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1. Introduction

The broad European and Mediterranean region is characterized by an extremely

complex tectonic setting, driven by the major convergence between Eurasian and African

plates. A detailed model of the upper mantle in this region is fundamental to improve our

understanding of its geodynamical evolution. Seismic tomography can help to address

this problem modeling seismic speed anomalies, that can be related to different tectonic

features, such continental roots, rifting areas, magmatic provinces, plumes or subducting

slabs. Due to high seismicity rates and dense seismograph coverage, this region has been

the subject of many tomographic studies from regional to local scale.

Traveltime high resolution models of P-wave speed anomalies [Spakman et al., 1993;

Piromallo and Morelli , 2003] have illuminated the deep structure of the Mantle, but at

shallow depth they often suffer from uneven ray coverage, being strongly dependent on

stations and epicenters distribution. Regional S-wave velocity models have been retrieved

from the analysis of surface wave dispersion group or phase velocity [Ritzwoller and

Levshin, 1998; Villaseñor et al., 2001], from waveform inversion of surface waves mode

coupling [Marquering and Snieder , 1996] or both surface and body waves [Marone et

al., 2004]. However, the non-optimal distribution of observatories and seismic sources

has affected regional tomographic models. Global models derived from surface wave

data image the large-scale structures of the region, but their resolution is insufficient

to describe its complexity [Shapiro and Ritzwoller , 2002; Boschi and Ekström, 2002;

Ritsema et al., 1999; Zhou et al., 2006; Trampert and Woodhouse, 1995]. Global models

with finer parameterization on Mediterranean [Boschi et al., 2004] have been proposed

and recent modeling of surface waves from ambient noise gave new insights into the

shallowest European upper mantle [Yang et al., 2006].

The increased availability of high quality seismic records from permanent observa-

tories and from the recent temporary deployment experiment RETREAT in northern

Apennines, gave us the opportunity to exploit new data, that can provide new and finer

constraints to the tomographical problem. We present a new surface waves tomography

model, because of the enhanced sensitivity of those waves to shallow structure and their

more uniform spatial coverage in complex sources-stations distributions.

The inverse problem of obtaining a VS three-dimensional model from analysis of

surface waves dispersion can be solved in different ways. [Marone et al., 2004] use the
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1. Introduction

partitioned waveform inversion of [Van der Lee and Nolet , 1997], where the 1-D average

S-velocity structure along each path is first determined by non-linear waveform fitting,

and in a second step the 1-D path averaged structures are combined in a damped least-

squares linear inversion for a 3-D S-velocity model. [Shapiro and Ritzwoller , 2002] in a

first step estimate 2-D dispersion maps with a linear tomographic inversion of path av-

erage fundamental mode group and phase velocities, and afterward apply a Monte-Carlo

method to perform the non-linear inversion of the dispersion curves at each geographi-

cal point and retrieve the 3-D shear-velocity model. [Boschi and Ekström, 2002] carry

out a single non-linear inversion of phase anomaly measurements making use of JWKB

ray-theory sensitivity kernels computed in a reference 3-D model. [Zhou et al., 2006]

invert long period fundamental mode phase delays with finite-frequency 3-D Born ap-

proximation kernels, calculated in a reference 1-D model. We will proceed with a 2

steps scheme, first inverting group path average speeds for a regionalized group velocity

model assuming a linearized ray theory wave propagation. Then we will use the group

velocity maps as data to perform an iterative linearized depth inversion for the local 1-D

structure, accounting for lateral variations of the Crust.

This thesis presents the new model along with a discussion of the robustness and

resolution of its main features. We will firstly present the group velocity measurement

technique and an analysis of measurement errors (Chapter 2), then we will introduce

the linear inversion of the regional data starting from a reference global model, with an

accurate examination of the implication of different regularization constraints (Chapter

3). Group velocity maps will be then shown and discussed. Subsequently we will invert

the group velocity for the VS structure of Upper Mantle (Chapter 4). Our resulting 3-D

radially anisotropic model will be discussed in detail and compared with other global

and regional models.
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2. Data analysis

2.1 Data set

We have analyzed long period seismograms relative to 98 medium to large size shal-

low events (depth≤ 50.0 km and magnitude Ms ≥ 4.8 ) occurred between 1998 and

2005 in the geographical frame 10N-80N 35W-80E. Earthquakes have been recorded

by 90 stations placed in the same region (see Figure 2.1) and belonging to networks

IRIS/IDA, IRIS/USGS, MEDNET, GEOSCOPE, GEOFON and the temporary Passcal

deployment RETREAT in northern Apennines (Italy). The choice of this particular ge-

ographical frame is due to the effort of maximizing the regional path coverage, including

the events from Mid Atlantic Ridge at the Western edge of the studied region, and the

high seismicity zone of Middle East and Asia Minor to the East. Seismic networks are

densely distributed in Europe but are very sparse on the African continent. In addition,

its scarce seismicity makes North Africa poorly sampled. This results in an uneven data

coverage, which restricts the region where our results are well constrained to the Mediter-

GMT 2007 Mar 13 12:33:11 GCPR50.dsp
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Figure 2.1: Earthquakes (blue circles) and station (red triangles) distribution.
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2.2. Group velocity measurements 2. Data analysis

ranean and European area. More than 3000 three components seismograms have been

downloaded from the FSDN data center at IRIS DMC and from GEOFON. Each seis-

mogram has been pre-processed with SAC to remove its mean, linear trend and to taper

it, and visually inspected to detect potential anomalies such as calibration pulses, gaps,

spiky signals, non-seismic signals, etc.. (see [Laske, 2002] for an exposition of seismic

processing complications), which would prevent the seismogram from being analyzed.

Only records with satisfactory signal to noise ratio has been kept for the subsequent

dispersion analysis. Horizontal North and East components have been rotated to the

Great Circle Path, in order to have them as Radial and Transverse components. After

this first pre-processing step we had 1689 vertical and 1351 transverse traces.

2.2 Group velocity measurements

Unlike body waves, which phases can be picked on seismograms at a definite instant

of time, surface waves have a longer duration in time given by their dispersion, i.e. by

the different arrival times of the different frequencies packets. Therefore, surface waves

characteristics are better studied with methods that allow a representation of the signal

simultaneously in time and frequency domain, such as the Frequency-Time analysis

described by [Levshin et al., 1989, 1992]. This method permit to separate the different

frequencies of the signal in accordance with their dispersive characteristics. We make

use of an equivalent method implemented in the ”Computer Programs in Seismology”

routines package by R. Herrmann. We measure fundamental mode surface wave group

speed through iterative application of Multiple Filters (MF) and Phase Matched Filters

(PMF). These methods permit to isolate the fundamental mode (the most energetic)

of surface waves from other arrivals and to compute its dispersion characteristics. We

apply these filters on the vertical and the transverse component of the seismogram

to study respectively Rayleigh and Love dispersion characteristics. Multiple Filters

(firstly introduced by [Landisman et al., 1969] and [Dziewonski et. al., 1969]) are a

set of Gaussian narrow band filters centered around different frequencies ωi. We apply

each filter H(ω − ωi) to the Fourier transformed seismic signal, and we successively

transform back the outputs in time domain. In this way, we isolate the frequencies

around ωi, that have approximately the same group arrival time τ(ω) corresponding

to the maximum of the filtered signal. We can display side by side all the output

signal envelopes in function of their central frequency and pick the arrival time of their

maximum amplitude, obtaining a Frequency-Time (FT) graph of the signal spectral

8



2. Data analysis 2.2. Group velocity measurements

Figure 2.2: Graphic interactive window of the CPS multiple filters analysis tool.

Left: The chart shows on the x axis the central frequencies (expressed as periods)

of the Gaussian filters in a logarithmic scale, on the y axis the (spectral) amplitude

of the output signals in counts???. Dots are the relative maxima on the output

signals. Right: On x axis are present the periods of the filters in a linear scale, on

y axis the computed average group velocity for each period. Color scale gives the

spectral amplitude of the signal, while dots indicate the peaks of maximum energy.

amplitude. We can express the group arrival time τ(ωi) in terms of the average group

velocity U(ωi) = ∆/τ(ωi), where ∆ is the ray length, in order to have a graph of group

velocity dispersion in function of frequency (or equivalently period). In Figure 2.2 is

shown the graphic interface of the MF routine. On the left the relative maxima of

energy of each output signals are displayed in function of the filter central period. On

the right, the spectral amplitude is given by different colors and relative maxima of

energy are signed by dots, while y axis gives their group velocity. Thus, the FT graph

gives a first estimate of the dispersion curve, that can be interactively picked to select the

most energetic mode. The FT graph displays different ridges of maximum amplitude,

corresponding to different arrivals. The ridge of absolute maximum energy generally

corresponds to the fundamental mode, while other phases of minor amplitude can be

related to higher modes or to the effects of crustal heterogeneities (multipathing, etc..).

In order to isolate the fundamental mode from the rest of the signal we apply a Phase

Matched Filter [Herrin and Goforth, 1977], a type of linear filter in which the Fourier

phase of the filter is made equal to that of the seismic signal. The phase spectrum Ψ(ω)

9



2.2. Group velocity measurements 2. Data analysis

of the surface wave fundamental mode is related to the group delay time τ(ω)

K(ω) = |K(ω)| exp[−iΨ(ω)]

dΨ(ω)
dω

= τ(ω)
(2.1)

Estimating the group velocity curve on the FT graph within the frequency range (ω0, ω1)

where the signal is well observed, it is possible to build a phase correction

Ψ′(ω) =
( ∫ ω1

ω0

τ(ω)dω

)
+ c1ω =

(
∆

∫ ω1

ω0

1
U(ω)

dω

)
+ c1ω (2.2)

to be introduced into the spectrum K(ω) by multiplying it by the factor exp[−iΨ′(ω)].

U(ω) is obtained by a spline interpolation of the discrete values selected on the FT

graph and the constant c1 is arbitrary chosen. The inverse Fourier transform of the

phase matched spectrum will be a signal compressed in time, ideally a delta function.

In other words, all the energy traveling with the different speeds given by the dispersion

curve U(ω) should arrive on the same instant of time, thus the signal to noise ratio will be

maximized. All the non-dispersed energy (overtones, reflections, coda, other arrivals,...)

is rejected as noise with a tapering time filter around the signal impulse, and the filtered

signal is dispersed again to obtain the presumable single mode trace. Afterwards, the

MF can be reapplied to the single mode trace, and a better estimate of the dispersion

curve can be obtained. This two step procedure can be iterated to refine the dispersion

curve until a stable condition is reached (usually after 2-3 times) and the final dispersion

curve is saved. In Figure 2.3 we show a raw vertical seismogram and below the two

iteratively filtered traces where only the fundamental mode is present. Below the same

procedure is applied to the transverse component, and finally the dispersion curves for

Rayleigh and Love wave are saved. We have iteratively applied MF and PMF to 1689

vertical and 1351 transverse components seismograms, and eventually we have obtained

1549 paths for Rayleigh and 906 paths for Love wave. In Figure 2.4 we show the final

ray coverage for Rayleigh and Love 50 s waves.
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GMT 2006 Sep 20 11:25:42 GCPR50.dsp
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Figure 2.4: Rayleigh (top) and Love (bottom) ray path coverage for the period T

= 50 s.
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2. Data analysis 2.3. Dataset statistics

2.3 Dataset statistics

Data coverage is not only spatially uneven, but also period dependent, as it is shown

in Figure 2.5 for the periods at which measurements are available. This is due to the

difficulty in identifying the fundamental mode at short periods, where the signal is often

masked by strong crustal heterogeneities effects, such as multipathing and scattering,

whereas at long periods ( > 100s ) the signal amplitude decreases with respect to the

noise level, making the measure unstable, especially for moderate size events which

aren’t able to excite the lower frequencies. Love wave measures are much less than

Rayleigh owing to their higher noise level. Horizontal components of a seismogram are

actually often noisier with respect to vertical one, because of their sensitivity to tilt.

The difference in data distribution are shown in Figure 2.6 for 35, 50 and 100 s where

measured velocities are compared to PREM values. Love waves have a wider distribution

than Rayleigh wave and the same holds for short (35s) periods with respect to longer

ones (50 and 100 s). This is due to the increased sensitivity of shorter periods and Love

waves to crustal structures, which are much more heterogeneous with respect to Upper

Mantle. The distributions of T=35 s have a strongly negative average because group

velocities in this sudy are mainly measured on continental paths, hence at 35 s they are

mostly sensitive to slower continental crust, whereas PREM model has a thinner crustal

structure, with a 3 Km water layer on top, which results in a faster group speed.
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Figure 2.5: Number of paths for each period for Rayleigh and Love waves
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and 100 s.
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2.4 Data errors

Data errors are always difficult to estimate, especially when measurements derive from

rather complex analysis including filtering and operator interaction. Moreover, data

errors are not due only to measurements uncertainties, but include also a wide range

of different systematic theoretical sources, such as those caused by event mislocations,

azimuthal anisotropy, off-great circle path propagation due to lateral scattering and

refraction, and group time shifts due to the initial phase at the source. [Ritzwoller

and Levshin, 1998] showed that of these systematic error sources, the most influent is

probably azimuthal anisotropy, whose effect is particularly severe in regions of poor

azimuthal coverage. We will not perform here any experiment to estimate the amplitude

of the bias introduced in the solution by these effects, but we will keep them in mind when

we will analyze, after the tomographic inversion, the misfit between the data predicted

by our group velocity maps and the observed data. The net effect of these errors will

actually be that of increase the part of data that our model is not able to explain.

