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Abstract

We propose an extension of the approach provided by Klüppelberg and

Kuhn (2009) for inference on second–order structure moments. As in Klüppel-

berg and Kuhn (2009) we adopt a copula–based approach instead of assuming

normal distribution for the variables, thus relaxing the equality in distribu-

tion assumption. A new copula–based estimator for structure moments is

investigated. The methodology provided by Klüppelberg and Kuhn (2009) is

also extended considering the copulas associated with the family of Eyraud–

Farlie–Gumbel–Morgenstern distribution functions (Kotz, Balakrishnan, and

Johnson, 2000, Equation 44.73). Finally, a comprehensive simulation study

and an application to real financial data are performed in order to compare

the different approaches.
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Chapter 1

Dependence concepts, copulas,

and latent variable models: a

new challenge

Modern data analysis calls for an understanding of stochastic dependence

going beyond simple linear correlation and gaussianity. Literature has been

shown a growing interest in modeling multivariate observations using flexible

functional forms for distribution functions and in estimating parameters that

capture the dependence among different random variables. One of the main

reasons for such interest is that the traditional approach based on linear

correlation and multivariate normal distribution is not flexible enough for

representing a wide range of distribution shapes.

The need of overwhelming linear correlation–based measures and normal

distribution assumptions goes well with a typical problems for researchers

that are interested in studying the dependence structure between observed

variables aiming at a reduction in dimension. Dimension reduction means

the possibility of isolating a lower set of underlying, explanatory, not immedi-

ately observable, information sources that describe the dependence structure

between the observed variables.

Typically, a linear combination of these so–called latent variables is con-

sidered for a multivariate dataset. In other words, we say that the manifest
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variables are equally distributed to a linear combination of a few number of

latent variables. Thus, this relationship generates what we call a structure

and it explains the strength of dependence of the data. In what follows, we

shall refer to the latent variable model as a linear structure model for the

observations.

The linear structural model immediately implies a parametric structure

for the moments and product–moments of the observed variables. The mo-

ments thus present a specific pattern and they can be estimated in reference

to the parameters that characterized the latent variable model.

Estimating and testing the model usually involve the moment structure

representations and normality. In practice, the literature on structural mod-

els has concentrated on the moment structure of only the first two product

moments, specifically means and covariances or correlations. Nevertheless, it

is entirely possible to generate structural models for higher–order moments

(see Bentler, 1983). This neglect of higher–order moments almost surely has

been aided by the historical dominance of the multivariate normal distribu-

tion assumption. Under such a assumption, the two lower–order moments are

sufficient statistics and higher–order central moments are indeed zero or sim-

ple functions of the second–order moment. The specification of the covariance

or correlation matrix of the observed variables as a function of the structure

model parameters is known as covariance or correlation structure, respec-

tively. Covariance or correlation structures, sometimes with associated mean

structures, occur in psychology (Bentler, 1980), econometrics (Newey and

McFadden, 1994), education (Bell et al., 1990), sociology (Huba, Wingard,

and Bentler, 1981) among others.

Linear correlation is a natural dependence measure for multivariate nor-

mally and, more generally, elliptically distributed variables. Nevertheless,

other dependence concepts like comonotonicity and rank correlation should

also be understood by the practitioners. The fallacies of linear correlation

arise from the naive assumption that dependence properties of the elliptical

world also hold in the non–elliptical world. However, empirical researches in

finance, psychology, education show that the distributions of the real world

are seldom in this class.
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Embrechts, McNeil, and Straumann (1999) highlight a number of impor-

tant fallacies concerning correlation which arise when we work with non–

normal models. Firstly, the linear correlation is a measure of linear depen-

dence and it requires that the variances are finite. Secondly, linear correlation

has the serious deficiency that it is not invariant by increasing transforma-

tions of the observed variables. As a simple illustration, we suppose to have a

probability model for dependent insurance losses. If we decide that our inter-

est now lies in modeling the logarithm of these losses, the value of correlation

coefficients will change. Similarly, if we change from a model of percentage

returns on several financial assets to a model of logarithmic returns, we will

obtain a similar result.

Moreover, only in the case of the multivariate normal is it permissible to

interpret uncorrelatedness as implying independence. This implication is no

longer valid when the joint distribution function is non–normal. Spherical

distributions model uncorrelated random variables but are not, except in the

case of the multivariate normal, the distributions of independent random

variables.

In socio–economic theory the notion of correlation anyway remains cen-

tral, even though there is a general reject of normal assumption and, as a

consequence, there are doubts about the usefulness of the linear–dependence

measure. In this doctoral dissertation, we are interested in developing in-

ferential methods for latent variable models (i.e., covariance or correlation

structures) that combine second–order structure moments with less restric-

tive distribution assumptions than equality of marginal distributions, nor-

mality, and linearity. We want to assume flexible probability models for the

latent variables that guarantee the presence of correlation–like dependence

parameters. We show how to reach a no–moment–based correlation matrix,

without a supposed linear or normal dependence, and to estimate and test the

correlation structure with this unusual dependence measure. Our approach

is based on copula functions, which can be useful in defining inferential meth-

ods on second–order structure models, as recently shown by Klüppelberg and

Kuhn (2009). .

In our opinion the copula–based approach affords the best understand-
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ing of the general concept of dependence. From a practical point of view,

copulas are attractive because of their flexibility in model specification. By

Sklar’s theorem (Sklar, 1959), the distribution function of each multivariate

random variable can be indeed described through its margins and a suitable

dependence structure represented by a copula, separately. Many multivariate

models for dependence can be generated by parametric families of copulas,

typically indexed by a real– or vector–valued parameter, named copula pa-

rameter. Examples of such systems are given in Joe (1997) and Nelsen (2006),

among others. Hoeffding (1940, 1994) also had the basic idea of summarizing

the dependence properties of a multivariate distribution by its corresponding

copula, but he chose to define the corresponding function on
[
−1

2
, 1

2

]p
rather

than on [0, 1]p (Sklar, 1959), where p stands for the number of the observed

variables. Copulas are a less well known approach to describing dependence

than correlation, but the dependence structure as summarized by a copula

is invariant by increasing transformations of the variables.

Motivated by Klüppelberg and Kuhn (2009), which base their proposal

on copulas of elliptical distributions, we extend their methodology to other

families that can be profitably assumed in moment structure models. Firstly,

we are aware that this research involves copulas, whose parameters must be

interpreted as a correlation–like measure. Secondly, we note that a neces-

sary condition here consists in handling multivariate distribution functions

where each bivariate margin may be governed by an exclusive parameter.

One difficulty with most families of multivariate copulas is the paucity of

parameters (generally, only 1 or 2). Moreover, in the multivariate one (or

two)–parameter case, exchangeability is a key assumption. As a consequence,

all the bivariate margins are the same and the correlation structure is iden-

tical for all pairs of variables. On the contrary, for each bivariate margin an

one–to–one analytic relation between its parameters and the corresponding

bivariate Pearson’s linear correlation coefficient has to exist for the moment

structure analysis purpose. If it is, we are able to estimate in a consistent

way the correlation structure model through copula parameters estimates, as

an alternative to the moment–based estimation procedure used in the linear

correlation approach.
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In order to overwhelm useless sophistications, we suggest to adopt the

Eyraud–Farlie–Gumbel–Morgenstern (shortly, EFGM) family of multivari-

ate copulas, consisting of the copulas associated with the family of Eyraud–

Farlie–Gumbel–Morgenstern distribution functions (Kotz, Balakrishnan, and

Johnson, 2000, Equation 44.73). It is attractive due to its simplicity, and

Prieger (2002) advocates its use as a proper model in health insurance plan

analysis. EFGM copula is ideally suited for various models with small or

moderate dependence and it represents an alternative to the copula proposed

by Klüppelberg and Kuhn (2009). There are several examples in which it is

essential to consider weak dependent structures instead of simple indepen-

dence. It is in particular related to some of the most popular conditions used

by econometricians to transcribe the notion of fading memory. Various gen-

eralizations of independence have been introduced to tackle to this problem.

The martingale setting was the first extension of the independence framework

(Hall and Heyde, 1980). Another point of view is given by the mixing prop-

erties of stationary sequences in the sense of ergodic theory (Doukhan, 1994).

Nevertheless, in some situations classical tools of weak dependence such as

mixing are useless. For instance, when bootstrap techniques are used, no

mixing conditions can be expected. Weakening martingale conditions yields

mixingales (Andrews, 1988; McLeish, 1975). A more general concept is the

near epoch dependence (shortly, NED) on a mixing process. Its definition

can be found in the work by Billingsley (1968), who considered functions of

uniform mixing processes (Ibragimov, 1962).

Since our attention is focused on inferential methods for covariance or

correlation structure models, we use different estimators for copula param-

eters and we test the consequent benefits to the asymptotic distribution of

test statistic in correlation structure model selection.

By summarizing, in this doctoral dissertation we propose an extension

of the approach provided by Klüppelberg and Kuhn (2009) for inference on

second–order structure moments. As in Klüppelberg and Kuhn (2009) we

adopt a copula–based approach instead of assuming normal distribution for

the variables, thus relaxing the equality in distribution assumption. Then,

we assume that the manifest variables have the same copula of the linear
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combination of latent variables.

We estimate and test the latent variable models through moment struc-

ture representations by assuming copula functions. Unlike the classical meth-

ods, we do not use a moment–based estimator of covariance or correlation ma-

trix. We rather exploit the copula assumption and we obtain a second–order

moment estimator based on the estimates of copula parameters. This proce-

dure underlines the importance of copulas as a tool to capture general and not

necessarily linear dependence structures between variables. Our contribution

is here twofold. Firstly, we assume a non–elliptical copula for moderate de-

pendence systems; i.e., the EFGM copula. We also provide a discussion about

conditions for extending linear structure model to other families of copulas.

Secondly, we propose an alternative estimator of copula parameters in cor-

relation structure analysis; i.e., the maximum pseudo–likelihood estimator.

We supply detailed computational explanation for inference on second–order

moments, also valid for the methodology in Klüppelberg and Kuhn (2009).

Finally, a comprehensive simulation study and an application to real finan-

cial data are performed. We will not deal with higher–order moments since

our interest is here focused only on second–order moment structure models.

Moreover, we only deal with the static (non–time–dependent) case. There are

various other problems concerning the modeling and interpretation of serial

correlation in stochastic processes and cross–correlation between processes;

e.g., see Boyer, Gibson, and Loretan (1999).

The doctoral dissertation is organized as follows. We start with defini-

tions and preliminary results on moment structure analysis in Chapter 2. In

Chapter 3 we introduce the new copula structure model proposed by Klüppel-

berg and Kuhn (2009) and show which classical inferential methods can be

used for structure analysis and model selection. In Section 3.3 we provide a

detailed computational procedure for estimating and testing purposes.

In Chapter 4 we present our main contributions. In Section 4.1 we revise

the properties of EFGM class and we show that the dependence properties

of this family are closely related with linear correlation concept. By anal-

ogy with Klüppelberg and Kuhn (2009) we assume EFGM copulas for the

observed variables and we investigate in a simulation study the performance
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of the estimator of the correlation structure in case of a well known latent

variable model, the exploratory factor analysis.

Supported by the simulation studies carried out by Genest, Ghoudi, and

Rivest (1995), Fermanian and Scaillet (2004), Tsukahara (2005), and recently

by Kojadinovic and Yan (2010b), in Section 4.2 we propose to adopt the max-

imum pseudo–likelihood estimator for copula parameters (Genest, Ghoudi,

and Rivest, 1995), instead of the estimator provided by Klüppelberg and

Kuhn (2009).

In Section 4.3 we compare the sample distribution of test statistic via the

maximum pseudo–likelihood estimator of copula parameters and the estima-

tor provided by Klüppelberg and Kuhn (2009), respectively, with the corre-

sponding asymptotic distribution by QQ–plots and kernel densities. More-

over, we investigate the influence of sample size and correct specification of

copula on the performance of the above mentioned test statistics. Finally,

we show our method at work on a financial dataset and explain differences

between our copula–based and the classical normal–based approach.

Final remarks about the use of copulas in moment structure analysis and

conditions in order to extend the methodology to a wider class of non–normal

distributions are provided in last chapter.

Additional tools for moment structure analysis are provided in Appen-

dices A and B.





Chapter 2

Inference on moment structure

models

Structural models can be defined at various levels or orders of parametric

complexity. In linear structural models, common practice involves speci-

fication of a structural representation for the random vector of observable

variables x ∈ Rp; i.e.,

x
d
= A (ϑ0) ζ , (2.1)

whereA (ϑ0) is a matrix–valued function with respect to a vector of popu-

lation parameters ϑ0. We standardly use
d
= to denote equality in distribution.

The underlying generating random variables ζ ∈ Rz, for z ≥ p, may repre-

sent latent (or unobservable) variables and errors of measurement. General

introduction to the field as well as more advanced treatments can be found

in Jöreskog (1978) and Browne (1982). Discussions on key developments of

these topics are provided by Steiger (1994) and Bentler and Dudgeon (1996).

Examples of such models include path analysis (Wright, 1918, 1934), prin-

cipal component analysis (Hotelling, 1933; Pearson, 1901), exploratory and

confirmatory factor analysis (Spearman, 1904, 1926), simultaneous equations

(Anderson, 1976; Haavelmo, 1944), errors–in–variables models (Dolby and

Freeman, 1975; Gleser, 1981), and especially the generalized linear struc-

tural equations models (Jöreskog, 1973, 1977) made popular in the social
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and behavioral sciences by such computer programs as LISREL (Jöreskog

and Sörbom, 1983) and EQS (Bentler and Wu, 1995a,b).

Statistical methods for structural models are concerned with estimating

the parameters of model (2.1) in asymptotically efficient ways, as well as with

testing the goodness–of–fit of (2.1). That is, the parameters of the model

can be estimated, and the model null hypothesis tested, without using the

ζ variables by relying on sample estimators as µ̂ and Σ̂ of the population

mean vector µ0 and covariance matrix Σ0 of the variables x, respectively.

In fact, any linear structural model implies a more basic set of parameters

θ0 = (θ0,1, . . . , θ0,q), so that µ0 = µ (θ0) and Σ0 = Σ (θ0). The q parameters

in θ0 represent elements of ϑ0, like mean vectors, loadings, variances and

covariances or correlations of the variables ζ. Here the representation as

well as the estimation and testing in model (2.1) will be restricted to a small

subset of structural models, namely, those that involve continuous observable

and unobservable variables whose essential characteristics can be investigated

via covariance or correlation matrices.

In general, inference on covariance or correlation structure models is a

straightforward matter when the model is linear and the latent variables, and

hence the observed variables, are presumed to be multivariate normally dis-

tributed. Since the only unknown parameters for a multivariate normal dis-

tribution are elements of mean vectors and covariance matrices, linear struc-

tural model generates structures for population mean vectors and covariance

matrices alone. Normal–theory–based methods such as maximum likelihood

(Jöreskog, 1967; Lawley and Maxwell, 1971) and generalized least squares

(Browne, 1974; Jöreskog and Goldberger, 1972) are frequently applied. The

sample mean vector and covariance matrix are jointly sufficient statistics,

and maximum likelihood estimation reduces to fitting structural models to

sample mean vectors and covariance matrices. Nevertheless, most social, be-

havioral, and economic data are seldom normal, so normal–based methods

can yield very distorted results. For example, in one distribution condition

of a simulation with a confirmatory factor analysis model, Hu, Bentler, and

Kano (1992) find that the likelihood ratio test based on normal–theory maxi-

mum likelihood estimator rejected the true model in 1194 out of 1200 samples
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at sample sizes that ranged from n = 150 to n = 5000. Possible deviations

of the distribution function from normality have led researchers to develop

asymptotically distribution free (shortly, ADF) estimation methods for co-

variance structures in which µ0 is unstructured using the minimum modified

chi–squared principle by Ferguson (1958) (Browne, 1982, 1984; Chamber-

lain, 1982). Although the ADF method attains reasonable asymptotically

good performance on sets of few variables, in large systems with small– to

medium–sized samples it can be extremely misleading; i.e., it leads to inac-

curate decisions regarding the adequacy of models (Hu, Bentler, and Kano,

1992). A computationally intensive improvement on ADF statistics has been

made (Yung and Bentler, 1994), but the ADF theory remains inadequate to

evaluate covariance structure models in such situations (Bentler and Dud-

geon, 1996; Steiger, 1994).

Increasingly relaxing the normal assumption of classical moment structure

analysis, one assumption still remains, namely x ∈ Rp can be described as a

linear combination of some (latent) random variables ζ with existing second

moments (and existing fourth moments to ensure asymptotic distributional

limits of sample covariance estimators). A wider class of distributions includ-

ing the multivariate normal distribution but also containing platykurtic and

leptokurtic distributions is the elliptical one. Consequently the assumption

of a distribution from the elliptical class is substantially less restrictive than

the usual assumption of multivariate normality. Browne (1982, 1984) intro-

duces elliptical distribution theory for covariance structure analysis. Under

the assumption of a distribution belonging to the elliptical class, a correction

for kurtosis of normal–theory–based methods for the estimators of covariance

matrix and test statistics is provided. Nevertheless, as Kano, Berkane, and

Bentler (1990) point out, most empirical data have heterogeneous values of

marginal kurtosis, whereas elliptical distributions require homogeneous ones.

Therefore, the results based on elliptical theory may not be robust to vio-

lation of ellipticity. Starting from the elliptical class, Kano, Berkane, and

Bentler (1990) discuss the analysis of covariance structures in a wider class

of distributions whose marginal distributions may have heterogeneous kurto-

sis parameters. An attractive feature of the heterogeneous kurtosis (shortly,



12 Moment Structure Analysis

HK) method is that the fourth–order moments of x do not need to be com-

puted as Browne (1984) does, because these moments are just a function of

the variances and covariances between variables x and of the kurtosis pa-

rameters. As a result, HK method can be used on models that are based

on a substantially large number of observed variables. Unfortunately, Kano,

Berkane, and Bentler (1990, Section 4) do not give necessary and sufficient

conditions in order to verify the existence of elliptical distributions with dis-

tinct marginal kurtosis coefficients and provide just a simple example in two

dimensions.

Finally, in order to completely relax the equality in distribution assump-

tion and manage flexible probability models one possible choice may be rep-

resented by copulas. Nevertheless, before reviewing their use in moment

structure analysis, in Section 2.1 we start with classical theoretical back-

grounds concerning the estimation of θ0 in model (2.1) by weighted least

squares. The asymptotic distribution of the estimator is discussed in the

ADF context and it is also considered under a more general elliptical distri-

bution assumption. In Section 2.2 we present an example of structural model;

i.e., the factor analysis model. We also talk about problems of identification

and estimation when x are assumed to be multivariate normally distributed.

2.1 Weighted least squares estimates in the

analysis of covariance structures

Let X represent a (n+ 1) × p data matrix whose rows are drawn by

a random vector of independent and identically distributed variables with

population mean µ0 and population covariance matrix Σ0. A covariance

structure is a model where the elements of Σ0 are regarded as functions of a

q–dimensional parameter θ0 ∈ Θ ⊆ Rq. Thus Σ0 is a matrix–valued function

with respect to θ0. The model is said to hold if there exists a θ0 ∈ Θ such

that Σ0 = Σ (θ0).

