
Alma Mater Studiorum Università di Bologna
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Introduction

Dexterous manipulation by means of mechanical hands has become a research topic in
the last two decades. The advantages of dealing with articulated mechanical hands over
conventional grippers are, among others, the possibility of grasping objects of different
shapes and of better distributing the grasping forces. The manipulation of a priori un-
known objects involves several steps and problems that must be carefully considered and
solved by proper planning and control algorithms. In this thesis, I have addressed both
planning and control of robotic manipulation tasks.

Chapter 1 focuses on a particular kind of task of robotic manipulation, that is called
regrasp. This is the highest level of dexterous manipulation and consists in changing the
contact points on the object boundary in order to achieve a final desired configuration
by starting from an initial one. The different steps of the regrasp sequence (i.e. a set
of grasping configurations) are required to satisfy the force-closure constraint in each
instant. This means that the forces applied by the fingers have to be able to balance
any external force or torque on the object [5]. A methodology to plan a sequence of
force-closure grasps using four fingers (three of them guaranteeing the force-closure grasps
while moving the fourth) can be found in [54]. Another methodology for four fingers
and including sliding movements of the fingers is presented in [69, 70]. All these works,
developed for polygonal objects, imply the construction of a connectivity graph between
the edges of the object and the application of search techniques to obtain the sequence of
regrasp. Besides, some of the configurations obtained using four fingers can be very difficult
or even impossible to be applied by a mechanical hand. The repositioning of the fingers
near the initial grasp configuration considering non-polygonal objects can be found in [33],
although a methodology to plan a sequence from an initial to a final configuration is not
provided. A problem, related to the planning of the regrasp sequence, is the determination
of independent regions of the object boundary, i.e. the force-closure is ensured if each finger
of the robotic hand is placed in one of these different regions. Independent regions are
used in [22] for two friction contacts and in [17] for four frictionless contacts. In this
first Chapter, a new framework for planning regrasp sequences considering irregular 2D
objects and three-finger grasps is presented. Some characteristic points are determined in
order to establish the regions that allows force-closure grasps as well as the connectivity
between them, obtaining what we define the regrasp map. By exploring the regrasp map
as a shortest path problem, it is possible to determine regrasp sequence just with three
fingers sliding or jumping on the object boundary and ensuring a force-closure grasp. This
is a more challenging problem rather than the use of a fourth auxiliary finger.

Chapter 2 deals with the problem of distributing grasping forces, once the grasp
satisfies the properties of force closure. In particular, the problem is to determine an
adequate set of contact forces such that the external forces and torques are balanced
and the object remains in equilibrium. This is one of the most basic requirements of
a grasping action, otherwise the object may fall, and, since the grasp configuration and
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the external forces often change during a manipulation action, the computational time
of the algorithms has to be small enough to provide a valid response to these changes.
Besides, the minimization of the contact forces is also desirable in order to avoid damages
on the object. Some authors prioritized the simplicity and efficiency of the algorithms
versus the optimality of the solution in order to allow the use of the algorithms in real-
time procedures. Other authors focused their interest in the optimization of the solution.
The main difficulty in determining the optimal grasping forces is the non-linearity of the
friction models. The work in [53] presents optimization algorithms that consider the non-
linearities of the friction cones, based on the primal form of a non-linear optimization
problem, while in [66] the grasping forces are determined by considering the deformations
of the fingertips. Nevertheless, the algorithms can only be applied off-line due to their
computational cost. In [36] the friction cones is linearized by pyramids, and the search
of the optimal grasping forces is formulated as a linear programming problem. The work
in [13] proves that the efficiency of these methods could be improved using the duality
theory of linear programming. The accuracy of these methods increases with the number
of planes used in the approximation of the friction cones, but this also increases the
computational cost of the optimization algorithms. A linear method that use a large
number of planes in the approximation with a reasonable computational cost is proposed
in [42]. The work in [9] points out that the friction cone constraints are equivalent to
the positive definiteness of certain symmetric matrices. Based on these matrices, they
developed gradient flow algorithms for real-time computation of optimal grasping forces.
The force distribution problem is also formulated as a Linear Matrix Inequality problem
in [26]. In [29], the dimension of the optimization problem is significantly reduced with
a redefinition of the matrices that represent the friction cone constraints. The main
drawbacks of the algorithms proposed by [9], [29] and [26] are that they require the selection
of an initial solution that satisfies the friction cone constraints and the determination of
the step size of the gradient algorithms. In [41] and [40] a solution for these problems
is proposed and implemented. Another approach is followed in [74], in which the use
of a neural network is proposed to solve the grasping force optimization problem. This
second Chapter presents a new mathematical approach to efficiently solve the optimal force
distribution problem. The problem is modeled as a non-linear minimization problem such
that the objective function is the L2 norm of the finger forces vector and the constraints
are obtained by linearizing the friction cones. This model assures the convexity of the
problem, implying that the dual theorem of non-linear programming can be applied, and
the original problem is transformed into another one much easier to be solved. This method
allows to use a large number of planes in the linear approximation without increasing the
computational cost of the algorithm, allowing an accurate final solution. The dual theorem
of non-linear optimization programming has been applied in many different fields such as
economics, manufacturing, chemistry. A dual theorem in the case of cooperating robots is
proposed in [38]. In this Chapter, we show that the dual theorem can also be successfully
applied in grasping, in order to determine the minimum forces that the fingers have to
exert on the object. This results have been presented in [20].

Once the grasp task has been planned, the control system should be able to guide
the robotic manipulator towards the object in order to grasp it. Chapter 3 proposes an
image-based visual servoing procedure that grants the manipulator to reach the object,
while the relative position/orientation of the object and the gripper of the robotic system
changes due to the approaching movement of the robot towards the object itself. A
fundamental requirement for a vision-based robotic system is the capability of detecting
image features in order to control the pose of the end-effector with regard to a set of target
features. In this Chapter, we analyze the problem of grasping unknown planar objects
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by using an eye-in-hand system acting in an unknown dynamic environment. The visual
servoing control loop should be able to trace significant points on the object, such as the
grasp points, in order to achieve the desired position of the robotic gripper with respect
to the target object. The proposed image-based visual servoing procedure requires three
functional blocks to be executed in real time: the extraction of a set of features, i.e. the
contour of the object, the selection of a stable grasp configuration and its tracking along
different views of the object, and the control law whose set points are the grasp points. The
problem of tracking a grasp consists in the search of the matching between different views
of the object. We choose to compute a stable grasp configuration at the beginning and then
to transpose it in the sequence of the acquired images. This has two main advantages: first
of all, the computational cost of each iteration of the control loop is reduced. Secondly,
by avoiding the grasp search at each time instant, the errors due to noisy sensor data
decrease. In order to allow the grasp tracking, it is necessary to find a representation
of the coordinates of the grasp points that is invariant in the image space according to
different movement of the robotic arm. In particular, three different representations are
presented: two are invariant with respect to 4 d.o.f. (translations along x, y, z and rotation
about z) [64], the remaining one with respect to 6 d.o.f., [10]. Consequently, we have to use
two different control laws: one that bounds the movement of the robotic arm to 4 d.o.f.,
the other to 6 d.o.f. The development of a visual servoing system for positioning a gripper
with respect to an object has been considered in literature from a general point of view,
without focusing on any particular manipulation task [4, 46, 47, 56]. A robust tracking
algorithm is presented in [39], but the object shape is always supposed to vary in an affine
model. Many works use the fundamental matrix and the epipolar geometry, although
with the hypothesis of not having parallel views of the object to be grasped [15,44,75]. In
the literature, the visual servoing system has generally been based on the use of features
that are more easily to be extracted from the image other than the grasp points [23, 31].
For example, in [46] artificial marks explicitly set on the object and previously known are
considered. In other works, geometric parameters of the object have been exploited, such
as the centroid [47]. In [1] parameters related to the projection of the object, such as the
measure of the image velocity at each pixel, have been adopted. The grasp search and the
computation of the target position have been performed off-line in [31]. In [15], a method
based on a homography transformation has been presented in which the whole shape of the
object is used and the matrix of internal parameters of the camera is assumed as known.
Several grasp-synthesis strategies can be found in [7,12,22,28,57,64,65]. Finally, regarding
the design of the control law, under the assumption that the object is motionless, a simple
proportional controller is the most common approach [32].

Chapter 4 focuses on the problem of the realization of the grasp, since it deal with
the problem of the control of the interaction between a robotic manipulator and a generic
work environment. In general, complex robotic systems, such as grasping and locomotion
devices, involve the interaction between a robotic manipulator and its work environment.
The control issue of such type of tasks is the regulation of the transition phase, in which the
dynamic of the system is switching from the free to the constrained motion. In particular,
the crucial point of the control is in the detection of contact/non-contact states since, when
the manipulator gets in contact with the environment, large impulsive forces can cause the
manipulator to bounce off and to become unstable. In the literature, the control of the
dynamical behavior of the manipulator in interaction tasks has been a research topic for
many years and several control synthesis schemes, both continuous and discontinuous, have
been proposed. In the continuous case, impedance control schemes are used to establish
a desired dynamic relationship between the robotic manipulator position and the force
it exerts on the work environment [30]. A unified approach for motion and force control
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is proposed in [37]: when the manipulator is moving freely, it is position-controlled and
force-monitored; when the manipulator is constrained, it is force-controlled and position-
monitored. During the impact transition, the control is a pure velocity damping so that
the system can dissipate fast the impact energy and avoid bounces. In [71] an impedance
control is used jointly with a hybrid system for the detection of the contact. On the
other hand, the discontinuous control schemes in [11, 49, 55, 60, 72] present a switching
control law in which a position controller is applied during non-contact motion while a
position/force controller is applied during the transition phase and the contact stage.
Commonly, the contact is detected by using position/velocity information. This work
develops an innovative solution to the problem of robotic interaction. We present a hybrid
control architecture that involves a position and a force controller, so that the position
control law steers the manipulator to a target point in the workspace and, once the contact
is detected, the control law switches to a force control that makes the manipulator exerting
the desired force. The detection of the contact is realized with a strategy based on force
information: when the measured contact force reaches some level, than the manipulator
is supposed to be in contact. Vice versa, when the measured contact force goes below
some level, than the manipulator is supposed to have detached the contact. The proposed
hybrid control assures the stability of the manipulator so that, once the manipulator gets
in contact with the environment, no bounces are present and it never loses the contact.
This is realized by steering the robotic manipulator with a position controller into the
basin of attraction generated by the the closed-loop system with the force controller [67].
The control scheme provides a margin of robustness with respect to actuators errors and
to force sensors noise and it avoids chattering problems, i.e. multiple switching between
the position and the force controller. This results have been presents in [59].



Chapter 1

Grasp and Regrasp Planning of

Planar Objects

I n this Chapter a new approach to planar objects dexterous manipulation

by means of three-fingered hands is presented. In particular, we focus on

a particular task: the regrasp task. In this context, it is required to plan

sequences of force-closure grasps in order to achieve a desired stable config-

uration from an initial one. The discretized boundary of an irregular object

is analyzed so that all the regions that ensures force-closure grasps are es-

tablished: the connectivity between these regions provides the computation

of a regrasp graph. The regrasp sequence is obtained either with slides or

with jumps of the fingertips on the object boundary and is realized with the

solution of a shortest path problem.

1.1 Introduction

In this Chapter, a new framework for planning regrasp tasks of irregular planar objects
with three-finger robotic hands is presented. Given a discrete description of the object
boundary, some characteristic points are determined in order to establish the regions that
allow force-closure grasps as well as the connectivity between them, obtaining what we
define the regrasp graph. By exploring the regrasp graph as a shortest path problem, it
is possible to determine regrasp sequence just with three fingers sliding or jumping on the
object boundary and ensuring a force-closure grasp in each step of the task. In this work,
only one finger is supposed to be moved at each time, as in the methodologies developed
for polygonal objects. The contact model is a point with hard friction and the dynamical
effects produced at the contacts are not considered. As described in [2] and reviewed in [6],
this effects has to be considered in the low-level of dexterous manipulation.

The Chapter is organized as follows: Section 1.2 presents the planar manipulation
problem by providing the geometric description of the object and of the forces involved
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in the task. Section 1.3 analyses the force-closure conditions and recalls methods for the
determination of force-closure grasps. In Section 1.4, the regrasp task is presented and a
solution for the regrasp planning problem is provided. Finally, simulation results with two
different kind of objects, concave and convex, are reported in Section 1.5.

1.2 General Model

In this Section, we present the planar manipulation problem by giving a geometric descrip-
tion of the object to be grasped and of the forces exerted on it by the robot fingertips.

1.2.1 Object Description

Let B be a smooth and closed curve describing a generic parameterization of the object
boundary, let Bd = {pi, i = 1, · · · , N} be a collection of N sampled points pi that belong
to B and let θ = {θi, i = 1, · · · , N} be the vector of the inward normal direction on each
point pi. The object is described by the discrete representation Bd and the vector θ.

1.2.2 Forces Description

Let fi be the force exerted by a robotic finger on a contact point pi and let fn
i and f t

i be
its normal and tangent components to the object boundary, which directions are given,
respectively, by the unitary vectors n̂i = [cos θi sin θi]

T and t̂i = [− sin θi cos θi]
T .

By assuming the Coulomb friction model, the finger slippage on the object boundary
is avoided if the normal and tangent components of the finger force satisfy

µ‖fn
i ‖ ≥ ‖f t

i ‖,

where µ is the friction coefficient. This implies that the force exerted by the finger has to
lie inside the friction cone centered on the normal direction to the object boundary and
delimited by the two primitive forces f r

i and f l
i which directions are given, respectively,

by the unitary vectors

r̂i = [cos(θi − ϕ) sin(θi − ϕ)] (1.1)

l̂i = [cos(θi + ϕ) sin(θi + ϕ)] (1.2)

where ϕ = arctan µ. We indicate the straight lines of the unitary vectors n̂i, t̂i, r̂i and l̂i
with the symbol Fi,v̂, where v̂ is the the generic unitary vector.

The complete scenario of the geometric description of the object and of the forces
exerted on its boundary is depicted in Figure 1.1.

1.3 Force-Closure Analysis

In this section, we analyse the conditions that guarantee a force-closure grasp by recalling
some previous resultspresented in [19].
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object

Bd

−θi

fi

pi

t̂i

n̂i

r̂i

l̂i

F̂i,t̂

F̂i,n̂

F̂i,r̂

F̂
i,l̂

Figure 1.1: Object and force geometric description: Bd represents a discrete parameteri-

zation of the object boundary; fi is a generic force exerted on the object boundary at the

contact point pi; n̂i and t̂i are the normal and tangent unitary vectors at the boundary;

r̂i and l̂i are the unitary vectors of the primitive forces f r
i and f l

i .

1.3.1 Force-Closure Conditions

A set of contact points allows a force-closure grasp, if and only if the convex hull defined by
the primitive wrenches contains the origin [3]. Even when this is a general necessary and
sufficient condition and it can be applied considering 2D or 3D objects and any number of
fingers, some authors have developed other necessary and sufficient conditions that avoid
to compute the convex hull in some specific cases. We recall here the proposition in [34]
that gives the necessary and sufficient condition for the force closeness in the case of grasp
of 2D objects with a three-finger robotic hand.

Proposition 1.3.1. Three contact points pi, pj and pk allow a force-closure grasp if and

only if: a) the unitary primitive vectors that bound the friction cones at these points posi-

tively span the force space, and b) at least one intersection point P between the supporting

straight lines of the primitive forces lies inside the friction cone at the other contact point.

Figure 1.2(a) shows an example of three contact points that satisfy the necessary and
sufficient condition in Proposition 1.3.1 allowing a force-closure grasp, while Figure 1.2(b)
shows an example of three contact points that do not satisfy the condition.

As stated [19], from Proposition 1.3.1, two Lemmas follows. Before, some definitions
are needed.

Definition 1.3.2. Two points pi and pj are primitive-primitive opposite (PPO) if a primi-

tive force applied at pi and a primitive force applied at pj have opposite directions. Besides,

if these forces are collinear these points are also primitive-primitive antipodal (PPA).

Definition 1.3.3. Two points pi and pj are primitive-normal opposite (PNO) if a primi-

tive force applied at pi and the normal force applied at pj have opposite directions. Besides,
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pipi

pjpj

pk

pk

Fi,r̂Fi,r̂
F

i,l̂
F

i,l̂

Fj,r̂Fj,r̂

F
j,l̂

F
j,l̂

Fk,r̂Fk,r̂

F
k,l̂

F
k,l̂

P

(a) (b)

Figure 1.2: (a) Force-closure grasp: the intersection point P between the supporting

straight lines of two primitive forces lies inside the friction cone defined by Fk,r̂ and F
k,l̂

;

b) Non force-closure grasp: there is not a intersection between two primitive forces inside

the friction cone defined by Fk,r̂ and F
k,l̂

.

if these forces are collinear these points are also primitive-normal antipodal (PNA).

Definition 1.3.4. Two points pi and pj are normal-normal opposite (NNO) if the normal

force applied at pi and the normal force applied at pj have opposite directions. Besides, if

these forces are collinear these points are also normal-normal antipodal (NNA).

Lemma 1.3.5. Let pi and pj be two contact point and let P be the intersection point

between the straight lines of two primitive forces applied at pi and pj . In order to obtain

a force-closure grasp, the third point pk has to be placed into the intersection of the two

regions on the object boundary defined as follows:� The region limited by two points whose primitive force are opposite to the two prim-

itive forces that determine P . In Figure 1.3, these two PPO points are pi
′ and pj

′ .� The region of points where the friction cone contains P . In Figure 1.3, these two

points are pr and pl.

Lemma 1.3.6. It always exists a point pn in the region identified by Lemma 1.3.5, whose

normal force passes through P .

The two Lemmas 1.3.5 and 1.3.6 are illustrated in Figure 1.3 and are used in the
following section in order to obtain the set of possible force-closure grasps.
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Figure 1.3: Contact point pi and pj and definition of the region in which the third contact

point pk has to be placed. This region is given by the intersection of the two regions

delimited by pi
′ and pj

′ and by pr and pl. pn is the point whose normal passes through

the intersection point P .

1.3.2 Determination of Force-Closure Grasps

Recalling the work in [19], in this subsection we present a procedure for the computation
of a force-closure grasp configuration for 2D objects and a three-finger robotic hand. In
particular, given two contact points pi and pj, this procedure computes the region in which
the third contact point pk has to be placed in order to guarantee that the configuration
given by pi, pj and pk is a force-closure grasp. As stated in [19], this procedure has
a computational cost of O(N2), since it only considers the position of the two contact
points pi and pj and the existence of PNA points on the object boundary. Note that the
search of the PNA point

From Lemma 1.3.5, the region where pk has to be placed is limited by PPO points of
pi and pj, i.e. pi

′ and pj
′ .

Let Γi and Γj be the torques produced by the unitary normal vectors at pi
′ and pj

′

with respect to the intersection P . Therefore, Γi and Γj are given by

Γi = (pi − pi
′ ) × n̂i

′ (1.3)

Γj = (pj − pj
′ ) × n̂j

′ (1.4)

According to the signs of Γi and Γj , a combinations of two generic contact points pi

and pj is classified into two types:� Odd Combination: The signs of Γi and Γj satisfy the following relation:

sign(Γi) 6= sign(Γj) (1.5)

This means that there is an odd number of points pn between pi
′ and pj

′ where a

normal force produces a null torque with respect to P and the sign of the torque
produced by a normal force is different on each side of these points. The existence of
these points between pi

′ and pj
′ guaranties that the intersection between the regions
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defined by Lemma 1.3.5 is not null. Therefore, it is possible to assure that pi and pj

together with a third contact point can produce a force-closure grasp.� Even Combination: The signs of Γi and Γj satisfy the following relation:

sign(Γi) = sign(Γj) (1.6)

This means that there can be either no one or an even number of points pn between
pi

′ and pj
′ where a normal force produces a null torque with respect to P and the

sign of the torque produced by a normal force is equal on each side of these points.
Therefore, it is not possible to assure that pi and pj together with a third contact
point can produce a force-closure grasp.