2.4.1 Error in time or in velocity

It is not trivial to define what is the physical quantity that we measure when we perform

the frequency time analysis. The procedure output is the group speed averaged along the

path and the operator, working on a period vs. velocity plot, can manually select between

different group velocities relative to different wave packets. Thus, the measurement error

seems to be an error on velocity. However, what is actually measured with the the MF

technique is the time delay of a frequency packet, which should lead to an error on

time. Moreover, when we perform the inversion it is convenient to express the data as

total traveltimes, retrieved dividing the path length by the average speed. To clear this

ambiguity we analyze the residuals distribution after the inversion. Residuals are that

part of the data that are not explained by the solution. Therefore, they are an indicator

of the level of error present in the observed data. We plot in Figure 2.7 the absolute

value of the residual of each ray versus the path length for 35, 50, 100 and 150 s: in the

left graphs the residuals are expressed in velocity (km/s), while on the right ones they

are in time (s). Although there is some difference between periods, we find that velocity

residuals decrease with distance (on average), while time residuals do not show such a

dependence. If short rays are more affected by measurement errors, we conclude that

the measured quantity is time, and therefore we will calculate and express the errors in

seconds in the rest of the thesis.
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Figure 2.7: Velocity (Up) and traveltime (Down) residuals for each ray in function

of path length for Rayleigh wave at periods 35 s ,50 s, 100 s and 150 s. Green

crosses are the singular values, red boxes are the values averaged on all the rays in

each length range

Let ∆ti = tobs
i − ttheor

i be the difference between the observed traveltime and that

predicted by the model for i− th ray, and let ∆t̄ be the average residual for all rays. We
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2. Data analysis 2.4. Data errors

define the dat error as the covariance of the residuals distribution.

σ2
d =

∑N
i=1(∆ti −∆t̄)2

N
(2.3)

This a posteriori evaluation of the error is a rather conservative choice, but we feel that

in this way we can account for all the theoretical errors precedently mentioned.

2.4.2 Measurement errors

The inclusion of RETREAT stations in our dataset allow a direct estimation of mea-

surements uncertainties through the analysis of several cluster of rays directed to these

stations. Temporary experiment RETREAT stations (showed on the right in Figure

2.8) have been operating from 2003 to 2006 in a relatively small area in Northern Apen-

nines, and they were up to 200 km apart one from each other, thus below our expected

resolution. We can estimate the maximum ideal resolution by a simple geometrical con-

sideration: our shortest period waves have a wavelength of λ ' 35s·3.5km/s = 122.5km.

We can not expect to discriminate structures smaller than a couple of wavelengths, i.e.

250 km. Despite a complicate local crustal structure, we expect all the measurements

of the same event to be reasonably similar among the different RETREAT stations, and

we consider the differences as a reasonable estimate of the measurement uncertainty.
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Figure 2.8: RETREAT stations (triangles in the rigth panel) and ray clusters (left)

used for measurements error analysis
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Table 2.1: Events used for measurement error evaluation on RETREAT station

records

RETREAT EVENTS

DATE HOUR LAT LON Ms ∆̄(km) N◦ of rays

2003/11/21 04:09:09.52 45.219 -28.035 5.2 3077.8 9

2003/12/23 14:02:04.13 40.135 -29.692 5.4 3367.6 9

2003/12/26 01:56:52.44 28.995 58.311 6.8 4456.6 9

2004/01/24 13:01:45.70 52.122 -30.179 5.4 3156.7 8

2004/02/07 21:17:24.20 36.040 26.910 5.1 1612.1 8

2004/02/24 02:27:46.23 35.142 -3.997 6.4 1623.9 8

2004/03/17 05:21:00.80 34.589 23.326 5.7 1469.5 6

2004/03/25 19:30:49.04 39.930 40.812 5.4 2528.9 4

2004/03/28 03:51:10.05 39.847 40.874 5.3 2445.6 5

2004/04/14 23:07:39.94 71.067 -7.747 5.6 3176.1 3

2004/05/28 12:38:44.27 36.249 51.622 6.4 3547.9 7

2004/08/04 03:01:07.57 36.833 27.815 5.2 1621.9 9

2004/08/11 15:48:26.82 38.377 39.261 5.5 2430.1 9

2004/08/13 10:48:38.93 30.922 69.769 5.1 5256.0 8

We consider 14 clusters of rays directed to 3 to 9 RETREAT stations relative to the

14 events listed in Table 2.1 and showed on the left in Figure 2.8. An example relative

to the event of 11 August 2004 is shown in Figure 2.9. In the top panel are represented

the 9 filtered vertical traces, and beneath are shown the corresponding group velocity

dispersion curves. For each cluster we compute the average distance ∆̄ traveled by

the rays and for each period we calculate the standard deviation of the travel times

of the cluster. We estimate each traveltime as ti = ∆̄/vi where vi is the measured

group velocity. We use the average distance instead of the real distance travelled by

each ray in order to avoid traveltime discrepancies due to different path length in the

same cluster. In Figure 2.10 we plot in blue the 14 traveltime standard deviations, and

in green their average weighted for the number of rays in each cluster. This average

values are a reliable estimate of the measurement errors in our data set, and provide

an evaluation of the repeatability of our measurements. In red we show the data error

calculated in 2.3. As previously remarked, this error estimate considers all the possible
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Figure 2.9: Top: Filtered seismograms relative to the 11 August 2004 Turkey event

recorded by 9 RETREAT stations. Bottom: Dispersion curves obtained from the

frequency-time analysis of the traces.

errors deriving from the theoretical approximations used in the inverse problem, such

as great circle path propagation, no azimuthal anisotropy, no source group time shifts,

etc... Hence, σd is always greater than the RETREAT average errors in green which are

measurement errors. Nevertheless, σd remains still comparable with the clusters singular

errors (the blue dots), meaning that this a posteriori error estimate is legitimate.
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of the residual distribution after inversion (error a posteriori) errors in velocity,
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2.5 Global dataset

A common limitation of regional tomographic models is their being poorly constrained

near the borders, because of lack of data or scarce path coverage. This is due to the

choice of stations and epicenters all inside the study area, to avoid the inclusion of any

external anomaly inside the model. To improve on this situation and also to warrant

consistency with global models, we used the global dataset of phase velocities measure-

ments by [Ekström et al., 1997] (ETL97) to build a global group velocity model. We

will later invert our regional higher resolution measurements keeping the global model

as an a priori reference model, in order to constrain the inversion with a more reliable

laterally varying model. ETL97 global dataset consist of more than 50,000 high quality

fundamental mode Rayleigh and Love phase dispersion curves. Measurements are the

result of the application of an automatic algorithm to records from the Global Seismo-

graphic Network, using events in the Harvard centroid-moment tensor catalog. ETL97

dataset is in the form of a discrete sampling of each apparent average phase curve at a

set of fixed periods (35s, 37s, 40s, 45s, 50s, 60s, 75s, 100s and 150s, but not all of the

curves have the whole range). Group velocity U(ω) can be easily derived from phase
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2. Data analysis 2.5. Global dataset

velocity c(ω) through

U(ω) =
c(ω)

1− ω

c(ω)
dc(ω)
dω

(2.4)

but correct numerical evaluation of frequency derivative of phase requires a comment:

to compute dc(ω)/dω we need to interpolate the discrete values of c(ωi) through splines

functions (either B-splines or cubic splines). However, the phase is a rapidly decreasing

function of ω, so it is preferable to spline the phase anomaly δc(ω) (difference between

the apparent average observed and PREM phase)

δc(ω) = cobs(ω)− c0(ω) (2.5)

and to carry out the conversion to group velocity

δU + U0 =
c0 + δc

1− ω

c0 + δc

(dc0

dω
+

dδc

dω

) (2.6)

where dc0/dω is accurately computed from PREM normal modes expansion.

We tested the precision of this method to give the correct the group velocity by applying

Multiple filters and Phase Matched filters on some of the seismograms and comparing

the resulting dispersion curves with the ones given by phase to group transformation.

In some cases the fit is satisfactory (see Figure 2.11 top), in some other cases we noticed

some differences, that can be partially explained by the different source parameters:

our group speed measurements uses epicenter location from the NEIC catalog, while

the ETL97 dataset is based on CMT location, that can differ up to some kilometers,

because CMT algorithm tends to mask out the local complex structure and to move the

epicenter from its real position. As a result, the ray can be longer or shorter than the

one estimated with NEIC location and the whole group velocity curve can be shifted

in time (see Figure 2.11 down). However, this effect is not systematic (i.e. on average

the rays are not shorter or longer), so the mean global group velocity is likely not to be

affected by this phenomenon.
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Figure 2.11: Top: Dispersion curves given by direct measurements applying mul-

tiple filters and phase matched filters on the record (red) and group velocity con-

verted from phase velocity (blue) Bottom: Dispersion curves given by direct group

speed measurements (red) using NEIC source parameters, direct measurements

using CMT source parameters (green) and group velocity derived from phase dis-
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3. Surface wave tomography

We give some insights in the Linear Inverse Problem theory, starting from a Least-

Squares approach and afterwards including it in a more general probabilistic view. The

tomographic inversion is divided into two steps: we first invert the ETL97 dataset to

build a background reference global model, and then we proceed with the regionalization

of our dispersion curves keeping the global model as an a priori model. We show our

resulting group velocity maps and calculate the associated a posteriori errors. We treat

carefully the implications of the regularization conditions applied to the inverse problem

and finally we discuss and compare their main features with other works present in

literature.

3.1 Linear inverse problems theory

In an inverse problem the aim is to retrieve the parameters of an unknown model m

once we are given some experimental observations dobs, a theory that relates parameters

and observations dobs = g(m) and some constraints on the possible solutions (a priori

information, or information about the model which cannot be derived from data).

3.1.1 Least-Squares solution

In travel time seismic tomography the central point is the solution of the linear system

dobs = Gm (3.1)

where dobs are travel time observations (either P-wave or other body wave phases arrivals,

as well as surface waves group or phase delays) and m are model slowness or speeds.

Owing to noise in seismic data this problem is generally inconsistent, and therefore it

does not have an exact solution. The standard procedure is to find its least squares

solution, which is the vector m such that ||dobs −Gm|| = min. It can be shown that

m = (GT G)−1GT dobs

However, due to inhomogeneity in ray coverage, most tomographic inverse problems

are ill-conditioned, meaning that the matrix (GT G) is singular, or very close to being

singular. In this cases the solution can be better constrained adding further conditions
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3.1. Linear inverse problems theory 3. Surface wave tomography

which reflect our a priori information about the model. We can modify the linear system

(3.1) by adding, for example, two conditions on norm and roughenss
d−Gm = 0

γ I (m−m0) = 0

λHm = 0

(3.2)

where I is the identity matrix and H is a suitable smoothing operator (Gradient or

Laplacian). The first Equation is the previous data misfit minimization. The second

condition tends to keep the solution close to a reference model m0, while the third acts on

the model roughness minimizing the gradient (or the Laplacian) between adjacent model

cells. λ and γ are two arbitrary trade-off parameters which balance the damping effects

with the data fit requirement. Similarly to (3.1), a solution to (3.2) is only possible in a

least-squares sense, and is given by

m = (GT G + γ2 I + λ2 HT H)−1 (GT dobs + γ2 m0) (3.3)

3.1.2 Statistical - Bayesian approach

We follow the approach of [Tarantola, 2005] based on the concept of ”states of infor-

mation”. In this point of view, it is postulated that the more general way to describe

such a state of information (the level of knowledge we have of a parameters set) is to

define a ”probability density” over the parameter space. Consequently, the results of

measurements of the observable parameters (data), the a priori information on model

parameters, and the information on the physical correlations between observable and

model parameters (theory) can all be described using probability densities. The general

inverse problem can then be developed combining all of this information. We restrict

our attention to a very particular (and simple) case: the physical theory is linear and

exact and all the probability density functions (p.d.f.) are Gaussian. We are therefore

supposing that:

• the forward problem relation d = g(m) is exact, i.e. the p.d.f. θ(d/m) to have

the data set d from the model m is a Dirac’s δ function. Thus, we neglect the

modelling errors related to the theory.