Let Σ̂, the sample covariance matrix based on a sample of size n+1, be an

unbiased estimator of Σ0 and consider a discrepancy function D
{

Σ̂,Σ (θ)
}
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which gives an indication of discrepancy between Σ̂ and Σ (θ) (Browne,

1982). This scalar valued function has the following properties:

(P.1) D
{

Σ̂,Σ (θ)
}
≥ 0;

(P.2) D
{

Σ̂,Σ (θ)
}

= 0 if and only if Σ̂ = Σ (θ)

(P.3) D
{

Σ̂,Σ (θ)
}

is a twice continuously differentiable function of Σ̂ and

Σ (θ).

A discrepancy function D
{

Σ̂,Σ (θ)
}

does not need to be symmetric in Σ̂

and Σ (θ), that is D
{

Σ̂,Σ (θ)
}

does not need to be equal to D
{

Σ (θ) , Σ̂
}

.

If the estimate of θ0 is obtained by minimizing some discrepancy function

D
{

Σ̂,Σ (θ)
}

, then

D
{

Σ̂,Σ
(
θ̂
)}

= min
θ∈Θ

D
{

Σ̂,Σ (θ)
}
.

The reproduced covariance matrix will be denoted by Σθ̂ = Σ
(
θ̂
)

.

Therefore, an estimator θ̂, taken to minimize D
{

Σ̂,Σ (θ)
}

, is called a min-

imum discrepancy function estimator. We call nD
(
Σ̂,Σθ̂

)
the associated

minimum discrepancy function test statistic. Since Σ0 is supposed to be

equal to Σ (θ0) according to (2.1), we shall regard θ0 as the value of θ which

minimizes D {Σ0,Σ (θ)}; i.e.,

min
θ∈Θ

D {Σ0,Σ (θ)} = D {Σ0,Σ (θ0)} .

The asymptotic distribution of the estimator θ̂ will depend on the par-

ticular discrepancy function minimized. Examples of discrepancy functions

are the likelihood function under the normality assumption for x,

DL

{
Σ̂,Σ (θ)

}
= log |Σ (θ)| − log

∣∣∣Σ̂∣∣∣+ tr
[
Σ̂ {Σ (θ)}−1

]
− p , (2.2)

which leads to the maximum likelihood estimator (Jöreskog, 1967; Lawley
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and Maxwell, 1971), and the quadratic (or weighted least squares) discrep-

ancy function

DQD

{
Σ̂,Σ (θ)

}
= {σ̂ − σ (θ)}>W−1 {σ̂ − σ (θ)} , (2.3)

where σ (θ) = vech {Σ (θ)}, σ̂ = vech
(
Σ̂
)

, and W is a p? × p? weight

matrix converging in probability to some positive definite matrix W 0 as

n → ∞, with p? = p (p+ 1) /2 (Browne, 1982, 1984). See Appendix A for

a definition of vec and vech operators. Typically W is considered to be a

fixed, possible estimated, positive definite matrix, although the theory can

be extended to random weight matrices (Bentler and Dijkstra, 1983). If W

is represented by 2G>p (V ⊗ V )Gp, where V is a p × p positive definite

stochastic matrix which converges in probability to a positive definite matrix

V 0 as n → ∞ and Gp represents the transition or duplication matrix (see

Appendix A for a formal definition), then the function in (2.3) is reduced to

DGLS

{
Σ̂,Σ (θ)

}
=

1

2
tr
[{

Σ̂−Σ (θ)
}
V −1

]2

, (2.4)

which is the normal–theory–based generalized least squares discrepancy

function (Browne, 1974; Jöreskog and Goldberger, 1972). One possible choice

for V is V = Σ̂, so that V 0 = Σ0. An other possible choice for V

is V = Σ
(
θ̂ML

)
, where Σ

(
θ̂ML

)
is the estimator which maximizes the

Wishart likelihood function for Σ̂ when x has a multivariate normal distri-

bution (Browne, 1974).

The following usual regularity assumptions are imposed to guarantee suit-

able asymptotic properties of the estimators θ̂ via quadratic discrepancy

function and the associated test statistics (Browne, 1984).

(A.0) As n → ∞, n1/2 {σ̂ − σ (θ0)} converges in law to a multivariate

normal with zero mean and covariance matrix Σσ, a p? × p? positive

definite matrix.

Remark. When x is normally distributed with covariance matrix Σ0,

Σσ is represented in the form Σσ = 2G>p (Σ0 ⊗Σ0)Gp.

(A.1) Σσ is positive definite.
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Remark. If x is normally distributed, (A.1) is equivalent to the con-

dition that Σ0 be positive definite.

(A.2) D {Σ0,Σ (θ)} has an unique minimum on Θ at θ = θ0; i.e., Σ (θ?) =

Σ (θ0), θ? ∈ Θ, implies that θ? = θ0.

(A.3) θ0 is an interior point of the parameter space Θ.

(A.4) The p? × q Jacobian matrix Jθ0 = J (θ0) :=
[
∂σ (θ) /∂θ>

]
θ=θ0

is of

full rank q.

(A.5) ‖Σ0 −Σ (θ0)‖ is O
(
n−1/2

)
.

Remark. This condition assumes that systematic errors due to lack of fit

of the model to the population covariance matrix are not large relative

to random sampling errors in Σ̂. Clearly (A.5) is always satisfied if

the structural model hold; i.e., Σ0 = Σ (θ0).

(A.6) The parameter set Θ is closed and bounded.

(A.7) Jθ and, consequently, Σ (θ) are continuous function of θ.

Under the assumptions (A.0)–(A.7), Browne (1984, Corollary 2.1) and

Chamberlain (1982) showed that the estimator θ̂ associated with the dis-

crepancy function (2.3) is consistent and asymptotically normal and that the

Cramèr–Rao lower bound of the asymptotic covariance matrix is

(
J>θ0 Σ−1

σ Jθ0
)−1

, (2.5)

attained when W = Σσ. An estimator is said to be asymptotically

efficient within the class of all minimum discrepancy function estimators if

its asymptotic covariance matrix is equal to (2.5). In this case, the associated

minimum discrepancy function test statistic, nDQD

(
Σ̂,Σθ̂

)
, was shown to

be asymptotically chi–squared with p?−q degrees of freedom (Browne, 1984,

Corollary 4.1).

Inference based on the discrepancy function (2.3) by excluding assump-

tion (A.0) is called the asymptotically distribution–free method. However,
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weighted least squares estimation can easily become distribution specific.

This is accomplished by specializing the optimal weight matrix W into the

form that it must have if the variables have a specified distribution. In other

words, the ADF method is a weighted least squares procedure in which the

weight matrix has to be properly specified in order to guarantee that the

asymptotic properties of standard normal theory estimators and test statis-

tics are obtained. Asymptotically this method has good properties, however

one needs a very large sample for the asymptotics to be appropriate (Hu,

Bentler, and Kano, 1992), and sometimes it could be computationally diffi-

cult to invert the p? × p? weight matrix W for moderate values of p.

When a p–variate random vector x is elliptical distributed, the weighted

least squares method can easily specialized to ellipticity. In this case, Σσ

can be represented as

Σσ = 2 ηG>p (Σ0 ⊗Σ0)Gp +G>p σ0 (η − 1)σ>0Gp ,

where σ0 = vec (Σ0) and η = E
{

(x− µ0)> Σ−1
0 (x− µ0)

}2

/ {p (p+ 2)}
is the relative Mardia (1970)’s multivariate kurtosis parameter of x.

Browne (1984, Section 4) proposed a rescaled test statistic

η̂−1 nDQD

(
Σ̂,Σθ̂

)
, (2.6)

where

η̂ =
n+ 2

n (n+ 1)

n+1∑
a=1

{
(xa − µ̂)> Σ̂

−1
(xa − µ̂)

}2

/ {p (p+ 2)} , xa ∈ Rp .

Test statistic (2.6) is asymptotically chi–squared with p? − q degrees of

freedom if the structural model for covariance matrix is invariant under a

constant scaling factor. This condition is satisfied if, given any θ ∈ Θ and

any positive scalar c2, there exists another parameter θ? ∈ Θ such that

Σ (θ?) = c2Σ (θ) (Browne, 1982, 1984). An important consequence of this

adaptation is that the normal–theory–based weighted least squares method is
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robust against non–normality among elliptical distributions after a correction

for kurtosis.

2.2 Factor analysis models

Originally developed by Spearman (1904) for the case of one common

factor, and later generalized by Thurstone (1947) and others to the case of

multiple factors, factor analysis is probably the most frequently used psy-

chometric procedure. The analysis of moment structures originated with the

factor analysis model and with some simple pattern hypothesis concerning

equality of elements of mean vectors and covariance matrices. Most models

involving covariance structures that are in current use are related with fac-

tor analysis in some way, either by being special cases with restrictions on

parameters or, more commonly, extensions incorporating additional assump-

tions; see, e.g., the generalized linear structural equations models (Jöreskog,

1973, 1977).

The aim of factor analysis is to account for the covariances of the observed

variates in terms of a much smaller number of hypothetical variates or factors.

The question is: if there is correlation, is there a random variate φ1 such that

all partial correlations coefficients between variables in x after eliminating

the effect of φ1 are zero? If not, are there two random variates φ1 and

φ2 such that all partial correlation coefficients between variables in x after

eliminating the effects of φ1 and φ2 are zero? The process continues until

all partial correlation coefficients between variables in x are zero. Therefore,

the factor analysis model partitions the covariance or correlation matrix into

that which is due to common factors, and that which is unique.

To introduce the factor analysis model, let A (ϑ0) = {diag (µ) ,Λ, Ip}
and ζ =

(
1>p ,φ

>,υ>
)>

in (2.1), where Ip stands for the identity matrix of

order p and 1p denotes the p–dimensional vector whose elements are all equal

to 1. The linear latent variable structure becomes

x
d
= µ+ Λφ+ υ , (2.7)
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where µ ∈ Rp is a location parameter, φ ∈ Φ ⊆ Rm for m � p is a

vector of non–observable and uncorrelated factors and υ ∈ Υ ⊆ Rp is a

vector of noise variables υj representing sources of variation affecting only

the variate xj. Without loss of generality, we suppose that the means of all

variates are zero; i.e., E (x) = 0, E (φ) = 0, and E (υ) = 0. In the case

of uncorrelated factors and of rescaled variances to unit, E
(
φφ>

)
= Im.

The coefficient λj,k for k = 1, . . . ,m is known as the loading of xj on φm

or, alternatively, as the loading of φm in xj. The p random variates υj are

assumed to be uncorrelated between each others and the m factors; i.e.,

E
(
υυ>

)
= Ψ = diag (ψ1, . . . , ψp) and E

(
φυ>

)
= 0. The variance of υj is

termed residual variance or unique variance of xj and denoted by ψj. Then,

describing the dependence structure of x through its covariance matrix yields

the covariance structure,

var (x) = Σ0 = ΛΛ> + Ψ , (2.8)

namely, the dependence of x is described through the entries of Λ.

Thus (2.7) corresponds to (2.1) and the parameter vector θ0 consists of

q = pm+ p elements of Λ and Ψ.

2.2.1 Uniqueness of the parameters

Given a sample covariance matrix Σ̂, we want to obtain an estimator of

the parameter vector θ0. First of all, we ask whether for a specified value

of m, less than p, it is possible to define a unique Ψ with positive diagonal

elements and a unique Λ satisfying (2.8). Since only arbitrary constraints

will be imposed upon the parameters to define them uniquely, the model will

be termed unrestricted.

Let us first suppose that there is a unique Ψ. The matrix Σ0 −Ψ must

be of rank m: this quantity is equal to the covariance matrix ΛΛ> in which

each diagonal element represents not the total variance of the corresponding

variate in x but only the part due to the m common factors. This is known

as communality of the variate.

If m = 1, then Λ reduces to a column vector of p elements. It is unique,
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apart from a possible change of sign of all its elements, which corresponds

merely to changing the sign of the factor.

For m > 1 there is an infinity of choices for Λ. (2.7) and (2.8) are still

satisfied if we replace φ byMφ and Λ by ΛM>, whereM is any orthogonal

matrix of order m. In the terminology of factor analysis this corresponds to

a factor rotation.

Suppose that each variate is rescaled in such a way that its residual vari-

ance is unity. Then

Σ?
0 = Ψ−1/2 Σ0 Ψ−1/2 = Ψ−1/2 ΛΛ>Ψ−1/2 + Ip

and

Σ?
0 − Ip = Ψ−1/2 ΛΛ>Ψ−1/2 = Ψ−1/2 (Σ0 −Ψ) Ψ−1/2 .

The matrix Σ?
0− Ip is symmetric and of rank m and it may be expressed

in the form Ω Ξ Ω>, where Ξ is a diagonal matrix of order m, where the

elements are the m non zero eigenvalues of Σ?
0−Ip, and Ω is a p×m matrix

satisfying ΩΩ> = Ip, where the columns are the corresponding eigenvectors.

Note that Σ?
0 has the same eigenvectors as Σ?

0−Ip, and that its p eigenvalues

are those of Σ?
0 − Ip increased by unit.

We may define Λ uniquely as

Λ = Ψ1/2 Ω Ξ1/2 . (2.9)

Since Ψ−1/2 Λ = Ψ−1/2 Ψ1/2 Ω Ξ1/2 = Ω Ξ1/2,

(
Ψ−1/2Λ

)>
Ψ−1/2 Λ = Λ>Ψ−1 Λ = Ξ1/2 Ω>Ω Ξ1/2 = Ξ .

Thus, from (2.9), we have chosen Λ such that Λ>Ψ−1 Λ is a diagonal

matrix whose positive and distinct elements are arranged in descending order

of magnitude. Then Λ and Ψ are uniquely determined.

For m > 1, the fact that Λ>Ψ−1 Λ should be diagonal has the effect of

imposing m (m− 1) /2 constraints upon the parameters. Hence the number

of free (unknown) parameters in θ0 becomes
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pm+ p− 1

2
m (m− 1) = q − 1

2
m (m− 1) .

If we equate corresponding elements of the matrices on both sides of (2.8),

we obtain p? distinct equations. The degrees of freedom of the model are

p? − q +
1

2
m (m− 1) =

1

2

{
(p−m)2 − (p+m)

}
.

If the result of subtracting from p? the number of free parameters is equal

to zero, we have as many equations as free parameters, so that Λ and Ψ are

uniquely determined. If it is less than zero, there are fewer equations than

free parameters, so that we have an infinity of choices for Λ and Ψ. Finally,

if it is grater than zero, we have more equations than free parameters and

the solutions are not trivial.

2.2.2 Factor Analysis by generalized least squares

We suppose that there is a unique Ψ, with positive diagonal elements, and

a unique Λ such that Λ>Ψ−1 Λ is a diagonal matrix whose diagonal elements

are positive, distinct and arranged in decreasing order of magnitude.

Following Jöreskog and Goldberger (1972), we assume that x is multivari-

ate normal distributed, that is Σ̂ has the Wishart distribution with expecta-

tion Σ0 and covariance matrix 2n−1 (Σ0 ⊗Σ0). Therefore, a straightforward

application of generalized least squares principle would choose parameter es-

timates to minimize the quantity (2.4). Using the estimate Σ̂ in place of V

in (2.4) gives

DGLS

{
Σ̂,Σ (θ)

}
=

1

2
tr
{
Ip −Σ (θ) Σ̂

−1
}2

=
1

2
tr
{
Ip − Σ̂

−1
Σ (θ)

}2

,

(2.10)

which is the criterion to be minimized in the generalized least squares

procedure. It is also possible to show that the maximum likelihood crite-

rion (2.2) can be viewed as an approximation of (2.10) under the normal

distribution assumption for x.



FACTOR ANALYSIS BY GENERALIZED LEAST SQUARES 21

Equation (2.10) is now regarded as a function of Λ and Ψ and it has to

be minimized with respect to these matrices. The minimization is done in

two steps. We first find the conditional minimum of (2.10) for a given Ψ and

then we find the overall minimum.

To begin we shall assume that Ψ is nonsingular. We set equal to zero

the partial derivative of (2.10) with respect to Λ and premultiplying by Σ̂

we obtain

(
Ψ1/2 Σ̂

−1
Ψ1/2

)
Ψ−1/2 Λ = Ψ−1/2 Λ

(
Im + Λ>Ψ−1 Λ

)−1
, (2.11)

where we use the (ordinary) inverse of matrices of the form Ψ + ΛImΛ>

for Σ (θ). The matrix Λ>Ψ−1 Λ may be assumed to be diagonal. The

columns of the matrix on the right side of (2.11) then become proportional

to the columns of Ψ−1/2 Λ. Thus the columns of Ψ−1/2 Λ are characteristic

vectors of Ψ1/2 Σ̂
−1

Ψ1/2 and the diagonal elements of
(
Im + Λ>Ψ−1 Λ

)−1

are the corresponding roots. Let ξ1 ≤ . . . ≤ ξp be the characteristic roots of

Ψ1/2 Σ̂
−1

Ψ1/2 and let ω1 ≤ . . . ≤ ωp be an orthonormal set of correspond-

ing characteristic vectors. Let Ξ = diag (ξ1, . . . , ξp) be partitioned as Ξ =

diag (Ξ1,Ξ2), where Ξ1 = diag (ξ1, . . . , ξm) and Ξ2 = diag (ξm+1, . . . , ξp).

Let Ω = [ω1 . . . ωp] be partitioned as Ω = [Ω1 Ω2], where Ω1 consists of the

first m vectors and Ω2 of the last p − m vectors. Then Ψ1/2 Σ̂
−1

Ψ1/2 =

Ω1Ξ1Ω
>
1 + Ω2Ξ2Ω

>
2 and the conditional solution Λ̂ is given by

Λ̂ = Ψ1/2 Ω1 (Ξ1 − Im)1/2 . (2.12)

Defining Σ̃ = Λ̂Λ̂
>

+Ψ, it can be verified that Ψ−1/2 Σ̃ Ψ−1/2 = Ω1 Ξ1 Ω>1 +

Ω2 Ω>2 and Ip − Σ̂
−1

Σ̃ = Ψ−1/2
{
Ω2 (Ip−m −Ξ2) Ω>2

}
Ψ1/2 so that

tr
(
Ip − Σ̂

−1
Σ̃
)2

= tr (Ip−m −Ξ2)2 =

p∑
j=m+1

(ξj − 1)2 .

Therefore the conditional minimum of (2.10), with respect Λ for a given

Ψ is the function defined by
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DGLS

{
Σ̂,Σ (θ)

}
=

1

2

p∑
j=m+1

(ξj − 1)2 . (2.13)

Any other set of roots will give a larger DGLS

{
Σ̂,Σ (θ)

}
.

To start the two–steps procedure we require an initial estimate for Ψ.

We could take Ψ(0) = Ip. A better choice for Ψ(0) is however given by

ψ̂
(0)
i,i =

(
1− 1

2
m/p

)(
1/σ̂i,i

)
, i = 1, . . . , p , (2.14)

where σ̂i,j denotes the elements in the i–th row and j–th column of Σ̂
−1

.