Following this analysis, given two contact points pi and pj, it is possible to compute
the region of the object boundary where the third contact point pk can be placed.

1.4 Regrasp Task

The regrasp task consists in the planning of the movements that each finger of the robotic
hand has to execute in order to realize a change in the grasp configuration. In particular, at
the beginning of the regrasp task, the three-finger robotic hand is keeping the object in an
initial force-closure grasp configuration. Then, in order to reach a final force-closure grasp
configuration without loosing the object, it is necessary to move the fingers by passing
through different grasp configurations that realize a force-closure.

1.4.1 Regrasp Graph

By following the discussion of Section 1.3, given the discretized parameterization of the
boundary of an irregular planar object and the inward normal direction of each point
of the boundary, we are able to know all the possible force-closure grasp configurations
where the contact points can be placed so that to guarantee the stability of the object.
In particular, for every contact point pk, we can compute all the couples of points (pi, pj)
that grant a force-closure grasp. This means that for every point pk, we can build a grid in
the 2D space defined by the contact points pi and pj in which it is possible to distinguish
between possible force-closure grasps and non possible force-closure grasps.

Figure 1.4(a) depicts a generic planar convex object whose boundary is discretized by a
number of points N = 40. If we suppose that the contact point pk is fixed, we can build up
a grid, illustrated in Figure 1.4(b), that represents all the combination of couples of point
(pi, pj). In particular, the white cells represent the couples of point (pi, pj) that, combined
with the fixed point pk, guarantee a force-closure grasp configuration, while the dark cells
represents the configurations that don’t guarantee a force-closure grasp. Note that the
grid in Figure 1.4(b) is symmetric with respect to the line characterized by pi = pj. The
computational cost for one grid is O(n2/2).

In order to realize a change in the grasp configuration we have to plan all the move-
ments, i.e. the steps of the regrasp sequence, that the fingers have to execute from the
initial to the final configuration. Therefore we have to build up all the grids of couples of
contact points (pi, pj) that correspond to all the possible N points pk. Eventually, we come
up with N grids, as depicted in Figure 1.5. These grids are the graphical representation
of all the combinations of three contact points pi, pj and pk. If the three contact points
realize a force-closure grasp, then the corresponding cell is white, otherwise, if the three
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Figure 1.4: Example of regrasp grid: (a) represents a convex object with a fixed contact

point pk; (b) represents the grid of couples pi and pj for a fixed pk.

contact points do not realize a force-closure grasp, then the corresponding cell is black.
Notice that the computational cost for all the grids is O(n3/2).

By exploring the grids, we can notice that there can be paths that join an initial grasp
configurations (pi, pj , pk)1 and a final one (pi, pj , pk)2, by always passing through white
cells. A possible path is shown in dashed line in Figure 1.5. Note that the initial and the
final configurations are white cells and the path is passing through white cells. In the path,
we are changing one cell at each time by movements in the same plane (characterized by
a fixed pk) or by changing plane (therefore by changing the value of pk) but maintaining
a fixed values of the contact points pi and pj. This means that we are assuming that each
step of the planning is characterized by a single movement of one finger.

The regrasp grids can be joined in a unique 2D grid with dimension N3 × N3, that
contains all the information of the grids. In particular, this grid, denoted with A, is
basically a graph that we call the regrasp graph.

In order to explain how to build the regrasp graph A, let’s analyse a single N × N
regrasp grid, that we call Ik. Each grid Ik is transformed in a N2 × N2 grid, that we call
Ak. Each generic cell (pi,pj) of Ik is compared with all the others cells of Ik: if both cells
are white (i.e. a force-closure grasp is admitted), the corresponding cell Ak(pi, pj) is equal
to 1, otherwise is equal to 0. This means that the two cells are correlated by a path of
weight 1 or 0. Note that the grid Ak is symmetric with respect pi = pj. Finally, each grid
Ik has a corresponding grid Ak.

All the Ak grids are put together in order to compose the main diagonal of the regrasp
graph. In the superdiagonal and the subdiagonal of the regrasp graph, there are the
correlation between all the different Ik, build up with the same procedure. In particular,
only the cells with the same values of (pi, pj) and adjacent values of pk are compared,
since we suppose to have a continuity of the finger movements. The remaining parts of
the regrasp graph are cells with a 0 value, since there are no direct correlations between
them.

In order to visualize this procedure, we describe in Figure 1.6 the easy case of two Ik

cells (I1 and I2) of dimension 2×2. On the left part of the Figure, the two grids Ik, k = 1, 2
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Figure 1.5: Example of the N grids of couples pi and pj for fixed values of pk. In dashed

line a path between two different force-closure grasp configuration.

are plotted: if a cell is white, the configuration grasp realizes a force-closure, otherwise is
black (gray in the Figure). Note that, for example, the configuration (pi, pj , pk) = (1, 1, 1)
is a force closure, while the configuration (pi, pj , pk) = (1, 2, 7) is not. Each cell of the
grids Ik are numerated in a progression. Then, the graph A is build up. If two adjacent
cells are both white, the corresponding cell in A is marked as 1, otherwise it is 0. The
cells are considered adjacent if they have a common side or if they have the same position
(pi, pj) but in different level k. Note that, for example, from cell 1 and 2 there is a path
of weight equal to 1, as well as for cells (5, 6), (6, 8), (1, 5), (2, 6) since they are adjacent.
Only for these combinations there is a 1 in the graph A.

More generally, Figure 1.7 depicts a schematic example of a regrasp graph. We can
notice that the nodes which guarantee a force-closure grasp configuration are white, oth-
erwise the cells are black. Each arch of the graph is oriented in both directions and it has
weight equal to 1 if the change of contact point is allowed. Otherwise, if the change of
contact point does not guarantee a force-closure grasp, i.e. one of the two nodes that the
arch is correlating is black, the arch has a weight equal to ∞. In Figure 1.7, a possible
path between two nodes is plotted in dashed line.

1.4.2 Regrasp Strategy

Once the regrasp graph A is build, the search of the regrasp sequence is a simple linear
combination problem on the graph A. It is necessary to explore the regrasp graph in order
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two grids Ik. The cells in the graph A are equal to 1 if there is a path between the two
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to find a path from an initial configuration to a final configuration and the fastest way
to find a solution is to apply the shortest path algorithm. We present this results in the
following proposition.

Proposition 1.4.1. Given a discretized parameterization of an irregular planar object Bd

and the vector θ of the inward direction at each point of the boundary, the regrasp sequence

from an initial force-closure configuration (pi, pj , pk)1 to a final force-closure configuration

(pi, pj , pk)2 is realized by building up and analysing the regrasp graph A. In particular, the

path is given by the solution of the shortest path algorithm on the graph A.

Once the regrasp path has been decided, we can distinguish among two different types
of movements of the robot fingers. In particular, in the designed path we can observe
which is the finger that is moving in each step of the regrasping task. If the two fingers
that have to remain fixed on the object realize a force-closure grasp, we can make the
finger moving with a jump, otherwise with a slide.

1.5 Simulations

In this section, two examples of the proposed methodology are presented for both a convex
and a concave object. In the two examples, the friction coefficient is µ = 0.3.

The steps of the simulation procedure are:

Step 1) Given the discretized parameterization Bd and the vector θ of an irregular planar
object, find the N grids Ik corresponding to all the configurations of force-closure
grasps.

Step 2) Compute the regrasp graph A.
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arch has weight equal to ∞. In dashed line, there is a possible path between two nodes.

Step 3) By using the library Matlab BGL v2.0, compute the shortest path on the graph
A.

Example 1: Convex Object The object considered in this example is an ellipse described
by N = 40 points, as the one shown in Figure 1.4(a).

The initial positions of the fingers are (pi)1 = [0.891 1.3621], (pj)1 = [1 0], (pk)1 =
[−0.9877 0.4682], see Figure 1.8(a). The final positions of the fingers are (pi)2 = [−0.8912 1.361],
(pj)2 = [0.891 1.3621], (pk)2 = [−0.9876 − 0.4706], see Figure 1.8(b). In order to sim-
plify the notation, we refer to these points by using their indexes in the discrete param-
eterization Bd, i.e. (pi, pj , pk)1 = [4 1 20] and (pi, pj, pk)2 = [18 4 22]. The regrasp
sequence is detailed in Table 1.1, in which the finger that is going to be moved and the
type of movement are specified.

Example 2: Concave Object The object considered in this example is shown in Fig-
ure 1.9(a) and is described by N = 50 points. The grid in Figure 1.9(b) represents all the
combination of couples of point pi and pj for a fixed value of pk.

The initial positions of the fingers are (pi)1 = [−3.43 1.41], (pj)1 = [2.67 − 1.64],
(pk)1 = [−2.97 − 1.47], see Figure 1.10(a). The final positions of the fingers are (pi)2 =
[−1.39 1.59], (pj)2 = [3.26 − 4.90], (pk)2 = [−0.17 − 2.73], see Figure 1.10(b). In order
to simplify the notation, we refer to these points by using their indexes in the discrete
parameterization Bd, i.e. (pi, pj , pk)1 = [20 47 30] and (pi, pj , pk)2 = [17 42 35]. The
regrasp sequence is detailed in Table 1.2, in which the finger that is going to be moved
and the type of movement are specified.
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Figure 1.8: Regrasp Strategy of a convex object: (a) initial configuration of the contact

point (pi, pj , pk)1 = [4 1 20]; (b) final configuration of the contact point (pi, pj , pk)2 =

[18 4 22].

1.6 Conclusions and Future Work

1.6.1 Conclusion

In this Chapter, a new method for the planning of regrasp task has been presented. In
particular we have analyzed the case of the manipulation of irregular planar objects by
means of three-finger robotic hands. By a graphic visualization of all the force-closure
grasp configurations, it is possible to build up a regrasp graph that allow the planning
of a regrasp sequence, i.e. the sequence that the fingers of the robot have to comply in
order to go from an initial to a final grasp configuration. The regrasp sequence is obtained
either with slides or with jumps of the fingertips on the object boundary and is realized
with the solution of a shortest path problem on the regrasp graph.

1.6.2 Future Work

Future work will be aimed to the generalization of the proposed approach in order to
include the kinematic constraints of the robotic hand and/or other constraints due to the
requirements of a specific task. These constraints will influence the construction of the
regrasp graph by reducing its dimension, since it can be that some grasp configurations
are not physically feasible.
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Table 1.1: Regrasp sequence of example 1: convex object.

Step pi pj pk type of movement

(1) 4 1 20 jump

(2) 14 1 20 slide

(3) 14 2 20 slide

(4) 14 3 20 slide

(5) 14 4 20 slide

(6) 15 4 20 slide

(7) 16 4 20 slide

(8) 17 4 20 slide

(9) 18 4 20 jump

(10) 18 4 22 STOP
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Figure 1.9: Example of search of force-closure grasps: (a) represents a concave object with

a fixed contact point pk; (b) represents the grid of couples pi and pj for a fixed pk.
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Figure 1.10: Regrasp Strategy of a concave object: (a) initial configuration of the contact

point (pi, pj , pk)1 = [20 47 30]; (b) final configuration of the contact point (pi, pj , pk)2 =

[17 42 35].

Table 1.2: Regrasp sequence of example 2: concave object.

Step pi pj pk type of movement

(1) 20 47 30 slide

(2) 20 47 31 slide

(3) 20 46 31 slide

(4) 20 45 31 slide

(5) 20 45 32 slide

(6) 20 45 33 slide

(7) 19 45 33 slide

(8) 19 44 33 slide

(9) 18 44 33 slide

(10) 17 44 33 slide

(11) 17 43 33 slide

(12) 17 42 33 slide

(13) 17 42 34 slide

(14) 17 42 35 STOP
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Chapter 2

Optimal Grasp Force Distribution

O ne of the basic issues in robotic manipulation is the determination of a

suitable set of grasping forces that a mechanical hand has to apply in order

to balance the external forces and torques applied on a generic object and

to keep it in equilibrium. In this Chapter we present a new mathematical

approach to efficiently obtain the optimal solution of this problem by means

of the dual theorem of non-linear optimization programming. In particular,

the dual theorem can be applied to the force distribution problem only if it

is modeled such as the basic convexity property is satisfied.

2.1 Introduction

This Chapter presents a new mathematical approach to efficiently solve the optimal force
distribution problem. The problem is modeled as a non-linear minimization problem such
that the objective function is the L2 norm of the finger forces vector and the constraints
are obtained by linearizing the friction cones. This model assures the convexity of the
problem, implying that the dual theorem of non-linear programming can be applied, and
the original problem is transformed into another one much easier to be solved. This method
allows to use a large number of planes in the linear approximation without increasing the
computational cost of the algorithm, allowing an accurate final solution.

The Chapter is organized as follows: Section 2.2 describes the kinematic model of the
grasping forces and a mathematical background of non-linear programming optimization;
in Section 2.3 the model of the force optimization problem is developed and the proposed
solution is presented. Simulation results are reported in Section 2.4.

2.2 Force kinematic Model and Mathematical Background

In this Section, we present a kinematic model of the reaction forces, due to the interaction
between a robotic hand and a generic object, and we briefly illustrate a mathematical
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Figure 2.1: (a) Object and contact coordinate frames; (b) Point contact with friction.

background of non-linear programming optimization with inequality constraints, that is
necessary in order to introduce our method of grasping force distribution.

2.2.1 Force Kinematic Model

Let B be a smooth and closed curve describing the parameterization of an object boundary
and let O be the object reference frame attached at the object center of mass. This
scenario is depicted in Figure 2.1. Figure 2.1a highlights that the contact reference frame
Ci is considered attached at the contact point ci on B and it is oriented so that its axes are
defined by n̂i, the inward unitary vector normal to B, and by t̂1,i and t̂2,i, two orthonormal
vectors belonging to the plane Πt tangent to B at ci.

Let Fi be the set of contact forces that a robotic finger can apply on the object at ci.
The generic contact force f c

i ∈ Fi is represented by a three-component vector expressed
with respect to the contact frame Ci

f c
i = (αni

αt1,i
αt2,i

)T , (2.1)

where αni
, αt1,i

and αt2,i
are the magnitudes of the components of f c

i along the unitary

vectors n̂i, t̂1,i and t̂2,i. Based on the hard point contact model with friction, the contact
forces must satisfy the Coulomb’s law in order to avoid the finger slippage on the object
boundary. Therefore, as depicted in Figure 2.1b, Fi geometrically represents a cone, called
the friction cone, centered on the direction normal to the object boundary, and it is given
by

Fi =
{

f c
i ∈ R

3 |
√

(αt1,i
)2 + (αt2,i

)2 ≤ µαni
, αni

≥ 0
}

, (2.2)

where µ is the friction coefficient.
Let’s now consider the complete robotic hand composed by N fingers. The whole

contact force vector f c ∈ R
3n is obtained by considering all contact forces of the fingers

expressed with respect to their local contact frames

f c =
(

(f c
1)T . . . (f c

i )T . . . (f c
n)T

)T
. (2.3)
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In order to determine the resultant wrench w applied to the object and generated by
the contact forces, it is necessary to apply a change of coordinates so that to express
the complete force vector f c from the local reference frame Ci to the reference frame O
centered at the object center of mass. This change of coordinates is given by the grasp
map G ∈ R

6×3n [52]
w = Gf c. (2.4)

A stable grasp for an object is granted only if the resultant wrench w can balance an
external wrench applied on the object wext. This means that, in order to guarantee that
the grasped object is in equilibrium

−wext = Gf c. (2.5)

We can notice that, if the number on finger is greater than two, the dimension of vector
f c ∈ R

3n is greater than the dimension of wext ∈ R
6. This implies that G ∈ R

6×3n is a
rectangular matrix. In this case, the solution of Equation (2.5) is

f c = fp + fh, (2.6)

where fp and fh are two orthogonal vectors. More precisely:� fp is called particular solution and is the component of the contact force f c that is
required to balance the external wrench. This means that

fp = −G+wext, (2.7)

where G+ is the pseudo-inverse of G.� fh is called homogeneous solution, or internal force vector, and is the component of
the contact force f c that is required to guarantee that f c

i ∈ Fi. This means that

fh = Nh, (2.8)

where N ∈ R
3n×(3n−6) is an orthonormal basis of the null space of G, and h ∈ R

(3n−6)

describes the components of fh with respect to N .

Since for a given grasp configuration and a given external wrench fp is fixed, the force
distribution problem is equivalent to the determination of the vector h. The graping force
distribution can be studied as the minimization problem of the internal force vector and,
in most cases, this problem has not an unique solution.

2.2.2 Non-Linear Programming Optimization Background

Non-linear optimization and mathematical programming have been deeply addressed in
the literature, see [43] among others.

A non-linear optimization problem with inequality constraints is basically the mini-
mization of an objective function Z(x), in which x ∈ R

n is the vector of the unknowns,
so that a certain p-dimensional set of inequalities constraints g, eventually non-linear, has
to be granted so that the solution of the problem belongs to a set Ω of valid solutions. In
particular, the optimization problem is mathematically expressed by

Min Z(x) (2.9)

subject to g(x) ≤ 0. (2.10)

In a constrained optimization problem, two kinds of solutions are possible: a local
minimum and a global minimum, which are defined as follows.
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Definition 2.2.1. A vector x∗ ∈ Ω is said to be a local (relative) minimum of Z(x)

over Ω, if there is an ε ≥ 0 such that Z(x) ≥ Z(x∗),∀x ∈ Ω within |x − x∗| ≤ ε. If

Z(x) > Z(x∗),∀x ∈ Ω, x 6= x∗ and |x − x∗| ≤ ε, then x∗ is said to be a strict local

(relative) minimum of Z(x) over Ω.

Definition 2.2.2. A vector x∗ ∈ Ω is said to be a global minimum of Z(x) over Ω, if

Z(x) ≥ Z(x∗),∀x ∈ Ω. If Z(x) ≥ Z(x∗),∀x ∈ Ω and x 6= x∗, then x∗ is said to be a strict

global minimum of Z(x) over Ω.

In optimization problems without constraints, the gradient vector of the objective
function is null at the local and global minima, while, if the objective function is subjected
to constraints, this is not always guaranteed.

Any constrained optimization problem can be transformed into a system of equations
thanks to the Kuhn-Tucker conditions, that are based on the concept of the Lagrange
multipliers vector. Before introducing the Kuhn-Tucker conditions, it is necessary to give
the two following definitions of active constraints and regular vector.

Definition 2.2.3. Let x be a vector that satisfies Equation (2.10). An inequality constraint

gj(x) ≤ 0 is said active if gj(x) = 0 and inactive if gj(x) < 0.

Definition 2.2.4. Let x be a vector satisfying Equation (2.10) and let J be the set of

indexes j of the active constraints. In this case, x is said to be a regular vector for the

constrains if the gradient vectors ∇gj(x), j ∈ J are linearly independent.

Theorem 2.2.5. (Kuhn-Tucker Conditions or First-Order Necessary Condi-

tions). Let x∗ be a local minimum of the optimization problem described by Equa-

tions (2.9) and (2.10) and suppose that x∗ is regular for the constraints. Then, there

exists a Lagrange multipliers vector λ such that

∇Z(x∗) + λT∇g(x∗) = 0 (2.11)

λg(x∗) = 0 (2.12)

λ ≥ 0. (2.13)

Note that Equation (2.12) determines the active constraints of the optimization prob-
lem, since λj 6= 0 implies gj = 0. Then, a strictly positive Lagrange multiplier is associated
to the active constraints.

Since the Kuhn-Tucker conditions are necessary conditions, any local minimum of the
optimization problem has to satisfy them. For a strict local minimum, the Kuhn-Tucker
conditions are also sufficient if the following theorem is verified.