θ(d/m) = δ(d− g(m)) (3.4)

In addition, we suppose that the forward problem is linear

d = g(m) = Gm (3.5)
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3. Surface wave tomography 3.1. Linear inverse problems theory

where G is a linear operator relating model parameters m to data d.

• The p.d.f. of the experimental information (data) is Gaussian. This means that

the distribution ν(dobs/d) (i.e. the probability to have the value dobs as output

from the experimental instrument if the real datum in input is d) is a Gaussian

ν(dobs/d) = K · exp
{
−1

2
(d− dobs)T C−1

d (d− dobs)
}

(3.6)

where K is a constant and Cd is the covariance operator which describes the

experimental uncertainties. Making use of the Bayes theorem it is possible to

define the a priori information on data as the conditional probability to have the

datum d if the observed value is dobs

ρD(d) =
ν(dobs/d) µD(d)∫

D d d ν(dobs/d) µD(d)
(3.7)

where µD(d) is an homogeneous p.d.f. for data. In the Gaussian hypothesis Equa-

tion (3.7) becomes

ρD(d) = µD(d) K · exp
{
−1

2
(d− dobs)T C−1

d (d− dobs)
}

(3.8)

• The p.d.f. of the a priori information about the model is Gaussian

ρM (m) = K · exp
{
−1

2
(m−m0)T C−1

M (m−m0)
}

(3.9)

where CM is the a priori model covariance operator, and m0 is the mean of the

distribution. Thus, from our a priori information, we expect the model to be gaus-

sianly distributed around m0 with a covariance given by CM .

The p.d.f. of the solution shall be given by the posterior information on the model

σM (m) = ρM (m)
∫

d d
ρD(d) θ(d/m)

µD(d)
(3.10)

Substituting Equations (3.4), (3.7) and (3.9) into Equation (3.10) we get

σM (m) = K · exp
{
−1

2
[
(g(m)− dobs)T C−1

d (g(m)− dobs)+

+ (m−m0)T C−1
M (m−m0)

]} (3.11)

which is also a Gaussian distribution if the forward problem is linear d = g(m) = Gm.

The mean of the (3.11) is given by the following three equivalent expressions
〈m〉 = (GT C−1

d G + C−1
M )−1 (GT C−1

d dobs + C−1
M m0)

〈m〉 = m0 + (GT C−1
d G + C−1

M )−1 GT C−1
d (dobs −G m0)

〈m〉 = m0 + CM GT (G CM GT + Cd)−1 (dobs −G m0)

(3.12)
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3.1. Linear inverse problems theory 3. Surface wave tomography

It is important to remark that, although we calculate ”the solution” of the inverse

problem with Equations (3.12), in fact this is just the mean model in the set of models

that form the a posteriori probability distribution σ(m). It should be more correct to

show a random sample of models from this distribution, for example obtained by applying

Monte-Carlo methods. Comparing the first of the (3.12) with the Least-Squares solution

(3.3) it is evident that the two approaches are perfectly compatible, provided we express

the a priori information (3.9) as a sum of two different conditions

ρM (m) = K · exp
{
−1

2
[
(m−m0)T C−1

M (m−m0)
]}

=

= K · exp
{
−1

2
[
(m−m0)T C−1

m (m−m0)+

+ (Hm− 0)T C−1
L (Hm− 0)

]} (3.13)

As Cm is the covariance operator which rules the condition on the closeness to m0, CL

is the covariance operator which acts on the smoothing condition, stating how much the

curvature (or the gradient) of the model should be close to zero. Thus, the solution

becomes

〈m〉 = (GT C−1
d G + C−1

m + HT C−1
L H)−1 (GT C−1

d d + C−1
m m0) (3.14)
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3. Surface wave tomography 3.2. Parameterization

3.2 Parameterization

The surface of the Earth is parameterized into a global grid of squared cells of size

250x250 km2 approximately. We project the 12 edges of the inscribed cube on the

Earth surface (we neglect the Earth’s ellipticity) as in figure 3.1. Each face projected

on the sphere is then divided into 40x40 equal size cells, and we apply a trigonometric

correction to minimize the cell stretching near the angles. We apply an Euler rotation to

the reference cube in order to have one face centered on Eurasia an Mediterranean area.

When we perform the regional inversion we consider only the face centered on Eurasia,

divided into a finer grid (80x80 cells), which results in a 120x120 km2 cell size.

GMT 2006 Oct 13 12:40:05 A Lambert azimuthal

Figure 3.1: Rotated cubed sphere, the Earth surface parameterization used in this

study.
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3.3 Forward and inverse problem

We assume that seismic waves propagate along the great-circle arc that connects sources

and receivers, (i.e. we assume a linearized ray theory, where lateral velocity anomalies

are small enough so as to not deviate the ray from its path in a reference laterally ho-

mogeneous model) and we neglect second order effects as azimuthal anisotropy, source

mechanism, scattering, finite frequency effects, multipathing, etc... We set up a sepa-

rate linear inverse problem for each period at which group velocity measurements are

available, and we solve it to obtain two-dimensional group velocity maps of the studied

region. For each ray i = 1, . . . , N of length Li we express the total travel time ti as the

sum of the traveltime t0 (employed by the ray in a reference laterally homogeneous model

of slowness c0 = 1/u0) plus a perturbation δti due to the local perturbation in slowness

δc(x) = 1/δu(x). We approximate the perturbed traveltime with the discretized sum

of all the partial times employed by the ray to cross each cell, considering the unknown

group slowness perturbation δcj constant inside each one of the j = 1, . . . ,M cells which

form the model.

ti =
∫

Li

ci(x) dl =
∫

Li

(
c0 + δci(x)

)
dl =

∫
Li

c0 dl +
∫

Li

δci(x) dl =

= t0 +
∫

Li

δci(x) dl ' t0 +
M∑

j=1

∂ti
∂cj

δcj = t0 +
M∑

j=1

Gij mj

where the matrix element Gij is the distance travelled by the i-th ray in the j-th cell of

perturbed slowness mj . The forward problem is then set as

ti − t0 = di =
M∑

j=1

Gij mj

Following the formulation by [Tarantola and Valette, 1982] we solve the inverse problem

making use of the (3.14). If we associate the same error σd to all data (i.e. we do not

weight data), the same a priori error σm to all model parameters and the same value

σL to the laplacian of each model parameter, the three covariance matrices become a

multiple of the identity matrix I, and we can simplify Equation (3.14) with

m = (GT G +
σ2

d

σ2
m

I + HT σ2
d

σ2
L

H)−1 (GT d +
σ2

d

σ2
m

m0) (3.15)

As a result, only two of the three covariance parameters are independent and the solution

is influenced by the two ratios Km = σ2
d/σ2

m and KL = σ2
d/σ2

L. As explained in the

previous chapter, we evaluate σd as the standard deviation of the residuals distribution
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after inversion, considered to be a conservative estimate of data errors. The choice of

σm and σL is instead more subjective. We do not know of any procedure to derive

quantitative constraints on the allowed variation from the a priori model, or on the

allowed range of Laplacian or Gradient. These values are often a matter of qualitative

evaluation. Hence we give to Km and KL two arbitrary values, we solve the inverse

problem and then we compute the residuals ∆di distribution along with its r.m.s. σr.m.s.

and standard deviation σd.

∆di = dobs
i −

M∑
j=1

Gij mj residual

〈∆d〉 =
N∑

i=1

∆di

N
mean

T 2
r.m.s. =

N∑
i=1

∆d2
i

N
r.m.s.

σ2
d = T 2

r.m.s. − 〈∆d〉2 covariance

(3.16)

Finally, σm e σL are retrieved simply by calculating σ2
m = σ2

d/Km and σ2
L = σ2

d/KL.

The implications of different choices of σm and σL will be exhaustively investigated in

the next section.

3.3.1 Regularization constraints

The condition on model smoothness is imposed by minimizing either the squared norm

of the gradient or the Laplacian of the solution m. On Earth’s surface they are defined

as ∫
Ω
‖∇1 m(θ, φ)‖2dΩ and

∫
Ω
∇2

1 m(θ, φ)dΩ (3.17)

where θ is the co-latitude and φ is the longitude, with (θ̂, φ̂) unit vectors tangent to

Earth’s surface. The surface gradient on the unit sphere is defined

∇1 = θ̂
∂

∂θ
+

1
sin θ

φ̂
∂

∂φ

while the surface Laplacian is

∇2
1 =

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

In a cell model, we can approximate locally the cell parameterization with a cartesian

plane, with the two axes x̂ and ŷ oriented to the East and North, respectively. Let’s

consider the i-th cell, with slowness mi and its surrounding cells ileft , iright, iup and

idown.
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i

 iup

 iright

 idown

ileft 

X

Y

Gradient minimization

We can approximate the Gradient of mi with a finite-difference operator

∇mi =
(∂mi

∂x
,
∂mi

∂y

)
'

(mright
i −mi

xright
i − xi

,
mup

i −mi

yup
i − yi

)
(3.18)

Since the distance between adjacent cells is approximatively constant throughout all the

M cells of the model , the Gradient in (3.18) can be expressed as a 2MxM linear operator

acting on m

∇m = kg

(
Hx

Hy

)
m (3.19)

where kg is a constant depending on the distance between cells.

Hx(i, j) =


−1 for j = i

1 for j = iright

0 elsewhere

Hy(i, j) =


−1 for j = i

1 for j = iup

0 elsewhere

(3.20)

The squared norm of the Gradient is

‖∇m‖2 = mT
(
Hx

T |Hy
T
) (

Hx

Hy

)
m = mT

[(
Hx

THx + Hy
THy

)]
m (3.21)

Substituting the previous condition into the (3.15) we obtain the solution for the gradient

minimization

m =
(
GTG +

σ2
d

σ2
m

I +
σ2

d

σ2
grad

(Hx
THx + Hy

THy)
)−1 (

GT d +
σ2

d

σ2
m

m0

)
(3.22)

Laplacian minimization

We can approximate the Laplacian of mi with a finite-difference operator

∇2mi =
∂2mi

∂x2
+

∂2mi

∂y2
'

mright
i + mup

i + mleft
i + mdown

i − 4mi

4∆x
(3.23)
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As before, we write ∇2m as a MxM linear operator

∇2m = HLm with HL(i, j) =



−4 for j = i

1 for j = iright

1 for j = ileft

1 for j = iup

1 for j = idown

0 elsewhere

and we substitute its squared norm in (3.15)

m =
(
GTG +

σ2
d

σ2
m

I +
σ2

d

σ2
lapl

HT
L HL

)−1 (
GT d +

σ2
d

σ2
m

m0

)
(3.24)

3.4 Global inversion

We invert the ETL97 global group velocity dataset on the global grid of cells of size

250x250 km2 following the least square approach explained in the previous section.

Since at this stage we are building our reference model, we do not have any particular

expectation on the norm of the solution, and therefore we neglect any a priori information

m0: we simplify Equation (3.15) posing σm = ∞ and we consider only a smoothing

condition on the Laplacian (minimum curvature). After a number of tests we chose

σL = 1.04 s/km3 . We performed 11 separated inversions for Rayleigh and 11 for Love

wave at the periods (35 s, 40 s, 45 s, 50 s, 60 s, 75 s, 100 s, 120 s, 130 s, 140 s and

150s). We show the resulting global dispersion maps at three selected periods in Figure

3.2 in terms of percent deviations of group velocity from the Prem value. The resulting

maps are perfectly compatible with those of [Larson and Ekström, 2001], obtained from

the same dataset but with a slightly different inversion procedure and parameterization

(gradient minimization).
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Figure 3.2: Left: Global group velocity anomalies derived from the inversion of the

ETL97 phase velocity dataset for Rayleigh wave at three selected periods. Color

scale is percent variation of group velocity with respect to PREM value. Right:

Global group velocity anomalies for Love wave. Same color scale as for Rayleigh

3.5 Regional inversion

We invert the regional dataset on the finer grid centered on Eurasia with cells of 120x120

km2 (see figure 3.1). We apply Equation (3.15) separately for each period (35 s, 40 s,

45 s, 50 s, 60 s, 75 s, 100 s, 120 s , 130 s, 140 s, 150 s, 160 s and 170 s) and each
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3. Surface wave tomography 3.5. Regional inversion

wave type. As m0 we use the slowness of the global model (each large cell of the global

model is divided into 4 cells with the same slowness in the regional grid). For the 160

s and 170 s data inversion we use the global model at 150 s as reference model, since

there is little difference between the resulting models at these periods. We tested dif-

ferent values for the two ratios σ2
d/σ2

m e σ2
d/σ2

L and we performed inversions both with

the Gradient and the Laplacian minimization. We will exhaustively analyze the impli-

cations of different regularization constraints in the next section. However, we retaine

as our preferred model the solution obtained through the Laplacian minimization with

σL = 4.59 s/km3 and σm = 0.012 s/km (which corresponds to a covariance in group

velocity of about 4.5%). In Figure 3.3 we show a comparison between the global model

for Rayleigh waves at T=100s and the regional solution in Eurasia and Mediterranean

(bounded by the green square) superimposed on the the global model: the inclusion of

our shorter regional paths show finer details missing in the the global model. Anomalies

tend to be stronger, mostly in slow areas. This could be ascribed to the slow tectonic

region of Western Europe and Tethys collision zone along the Alpine-Himalayan belt,

sampled by most regional rays, whereas the global dataset is more equally distributed

between slow and fast ares of the Earth. As a result the average of the regional model

-10 -8 -6 -4 -2 0 2 4 6 8 10
dU/U [%]

Figure 3.3: Regional (left) and Global (right) 100 s Rayleigh group velocity map.

