w1∈A1
s1
,...,wh∈A1

sh

ζ〈g,w1···wh〉
r

=
∑

w1∈A1
s1
,...,wh∈A1

sh

ζ
P
i〈gi,wi〉

r

=
h∏
i=1

∑
wi∈A1

si

ζ〈gi,wi〉r ,

where gi ∈ G(r, Supp(si)) is the restriction of g to Supp(si).

Lemma 4.4.2. If g ∈ G(r, n) has at least one cycle c of odd length, then∑
w∈A1

π

ζ〈g,w〉r = 0

for all π ∈ Π2,1(g).

Proof. This is trivial since in these cases A1
π = ∅ (see Table 4.1).

By Lemma 4.4.2 we can restrict our attention to those elements g having all

cycles of even length.

Lemma 4.4.3. If g ∈ G(r, p, n) has at least one cycle c of odd color, then∑
π∈Π2,1(g)

∑
w∈A1

π

ζ〈g,w〉r = 0.

for all π ∈ Π2,1(g).

Proof. Since the left-hand side is a class function (by equation (4)) we can

assume that g is normal. We prove in this case the stronger statement that∑
w∈A1

π
ζ
〈g,w〉
r = 0 for all π ∈ Π2,1(g). By Lemma 4.4.2, we can assume that

the cycle c has even length. We split this result into two cases. Assume that

the cycle c of odd color - say j - is a singleton si = {c} of π. Then Table 4.1

furnishes the structure of A1
si . In particular, if `(c) 6≡ 2 mod 4, A1

si = ∅ and we

are done; if `(c) ≡ 2 mod 4, we find

∑
w∈A1

si

ζ〈gi,wi〉r =
r−1∑
k=0

ζjkr = 0,

since j is odd and cannot be a multiple of r.
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Now assume that the cycle c belongs to a pair si of π. Let us call a and b

the two colors of the cycles in si, with b odd. Again, looking at Table 4.1,

∑
wi∈A1

si

ζ〈gi,wi〉r =
r−1∑
k=0

d−1∑
l=0

ζak+b(k+(l+1)r′)
r

=
r−1∑
k=0

(d
2
ζ(a+b)k
r +

d

2
ζak+b(k+r′)
r

)
=
d

2

r−1∑
k=0

ζ(a+b)k
r (1 + ζbr

′

r )

=
d

2
(1 + ζbr

′

r )
r−1∑
k=0

ζ(a+b)k
r .

Since b is odd, the factor 1 + ζbr
′

r vanishes and so does the whole sum.

Lemma 4.4.4. Let g ∈ G(r, p, n) be normal and such that all cycles of g have

even color and even length. Then, for all π ∈ Π2,1(g),

∑
w∈A1

π

ζ〈g,w〉r =

{
(−1)sign(g)|A1

π|, if z(s) = 0 for all s ∈ π;

0, otherwise.

Proof. We first assume that sign(g) = 0. If si is a singleton of π of color 2j and

length 6≡ 2 mod 4, then Asi is empty and the result clearly follows. So we can

assume that `(si) ≡ 2 mod 4 and we can derive the value of 〈gi, wi〉 from Table

4.1, and we obtain

∑
wi∈A1

si

ζ〈gi,wi〉r =
r−1∑
k=0

ζ2jk
r =


0, if 2j 6≡ 0 mod r;

r = |A1
si |, if 2j ≡ 0 mod r.

Let now si = {c1, c2} be a pair of cycles of length d, and colors respectively

2a and 2b.

∑
wi∈A1

si

ζ〈gi,wi〉r =
r−1∑
k=0

d−1∑
l=0

ζ2ak+2b(k+(l+1)r′)
r )

= d

r−1∑
k=0

ζ2ak+2bk
r =


0, if 2a+ 2b 6≡ 0 mod r;

dr = |A1
si |, if 2a+ 2b ≡ 0 mod r.

