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ABSTRACT 

Alzheimer’s disease (AD) is probably caused by both genetic and environmental risk factors. The 
major genetic risk factor is the ε4 variant of apolipoprotein E gene called apoE4. Several risk factors 
for developing AD have been identified including lifestyle, such as dietary habits. The mechanisms 
behind the AD pathogenesis and the onset of cognitive decline in the AD brain are presently unknown. 
In this study we wanted to characterize the effects of the interaction between environmental risk 
factors and apoE genotype on neurodegeneration processes, with particular focus on behavioural 
studies and neurodegenerative processes at molecular level.  
Towards this aim, we used 6 months-old apoE4 and apoE3 Target Replacement (TR) mice fed on 
different diets (high intake of cholesterol and high intake of carbohydrates). These mice were 
evaluated for learning and memory deficits in spatial reference (Morris Water Maze (MWM)) and 
contextual learning (Passive Avoidance) tasks, which involve the hippocampus and the amygdala, 
respectively. From these behavioural studies we found that the initial cognitive impairments 
manifested as a retention deficit in apoE4 mice fed on high carbohydrate diet. In these mice spatial 
memory retention processes were already compromised at this age. Thus, the genetic risk factor apoE4 
genotype associated with a high carbohydrate diet seems to affect cognitive functions in young mice, 
corroborating the theory that the combination of genetic and environmental risk factors greatly 
increases the risk of developing AD and leads to an earlier onset of cognitive deficits. 
The cellular and molecular bases of the cognitive decline in AD are largely unknown. In order to 
determine the molecular changes for the onset of the early cognitive impairment observed in the 
behavioural studies, we performed molecular studies, with particular focus on synaptic integrity and 
Tau phosphorylation. The most relevant finding of our molecular studies showed a significant 
decrease of Brain-derived Neurotrophic Factor (BDNF) in apoE4 mice fed on high carbohydrate diet. 
Our results may suggest that BDNF decrease found in apoE4 HS mice could be involved in the earliest 
impairment in long-term reference memory observed in behavioural studies.  
The second aim of this thesis was to study possible involvement of leptin in AD. There is growing 
evidence that leptin has neuroprotective properties in the Central Nervous System (CNS). Recent 
evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal 
survival signals. The signaling cascade that leptin generates are shared by other neuroprotective 
molecules including insulin and erythropoietin. Chronic administration of leptin resulted in a 
significant improvement in the cognitive performance of transgenic animal models of AD. However, 
there are still numerous questions, regarding the molecular mechanism by which leptin acts, that 
remain unanswered.  
Thus, given to the importance of the involvement of leptin in AD, we wanted to clarify the function of 
leptin in the pathogenesis of AD and to investigate if apoE genotype affect leptin levels through 
studies in vitro, in mice and in human. 
Our findings suggest that apoE4 TR mice showed an increase of leptin in the brain. Leptin levels are 
also increased in the cerebral spinal fluid of AD patients and apoE4 carriers with AD have higher 
levels of leptin than apoE3 carriers. Moreover, leptin seems to be expressed by reactive glial cells in 
AD brains. In vitro, ApoE4 together with Aβ increases leptin production by microglia and astrocytes. 
Taken together, all these findings suggest that leptin replacement might not be a good strategy for AD 
therapy. Our results show that high leptin levels were found in AD brains. These findings suggest that, 
as high leptin levels do not promote satiety in obese individuals, it might be possible that they do not 
promote neuroprotection in AD patients. Therefore, we hypothesized that AD brain could suffer from 
leptin resistance. Further studies will be critical to determine whether or not the central leptin 
resistance in SNC could affect its potential neuroprotective effects. 
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1. INTRODUCTION 
 
1.1 ALZHEIMER’S DISEASE 
In 1907 Alois Alzheimer described the case of a 51-years old woman who presented a 

relatively rapid deteriorating memory along with psychiatric disturbances. She died 4 years 

later.1 While a variety of progressive and fatal neurologic conditions were known at that time, 

including dementia. The early age of the onset and the new pathological finding, the 

neurofibrillary tangle (NTF), made this condition unique. Alzheimer’s disease is the most 

common cause of dementia, accounting for an estimated 60-80 percent of all dementia cases. 

It is one of the most important public health problem of the 21st century and the seventh cause 

of death. Last year’s World Alzheimer Report, estimated that there are 35.6 million people 

worldwide living with AD (5.5 million in the United States) and the estimated cost were $ 

422 billion US dollars for 2009.2 The main risk factor for developing AD is age and the risk is 

doubled every 5 years after 65 years of age. The diagnosis is of 1275 new cases per year per 

100.000 persons older than 65 years of age.3 As the aging population increases, the prevalence 

will approach 13.2 to 16.0 million cases in the US by mid-century.4  

The symptoms of this irreversible neurodegenerative disorder occur gradually and result in 

memory loss, progressive impairment of activities of daily living, unusual behaviour, 

personality changes and a decline in thinking abilities. Episodic memory, which is defined as 

the ability to recall past experiences, is disrupted in AD and typically appears to be the first 

cognitive domain that is affected in AD patients:5,6 Impaired ability to learn new information 

or to recall previously learned information, such as difficulty remembering names and recent 

events is often an early clinical symptom. The disease onset is insidious and manifestations 

evolve over a period of years from mildly impaired memory to severe cognitive loss. A 

transitional state, referred to as mild cognitive impairment (MCI), often precedes the earliest 

manifestations of AD.7 As the disease progresses, other cognitive deficits manifest, 

particularly in attention, executive functions, semantic memory, language and spatial 

orientation.8 The course of Alzheimer’s disease is inevitably progressive and terminates in 

mental and functional incapacity and death.  

In AD, the progressive nature of neurodegeneration suggests an age-dependent process that 

ultimately leads to degeneration of synaptic afferent systems, dendritic/neuronal damage and 

the formation of abnormal protein aggregates throughout the brain.  
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1.1.1 Neuropathology 

As clinical AD symptoms overlap substantially with other disorders of the central nervous 

system, a definite diagnosis of AD can only be obtained after post-mortem brain examination. 

The key pathological changes that are observed in AD brain tissue are increased levels of 

amyloid-β (Aβ) peptide and hyperphosphorylated tau protein (p-tau). Aβ is deposited 

extracellularly in diffuse and neuritic plaques and p-tau is a microtubule assembly protein that 

accumulates intracellularly as neurofibrillary tangles (NFTS). In addition to these pathological 

hallmarks of AD, widespread loss of neurons and synapses is observed.9 The temporal and 

regional distribution differs between NFTs and plaques. NFT pathology starts in the medial 

temporal lobe (entorhinal cortex and hippocampus), spreads to the limbic areas and finally to 

neocortical association areas.10 The plaques are first visible in orbitofrontal and temporal 

cortices. The spread continues further to parietal cortex and throughout the neocortex. The 

clinical symptoms reflect the NFTs neuropathology: the first signs are short-term memory 

problems, which reflect the early pathology in the hippocampus. The memory problems will 

later develop into difficulties with executive functions, including planning and initiation of 

actions, as well as emotional disturbances and apathy. Executive functions are mainly 

controlled by the prefrontal cortex, interconnected cortical and subcortical brain structures. 

 

1.1.1.1 Amyloid plaques 

An important pathological feature of AD is the presence of extracellular amyloid plaques in 

the brain. Amyloid plaques are composed of aggregations of small peptides called β-amyloid 

(Aβ). Aβ is a peptide of 39-43 amino acids (aa) that is able to form β-sheets structures and 

fibrillar aggregates.9,11 There are two forms of amyloid plaques in the AD brain: neuritic 

plaques (also called senile plaques) and diffuse plaques. The neuritic plaques are extracellular 

deposits of fibrillar Aβ in dystrophic neurites that show NFT pathology, containing activated 

microglia within the central amyloid core. Reactive astrocytes surround the neuritic plaques. 

The plaques can also be diffuse without a compacted core and neuritic dystrophy. It is 

believed that diffuse plaques are immature precursors of neuritic plaques. It has been shown 

that the activation of microglia by fibrillar Aβ is a very early phenomenon in the AD 

pathogenesis. The localization of astrocytes at the neuritic plaques occurs much later when 

dementia is already developing. One explanation for this could be that microglia has been 

found to be involved in the clearance of Aβ by phagocytosis. The activated microglia can also 
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produce toxic products, like reactive oxygen species and pro-inflammatory cytokines that 

could contribute to neurodegeneration.12 

The amyloid cascade hypothesis is the most dominant theory that has been proposed over the 

years to explain the pathogenesis of AD.13 Multiple lines of evidence demonstrate that 

overproduction/aggregation of Aβ in the brain is a primary cause of AD so that inhibition of 

Aβ generation has become a hot topic in AD research. According to the amyloid cascade 

hypothesis a chronic imbalance between the production and clearance of Aβ leads to synaptic 

dysfunction, formation of intraneuronal fibrillary tangles, glial activation and eventually 

neuron loss in affected areas of the brain.14,15 There are two main toxic species, Aβ40 and 

Aβ42, with Aβ42 more hydrophobic and more prone to fibril formation.16 Studies done on 

familial AD mutations consistently show increases in the ratio of Aβ42/40,17 suggesting that 

elevated levels of Aβ42 relative to Aβ40 is critical for AD pathogenesis, probably by 

providing the core for Aβ assembly into oligomers, fibrils and amyloidogenic plaques.18 

Extracellular neuritic plaques are deposits of small peptides with different length called β-

amyloid. These peptides are derived via sequential proteolytic cleavages of the β-amyloid 

precursor protein (APP), a transmembrane protein with a large extracellular domain and one 

transmembrane region. The APP gene is located on chromosome 21 in humans with three 

major isoforms arising from alternative splicing (APP695, APP751 and APP770).19 APP751 

and APP770 are expressed in most tissues and contain a 56 amino acid Kunitz Protease 

Inhibitor (KPI) domain within their extracellular regions. APP695 is predominantly expressed 

in neurons and lacks the KPI domain.20 There are reports showing that the protein and mRNA 

levels of KPI-containing APP isoforms are elevated in AD brains and associated with 

increased Aβ deposition.21 Prolonged activation of extra synaptic NMDA receptor in neurons 

can shift APP expression from APP695 to KPI containing APP isoforms, accompanied with 

increased production of Aβ.22 These findings may suggest that a dysregulated splicing of APP 

RNA contributes to disease pathogenesis. APP belongs to a protein family that includes APP-

like protein 1 (APLP1) and 2 (APLP2) in mammals.23 All these proteins are type-I 

transmembrane proteins and are processed in a similar fashion. The Aβ domain is unique to 

the APP protein. Although APP has been the subject of much study since its identification, its 

physiological function remains largely undetermined. Different roles of the APP protein have 

been suggested, such as in neurite outgrowth and synaptogenesis, neuronal protein trafficking 

along the axon, transmembrane signal transduction, cell adhesion, calcium metabolism. All of 

these different functions requires additional in vivo evidence.24 APP is proteolyzed into 
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various fragments during its intracellular trafficking and these APP metabolites mediate 

various and sometimes adverse functions. Therefore, the net effect of full-length APP on 

cellular activity may be a combination of its metabolites’ functions, temporospatially 

depending on the proportion of levels of each APP metabolite. APP can be cleaved by 

different secretases in an intrigate cascade manner, giving rise to an amyloidogenic and to a 

non-amyloidogenic pathway. APP and the secretases are transmembrane proteins and the APP 

processing occurs in the membrane environment. Firstly β-secretase (β-site amyloid precursor 

protein-cleaving enzyme, BACE) cleaves APP extracellularly, and produces soluble APP 

(sAPPβ) and a membrane bound C-terminal fragment (CTF, C99). C99 is further cleaved in 

the transmembrane region by γ-secretase resulting in the release of APP intracellular domain 

(AICD) and Aβ. 25 This is called amyloidogenic pathway. Two forms of the amyloidogenic 

peptide are produced, Aβ40 and Aβ42. Aβ42 is more prone to aggregate and more toxic than 

the more abundant Aβ40.26 In the non amyloidogenic pathway, APP is cleaved by α-secretase 

within the Aβ domain, resulting in the release of sAPPα into the extracellular space. 

Membrane bound C83 is further processed by γ-secretase, and the presumably non toxic P3 

and AICD are produced. P3 is  a short hydrophobic protein with the size of 3 kDa and 

includes Aβ17-40 and Aβ17-42.27  

There are several observations that suggest that the amyloid cascade hypothesis is lacking in 

detail. The biggest concern is that it does not explain the reason for the increased Aβ 

production in sporadic cases, where no mutation in the genes encoding amyloid precursor 

protein (APP) or presenilin1/2 (PSEN 1/2) is present. Another concern is that similar plaques 

were found in non-demented subject without affecting the cognitive performance.28 

Moreover, the number of plaques is not well correlated with the severity of the disease and 

there is evidence for Aβ not being an initial trigger of the AD. In frontotemporal dementia 

with Parkinsonism mutations in the tau gene only and tangle formation but not deposition of 

Aβ were observed. The final test for the amyloid cascade hypothesis in humans is to study if 

cognitive performance is affected by a reduction in Aβ levels in the brain. Results from a 

small phase I immunization study, using active Aβ (1-42) were recently published. In this 

study immunisation resulted in clearance of plaques, but this did not prevent further 

progressive neurodegenerative changes in AD patients.29 Larger studies with passive 

immunisation are ongoing. Despite many efforts to elucidate the deficiencies of the Aβ 



10	
  

	
  

hypothesis, an alternative hypothesis explaining the cause and early pathogenesis of AD has 

not yet emerged. 

 

1.1.1.2 Neurofibrillary tangles 

Studies on the clinical-to-pathological correlation have consistently demonstrated that the 

number of neurofibrillary tangles, and not the plaques, correlates best with the presence 

and/or the degree of dementia in AD.30,31 Neurofibrillary degeneration appears to be required 

for the clinical expression of the disease, while amyloid plaques in the absence of 

neurofibrillary degeneration does cause clinical symptoms. Not only in AD but also in every 

known human tauopathy, the tau pathology symptoms were associated with the abnormally 

hyperphosphorylated protein.32,33 

NFTs are intra neuronal inclusions of abnormally hyperphosphorylated tau, a microtubuli-

associated protein, which self-assembles into paired helical filaments (PHF) building the 

tangles.34 Two major normal functions of tau are its ability to promote the assembly of tubulin 

into microtubules and to stabilize the microtubule structure. In the central nervous system, 

Tau is a family of six proteins derived from a single gene by alternative splicing of its pre-

mRNA.35 The human brain Tau isoforms range from 352 to 441 amino acids. All six isoforms 

have been reported to be present in an abnormally hyperphosphorylated state in 

neurofibrillary tangles of paired helical filaments. The functions of tau are regulated by its 

degree of phosphorylation.36 AD brains contain 4-8 fold of abnormally hyperphosphorylated 

tau.37 The hyperphosphorylated form of tau will no longer bind tubulin, or promote the 

assembly into microtubules. The disruption of the main structure for axonal transport will 

compromise the transport within cell, preventing vesicles to reach the synapse, and slowly the 

synapses will degenerate associated with retrograde degeneration. 

The state of phosphorylation of a phosphoprotein is a function of the balance between the 

activities of the protein kinases and the phosphatases that regulate its phosphorylation. Tau, 

which is phosphorylated at over 38 serine/threonine residues in AD is a substrate for several 

kinases.38 Among these kinases, glycogen synthase kinase-3 (GSK-3), cyclin dependent 

protein kinase-5 (cdk5), protein kinase A (PKA), calcium and calmodulin-dependent protein 

kinase II (CaMKII), casein kinase-1 (CK-1), MAP kinase ERK1/2 and stress activated protein 

kinases have been most implicated in the abnormal phosphorylation of tau.39 GSK-3β and 

cdk5 phosphorylate tau at a large number of sites, most of which are common to the two 

enzymes. The expressions of GSK-3β and cdk5 have been associated with all stages of 
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neurofibrillary pathology in AD. 40,41 Overexpression of GSK-3β in cultured cells and in 

transgenic mice results in hyperphosphorylation of tau at several of the same sites seen in 

AD.42,43 Cdk5 requires for its activity interaction with p39 or p35, or their proteolytic products 

p29 or p25,44,45 which are generated in post mitotic neurons by digestion with calpains. 

