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PREFAZIONE  

 

Tra i metodi sperimentali solitamente utilizzati per definire il comportamento di 

un sistema in scala reale, le prove dinamiche costituiscono la procedura più 

completa ed affidabile. Una prova dinamica è una procedura sperimentale atta a 

determinare un insieme di parametri caratteristici del comportamento dinamico 

del sistema, quali le frequenze naturali della struttura, le deformate modali 

corrispondenti ed i valori di smorzamento associati. La conoscenza di queste 

grandezze modali può essere utilizzata sia per verificare le assunzioni teoriche di 

progetto, che per controllare le prestazioni del sistema strutturale durante la sua 

fase di esercizio. 

La tesi di dottorato sarà strutturata nelle seguenti sezioni: 

� Il primo capitolo, di carattere introduttivo, richiama alcune nozioni di 

base della Dinamica delle Strutture, focalizzando il discorso sul 

problemi di sistemi a più gradi di libertà, quali possono essere i sistemi 

reali oggetto di studio, se eccitati con forzanti di tipo armonico o in 

vibrazioni libere.  

� Il secondo capitolo è interamente dedicato al problema 

dell’identificazione dinamica di una struttura, se sottoposta ad una 

prova in sito in vibrazioni forzate. Si descrive dapprima il classico 

metodo, tramite FFT del segnale registrato, che premette di risalire alla 

FRF e da questa ai parametri modali della struttura. Successivamente 

viene introdotta una diversa metodologia, anch’essa nel dominio delle 

frequenze, che consente di descrivere puntualmente la FRF, sfruttando 

le caratteristiche geometriche dell’ellisse che rappresenta il diretto 

confronto input-output. I due metodi sono quindi confrontati e si pone 

particolare attenzione su alcuni vantaggi che la metodologia proposta 

possiede.  

� Il terzo capitolo è incentrato sullo studio di strutture reali se soggette a 

prove in sito in cui la forzante non è nota, eccitazioni di tipo 

ambientale e prove d’urto o rilascio. In questo tipo di analisi si è scelto 

di utilizzare la CWT, che permette uno studio contemporaneo nel 
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dominio del tempo e delle frequenze di un generico segnale x(t). La 

CWT è stata dapprima applicata ad una prova in oscillazioni libere, 

ottenendo ottimi risultati sia in termini di frequenze proprie che di 

smorzamenti che di modi di vibrare. L’applicazione nel caso di 

vibrazioni ambientali ha definito ancora in modo sufficientemente 

accurato i parametri modali del sistema, anche se sullo smorzamento 

occorre fare alcune interessanti considerazioni. 

� Il quinto capitolo tratta ancora il problema di post processing di dati 

acquisiti a seguito di una prova in vibrazioni ambientali, ma questa 

volta attraverso l’applicazione della trasformata discreta di Wavelet 

(DWT). In una prima parte i risultati ottenuti tramite la DWT sono 

confrontati con quelli relativi all’applicazione della CWT. 

Particolare attenzione viene data all’utilizzo della DWT come 

strumento di filtraggio del segnale registrato, che in caso di vibrazioni 

ambientali è spesso affetto dalla presenza di un’importante quota di 

rumore. 

� Il quinto capitolo analizza un’altra importante fase del processo di 

identificazione: il model updating. In questo capitolo, partendo dai 

parametri modali ottenuti da alcune prove in vibrazioni ambientali, 

eseguite dall’università di Porto nel 2008 e dall’università di Sheffild nel 

1994 sul ponte Humber in Inghilterra, si vuole definire un modello FEM 

del ponte in acciaio, al fine di stabilire quale sia il tipo di modellazione 

che permetta di cogliere in modo più vicino il reale comportamento 

dinamico del ponte.  

� Il sesto capitolo riporta le necessarie conclusioni dell’intero lavoro. Esse 

riguardano l’applicazione di una metodologia nel dominio delle 

frequenze al fine di valutare i parametri modali di una struttura ed i 

suoi vantaggi, i vantaggi nell’applicazione di una procedura basata 

sull’utilizzo delle trasformate di Wavelet nel processo di identificazione 

dinamica nel caso di prove con input non noto ed infine il problema 

della modellazione 3D di sistemi a molti gradi di libertà e con diversi 

tipi di incertezze (nello specifico nel caso di un ponte sospeso 

modellazione collegamento torre-impalcato, scelta elemento FEM per 
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l’impalcato, interazioni cavo impalcato e possibile presenza di modi di 

vibrare locali).   

 

PREFACE 

 

Among the experimental methods commonly used to define the behaviour of a 

full scale system, dynamic tests are the most complete and efficient procedures. A 

dynamic test is an experimental process, which would define a set of 

characteristic parameters of the dynamic behaviour of the system, such as natural 

frequencies of the structure, mode shapes and the corresponding modal damping 

values associated. An assessment of these modal characteristics can be used both 

to verify the theoretical assumptions of the project, to monitor the performance of 

the structural system during its operational use.  

The thesis is structured in the following chapters:  

� The first introductive chapter recalls some basic notions of dynamics of 

structure, focusing the discussion on the problem of systems with multiply 

degrees of freedom (MDOF), which can represent a generic real system 

under study, when it is excited with harmonic force or in free vibration.  

� The second chapter is entirely centred on to the problem of dynamic 

identification process of a structure, if it is subjected to an experimental 

test in forced vibrations. It first describes the construction of FRF through 

classical FFT of the recorded signal. A different method, also in the 

frequency domain, is subsequently introduced; it allows accurately to 

compute the FRF using the geometric characteristics of the ellipse that 

represents the direct input-output comparison. The two methods are 

compared and then the attention is focused on some advantages of the 

proposed methodology.  

� The third chapter focuses on the study of real structures when they are 

subjected to experimental test, where the force is not known, like in an 
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ambient  or impact test. In this analysis we decided to use the CWT, 

which allows a simultaneous investigation in the time and frequency 

domain of a generic signal x(t). The CWT is first introduced to process 

free oscillations, with excellent results both in terms of frequencies, 

dampings and vibration modes. The application in the case of ambient 

vibrations defines accurate modal parameters of the system, although on 

the damping some important observations should be made.  

� The fourth chapter is still on the problem of post processing data acquired 

after a vibration test, but this time through the application of discrete 

wavelet transform (DWT). In the first part the results obtained by the 

DWT are compared with those obtained by the application of CWT. 

Particular attention is given to the use of DWT as a tool for filtering the 

recorded signal, in fact in case of ambient vibrations the signals are often 

affected by the presence of a significant level of noise.  

� The fifth chapter focuses on another important aspect of the identification 

process: the model updating. In this chapter, starting from the modal 

parameters obtained from some environmental vibration tests, performed 

by the University of Porto in 2008 and the University of Sheffild  on the 

Humber Bridge in England, a FE model of the bridge is defined, in order 

to define what type of model is able to capture more accurately the real 

dynamic behaviour of the bridge.  

� The sixth chapter outlines the necessary conclusions of the presented 

research. They concern the application of a method in the frequency 

domain in order to evaluate the modal parameters of a structure and its 

advantages, the advantages in applying a procedure based on the use of 

wavelet transforms in the process of identification in tests with unknown 

input and finally the problem of 3D modeling of systems with many 

degrees of freedom and with different types of uncertainty. 
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INTRODUZIONE 

 

Le vibrazioni fanno parte della vita di ogni giorno, esse sono tuttavia sempre 

considerati come fenomeni sgradevoli ed indesiderati, che possono comportare 

semplici disagi o malfunzionamenti, o nel caso più estremo il collasso della 

struttura. Gli effetti indotti dai terremoti rappresentano forse la manifestazione 

più spaventosa e distruttiva di come un fenomeno di vibrazione dinamica possa 

compromettere, anche irreversibilmente, la possibilità di utilizzo di una generica 

struttura.   

Negli ultimi decenni, un’attenzione sempre maggiore è stata data alla necessità di 

classificare efficientemente il comportamento dinamico di un edificio. L’utilizzo di 

tecniche di progettazione sempre più sofisticate insieme allo sviluppo di materiali 

innovativi hanno permesso la costruzione di strutture sempre più leggere, ma 

parallelamente sempre più flessibili, quindi più soggette a fenomeni di vibrazione. 

Conseguentemente sono aumentati drammaticamente i problemi dinamici in 

termini di vibrazioni, rumore e fatica. 

Pertanto, strumenti di analisi delle vibrazioni, che siano al contempo semplici ed 

affidabili, sono una necessità di base della moderna ingegneria. L’analisi modale è 

uno di questi strumenti, in grado di fornire una classificazione delle caratteristiche 

strutturali, delle sue condizioni di funzionamento, che consentono di progettare 

una struttura in vista di un suo ottimale comportamento dinamico. 

 In generale, le applicazioni dell’analisi modale sperimentale oggi coprono una 

vasta gamma di obiettivi, come: individuazione e valutazione dei fenomeni di 

vibrazione; validazione, correzione e aggiornamento dei modelli dinamici di 

analisi; sviluppo di modelli dinamici basati su indagini sperimentali; valutazione 

dell'integrità strutturale e di rilevamento dei danni; definizione di criteri e 

specifiche per la progettazione, qualificazione e certificazione. In altre parole, 

l’analisi modale mira a sviluppare dei modelli affidabili del comportamento 

dinamico di una struttura.    
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L’analisi modale sperimentale parte dall'elaborazione dei dati acquisiti durante 

una prova dinamica in sito, realizzata su una struttura esistente. Il segnale 

registrato può essere la risposta della struttura ad una eccitazione nota (prova di 

vibrazione forzata) o ad una eccitazione sconosciuta (prova d'urto o prove in 

vibrazioni ambientali). Nella tesi i due tipi di test sono stati elaborati con 

algoritmi diversi: il primo è stato analizzato attraverso metodi nel dominio delle 

frequenze (in quanto coinvolgono segnali di tipo stazionario) il secondo invece ha 

previsto l’applicazione di una procedura che lavora nel dominio tempo-frequenza 

(in questo caso si registrano segnali non stazionari, quindi il comportamento nel 

dominio del tempo diventa importante).  

 

Le procedure nel dominio della frequenza sono di solito applicate quando la 

struttura è soggetta a una forzante di tipo sinusoidale, ad esempio generata da 

una classica vibrodina. In questo caso la risposta della struttura è registrata come 

accelerazione e si considera solo la parte a regime della risposta acquisita. Lo 

studio del segnale ed il suo confronto con la forzante che eccita viene riassunto 

tramite la FRF. Essa è definita puntualmente in modulo dal rapporto della FFT 

della accelerazione del sistema e la FFT della forzante che lo eccita. La stessa 

FRF è in particolare calcolata anche attraverso un’altra metodologia che 

permette di risalire ancora puntualmente ad essa, ma tramite le caratteristiche 

geometriche di un ellisse che rappresenta il confronto diretto tra input-output, 

registrati durante la prova.  

Nota la FRF, le frequenze naturali sono definite attraverso il metodo Peak 

Picking, che individua le frequenze naturali in corrispondenza dei picchi della 

stessa [Bendat & Piersol, 1993]. Limite principale di questo metodo, sebbene 

molto semplice ed intuitivo, è che esso si basa sull’ipotesi che il sistema analizzato 

sia caratterizzato da modi di vibrare ben distinti, cioè che ogni picco non sia di 

fatto influenzato dai restanti, e che il sistema non sia poco smorzato.  

Il metodo Circle-Fit (Kennedy & Pancu, 1947; Klosterman, 1971) si basa invece 

sulla possibilità di rappresentare la FRF nel piano di Nyquist o Argard. Se infatti 
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si considerano i punti della FRF prossimi alla risonanza e si rappresentano in un 

piano parte reale-immaginaria, si ottiene nel caso ideale un cerchio. Attraverso le 

caratteristiche geometriche di detto cerchio è in particolare possibile risalire allo 

smorzamento relativo alla frequenza di risonanza considerata.  

 

L’utilizzo di vibrazioni forzate, tuttavia, comporta alcuni svantaggi. Innanzitutto 

esso diventa di difficile applicazione per alcune strutture, quali ponti o dighe; in 

questi casi risulta complesso eccitare con sufficiente energia ed in modo 

controllato dette strutture talvolta caratterizzate da modi significativi in una 

gamma di frequenze molto basse (si ricorda che in vibrazioni forzate lo shaker 

introduce una forzante il cui modulo è direttamente proporzionale alla frequenza 

di eccitazione). Nelle strutture molto grandi e flessibili, come ponti strallati o 

sospesi, in particolare, l'eccitazione forzata richiede attrezzature molto pesanti e 

costose, raramente disponibili nella maggior parte dei laboratori di dinamica.  

Queste problematiche sono state accompagnate da notevoli sviluppi tecnologici 

nel settore dei trasduttori e convertitori A/D negli ultimi anni che hanno reso 

possibile la misurazione in modo molto preciso, dei segnali anche per livelli molto 

bassi di eccitazione, quale quella indotta da forzanti ambientali come vento e 

traffico. Si è quindi sviluppato notevolmente l’utilizzo di metodi di identificazioni 

modale basata su prove di vibrazione output-only, in cui la forzante non è nota 

ed è di tipo ambientale. Pertanto, l’utilizzazione di prove dinamiche output-only è 

diventata un'alternativa di straordinaria importanza nel campo dell’ingegneria 

civile, essa permette l'identificazione accurata delle proprietà modali di grandi 

strutture nella fase di messa in opera o durante la vita utile della struttura, 

evitando in generale l’interruzione del suo esercizio e con un abbattimento dei 

costi notevole. Solitamente la forzante non nota in ingresso viene assunta come un 

rumore bianco.  

Esistono due metodi per identificare i parametri modali di una struttura a seguito 

di una prova in vibrazione ambientale e si distinguono in metodi non parametrici, 
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sviluppati nel dominio delle frequenze e metodi parametrici, che utilizzano invece 

la rappresentazione nel dominio del tempo.  

La prima applicazione di una metodologia nel dominio delle frequenza per questo 

tipo di prove nasce da un opportuno riadattamento del metodo Peak-picking, già 

applicato a qualche decennio fa nell'identificazione modale di edifici [Crawford 

and Ward, 1964; Trifunac, 1962] e ponti [Lamore et al, 1971; Abdel-Ghaffar, 

1978], convenientemente modificato da Felber [Felber, 1993]. L'approccio nel 

dominio della frequenza è stato successivamente migliorato [Prevosto, 1982; 

Corrêa & Campos Costa, 1992] attraverso una procedura di diagonalizzazione 

della matrice di densità spettrale tramite la tecnica del SVD, in modo da separare 

i modi accoppiati e ottenere da un sistema a N gradi di libertà (GDL), N sistemi 

ognuno ad un singolo GDL. Questo metodo (Frequency Domain Decomposition 

(FDD)) è stato sviluppato e curato da Brincker et al. [Brincker et al., 2001]; esso 

è stato poi potenziato [Brincker et al., 2000] al fine di estrarre i valori di 

smorzamento modale. In questo ultimo approccio (EFDD), queste stime sono 

ottenute considerando il decadimento delle funzioni di auto-correlazione. 

I metodi nel dominio del tempo nascono dalla scelta iniziale di un appropriato 

modello matematico, in grado di definire il comportamento dinamico di una 

struttura (si utilizzano di solito i modelli ARMAV e ARV). Il metodo ARMA, ad 

esempio, è caratterizzato dal fatto che si descrive l’uscita del modello (ovvero il 

segnale acquisito) tramite la combinazione lineare dei suoi valori assunti in istanti 

precedenti (parte Auto- Regressiva) e la combinazione lineare dei valori assunti 

dalla forzante nei medesimi istanti (parte a Media Mobile).  

 

I metodi finora accennati, come detto, lavorano o nel dominio delle frequenze o 

nel dominio del tempo; alla luce di questa contestualizzazione si è scelto in questa 

tesi di applicare una metodologia in grado di lavorare congiuntamente nel 

dominio del tempo e delle frequenze, in modo da caratterizzare un segnale non 

stazionario completamente in entrambi i domini. Questa utile e interessante 

possibilità è offerta dall’applicazione delle Trasformate Continue di Wavelet 

(CWT); in un'unica trasformata, quindi in un'unica computazione e 

rappresentazione, è possibile leggere come il segnale si comporti nel tempo per 

ciascuna frequenza del range di interesse. La procedura è applicata ai segnali 

acquisiti durante prove di vibrazioni libere ed ambientali. I risultati, in termini di 
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parametri modali, sono confrontati con quelli ottenuti da alcuni dei metodi 

precedentemente introdotti. Si sono in generale riscontranti risultati molto simili. 

Al fine di abbattere i tempi computazionali si è poi provato ad applicare la 

Trasformata Discreta di Wavelet (DWT). In questo caso, la notevole 

approssimazione introdotta dalla discretizzazione ha portato a preferire, ai fine 

dell’estrazione dei parametri modali, la CWT. La DWT è stata tuttavia 

implementata al fine di filtrare segnali, caratterizzati da un’elevata quota di 

rumore e disturbi.   

 

Nell’ultima parte della tesi è stato discusso un ultimo ma importante aspetto 

dell’identificazione dinamica: il model updating. Esso in pratica consiste nella 

definizione di un modello FEM, che sia in grado di riprodurre i reali parametri 

modali di una struttura esistente, sottoposta ad una prova di vibrazione dinamica 

in sito. Sicuramente data la crescente complessità delle strutture realizzate, la 

modellazione FEM diventa uno strumento indispensabile per definire il 

comportamento di una struttura e modellarne la sua componente dinamica. 