The result follows from these computations together with equation (4.4). If

sign(g) = 1 the proof is similar and is left to the reader.
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We are now ready to prove Theorem 4.4.1. Let first g belong to an unsplit

class. Then g has a cycle of odd length or a cycle of odd color, and then equation

(4), Lemmas 4.4.2 and 4.4.3 ensure that

χφ+(g)− χφ−(g) = 0 =
∑

[µ]∈Fer(r′,1,p′,n′)

χ0
[µ,µ] −

∑
[µ]∈Fer(r′,1,p′,n′)

χ1
[µ,µ](g). (4.-6)

So let g belong to the split conjugacy class of the form cη2α. We are interested

in the evaluation of the sum appearing in (4) and so we can assume that g is

also a normal element. Thanks to Lemma 4.4.4, the only partitions π ∈ Π2,1(g)

contributing to the sum (4) are those satisfying z(s) = 0 mod r for all s ∈ π.

Thus,

χφ+(g)− χφ−(g) =
1
p′

(−1)η
∑

π∈Π2,1(g)

|A1
π|

=
1
p′

(−1)η
∑

π∈Π2,1(g)

r`(π)
∏
j

(2j)pair2j(π),

where, by Table 4.1, the sum is taken over all partitions of Π2,1(g) such that:

• singletons have length ≡ 2 mod 4;

• pairs have even length;

• z(s) = 0 mod r, for all s ∈ π.

Summing up, if g ∈ clη2α, we have

χφ+(g)− χφ−(g) =
1
p′

(−1)η
∑

π∈Π2,1(2α)

r`(π)
∏
j

(2j)pair2j(π)

=
1
p′

(−1)η
∑

π∈Π2,1(2α)

(2r′)`(π)
∏
j

(2j)pair2j(π)

=
1
p′

(−1)η2`(π)+
P
j pair2j(π)

∑
π∈Π2,1(2α)

(r′)`(π)
∏
j

jpair2j(π)

=
1
p′

(−1)η2`(α)
∑

π∈Π2,1(α)

(r′)`(π)
∏
j

jpairj(π),

where α has to be considered as an element in Fer(r′, n′) and the last sum is

taken over all partitions of Π2,1(α) whose singletons have odd length (and pairs

have any length), and z(s) = 0 ∈ Zr′ for all s ∈ π.

The above computation, together with equations (4.4), (4.4) and (4.4), leads

to ∑
[µ]∈Fer(r′,1,p′,n′)

χ0
[µ,µ](g)+χφ−(g) =

∑
[µ]∈Fer(r′,1,p′,n′)

χ1
[µ,µ](g)+χφ+(g) ∀ g ∈ G(r, p, n).

(4.-6)
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Now,
∑
µ∈Fer(r′,1,p′,n′) χ

0
µ,µ and

∑
µ∈Fer(r′,1,p′,n′) χ

1
µ,µ are orthogonal characters.

Therefore, by Theorem 2.2.5 and Proposition 2.4.4, we have that∑
µ∈Fer(r′,1,p′,n′)

dim(ρ0
[µ,µ]) =

∑
µ∈Fer(r′,1,p′,n′)

|ST[µ,µ]| = dim(MAsym) = dim(φ+),

and, analogously,
∑
µ∈Fer(r′,1,p′,n′) dim(ρ1

[µ,µ]) = dim(φ−), we can conclude that∑
µ∈Fer(r′,1,p′,n′)

χ0
[µ,µ](g) = χφ+(g) and

∑
µ∈Fer(r′,1,p′,n′)

χ1
[µ,µ](g) = χφ−(g).

Recalling that φ−(g) = %(g)|MAsym , the above equality means that

(MAsym, %) ∼=
⊕
µ`m

ρ1
[µ,µ],

and Theorem 4.4.1 is proved.

4.5 The antisymmetric classes

An antisymmetric element of G(r, n) can be characterized by the structure

of its cycles, namely, an element v ∈ G(r, n) is antisymmetric if and only if every

cycle c of v has length 2 and is of the form c = (aza11 , a
za2
2 ) with za2 = za1 + r′.

Definition. We say that the residue class of za1 and za2 modulo r′ is the type

of c. If the number of disjoint cycles of type i of an antisymmetric element v of

G(r, n) is ti, then the integer vector τ(v) = (t0, . . . , tr′−1) is called the type of

v.

It is easy to check the following

Remark 5. Two antisymmetric elements in G(r, n) are Sn-conjugate if and only

if they have the same type.