Theorem 2.2.6. (Second-Order Sufficient Condition) A vector x∗ satisfying the

Kuhn-Tucker conditions is a strict local minimum of the problem described by Equa-

tions (2.9) and (2.10) if the Hessian matrix

H(x∗) = ∇2Z(x∗) + λT∇2g(x∗) (2.14)
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is positive definite on the subspace

M ′ = {y | ∇gj(x
∗)y = 0 ∀j ∈ J}, (2.15)

where

J = {j | ∇gj(x
∗)y = 0, λj > 0}. (2.16)

Although the Kuhn-Tucker conditions transform any non-linear optimization problem
in a system of equations, it may be difficult to solve the obtained system. Moreover, since
the identification of the active constraints is a combinatorial problem, several systems of
equations, each one referred to a different active constraint, have to be solved.

In the literature, there are different methods which can be applied for the determination
of x∗. These methods are called primal methods, since the original (primal) form of the
optimization problem is considered. Among the most used methods, we can mention
the feasible direction, the gradient projection or the penalty and barrier methods. These
methods involve issues such as the computation of a feasible initial solution, of a search
direction and a step size.

In the literature, other kind of methods, called dual methods, are used for the deter-
mination of the optimal solution.

The dual form of an optimization problem transforms the original problem into an
equivalent one in which the fundamental unknowns are the Lagrange multipliers. Once
the Lagrange multipliers are known, the determination of the final solution is simple. The
methods based on the dual form are applicable only to a subclass of non-linear optimization
problems, i.e. convex problems. The dual methods are based on the following theorem.

Theorem 2.2.7. (Duality Theorem) Let x∗ be a relative local minimum of the opti-

mization problem described by Equations (2.9) and (2.10), and let λ∗ be the corresponding

Lagrange multipliers vector. Suppose also that x∗ is regular and that the Hessian matrix

H(x∗) is positive definite. Then, the dual problem

Max Zd(λ) = min[Z(x) + λT g(x)] (2.17)

subject to λ ≥ 0 (2.18)

has a local maximum at λ∗ with corresponding value x∗.

Note that the Duality Theorem can be applied only when the problem is convex, i.e.
H(x∗) is positive definite.

The same techniques used to solve the primal form can also be applied for the dual
form of the optimization problem. Note that the constraints of the dual form are easier
than the constraints of the primal form, therefore, in general, solving the dual form of the
problem is easier than the primal form.

2.3 Optimization Problem Model

In this Section, we apply the mathematical programming background presented in Sec-
tion 2.2 in order to propose a solution to the optimal force distribution problem. In
particular, the solution we are proposing is based on the minimization of the contact
forces so that to guarantee the equilibrium of the grasped object by balancing a generic
external wrench exerted on it.
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The minimization of the contact forces can be expressed as a constrained optimization
problem in which the objective function to be minimized is the module of the contact
force vector and the constraints are the object equilibrium and the friction model. The
optimization problem is

Min Z(h) = ‖f c‖ (2.19)

subject to Gf c − wext = 0 (2.20)
√

(αt1,i
)2 + (αt2,i

)2 − µαni
≤ 0 with i = 1, ...,N (2.21)

where f c, αni
, αt1,i

and αt2,i
are functions of the sought h, i.e. the component of the

internal force vector fh expressed with respect to the basis N .

2.3.1 Model Simplification

The initial form of the optimization problem expressed in Equations 2.19, 2.20 and 2.21
is mathematically manipulated in the following part of the section so that to obtain a
simplified form in order to apply non-linear programming techniques and to solve it.

Proposition 2.3.1. (Equivalent Objective Function) The minimization of the module

of the contact force vector ‖f c‖ is equivalent to the minimization of the square of the module

of the internal force vector fh expressed with respect to the orthonormal basis N , ‖h‖2.

Sketch of Proof: Let’s consider the objective function Z = ‖f c‖. By substituting
Equation (2.6), the objective function is given by

Z = ‖f c‖ =
√

(fp)T fp + (fh)T fh + 2(fp)T fh. (2.22)

This expression can be simplified by observing that the square root required to compute
Z does not affect the result of the minimization problem. Moreover, since fp and fh are
two orthogonal vectors, (fp)T fh = 0; finally, since (fp)T fp is a constant value, it can be
removed from the minimization problem. Therefore, Z is reduced to:

Z = (fh)T fh. (2.23)

By substituting Equation (2.8), the objective function is given by

Z =
3n
∑

i,j=1

(Coli(N))T Colj(N)hihj , (2.24)

where Coli(N) and Colj(N) are the i and j columns, respectively, of N .
Since N is an orthonormal basis, the module of each column is 1, and any product

between two of them is 0:

(Coli(N))T Colj(N) =

{

0 if i 6= j

1 if i = j
(2.25)

It follows that Equation (2.24) can be simplified in

Z =

3n
∑

i=1

h2
i = ‖h‖2, (2.26)
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which implies that the minimization of ‖h‖2 is equivalent to minimize the module of the
contact force vector ‖f c‖.

In order to further simplify the optimization model, we proceed with the linearization
of the constraint in Equation (2.21). In particular, the friction cone represented by this
equation is approximated with a pyramid of m faces. The base of the pyramid is considered
at a distance αni

from the contact point, so that the base of the pyramid is described by a
polygon of m vertexes inscribed in a circumference of radius µαni

. Therefore, the relation
between the area of the polyhedron and the area of the circumference can be used as a
measure of the accuracy of the approximation.

Let υk, k = 1, . . . ,m, be the vertexes of the base of the pyramid. Since these vertexes
belong to the circumference of radius µαni

, they are described by:

υk = µαni
(cos φk, sin φk), φk = k

2π

m
(2.27)

Furthermore, since αni
≥ 0, for any two consecutive vertexes υk and υk+1, the values of

αt1,i
and αt2,i

define a point inside the base of the pyramid if the following relation is
satisfied:

− µ(sin φk+1 cos φk − sin φk cos φk+1)αni

+ (sin φk − sinφk+1)αt1,i
+ (cos φk+1 − cos φk)αt2,i

≤ 0 (2.28)

By using Equation (2.3), Equation (2.28) can be expressed in a matricial form as:

Ac
if

c
i ≤ 0, Ac

i ∈R
m×3 (2.29)

where

Ac
i =











−µ(sin φ2 cosφ1−sinφ1 cosφ2) (sin φ1−sinφ2) (cosφ2−cosφ1)
...

...
...

−µ(sin φmcosφm−1−sinφm−1 cosφm) (sinφm−1−cosφm) (sinφm−cosφm−1)

−µ(sin φ1 cosφm−sinφm cosφ1) (sin φm−cosφm−1) (sin φ1−cosφm)











(2.30)
(note that the last row takes into account that the first and the last vertexes are also
consecutive).

The fulfillment of Equation (2.29) implies that the finger forces lie within the pyramid
used to linearize the friction cone. Applying the same procedure for the N fingers and
staking the results in a single matrix,

Acf c ≤ 0 (2.31)

where

Ac =











Ac
1 0 . . . 0

0 Ac
2

. . .
...

...
. . .

. . . 0
0 . . . 0 Ac

n











∈ R
nm×3n. (2.32)

In order to obtain the constraints as a function of h, we substitute Equations (2.6)
and (2.7) in Equation (2.31):

AcNh + Acfp ≤ 0. (2.33)
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Finally, the problem of minimizing the grasping forces can be expressed with the
following minimization problem:

Min Z(h) = ‖h‖2 (2.34)

subject to Ah + b ≤ 0, (2.35)

where

A = AcN, (2.36)

b = Acfp. (2.37)

2.3.2 Convexity Analysis

Following the discussion in Section 2.2.2, we have to verify that the minimization problem
defined by Equations (2.34) is convex.

By using Equation (2.14), the Hessian matrix H associated to the optimization problem
is given by

H(h) = ∇2‖h‖2 + λ∇2(Ah + b). (2.38)

Operating adequately, H(h) can be reduced to the following expression:

H(h) = 2In, (2.39)

where In is the N -identity matrix.
Let h∗ be the optimal solution of the minimization problem and let λ∗ be the Lagrange

multipliers vector associated to h∗. Since H(h) is constant and positive definite, the
convexity of the problem is always assured. This implies that the following properties of
h∗ and λ∗ are also satisfied:� From Theorem 2.16, h∗ is the strictly global minimum of the minimization problem

defined by Equations (2.34) and (2.35). Then, h∗ is the only value of h that satisfies
the Kuhn-Tucker conditions stated in Theorem 2.2.5.� From Theorem 2.2.7, λ∗ is the optimal solution of the dual form of the minimization
problem. Then, the methods based on the dual form are also valid to obtain the
optimal solution h∗ (once λ∗ is obtained, h∗ can be easily determined).

2.3.3 Primal Form

Since the convexity of the minimization problem is assured, the global minimum h∗ satisfies
the Kuhn-Tucker conditions:

2Inh∗ + AT λ∗ = 0 (2.40)

λ∗(Ah∗ + b) = 0 (2.41)

λ∗ ≥ 0 (2.42)

In this set of equations, the number of constraints (Nm) is larger than the number of
variables (N). This implies that, in order to have a regular solution, the maximum number
of active constraints has to be N . Therefore, at least Nm − N Lagrange multipliers are
equal to zero. The determination of the minimum contact forces using the Kuhn-Tucker
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conditions represents a combinatorial problem with the maximum number of combinations
bounded by

(

Nm
N

)

=
(Nm)!

(Nm − N)!N !
(2.43)

Each combination implies to solve a N-linear system of equations. Note that the number of
combinations increases exponentially with respect to the number of faces used to linearize
the friction cones. Although the Kuhn-Tucker conditions in their pure form can be used
when the friction cones are linearized with a low number of faces, it should be used jointly
with another method to improve the convergence (feasible direction, gradient projection
or penalty and the barrier methods).

2.3.4 Dual Form

Since the convexity of the minimization problem is assured, Theorem 2.2.7 can be applied.
This implies that the solution of the minimization problem defined by Equations (2.34)
and (2.35) is also the solution of the following maximization problem:

Max Zd(λ) = λT Adλ + λT b (2.44)

subject to λ ≥ 0, (2.45)

where Ad ∈ R
N×Nm is defined by:

Ad(i, j) =







−1
4

∑n
k=1[A(i, k)]2 if i = j

−1
4

∑n
k=1[A(i, k)][A(j, k)] if i 6= j

(2.46)

2.3.5 Feasible Regions Method

The maximization problem defined by Equations (2.44) and (2.45) can be solved by using
an algorithm based on the feasible regions method. This method reaches the optimal value
of the objective function applying iteratively the following equation:

λ(k+1) = λ(k) + δ(k)d(k), (2.47)

where k is the step number, d(k) is the search direction and δ(k) is the size of the step in
this direction. In order to reach the maximum of the objective function, d(k) and δ(k) have
to be chosen such that Zd(λ

(k+1)) > Zd(λ
(k)) with λ(k+1) ≥ 0.

Any algorithm based on feasible regions method has four main issues to be determined:
an initial feasible solution λ(1), a search direction d(k), a step size δ(k) and a stop condition.
Using the dual form defined by Equations (2.44) and (2.45) these aspects are solved as
follows:

Initial solution: A good initial solution is the trivial solution λ(1) = 0 since it is inside
the feasible region defined by the constraints and since at least Nm − N Lagrange
multipliers are equal to zero for a regular solution of the primal form.

Search direction: Let d(k) = [d
(k)
1 . . . d

(k)
i . . . d

(k)
nm]T be the direction in which λ(k+1) is

determined. In a typical gradient flow algorithm, this direction is determined by the
gradient of the objective function. Since in the optimization problem tackled here
λ ≥ 0, the determination of d(k) is slightly modified as follows:
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1. Compute d(k) = ∇Zd(λ
(k)), the following result is obtained:

d(k) = 2Adλ
(k) + b, (2.48)

2. If λ
(k)
i = 0, then d

(k)
i = max{0, d(k)

i } for i = 1, . . . , nm (i.e., the search direction

can not be negative when λ
(k)
i = 0, otherwise λ

(k+1)
i would be negative).

Step size: In order to increase the convergence of the algorithm, the step size δ(k) is
determined solving the following maximization problem:

Max Zd(λ
(k) + δ(k)d(k)) (2.49)

subject to λ(k) + δ(k)d(k) ≥ 0. (2.50)

This problem can be solved with the following steps:

1. Initialize δ(k) with the value that maximizes Zd(λ
(k) + δd(k)). This value can

be analytically determined as:

δ(k) = −2(d(k))T Add
(k) + (d(k))T b

2(d(k))T Add(k)
, (2.51)

2. Check whether λ(k) + δ(k)d(k) ≥ 0.

(a) If this condition is satisfied, then δ(k) is the value determined by Equa-
tion (2.51).

(b) Else, δ(k) is the minimum positive value so that λ(k) + δ(k)d(k) = 0.

Stop condition: When d(k) = 0, λ(k+1) = λ(k) and the objective function is not further
maximized, obtaining the optimal value. Let ε be a tolerance parameter on the final
value of d(k). The optimal value is reached when ‖d(k)‖ < ε.

As a result, the following algorithm is proposed to solve the dual form of the optimiza-
tion problem.

Once λ∗ is obtained, the optimal solution of the primal problem h∗ can be easily
determined from Equation (2.40)

h∗ = −1

2
AT

d λ∗. (2.53)

Then, the internal force vector and the minimum contact forces are determined from
Equations (2.8) and (2.6), respectively.

Remark 2.3.2. The proposed methodology, using the dual form of the optimization prob-

lem, provides some useful mathematical advantages with respect to the methods based on

the primal form. Nevertheless, this formulation has a lack of physical meaning and the

accomplishment of the constraints of the dual problem does not mean the accomplishment

of the friction constraints. Only in the optimum case it is possible to assure that the finger

forces lie inside the friction cones. Figure 2.2 schematizes the relation between the primal

and the dual form.
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Algorithm 1 Determination of the minimum contact forces

The maximization problem defined by Equations (2.44) and (2.45) is solved with the following

steps:

Step 1 Chose the tolerance parameter ε > 0, initialize k = 1 and λ(k) = 0 (i.e. the initial feasible

solution).

Step 2 Compute the coefficient matrix Ad and the vector b (by using Equations (2.46) and (2.37),

respectively) of the dual objective function described by Equation (2.44).

Step 3 Determine the search direction d(k) and the step size δ(k), as described above.

Step 4 Update the Lagrange multipliers vector:

λ(k+1) = λ(k) + δd(k) (2.52)

Step 5 Compute ‖d(k)‖:

(a) If ‖d(k)‖ < ε, then λ∗ = λ(k+1) is the optimal solution of the dual problem.

(b) Else k = k + 1 and go to Step 3.

Optimal solution

FeasibleFeasible

region region

Primal form Dual form

Dual

theorem

Figure 2.2: Relations between the primal and the dual forms: the optimal solutions are

equivalent while the feasible regions are not.
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Figure 2.3: Object, contact points and section defined by these points used in the examples

with different approximations of the friction cones.

2.4 Examples

This section presents some simulation results of the proposed force distribution methodol-
ogy. The grasping forces are determined for given contact point positions and for a given
external wrench (wext) exerted on the object. The methodology has been implemented
using Matlab 6.5 in a Pentium Centrino at 1.6GHz. Therefore, the code is not optimal
in terms of efficiency and the computational times included in the examples can only be
considered as qualitative values.

Figure 2.3 shows the object and the three grasping points used in the examples. The
grasp map G determined by these contact points is:

G =















−0.86 0.50 0 1 0 0 −0.86 0.50 0
−0.50 −0.86 0 0 1 0 0.50 0.86 0

0 0 1 0 0 1 0 0 1
0 0 2.59 0 0 0 0 0 −2.59
0 0 −0.50 0 0 1 0 0 −0.50
2 −1.73 0 0 −1 0 −2 1.73 0















(2.54)

Tables 2.1 and 2.2 show the results of applying Algorithm 1 considering two different
external wrenches wext and m number of faces in the approximation of the friction cones.
In the first table only the weight, w, of the object is considered, while in the second one an
external wrench with non-null components in each direction of the object reference frame
acts on the object.

Figure 2.4 shows another example where the object is rotated clockwise 2π radians
with respect to the z-axis keeping the same contact points (Figure 2.4a shows the initial
position of the object). The forces are computed while the object is being rotated since
the direction of the weight with respect to the contact points varies (it is considered that
the object is rotated with a constant low velocity and there are not inertial moments).
The movement has been discretized with 100 sampled points, which implies that the forces
are recomputed at each 0.0628 radians. In order to improve the efficiency of the gradient
method, λ is initialized with the solution of the previous sampled point instead of the null
vector. The example has been done considering m = 12 (Figure 2.4b). The average and
maximum number of iterations and computational times are summarized in Table 2.3. In
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Table 2.1: Determination of the minimum contact forces for different approximations of

the friction cones and considering the weight of the object

wext = w [0 0 − 1 0 0 0]T

m 4 8 12 20

f c
1







1.1111

0.0000

0.3333













1.1111

0.0000

0.3333













1.1111

0.0000

0.3333













1.1111

0.0000

0.3333







f c
2







1.9245

0.0000

0.3333













1.9245

0.0000

0.3333













1.9245

0.0000

0.3333













1.9245

0.0000

0.3333







f c
3







1.1111

0.0000

0.3333













1.1111

0.0000

0.3333













1.1111

0.0000

0.3333













1.1111

0.0000

0.3333







‖f c‖ 2.5507 2.5507 2.5507 2.5507

Number of

iterations
143 32 55 72

Computational

time (seconds)
0.0200 0.0100 0.0100 0.0100



32 Optimal Grasp Force Distribution

Table 2.2: Determination of the minimum contact forces for different approximations of

the friction cones and considering an external wrench with non-null components in each

direction

wext [1 − 2 5 − 4 1 2]T

m 4 8 12 20

f c
1







5.2555

−1.0131

−0.5635













4.8792

−1.2303

−0.5635













4.7853

−1.2846

−0.5635













4.2417

−1.1234

−0.5635







f c
2







10.1291

0.2452

−2.3333













9.9119

−0.1310

−2.3333













9.8576

−0.2250

−2.3333













9.2770

−1.1292

−2.3333







f c
3







7.0104

0.0000

−2.1031













7.0104

0.0000

−2.1031













7.0104

0.0000

−2.1031













7.3711

0.6833

−2.1031







‖f c| 13.8071 13.5246 13.4575 13.0988

Number of

iterations
276 148 243 162

Computational

time (seconds)
0.0400 0.0300 0.0500 0.030
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Figure 2.4: Evolution of the contact forces during the rotation of the object: initial position

of the object and forces obtained with m = 12.

this case, the differences between the results obtained with the two approximations are
very small.

The results obtained with the different approximations of the friction cones indicate
that there is not a direct relation between the performance of Algorithm 1 and the number
of faces m used in the approximation when 4 ≤ m ≤ 20. For higher values of m the
computational cost also increases, although it is difficult to mathematically determine this
relation and the improvement of the minimum grasping forces is very small. In general,
a good trade-off between performance and accuracy in the final result is obtained when
12 ≤ m ≤ 20. Other examples of the proposed methodology considering several objects
are present in [16].

2.5 Conclusions

A new mathematical approach to solve the force distribution problem in a grasp has
been presented. This approach is based on the dual theorem of non-linear programming,
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Table 2.3: Number of iterations and computational times in the rotation of the ellipse.

m 12 20

Number of iterations
Maximum 4374 4022

Average 104 135

Computational time (seconds)
Maximum 0.8512 0.8013

Average 0.0219 0.0317

which can only be applied when the convexity of the problem is assured. By adequately
modeling the problem and applying the dual theorem, the original problem is transformed
to another one much easier to solve. The examples show the efficiency of the proposed
methodology. Even when the code can not be considered optimal in terms of efficiency,
the provided computational times are of the order or even smaller than those of some of
the most popular algorithms described by [40].