Spesso tuttavia, per problemi computazionali, o per incertezze legate al 

comportamento di materiali o condizioni di vincolo, i modelli possono discostarsi 

in modo importante dal reale comportamento del costruito. Il problema è la 

definizione di un modello che davvero sia in grado di rappresentare quanto 

realizzato. Ciò quindi può essere fatto ad esempio definendo le frequenze naturali 

di un sistema attraverso una prova sperimentale a monte e producendo a valle un 

modello FEM che sia caratterizzato da frequenze naturali con un errore minimo, 

rispetto a quelle sperimentali. Questa procedura è stata applicata ad un ponte 

sospeso, interamente in acciaio e di grande luce, sottoposto quindi ad una prova 

di tipo ambientale e modellato sulla base delle frequenze naturali sperimentali 

ottenute dal post-processing dei dati acquisiti. 

 

 INTRODUCTION 

 

Vibrations, or dynamic motion, are inherent to life though generally mankind 

regards them as unpleasant and unwanted phenomena causing such undesirable 

consequences as discomfort, noise, malfunctioning, wear, fatigue and even 
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destruction. Earthquakes are perhaps the most frightening manifestations of 

dynamic motion, caused by forces generated in the earth's crust, and their 

destructive effect upon the environment and man-made structures is well known.  

In the last few decades, technology developments have created an increasing need 

for reliable dynamic analysis. The sophistication of modern design methods 

together with the development of improved materials instilled a trend towards 

lighter structures. At the same time, there is a constant demand for larger 

structures, capable of carrying more loads at higher speeds under increasing drive 

power. The consequences of all these trends are dramatic increases in dynamic 

problems in terms of vibration, noise and fatigue, at the same time as 

requirements for improved environmental factors are being defined and enforced.  

Therefore, strong and reliable vibration analysis tools are a basic need of modern 

engineering. Modal analysis is just one of those tools, providing an understanding 

of structural characteristics, operating conditions and performance criteria that 

enables designing for optimal dynamic behaviour or solving structural dynamics 

problems in existing designs.  

Modal analysis is primarily a tool for deriving reliable models to represent the 

dynamics of structures. In general, it can be said that the applications of modal 

analysis today cover a broad range of objectives, namely: identification and 

evaluation of vibration phenomena; validation, correction and updating of 

analytical dynamic models; development of experimentally based dynamic models; 

structural integrity assessment, structural modification and damage detection; 

model integration with other areas of dynamics such as acoustics, fatigue, etc.; 

establishment of criteria and specifications for design, test, qualification and 

certification. In short, modal analysis aims to develop reliable dynamic models 

that may be used with confidence in further analysis.  

 

Experimental modal analysis is the processing of data acquired during a dynamic 

test, performer on a generic structure. The response of the structure can be the 
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dynamic result of a known excitation (forced vibration test) or unknown 

excitation (impact test or ambient test).  In the thesis the two types of tests are 

processed with different algorithms: frequency domain and time-frequency domain 

procedures are applied respectively.  

The frequency domain procedures are usually applied when the structure is 

subject to a sinusoidal force, carried out on it by an electromechanical shaker for 

example. In this case the response of the structure is recorded as acceleration and 

only its stationary part is considered. An FRF is constructed point by point and 

from it all the modal parameters of the system are extracted: natural frequencies. 

modal dampings and mode shapes. The FRF is in particular computed by 

classical FFT on one hand and by the Lissajous Diagrams on the other hand.  

From the FRF the natural frequencies are defined through the Peak Peaking 

method, which indentifies the natural frequencies in correspondence of the peaks 

of the FRF [Bendat & Piersol, 1980]. An important aspect concerning the Peak 

Peaking method is that all the estimates concerning a mode shape are based only 

on three points from each FRF estimate. It is evident that this method is very 

sensitive to noise and also to the level of damping present in the system. On the 

other hand, very low modal damping originates extremely sharp FRF peaks and 

consequently a very low precision in the damping estimates. A final difficulty can 

be expected in the application of the Peak Peaking method when mode shapes are 

very closely spaced in frequency, as the significant modal interference may then 

prevent the accurate identification of resonances.  

The Circle-Fit method (Kennedy & Pancu, 1947; Klosterman, 1971) employs 

another interesting property of the SDOF FRF approach, the fact, the Mobility, 

the Inertance or Receptance function describes a circle in the Nyquist diagram 

(i.e. real part versus imaginary part), the influence of the other modes being 

approximated by a complex constant.  
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Note that the SDOF approach is only valid in the neighbourhood of a resonance, 

hence the complete FRF will not be a complete circle around each resonance, but 

will be constituted by sections of near-circular arcs around those frequencies. 

The main problem associated to the performance of forced vibration tests in 

bridges, buildings or dams stems from the difficulty to excite, with sufficient 

energy and in controlled manner, their most significant modes of vibration in a 

low range of frequencies. In very large and flexible structures, like cable-stayed or 

suspension bridges, in particular, the forced excitation requires extremely heavy 

and expensive equipment very seldom available in most dynamic labs.  

However, the technological developments registered in the fields of transducers 

and A/D converters during the last years made feasible the very accurate 

measurement of very low levels of dynamic response induced by ambient 

excitations, like wind or traffic, strongly stimulating the development of output-

only modal identification methods. Therefore, the performance of output-only 

modal identification tests became an alternative of extraordinary importance in 

the field of Civil Engineering, allowing the accurate identification of modal 

properties of large structures at the commissioning stage or during the structure 

life time, in a much more comfortable way and avoiding any type of interruption 

of normal traffic in bridges. 

The ambient excitation has commonly a multiple input nature and wide band 

frequency content, stimulating a significant number of modes of vibration. For 

simplicity, output-only modal identification methods assume the excitation input 

as a zero mean Gaussian white noise [Garibaldi et al. 2003], which means that the 

real excitation can be interpreted as the output of a suitable filter excited with 

that white noise input. 

There are two main groups of output-only modal identification methods: 

nonparametric methods essentially developed in frequency domain and parametric 

methods in time domain. The basic frequency domain method (Peak-Picking), 

though already applied some decades ago to the modal identification of buildings 

[Crawford and Ward, 1964; Trifunac, 1962] and bridges [Lamore et al, 1971; 
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Abdel-Ghaffar, 1978], was only conveniently systematized by Felber [Felber, 1993] 

about twelve years ago. The frequency domain approach was subsequently 

improved [Prevosto, 1982; Corrêa & Campos Costa, 1992] by performing a single 

value decomposition of the matrix of response spectra, so as to obtain power 

spectral densities of a set of SDOF systems. This method (Frequency Domain 

Decomposition (FDD)) was better detailed and systematized by Brincker et al. 

[Brincker et al., 2001], and subsequently enhanced [Brincker et al., 2000] in order 

to extract modal damping factors estimates. In this last approach (EFDD) these 

estimates are obtained through inspection of the decay of auto-correlation 

functions, evaluated by performing the inverse Fourier transform of the SDOF 

systems’ power spectral densities. 

The time domain parametric methods involve the choice of an appropriate 

mathematical model to idealize the dynamic structural behaviour (usually time 

discrete state space stochastic models, ARMAV or ARV models, [Andersen, 1997, 

Larbi & Lardies, 2000]) and the identification of the values of the modal 

parameters so as that model fits as much as possible the experimental data, 

following some appropriate criterion. These methods can be directly applied to 

discrete response time series or, alternatively, to response correlation functions. 

The evaluation of these functions can be made based on their definition, using the 

FFT algorithm [Brincker et al., 1992] or applying the Random Decrement method 

(RD) [Asmussen, 1997].  

All the methods introduced work or in time domain or in frequency domain. In 

this thesis we have decided to introduce the Continuous Wavelet Transforms 

[Garibaldi et al., 1997; Huang & Su, 2007], able to define the behaviour of the 

signal in time and frequency domain at the same time. The procedure is applied 

to the signal acquired during free and ambient vibration tests [Gouttebroze & 

Lardies, 2001] and the results are compared to that one obtained by the methods 

previously briefly described. The Discrete Wavelet Transform is also used in this 

kind of investigation [Lotfollahi-Yaghin & Hesari, 2008]; in this thesis the 

powerful of DWT is analyses principally in the important problem of signal 

filtering [Strang & Nguyen, 1996]. 
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Another important aspect of the experimental modal analysis, discussed in this 

thesis, is the model updating [Friswell & Mottershead, 1995]. In order to obtain a 

FE model, able to define the real behaviour of a complex structure, a dynamic 

test is performed on the building, object of study. The experimental modal 

parameters are then extracted and a FE model, characterized by very similar 

modal parameters, is after implement. The FE model of a structure is constructed 

on the basis of highly idealized engineering blueprints and designs that may or 

may not truly represent all the physical aspects of an actual structure. When field 

dynamic tests are performed to validate the analytical model, inevitably their 

results, commonly natural frequencies and mode shapes, do not coincide with the 

expected results from the analytical model. These discrepancies originate from the 

uncertainties in simplifying assumptions of structural geometry, materials, as well 

as inaccurate boundary conditions. The problem of how to modify the analytical 

model from the dynamic measurements is known as the model updating in 

structural dynamics [Link, 1999]. This procedure is applied on a suspended 

bridge, subject to an ambient test. 
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Dynamic of a vibrant system: 

fundamentals of modal analysis



Chapter 1 

 

 

1.1.  Basic concepts of dynamic system 

 

All dynamic properties of mechanical system are distributed in space. These 

properties are mass, stiffness and damping, responsible respectively for inertia, 

elastic and dissipative forced (Maia & Silva, 1998). Modelling a real mechanical 

system is therefore a very complex or even impossible task if one tries to describe 

how all features of the system interact with one other. However, in most case, 

satisfactory results may be achieved if the basic properties are considered as 

separated into simple discrete elements which, properly combined, can represent 

the dynamic properties of the system to sufficient accuracy. 

 

Figure 1.1 Idealized SDOF system, (a) basic components; (b) forced in equilibribium 

The simplest possible discretization is a considering a system as a just a single 

degree-of-freedom (SDOF), whose properties are represented by figure 1.1 

(Clough and Penzien) . However, most real mechanical systems and structure 

cannot be modelled successfully by assuming a single-degree-of-freedom, i.e. a 

single coordinate to describe their vibratory motion.  

Real structures are continuous and nonhomogeneous elastic systems which have 

an infinite number of degree of freedom. Therefore, their analysis entails an 

approximation which consist of describing their behaviour through the use of a 

finite number of degree of freedom, as many as necessary to ensure enough 

accuracy. Adequate choice of the motion coordinates corresponds therefore to an 
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initial decision that the analysis must take, which is of paramount importance as 

the success of the subsequent analysis depends on this choice. 

Usually, continuous and nonhomogeneous structures are described as lumped-

mass multiple degree-of freedom (MDOF) systems. For example we consider the 

system in figure 1.2, representing a viscously damped system described by its 

spatial mass, stiffness and damping properties. A total of N coordinates xi(t) are 

required to describe the position of the N masses relative to their static 

equilibrium positions. 

 

Figure 1.2 Idealized MDOF system, example of a model with N degrees of 

freedom. 

Assuming that each mass may be forced to move by an external force fi(t) and 

establishing the equilibrium of the forces acting on them, the motion of the 

system is found to be governed by the following compact equation 

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx fɺɺ ɺ  (1.1) 

where M, C and K are the NxN mass, damping and stiffness symmetric matrices 

respectively, describing the spatial properties of the system. The column matrices  

( ) ( ) ( ),t t and tx x xɺɺ ɺ  are Nx1 vectors of time varying acceleration, velocity and 

displacement response and f (t) is an Nx1 vector of time varying external 

excitation forces. 
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1.2.  Modal parameters of system 

 

In general when a SDOF is subjected to an initial perturbation and subsequently 

left free to move, it oscillates around the static equilibrium position. Dynamically, 

the system was fully charactirezed through an unique property described by its 

free vibration natural frequency. The same procedure is applied for a MDOF 

system, then the modal parameters are obtained through its free vibration, 

expressed through the following equation [Chopra, 1995] 

 ( ) ( ) ( ) 0t t t+ + =Mx Cx Kxɺɺ ɺ  (1.2) 

A general solution of eq. (1.2) is 

 ste=x X  (1.3) 

substituting into (1.2) we obtain 

 2 0s s + + =  M C K X  (1.4) 

which constitutes a complex eigenproblem. A more convenient way of solving 

(1.4) is to define a complex state vector ( )tu  as 

 
( )

( )
( )

t
t

t

   =     

x
u

xɺ
 (1.5) 

Rewriting (1.2) in terms of this new variable we obtain 

 ( ) ( ) 0t t
   
   + =   
      

C M K 0
u u

M 0 0 -M
ɺ  (1.6) 

or, more simply 

 ( ) ( ) 0t t+ =Au Buɺ  (1.7) 

This formulation is often called the state-space analysis, by contrast with the 

usual vector-spaced analysis. A and B are 2Nx2N real symmetric matrices. 

Substituting eq. (1.3) in (1.5) the vector u(t) becomes 
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 ( ) st stt e e
s

   = =    

X
u U

X
 (1.8) 

and 

 ( ) 2

st st
s

t e s e
s

    = =     

X
u U

X
ɺ  (1.9) 

Then, substituting (1.8) and (1.9) into (1.7), for all time we obtain 

 0s + =  A B U  (1.10) 

representing a generalised eigenproblem whose solution comprises of 2N 

eigenvalues that are real or exist in complex conjugate pairs (in the case of 

undamped system, easier situation). Calling the eigenvalues by sr and s*r and the 

eigenvectors 
r
ψ  and 

r

∗ψ  and using the orthogonality properties of an undamped 

or proportionally system, we can write the eigenvalues in the known form 

 21
r r r r r
s i= −ω ξ + ω − ξ  (1.11) 

where 
r

andω ξ  are the undamped natural frequency and damping ratio of r 

vibration mode, respectively. The eigenvectors are related to the system 

properties by the following equations 

 

*

*

2

T

r r r

r rT

r r

c

m

 
   = =
 
  

C

M

ψ ψ
ω ξ

ψ ψ

 (1.12) 

 

*

2

*

T

r r r

rT

r r

k

m

 
   = =
 
  

K

M

ψ ψ
ω

ψ ψ

 (1.13) 

Thus we end up, for a generic viscously damped MDOF system, in analogy with 

the undamped and with the proportionally damped MDOF system, a modal mass 

mr, a modal damping cr and a modal stiffness kr. Also, 
r

andω ξ , may be taken 

as the undamped natural frequency and the damping ratio associated with mode 

r. 
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1.3.  Signal analysis 

 

Over the years, measurement techniques have been developed continuously to 

improve the accuracy of measured frequency response functions and to reduce 

testing time, and therefore the cost of modal testing [Ewins, 2000]. In this chapter 

and in the following one, the attention is focused on the analysis of time signals 

corresponding to an applied force, which are recorded and processed to obtain 

frequency response functions (FRFs) or impulse response functions (IRFs), which 

are better analysed by appropriate curve-fitting techniques to yield the modal 

properties of the structure. The treatment of the signal involves quite number of 

precautions, techniques and procedures that justify a closer look at the area, 

known as Signal Processing. 

In the past three decades, the introduction of the Fast Fourier Transform (FFT) 

algorithm [Cooley & Tukey, 1965], the availability of digital data processing 

equipment and powerful micro-computers have led to the development of test 

procedures that makes the process easier and accurate. These procedures are 

usually applied in the case of a forced vibrations test and free vibration tests; the 

modal properties are obtained through the analysis of a signal recorded as 

response of a generic structure subject to a sinusoidal excitation, carried out by 

an electromechanical shaker, or an impulsive force using an instrumented 

hummer. The measured data are then digitally processed to yield estimates of the 

FRFs or IRFs. In the following sections the basic concepts of Fourier Analysis are 

presented. 

 

1.3.1. Fourier transforms for deterministic signals 

 

The complete solution of the motion equation is available only when the forces 

vector f(t) assumes particular time-varying expression. For example it is definable 

when the f(t) is an harmonic function. However, excitations may be of many 
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different types other than harmonic. In fact if one considers real excitation 

sources such as, for example, earthquakes, wind, sea waves, and all types of 

machinery, it is easy to understand that the forcing functions are of many 

different types and may be harmonic only in very particular cases. Therefore the 

response of a generic structure, acquired during a real test, is not perfectly 

harmonic, even if the exciting force is perfectly sinusoidal.  

Dynamic signals may be generally classified as deterministic or random; in the 

first case the former can be described as an analytical expression of their 

magnitude, random signal, instead, cannot. Deterministic signals may be periodic 

or transient; periodic signal as one that repeats itself after a period T. A transient 

signal is one that occurs only in a short period of time. If a certain function is 

periodic and satisfies certain conditions then it can be represented of a 

summation of harmonic functions, know as Fourier series.  

Considering a generic periodic signal x(t), its Fourier series is expressed by the 

following equation 

 ( ) ( ) ik t

k
x t X e

∞

−∞

=∑ ωω  (1.14) 

with 

 ( ) ( )
0

0

0

2

2

0 2

1
T

ik t
T

Tk
X x t e dt

T

−

−
= ∫

π

ω  (1.15) 

Considering now that x(t) is sampled at regular time represented by the discrete 

series { }( ) , 0,1,2,... 1x k k N= −  where t = kT/N. In this case the eq. (1.15) can 

be expressed by the following relation 

 ( )
1 1

2 / 2 /

0 0

1 1
( ) ( )

N N
ijk N ijk N

k k

X j x k e t x k e
N t N

− −
− −

= =

= =∑ ∑π π∆
∆

 (1.16) 

And (1.14) becomes 

 ( )
1

2 /

0

( )
N

ijk N

j

x k X j e
−

−

=

=∑ π  (1.17) 
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For j = 1,2,..., N-1 and k =1,2,...,N-1. A direct evalutation of (1.16) would 

require nearly N2 complex multiply and add operation. For large value of N, this 

can be prohibitive. A sophisticated algorithm, the Fast Fourier Transform (FTT) 

proposed by Cooley and Tukey in 1965, being much faster. These kind of 

reduction are applicable to more general case of N = 2m, where m is any positive 

integer, reducing the computation from N2 operation to (N/2)log2N 

multiplication, additions and subtraction. For N = 1024, this represents a 

computational reduction more than 200 to 1.  