This choice has been justified by Jöreskog (1963) and appears to work rea-

sonably well in practice.



Chapter 3

Analysis of correlation

structures: the Copula

Structure Analysis

The theory for structural model analysis has been mostly developed for

covariance matrices. This contrasts with common practice in which corre-

lations are most often emphasized in data analysis. Correlation structures

are of primary interest in situations when the different variables under con-

sideration have arbitrary scales. Applying a covariance structure model to

a correlation matrix will produce different test statistics, unbiased standard

errors or parameter estimates and may alter the model being studied, unless

the model under examination is appropriate for scale changes. The reason for

this problem is not difficult to understand. If a correlation matrix is input,

the elements on the main diagonal are no longer random variables: they are

always equal to 1. Clearly, then, when a covariance matrix is replaced by

a correlation matrix, a random vector containing p? = p (p+ 1) /2 random

variables is replaced by a random vector with only p?? = p (p− 1) /2 elements

free to vary.

Scale invariance is an essential property in order to apply covariance struc-

ture models to correlation matrices, but it is only minimally restrictive. The

covariance structure Σ (θ) is said to be invariant under a constant scaling
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factor if for any positive scalar c2 and θ ∈ Θ, there exists θ? ∈ Θ such that

c2Σ (θ) = Σ (θ?). The covariance structure Σ (θ) is said to be fully scale

invariant if for any positive definite diagonal matrix C and any θ ∈ Θ, there

exists θ? ∈ Θ such that CΣ (θ)C = Σ (θ?) (Browne, 1982). For instance,

exploratory factor analysis and most of confirmatory factor analysis, LISREL,

and EQS models satisfy this latter assumption. CΣ (θ)C means a change

of units of measurement, therefore, if some model in multivariate analysis

does not satisfy the scale invariance assumption, the model will depend on

the units of measurement, which is usually unreasonable. An example of a

model which is not fully scale invariant is the confirmatory factor analysis

model with some factor loadings fixed at non–zero values or the confirma-

tory factor analysis model with some factor loadings fixed at zero and with

restrictions on factor inter–correlations (Cudeck, 1989). However, in gen-

eral, by transforming a model on covariances to a model on correlations, the

model will be fully scale invariant. A careful discussion of the difficulties

associated with the analysis of correlation matrices as covariance matrices

and related problems are provided by Cudeck (1989). Moreover, Shapiro and

Browne (1990) investigate conditions under which methods intended for the

analysis of covariance structures result in correct statistical conclusions when

employed for the analysis of correlation structures.

Linear correlation structure analysis is concerned with the representation

of the linear dependence structure aiming at a reduction in dimension. Let us

consider a random vector x ∈ Rp such that (2.1) holds. Correlation structure

analysis is now based on the assumption that the population correlation

matrix of the variables, R0, satisfies the equation R0 = R (θ0), where R (θ0)

is the correlation matrix according to the model (2.1).

Let θ0 ∈ Θ ⊆ R be a q–dimensional parameter. A correlation structure

model is then a matrix–valued function with respect to θ0,

R : Θ→ Rp×p , θ0 7→ R (θ0) , (3.1)

such that R (θ0) is a correlation matrix.

Provided that the data are normally distributed, the approach of de-
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composing the correlation structure analogously to (2.8) is justified, since

dependence in normal data is uniquely determined by correlation. However,

many data sets exhibit properties contradicting the normality assumption.

Copula structure analysis is a statistical method for correlation structures in-

troduced by Klüppelberg and Kuhn (2009) to tackle non–normality, problems

of non-existing moments (second and fourth moments that ensure asymptotic

distributional limits of sample covariance or correlation estimator) or differ-

ent marginal distributions by using copula models. Klüppelberg and Kuhn

(2009) focus on elliptical copulas: as the correlation matrix is the parame-

ter of an elliptical copulas, correlation structure analysis can be extended to

such copulas. They only need independent and identically distributed data

to ensure consistency and asymptotic normality of the estimated parameter

θ̂ as well as the asymptotic χ2–distribution of the test statistic for model

selection, that is for the estimation of the number of latent variables.

Next sections are completely devoted to briefly review the theory of cop-

ulas and its use in correlation structure analysis.

3.1 Copula theory: an introduction

The history of copulas may be said to begin with Fréchet (1951). He stud-

ied the following problem, which is stated here in a bi–dimensional context:

given the distribution functions F1 and F2 of two random variables x1 and x2

defined on the same probability space (R,B, pr), what can be said about the

set C of the bivariate distribution functions whose marginals are F1 and F2?

It is immediate to note that the set C, now called the Fréchet class of F1 and

F2, is not empty since, if x1 and x2 are independent, then the distribution

function (x1, x2) 7→ F (x1, x2) = F1 (x1)F2 (x2) always belongs to C. But, it

was not clear which the other elements of C were. In 1959, Sklar obtained

the deepest result in this respect, by introducing the notion, and the name,

of copula.

Definition 3.1 For every p ≥ 2, a p–dimensional copula C is a p–variate

distribution function on [0, 1]p whose univariate marginals are uniformly dis-
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tributed on [0, 1].

Thus, each p–dimensional copula may be associated with a random vari-

able u = (u1, . . . , up)
> such that uj ∼ Unif (0, 1) for every j = 1, . . . , p and

u ∼ C. Conversely, any random vector whose components are uniformly

distributed on [0, 1] is distributed according to some copula. The notation

uj ∼ Unif (0, 1) means that the random variable uj has uniform distribution

function on [0, 1]. The notation := will be also used for representing the

equality by definition later.

Sklar’s theorem is the building block of the theory of copulas; without

it, the concept of copula would be one in a rich set of joint distribution

functions.

Theorem 3.1 (Sklar, 1959) Let F be a p–dimensional distribution func-

tion with univariate margins F1, . . . , Fp. Let Ranj denote the range of Fj,

Ranj := Fj (R) (j = 1, . . . , p). Then, there exists a copula C such that for all

(x1, . . . , xp)
> ∈ Rp,

F (x1, . . . , xp) = C {F1 (x1) , . . . , Fp (xp)} . (3.2)

Such a C is uniquely determined on Ran1 × . . . × Ranp and, hence, it is

unique when F1, . . . , Fp are all continuous.

Theorem 3.1 also admits the following converse implication, usually very

important when one wants to construct statistical models by considering,

separately, the univariate behavior of the components of a random vector

and their dependence properties as captured by some copula.

Theorem 3.2 If F1, . . . , Fp are univariate distribution functions, and if C

is any p–dimensional copula, then the function F : Rp → [0, 1] defined by

(3.2) is a p–dimensional distribution function with margins F1, . . . , Fp.

The joint distribution function C of {F1 (x1) , . . . , Fp (xp)}> is then called

the copula of the random vector (x1, . . . , xp)
> or the multivariate distribution

F . If F1, . . . , Fn are not all continuous it can still be shown (see Schweizer
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and Sklar, 1983, Chapter 6) that the joint distribution function can always

be expressed as in (3.2), although in this case C is no longer unique and we

refer to it as a possible copula of F .

The proof of Sklar’s theorem was not given in Sklar (1959). A sketch of

it was provided in Sklar (1973) (see also Schweizer and Sklar, 1974), so that

for a few years practitioners in the field had to reconstruct it relying on the

hand–written notes by Sklar himself. It should be also mentioned that some

“indirect” proofs of Sklar’s theorem (without mentioning copula) were later

discovered by Moore and Spruill (1975). More recent proofs are also provided

by Sklar (1996), Burchard and Hajaiej (2006), and Rüschendorf (2009).

Since copulas are multivariate distribution functions, they can be char-

acterized in the following equivalent way.

Theorem 3.3 A function C : [0, 1]p → [0, 1] is a copula if, and only if, the

following properties hold:

(P.1) for every j = 1, . . . , p, C (u) = uj when all the components of u are

equal to 1 with the exception of the j–th one that is equal to uj ∈ [0, 1];

(P.2) C is isotonic; i.e., C (u) ≤ C (v) for all u,v ∈ [0, 1]p, u ≤ v;

(P.3) C is p–increasing.

As a consequence, we can prove also that C (u) = 0 for every u ∈ [0, 1]p

having at least one of its components equal to 0.

Basic class of copulas are:

• the independence copula Πp (u) = u1 . . . up associated with a random

vector u = (u1, . . . , up)
> whose components are independent and uni-

formly distributed on [0, 1]p;

• the comonotonicity copula Mp (u) = min (u1, . . . , up) associated with a

vector u = (u1, . . . , up)
> of random variables uniformly distributed on

[0, 1]p and such that u1 = . . . = up almost surely;
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Figure 3.1: Independent realizations from bivariate countermonotonicity (a), indepen-
dence (b), comonotonicity (c) copulas, respectively.

• the countermonotonicity copula W2 (u1, u2) = max {u1 + u2 − 1, 0} as-

sociated with a vector u = (u1, u2)> of random variables uniformly

distributed on [0, 1]2 and such that u1 = 1− u2 almost surely.

By summarizing, from any p–variate distribution function F one can

derive a copula C via (3.2). Specifically, when Fj is continuous for every

j = 1, . . . , p, C can be obtained by means of the formula

C (u1, . . . , up) = F
{
F−1

1 (u1) , . . . , F−1
p (up)

}
,

where F−1
j (u) := inf {x ∈ R |Fj (x) ≥ u , u ∈ [0, 1]} denotes the pseudo–

inverse of Fj. Thus, copulas are essentially a way for transforming the
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random variables (x1, . . . , xp)
> into another random variable (u1, . . . , up)

>,

uj = Fj (xj), having the margins uniform on [0, 1] and preserving the depen-

dence among the components. Alternatively, one could transform x to any

other distribution, but Unif (0, 1) is particularly easy.

On the other hand, any copula can be combined with different univariate

distribution functions in order to obtain a p–variate distribution function by

using (3.2). In particular, copulas can serve for modeling situations where

a different distribution is needed for each marginal, providing a valid alter-

native to several classical multivariate distribution functions such Gaussian,

Student’s t, Pareto, etc., as Durante and Sempi (2010) point out.

In what follows, we deal with semi–parametric copula models P , which

are defined as follows. Let C =
{
Cx (· ; α) : α ∈ A ⊂ Rd

}
be a parametric

family of copulas on [0, 1]p with density cx (· ; α) with respect to Lebesgue

measure on [0, 1]p, indexed by a d–dimensional real parameter vector α.

For α ∈ A and arbitrary distribution functions F1, . . . , Fp on R, let

Fα,F1,...,Fp be the distribution function on Rp defined by

Fα,F1,...,Fp (x1, . . . , xp) = Cx {F1 (x1) , . . . , Fp (xp) ; α}

for (x1, . . . , xp) ∈ Rp. Then with pr (·;α, F1, . . . , Fp) denoting the cor-

responding probability measure on (Rp,Bp), where Rp is the p–dimensional

real Euclidean space and Bp its Borel σ–field, and F denoting the collection

of all distribution function on R,

P = {pr (·;α, F1, . . . , Fp) : α ∈ A, Fj ∈ F , j = 1, . . . , p}

is a semi–parametric copula model.

One simple example, which is widely exploited by Klüppelberg and Kuhn

(2009), is provided by the family of elliptical copulas being the copulas of

elliptical distributions. These copulas are very flexible and easy to handle

also in high dimensions. For instance, let us consider the copula resulting

from the multivariate normal distribution on Rp, Fµ0,Σ0 , having mean vector

µ0 and covariance matrix Σ0. Let Fj denote the one–dimensional standard

normal distribution function with mean 0 and variance 1. Then, Cα satisfies
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Cx (u1, . . . , up ; α) = Fx
{
F−1

1 (u1) , . . . , F−1
p (up) ; α

}
where, in this case, α consists of the population linear correlation coeffi-

cients between variables x.

3.1.1 The elliptical and meta–elliptical copulas

As underlined in the previous section, copulas play an important role

in the construction of multivariate distribution function. As a consequence,

having at one’s disposal a variety of copulas can be very useful for build-

ing stochastic models with different properties, sometimes indispensable in

practice (e.g., heavy tails, asymmetries, etc.). Therefore, several investiga-

tions have been carried out concerning the construction of different families

of copulas and their properties. In this work we deal just two of them, by

focusing in this chapter on the family that Klüppelberg and Kuhn (2009) use

in their work, namely, elliptical copulas. Different families (or construction

methods) are discussed in the books of Joe (1997) and Nelsen (2006).

Elliptical copulas describe the dependence structure in elliptical distribu-

tions as well as in their extensions, the meta–elliptical distributions, which

have been originally introduced in Fang, Fang, and Kotz (2002). Their prop-

erties are examined by Frahm, Junker, and Szimayer (2003) and Abdous,

Genest, and Rèmillard (2005). These dependence structures are popular in

actuarial science and in finance; see Malevergne and Sornette (2003), Cheru-

bini, Luciano, and Vecchiato (2004), McNeil, Frey, and Embrechts (2005)

and references therein. We start by recalling the definition of an elliptical

distribution and we refer to Fang, Kotz, and Ng (1990) for a comprehensive

overview.

A random vector x ∈ Rp has an elliptical distribution with parameters

µ0 ∈ Rp and a positive (semi) definite matrix Σ0 ∈ Rp×p, if x has the

stochastic representation

x
d
= µ0 + rAu , A ∈ Rp×p , (3.3)
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where AA> = Σ0 is the Cholesky decomposition of Σ0, r ≥ 0 is a ran-

dom variable, u is uniformly distributed on the unit sphere in Rp and is

independent of r.

We write x ∼ E (µ0,Σ0, h), where h (·) is a scale function uniquely deter-

mined by the distribution of r. The random variable r is called the generating

variable. Further, if the first moment exists, then E (x) = µ0 and, if the sec-

ond moment exists, then r can be chosen such that cov (x) = Σ0. We define

the correlation matrix R0 of x as R0 := diag (Σ0)−1/2 Σ0 diag (Σ0)−1/2. If

x has finite second moment, then cor (x) = R0.

The representation (3.3) is such that, when r has a density, the multivari-

ate density of x is given by

f (t) = |Σ0|−1/2 h
{

(t− µ0)>Σ−1
0 (t− µ0)

}
, t ∈ Rp .

When h (t) = e−t/2, for instance, x is multivariate normal. Similarly,

h (t) = c (1 + t/ν)−(p+ν)/2, for a suitable constant c, generates the multivari-

ate Student’s t distribution with ν degrees of freedom.

We define an elliptical copula as the copula of x ∼ E (µ0,Σ0, h), de-

noted by EC (R0, h). We call R0 the copula correlation matrix. The notion

EC (R0, h) for an elliptical copula makes sense, since it is characterized by

the generating variable r (which is unique up to a multiplicative constant)

and the copula correlation matrix R0.

One inconvenient limitation of elliptical distributions is that the scaled

variables (with respect to the standard deviation) are identically distributed

according to a distribution function F . However, models based on the unique

meta–elliptical distribution associated with x do not suffer from this de-

fect. We regain the flexibility of modeling the margins separately, while

keeping the dependence structure of an elliptical distribution, by consider-

ing meta–elliptical distribution functions. The dependence structure in a

meta–elliptical distribution is hence described by the corresponding elliptical

copula.
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3.2 Copula Structure Analysis assuming el-

liptical copulas

For a linear correlation structure model with elliptical latent variables,

function (3.1) corresponds to the following situation. Let ζ ∼ E (0, Iz, h) be

a z–dimensional elliptical random vector, let A : Θ → Rp×z ,θ0 7→ A (θ0),

be some matrix–valued function with argument θ0 and define

Σ : Θ→ Rp×p , θ0 7→ Σ (θ0) := A (θ0)A (θ0)> . (3.4)

Then expression (3.1) can be written as

R (θ0) = diag {Σ (θ0)}−1/2 Σ (θ0) diag {Σ (θ0)}−1/2 . (3.5)

As a correlation matrix is a parameter of an elliptical copula, we can

extend the usual correlation structure model to elliptical copulas. Denote

by CA(θ0)ζ the copula of A (θ0) ζ ∈ Rp. Klüppelberg and Kuhn (2009) state

that the random vector x ∈ Rp with copula Cx satisfies a copula structure

model, if

Cx = CA(θ0)ζ ∈ EC {R (θ0) , h} , (3.6)

where R (θ0) is defined in (3.5).

Define F−1 (u) :=
{
F−1

1 (u1) , . . . , F−1
p (up)

}>
as the vector of the pseudo–

inverses of the marginal distribution functions of x and H (x) := {H1 (x1) ,

, . . . , Hp (xp)}> as the vector of the marginal distribution functions ofA (θ0) ζ.

Then condition (3.6) is equivalent to x ∼ F−1 [H {A (θ0) ζ}], where all op-

erations are component–wise. Hence, the copula model can also be seen as

an extension of a correlation structure model for elliptical data, where the

equality in distribution assumption for the variables in x is relaxed. If not

only Cx = CA(θ0)ζ holds but also H = F with existing second moment, then

this is a classical correlation or covariance structure model. For normal ζ it

gives back the classical normal model.

The standard correlation structure model assumes some (functional) struc-



COPULA STRUCTURE ANALYSIS ASSUMING ELLIPTICAL COPULAS 33

ture for the correlation matrix of the observed data. The only difference lies

in the interpretation of the correlation matrix. In the classical model it

represents the linear correlation between the data. In the copula model it

represents a more general dependence parameter which can be interpreted as

a correlation–like measure.

Now, let’s turn to the problem of estimating a copula structure model.

It means to estimate the parameter θ0 that characterizes the correlation

structure. Let x1, . . . ,xn be an IID sequence of random vectors in Rp and

denote by R̂ := R̂ (x1, . . . ,xn) an arbitrary estimator of the correlation

matrixR0 of x as for instance the empirical correlation or a copula correlation

estimator. Given the estimator R̂, Klüppelberg and Kuhn (2009) want to

find some parameter vector θ which fits the assumed structure R (θ) to R̂

as well as possible. They define r̂ := vecp
(
R̂
)

and r (θ) := vecp {R (θ)},
the vectors of patterned matrices R̂ and R (θ) (see Appendix A), and they

estimate θ0 by minimizing the discrepancy function (2.3) defined by

DQD {r̂, r (θ) |W } = {r̂ − r (θ)}>W−1 {r̂ − r (θ)} , (3.7)

where W is a positive definite matrix or a consistent estimator of some

positive definite matrix.

We now review some results due to Browne (1984), which Klüppelberg

and Kuhn (2009) exploit for the estimation of the copula structure model.

Given a discrepancy function D and some estimator R̂ of the correlation

matrix R0, Klüppelberg and Kuhn (2009) can firstly define a consistent es-

timator of θ0.

Proposition 3.1 (Browne, 1984, Proposition 1) Let R0 be the popula-

tion correlation matrix, and r0 := vecp (R0) ∈ Rp??, p?? = p (p− 1) /2.