The L2 norm of the contact force vector has been taken as objective function. It should
be notice that other quadratic norms can also be used, since in this case the Hessian matrix
is always convex and therefore the convexity is still guaranteed.

The determination of the contact forces has been done linearizing the friction con-
straints. The development of a similar approach using the original problem with non-
linear constraints will considered in future works. In this case, it is necessary to study the
convexity of the problem in order to assure that the dual theorem can also be applied in
this case, and the optimal solution of the dual form corresponds to the optimal solution
of the original problem.



Chapter 3

Vision-Based Grasp Tracking

I n robotics, the manipulation of a priori unknown objects involves several

steps and problems that must be carefully considered and solved by proper

planning and control algorithms. For example, once suitable contact points

have been computed, the control system should be able to track them in the

approach phase, i.e. while the relative position/orientation of the object and

the gripper of the robotic system change due to the approaching movement

of the robot towards the object itself. In this Chapter, we discuss a practi-

cal method for the tracking of grasp points in image space that is based on

transferring previously computed grasp points from an initial image to sub-

sequent ones and on the analysis of the new grasp configuration. In order to

obtain an efficient visually guided grasping, three basic techniques are used

together. In particular, two of them are based on a grasp description that is

invariant with respect to the relative movement between two object views,

one of these strategies being used jointly with an object tracking method.

The third proposed alternative is based on a homography computed between

two object views.

3.1 Introduction

A fundamental requirement for a vision-based robotic system is the capability of detecting
image features in order to control the pose of the end-effector with regard to a set of target
features. In this Chapter, we analyze the problem of grasping unknown planar objects
by using an eye-in-hand system acting in an unknown dynamic environment. The visual
servoing control loop should be able to trace significant points on the object, such as the
grasp points, in order to achieve the desired position of the robotic gripper with respect
to the target object.

As shown in Figure 3.1, the proposed image-based visual servoing procedure requires
three functional blocks to be executed in real time: the extraction of a set of features, i.e.
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the contour of the object, the selection of a stable grasp configuration and its tracking
along different views of the object, and the control law whose set points are the grasp
points. In particular, in this Chapter we focus on the design of the grasp tracking module.

Figure 3.1: A grasp-based positioning movement.

In order to allow the grasp tracking, it is necessary to find a representation of the
coordinates of the grasp points that is invariant in the image space according to different
movement of the robotic arm. In particular, three different representations are presented:
two are invariant with respect to 4 d.o.f. (translations along x, y, z and rotation about
z) [64], the remaining one with respect to 6 d.o.f., [10]. Consequently, we have to use two
different control laws: one that bounds the movement of the robotic arm to 4 d.o.f., the
other to 6 d.o.f.

The vision system is considered uncalibrated so that the internal camera parameters
are not known or used. The proposed strategy allows both to transpose the grasp points
along a sequence of images and to find correspondences between pairs of stereo images [64].
The object is not known a priori and no model of it is available. It is assumed to be rigid
and planar: ideally, it is a shape that lies on a given plane, so it is considered relatively
flat [50]. The tests have been performed considering only the external contour of the
object, ignoring possible holes. Nevertheless, the grasp descriptions considered can also
be applied to objects with holes.

The concepts presented in this Chapter have been applied in two different laboratory
setups, shown in Figure 3.2: the Robotic Intelligence Lab at the University Jaume I in
Castellón (Spain) and the Laboratory of Automation and Robotics at the University of
Bologna (Italy).

3.2 Grasp Tracking

The grasp tracking module of Figure 3.1 can be subdivided as shown in Figure 3.3, and
can be implemented as outlined in the proposed algorithm 2.

During the approaching movement of the robotic arm towards the object to be grasped,
a sequence of contours is acquired in real time by the vision system. At the beginning
of this sequence, as no grasp is available, an initial stable grasp is computed in the first
contours (grasp synthesis) [18, 45, 50, 61, 64]. Then, for each new incoming contour, the
algorithm tries to apply a previously computed grasp to the current image. This process
is called here grasp translation. This involves a translation of that grasp configuration to
the current image and an evaluation of the stability of the translated grasp, i.e. a grasp
analysis [61,62].

In order to evaluate the stability of the new grasp, proper criteria must be used, and
the new grasp should be discharged if these criteria fails. In particular, due to noise and
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Figure 3.2: Experimental setups for tracking a grasp.

Figure 3.3: Grasp tracking procedure.



38 Vision-Based Grasp Tracking

data extraction errors, three different criteria have been applied in parallel [61,62], and a
grasp is disregarded if two or more of them fail for more than two consecutive images. In
this case, a new grasp configuration must be evaluated.

Algorithm 2 Grasp tracking
if no previously computed grasp available then

search for a new grasp (grasp synthesis);

else

translate grasp from reference view to current object view (grasp translation);

evaluate translated grasp (grasp analysis);

if negative grasp evaluation then

search for a new grasp (grasp synthesis);

end if

end if

In this Chapter we focus on three different grasp translation strategies, which are
described in Section 3.4. They are based on the description of the grasp using features
that are invariant with respect to the different views of the object acquired during the
motion.

3.3 Invariants for Grasp Translation

In order to carry out the visual translation, the target object is to be described in term
of invariants, i.e. properties that remain unchanged under appropriate classes of transfor-
mations. This Section describes the different sets of invariants considered for the grasp
translation, and their relationship with the grasp description.

3.3.1 Object and Grasp Descriptions

As the grasp points belong to the contour of the object, a mechanism to describe the
contour is required. A generic object consists of a list of internal and external contours
each of which is considered as a list of points. Two alternatives have been considered for
indexing these points:� Location coordinates, see Figure 3.4 (left). The location coordinates correspond to a

couple of indexes:

– c: the index of the contour, within the list of internal/external contours, the
point belongs to;

– p: the index of the point, within the complete list of the points belonging to
contour c.� RRP coordinates (Relative Reference Points), see Figure 3.4 (right). The contour is

considered as a polygon. The vertexes of this polygon are named reference points
and the contour points that lie on the segment joining the reference points are the
interpolated points. The RRP coordinates include three indexes:

– c: the index of the contour;

– ref: the index of the reference point, within the list of reference points corre-
sponding to contour c;
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Figure 3.4: Location (left) and RRP (right) coordinates of contour points.

– interp: the index of the point, interpolated between reference point ref and the
following reference point.

A grasp description consists of a collection of points, called grasping points [35,65] or
contact points [21,58], and depends on the geometry of the gripper and on the particular
manipulation task. Each of them identifies the center of the region of the object contour
in which the robot fingers should be placed. The description proposed includes:� Coordinates of the grasp points. Three alternatives have been considered:

– Location coordinates. For the i-th grasp point, location coordinates are made
of a couple (ci, pi);

– RRP coordinates. For the i-th grasp point, the RRP coordinates are made of
a triple (ci, ref i, interpi);

– Relative coordinates (only for antipodal grasps). This description is based on
the specification of the relative location of the grasp points and the grasp line
(the line joining the two grasp points) with respect to a reference frame in
which the axes are the minimum (Imin) and maximum (Imax) inertia axes of
the silhouette of the object and the center is the centroid (pc), as illustrated in
Figure 3.5 [63]. This grasp description is composed of:* dc: distance of the intersection between the grasp line and Imin, from the

centroid of the object along the direction vector of the Imin axis;* αm: angle between the grasp line and the Imin axis, measured from Imin

towards the grasp line;* di: distance, along the direction vector of the grasp line, between one of
the two grasp points, pgi

, and the intersection between the grasp line and
Imin.

Distances are measured in pixels and, to ensure invariance with respect to
changes of scale, are normalized using the area of the object. Angles are mea-
sured in degrees. The computation of Imin, Imax, pc and other object features
from second-order moments is described in other works [25].� Type of grasp:

– Squeezing grasp, executed by closing the gripper fingers around the object;

– Expansion grasp, executed by opening the gripper fingers.� An index selecting the object to be grasped (in case of multiple objects in the image).



40 Vision-Based Grasp Tracking

Imin

Imaxpg1

pg2

pc

dc

d1

d2

αm

Figure 3.5: Grasp description using relative coordinates.� An index selecting the gripper the grasp is computed for (in case of multiple grip-
pers).

Several grasp descriptions expressed in location, RRP and relative location coordinates
are shown in Table 3.1. The Figure in the last row of this Table is the same one considered
in [22].

3.3.2 Grasp-related Invariant Features

Three alternative sets of invariant features related to the grasp description have been
considered:� The grasp description using RRP coordinates.� The grasp description using relative coordinates.� An homography related two object views, taking advantage of the fact that the

object is assumed to be planar.

In the case of the grasp description based on location and RRP coordinates, the invari-
ance cannot be ensured unless the whole set of contour points is rigidly translated from
one image to the next one, since these coordinates are based on the location of the grasp
points within the list of contour points. Therefore, the tracking of the grasp points has
to be performed within the tracking of the entire object. The movement of the robot is
bounded by the d.o.f. of the tracking algorithm.

The grasp description based on relative coordinates is based on the computation of
second-order normalized moments of the object silhouette, which are invariant under four
kinds of movements of the robotic system with respect to the image plane [25], so that
the robot movement is restricted to 4 d.o.f.:� Translations along the two axis that define the image plane (2 d.o.f.);� Rotations with respect to an axis perpendicular to the image plane (1 d.o.f.);
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Table 3.1: Grasp descriptions expressed in location, RRP and relative location coordinates.

Grasp Location RRP Relative

pgi
= (ci, pi) pgi

= (ci, ri, ti) (dc, αm, d1, d2)

pg1

pg2

(0, 161)

(0, 340)

(0, 53, 2)

(0, 113, 1)

(0.0016,

−87.1873°,
−0.0035,

0.0038)

pg1

pg2

(0, 145)

(0, 287)

(0, 48, 1)

(0, 95, 2)

(−0.0040,

−267.5700°,
−0.0038,

0.0039)

pg1

pg2

(0, 116)

(0, 543)

(0, 38, 2)

(0, 181, 0)

(0.0002,

−210.4850°,
−0.0025,

0.0050)



42 Vision-Based Grasp Tracking� Changes of scale (1 d.o.f.: translation along an axis perpendicular to the image
plane).

The invariance of the relative coordinates also requires that the whole object can be
observed in each image. Partial occlusions of the shape of the object or enlargements, due
to overlapping of other elements, would cause the lost of the invariance of the geometric
moments between pairs of images, so that this description of the grasp could not be used.

Finally, a homography is a linear projective transformation between two planes [27,51].
This transformation produces, given a point in a plane, its corresponding point in the
other plane. In general, a projective transformation between two projective planes I and
I ′ can be represented by a general linear transformation in projective space:





x′
1

x′
2

x′
3



 = H





x1

x2

x3



 , H =





h11 h12 h13

h21 h22 h23

h31 h32 h33



 (3.1)

with x = [x1 x2 x3]
T ∈ I, x′ = [x′

1 x′
2 x′

3]
T ∈ I ′. Equation 3.1 can then be rewritten as:





λiu
′
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′
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

 = H





ui

vi

1



 , i ∈ [1, .., 4] (3.2)

where p = [u v]T and p′ = [u′ v′]T are the coordinates in Cartesian space of x and x′,
respectively. They can be obtained as u = x1/x3, v = x2/x3, u′ = x′

1/x
′
3 and v′ = x′

2/x
′
3.

The homography matrix is invariant with respect to a 6 d.o.f. movement between two
object views, i.e. the invariance of the grasp configuration is ensured under any kind of
movement of the robotic manipulator in the free space.

3.4 Grasp Translation

The purpose of the grasp translation is to obtain, given a grasp in a first contour-based
object description, the position of that grasp in a second object description. Three alter-
natives are proposed, as shown in Figure 3.6:� Translation based on an invariant grasp description using RRP coordinates;� Translation based on an invariant grasp description using relative coordinates;� Translation based on the computation of the homography between the contours of

the object in the two views.

In general, as the grasp is initially expressed in the contour of the object in the first
view as a number of points, these points are used to compute a set of features that is
invariant with respect to the relative movement between the two views of the object. This
set is then applied on the contour of the object in the second view in order to compute
there the position of the grasp points. The main difference between the above proposed
strategies lies in the definition of this invariant set of features. In addition, the precision
of the grasp translation will depend on the real invariance of the selected set. Algorithm 3
provides an outline of this general procedure.
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Figure 3.6: Grasp translation strategies.

Algorithm 3 Grasp translation
convert grasp points on first contour to invariant description;

apply invariant description to second contour;

compute grasp points on second contour from invariant description.

3.4.1 Translation based on RRP Coordinates

Following the specifications given in Section 3.3.2, this translation strategy has been ap-
plied together with an object tracking algorithm. In particular, B-splines are used as
active contours [8] for the object tracking and the RRP coordinates provide a point in-
dexing of these contours: the points sampled from the spline are used as reference points
and the rest of the contour points can be computed as interpolated points. The object
tracking algorithm is described in [64] and allows movements of 4 d.o.f. of the robot.
The transformations corresponding to these 4 d.o.f. are: translations on the image plane,
rotations around the normal to this plane and changes of scale. Therefore, the grasp de-
scription based on RRP coordinates is invariant with respect to the above four kind of
transformations. Figure 3.7 shows the application of this translation strategy.

The tests of this translation strategy have considered only the external contour of the
object. However, this does not imply a loss of generality of this strategy, which could be
easily extended to the use of both external and internal contours since the RRP coordinates
include a component indicating the contour each point belongs to.

3.4.2 Translation based on Relative Coordinates

This strategy is an alternative to the previous one, when no object tracking is performed.
In this case, the description of each contour does not provide directly an invariant frame-
work for expressing the location of the grasp points, since the order and the number of
contour points may be different. Therefore other object features have to be considered.

The relative coordinates of the grasp points provide a description (dc,αm,d1,d2) that is
invariant with respect to 4 d.o.f., which coincide with those mentioned in Section 3.4.1. As
the grasp is initially expressed in the first object as a pair of points, those points are used
to compute the above relative coordinates. These coordinates are applied to the second
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Figure 3.7: Invariance of the RRP coordinates. With a contour index 0, the RRP coordi-

nates of the grasp points in both contours are (0, 2, 4) and (0, 4, 4).

object and then used to compute the position of the grasp points in that object. If the
relative movement between the object and the camera is restricted to be under the above
d.o.f., then, as shown in Figure 3.8, the grasp description in one contour using relative
coordinates can also be applied to the other one.

3.4.3 Translation based on a Homography

In this strategy, a homography is used for translating the grasp points. Since projective
points are equivalent up to a scalar λ, one element of the homography matrix H can be
arbitrarily set to a fixed value (in particular, h33 = 1 has been chosen), so that this matrix
has eight independent parameters. It is thus necessary to find at least four initial point
correspondences, provided that no three of them are collinear, between two projectively
transformed planes to define it uniquely. With more than four correspondences, it would
be possible to compute it using iterative methods, less sensitive to measurement errors [51].
Algorithm 4 provides an adaptation of algorithm 3 for this translation strategy.

Algorithm 4 Homography-based grasp translation
extract four correspondences from the contours;

compute the homography matrix by using those correspondences;

perform the grasp translation using the homography;

refine the grasp translation.

Figure 3.9 illustrates the application of this algorithm to a translation of two grasp
points. Four correspondences pi and p′

i on the contour of a planar object are selected in
each image I and I ′ in order to compute the homography matrix H, which relates both
object views. This matrix is then used to translate the grasp points, pg1

and pg2
, from

image I to image I ′, that is, to find the correspondences p′
g1

and p′
g2

in image I ′ of the
grasp points pg1

and pg2
computed in image I.

The above algorithm is independent on the actual procedure considered for extracting
the correspondences between the two contours. The goal of the refinement step included
in this algorithm is to make the translation more robust to errors in the computation of
the homography matrix and to ensure that the translated grasp belongs to the contour of
the object.
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Figure 3.8: Invariance of the grasp description based on relative coordinates.
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Figure 3.9: Use of a homography for the translation of grasp points.
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Computation of the Homography

Let the four corresponding points be [u1 v1]
T , [u2 v2]

T , [u3 v3]
T , [u4 v4]

T , in plane I

and [u′
1 v′1]

T , [u′
2 v′2]

T , [u′
3 v′3]

T , [u′
4 v′4]

T in plane I ′. The substitution of these points in
Equation 3.2 produces a linear system that can be used to compute the components of H.

In order to reduce the computational cost of obtaining H, a direct, non-iterative method
has been used to solve the linear system given by Equation 3.2. This method is sensitive
to errors in the position of the correspondences; however, this is compensated by the
refinement step.

Extraction of Correspondences

The search of correspondences between two views of the same scene is a typical problem of
computer vision. Some authors have used matching of image sub-windows [75], epipolar
geometry [44, 48] or B-splines [14] to find them. In most cases, a manual selection is
required in the first view or there must exist some specific relationship between both
views.

An automatic procedure is proposed for selecting correspondences between two con-
tours. For simplicity, only the external contours of the object have been considered.

The proposed procedure is outlined by algorithm 5. First, as four correspondences are
required, four points are selected in one of the contours. For this purpose, the curvature
of each contour is analyzed [10]. This curvature is described by a curvature vector, which
contains the result of evaluating a curvature function at each contour point. The proposed
matching procedure is independent of the chosen curvature function. The size of the
interval considered for computing this curvature in each contour is normalized with respect
to the length of the contour, in order to ease the comparison between curvature vectors of
different contours.

The matching procedure analyses the curvature vector of that contour and selects the
points corresponding to the four peaks of highest curvature. Table 3.2 shows, for each
object, the four peaks selected on the curvature vector of the first contour (–), as well as
their four associated contour points (∗).

Algorithm 5 Extraction of correspondences
compute the curvature vector of each contour;

select 4 points pi with highest curvature in one contour;

for each point pi do

find its correspondence pi on the other contour.

end for

Next, the procedure tries to match those points on the other contour. For each point
pi, it tries to find the match between the curvature vectors of both contours. As it can be
observed in Figure 3.10, it considers a neighborhood in the curvature vector of the first
contour, centered at pi, and tries to find a matching neighborhood in the curvature vector
of the other contour.

The point p′
icorr

of the second contour that is used as a starting point for the search of
the matching neighborhood is at the same position as point pi within the list of points of
their respective contours. A scale factor κ is used in order to take into account differences
in the length of both contours:

ic = κi, κ = l′c/lc (3.3)
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Figure 3.10: Search of the correspondence of a given point.

where lc and l′c are the number of points of the first and second contours, respectively. If
lc = l′c, then ic = i, that is, pi and p′

icorr
have the same location coordinates.

The search will be performed within an interval [ic − κξ, ic +κξ], where ξ is the radius
of this interval when lc = l′c. Let p′

ji
, with ji ∈ [ic − κξ, ic + κξ], be a point of the second

contour that has to be evaluated as candidate correspondence of pi. The matching error
d(pi,p

′
ji
) between pi and p′

ji
is computed as:

d(pi,p
′
ji
) =

n
∑

k=−n

|v(i + k) − v′(ji + κk)|, (3.4)

where v(x) and v′(x) are the values of the x-th element of the curvature vector of the first
and the second contours, respectively, and n is the radius of the neighborhood considered
for comparing both curvature vectors.

The matching neighborhood is considered to be that with the lowest matching error.
The center p′

i of such neighborhood is taken as the point correspondence of pi:

p′
i = min

p′

ji

d(pi,p
′
ji
) (3.5)

Table 3.2 shows the correspondences p′
i (•) in the second contour of the points pi (∗)

(i ∈ [1, .., 4]) selected in the first contour, as well as the centers (–) of their respective
matching neighborhoods in their curvature vectors. To avoid ambiguities in the search of
correspondences due to shape similarities within the same contour, such as the corners of
the first Figure of this Table, the displacement between the two object views should be
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pg1

pg2

Figure 3.11: Correction of the position of the grasp points.

relatively small. Alternatively, a larger radius n for computing the matching error could
be considered.