When the time functions are non periodic (transient), they cannot be handled 

directly using Fourier series. However, it is not difficult to accept that a transient 

signal may be viewed as a periodic signal with period T = ∞ . By considering the 

limit which is approached by a Fourier series as the period becomes infinite, it 

will be found that, under certain condition, an arbitrary function x(t) can be 

described by an integral X(w) given by 

 ( ) ( ) i tX x t e dt
∞

−

−∞
= ∫ ωω  (1.18) 

Where ( )X ω  is known as the Fourier transform of x(t). Conversely, the time 

dependent function x(t) can always be obtained from ( )X ω  through the inverse 

Fourier transform 

 ( ) ( )1

2

i tx t X e d
∞

−∞
= ∫ ωω ω
π

 (1.19) 

These integrals are very important because they allow a time domain signal to be 

transformed to and from a frequency domain signal.  

 

1.3.2.  Random excitation 

 

Random signals cannot be treated in the same way as the deterministic signals so 

far discussed. By nature they are not periodic and it might be thought they could 

be analysed assuming a periodicity of infinite period. However this is not possible 
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because they do not obey to the Dirichelet condition which states the Fourier 

transforms can only be used if the following condition is satisfied: 

 ( )x t dt

∞

−∞

<∞∫  (1.20) 

Given their inherent properties, the analysis of random signals entails the use of 

probabilistic concepts. Considering a generic random signal x(t) the so-called 

random autocorrelation function is defined through the following equation 

 ( )2

2

1
lim ( )

T

Txx T
R x t x t dt

T→∞ −
= +∫ τ  (1.21) 

where x(t) is the magnitude of our function at an instant t of time and ( )x t + τ  

designates the magnitude of the same signal observed after a time delay τ has 

elapsed. In physical terms, the auto-correlation function expresses how a 

particular instantaneous amplitude value of a generic random signal depends 

upon previously occurring instantaneous amplitude values. The auto-correlation 

function can be Fourier transformed, applying (1.18) 

 ( ) ( ) i

xx xx
S R e d

∞
−

−∞
= ∫ ωτω τ τ  (1.22) 

known as the auto-spectral density (ASD) or power spectrum (PSD), which is 

also a real and even function of frequency. The ASD provides a frequency 

description of our random signal. These concepts can be extended considering 

simultaneously the random force x(t) and the random response y(t) functions 

(more generic case). Thus may define 

 ( ) ( )2

2

1 1
lim ( )

2

T

i

Txy xyT
R x t y t dt S e d

T

∞

→∞ −
−∞

= + =∫ ∫ ωττ ω ω
π

 (1.23) 

 ( ) ( ) i

xy xy
S R e d

∞
−

−∞

= ∫ ωτω τ τ  (1.24) 

and, conversely 
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 ( ) ( )2

2

1 1
lim ( )

2

T

i

Tyx yxT
R y t x t dt S e d

T

∞

→∞ −
−∞

= + =∫ ∫ ωττ ω ω
π

 (1.25) 

 ( ) ( ) i

yx yx
S R e d

∞
−

−∞

= ∫ ωτω τ τ  (1.26) 

as the cross-correlation and the cross-spectral density functions, respectively. It is 

important to note that the cross-spectral densities are complex frequency spectra, 

containing real and imaginary parts (or magnitude and phase information) 

whereas the PSD is a real function containing only magnitude (squared) 

information. At least the autocorrelation function is correlated to the Fourier 

transform of the signal x(t) through this expression 

 ( ) ( ) ( )*

xx
S X X=ω ω ω  (1.27) 

where ( )*X ω  indicates the complex conjugate of ( )X ω . The same reasoning can 

be applied to the cross-correlation function; ( )yx
S ω is correlated to the Fourier 

transform of x(t) and y(t) through this equation 

 ( ) ( )*

xy
S X Y= ω ω  (1.28) 

 

1.3.3.  Time domain. Impulse response function  

 

An alternative to the Fourier analysis is the use of a time domain approach for 

estimating a system’s response to an arbitrary impulse. The simplest form of a 

non periodic time function is the unit impulse of Dirac 

 ( ) ( )x t t= −δ τ  (1.29) 

which is zero for all values except for t = τ  where 

 ( )lim 1
t

t
x t dt

+

→∞
=∫

τ ∆

∆
τ

 (1.30) 
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The response to an arbitrary input f(t) may be taken as the superposition of the 

responses to a series of impulses which represent the original forcing function. 

This is true given the fact that we are considering linear systems, hence 

 ( ) ( ) ( )x t f h t for t≈ − >∑
τ

τ τ ∆τ τ  (1.31) 

Letting 0→∆τ the summation becomes an integral, and therefore 

 ( ) ( ) ( )
0

t

x t f h t d for t= − >∫ τ τ τ τ  (1.32) 

The integral in eq.(1.32) is called the convolution Duhamel’s integral.  

Changing the variable of integration to ϑusing the relationship tτ = −ϑ , we 

obtain  

 ( ) ( ) ( ) ( ) ( )
0

0

x t f t h d f t h d

∞

∞

=− −ϑ ϑ ϑ = −ϑ ϑ ϑ∫ ∫  (1.33) 

Standing that ( ) 0h t −τ =  for all t < τ is equivalent to write ( ) 0h ϑ = for all 

0ϑ < the second integral of (1.33) can also be extended to minus infinity, i.e. 

 ( ) ( ) ( )x t f t h d

∞

−∞

= −ϑ ϑ ϑ∫  (1.34) 

Eq. (1.34) is the convolution of the forcing function and the impulse function, 

then it is possible to write 

 ( ) ( ) ( )*x t h t f t=  (1.35) 

or in other words 

 ( ) ( ) ( )X H Fω = ω ω  (1.36) 

( )F ω  is in particular the Fourier transform of the Dirac function, so it is equal to 

1. Then considering it in eq. (1.19)  we have at least 

 ( ) ( )1

2

i tx t H e d
∞

−∞
= ∫ ωω ω
π

 (1.37) 

which, by definition, must be identical to h(t) and with 
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 ( ) ( ) 2

0

iH h t e d

∞
− πωτω = τ∫  (1.38) 

Thus, it may be concluded that the frequency response function (FRF) ( )H ω  

and the impulse response function h(t) constitute a Fourier pair. Then the FRF 

can be computed just by taking the Fourier transform of its impulse response 

function. 

1.3.4.  Frequency response functions 

 

The frequency response function (FRF) assumes a relevant importance in the 

field of structural identification [Ewins, 2000]. Its construction allows the 

definition of all the modal parameters of a generic system, i.e. natural frequencies, 

modal damping and modes shape. It is the Fourier transform of the unit impulse 

and it is expressed by eq. (1.38). If y(t) is the structure response and f(t) its 

excitation the eq.(1.36) allows to define the following relationship 

 ( ) ( )
( )

Y
H

F

ω
ω =

ω
 (1.39) 

where ( )Y ω and ( )F ω are respectively the Fourier transform of response and force 

applied on structure. Dynamic properties of a system may be expressed in terms 

of any convenient response characteristics, and not necessarily in terms of 

displacement as we have doing until now. 

Usually vibration is measured in term of motion and therefore the corresponding 

FRF may be represented in terms of displacement, velocity or acceleration. Then 

we have the following different expression and definition of FRF 

( )
displacement response

RECEPTANCE
force excitation

α ω = =

 

( )
velocity response

Y MOBILITY
force excitation

ω = =
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( )
acceleration response

A INERTANCE or ACCELERANCE
force excitation

ω = =

 

In particular the Inertance is correlated to the Receptance through the following 

expression 

 ( ) ( )2A ω = −ω α ω  (1.40) 

 

In the following sections always the Inertance is considered, because in the 

dynamic tests considered always the structure acceleration is acquired through 

some sensors. Considering now a MDOF subject to a generic excitation f(t), the 

motion equation is, as already expressed in eq. (1.1) 

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx fɺɺ ɺ  (1.41) 

A Fourier transform of the left and right term of eq. (1.41) is performed and the 

results is written in the equation below 

 i t i te dt e dt

∞ ∞
− −

−∞ −∞

+ + =∫ ∫Mx Cx Kx fɺɺ ɺ
ω ω  (1.42) 

 

The eq. (1.42) can be rewritten as 

 ( ) ( ) ( )2 i−ω + ω + ω = ωM C K X F  (1.43) 

where ( ) ( )andω ωX F  are respectively the Fourier transform of displacement X 

and exciting force f. The receptance can be expressed as 

 ( ) ( )
( ) ( )2

1

i

ω
ω = =

ω −ω + ω +

F

X M C K
α  (1.44) 

Considering the modal matrix ψ  and the orthogonality properties of modes 

shape, we can use the following relationship 

 ( )2T

r
= ωK diagψ ψ  (1.45) 

 T =M Iψ ψ  (1.46) 



Chapter 1 

 

 ( )2T

r r
= ξ ωC diagψ ψ  (1.47) 

Using eqs. (1.45), (1.46) and (1.47) the eq. (1.44) can be rewritten in this way: 

 ( ) ( ) ( )1
2 2 2 2T T

r r r
i i

−
−ω + ω + = ω ω −ω + ξ ω ωM C K diagψ ψ ψ α ψ =  (1.48) 

Then the Receptance can be expressed as 

 ( ) ( )2 2 2T

r r r
iω = ω − ω + ξ ω ωdiagα ψ ψ  (1.49) 

or 

 ( )
( )2 2

1 2

N
rj rk

jk
r

r r r
i=

ψ ψ
α ω =

ω − ω + ξ ω ω
∑  (1.50) 

Using eq. (1.40), the Inertance is equal to 

 ( )
( )

2

2 2
1 2

N
rj rk

jk
r

r r r

A
i=

ω ψ ψ
ω = −

ω −ω + ξ ω ω
∑  (1.51) 

Eq. (1.51) can be defined in the following way 

 ( )
( )

( )

2

2 2
1 2

N
jk r

jk
r

r r r

R
A

i=

ω
ω = −

ω −ω + ξ ω ω
∑  (1.52) 

where the residue ( )jk r
R  is obtained by the product between the autovectors. 

 

1.3.5.  MDOF FRF graphical representation 

 

A generic system with N degree of freedom is described by a modal model with N 

natural frequencies and N mode shapes. Also, it is clear that the corresponding 

FRF may be written under the form of a series of terms, each of which refers to 

the contribution to the total response of each mode of vibration, as stated by eq. 

(1.52). In particular we consider for an example the FRF of an undamped system 

with 3 degree of freedom system. Figure 4 and 5 display the magnitude and the 

phase, respectively, using a linear scale, of a direct point receptance.  
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Figure 1.3 Magnitude of receptance plotted versus frequency, example of a 

MDOF   

 

Figure 1.4 Phase of receptance plotted versus frequency, MDOF undamped 

system 

What is immediately obvious, from the magnitude plot, is that there are three 

peak amplitudes, corresponding to the three natural frequencies of the system. 

The meaning of this is that one is now confronted with three different resonances. 

In analogy with what happens for SDOF systems, it is to be expected that, for 

0 5 10 15 20 25 30 35
0

5

10

15

20

25

FrequencyFrequencyFrequencyFrequency

R
ec
ep

ta
n
ce
 m

a
g
n
it
u
d
e

R
ec
ep

ta
n
ce
 m

a
g
n
it
u
d
e

R
ec
ep

ta
n
ce
 m

a
g
n
it
u
d
e

R
ec
ep

ta
n
ce
 m

a
g
n
it
u
d
e

0 5 10 15 20 25 30 35
-200

-150

-100

-50

0

50

FrequencyFrequencyFrequencyFrequency

R
ec
ep

ta
n
ce
 p
h
a
se

R
ec
ep

ta
n
ce
 p
h
a
se

R
ec
ep

ta
n
ce
 p
h
a
se

R
ec
ep

ta
n
ce
 p
h
a
se



Chapter 1 

 

each resonance, there will be a 180° phase shift. The real and imaginary part of 

FRF are represented in the figures below 

 

Figure 1.5 Real and imaginary part of FRF (receptance) 

Taking for example eq. (1.52) for zero damping it becomes 

 ( )
( )

( )2 2
1

N
jk r

jk
r

r

R

=

α ω =−
ω −ω

∑  (1.53) 

Where ( )jk r
R  is now a real quantity. If we consider a direct point, for example 

kk
α , the modal constant ( )kk r

R  is always positive due to it being the product of 

element k of the eigenvector for mode r, by itself. 

What eq. (1.53) states is that the total receptance FRF is the sum of the 

contributions of “SDOF” terms corresponding to each of the system modes of 

vibration. For a direct point receptance: 

 
( ) ( ) ( )

1 2

2 2 2 2 2 2

1 2

...
kk kk kk N

kk

N

R R R
α = + + +

ω − ω ω − ω ω − ω
 (1.54) 

Thus, in the lower frequency region, all terms in the summation are positive and 

the receptance value is positive and dominated by the first mode (r=1), for which 

the denominator 2 2

1
ω − ω  is smaller than for the other terms in the summation. 

After the first resonance, 2 2

1
ω − ω  becomes negative and therefore the first term 

in the series becomes negative. This change of sign corresponds to a phase shift 

from 0° to -180°. 
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Now taking into consideration damped systems, the magnitude of FRF is very 

similar to that one describes in figure 2.3. The peaks are less sharp, due to the 

presence of a defined level of damping for each mode. 

 

Figure 1.6 Magnitude of FRF for a proportionally damped MDOF system 

 

Figure 1.7 Phase of FRF for a proportionally damped MDOF system 

The differences are due to the resonances being less sharp and the phase angle 

being no longer exactly 0° or -180°. The following figures represent real and 

imaginary part of the FRF. Due to the use of a linear scale and the fact that, in 

general, the receptance amplitude decays with frequency, the higher modes tend 
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not to show in the plot. Thus does not happen in this case, because we consider 

three modes with light dampings. This problem is characteristic of the receptance 

plot; it is not evident in the inertance plot, used in the next chapter. 

 

Figure 1.8 Real part of FRF for a proportionally damped MDOF system 

 

Figure 1.9 Imaginary part of FRF for a proportionally damped MDOF 

system 

At this point it is possible to introduce another kind of representation of the 

FRF, when it is plotted in the Nyquist or Argand plane, or in a plane real versus 

imaginary part. If the points of FRF close to the peak of its magnitude plot are 
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considered, a perfect and centred circle is obtained. The FRF of the three degrees 

of freedom system before considered is plotted in the Nyquist plane and its trend 

is represented in the figure below 

 

Figure 1.10 Nyquist plot of FRF for a proportionally damped MDOF system 

As expected, the natural frequency regions plot as circular loops. However, it can 

be seen that the loops are not exactly centred with respect to the imaginary axis 

as in the case of a SDOF system (see chapter 2). This can be easily explained if 

we recall eq. (1.52) and rewrite it for a direct point receptance of a 3 DOF system 

with proportional damping. 
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(1.55) 

Where ( )kk r
R  are real quantities due to the fact that the damping is assumed to 

be proportional. Consider, for example, the first loop in figure 1.10. Recalling that 

each loop occurs for a frequency region close to the corresponding natural 
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frequency, then it may be assumed that, for a particular frequency range (1.55) 

can be approximated by 

 ( )
( )

( )
1

2 2

1 1 1
2

kk

kk kk

R
B

i
α ω = +

ω −ω + ξ ω ω
 (1.56) 

where 
kk

B  is a complex quantity accounting for the contribution of the remaining 

modes to the total receptance value, which is dominated by the first mode. The 

first term of the summation plots as a circle with its centre on the imaginary axis, 

just like the receptance of a SDOF system. The only difference from a SDOF 

system is the fact that there is a real scaling factor (which alters the circle 

diameter), due to the existence of the modal constant ( )
1kk

R  in the numerator. 

Summing a complex quantity 
kk

B  will be produce a translation of the circle, 

displacing it from the original position. It is important to underlaine that this 

circle defines, through its geometrical characteristics, the modal damping of the 

MDOF. How it is possible to compute this modal parameter from the Nyquist 

plot is explained in the following chapter. 

If we consider the situation where damping is non-proportional, it is not difficult 

to predict what is going to happen. The difference now is the fact that the modal 

constants become complex quantities, i. e., they have a magnitude and a phase. 

Thus, the circular loop displacement and scaling effect remain and are due to the 

contribution of the off-resonant modes and to the magnitude of the modal 

constant, respectively. In addition to the previous effects, the phase of the modal 

constants produces rotation of the modal loops which are no longer in the 

“upright” position, as illustrated in figure 1.10. 