The regional model (inside the green square) is superimposed on the global one.

Color scale represents relative group velocity anomaly with respect to PREM
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Figure 3.4: Left: Rayleigh time residuals r.m.s. (green) for different periods com-

pared to time residuals with respect to PREM model (red). Right: Love time

residuals r.m.s. (green) for different periods compared to time residuals with re-

spect to PREM model (red).

is probably slightly slower than the global one. However, near the borders, where we do

not have data, the solution is perfectly compatible with the global model.

In Figure 3.4 we show the time residuals r.m.s. of the Rayleigh and Love resulting

group velocity model at different periods, compared with the time residuals with respect

to PREM model. Our model explains observed data much better than PREM espe-

cially for shorter periods, whose sensitivity to strongly heterogeneous crustal structures

evidences the inadequacy of the laterally homogeneous PREM crust. Data are better

fitted by our model for longer periods as well, revealing that in such complex regions

like Europe and Mediterranean the one dimensional PREM Upper Mantle is a poor

approximation of the real structure.

3.5.1 Group velocity maps

Figures 3.5 and 3.6 display our best regional group velocity model for Rayleigh wave at

periods 35 s, 40 s, 50 s, 60 s, 75 s, 100 s, 120 s and 150 s. Figures 3.7 and 3.8 show the

regional model for Love wave at the same periods. We do not show other periods results

because they are very similar to those here displayed. We plot anomalies as relative

variations with respect to PREM group velocity. Maps have been plotted after having

removed their average anomaly for legibility.
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3. Surface wave tomography 3.5. Regional inversion

3.5.2 A posteriori errors

A good estimator of the dispersion of the distribution σM in (3.11) is the a posteriori

covariance, defined as

C′
M =

(
GT C−1

D G + C−1
M + HT C−1

L H
)−1

(3.25)

whose diagonal elements give the absolute error on the solution parameters, while the

off-diagonal terms are related to the correlation between different cells. Since the solu-

tion is sought with the dimension of a slowness C, its covariance as well is an error in

slowness δC. We therefore plot the diagonal elements of (3.25) divided by the reference

PREM slowness CPREM as relative errors on model parameters. In Figure 3.9 we show

δC/CPREM for our best inversion of T= 100s Rayleigh and Love wave. For small δC,

δC/CPREM ' δU/UPREM so Figure 3.9 can be compared with 3.5,3.6, 3.7 and 3.8. It is

however formally correct to carry on the error analysis in slowness, as we will need it in

the next Chapter when we will invert for VS in depth. As it was to be expected, errors

are smaller in good coverage areas and increase toward the borders. Other periods show

similar patterns, the most remarkable difference being substantially only in the average

error value. This is strictly related to the total number of paths and their geometrical

distributions, as well as to errors on data at different periods. These error maps give

an idea of the region where the model is better constrained by data, and therefore an
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Figure 3.9: Relative errors δC/CPREM on group slowness for Rayleigh ( left) and

Love (right) wave at T = 100 s with respect to PREM slowness CPREM.
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3.6. Discussion 3. Surface wave tomography

interpretation of the small scale length anomalies in terms of geodynamical structure is

more reliable. However, since our reference model is a good constrained global model,

also longer scale anomalies in areas of higher error levels are trustworthy.

3.6 Discussion

Analysis of lateral variations in group velocity showed in Figures 3.5, 3.6, 3.7 and 3.8

is an optimal tool for an evaluation of the different tectonic features present in the

complex Eurasian and Mediterranean area. Group velocity is actually related to crustal

and Upper Mantle structures with a dependence that varies with periods and wave type.

Generally, shorter periods bring informations on shear speed anomalies at shallow depths,

whereas longer periods sample deeper into the Earth’s Upper Mantle. Moreover, Love

waves are sensitive to shallower structures than Rayleigh waves of the same period. Exact

calculation of depth sensitivity kernels allows the inversion of group velocity anomalies

into elastic parameters anomalies at depth. We will present the inversion of such group

velocity anomalies for the three-dimensional Vs structure of the Upper Mantle in the

next Chapter, but for the moment we can discuss the resulting tomographic maps from

a qualitative point of view. The group velocity depth sensitivity is a complicate function

of radius, both positive and negative. However , in this discussion we can legitimately

make a simplification by assuming that fast group speed anomalies at short (longer)

periods are due to fast shear anomalies at shallower (deeper) depths and vice versa.

We calculate the amplitude of lateral variations in the resulting maps with twice the

standard deviation of the group speed anomalies with respect to PREM. This value

ranges from 21% (35 s) to 5% (170 s) for Love waves and from 14% (35 s) to 6% for

Rayleigh waves. For a correct interpretation of smaller scale anomalies (which derive

from our regional dataset inversion) it is important to remind that better resolved areas

are those with lower errors in Figure 3.9, while higher error areas are less reliable and

should be considered with more precautions.

In Figure 3.10 are plotted the Rayleigh and Love sensitivity kernels at two representative

periods of 35 s and 100 s for a thin oceanic (left) and for a thick continental (right) crust.

Shorter periods (35-40 s for Rayleigh, 35-60 s for Love) depicts primarily the differences

in crustal thickness, i.e. slow group speed is mainly related to thicker crust, whose shear-

wave velocity is much slower than speed in the mantle underlying the thin oceanic crust

at depths where sensitivity of those waves is maximum. 35s Love and Rayleigh maps

report a strong gradient between the thinner oceanic crust in Atlantic ocean and the
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3. Surface wave tomography 3.6. Discussion
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Figure 3.10: Fundamental mode Rayleigh and Love depth sensitivity kernels plot-

ted vs depth, showing sensitivity to different crustal structures at periods T=35 s

and T= 100 s. Oceanic crust ( left) is adapted from model CRUST2.0 tile located

at (50N,20W), continental crust (right) from tile (36N,80E). Underlying Mantle is

model PREM.

thicker slower continental crust of Eurasia and Africa. Slow anomalies are also present

in areas of thickened continental crust, such as the orogenic belts of Caucasus, Zagros

Mountains, and Hindu Kush. Fast anomalies are instead present under the Iberian

peninsula and the Sardinia-Corse Block, the Red Sea Rift area, and a small fast anomaly

in 50 s Love maps correlates very well with the Carpathians. For sublithospheric and

Upper Mantle structures investigation it is better to focus the attention on Rayleigh

wave maps, which have higher resolution at this depth (see Figure 3.10) and provide

more reliable information than Love maps. At 60s and 75 s Rayleigh waves show a

persistent slow anomaly that runs from Hellenic-Cyprean Arc along Anatolian plate and

Southern Iran (Zagros mountains belt), following well the suture between Eurasian and

African plate. This is an extremely active tectonic zone, whose geodynamical asset is

still evolving under the collision of the two continents. This area is well distinct from

the older and tectonically stable Precambrian Eastern European Craton (EEC), which

shows a fast anomaly at 75 s and longer periods. The most striking lineament in our

longer periods maps is the Tornquist-Tesseyre Zone (TTZ), i.e. the junction between

faster EEC and slower thinner lithosphere of Western Europe that runs from Southern

Scandinavia through Poland to the Black Sea. The TTZ has been imaged in other group

velocity studies of the region (such as [Ritzwoller and Levshin, 1998] and [Pasyanos,

2005]), but the particularly dense ray coverage at regional length of this study makes

its lineament perfectly delineated. Other thick and cold continental cratons that show

fast wave speed in our long period maps are the Western Africa and the Baltic shields.
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3.6. Discussion 3. Surface wave tomography

Slow anomalies with thermal origin are present in correspondence of the Mid Atlantic

Ridge and Iceland, getting wider with increasing periods, as well as beneath the Red

Sea rift. Upper mantle thermal anomalies of the Western Mediterranean basin and the

Southern Thyrrenian magmatic province [Piromallo and Morelli , 2003] show up quite

clearly at small scale length in the 60 s and 75 s maps. At T = 150 s we see a fast

anomaly related to the Hellenic arc subduction zone. As well, we see a trace of the

European Cenozoic Rift System on the slow Rhine Graben in Rayleigh 75-150s maps.

In the 100-150 s Rayleigh map it is also evident a sharp distinction between the slow

Southern Caspian Block and the Fast Northern, divided by the Ashgabat fault. This

sharp gradient continues along the Caucasus up to the Northern part of the Black Sea,

merging there with the TTZ.

We compare our Love T = 60 s and Rayleigh T = 100 s maps with the recently

published maps of group velocity dispersion in Eurasia and North Africa by [Pasyanos,

2005], reported in Figure 3.11. We found very good agreement between the large scale

features imaged by the two studies, but Western Europe smaller scale details are better

imaged in our model: for instance, in 60 s Love map the Iceland Hot Spot is better de-

lineated by a slow anomaly, and in Rayleigh 100 s map we can associate a small anomaly

with the Rhine graben, which is instead missing in their model. In general, our model is

also less affected by artifacts like streaks and stripes near the border of the study region.

This is due to our use of a global reference model which constrains better the solution

in scarcely covered areas.
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Figure 3.11: Left: T = 60 s group velocity anomalies map for Love wave from the

model of [Pasyanos, 2005]. Right: T = 100 s Rayleigh map from the same model.

Anomalies are with respect to the map average group velocity.
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Concluding, our group velocity model for the European and Mediterranean region

appears to be an improvement with respect to precedent studies, because of its higher

resolution and simultaneous compatibility with global models. Dispersion maps can be

useful for predicting the arrival time of surface waves, which has applications in earth-

quake location and regional CMT determination. These maps could also be used as

reference starting models in future smaller scale studies to obtain even higher resolu-

tion regional models. Group velocity anomalies correlate well with the known tectonic

features of this area, providing new constraints on crustal and Upper Mantle structure.

Moreover, these group velocity maps can be inverted for the shear velocity at depth

to investigate the three-dimensional structure of the Upper Mantle, which will be the

subject of Chapter 4.
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3.7 Norm and roughness

The choice of the best parameters σm and σL is always a matter of debate. Models are

sensibly dependent on the values of these parameters, but it is not easy to associate the

right level of uncertainty σm to the a priori model, which in our case is itself result of

an inversion, derived from a different dataset on a global scale; in addition, the choice

of a particular value of the smoothing parameter σL is difficult to explain on the base

of physical considerations. In Equation (3.15) it is evident that the two parameters are

also related to the requested level of data fit, represented by the estimate of error σd,

with higher data fit corresponding to higher curvature and/or higher norm of the model.

Although some criteria have been proposed to address this problem (such as the Akaike

criterion [Akaike, 1974]), it appears to be a rather subjective choice, depending on what

are, in our expectations, the model features that our data are reliably able to image.

We performed two set of tests for the regional inversion to investigate the effects

of different values of the parameters on the resulting model for Rayleigh wave T=100

s data. In the first test we minimize the Laplacian of the model while in the second

we minimize the Gradient. In both experiments we select 8 models that have the same

data fit as our preferred model PM (the model presented and discussed so far) but show

different characteristics in terms of smoothness and closeness to the reference global

model m0. By fitting the data equally well, these 8 models are formally all equally valid.

3.7.1 Laplacian minimization

We apply Equation (3.24) to minimize the curvature of the solution . We let Km = σ2
d/σ2

m

and KL = σ2
d/σ2

L vary from 104 to 108 with steps set on a logarithmic scale. At each

inversion we compute σ2
m = σ2

d/Km and σ2
L = σ2

d/KL for all the models, where σd = 12.09

s is the data error for T = 100s. Figure 3.12 shows the time residual r.m.s. Tr.m.s. as a

function of (σL, σm) for each inversion, which define a curved surface (whose z value is

evidenced with different colors). We cut this surface at Tr.m.s. = 12.50 s (the Tr.m.s. of the

PM) and we select 8 models (green circles in Figure 3.12 and following) which have the

same data fit as the PM. We analyze the time residual distribution (dobs
i −

∑M
j=1 Gij mj),

the (mi − mprior
i ) and the laplacian (Hijmj) distribution for these models in terms of

varying σm and σL. The latter two distributions are made up only of cells touched by

rays, so as not to introduce any bias from the part of the a priori model which is not

changed by the data. In Figure (3.15) and (3.16) we show the 3 distributions and maps

for the 8 selected models, plotted with the same color scale of Figure 3.6 for T=100s.