Application of the Homography and Grasp Refinement

Once the homography matrix has been computed, the grasp points pgi
from the first

contour, available in image I, are translated into image I ′. Ideally, the translated points
should lie on the corresponding contour extracted from I ′.

Nevertheless, due to errors in the contour extraction in I and I ′, in the selection of
the corresponding points, and/or in the computation of the homography, the translated
points p′

i may happen not to be in that contour, but close to it. The correction in the
position of these points, so that they lie on the contour can be achieved by using known
restrictions in the relationship between the grasp points. Figure 3.11 shows the case in
which the grasp points have been computed for a two-finger gripper: the line joining the
two grasp points is considered to be the translated grasp line and the intersections between
this line and the contour are computed. At least, there should be two intersections. The
two intersection points p′

g1
and p′

g2
that are closest to the two translated are considered

to be the grasp points in image I ′.

3.5 Results

As mentioned in Section 3.4, the proposed grasp tracking procedures use a contour-based
representation of the object as input. In the grasp translations based on the relative
coordinates and on the homography, the contour of the object of interest is independently
extracted in each image of the sequence. For this reason, object selection criteria, such as
size or position in the image, are needed [61]; for example, in Figure 3.12, the object of
interest is chosen, because of its size, as the largest present in the image. An example of
grasp tracking without object tracking is given in Figure 3.13, where the grasp translation
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Table 3.2: Selected points (∗) and contour curvature on the first contour and their corre-

spondences (•).
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is based on the relative coordinates of the grasp points. Figure 3.14 shows a homography-
based grasp tracking on a sequence of object views; the pairs of images considered for
computing the homography are consecutive along the sequence.

Figure 3.12: Extraction and size-based selection of an object of interest.

(a) (b) (c) (d)

Figure 3.13: Grasp tracking based on relative coordinates.

Figure 3.14: Grasp tracking based on a homography.

On the other side, in the grasp translation based on RRP coordinates, an object
tracking method is used for selecting the object of interest. Figure 3.15 provides an
example of a grasp tracking based on RRP coordinates and integrated within an object
tracking procedure.

Table 3.3 presents examples of grasp translation based on RRP; in this case, the
sampled points of a B-spline are used to set the reference points. Some examples of grasp
translation based on relative coordinates are provided in Table 3.4, while Table 3.5 shows
the grasp translation based on the homography.

The proposed tracking procedures can also be extended to track a grasp along a stereo
sequence of images, as shown in Table 3.6. In this case, an initial grasp search is per-
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Table 3.3: Grasp translation based on RRP coordinates.

Original/translated Location RRP Relative

grasp pgi
= (ci, pi) pgi

= (ci, ri, ti) (dc, αm, d1, d2)

pg1

pg2

(0, 587)

(0, 242)

(0, 40, 6)

(0, 15, 25)

(−0.0001,−95.9817°,
−0.0013, 0.0007)

p′

g1

p′

g2

(0, 607)

(0, 243)

(0, 40, 6)

(0, 15, 25)

(−0.0001,−87.8033°,
−0.0012, 0.0007)

pg1

pg2

(0, 64)

(0, 102)

(0, 14, 4)

(0, 24, 3)

(−0.0124,−95.6864°,
−0.0072, 0.0077)

p′

g1

p′

g2

(0, 80)

(0, 102)

(0, 14, 4)

(0, 24, 3)

(−0.0100,−98.4322°,
−0.0049, 0.0057)
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Table 3.4: Grasp translation using relative coordinates.

Original/translated Location RRP Relative

grasp pgi
= (ci, pi) pgi

= (ci, ri, ti) (dc, αm, d1, d2)

pg1

pg2

(0, 100)

(0, 235)

(0, 16, 4)

(0, 39, 1)

(−0.0061,−102.7960°,
−0.0089,−0.0025)

p′

g1

p′

g2

(0, 95)

(0, 224)

(0, 15, 5)

(0, 37, 2)

(−0.0061,−102.7960°,
−0.0089,−0.0025)

pg1

pg2

(0, 152)

(0, 296)

(0, 25, 2)

(0, 49, 2)

(0.0009,−89.9220°,
−0.0041, 0.0035)

p′

g1

p′

g2

(0, 172)

(0, 347)

(0, 28, 4)

(0, 57, 5)

(0.0009,−89.9220°,
−0.0041, 0.0035)
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Table 3.5: Grasp translation based on a homography.

Original grasp Translated grasp

p1

p2

p3

p4

pg1

pg2

p′

1

p′

2

p′

3

p′

4

p′g1

p′g2

p′

g1c

p′

g2c

Selected correspondences:

(158, 97)

(173, 173)

(251, 157)

(229, 86)

Selected grasp:

pg1
= (189, 85)

pg2
= (202, 160)

Selected correspondences:

(140, 96)

(167, 174)

(242, 143)

(214, 72)

Grasp translation: Applied grasp

p′g1c
= (172, 77) p′g1

= (171, 76)

p′g2c
= (195, 155) p′g2

= (194, 156)

p1

p2

p3

p4

pg1

pg2

p′

1

p′

2

p′

3

p′

4

p′g1

p′g2

p′

g1c

p′

g2c

Image coordinates

Selected correspondences:

(200, 183)

(253, 163)

(187, 118)

(183, 169)

Selected grasp:

pg1
= (187, 152)

pg2
= (201, 161)

Image coordinates

Selected correspondences:

(114, 97)

(167, 126)

(163, 42)

(114, 76)

Grasp translation: Applied grasp:

p′g1c
= (131, 68) p′g1

= (130, 72)

p′g2c
= (133, 84) p′g2

= (134, 90)
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Table 3.6: Grasp tracking along a stereo sequence of contours.
L
ef

t
im

a
g
e

R
ig

h
t

im
a
g
e

formed in the first left contour. The grasp selected in this search is then translated to
the corresponding right contour. After that, the same grasp obtained for the initial left
contour is translated to the next left contour in the sequence and the resulting grasp is
applied to the corresponding right contour. Each tracked grasp along the sequence of left
contours is checked to determine if it is still stable. For simplicity, no such checking has
been performed on the grasps translated to the right contours.

As it can be observed in Table 3.3 and 3.4, both for the relative and the RRP co-
ordinates, the original and the translated grasp are, as expected, similar. The existing
differences are due to the discretization errors during the sampling or the extraction of
the contour and the computation of the target features with respect to which the grasp
is described. However, these differences are more reduced in the case of the RRP-based
translation (Table 3.3), thanks to the use of an object tracking algorithm, which preserves
better the shape of the object. With respect to the homography-based translation, the re-
sults from Figure 3.11 and Table 3.5 show that this strategy is sensitive to the errors in the
search of the correspondences for computing the homography. In the search method pro-
posed, these errors depend, in turn, on the accuracy of the object-extraction procedures.
This remarks the importance of the refinement step as an error-compensating method.

More precisely, in order to provide an experimental evaluation of the proposed tech-
niques, let’s consider a two-finger grasp characterized by the grasp points pg1

and pg2
in the

image I. In general, by using one of the procedures of grasp translation presented, these
two points correspond to the points p′g1

and p′g2
in image I ′. If this grasp configuration is

translated back to image I, the two points p′′g1
and p′′g2

are obtained. At this point, it is

Figure 3.15: Tracking of an object and a selected grasp on a sequence of images using

RRP coordinates.
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possible to define the distance:

disti =
√

(pxgi
− p′′xgi

)2 + (pygi
− p′′ygi

)2

in which pxgi
and pygi

are the x and y components of the point pgi
. Consequently, the

average error and the maximum error are defined as:

eav =

2
∑

i=1

disti
2

emax = max
i∈{1,2}

disti

Table 3.7 provides the error values of the different grasp translation techniques for some
of the examples presented above. It can be easily noticed that all of the three strategies
grant satisfactory results.

Regarding the computational cost of the proposed grasp translation methods, those
based on RRP and relative coordinates are the fastest, with computation times respectively
below 15 and 35 ns, for a two-finger gripper and contours of around 300 points on a 2.5-
GHz Pentium Celeron. The homography-based method is slower, requiring 290 ns under
the same configuration, with 60% of the time spent in the search of correspondences. The
grasp analysis, performed together with the translation during tracking, adds only 370 ns.
The total time is in all cases below 1 ms.

In general, the results shown in this Section indicate that a very fast grasp translation
can be achieved, with reasonable accuracy, by integrating the translation based on RRP
coordinates with an object tracking procedure. Among the methods not requiring object
tracking, the use of the relative coordinates of the grasp has the disadvantage of being only
valid for two-finger grippers, while the homography-based method, although slower, offers
a high degree of flexibility, since it can be used with virtually any gripper configuration,
it does not rely on any particular correspondence/searching method and includes an error
correction step. However, all these methods are fast enough to be used in real-time together
with other image processing procedures, so the method selection may eventually depend
on the whole set of such procedures to be applied.

3.6 Conclusions and Future Work

3.6.1 Conclusions

A method for the tracking of grasp points in image space has been described. This
method is based on the application of a grasp translation procedure between pairs of
images, for which three alternatives have been proposed. Among other applications, this
tracking method enables the use of grasp points as control features within a visual servoing
loop [10,62]; it avoids repeating the grasp search at each iteration of the control loop and
ensures that the same grasp is considered during the positioning movement.

The method proposed is really interesting in practical applications, as shown in the
results. Each translation strategy has shown some advantages and disadvantages. In
particular, the RRP-based grasp translation requires the use of an object tracking method,
but it benefits from a more stable description of the object with respect to which the grasp
is located. The grasp translation using relative coordinates does not rely on the tracking
of the object, but is quite dependent on the full observability of the contour of the object,
as well as of the robustness of the contour-extraction method. Finally, the homography-
based translation has the advantages of allowing the tracking of a variable number of
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Table 3.7: Grasp translation errors with the different techniques.

Original grasps RRP Relative Homogr.

Coord.

Figure 3.13 (a)-(b) (p′′xg1
, p′′yg1

) (121, 69) (121, 69) (121, 69)

(pxg1
, pyg1

) = (p′′xg2
, p′′yg2

) (134, 73) (134, 73) (134, 73)

(121, 69) dist1 0 0 0

(pxg2
, pyg2

) = dist2 0 0 0

(134, 73) eav 0 0 0

emax 0 0 0

First Figure (p′′xg1
, p′′yg1

) (254, 156) (254, 156) (254, 156)

in Table 3.3 (p′′xg2
, p′′yg2

) (287, 174) (287, 174) (287, 174)

(pxg1
, pyg1

) = dist1 0 0 0

(254, 156) dist2 0 0 0

(pxg2
, pyg2

) = eav 0 0 0

(287, 174) emax 0 0 0

Second Figure (p′′xg1
, p′′yg1

) (24, 162) (27, 163) (26, 163)

in Table 3.3 (p′′xg2
, p′′yg2

) (20, 178) (25, 179) (23, 177)

(pxg1
, pyg1

) = dist1 0 3.16228 2.23607

(24, 162) dist2 0 5.09902 3.16228

(pxg2
, pyg2

) = eav 0 4.13065 2.69917

(20, 178) emax 0 5.09902 3.16228

First Figure (p′′xg1
, p′′yg1

) (132, 152) (132, 152) (132, 152)

in Table 3.4 (p′′xg2
, p′′yg2

) (131, 146) (131, 146) (131, 146)

(pxg1
, pyg1

) = dist1 0 0 0

(132, 152) dist2 0 0 0

(pxg2
, pyg2

) = eav 0 0 0

(131, 146) emax 0 0 0

Second Figure (p′′xg1
, p′′yg1

) (138, 188) (138, 188) (139, 190)

in Table 3.4 (p′′xg2
, p′′yg2

) (156, 176) (155, 175) (155, 177)

(pxg1
, pyg1

) = dist1 0 0 2.23607

(138, 188) dist2 0 1.41421 1.41421

(pxg2
, pyg2

) = eav 0 0.707107 1.82514

(156, 176) emax 0 1.41421 2.23607

First Figure (p′′xg1
, p′′yg1

) (166, 144) (166, 144) (166, 144)

in Tab 3.5 (p′′xg2
, p′′yg2

) (243, 126) (243, 126) (243, 126)

(pxg1
, pyg1

) = dist1 0 0 0

(166, 144) dist2 0 0 0

(pxg2
, pyg2

) = eav 0 0 0

(243, 126) emax 0 0 0
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grasp points and, with a careful selection of the point correspondences, of not necessarily
requiring a view of the whole shape of the object. Nevertheless, its computation is more
complex than that of the other methods.

3.6.2 Future Work

Future activity will involve, among others, the analysis of the integration of the proposed
grasp translation and tracking procedures in a visual servoing control loop such as the one
outlined in Figure 3.1. An extension to objects with holes will also be considered, which
will require a matching of their internal contours. Finally, the grasp tracking described
can be a useful tool for the search of 3D grasps.
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Chapter 4

Robust Contact Detection and

Force Regulation

T he Chapter presents an innovative hybrid system approach for the control

of robotic interaction. This hybrid architecture can control a manipulator

during the stages of the interaction: the free motion, the transition phase and

the constrained motion. The switching logic is based on a contact detection

which is robust with respect to measurement noise so to guarantee that,

during the robotic task, no bounces are present. The design of the controller

is based on a Lyapunov analysis and depends on the viscoelastic parameters

of the environment. The hybrid control can guarantee good performance

in both cases of stiff and compliant contact model with a constraint on the

velocity of impact.

4.1 Introduction

In this Chapter an innovative solution to the problem of robotic interaction is developed.
We present a hybrid control architecture that involves a position and a force controller,
so that the position control law steers the manipulator to a target point in the workspace
and, once the contact is detected, the control law switches to a force control that makes
the manipulator exerting the desired force. The detection of the contact is realized with
a strategy based on force information: when the measured contact force reaches some
level, than the manipulator is supposed to be in contact. Vice versa, when the measured
contact force goes below some level, than the manipulator is supposed to have detached
the contact. The proposed hybrid control assures the stability of the manipulator so that,
once the manipulator gets in contact with the environment, no bounces are present and
it never loses the contact. A model of the environment is required and the maximum
admitted velocity of impact depends on its viscoelastic parameters. The control scheme
provides a margin of robustness with respect to actuators errors and to force sensors noise
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and it avoids chattering problems, i.e. multiple switching between the position and the
force controller.

The Chapter is organized as follows: Section 4.2 describes the dynamical model of
a generic manipulator and the compliant contact force model. The main idea of the
proposed hybrid control architecture is given in Section 4.3 and more technical details are
presented Section 4.4. Section 4.5 goes through the theoretical part of the design of the
control synthesis and, finally, simulation results are reported in Section 4.6. In Section 4.7,
the hybrid control architecture is enriched by introducing saturations in the control loop.
Finally, in Section 4.8, simulation results of the saturated case are illustrated.

4.2 General Model

In this section, we present a dynamical model of a generic robotic manipulator and a model
of the reaction forces due to the interaction between the manipulator and the environment.
This scenario is depicted in Figure 4.1. The figure highlights that the reference frame is
considered attached at the contact point on the surface S of the environment and that,
thanks to its compliance, the surface is compressed, when the manipulator gets in contact
with it, so that the desired position xd

1 can be reached.

work
environment

robotic
manipulator

S

x

y

xd
1

Figure 4.1: A robotic manipulator interacting with a work environment with surface

identified by S.

4.2.1 General Robotic Manipulator Model

Let g : R
n → R

m be a smooth and invertible mapping describing the forward kinematics
of the robotic manipulator and relating the generalized vector of the manipulator joints
angles θ ∈ R

n and the workspace variables x ∈ R
m.

From the Euler-Lagrange equations, it follows that the dynamics of the manipulator
are:

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ − J(θ)T fc, (4.1)

where:� M(θ) ∈ R
n×n is the manipulator inertia matrix that is symmetric and positive

definite.
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n×n is the Coriolis matrix. The vector C(θ, θ̇)θ̇ gives the Coriolis and

centrifugal force terms.� N(θ, θ̇) ∈ R
n includes gravity terms and other forces that act at the joints.� τ ∈ R

n is the vector of the actuators torques.� J(θ) ∈ R
m×n is the Jacobian matrix relating the joint space velocity to the workspace

velocity, i.e. ẋ = J(θ)θ̇.� fc ∈ Rm is the vector of the reaction forces due to the interaction between the
manipulator and the environment.

Since we are interested in the interaction between the manipulator and the work envi-
ronment, we rewrite the dynamic equation of motion (4.1) in workspace coordinates:

M̃(θ)ẍ + C̃(θ, θ̇)ẋ + Ñ(θ, θ̇) = F − fc,

where� M̃(θ) = J−T (θ)M(θ)J−1(θ) is the manipulator inertia matrix.� C̃(θ, θ̇) = J−T (θ)(C(θ, θ̇)J−1(θ) + M(θ) d
dt

J−1(θ) is the Coriolis matrix;� Ñ(θ, θ̇) = J−T (θ)N(θ, θ̇) includes gravity terms and other forces which act at the
joints;� F := J−T (θ)τ is the vector of forces and torques applied at the end-effector of the
manipulator.

4.2.2 Compliant Contact Force Model

We consider the linear contact model presented in [24] to characterize the relationship
between the bodies penetration and the reaction force. In this model, the viscoelastic
material of the environment is described as the mechanical parallel of a linear spring
and a damper which are represented, respectively, by a stiffness matrix Kc ∈ R

m×m and
a damper matrix Bc ∈ R

m×m. (This follows the simple 1-D linear model of Kelvin-
Voigt, [24]).

Let s : R
m → R be such that s(x) ≤ 0 if x is a point in the work environment and

s(x) > 0 otherwise. Then, W = {x ∈ R
m | s(x) ≤ 0} is the work environment and

S = {x ∈ R
m | s(x) = 0} is its surface. With this definition, the contact force model is

given by

fc =

{

Kcx + Bcẋ if s(x) ≤ 0
0 if s(x) > 0.

4.2.3 Model Reduction

In many applications, with the knowledge of some of the parameters and state of the
manipulator, it is possible to design an inner feedback loop that stabilizes some of the
internal and external forces of the manipulator. Such technique is commonly used in the
control of robotic manipulators literature, e.g. [11,37,72] to just list a few. Following these
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references, let u be the input control force in the workspace coordinates and let the inner
feedback law be given by

F = u + C̃(θ, θ̇)ẋ + Ñ(θ, θ̇) .

This feedback law is basically a state feedback linearization law that reduces the dynamics
of the manipulator to

M̃(θ)ẍ = u − fc. (4.2)

As further described in [72], it is possible to distinguish between constrained and
unconstrained direction of the motion of a manipulator interacting with an environment.
Following [72], without loss of generality, we consider the case in which the interaction
between the manipulator and its environment occurs along a normal direction. In this
way, the manipulator consists simply of a mass with motion constrained to a straight line.
The interaction with the work environment occurs at some point on that line. We further
assume that the mass is unitary. Then, the system gets reduced to the second-order system

ẍ = u − fc (4.3)

where x := [x1 x2] ∈ R
n, x1 is the position, x2 the velocity, and fc is the contact force

which is given by

fc =

{

kcx1 + bcx2 if s(x1) ≤ 0
0 if s(x1) > 0

(4.4)

where kc ∈ (0,+∞) and bc ∈ (0,+∞) are the elastic and the viscous parameters of the
contact.

4.3 Hysteresis Control based on Force Measurement

We consider the problem of controlling a manipulator in the task of establishing contact
with a work environment and of regulating the interaction force to a pre-specified value.
This problem has been previously addressed in the literature, see e.g. [11,37,55,68,72] to
just list a few.