At least, the scaling problem we found when plotting the real and imaginary part 

of receptance versus frequency will also present here and make it difficult to 

understand a Nyquist plot of receptance covering the total frequency range of 

interest. The solution is use separate Nyquist plots, one for each natural 

frequency region. This is indeed performed when taking advantage of the 
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particular features of the Nyquist plots for the purpose of identifying system 

modal properties (see chapter 2). 
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2.1 Introduction  

The Forced Vibration Testing techniques, employed in Civil Engineering 

structures, constitute straight applications of the so-called Modal Analysis 

Techniques, which were born in the areas of Mechanical and Aeronautic 

Engineering some decades ago [Caetano, 2000]. These techniques are based on the 

application of a controlled and known excitation, and measurement of the 

response at a set of locations. Usually the excitation is a sinusoidal force, 

produced by an electromechanical shaker, and the response of the structure is 

recorded as acceleration through a set of accelerometers, dislocated on the 

building. From the set of excitation and response time histories, estimates of 

Frequency Response Functions (FRF's) can be obtained, in order to extract the 

most relevant dynamic parameters of the structure, i.e., the natural frequencies, 

modal shapes and damping coefficients [Balmes, 1997]. The definition of the 

modal parameters from the FRF is obtained by the following super position: all 

the response can be attributed to the local mode and any effect due to the other 

modes can be ignored [Inman, 1994]. In other words, in correspondence of every 

peak of the FRF a single degree of freedom system can be identified and it is not 

influenced from the other peaks. This kind of assumption can be used only when 

the structures exhibit well-separated modes which are not so lightly-damped that 

accurate measurement at resonance are difficult to obtain, on the other hand, are 

not so heavily damped that the response at the resonance is strongly influenced 

by more than one mode. This may be a limitation in very flexible structures, as 

cable-stayed bridge, that are characterized by very closely spaced in frequency 

mode shapes; in this case the required resolution is increased and frequency 

domain methods may be no longer efficient.  

In this chapter the Peak-Picking method (PP), the circle-fit method and another 

method always in the frequency domain based on the construction of the 

Lissajous Diagram are described.  
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2.2 Peak-Picking method 

 

The Peak Peaking or Peak Amplitude method (Pendered & Bishop, 1963) is 

based on the fact that the magnitude of the FRF (Receptance, Inertance or 

Mobility) has peaks at the resonant frequencies (in reality very close, but not 

exactly at these frequencies). The natural frequencies are then the frequencies 

that are associated with the peaks of the FRF magnitude. In particular the PP 

method is applied as follows: 

(i) Individual resonance peaks are present on the FRF plot, each peak 

is a natural frequency of the system (
r
ω ). 

(ii) The local maximum value of the FRF is noted Ĥ  and the 

frequency bandwidth (Half-Power Bandwidth) for a response level 

equal to ˆ 2H  is defined ( ω∆ ). The two points thus identified as 

b
ω and 

a
ω  are the half power points (see Figure 2.2.1 Trend of FRF of 

a generic MDOF System and Figure 2.2.2). 

(iii) The damping for each natural frequency can be estimated by one of 

the following expression : 

 

2 2

22

a b

r

rr

ω ω ω
η

ωω

− ∆
= ≅  (2.1) 

 2
r r
ζ η=  (2.2) 

 

Figure 2.2.1 Trend of FRF of a generic MDOF System 
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Figure 2.2.2 Half Power bandwidth 

 

The modal components can now be estimated for the set of FRFs, taking the 

peak values of those functions at resonance. These are given, according to eq. 

1.50, by  

 ( )
22

ir jr

ij r

r r

φ φ
α ω

ζ ω
≅  (2.3) 

So, starting with the diagonal terms, i.e., with the FRFs relating input and 

response measured at the same location, the following components are obtained     

 
( )

( )

2

2

2

2

ir r r ij r

jr r r ij r ir

φ ζ ω α ω

φ ζ ω α ω φ

=

=
 (2.4) 

Recalling that the mode shapes were assumed to be real, the phase of the 

components can only be 0° or 180° (positive or negative components, 

respectively). The sign is then determined comparing the phase of each FRF at 

resonance with the corresponding phase of the diagonal FRF.  

An important aspect concerning the Peak Peaking method is that all the 

estimates concerning a mode shape are based only on three points from each FRF 

estimate. It is evident that this method is very sensitive to noise and also to the 
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level of damping present in the system. On the other hand, very low modal 

damping originates extremely sharp FRF peaks and consequently a very low 

precision in the damping estimates. A final difficulty can be expected in the 

application of the Peak Peaking method when mode shapes are very closely 

spaced in frequency, as the significant modal interference may then prevent the 

accurate identification of resonances.  

Several procedures can be followed in order to obtain higher quality estimates of 

the modal parameters, such as the separation of signal components (torsion and 

bending, for example) or the successive elimination of the identified modal 

components.  

2.3  Circlefit-method 

 

The Circle-Fit method (Kennedy & Pancu, 1947; Klosterman, 1971) employs 

another interesting property of the SDOF FRF approach, which is the fact that 

the Mobility, as the Inertance or Receptance function describes a circle in the 

Nyquist diagram (i.e. real part versus imaginary part), the influence of the other 

modes being approximated by a complex constant.  

Note that the SDOF approach is only valid in the neighbourhood of a resonance, 

hence the complete FRF will not be a complete circle around each resonance, but 

will be constituted by sections of near-circular arcs around those frequencies as 

shown in Figure 2.3.1(Maia & Silva, 1997).  

To understand how this method works, it is possible to start from an ideal case, 

where a SDOF is considered. If the points in the neighbourhood of the resonance 

are plotted on a plane real part of FRF versus imaginary part a perfect circle is 

obtained, as it is possible to see in the Figure 2.3.2. 
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Figure 2.3.1 Nyquist plot of Receptance for a non-proportionally damped 3 DOF 

System 

From this circle the modal damping of the system can be obtained by the 

following steps.  

bϑ
ϑ

aϑ

aω bω

rω

 

Figure 2.3.2 Nyquist plot for a single degree of freedom system 

As it was previously said, this method starts from the assumption that in the 

vicinity of a generic resonance, the behaviour of most system is dominated by a 

single mode (the SDOF assumption). This can be expressed algebraically by the 

following formulae; for a generic MDOF the Inertance can be defines as follows 
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 ( )
( )2

N
j s

j 2 2
s=1 s s s

R
A =-

- +2i
∑

ω
ω

ω ω ζ ωω
 (2.5) 

The r-term, corresponding to a generic vibration mode r of the system, of the 

series can be extract and the inertance results represented 

 ( )
( ) ( )2 2

2 2 2 2
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N
j jr s

j
sr r r s s s

R R
A

i i

ω ω
ω

ω ω ζ ωω ω ω ζ ωω=

=− −
− + − +

∑  (2.6) 

Then, for the SDOF assumption, in a small range of the frequency, very close to 

natural frequency r of the system, the second term of the expression can be 

considered indipendent from the frequency and the equation can be written as 

 ( )
( )

( )
2

2 2 2

j r

j j s
r r r

R
A R

i

ω
ω

ω ω ζ ωω
=− −

− +
 (2.7) 

At this point to investigate on the modal properties of the Nyquist circle it is 

possible to start from the expression of the Inertance: 

 ( )
2

2 2 2
j

r r r

A
i

ω
ω

ω ω ζ ωω
≅−

− +
 (2.8) 

As it can see from the comparison between eqs. (2.6) and (2.7), considering the 

eq. (2.8), the only effect of the modal constant ( )j r
R ,which scales the size of the 

circle by ( )j r
R  and rotates it by its phase, is neglected.  

The real and imaginary part of the Inertance function are represented from these 

equations: 
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1 4
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 (2.9) 
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 (2.10) 

 

Now, it may be seen that for any frequency ω , it is possible to write the following 

relationships: 
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 (2.12) 

At this point we can select two different points on the Nyquist plot, before and 

after the natural frequency, respectively 
b
ω and

a
ω . From the Figure 2.3.2 the 

following expressions are defined immediately: 

 

2

1

tan
2

2

a

ra

a

r

r

ω

ωθ

ω
ζ
ω

  −   
=

     

 (2.13) 
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These expressions yield: 
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2 2

2 tan tan
2 2

b a

r

b a

r b a

ω ω
ζ

θ θ
ω ω ω

−
=

   +   

 (2.15) 

or for lightly damping 

 

tan tan
2 2

b a

r

b a

r

ω ω
ζ

θ θ
ω

−
≅

   +   

 (2.16) 

It is interesting to note that selecting the half power point are those frequencies 

for which 90
a b
θ θ= = ° , we have 

 
2

a b

r

ω ω
ζ

ω

−
=  (2.17)

2.4 Lissajous diagram  

 

The method described in this chapter can be used to analyze signals acquired 

during a forced vibration test in situ. In fact this methodology can be applied 

only when the input of the structure is known. To explain this, we consider at the 

beginning an ideal case, where the signal input, expressed in eq. (2.18), and the 

signal output, defined in eq. (2.19), are two perfect sine functions.   

 
1

x(t)=Asin(wt+f ) (2.18) 

 φ
2

y(t)=Bsin(wt+ )  (2.19) 

Initially, an input and output with the same frequency equal to ω π
v

=2 f are 

considered, also each signal is defined by a sample step 4 / ( )
v

t N f∆ =  and a 

number of sample points equal to N = 256.  

If a curve where the x value are the point of the sine function 1 and the y value 

are the points of the sine function 2 is plotted, a perfect ellipse is obtain because 

the frequencies of the two compared signals are the same. In fact the eqs. (2.18) 
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and (2.19) are exactly the parametric equations of a generic ellipse, centred in the 

origin of the reference system. A generic case, defined by the eq. (2.20), is 

considered  

 v

v

x(t)=10sin(2pf t+p/6)

y(t)=7.5sin(2pf t-p/4)
 (2.21) 

with fv = 1.3 Hz. 

Plotting the graph XY, as previously described, the following Lissajous diagram is 

obtained.   

 
Figure 2.4.1 Trend of ellipse in the ideal case 

 

From this ellipse it is possible to define the ratio between the amplitude of the 

two signals and their phase displacement [Heath, 2000]. In particular the 

amplitude ratio, as it is noticeable from eq. (2.22), is defined by the ratio between 

the length of the two semi axis, the phase displacement depends on the 

inclination of the major axis and its module is obtained from the arcsine of the 

ratio between the maximum y-value of the points of the ellipse (A) and the y-
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value corresponding to the zero x-value (B), as it is represented in the following 

figure [Su et al., 2004; Su et al., 2005].    

 
Figure 2.4.2 Definition of phase displacement 

 

The limit of this representation is the impossibility determining the sign of the 

phase displacement. To obtain it, it is necessary to verify on the one hand if the 

points which describe the ellipse rotate clockwise or counter clockwise, and on the 

other hand which quadrant cuts the major axis. In particular the following four 

cases can happen:  

(i) Case 1 major axis cuts the first and third quadrant and the points 

rotate counterclockwise 0 ' 90 'ϕ ϕ ϕ<∆ < → ∆ = ∆    

(ii) Case 2 major axis cuts the first and third quadrant and the points 

rotate clockwise 0 ' 90 2 'ϕ ϕ π ϕ<∆ <− → ∆ = −∆    

(iii) Case 3 major axis cuts the second and fourth quadrant and the 

points rotate counterclockwise 90 ' 180 'ϕ ϕ π ϕ<∆ < → ∆ = −∆  

(iv)  Case 4 major axis cuts the first and third quadrant and the points 

rotate clockwise 90 ' 180 'ϕ ϕ π ϕ− <∆ <− → ∆ = +∆  

When 90 ,270 , 360ϕ∆ = ° ° ° , the ellipse has the semi-axis coincident with the axis 

of the reference system. In particular the ellipse becomes a circle, centred in the 

system origin.  



Methods in frequency domain 

 

45 

 

Figure 2.4.3 Case (i)                             Figure 2.4.4 Case (ii) 

 

 
Figure 2.4.5 Case (iii)                        Figure 2.4.6 Case (iv)                          

At this point it is important to see what happens when the two signals are 

expressed by the following relation  

 0 1

0 2

( ) sin( )

( ) sin( )

x t X A wt

y t Y B wt

ϕ

ϕ

= + +

= + +
 (2.23) 

Until now always a centres ellipse is considered, where 
0 0

0X Y= = . Through eq. 

(2.23) an ellipse, shifted from the origin, is considered. As Figure 2.4.7 shows, this 

condition does not modify the amplitude ratio and the phase displacement.  

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10
-15

-10

-5

0

5

10

15
 punti misurati

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
 punti misurati

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

O
u
tp

u
t 

O
u
tp

u
t 

Input Input 

O
u
tp

u
t 

O
u
tp

u
t 

Input Input 



Chapter 2 

 

46 

 

 
Figure 2.4.7 Ellipse not centred with different axis orientation 

 

The last particular case is obtained when 0ϕ∆ = , the ellipse becomes a straight 

line and its inclination defines the amplitude ratio between the two signals 

compared.    

Now it is important to understand what happens when the two signals have 

different frequencies. At the beginning the simpler case, where the input 

frequency is a multiple of the output one, is considered. In the following figures 

the Lissajous Diagrams are represented when the natural frequency of the output 

is twice than the natural frequency of input. In the first graph the two signals 

have the same phase and amplitude, in the second graph there is a phase 

displacement between the two signals equal to 30° and they do not have the same 

amplitude. The graphs are very different from the ellipse and for this reason it is 

not able to define the amplitude ratio or the phase displacement, as illustrated 

before. 
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Figure 2.4.8 Lissajous Diagram; frequency output is twice frequency input, no phase 

displacement 

 
Figure 2.4.9 Lissajous Diagram; frequency output is twice frequency input, phase 

displacement equal to 30° 
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Below some Lissajous Diagrams for different frequencies ratio between the two 

signals are reported.  

Figure 2.4.10 Lissajous Diagram, frequency ratio equal to 0.25, phase displacement 

equal to 30° 

 

Figure 2.4.11 Lissajous Diagram, frequency ratio equal to 0.25, no phase 

displacement 
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Figure 2.4.12 Lissajous Diagram, frequency ratio equal to 0.2, phase displacement 

equal to 45° 

 

Figure 2.4.13 Lissajous Diagram, frequency ratio equal to 6:8, no phase 

displacement 

From these figures it is noticeable that the frequencies ratio is equal to the ratio 

between the number of points with maximum y-value (factor frequency output) 

and the number of points with maximum x-value (factor frequency input). 

Moreover the amplitude ratio is obtained from the ratio between the major and 

minor sides of the rectangle that circumscribes the curve. The principal difficulty 
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is the computation of phase displacement, really complicated to define from this 

kind of curve. For this reason we take a step back and we try to define a theory 

that consider the possibility, with of course some necessary approximations, to 

define the parameter before described always from an ellipse.  

2.4.1 Application in a real case  

In this paragraph, considering what has been highlighted up to this point, the 

method is developed investigating a real case, as the signal acquired during a 

forced vibration test carried out on an existing structure. Under this circumstance 

the input signal is a perfect sine function that can be expressed by the following 

equation  

 21.026 cos sin 2 86.9
2 2v v

F f f
α α

π γ
  = + + − °   

 (2.24) 

Then its amplitude is 21.026 cos
2v

f
α

 and its phase is 86.9
2

α
γ
  + − °   

.The output 

is the response of the structure (see Figure 2.4.14), recorded as acceleration 

thought some accelerometers. So we have tried to define the Lissajous diagrams 

for this kind of signal. We start to consider what happens near the resonance, 

where the response of the structure is clearer and similar to a sine function. 

 

Figure 2.4.15 Example of acquired signal 
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In the real case the output signal is not a harmonic signal, then the points that 

define the Lissajous diagram does not describe a perfect ellipse and they tend to 

move away the perfect ellipse all the more the signal acquired is different from an 

harmonic response. To define the parameters which allow comparing the two 

signals, we decide to fit these points with the ellipse that better approaches its 

trend. Obviously this kind of approximation is valid when we are near the 

resonance; it becomes really strong far from it. In the next figures the comparison 

between the results obtained near the resonance and far from it are illustrated. 

 

Figure 2.4.16 Trend of input and acceleration acquired from an accelerometer at 

frequency near the resonance  
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Figure 2.4.17 Representation of the two signals in the plane input-output; 

corresponding ellipse 

Far from the resonance the sample points that describe the signals acquired, are 

distribute almost randomly, below an example is reported.  

Figure 2.4.18 Trend of input and acceleration acquired from an accelerometer at 

frequency far from the resonance 

In the plane input-output the points are very far from the ellipse that better 

approach it, as it is illustrated in the following figure. 
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Figure 2.4.19 Representation in plane input-output 

We would like to underline that almost the same problem occurs with the 

classical computation of the FFT. As the figure below illustrates, for a signal 

acquired at a generic frequency not close to the natural frequency the FFT plot is 

very irregular, and the amplitude of the of the different cosine functions, which 

decomposed the original signal, are important for different value of the frequency. 

When we define a point of FRF only the peak corresponding to the input 

frequency is considered, the other components are completely ignored. The 

consequent error is always neglected.   

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-40

-30

-20

-10

0

10

20

30

40

O
u
tp

u
t 

Input 



Chapter 2 

 

54 

 

 

Figure 2.4.20 FFT of a signal with noise 

 

2.5 Procedures applications 

 

The aim of this chapter concerns the analysis and comparison of those modal 

parameters which are obtained by assessing two forced vibration tests, 

experienced on a laminated timber footbridge. The two tests were carried out five 

years apart to verify if the dynamic characteristics of the structure change 

considerably during its use. In particular, modal damping of the footbridge 

increases (that means an effective structural deterioration), whereas modal 

frequencies are substantially constant. It is noticeable that the analysis of the 

first test [Diotallevi et al., 2000] highlighted that the natural frequencies of the 

structure were included in the range between 1 and 2 Hz, more similar to the 

frequency of the human step. This can entail possible amplifications of the 

oscillations of the structure during the passing of pedestrians (low comfort level 

for users). The analysis of the structural durability is necessary because the 

ordinary maintenance of the footbridge is not usually made, although the 

structure is subject to hard weather condition.  
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In particular to both the data, acquired from the two forced test, the procedures 

previously described are applied and a comparison between the results, in terms 

of FRFs, are illustrated. 

2.5.1 Introduction 

Over the last thirty years timber bridge and footbridge have found considerable 

use especially by their versatility, good durability and pleasing aesthetic view. 