Overexpression of p25 in transgenic mice also produces hyperphosphorylation of tau.46 The 

MAP kinase family, which includes ERK1, ERK2 and the stress activated kinase JNK and 

p38 kinase, have been shown to phosphorylate tau at several sites. Some of these sites are the 

same as for the abnormally hyperphosphorylated tau, suggesting the association of these 

enzymes with the progression of the neurofibrillary degeneration in AD. The sequential 

phosphorylation of tau by priming kinases (PKA, CaMKII), that will markedly increase tau 

phosphorylation of the other kinases, is believed to be important for hyperphosphorylation to 

occur.47 It has been shown that certain sites such as Thr212, Ser214, Thr231, Ser235 and Ser262 are 

the major sites in the inhibition of the binding of tau to microtubule.48  

The protein phosphatase (PP) 2A is believed to be the major phosphatase for tau, but PP-1 is 

also involved in the dephosphorylation. The activities of both enzymes have been reported to 

be decreased by 20% in AD brain.47 

 

1.1.1.3 Synaptic and neuronal loss 

The dementia in AD is associated with neurodegeneration, that is characterized initially by 

synaptic injury followed by neuronal loss.49 The cognitive alterations in AD are closely 

associated with synaptic loss and neurofibrillary tangles. Brain regions involved in AD 

typically exhibit reduced numbers of synapses and neurons. Neurons using glutamate or 

acetylcholine as neurotransmitters appear to be particularly affected. Loss of neurons in the 

entorhinal cortex, hippocampus, frontal, parietal and temporal cortices of AD patients has 

been reported.50,51 Neurons in layer II of the entorhinal cortex and hippocampal CA1 neurons 

are particularly vulnerable. Alzheimer’s disease may primarily be a disorder of synaptic 

failure. Hippocampal synapses begin to decline in patients with mild cognitive impairment (a 

limited cognitive deficit often preceding dementia) in whom remaining synaptic profiles show 

compensatory increases in size. In mild Alzheimer’s disease, there is a reduction of about 

25% in the presynaptic vesicle protein synaptophysin. With advancing disease, synaptic loss 

correlates well with decline in cognitive functions.49 Aging itself causes synaptic loss, which 

particularly affects the dentate region of hippocampus. Basal transmission of single impulses 

and long-term potentiation, an experimental indicator of memory formation at synapses, are 
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impaired in plaque-bearing mice after the Aβ peptide has been applied to brain slices.52,53 

Subsequent to this impairment, signaling molecules are inhibited. Disruption of the release of 

presynaptic neurotransmitters and postsynaptic glutamate receptor ion current occur partially 

as a result of endocytosis of N-methyl-D-aspartate (NMDA) surface receptors and 

endocytosis of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPAr) surface 

receptors.54-56 A similar shift in the balance between potentiation and depression in synapses 

occurs with normal aging. Intraneuronal Aβ can trigger these synaptic deficits even earlier.57 

 It is presently unknown how the hallmark features of AD neuropathology, plaques and 

tangles, relate to emergence of cognitive impairment. It is well established that the number of 

plaques does not correlate with cognitive performance in AD patients,31 although, the number 

of tangles is a better predictive measure of overall cognitive function in humans with a 

clinical AD diagnosis. Still, tangles cannot be used as a reliable biomarker for the onset of 

early cognitive changes. Synaptic loss appears the marker that best correlates with cognitive 

dysfunction in AD patients58. This is an early pathological hallmark of Alzheimer’s disease, 

although the trigger underlying the synaptic dysfunction is not yet resolved. The human 

studies are corroborated by data from various transgenic mouse models of AD. These models 

show that cognitive impairment emerge prior to any overt neuropathology and correlate 

poorly with plaque number, supporting the notion that synaptic damage occurs early in 

disease progression. The pattern of neuronal loss in AD overlaps with, but is not identical to, 

that of normal ageing, suggesting that AD pathogenesis is not simply acceleration of normal 

brain ageing.  

The underlying molecular mechanisms of AD pathogenesis have not yet been identified; 

therefore, three major hypotheses have been advances regarding the primary cause. The 

earliest hypothesis suggests that deficiency in cholinergic signalling initiates the progression 

of the disease. Loss of cholinergic neurons seems to be specifically associated with typical 

clinical symptoms, like memory deficits, impaired attention, cognitive decline, and reduced 

learning abilities. The first-generation therapeutics against AD was based on this hypothesis 

and work to preserve acetylcholine by inhibiting its degrading enzyme acetylcholine esterase 

(AChE). These medications have not led to a cure. In all cases, they have served to only treat 

symptoms of the disease and can delay the progression of AD by 1-2 years but failed to 

reverse it. Therefore, it was concluded that Ach deficiencies may not be the direct cause of the 

disease.  
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The hypothesis that Tau is the primary factor causing the disease has been grounded on the 

fact that AD neuropathology starts in most individuals with hyperphosphorylated Tau and 

neurofibrillary tangles long before the first signs of Aβ occur.10,59 One mechanism for 

neurotoxicity could be that hyperphosphorylated and aggregated Tau impairs axonal transport 

in murine Tau transgenic models and cellular models. Problems with axonal transport are 

believed to be a major cause leading to the pathologycal  observed in AD and other 

neurodegenerative diseases. Advances in the understanding of AD pathogenesis provide 

strong support for a modified version of the amyloid hypothesis. The basic tenant of this 

modified hypothesis is that an intermediate misfolded form of Aβ, neither a soluble monomer 

nor a mature aggregated polymer but an oligomeric species, triggers a complex pathological 

cascade leading to neurodegeneration.60 The relationship between APP, axonal transport and 

aberrant Aβ processing is not as easy as for Tau. Axonopathy and transport deficit can be 

detected long before extracellular Aβ deposition in AD patients. Impairment of axonal 

transport might be a cause or an effect of aberrant Aβ production or a result from APP 

overexpression. Axonal transport is of great importance for proper neuronal function. Finally, 

ApoE4, the major risk factor for sporadic AD, may directly disrupt the cytoskeleton and 

hence impair axonal transport.   

Neurotrophins may be the actors allowing to link between cholinergic degeneration, amyloid 

and tau pathologies and axonal transport. Neurotrophic factors (NTF) are small, versatile 

proteins that maintain neuronal survival, axonal guidance, cell morphology and play key roles 

in cognition and memory formation. Axonal transport processes are essential for proper 

neurotrophin factor signaling. Most neurodegenerative diseases are linked to failure in axonal 

transport, and not surprisingly, the majority of them are associated with impaired regulation 

and imbalance of neurotrophins. Neurotrophic factors are key regulators not only for 

development, maintenance and survival but also for cognition, formation and storage of 

memory. The normally high levels of neurotrophin receptors in cholinergic neurons in the 

basal forebrain are severely reduced in late-stage AD. Injection of nerve growth factor (NGF) 

can rescue basal neurons in animal models61 and a phase 1 trial of treatment with NGF gene in 

AD shows improvement in cognition and brain metabolism.62 Moreover, in AD and mild 

cognitive impairment, levels of brain-derived neurotrophic factor (BDNF), another member of 

the neurotrophin family, are depressed.63 BDNF treatment in rodents and non-human primates 

support neuronal survival, synaptic function, and memory, suggesting that BDNF replacement 

could be another option for the treatment of AD.64 
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1.1.2. Brain-derived neurotrophic factor  

BDNF is an activity-dependent secreted protein, which along with its receptors, is widely 

expressed in the central nervous system. It is critical to organization of neuronal networks and 

synaptic plasticity, especially in the hippocampus, in a variety of animal models and in 

humans. BDNF is critical for memory formation and long term potentiation (LTP). Further, 

BDNF is thought to regulate neurogenesis. The induction of LTP increases BDNF mRNA65 as 

well as TrkB mRNA66 in the dentate gyrus. In addition, it has been shown that hippocampal 

LTP and spatial learning are impaired in mice lacking BDNF67 as well as in mice lacking 

trkB.68 BDNF has been directly related to learning rates in spatial memory paradigms.69,70 By 

blocking either the release of BDNF or the binding of BDNF to its receptor (TrkB), long term 

potentiation is effectively eliminated in the hippocampus.71 Furthermore, inducing BDNF 

production and secretion in the hippocampus can rescue long term potentiation and relieve 

spatial memory deficits in aged mice.72 In a rodent of successful aging with a longer life span 

and preserved memory capacities, BDNF levels were higher than in animals that experience 

normal age-related patterns of decline. Based on the age-related decline in the expression of 

BDNF and TrkB in the hippocampus, one would expect that BDNF-induced LTP may be 

weaker in older animals. Concerning this, it has been shown that in aged rats, BDNF-LTP is 

significantly impaired within the hippocampus and that the activation of TrkB is reduced in 

hippocampal tissue derived from aged rats.73 Thus, BDNF seems to play a key role in 

synaptic plasticity, memory formation and storage, probably through induction of 

morphological changes. Therefore, the involvement of BDNF in neurodegenerative diseases 

has been discussed extensively. BDNF has been convincingly demonstrated to relate 

Alzheimer’s disease pathology. In this light, it is not surprising that mRNA expression as well 

as BDNF protein are decreased in hippocampus and neocortex of AD brains.63,74,75 Three of 

six transcripts, which code for BDNF, are down regulated 76 and two of these are controlled 

by a cyclic adenosine 5-phosphate response element-binding protein (CREB) responsive 

promoter. CREB deregulation appears to be involved in the pathogenesis of AD.77 BDNF also 

moderates tau formation78, β-amyloid neurotoxicity79 and hippocampal-dependent memory 

performance in animal models of Alzheimer’s disease.80,81 BDNF and its precursor PRO-

BDNF deficiencies were found to be present not only in cases of severe AD, but even in 

earlier mild stages of the disease such as mild cognitive impairment.82 Therefore, BDNF 

deficiency may be an early hallmark of AD and a factor in the progression of the disease. 

Moreover, a recent study showed that increased serum BDNF levels were associated with 
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poorer memory performance in Alzheimer’s disease cases.83 However, the degree to which 

serum BDNF reflects BDNF levels in brain remains a matter of speculation.84 A link 

combining BDNF and AD pathogenesis is BDNF as regulator of GSK-3β. BDNF increases 

the phosphorylation of S9-GSK-3β, which turn the kinase activity off.85 BDNF regulation is 

maintained through cholinergic innervations and through NMDA receptors. 

Concerning a possible role of BDNF in Alzheimer’s disease, it has been shown that BDNF 

post-mortem brains from Alzheimer’s disease patients display an absence of BDNF. This has 

been shown in both reactive glial cells of microglia cells and in neurons containing 

neurofibrillary tangles. Most neurons, which are intensely immunoreactive for BDNF, did not 

exhibit massive neurofibrillary degeneration.86,87 The age-related decline in BDNF could 

contribute to changes seen in conditions of normal aging. Further disturbances in the BDNF-

system may be related to pathological changes in the brain. Along this line, there is not only 

evidence to suggest that disturbances in the hippocampal BDNF-system contribute to 

neurodegenerative diseases such as Alzheimer’s disease, but also to psychopathological 

conditions such as depression.  

 

1.1.3 Activity-regulated cytoskeletal-associated protein  

The Activity-regulated cytoskeletal-associated protein (Arc) is a single copy gene that is 

highly conserved in vertebrates. Since the 1960s it has been known that long term storage of 

information in the brain is dependent on rapid, de novo RNA and protein synthesis.88  Similar 

macromolecular synthesis is essential for long-term forms of synaptic plasticity such as long-

term potentiation (LTP) and long-term depression (LTD). These activity-dependent changes 

in synaptic efficacy are suggested to underlie learning and memory. Among all the genes that 

mediate protein synthesis-dependent plasticity, the immediate early gene Arc has proven to be 

the most tightly couples to behavioural encoding of information in neuronal circuits in vivo.89 

Arc mRNA and protein induction during behavioural learning is so robust and reproducible 

that cellular imaging of Arc induction is a powerful methodology for detecting neural 

networks that underlie information processing and memory.89 In vivo, Arc is coordinately 

induced in populations of neurons that mediate learning such as place cells of the 

hippocampus90 and behaviour-specific neural networks in the cortex.91 For example, 5 min of 

spatial exploration elicits transcriptional induction of Arc in ~40% of CA1 neurons.89  
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Unlike most other immediate early gene products, the Arc protein is not a transcription factor. 

It is instead a cytosolic protein that acts as an effector protein downstream of multiple 

neuronal signaling pathways.  

Arc expression is confined to the brain and testis and seems to almost exclusively be 

expressed in CaMKII-positive glutamatergic neurons in hippocampus and neocortex, with 

little or no expression in glial cells.92 Arc protein is found in the postsynaptic density (PSD) 

and copurifies with the NMDA receptor complex93, but it is not found in presynaptic 

terminals or axons. The tight transcriptional regulation of Arc seems to be determined by 

multiple transcriptional enhancer sites that contain binding domains for a set of transcription 

factors, including SRF, MEF2 and CREB. The precise signaling cascades involved in Arc 

transcription are not well defined. One study showed that PKA and MAPK cascades are 

involved in Arc induction.94 Arc transcription is also regulated by neuronal spiking and 

calcium influx though voltage-sensitive calcium channels (VSCCs)95 and by group 1 

metabotropic glutamate receptors (mGluRs).96 The precise kinetics of transcription and 

translation of Arc appear to differ according to which receptors and signaling pathways are 

used and this has important implications for Arc’s role in neuronal plasticity.  

Arc mRNA is transported to dendrites and becomes enriched at the site of local synaptic 

activity, suggesting that Arc protein is locally synthesized. In addition to regulated transport 

of Arc mRNA in dendrites, Arc mRNA undergoes a form of nonsense-mediated decay in 

dendrites that results in limited translation of protein from a single mRNA. This exquisite 

regulation of mRNA and protein localization and expression suggests that Arc is important 

for synaptic function and that dysregulation of Arc expression may have dire consequences 

for brain function.97  

The properties of activity-dependent Arc protein and mRNA induction immediately suggested 

a role in memory consolidation, so it is not surprising that the first studies on Arc was 

concentrated on its regulation and function in the hippocampus. Arc knockout (Arc−/−) mice 

exhibit impaired consolidation of long-term memory, without alteration of short-term 

memory.98 Infusion of Arc antisense oligodeoxynucleotides (ODNs) in the rat hippocampus 

blocked consolidation in a spatial memory task.99 Similarly, Arc antisense ODN infusion in 

the lateral amygdala blocked the consolidation of Pavlovian fear conditioning.100 These 

findings suggest that Arc has a conserved role in information storage in limbic forebrain 

memory systems.  
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Dysregulation of Arc expression has been implicated in Alzheimer’s disease. Amyloid β 

peptide is the major component of neuronal plaques in AD and as already described, 

contributes to the pathogenesis of the disease. Even at low levels Aβ may interfere with 

signaling cascades critical for the synaptic plasticity that underlies learning and memory. 

Moreover, it is becoming clear that oligomeric species of Aβ may even have a normal role in 

homeostatic regulation of glutamate transmission.101 A number of findings suggest that Arc 

may contribute to the cognitive and Aβ-dependent synaptic dysfunction observed in 

Alzheimer’s disease. Aβ depresses AMPA receptor currents in slices and induces AMPAR 

endocytosis via a process similar to mGluR LTD.56 Oligomeric forms of Aβ have been shown 

to induce Arc expression.102  Arc expression is severely disrupted in Alzheimer’s disease 

mouse models. In some cases extremely high levels of Arc have been observed and in others 

there is a lack of normal Arc induction after experience. BDNF is well known to be capable of 

inducing the synthesis of Arc. Recent studies suggest that Aβ blocks BDNF-induced Arc 

expression, perhaps by inhibiting the PI3-Akt-mTOR pathway.103 However, the role of the 

mTOR pathway in Arc expression is controversial, as another study found no role for mTOR 

in Arc induction or Arc-dependent plasticity in vivo.104 These studies highlight the need to 

understand precisely how Arc expression is affected in Alzheimer’s disease.  

Taken together, these findings suggest that overexpression or dysregulation of Arc protein 

levels is potentially a causative factor in a number of neurological disorders, since Arc is a 

critical effector molecule downstream of many signaling pathways, dysfunction of Arc could 

be a nexus point for synaptic dysfunction in neurodegenerative diseases. As dysregulation of 

Arc expression is found in many cognitive disorders, it will be critical to assess the role of 

Arc in these disorders. Although Arc dysregulation may be a manifestation of the disease 

pathogenesis and not a causative agent, correcting Arc expression may still be a very relevant 

target for alleviating disease symptoms. However, it will be important to know precisely why 

and how Arc expression is disrupted in these disorders. 
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 1.2 GENETICS AND RISK FACTORS OF AD 

In general, two subgroups of AD are recognized upon the age at which the first clinical 

symptoms become apparent; early-onset AD (onset age <65years), termed familial 

Alzheimer’s disease (FAD), and late-onset AD (onset age >65years), termed sporadic 

Alzheimer’s disease (SAD).  

 

1.2.1 Familial Alzheimer’s disease (FAD) 

FAD is genetically inherited in an autosomal dominant fashion and has an early onset of the 

disease.105 Although most patients develop AD at later age, it is mainly the research 

performed on the rare autosomal dominant early-onset form of AD that provided valuable 

insights into disease pathogenesis. There are mutation in three known genes causing FAD: the 

amyloid precursor gene (APP, on chromosome 21), the presenilin 1 gene (PSEN1 on 

chromosome 14), and the presenilin 2 gene (PSEN2 on chromosome 1). Currently, 23 

missense mutations have been reported in APP, 178 mutations in PSEN1, and 14 mutation in 

PSEN2 (AD mutation database, http://www.molgen.ua.ac.be/AD mutation). An increase 

dosage of APP also enhances the severity of AD. Duplicate APP is linked to early onset AD 

with several cerebral amyloid angiopathy.105 Down syndrome patients with trisomy 21 (three 

copy of APP) show features of AD over the age of 35106 and Aβ was found in the plaque core 

of aged Down syndrome patients.107 In most of the cases APP mutations increase the ratio of 

Aβ42/Aβ40 or total Aβ production. The mutations in PSEN are missense mutations, 

insertions or deletions and they are located in the transmembrane regions or in the hydrophilic 

loops in the cytosol. PSEN mutations result in increased ratio of Aβ42/Aβ40.105 

 

1.2.2. Sporadic Alzheimer’s disease (SAD) 

SAD has a late onset (>65 years of age) and is responsible for over 95% of all AD cases. SAD 

is probably caused by several both genetic and environmental risk factors.105 The major 

genetic risk factor is the ε4 variant of apolipoprotein E gene (ApoE, on chromosome 19) 

called apoE4.108 The apolipopoteins are cholesterol transporters of high importance for 

repairing neurons and for maintaining lipid and cholesterol homeostasis. In addition to AD, 

apoE4 is also associated with several other neurodegenerative disorders. Recently, high-

throughput genomic association studies on extensive populations have opened up new 

avenues in detecting susceptibility factors for late-onset AD. Three novel risk genes have 

been identified: the clusterin gene (CLU, also known as apolipoprotein J gene, APOJ) CR1 
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(the receptor gene for the complement C3b protein), PICALM1 (encoding for the 

phosphatidylinositol-binding clathrin assembly protein)109.  

Risk factors for developing AD have been identified including health conditions, genetic and 

heredity, gender, education, age, and lifestyle. Taken together these evidences show that AD 

is a multifactorial disease. However, the mechanisms behind the AD pathogenesis are still 

unknown. 