Perhaps the simplest strategy to accomplish the task described above is (whether
contact/non-contact has been detected between the manipulator and the environment)
to switch between a position controller, which steers the manipulator close to the work
environment, and a force controller, which regulates the force to a desired value. When
the position of the manipulator is x1 < 0, then the strategy is to apply the position
controller with a set-point equal to xd

1 > 0 and, when the position of the manipulator
reaches x1 ≥ 0, then the strategy is to apply the force controller in order to make the
robotic manipulator exerting the desired contact force on the work environment. This
means that the strategy of commutation between the two controllers is based on position
information, and in particular on the measurement of x1.

The phase plot in Figure 4.2 depicts a trajectory resulting from this switching logic.
Notice that several bounces, and therefore several switches, are present before the ma-
nipulator reaches the desired position/contact force configuration. The manipulator es-
tablishes contact with the environment at the point A and the control law is switched to
the force controller. The manipulator loses contact in the point B and the control law
is switched back from the position to the force controller. Eventually, the trajectories
approach the steady state at which the contact force is stabilized to the desired set-point.
Note that this is possible after multiple bounces off the work environment have occurred.
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More importantly, with such control strategy, the closed-loop system may be vulnerable
to measurement noise in the position and velocity. To illustrate this note that if, when
the manipulator is close to the environment, there is a small measurement noise in the
position so that the manipulator seems to be already in contact, the force controller will
be selected sooner than desired. In the same way, once in contact, small measurement
noise can indicate that no contact has been established and therefore a switch back to the
position controller can be triggered. In this way, chattering on the controller can arise
when the manipulator is in a neighborhood of the contact surface.
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Figure 4.2: Example of a switching strategy based on position information: the manip-

ulator establishes and loses the contact in A and B, respectively. Several bounces (and

switches between the position and force controllers) are present before the manipulator

reaches the desired position/contact force configuration.

In this paper, we propose a hybrid controller that minimizes such issues. The control
strategy is to switch to the force controller only when a level of force is detected indicating
contact between the robotic manipulator and the work environment. During the detaching
phase, the control strategy is to switch back to the position controller when the measured
force is below a certain level. This mechanism introduces hysteresis in the switches between
the two controllers and, for this reason, it corresponds to a hybrid strategy. More precisely,
the control strategy is as follows. Let 0 < γ1 < γ2,

1. If the contact force fc is smaller or equal than the positive constant threshods γ2,
apply the position controller until the contact force reaches γ2, and in that event,
switch to the force controller.

2. If the contact force fc is larger or equal than the positive constant threshods γ2,
apply the force controller. If fc is below γ1, then switch to the position controller.

With the contact model (4.4), the contact force fc is a linear combination of the two state
variable x1 and x2, that identify the position and the velocity of the robotic manipulator.
This means that the conditions fc ≥ γ2 and fc ≤ γ1 for switching between the two
controllers, correspond to half planes in the phase diagram. In particular these half planes
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are defined by the lines ℓγ1
: {(x1, x2) | x2 = −kc

bc
x1 + γ1

bc
} and ℓγ2

: {(x1, x2) | x2 =

−kc

bc
x1 + γ2

bc
} that we depict in Figure 4.3. Note that these lines have fixed slope given by

−kc

bc
, for given viscoelastic parameters kc and bc of the work environment.
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Figure 4.3: Example of switching strategy based on hysteresis. ℓγ1
and ℓγ2

define the

sets for the switches based on force, ε is the margin of robustness and LVF
is the largest

Lyapunov function level set for closed-loop system with force controller that does not leave

the right half plane.

4.4 Hybrid Controller

In this section, we present the hybrid controller which implements the control strategy
outlined in Section 4.3. We start by describing the position and force controllers embedded
in the hybrid controller.

4.4.1 Position Controller

Let xd
1 be the desired set point for the position of contact. We consider a position con-

troller for set-point stabilization of the position x1 of the manipulator in (4.3) that relies
on position and velocity measurements of the manipulator and is given by the propor-
tional/derivative control law

κP (x, xd
1) = −kp(x1 − xd

1) − kdx2 (4.5)

where xd
1 is the set-point, and kp, kd ∈ R are constants. Proportional/derivative controllers

have been previously used in the literature for set-point stabilization of manipulators,
e.g. [37,49,72].
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4.4.2 Force Controller

Let fd
c be the desired set-point for the contact force. We consider a force controller

that only relies on measurements of the contact force and that is given by the propor-
tional/feedforward control law

κF (fc, f
d
c ) = fc + kf (fd

c − fc)) (4.6)

where kf ∈ R is a constant. Similar force control strategies have been considered in [49,52].

We will denote the maximum allowed contact force by f̂c, and assume that fd
c ≤ f̂c.

4.4.3 Control Strategy

The main idea of the control strategy for contact detection outlined in Section 4.3 is to
switch from position to force controller (and vice versa) relying only on information of
measurements of the contact force fc. The key feature of this strategy, which grants to
the closed-loop system a margin of robustness to measurement noise, is that the controller
selection depends on the memory of the controller; hence, it is a (logic-based) hybrid
controller.

We implement the control strategy in a hybrid controller which we denote by Hc.
The state of the controller is given by the logic variable q ∈ {0, 1}. Let the constants
γ1, γ2 ∈ R>0 be the parameters of Hc, the threshold levels.

As depicted in Figure 4.4, the update law for the logic variable q is so that it switches
between 0 and 1 based on the value of fc with hysteresis levels defined by γ1, γ2. Two
different transitions are possible:� q = 0 → 1 (path: 0 → A → B → C):

The logic variable q can only be mapped to 1 when the measured contact force
reaches the threshold γ2, i.e. when fc ≥ γ2.� q = 1 → 0 (path: C → B → D → 0):
The logic variable q can only be mapped to 0 when the measured contact force is
below the threshold γ1, i.e. when fc ≤ γ1.

κP

κF

A

B
C

D

0

1

q

fcγ1 γ2 f̂c

Figure 4.4: Contact detection strategy with hysteresis. Constants γ1, γ2 define the thresh-

olds for the change from mode q = 0 to mode q = 1 (and vice versa).

The dynamics of the hybrid controller Hc are as follows.
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Jumps:
• From q = 0 to q = 1 (i.e. q+ = 1)

When q = 0 and fc ≥ γ2, the logic variable q is mapped to 1.
• From q = 1 to q = 0 (i.e. q+ = 0)

When q = 1 and fc ≤ γ1, the logic variable q is mapped to 0.
Flows:

• q̇ = 0
When q = 0 and fc ≤ γ2, or when q = 1 and fc ≥ γ1, the logic variable

remains constant. The output of the controller is given by

u := κ(x, fc, x
d
1, f

d
c , q) :=

{

κP (x, xd
1) if q = 0

κF (fc, f
d
c ) if q = 1

.

Remark 4.4.1. The logic variable q, basically, indicates whether it is “safe” or not to

switch from the position controller κP to the force controller κF . More precisely, if the

position and force controllers are designed so that bounces off the work environment are

not possible when a certain level of contact force has been achieved, switching from the

position controller to the force controller is enabled. Note that the hybrid controller Hc

switches from κP to κF if the logic variable q makes a transition from 0 to 1. This is

possible only if the position controller is able of generating a contact force that is larger

than γ2 and if the measurement of fc experiences an increase of at least γ2 − γ1 > 0. On

the other hand, the hybrid controller Hc switches from κF to κP if the logic variable q

makes a transition from 0 to 1. This is possible only if the measurement of fc experiences

a decrease of at least γ2 − γ1 > 0.

Remark 4.4.2. Note that the set-point xd
1 of the position controller is a parameter we

have to design. In order to guarantee that there is at least one switch from the position to

the force controller, we have to grant that the steady state point xP
1 (that depends on xd

1)

is located on the right of the line ℓγ2
in the phase diagram. If so, we are sure that, while

the system is controlled by κP and therefore it is approaching xP
1 , the trajectories hit the

line ℓγ2
, ensuring the switch.

4.4.4 Closed-loop System

The closed-loop system, denoted by Hcl and results of controlling (4.3) with the hybrid
controller Hc, has continuous dynamics given by

ẋ1 = x2

ẋ2 ∈ F2(x, q)
q̇ = 0

if

{

q = 0 and kcx1 + bcx2 ≤ γ2 and x1 ≥ 0

or
{

q = 0 and x1 ≤ 0

or
{

q = 1 and kcx1 + bcx2 ≥ γ1 and x1 ≥ 0
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and jump dynamics given by

x+
1 = x1

x+
2 = x2

q+ = 1
=: G0(x, q) if

{

q = 0 and kcx1 + bcx2 ≥ γ2 and x1 ≥ 0

x+
1 = x1

x+
2 = x2

q+ = 0
=: G1(x, q) if

{

q = 1 and kcx1 + bcx2 ≤ γ1 and x1 ≥ 0

or
{

q = 1 and x1 ≤ 0

where F2 : R
2 × {0, 1} → R is a set-valued function given by

F2(x, q) = (1 − q)κP (x, xd
1) +

{ [

(kcx1 + bcx2)(1 − kf ) + kffd
c

]

q − (kcx1 + bcx2) if x1 ≥ 0

kffd
c q if x1 ≤ 0

More precisely, the closed loop system Hcl is defined by Hcl = (F,G,C,D) on the state
space R

2

Hcl



















[

ẋ
q̇

]

∈ F (x, q) when (x, q) ∈ C

[

x+

q+

]

∈ G(x) when (x, q) ∈ D

(4.7)

in which F (x, q) =





x2

F2(x, q)
0



is the flow map, G(x, q) =

{

G0(x, q) if q = 0
G1(x, q) if q = 1

is the

jump map, C is a closed set in R
2 that defines the flow set given by

C := C0 ∪ C1

where:

C0 := {(q, x) | q = 0 and (x1 ≤ 0 or (x1 ≥ 0 and kcx1 + bcx2 ≤ γ2))}
C1 := {(q, x) | q = 1 and x1 ≥ 0 and kcx1 + bcx2 ≥ γ1}.

and D is a closed set in R
2 that defines the jump set given by

D := D0 ∪ D1

where:

D0 := {(q, x) | q = 0 and (x1 ≥ 0 and kcx1 + bcx2 ≥ γ2)} = R2 \ C0

D1 := {(q, x) | q = 1 and (x1 ≤ 0 or (x1 ≥ 0 and kcx1 + bcx2 ≤ γ1))} = R2 \ C1.

Figure 4.5 illustrates the flow and the jump sets.
Figure 4.6 depicts the block diagram of the closed-loop system Hcl.
The idea is that, in order to guarantee that the trajectories do not bounce off when

the switch occurs, we design a force controller and we choose γ2 such that, at switching,
the trajectories stay inside the largest Lyapunov function level set LVF

that does not leave
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Figure 4.5: Flow and jump sets.

κP , κF

fd
c

xd
1

fc

x

e1

e2

Position/Force

Generator

Controller Robot

and

Sensor

Figure 4.6: Hybrid control scheme. A position/force block generates the set-points fd
c

and xd
1. The controller has as input the position of the manipulator x in the workspace

coordinates and the contact force fc measured by the sensor. Noise enters through the

measurements of fc and x.

the right half plane. Vice versa, we choose γ1 so that the line referred to this threshold
is outside the level set of the closed-loop system with the force controller. This implies
that the system leaves this level set only when some changes in the set-points require a
detachment of the contact.

Note that with hysteresis, once the contact has been established, there is no chattering
between the two controllers and, therefore, there is no bouncing off. In fact, once the force
controller is activated, the trajectories need to reach the set defined by ℓγ1

, in order to
switch back to the position controller. Since by design, in this contact condition, trajecto-
ries do not leave LVF

, the margin of robustness to measurement noise, denoted with ε in
Figure 4.3, is given by the minimum distance between LVF

and ℓγ1
. The only requirement

of this architecture is that the velocity of impact has to be bounded. According to that,
the design of the position controller has to guarantee this constraint on the impact velocity
that is basically due to the viscoelastic properties of the environment.
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4.5 Controller Design

We now present a result that guarantees the existence of parameters for the hybrid con-
troller Hc for contact detection. We go through the steps of the proof since they highlight
the design of our hybrid control strategy.

Theorem 4.5.1. Given parameters kc, bc of the work environment and desired contact

force fd
c < f̂c, there exist� A compact set K ⊂ R

2 of initial conditions of the manipulator;� Parameters kp, kd, kf , γ1, γ2 of the hybrid controller Hc;� Set-point xd
1 for the regulation of the position;

such that for every initial condition x0 ∈ K, the solutions (x, q) to Hcl approach the

compact set {xF
1 } × {1}. Moreover, the parameters satisfy

kp, kd, kf > 0, xd
1 >

cxF
1 bc(kp + kc)

kpkcb
(4.8)

QF =

[

2ckckf (bkc + cbc)kf − a

(bkc + cbc)kf − a 2(bbckf − c)

]

> 0

γ1 ∈
(

0, kc

(

xF
1 −

√

2r

p1

))

(4.9)

γ2 ∈
(

cbcx
F
1

b
,

kckp

kp + kc
xd

1

)

(4.10)

where

θ = β − π

2
, β = arctan

(

−kc

bc

)

∈ (−π

2
, 0) (4.11)

xF
1 =

fd
c

kc
, r =

ab − c2

2b
(xF

1 )2 (4.12)

a, b, c > 0, c = (b − a)
sin β + cos β

sin4 β − cos4 β
[

b cos2 β−a sin2 β

cos4 β−sin4 β
0

0 b sin2 β−a cos2 β

sin4 β−cos4 β

]

> 0.

We proceed by constructing Lyapunov functions for the closed-loop system resulting
when the position and force controller are in the loop. These Lyapunov functions decrease
along trajectories that stay in

{

x ∈ R
2 | x1 ≥ 0

}

.
The closed-loop system with the κP controller is given by

ẋ1 = x2, ẋ2 = −(kp + kc) x1 + (−kd − bc) x2 + kp xd
1 (4.13)
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Note that the steady state of the position is given by xP
1 :=

kp

kp+kc
xd

1. Let zP :=

[

zP1

zP2

]

=
[

x1 − xP
1

x2

]

and VP : R
2 → R≥0 be given by

VP (zP ) = zT
P PP zP =

1

2
zT
P

[

aP 0
0 bP

]

zP

where aP > 0 and bP > 0. It follows that, if aP

bP
= kp + kc,

〈∇VP (zP ), żP 〉 = −(kd + bc) bP z2
P2.

Hence, the equilibrium point [xP
1 0]T is stable for the closed-loop system in (4.13). By

Krasovskii-LaSalle’s invariance principle, trajectories that stay in
{

x ∈ R
2 | x1 ≥ 0

}

con-
verge to that point.

Similarly for the force controller, the closed-loop system with κF controller is given by

ẋ1 = x2, ẋ2 = −kfkc x1 − kf bc x2 + kf fd
c (4.14)

Note that the steady state of the position is given by xF
1 := fd

c

kc
. Let zF :=

[

zF1

zF2

]

=
[

x1 − xF
1

x2

]

. Given the positive definite diagonal matrix

Po :=
1

2

[

p1 0
0 p2

]

,

let a := p1 sin2 β + p2 cos2 β, b := p1 cos2 β + p2 sin2 β, c := (p2 − p1) sin β cos β, p2 < p1

and define VF : R
2 → R≥0 be given by

VF (z) = zT
F PF zF =

1

2
zT
F

[

a c
c b

]

zF

where PF > 0. Note that PF corresponds to the matrix Po rotated clockwise by β. It
follows that

〈∇VF (zF ), żF 〉 = −zT
F QF zF .

The equilibrium point [xF
1 0]T is asymptotically stable for the closed-loop system in (4.14)

provided that QF > 0. Such a condition holds if kf > 0 is chosen so that the determinant
of QF is positive, and

c
a

< bc

kc
, bcc 6= kcb,

which in terms of the parameters p1 and p2 in P0 yields

(p2−p1) sin β cos β

a1 sin2 β+b1 cos2 β
< bc

kc
(4.15)

bc(p2 − p1) sin β cos β 6= kc(a1 cos2 β + b1 sin2 β). (4.16)

With the design of the Lyapunov function VF above, we can design the threshold
for jumps determined by γ1 and γ2. We compute the maximum level set LVF

(r) that is
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contained in the right-half plane in the x-coordinates. The value of the level set is given
by

r =
ab − c2

2b
(xF

1 )2 =
p1p2

2(p1 cos2 β + p2 sin2 β)
(xF

1 )2. (4.17)

In Figure 4.7, we depict the computation of the maximum level set. Note that the jump
condition fc ≥ γ2 in the jump set of the hybrid controller Hc can explicitly expressed in
terms of x1 and x2 by using the definition of the contact force in (4.4) which corresponds
to a hyperplane in R

2 as depicted in Figure 4.7. We also denote with ℓγ2
the line which

passes through the intersection of the r-level set of VF and the x1 = 0 axes. Since the
jumps from position controller occur when the contact force is above the threshold γ2,
this threshold defines a line in the right half plane of the x-coordinates which we denote
by ℓγ2

. Note that ℓγ2
and ℓγ2

are parallel. To guarantee that after a jump that triggers
a transition from position to force controller the trajectories do not leave the right half
plane, we design the threshold γ2 so that the line ℓγ2

is above the line ℓγ2
. This implies

γ2 ≥ cbcx
F
1

b

However, since a very large value of γ2 would set the line ℓγ2
quite, it could be that the

position controller is not able to generate such contact force and no jump that enables the
force controller occurs. Therefore, we design the line ℓγ2

so that it is to the right of the
line ℓγ2

and so that it crosses the x2 = 0 axes at the left of the point min{xP
1 , xF

1 }. We

denote with ℓγ2
the line which passes through the min{xP

1 , xF
1 }. In this way, the jump

from position controller to force controller is always guaranteed and after the jump, the
trajectories remain in the LVF

(r). It follows that

γ2 ≤ kckp

kp + kc
xd

1

and to guarantee that the xP
1 is in a feasible location, it is required that xd

1 satisfies

xd
1 >

cxF
1 bc(kp + kc)

kpkcb
.

For the design of the threshold γ1, we will consider lines ℓγ1
that are parallel to the

line ℓγ2
and that do not intersect the r level set of the Lyapunov function VF . For that

purpose γ1 has to satisfy:

γ1 < kc

(

xF
1 −

√

2r

p1

)

. (4.18)

We denote with ℓγ1
the line which is tangent to the level set of the Lyapunov function VF

and with ℓγ1
the line which passes through the origin.

Figure 4.7 shows the plot of the maximum level of the Lyapunov function VF , the lines
ℓγ2

ℓγ2
, ℓγ1

, ℓγ1
, the maximum admitted velocity of impact x∗

2 and the steady state of the

position controller xP
1 .

The general Lyapunov function V : R
2 → R≥0 for the hybrid closed loop system Hcl

is given by
V (x) = (q − 1)VP + qVF .
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Figure 4.7: Computation of the maximum level set in the design of the switching strategy.

Since for every initial condition x0 ∈ K,

〈∇V (x), F (x)〉 ≤ 0 ∀x ∈ C
V (G(x)) − V (x) ≤ 0 ∀x ∈ D,

the solutions (x, q) to Hcl approach to the compact set {xF
1 }×{1}. By LaSalle’s invariance

principle, the compact set {xF
1 }×{1} is locally asymptotically stable for the hybrid closed

loop system Hcl.

Remark 4.5.2. The compact set K is defined so that, for all the initial condition x0
1, x

0
2 of

the manipulator and for given parameters of the position controller, the manipulator will

reach the surface of the environment with a bounded value of the impact velocity, denoted

by x∗
2 and identified, as maximum value, by fd

c /bc. This compact set can be enlarged by

more sophisticated position control design that are described in Section 4.7.

In particular, the compact set K is depicted in Figure 4.8.