Assume that r̂ is an estimator of r0 based on an IID sample x1, . . . ,xn and

that r̂
p−→ r0 as n → ∞. Further suppose that D is a discrepancy function

satisfying properties (P.1), (P.2) and (P.3) and that regularity conditions

(A.2), (A.6) and (A.7) hold, as specified in Section 2.1. Define the esti-

mator
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θ̂ := argmin
θ∈Θ

D {r̂, r (θ) |W } . (3.8)

Then

θ̂
p−→ θ0 as n→∞.

Given the estimator of θ0, Klüppelberg and Kuhn (2009) show how to

test the assumed correlation structure. Under the assumption of Proposition

3.1, let TW be the test statistic,

TW := nmin
θ∈Θ

DQD {r̂, r (θ) |W } , (3.9)

for some matrix W . The null hypothesis is that the true correlation

vector r0 satisfies a prespecified correlation structure model; i.e.,

H0 : r0 = r (θ0) (3.10)

for some θ0 ∈ Θ.

To obtain the limit distribution of TW for the quadratic discrepancy func-

tion (3.7), Klüppelberg and Kuhn (2009) apply the following result due to

Browne (1984).

Theorem 3.4 (Browne, 1984, Corollary 4.1) Assume that the conditions

of Proposition 3.1 and (A.3) and (A.4) hold, as specified in Section 2.1.

Furthermore, assume that n1/2 (r̂ − r0)
L−→ N (0,W 0) and that Ŵ is a con-

sistent estimator of W 0. Then, under the null hypothesis (3.10),

TŴ := nmin
θ∈Θ

D
{
r̂, r (θ)

∣∣∣Ŵ }
L−→ χ2 ,

as n → ∞, where the degrees of freedom are p?? − q, with q being the

dimension of θ.

To select an appropriate correlation structure model, that is to correctly

estimate the number of latent variables, Klüppelberg and Kuhn (2009) take

a set of g nested models (such that all satisfy the assumptions of Theorem
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3.4) and define the null hypotheses H
(s)
0 : r0 = r

{
θ

(s)
0

}
for some θ

(s)
0 ∈ Θ(s),

1 ≤ s ≤ g. Assume that at least one of these null hypotheses holds true; i.e.,

there is some s′ such that H
(s)
0 does not hold for 1 ≤ s < s′ and does hold for

s′ ≤ s ≤ g. As Klüppelberg and Kuhn (2009) are interested in a structure

model, which is likely to explain the observed dependence structure and is

as simple as possible, the smallest index s′ where the null hypothesis is not

rejected must be estimated. By Theorem 3.4 the corresponding test statistics

T
(s)

Ŵ
:= n min

θ∈Θ(s)
DQD

{
r̂, r

(
θ

(s)
0

) ∣∣∣Ŵ }
are not χ2 distributed for 1 ≤ s < s′ and are χ2 distributed for s′ ≤ s ≤ g.

Consequently, Klüppelberg and Kuhn (2009) reject a null hypothesis H
(s)
0 , if

the corresponding test statistic T
(s)

Ŵ
is larger than some χ2 quantile. Hence,

s′ represents the smallest number of latent variables where H
(s′)
0 cannot be

rejected.

As Klüppelberg and Kuhn (2009) consider a copula structure model, ac-

cording to Theorem 3.4 they need an estimator R̂ of the copula correlation

matrix R0, such that the vector of its patterned version is asymptotically

distributed as a multivariate normal with mean R0 and covariance matrix

W 0, a p?? × p?? positive definite matrix. Moreover, they need a consistent

estimator for W 0 to be included as weight matrix W in (3.7).

Concerning elliptical copulas EC (R0, h) with absolute continuous gen-

erating variable r > 0, Fang, Fang, and Kotz (2002) (originally, Kruskal,

1958) provide a functional relationship between correlation matrix R0 and

Kendall’s τ–matrix T := [τi,j]1≤i,j≤p.

Theorem 3.5 (Fang, Fang, and Kotz, 2002, Theorem 3.1) Let x be a

vector of random variables with elliptical copula EC (R0, h) and absolutely

continuous generating variable r > 0; then

ρi,j = sin
(π

2
τi,j

)
. (3.11)

Since Klüppelberg and Kuhn (2009) consider an elliptical copula, they

invoke the relationship (3.11) for the estimation of R0. Estimating the cop-
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ula correlation matrix via Kendall’s τ yields a general useful result in order

to provide conditions for Theorem 3.4. This naive method of estimation for

copula parameters, which is in the spirit of Pearson’s method of moments,

is typical for some copula families. A rough–and–ready strategy thus might

be to estimate the copula correlation coefficients by replacing in (3.11) the

population Kendall’s tau with its sample value. The main idea then involves

computing the matrix of sample Kendall’s taus, and then inverting the re-

sulting matrix element–wise using (3.11).

The copula moment–based estimation of R0 can then be seen as a robust

extension of the usual correlation structure analysis, where it is not required

the existence of moments.

Theorem 3.6 (Klüppelberg and Kuhn, 2009, Theorem 3) Let x1, . . .,

xn be an IID sequence in Rp with elliptical copula EC (R0, h) and absolutely

continuous generating variable r > 0. Let T̂ := [τ̂i,j]1≤i,j≤p be the estimated

Kendall’s τ–matrix. Further, define the estimated correlation matrix as

R̂τ := sin
(π

2
T̂
)
, (3.12)

where the sine function is used componentwise, and define r̂τ := vecp
(
R̂τ

)
and r0 := vecp (R0), the vectors of patterned matrices R̂τ and R0, respec-

tively. Then, as n→∞,

n1/2 (r̂τ − r0)
L−→ N (0,Στ ) ,

where Στ :=
[
στij,kl

]
1≤i 6=j,k 6=l≤p and

στij,kl = π2 cos
(π

2
τi,j

)
cos
(π

2
τk,l

)
(τij,kl − τi,jτk,l) ,

τi,j = E [sgn {(x1,i − x2,i) (x1,j − x2,j)}] , (3.13)

τij,kl =E (E [sgn {(x1,i − x2,i) (x1,j − x2,j)} |x1 ]
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E [sgn {(x1,k − x3,k) (x1,l − x3,l)} |x1 ]) . (3.14)

The following result provides a consistent estimator for the asymptotic

covariance matrix Στ .

Theorem 3.7 (Klüppelberg and Kuhn, 2009, Theorem 4) Under the

assumptions of Theorem 3.6, let us define the estimator of Στ as

Σ̂τ :=
[
π2 cos

(π
2
τ̂i,j

)
cos
(π

2
τ̂k,l

)
(τ̂ij,kl − τ̂i,j τ̂k,l)

]
1≤i 6=j,k 6=l≤p

, (3.15)

where

τ̂i,j =

(
n

2

)−1 ∑
1≤a<b≤n

sgn {(Xa,i −Xb,i) (Xa,j −Xb,j)}

and

τ̂ij,kl =
1

n (n− 1)2

n∑
a=1

([
n∑

b=1,b 6=a

sgn {(Xa,i −Xb,i) (Xa,j −Xb,j)}

]
×

×

[
n∑

c=1,c 6=a

sgn {(Xa,k −Xc,k) (Xa,l −Xc,l)}

])
.

Then, vech
(
Σ̂τ

)
is consistent and asymptotically normal.

Unfortunately, both the Kendall’s τ–based estimated correlation matrix

(3.12) as well as its estimated asymptotic covariance matrix (3.15) may some-

times not be positive definite. In such a case, Klüppelberg and Kuhn (2009)

suggest to replace them by its projection into the class of correlation or co-

variance matrices, respectively. An algorithm for the computation of the

projection R̂
?

τ of R̂τ into the class of correlation matrices iteratively replaces

negative eigenvalues by 0 and then replaces the diagonal of the resulting

matrix by 1; see Rousseeuw and Molenberghs (1993) or Higham (2002). It
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can be shown that the projection Σ̂
?

τ of Σ̂τ into the class of covariance ma-

trices is obtained by replacing the negative eigenvalues of Σ̂τ by 0; also see

Rousseeuw and Molenberghs (1993) or Higham (2002).

By exploiting the results of Theorem 3.6 and Theorem 3.7, Klüppelberg

and Kuhn (2009) can now apply the test statistic (3.9) in order to test a spec-

ified structural model r0 = r (θ0) for some θ0 ∈ Θ. Since the asymptotic

χ2–distribution of the test statistic (3.9) depends on some analytic regular-

ity conditions, which may not be satisfied, a robust test statistic has been

suggested in Browne (1984, Proposition 4) (also see Yuan and Bentler, 1999,

and Satorra and Bentler, 2001). Instead of using Σ̂
−1

τ as weight matrix in

the test statistic (3.9), the corrected version

Σ̂
−1

τ − Σ̂
−1

τ Ĵ
(
Ĵ
>
Σ̂
−1

τ Ĵ
)−1

Ĵ
>
Σ̂
−1

τ

is taken, where Ĵ is an estimator of the Jacobian matrix Jθ0 = J (θ0) :=[
∂r (θ) /∂θ>

]
θ=θ0

.

3.3 The copula factor model

Klüppelberg and Kuhn (2009) state that the random vector x ∈ Rp with

copula Cx satisfies an elliptical copula factor model if condition (3.6) hold,

that is if there exists ζ ∼ E (0, Iz, h) with z = m+ p such that

Cx = C(Λ,Ip)ζ , (3.16)

where θ0 = vecp (Λ,Ψ), and the correlation matrix is assumed to be of

the formR0 = R
(
θ̃0

)
= Λ̃Λ̃

>
+Ψ̃ for somem� p, Λ̃ = diag {Σ (θ0)}−1/2 Λ ∈

Rp×m and Ψ̃ = diag {Σ (θ0)}−1/2 Ψ diag {Σ (θ0)}−1/2 ∈ Rp×p, with θ̃0 =

vecp
(
Λ̃, Ψ̃

)
and Σ0 = Σ (θ0) = ΛΛ>+ Ψ. Using the estimators (3.12) and

(3.15) together with the quadratic discrepancy function (3.7), Klüppelberg

and Kuhn (2009) can estimate θ̃0 and test the elliptical copula factor model.

In general, a unique estimated parameter vector ˆ̃θ does not exist. As

revised in Section 2.2.1, in the classical factor model, Λ̃ can always be re-
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placed by Λ̃M>, where M is any orthogonal matrix of order m. By a minor

adaptation of the parameter space Θ (i.e., Λ̃
>
Ψ̃
−1

Λ̃ must be diagonal), ˆ̃θ

can be forced to be unique and Proposition 3.1 applies. By Lee and Bentler

(1980) the degrees of freedom in (3.9) are then increased by the number of

additional constraints.

In the case of the copula factor model Klüppelberg and Kuhn (2009) need

to estimate only the loading matrix Λ̃, since diag
(
Ψ̃
)

= 1p − diag
(
Λ̃Λ̃

>)
.

Therefore the number of free parameters is pm minus the number of ad-

ditional constraints to ensure that Λ̃
>
Ψ̃
−1

Λ̃ is diagonal; i.e., the degrees

of freedom of the limiting χ2–distribution of test statistic are p?? − pm +

m (m− 1) /2.

For the computation of ˆ̃θ and the test statistic as defined in (3.8) and in

(3.9), respectively, Klüppelberg and Kuhn (2009) used the statistical software

package R and the optimization routine optim with the Nelder-Mead method

therein. By adding appropriate penalty terms to the discrepancy functions,

they take both side–conditions into account; i.e., Λ̃
>
Ψ̃
−1

Λ̃ is diagonal and

diag
(
Λ̃Λ̃

>
+ Ψ̃

)
= 1. As starting values for the optimization algorithm,

they take the loadings that are derived from the standard factor analysis

routine factanal, which uses the normal maximum likelihood discrepancy

function (2.2).

Since Klüppelberg and Kuhn (2009) do not provide detailed steps for es-

timating θ̃0 and testing the correlation structure, we supply a procedure that

can be adapted to any estimator of correlation matrix satisfying conditions

of Theorem (3.4). We limit ourself to describe the computational algorithm

for copula factor models. Unlike Klüppelberg and Kuhn (2009) we show the

analytic partial derivatives obtained by using linear algebra.

Our aim is to minimize the discrepancy function (2.3) defined by

DQD

{
r̂, r

(
θ̃
) ∣∣∣Σ̂r̂

}
=
{
r̂ − r

(
θ̃
)}>

Σ̂
−1

r̂

{
r̂ − r

(
θ̃
)}

≈ r
(
θ̃
)>

Σ̂
−1

r̂ r
(
θ̃
)
− 2r̂>Σ̂

−1

r̂ r
(
θ̃
)

(3.17)
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such that Λ̃
>
Ψ̃
−1

Λ̃ is diagonal.

The main point of this procedure consists in considering a suitable trans-

formation of the vectorized patterned correlation matrix as specified by cop-

ula factor model; i.e.,

r
(
θ̃
)

:= vecp
{
R
(
θ̃
)}

= vecp
(
Λ̃Λ̃

>)
=

= P p

(
Ip ⊗ Λ̃

)
Kpm vec

(
Λ̃
)
,

where P p represents the left inverse of the transition or duplication ma-

trix Qp for patterned matrices and Kpm is referred to as a vec–permutation

matrix or, more commonly, commutation matrix (see Appendix A for a for-

mal definition of both). The diagonal elements of Λ̃Λ̃
>

are here regarded

redundant.

For the purpose of minimizing the function (3.17) we require its partial

derivatives with respect to the elements of Λ̃. Firstly, we provide the partial

derivatives of the patterned correlation matrix and the constraint on loadings

respect to the loadings that we will use later.

∂

∂
{
vec
(
Λ̃
)}> r (θ̃)=

∂

∂
{
vec
(
Λ̃
)}> vecp(Λ̃Λ̃

>)
=

=P p
∂

∂
{
vec
(
Λ̃
)}> vec(Λ̃Λ̃

>)
=

=P p

(Ip ⊗ Λ̃
) ∂

∂
{
vec
(
Λ̃
)}> vec(Λ̃

>)
+

+
(
Λ̃⊗ Ip

) ∂

∂
{
vec
(
Λ̃
)}> vec(Λ̃

) =

=P p

{(
Ip ⊗ Λ̃

)
Kpm +

(
Λ̃⊗ Ip

)}
,
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∂

∂
{
vec
(
Λ̃
)}> vech(Λ̃

>
Ψ̃
−1

Λ̃
)

= Hm
∂

∂
{
vec
(
Λ̃
)}> vec(Λ̃

>
Ψ̃
−1

Λ̃
)

=

=Hm

{(Λ̃
>

Ψ̃
−1
)
⊗ Im

}
Kpm

∂

∂
{
vec
(
Λ̃
)}> vec(Λ̃

)
+

+
(
Im ⊗ Λ̃

>) ∂

∂
{
vec
(
Λ̃
)}> vec(Ψ̃

−1
Λ̃
) =

=Hm

[{(
Ψ̃
−1

Λ̃
)
⊗ Im

}>
Kpm+

+
(
Im ⊗ Λ̃

)>
(
Im ⊗ Ψ̃

−1
) ∂

∂
{
vec
(
Λ̃
)}> vec(Λ̃

)
 =

=Hm

[{(
Ψ̃
−1

Λ̃
)
⊗ Im

}>
Kpm +

(
Im ⊗ Λ̃

)> (
Im ⊗ Ψ̃

−1
)]

.

Let l1 represent a arbitrary m? × 1, m? = m (m+ 1) /2 real vector. The

Lagrangian function for our constrained minimization problem can be ex-

pressed as

DQD

{
r̂, r

(
θ̃
) ∣∣∣Σ̂r̂

}
− 2 l>1

{
vech (Ξ)− vech

(
Λ̃
>
Ψ̃
−1

Λ̃
)}

, (3.18)

where Ξ is the diagonal matrix containing the m eigenvalues of r̂. The m?

scalars −2 l1, . . . ,−2 lm? are the Lagrange multipliers. The partial derivative

of (3.18) respect to the loadings is hence given by
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∂

∂
{
vec
(
Λ̃
)}> [DQD

{
r̂, r

(
θ̃
) ∣∣∣Σ̂r̂

}
− 2 l>1

{
vech (Ξ)− vech

(
Λ̃
>
Ψ̃
−1

Λ̃
)}]

=

= 2

[{
vecp

(
Λ̃Λ̃

>)}>
Σ̂
−1

r̂ P p

{(
Ip ⊗ Λ̃

)
Kpm +

(
Λ̃⊗ Ip

)}
+

− r̂> Σ̂
−1

r̂ P p

{(
Ip ⊗ Λ̃

)
Kpm +

(
Λ̃⊗ Ip

)}]
+

+ 2 l>1 Hm

[{(
Ψ̃
−1

Λ̃
)
⊗ Im

}>
Kpm +

(
Im ⊗ Λ̃

)> (
Im ⊗ Ψ̃

−1
)]

=

=

[{
vec
(
Λ̃
)}>

Kmp

(
Ip ⊗ Λ̃

>)
P>p − r̂

>
]

Σ̂
−1

r̂ P p

{(
Ip ⊗ Λ̃

)
Kpm +

(
Λ̃⊗ Ip

)}
+

+ l>1 Hm

[{(
Ψ̃
−1

Λ̃
)
⊗ Im

}>
Kpm +

(
Im ⊗ Λ̃

)> (
Im ⊗ Ψ̃

−1
)]

.

ˆ̃Λ and l̂1 are, respectively, parts of a solution to the system comprising

the two equations

[{
vec
(
Λ̃
)}>

Kmp

(
Ip ⊗ Λ̃

>)
P>p − r̂

>
]

Σ̂
−1

r̂ P p

{(
Ip ⊗ Λ̃

)
Kpm +

(
Λ̃⊗ Ip

)}
+

+ l>1 Hm

[{(
Ψ̃
−1

Λ̃
)
⊗ Im

}>
Kpm +

(
Im ⊗ Λ̃

)> (
Im ⊗ Ψ̃

−1
)]

= 0>

and

vech (Ξ)− vech
(
Λ̃
>
Ψ̃
−1

Λ̃
)

= 0 .

Finally, as Klüppelberg and Kuhn (2009) we obtain the residual correla-

tions by difference. Unfortunately there is no guarantee that such a procedure

will converge. It must be kept in mind that elements of Λ̃ are function of

elements of Ψ̃. An iteration procedure must be carried out. The essence

of the method is that in each iteration a minimum point of (3.18) is found.

This results in a sequence of matrices ˆ̃Ψ(1), ˆ̃Ψ(2), . . ., such that
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DQD

[
r̂, r

{
ˆ̃θ(i)
} ∣∣∣Σ̂r̂

]
< DQD

[
r̂, r

{
ˆ̃θ(i−1)

} ∣∣∣Σ̂r̂

]
.

The sequence converges rapidly to a final matrix of estimated ˆ̃Λ and ˆ̃Ψ in

few iterations. To start the iterative procedure we choose the initial estimates

by ordinary least squares. The iterations run out when

DQD

[
r̂, r

{
ˆ̃θ(i−1)

} ∣∣∣Σ̂r̂

]
−DQD

[
r̂, r

{
ˆ̃θ(i)
} ∣∣∣Σ̂r̂

]
< ε ,

where ε is an arbitrarily small positive value, typically 10−3.

To conclude this section we clarify the nonlinear optimization technique

used in order to computationally minimize (3.18). The Barzilai and Borwein

(1988) gradient method for large scale minimization problems is considered.