Notation 4.5.1. We denote by AC(r, n) the set of types of antisymmetric el-

ements in G(r, n), i.e. the set of vectors (t0, . . . , tr′) with nonnegative integer

entries such that t0 + · · ·+ tr′−1 = n′. If GCD(p, n) = 2 we let γ be the cyclic

permutation of AC(r, n) defined by γ(t0, . . . , tr′−1) = (tr/p, t1+r/p . . . , tr′−1+r/p)

where the indices must be intended as elements in Zr. We observe that γ has

order p′ and so we have an action of the cyclic group C ′p generated by γ on

AC(r, n). We denote the quotient set by AC(r, p, n)∗. The type of an an-

tisymmetric element of G(r, p, n)∗ is then an element of AC(r, p, n)∗ and if

[τ ] ∈ AC(r, p, n)∗ we let c1[τ ] be the Sn-conjugacy class consisting of the anti-

symmetric absolute involutions in G(r, p, n)∗ of type [τ ].
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The main result of this section, Theorem 4.5.5, provides a compatibility

between the coefficients of τ and the sizes of the indices of the irreducible com-

ponents of the module M(c1[τ ]). For this, it will be helpful the following criterion.

Proposition 4.5.2. Let ν = (n0, . . . , nr−1) be a composition of n into r parts,

and ρ a representation of G(r, n). Then the following are equivalent:

1. The irreducible subrepresentations of ρ are all of the form ρλ(0),...,λ(r−1)

with |λ(i)| = ni for all i ∈ [0, r − 1];

2. There exists a representation φ of G(r, ν) such that ρ = IndG(r,n)
G(r,ν)(φ) and

φ(g) = ζ
P
iz(gi)

r φ(|g|), for all g = (g0, . . . , gr−1) ∈ G(r, ν).

Proof. In proving that (1) implies (2) we can clearly assume that ρ is irreducible

and in this case the result is straightforward from the description in Proposition

0.4.2. In proving that (2) implies (1) we can assume that φ is irreducible. Then it

is clear that φ ↓Sν is also irreducible, where Sν = Sn0×· · ·×Snr−1 . In particular

there exist λ(0), . . . , λ(r−1), with |λ(i)| = ni such that φ ↓Sν∼= ρλ(0)�· · ·�ρλ(r−1) .

Now we can conclude that

φ ∼= (γ0
n0
⊗ ρ̃λ(0))� · · · � (γr−1

nr−1
⊗ ρ̃λ(0)),

and so the result follows again from Proposition 0.4.2.

We now concentrate on the special case p = 2, so that p′ = 1. The general

case will then be a direct consequence. Since the index of G(r, 2, n) in G(r, n) is 2

the induction ψ = IndG(r,n)
G(r,2,n)(M(c1τ ), %) of theG(r, 2, n)-representationM(c1τ ) to

G(r, n) is a representation on the direct sum V ⊕V ′ of two copies of V def= M(c1τ ).

So a basis of V ⊕ V ′ consists of all the elements Cv, C ′v, as v varies in c1τ . If

x = [(1, 2, . . . , n); r − 1, 0, . . . , 0] is taken as a representative of the nontrivial

coset of G(r, 2, n) and we impose that x · Cv = C ′v, the representation ψ of

G(r, n) on V ⊕ V ′ will be as follows

g · Cv =

{
ζ
〈g,ṽ〉
r ζ

z1(ṽ)−z|g|−1(1)(ṽ)
r C|g|v|g|−1 if g ∈ G(r, 2, n),

ζ
〈g,ṽ〉
r ζ

z1(ṽ)
r C ′|g|v|g|−1 if g /∈ G(r, 2, n),

and

g · C ′v =

{
ζ
〈g,ṽ〉
r C ′|g|v|g|−1 if g ∈ G(r, 2, n),

ζ
〈g,ṽ〉
r ζ

−z|g|−1(1)(ṽ)
r C|g|v|g|−1 if g /∈ G(r, 2, n);

where ṽ is any lift of v in G(r, n). Now we want to show that this represen-

tation ψ of G(r, n) is actually also induced from a particular representation of

G(r, (τ, τ)) = G(r, t0) × · · · × G(r, tr′−1) × G(r, t0) × · · · × G(r, tr′−1). With

this in mind we let C be the set of elements v ∈ c1τ having a lift ṽ in G(r, n)
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satisfying the following condition: if (ai, bi+r
′
) is a cycle of ṽ of type i, then

a ∈ [t0 +· · ·+ti−1 +1, t0 +· · ·+ti] and b ∈ [n′+t0 +· · ·+ti−1 +1, n′+t0 +· · ·+ti].
Then, if z def= min{j : tj 6= 0} we let

W
def=
⊕
v∈C

C(Cv + ζzrC
′
v) ⊆ V ⊕ V ′.