4.5.1 Margin of Robustness

The margin of robustness to measurement noise obtained with our control strategy is
defined as the minimum distance between the set LVF

and ℓγ1
, and it is denoted with the

parameter ε > 0, as shown in Figure 4.9.
If a desired margin of robustness ε is specified, one can design the line ℓγ1

so that it

is at least a ε-apart from the ℓγ1
. It follows that, to accomplish the desired margin of

robustness, instead of (4.18), γ1 needs to satisfy

γ1 ≤ kc

(

xF
1 −

√

2r

p1
− ε

)

.
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Figure 4.9: Margin of robustness ε of the switching strategy.
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Moreover, since γ1 > 0, in order to guarantee that this margin of robustness is feasible,

it is required that kc

(

xF
1 −

√

2r
p1

− ε
)

> 0. This is granted if the parameters of the

controller are designed so that

(xF
1 )2p2 < (xF

1 − ε)2(p1 cos2 β + p2 sin2 β).

The maximum margin of robustness possible is given by:

εmax = xF
1 −

√

2r

p1
− γ1

kc

where, as in (4.17), r is a function of p1, p2.

4.6 Simulations

In this section, we describe the simulations of the presented hybrid control architecture
by going through the steps of the design of the control algorithm:

Step 1) Given the viscoelastic parameters kc, bc, by using (4.11), it is possible to compute
the parameters θ and β, that decide the slope of the ℓ-lines;

Step 2) From the force set-point fd
c , the force controller steady state xF

1 is also fixed
from the first of (4.12);

Step 3) Build the maximum level set of the Lyapunov function VF all contained in the
right half plane, we have degrees of freedom in the choice of p1 and p2, unless of
the constraints (4.15) and (4.16); then, once p1 and p2 are chosen, we can compute
the value r of the level set by using the second of (4.12). This guarantee that the
parameters a, b and c are fixed and also the positive gain of the force control kf ;

Step 4) From the analysis of the position controller and, according to (4.8), pick param-
eters kp, kd and xd

1;

Step 5) Choose γ1 and γ2 according to (4.9) and (4.10).

The simulation results are shown in the following. In particular, in the interaction task
we are going to simulate, we suppose that, at the beginning of the task, the manipulator
is in the free space at an initial position x0

1 = −1mm and initial velocity x0
2 = 0mm/s

with respect to the point to be touched in the environment, that is considered at x1 = 0.
The desired force we want to apply is fd

c = 5N . Moreover, we suppose to deal with
a soft material characterized by stiffness parameter kc = 10N/mm and damping term
bc = 0.3Ns/mm. We will consider later the case of stiff and very stiff materials.

Figure 4.10, and its zoom in Figure 4.11, illustrate the trajectory of the system in the
phase diagram. As it can be noticed, the position control makes the trajectory hitting
the environment at a velocity that is below the bound x∗

2 imposed by the material. The
manipulator is driven by the position control until the measured contact force is equal to
the threshold γ2. At this point, the controller switches to the force control without bounc-
ing outside the environment, since the γ1 line has been designed outside the Lyapunov
level set of the closed-loop system with the force controller. At this point, the velocity of
the system increases due to the switch between the two controllers; however the velocity
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Figure 4.11: Phase diagram of the switching strategy. Zoom of Figure 4.10.
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remains bounded because the trajectory is constrained inside the designed level set LVF
.

Finally, the steady state xF
1 is reached without chattering.

Note that the initial position x0
1 can be greater than the one considered in the simula-

tion. In particular, for this example, x0
1 can be chosen not below −15mm.

Figure 4.12 presents the measurement of the interaction forces during the task. We
can notice that the involved forces remain bounded. On the top, the plot of the desired
contact force fd

c and the logic variable q is added: once the contact is detected the variable
q switches to 1 and, since the contact is never released, it never goes down to 0.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

t(s)

q

fc

fd
c

Figure 4.12: Contact forces during the interaction task. The plot depicts the interaction

forces fc, the desired contact force fd
c and the logic variable q.

4.6.1 Robustness

In order to test the robustness of the architecture design, we can add in our simulation
noise in the force sensor and errors in the measurement of the manipulator position.

Figure 4.13 depicts in dashed line the trajectory of the system without noise/errors
and in continuous line the trajectories of the system with different values of noise/errors.
In particular, we have added a Gaussian noise in both sensor and manipulator position
measurements with null mean value and variation of σ = 0.01, σ = 0.5, σ = 1, σ = 2.
It is easy to notice that the system continues to converge to the steady state xF

1 without
bouncing off.

4.6.2 Change of Material

In Figure 4.14, we illustrate how the strategy is working for different kind of material, i.e.
while varying the parameter kc from soft to stiff and very stiff materials. In particular, as
the value of kc is increasing, the trajectory becomes more flattened to the surface of the
environment, but the algorithm is still guaranteeing good performances.

Table 4.1 shows how the design parameter changes for different values of the environ-
ment material stiffness. We can notice that in order to avoid bounces, as the stiffness
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Figure 4.14: Phase diagram of the switching strategy. The plot depicts the different

trajectories of the system for values of the environment material stiffness equal to 5 N/mm,

10 N/mm, 25 N/mm and 50 N/mm. The steady state point is changing since xF
1 = fd

c /kc,

in which the desired force is fixed at fd
c = 5 N .
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of the environment is increasing, the desired position and the admitted impact velocity
decrease. Moreover, for fixed environment parameters, there is a trade-off between the
maximum admitted impact velocity and the control gain kf of the force controller: in
particular, in order to have a large impact velocity, a large gain is required.

Table 4.1: Design parameters of the controller for different values of the environment

material stiffness kc and fixed damping term bc.

kc (N/mm) xd
1 (mm) x∗

2 (mm/s) kf

1 14.55821 16.1757 430

5 4.1208 9.8115 80

10 0.2934 0.9054 16

20 0.4530 1.3727 20

50 0.0736 0.2360 8

100 0.0182 0.0596 4

200 0.0045 0.0149 2

500 0.0007 0.0024 0.8

4.7 Controller Design with Saturation

4.7.1 Position Controller with Saturation

Following the discussion in Section 4.3, one of the properties that we want the position
controller to confer to the closed-loop is a bounded impact velocity. Unfortunately, the
position controller in (4.5) does not guarantee such a property for the closed-loop system.
Using techniques in [73], we extend the control law κP with a saturation function to
guarantee boundedness of the impact velocity. The resulting position control law is given
by

κ̃P (x, xd
1) = sat(κP (x, xd

1)) − kx2

for every k ∈ R>0 and for every s ∈ R, sat(s) = sign(s)min{|s|, uP }, where uP is the
saturation level.

The closed-loop system with the κ̃P controller is given by

ẋ1 = x2

ẋ2 = −kcx1 − (bc + k)x2 + sat(−kp(x1 − xd
1) − kdx2)

(4.19)

Analysis of the Closed-loop System with the Saturated Position Controller

From the closed-loop system described by Equations (4.19) we can observe that, if the

saturation level uP ≤ kckp

kc+kp
xd

1, the region of stability is given by
[

xP
1 0

]T
, where xP

1 ≤
kp

kc+kp
xd

1. On the other hand, if the saturation level uP >
kckp

kc+kp
xd

1, the region of stability
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is given by
[

xP
1 0

]T
, where xP

1 =
kp

kc+kp
xd

1. This means that, in general, the region of

stability of the closed-loop system with the saturated position controller is given by:

[

xP
1 0

]T
, where xP

1 ≤ kp

kc + kp
xd

1.

In order to analyze the stability of the closed-loop system (4.19), let’s proceed with

a change of coordinates. Let be wP :=

[

wP1

wP2

]

=

[

x1 − xd
1

kp(x1 − xd
1) + kdx2

]

, then sys-

tem (4.19) becomes:

ẇP1 = −kp

kd
wP1 + 1

kd
wP2

ẇP2 = (−k2
p

kd
− kckd + kp(k + bc))wP1 + (

kp

kd
− k − bc)wP2 − kdsat(wP2) − kckdx

d
1

(4.20)
Let be:

k1P =
kp

kd

k2P = 1
kd

k3P =
k2

p

kd
+ kckd − kp(k + bc)

k4P =
kp

kd
− k − bc

k5P = kckdx
d
1,

then system (4.20) becomes:

ẇP1 = −k1P wP1 + k2P wP2

ẇP2 = −k3P wP1 + k4P wP2 − 1
k2P

sat(wP2) − k5P
(4.21)

4.7.2 Force Controller with Saturation

Following the discussion in Section 4.3, one of the properties that we want to confer to
the closed-loop is to grant a bounded control input. Unfortunately, due to the switch
between the position and the force controller, the control input can be high and it can
have dangerous consequences for the mechanical system. In the same way as discussed in
4.7.1, we can extend the control law κF in (4.6) with a saturation function to guarantee
boundedness of the control signal. The resulting force control law is given by

κ̃F (fc, f
d
c ) = sat(κF (fc, f

d
c ))

for every s ∈ R, sat(s) = sign(s)min{|s|, uF }, where uF is the saturation level.
The closed-loop system with the κ̃F controller is given by

ẋ1 = x2

ẋ2 = −kcx1 − bcx2 + sat(kcx1 + bcx2 + kf (fd
c − kcx1 − bcx2))

(4.22)

Analysis of the Closed-loop System with the Saturated Force Controller

From the closed-loop system described by Equations (4.22) we can observe that, with the
condition that the desired force fd

c is below the the saturation level uF (fd
c ≤ uF ), the

closed-loop system with the saturated force controller has a steady state given by:

[

xF
1 0

]T
, where xF

1 =
fd

c

kc
.
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In order to analyze the stability of the system, let’s proceed with a change of co-

ordinates. Let be wF :=

[

wF1

wF2

]

=

[

x1

kc(1 − kf )x1 + bc(1 − kf )x2 + kffd
c

]

, then sys-

tem (4.22) becomes:

ẇF1 = −kc

bc
wF1 + 1

bc(1−kf )wF2 − kf fd
c

bc(1−kf )

ẇF2 = −k2
c

bc
(1 − kf )wF1 + (kc

bc
− bc)wF2 + bc(1 − kf )sat(wF2) + (bc − kc

bc
)kffd

c

(4.23)

Let be:
k1F = kc

bc

k2F = − 1
bc(1−kf )

k3F = −k2
c

bc
(1 − kf )

k4F = kc

bc
− bc

k5F = kffd
c k2F

k6F = −kffd
c k4F

then system (4.23) becomes:

ẇF1 = −k1F wF1 − k2F wF2 + k5F

ẇF2 = k3F wF1 + k4F wF2 − 1
k2F

sat(wF2) + k6F
(4.24)

4.7.3 Controller Design

We now present a result that guarantees the existence of parameters for the hybrid con-
troller Hc for contact detection. We go through the steps of the proof since they highlight
the design of our hybrid control strategy.

Theorem 4.7.1. Given parameters kc, bc of the work environment and desired contact

force fd
c < f̂c, there exist� A compact set K̃ ⊂ R

2 of initial conditions of the manipulator;� Parameters kp, kd, k, kf , γ1, γ2 of the hybrid controller Hc;� Set-point xd
1 for the regulation of the position;

such that for every initial condition x0 ∈ K, the solutions (x, q) to Hcl approach the

compact set {xF
1 } × {1}. Moreover, the parameters satisfy

kp, kd, k > 0

kf > 1
k2

p

kd
+ kckd − kp(k + bc) > 0 (i.e. k3P > 0)

√

1
kd

(

k2
p

kd
+ kckd − kp(k + bc)

)

− kp

kd
+ k + bc > 0 (i.e.

√
k2P k3P − k4P > 0)

We proceed by constructing a Lyapunov function for the system (4.20) resulting when
the position controller is in the loop and we start the analysis by considering the unforced
closed-loop system. This Lyapunov function decreases along trajectories that stay in
{

x ∈ R
2 | x1 ≥ 0

}

.
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Let VP : R
2 → R≥0 be given by

VP (wP ) =
1

2
wT

P PP wP +k2P

∫ wP2

0
sat(y)dy =

1

2
wT

P

[

aP −cP

−cP bP

]

wP +k2P

∫ wP2

0
sat(y)dy.

where:

aP = 2k1P k2
4P − 4k1P k4P

√
k2P k3P + k1P k2P k3P + 2k2P k3P

√
k2P k3P +

2(k4P −
√

k2P k3P )
√

k2
1P k2

4P − k2
2P k2

3P − 2k2
1P k4P

√
k2P k3P + 2k1P k2P k3P

√
k2P k3P > 0

bP = k2
2P (2

√
k2P k3P − k4P ) > 0

cP = k2
2P k3P > 0.

Remark 4.7.2. The variable aP , bP and cP can be also written as:

aP = 1
k1P

(c2
1 + k3P cP )

bP = 1
k4P

(−c2
2 + k2P cP )

cP = k2
2P k3P

with c1 < 0 and c2 > 0 given by:

c2
1 =

(

k1P k4P − k1P

√
k2P k3P +

√

k2
1P k2

4P − k2
2P k2

3P − 2k2
1P k4P

√
k2P k3P + 2k1P k2P k3P

√
k2P k3P

)2

c2
2 = k2

2P (
√

k2P k3P − k4P )2

c1 = −(k1P k4P − k1P

√
k2P k3P +

√

k2
1P k2

4P − k2
2P k2

3P − 2k2
1P k4P

√
k2P k3P + 2k1P k2P k3P

√
k2P k3P )

c2 = k2P (
√

k2P k3P − k4P ).

It follows that the derivative of VP along the trajectories of the system is given by:

〈∇VP (wP ), ẇP 〉 = (−k1P aP + k3P cP )w2
P1 + (k4P bP − k2P cP )w2

P2

+(−k3P bP + k2P aP + k1P cP − k4P cP )wP1wP2

+(
cP

k2P
− k2P k3P )wP1sat(wP2) + (− bP

k2P
+ k2P k4P )wP2sat(wP2) − sat2(wP2)

= −(c1wP1 − c2wP2)
2 − 2k2P (

√

k2P k3P − k4P )wP2sat(wP2) − sat2(wP2) ≤ 0.

Since V̇P ≤ 0, we can assert that, by Krasovskii-LaSalle’s invariance principle, the equilib-

rium point
[

xP
1 0

]T
is globally asymptotically stable for the unforced system correspond-

ing to (4.19).
Let’s now come back to the complete forced system (4.20). We proceed now by using

the same Lyapunov function VP construed for the unforced closed-loop system. This
Lyapunov function decreases along trajectories.

The derivative of VP along the trajectories of the system is given by:

〈∇VP (wP ), ẇP 〉 = −(c1wP1 − c2wP2)
2 − 2k2P (

√

k2P k3P − k4P )wP2sat(wP2) − sat2(wP2)

−k5P (−cP wP1 + bP wP2 + k2P sat(wP2))
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Let be θP ∈ (0, 1), it follows that:

〈∇VP (wP ), ẇP 〉 = −(1 − θP )(c1wP1 − c2wP2)
2 − θP (c1wP1 − c2wP2)

2

−2k2P (
√

k2P k3P − k4P )wP2sat(wP2) − sat2(wP2)

−k5P (−cP wP1 + bP wP2 + k2P sat(wP2))

= −(1 − θP )(c1wP1 − c2wP2)
2 − θP c2

1w
2
P1 − θP c2

2w
2
P2 + 2θP c1c2wP1wP2

−2k2P (
√

k2P k3P − k4P )wP2sat(wP2) − sat2(wP2)

−k5P (−cP wP1 + bP wP2 + k2P sat(wP2))

By using the Young inequality, 2wP1wP2 ≤ w2
P1 + w2

P2, we can state:

〈∇VP (wP ), ẇP 〉 ≤ −(1 − θP )(c1wP1 − c2wP2)
2 − θP c2

1w
2
P1 − θP c2

2w
2
P2 + 2θP c1c2(w

2
P1 + w2

P2)

−2k2P (
√

k2P k3P − k4P )wP2sat(wP2) − sat2(wP2)

−k5P (−cP wP1 + bP wP2 + k2P sat(wP2))

= −(1 − θP )(c1wP1 − c2wP2)
2

+((−θP c2
1 + 2c1c2θP )w2

P1 + k5P cP wP1)

+((−θP c2
2 + 2c1c2θP )w2

P2 − k5P bP wP2)

−2k2P (
√

k2P k3P − k4P )wP2sat(wP2) − sat2(wP2) − k2P k5P sat(wP2).

Let’s define

w̄P1 :=
k5P cP

θP | c2
1 − 2c1c2 | , w̄P2 :=

k5P bP

θP | c2
2 − 2c1c2 | ,

if

| wP1 |≥ w̄P1 and | wP2 |≥ w̄P2, (4.25)

it follows that

〈∇VP (wP ), ẇP 〉 ≤ −(1 − θP )(c1wP1 − c2wP2)
2 − 2k2P (

√

k2P k3P − k4P )wP2sat(wP2)

−sat2(wP2) − k2P k5P sat(wP2).

Finally, if

−sat2(w̄P2) − k2P k5P sat(w̄P2) ≤ 0, (4.26)

〈∇VP (wP ), ẇP 〉 ≤ 0.

Since V̇P ≤ 0, we can assert that the equilibrium point
[

xP
1 0

]T
is input-to-state stable

for the forced system (4.19) with the conditions (4.25) and (4.26).
We can observe here that if w̄P2 ≥ uP the system is not allowed to work in the linear

zone. Therefore, we add the condition

w̄P2 ≤ uP . (4.27)

This implies that w̄P2 belongs to the linear zone of the system and the constraint (4.26)
can be written as

w̄P2 ≥ k2P k5P . (4.28)

At this point, we can state that the equilibrium point
[

xP
1 0

]T
is input-to-state stable

for the forced system (4.19) with the conditions (4.25), (4.27) and 4.28).



4.7 Controller Design with Saturation 83

Remark 4.7.3. In order to better understand the conditions that guarantee the input-

to-state stability of the forced system (4.19), we can observe that, according the evolution

of the system and according the position of the reference frame in Figure 4.1, the robotic

manipulator is approaching the work environment from a negative value of the position.

This imply-es that the first constraint in Equations (4.25), can be simplified in:

wP1 ≤ −w̄P1. (4.29)

In particular, if the constraint in (4.29) is valid, we can describe in Figure 4.15 the

other constraints. In particular, the figure depicts that, when the system is working in the

saturation zone, the system is always input-to-state stable. However, when the system is

working in the linear zone, the system can be unstable.

w̄P2

wP2 < w̄P2

uP

saturation zone

linear zone

Figure 4.15: Description of the constraints for the input-to-state stability of the sys-

tem (4.19). If the first constraint in Equations (4.25) is valid, the gray zone corresponds

to the input-to-state stable area.

Let’s analyse the system working in the linear zone, that is when | kp(x1−xd
1)+kdx2 |≤

uP . In particular, the system (4.19) becomes:

ẇP1 = −k1P wP1 + k2P wP2

ẇP2 = −k3P wP1 + (k4P − 1
k2P

)wP2 − k5P

If we analyze the Lyapunov function VP (wP ) when the system is in the linear zone, we

find out that the derivative of VP along the trajectories of the system is always negative.

We can conclude that the equilibrium point
[

xP
1 0

]T
is input-to-state stable for the

system (4.19) if

wP1 ≤ −w̄P1 and k2P k5P ≤ w̄P2 ≤ uP .
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From these inequalities, it follows that the parameter θP has to satisfy the constraint

θP < min{1, bP

k2P | c2
2 − 2c1c2 |}.

We proceed by constructing a Lyapunov function for the system (4.24) resulting when
the force controller is in the loop and we start the analysis by considering the unforced
closed-loop system. This Lyapunov function decreases along trajectories.

Let VF : R
2 → R≥0 be given by

VF (wF ) =
1

2
wT

F PF wF + k2F

∫ wF2

0
sat(y)dy =

1

2
wT

F

[

aF cF

cF bF

]

wF + k2F

∫ wF2

0
sat(y)dy.

where:

aF = 2k1F k2
4F − 4k1F k4F

√
k2F k3F + k1F k2F k3F + 2k2F k3F

√
k2F k3F +

2(k4F −
√

k2F k3F )
√

k2
1F k2

4F − k2
2F k2

3F − 2k2
1F k4F

√
k2F k3F + 2k1F k2F k3F

√
k2F k3F > 0

bF = k2
2F (2

√
k2F k3F − k4F ) > 0

cF = k2
2F k3F > 0.