This method requires few storage locations and very inexpensive computa-

tions. Raydan (1993) established global convergence for the strictly convex

quadratic case with any number of variables. This result has been extended to

the (not necessarily strictly) convex quadratic case by Friedlander, Mart́ınez,

and Raydan (1995) to incorporate the method in a box constrained optimiza-

tion technique. Here, we have chosen Barzilai and Borwein (1988) gradient

method instead of Nelder-Mead, since it generally performed better than the

other scheme in our numerical experiments. Nevertheless, the relative sim-

plicity and superiority of this algorithm does not seem to exclude Heywood

cases Heywood (1931); i.e., situations where correlation estimates greater

than one are obtained during the estimating process.
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Algorithm 1 Estimate Λ̃ and Ψ̃ and test the copula factor model.

Require:
1: r̂ // estimated correlation matrix

2: Σ̂r̂ // estimated covariance matrix associated with r̂

3: Ξ // characteristic roots of r̂ (diagonal matrix)

4: p , m // number of manifest and latent variables, respectively

5:
ˆ̃Λ(0) , ˆ̃Ψ(0) // initial values

6: n // number of observations

7: max.iter // number of maximum iterations during the estimation

8: ε // constant

Ensure:

r
(
θ̃
)

:=vecp
(
Λ̃Λ̃

>)
= P p

(
Ip ⊗ Λ̃

)
Kpm vec

(
Λ̃
)

9: while abs
{
D

(i−1)
QD −D(i)

QD

}
> ε and max.iter do

10:

min
vec(Λ̃)

>
, l>1

DQD

{
r̂, r

(
θ̃
) ∣∣∣Σ̂r̂

}
+

−2l>1

(
vech (Ξ)− vech

[
Λ̃
> { ˆ̃Ψ(i)

}−1

Λ̃

])

11:
ˆ̃Ψ(i+1) = 1p − diag

[
ˆ̃Λ(i+1)

{
ˆ̃Λ(i+1)

}>]
12: end while
13: H0 : R

(
θ̃0

)
= Λ̃Λ̃

>
+ Ψ̃ // testing the structure with m latent variables

14: df = p (p− 1) /2− pm+m (m− 1) /2 // degrees of freedom

15:

TΣ̂r̂
:=n

[
r̂ − r

{
ˆ̃θ(i+1)

}]> {
Σ̂
−1

r̂ − Σ̂
−1

r̂ Ĵ
(
Ĵ
>
Σ̂
−1

r̂ Ĵ
)−1

Ĵ
>
Σ̂
−1

r̂

}
×

×
[
r̂ − r

{
ˆ̃θ(i+1)

}]
16: if TΣ̂r̂

> χ2
df ;0.05 then

17: Reject H0

18: else
19: return ˆ̃Λ(i+1) , ˆ̃Ψ(i+1)

20: end if



Chapter 4

Extending Copula Structure

Analysis: EFGM copulas and

maximum pseudo–likelihood

estimates

In this chapter, after introducing the EFGM families of copulas, we apply

copula structure analysis assuming such models and we derive some theoret-

ical results by analogy with Theorems 3.6 and 3.7. In order to avoid some

drawbacks of the moment–based estimation procedure for copula parameters,

on which the approach of Klüppelberg and Kuhn (2009) is built, we suggest

the use of the celebrated pseudo–maximum likelihood estimator investigated

by Genest, Ghoudi, and Rivest (1995). We show that the conditions for ex-

ploiting Proposition 3.1 and Theorem 3.4 also hold under these different

distribution assumptions and estimator of correlation matrix R0.

The chapter closes with a large Monte Carlo experiment designed to assess

the effects of the strength of dependence of the data, despite the sample

size, on the power of χ2 goodness–of–fit test statistic (3.9) via Kendall’s

τ–based and maximum pseudo–likelihood method, respectively. Finally, an

application to real data is performed.
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4.1 Copula Structure Analysis assuming EFGM

copulas

The so–called EFGM distributions have been considered by Morgenstern

(1956) and Gumbel (1958, 1960), further developed by Farlie (1960). How-

ever, as Durante and Sempi (2010) point out, the idea of considering such

distributions originates in an earlier and, for many years, forgotten work by

Eyraud (1936). On account of the fact that EFGM copulas do not allow to

model large dependence among the random variables involved, several exten-

sions have been proposed in the literature designed to increase the maximal

value of the dependence measures, starting with the works by Farlie (1960).

EFGM copulas and their generalizations are ideally suited for various mod-

els with small or moderate dependence and do not depend on a particular

physical model which may or may not be appropriate in a given situation.

A complete survey about these generalized EFGM models of dependence is

given in Drouet-Mari and Kotz (2001), where a list of several other references

can be also found.

EFGM family of multivariate copulas is constituted by the polynomial

copulas associated with the family of EFGM distribution functions (see Kotz,

Balakrishnan, and Johnson, 2000, Equation 44.73) and is given by

Cx {F1 (x1) , . . . , Fp (xp) ; α}=Cx (u1, . . . , up ; α) =

p∏
j=1

uj ×

×

1 +

p∑
j=2

∑
1≤i1<i2<...<ij≤p

αi1i2...ij

j∏
k=1

(1− uik)

 ,

where the total number of the suitable parameters αi1i2...ij is 2p − p− 1.

It can be shown that any EFGM copula is absolutely continuous with

density given by
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cx (u1, . . . , up ; α) = 1 +

p∑
j=2

∑
1≤i1<i2<...<ij≤p

αi1i2...ij

j∏
k=1

(1− 2uik) .

As a consequence, the parameters αi1i2...ij have to satisfy the following

restrictions,

1 +

p∑
j=2

∑
1≤i1<i2<...<ij≤p

αi1i2...ij

j∏
k=1

(1− 2uik) ≥ 0 .

Generally, however, each parameter must meet the condition
∣∣αi1i2...ij ∣∣ ≤ 1

(Cambanis, 1977).

For the bivariate and trivariate cases, respectively, EFGM copulas have

the following explicit expressions:

Cx (u1, u2 ; α1,2) = u1u2 {1 + α1,2 (1− u1) (1− u2)} (4.1)

and

Cx (u1, u2, u3 ; α) = u1u2u3 {1 +α1,2 (1− u1) (1− u2) +

+α1,3 (1− u1) (1− u3) +

+α2,3 (1− u2) (1− u3) +

+ α1,2,3 (1− u1) (1− u2) (1− u3)} . (4.2)

More recent investigations for extending EFGM copulas based on the

construction of copulas that is quadratic in one variable are provided by

Quesada-Molina and Rodŕıguez-Lallena (1995) and Rodriguez-Lallena and

Úbeda-Flores (2009). If we see the 3–dimensional copula given by (4.2) as a

copula of the form proposed in Rodriguez-Lallena and Úbeda-Flores (2009),

then
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Cx (u1, u2, u3 ; α) = u3Dx (u1, u2 ; α1,2)+u3 (1− u3)κ (u1, u2;α1,3, α2,3, α1,2,3) ,

where Dx (u1, u2 ; α1,2) is a 2–dimensional EFGM copula of the form (4.1)

and

κ (u1, u2;α1,3, α2,3, α1,2,3) = u1u2 {(α1,3 + α1,2,3) (1− u1) +

+ (α2,3 + α1,2,3) (1− u2) +

− α1,2,3 (1− u1u2)}

satisfies the condition

κ (u1, 0;α1,3, α2,3, α1,2,3) = κ (0, u2;α1,3, α2,3, α1,2,3) = κ (1, 1;α1,3, α2,3, α1,2,3) = 0 .

In order to estimate and test a copula structure model with EFGM cop-

ulas, recalling the methodology by Klüppelberg and Kuhn (2009), we firstly

need to identify a moment–based estimator of copula correlation matrix R0

of x ∈ Rp via Kendall’s τ–matrix, denoted by T . Besides elliptical copulas

we do not recognize other families of copulas whose dependence parame-

ter vector coincides with Pearson’s linear correlation matrix. Therefore, we

begin with the research of a relationship between correlation matrix and cop-

ula dependence parameters. The latter step concerns the typical role that

copulas play in concordance and measure of association as Kendall’s τ . Fi-

nally, we just have to merge this two relationships that yield a direct link

between correlation matrix and Kendall’s τ . EFGM copulas indeed represent

a suitable situation where we can extend the work of Klüppelberg and Kuhn

(2009) to other families of copulas. Dependence properties of this family

are closely related with linear correlation coefficients although a priori the

pivotal parameter of this bivariate family is not obviously associated with
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this concept. Without lack of generality we henceforth consider the sim-

plest among the multivariate EFGM distributions with univariate absolutely

continuous marginals F1 (x1) , . . . , Fp (xp) discussed by Cambanis (1991); i.e.,

those of the form

Cx (u1, . . . , up ; α) =

p∏
j=1

uj

{
1 +

∑
1≤i1<i2≤p

αi1i2

2∏
k=1

(1− uik)

}
, (4.3)

where αi1i2i3 = 0, αi1i2i3i4 = 0, and so on.

The parameters of (4.3) are the p?? constants αi1i2 , 1 ≤ i1 < i2 ≤ p,

whose admissible values are determined by the 2p inequalities

1 +
∑

1≤i1<i2≤p

αi1i2

2∏
k=1

(1− 2uik) ≥ 0 .

Multivariate distributions of the form (4.3) are uniquely determined by

the bivariate margin of the form (4.1). Also all their marginals (of order

p− 1, . . . , 2) are of the same type.

Here we assume that the bivariate random variable (xi, xj)
>, i 6= j, has

joint distribution function (4.1), finite mean (µi, µj)
> and positive and fi-

nite variance (σi,i, σj,j)
>. Following Johnson and Kotz (1977) and Schucany,

Parr, and Boyer (1978), we are immediately able to handle the relationship

between Pearson’s bivariate linear correlation coefficient and copula depen-

dence parameter concerning the i, j–margin of EFGM copulas; i.e.,

ρi,j =
αi,jδ2;iδ2;j√
σi,iσj,j

, i 6= j ,

where

δ2;j =

∫ 1

0

F−1
j (u) (2u− 1) du =

=

∫ 1

0

uF−1
j (u) du−

∫ 1

0

F−1
j (u) (1− u) du =
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=
1

2
{E (Xj;2:2)− E (Xj;1:2)}

denotes the second L–moment of xj and xj;k:r the k–th order statistic

(k–th smallest value) in an independent sample of size r drawn from the

distribution of xj (see Appendix B).

The case αi,j = 1 and αi,j = −1 represent the maximal degrees of positive

and negative dependence, respectively, allowed in the bivariate EFGM family

of copulas. Cambanis (1991, Proposition 1) proves that among all bivariate

distributions (4.1) with absolutely continuous marginals, the ones with uni-

form margins over (0, 1) have the broadest range of correlation values; i.e.,

|ρi,j| ≤ 1/3. Similar conclusions are provided by Schucany, Parr, and Boyer

(1978, Theorem 1).

So far we have considered the relationship between the bivariate copula

parameter αi,j and the related bivariate Pearson’s linear correlation coeffi-

cient ρi,j. Since τi,j = 4E {Cx (ui, uj ; αi,j)} − 1 = 2/9αi,j, where Cx is of

the form (4.1), we obtain the relationship we were talking about; i.e.,

ρi,j =
9

2

τi,jδ2;iδ2;j√
σi,iσj,j

, i 6= j , (4.4)

We are now ready to adapt Theorem 3.6 in order to define a moment–

based estimator of population linear correlation matrixR0 when x is a vector

of random variables with EFGM copulas.

Theorem 4.1 Let x ∈ Rp be a vector of random variables with finite first

and second moments. Let the EFGM copula of the form (4.3) be the distri-

bution function associated with x.

Let x1, . . . ,xn an independent sequence in Rp identically distributed ac-

cording to x.

Define r0 := vecp (R0), where R0 denotes the population correlation ma-

trix of x.

Let r̂τ be the estimated vector of non–duplicated and non–fixed elements

of R0 via estimated Kendall’s τ–matrix T̂ ,
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r̂τ :=
9

2
vecp

{
δ̂ diag

(
Σ̂
)−1/2

T̂ diag
(
Σ̂
)−1/2

δ̂

}
,

where Σ̂ is an estimator of the covariance matrix Σ0 of x and δ̂ is a

diagonal matrix with elements (B.4) defined in Appendix B.

Then, as n→∞,

n1/2 (r̂τ − r0)
L−→ N (0,Στ ) , (4.5)

where Στ :=
[
στij,kl

]
1≤i 6=j,k 6=l≤p and

στij,kl =
81δ2;iδ2;jδ2;kδ2;l (τij,kl − τi,jτk,l)√

σi,iσj,jσk,kσl,l
,

with τi,j and τij,kl given in (3.13) and (3.14), respectively.

Proof

The proof follows the arguments used by Klüppelberg and Kuhn (2009)

to prove their Theorem 3.

Define t̂ := vecp
(
T̂
)

and t := vecp (T ), the vectors of patterned matrix

T̂ and T , respectively. Since t̂ is a vector of U–statistics estimators with a

non–zero first component in the H–decomposition having expectations t and

kernels ti,j (x1,x2) := sgn (x1,i − x2,i) (x1,j − x2,j) of degree equal to 2, Lee

(1990, Theorem 2, Section 3.2.1) applies:

n1/2
(
t̂− t

) L−→ N (0, 4Σt) ,

where Σt :=
[
σtij,kl

]
1≤i 6=j,k 6=l≤p, and constant 4 comes from the squared

kernel’s degree. The covariance structure is stated in Lee (1990, Theorem 1,

Section 1.4) together with the remark about the consequence of this result,

σtij,kl = cov {ti,j (x1,x2) , tk,l (x1,x3)} =

=E {ti,j (x1,x2) tk,l (x1,x3)} − E {ti,j (x1,x2)}E {tk,l (x1,x3)} =

=E {ti,j;1 (x1) tk,l;1 (x1)} − τi,jτk,l =
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=E [E {ti,j (x1,x2) |x1}E {tk,l (x1,x3) |x1}]− τi,jτk,l =

= τij,kl − τi,jτk,l ,

where ti,j;1 (x1) := E {ti,j (x1,x2) |x1} (Lee, 1990, Equation 1, Section

1.3).

Since the correlation matrix R0 can be seen as a function of Kendall’s

τ–matrix T ,

r̂τ =
9

2
vecp

{
δ̂ diag

(
Σ̂
)−1/2

T̂ diag
(
Σ̂
)−1/2

δ̂

}
=

=
9

2
P p

[{
diag

(
Σ̂
)−1/2

δ̂

}
⊗
{
diag

(
Σ̂
)−1/2

δ̂

}]
Qp vecp

(
T̂
)

=

=
9

2
P p ∆̂Qp t̂ ,

where ∆̂ is a p2 × p2 diagonal matrix with estimated elements of ∆,

∆̂ = diag

(
δ̂2

2;1

σ̂1,1

,
δ̂2;1δ̂2;2√
σ̂1,1σ̂2,2

, . . . ,
δ̂2;1δ̂2;p√
σ̂1,1σ̂p,p

,

δ̂2;1δ̂2;2√
σ̂1,1σ̂2,2

,
δ̂2

2;2

σ̂2,2

, . . . ,
δ̂2;2δ̂2;p√
σ̂2,2σ̂p,p

,

. . .

δ̂2;1δ̂2;p√
σ̂1,1σ̂p,p

,
δ̂2;2δ̂2;p√
σ̂2,2σ̂p,p

, . . . ,
δ̂2

2;p

σ̂p,p

)
,

the transition or duplication matrix Qp and its left inverse P p are defined

in Appendix A, and the Jacobian matrix is given by

J =
9

2

∂

∂t>
P p ∆Qp t =

9

2
P p ∆Qp ,

by the multivariate delta method (see Lehmann and Casella, 1998, The-
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orem 8.22, Section 1.8)

n1/2 (r̂τ − r0)
L−→ N

(
0, 4 JΣt J

>) .
We remark the fact that in this case we can not assume the non–existence

of the moments in order to satisfy a copula structure model. As (4.4) shows,

we need finite first and second moments of observed variables x. Without this

conditions we are not able to define a relationship between Pearson’s linear

correlation coefficients and Kendall’s tau and L–moments of x would not

exist (see Theorem B.1 in Appendix B). This is in contrast with the purpose

to avoid problems of non–existing moments declared by Klüppelberg and

Kuhn (2009). However, higher order moments do not need to be computed

here as Browne (1984) does.

To ensure conditions for Theorem 3.4 we finally have to prove the con-

sistency of the estimator of the asymptotic covariance matrix Στ in (4.5).

Before discussing the consistency of the estimator of the asymptotic covari-

ance matrix, we recall one result due to Slutsky.

Lemma 4.1 (Ferguson, 1996, Theorem 6’, Section 6) Assume Zn ∈ Rp,

Zn
p−→ Z, and γ : Rp → Rd is such that pr {Z ∈ C (γ)} = 1, where C (γ) is

the continuity set of γ. Then,

(a) γ (Zn)
p−→ γ (Z);

(b) if Zn − Y n
p−→ 0, Y n

p−→ Z;

(c) if Y n
p−→ Y ,

(
Zn
Y n

) p−→ ( ZY ).

Theorem 4.2 Under the assumptions of Theorem 4.1,

vech
(
Σ̂τ

)
= 81 vech

(
P p ∆̂Qp Σ̂tQ

>
p ∆̂P>p

)
is a consistent estimator of the asymptotic covariance matrix in (4.5).

Proof
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Let Hp represent the left inverse of the transition or duplication matrix

Gp.

vech
(
Σ̂τ

)
= 81Hp??

{(
P p ∆̂Qp

)
⊗
(
P p ∆̂Qp

)}
Gp?? vech

(
Σ̂t

)
.

From the part (a) of Lemma 4.1, vech
(
Σ̂τ

)
is a consistent estimator of

vech (Στ ) if vech
(
Σ̂t

)
converges in probability to vech (Σt).

We rewrite vech
(
Σ̂t

)
as vech

(
Σ̂t;ij,kl

)
− vech

(
t̂ t̂
>
)

, where Σ̂t;ij,kl :=

[τ̂ij,kl]1≤i 6=j,k 6=l≤p. Klüppelberg and Kuhn (2009) establish the consistency of

the estimator vech
(
Σ̂t;ij,kl

)
since elements τ̂ij,kl can be regarded as a linear

combination of U–statistics. On the other hand, t̂
p−→ t for the Law of Large

Numbers. Then, from the combination of parts (c) and (a) of Lemma 4.1

vech
(
t̂ t̂
>
)

p−→ vech
(
t t>

)
.

Therefore, vech
(
Σ̂t;ij,kl

)
− vech

(
t̂ t̂
>
)

p−→ vech (Σt;ij,kl)− vech
(
t t>

)
di-

rectly follows from the application of parts (c) and (a) of Lemma 4.1.