Lemma 4.5.3. The subspace W is invariant by the restriction of ψ to G(r, (τ, τ)).

Proof. It is clear that if v ∈ C and g ∈ G(r, (τ, τ)), then |g|v|g|−1 ∈ C. We

observe that, by definition, |g| permutes the elements in ṽ having the same

color, and in particular z1(ṽ) = z|g|−1(1)(ṽ). Moreover, by definition, we also

have z1(ṽ) = z. In particular, if g ∈ G(r, 2, n) ∩G(r, (τ, τ)) we have

g · (Cv + ζzrC
′
v) = ζ〈g,ṽ〉r ζ

z1(ṽ)−z|g|−1(1)(ṽ)
r C|g|v|g|−1 + ζzr ζ

〈g,ṽ〉
r C ′|g|v|g|−1

= ζ〈g,ṽ〉r (C|g|v|g|−1 + ζzrC
′
|g|v|g|−1),

and if g ∈ G(r, (τ, τ) but g /∈ G(r, 2, n) we have

g · (Cv + ζzrC
′
v) = ζ〈g,ṽ〉r ζz1(ṽ)

r C ′|g|v|g|−1 + ζzr ζ
〈g,ṽ〉
r ζ

−z|g|−1(1)(ṽ)
r C|g|v|g|−1

= ζ〈g,ṽ〉r (ζzrC
′
|g|v|g|−1 + C|g|v|g|−1).

The proof is now complete.

Lemma 4.5.4. We have V ⊕ V ′ = IndG(r,n)
G(r,(τ,τ))(W ).

Proof. For this we need to prove that

V ⊕ V ′ =
⊕
g∈K

g ·W, (4.-10)

where K is any set of coset representatives of G(r, (τ, τ)) in G(r, n). But

[G(r, n) : G(r, (τ, τ))] =
n!rn

(τ !)2rn
=

n!
(τ !)2

,

where τ ! = t0! · · · tr′−1!. Moreover

dim(V ⊕ V ′) = 2 dimV = 2

(
n
2

)(
n−2

2

)
· · ·
(
n
2

)
2n
′

τ !2
=
n!
τ !

and dimW = τ !,

so that [G(r, n) : G(r, (τ, τ))] = dim(V⊕V ′)
dimW , and hence to prove (4.5) it is enough

to show that V ⊕ V ′ ⊂ G(r, n)W . To show this we take σ = [n′ + 1, n′ +

2, . . . , n, 1, 2, . . . , n′] ∈ Sn. Then it follows that conjugation by σ stabilizes C,

although σ /∈ G(r, (τ, τ)). Then we have

σ · (ζzrCv + C ′v) = ζzrCσvσ−1 + ζ
z−zn′+1(ṽ)
r C ′σvσ−1

= ζzrCσvσ−1 + ζr
′(ṽ)
r C ′σvσ−1

= ζzrCσvσ−1 − C ′σvσ−1 .
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Since also ζzrCσvσ−1 + C ′σvσ−1 ∈ W we conclude that both Cσvσ−1 and C ′σvσ−1

belong to G(r, n)W for all v ∈ C, and the proof is complete.

We are now ready to prove the main result of this section.

Theorem 4.5.5. Let GCD(p, n) = 2 and [τ ] = [t0, . . . , tr′ ] ∈ AC(r, p, n)∗ (see

Notation 4.5.1). Then

M(c1[τ ]) =
⊕

[λ(0),...,λ(r′−1)]∈Fer(r′,1,p′,n′):

|λ(i)|=ti ∀i∈[0,r′−1]

ρ1
[λ(0),...,λ(r′−1),λ(0),...,λ(r′−1)]

.