 

1.2.3 Apolipoprotein E4 

The strongest known risk factor influencing the incidence of sporadic AD is the genotype for 

apolipoprotein E (apoE). ApoE is a polymorphic 299-aa protein and is the major carrier of 

cholesterol in the central nervous system. The gene, located on chromosome 19, encodes three 

alleles: apoE2 (frequency in population 7-8%), apoE3 (60-70%) and apoE4 (15-20%). In 

1991, familial studies demonstrated linkage of AD with markers on chromosome 19.110 Two 

years later apoE was implicated in late onset familial and sporadic AD.111 Individual with one 

or two copies of apoE4 have a higher risk of developing AD and also an earlier onset of the 

disease (from 84 in non carriers to 68 in E4 homozygotes) 112,113 compared with carriers of 

other isoform.114 On the other hand, the presence of apoE2 had a protective effect by delaying 

the onset and decreasing the risk for AD. This discovery has been confirmed by 

epidemiological and genetic studies with a large number of study subjects. It is estimated that 

65% of late onset and 80% of early onset AD can be accounted by the presence of apoE4.115 

The apoE polymorphism seen in humans is unique and it has been proposed to appear as a 

result of evolutionary adaptative changes. The three isoforms differ only at residues 112 and 

158. ApoE3 has Cys-112 and Arg-158, whereas apoE4 has arginine at both sites, and apoe2 

has cysteine. This substitution affects the three-dimensional structure and the lipid-binding 

properties between isoforms. In apoE4 the amino acid substitution results in a changed 

structure with the formation of a salt-bridge between an arginine in position 61 and a glutamic 

acid in 255 that causes this isoform to bind preferentially to VLDL. ApoE3 and apoE2 bind 

preferentially high-density lipoprotein (HDL).116  

ApoE	
   is	
  a	
  major	
  determinant	
  of	
  the	
  recognition	
  and	
  uptake	
  of	
   lipoproteins	
   through	
  the	
  low	
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  (VLDL)	
  receptor	
  and	
  megalin.	
  ApoE	
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  and	
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  of	
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  and	
  triglycerides	
  within	
  many	
  organs	
  and	
  cell	
  types	
  in	
  the	
  human	
  body.117	
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1.2.3.1 Role of apoE in CNS 

The largest production of apoE is found in the liver, followed by the brain. In the CNS, 

astrocytes are the major cell type that produces apoE, although neurons express apoE under 

physiological and pathological condition.118-120 ApoE has critical functions in redistributing 

lipids among CNS cells, through the LDL receptor-related family for normal lipid 

homeostasis, repairing injured neurons, maintaining synaptodendritic connections and 

scavenging toxins. Apoe3 seems more effective in the normal maintenance and repair of cells 

than ApoE4, which may be detrimental in these processes. 

 

1.2.3.2 ApoE and Aβ  

Decreased Aβ clearance or increased Aβ deposition has been suggested to play an important 

role in AD pathogenesis.25 The discovery of autosomal dominant mutations in the APP and 

presenilin genes (PS) genes, which result in an overall increase in production of Aβ (1-42) 

emphasized the idea that overproduction of Aβ is a causative agent of AD. Several lines of 

evidence suggest that at least some of the pathological effects of apoE4 may be mediated by 

interactions with the Aβ cascade. Both in vitro and in vivo studies demonstrate that apoE4 

inhibits Aβ clearance and/or stimulates Aβ deposition, leading to plaque formation.121  

ApoE is present in neuritic plaques and Aβ levels are elevated in brains of AD patients 

carrying apoE4.122 Similar findings have been observed with transgenic mice expressing 

human apoE isoforms.123,124 Moreover, several studies showed differences in the binding of 

apoE3 and apoE4 to Aβ. However, it remains to be elucidated if apoE4 has an active role in 

facilitating Aβ aggregation and/or deposition. In contrast, apoE3 and E2 may have a 

protective role by inhibiting Aβ aggregation or favouring Aβ clearance. ApoE4, in a lipid-free 

form has a greater avidity for Aβ than apoE3, but it has also been shown that apoE3 and E2 

bind more rapidly to Aβ when associated with lipoproteins.125 The dosage of apoE was found 

to be determinant for plaque deposition in a mice overexpressing the mutant human 

APPV717F.126 In APPV717F mice bred onto a mice expressing human apoE in astrocytes, it 

was found that apoE3 favours Aβ clearance, as apoE3-APPV717F mice showed reduced Aβ 

deposition compared with apoE4-APPV717F mice. Interestingly, in another mice model 

overexpressing a mutant variant of human APP, it has been shown that levels of Aβ and apoE 

in brain increased in parallel with age, at the expense of a decrease of Aβ in plasma. This 

would suggest that elevations of brain apoE levels during aging would deregulate Aβ 



21	
  

	
  

clearance and increase Aβ sequestration. Post-mortem studies have shown that Aβ deposition 

is increased in ApoE4 carriers in both sporadic and genetic AD cases. Recently, it has been 

shown that the cognitive impairment seen in APP transgenic mice depends both on apoE and 

on amyloid formation.127  

Neuronal ApoE receptors may also have several roles in APP trafficking and processing as 

well as in Aβ clearance and apoE4 has been found to enhance the synthesis of Aβ by 

promoting endocytic recycling of APP.128 Finally, in vitro data demonstrate that apoE 

increases the neurotoxicity of Aβ in an isoform-specific manner (E4 > E3). In addition, a 

study has shown that the impairments in neuroplasticity induced by apoE4 following 

environmental stimulation in a transgenic mice model are associated with the accumulation of 

intraneuronal Aβ.129 These findings suggest the existence of synergistic pathological effects 

between Aβ and apoE4.  

 

1.2.3.3 ApoE and neurofibrillary tangles 

Abnormal phosphorylation of the tau protein leading to the formation of NFTs is a common 

feature of AD and several other neurodegenerative disorders. Tau hyperphosphorylation 

compromises the normal functioning of the neuron leading to its death. The hypothesis that 

apoE isoforms may differently influence tau pathology derives from in vitro studies, where 

apoE3 and not apoE4 forms a (SDS)-stable complex with tau. Phosphorylation of tau inhibits 

its interaction with apoE3 suggesting that apoE3 only binds to non-phosphorylated tau. This 

further suggests that apoE3 might be able to prevent abnormal tau hyperphosphorylation and 

destabilization of the neuronal cytoskeleton.130 Transgenic mice studies have shown increased 

phosphorylation of tau in mice expressing human apoE4 in neurons, but not in mice 

expressing apoE4 in astrocytes131. This indicates a neuron-specific effect of apoE4 on tau 

phosphorylation. In addition, intraneuronal accumulation of hyperphosphorylated tau has 

been found in apoE KO mice fed with a high cholesterol diet, suggesting a synergic 

interaction of dietary cholesterol and lack of apoE function.132  

It has been proposed that the amino terminal domain of apoE3 is responsible for binding to 

tau. Additionally, studies in transgenic mice have shown that carboxyl-terminal-truncated 

apoE stimulates tau phosphorylation and intracellular NFT-like inclusion formation. A direct 

molecular interaction between the apoE or apoE fragments and tau molecules would require 

that both meet in the same cytosolic compartment. The question of how apoE accesses the 

neuronal cytoskeleton remains puzzling. An alternative mechanism in which apoE isoforms 
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would differentially contribute to tau hyperphosphorylation is the modulation of tau kinases 

and phosphatases. 

 

1.2.3.4 ApoE, cholesterol and synaptic integrity 

The major function of apoE is to redistribute lipids and participate in cholesterol homeostasis. 

In cultured neurons, cholesterol uptake is lower when the lipid is bound to ApoE4 compared 

to ApoE2 and ApoE3. ApoE4 is less efficient than other forms in promoting cholesterol 

efflux from both neurons and astrocytes.133 The structural differences between different apoE 

isoforms may account for these alterations. In AD, there is a decrease of cholesterol levels in 

brain and growing evidence indicates that cholesterol itself is involved in AD pathogenesis.134 

The first indication has come from clinical and epidemiological studies showing that patients 

with elevated plasma cholesterol levels have increased susceptibility to AD. Several studies 

have shown that the use of statins, which inhibit the cholesterol synthesis, decreases the 

prevalence and the progression of AD. In addition to apoE, other genes involved in the 

transport or in the metabolism of cholesterol have been suggested as putative risk factors for 

AD. Polymorphisms in receptors for the uptake of cholesterol, such as low-density lipoprotein 

receptor-related protein (LRP) and the very-low-density lipoprotein (VLDL) receptor, as well 

as in enzymes that regulate the cholesterol catabolism, such us Cyp46, have been associated 

with an increased risk for AD.135,136 Furthermore, a number of studies suggest that cholesterol 

regulates the Aβ production.  

β-secretase and γ-secretase are localized in cholesterol-rich lipid rafts, while the non-

amyloidogenic α-secretase is associated with the membrane surface outside raft domains. β-

secretase activity is increased by cholesterol. In addition, changes in cholesterol levels or 

distribution within the membrane have been shown to alter the localization of APP and their 

availability to be cleaved by these secretases.137 On the other hand, Aβ modulates the 

synthesis and the distribution of cholesterol in neurons. Moreover, it has been shown that 

cholesterol reduces the effects of Aβ on calcium signalling and neurotoxicity in several 

models.138 Such data illustrate that the interactions between cholesterol and Aβ are very 

complex. Regarding the different ability of variant apoE isoforms for carrying lipids, it is 

likely that the cholesterol/Aβ interactions would be modulated by the apoE genotype.  

In the nervous system, interaction between neurons and glial cells is very important in 

processes of growth, regeneration and synaptic plasticity. There, the apoE-mediated 

redistribution of lipids plays a fundamental role. In AD, there is extensive neuronal loss in the 
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limbic system and neocortex, as well as an important synaptic dysfunction that affect the 

normal being of the surviving neurons. It has been suggested that the variant apoE isoforms 

participate differently in repair processes and synaptic plasticity. Synaptic plasticity in the 

CA1 region has been found to be impaired in apoE KO mice. ApoE KO and apoE4 but not E3 

transgenic mice have an age-dependent disruption of synaptic organization.139 These apoE 

isoform differences have also been reported in humans. ApoE4 carriers show a poor 

compensation of neuronal loss in different brain regions, whereas non-E4 carriers exhibit 

marked regenerative changes in the same areas.140 Such data suggest a lack of function of 

apoE4 in synaptic regeneration compared with other apoE isoforms. It is likely that this lack 

of function will also affect synaptic function. Supporting this idea, it has been reported that 

LTP is reduced in apoE4-transgenic mice compared with wild-type mice and apoE3 mice.141 

 

1.2.3.5 ApoE and cholinergic dysfunction 

Cholinergic signal transduction is well known to be impaired in AD. ApoE4 carriers with AD 

show greater deficits than non-carriers in cholinergic activity in the hippocampus and the 

cortex, as well as a reduction in the total number of cholinergic neurons markers, such as 

choline acetyltransferase activity and nicotinic ACh receptor binding. In contrast, there are no 

significant differences in muscarinic receptor levels between AD patients with different apoE 

genotypes.142 Variant apoE isoforms have different effects on ACh muscarinic receptor 

stimulated signalling in vitro. ApoE4 impaired carbachol-stimulated phosphoinositide 

hydrolysis, whereas apoE3 alone was without effect.143 In addition, ApoE3, but not E4, could 

protect against Aβ (1-42)-mediated disruption. In a double transgenic mice model, it has 

recently been reported that modulation of AD-like cholinergic deficits depends on the apoE 

isoform, the overproduction of Aβ, and the age of the animal, but not on plaque deposition.144 

In this study, human APP/apoE4 mice showed synaptic and cholinergic deficits prior to 

plaque formation. However, old human APP/apoE4 and human APP/apoE3 mice had similar 

synaptic and cholinergic deficits, despite their differences in plaque load.144  

A direct negative influence of apoE4 on cholinergic signalling may participate in the lower 

effectiveness of cholinergic replacement treatments reported for apoE4-AD patients.142 

 

1.2.3.6 ApoE and signalling 

ApoE has been shown to modulate various signalling pathways, some of which are relevant to 

AD. In several in vitro models, apoE was shown to affect multiple signalling cascades in an 
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isoform-specific manner. ApoE isoforms differentially influence calcium channels causing 

different increases in free intracellular calcium. Also, apoE has isoform-specific effects on the 

activities of PKC, GSK-3145, Akt, ERK, JNK and on CREB.146,147 Recently, a large 

microarray study with hippocampal samples from AD patients demonstrated that patterns of 

gene expression differ substantially between have apoE4 and non-apoE carriers.148 ApoE4 

individuals have more expression of tumour suppressors, and negative regulators of cell 

growth that may lead to increased apoptosis. In contrast, they showed decreased expression of 

genes associated with synaptic plasticity, neuronal outgrowth, several neurotransmitter 

receptors, as well as genes involved in mitochondrial oxidative phosphorylation/energy 

metabolism.  

Alteration in neurotransmitter receptors and down-stream signalling may contribute to the 

development of resistance to some pharmacological therapies seen in individuals with 

apoE4.149  

 

1.2.3.7 ApoE and neurotoxicity 

ApoE may also contribute to neurodegenerative processes by being directly toxic to neurons. 

In this context, lipid-free apoE (E4 > E3) and apoE-derived fragments have been shown to be 

toxic to neurons in vitro.150 In vivo studies using transgenic mice that express human apoE3, 

apoE4 or both, have demonstrated that apoE3/E3 animals were more protected than apoE3/4 

against age-induced neurodegeneration and that apoE4/4 showed no protection. This would 

imply that apoE4 is not only less neuroprotective than apoE3, but also acts as a dominant 

negative factor interfering with the beneficial function of apoE3.151  

It has been reported that a N-terminal proteolytic fragment  is responsible for apoE toxicity by 

increasing intracellular calcium levels.152 Conversely, several reports from another group have 

shown that the C-terminal fragment of apoE is neurotoxic in vitro by a mechanism that 

involves mitochondrial and cytoskeletal alterations. In vivo, apoE4 C-terminal fragments 

were shown to induce neurodegeneration and behavioural deficits in transgenic mice. 

Importantly, apoE C-terminal fragments were present at much higher levels in the brains of 

AD patients (especially associated with NFTs) than in controls, although the difference 

between truncated apoE levels in E3 and E4 carriers was not demonstrated.153  

In view of the different results obtained with lipid-free or lipid-bound apoE, it is possible that 

apoE will be more resistant to proteolysis when associated with other lipoproteins or that 

compositional and/or structural differences of lipoprotein containing apoE particles may be 
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important for neurodegeneration. Since each apoE isoform possesses structurally defined 

abilities in lipid binding, it is also important to consider that the composition of lipoprotein 

particles may differ with apoE genotype. Therefore, it is possible that apoE4 is more 

susceptible to cleavage than apoE3. Hatters et al. reported that apoE forms soluble fibrillar 

aggregates in vitro and that the rate of aggregation vary substantially between isoforms (E4 > 

E3 > E2).154 ApoE fibrils were significantly more toxic to cultured neuronal cells than the 

tetramers. Previously, the same group demonstrated that lipid-binding protects 

apolipoproteins from misfolding into amyloid fibrils, suggesting that the formation of apoE 

fibrils may require the presence of lipid-free apoE. However, the presence of apoE fibrils (as 

well as the isoform differential fibrillation) in AD brain has still to be demonstrated. 

Understanding the factors that govern the apoE neurotoxicity as well as its neuroprotective 

effects remains crucial for elucidating the role of apoE in neurodegenerative processes. 

 

1.2.4 Other risk and protective factors in AD 

Various risk factors have been found to be associated with dementia and/or AD. Identification 

of risk factors might prove beneficial in preventing AD, since the current treatments have 

modest effects on symptoms and do not significantly alter the outcome.  

Possible risk factors such as a strong association factors (stroke, high blood pressure in mid-

life, obesity), moderate factors (depression, diabetes, hyperinsulinemia, excessive alcohol 

consumption and high cholesterol levels in mid-life) and mild factors (chronic stress, head 

trauma, low vitamin B12 levels, smoking, saturated fats and cholesterol intake) have been 

reported.155-159 Possible protective factors for AD include strong association factors (education 

and physical activity), moderate factors (leisure activities) and mild factors (moderate alcohol 

consumption, challenging occupation, eating fish (omega-3) and eating fruits/vegetables (anti-

oxidants)).  