44



3. Surface wave tomography 3.7. Norm and roughness

In Figures 3.13 and 3.14 we show the mean, standard deviation and r.m.s. of the 3

distributions for each inversion.
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Figure 3.12: Residual misfit surface Tr.m.s. as a function of regularization param-

eters (σL and σm). Blue dots are the (σL, σm, Tr.m.s.) triplets actually calculated,

that are then interpolated with a colored surface. We project on the (σm, σL) plane

the color of the surface, related to the z-value (Tr.m.s.). Green circles are the 8

selected models whose Tr.m.s. ' 12.50 s (the Tr.m.s. of the PM).

Analysis

• Time residuals (dobs−Gm) distribution: The effect of σm (model constrained

to be close to m0) is evident on the mean of the residuals distribution, as we can

see in Figure 3.13 (left column, top). While for large values of σm the mean is

approximatively constant, it increases sharply for σm . 0.02 s/km. In Table 3.1

are reported the values mean, σd and r.m.s. for the selected models. Going from

model 1 to model 8 the average time residual increase from 1.73 s to 3.72 s. This
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means that the model becomes faster (on average) when it is constrained to be

closer to m0. This behaviour is probably due to a different mean in ETL97 and our

regional dataset, the first being somewhat faster and therefore tending to decrease

the average computed traveltime. As we requested, models fit data equally well

(r.m.s. is circa constant) and actually the shape of the residuals distribution (the

width of the Gaussian bell) does not change much from model 1 through 8. On

the other hand, the effect of σL on the mean of the residuals appears to be of

minor importance, with only a light decrease of the mean when σL increases. σL

acts on time residual standard deviation and r.m.s., mainly when σm weights less

(compare for example a branch for constant σm ' 0.12 and σm ' 0.01 in Figure

3.13). Thus, when the model is constrained to be smooth, as one could expect, the

data fit decreases.

• (m−m0) distribution: The main features of the residuals distributions are re-

flected also in the distribution of the solution around the a priori model m0 In

Figure 3.13 (right column) are represented the mean, standard deviation and r.m.s.

of the distributions as a function of (σm, σL). As we pointed out for the time resid-

uals mean, the mean of (m−m0) decreases sharply for σm . 0.02 s/km, while it

is almost not affected by σL. Obviously, since a smaller σm keeps the model closer

to m0, this reduces the standard deviation and r.m.s. of the distribution but the

shape of such distribution changes dramatically, as we can see in model 1 to 8 (see

central column in Figures 3.15 and 3.16). When σm approaches 0.02 s/km the

distribution begins to loose symmetry (and consequently it is not really Gaussian

anymore), with a longer tail on the right (larger slowness → slower model). This is

due to the trade-off between data-fit (which requires a slower model, as discussed

previously) and a priori model. The solution tries to satisfy the vicinity to the a

priori model with a narrower distribution around m0, but it has to yield to (un-

der?) data fit increasing the number of slower cells with respect to faster ones (ma

si capisce?). The effect of σL on the mean of the distribution is of minor impor-

tance compared to σm, while on standard deviation and r.m.s. we can note that,

mainly for large values of σm, a small value of σL tends to decrease the standard

deviation and the r.m.s.. Thus, we can deduce that the smoothing condition tends

to bring the solution closer to m0, because m0 is already a model with minimum

curvature.
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• Hm distribution: In Figure 3.14 are plotted the the mean, standard deviation

and r.m.s. of the distributions of the laplacian of the model Hm. As we expected,

the standard deviation decreases when σL gets smaller, and this is particularly

evident for large σm (i.e. when the model is quite far from m0). The same char-

acteristics are present in Figures 3.15 and 3.16 where the Gaussian bell becomes

wider particularly from model 4 to 8, in correspondence with rougher models .

However, in Figure 3.14 we notice also a standard deviation decrease for small

values of σm when σL is large: this is likely to be an effect of the smoothness of

m0, which is a model of minimum curvature. The r.m.s. is very similar to the

standard deviation for all the inversion and the mean is consequently very close

to zero, although a bit negative. The mean , at constant σL, has a minimum for

σm ' 0.02 s/km. Having a mean value very close to zero and a fairly symmetric

distribution for each one of the 8 selected models, we can argue that points with

negative curvature are balanced by points with positive curvature.

Table 3.1: Mean, standard deviation and r.m.s. of the distributions for models 1

to 8

time residuals (s) m−m0 (s/km) H m

n◦ mean σ r.m.s. mean σm−m0 r.m.s. mean σHm r.m.s.

·10−4 ·10−4 ·10−4 ·10−4 ·10−4 ·10−4

1 1.7305 12.362 12.482 32.70 63.61 71.52 -0.22 30.45 30.45

2 1.8047 12.400 12.531 31.95 58.08 66.29 -0.38 29.91 29.91

3 1.9196 12.379 12.527 31.00 53.63 61.95 -0.48 31.12 31.12

4 2.5491 12.243 12.505 27.70 43.22 51.33 -0.72 41.92 41.93

5 2.8212 12.188 12.510 26.65 40.69 48.64 -0.82 48.98 48.98

6 3.1902 12.090 12.504 25.34 38.22 45.86 -0.98 63.54 63.54

7 3.5240 11.989 12.496 24.24 36.89 44.14 -1.18 83.08 83.09

8 3.7231 11.889 12.458 23.56 36.94 43.81 -1.34 103.54 103.55
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Figure 3.13: Left: Mean (top), standard deviation (center) and r.m.s. (bottom)

of the time residuals distribution. Green circles are the selected models whose

Tr.m.s. ' 12.50 s. Model 6 is the PM. Right: Mean (top), standard deviation

(center) and r.m.s. (bottom) of the a posteriori distribution around the reference

model (m−m0).

48



3. Surface wave tomography 3.7. Norm and roughness

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

si
gm

a_
la

pl
ac

ia
n

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

sigma_model

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

si
gm

a_
la

pl
ac

ia
n

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

sigma_model

-0.0002

-0.0001

0.0000

s/km

12345
6

7

8

Mean (H m)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

si
gm

a_
la

pl
ac

ia
n

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

sigma_model

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

si
gm

a_
la

pl
ac

ia
n

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

sigma_model

0.00

0.01

0.02

0.03
s/km 

12345
6

7

8

Standard deviation (H m)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

si
gm

a_
la

pl
ac

ia
n

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

sigma_model

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

si
gm

a_
la

pl
ac

ia
n

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

sigma_model

0.00

0.01

0.02

0.03
s/km 

12345
6

7

8

R.M.S. (H m)

Figure 3.14: Mean (top), standard deviation (center) and r.m.s. (bottom) of the

laplacian distribution Hm . Green circles are the selected models whose Tr.m.s. '
12.50 s.
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Figure 3.15: From left to right : Time Residuals distribution (tobs − tcalc),

(m−m0) distribution, Hm distribution. Models number 1, 2 3, 4 (from top

to bottom). Color scale go from -10% to 10% as in Figure 3.6
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Figure 3.16: From left to right : Time Residuals distribution (tobs − tcalc),

(m−m0) distribution, Hm distribution. Models number 5, 6 (PM), 7, 8 (from

top to bottom). Color scale go from -10% to 10% as in Figure 3.6
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3.7.2 Gradient minimization
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Figure 3.17: Residual misfit surface Tr.m.s. as a function of regularization param-

eters (σg and σm). Blue dots are the (σg, σm, Tr.m.s.) triplets actually calculated,

that are then interpolated with a colored surface. We project on the (σm, σg) plane

the color of the surface, related to the z-value (Tr.m.s.). Green circles are the 8

selected models whose Tr.m.s. ' 12.50 s (the Tr.m.s. of the PM, obtained with the

laplacian minimization).

In the second test we apply Equation (3.22) to minimize the Gradient of the solution,

to test the effect of a different smoothing condition. As in the Laplacian case, we let

Km = σ2
d/σ2

m and Kg = σ2
d/σ2

g vary from 104 to 108 on a logarithmic scale. We then

calculate σ2
m = σ2

d/Km and σ2
g = σ2

d/Kg for all the models, whit σd = 12.09 s. For

each inversion we compute the r.m.s. of the time residuals Tr.m.s.. Figure 3.17 shows

with blue dots the Tr.m.s. as a function of the (σg, σm) regularitazion parameters. The

values actually calculated are then interpolated by the colored surface. We carry out the

analysis on the time residuals distribution (dobs
i −

∑M
j=1 Gij mj), the (mi−m0

i ) and the
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gradient (Hxijmj ,Hyijmj) distribution for each model in terms of varying σm and σg.

In Figures 3.19 and 3.20 we show with different colors the mean, the standard deviation

and the r.m.s. of each distribution. We select 8 models (green circles) that have the same

Tr.m.s. of the Preferred Model (Tr.m.s. = 12.50 s), and we display the three distributions

for these 8 models in Figures 3.21 and 3.22.

Analysis

• Time residuals (dobs −Gm) distribution: Figure 3.19 resembles closely the

Laplacian case, with the mean (top) that remains approximatively constant through-

out the (σm, σg) plane with a sharp increase for σm . 0.02 s/km, i.e. when the

model approaches m0. Also the standard deviation and the r.m.s. show similarity

with the Laplacian case, although with slightly lower values. This could lead to

the conclusion that, since the Gradient minimization provide a better data fit, it

should be a preferable smoothing condition. However, we must keep in mind that,

if we choose σL = σg and we invert with the same σm, the model with the minimum

gradient will be rougher with respect to the minimum laplacian model. Therefore,

since the subjective choice of the ”best” model does not involve only data fit, but

also acceptable smoothness, the two smoothing methods are completely equiva-

lent. For example we plot in Figure 3.18 model A (top) obtained with laplacian

minimization and σL = 0.054, σm = 0.054, and model B (down) obtained with

gradient minimization and σg = 0.054 , σm = 0.054. Model A has time residual

r.m.s. = 10.32 s and model B has r.m.s. = 9.07 s.

• (m−m0) distribution: The right column of Figure 3.19 shows the mean, stan-

dard deviation and r.m.s. of the models distributions around the reference model.

The pattern are perfectly comparable with the Laplacian case, with the mean that

is extremely sensitive to small values of σm and almost not influenced by σg. The

standard deviation and r.m.s. still increase when the solution is less constrained (

for larger values of both σg and σm), and even the gradient minimization alone is

able to bring the solution toward m0, because the reference model, although is not

a minimum gradient model, is nevertheless a smooth model. Since time residuals

standard deviation and r.m.s. are generally lower than in the Laplacian minimiza-

tion, consequently (m−m0) st.dev and r.m.s. are slightly higher, at least for

medium to large σg and σm. As previously remarked, as the mean decreases, the

asymmetry in the (m−m0) distribution for the selected models increases going
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Figure 3.18: Top: Model A, obtained with laplacian minimization and σL = 0.054,

σm = 0.054 has time residuals r.m.s. = 10.32 s. Down: Model B, obtained with

gradient minimization and σg = 0.054, σm = 0.054 has time residuals r.m.s.=9.07s.

from model 1 to 8 (see Figures 3.21 and 3.22).

• Hx m and Hy m distribution: In Figure 3.20 we show Hx m (left) and Hy m

(right). As with the Laplacian, the mean is extremely close to zero, although a bit

negative. There is a strong difference in pattern between the x and y direction:

whereas the x gradient mean goes close to zero both for small σg and σm (always

because m0 is smooth), the y gradient remains further from zero for most values

of σg when σm is small, but when σm increases there is a band of σg (roughly

0.03 . σg . 0.10) for which the mean moves toward zero. This discrepancy

could derive from the preferential orientation EW of most rays, that sample the

southern Europe and Mediterranen area and from the same EW orientation of the

slow tectonic Tethydean region. For what concerns standard deviation and r.m.s.

the two directions are similar, and resemble fairly well the laplacian pattern, but

with lower values: apparently the Gradient minimization is better satisfied than

the Laplacian one.
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Figure 3.19: Left: Mean (top), standard deviation (center) and r.m.s. (bottom)

of the time residuals distribution. Green circles are the selected models whose

Tr.m.s. ' 12.50 s. Right: Mean (top), standard deviation (center) and r.m.s.