First the development of new technology and materials, as the laminated timber, 

second the use of innovative buildings, assembling and connection techniques and 

third the expansion of efficient, certain and inexpensive products for timber 

protection, have allowed the employ of this type of building. 

The objective of this paper is on the one hand the definition of the dynamic 

behavior of an arc footbridge, constituted by laminated timber, to estimate its 

response to dynamic action, as wind, pedestrian action order seismic action which 

can affect the structure during its using; on the other hand to trace the possible 

structural damage by the analysis of its dynamic parameters in different periods 

of the life-time of the structure. The footbridge is realized mainly in laminated 

timber to satisfy the following requirement: unfavourable weather conditions, 

high exposure to the sun, limited aesthetical impact. The durability and the 

resistance to weather conditions are natural characteristics of the laminated 

timber, this behaviour is improved by several and specific treatments to which 

the material is subject during the manufacturing process. The laminated timber is 

completely immune from mildews and mushrooms trough specific impregnated 

products and periodic maintenance and it is able to resist to hard weather 

conditions. The laminated timber was used with good results in very wet 

environments, in places near the sea, so in marine ambient (as in this case), on 

the upper mountain and in places characterized by considerable temperature 

range. Furthermore, it was necessary to build the footbridge with a high span, 

because the river, that the structure crosses, is very dangerous. The Marecchia 

river is extremely irregular and is often subjected to flash flood, then the 

structure is bounded far from the dock of the river. The footbridge reaches a span 
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of 93 meters about in order to satisfy the requirem

users and to avoid that possible flood of the river can compromise the structural 

functionality. In this context the laminated timber was chosen first of all for its 

lightness (the specific weight of the laminated timber is

was preferred to the steel because this material resist better in extern ambient 

than the steel and is not as deformable as the steel (its thermal expansivity is 1/3 

of that of the steel) and its resistance to fire is better than th

materials. Finally, the footbridge is part of a naturalistic 

and constitutes the entrance on the inside of the Marecchia park and the use of 

the timber permits a correct integration of the structure in the context where was 

built and minimizes the impact assessment.  

The peculiarity of the structu

characteristics of the main material used, involves the necessity to investigate 

about its dynamic behavior by dynamic tests. To this purpose, the University of 

Bologna performed a dynamic test by vibrodyne on th

after the lunch of the structure. Trough this test the assumptions about the 

structural dynamic behavior at the planning phase were compared with the real 

behavior of the footbridge. In particular, a good correspondence between the

experimental results and the results relating to a fem modellation of the structure 

is achieved, in fact similar natural periods are obtain (see table 

 

Figure 2.5.1 General overview
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of 93 meters about in order to satisfy the requirement of safeguard the life of the 

users and to avoid that possible flood of the river can compromise the structural 

functionality. In this context the laminated timber was chosen first of all for its 

lightness (the specific weight of the laminated timber is 1/5 of that of RC) and 

was preferred to the steel because this material resist better in extern ambient 

than the steel and is not as deformable as the steel (its thermal expansivity is 1/3 

of that of the steel) and its resistance to fire is better than th
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and constitutes the entrance on the inside of the Marecchia park and the use of 

the timber permits a correct integration of the structure in the context where was 

built and minimizes the impact assessment.   

The peculiarity of the structure and the uncertainty about the mechanical 

characteristics of the main material used, involves the necessity to investigate 

about its dynamic behavior by dynamic tests. To this purpose, the University of 

Bologna performed a dynamic test by vibrodyne on the footbridge immediately 

after the lunch of the structure. Trough this test the assumptions about the 

structural dynamic behavior at the planning phase were compared with the real 

behavior of the footbridge. In particular, a good correspondence between the

experimental results and the results relating to a fem modellation of the structure 

is achieved, in fact similar natural periods are obtain (see table 1).  
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The University of Bologna carried out after five years a second dynamic test, very 

similar to the previous one (the first test was replicated  both by the same setting 

and positioning of the recording sensors of the structural response, both by the 

definition of the same exciting forces), to study the variation of the dynamic 

behaviour in the meantime. In general, the knowledge of the response of 

structural system, subject to sinusoidal forces, yields useful indications both for 

an improvement of the design

the behaviour of existing building. In this paper the dynamic identification was 

used trough both its functions.

2.5.2 Footbridge description 

The footbridge is represented by one

the city of Rimini; more precisely the main structure consists of a twin arch of 

section 22x182 cm which bears the lower horizontal deck by means of vertical 

ties. The trampling level, made in timber, leans on two laminated timber truss of 

section 22x200 cm. The maximum height of the arc is about 13 meters and its 

radius of curvature in the vertical plane is 95 meters. The width of the footbridge 

is about 12 m. Steel cables, constituted by bars of diameter of 50 mm, connect 

the two arcs to contrast the horizontal loads. Furthermore, under the trampling 

level is located a steel reticular, of which the upper and lower elements are the 

laminated timber trusses previously described. The entire bridge is made with 

laminated timber, with the exceptio

 

Figure 2.5.2 Shaker and accelerometer positioned over the footbridge deck
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The University of Bologna carried out after five years a second dynamic test, very 

similar to the previous one (the first test was replicated  both by the same setting 

and positioning of the recording sensors of the structural response, both by the 

ion of the same exciting forces), to study the variation of the dynamic 

in the meantime. In general, the knowledge of the response of 

structural system, subject to sinusoidal forces, yields useful indications both for 

an improvement of the design quality of new structures, both to investigate on 

of existing building. In this paper the dynamic identification was 

used trough both its functions. 

Footbridge description  

The footbridge is represented by one-span arch of about 93 m, crossi

the city of Rimini; more precisely the main structure consists of a twin arch of 

section 22x182 cm which bears the lower horizontal deck by means of vertical 

ties. The trampling level, made in timber, leans on two laminated timber truss of 

ction 22x200 cm. The maximum height of the arc is about 13 meters and its 

radius of curvature in the vertical plane is 95 meters. The width of the footbridge 

is about 12 m. Steel cables, constituted by bars of diameter of 50 mm, connect 

trast the horizontal loads. Furthermore, under the trampling 

level is located a steel reticular, of which the upper and lower elements are the 

laminated timber trusses previously described. The entire bridge is made with 

laminated timber, with the exception of the connectors (plates and bolts of zinc 
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The University of Bologna carried out after five years a second dynamic test, very 

similar to the previous one (the first test was replicated  both by the same setting 

and positioning of the recording sensors of the structural response, both by the 

ion of the same exciting forces), to study the variation of the dynamic 
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ties. The trampling level, made in timber, leans on two laminated timber truss of 
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laminated timber trusses previously described. The entire bridge is made with 
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coated steel) and of the whole frame beneath the walking floor aimed to increase 

the lateral stiffness. 

The bridge is conceived for people walking and also for electrical and water 

transportation. If the electrical cables do not interact with the structural 

performance of the bridge, water pipes represent a considerable amount of the 

total load of the structure as shown in table 1. Each part of the bridge was pre-

manufactured (in particular the laminated timber trusses were impregnated 

before its installation by specific chemicals, which protect it from the attack by 

atmospheric conditions), then shipped and assembled in the final place. Finally 

specific varnishes were put on the elements by painting to protect the timber 

from the attack by mildews, mushrooms and humidity. One day was required to 

erect the bridge and to put it on the concrete basement by using two cranes. 
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Table 1  Footbridge weights 

 

Deck weight 

  

  

 Wooden floor 500x0,04  0,20 kN/m2 

 Main deck beam 475/(4,0x5,14)  0,231 kN/m2 

 Secondary deck beam 

 0,16x0,2x500x5/5,14  0,1556 kN/m2 

 Hand-rail 0,12x0,15x500/5,14  0,0175 kN/m2 

 Lower steel beams (IPE 160) 

 3x15,8/4,00  0,1185 kN/m2 

  
                                             

TOTAL  0,7226 kN/m2 

  

Plant weight 

  

 Tube 500x6 (empty) 78,2/5,14  0,1521 kN/m2 

 Tube 300x6 (empty) 46,2/5,14  0,0899 kN/m2 

 Enel cables 

 12,7x(6+10+2,0+0,5)/5,14  0,1726 kN/m2 

  
                                           

TOTAL  0,4146 kN/m2 

Water weight  Water weight (tube 500)  0,3637 kN/m2 

Total weight  1,5009 kN/m2 

 

2.5.3 Experimental set up 

In both tests, the footbridge was subjected to horizontal and vertical forces, time 

dependent by a sinusoidal law, with the mechanical shaker, which is  available at 
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the Laboratory of the Structural Engineering Department (Distart) of the 

University of Bologna. In the first test the instrumentation used to measure the 

footbridge response, recorded as acceleration, that was constituted by seven 

piezoelectric accelerometers PCB/393B12 whose voltage sensitivity is 10 V/g and 

three piezoelectric accelerometers PCB/393B12 whose voltage sensitivity is 1 

V/g. In the second test the instrumentation was constituted by eight piezoelectric 

accelerometers PCB/393B12 and two piezoelectric accelerometers PCB/393B12 . 

The instruments were connected, through a signal conditioning unit, to a 

computer for data processing and recording (the data acquisition and processing 

were obtained by Labview).  

The mechanical shaker (see is Figure 2.5.3) a device that, firmly attached to the 

construction, allows the application of sinusoidal time varying forces. It is 

constituted by masses mounted eccentrically on two disks rotating in opposite 

directions at the same phase and frequency of rotation fv; each disk has two 

eccentric masses, whose relative angle may be changed from 46° to 180°.  

 

Figure 2.5.3 The electromechanical shaker 

In this manner, the magnitude of the applied force F(t) can be varied to achieve 

various force capabilities, up to the maximum value of 20 kN. The amplitude and 

the phase of the sinusoidal generated force depend on some characteristic 
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parameters of the machine; relating to the shaker ISMES of Bergamo the applied 

force F(t) can be written by the following relation:  

 
( )
( )

2

2

( ) 1.026 cos 2 86.9
2 2

1.026 cos 2
2

v v

v v

F t f sen f t

f sen f t

α απ γ

α π ϕ

°= + − + =

= +
 (2.25) 

where ø is the phase angle of the phasemeter signal and 86.9° is the phase 

displacement between the fixed mass and the position of the phasemeter. With 

reference to the axis linking the counter-rotating disks centers, whose positive 

direction is oriented towards the disk on which the phasemeter is mounted, the 

applied force phase angle 86.9
2
αϕ γ°= − +  is measured counter clockwise 

looking from above the shaker. The shaker (Figure 2.5.3) has been placed on the 

footbridge deck to furnish both horizontal forces having transversal direction with 

respect to the footbridge axis (position 1 in Figure 2.5.4) and vertical forces 

(position 2 in Figure 2.5.4). The locations of the instruments and shaker are 

depicted in figures 3a for position 1 and 2 of the shaker, relating 2000 test, and in 

fig 3b for position 1 and 2 of the shaker, relating to 2005 test. The accelerometers 

are marked with labels A1, A2, …, A10. For example, for the first test in position 

1, the accelerometers measure transverse movements with the exception of 

accelerometer A10, which is mounted in vertical direction, whereas in position 2, 

all accelerometers are placed vertically. It is noticeable that only the 

accelerometers A3 A4, A6 and A9 with horizontal shaker and A1, A3, A4, A5, 

A6, A7, A8 end A9 with vertical shaker are located in the same position in the 

two tests. In particular, in 2005 every accelerometer was placed on the arcs, 

because during the test there was a high wind. In particular in Figure 2.5.4 and 

Figure 2.5.5 the accelerometers, placed on the arcs, are highlighted by red colour.   
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Figure 2.5.4 First test:  instruments and shaker layout for position 1 and 2, 

respectively. 

 

Figure 2.5.5 Second test:  instruments and shaker layout for position 1 and 2, 

respectively. 

 In the first test the frequencies in the 0.7 – 7 Hz range were considered, whereas 

in the second test the frequencies in the 0.6 – 8 Hz range were analyzed, with 

different values of the angle α between the two masses. The frequency step is 0.1 

Hz and becomes 0.05 Hz only by the resonance. The latest difference between the 

two trials is the number of sample points (N); in the first test were sample for 

each acquired signal a number of point N = 256 , equal to four cycles of the force, 

in the 2005 test N is 1024 , corresponding to sixteen cycles. An example of the 

different acquired signals is showed in fig 4. The theorem of Shannon or Nyquist 

is respected in the choose of the samples number for either cases.  
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Figure 2.5.6 Sample signals in the first test 

                                                                                                                                                     

 

Figure 2.5.7 Sample signals in the second test 

 

2.5.4 Extraction of modal parameter through FFT 

The goal of this section is the comparison between the modal parameters, 

extracted from forced vibration test, that are obtained by two methods both in 

the frequency domain. A forced vibration test is carried out on a laminated 
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timber footbridge, whose span is about 93 meters, crossing the river Marecchia in 

Rimini.  

The first method is based on the construction point by point of the FRF 

(inertance) through the computation of the Fast Fourier Transform (FFT) of the 

output signal, acquired as acceleration. When the FRF is defined, the modal 

parameters of the system are extracted through the classical Peak Picking 

method or circle-fit.  

For the same structure, afterwards, the FRF is defined not by the FFT but by a 

direct comparison between the signal acquired in output and the signal in input. 

The amplitude of the sampled points, that represent the output signal, is 

represented along the y-axis and the amplitude of the input (perfectly sinusoidal 

in a forced vibration test) is represented along the x-axis in a generic plane input-

output. In the plane the two signals are evaluated at the same frequency. These 

points tend to trace an ellipse in resonance and the geometrical characteristics 

(length of major axis and its inclination) of the ellipse that better approaches this 

trend can define the module and the phase of the FRF. 

The correlation between the structure reply registered in correspondence of each 

accelerometer and the perfectly sinusoidal force applied by the vibrodyna can be 

observed for both the tests. The assumption is that, in the real resonance 

frequency, the structure reply will be almost sinusoidal and will be greater than 

the applied force. The computation of r2 defines the distance between the points, 

relating to the real case, and the ellipse that better approaches their distribution. 

Then r2 can be an index, that estimates the quality of the signal acquired, and 

can be used to define which is more probable natural frequency of the system 

when the FRF is constituted by very proximal peaks.    

Computation of natural frequencies  

The extraction of the modal parameters of the studied structure was done trough 

a method in the frequencies domain. In detail, to describe the points, a FRF is 

computed (the inertance, because only accelerations are considered): it  represents 
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how the ratio between the structure behaviour (registered by some 

accelerometers) and the related force applied by the vibrodyna changes with the 

frequency variations.  If there are many different vibration modes and if the 

damping factor is low, then the natural frequencies of the structure are found in 

correspondence to the inertance peaks. 

Because, as already said before, the structure was forced by sinusoidal forces, for 

each exciting frequency fv, the ratio is, more in detail, between the amplitude of 

the acceleration harmonic part a(t) and the greatest intensity of the force F(t) 

described in the equation (2.25). 

The computation of the sinusoidal force amplitude and phase is easy using the 

equation (2.25), while to define the a(t) amplitude and phase its Fourier 

transforms are computed. Thus is possible because in both the dynamic tests the 

points number is raised to the power of two, for computing the discrete Fourier 

transform the Fast Fourier Transform algorithm (FFT) is applied, that allows a 

great time-saving because it significantly reduces the number of the computations 

(for N= 1024 a computation that is 102 times faster than the standard one can be 

obtained). Therefore, the inertance is computed in module as the ratio between 

the fast Fourier transform of the accelerometer registration a(t) and the force 

amplitude, both considered at the same exciting frequency fv. Because the FFT is 

a complex function (defined by both a real and a imaginary part or, instead, by a 

module and a phase), the FRF are represented both in module and in phase; the 

FRF phases diagram represents how the angle phase displacement between the 

structural behaviour and the applied force varies with the frequency variation, or, 

in other words, it represents the difference between the phase of the FFT of the 

acceleration and the force phase. Below the inertance trend is shown; it is 

represented in module by the ratio a/F and the phase  ϕ[a/F], computed for the 

accelerometer 4 with the vibrodyna set in position 1, both for the 2000 test and 

for the 2005 one, and the accelerometer 3 with the shaker position 2.  
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Figure 2.5.8 Comparisons between module inertance diagraphs for the first test 

(shaker in position 1) 

 

Figure 2.5.9 Comparisons between module inertance diagraphs for the second test 

(shaker in position 2) 
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Figure 2.5.10 Comparisons between phase inertance diagraphs the first test (shaker 

in position 1) 

 

Figure 2.5.11 Comparisons between phase inertance diagraphs the second test 

(shaker in position 2) 
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the amplitude and the phase of the  harmonic related to the exciting frequency fv 

are defined. Therefore, the inertance has been computed in module and in phase 

for each accelerometer and for both the vibrodyna positions  and in 

correspondence to the related peaks  the natural frequencies of the structure have 

been identified [Mazzotti et al., 2004]. The results of the two dynamic tests are 

summarized in table 2. 

Table 2 Natural frequency for the two tests  

Mode Frequency test 2000 (Hz) Frequency test 2005 (Hz) 

1 1.3 1.2 

2 1.4 1.4 

3 1.7 1.7 

4 2.2 2.2 

5 3.7 3.8 

 

Computation of modal damping and shapes  

The computation of the structural damping with sufficient precision is certainly 

the most difficult aspect of the identification process. For the definition of the 

modal damping the half-power method has been used at the beginning; this 

method yields good results only if the modes of vibration are distinct, that 

happens if the structural system is little damped. The half-power method is 

applied in the neighbourhood of the peak of the FRF, where the frequencies 

correspond to a value of the FRF module equal to 2a F . The modal damping 

is defined by the relation (2.26), where 
a
ω and 

b
ω are the extremis of the 

considered interval (i.e. the frequencies immediately after and before the 

resonance).  
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( )

2

a b

r

ω ω
ξ

ω

−
=  (2.26) 

The extracted results are reported in table 3. To obtain the most reliable value of 

the damping, the curve-fitting method is applied afterwards. This procedure is 

based on the hypothesis that the behaviour of the system is dominated by a 

single mode in the neighbourhood of the resonance. If the inertance is represented 

in proximity of the peak in a plane Real-Imaginary part, a perfect and centred 

circle is obtained. In the real structure, the representation of the FRF in the 

Nyquist plane is a set of point that is distributed around a circle, that results 

shifted respect to the origin and scaled due to the influence of the other modes 

(see Figure 2.5.12 Figure 2.5.13 ).      