 

1.2.4.1 Cerebrovascular disease 

Cerebrovascular changes such as hemorrhagic infarcts, small and large ischemic cortical 

infarcts, vasculopathies all increase the risk of dementia.160 Stroke may lead to cognitive 

impairment and AD through several different mechanisms. It is possible that it leads directly 

to damage of brain regions that are important in memory function. Another explanation might 

be increased Aβ deposition, which in turn can lead to cognitive decline. Further, it may 

induce inflammatory responses that impair cognitive function. Hypoperfusion can lead to 



26	
  

	
  

overexpression of cyclin-dependent kinase 5 (CDK5), a serine-threonine kinase that is critical 

to synapse formations and synaptic plasticity, and, hence to learning and memory.161 

 

1.2.4.2 Blood pressure 

In middle age, elevated blood pressure increases the risk of cognitive impairment, dementia 

and AD. Hypertension may increase the risk of AD by decreasing the vascular integrity of the 

blood-brain barrier (BBB) resulting in protein extravasation into brain tissue. This protein 

extravasation can lead to cell damage, reduction in synaptic and neuronal functions, apoptosis 

and an increase of Aβ accumulation, resulting in cognitive impairment.162 Recent studies have 

evaluated the benefit of antihypertensive treatments in patients with cognitive 

impairment.163,164 

 

1.2.4.3 Type 2 diabetes 

In observational studies, type 2 diabetes (T2D) has been found to nearly double the risk of 

AD.165 Various mechanisms have been proposed whereby diabetes might influence the 

development of AD. In cases of hyperinsulinemia accompanying diabetes, insulin may 

compete with Aβ for the insulin degrading enzyme (IDE), thereby hindering clearance of Aβ 

from the brain.166 Moreover, a histopathological study of hippocampal tissue from AD 

patients and healthy controls showed a relative reduction in IDE expression and IDE 

messenger RNA levels in AD brain tissue.167 Diabetes and impairment of glucose tolerance 

lead to the formation of advanced glycosylation end products (AGEs). Amyloid plaques and 

NFTs contain receptors for AGEs (RAGEs). Glycation of Aβ enhances its propensity to 

aggregate in vitro. In addiction RAGEs may facilitate the neuronal damage caused by Aβ.168 

 

1.2.4.4 Plasma lipid levels 

Conflicting data are available concerning the relationship between dyslipidemia and cognitive 

impairment or AD.169,170 Amyloid precursor protein (APP) can be broken down by enzymes, 

termed the secretases, via the nonamyloidogenic and the amyloidogenic pathways. In the 

second pathway, APP is proteolytically cleaved by β-secretase and subsequently, γ-secretase 

to gene rate Aβ. The most common isoforms of which comprise 40 (Aβ1-40) and 42 (Aβ1-42) 

amino acids, with the latter being the most fibrogenic of the two peptide species. Evidence 

exists that depletion of membrane cholesterol inhibits secretase cleavage of APP, thereby 

lowering Aβ1-40 and Aβ1-42 accumulation. Nevertheless, dyslipidemia increases the risk of 
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vascular disease, which in turn is associated with a heightened risk of AD. In people at risk of 

cardiovascular and cerebrovascular disease, statins are the first-line treatments for reducing 

cholesterol levels. The results of a large scale trial of simvastatin to slow AD progression 

have yet to be published.171 

 

1.2.4.5 Smoking 

Smoking could affect the risk of AD via several mechanisms. Smoking may increase the 

generation of free radicals, leading to high oxidative stress, or affect the inflammatory 

immune system, leading to activation of phagocytes and further oxidative damage.74 In 

addition, smoking may promote cerebrovascular disease. Evidence also exists, however, that 

smoking can have a protective effect against AD. Nicotine has been suggested to induce an 

increase in the level of nicotinic acetylcholine receptors, thereby counterbalancing the loss of 

these receptors, and subsequent cholinergic deficits, observed in AD.172 

	
  

1.2.4.6 Depressive symptoms  

Depressive symptoms occur in 40–50% of patients with AD. Some longitudinal and case–

control studies have found an increase in the risk of AD or MCI in individuals with a history 

of depression, but other studies have been unable to link AD with this mood disorder. The 

potential mechanisms underlying the possible association between these conditions might 

involve vascular pathways and effects of depression on the hippocampal formation or the 

hypothalamic-pituitary-adrenal axis.173,174 

 

1.2.4.7 Psychological stress 

Evidence from rodent studies suggests that chronic psychological stress can alter brain 

morphology (such as hippocampal structure) and, as a result, exert a detrimental effect on 

brain function, including memory.175 Thus, chronic psychological stress might increase the 

risk of AD. 

 

1.2.4.8 Physical and intellectual activity 

Epidemiological and experimental data suggest that physical exercise may promote brain 

health. Conflicting results have emerged from cross-sectional and longitudinal observational 

studies that examined the relationship between exercise levels and cognitive decline. Some 

studies indicated that physical activity has a beneficial effect on brain health while others 
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showed no association between these variables.176 Physical activity could affect cognition via 

multiple mechanisms. An improvement in aerobic fitness increases cerebral blood flow, 

oxygen extraction and glucose utilization.176 It activates growth factors that promote structural 

brain changes, such as an increase in capillary density.177 In addition, studies in rodents 

suggest that physical activity decreases the rate of amyloid plaque formation.  

Following initial reports that elderly people with higher levels of education had a lower 

incidence of dementia than individuals with no education, cognitive activity was suggested to 

decrease the risk of cognitive decline by increasing cognitive reserve. Several prospective 

studies subsequently found that both young and old people who engage in cognitively 

stimulating activities, such as learning, reading or playing games, were less likely to develop 

dementia than individuals who did not engage in these activities.178,179 

 

1.2.4.9 Diet 

Recent findings show that elderly persons from different ethnicities (for example African 

Americans and Japanese living in the USA) have higher prevalence of AD than those still 

living in their countries of origin. This suggests that diet and lifestyle exert more influence 

than genetics.180,181 Several aspects concerning dietary habits as a protective or a risk factor 

for developing cognitive decline as well as AD are described below. 
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1.3 DIET AND AD 

In 1997, William Grant correlated the amount and type of food consumed in different 

countries with the prevalence of AD.182 He found a positive association between total calories, 

total fat and the incidence of the disease. Kalmijn et al. also noted a correlation between fat 

intake and dementia in a study of 5400 participants in Rotterdam.182  

Diets high in fish, fruit and vegetables are high in antioxidants and polyunsaturated fatty acids 

(PUFAs). In some observational population-based studies, people who had a high intake of 

vitamins E and C (both antioxidants) were less likely to show cognitive decline and had a 

lower risk of AD than individuals with a low intake of these vitamins.183,184 In contrast, other 

large prospective studies found no associations between vitamins and the risk of developing 

AD. Investigations examining the effect of dietary PUFAs on the risk of cognitive 

dysfunction proved inconclusive.185 Several studies showed that the consumption of PUFAs 

led to decreased risk of dementia and cognitive decline, other studies found no association 

between dietary PUFAs and cognitive impairment.186 Scarmeas et al. reported that 

consumption of a Mediterranean-type diet (MeDi) characterized by a high intake of plant 

foods, fish (with olive oil as the primary source of monounsaturated fat), a moderate intake of 

wine, a low intake of red meat and poultry reduced the incidence of AD187 and showed a trend 

towards reducing the risk of MCI.188 These effects were independent of levels of physical 

activity and vascular comorbidity. To date, prospective clinical trial data for dietary 

supplementation with omega-3 PUFAs have shown no overall effect on cognition in patients 

with MCI or AD.  Although, it suggests that docosahexaenoic acid supplementation has a 

beneficial effect on cognitive function in people harbouring the apoE ε4 allele and in the 

earliest stages of AD.189,190  

Reactive oxygen species are clearly associated with neuronal damage in AD. However, 

whether the presence of these molecules reflects a primary or secondary event in the 

neurotoxic process remains unclear. Depositions of Aβ, which is an early event in AD leads to 

a decrease in cerebral iron and copper concentrations, resulting in oxidative stress and 

neuronal damage.191 Evidence from in vitro studies indicates that vitamin E reduces the extent 

of Aβ-induced lipid peroxidation and cell death.192 In addition, carotenes and vitamin C 

protect against lipid peroxidation. Furthermore, vitamin C reduces the formation of 

nitrosamines and may affect catecholamine synthesis.193 Evidence also exists that antioxidant 

intake reduces the risk of AD through a reduction in the risk of cerebrovascular disease.194 
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Besides reducing oxidative stress, PUFAs have positive effects on neuronal and vascular 

functions as well as inflammatory processes.195 

 

1.3.1 High saturated fat diet and AD 

The presence of saturated fats in our diets may affect memory function and possibly increase 

people’s risk of developing AD.196 Much, but not all of the evidence comes from animal 

studies. In these studies, mice and rats were fed with diets of different fat levels and then 

tested for learning and memory. The animals fed with a high proportion of saturated fat 

displayed worse learning and memory than those on the lower-fat diet. In one study 

performed on rats, investigators examined whether the adverse effects were from saturated fat 

specifically, or from any fat at all. One group of rats was fed coconut oil, known for its high 

saturated fat content for eight weeks. Another group was fed soybean oil, low in saturated fat 

and high in unsaturated fat for the same amount of time. After eight weeks the animals fed the 

coconut oil had higher triglycerides, higher total cholesterols, and higher low-density 

lipoproteins. The rats fed the diet high on soybean oil did much better on memory and 

learning tests than did the rats fed the diet high in saturated fat.197 In another study, transgenic 

mice were fed a diet high in saturated fat and cholesterol with a control group of mice who 

did not receive the fatty diet. After two months, the mice were tested for memory-related 

tasks. Those that had been fed the diet of saturated fat were not able to remember the tasks, 

but the control group could perform them.198 In another study, when brains of rats were 

examined, researchers found increased levels of the toxic amyloid-β protein in the mice fed 

the high-saturated-fat diet, and this might be altered by a ketogenic diet.199 These data suggest 

a link between diets high in saturated fat and the development of AD changes in the brain. 

Researchers found that people who were apoE ε4 carriers and who had a high intake of 

saturated fat had an increased risk for the development of AD when compared with ApoE4 

carriers who had a lower intake of saturated fat. On the other hand, the intake of unsaturated 

fats did not appear to influence the development of AD among ε4 carriers and noncarriers.200 

However, researchers in the Rotterdam population study found no cross-sectional association 

between high levels of saturated fat intake and an increased risk of dementia, so thar what 

seemed to be a clear link in the rat and mice studies was not confirmed by clinical 

observations.186 High fat diets appear to interfere with glucose tolerance and insulin 

sensitivity, and again have different effects depending on the type of fat.201 The risk of type II 

diabetes is also associated with a high trans-fatty acid intake and a low unsaturated/saturated 
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fat intake ratio.202 There are reports that saturated and trans-fatty acids increase insulin 

resistance, whereas mono- and poly-unsaturated fats decrease resistance and offer protection 

against disease.203 Therefore, the detrimental effect of a prolonged high fat diet on cognitive 

performance may, at least in part, be due to abnormalities in glucose regulatory mechanisms. 

 

1.3.2 Cholesterol and AD 

A strong correlation between high fat/high cholesterol diets and increased brain Aβ levels has 

been shown in numerous experimental animal models. These studies demonstrate that an 

inappropriate diet rich in cholesterol is likely to increase the risk of AD. For example, in 

rabbits with diet-induced hypercholesterolemia, increased levels of Aβ and apoE protein have 

been found in the temporal and frontal cortex of the brain.204 In Watanabe rabbits with a 

genetic defect in the LDL receptor, both hypercholesterolemia and neuronal Aβ deposition 

occur.205 AD transgenic mouse models develop Aβ plaque-like deposits more quickly if fed a 

high fat /high cholesterol diet. The levels of brain Aβ  in these mice correlate strongly with 

both plasma and CNS total cholesterol levels. 206  In contrast, caloric restriction decreases Aβ 

peptide generation and neuritic plaque deposition in the brains of such mouse models.207 

Interestingly, guinea pigs fed a high cholesterol diet show increases in plasma but not brain 

cholesterol levels. Many clinical studies, as well animal studies such as those mentioned 

above have shown that high fat/high cholesterol diets lead to increases in brain Aβ levels and 

to HDL/cholesterol and LDL/cholesterol levels linked to AD. Therefore, it is understandable 

that obesity is now also recognized as an important risk factor for AD.208  

Aβ, apoE, cholesterol, and cholesterol oxidase have been shown to colocalize in the core of 

fibrillar plaques in transgenic mice models of AD,209 supporting the suggestion that 

cholesterol and apoE are involved in fibrillar plaque formation. Cholesterol may be directly 

involved in Aβ aggregation: abnormal oxidative metabolites such as cholesterol-derived 

aldehydes can modify Aβ, firstly promoting Schiff base formation, then accelerating the early 

stages of amyloidogenesis.210 Other studies have shown that a novel Aβ species, having a 

conformation distinct from that of soluble Aβ, is characterized by its tight binding to GM1 

ganglioside (GM1). This binding appears to be facilitated in cholesterol-rich environments 

and is dependent on the cholesterol-induced clustering of GM1 in the membranes. The 

changes in HDL- and LDL-cholesterol levels in AD suggest a disturbed cholesterol 

metabolism in AD. The cholesterol metabolite 24S-hydroxycholesterol is more soluble than 
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cholesterol, and is more easily exported from the brain.211 The amount of 24S-

hydroxycholesterol exiting the brain is thought to reflect brain cholesterol synthesis levels, 

and CSF 24S-hydroxycholesterol levels are higher in AD individuals when compared with 

appropriate controls.212 However, in severe cases of AD, plasma 24Shydroxycholesterol/ 

cholesterol ratios have been found to be reduced.213 Cholesterol is converted to 24S-

hydroxycholesterol by cholesterol 24-hydroxylase encoded by the CYP46 gene, and it has 

been suggested that its levels may play a role in AD.212 Some studies have found CYP46 gene 

polymorphisms are associated with AD pathophysiology,214 however others have found 

CYP46 polymorphisms not to affect AD risk.215,216  

Cholesterol can be synthesized in the brain, therefore brain cholesterol homeostasis may be 

independent from the periphery.217 In support of this, dietary levels of cholesterol have 

marked effects on de novo peripheral cholesterol synthesis, yet appear to have little or no 

effect on brain cholesterol synthesis or metabolism.218 In addition, although one study has 

found that LDL can cross the blood-brain barrier (BBB) by receptor-mediated transcytosis,219 

most studies suggest that plasma lipoproteins do not cross the BBB. In AD, brain cholesterol 

flux is elevated: when compared to controls, higher levels of the more soluble form of 

cholesterol, 24S-hydroxycholesterol, are found in both CSF and plasma of AD patients, even 

in early stages of dementia, although the cause of this is unknown. AD patients respond 

positively to cholesterol-lowering drugs. This underscores the relevance of cholesterol 

metabolism in AD, despite the fact that brain cholesterol levels are not necessarily affected by 

the drugs. 

 

1.3.3 High carbohydrate diet and AD 

High carbohydrate diet and possession of apoE4 suppress the lipid metabolism in a similar 

manner and in combination greatly increase the risk for AD. Since E4 and high carbohydrate 

diet inhibit lipid metabolism in a similar way, this may explain the natural selection against 

E4 in long-time agricultural societies when intake of carbohydrates in the diet became higher. 

Prior the development of agriculture, E2, E3 and E4 may have been neutral alleles that arose 

when human ancestors began to eat more animal matter and hence more fat. This led to a 

selection of apoE. The development of agriculture then imposed a new selection on apoE 

reducing E4 in Middle Eastern and Mayan populations.220  

The high carbohydrate diet leads to high glucose serum levels, induces lipogenesis and 

hypertriacylglycerolemia.  This would be worsened by possession of E4 allele. Therefore, E4 
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allele in combination with an high carbohydrate diet could be deleterious. Population with 

little exposure to high carbohydrate diets have higher E4 frequencies suggesting that there 

was no selection against E4 in these conditions.221,222 Further, having the E4 allele may not be 

a risk factor for AD in all population.97 Nigerians who eat considerably less high-glycemic 

carbohydrates than US show a low incidence of AD despite the relative high frequency of E4. 

ApoE4 and high carbohydrate diet contribute to decreased lipid metabolism in the central 

nervous system, altering the function of glucose transporters and APP. This leads to a chronic 

elevated insulin/IGF signaling. The combination of the increase of insulin signaling (a 

consequence of the diet) and the action of ApoE4 (that preferentially binds triglyceride rich 

particles such as VLDL and chylomicrons, with consequent decrease of lipoprotein lipases 

activity) leads to the decrease of free fatty acid use and of essential fatty acid delivery to the 

CNS. This compromises the integrity of cellular membranes and the function of membrane 

proteins such as glucose transporters and APP. Decrease in glucose uptake leads to lower 

level of acetyl-Coenzyme A and Acetylcholine. A consequence of lower acetyl-Coenzyme A 

levels is alterations in cholesterol homeostasis. An important protein, sensitive to disturbances 

in cholesterol homeostasis is APP. The final results of all these processes will lead to Aβ 

accumulation, cellular damage and cell death.  

Several evidences indicates that excess consumption of carbohydrates plays an important role 

in the epidemic of obesity around the world.223 Numerous epidemiologic studies suggest that 

obesity, hyperinsulinemia and type II diabetes are associated with an increased risk of AD, 

independent of the risk for vascular dementia. 

 

1.3.4 Insulin-signaling pathway  

Adiposity, hyperinsulinemia, glucose intolerance and diabetes are often treated as separate 

constructs and have been separately related to the risk of AD. However, they are related 

sequentially and often occur simultaneously. Understanding this relation is fundamental in the 

study of the role of adiposity and metabolic risk factors in AD. Glucose intolerance and 

diabetes are abnormal elevation of blood glucose. Glucose normal levels are achieved by the 

balance between the ability of peripheral tissues to take glucose into cells and the pancreas 

ability to secrete insulin. Insulin is the hormone in charge of glucose tissue uptake. Thus, 

abnormal glucose levels are caused by a resistance of tissues to the action of insulin (insulin 

resitance) and by the pancreas inability to secrete enough insulin at normal levels. It can also 

be caused by higher than normal insulin levels (hyperinsulinemia) to overcome insulin 
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resistance in tissues. The greatest determinant of insulin resistance and hyperinsulinemia is 

adiposity. One of the main consequences of adiposity is hyperinsulinemia.  

The role of insulin in AD has attracted increasing attention. Insulin can cross the blood brain 

barrier from the periphery to the central nervous system and compete with Aβ for insulin 

degrading enzyme in the brain, including the hippocampus. Insulin is also produced in the 

brain and alternatively may have a beneficial effect in amyloid clearance. Hyperinsulinemia 

may inhibit brain insulin production which in turn results in impaired amyloid clearance and a 

higher risk of AD. A study found that rosiglitazone, which decreases insulin resistance and 

decreased peripheral insulin levels used in the treatment of diabetes may also be beneficial in 

AD. Hyperinsulinemia is related to a higher risk of AD in epidemiological studies. 158 

Manipulation of insulin levels in humans has been demonstrated to affect cognition and levels 

of Aβ in the cerebrospinal fluid, supporting the potential direct role of insulin in AD. 

Subgroups of patients with advanced Alzheimer’s disease have high fasting insulin levels and 

low rates of glucose disposal (peripheral resistance).224 Levels of insulin receptors, glucose-

transport proteins and other insulin pathway components in the brain are reduced in some 

studies of Alzheimer’s disease (central resistance).225  

Insulin and brain-derived insulin-like-growth factor (IGF) are extracellular ligands that 

regulate metabolic activity and activate many of the same intracellular signaling cascades as 

neurotrophins.78 While insulin is not a classic neurotrophic factor, it exhibits many 

neurotrophic and protective effects on neurons. Endogenous insulin signaling is important for 

maintaining relatively low phosphorylation levels of Tau and downregulation of insulin 

signaling may be a factor leading to Tau hyperphosphorylation levels and cytoplasmatic 

aggregation in AD. In general, insulin signaling and metabolism is reduced in the aging brain, 

regardless of disease pathology. Resistance to insulin signaling renders neurons energy-

deficient and vulnerable to oxidizing or other metabolic insults and impairs synaptic 

plasticity. Moreover, the higher serum glucose levels that are common in normal aging 

directly damage hippocampal structures226, up-regulate the tau kinase, GSK-3β227 and reduce 

levels of insulin-degrading enzyme in AD brains.167 Therefore, decreased insulin signaling 

may increase other genetic and environmental factors to induce AD disease progression. 