4.2 Copula Structure Analysis by maximiz-

ing the pseudo–likelihood

The copula structure analysis proposed by Klüppelberg and Kuhn (2009)

represent a simple and convincing method to avoid typical problems and lim-

its of traditional approach to covariance or correlation structure analysis due

to Browne (1984). Nevertheless, we note that the copula–based method re-

quires a closed–form relationship between Kendall’s τ and copula parameters

and, consequently, Pearson’s linear correlation coefficients. There exist some

families of copulas for which this condition does not hold; e.g., the so-called

Joe family of copulas (Joe, 1993), Galambos family of copulas (Galambos,

1975), and Hüsler–Reiss family of copulas (Hüsler and Reiss, 1989). More-

over, Kendall’s τ does not depend on the magnitude of the data and it ne-



COPULA STRUCTURE ANALYSIS BY MAXIMIZING THE PSEUDO–LIKELIHOOD 55

glects large and small values (Mikosch, 2006). Unless r is the generator of the

multivariate normal distribution, τi,j = ρi,j = 0 never corresponds to inde-

pendence. Therefore, we propose to adopt the maximum pseudo–likelihood

estimator of copula parameters instead of the moment–based estimator in or-

der to only focus the attention on the direct relationship between the copula

parameters and Pearson’s linear correlation coefficients.

Let α = (α1, . . . , αd) be a d–dimensional dependence parameter from a

joint distribution function Fx (x1, . . . , xp ; α) with associated copula Cx (u1,

, . . . , up ; α) and density cx (· ; α). If the true copula is assumed to belong to

a parametric family C =
{
Cx (· ; α) : α ∈ A ⊆ Rd

}
, consistent and asymp-

totically normally distributed estimates of the parameter α can be obtained

through maximum likelihood methods. There are mainly two ways to achieve

this: a fully parametric method and a semi–parametric method. The first

method relies on the assumption of parametric univariate marginal distri-

butions. Each parametric margin is then plugged in the full likelihood and

this objective function is maximized with respect to the parameter α. The

resulting estimate for α would then be margin–dependent. Alternatively

and without any parametric assumptions for margins, the univariate empir-

ical distribution functions can be plugged in the likelihood to yield a semi–

parametric method. When nonparametric estimates are contemplated for

the marginals, inference about the dependence parameter α will be margin–

free. These two commonly used methods are detailed in Genest, Ghoudi,

and Rivest (1995) and Shih and Louis (1995). Since the result of the first

method depends on the right specification of all margins, this may induce

too severe constraints, and this aspect lessens the interest of working with

copulas. The semi–parametric estimation procedure where margins are left

unspecified does not suffer from this inconvenient feature, but suffers from a

loss of efficiency (see Genest, Ghoudi, and Rivest, 1995, Equation 3). In what

follows, we shall refer to this as the maximum pseudo–likelihood estimation

method. As Fermanian and Scaillet (2004) point out commenting their simu-

lation studies designed to asses the potential impact of misspecified margins

on the estimation of copula parameters, “if the researcher has any doubt about

the correct modeling of the margins, there is probably little to loose but lots
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to gain from shifting towards a semi–parametric approach”. In practice, it

is however impossible to be certain that the marginal distribution functions

have been correctly specified, even if appropriate univariate goodness–of–fit

tests are used. As it may be argued that the copula parameters estimates

should not be affected by the choice of the marginal distribution functions,

many authors advocate the use of the maximum pseudo–likelihood estimator.

Note further that there is no guarantee in both cases that the specified copula

is indeed the true one. If not the asymptotic variance should be modified ad-

equately (for inference under misspecified copulas see Cebrian, Denuit, and

Scaillet, 2004). For the rest of this work we shall assume that the selected

copula corresponds to the true one.

Maximum pseudo–likelihood estimation is not the only semi–parametric

approach used in practice. In the one–parameter case, two maybe even more

popular methods for estimating the copula parameter are based on the inver-

sion of Kendall’s tau and Spearman’s rho (see e.g. Genest and Rivest, 1993,

and the references therein). They are frequently referred to as methods of

moments. Two other semiparametric approaches were investigated by Tsuka-

hara (2005), namely rank approximate Z–estimation and minimum–distance

estimation. In his simulation study, both methods were found overall to

lead to a higher estimated mean square error than the maximum pseudo–

likelihood estimator. More recently, Chen, Fan, and Tsyrennikov (2006)

have studied a version of the maximum pseudo–likelihood estimator in which

the unknown marginal densities are approximated by linear combinations of

finite–dimensional known basis functions with increasing complexity, called

sieves. They showed that the resulting estimator is asymptotically semipara-

metrically efficient for copula parameter provided that additional smoothness

conditions are satisfied. The study of the finite–sample performance of the

method for sample size n = 400 revealed that this approach performs signifi-

cantly better than the standard maximum pseudo–likelihood estimator when

one of the marginal distribution functions is known. This advantage does not

seem to hold anymore when all the marginals are unknown.

An extensive Monte Carlo study carried out by Kojadinovic and Yan

(2010b) however shows that the maximum pseudo–likelihood estimator ap-



COPULA STRUCTURE ANALYSIS BY MAXIMIZING THE PSEUDO–LIKELIHOOD 57

pears as the best choice in terms of mean square error in all situations except

for small and weakly dependent samples. Among the two method–of–moment

estimators, the one based on Kendall’s tau appears overall significantly bet-

ter than that based on Spearman’s rho. From a computational perspective,

estimation based on Kendall’s tau is generally faster than maximum pseudo–

likelihood estimation, except maybe for very large samples. As a conse-

quence, we focus our attention on asymptotic properties of the maximum

pseudo–likelihood estimator and we exploit them for giving an alternative

to the kendall’s tau–based estimator of R0 performed by Klüppelberg and

Kuhn (2009).

Let {(xa1, . . . , xap) : a = 1, . . . , n} represent a random IID sample from

Fx (x1, . . . , xp ; α) = Cx {F1 (x1) , . . . , Fp (xp) ; α}. The estimator α̂MPL of

α is obtained as a solution of the system

n∑
a=1

∂

∂αr
log {cx (ûa,1, . . . , ûa,p ; α)} = 0 (1 ≤ r ≤ d) ,

where (ûa,1, . . . , ûa,p)
> are pseudo–observations computed from the (xa,1,

. . . , xa,p)
> by ûa,j = Ra,j/ (n+ 1), with Ra,j being the rank of xa,j among

(x1,j, . . . , xn,j)
>. Notice that the maximum pseudo–likelihood method could

be seen as a version of the inference function for margins method by Joe

(1997, Chapter 10) in which the marginal distribution functions are estimated

nonparametrically. Indeed, it can be checked that ûa,j = n F̂j (xa,j) / (n+ 1),

where F̂j is the empirical distribution function computed from (x1,j, . . . , xn,j)
>.

Note that the scaling factor n/ (n+ 1) is classically introduced to avoid nu-

merical problems at the boundary of [0, 1]p. The proposed semi–parametric

estimator is then obtained as a solution of a pseudo log–likelihood equations

system. In what follows, we shall refer to α̂MPL as the maximum pseudo–

likelihood estimator of copula parameters.

Under the standard regularity conditions for consistency of multidimen-

sional maximum likelihood estimators (see, for instance, Lehmann, 1983,

Section 6.4) and regularity conditions for multivariate rank statistics pro-

posed by Ruymgaart, Shorack, and Zwet (1972), Ruymgaart (1974), and

Rüschendorf (1976), Genest, Ghoudi, and Rivest (1995, Section 4) show that
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the estimator α̂MPL is consistent and asymptotically normal,

n1/2 (α̂MPL −α)
L−→ N

(
0, I (α)−1 Σα I (α)−1) as n→∞ , (4.6)

where I (α) is the Fisher information matrix associated with cα,

I (α) = −E
(

∂2

∂α∂α>
log [cα {F1 (x1) , . . . , Fp (xp)}]

)
,

and Σα is the covariance matrix of the d–dimensional random vector

whose r–th component is given by

∂

∂αr
log [cx {F1 (xa,1) , . . . , Fp (xa,p) ; α}] +

p∑
j=1

Wj,r (xj) (1 ≤ r ≤ d) ,

with

Wj,r (xj) =

∫
I {Fj (xj) ≤ uj}

∂2

∂αr∂uj
log {cx (u1, . . . , up ; α)} dCx (u1, . . . , up ; α) .

Following Genest and Favre (2007), let us assume that the original sample

(x1,1, . . . , x1,p) , . . . , (xn,1, . . . , xn,p) have been relabeled so that x1,1 < x2,1 <

. . . < xn,1. As a consequence one then has R1,1 = 1, . . . , Rn,1 = n. Moreover,

let us denote by L (α, u1, . . . , up) the log–likelihood log {cx (u1, . . . , up ; α)}
and by Lαr , Luj and Lαrαr′

the derivatives of L with respect to αr, uj and

both αr and αr′ , respectively. An efficient way of estimating the information

matrix I (α) is given by the Hessian matrix associated with L (α, u1, . . . , up)

at α̂MPL, namely, the d× d matrix whose (r, r′) entry is given by

− 1

n

n∑
a=1

Lαrαr′

(
α̂MPL,

a

n+ 1
, ûa,2, . . . , ûa,p

)
. (4.7)

The estimate of Σα is represented by the sample covariance matrix of the

variables (M1, . . . ,Md)
>, for which the pseudo–observations are
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M̂a,r = Lαr

(
α̂MPL,

a

n+ 1
, ûa,2, . . . , ûa,p

)
+

− 1

n

n∑
b=1

Lαr

(
α̂MPL,

b

n+ 1
, ûb,2, . . . , ûb,p

)
×

×Lu1
(
α̂MPL,

b

n+ 1
, ûb,2, . . . , ûb,p

)
+

− 1

n

∑
Rb,2≥Ra,2

Lαr

(
α̂MPL,

b

n+ 1
, ûb,2, . . . , ûb,p

)
×

×Lu2
(
α̂MPL,

b

n+ 1
, ûb,2, . . . , ûb,p

)
+

. . .

− 1

n

∑
Rb,p≥Ra,p

Lαr

(
α̂MPL,

b

n+ 1
, ûb,2, . . . , ûb,p

)
×

×Lup
(
α̂MPL,

b

n+ 1
, ûb,2, . . . , ûb,p

)
,

for a ∈ (1, . . . , n) and r ∈ (1, . . . , d).

Unlike Klüppelberg and Kuhn (2009), our approach to correlation struc-

ture analysis is based on the maximum pseudo–likelihood estimator of α.

Theorem 4.3 Let x ∈ Rp be a vector of random variables with absolutely

continuous copula C indexed by a d–dimensional parameter α0. Let x1, . . . ,xn

an independent sequence in Rp identically distributed according to x.

Let γ (α0) be a vector of real–valued, invertible, and continuously differ-

entiable in a neighborhood Nα0 of the parameter vector α0 functions such

that

γ (α0) = r0 := vecp (R0) , (4.8)

where R0 is the population correlation matrix of x and r0 its patterned

vectorized version.

Let the Jacobian matrix Jα0 = J (α0) =
[
∂γ (α) /∂α>

]
α=α0

be nonsin-

gular in Nα0.
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Then, as n→∞,

n1/2 (r̂MPL − r0)
L−→ N

(
0, Jα0 I (α0)−1 Σα0 I (α0)−1 J>α0

)
, (4.9)

where r̂MPL = γ (α̂MPL) represents the column vector of estimated cor-

relation matrix via maximum pseudo–likelihood estimates of α0.

Proof

(4.9) immediately follows by applying the multivariate delta method (Lehmann

and Casella, 1998, Theorem 8.22, Section 1.8) and invoking the asymptotic

distribution of the estimator α̂MPL, given by (4.6).

Although the result in Theorem 4.3 is valid in general, to the best of

our knowledge we only recognize two families of copulas that satisfy condi-

tion (4.8), namely, elliptical copulas and EFGM copulas of the form (4.3),

respectively, where d = p??. With these families the copula parameter is

characterized by a number of elements equal to non–duplicated and non–

fixed elements of Pearson’s linear correlation matrix R0. We remember that

the meaning of condition (4.8) is to establish a direct link between copula

parameters, relating to the measure of association between variables x, and

Pearson’s correlation coefficients, reserved for a measure of the linear depen-

dence between random variates.

Corollary 4.1 Let x ∈ Rp be a vector of random variables with elliptical

copula EC (R0, h) and absolutely continuous generating variable r > 0. Then,

r̂MPL ≡ α̂MPL.

Proof

It is immediate to notice that in case of elliptical copulas γ (α0) in The-

orem 4.3 corresponds to a vector of functions where each component is the

identity function, so that Jα0 = Ip?? , the identity matrix of order p??. There-

fore, the asymptotic covariance matrix in (4.9) is given by
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ΣMPL ≡ I (α0)−1 Σα0 I (α0)−1

One classical example of elliptical distribution and its related copula is

represented by t Student distribution. Let x = (x1, . . . , xp)
> be t–distributed,

denoted by tν (0,Σ0), and let tν be the univariate t–distribution function in

R with ν degree of freedom; then {tν (x1) , . . . , tν (xp)}> is a tν Student cop-

ula. Notice that, for technical reasons discussed for instance in Demarta and

McNeil (2005) or Kojadinovic and Yan (2010a), the number of degrees of

freedom of the tν–copula has to be fixed (or previously estimated) and it will

therefore not any more be considered as a parameter to be estimated.

Corollary 4.2 Let x ∈ Rp be a vector of random variables with finite first

and second moments. Let the EFGM copula of the form (4.3) be the distri-

bution function associated with x. Then, as n→∞,

n1/2 (r̂MPL − r0)
L−→ N

(
0, Jα0 I (α0)−1 Σα0 I (α0)−1 Jα0

)
,

where r̂MPL is a p??–dimensional vector with elements

r̂MPL;i,j = γ̂i,j (α̂MPL;i,j) =
α̂MPL;i,j δ̂2;iδ̂2;j√

σ̂i,iσ̂j,j
,

and

Jα0 = diag

(
δ2;2δ2;1√
σ2,2σ1,1

, . . . ,
δ2;pδ2;1√
σp,pσ1,1

,
δ2;3δ2;2√
σ3,3σ2,2

, . . . ,
δ2;pδ2;2√
σp,pσ2,2

,

. . . ,
δ2;pδ2;p−1√
σp,pσp−1,p−1

)
.

We underline the importance of the condition about the existence of first

and second moments with EFGM copula once again. As discussed in Section

4.1, we remember that the relationship between Pearson’s linear correlation
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coefficients and Kendall’s tau needs existing second moment. Moreover, L–

moments of x would not exist with non finite first moment (see Theorem B.1

in Appendix B).

In order to provide conditions for Theorem 3.4, we study the properties

of the estimator of Jα0 I (α0)−1 Σα0 I (α0)−1 J>α0
. Given an IID sample

x1, . . . ,xn, we define the estimator of the asymptotic covariance matrix in

(4.9) as Σ̂MPL := Ĵ
>
I (α̂MPL)−1 Σ̂α̂MPL

I (α̂MPL)−1 Ĵ, where Ĵ is a suitable

estimator for Jα0 , I (α̂MPL) is the estimator of Fisher information matrix

given by (4.7), and Σ̂α̂MPL
is the sample covariance matrix of the variables

(M1, . . . ,Mp??)>.

In order to prove the consistency of Σ̂MPL we provide the following result,

by analogy with Theorem 3.7.

Theorem 4.4 Under the assumptions of Theorem 4.3,

vech
(
Σ̂MPL

)
= vech

{
Ĵ I (α̂MPL)−1 Σ̂α̂MPL

I (α̂MPL)−1 Ĵ
>}

is a consistent estimator of the asymptotic covariance matrix in (4.9).

Proof

Let Hp represent the left inverse of the transition or duplication matrix

Gp.

vech
(
Σ̂MPL

)
=Hp??

(
Ĵ⊗ Ĵ

)
Gp?? ×

× vech
{
I (α̂MPL)−1 Σ̂α̂MPL

I (α̂MPL)−1
}
.

Since vech
{
I (α̂MPL)−1 Σ̂α̂MPL

I (α̂MPL)−1
}

is a consistent estimator of

vech
{
I (α0)−1 Σα0 I (α0)−1} as Genest, Ghoudi, and Rivest (1995, Section

4) point out, the result then follows by using the part (a) of Lemma 4.1.
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xj Λ̃·,1 Λ̃·,2 ψ̃j

x1 0.90 0.00 0.19
x2 0.90 0.00 0.19
x3 0.90 0.00 0.19
x4 0.90 0.00 0.19
x5 0.90 0.00 0.19
x6 0.00 0.90 0.19
x7 0.00 0.90 0.19
x8 0.00 0.90 0.19

Table 4.1: Factor loadings and residual variances of the simulation study.

4.3 A comprehensive empirical study

In order to see at work the test statistic (3.9) via Kendall’s tau and the one

by maximum pseudo likelihood, respectively, we firstly perform a simulation

study where different sample sizes and also misspecified copula functions are

considered. We stress the fact that the usefulness of the test statistic can

be affected by different elements. Secondly, we apply a correlation structure

analysis to real data.

In what follows we only consider the copula factor model as defined in

Section 3.3. For the sake of simplicity and practicality, our attention will be

focused on elliptical copulas, in particular Normal and tν Student copulas. In

this manner we can make a comparison with Klüppelberg and Kuhn (2009)’s

results.

We start with the simulation study. We choose a p = 8 dimensional

setting with m = 2 factors. Loadings and residual correlations are given in

Table 4.1. The structured correlation matrix by factor model is hence given

by R
(
θ̃0

)
= Λ̃Λ̃

>
+ Ψ̃.

The simulations were run according to a balanced experimental design

involving the following components. Three sample sizes are considered; i.e.,

n = 100, 250, 1000, representing the case of small, medium, and large sized

samples, respectively. For each of these three cases we carried out N = 1000

simulations consisting in drawing data from a copula with structured copula

parameter (i.e., R
(
θ̃0

)
= Λ̃Λ̃

>
+ Ψ̃) and estimating and testing the copula
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factor model H0 : R
(
θ̃0

)
= Λ̃Λ̃

>
+ Ψ̃. Three couples of copula models

are considered in each simulation. An hypothesized copula under H0 and

a copula model from which the data were generated. We only considered

Normal and t3 Student copulas for playing these roles. In each of these 3×
3×1000 repetitions we monitored the behavior of test statistic (3.9) by using

QQ–plots and kernel densities representations of its sample distribution.

All the procedures used to carry out the computations are written in the

language of the statistical software R. They are based on the pseudo–code

described in Section 3.3. We refer to the copula R package (Kojadinovic and

Yan, 2010c) available on the Comprehensive R Archive Network for compu-

tational issues about copulas.

In the case of a two–factor setting, to ensure uniqueness of the load-

ings, we use the restriction that Λ̃
>

Ψ̃
−1

Λ̃ is diagonal; see Section 2.2.1.

Hence, we have m (m− 1) /2 = 1 additional constraints. Using this restric-

tion and the two–factor setting, test statistic (3.9) via Kendall’s tau and

maximum pseudo–likelihood should be asymptotically χ2–distributed with

df = p (p− 1) /2 − pm + m (m− 1) /2 = 13 degrees of freedom; see Theo-

rem 3.4. Figures 4.2, 4.3, and 4.4 show the situation in case of Kendall’s

tau–based test statistic and sample size are equal to n = 100, 250, 1000, re-

spectively. Similarly, Figures 4.5, 4.6, and 4.7 report the same features for

maximum pseudo–likelihood–based choice.