 

Figure 2.5.12 Nyquist-plot for A1(fv=2.2 Hz test  one)     
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Figure 2.5.13 Nyquist-plot for A8 (fv=1.65 Hz test two)  

Referring to the notation in Figure 2.3.2, the modal damping can be defined by 

the following relation:  

 

( ) ( )( )

2 2

2 tan 2 tan 2

a b

r a a b b

ω ω
ξ

ω ω ϑ ω ϑ

−
=

+
 (2.27) 

It is noticeable that for 
2a b
πϑ ϑ= =  the circle-fit method coincides with the 

half-power method.  

Regarding the real instance, the FRF representation in the Nyquist plane does 

not describe exactly a circle in the resonance peak proximity; instead, for every 

pulsation, that represents the value of both real and imaginary part of inertance,  

a series of points that tend to trace a circumference is obtained. The 

circumference that better describes these points is calculated through the 

minimum squares method. When the circle that better describes the points is 

found, it is possible to deduce the natural frequency and the damping factor of 

the structure, as shown in Figure 2.5.13. This methodology has been applied to the 
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footbridge dynamic tests but reasonable results have occurred only in two 

instances. This because, as is shown in the inertance diagram, the phases diagram 

is very discontinuous in correspondence to the peaks, with the exception of the 

1.65 Hz  and 3.3 Hz for the second test. In particular for the frequency 1.65 Hz 

the difference between the two method is of 10%; with the half-power method the 

modal damping is 0.0229, whereas with the circle-fit the damping is 0.0206 

(similarly for fv=3.3 Hz the results are respectively 0.0187 versus 0.0174). For 

this reason the frequencies in the Nyquist plane that are just around the 

resonance peak are too much distanced each other, in other words the θ angle is 

greater than the π one (see Figure 2.5.12). This makes the tangent ( )tan 2
b
ϑ

lower than zero, so the damping factor becomes negative. In the only instance in 

which this methodology has been successfully applied, values of the damping 

factor that were near enough to those obtained before with the half-power 

methodology are obtained. In the next table the values concerning the tests are 

shown:  

Table 3 Modal damping relating to the two test  

Vibration mode Damping test 2000 Damping test  2005 

1 - - 

2 0.04135 0.0484 

3 0.0315 0.0381 

4 0.0175 0.0243 

5 0.0177 0.0187 

 

The modal shapes can be obtained soon observing, in correspondence to the 

peaks, the inertance module and phase. Below the modal shapes, concerning  the 

initial three mode shapes, are shown; as it is noticeable, there are not real 

differences between them. 
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First mode   

Figure 2.5.14 Transversal mode, pos 1 fv =  1.2 Hz; second test 

Figure 2.5.15 Transversal mode, pos 1 fv =  1.3 Hz; first  test 

Second mode Figure 2.5.16

Figure 2.5.15 Vertical mode, pos 2 fv = 1.4 Hz; second test 
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Figure 2.5.17 Vertical mode, pos 2 fv=1.4 Hz; first test 

THIRD MODE 

Figure 2.5.18 

Figure 2.5.18 Torsional mode, pos 1 fv = 1.65 Hz; second test Figure 2.5.19 

 

Figure 2.5.18 Torsional mode, pos 1 fv = 1.7 Hz; second test 

 

Figure 2.5.20 Torsional mode pos 2 fv = 1.65 Hz, second test 

 

Figure 2.5.21 Torsional mode pos 2 fv = 1.7 Hz, first test 
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2.6 Computation of FRF through Lissajous Diagram  

 

In the section 1.4 the construction of FRF through classical FFT was explained. 

In this chapter we define a different method in frequency domain, which, as the 

previous one, is able to define point by point the FRF for each signal acquired 

during a forced vibration test.  

The proposed methodology is applied on the dynamic test carried put on the 

footbridge in Rimini to compare the FRFs obtained. Initially, as it was discussed 

in the chapter three, the amplitude ratio and the phase displacement (which 

corresponds to a single point of the FRF) at fixed frequency is obtained by the 

geometric characteristic of the ellipse, which better approaches the trend of the 

points by least square method. In this way the computed FRF is very far from 

that one obtained by classical FFT.  

Figure 2.6.1 FRF module through FFT and ellipse method, respectlevy 

Figure 2.6.2 through FFT and ellipse method, respectlevy 
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The figures show an important difference of the FRF in module and in phase too. 

These figures show in particular that the proposed method is not able to 

recognize all the natural frequencies of the system. A possible interpretation of 

this strong approximation is that with the simple least square approach we 

construct a single curve that resume a lot of different variable: possible 

interference during the recording of the signal, different value of frequency, 

presence of delay between the two compared signals etc. This entails the error 

during the computation of the FRF. To come through this limit, the idea is to 

define some constrains during the definition of the curve. First of all, looking at 

the general parametric equation of the ellipse, we decide that the ellipse that 

better approaches the point’s trend is characterized by a particular expression of 

the x-value. We impose that this ellipse has the x-value coincident with the signal 

generated from the electromechanical shaker.  

The second constrain concerns the output signal. In this case we have an 

acceleration that is really different from a sine function far of the resonance and 

for low level of excitation. This implies that the amplitude of the cosine signal 

with frequency different from the frequency of excitation cannot be neglected. 

This condition can be seen with a simple FFT of the output, which appears very 

irregular. The points, in plane input output, tend to describe a Lissajous Diagram 

completely different from a simple ellipse. To simplify the computation of the 

FRF the assumption is considering by the way an ellipse, characterized by y-

value expressed from eq (2.19), where the frequency is equal to that one of the 

input force. In the figure below, the two ellipses described are represented in the 

same graph. 
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Figure 2.6.3 Ellipse computed trough MLS (in green), ellipse computed through 

sinefit (in red) for the signal acquired by accelerometer 3 at frequency fv = 2.4 Hz 

compared to the sinusoidal force (blu points)  

The two ellipses are constructed both by least square method; the green one is 

obtained by any kind of constrain, the red one, instead, is defined by constrain 

previously illustrated. As it is clear from the figures, the two curves are very 

dissimilar, the ratio of the two axes, which defines a point in module of FRF, 

assumes values different. The inclination of the major axis is different too, so the 

phase of the FRF has dissimilar values according to the ellipse considered.   Using 

for each signal acquired the red one, another FRF point by point is constructed. 

The figures below show that the FRF in this case is almost coincident with that 

one obtained by the classical application of the FFT. This happens in module and 

phase too. 
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Figure 2.6.4 Module of FRF, accelerometer 1, shaker position 1 

 

 

 

 

 

 

 

 

 

Figure 2.6.5 Phase of FRF, accelerometer 1, shaker position 1 
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Figure 2.6.6 Module of FRF, accelerometer 3, shaker position 2 

 

Figure 2.6.7 Phase of FRF, accelerometer 3, shaker position 2 
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Figure 2.6.4) and phase (Figure 2.6.5). The same is obtained when the vybrodina 

excites the structure by a vertical force, in module (Figure 2.6.6) and phase 

(Figure 2.6.7).  

At this point it is possible to extract the modal parameters of the footbridge from 

the FRF. The results are the same already defined in the previous paragraph. 

Some consideration on the method 

The method works only if an important constrain about the frequency of the 

output signal is introduced. In this section an explanation of this circumstance is 

expressed. Looking at the parametric equation of the ellipse, the x equation is 

fixed and is equal to the sine function produced by the electromechanical shaker. 

In the y equation the frequency is fixed too, imposed equal to the frequency of 

the excitation, only the amplitude B and the phase ø can change. These 

characteristics are defined by the least square method. In the infinite ellipse with 

the y equation so defined, that one which approaches the points trend by least 

square is chosen. It is noticeable that the problem regards only the approximation 

in the representation of the response of the structure. In other words, the 

application of the procedures implies that the input signal is replace with the sine 

function that better approach it at fixed frequency, the sine-fit method is applied. 

In the following figures the sinefit application is represented when the frequency 

is not fixed and when is established. The signal acquired during the second test at 

frequency of the force equal to 2.3 Hz is considered.  

The first graph shows the sine function that better approach the real trend of the 

response, with a general frequency, in general different from the excitation 

frequency. The RMS is evaluated and the frequency is equal to 2.34 Hz; 

amplitude and phase are computed. The same procedure is applied in the Figure 

2.6.8 where the frequency is fixed and equal to 2.3 Hz. Note that the RMS in this 

case is greater than before. The two sinefit procedures compute different values of 

amplitude and phase, this justifies the important difference of the FRF, computed 

by the two procedures. 
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Figure 2.6.8 Sinefit of the signal with unknown frequency not equal to the exciting 

frequency, evaluation of RSM 

 

Figure 2.6.9 Sinefit of the signal with fixed frequency equal to the exciting 

frequency, evalutation of RSM 

The amplitude of the signal is almost the same, but an important difference is 
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an ellipse is obtained, because we are comparing two signals with different 

frequencies.  

 

Figure 2.6.10 Lissajous Diagram when the output is approximated through a sine 

with frequency different from that one of the input 

 

Figure 2.6.11 Lissajous Diagram becomes an ellipse when the output is 

approximated trough a sine with the same frequency of that one of the input 

For this reason if the sine function 1 is considered to compute a point of FRF, a 

different value (in module and more in phase) respect to the other one related to 

FFT is obtained. The same procedure is applied when the sine two is analysed, in 
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this case the parametric equation of an ellipse are described, so the curve is 

represented below. In this case we obtain the same point of FRF for both the 

methodology.  

In this case the shape and the orientation of the two ellipses, represented 

respectively in Figure 2.6.10 and Figure 2.6.11, is not so different; in fact the 

considered signal is near to the resonance and in this case it is possible to 

consider the ellipse that better approach the point through minimum square 

method, without committing an important error. The situation is completely 

different if a signal far from the resonance is considered, as Figure 2.6.12 shows. 

 

Figure 2.6.12 Ellipse in red represents the comparison input-output (blue points), 

when the output has the same frequency of the input; ellipse in green represents the 

comparison input-output (green points), when the output has different frequency of 

the input 

In this case it is necessary to consider the red ellipse to define a point of the FRF; 

if the green one is used, we compare two signals with very different frequency and 

it is impossible to define a single point of the FRF in a frequency domain. Then 

O
u
tp

u
t 

Input 



Methods in frequency domain 

 

83 

 

the constrained ellipse has to be considered when a coherent FRF graph has to be 

constructed point by point for each frequency. 

Advantages of the proposed methodology  

From what has been said, it is clear that the FRF can be constructed through 

FFT or the geometric characteristic of an ellipse and the same results can be 

reached. Another important aspect of the proposed methodology would be 

underline in this section. The ellipse construction can be in particular a good way 

to test, from the direct comparison between input-output signals, the goodness of 

the signal recorded during the dynamic test.  In general an high dispersion of the 

points around the ellipse that better approaches them means that the response of 

the system is not coherent with the force, which excites the structure. This is 

very evident for the low frequency, where the sinusoidal force is so low that it not 

able to excites strongly the structure. Often in this case we have very bad 

recorded signal.   

 So this procedure is able to furnish a clear visual effect of the signal acquired 

qualitatively. As we are going to see in the next pages, it is possible to define an 

index which computes quantitatively the goodness of a signal respect to the 

applied force. To understand and apply this characteristic of the method we start 

from some consideration on the FRF obtained for the test of 2000 on the 

footbridge with vibrodyne, which excites the structure vertically. As it is 

noticeable in Figure 2.5.8, there are two peaks very proximal, corresponding to 

1.1 Hz and 1.3 Hz. It is impossible to say which of the two is the real natural 

frequency of the system. A reason of this situation is that with so low frequency 

the force is not able to excite the footbridge and the signal is full of noise. It is 

necessary defining a parameter able to indicate the more reasonable natural 

frequency of the system. A prove of the fact that only one peak corresponds to a 

natural frequency of the system is gave by the FFT of the signal acquired during 

a free vibration test on the same structure, carried out in 2000 too, under the 

same condition of the forced test analyzed. The FFT of the signal acquired after a 

shock test is illustrated in the figures below.  
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The FFT confirms that there is only one peak and the natural frequency is equal 

to 1.3 Hz, so the frequency 1.1 Hz detects only noise. The goal is to define which 

Oscillazioni libere Acc1
c:\documents and settings\claudia\desktop\file autosignal\urto_acc1.xls

0 2 4 6 8
Tempo (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

pi
ez

za
 (

m
m

/s
^2

)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

pi
ez

za
 (

m
m

/s
^2

)

Fourier Frequency Spectrum
 1.3414 

 3.6575 

 6.468  6.86 

0 2 4 6 8 10
Frequency

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
m

pl
itu

de

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
m

pl
itu

de

 

Figure 2.6.13 Trend of free vibration of the laminated footbridge after an 

impact test 

Figure 2.6.14 FFT of the recorded signal 
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is the natural frequency without considering another kind of test, using only the 

data collected during the forced vibration test. To understand which frequency 

between them could be the real natural frequency of the system, the correlation 

between the structure reply registered in correspondence of each accelerometer 

and the perfectly sinusoidal force applied by the vibrodyna can be observed for 

both the tests.  

The assumption is that, for the real resonance frequency, the structure reply will 

be almost sinusoidal and will be greater than the applied force. This assumption 

is better observed for the 1.3 Hz frequency.  

However, this correlation can be computed for each accelerometer using the r2 

correlation index, that is not influenced at all by the amplitude of the compared 

sinusoids, while it is affected by the sinusoids phase displacement and by the 

pattern of the structure reply; in fact, the r2 index varies more as the structure 

reply becomes less sinusoidal (from the graphic below it is observable that, in 

correspondence to each value of the sinusoid amplitude, different values of the 

amplitude of the recorded acceleration are obtained; the distance of these points 

from the red ellipse increases as the structure reply becomes less sinusoidal). In 

particular, the computation of r2 defines the distance between the points, relating 

to the real case, and the ellipse that better approaches their distribution (the best 

fit is obtained through the minimum squares method).   
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2.6.15 Direct comparison between the force and the structure responce for the A2 

with fv = 1.1 Hz, computation of index r2 

 

2.6.16 Direct comparison between the force and the structure responce for the A2 

with fv = 1.3 Hz, computation of index r2 

The computation of this index for both the frequencies has shown that the second 

one (1.3 Hz) has a greater correlation between the applied force and the structure 

reply, and so it has been considered as the real natural frequency of the structure. 

Thus is confirmed by the computation of the FFT of the free vibrations. 
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Conclusive remarks 

The modal parameters of a laminated timber footbridge are obtained by the 

application of two methods, both in frequency domain and for forced vibration 

test. The proposed method allows on the one hand the construction point by 

point of the FRF, by which the modal parameters can be extracted through PP 

method or circle-fit; on the other hand it is a way to define the correlation 

between the signal that excites the structure and the response acquired as its 

acceleration. This aspect has allowed, in the specific analyzed case, to establish 

the more reasonable first natural frequency of the system, because of the presence 

of two very proximal peaks in the FRF.  

We would like finally to emphasize the visual immediacy that the methodology 

described offers.   

2.7 Numerical simulation 

 

Once the structure modal parameters were found, obtained by the experimental 

results of the two vibration tests, a finite elements model of the structure was 

realized using the Sap2000 software. In the model the Young module value of the 

laminated timber has been set to minimize the differences between the 

experimental natural frequencies and those obtained with Sap2000. In the model 

definition a linear behaviour of the structure is assumed, besides the twin arcs, 

the lower beams that maintain the floor and the two higher beams that joint the 

twin arcs have been treated as beam elements, while the remaining elements of 

the structure have been treated as truss ones.  Because the action induced by the 

vibrodyna is negligible compared to an earthquake, the ties of the friction forces 

have not been reached and so the footbridge has been treated as it was 

constrained by four hinges. Besides, to minimize the differences between the 

modal parameters obtained by the model and the experimental ones, the model 

have considered the loads present during the test like loads distributed on the 

structure placed below the trampling level, as shown in table 1. 
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Table 4  Lower eigenfrequencies of both model and frame 

Mode shape 
Frequency 

first test (Hz) 

Frequency 

FEM model 

Dominant 

displaced shape 

Different 

percentages 

1 1.2 (1.3) 1.23 Horizontal + 3% 

2 1.4 1.47 Vertical + 5% 

3 1.7 1.92 Torsional + 11% 

 

The laminated timber and steel  elastic modules have been set respectively to 18 

GPa and 210 GPa. The value of laminated timber Young module has been chosen 

to minimize the differences between the modal parameters obtained in the 

experimental tests and those obtained by the model. 

 

Figure 2.7.1 Horizontal mode fv = 1.23 Hz 
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Figure 2.7.2 Vertical mode fv = 1.47 Hz 

 

Figure 2.7.3 Torsional mode fv = 1.92 Hz 

The results obtained by the finite elements model are compared with the 

experimental ones in the table 4.  