Importantly, apoE4 has been found to modulate the effect of other risk factor, such as diabetes 

and hyperinsulinemia.228 
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1.3.5 Adipokines and cytokines 
Adipose tissue used to be conceived as a passive storage of energy in the form of fats. Recent 

evidence shows that adipose tissue is active and produces a series of substances that are 

important in metabolism (adipokines) and inflammation (cytokines). The adipokines 

(adiponectin, leptin and resistin) and the inflammatory cytokines (TNFα and IL-6), all 

correlated with insulin resistance and hyperinsulinemia. At this point it is unclear if 

adipokines and cytokines produced by adipose tissue are directly related to AD or only 

markers of insulin resistance and hyperinsulinemia. Recently, it has been reported that leptin 

has widespread actions in the central nervous system. Leptin reduces the activity of beta 

secretase in neurons and increases APOE dependent uptake of Aβ in vitro Chronic 

administration of leptin in AD transgenic mice can decrease brain Aβ in vitro, supporting a 

potentially important role for adipokines in AD, in addiction or independent of insulin.229 

 

1.3.6 Leptin 

The hormone leptin was originally discovered in 1994. The primary amino acid sequence of 

leptin indicates that leptin adopts a three-dimensional helical structure similar to that of 

certain cytokines, such as interleukin-2. The 16 kDa protein, encoded by the obese (ob) 

gene230 is mainly synthesized in adipose tissue. It was first linked to obesity by demonstrating 

its function in controlling body mass size via inhibition of appetite behaviours.231 Circulating 

leptin serves to communicate the state of body energy repletion to the central nervous system 

in order to suppress food intake and permit energy expenditure. Leptin is taken into the brain 

across the blood brain barrier (BBB), where its main functional role is in the hypothalamus, 

inhibiting the arcuate nucleus. In addiction to its main role in feeding and homeostatic energy 

control, leptin is now known to exert significant effect on reproduction232, thermogenesis233,  

insulin sensitivity234, synaptic plasticity235 and more recently neuroprotective activity in 

several brain regions.236  

Adipocytes are the major leptin-producing organ in the periphery. Peripheral leptin can be 

bound in the serum by soluble leptin receptor and/or taken up across the BBB. The amount of 

leptin that crossed the BBB is much less than what is found in the periphery. The transport 

across the BBB is proposed to be saturable and the transport of  leptin is unidirectional, from 

the blood into the brain parenchyma. Any excess of leptin is cleared via the CSF.237 In 

addition to adipose tissue, it is known that leptin is also synthesized by other tissue and 

organs: placenta, fetus, skeletal muscle, heart and stomach. There is also evidence for leptin 
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synthesis in the brain itself. In rats, brain regions that contain high levels of leptin receptors, 

also show leptin mRNA and protein.238 It is yet to be determined if leptin produced 

endogenously by the brain is functionally independent from that produced in the periphery. 

Since the concentration of leptin is considerably low in the CSF even after exogenous 

supplementation, an endogenous sourse of leptin production may provide signaling that is 

more relevant to brain areas outside of the hypothalamus.232 Endogenous synthesis and release 

of leptin in the brain itself might help to explain how localized leptin production could be 

involved in promoting the survival of neurons. Although, there is some evidence that leptin 

could be synthesized within the brain, it is believed that the majority of leptin in the CNS is 

derived from peripheral adipose tissue. Evidence has been provided for a specific transport 

system for leptin to cross the blood brain barrier and enter in the brains of mice, rats and 

humans. The rate of transport can be decreased by high plasma concentration of leptin. Thus, 

reduced entry of leptin to the brain may be one of the mechanisms of reduced sensitivity of 

the leptin pathway in obese individuals. Decreased availability of leptin to the brain is now 

known to be the basis for obesity. Obese individuals often have highly elevated blood levels 

of leptin in response to the increase of adipocyte mass. These high levels would be expected 

to depress appetite, but leptin fails to do so. Experiments demonstrate that triglycerides can 

reduce leptin transport across the BBB and can be one of the reasons that create a form of 

leptin resistance.239 This explains the failure of exogenously administered leptin as treatment 

for obesity in some individuals, since leptin is prevented from entering the brain.  

Functional leptin receptors have been found in many regions of the brain. The ventral 

hypothalamus, in particular the arcuate nucleus has the greatest density of leptin receptors.240 

The high numbers of leptin receptors correlate with the functional role of leptin in regulating 

feeding and energy homeostasis. Leptin receptors are abundantly expressed in other brain 

regions, including cortex, thalamus, cerebellum, midbrain and hippocampus (primarily in the 

dentate gyrus and CA1, areas heavily affected in AD). This finding demonstrates that leptin is 

biologically active in extra-hypothalamic regions.  

There are six forms of the leptin receptors (ObR).241 The Ob receptors are members of the 

interleukin-6 receptor family of the class I cytokine receptor super family. Ob receptors are 

classified in three structural groups: the short, the long and the soluble forms. The external 

leptin-binding N-terminal is identical among all variants. All forms contain a transmembrane 

domain, except the soluble form which only contain extracellular domains that binds 

circulating leptin. This might regulate the concentration of free leptin.242 The long form 
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contains three additional phosphorylation sites on its intracytoplasmatic tail, compared to the 

short form. It is thought that many of the physiological actions mediated by leptin are due to 

the long form receptor because of its greater ability to activate downstream signaling 

pathway. The short form receptors appear to be important in mediating the transfer of leptin 

from the periphery through the BBB.  

Intracellular signaling of ObR is similar to the class I cytokines. Leptin receptors share several 

signaling cascades with insulin and erythropoietin receptors. This class of receptors has no 

intrinsic enzymatic activity of their own. After ligand binding, ObR associate as functional 

homodimers. This allows its associated second messenger Janus tyrosine kinase 2 (JAK2) to 

undergo activation, autophosphorylation and contribute to several different cascades.  One of 

its major actions is to phosphorylate three tyrosine residues on the intracytoplasmatic loop. 

The phosphorylation of one of these three residues activates MEK/ERK signaling pathway. 

This pathway is also shared with insulin, leading to stimulation of BDNF production, via 

phosphorylation of the transcription factor cAMP-response element binding (CREB). The 

major element that JAK2 phosphorylates is the transcription factor signal transducer and 

activators of transcription 3 (STAT3). Activation of STAT3 includes its dimerization, which 

then allows it to translocate to the nucleus and affect the transcription of a number of factors. 

These factors mediate neuronal activity, survival and a negative feedback loop on JAK2 

activity via suppressor of cytokine signaling 3 (SOCS3).243,244 SOCS3 itself binds to the 

phosphorylate tyrosine residue Tyr 985 to attenuate the receptor signaling.128 In addiction 

leptin can evoke an increase response via activation of the mitogen-activated protein kinase 

(MAPK) and phosphatidylinositol (PI3K) pathways. This response reduces GSK-3 activity 

and consequently may decrease tau phosphorylation. AMP activated kinase may also mediate 

leptin signaling, leading to an increase in ATP with consequent increase glucose uptake, 

lipolysis and inhibition of lipogenesis.245,246 

Recent studies have demonstrated the potential beneficial effects of leptin as an AD 

therapeutic.247 In vitro studies have reported that leptin treatment of neuronal cells reduces the 

amount of Aβ secreted into the medium in a time and dose-dependent manner. This effect was 

coincident with a change in the lipid profile of membranes affecting lipid rafts and reduction 

of β-secretase activity. This may be attributed to the lipolytic action of leptin which could also 

explain the ability of leptin to facilitate the lipoprotein receptor-like protein (LRP)-dependent 

uptake of ApoE/Aβ complexes, a mechanism for clearing Aβ.229 Moreover, an abnormal 

accumulation of lipids in non adipocytes may favour amyloidogenic pathways, which can be 
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prevented if sufficient leptin is present. It was demonstrated that leptin treatment can lead to a 

reduction in tau phosphorylation through the modulation of AMPK and GSK-3β, without any 

observed toxicity. Specifically, leptin reduces the amount of phosphorylation at Ser202, Ser396 

and Ser404, all sites which are phosphorylated in NFTs.248,249 A similar activity has been 

reported for insulin. Thus, leptin is capable of modulating both the production of Aβ and 

phosphorylation of tau, two main pathological hallmarks of AD. Further, leptin deficient mice 

have different synaptic profiles form wild type mice. Administration of leptin rapidly 

normalized synaptic function.250  

Recently, it was shown that direct injection of leptin into the hippocampus of rodents can 

improve memory processing and modulate long term potentiation and synaptic plasticity. 

Leptin rapidly enhances NMDA-induced increases in intracellular calcium levels and 

facilitates NMDA receptor-mediated synaptic transmission.235 Leptin promotes rapid 

alterations in hippocampal synapses, which are likely to contribute to leptin-driven changes in 

excitatory synaptic strength.251 Studies performed in obese leptin-insensitive rodents have 

detected deficits in hippocampal synaptic plasticity and in spatial memory tasks performed in 

the Morris Water Maze.252 Prolonged leptin treatment of CRND8 transgenic mice (animal 

model of AD), can lower Aβ levels in brain extracts. The CRND8 mice overexpress the AβPP 

gene containing the Swedish and the Indiana familial AD mutations. They exhibit early-onset, 

progressive cognitive deficits and amyloid plaques deposition starting from 3 months of age, 

providing a robust model to study potential therapeutic effects. Leptin-treated transgenic mice 

showed significantly reduced levels of Aβ in brain and serum. In addiction, reduction of the 

amyloid burden in hippocampus was observed. The decrease of level of Aβ in the brain 

correlated with a decrease in the levels of C99 C-terminal fragments of the AβPP. This is 

consistent with the role of leptin in mediating the effect of β-secretase. In addition the treated 

mice showed a reduction of phosphorylated tau in Ser396. After the chronic treatment, no 

inflammatory response was observed. Moreover, biochemical and pathological changes were 

correlated with cognitive improvements in memory tests.253 Improved memory following 

leptin administration was also found in SAMP-8 mice, an accelerated senescence rodent 

model that develops amyloid plaques.  

More recent studies provide support for a link between impaired and/or altered leptin function 

and the development of AD. Indeed, circulating concentrations of leptin are reported to be 

significantly lower than normal in individuals with AD and in murine models of AD. 

However it is not known if the circulating levels of leptin in healthy individuals show any 
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correlation with the risk of developing AD later in life. In a recent prospective study254, the 

plasma concentrations of leptin were evaluated in 785 individuals from the original 

Framingham study cohort255. This was performed to determine if the baseline plasma 

concentration of leptin relate to the incidence of AD. All the individuals were periodically 

assessed for impairments in cognitive function and dementia. A subset of 200 individuals 

underwent magnetic resonance imaging (MRI) investigation of the brain. Two markers of 

early AD were evaluated, the temporal horn volume (an inverse measure of hippocampal 

volume)   and the total cerebral brain volume. The main findings of this prospective study are 

that higher plasma concentration of leptin correlated with a significantly lower risk of 

dementia and AD. This correlation was independent of vascular and neurodegenerative risk 

factors. Furthermore, data from the MRI study indicates that higher leptin concentration in 

plasma correlated with larger cerebral brain and hippocampal volumes. Thus suggest 

enhanced cognitive function in individuals with higher leptin levels. Together these 

epidemiological findings support the concept that the risk of AD is significantly lower in 

individuals with higher leptin concentrations. In this study, Lieb et al found that plasma leptin 

was significantly higher in women compared to men. It is well known that the incidence of 

AD is significantly higher in the female population. Thus, it needs to be understood why the 

incidence of AD is not significantly lower in female population given to the higher leptin 

plasma levels in females. Further research is needed to test the hypothesis that higher leptin 

levels protect against cognitive diseases, especially in obese individuals. Circulating 

concentrations of leptin are correlated with body fat content. It is well established that in 

obese individuals leptin levels are increased and resistance to the hormone develops. In this 

study, because of the small number of obese individuals, no significant association could be 

found between leptin levels and AD. Statistical significance was found only in non obese 

individuals. Obese individuals, in spite of their hyperleptinemia, might not be protected from 

developing AD, possibly because of high leptin resistance in the brain. If high leptin levels do 

not promote satiety in obese individuals, it might be possible that they do not promote 

neuroprotection. If neuroprotection is not achieved by hyperleptinemia in obese individuals,  

the underlying molecular mechanisms may be  the same as those that cause neuronal 

resistance to leptin’s satiety effects. It is critical to determine whether or not the central leptin 

resistance obesity affects its potential neuroprotective effects. Therefore, it is believed that 

caution is needed in the interpretation of epidemiological studies shown by Lieb et al.  

Additional studied are needed to elucidate the molecular mechanism by which leptin might be 
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protective for developing AD.256 There are still several questions that remain unanswered, 

such as the mechanism by which high circulating levels of leptin protect from developing AD 

and the stage of the disease process at which leptin acts.  

All these findings point out the importance of leptin in Alzheimer’s disease and reinforce the 

importance of this hormone as a link between adipose tissue and brain. Metabolic pathways 

have been shown to be very important in AD, thus need further investigation. The effect of 

diet and nutrition on the prevalence of AD have been documented and weight loss is 

frequently observed prior to the onset of dementia.257 Further, central obesity is associated 

with an increased risk for developing dementia. Another important risk factor connected to 

obesity is ApoE4 gene.  Carriers of the ApoE4 gene are at a higher risk for developing AD 

later. In cell cultures and animal models it has been demonstrated that lipids play an important 

role in amyloidogenic pathways. The majority of AD patients have some form of insulin 

resistance, hyperinsulinemia or type-2 diabetes. For all these reasons, it is not surprising that 

modulators of cholesterol (statins) and glucose (rosiglidazone) are being developed as 

potential AD therapeutics. In fact, cholesterol-reducing therapies such as statins have been 

shown to reduce Aβ deposition both in vivo and in vitro. The underlying mechanisms of 

leptin appears to be substantially unique and show potential therapeutic effects.  

 

1.4 THERAPY FOR AD 

Although basic research in AD has made remarkable progress over the past two decades, 

currently available drugs can only improve cognitive symptoms temporarily. No treatment 

can reverse, stop or even slow this inexorable neurodegenerative process. The mainstays of 

conventional pharmacotherapy for AD are compounds aimed at increasing the levels of 

acetylcholine in the brain, thereby facilitating cholinergic neurotransmission through 

inhibition of the cholinesterase. These drugs, known as acetylcholinesterase inhibitors were 

first approved by the US FDA in 1995.258 Only four of them are approved so far: donepezil, 

galantamine, rivastigmine and tacrine. In 2004, the FDA approved memantine, an NMDA 

antagonist for treating dementia symptoms in moderate-to-severe AD cases.259 They offer 

primarily symptomatic benefits, providing temporary cognitive improvement and deferred 

decline but with little or no evidence of slowing disease progression.  

Characterization of the underlying pathophysiology of AD suggests targets for potential 

disease-modifying treatments. Neurotrophic factors (including hormone replacement therapy 

and drugs acting on insulin signal transduction) and antiamyloid agents (including 
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cholesterol-lowering therapy) are in Phase III clinical trials.260 The increased occurrence of 

insulin resistance in AD and the numerous mechanisms by which insulin may affect clinical 

and pathological aspects of the disease suggest that improving insulin effectiveness may have 

therapeutic benefit for patients with AD. Herbal drugs, such as epigallocatechin gallate, 

curcumin and resveratrol, well known antioxidants have shown potential effect in preclinical 

studies. In recent years, the proclivity of cannabinoids to exert a neuroprotective influence has 

attracted substantial interest as a means to mitigate the symptoms of neurodegenerative 

conditions. Drug candidates that inhibit tau kinases, such as GSK-3β and CDK5, should 

shortly be entering clinical trials. This approach has recently been tested in a rodent model of 

AD exhibiting both plaque and NFT pathology. Although treatment with lithium, an inhibitor 

of GSK-3β, led to a reduction in tau pathology, there appeared to be little effect on the Aβ 

loads.261 This observation highlights a wider issue which is that successful treatment of AD 

may require a combination of therapies specifically targeting the various pathologies 

observed. These approaches hold promise for disease modification and cognitive 

enhancement. 
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2. AIM OF THE STUDY 
Alzheimer’s disease is a multifactorial disease, probably caused by both genetic and 

environmental risk factors. The overall aim of this thesis is to investigate the effects of the 

interaction between apoE genotype and life style related risk factors in the pathogenesis of 

AD. The work has concentrated on apoE4 genotype, diet and leptin. The focus has been on 

behavioural studies and neurodegenerative processes at molecular level. 

 

Specific aims: 

ApoE4 and diet  

1) To characterize the onset of cognitive decline of apoE3 and apoE4 target replacement mice 

and to investigate the influence of diet (high saturated fat and high carbohydrate diet vs. 

normal diet) on the different apoE genotypes. The animals were examined for learning and 

memory deficits in spatial reference and contextual learning tasks, involving hippocampus 

and amygdala respectively. 

2) To define the molecular trigger for the first observable cognitive changes in this animal 

model focusing on synaptic integrity, tau phosphorylation and APP processing. 

Leptin 

1) To clarify the function of leptin in the pathogenesis of AD through studies in vitro, in mice 

and human.  

2) To investigate if apoE genotype affects leptin levels and signaling.
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3. MATERIALS AND METHODS 

3.1. ANIMALS 
In order to explore the impact of different risk factors in relation with the apoE genotype on 

neurodegeneration we used as animal models, human APOE Target Replacement (TR) Model 

mice expressing human apoE3 and apoE4, under the control of the murine apoE regulatory 

sequences and on the C57BL/6J background. ApoE3 and apoE4 TR mice were purchased by 

Taconic Farms (USA):  

Homozygous B6.129P2-Apoetm3(APOE*4)Mae N8 

Homozygous B6.129P2-Apoetm2(APOE*3)Mae N8  

The model was created by targeting the murine apoE gene for replacement with the human 

APOE4 and APOE3 allele in E14TG2a ES cells and injecting the targeted cells into 

blastocysts. Resultant chimeras were backcrossed to C57BL/6 for seven generations (N7). 