(bottom) of the a posteriori distribution around the reference model (m−m0).
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Figure 3.20: Mean (top), standard deviation (center) and r.m.s. (bottom) of the

gradient distribution Hx m,Hy m . Green circles are the selected models whose

Tr.m.s. ' 12.50 s.
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Figure 3.21: Left: Time Residuals distribution (tobs − tcalc). Center: (m−m0)

distribution (NB: only the cells where I have rays) Right: Hx m(red) and Hy m

(blue) distribution (NB: only the cells where I have rays). Most right column:

Models number 1, 2 3, 4 (from top to down). Color scale goes from -10% to 10%

as in Figure 3.6
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Figure 3.22: Left: Time Residuals distribution (tobs − tcalc). Center: (m−m0)

distribution (NB: only the cells where I have rays) Right: Hx m(red) and Hy m

(blue) distribution (NB: only the cells where I have rays). Most right column:

Models number 5, 6 (PM), 7, 8 (from top to down). Color scale goes from -10% to

10% as in Figure 3.6
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3. Surface wave tomography 3.7. Norm and roughness

Table 3.2: Mean, standard deviation and r.m.s. of the distributions for models 1

to 8

time residuals (s) m−m0 (s/km) Hy m

n◦ mean σ r.m.s. mean σm−m0 r.m.s. mean σHym r.m.s.

·10−2 ·10−2 ·10−2 ·10−2 ·10−2 ·10−2

1 1.8119 12.4129 12.5445 0.3306 0.4868 0.5884 -0.0152 0.2524 0.2529

2 1.8442 12.3403 12.4773 0.3239 0.4853 0.5834 -0.0166 0.2614 0.2619

3 1.9702 12.3800 12.5358 0.3135 0.4600 0.5567 -0.0177 0.2578 0.2584

4 2.1576 12.3608 12.5477 0.3015 0.4339 0.5284 -0.0186 0.2622 0.2629

5 2.7240 12.2028 12.5031 0.2738 0.3909 0.4772 -0.0197 0.2961 0.2967

6 3.4280 12.0074 12.4871 0.2466 0.3671 0.4423 -0.0207 0.3645 0.3651

7 3.7310 11.9045 12.4755 0.2358 0.3671 0.4364 -0.0211 0.4135 0.4141

8 3.8287 11.8803 12.4820 0.2326 0.3678 0.4352 -0.0212 0.4295 0.4301

Hx m

n◦ mean σHym r.m.s.

·10−2 ·10−2 ·10−2

1 -0.0073 0.2062 0.2063

2 -0.0073 0.2140 0.2142

3 -0.0080 0.2094 0.2095

4 -0.0091 0.2129 0.2131

5 -0.0105 0.2447 0.2449

6 -0.0114 0.3105 0.3107

7 -0.0119 0.3589 0.3591

8 -0.0120 0.3749 0.3751
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4. Inversion for shear-wave velocity

4.1 Group velocity and depth structure

Group and phase velocities of surface waves are functions of the speed and density profile

of the top few hundreds of kilometers of the Earth. In particular, different frequencies

sample different depth ranges, with longer periods sensitive to deeper structures. Con-

sequently, surface wave dispersion anomalies provide useful information on the elastic

properties at depth, and permit to set up an inverse problem where one retrieves crustal

and upper mantle 3D structure from observed surface wave dispersion data. There are

different approaches in literature to address this 3-D inverse problem. [Marone et al.,

2004] use the partitioned waveform inversion of [Van der Lee and Nolet , 1997], where

the 1-D average S-velocity structure along each path is first determined by non-linear

waveform fitting, and in a second step the 1-D path averaged structures are combined in

a damped least-squares linear inversion for a 3-D S-velocity model. [Shapiro and Ritz-

woller , 2002] in a first step estimate 2-D dispersion maps with a linear tomographic inver-

sion of path average fundamental mode group and phase velocities, and afterward apply

a Monte-Carlo method to perform the non-linear inversion of the dispersion curves at

each geographical point and retrieve the 3-D shear-velocity model. [Boschi and Ekström,

2002] carry out a single non-linear inversion of phase anomaly measurements making use

of JWKB ray-theory sensitivity kernels computed in a reference 3-D model. [Zhou et al.,

2006] invert long period fundamental mode phase delays with finite-frequency 3-D Born

approximation kernels, calculated in a reference 1-D model. Our approach will consist

in using the group velocity maps as data and to perform an iterative linearized depth

inversion for the local 1-D structure, accounting for the lateral variations of the Crustal

model.

4.1.1 Depth sensitivity kernels

The solution of the equation of motion for Love or Rayleigh waves in a vertically heteroge-

neous elastic medium bounded by a free-surface is an eigenvalue-eigenfunction problem,

that can generally be solved through numerical methods such as Runge-Kutta integra-

tion. Another approach is to approximate the radially varying medium with a stack of

isotropic homogeneous flat layers over an half-space and then apply the Thomson-Haskell
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propagator matrix method. Finally, once eigenvalues and eigenfunctions are found, ap-

plication of variational principle to the the energy integral permits to retrieve the phase

C(ω) and group velocity U(ω) and their partial derivatives

∂C

∂m
(r)

∣∣∣∣
ω

and
∂U

∂m
(r)

∣∣∣∣
ω

with respect to the medium elastic parameter m(r) (see Chapter 7 in [Aki and Richards,

2002] for an exposition in isotropic vertically heterogeneous media). Such partial deriva-

tives that relate model elastic parameters to group (or phase) velocity are the so-called

depth sensitivity kernels. For an isotropic, vertically heterogeneous Earth, characterized

by density, P- and S-velocities ρ(r), α(r), β(r), the following integral expresses Rayleigh

group velocity anomalies predicted by the perturbation of the 1-D model at the period

Ti.

δUR(Ti) =
∫ R

0

[∂Ui

∂ρ
(r) δρ(r) +

∂Ui

∂α
(r) δα(r) +

∂Ui

∂β
(r) δβ(r)

]
dr (4.1)

while for the Love group velocity there is no dependance from α(r).

δUL(Ti) =
∫ R

0

[∂Ui

∂ρ
(r) δρ(r) +

∂Ui

∂β
(r) δβ(r)

]
dr (4.2)

However, surface waves are mostly sensitive to shear-velocity and provide only limited

information on the density and P-wave velocity structure, so it is common to invert only

for β(r) and keep ρ(r) and α(r) fixed in the model. In the solution of the inverse prob-

lem, we will compute partial derivatives and group velocity with the Haskell-Thomson

propagator method [Herrman, 2005]. Hence, our model is locally approximated by a

stack of flat, homogeneous and isotropic layers. Therefore we will approximate the inte-

gral over Earth radius in (4.1) and (4.2) with a discrete sum over M layers, each one of

constant shear velocity mj .

δU(Ti) '
M∑

j=1

∂Ui

∂mj
δmj (4.3)

Kernels shape changes much with period: shorter periods kernels focus the sensitivity

at shallower depths while longer periods illuminate deeper structures but their peak

broadens and flattens out. In Figure 4.1 we show fundamental mode group velocity

kernels for Rayleigh and Love wave as a function of depth at different periods computed

for model PREM. The 35 s period Rayleigh kernel, for example, has a peak at about

45 km depth, turns negative below 80 km and is almost to zero at 200 km. Instead

the 150 s kernel is maximum at about 160 km, has still a positive amplitude at 300 km
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Figure 4.1: Fundamental mode Rayleigh ( left) and Love (right) depth sensitivity

kernels as a function of depth at a set of different periods. The partial derivatives of

group velocity with respect to shear velocity are computed in a layered flat model

corrected for Earth Flattening that approximates the radially anisotropic model

PREM.

and a negative sensitivity down to 600 km. As a result, the simultaneous presence of

positive and negative sensitivity at each depth in the Upper Mantle permits to limit the

trade-off between structures in different layers in a joint inversion of different periods.

These considerations allow us to expect a good resolution at least down to 250 km with

the periods in our dataset, but the solution will depend also on the structure down to

500-600 km. Unlike Rayleigh, Love wave kernels are prominently sensitive to crustal and

top mantle layers for all the periods, so are less able to discriminate between different

depth structures. However, a joint inversion of Love and Rayleigh waves is crucial to

retrieve a radially anisotropic model of Earth’s Upper Mantle. .
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4.2. Non-linear inversion 4. Inversion for shear-wave velocity

4.2 Non-linear inversion

The linear Least-Squares or the Bayesian formulas used in the regionalization (see Chap-

ther 3) can not be applied to solve the depth inversion problem, due to the non-linearity

of the problem. The shear velocity kernels are in facts non-linear functions of the model

parameters ( i.e. they change when the model parameters change), therefore the forward

problem is non linear

δU(Ti) '
M∑

j=1

∂Ui

∂mj
δmj =⇒ d = g(m) 6= G ·m (4.4)

In case of a non-linear relation between parameters and data, σM (m) in (3.11) is not

Gaussian anymore and we must find an alternative formulation. This problem can be

resolved with the method proposed by [Tarantola and Valette, 1982], which leads to an

iterative algorithm that can easily converge if the non-linearity is not too strong. The

solution is then given by three equivalent expressions:

mn+1 =


mn +

(
GT

n C−1
d Gn + C−1

M

)−1(
GT

n C−1
d

(
g(mn)− dobs

)
+ C−1

M

(
mn −m0

))
m0 −

(
GT

n C−1
d Gn + C−1

M

)−1
GT

n C−1
d

((
g(mn)− dobs

)
−Gn

(
mn −m0

))
m0 −CMGT

n

(
GnCMGT

n + Cd

)−1((
g(mn)− dobs

)
−Gn

(
mn −m0

)) (4.5)

where g(mn) = U(mn) = Un are the group velocities computed for model mn and

Gn =
(

∂g
∂m

)∣∣∣∣
mn

=
∂Un

∂mn

are the partial derivatives. Thus, at each iteration we compute with the Haskell-Thomson

routines the group velocities and partial derivatives predicted by the starting model mn,

and we invert minimizing the residuals with the observed data and keeping the solution

close to the a priori reference model m0. Once a solution is found we use it as the

new starting model, thus we calculate again group velocities and partial derivatives

and iterate the inversion, until a stable condition is reached. At each step, however,

the a priori condition continues to keep the model close to the reference model m0, to

guarantee consistency with a priori information. As in the linear case, Cd and CM are

the covariance matrices that express our confidence on data and a priori model.

4.3 Transverse isotropy

Transverse isotropy (or radial anisotropy) is the property of a material in which the

elastic stress-strain relations are invariant under rotations about a symmetry axis. In a

64



4. Inversion for shear-wave velocity 4.3. Transverse isotropy

stratified Earth, where properties vary along the z-axis, the speeds of horizontally and

vertically propagating P- and S-waves differ from the isotropic velocities α2 = (λ+2µ)/ρ

and β2 = µ/ρ. A transverse isotropic medium is characterized by 5 independent elastic

moduli A, C, F, L, N , using the notation of [Love, 1927]. A and C can be determined

from measurements of horizontally and vertically propagating P-waves

A = ρ V 2
PH

C = ρ V 2
PV

while in general the shear speeds depend both on wave polarization and direction of

propagation. For horizontally traveling wave with horizontal or vertical polarization

N = ρ V 2
SH

L = ρ V 2
SV

whereas for vertically propagating S-waves there is no splitting and the speed is controlled

by L independently from the polarization. F is usually expressed by the dimensionless

parameter η = F/(A − 2L) and is related to different angles of incidence of the prop-

agating waves. In the isotropic case we have A = C = (λ + 2µ) , N = L = µ and

η = 1. Transverse isotropy is required to explain the observed Love-Rayleigh discrep-

ancy and has been accounted for in the compilation of the global reference model PREM

of [Dziewonski and Anderson, 1981], which exhibits a 2-4% radial anisotropy down to

220 km of depth. Love waves are sensitive only to N and L depth variations, while

Rayleigh waves depend on all the 5 elastic moduli. A complete derivation of eigenfunc-

tions and kernels for Love and Rayleigh waves is given by [Takeuchi and Saito, 1972].

Theoretically, it is thus possible to invert for all the 5 elastic parameters and density,

but fundamental modes surface waves show only a limited sensitivity to A,C and F.