Proof. If p = 2 we need to give a closer look at the G(r, (τ, τ))-representation

W . From the proof of Lemma 4.5.3 we have that gDv = ζ
〈g,v〉
r D|g|v|g|−1 =∏

i ζ
iz(gi)
r D|g|v|g|−1 , where Dv

def= Cv + ζzrC
′
v for v ∈ C are the basis elements of

W . In particular, condition (2) of Proposition 4.5.2 are satisfied and the result

is a straightforward consequence of Theorem 4.4.1.

If p > 2 we simply have to observe that the G(r, p, n)-module M(c1[τ ])

is a quotient of the restriction to G(r, p, n) of the G(r, 2, n)-module M(c1τ ).

Since GCD(p, n) = 2, the irreducible representations of G(r, 2, n) restricted to

G(r, p, n) remain irreducible (and are indexed in the “same” way). The result

is then a consequence of the case p = 2 and Theorem 4.4.1.

4.6 The symmetric classes

In this section we complete our discussion with the description of theG(r, p, n)-

module M(c), where c is any Sn-conjugacy class of symmetric absolute invo-

lutions in G(r, p, n)∗. Despite the case p = 1 considered in Chapter 1 and the

case of antisymmetric classes treated in Section 4.5, where a self-contained proof

of the irreducible decomposition of the module M(c) was given, we will need

here to make use of all the main results that we have obtained so far, namely

the construction of the complete Gelfand model in Section 2.5, the study of the

submodules M(c) for wreath products in Section 1.3, as well as the discussion

of the antisymmetric submodule in Section 4.4.

We first observe that, by Theorems 2.5.1 and 4.4.1, the symmetric submodule

has the following decomposition into irreducible representations

MSym
∼=

⊕
[λ]∈Fer(r,1,p,n)

ρ0
[λ].

Recall notation 2.3.2: if v is a symmetric absolute involution in G(r, p, n)∗ we

denote by Sh(v) the element of Fer(r, 1, p, n) which is the shape of the multi-
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tableaux of the image of v, via the projective Robinson-Schensted correspon-

dence. Namely, we let

Sh(v) def= [λ] ∈ Fer(r, 1, p, n),

where

v
RSp−→ (P, P ),

with P ∈ ST[λ]. For notational convenience, if c is a Sn-conjugacy class of

symmetric absolute involutions in G(r, p, n)∗ we also let Sh(c) = ∪v∈cSh(v) ⊂
Fer(r, 1, p, n).

We are now ready to state the main result of this section.

Theorem 4.6.1. Let c be a Sn-conjugacy class of symmetric absolute involu-

tions in G(r, p, n)∗ and GCD(p, n) = 1, 2. Then the following decomposition

holds:

M(c) ∼=
⊕

[λ]∈Sh(c)

ρ0
[λ].

Before proving this theorem we need some further preliminary observations.

Fix an arbitrary Sn-conjugacy class c of symmetric absolute involutions in

G(r, p, n)∗, and let c1, . . . , cs be the Sn-conjugacy classes of G(r, n) which are

lifts of c in G(r, n) (one may observe that s can be either p or p/2, though this

is not needed). We will need to consider the following restriction to G(r, p, n)

of the submodule of the Gelfand model for G(r, n) associated to the classes

c1, . . . , cs,

M̃(c) def= (M(c1)⊕ · · · ⊕M(cs)) ↓G(r,p,n)

Now the crucial observation is the following.

Lemma 4.6.2. The G(r, p, n)-module M(c) is a quotient (and hence is isomor-

phic to a subrepresentation) of M̃(c).

Proof. Let K(c) be the vector subspace of M̃(c) spanned by the elements Cv −
Cζr/pv as v varies among all elements in c1, . . . , cs. Then it is clear that, as

a vector space, M(c) is the quotient of M̃(c) by the vector subspace K(c).