The mice were backcrossed once more (N8) and embryo transfer derived. The colony is 

maintained through mating homozygotes. Four ApoE4 and ApoE3 male and eight ApoE4 and 

ApoE3 female mice were bought and the colony was maintaining by homozygous breeding. 

Research Breeding Agreement was delivered by Taconic Farms. Once we obtained the 

sufficient number of animals for the experimental design, the pups were divided in 6 groups 

of male mice. They suckled by mothers fed with different diets and after the milk phase, they 

were kept on the following diets (Mucedola srl, Milano): 

- normal diet, ND (n= 13-17 per genotype) 

- high cholesterol and saturated fats diet: 5% cholesterol, 10% of soybean oil, HC (n= 

13-17 per genotype) 

- high carbohydrate diet: 70 % of carbohydrates, HS (n= 13-17 per genotype) 

The mice were housed in individually micro isolation cage rack (Tecniplast, Italia) with water 

and laboratory chow ad libitum and controlled conditions of light (from 7.00 a.m. to 7.00 

p.m.), temperature (22±2 °C) and humidity (65%).  The experimental protocol was approved 

by a local bioethics committee, while the procedures and animal comfort were controlled by 

the University Veterinary Service. All efforts were made to minimize animal suffering and the 

number of animals used was kept to a minimum by the experimental design. The table n.1 

shows the number of mice for each genotype, diet and age. 
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A) Genomic organization of the mouse apoE gene containing exons 1–4 (black boxes). B) The human 

APOE targeting constructs containing the 5′ and 3′ arms of mouse homology (black line and boxes) 

interrupted by the human APOE gene (hatched boxes 2′–4′). The neomycin-resistant (Neo) and 

thymidine kinase (TK) genes are for selection of the targeted embryonic stem cells, and pPNT is the 

plasmid vector. C) The resulting chimeric gene now encoding human APOE. Diagnostic restriction 

enzyme sites for genotyping are shown: E, EcoRI; and B, BamHI.  

 

Table1. Number of mice within each genotype, age and diet. 

DIET Age (month) WT APOE3 APOE4 
ND 6 15 16 14 
 13 14  10 
HS 6 14 17 13 
 13   10 
HC 6 15 16 14 
 13   10 
 

3.2 BEHAVIOURAL TESTING 

The sequence of behavioural testing was Morris water Maze and passive avoidance. This 

order of testing was used to begin with the least stressful tests and end with those thought to 

be most stressful. 

 

3.2.1. Morris Water Maze 

Mice were trained in the reference memory version of the Morris water maze task262 to locate 

an hidden escape platform in a circular pool. The apparatus consisted of a large circular tank 

(1.89 m diameter, 70 cm height) with a transparent escape platform (10 cm2). The pool was 

virtually divided into four equal quadrants identified as northeast, northwest, southeast, and 

southwest. The tank was filled with water up to 1.5 cm above the top of the platform and 
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water was made opaque with milk and kept at a temperature of 20 ± 2°C. The platform was 

placed in the tank at a fixed position constant position (in the middle of the northwest 

quadrant) during all training sessions. The pool was located in a large room with a number of 

extra-maze visual cues, including geometric images (squares, triangles, circles) hung on the 

wall, diffuse lighting, curtains to hide the experimenter and the awaiting mice. Mice (N=134) 

were assigned to five testing groups using a randomized block design. Each mouse was given 

6 trials a day for 4 consecutive days with an inter-trial interval (ITI) of 30 minutes. Mice were 

released facing the wall, from one of four possible starting points and allowed to search up to 

120 seconds for the platform. During each day the starting position remained constant. 

Irrespective of trial performance mice were guided to the platform and allowed to remain 

there for at least 15 seconds. Retention was measured on the fifth day after 24 hours using 

only one starting point. A video camera was set above the center of the pool and connected to 

a video-traction system that analyzed the information. Swimming patterns were recorded 

using Ethovision 3.0 © (Noldus Information Technology B.V., Wageningen, Netherlands). 

The latency time of the first occurrence to the platform was calculated and used as a measure 

of learning. Latency time, the total time spent in the quadrant in which the platform had been 

located during training and the number of times the animal crossed the platform location 

served as measures of retention of acquired spatial learning. The average swim speeds were 

also analyzed. All training sessions were carried out between 09.00 and 15.00 h. 

 

3.2.2 Passive Avoidance 

Emotional learning and memory were assessed in a passive avoidance test. The instrument 

consists of a tilting-floor box (47x18x26 (h) cm) divided into two compartments by a sliding 

door and a control unit incorporating a scrambler shocker (Ugo Basile, USA). This classic 

instrument for Pavlovian conditioning exploits the tendency in mice to escape from an 

illuminated area into a dark one (step-through method). The firsts day mice were individually 

placed into the illuminated compartment. After 60-seconds of acclimation period, the 

connecting door between the chambers opened. In general, mice step quickly through the gate 

and enter the dark compartment because mice prefer to be in the dark. Upon entering the dark 

compartment, the mice received a brief foot shock (0.3 mA for 3 seconds) and were 

immediately removed from the chamber. If the mouse remained in the light compartment for 

the duration of the trial (300 seconds), the door closed and the mouse was removed from the 

light compartment. The chambers were cleaned with 70% ethanol between testing of 
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individual mice. After a 24 hours retention period, the mice were placed back into the light 

compartment and the time to re-enter the dark compartment (latency) was measured up to 300 

seconds. No shock was administered during the testing phase if the mouse entered the dark 

compartment before 300 seconds had elapsed. The latency time to re-enter the dark 

compartment 24 h later was measured. 

 

3.3 TISSUE PREPARATION 
After behavioural studies, mice were killed by cervical dislocation and their brains were 

quickly removed. Brain tissue, blood and liver were collected. Brains were sectioned 

longitudinally: half brain, dissected in several areas such as frontal cortex, hippocampus, 

hypothalamus and striatum, was used for immunoblotting and frozen and stored at -80°C. The 

other half was post-fixed in 4% paraformaldehyde in 0.1 M PBS pH 7.4 solution for 72 hours 

for immunoistochemistry studies. 

 

3.3.1. Immunoblotting 

The dissected brains were homogenized in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1% Triton X-100, 2 mM EDTA, 2 mM EGTA) with protease and phosphatase inhibitor 

cocktail (Sigma-Aldrich, MO) at dilution 1:500 added freshly, and incubated 30–60 minutes 

on ice before centrifugation (13600g for 10 min) at 4°C. Samples were mixed with equal 

volume of tricine gel sample buffer (0.16 M Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 0.01% 

bromophenol blue, 0.1 M DTT added fresh) and then SDS-PAGE and immunoblotting was 

performed. Protein levels were quantified using the BCA protein assay kit (Pierce, Rockford, 

IL, USA). Equal amounts of protein were separated using 10% acrylamide gel and the 

proteins transferred to a nitrocellulose membrane (Schleicher & Schuell, Germany). 

Incubation with primary antibodies (Table 2) was performed overnight, followed by 

incubation with anti-rabbit or anti-mouse immunoglobulin G (IgG) at 1:2000 dilution 

(Amersham Biosciences, Little Chalfont, UK). Immunoreactivity was detected by the ECL 

detection system (Amersham Biosciences, Little Chalfont, UK). Some immunoblots were stripped 

using RestoreTM Western Blot Stripping buffer (Pierce, Rockford, IL, USA) at room 

temperature for 15 minutes, and then re-blotted with other antibodies. The relative density of 

the immunoreactive bands was calculated from the optical density (OD) multiplied by the area 

of the selected band using ImageJ 1.383 software (NIH, MA). 
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Table2. List of primary antibodies 
 
Antibody                                                           Company 
22C11 
Tau  
GSK-3β  
p- GSK-3β (S9)                       
p- GSK-3β (Y216)                  
BDNF               
ARC 
B-Catenin                                                                                                                                                       
Actin      
Leptin ObY20                           

Sigma Aldrich (MO, USA) 
Innogenetics (Gent, Belgium) 
BD Transduction Laboratories (Lexington. USA) 
Biosource (Nivelles, Belgium) 
Biosource (Nivelles, Belgium) 
Abcam (UK) 
Santa Cruz Biotechnolgy (Santa Cruz, USA) 
Millipore (MA) 
Sigma Aldrich (MO, USA) 
Santa Cruz Biotechnolgy (Santa Cruz, USA) 

  

 

3.4 CELL CULTURES AND TREATMENTS  
 

3.4.1 Microglial human cells CHME3  

Human microglial CHME3 cells were cultured at 37°C, 5% CO2 in DMEM/high glucose 

supplemented with 2mM L-glutamine and 10% heat-inactivated FBS (Sigma-Aldrich, 

Sweden). Cells were grown to confluence.  

 

3.4.2 Primary cultures of astrocytes 

Cortical tissue from 18-day-old Sprague-Dawley rat embryos were homogenized in 

neurobasal medium supplemented with of 2% B27 (Invitrogen, Sweden). Cells from each 

embryo were seeded separately in dishes, pre-coated with 0.17 mg/ml poly-D-lysine MW 

300,000 (Sigma-Aldrich, Sweden) in PBS. Cerebellum from 18-day-old Sprague-Dawley rat 

embryos were mechanically dissociated and seeded in Dulbecco’s modified Eagles medium 

(DMEM/F12) containing 10% fetal bovine serum (FBS) for the preparation of rat primary 

astrocytes cultures, as previously described. Cells were plated in dishes with poly-D-lysine 

(Sigma-Aldrich, Sweden). Cultures were kept at 37°C in a moist atmosphere (95% air/5% 

CO2). Culture media were replaced twice a week. Fourteen-day-old cultures were used for all 

experiments. At this time, astrocytes dominated as identified by immunocytochemical 

characterization. Cultures used for the experiments contained on average 300,000 ± 10,000 

cells per well. Most cells were flat, resembling inactivated astrocytes. Ethical consent for 

experiments with primary cultures was received from the regional ethical committee of 

Karolinska Institutet.  
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3.4.3 Neuroblastoma SH-SY5Y 

Human SH-SY5Y neuroblastoma cells were cultured at 37°C, 5% CO2, in minimum essential 

medium (MEM) with Glutamax containing 10% FBS (Sigma-Aldrich, Sweden). Cells were 

grown to confluence. 

 

3.4.4 Cell treatments 

Confluent cells, cultured in 6 well plates, were treated with: 

- 10 nM Aβ (1–42) 

- 10 nM human recombinant apoE isoforms (E3 or E4)  

- apoE/Aβ complexes  

Aβ (1–42) was dissolved in serum free MEM media (pH 7.4) at a concentration of 10 nM and 

aged for 24 hours by incubation at 37°C. Human recombinant apoE isoforms were dissolved 

in serum-free media to a concentration of 10 nM. The apoE/Aβ  complexes were made by co-

incubation at 37°C in neutral pH for 24 hours. A concentration of 3 nM apoE (E3 or E4 

isoform) was added to 3nM Aβ (1-42), mixed and incubated for 24 h at 37°C 263. Others have 

shown that similar preparations of Aβ (1–42) contain Aβfibrils along with protofibrils and 

stable oligomers. Aβ (1–42) was purchased from Sigma Aldrich (Uppsala, Sweden) and 

apolipoprotein E3 and E4 isoforms were from Relia Tech Gmbh (Germany).  Subsequent 

treatments, cells were collected in PBS and after centrigugation at 1000 g for 3 minutes, lysed 

in a lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 2mM EDTA, 2 mM EGTA, 1% Triton-

X100) containing protease inhibitor and phosphatase inhibitor cocktails (Sigma-Aldrich, 

Sweden) at dilution 1:500 added freshly, and incubated 30 minutes on ice before 

centrifugation (13600g for 10 min) at 4°C. Immunoblotting was performed (as previously 

described) and membranes were incubated with the primary antibody for leptin (ObY20, 

Santa Cruz Biotechnolgy, USA) overnight at the concentration 1:1000 
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3.5 HUMAN SAMPLES 

3.5.1 CSF samples 

CSF was collected for diagnostic purposes by lumbar puncture in polypropylene tubes, mixed 

gently to avoid gradient effects and centrifuged at 2000 x g for 10 min. Aliquots were stored 

at -80°C until biochemical analysis. The patients were referred to the Memory Clinic at 

Karolinska University Hospital (Huddinge, Sweden). 99 patients were included in the study: 

33 subjects with subjective cognitive impairment (controls, SCI), 26 stable MCI, 13 

progressive MCI evolving to AD (PMCI) and 27 AD. The control group consisted of 

individuals with subjective cognitive impairment. MCI patients were: not demented; had 

subjective self and/or objective informant report of cognitive decline and impairment on 

objective cognitive tasks; had preserved basic activities of daily living and minimal 

impairment in complex instrumental functions. All the MCI patients used in this study 

developed AD within a 3 year period. The AD cases were diagnosed according to The 

Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria. They were 

evaluated according to a standard comprehensive protocol including clinical examination, 

brain imaging (MRI and SPECT), electroencephalography (EEG), analyses of blood and CSF 

(including Total-Tau, Phospho-Tau and Aβ1-42) and a detailed neuropsychological 

evaluation. The study was conducted under the guidelines of the Declaration of Helsinki and 

approved by the ethics committee of the Karolinska Institutet. Leptin levels in the CSF were 

measured by an enzyme immunoassay. 

 

3.5.2. Postmortem samples and Brain tissue preparation  

3.5.2.1 Samples for immunoistochemistry 

Post-mortem brain material used for immunoistochemistry and immunofluorescence was 

obtained from the Brain Bank at Karolinska Institutet (Karolinska University Hospital, 

Huddinge, Sweden) with approval by the Human Ethics Committee of Karolinska University 

Hospital. Samples from frontal cortex and hippocampus from AD brains and aged-matched 

control were used. All brains had a post-mortem delay between 24 and 48 h. The AD cases 

had a mini mental state examination (MMSE) score between 2-15 and met the clinical 

diagnosis of probable AD (DSM-IV criteria) as well as definite AD according to the CERAD 

neuropathological criteria. Brain samples were fixed in buffered 4% formaldehyde and 

embedded in paraffin.  
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3.5.2.2 Samples for RT PCR 

A total of 28 individuals from the Thomas Willis Oxford Brain Collection were included in 

the study, 16 patients with clinical diagnosis of dementia and 12 elderly normal controls 

matched for age, gender, post-mortem delay and brain pH. Those patients with dementia were 

an autopsied subset of subjects included in a prospective study of behavioural changes in 

clinically diagnosed as demented patients. Drug histories were recorded for all patients, and 

none of the patients with AD received cholinomimetics. At entry to the study assessment and 

diagnoses were made using Cambridge Mental Disorders of the Elderly Examination 

(CAMDEX), DMSIIIR criteria, and NINCDSADRA criteria. Cognitive status was assessed 

using the MMSE. All tissues from control patients were examined by a pathologist and were 

confirmed to be free of gross neuropathology and clinical information indicated no gross 

neurological or psychiatric disorder. For all subjects, informed consent had been obtained 

from relatives before the removal of brain tissue at death and subsequent use of the material 

for research. The study had Local Ethics Committees’ approval. Selection of subjects for the 

study was based on tissue availability, not gender, age, or disease severity. At autopsy, brains 

were removed and blocks corresponding to frontal (Brodmann area 10, BA10) cortex were 

stored at −80°C until processed. All patients were found to meet CERAD criteria for a 

diagnosis of AD and all brains were Braak stage 5 or 6 as assessed by a neuropathologist. To 

partially mitigate the possible effects of cause of death on neurochemical determinations, 

brain pH was measured with deionized water as an index of acidosis associated with terminal 

coma. Brain pH is used as an indication of tissue quality in post-mortem research, with 

pH>6.1 considered acceptable. All subsequent analysis was performed blind to clinical 

information. 

 

3.5.3 Immunostochemistry and Immunofluorescence 

Immunohistochemistry sections (7 µm thick) were mounted onto Superfrost plus-glass 

(Menzel Braunschweig, Germany). Sections were subjected to micro-wave antigen retrieval 

in sodium citrate buffer (10 mM, pH 6) at 700 W for 10 min. Unspecific binding was blocked 

by 5% normal goat serum (Sigma-Aldrich, Saint Louis, MO, USA) in PBS with 0.3% of 

Triton X-100 (PBS) before incubation over night with the primary antibody anti-leptin (Santa 

Cruz, USA) diluted in PBS with 1 % BSA overnight at 4°C. The sections were rinsed in PBS 

and incubated with the secondary antibody biotinylated goat IgG for 2 hours at room 

temperature. Rinsed in PBS between steps, the sections were incubated with avidin-biotin-
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peroxidase complex (Vectastain Elite ABC reagent, Vector Laboratories, CA, USA), exposed 

to diaminobenzidine (DAB) and mounted with mounting medium (DAKO Cytomation, 

Denmark). All sections were treated simultaneously under the same conditions. For control 

staining the primary antibody was omitted. For immunofluorescence, after the incubation with 

primary antibody, sections were then incubated for 2 hours with secondary antibody (Goat 

antirabbit IgG-Cy3, 1:200 (red fluorescence); Goat antimouse IgG-FITC, 1:200 (green 

fluorescence), Jackson Immunoresearch, PA) in PBS-Tx with 2% serum, after which 

counterstaining with DAPI was performed. Finally the sections were rinsed in PBS and 

mounted in fluorescence mounting medium (DAKO Cytomation, Glostrup, Denmark). The 

sections were thoroughly washed in PBS between different steps. All sections were treated 

simultaneously under the same conditions. For control staining the primary antibody was 

omitted. Inverted Meta-Zeiss 510 LSM confocal microscope (Carl Zeiss MicroImaging 

GmbH, Germany) was used for capturing images from the immunohistochemistry. 