Rayleigh waves respond mostly to L variations while Love waves to N , so we account for

radial anisotropy with a joint inversion of Rayleigh and Love local dispersion curves to

retrieve the VSV and VSH structure of the upper mantle. To simplify the calculations,

we used averaged isotropic group velocity kernels ∂UL/∂VSH and ∂UR/∂VSV computed

for anisotropic PREM (improved with a laterally varying crustal structure, as explained

further in the text) and we keep P-wave speed fixed during the inversion. As [Boschi and

Ekström, 2002] pointed out, petrological observations are not yet sufficiently numerous

to determined a scaling factor relating P-and S-wave anomalies. We thus performed a

test where we simply set δVPH/VPH = δVSH/VSH and δVPV /VPV = δVSV /VSV in each

iteration, but we did not found any significant difference in the results, so we decide to

keep them fixed.
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4.4 Reference model and shallow layer correction

From the kernels displayed in Figure 4.1 it is evident that surface waves are strongly

influenced by crustal structures. This effect is more evident at shorter periods and for

Love waves, however even long period data can be affected by crustal thickness and

velocity. Our data set is dominantly medium to long period and therefore it is not

able to resolve variations in crustal layers. We need to introduce an a priori constraint

on the crust to avoid any biased anomaly to be imaged into the upper mantle. We

use at this scope the high resolution global crustal model CRUST2.0 of [Bassin et al.,

2000] (available on the web at http://mahi.ucsd.edu/Gabi/rem.html). This model is

parameterized by a set of 1-D depth profiles on a 2◦X2◦ global grid. Each column profile

is divided into two layers of sediments and three layers of crystalline crust. Oceans

and polar regions have water and ice layers. Topography and bathymetry of ETOPO5

are added. For each layer in each grid point thickness, isotropic P-and S-velocity and

density are specified. In Figure 4.2 we show the European and Mediterranean crustal

thickness map derived from CRUST2.0. Thickness vary mostly between ocean and

continents, but also at a smaller scale length there are large differences that must be

taken into account for a reliable inversion of surface waves. However, for a densely

sampled region as Eurasia, we would like to be able to use an higher resolution model

for crustal correction. At the moment, crustal structure in Europe takes advantage of

many regional studies, but we feel that a consistent continental scale european model is

still missing. There are two possible procedures to perform a crustal correction: one is

to compute the predicted group velocity anomalies starting from a mantle model with

a crustal model on top at every grid point and to integrate them along each ray path

of the dataset. Afterwards, the path-averaged anomaly due to the crust is subtracted

from the measured group velocities. Once the whole data set has been corrected it

is possible to invert them for mantle structure. This scheme is used for instance by

[Silveira et al., 1998], [Zhou et al., 2006], and [Ekström and Dziewonski , 1998]. In this

approach the real three-dimensional crustal structure is averaged out along the path

and the sensitivity kernels are those of a 1-D model (the mantle model). The second

technique consists in taking the crustal structure into account directly as one of the

models constraints. The observed measures are not corrected for shallow layers, they

are instead inverted keeping the whole crust+mantle model as starting model. The

crustal parameters (thickness and velocity) can be kept fixed during the inversion or

can be allowed to some limited variation. As [Boschi and Ekström, 2002] remarked, this
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Figure 4.2: Map of crustal thickness in km in the European region derived from

model CRUST2.0

procedure has the apparent drawback of being computationally more expensive, because

it is necessary to recompute the sensitivity kernels and the theoretical group velocity at

each grid point , but it has the advantage to use laterally varying sensitivity kernels, so

the reference model is treated as fully 3-D.

4.5 Inversion

We parameterize the three-dimensional crust and upper mantle structure with a set

of 80x80 depth profiles. Each profile corresponds to one cell of the previously derived

regional group velocity model and the non-linear inversion is run separately for each

grid point. For each cell we find the corresponding tile of CRUST2.0. We smoothed

CRUST2.0 with a moving average technique, in order to avoid sharp lateral discontinu-

ities. The reference model is locally approximated with a stack of flat layers, precisely

the layers of CRUST2.0 (replacing with the right bathymetry and topography the crust

of PREM) on top of model PREM, subdivided in a set of ' 20 km layers, down to 771 km

of depth. Beneath 771 km we consider an homogeneous half-space. Each mantle layer

67



4.5. Inversion 4. Inversion for shear-wave velocity

is characterized by constant radially anisotropic elastic parameters VPH , VPV , VSH , VSV ,

and ρ calculated from model PREM at the depth corresponding to the centre of the

layer. In each grid point we consider as observed data the group slowness derived from

the group velocity maps at different periods. We prefer to invert group slowness C in-

stead of velocities U because they are the real result of the tomographic inversion, and

it is to slowness, and not to velocity, that the a posteriori error calculated in section

3.5.2 is related. Therefore, we set up an inverse problem where data are

di = Ci =
1
Ui

i = 1, . . . , N (4.6)

for the set of N periods and we transform consequently the group velocity partial deriva-

tives for each one of the M layers into group slowness kernels

∂Ui

∂mj
=⇒ ∂Ci

∂mj
= − 1

U2
i

∂Ui

∂mj
j = 1, . . . ,M (4.7)

As previously explained, we use both Rayleigh and Love data to inspect the transverse

isotropy of the upper mantle. A natural choice of the parameters to image should then

fall on VSV and VSH . However, when variations in anisotropy are large, such as in the

Pacific upper mantle, neither VSV nor VSH alone reflect thermal anomalies [Ekström

and Dziewonski , 1998]. Instead, the Voigt average VV oigt = (2/3VSV + 1/3VSH) of

the two quantities is better related to isotropic variations correlated to temperature.

So we choose to invert directly for Voigt average VV oigt and radial anisotropy Vani =

(VSH−VSV ), which are the two parameters which we are interested in. This approach has

the advantage of allowing a direct estimation of the isotropic and anisotropic part with a

coupled inversion of Love and Rayleigh waves, as well as more control on the anisotropy

amplitude through the a priori covariance matrices. We calculate the isotropic partial

derivatives ∂UL/∂VSH and ∂UR/∂VSV [Herrman, 2005], which need to be transformed

into partial derivatives with respect to VV oigt and Vani.

 VV oigt = (
2
3
VSV +

1
3
VSH)

Vani = (VSH − VSV )
=⇒


VSV = (VV oigt −

1
3
Vani)

VSH = (VV oigt +
2
3
Vani)

(4.8)

68



4. Inversion for shear-wave velocity 4.5. Inversion

Hence the partial derivatives are

∂UR

∂VV oigt
=

∂UR

∂VSV

∂VSV

∂VV oigt
=

∂UR

∂VSV

∂UR

∂Vani
=

∂UR

∂VSV

∂VSV

∂Vani
= − 1

3
∂UR

∂VSV

∂UL

∂VV oigt
=

∂UL

∂VSH

∂VSH

∂VV oigt
=

∂UL

∂VSH

∂UL

∂Vani
=

∂UL

∂VSH

∂VSH

∂Vani
= +

2
3

∂UL

∂VSH

(4.9)

Summarizing, we have a 2xN data vector d made up of N group slowness observations

for Love and N for Rayleigh, and a 2xM model vector m consisting of M Voigt average

mV and M radial anisotropy mA parameters.

dT =
(
CL1 , CL2 , · · · CLN

, CR1 , CR2 , · · · CRN

)
mT =

(
mV1 , mV2 , · · · mVM

, mA1 , mA2 , · · · mAM

) (4.10)

Thus, the 2Nx2M partial derivatives matrix G is

G =



− 1
U2

L1

∂UL1

∂mV1

. . . − 1
U2

L1

∂UL1

∂mVM

− 1
U2

L1

∂UL1

∂mA1

. . . − 1
U2

L1

∂UL1

∂mAM

...
. . .

...
...

. . .
...

− 1
U2

LN

∂ULN

∂mV1

. . . − 1
U2

LN

∂ULN

∂mVM

− 1
U2

LN

∂ULN

∂mA1

. . . − 1
U2

LN

∂ULN

∂mAM

− 1
U2

R1

∂UR1

∂mV1

. . . − 1
U2

R1

∂UR1

∂mVM

− 1
U2

R1

∂UR1

∂mA1

. . . − 1
U2

R1

∂UR1

∂mAM

...
. . .

...
...

. . .
...

− 1
U2

RN

∂URN

∂mV1

. . . − 1
U2

RN

∂URN

∂mVM

− 1
U2

RN

∂URN

∂mA1

. . . − 1
U2

RN

∂URN

∂mAM



(4.11)

Since we have 2xN=26 data and 2xM'100 model parameters, we choose to use the

third of (4.5), because the (GnCMGT
n + Cd) matrix is easier to invert with respect to

(GT
nC−1

d Gn +C−1
M ). We construct a data covariance matrix CD in the form of a diagonal

matrix with the a posteriori error on slowness calculated for each period in Section

3.5.2. We therefore neglect the correlation between different periods. The a priori model

covariance matrix CM is a diagonal matrix with the same errors associated to all the

layers. We tried different values of the two errors σV and σA, that acts like damping

parameters, but finally we chose σV = σA = 0.12 km/s, which correspond to a 2-3%

error on isotropic shear velocity and 1-5% on anisotropy.
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4.6 Results

We show in Figures 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 our resulting shear velocity model

SM07. Voigt average VS anomalies are plotted as percentage variation with respect to

PREM. Each map is plotted after having removed the mean value.

The most dominant large scale feature of SM07 over a wide range of depths is the dif-

ference between the fast Precambrian East European Platform and the low velocity sig-

nature of Central Europe and Western Mediterranean, in good accord with imaged with

previous works [Marquering and Snieder , 1996; Shapiro and Ritzwoller , 2002; Boschi et

al., 2004]. The fast roots of the East European and Baltic Shields are visible at least

to 250 km of depth, which is our maximum resolvable depth. The extensional basin of

Western Mediterranean is marked by a strong slow anomaly, particularly well correlated

at shallow depths with the Tyrrhenian back arc region, interpreted as the evidence of

an asthenospheric wedge [Mele et al., 1998], and the rifting area of the Sicily Channel.

We observe only a weak and not well resolved fast anomaly in Southern Italy at depths

greater than 120 km possibly related to the subduction of the Ionian lithosphere beneath

the Calabrian arc [Spakman et al., 1993; Piromallo and Morelli , 2003; Lucente et al.,

1999]. The Alpine-Himalayan collision belt is also evidenced well on the 60 km map

by a continuos low velocity band that runs from the Carpathians through Anatolia and

Zagros belt to Hindu Kush. The sharp gradient of the boundary between the East and

Central Europe, running along the ancient Tornquist-Tesseyre Zone is impressively well

delineated in our maps, at least down to 240 km depth. At a smaller scale, in the 60

km map we can recognize a low velocity anomaly marking the Pannonian Basin. Well

represented at least down to 160 km is also the European Cenozoic Rift System, with

low speed anomalies beneath the Eifel region and Rhine Graben. Eastern Mediterranean

is instead characterized by overall high velocities. The Hellenic Arc anomaly, generally

interpreted as old Tethydean oceanic crust trapped in the collision between Africa and

Eurasia and subducting beneath the Aegean [Spakman et al., 1993], is clearly visible

in our maps, justapposed to a shallow slow anomaly in correspondence to the Aegean

back arc basin. In Africa the main features are the fast West Africa Craton, and the

slow Afar triple junction and Red Sea Rift. There are also traces of thermal anoma-

lies in the rifting zone of Central Africa, maybe related to Tibesti, Hoggar and Darfur

hotspots, but our resolution does not permit to individuate such narrow features. At

depths greater than 160 km we observe also a narrow fast band running SW-NE , im-

aged also by [Sebai et al., 2006] and [Ritsema et al., 2000]. Eastern Atlantic Ocean is
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characterized by a strong slow anomaly following the Ridge, particularly pronounced

at shallow depths beneath Iceland and Azores Triple Junction, while the plate bound-

ary between Azores and the Iberian Peninsula has higher velocities. The low velocity

anomaly becomes wider and looses intensity with increasing depth, including the whole

oceanic basin. Similar images of the Atlantic Ocean Upper Mantle have been obtained

by [Silveira and Stutzmann, 2002] and [Marone et al., 2004].
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Figure 4.3: Voigt average VV oigt = ( 2
3
VSV + 1

3
VSH) percentage anomaly at differ-

ent depths. Color scale represents relative shear velocity anomaly with respect to

PREM value. Map means have been removed before plotting.
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Figure 4.4: Voigt average VV oigt = ( 2
3
VSV + 1

3
VSH) percentage anomaly at differ-

ent depths. Color scale represents relative shear velocity anomaly with respect to

PREM value. Map means have been removed before plotting.
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Figure 4.5: Voigt average VV oigt = ( 2
3
VSV + 1

3
VSH) percentage anomaly at differ-

ent depths. Color scale represents relative shear velocity anomaly with respect to

PREM value. Map means have been removed before plotting.
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Figure 4.6: Voigt average VV oigt = ( 2
3
VSV + 1

3
VSH) percentage anomaly at differ-

ent depths. Color scale represents relative shear velocity anomaly with respect to

PREM value. Map means have been removed before plotting.
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Figure 4.7: Voigt average VV oigt = ( 2
3
VSV + 1

3
VSH) percentage anomaly at differ-

ent depths. Color scale represents relative shear velocity anomaly with respect to

PREM value. Map means have been removed before plotting.
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Figure 4.8: Voigt average VV oigt = ( 2
3
VSV + 1

3
VSH) percentage anomaly at differ-

ent depths. Color scale represents relative shear velocity anomaly with respect to

PREM value. Map means have been removed before plotting.
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Figure 4.9: Transverse isotropy in model SM07 expressed as percentage (VSH −
VSV )/VSV .