Moreover, if g ∈ G(r, p, n) then

%(g)(Cv − Cζr/pv) = ζ〈g,v〉r (−1)invv(g)C|g|v|g|−1 − ζ〈g,ζ
r/pv〉

r (−1)inv
ζr/pv

(g)
C|g|ζr/pv|g|−1

= ζ〈g,v〉r (−1)invv(g)(C|g|v|g|−1 − Cζr/p|g|v|g|−1),

since g ∈ G(r, p, n) implies 〈g, ζr/pv〉 = 〈g, v〉 . In particular we deduce that

K(c) is also a submodule of M̃(c) (as G(r, p, n)-modules). The fact that M(c) ∼=
M̃(c)/K(c) is now a direct consequence of the definition of the structures of

G(r, p, n)-modules.
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We are now ready to complete the proof of the main result of this section.

Proof of Theorem 4.6.1. By Theorem 1.1.3 the G(r, n)-module M(c1) ⊕ · · · ⊕
M(cs) is the sum of all representations ρλ with λ ∈ Sh(ci), for some i ∈ [s]

or, equivalently, with [λ] ∈ Sh(c). It follows that the restriction M̃(c) of this

representation to G(r, p, n) has the following decomposition

M̃(c) ∼=
⊕

[λ]∈Sh(c):
mp(λ)=1

(ρ0
[λ])
⊕p ⊕

⊕
[λ]∈Sh(c):
mp(λ)=2

(ρ0
[λ] ⊕ ρ

1
[λ])
⊕p/2. (4.-15)

We recall that M(c) is a submodule of a Gelfand model for G(r, p, n) and also

a submodule of M̃(c) by Lemma 4.6.2, and hence, by equation (4.6), we have

that M(c) is isomorphic to a subrepresentation of⊕
[λ]∈Sh(c):
mp(λ)=1

ρ0
[λ] ⊕

⊕
[λ]∈Sh(c):
mp(λ)=2

(ρ0
[λ] ⊕ ρ

1
[λ]).

Furthermore, we already know that the split representations ρ1
[λ] appear in the

antisymmetric submodule by Theorem 4.4.1 and so they can not appear in M(c).

For completing the proof it is now sufficient to observe that, if c and c′ are two

distinct Sn-conjugacy classes of symmetric absolute involutions in G(r, p, n)∗,

then the two sets Sh(c) and Sh(c′) are disjoint. 2

We can also give an explicit combinatorial description of the set Sh(c) for a

given Sn-conjugacy class of symmetric absolute involutions in G(r, p, n)∗.

Notation 4.6.3. Let SC(r, n) = {(f0, . . . , fr−1, q0, . . . , qr−1) ∈ N2r : f0 + · · ·+
fr−1 + 2(q0 + · · ·+ qr−1) = n}. In fact, the set SC(r, n) has already been used

in Section 1.3 to parametrize the Sn-conjugacy classes of absolute involutions

in G(r, n). Let γ be the permutation of SC(r, n) defined by

γ(f0, . . . , fr−1, q0, . . . , qr−1) = (fr/p, f1+r/p . . . , fr−1+r/p, qr/p, q1+r/p . . . , qr−1+r/p),

where the indices must be intended as elements in Zr. We observe that γ has

order p and so we have an action of the cyclic group Cp generated by γ on

SC(r, n). We denote the quotient set by SC(r, p, n)∗.

The set SC(r, p, n)∗ parametrizes the Sn-conjugacy classes of symmetric

absolute involutions in G(r, p, n)∗ in the following way. Let v ∈ I(r, p, n)∗ be

symmetric and ṽ be any lift of v in I(r, n). Then the type of v is given by

[f0(ṽ), . . . , fr−1(ṽ), q0(ṽ), . . . , qr−1(ṽ)] ∈ SC(r, p, n)∗,

where

fi(ṽ) = |{j ∈ [n] : ṽj = ji}|

qi(ṽ) = |{(h, k) : 1 ≤ h < k ≤ n, ṽh = ki and ṽk = hi}|.
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It is clear that this is well-defined and we have that two symmetric elements in

I(r, p, n)∗ are Sn-conjugate if and only if they have the same type (see also [7,

§6] for the special case p = 1).

By Proposition 1.2.2 we can now conclude that, if

[ν] = [f0, . . . , fr−1, q0, . . . , qr−1] ∈ SC(r, p, n)∗

and

c = {v ∈ I(r, p, n)∗ : v is symmetric of type [ν]},

then

Sh(c) =

{
[λ(0), . . . , λ(r−1)] ∈ Fer(r, p, n)∗ : for all i ∈ [0, r − 1],

|λi| = fi + 2qi and λ(i) has exactly fi columns of odd length

}
.