 

3.5.4 mRNA levels 

Levels of mRNA coding for leptin are stable in post-mortem tissue. To measure leptin levels 

total mRNA was extracted from the frontal cortex, according to the instructions of 

NucleoSpin RNA II kit (MachereyNagel, Germany). DNAase treatment was performed with 

DNA free kit (Ambion, TX, USA), and purified total RNA used as a template to generate 

firststrand cDNA synthesis using MMLV reverse transcriptase (Invitrogen, CA, USA) as 

described by the manufacturer. Quantitative real time PCR was performed as described by the 

provider (Applied Biosystems, CA, USA) using an ABI PRISM 7000 HT Sequence Detection 

System. Taqman probes for leptin and GAPDH were also supplied by Applied Biosystems 

(CA, USA). Gene expression levels were normalized using GAPDH as internal control. Fold 

change between different groups of rats were calculated using the 2ΔCt method. 

 
3.6. STATISTICAL ANALYSIS 

Normal distribution of data was checked by Saphiro-Wilks prior to statistical analysis. Data in 

the figures are shown as mean ± standard error mean (SEM). In the acquisition phase of 

Morris Water Maze latencies to find the platform were examined by Multiple-way ANOVA 

(MANOVA) for repeated measures with genotype, diet and day as sources of variation. To 

analyze Retention memory test (probe test), Passive avoidance (PA), Immunoblotting 
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experiments, data were analysed by One-way ANOVA followed either by LSD Fisher exact 

test (PA, WB) or Tukey’s HSD test (learning phase, probe test).   

A P value < 0.05 was considered statistically significant.  
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4. RESULTS 
 

Figure 1 

Figure 1 shows the effect of the interaction of apoE genotype and different diets on spatial 

learning and memory in Morris Water Maze (MWM) test. The escape latency to reach the 

hidden platform over the four days of training was used for the evaluation of spatial learning 

of mice. Swimming speeds were measured and no difference in speed or sensory motor 

functions were found among the six groups (data not shown), which enabled us to exclude the 

effect of motivational and sensory motor factors on animal learning and memory 

performance. 

  

a) Figure 1a represents the performance of six-months-old apoE3 and apoE4 mice fed with 

normal diet (ND), high saturated fat and cholesterol (HC) and high carbohydrate diet (HS) on 

acquisition of the MWM test. Data are shown as escape latency to the platform. During the 

days of training (1-4) the time to reach the hidden platform decreased over the days (main 

effect of day on escape latency; F=2.554, P<0.05), indicating that all the groups at this age 

were able to learn the task. However, some differences between groups can be observed 

(F=9.618, P<0.001). As shown in figure 1a, across all days and diet groups, the escape 

latencies of the apoE3 fed with normal diet were shorter than the apoE4 fed with normal diet, 

suggesting an effect of the allelic variant by itself on cognitive performance (P<0.01). 

Furthermore, the apoE3 mice fed with different diets did not show differences in latency 

escape over the days, indicating that the spatial learning in apoE3 genotype was not affected 

by diet. In contrast to the apoE3 mice, apoE4 seemed to be more vulnerable to the effect of 

the diet. ApoE4 animals receiving high carbohydrate diet showed escape latency longer than 

apoE4 mice with fat diet and normal diet. This effect could be revealed by using the 

performance of the animals on a “trial-by-trial” basis approach, as explained in the following 

paragraph (fig.1b).  

 

b) The figure 1b represents the performance of the apoE3 and apoE4 mice on acquisition of 

the Morris Water Maze test. Data are shown as escape latency for each of 6 trials per day for 

4 consecutive days of training. In order to highlight the effect of the diet on the genotype 

apoE4, we analyzed the performance of the animals on a “trial-by-trial” basis. Notably, we 
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found that the apoE4 mice fed with HS diet had significantly longer escape latency at the first 

trial of the forth day compared to the apoE4 ND and HC diet (P<0.001).  

 

Figure 2 

Figure 2 shows the effect of the interaction between different diet and apoE3 apoE4 genotype 

on performance in the Morris Water Maze task during the probe test day.  

In figure 2a memory retention performance are shown as escape latency to cross the former 

platform position. Results show that apoE4 HS present significant longer escape latency time 

to reach the platform position compared to apoE3 ND (P<0.05).  

In figure 2b memory retention performances are shown as time spent in the target quadrant 

where the platform was located during the acquisition. No statistical differences were 

observed between strain and diet.  

 

Figure 3 

The performances of six-months-old apoE3 and apoE4 mice fed with ND, HS and HC were 

evaluated on Passive Avoidance (PA) test, which is a memory test mainly dependent on the 

amygdala. The figure 3 shows the latency time to enter the dark compartment on the first day 

(training) and on the second day (probe) of PA test. At the first day all the groups showed 

similar step-trough latencies, indicating no differences in locomotor activity and anxiety-like 

behaviour among all groups. After 24 hours animals were tested. During the second day no 

statistical differences in the latency time to re-enter the dark compartment after the electric 

shock were found among all groups, although a trend toward significance (P=0.09, Mann 

Whitney Test) is found when comparing E4 HS with E3 ND). These data suggest that, at this 

age, both the genotype groups retained contextual fear, showing no significant impairment in 

long-term memory amygdala-dependent. 

 

Figure 4 

a) Figure 4a represents the performance of thirteen-months-old apoE4 mice fed with normal 

diet (ND), high saturated fat and cholesterol (HC) and high carbohydrate diet (HS) on 

acquisition of the MWM test. Data are shown as mean escape latency to the platform. During 

the days of training (1-4) the time to reach the hidden platform decreased over the days in 

apoE4 mice fed on normal and high cholesterol diet (F=8.234, P<0.01) indicating that both 

the groups at this age were able to learn the task. As shown in figure 4a ApoE4 HS mice 
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present significant longer escape latency time to reach the platform on the third and fourth day 

of acquisition compared to apoE4 ND and apoE4 HC (P<0.01), suggesting that apoE4 fed in 

high carbohydrate diet did not learn to locate the hidden platform during the days of training. 

b) Figure 4b shows the effect of the interaction between different diet and thirteen months old 

apoE4 mice on performance in the Morris Water Maze task during the probe test day.  

Memory retention performances are shown as time spent in the target quadrant where the 

platform was located during the acquisition. No statistical differences were observed among 

the groups. 

 

Figure 5 

The performances of thirteen-months-old apoE4 mice fed with ND, HS and HC were 

evaluated on Passive Avoidance (PA) test, which is a memory test mainly dependent on the 

amygdala. The figure 5 shows the latency time to enter the dark compartment on the first day 

(training) and on the second day (probe) of PA test. At the first day all the groups showed 

similar step-trough latencies, indicating no differences in locomotor activity and anxiety-like 

behaviour among all groups. After 24 hours animals were tested. During the second day 

apoE4 fed in high carbohydrate diet show significant shorter time to re-enter the dark 

compartment after the electric shock compared to apoE4 ND and HC (P<0.001). 

 

Figure 6  

Immunoblot of frontal cortex homogenates from 6 months old apo3 and apoE4 mice fed on 

different diets were probed using antibodies against total GSK 3β, phosphorylated GSK 3β in 

Serine 9 and phosphorylated GSK 3β in Tyrosine 216. The figure shows the quantification of 

the Optical Density (OD) data normalized as ratio to total GSK 3β levels and expressed as 

percentage of values for control samples (E3 ND). Bars represent means ± SEM of four 

animals per group.  

No significant differences were found among the group when comparing the activity in 

frontal cortex (figure 6a), while apoE4 HS showed increase of p- GSK 3β Tyr 216 levels 

compared with apoE3 ND (P<0.05) (figure 6b). 

 

 Figure 7 

Immunoblot of frontal cortex homogenates from 6 months old apo3 and apoE4 mice fed on 

different diets were probed using antibodies against N-terminus APP. Total staining of 
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proteins by Ponceaus was used as loading control. The figure shows the quantification of the 

Optical Density (OD) data expressed as percentage of values for control samples (E3 ND). 

Bars represent means ± SEM of four animals per group. Significant increase of APP levels 

were found in apoE4 ND mice compared to apoE3 ND (P<0.001) and in apoE4 HS and HC 

mice compared to apoE3 ND (P<0.01) 

 

Figure 8 

Immunoblot of frontal cortex homogenates from 6 months old apo3 and apoE4 mice fed on 

different diets were probed using antibodies against total Tau protein. Total staining of 

proteins by Ponceaus was using as loading control. The figure shows the quantification of the 

Optical Density (OD) data expressed as percentage of values for control samples (E3 ND). 

Bars represent means ± SEM of four animals per group. Data show a significant increase of 

total Tau levels inapoE4 ND mice compared to apoE3 ND (P<0.05). 

 

Figure 9 

Immunoblot of hippocampus homogenates from 6 months old apo3 and apoE4 mice fed on 

different diets were probed using antibodies against Arc. Total staining of proteins by 

Ponceaus was used as loading control. The figure shows the quantification of the Optical 

Density (OD) data expressed as percentage of values for control samples (E3 ND). Bars 

represent means ± SEM of four animals per group. Data show a significant decrease of Arc 

levels in apoE4 ND and HC mice compared to apoE3 ND (P<0.01). 

 

Figure 10 

Immunoblot of hippocampus homogenates from 6 months old apo3 and apoE4 mice fed on 

different diets were probed using antibodies against BDNF. Total staining of proteins by 

Ponceaus was used as loading control. The figure shows the quantification of the Optical 

Density (OD) data expressed as percentage of values for control samples (E3 ND). Bars 

represent means ± SEM of eight animals per group.  

c) Figure shows a significant decrease of BDNF levels in apoE4 HS mice compared to apoE3 

HS (P<0.05). 
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Figure 11 

Immunoblot of hippocampus homogenates from 6 months old apo3 and apoE4 mice fed on 

different diets were probed using antibodies against ß-catenin. Total staining of proteins by 

Ponceaus was used as loading control. The figure shows the quantification of the Optical 

Density (OD) data expressed as percentage of values for control samples (E3 ND). Bars 

represent means ± SEM of eight animals per group.  

b) Figure shows a significant decrease of ß-catenin levels in apoE4 HC mice compared to 

apoE3 HC (P<0.05). 

c) Figure shows a significant decrease of ß-catenin levels in apoE4 HS mice compared to 

apoE3 HS (P<0.01). 

 

Figure 12 

Immunoblot of hippocampus and frontal cortex homogenates from 13 months old apo4 and 

wild type mice were probed using antibodies against leptin. Total staining of proteins by 

Ponceaus was used as loading control. The figure shows the quantification of the Optical 

Density (OD) data normalized as ratio to actin levels and expressed as percentage of values 

for control groups (WT mice). Bars represent means ± SEM of four animals per group. The 

figure shows a significant increase of leptin levels in apoE4 mice compared to WT mice in 

both frontal cortex and hippocampus (P<0.05). 

 

Figure 13 

a) Figure 13a shows fasting CSF-leptin (µl/mL) with standard errors measured for subjective 

cognitive impairment (SCI), stable Mild Cognitive Impairment (SMCI), Mild Cognitive 

Impairment with AD progression (PMCI) and AD patients. Subjects with mild cognitive 

impairment, whom later progressed to AD (PMCI) and AD apoE4 carriers showed significant 

higher levels of CSF leptin compared to apoE3 carriers. (P<0.01). 

b) Figure 13b shows fasting CSF-leptin (µl/mL) with standard errors measured for male and 

female SCI, SMCI, PMCI and AD groups. SMCI and PMCI women showed a trend of 

increase of CSF-leptin when compared to men of the same group by nearly reaching 

significance. 
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Figure 14 

Leptin gene expression was evaluated by RT-PCR. The figure represents mRNA expression 

levels of leptin normalized using GAPDH as an internal control in brains of controls and AD 

patients, apoE3 and apoE4 carriers, male and female. Significant increase of mRNA leptin 

expression were found in AD patients compared to controls (P<0.05). 

 

Figures 15 and 16  

Figures 15 and figure16 show DAB immunoistochemistry in cortical and hippocampal 

sections from two AD brains and two control brains. In AD brains, in both frontal cortex and 

hippocampus, leptin is decreased in neurons and is increased in glial-like profiles compared to 

control brains. 

 

Figure 17 

Figure 17 shows double immuno fuorescence staining for leptin and GFAP of frontal cortex 

from one AD brain and one control brain. In AD brain leptin staining (red fluorescence) is 

increased compared to control brain. Furthermore, in AD brain leptin staining overlaps with 

GFAP staining for astrocytes, confirming the results obtained from the DAB staining. 

 

Figure 18 

Immunoblot of CHME3 microglial human cells lysate was probed using antibody against 

leptin. Effects on leptin levels after 6 hours (figure 18a) and 24 hours (figure 18b) of different 

treatments (10 nM Aβ 1–42, 10 nM human recombinant apoE3 and apoE4 isoforms and 

apoE3, apoE4/Aβ combination) were evaluated. The figures show the quantification of the 

Optical Density (OD) data normalized as ratio to actin levels and expressed as percentage of 

values for control groups (untreated cells). Bars represent means ± SEM of three experiment 

performed in triplicate. Increase of leptin levels was found in cells treated for 24 hours with 

apoE4/Aβ combination compared to untreated cells (P<0.05). 

 

Figure 19 

Immunoblot of astrocyte cells from primary rat were probed using antibody against leptin. 

Effects on leptin levels after 24 hours of different treatments (10 nM Aβ 1–42, 10 nM human 

recombinant apoE3 and apoE4 isoforms and apoE3, apoE4/Aβ combination) were evaluated. 

The figure shows the quantification of the Optical Density (OD) data normalized as ratio to 
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actin levels and expressed as percentage of values for control groups (untreated cells). Bars 

represent means ± SEM. Increase of leptin levels was found in cells treated for 24 hours with 

apoE4/Aβ combination compared to untreated cells (P<0.05). 
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5. DISCUSSION 

Sporadic Alzheimer’s Disease is probably caused by several both genetic and environmental 

risk factors.105 The major genetic risk factor is the ε4 variant of apolipoprotein E gene (ApoE, 

on chromosome 19 called apoE4.108 Several risk factors for developing AD have been 

identified including lifestyle, such as dietary habits. AD is a multifactorial disease and the 

mechanisms behind the AD pathogenesis and the onset of cognitive decline in the AD brain 

are presently unknown. 

In this study we wanted to characterize the effects of the interaction between environmental 

risk factors and apoE genotype on neurodegeneration processes, with particular focus on 

behavioural studies. Towards this aim, we investigated 6 months-old apoE4 and apoE3 mice 

fed on different diets (high intake of cholesterol and high intake of carbohydrates). These 

mice were evaluated for learning and memory deficits in spatial reference (Morris Water 

Maze (MWM)) and contextual learning (Passive Avoidance) tasks, which involve the 

hippocampus and the amygdala, respectively.264  

Since neurodegenerative processes of AD are accompanied by hippocampal dependent 

learning and memory deficit, mice were tested in the MWM. Results from the MWM tests 

show that all the groups of mice at 6 months of age were able to learn the task. However, 

during the acquisition phase, the escape latencies to find the platform of the apoE3 mice fed 

on normal diet were shorter than for the apoE4 mice. Thus, the better performances of apoE3 

mice among all the days of training suggest an effect of the allelic variant by itself on 

cognitive performance. This data agree with studies that support the hypothesis that apoE4 

compared to apoE3 has a deleterious effect on spatial cognitive processes also in young 

mice.265 Furthermore, the apoE3 mice fed with different diets did not show differences in 

latency escape over the days, indicating that the spatial learning in apoE3 genotype was not 

affected by diet. In contrast to the apoE3 mice, apoE4 seemed to be more vulnerable to the 

effect of the diet. When representing the learning phase divided by each trial for every day of 

training, we found that the apoE4 mice fed with HS diet had significantly longer escape 

latency at the first trial of the forth day compared to the apoE4 ND and HC diet. These data 

suggest the interaction between apoE4 genotype and carbohydrate diet affects long term 

spatial reference memory in 6 months old mice. Based on these data, it seems that apoE4 mice 

fed with high carbohydrate diet have difficulty retaining the information from day to day but 

are still able to learn the task at this age. Therefore, the poorer performance of apoE4 HS in 

the MWM task seems to be caused by an early cognitive impairment manifested as retention, 
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not learning deficits. Similar results have been shown during the probe test. After 24 hours 

from the last session of training: the escape latency of apoE4 mice HS is significantly longer 

than apoE3 mice fed with normal diet. These data underline a deficit of apoE4 HS in spatial 

memory  compare to apoE3. Similar results were previously shown by  result, reporting 

inconsistent probe trial retention performances of apoE4, have been reported by Grootendost 

et al., while Raber et al. showed no retention deficits in 6 months male apoE4.266  

Since AD pathology is also predominant in amygdala, the performances of the mice were 

evaluated on Passive Avoidance (PA) test, which is a memory test mainly dependent on the 

amygdala. On the second day (probe day) all the groups showed similar latency time to re-

enter the dark compartment, where the electric shock was delivered on the first day (training 

day). These data suggest that at 6 months of age, both apoE3 and apoE4 retained contextual 

fear, showing that long-term memory amygdala-dependent is not affected by different 

isoforms of apoE. As in the Morris Water Maze task, the diet did not affect cognitive function 

in apoE3 mice, while the interaction between high carbohydrate diet and apoE4 genotype 

seems to affect memory retention since a trend toward significance was found when 

comparing apoE4 HS with apoE3 ND. 

From these behavioural studies we found that the initial cognitive impairments manifested as 

a retention deficit in apoE4 mice fed on high carbohydrate diet. Spatial memory retention 

processes were already compromised at this age. Thus, the genetic risk factor apoE4 genotype 

associated with a high carbohydrate diet seems to affect cognitive functions in young mice, 

corroborating the theory that the combination of genetic and environmental risk factors 

greatly increases the risk of developing AD and leads to an earlier onset of cognitive deficits.  

Interestingly, no differences where found with the diet with high percentage of cholesterol, 

probably because of the high amount of unsaturated fats (known as protective risk factors) 

contained in the soybean oil.  