First of all, we can observe physiological Heywood cases (see Table 4.2)

that affect both of the two methodologies with the small sample size (n =

100). They totally disappear when the number of observations increases

(n = 250, 1000). We believe that small samples can lack in information in

order to recognize the correlation structure from which they were generated.

Comments on the power of test statistic and its approximation to χ2–

distribution must be separately led for the case of correct specification and

misspecification of copula under H0. Each line of Table 4.3 shows the num-

ber of rejections of H0 : Cx

{
·; r
(
θ̃0

)
= vecp

(
Λ̃
>
Λ̃ + Ψ̃

)}
associated with

the different tests, given a choice of Cx and a true underlying copula C0. As

Klüppelberg and Kuhn (2009) point out, in case of right choice of the depen-

dence model the empirical distribution of (3.9) fits the χ2
13–distribution quite
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Copula under H0 True Copula n = 100 n = 250 n = 1000

τ Student 3 df Student 3 df 81 0 0
Student 3 df Normal 21 0 0

Normal Student 3 df 35 0 0

MPL Student 3 df Student 3 df 50 0 0
Student 3 df Normal 16 0 0

Normal Student 3 df 61 4 0

Table 4.2: Number of Heywood cases in N = 1000 simulated samples.

well for Kendall’s tau–based methodology with n = 100 (Figures 4.2 (a)–(b),

respectively). Figures 4.3 (a)–(b) and 4.4 (a)–(b) show an almost perfect

fit to the χ2
13–distribution for large samples. In case of maximum pseudo–

likelihood–based test statistic quite good fit is only obtained when n = 1000

(Figures 4.7 (a)–(b), respectively). On the other hand, this careful behavior

bring into a few number of rejections of the true correlation structure in con-

trast with the results of Kendall’s tau–based test statistic. Table 4.3 indeed

shows that maximum pseudo–likelihood–based test statistic performs better

than the Kendall’s tau–based counterpart.

Copula under H0 True Copula n = 100 n = 250 n = 1000

τ Student 3 df Student 3 df 22 28 38
Student 3 df Normal 20 28 45

Normal Student 3 df 12 28 45

MPL Student 3 df Student 3 df 0 3 21
Student 3 df Normal 0 0 0

Normal Student 3 df 62 498 802

Table 4.3: Number of rejections of H0 (5% significance level) assuming different cop-
ula models in N = 1000 simulated samples (every time decreased by the Heywood cases,
respectively).

It is a classical fact of statistics that the power of a test increases with

sample size. As Table 4.3 clearly shows, the present case is no exception.
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Nevertheless, we must clarify the reasons of the different results obtained

with the two versions of test statistic when the true copula is misspecified.

To illustrate the difficulties associated with the proper identification of a de-

pendence structure, Figure 4.1 portrays typical contour plots for the bivariate

Normal and t3 Student copula densities considered in the study, respectively.

When data are generated from Normal copula, the distinctive features of

the two models are hardly distinguishable. Therefore, the misspecification

error can be rarely detected both by Kendall’s tau–based and by maximum

pseudo–likelihood–based test statistic and its sample distribution fits the

χ2
13–distribution as well as in case of correct specification. In contrast, if t3

Student copula represents the data generating process, the characteristics of

the two different models are then much easier to pick out. For instance, their

lower– and upper–tail dependences translate into greater densities of points

in the lower–left and upper–right corners of the unit square, respectively.

Since Kendall’s tau–based statistic test use the same seminal relationship

(3.11) with Pearson’s linear correlation coefficients for all elliptical copulas,

it can not be able to make distinctions between Normal and t3 Student cop-

ulas. The number of rejections of H0 remains low also when the sample size

increases and the test statistic sample distribution anyway approximates the

χ2
13–distribution. On the contrary, with the maximum pseudo–likelihood–

based test statistic we use much more informations provided by copula den-

sities and we can distinguish the two models. The number of rejections of

H0 is almost equal to the N = 1000 simulations when the sample size is

n = 1000. Moreover, maximum pseudo–likelihood test statistics are never

χ2
13–distributed.

Now we change our perspective and we turn over real data. A dataset is

taken into account from Datastream, not totally identical to that one used by

Klüppelberg and Kuhn (2009). The daily values for financial indices Standar

& Poor 500 Composite, Dow Jones Industrials, and NIKKEI 225 Stock Av-

erage, for Crude Oil–Brent US$/BBL, and for exchange rates Great Britain

Pound to Euro, US Dollar to Euro, Swiss Franc to Euro, and Japanese Yen

to Euro are considered. We will shortly indicate them with the labels SP500,

DJ, NIK, OIL, GBP, USD, SWISS, YEN, respectively. All indices, exchange
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Figure 4.1: Contour plot of bivariate Normal (black line) and t3 Student (blue line)
copula densities, respectively.

rates and oil price are obtained for the period [06/12/1990;06/12/2010], re-

sulting in n = 5218 observations. Motivated by the interest on the Great

Financial Recession of 2007/2009, we apply a copula factor model to the

data to better understand the presence of common latent risk factors in this

period. In what follows we will refer to the period December 1990 to De-

cember 2010 as the “full sample” and January 2007 to December 2010 as the

“financial crisis”, resulting in nfc = 1026 observations.

Instead of analyzing the daily values themselves, we calculated and con-

sidered (percentual) continuously compounded returns (log–returns) rt,j =

100 (log pt,j/ log pt−1,j) (t = 2, . . . , nfc ; j = 1, . . . , 8). Log–returns are dis-

played in Figures 4.8.

Table 4.4 summarizes descriptive statistics. All series feature negative

skewness (except one; i.e., NIK) and high kurtosis. Moreover, there is em-

pirical evidence for serial correlation and GARCH effects as the Ljung–Box

statistic and Engle’s Lagrange Multiplier statistic indicate (see Table 4.5).

Because individual risk series in finance are typically serially dependent,

Chen and Fan (2006) introduced a class of semiparametric copula–based

multivariate dynamic models, in which the conditional mean and conditional

variance of individual risk series are parametrically specified. On the con-

verse the joint distribution of the standardized innovations is a parametric
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Figure 4.2: QQ–plot and kernel density of ordered Kendall’s tau–based test statistic
estimates against the χ2

13–quantiles and χ2
13–density (sample size n = 100). (a) and (b)

represents the case of correct specification of the true underlying copula (t3 Student copula).
(c) and (d) and (e) and (f) represent two cases of copula misspecification (t3 Student and
Normal copula assumed, respectively).
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Figure 4.3: QQ–plot and kernel density of ordered Kendall’s tau–based test statistic
estimates against the χ2

13–quantiles and χ2
13–density (sample size n = 250). (a) and (b)

represents the case of correct specification of the true underlying copula (t3 Student copula).
(c) and (d) and (e) and (f) represent two cases of copula misspecification (t3 Student and
Normal copula assumed, respectively).
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Figure 4.4: QQ–plot and kernel density of ordered Kendall’s tau–based test statistic
estimates against the χ2

13–quantiles and χ2
13–density (sample size n = 1000). (a) and

(b) represents the case of correct specification of the true underlying copula (t3 Student
copula). (c) and (d) and (e) and (f) represent two cases of copula misspecification (t3
Student and Normal copula assumed, respectively).
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Figure 4.5: QQ–plot and kernel density of ordered maximum pseudo–likelihood–based
test statistic estimates against the χ2

13–quantiles and χ2
13–density (sample size n = 100).

(a) and (b) represents the case of correct specification of the true underlying copula (t3
Student copula). (c) and (d) and (e) and (f) represent two cases of copula misspecification
(t3 Student and Normal copula assumed, respectively).
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Figure 4.6: QQ–plot and kernel density of ordered maximum pseudo–likelihood–based
test statistic estimates against the χ2

13–quantiles and χ2
13–density (sample size n = 250).

(a) and (b) represents the case of correct specification of the true underlying copula (t3
Student copula). (c) and (d) and (e) and (f) represent two cases of copula misspecification
(t3 Student and Normal copula assumed, respectively).
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Figure 4.7: QQ–plot and kernel density of ordered maximum pseudo–likelihood–based
test statistic estimates against the χ2

13–quantiles and χ2
13–density (sample size n = 1000).

(a) and (b) represents the case of correct specification of the true underlying copula (t3
Student copula). (c) and (d) and (e) and (f) represent two cases of copula misspecification
(t3 Student and Normal copula assumed, respectively).
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Figure 4.8: Log–returns for the oil price, indices, and exchange rates.
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Variable Mean Median Minimum Maximum

OIL 0.0002 0.0000 −0.4420 0.1516
SP500 0.0003 0.0004 −0.0911 0.1037

DJ 0.0003 0.0005 −0.0845 0.1011
NIK −4.4520e–05 −6.2006e–05 −0.0989 0.1131

GBP −5.6342e–05 0.0000 −0.0314 0.0272
USD 9.5560e–06 0.0000 −0.0463 0.0383

SWISS −5.4964e–05 0.0000 −0.0245 0.0302
YEN −9.6349e–05 0.0000 −0.0560 0.0540

Variable Std. Dev. C.V. Skewness Ex. Kurtosis

OIL 0.0232 102.6330 −1.3536 27.8941
SP500 0.0132 49.0982 −0.1334 5.3350

DJ 0.0128 42.7366 −0.0971 4.9701
NIK 0.0162 363.1860 0.0356 3.0851

GBP 0.0050 89.5909 −0.2380 3.3613
USD 0.0064 667.2330 −0.0830 2.8416

SWISS 0.0031 57.2594 −0.2740 7.3547
YEN 0.0076 79.1326 −0.3624 4.5221

Table 4.4: Summary statistics of the dataset, using the “full sample”.

copula evaluated using nonparametric marginal estimates. That is, a scalar

GARCH(pj, qj) model is used to capture volatility of individual risk series

and a parametric copula is used to model the contemporaneous dependence

between different risks. The conventional approach is to assume indepen-

dence and normality for the standardized innovations, while Chen and Fan

(2006)’s approach is to assume a copula for them. The main contribution of

GARCH–copula model is that it permits modeling the conditional correlation

and dependence structure, separately and simultaneously. For a general sur-

vey on multivariate GARCH models, see Bauwens, Laurent, and Rombouts

(2006).

Suppose the observations
{
rt = (rt,1, . . . , rt,8)>

}nfc

t=1
satisfy

rt,j = µt,j + σt,jεt,j , σ2
t,j = ct,j +

pj∑
i=1

ai,j σ2
t−i,j ε

2
t−i,j +

qj∑
i=1

bi,j σ2
t−i,j ,
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Variable LB (37) LM (2)

OIL 82.9753∗ 1051.0000∗

SP500 103.6649∗ 1490.2200∗

DJ 88.2872∗ 7908.7900∗

NIK 58.9312∗ 813.1480∗

GBP 76.0937∗ 632.2620∗

USD 50.4626 559.1650∗

SWISS 73.1215∗ 1502.8400∗

YEN 71.4617∗ 1243.7600∗

Table 4.5: Ljung–Box (LB) statistic and Engle’s Lagrange Multiplier (LM) statistic
(significant statistics at the 5% level are marked with an asterisk).

j = 1, . . . , 8, where
{
ε̃t = (εt,1/σt,1, . . . , εt,8/σt,8)>

}nfc

t=1
is a sequence of

IID random vectors with E (ε̃t) = 0, E
(
ε̃tε̃
>
t

)
= I8. The joint distribution

function Fε̃ of the standardized ε̃t is assumed to take the semiparametric

form Fε̃ (ε̃1, . . . , ε̃8) = Cε̃ {Fε̃,1 (ε̃1) , . . . , Fε̃,8 (ε̃8) ; α0}. Here Cε̃ (· ; α0) is a

copula function parametrized up to the unknown parameter α0 ∈ A ⊂ Rd,

and for j = 1, . . . , 8, Fε̃,j (ε̃j) is the marginal distribution function of ε̃t,j,

assumed to be continuous. Let Cε̃ denote the unique copula corresponding

to the true joint distribution Fε̃ of the GARCH residual vector ε̃t. We call

Cε̃ the residual copula according to Chen and Fan (2006).

Crucial to the validity of the Chen and Fan (2006)’s model estimation and

selection test is the result that the asymptotic distribution of the estimator α̂

of α0 is not affected by the initial step estimation of the GARCH parameters.

The limit distribution of α̂ and goodness–of–fit test statistic are independent

of the GARCH filtering.

We apply the procedure by Chen and Fan (2006) to our dataset and we

estimate and test a copula factor model for the standardized innovations.

In other words, we assume there exists an underlying generating random

vector ζ ∈ Rz such that Cε̃ = C(Λ,Ip)ζ. Here, we fit the Normal and tν

Student copulas to the standardized residuals from filtering a GARCH(1, 1)

for each series; see Tables 4.6 for GARCH parameter estimates. The copula

correlation matrix is thus assumed to be of the form R
(
θ̃0

)
= Λ̃Λ̃

>
+ Ψ̃ for
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some m < 8, Λ̃ ∈ R8×m and Ψ̃ ∈ R8×8, where θ̃0 = vecp
(
Λ̃, Ψ̃

)
.

Goodness–of–fit tests for copulas are summarized in Table 4.7. The test

statistic is the Cramér–von Mises functional defined in equation (2) of Genest,

Rémillard, and Beaudoin (2009) and it is based on the empirical process

comparing the empirical copula with a parametric estimate of the copula

derived under the null hypothesis. Approximate p–values for the test statistic

has been obtained using parametric bootstrap. Both the Normal and the

t14.87 Student copula are not rejected. For Student copula we previously

estimated the degree of freedom as remarked in Section 4.2. Therefore, we

fit a Normal and t14.87 Student copula factor model to our standardized

innovations using the test statistic (3.9) via Kendall’s tau and maximum

pseudo–likelihood, respectively.

In order to estimate the number of latent factors, we use a 95% confidence

test; i.e., we reject the null hypothesis of having a copula m–factor model, if

the test statistic (3.9) is larger than the 95%–quantile of the χ2
df–distribution.

This suggests a four factor model under both the Kendalls tau–based and

the maximum pseudo–likelihood–based test statistics (see Table 4.8).

We present the corresponding factor loadings in Figure 4.9 for both el-

liptical copula factor models. In Figures 4.9 (a)–(c)–(e)–(g) the Normal

copula–based estimated loadings are plotted, meanwhile in Figures 4.9 (b)–

(d)–(f)–(h) the t14.87 Student copula–based estimates are drawn. Firstly, we

emphasize that, although we have plotted the factors in the same figures,

they are obtained by the two different estimation methods (i.e., Kendall’s

tau and maximum pseudo–likelihood, respectively) and may have different

interpretations. Secondly, since the estimated Student degrees of freedom

are quite high, the distinctive characteristics of the two copula models are

hardly distinguishable. Anyway, the use of classical normal–based correla-

tion structure analysis can here be substituted by t Student copula factor

analysis, which has completely different features from those of the Normal

copula as the generating variable r is heavy tailed.

For the first factor the loadings of the different correlation estimators

behave very similarly under the two elliptical copulas assumed. The first

factor has weights that is close to 1 for SP500 and DJ. Hence, factor 1 can
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Figure 4.9: Loadings of the four factors, where plotted points 1 and 2 represent the
estimated loadings via Kendall’s tau– and maximum–pseudo likelihood–based procedures,
respectively; in (a), (c), (e), (g) the Normal copula is assumed; in (b), (d), (f), (h) the
t14.87 Student copula is assumed.



A COMPREHENSIVE EMPIRICAL STUDY 79

be interpreted as the United States–risk–factor. It also can be seen that this

factor has a positive weight for all components, but not for the Nikkei index,

which is very small negative (−0.039 and −0.042 by using Kendall’s tau–

and maximum pseudo–likelihood–based procedure, respectively, under both

Normal and Student’s t copula).

For factor 2 we observe for both correlation estimators in case of t Stu-

dent copula a large weight on Swiss Franc and Japanese Yen, so we call it

the Swiss/Nippon–risk–factor. We note that this factor has a very small

negative weight on USD, maybe as a consequence of the previously United

States–risk–factor. In case of Normal copula, the two estimators give differ-

ent interpretations. Maximum–pseudo likelihood–based estimated loadings

attaches a lot of importance to the exchange rate USD and negative weights

to OIL and to the couple SWISS–YEN. We can name this factor US Dollar–

risk–factor. Kendall’s tau estimates seem to have the same interpretation of

t Student copula case.

Considering factor 3, we are present at an inversion of the comments

made for factor 2. For the case of t Student copula we interpret the factor as

US Dollar–risk–factor. On the contrary, in case of Normal copula maximum–

pseudo likelihood–based estimated loadings bring to the Swiss/Nippon–risk–

factor, while Kendall’s tau estimates to US Dollar–risk–factor again.

Finally, as for the first factor, the loadings of the different correlation

estimators behave very similarly under the two elliptical copulas assumed in

case of factor 4. We interpret it as Anglo/American Currencies–risk–factor.

We conclude that these interpretations of latent factors can be reasonable

since the recession was originated in United States and it involved the Amer-

ican country and Great Britain with a lot numbers of companies bankrupt-

cies.
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Coefficient Estimate Std. Error p–value

OIL µ̂OIL 0.0005 0.0003 0.0612
ĉOIL 4.5069e–06 1.1397e–06 0.0001

â1,OIL 0.0688 0.00588908 0.0000

b̂1,OIL 0.9260 0.00626105 0.0000

SP500 µ̂SP500 0.0004 0.0001 0.0017
ĉSP500 1.3692e–06 3.0678e–07 8.0800e–06

â1,SP500 0.0546 0.0060 1.8700e–19

b̂1,SP500 0.9369 0.0071 0.0000

DJ µ̂DJ 0.0005 0.0001 0.0007
ĉDJ 1.5660e–06 3.4227e–07 4.7600e–06

â1,DJ 0.0573 0.0064 2.6800e–19

b̂1,DJ 0.9325 0.0076 0.0000

NIK µ̂NIK 0.0001 0.0002 0.5152
ĉNIK 3.9403e–06 8.0001e–07 8.4200e–07

â1,NIK 0.0745 0.0074 8.3900e–24

b̂1,NIK 0.9118 0.0085 0.0000

GBP µ̂GBP −4.4262e–05 7.4072e–05 0.5501
ĉGBP 8.1116e–08 3.4906e–08 0.0201

â1,GBP 0.0342 0.0049 2.1300e–12

b̂1,GBP 0.9630 0.0053 0.0000

USD µ̂USD −6.9617e–05 7.8666e–05 0.3762
ĉUSD 1.7582e–07 5.1917e–08 0.0007

â1,USD 0.0296 0.0031 7.2700e–22

b̂1,USD 0.9664 0.0035 0.0000

SWISS µ̂SWISS 1.3110e–05 3.2723e–05 0.6887
ĉSWISS 6.3510e–08 1.5545e–08 4.3900e–05

â1,SWISS 0.0671 0.0069 2.1800e–22

b̂1,SWISS 0.9300 0.0070 0.0000

YEN µ̂Y EN 0.0001 8.2440e–05 0.1597
ĉY EN 4.6302e–07 1.1226e–07 3.7100e–05

â1,Y EN 0.0726 0.0076 1.7600e–21

b̂1,Y EN 0.9217 0.0080 0.0000

Table 4.6: GARCH(1, 1) estimates for each series in the dataset.
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Copula under H0 Test statistic p–value

Student 14.87 df 0.0121 0.0974
Normal 0.0129 0.0794

Table 4.7: Goodness–of–fit tests under the null hypothesis that the residual copula is
Normal and t14.87 Student, respectively (significant statistics at the 5% level are marked
with an asterisk).