Remark 4.7.4. The variable aF , bF and cF can be also written as:

aF = 1
k1F

(c2
3 + k3F cF )

bF = 1
k4F

(−c2
4 + k2F cF )

cF = k2
2F k3F

with c3 < 0 and c4 > 0 given by:

c2
3 =

(

k1F k4F − k1F

√
k2F k3F +

√

k2
1F k2

4F − k2
2F k2

3F − 2k2
1F k4F

√
k2F k3F + 2k1F k2F k3F

√
k2F k3F

)2

c2
4 = k2

2F (
√

k2F k3F − k4F )2

c3 = −(k1F k4F − k1F

√
k2F k3F +

√

k2
1F k2

4F − k2
2F k2

3F − 2k2
1F k4F

√
k2F k3F + 2k1F k2F k3F

√
k2F k3F

c4 = k2F (
√

k2F k3F − k4F ).

It follows that the derivative of VF along the trajectories of the system is given by:

〈∇VF (wF ), ẇF 〉 = (−k1F aF + k3F cF )w2
F1 + (k4F bF − k2F cF )w2

F2

+(k3F bF − k2F aF − k1F cF + k4F cF )wF1wF2

+(− cF

k2F
+ k2F k3F )wF1sat(wF2) + (− bF

k2F
+ k2F k4F )wF2sat(wF2) − sat2(wF2)

= −(c3wF1 − c4wF2)
2 − 2k2F (

√

k2F k3F − k4F )wF2sat(wF2) − sat2(wF2) ≤ 0.

Since V̇F < 0, we can assert that, by Krasovskii-LaSalle’s invariance principle, the equilib-

rium point
[

xF
1 0

]T
is globally asymptotically stable for the unforced system correspond-

ing to (4.22).
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Let’s now come back to the complete forced system (4.24), we proceed now by using
the same Lyapunov function VF construed for the unforced closed-loop system. This
Lyapunov function decreases along trajectories.

Let VF : R
2 → R≥0 be given by

VF (wF ) =
1

2
wT

F PF wF + k2F

∫ wF2

0
sat(y)dy =

1

2
wT

F

[

aF cF

cF bF

]

wF + k2F

∫ wF2

0
sat(y)dy.

It follows that the derivative of VF along the trajectories of the system is given by:

〈∇VF (wF ), ẇF 〉 = −(c3wF1 − c4wF2)
2 − 2k2F (

√

k2F k3F − k4F )wF2sat(wF2) − sat2(wF2)

+(k5F aF + k6F cF )wF1 + (k6F bF + k5F cF )wF2 + k2F k6F sat(wF2)

Let be θF ∈ (0, 1), it follows that:

〈∇VF (wF ), ẇF 〉 = −(1 − θF )(c3wF1 − c4wF2)
2 − θF (c3wF1 − c4wF2)

2

−2k2F (
√

k2F k3F − k4F )wF2sat(wF2) − sat2(wF2)

+(k5F aF + k6F cF )wF1 + (k6F bF + k5F cF )wF2 + k2F k6F sat(wF2)

= −(1 − θF )(c3wF1 − c4wF2)
2 − θF c2

3w
2
F1 − θF c2

4w
2
F2 + 2θF c3c4wF1wF2

−2k2F (
√

k2F k3F − k4F )wF2sat(wF2) − sat2(wF2)

+(k5F aF + k6F cF )wF1 + (k6F bF + k5F cF )wF2 + k2F k6F sat(wF2)

By using the Young inequality, 2wF1wF2 ≤ w2
F1 + w2

F2, we can state:

〈∇VF (wF ), ẇF 〉 ≤ −(1 − θF )(c3wF1 − c4wF2)
2 − θF c2

3w
2
F1 − θF c2

4w
2
F2 + 2θF c3c4(w

2
F1 + w2

F2)

−2k2F (
√

k2F k3F − k4F )wF2sat(wF2) − sat2(wF2)

+(k5F aF + k6F cF )wF1 + (k6F bF + k5F cF )wF2 + k2F k6F sat(wF2)

= −(1 − θF )(c3wF1 − c4wF2)
2 + ((−θF c2

3 + 2c3c4θF )w2
F1 + (k5F aF + k6F cF )wF1)

+((−θF c2
4 + 2c3c4θF )w2

F2 + (k6F bF + k5F cF )wF2)

−2k2F (
√

k2F k3F − k4F )wF2sat(wF2) − sat2(wF2) + k2F k6F sat(wF2).

Let’s define

w̄F1 :=
| k5F aF + k6F cF |
θF | c2

3 − 2c3c4 | , w̄F2 :=
| k6F bF + k5F cF |
θF | c2

4 − 2c3c4 |
if

| wF1 |≥ w̄F1 and | wF2 |≥ w̄F2, (4.30)

it follows that

〈∇VF (wF ), ẇF 〉 ≤ −(1 − θF )(awF1 − bwF2)
2 − 2k2F (

√

k2F k3F − k4F )wF2sat(wF2)

−sat2(wF2) + k2F k6F sat(wF2).

Finally, if

−sat2(w̄F2) + k2F k6F sat(w̄F2) ≤ 0, (4.31)

〈∇VF (wF ), ẇF 〉 ≤ 0.
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Since V̇F ≤ 0, we can assert that the equilibrium point
[

xF
1 0

]T
is input-to-state stable

for the forced system (4.22) with the conditions (4.30) and (4.31).
We can observe here that if w̄F2 ≥ uF the system is not allowed to work in the linear

zone. Therefore, we add the condition

w̄F2 ≤ uF . (4.32)

This implies that w̄F2 belongs to the linear zone of the system and the constraint (4.31)
can be written as

w̄F2 ≥ k2F | k6F | . (4.33)

At this point, we can state that the equilibrium point
[

xF
1 0

]T
is input-to-state stable

for the forced system (4.22) with the conditions (4.30), (4.32) and 4.33).

Remark 4.7.5. In order to better understand the conditions that guarantee the input-

to-state stability of the forced system (4.22), we can observe that, according the evolution

of the system and according the position of the reference frame in Figure 4.1, the robotic

manipulator is interacting with the work environment when the position has a positive

value. This implies that the first constraint in Equations (4.30), can be simplified in:

wF1 ≥ −w̄F1. (4.34)

In particular, if the constraint in (4.34) is valid, we can state that (similarly to the

case of the saturated PD controller), when the system is working in the saturation zone,

the system is always input-to-state stable. However, when the system is working in the

linear zone, the system can be unstable.

Let’s analyse the system working in the linear zone, that is when | kc(1−kf )x1 +bc(1−
kf )x2 + kffd

c |≤ uF . In particular, the system (4.22) becomes:

ẇF1 = −k1F wF1 − k2P wF2 + k5F

ẇF2 = k3F wF1 + (k4F − 1
k2F

)wF2 + k6F

If we analyze the Lyapunov function VF (wF ) when the system is in the linear zone, we

find out that the derivative of VF along the trajectories of the system is always negative.

We can conclude that the equilibrium point
[

xF
1 0

]T
is input-to-state stable for the

system (4.22) if

wF1 ≥ w̄F1 and k2F | k6F |≤ w̄F2 ≤ uF .

From this inequality, it follows that the parameter θF has to satisfy the constraint

θF < min{1, | k6F bF + k5F cF |
k2F | k6F || c2

4 − 2c3c4 |}.
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4.7.4 Design of the Hysteresis Thresholds

At this point we are able to design the thresholds γ1 and γ2 for the jump conditions of the
hybrid controller Hc. Also in the case of saturated controllers, the jumps can be explicitly
expressed in terms of x1 and x2 by using the definition of the contact force in (4.4) which
corresponds to a hyperplane in R

2.
With the same notation used in Section 4.5, the threshold γ2 defines a line ℓγ2

in the
right half plane of the x-coordinates that discriminates the switch from the position to
the force controller, fc ≥ γ2. In the same way, the threshold γ1 defines a line ℓγ1

in the
right half plane of the x-coordinates that discriminates the switch from the force to the
position controller, fc ≤ γ1.

As depicted in Figure 4.16, we design the threshold γ2 so that the line ℓγ2
is bounded

by two lines, ℓγ2
and ℓγ2

, that respectively crosses the point (xd
1 − w̄P1, 0) and (xP

1 , 0). In
this way, we assure that there is always a switch from the position to the force controller.
Therefore, it follows that:

kc(x
d
1 − w̄P1) ≤ γ2 ≤ kcx

P
1

To guarantee that this design is achievable, it is necessary to satisfy the condition w̄F1 ≤
xd

1 − w̄P1 ≤ xP
1 , that can be also written as

w̄F1 ≤ kp

kc
w̄P1.

Moreover, in this way, we define the maximum admitted velocity of impact x∗
2, which

is given by the intersection of ℓγ2
and the line x1 = w̄F1

x∗
2 = −kc

bc
(xd

1 − w̄P1 + w̄F1).

For the design of the threshold γ1, we will consider lines ℓγ1
that are parallel to the

line ℓγ2
so that ℓγ1

is the line that crosses the point (w̄F1,−x∗
2) and ℓγ1

is the line which
crosses the origin. Therefore, it follows that:

0 ≤ γ1 ≤ kc(x
d
1 − w̄P1 + 2w̄F1). (4.35)

Figure 4.16 shows the lines ℓγ2
ℓγ2

, ℓγ1
, ℓγ1

, the maximum admitted velocity of impact

x∗
2 and the steady state of the position controller xP

1 .
By proceeding in the same way as in the non saturated control, we can define the

general Lyapunov function V : R
2 → R≥0 for the hybrid closed loop system Hcl that is

given by
V (x) = (q − 1)VP + qVF .

Since for every initial condition x0 ∈ K,

〈∇V (x), F (x)〉 ≤ 0 ∀x ∈ C
V (G(x)) − V (x) ≤ 0 ∀x ∈ D,

the solutions (x, q) to Hcl approach to the compact set {xF
1 }×{1}. By LaSalle’s invariance

principle, the compact set {xF
1 }×{1} is locally asymptotically stable for the hybrid closed

loop system Hcl.

Remark 4.7.6. In the case of the controllers with saturation, the set K̃ of initial con-

ditions is not compact and is enlarged thanks to the presence of the saturation. In Fig-

ure 4.17, the compact set K̃ is depicted.
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Figure 4.16: Scheme of the architecture with the saturated controller.
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Figure 4.17: Non-compact set K̃ for the system with κ̃P position controller.
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4.7.5 Margin of Robustness

The margin of robustness to measurement noise obtained with this control strategy with
saturation is defined as the minimum distance between ℓγ1

and ℓγ1
, and it is denoted with

the parameter ε > 0.
If a desired margin of robustness ε is specified, one can design the line ℓγ1

so that it

is at least a ε-apart from the ℓγ1
. It follows that, to accomplish the desired margin of

robustness, instead of (4.35), γ1 needs to satisfy

γ1 ≤ −ε
√

k2
c + b2

c + kc(x
d
1 − w̄P1 + 2w̄F1).

The maximum margin of robustness possible is given by:

εmax =
kc(x

d
1 − w̄P1 + 2w̄F1) − γ1

√

k2
c + b2

c

4.8 Simulations

In this section, we describe the simulations of the case in which the saturated controllers
are taken into account.

The simulation results are shown in the following. In particular, in the interaction
task, we suppose that, at the beginning of the task, the manipulator is in the free space at
an initial position x0

1 = −8mm and initial velocity x0
2 = 6mm/s with respect to the point

to be touched in the environment, that is considered at x1 = 0. The desired force we want
to apply is fd

c = 5N . Moreover, we suppose to deal with a soft material characterized
by stiffness parameter kc = 10N/mm and damping term bc = 0.3Ns/mm. Figure 4.18
illustrate the trajectory of the system in the phase diagram.

4.9 Conclusions and Future Work

4.9.1 Conclusions

An innovative hybrid system approach for the control of robotic interaction has been
proposed. The hybrid control involves a position and a force controller and the switching
strategy is based only on force measurement information. The logic of switching is realized
by introducing hysteresis in the control loop; this guarantees a margin of robustness with
respect to measurement noise. The proposed architecture requires a contact model for the
environment and a bounded impact velocity. The controller guarantees that the interaction
forces are bounded and that no bounces are present when the manipulator gets in contact
with the work environment.

4.9.2 Future Work

Future work will be aimed to the generalization of the described strategy to a full model of
interaction in six degree of freedom in order to extend this kind of controller to application
of complex robotics, such as locomotion and dexterous manipulation. Moreover, since the
presented hybrid control system requires bounded impact velocity, we will analyze how to
design the position controller by using techniques in [73], in order to introduce a saturation
function in the control of the impact velocity.
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Figure 4.18: Phase diagram of the switching strategy with the saturated controllers. The

plot depicts the ℓγ1
and ℓγ2

lines, and the trajectory of the system. The controller is able

to avoid the bouncing off of the robotic system.



Conclusion

In this thesis, both planning and control of robotic manipulation tasks have been ad-
dressed. In particular, in Chapter 1, a new approach to planar objects manipulation by
dexterous regrasping of three-fingered hands has been presented. In the regrasping task, it
is required to plan sequences of force-closure grasps in order to achieve a desired stable con-
figuration from an initial one. The discretized boundary of an irregular object is analyzed
so that all the regions that ensures force-closure grasps are established: the connectivity
between these regions provides the computation of the regrasp map. The regrasp sequence
is obtained either with slides or with jumps of the fingertips on the object boundary and
is realized with the solution of a shortest path problem.

In Chapter 2 we have addressed the problem of the determination of a suitable set
of grasping forces that a mechanical hand has to apply in order to balance the external
forces and torques applied on a generic object and to keep it in equilibrium. In this
chapter we present a new mathematical approach to efficiently obtain the optimal solution
of this problem by means of the dual theorem of non-linear optimization programming.
In particular, the dual theorem can be applied to the force distribution problem only if it
is modeled such as the basic convexity property is satisfied.

Chapter 3 we have discussed a practical method for the tracking of grasp points in
image space that is based on transferring previously computed grasp points from an initial
image to subsequent ones and on the analysis of the new grasp configuration. In order to
obtain an efficient visually guided grasping, three basic techniques are used together. In
particular, two of them are based on a grasp description that is invariant with respect to
the relative movement between two object views, one of these strategies being used jointly
with an object tracking method. The third proposed alternative is based on a homography
computed between two object views.

Finally, in Chapter 4 we have presented an innovative hybrid system approach for the
control of robotic interaction. This hybrid architecture can control a manipulator during
the stages of the interaction: the free motion, the transition phase and the constrained
motion. The switching logic is based on a contact detection which is robust with respect to
measurement noise so to guarantee that, during the robotic task, no bounces are present.
The design of the controller is based on a Lyapunov analysis and depends on the viscoelas-
tic parameters of the environment. The hybrid control can guarantee good performance
in both cases of stiff and compliant contact model with a constraint on the velocity of
impact.
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[10] R. Carloni, G. Recatalá, C. Melchiorri, P.J. Sanz, and E. Cervera. Homography-
based grasp tracking for planar objects. In Proc. IEEE Intl. Conf. on Robotics and
Automation, pages 795–800, New Orleans (Louisiana), USA, April 2004.
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[25] R.C. González and P. Wintz. Digital Image Processing. Addison-Wesley, Reading
(Massachusetts), USA, 2nd edition, 1987.

[26] L. Han, J. C. Trinkle, and Z. X. Li. Grasp analysis as linear matrix inequality
problems. IEEE Transactions on Robotics and Automation, 16(6):663–674, 2000.

[27] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge, UK, second edition, 2004.

[28] A. Hauck, J. Rüttinger, M. Sorg, and G. Färber. Visual determination of 3D grasping
points on unknown objects with a binocular camera system. In Proc. IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, pages 272–278, Kyongju, Korea, 1999.



BIBLIOGRAPHY 95

[29] U. Helmke, K. Huper, and J. B. Moore. Quadratically convergent algorithms for
optimal dextrous hand grasping. IEEE Transactions on Robotics and Automation,
18(2):138–146, 2002.

[30] N. Hogan. Impedance control: An approach to manipulation: Part i theory. ASME
Journal of Dynamic Systems, Measurement and Control, 107:335–345, 1985.

[31] R. Horaud, F. Dornaika, and B. Espiau. Visually guided object grasping. IEEE
Trans. on Robotics and Automation, 14(4):525–532, August 1998.

[32] S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual servo control. IEEE
Trans. on Robotics and Automation, 12(5):651–670, October 1996.

[33] B.Mishra J.Hong, G.Lafferriere and X.Tan. Fine manipulation with multifinger hands.
In IEEE International Conference on Robotics and Automation, pages 1568–1573,
1990.

[34] H. Liu J.W. Li and H.G. Cai. On computing three-finger force-closure grasps of 2-
d and 3-d objects. IEEE Transaction on Robotics and Automation, 19(1):155–161,
2003.

[35] I. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual information. In
Proc. IEEE Intl. Conf. on Robotics and Automation, pages 2470–2476, Minneapolis
(Minnesota), USA, April 1996.

[36] J. Kerr and B. Roth. Analysis of multifingered hands. International Journal of
Robotics Research, 4(4):3–17, 1986.

[37] O. Khatib. A unified approach for motion and force control of robot manipulators:
The operational space formulation. IEEE Transactions on Robotics and Automation,
3(1):43–53, 1987.

[38] W. Kwon and B.H. Lee. Optimal force distribtuion of multiple cooperating robots
using nonlinear programming dual method. In IEEE International Conference on
Robotics and Automation, pages 2408–2413, 1996.

[39] P. Li, F. Chaumette, and O. Tahri. A shape tracking algorithm for visual tracking.
In Proc. IEEE Intl. Conf. on Robotics and Automation, Barcelona, Spain, 2005.

[40] G. Liu and Z. Li. Real-time grasping-force optimization for multifingered manipula-
tion: Theory and experiments. IEEE/ASME Transactions on Mechatronics, 9(1):65–
77, 2004.

[41] G. Liu, J. Xu, and Z. Li. On geometric algorithms for real-time grasping force opti-
mization. IEEE Transactions on Control Systems Technology, 12(6):843–859, 2004.

[42] Y.-H. Liu. Qualitative test and force optimization of 3d frictional form-closure
grasps using linear programming. IEEE Transactions on Robotics and Automation,
15(1):163–173, 1999.

[43] D.G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-
Wesley Publishing Company, 1973.

[44] Q.-T. Luong and O.D. Faugeras. The fundamental matrix: Theory, algorithms and
stability analysis. International Journal of Computer Vision, 17:43–75, 1996.



96 BIBLIOGRAPHY

[45] A. Macchelli, C. Melchiorri, R. Carloni, and M. Guidetti. Space robotics: an ex-
perimental set-up based on RTAI-linux. In 4th Real-Time Linux Workshop, Boston,
USA, December 2002.

[46] E. Malis, F. Chaumette, and S. Boudet. Multi-cameras visual servoing. In Proc. IEEE
Intl. Conf. on Robotics and Automation, volume 4, pages 3183–3188, San Francisco
(California), USA, April 2000.

[47] P. Martinet and E. Cervera. Stacking jacobians properly in stereo visual servoing. In
Proc. IEEE Intl. Conf. on Robotics and Automation, pages 717–722, Seoul, Korea,
May 2001.

[48] P.R.S. Mendonça, K.-Y.K. Wong, and R. Cipolla. Epipolar geometry from profiles
under circular motion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(6):604–616, June 2001.

[49] J. K. Mills and D. M. Lokhorst. Stability and control of robotic manipulators during
contact/noncontact task transition. IEEE Transactions on Robotics and Automation,
9(3):335–345, 1993.
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