The cellular and molecular bases of the cognitive decline in AD are largely unknown. The 

altered synaptic plasticity may also change the dynamic interaction among cells in 

hippocampal networks, causing deficits in the storage and retrieval of information about the 

spatial organization of the enviroment.267 Thus, we performed molecular studies in 

hippocampus in order to determine the molecular changes for the onset of early cognitive 

impairment shown in the behavioural studies. Interestingly, we found a significant decrease of 

BDNF in apoE4 mice fed on high carbohydrate diet. BDNF is critical to organization of 

neuronal networks, synaptic plasticity, memory formation and long term potentiation, 
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especially in the hippocampus, in a variety of animal models and in humans. BDNF protein is 

decreased in hippocampus and neocortex of AD brains.63,74,75 BDNF and its precursor PRO-

BDNF deficiencies were found to be present not only in cases of severe AD, but even in 

earlier mild stages of the disease such as mild cognitive impairment.82 Therefore, BDNF 

deficiency may be an early hallmark of AD and an important  factor in the progression of the 

disease. Our results may suggest that BDNF decrease found in apoE4 HS mice could be 

involved in the earliest impairment in long-term reference memory observed in MWM task. 

Moreover, a link combining BDNF and AD pathogenesis is BDNF as regulator of GSK-3β. 

BDNF increases the phosphorylation of S9-GSK-3β, which turns the kinase activity off.85 

Interestingly when comparing level of S9-GSK-3β activity no differences are found among 

the groups, while a slight significant increase of Tyr-216-GSK-3β was found in apoE4 mice 

fed with high carbohydrate diet compared to apoE3 ND. Preliminary studies showed 

significant increase of total Tau level, that expresses both the physiological and the 

pathological forms of Tau, among all the apoE4 mice. Increase of the activity of Tyr 216-

GSK-3β and of total Tau could suggest increase of phosphorylation at pathological sites in 

hippocampus of apoE4 HS mice. To confirm this hypothesis these studies need to be 

completed. Moreover, from our results it could be observed that the presence of the E4 

isoform leads to increase of levels of Amyloid Precursor Protein. It will be important to 

complete this study in order to show if this overexpression of APP corresponds to over 

production of soluble APP (sAPPβ), of the membrane bound C-terminal fragment (CTF, 

C99), APP intracellular domain (AICD) and finally Aβ in hippocampus of apoE4 mice. 

Arc expression is severely disrupted in Alzheimer’s disease mouse models. In some cases 

extremely high levels of Arc have been observed and in others there is a lack of normal Arc 

induction after experience. Taken together, these findings suggest that overexpression or 

dysregulation of Arc protein levels is potentially a causative factor in synaptic dysfunction. 

Decrease of Arc where found among all the apoE4 mice compared to apoE3 mice, confirming 

that the presence of apoE4 expression at this age may induce Arc-dependent alterations in 

hippocampal synaptic plasticity, independently from the diet. ApoE4 mice performances in 

behavioural studies were poorer compared to apoE3 mice.  

From these studies we hypothesized that there is an interaction between E4 isoform and diet. 

That the E4 carriers are more susceptible to an high carbohydrate diet. It could be clear that 

also insulin resistance is involved, which affects E4 carriers in term of cognitive functions. 

These mice fed on high carbohydrate diet may have hyperinsulinemia. It is known that 
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hyperinsulinemia may inhibit brain insulin production which in turn results in impaired 

amyloid clearance and a higher risk of AD.158 Levels of insulin receptors, glucose-transport 

proteins and other insulin pathway components in the brain are reduced in some studies of 

Alzheimer’s disease (central resistance).225 Insulin and brain-derived insulin-like-growth 

factor (IGF) are extracellular ligands that regulate metabolic activity and activate many of the 

same intracellular signaling cascades as neurotrophins.78 Thus, endogenous insulin signaling 

is important for maintaining relatively low phosphorylation levels of Tau. Downregulation of 

insulin signaling may be a factor leading to Tau hyperphosphorylation levels and 

cytoplasmatic aggregation in apoE4 mice HS. These processes could lead to earliest cognitive 

impairments observed in behavioural studies. Based on our experimental results, the rule of 

possible change in insulin plasma and brain levels of these mice and correlated alteration in 

insulin signaling pathway  will be the next goal. 

To determine whether the early memory deficits observed in 6 months old apoE4 HS mice get 

worse with age we tested 13 months old apoE4 mice fed on different diets for the same 

behavioural tasks. As we expected, the high carbohydrate diet significantly affects the 

performances of apoE4 mice in the MWM and PA test. In this case, the results from 

behavioural studies showed that cognitive deficits manifest both in learning and retention 

memory in mice fed with high carbohydrate diet. In the MWM test, ApoE4 HS showed 

significant longer escape latencies to find the platform on the third and fourth day of training, 

compared to apoE4 fed on normal and fat diet. This indicates that the animals did not learn 

the task. However, no differences were found during the probe test when comparing the time 

spent in the target where the platform was located, suggesting that the information is not 

retained among all the groups. Probably, as reported by Grootendost et al. apoE4 expression 

in mice at this age results in cognitive deficits in long term memory hippocampal dependent. 

Furthermore, 13 months old apoE4 mice were tested for passive avoidance. Notably, apoE4 

mice fed on high carbohydrate diet showed a significantly shorter latency time to re-enter in 

the dark compartment compared with groups receiving normal and fat diet.  This indicates 

that a diet, rich in carbohydrate, strongly affect apoE4 genotype and retention memory 

amygdala-dependent. Based on these results, we clearly observed that interactions between 

high carbohydrate diet and the presence of genotype apoE4 affect learning and retention 

memory. Studies to evaluate molecular differences and changes related to age in this animal 

model are ongoing.  
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The second aim of this thesis was to study possible involvement of leptin in AD. Leptin 

receptors are abundantly expressed in several brain regions, including cortex, thalamus, 

cerebellum, midbrain and hippocampus (primarily in the dentate gyrus and CA1, areas 

heavily affected in AD). Moreover, recent studies have demonstrated the potential beneficial 

effects of leptin as an AD therapeutic.247 Leptin is capable of modulating both the production 

of Aβ and phosphorylation of tau, two main pathological hallmarks of AD. Further, 

administration of leptin rapidly normalizes synaptic function.250 Recently, it was shown that 

direct injection of leptin into the hippocampus of rodents can improve memory processing 

and modulate long term potentiation and synaptic plasticity. Moreover, Leptin-treated 

transgenic mice, an animal model of AD, showed significantly reduced levels of Aβ in brain 

and serum and a reduction of phosphorylated tau in Ser396. Moreover, biochemical and 

pathological changes were correlated with cognitive improvements in memory tests.253 

Improved memory following leptin administration was also found in SAMP-8 mice, an 

accelerated senescence rodent model that develops amyloid plaques.  

Thus, given to the importance of the involvement of leptin in AD, we wanted to investigate if 

apoE genotype affects leptin levels in old apoE4 TR mice. These apoE4 mice showed 

retention memory deficits in the MWM task compared to WT, confirming that apoE4 affects 

age related cognitive decline. No cognitive deficits were found in WT mice at the same age. 

Immunoblotting against leptin antibody in hippocampus and frontal cortex of wild type and 

apoE4 13-months old mice showed an unexpected increase of leptin levels in both cerebral 

areas of apoE4 mice compared to WT mice. Given to the demonstrated neuroprotective 

functions of leptin in SNC we expected levels of leptin to be lower in apoE4 mice compared 

to WT mice.  

In parallel to these studies, we performed analysis of CSF and brain of human AD patients, 

both E3 and E4 carriers. We found that CSF level of leptin are significant increased in apoE4 

carriers compared to E3 carriers with confirmed Alzheimer’s disease. No differences were 

found between E3 and E4 patients presenting subjective cognitive impairment (SCI) and 

stable mild cognitive impairment (SMCI). Subjects with mild cognitive impairment, whom 

later progressed to AD (PMCI), and with AD apoE4 carriers showed significant higher levels 

of CSF leptin compared to apoE3 carriers. These findings suggest that the increase of leptin is 

related to the stage of the cognitive decline of the patients analyzed and that presence of 

apoE4 isoform affects leptin levels in CSF. Moreover, CSF-leptin levels were measured for 

male and female SCI, SMCI, PMCI and AD groups. SMCI and PMCI women showed a trend 
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of increased levels of CSF-leptin when compared to men of the same group (by nearly 

reaching significance), suggesting a gender dependent effect of leptin. To confirm that 

increased levels of leptin are likely to be involved in AD we performed further investigations. 

We found that mRNA expression of leptin in brain of AD patients is significant increased 

compared to healthy controls. Moreover, apoE4 carriers showed significant increase of 

mRNA expression of leptin compared to apoE3 carriers, confirming our hypothesis that apoE 

genotype affects leptin expression. This result, showing an increase of leptin in CNS, seems 

to be in agreement with increase of leptin levels found in 13 months old apoE4 TR mice. 

In order to understand how leptin is expressed in AD brains, further studies were performed 

on frontal cortex and hippocampus of AD patients. Interestingly, immuno staining in 

hippocampus and frontal cortex showed that leptin is overexpressed in AD brains and is 

upregulated in glial cells of AD patients compared to healthy control subjects. Then the 

results were confirmed, by an immunofluorescence technique. We found that leptin in AD 

brains co-localizes with astrocytes cells, suggesting that leptin in frontal cortex and 

hippocampus of AD patients is upregulated in reactive astrocytes compared to control 

patients. 

Finally, the levels of leptin were evaluated in vitro, in microglial human cells and primary 

culture of astrocytes. The effect on leptin levels after treatment with apoE4 and apoE3 

genotype as well as amyloid β was studied. According to our findings, production of leptin by 

astrocytes and microglia cells significantly increases after apoE4 and amyloid β treatment. 

In conclusion our findings suggest that apoE4 TR mice showed an increase of leptin in the 

brain. Leptin is increased in the CSF of AD patients and it can be expressed in the brain in 

some particular situation. ApoE4 carriers with AD have higher levels of leptin than apoE3 

carriers. Moreover, leptin seems to be expressed by reactive glial cells in AD brains. In vitro, 

ApoE4 together with Aβ increases leptin production by microglia and astrocytes. Taken 

together, all these findings suggest that leptin replacement might not be a good strategy for 

AD therapy.  

Our results show that high leptin levels were found in AD brains, thus, as high leptin levels do 

not promote satiety in obese individuals, it might be possible that they do not promote 

neuroprotection in AD patients. We hypothesized that AD brain could suffer from leptin 

resistance. However, neuroprotection is not achieved by hyperleptinemia in obese individuals. 

The underlying molecular mechanisms in AD brains may be the same as those that cause 

neuronal resistance to leptin satiety effects. Further studies will be critical to determine, 
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whether or not the central leptin resistance in SNC could affect its potential neuroprotective 

effects, focused on leptin signaling pathway. Additional studied are needed to elucidate the 

molecular mechanism by which leptin might be protective for developing AD.256 

There are still several questions that remain unanswered, such as the mechanisms by which 

high circulating levels of leptin protect from developing AD and the stage of the disease 

process at which leptin acts. All these findings point out the importance of leptin in 

Alzheimer’s disease and reinforce the importance of this hormone as a link between adipose 

tissue and brain. Metabolic pathways have been shown to be very important in AD, thus need 

further investigation. 
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7. FIGURES 
Figure 1: 
 
a) 

 
b) 

 
 

Figure 1: Effect of the interaction between diet and apoE3 apoE4 genotype on the 

performance in the Morris Water Maze task.  

a) Acquisition is shown as mean escape latencies to find the platform for each day of training. 

(* P< 0.05 vs apoE4 HS)  

b) Acquisition is shown as escape latency for each of the 6 trials per day. (** P<0.01 vs 

apoE4 ND) 
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Figure 2: 
 
a) 

 
 

b) 
 

 
 

Figure 2b: Effect of the interaction between different diet and apoE3 apoE4 genotype on 

performance in the Morris Water Maze task during the probe test day.  

a) Memory retention is shown as escape latency to cross the former platform position. (* 

P<0.05 vs apoE3 ND)  

b) Memory retention is shown as time spent in the target quadrant where the platform was 

located during the acquisition.
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Figure 3: 
 
a) 

 
b) 

 
 
 

Figure 3: Effect of the interaction between different diet and apoE3 apoE4 genotype on 

performance in the Passive Avoidance test. 

a) Data are shown as latency time to enter the dark compartment on the first and second day 

of the test. 

 b) Retention memory is shown as latency time to enter the dark compartment on the second 

day of the test. Data are shown as median, error bars show min and max, + represent the mean 

value.
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Figure 4: 
 
a) 

 
Figure 4a: Effect of different diet on 13 months-old apoE4 mice on the acquisition phase of 

the Morris Water Maze task. Performance is shown as mean escape latency for each day of 

training. (** P<0.01 vs apoE4 ND, * P<0.05 vs apoE4 ND) 

 
b) 

 
Figure 4b: Effect of different diet on 13 months-old apoE4 mice on the probe test  of the 

Morris Water Maze task. Performance is shown as time spent in the target where the platform 

was located during the acquisition phase. 
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Figure 5: 

 
 
Figure 5: Effect of different diet on 13 months-old apoE4 mice on the Passive Avoidance 

task. Data are shown as latency time to enter the dark compartment on the first and second 

day of the test. (*** P<0.001 vs apoE4 ND) 
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Figure 6: 
 
a) 

 
 
Figure 6a: Immunoblotting. Effects of the interaction between different diets and apoE3 

apoe4 genotype on p-GSK 3β Ser 9 levels in frontal cortex. Data are expressed as percentage 

of values for control group (E3 ND) and represent the mean + SEM.  

 
b) 
 

 
 

Figure 6b: Immunoblotting. Effects of the interaction between different diets and apoE3 

apoe4 genotype on p-GSK 3β Tyr 216 levels in frontal cortex. Data are expressed as 

percentage of values for control group (E3 ND) and represent the mean + SEM. (* P<0.05 vs 

apoE3 ND) 
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Figure 7: 
 

 
 

Figure 7: Immunoblotting. Effects of the interaction between different diets and apoE3 apoe4 

genotype on p-22C11 levels in frontal cortex. Data are expressed as percentage of values for 

control group (E3 ND) and represent the mean + SEM.  

(*** p<0.001 vs apoE3 ND; ** P<0.01 vs apoE3 ND) 
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Figure 8: 
 

 
 

Figure 8: Immunoblotting. Effects of the interaction between different diets and apoE3 apoe4 

genotype on total Tau levels in frontal cortex. Data are expressed as percentage of values for 

control group (E3 ND) and represent the mean + SEM. 

 (* P<0.05 vs apoE3 ND) 
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Figure 9: 
 

 
 

Figure 9: Immunoblotting. Effects of the interaction between different diets and apoE3 apoe4 

genotype on Arc levels in hippocampus. Data are expressed as percentage of values for 

control group (E3 ND) and represent the mean + SEM.  

(** P<0.01 vs apoE3 ND) 
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Figure 10: 
 
a) 

 
b) 

 
c) 

 
 

Figure 10: Immunoblotting. Effects of the interaction between different diets and apoE3 

apoe4 genotype on BDNF levels in hippocampus. Data are expressed as percentage of values 

for each control group (E3) and represent the mean + SEM.  

c) * P<0.05 vs apoE3 HS 
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Figure 11: 
 
a) 

 
b) 

 
c) 

 
 

Figure 11: Immunoblotting. Effects of the interaction between different diets and apoE3 

apoe4 genotype on β-Catenin levels in hippocampus. Data are expressed as percentage of 

values for each control group (E3) and represent the mean + SEM.  

b) * P <0.05 vs apoE3 HC 

c) ** P <0.05 vs apoE3 HS 
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Figure 12: 
 

 
 
Figure 12: Immunoblot of hippocampus and frontal cortex homogenates from 13 months old 

apo4 and wild type mice were probed using antibodies against leptin. Data are expressed as 

percentage of values for each control group (WT) and represent the mean + SEM. 

* P <0.05 vs WT 
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Figure 13: 
 
a)                                                                                       b) 

 
Figure 13:  

a) Fasting CSF-leptin (µl/mL) with standard errors for the overall subjective cognitive 

impairment (SCI), stable MCI (SMCI), MCI with AD progression (PMCI) and AD.  

b) Fasting CSF-leptin (µl/mL) with standard errors for male (white columns) and female 

(black columns) SCI, SMCI, PMCI and AD groups.  
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Figure 14: 

 
 

Figure 14: Expression of mRNA leptin level by RT-PCR in control and AD patients, apoE3 

and apoE4 carriers, male and female. Gene expression levels were normalized using GAPDH 

as internal control. (+ P<0.05 vs ctl)  
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Figure 15: 
 
a) 
	
  

	
  
 
Figure 15a: DAB staining of leptin in hippocampus of an healthy control. 

40X 
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b) 
 
 

 
Figure 15b: DAB staining of leptin in hippocampus of an Alzheimer’s disease patient. 
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Figure 16: 
 
a)  
 

 
Figure 16a: DAB staining of leptin in frontal cortex of an healthy control. 
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b) 
 

 
Figure 16b: DAB staining of leptin in frontal cortex of an Alzheimer’s disease patient.  
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Figure 17: 
 
a) 

 
Figure 17a: Double immunofluorescence staining for GFAP and leptin in frontal cortex of an 

healthy control. 
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b) 
 

 
Figure 17b: Double immunofluorescence staining for GFAP and leptin in frontal cortex of 

Alzheimer’s disease patient. 
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 Figure 18: 
 
a) 

 
 
b) 

 
 

Figure 18: Immunoblotting. Effects on leptin levels after 6 hours (a) and 24 hours (b) of 

different treatment in lysate of CHME3 human cells.  

Data are expressed as percentage of values for untreated cells (con) and represent the mean + 

SEM of three experiment performed in triplicate. 

b) (*P<0.05 vs con) 
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Figure 19: 
 

 
 

Figure 19: Immunoblotting. Effects on leptin levels after 24 hours of different treatment in 

lysate of CHME3 human cells.  

Data are expressed as percentage of values for untreated cells (con) and represent the mean +  

SEM. 

(*P<0.05 vs con cells) 
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