4.6.1 Radial anisotropy

As previously mentioned, we carried out the inversion of Rayleigh and Love disper-

sion curves for the anisotropic structure of the Upper Mantle, keeping the difference

between VSH and VSV close to the PREM value. In Figure 4.9 we show maps of

(VSH − VSV )/VSV radial anisotropy at four depths in SM07. Our results confirm a

moderate radial anisotropy over the wide European and Mediterranean area , generally

close to the PREM value of 4% at the top of the mantle and decreasing with depth.

We do not observe significant negative anisotropy, though some areas have values lower

than those of PREM. Strong positive (VSH � VSV ) anomalies are found in Central

Africa and West of Red Sea, in the Azores and in Iran. Lower values are observed in

correspondence of more stable tectonic features, such as West African Craton at 60 km
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depth, and Eastern European Platform from 100 km depth. Most lateral variations,

however, do not show such a remarkable long spatial wavelength and are likely to be the

result of the different quality and coverage of Rayleigh and Love wave observations, the

first being sensible to VSV , the second to VSH [Shapiro and Ritzwoller , 2002; Boschi et

al., 2004]. Anisotropy in Upper Mantle, though evidenced by a number of independent

observations (e.g. from receiver function amplitude versus azimuth and SKS shear-wave

splitting) and widely accepted, is still particularly difficult to resolve, and shows the

need of further seismological research.

4.6.2 Comparison with global and regional models

We compare SM07 with other recently published global and regional models:

• global model S20RTS of [Ritsema et al., 1999]. This is a degree 20 isotropic shear

wave velocity model of Earth’s Mantle down to the CMB. It has been derived from

fundamental and higher modes Rayleigh phase velocity measurements, teleseismic

traveltimes and normal mode splitting data. (Model parameters are available on

the web at http://oshi.geo.lsa.umich.edu/ jritsema/Research.html)

• global model BEK04 of [Boschi et al., 2004]. This is a global radially anisotropic

model of the Upper Mantle derived from inversion of fundamental mode Rayleigh

and Love phase anomalies (mainly the ETL97 dataset expanded with longer peri-

ods measurements). It is parameterized with a variable resolution grid, which is

more dense on the Mediterranean basin. (Model parameters are available on the

web at http://www.spice-rtn.org/research/planetaryscale/tomography/).

• the global model CU SDT1.0 of [Shapiro and Ritzwoller , 2002]. This is a global

transversely isotropic Upper Mantle model, derived from the inversion of global

fundamental mode phase velocity measurements of [Trampert and Woodhouse,

1995] and ETL97, as well as regional and teleseismic fundamental mode group

velocity observations in Eurasia of [Ritzwoller and Levshin, 1998]. (Model param-

eters are available on the web at http://ciei.colorado.edu/ nshapiro/MODEL/).

• Eurasia-Africa plate boundary region model EAV03 of [Marone et al., 2004]. This

is an isotropic regional model of the Upper Mantle derived from waveform fitting

of regional S-wave arrivals and Rayleigh surface waves.

In Figure 4.10 we show SM07, S20RTS, BEK04 and CU SDT1.0 at 100 km depth plotted

on the same projection and with the same color scale (± 6% max amplitude). Model
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EAV03 is shown with a different color scale, corresponding to a maximum amplitude of

± 15%. The known large scale features of Eurasia and Mediterranean area reported in

global models are extremely well imaged by SM07: the large high velocity anomalies be-

neath the cratons of Eastern Europe (Precambrian Baltic shield and East European) and

West Africa, the low velocity related to the Atlantic Mid Ocean Ridge and Red Sea and

the high velocity in Eastern Mediterranean mirrored by the slow anomaly in Western

Mediterranean. Nevertheless, SM07 achieves higher resolution with respect to global

models, comparable maybe only with the resolution of CU SDT1.0 or EAV03, which

derive also from regional measurements in this area. With respect to EAV03, SM07

present a more coherent pattern of anomalies, deriving probabily from our better ray

coverage. Our model anyway show features that are not imaged neither in CU SDT1.0,

such as the Rhine Graben slow speed, the Southern Caspian Block slower than Northern,

an unprecedented imaging of the Ashgabat fault, and the slower anomaly in Western

Mediterranean in correspondence with Magmatic and extensional area of Thyrrenian

sea. Tournquist Tesseyre Zone has also never been imaged so sharp as in our model.

At very shallow depth Northern Appenines show a very slow speed, in disaccord with

previous studies. This could be related to the complexity of subduction of the Adriatic

plate under Thyrrenian, but a complete geodynamical interpretation of these results is

beyond the scope of this thesis, and will be given elsewhere.

Figure 4.11 shows the same comparison at 200 km depth, where our model has a

considerably smaller amplitude with respect to other models. This results from the use

of only fundamental surface wave data in period range 35-170 s, which provide an optimal

resolution for the uppermost mantle, but loose discrimination power at greater depths,

that are better illuminated by longer periods, higher modes or body waves data. We

found our model in good agreement with global models in imaging the fast roots of the

continents (Eastern Europe and West African Cratons), the widening of the low velocity

anomaly around Mid Atlantic Ridge and the slower Western Mediterranean. However

our model exhibits new features: a much thinner fast anomaly related to the Hellenic

slab and the Eastern European Craton still well separated from the slow active tectonic

region of Western Europe: other models see these two fast anomalies (craton and hellenic

slab) joined together: but they are related to two different geological features, cratons

and old oceanic crust trapped during the closure of Tethyde. Moreover, we continue to

see the strong gradient between fast Northern and Southern Caspian Sea , dividev by

the Ashgabat fault.
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Figure 4.10: Comparison between SM07 (top left) and other global and regional

models at a depth of 100 km: global model SM07, BEK04 and CU SDT1.0 display

the Voigt average anomaly, while models S20RTS are EAV03 isotropic models.
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Figure 4.11: Comparison between SM07 (top left) and other global and regional

models at a depth of 200 km.
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4.6.3 How well do we know the seismic structure of the European

Upper Mantle?

To investigate the quality of our knowledge of subsurface structure, we may wonder

how well results from different modeling approaches, with different sources of bias and

indetermination, compare. We chose to compare therefore results from perhaps the two

most distant modeling approaches:

• travel time tomography, sensitive to the P wave speed structure, based on inversion

of high-frequency, hand-picked, first-arrival times retrieved from Bulletins

• surface wave tomography, sensitive to S wave structure, based on two-stage inver-

sion of measurements made on intermediate and long period waveforms

We show in Figure 4.12 our model SM07 compared with a filtered version of P-wave

model PM0.5 of [Piromallo and Morelli , 2003]. PM0.5 is a European and Mediterranean

model derived from fitting travel times retrieved from the ISC Bulletins for regional and

teleseismic rays. Travel times of high-frequency P waves (∼ 1 Hz) can image structures

with high resolution. PM0.5 shows many features with geodynamic relevance, such as

traces of collisional belts, back-arc extensional basins, cenozoic volcanism. Data coverage

at shallower depths is much influenced by the distribution of seismic sources and obser-

vatories, and leave peripheral areas blank. Surface waves reach a much more uniform

spatial coverage even where epicenters and stations are sparse. However, because of their

long wavelength they have limited spatial resolution. A comparison of our model with

high-resolution tomography can thus be misleading, so we choose to compare it with a

low-passed version of the P wave speed model, simply obtained with a horizontal boxcar

filter with 3◦ diameter. The qualitative resemblance shown by the visual comparison

is very good. The scale of variation is approximately double for shear wave than for P

speed, as expected, and the sign of anomalies correlates well in many regions. Worth

noting are the consistent low speeds of the Alpine tectonic belt, the Western Mediter-

ranean and Central Europe. As well, there is good correlation with fast East European

platform, Eastern Mediterranean, Ionian Sea. There are of course reasons why relative

P and S speed variations can be uncorrelated (e.g. chemical heterogeneity, presence of

fluids,...) and significant geodynamic considerations may follow ([Trampert and Van der

Hilst , 2005]); but before a truly significant quantitative analysis can be carried on we

need to ascertain in detail which components in model spaces are well constrained by

data, and which are not.
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4.6. Results 4. Inversion for shear-wave velocity
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Figure 4.12: Comparison between shear velocity model SM07 and a filtered version

of P-velocity model PM0.5 of [Piromallo and Morelli, 2003] at three selected depth.

84



5. Conclusions

In this thesis we have presented a new high resolution tomographic model of the

Upper Mantle under the broad European and Mediterranean area in the geographical

frame 10N-80N 35W-80E. This region had been previously object of several regional

studies with smaller geographical extent [Spakman et al., 1993; Piromallo and Morelli ,

2003; Marone et al., 2004] or only partially overlapping with this area [Ritzwoller and

Levshin, 1998; Silveira and Stutzmann, 2002]. We felt the need for a comprehensive and

detailed model of the entire Eurasian and Mediterranean region.

We have modeled surface waves dispersion, because of their their ability to reach a

more uniform spatial coverage compared to body wave phases, even where epicenters

and seismographs are sparse. The model has been obtained from inversion of an high

quality dataset of Rayleigh and Love group speeds, resulting in a dense and uniform

coverage of the study area. Despite a rather classical measurement method (Multiple

Filters and Phase Matched Filter), this study has brought significant advancement in

current understanding of tomographic inversion schemes. We suggested a direct mea-

surement error evaluation based on the analysis of RETREAT stations ray clusters. We

carried out a linear inversion of group speed data applying regularization constraints

on smoothness and on the vicinity of the solution to an a priori reference model. The

innovative approach of this work lies in the use of a reference laterally heterogeneous

global model, which we derived from a new inversion of group speeds obtained from the

global phase velocity observations of [Ekström et al., 1997]. This expedient, in addition

to provide a more realistic starting model with respect to commonly used 1-D models,

reduces the emergence of artifacts in areas of non-optimal path coverage. Another orig-

inal scheme adopted in this thesis is the expression of the a posteriori model covariance

matrix in terms of slowness errors; this guarantees the formal consistency with the linear

problem solution, and legitimize the Gaussian error analysis.

Various attempts to assess the stability of the solution are commonly performed

through synthetic tests such as checkerboard tests, but their results have been shown

to have only a limited significancy [Lévêque et al., 1993]. We have instead investigated

the effects of different regularization constraints on the shape of the solution with a

systematic exploration of the model space and a statistical analysis of different solutions

obtained varying the regularization parameters. By selecting a set of formally equivalent
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models which have the same data fit but differ in terms of smoothness and closeness to

the reference model, we have shown that large-scale features of our model are generally

robust and stable, whereas care must be taken in the interpretation of finer details, some

of them depending on the particular regularization choice.

Our resulting group speed dispersion maps show enhanced resolution with respect to

other surface waves studies and exhibit an excellent correlation with the known tectonic

features of the region. Particularly worth mentioning are the contrast between the slower

Central Europe and Western Mediterranean basin and the higher speed associated to

the Eastern European Platform. These two different tectonic regimes are separated

by a sharp gradient corresponding to the Tornquist-Tesseyre Zone, a consistent feature

on our long period maps. We resolved with unprecedented detail several small scale

features, such as the difference between the fast Northern and slow Southern Caspian

block divided by the Ashgabat fault, and the narrow fast signature of the Carpathian

Mountains.

The resulting group velocity maps have been inverted for the shear-wave speed at

depth to image the three-dimensional radially anisotropic structure of the Upper Mantle.

A non-linear inversion algorithm [Tarantola and Valette, 1982] has been implemented for

the local inversion of group slowness curves, starting from the reference model PREM

[Dziewonski and Anderson, 1981] corrected with the high resolution laterally varying

crustal structure of CRUST2.0 [Bassin et al., 2000]. Again, we inverted slowness instead

than velocity (as it is commonly done) to guarantee a formal consistency with the Gaus-

sian error analysis. Joint inversion of coupled Rayleigh and Love wave group velocity

has lead to a transversely isotropic VS model of the upper 280 km of the mantle. Our

innovative parameterization of the model in terms of Voigt isotropic mean and radial

anisotropy gives a better control on the amplitude of anisotropy with respect to the

usual inversion for VSH and VSV . We compared our SM07 model with other global and

regional S-wave speed models [Boschi et al., 2004; Ritsema et al., 1999; Shapiro and

Ritzwoller , 2002; Marone et al., 2004], derived from different types of data. The large-

scale features in SM07 are in very good agreement with those reported in global models,

and also small-scale robust anomalies are imaged with a resolution never before attained

by inversion of surface wave data. Group velocity maps and deriving shear-wave speed

model SM07 are constantly refined with the inclusion of new data, which leads to a con-

tinuous increase in path coverage and consequently to a better resolution. Dispersion

maps could be helpful in regional epicentral location, and provide a good starting model

for smaller-scale studies. Further investigation is however necessary to assess the effects
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of underlying theoretical assumptions used in this study. Radial anisotropy in particular

shows the need of more research, to overcome the limitations due to uneven distribution

between Rayleigh and Love wave paths. A new inversion including azimuthal anisotropic

parameters could provide new information.
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