It is observable that the results of both the tests are almost the same. The choice 

of a greater Young module value for the laminated timber  (it is usually assumed 

to be equal to 11 GPa along the wood grain) can be justified because  the 

vibrodyna  brings weak  forces to the structure and so causes a low strain in the 

wood elements. This implies that the strains tend to vibrate around the origin of 
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the material stress-strain law. In the figures 2.7.1, 2.7.2 and 2.7.4 the initial three 

mode shapes of the structure are shown, assuming that the structure has been 

modelled as described in the previous paragraph.  

It worth noting that the first modes are characterised by low frequencies and 

movements in both vertical and horizontal directions and torsional rotations. 

These eigenmodes are also characterised by a small quantity of energy absorption, 

that means a small human pacing or a swing wind flow gives rise to perceptible 

movements. 

2.8 Comparisons between modal parameters extracted by the two 

dynamic tests  

 

The two dynamic tests have been applied to the studied footbridge in two 

different moments of its life-time: the first test has been done at the footbridge 

creation, especially to verify the validity of the theoretical design assumptions 

about its dynamic behaviour. Instead, the second test has been realized five years 

after the footbridge launch, to verify the structure solidity and, in detail, to 

valuate which is the laminated timber behaviour in the course of time under 

particular weather conditions. Regarding the comparison between the damping 

factors obtained in the first and in the second test, a modest increase of this 

factor can be noticed in the second instance. This can be considered an effect of a 

possible damage of the structure in the time. Instead, the frequencies analysis 

shows almost the same results in both the tests. However, there are some doubts 

regarding the correctness of the first natural frequency found in the first dynamic 

test; this because in the inertance function two very proximal peaks are obtained 

(they are equal to 1.1 Hz and 1.3 Hz). To understand which frequency between 

them was the real natural frequency of the system, the correlation between the 

structure reply registered in correspondence of each accelerometer and the 

perfectly sinusoidal force applied by the vibrodyna can be observed for both the 

tests using the r2 correlation index. 
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The computation of this index for both the frequencies has shown that the second 

one (1.3 Hz) has a greater correlation between the applied force and the structure 

reply, and so it has been considered as the real natural frequency of the structure. 

Therefore, the first natural frequency related to the first test reduces of 0.1 Hz, 

the second one remains the same while the reduction of the third one is negligible. 

If the higher modes are exanimate, it is noticeable that the fourth natural 

frequency remains the same while a little raise (almost 0.1 Hz) is observable for 

the sixth natural frequency. 

Considering the initial three natural frequencies, it is finally noticeable a little 

raise of the structure own period, which seems to suggest that the footbridge 

rigidity has slightly decreased. 

In situ dynamic tests have been conducted in order to estimate the dynamic 

behaviour of a timber footbridge. The lowest frequencies have been evaluated to 

be in the range between 1 and 2 Hz including both flessional and torsional mode 

shapes. It was thus argued that the footbridge is sensitive to low frequency loads, 

such as human pacing, mainly due to the material choice compared to the bridge 

shape and dimensions. This can entail low comfort level for the users, because the 

footbridge can resonate during pedestrian crossing. 

A light decrease of the first natural frequency of the footbridge was obtained in 

the first test compared to the second. This entails a light decrease of the rigidity 

of the structure, which is attributed to a possible damage of the footbridge, as the 

modal damping variation confirms.   
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Figure 2.8.1 Effect of live load duration

A possible interpretation of this variation can be the effect of the duration loads 

to the resistance (see Figure 

reduction of the laminated timber resistance [Giordano, 1993

curve of the Eurocode 5 (EC 5) it

decrease of the mechanical characteristics of the wood, as obtained by the 

analysis of the modal parameters of the structure. 
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A possible interpretation of this variation can be the effect of the duration loads 

Figure 2.8.1). The long lived loads (see table 1) entail the 
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5 (EC 5) it is noticeable that the load duration involves a 

decrease of the mechanical characteristics of the wood, as obtained by the 

analysis of the modal parameters of the structure.  
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Continuous Wavelet Transforms  
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3.1. Introduction 

 

 

 Wavelets are mathematical functions that cut up data into different frequency 

components, and then study each component with a resolution matched to its 

scale. They have advantages over traditional Fourier methods in analyzing 

physical situations where the signal contains discontinuities and sharp spikes. 

Wavelets were developed independently in the fields of mathematics, quantum 

physics, electrical engineering, and seismic geology. Interchanges between these 

fields during the last ten years have led to many new wavelet applications such as 

image compression, turbulence, human vision, radar, and earthquake prediction. 

For many decades, scientists have wanted more appropriate functions than the 

sines and cosines which comprise the bases of Fourier analysis, to approximate 

choppy signals (Lardies & Gouttebroze, 2002). By their definition, these functions 

are non-local (and stretch out to infinity). They therefore do a very poor job in 

approximating sharp spikes. But with wavelet analysis, we can use approximating 

functions that are contained neatly in finite domains. Wavelets are well-suited for 

approximating data with sharp discontinuities. The wavelet analysis procedure is 

to adopt a wavelet prototype function, called an analyzing wavelet or mother 

wavelet [Meyer, 1992; Daubechies, 1990 and 1993]. Temporal analysis is 

performed with a contracted, high-frequency version of the prototype wavelet, 

while frequency analysis is performed with a dilated, low-frequency version of the 

same wavelet. Other applied fields that are making use of wavelets include 

astronomy, acoustics, nuclear engineering, sub-band coding, signal and image 

processing, neurophysiology, music, magnetic resonance imaging, speech 

discrimination, optics, fractals, turbulence, earthquake-prediction, radar, human 

vision, and pure mathematics applications such as solving partial differential 

equations.  

Mathematically, wavelet transforms are inner products of the signal x(t) and a 

family of wavelets. Let Ψ (t) be the analyzing wavelet called also the mother 



Modal parameters extraction through CWT 

 

135 

 

wavelet of the analysis or the wavelet ‘prototype’. The corresponding family of 

wavelets consists of a series of son wavelets, which are generated by dilatation 

and translation from the mother wavelet Ψ (t) shown as follows: 

 
,

1
s

t

ss
τ

τ
ψ
 −  Ψ =    

                                    (3.1) 

where s is the dilatation or scale parameter defining the support width of the son 

wavelet and t the translation parameter localising the son wavelet function in the 

time domain. The idea of the wavelet transform is to decompose a signal x(t) into 

wavelet coefficients Wψ(a,b) using the basis of son wavelets ψa,b(t). The mother 

waves need to have particular properties [Tang et al, 2001; Rioul and Vetterli, 

1991]. Under the hypothesis that x(t) satisfy the condition: 

 
2

( )x t dt
∞

−∞
<∞∫                                   (3.2) 

which implies that x(t) decays to zero as t→±∞, the wavelet transform of x(t) is 

expressed by the following inner product in the Hilbert space: 

 
,
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a b
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ψ

ψ ψ

∞
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= = ∫  (3.3) 

where the asterisk stand for complex conjugate. This shows that the wavelet 

transform is a linear scalar product normalized by the factor 1 / a  and this 

scalar product is a measure of the fluctuation of the signal x(t) around the point 

b at the scale a. The scaling operation is nothing more than performing stretching 

and compressing operations on the son wavelet, which in turn can be used to 

obtain the different frequency information of the signal to be analyzed. The 

compressed version is used to satisfy the high-frequency needs, and the dilated 

version is used to meet low-frequency requirements. Then, the translated version 

is used to obtain the time information of the signal to be analyzed. In this way, a 

family of scaled and translated wavelets is created and serves as the base, the 

base for representing the signal to be analyzed. In other words, the wavelet 

transform Wψ(a,b) can be considered as functions of translation b with each fixed 

scale a. It gives the information of x(t) at different levels of resolution and also 
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measures the similarity between the signal x(t) and each son wavelet ψa,b(t). Note 

that the wavelet transform represents also the convolution between the signal 

x(t) and the wavelet function. This implies that a wavelet can be used for feature 

discovery if the wavelet used is similar to the feature components (eventually 

eigenfrequencies and damping coefficients) hidden in the analyzed signal. For the 

function ψ(t) to qualify as an analyzing wavelet, it must satisfy the admissibility 

condition 

 
( )

0 c d
ψ

ψ ω
ω

ω

∞

−∞

< = <∞∫   (3.4) 

where ψ(ω) is the Fourier transform of ψ(t). Then the wavelet transform can be 

inverted and the signal x(t) recovered: 
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= = ∫ ∫                    (3.5) 

Note that since |ψ(ω)| tends to 0 when ω tends to ±∞, the Fourier transform of 

the wavelet can be considered as a band-pass filter. 

For practical purposes, the possibility of time-frequency localisation arises if the 

wavelet g(t) is a window function, which means that ψ(t) decays to zero as 

t→±∞: 

 ( )t dtψ
∞

−∞
<∞∫                                   (3.6) 

and the wavelet transform analyses a signal x(t) only at windows defined by the 

wavelet function ψ(t). If one assumes a fast decay of ψ(t): the values of ψ(t) are 

negligible outside a given time domain interval, the transform becomes local in 

time domain, in this interval.  

The frequency localization can be explained when the wavelet transform is 

expressed in terms of the Fourier transform. Note X(ω) the Fourier transform of 

the signal x(t) and aψ*(aω) ejωb the Fourier transform of the son wavelet 

ψ*(t−b)/a. Using the Parseval's theorem, we obtain 
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π
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= ∫                   (3.7) 

and the frequency localization depends on the scale parameter a. Note that this 

operation is equivalent to a particular filter band analysis in which the relative 

frequency bandwidth Δω/ω are constant and related to the parameters a,b and to 

the frequency properties of the wavelet. The local resolution of the wavelet 

transform in time and frequency is determined by the duration and bandwidth of 

analysing functions given by Δt=a Δtψ and Δf=Δfψ/a, where Δtψ and Δfψ are the 

duration and bandwidth of the wavelet function. The resolution of the analysis is 

therefore good for high dilatation in the frequency domain and for low dilatation 

in time domain. 

 

Before the calculation, the relevant parameters must be discretised for being 

computed by a computer. Instead of continuous dilatation and translation, the 

wavelet may be dilated and translated discretely by selecting a=a0m and 

b=nb0a0m where a0 and b0 are fixed values with a0>1,b0>0,m,n Z and Z is the 

set of positive integers. We obtain then a discretised son wavelet and a 

corresponding discrete wavelet transform which provides a decomposition of a 

signal into sub-bands with a bandwidth that increases linearly with frequency. In 

the case of dyadic discretisation, the most popular method, we have a0=2 and 

b0=1 and each spectral band is approximately one octave wide. In this form, the 

wavelet transform can be viewed as a special kind of spectral analyzer. 

The Wavelet transform  is able to furnish information both in frequency and time 

domain. In general, for a  generic signal x(t), the Wavelet transform is defined by 

the following  integral:   

 ( ) ( )1
, *

x

t b
CWT a b x t dt

aa

ψ ψ
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 −  =    ∫  (3.8)                            
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where the function 
,

1
a b

t b

aa
ψ
 −  Ψ =    

 is a scaled (a) and translate (t) version of 

the mother function.  

To perform a wavelet transform of a generic signal, it’s possible to follow this 

step [Matlab Toolbox, 2007]: 

(i) Step: choice of the wavelet mother 

In this case the Morlet function is considered, expressed by the following equation 

and rapresent in the following figure: 

 ( )
2

0
2ti t

t e e
ω

ψ
−=  (3.9) 

 
Figure 3.1.1 Morlet, mother wave, real and imaginary part 

 

(ii) Step: definition of a scalar factor.  

A frequency of the Morlet is defined and the wave is compared  with part of the 

signal in the time domain at time zero  

 

Figure 3.1.2 First step: wave is setted with a fixed scale and it is compared with the 

signal in the first time step 
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(iii) Step: translation of the wave 

The same wave, with the same scalar factor, is translate in the time and for each 

time is compared with the signal 

 

 

Figure 3.1.3 The wave with fixed scale a is only translate in time domain 

 

(iv) Step: variation of the scalar factor 

The frequency of the Morlet is changed and the pervious steps are repeated 

 

Figure 3.1.4 A second value of scale is define for the mother wave and the step 1-2 

are reiterated 

 

Wavelet transformations have been frequently applied to determine the dynamic 

characteristics of a time invariant linear system in the last decade. [Schoenwald 

1993] identified the parameters in the equation of motion for a system with a 

single degree of freedom by applying a continuous wavelet transform to the 

equation of motion. Ruzzene et al. (1997) applied a discrete wavelet transform 
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and the Hilbert transform technique to determine the natural frequencies and 

damping of a structure system from its free vibration responses. [Robertson et al. 

(1998a and 1998b)] developed a procedure for extracting impulse response data 

from the dynamic responses of a structure and used an eigensystem realization 

algorithm to identify the dynamic characteristics of the structure. Gouttebroze 

and Lardies (2001) developed a wavelet identification approach in the time–

frequency domain for elucidating the natural frequencies and damping of a 

structure from free vibration responses. Their approach cannot directly determine 

the mode shapes. Lardies and Gouttebroze (2002) further applied their wavelet 

identification technique (Gouttebroze and Lardies, 2001) to process the measured 

ambient vibrations of a TV tower, by first extracting a free vibration signal from 

the measured ambient vibration responses, using the conventional random 

decrement technique. [Alvin et al. 2003] presented an overview of the use of the 

wavelet transformation technique for extracting impulse response functions; they 

also reviewed robust ways of identifying both proportional and nonproportional 

damping parameters. 

Then, the computation of the CWT is done at the beginning for an ideal case, 

where the signal is defined by the expression  

 ( ) ( )2 2s 2 1v
f t

v
x t Ae en f t

−= −ξ π
π ξ  (1.10) 

to extract the natural frequency of the signal and its modal damping using only 

one Wavelet transform. The trend of the CWT is described in the Figure 3.1.5. If 

the diagram of the CWT is sectioned at a value of the time constant, the natural 

frequencies of the signal could be obtained in correspondence of the peaks of the 

CWT.  
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Figure 3.1.6 simulated signal with natural frequency 2 Hz and modal damping 7.2 %  

 
Figure 3.1.7 Its Continuous Wavelet Transform 

When the natural frequency of the simulated signal is known, the same diagram 

is sectioned at constant frequency equal to its resonance frequency. It is possible 

define how the amplitude of the signal damps during the time. The exponential 

function, that better represented this trend obtained through the minimum 

square method, permits to define the damping factor of the system. 
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Figure 3.1.8 Spectrum of simulated signal, CWT in frequency domain 

 

 
Figure 3.1.9 Wavelet trend in time domain at fixed frequency. 

 

The same mythology is applied in the real case; in the following figures the trend 

of the CWT is shown for the signal acquired by a sensor during a free vibration 

test. In Figure 3.1.7 the 3-D Wavelet transform is represented, in Figure 3.1.8 it 

is sectioned at constant time and in Figure 3.1.9 it is sectioned at constant 

frequency, equal to the natural frequency of the system. 
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Figure 3.1.10 signal acquired during a free vibration test. 

 

 
Figure 3.1.11 CWT, front view 
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Figure 3.1.12 CWT time-frequency domain representation, lateral view  

 

 
Figure 3.1.13 CWT, representation in frequency domain 
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Figure 3.1.14 CWT in time domain at fv =  0.647 Hz 

 

 

3.2. Extraction of the modal parameters from the free vibration test 

via WT  

 

The first case analysed via WT is a vibration test carried out on the footbridge 
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natural frequencies of the system are defined. The interpretation of the first 

natural frequency of the footbridge is very difficult because two very proximal 

peaks of the FRF (they are  equal to 1.1 Hz and 1.3 Hz) are obtained.  

 
Figure 3.2.1 Time trend of the signal acquired by accelerometer A2 

 
Figure 3.2.2 Signal acquired during the shock test and its Fourier Transform 

 

0 2 4 6 8

time

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

a
m

p
li
tu

d
e

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

a
m

p
li
tu

d
e

Fourier Frequency Spectrum

 1.3282,0.11222 

0 2 4 6 8 10

Frequency

0

0.025

0.05

0.075

0.1

0.125

A
m

p
li
tu

d
e

0

0.025

0.05

0.075

0.1

0.125

A
m

p
li
tu

d
e



Modal parameters extraction through CWT 

 

135 

 

The computation of the FFT gives good information about the frequencies of the 

analyzed signal but is not able to give any information about its behavior during 

the time. Then the use of the FFT, when the signal is not stationary, does not 

describe completely the behavior of the system. For this reason, note the natural 

frequencies of the system trough the classical FFT, for each recorded signal the 

Wavelet transform, that is able to furnish information both in frequency and time 

domain,  is computed. Then, the methodology previously described is applied in 

the real case; in the following figure the trend of the CWT is defined for the 

signal acquired by the accelerometers 1.  

The section of the diagram at constant time allows the individuation of the 

natural frequencies of the footbridge. For each value of the resonance frequency 

the CWT is sectioned and the variation of the amplitude of the signal in the time 

is obtained. By the exponent of the exponential function that better describes the 

trend of the variation of the amplitude of the signal, it is possible define the 

damping factor for each vibration mode of the footbridge. 

 
Figure 3.2.3 Example of Wavelet Transform of the signal acquired by A1 
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Figure 3.2.4 Time trend of CWT, evaluation of modal damping 

 

     

 
Figure 3.2.5 Frequency domain representation of CWT, evaluation natural 

frequencies 

 

The obtained results are summarized in the following table and compare with the 
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The frequencies are in good agreement between the two methods, instead the 

modal dampings are very different.  