Example 4.6.4. Consider v ∈ G(6, 6, 14)∗ given by

v = [(1, 3, 2, 4, 5, 7, 6, 8, 10, 9, 11, 12, 14, 13); 0, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5].

Then the type of v is [ν] = [1, 2, 0, 1, 2, 0; 0, 1, 1, 0, 1, 1]. Therefore if c is the Sn-

conjugacy class of v in G(6, 6, 14)∗ we have that Sh(c) is given by all elements

[λ(0), . . . , λ(5)] ∈ Fer(6, 1, 6, 14) such that λ(0) and λ(3) have 1 box (and 1 column

of odd length), λ(1) and λ(4) have 4 boxes and 2 columns of odd length, λ(2)

and λ(5) have 2 boxes and no columns of odd length, i.e.

Sh(c) =
{[

, , , , ,
]
,

[
, , , , ,

]
,

[
, , , , ,

]}

Therefore we have the following decomposition of M(c) into irreducible rep-

resentations

M(c) ∼= ρ" , , , , ,
#⊕ρ0"

, , , , ,
#⊕ρ0"

, , , , ,
#.
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4.7 A final survey and a further generalization

proj. ref.
groups 6= G(r, p, q, n)

34 exceptional

G(r, p, n)

G(r, p, q, n)

G(r, p, n)

G(r, p, q, n)

G(r, n)

involutory

34 exceptional

Sn• •Bn

Dn•

Theorem 4.7.1 concerns all involutory
projective reflection groups G(r, p, q, n),
except those satisfying GCD(p, n) = 4.

Theorem 4.7.1 concerns all involutory
projective reflection groups G(r, p, q, n),
except those satisfying GCD(p, n) = 4.

GCD(p, n) = 4

34 exceptional

The aim of this section is to provide a statement containing all the results

that we have collected in this thesis and holding for all the groups G(r, p, n)

with GCD(p, n) = 1, 2. Furthermore, we use this occasion to observe that

the above results apply, in fact, to all the projective groups G(r, p, q, n) with

GCD(p, n) = 1, 2 : see the above diagram.

If v is an absolute involution in G(r, q, p, n) and c is any (symmetric or

antisymmetric) Sn-conjugacy class of absolute involutions in G(r, q, p, n), we

define Sh(v) ∈ Fer(r, q, p, n) and Sh(c) ⊂ Fer(r, q, p, n) as in Notation 2.3.2.

Moreover, we let ι(c) = 0 if the elements of c are symmetric and ι(c) = 1 if the

elements of c are antisymmetric.

Theorem 4.7.1. Let G = G(r, p, q, n) with GCD(p, n) = 1, 2, and consider

its Gelfand model (M(r, q, p, n), %) defined in Theorem 2.5.1. Given an Sn-

conjugacy class c of absolute involutions in G∗, let M(c) = Span{Cv : v ∈ c}
so that M(r, q, p, n) naturally splits as a G-module into the direct sum

M(r, q, p, n) =
⊕
c

M(c).

Then the submodule M(c) has the following decomposition into irreducibles

M(c) ∼=
⊕

[λ]∈Sh(c)

ρ
ι(c)
[λ] .

Proof. We have already established this result if q = 1. In fact, if ι(c) = 0 this

is the content of Theorem 4.6.1, and, if ι(c) = 1, the result follows directly from

Theorem 4.5.5 with the further observation that if v is an antisymmetric element

of type [t0, . . . , tr′−1], then Sh(v) = [λ(0), . . . , λ(r−1)], with |λ(i)| = |λ(i+r′)| = ti.
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If q 6= 1 the result is straightforward since an Sn-conjugacy class of absolute

involutions in G(r, q, p, n) is also an Sn-conjugacy class of absolute involutions

in G(r, 1, p, n) and the definition of the Gelfand models for G(r, p, q, n) and

G(r, p, 1, n) are compatible with the projection G(r, p, 1, n)→ G(r, p, q, n).
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