Copula under H0 Number of factors df Tτ TMPL χ2
df ;0.95

Normal 1 20 1536.3500 7592.3700 31.4104
2 13 248.6181 254.8052 22.3620
3 7 25.6227 20.4397 14.0671
4 2 2.3506 0.3972 5.9915

Student 14.87 df 1 20 1536.3500 2311.9470 31.4104
2 13 248.6181 238.5667 22.3620
3 7 25.6227 19.7557 14.0671
4 2 2.3506 0.3115 5.9915

Table 4.8: Test statistics (3.9) via Kendall’s tau (Tτ ) and maximum pseudo–likelihood
(TMPL) applied to the standardized residuals under various numbers of factors and assum-
ing Normal and t14.87 Student copula, respectively.





Chapter 5

Concluding remarks and

discussions

Along this doctoral dissertation we devote ourselves to the study of mo-

ment structure models as one of the oldest field of applications of statistics.

These models are typically characterized by the assumption of linearity and

normality for observed variables. Our aim was to relax the underlying condi-

tions in order to catch the widest class of non necessarily linear dependence

structures. For doing that, we firstly exploited the inferential tools provided

by the seminal paper of Browne (1984). Secondly, we based our approach to

estimate and test the models on copulas as Klüppelberg and Kuhn (2009)

have recently investigated. We were carried away by the persuasion that cop-

ula functions can play an important role in statistical modeling and the huge

number of contributions in the last ten years are an overwhelming evidence.

Klüppelberg and Kuhn (2009) only focused their attention to elliptical

copulas. In this dissertation we extended the methodology to other copula

families. We found that the EFGM copula discussed by Cambanis (1991)

can be profitably used in correlation structure analysis. An extension of

Klüppelberg and Kuhn (2009)’s approach is not trivial and requires some

restrictive conditions on copula parameters. Dependence properties of copu-

las are rarely closely related with linear correlation coefficients because they

mainly represent nonlinear dependence. Besides elliptical copulas we do not
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recognize other families whose dependence parameter vector coincides with

Pearson’s linear correlation coefficients. Therefore, an analytical one–to–one

relation between correlation matrix and copula parameters has to be de-

tected for any different copula models. For instance for elliptical copulas

the link provided by Fang, Fang, and Kotz (2002, Theorem 3.1) is at our

disposal. In case of EFGM, Schucany, Parr, and Boyer (1978) suggest a way

that we exploited in order to obtain a similar result. On the contrary the

well known Archimedean copulas as for instance Clayton and Frank (Clay-

ton, 1978; Frank, 1979) can not be used here because of the exchangeability

and the paucity of parameters (generally, 1 or 2).

Klüppelberg and Kuhn (2009) proposed to obtain a copula–based corre-

lation matrix for correlation structure model by using Kendall’s tau matrix.

That is, a bridge between correlation matrix and Kendall’s tau matrix to

carry out with copula parameters. We recognize some possible drawbacks

with this choice. Firstly, the required analytic relation between Kendall’s

τ and copula parameters does not exist for all copulas; e.g., the so-called

Joe family of copulas (Joe, 1993), Galambos family of copulas (Galambos,

1975), and Hüsler–Reiss family of copulas (Hüsler and Reiss, 1989). Secondly,

Kendall’s τ does not depend on the magnitude of the data and it neglects

large and small values (Mikosch, 2006). Moreover, unless r is the generator

of the multivariate normal distribution, τi,j = ρi,j = 0 never corresponds to

independence; see Section 3.1.1. We also noted from the simulation study in

Section 4.3 that the use of the same relation in case of elliptical copulas can

not be able to distinguish different elements belonging to the same family. In

order to make this research less expensive, we provide a correlation structure

analysis through the maximum pseudo–likelihood–based copula parameters

estimates. Hence, we suggest to give up the so–called moment–based proce-

dure involving Kendall’s tau matrix and to focus the attention on the direct

link between correlation matrix and copula parameters, by using maximum

pseudo–likelihood–based estimates. The need of an analytic one–to–one rela-

tion between copula parameters and correlation coefficients clearly remains,

but there is no more the need of a link with the concordance measure.

We carried out a comprehensive simulation experiment in Section 4.3 in
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order to assess the performances of the proposed maximum pseudo–likelihood–

based test statistic for testing an elliptical copula factor model and to com-

pare the results with those obtained by Klüppelberg and Kuhn (2009). We

pointed out that our test statistic resulted more conservative and power-

ful than the Kendall’s tau–based counterpart. Moreover, an application to

real data has shown that the interpretation of latent factors via maximum

pseudo–likelihood–based inferential procedure is reasonable as well as that

supplied by Klüppelberg and Kuhn (2009).

We conclude with a summary about the improvements provided by copu-

las in moment structure analysis in connection with Browne (1984). We have

just mentioned the opportunity given by copulas to capture a wider range

of dependence structures. An other important benefit is to avoid heavy

calculations for higher–order moments planned by Browne (1984); i.e., the

fourth–order moment estimation. In case of elliptical copulas we are able to

provide a correlation–like matrix without assumptions about the existence of

moments. Nevertheless, in case of EFGM copula we require existing first and

second moments; see Theorem 4.1 and Corollary 4.2. Anyway, we recognize

a clear decreased computational effort in comparison with Browne (1984)’s

contribution.





Appendix A

Kronecker products and the

Vec, Vech, and patterned Vec

operators

We denote by ⊗ the right Kronecker product. The Kronecker product

of two matrices, say a m × n matrix B and a p × q matrix C, is denoted

by the symbol (B ⊗C) and is defined to be a mp× nq matrix obtained by

replacing each element [B]i,j of B with the p× q matrix [B]i,j C. Thus, the

Kronecker product of B and C is a partitioned matrix, comprising m rows

and n columns of p× q dimensional blocks, the i, j–th of which is [B]i,j C.

Let A represent an n× n symmetric matrix (but we could also consider

non–symmetric matrix). We denote by vec (A) the n2 × 1 column vector

obtained by stacking the columns a1, a2, . . ., an of A, and by positioning

them one under the other. The following theorem provides a general result

widely exploited in this work.

Theorem A.1 (Harville, 1997, Theorem 16.2.1) For any m×n matrix

D, n× p matrix E, and p× q matrix F ,

vec (DEF ) =
(
F> ⊗D

)
vec (E) . (A.1)

Generally speaking, let A represent an m × n matrix, and denote the

first, . . ., n–th columns of A by a1, . . ., an, respectively, and the first, . . .,
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m–th rows of A by r1, . . ., rm, respectively. Both vec
(
A>
)

and vec (A) are

obtained by rearranging the elements of A in the form of an mn–dimensional

column vector. However, they are arranged row by row in vec
(
A>
)

instead

of column by column, as in vec (A). Clearly, vec
(
A>
)

can be obtained by

permuting the elements of vec (A). Accordingly, there exists an mn × mn
permutation matrix, to be denoted by the symbol Kmn, such that

vec
(
A>
)

= Kmn vec (A) .

The matrix Kmn is referred to as a vec–permutation matrix (e.g., Hen-

derson and Searle, 1979) or, more commonly, as a commutation matrix (e.g.,

Magnus and Neudecker, 1979). Note that, since the transpose A> of the

m× n matrix A is of dimensions n×m, it follows that

vec (A) = vec
{(
A>
)>}

= Knm vec
(
A>
)

= KnmKmn vec (A) ,

implying that Imn = KnmKmn. Thus Kmn is nonsingular and K−1
mn =

Knm.

Let vech (A) represent the n? × 1 column vector formed from the non–

duplicated elements of the symmetric A, where n? = n (n+ 1) /2. Let Gn

be the transition or duplication matrix of order n2 × n? such that vec (A) =

Gn vech (A) and vech (A) = Hn vec (A) for every symmetric matrix A,

where one choice for Hn is Hn =
(
G>nGn

)−1
G>n (since Gn is of full column

rank, G>nGn is nonsingular).

For instance, G1 = (1), G2 =

(
1 0 0
0 1 0
0 1 0
0 0 1

)
, and G3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, and

H1 = (1), H2 =
(

1 0.0 0.0 0
0 0.5 0.5 0
0 0.0 0.0 1

)
, and G3 =

( 1 0.0 0.0 0.0 0 0.0 0.0 0.0 0
0 0.5 0.0 0.5 0 0.0 0.0 0.0 0
0 0.0 0.5 0.0 0 0.0 0.5 0.0 0
0 0.0 0.0 0.0 1 0.0 0.0 0.0 0
0 0.0 0.0 0.0 0 0.5 0.0 0.5 0
0 0.0 0.0 0.0 0 0.0 0.0 0.0 1

)
.

Let L represent a n×n matrix and X a n×n symmetric matrix. Observe

(in light of Theorem A.1) that
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vec
(
LXL>

)
= (L⊗L) vec (X) = (L⊗L)Gn vech (X) . (A.2)

Observe also that (since LXL> is symmetric)

vech
(
LXL>

)
= Hn vec

(
LXL>

)
. (A.3)

Together, equations (A.2) and (A.3) imply that

vech
(
LXL>

)
= Hn (L⊗L)Gn vech (X) . (A.4)

Result (A.4) can be regarded as the vech counterpart of formula (A.1)

for the vec of a product of matrices.

Consider now a modification of the stacking columns process in which

(before or after the stacking) the n (n+ 1) /2 “supra–diagonal” elements of

A, included diagonal elements, are eliminated from a1, a2, . . ., an. The

result is the {n (n− 1) /2}–dimensional vector
a?1

a?2
...

a?n

 , (A.5)

where a?i =
(

[A]i+1,i , [A]i+2,i , . . . , [A]n,i

)>
for i = 1, 2, . . . , n is the sub-

vector of ai obtained by striking out its first i elements. Thus, by definition,

the vector (A.5) is a subvector of vec (A) obtained by striking out a partic-

ular set of duplicate or redundant elements (in the special case where A is

symmetric).

Following Henderson and Searle (1979) and Nel (1985), let us refer to

the vector (A.5) as the vecp of A – think of vecp as being an abbreviation

for vector of patterned matrix. Denote this vector by the symbol vecp (A).

Like vec (A), vecp (A) can be regarded as the value assigned to A by a

vector–valued function or operator, whose domain is Rn×n. A symmetric

matrix A is called patterned if A has n2− r− c mathematically independent
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and variable elements, where r denotes the number of elements which are

repeated, even with a negative sign, and c denotes the number of constant

elements of A. If we refer to the pattern of A, we refer to the positions

and signs of the mathematically independent and variable elements of A.

Correlation matrices are typical examples of squared patterned matrices.

Other examples are given in Henderson and Searle (1979).

If a patterned matrix A is stacked column–wise in order of appearance

into a single column vector, we use the convention that constant elements

in A are replaced with zeros in vec (A). Thus we are only interested in the

positions of the mathematically independent and variable elements in A and

vec (A), and not in the numerical values of the constant elements.

Let us consider the pattern of a correlation matrix. Observe that the

total number of elements in the j vectors a?1, a?2, . . ., a?j is

(n− 1) + (n− 1)− 1 + . . .+ (n− 1)− (j − 1) =

=nj − j − (0 + 1 + . . .+ j − 1) = nj − j (j + 1)

2

and that, of the (n− 1) − (j − 1) = n − j elements of a?j , there are (for

i > j) n− i elements that come after ai,j. Since nj− j (j + 1) /2− (n− i) =

n (j − 1) − j (j + 1) /2 + i, it follows that (for i > j) the i, j–th element

of A is the {(j − 1)n− j (j + 1) /2 + i}–th element of vecp (A). By way

of comparison, the i, j–th element of A is the {(j − 1)n+ i}–th element of

vec (A), so that (for i > j) the {(j − 1)n+ i}–th element of vec (A) is the

{(j − 1)n− j (j + 1) /2 + i}–th element of vecp (A).

Since non-fixed elements of a n×n symmetric matrix A, and hence every

non–fixed elements of vec (A), are either elements of vecp (A), there exists

a unique n2 × n?? matrix, where n?? = n (n− 1) /2, to be denoted by the

symbol Qn, such that vec (A) = Qn vecp (A). Since the duplication matrix

Qn is of full column rank, it has a left inverse. Thus, by definition, P n

is a n?? × n2 matrix such that vecp (A) = P n vec (A) for every symmetric

matrix A, where one choice for P n is P n =
(
P>nP n

)−1
P>n (since P n is of
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full column rank, P>nP n is nonsingular). Finally, mutatis mutandis, formula

(A.4) still holds for vecp operator.





Appendix B

L–moments

L–moments are analogous to the conventional moments but they can be

estimated by linear combinations of order statistics; i.e., L–statistics. The L

in L–moments emphasizes the fact that L–moments are linear functions of

the expected order statistics. These moments have the theoretical advantages

over conventional moments of being able to characterize at wider range of

distributions and, when estimated from a sample, of being more robust to the

presence of outliers in the data. Moreover, they approximate their asymptotic

normal distribution more closely in finite sample. For a detailed review on

the L–moment see Hosking (1990) and David and Nagaraja (2003).

Let x be a real random variable with distribution function F , and let

x1:n ≤ . . . ≤ xn:n be the order statistics of a random sample of size n drawn

from the distribution of x. Define the L–moments of x as the quantity

δr = r−1

r−1∑
k=0

(−1)k
(
r − 1

k

)
E (xr−k;r) r = 1, 2, . . . . (B.1)

The expectation of an order statistic may be written as

E (xj;r) =
r!

(j − 1)! (r − j)!

∫
xj−1 {1− F (x)}r−j dF (x) . (B.2)

Substituting (B.2) in (B.1), expanding the binomials in F (x) and sum-

ming the coefficients of each power of F (x) gives
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δr =

∫
xP ?

r−1 {F (x)} dF (x) ,

where

P ?
r {F (x)} =

r∑
k=0

p?r,k {F (x)}k (B.3)

and

p?r,k = (−1)r−k
(
r

k

)(
r + k

k

)
.

δ1 =
∫
x dF (x), the mean, is a measure of location. To interpret

δ2 =
1

2
E (x2:2 − x1:2) =

∫
F−1 (x) [2F (x)− 1] dF (x)

consider the typical configuration of a sample of size 2. If the two values

tend to be close together, then δ2 will be smaller than if they are far apart.

Thus, δ2 can be thought of as measuring the scale or dispersion of the distri-

bution. To compare δ2 with the more familiar scale measure σ, the standard

deviation, write

δ2 =
1

2
E (x2:2 − x1:2) , σ2 =

1

2
E (x2:2 − x1:2)2 .

Both quantities measure the difference between two randomly drawn el-

ements of a distribution, but σ2 gives relatively more weight to the largest

differences.

The use of L–moments to describe probability distributions is justified by

the following theorem.

Theorem B.1 (Hosking, 1990, Theorem 1) Let x be a real random vari-

able.

(a) The L–moments δr, r = 1, 2, . . ., of x exist if and only if x has finite

mean.

(b) A distribution whose mean exists is characterized by its L–moments

{δr; r = 1, 2, . . .}.
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Thus a distribution may be specified by its L–moments even if some of its

conventional moments do not exist. Moreover, under a linear transformation

of the data, the sample L–moments are transformed isomorphically with the

corresponding population L–moments. If xi → Axi +B ∀ i = 1, . . . , n, then

δ1 → Aδ1 +B and δr → (signA)r Aδr ∀ r ≥ 2.

The natural estimator of δr based on an observed sample of data is a

linear combination of the ordered data values; i.e., the L–statistics. Because

δr is a function of the expected order statistics of a sample of size r, it is

natural to estimate it by a U–statistic (Lee, 1990); i.e., the corresponding

function of the sample order statistics averaged over all subsamples of size r

which can be constructed from the observed sample of size n. Let x1, . . . , xn

be the sample and x1:n ≤ . . . ≤ xn:n the ordered sample, and define the r–th

sample L–moment as

δ̂r =

(
n

r

)−1 ∑
1≤i1<...<ir≤n

r−1

r−1∑
k=0

(−1)k
(
r − 1

k

)
xir−k:n r = 1, . . . , n .

In particular,

δ̂2 =
1

2

(
n

2

)−1∑
i>j

(xi:n − xj:n) .

It is now clear that δ2 is a scalar multiple of Gini’s mean difference statistic

G =
(
n
2

)−1∑
i>j (xi:n − xj:n). Nevertheless, it is not necessary to iterate over

all subsamples of size r. The statistics can be expressed explicitly as a linear

combination of order statistics of a sample of size n. Wang (1996) suggests

to estimate L–moments following closely their definition; for instance, the

second sample L–moment can be defined as follows,

δ̂2 =
1

2

(
n

2

)−1 n∑
i=1

[2i− (n+ 1)]xi:n . (B.4)

Regarding the shape of the sampling distributions of L–moments, exact

sampling distributions are difficult to obtain. The most practically useful
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results come from asymptotic distribution theory.

Theorem B.2 (Hosking, 1990, Theorem 3) Let x be a real continuous

random variable with distribution function F , L–moments δr and finite vari-

ance. Let δ̂r, r = 1, . . . ,m, be the sample L–moments calculated from a

random sample of size n drawn from the distribution of x. Let βr = δr/δ2

and br = δ̂r/δ̂2, r = 3, . . . ,m. Then, as n→∞,

n1/2
(
l̂− l

)
L−→ N (0,ΣL) ,

where l̂ =
(
δ̂1, δ̂2, b3, . . . , bm

)>
, l = (δ1, δ2, β3, . . . , βm)>, and the elements

of ΣL =
[
σLr,s
]

1≤r,s≤m are equal to

σLr,s =


ςrs r ≤ 2, s ≤ 2,

(ςrs − βrς2s) /δ2 r ≥ 3, s ≤ 2,

(ςrs − βrς2s − βsς2r + βrβsς22) /δ2
2 r ≥ 3, s ≥ 3,

with

ςrs =

∫ 1

0

∫ 1

0

{
P ?
r−1 (u) P ?

s−1 (v) + P ?
s−1 (u) P ?

r−1 (v)
}
×

× u (1− v)
∂

∂ x
F−1 (x)

∣∣∣∣
x=u

∂

∂ x
F−1 (x)

∣∣∣∣
x=v

dudv ,

P ?
r (u) is given in (B.3), and u = F (x).
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Jöreskog, K. G. and A. S. Goldberger (1972). “Factor analysis by generalized

least squares”. In: Psychometrika 37, pp. 243–260.
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Rüschendorf, L. (1976). “Asymptotic Distributions of Multivariate Rank Or-

der Statistics”. In: Ann. Stat. 4, pp. 912–923.
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