Table 1 Modal parameters, extracted by the FFT and CWT 

Frequency (FRF) Frequency (Wavelet) 
Damping (Half 

power) 

Damping 

(Wavelet) 

1.3 1.34 - 0.0165 

1.4 1.52 0.04135 0.0125 

1.7 1.75 0.0315 0.0087 

2.2 2.18 0.0175 0.0085 

3.7 3.69 0.0177 0.0106 

 

The frequencies of the system are almost the same, whereas the modal dampings 

are very different. This because the half-power method can be applied successfully 

only if the vibration modes are distinct. This hypothesis entail that the each 

mode cannot be influenced considerable from the another modes. From the results 

obtained by the Half-power method, the FRF, corresponding to the SDFOS 

characterized by the natural frequency and the modal damping identified from 

the inertance, was described. The diagram shows  that the contribution of the 

modes, which are immediately before and after the considered mode, cannot be 

neglect.  

3.3. Free vibration test on Vasco de Gama Bridge. 

3.3.1. Bridge description 

The Vasco da Gama Bridge is a cable-stayed bridge flanked by viaducts and 

roads that spans the Tagus River near Lisbon. It was designed and built by the 

consortium LUSOPONTE. SA.. It is the longest bridge in Europe (including 

viaducts) with the total length of 17300m, involving three interchanges, a 5km 

long section on land and a continuous 12300m long bridge. Its purpose is to 
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alleviate the congestion on Lisbon's other bridge (25 de Abril Bridge), and to join 

previously unconnected motorways radiating from Lisbon. The bridge was opened 

to traffic on March 29, 1998, 18 months after construction first began, just in 

time for Expo 98, the World's Fair that celebrated the 500th anniversary of the 

discovery by Vasco da Gama of the sea route from Europe to India [Caetano, 

2000].  

 

Figure 3.3.1 Cable-stayed component of Vasco da Gama Bridge 

This bridge includes a cable-stayed component over the main navigational 

channel with a main span of 420m and three lateral spans on each side 

(62m+70.6m+72m), resulting in a total length of 829.2m (Figure 3.3.1). The 

bridge deck is 31m wide and is formed by two lateral prestressed concrete girders, 

2.6m high, connected by a cast in situ slab 0.25m thick and by transversal steel I-

girders every 4.42m. The bridge is continuous along the total length and is fully 

suspended at 52.5m above the river by two vertical planes of 48 stays connected 

to each tower. The two H-shaped towers are 147m high and a massive zone exists 

at their base as a protection against ship impact. With regard to the stay cables, 

that consist of bundles of parallel self-protected strands covered by an HDPE 

sheath, specific protection against vibration was adopted, namely by inclusion of 

a double helical rib in the cable cover for prevention of rain wind vibration, and 

by use of innovative damper devices placed inside the steel guide pipe of the 

cables at the deck anchorages. Given the actively seismic location of the bridge 



Modal parameters extraction through CWT 

 

135 

 

site, specific measures were taken in the design of the bridge, namely the 

adoption of a full suspension deck from flexible towers in order to minimize the 

seismic forces. Additionally, a set of hysteretic steel dampers connecting the 

pylons and the deck were introduced, in order to limit the displacements. Under 

service loads, the transverse dampers work within the elastic range, acting as 

elastic supports, while the longitudinal dampers allow low speed displacements. In 

case of earthquake, Innovative elastoplastic dampers were placed between the 

deck and the towers to reduce horizontal seismic movements. 

3.3.2.  Experimental setup 

The free vibration test was carried out on the Vasco da Gama bridge due two 

main reasons : 1) to check the previously developed model and 2) to define the 

damping factors associated to the vibration modes of the structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3.2 Eccentrically suspended barge, its cutting and release 
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A barge weighting 60t was attached at one point of the deck close to the section 

1/3 spam North. The barge became suspended with the low tide (Figure 3.3.4 

Sensors localization on the structure) and was subsequently released  by cut of 

the suspension Dewing bar at the deck level.  A vibratory phenomenan was then 

generated, which was recorded during 16 minutes by 6 triaxial accelerographs, 

located at the sections 1/3 and 1/2 span (upstream  and downstream).  

The  time series are formed by 32768 points, sampled at 50Hz, what corresponds 

to a total acquisition time of 655s. An example of the acquired signal is 

represented in the following figure, in particular the signal recorded in 

correspondence of the 1/3 span South  downstream is considered. 

 
Figure 3.3.3 Signal acquired by the accelerographs located in position M10, z-

direction   

The free vibration response associated with the cutoff of a 60 ton mass from 

1/3rd span Upstream was measured, using three different measurement systems: 

- triaxial accelerographs Geosys, GSR-16, which were mounted at the edges  

of the bridge deck, at the following locations: 1/3 span north, upstream 

and downstream; ½ span, upstream and downstream, and 1/3rd span 

South, upstream and downstream. The nodes involved in the 

measurements are marked in the Figure below. The 5 accelerographs were 

synchronized by the PC clock and should be considered all synchronized; 
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- uniaxial FBA11 accelerometers, connected to a Kinemetrics recorder, 

mounted at station located on 1/3rd span South, upstream. Although the 

acquisition parameters were identical, the three records measured using 

this system are not perfectly synchronized with the other records, as it was 

not possible to use the same trigger. Moreover, the data is presented in 

different format, and one of the records (along the transversal direction 

was not good); 

 
Figure 3.3.4 Sensors localization on the structure 

This data represents the core data and was sampled at 50Hz. The records 

associated with the measurements are named according to the table indicated 

below. The Figure 3.3.4 Sensors localization on the structure the location of all 

the sensors used to recorded the structure response. The free vibration test 

involved only the central part of the cable-stayed bridge; the other sensors, 

represented in the Figure 3.3.4 Sensors localization on the structureThe data were 

analyzed by many researchers; Prof. Elsa Caetano studied it in her PhD thesis, 

Rune Brinker extracted the structural modal parameter through FDD, Guido de 

rock used instead a method in time domain and updated a FE model starting 

from these data. In this thesis only the free vibrations are considered and analyse 

through WT. This data represents the core data and was sampled at 50Hz. The 

records associated with the measurements are named according to the table 

indicated below. 
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Table 2 Accelerometers location for the free vibration test 

 

Station File Node 

1/3 span North, upstream M10.asc 10U 

1/3 span North, 

downstream 
J10.asc 10D 

1/2 span, upstream M13.asc 13U 

1/2 span, downstream J13.asc 13D 

** 1/3 span South, 

upstream 

M16x.asc 

M16z.asc 
16U 

1/3 span South, 

downstream 
J16.asc 16D 

 

3.3.3. Results 

The modal parameters of the structure were extracted in 1998 through the 

classical Peak-picking method. In the PhD thesis “Dynamics cable-stayed bridges: 

experimental assessment of cable-structure interaction”, natural frequencies, 

modal dampings and mode shapes are available. The same signals, acquired 

during this test, are analyzed by the wavelet transform and the results are 

compared. An example of the Wavelet transform is represented in the following 

figures. The signals acquired at section j10 and j 16 are considered; the CWT are 

computed both in y e z direction, to define the transversal and vertical modes 

shape of the bridge. In both the case the CWTs are very clean and it is easy to 

define the natural frequencies in correspondence of their peaks. The time trend of 

the CWTs is very clean too, and the modal damping can be easily define through 
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the exponential function that better approachs the CWT time decay for each 

natural frequency.  

Figure 3.3.5 D Wavelet Transform of J10 y-direction 



Chapter 3 

 

116 

 

 
Figure 3.3.6 Wavelet Transform of  J16 z-direction (b)  

 

The natural frequencies of the structure are defined by the peaks in the frequency 

domain of the WT. In the free vibration test of the Vasco da Gama bridge the 

natural frequencies of the system are summarized in the following table; in 

particular the natural frequencies are compared to the frequencies, execrated from 

the same test but by classical FFT. Prof. Elsa Caetano, in her PhD Thesis, 

defined for each recorded acceleration the FRF and she extracted the natural 

frequencies through the Peak-Peaking method, explained in chapter two. The 

results show a good agreement; it is noticeable that the CWT is able to indentify 

some additional frequencies. In particular these frequencies were computed 

through the analysis of the ambient test carried out on the bridge at the same 

time. The modal parameters were extracted by the FDD and the results are 

available in the paper Cunha et al., 2004. 
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Table 3 Natural frequencies trough WT and PP, comparisons 

NATURAL FREQUENCIES 

FFT WT 

0,296 0,296 1 transversal  

0,338 0,338 1 vertical 

0,456 0,456 2 vertical 

0,467 0,467 1 torsional 

0,591 0,591 2 torsional 

 0,616 3 torsional 

0,647 0,647 3 vertical 

0,653 0,651 4 torsional 

0,707 0,708 4 vertical 

0,814 0,817 5 transversal 

 0,889 torsional 

 0,92 torsional 

0,982 0,98 5 vertical 

 

As Figure 3.3.3 shows, the signal acquired is very clean, only its detrend is 

necessary; for this reason too a good agreement of the results are obtained, both 

in free and ambient tests, for each methods applied. The modal damping for each 

frequency of the system was extracted by the WT and the results are compared 

with damping defined by FFT.  
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Figure 3.3.7 Trend of the WT in the time domain for a defined value of the natural 

frequency 

 

The results are in good agreement except for the frequency 0,707 Hz (4th vertical 

vibration mode). In particular, to extract modal damping, the same WT 

represented in figure 2.5, is sectioned at constant frequency (equal to a natural 

frequency). The trend of the WT in the time domain defines the modal damping 

at a fixed natural frequency, how described above. An example is represent in the 

following figure  

The modal dampings for each  mode are summarized and compared with the 

other one obtain trough the logarithmic decrement. It’s noticeable that the modal 

dampings are completely different in correspondence to the frequency 0.591 Hz. A 

possible interpretation of this important variation is the presence of very close 

torsional mode around that frequency. 
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Table 4 Modal dampings trough WT and logarithmic decrement, comparisons 

FREQUENCY DAMPING FACTOR 

VARIATION 
WT 

COMPLEX 

EXPONENTIAL 
WT 

0,296 1,23 (0,78)1,35 9,756098 

0,338 0,21 0,23 9,52381 

0,456 0,23 0,23 0 

0,467 0,24 0,24 0 

0,591 0,34 0,71 108,8235 

0,616 
   

0,647 0,37 0,48 29,72973 

0,651 
   

0,708 0,78 0,65 -16,6667 

0,817 0,48 0,52 8,333333 

0,889 
   

0,92 
   

0,98 0,74 0,62 -16,2162 

 

When the free time responses recorded from several points of the structure are 

available, phase and amplitude relationships between the different degrees of 

freedom of the system can be obtained through the wavelet transform analysis. 

The ith mode shape of the structure can be estimated by evaluating the wavelet 

transform of the time signals from all measured points, at the corresponding i-th 

frequency, that is for a = ai. Let Wj (ai; b) be the wavelet transform of the signal 

obtained from the accelerometer positioned at point j and let Wr (ai; b) be the 

wavelet transform of the signal obtained from the accelerometer of reference, 

positioned at point r. The quantity  

 ( , ) ( , )j r

ij i i
W a b W a b
ψ ψ

χ =                                   (3.11) 

represents the jth component of the ith complex mode shape of the structure, 

referred to point r. Through eq. (3.11)  and the comparison between the wavelet 

phase of the two signal, it is possible to define modes shape of the structure for 
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each natural frequency. The mode shape, obtained by the WT are compared to 

the mode shapes obtained by classical FFT method. 

 

Figure 3.3.8 Comparisons between identified mode shapes using PP and WT: Mode 

1 transversal  fv= 0.296 Hz 

Figure 3.3.9 Mode 1 vertical fv = 0.338 Hz 

 

 

V
er

tic
al

/ 
tr

an
sv

e
rs

al
 

m
od

al
 

co
m

po
ne

nt

Freq.=0.471Hz- 1st torsion+transversal bending modeWT, Z WT, Y Numerical, Z Experimental, Z

Experimental, Y Free vib., Z Free vib., Y

T
ra

n
sv

er
sa

l 
m

od
al

 c
om

p
on

en
t

V
er

ti
ca

l 
m

od
al

 c
om

p
on

en
t

(a)                                                                                 (b) 

 



Modal parameters extraction through CWT 

 

135 

 

Figure 3.3.10 ) Mode 2 vertical  fv= 0.456 Hz 

Figure 3.3.11 Mode 1 torsional  + transversal fv = 0,467 Hz 

Figure 3.3.12 Mode 2 torsional  + transversal fv = 0.591 Hz 
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Figure 3.3.13 Mode 3 vertical fv = 0.647 Hz 

Figure 3.3.14 Mode 3 torsional  + transversal fv= 0,651 Hz 

 

Figure 3.3.15 Mode 3 torsional  + transversal fv = 0.707 Hz 

V
er

ti
ca

l 
m

od
al

 c
om

p
on

en
t

V
er

ti
ca

l/
tr

an
sv

er
sa

l 
m

od
al

 

co
m

p
on

en
t

V
er

ti
ca

l/
 t

ra
n
sv

er
sa

l 
m

od
al

 

co
m

p
on

en
t



Modal parameters extraction through CWT 

 

135 

 

 

Figure 3.3.16 Mode 4 vertical  fv= 0.816 Hz 

 

Figure 3.3.17 Mode 5vertical  fv = 0.92 Hz 
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3.4. Ambient vibration test on Pinhao bridge 

3.4.1.  Bridge description 

The Pinhão Bridge (Figure 3.4.1), constructed in 1906, is a metallic roadway 

bridge over the Douro River, in Portugal, formed by three truss simply supported 

spans of about 69.2m (Figure 3.4.3). The main beams have the shape of a semi-

parabolic arch with a height varying from 2.67m to 8.86m at the middle of the 

span. The deck has a total width of 6.00m, arranged in two traffic lanes of 4.60m 

and two sidewalks of 0.70m wide on each side of the deck. The pavement is a 

concrete slab, supported by a steel grid that transfers the loads to the main steel 

beams (Figure 3.4.2) [Magalhães et al. 2006]. 

 

 

Figure 3.4.1   View of Pinhão Bridge 

 

Figure 3.4.2 Cross-section 

 

 

Figure 3.4.3 Lateral view of the Bridge 

 

 

 

 

 
1st span 2nd span 3rd span 

Concrete slab 
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3.4.2. Experimental setup 

An ambient vibration test is based on the measurement of time histories of the 

response at different points of the structure, motivated by the actions that excite 

the bridge during its normal use, which are, essentially, the traffic and the wind. 

To accomplish that, accelerometers are normally used, whose required sensitivity 

is very high, considering the typical low levels of vibration. 

The signals are acquired by four tri-axial 18-bit strong motion recorder. These 

devices, based on very sensitive internal force balance accelerometers (linear 

behaviour from DC to 100 Hz), analogue to digital converters with 18 bit (to 

guarantee a good resolution), batteries that enable autonomy for one day of tests, 

memories materialized by removable Compact Flash cards that permit a fast 

download of the acquired data and external GPS sensors to deliver a very 

accurate time, so that they can work independently and synchronously. With this 

equipment, the use of cables is avoided and the labour associated with the 

preparation of the dynamic test is drastically minimized. In order to obtain a 

good characterization of the mode shapes, in each span the accelerations at 7 

cross sections were measured (Figure 3.4.6). As torsion modes were expected, at 

each section two points were instrumented (see Figure 3.4.5). The three spans of 

the bridge are structurally independent, so they were also tested independently. 

They have exactly the same characteristics, so if the bridge was new, the same 

modal parameters would be expected for each of the spans. In this report only the 

data, acquired on the second span are analised. 

In the developed test setups two recorders served as references, permanently 

located at section 3 (see Figure 3.4.6) on both sides of the deck. The other two 

recorders scanned the bridge deck in 6 consecutive setups for each span, 

measuring the acceleration along the 3 orthogonal directions. For each setup, 

time series of 13 minutes were collected with a sampling frequency of 100 Hz, 

value that is imposed by the filters of the acquisition equipment. 
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Figure 3.4.4 Strong motion recorder 

 
Figure 3.4.5 Position of the measuring devices 

 

 

Figure 3.4.6 Measured sections 

The test was developed without inducing significant restrictions in the bridge use, 

so it was possible to quantify the level of the vibrations motivated by the traffic. 
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In, the accelerations measured in the downstream point of section 5 are 

presented. In the graphic, the passage of a heavy truck can easily be identified, 

which motivated a considerably high vertical acceleration – 1.5 m/s2. The graphic 

also shows that the level of the lateral accelerations is approximately 1/10 of the 

vertical accelerations, fact that contributed for the lower quality of the identified 

lateral mode shapes. 

 

Figure 3.4.7 Acceleration time series measured at section 1 

3.4.3. Results 

The modal parameters of the structure were extracted in 2000 through the 

classical Peak-picking method. In the paper “Experimental validation of the 

Finite Element modelling of Pinhão Bridge” natural frequencies and mode shapes 

are available. The same signals, acquired during this test, are analyzed by the 

wavelet transform and the results are compared. An example of the Wavelet 

transform is represented in the following figures (Figure 3.4.8 and Figure 3.4.9) 

From this graphs it is possible to see that the WT in time domain presents 

different trends; each trend is referred to the various part of the signal, that 

correspond at different excitation of the structure (see figure 3.7). If the wavelet 

transforms of the signals acquired during the test on Vasco da Gama bridge (free 

vibration) are compared with the other one recorded during the test on Pinhao 
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Bridge (ambient vibration) it is possible to note the difference of the WT in the 

time domain.  

 

Figure 3.4.8 3-D Wavelet Transform of the signal acquired at section 2 (vertical 

direction) 

 

Figure 3.4.9 3-D CWT of the signal acquired at section 2 (vertical direction) 
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In particular, in the first one (Figure 3.3.5 and Figure 3.3.6) in the time domain 

the WT presents only one peak, then the modal damping has an unique value, 

meanwhile in the second one the WT presents many peaks and different trend at 

each peak. It’s possible, for this reason, to obtain several value of the modal 

damping for the same natural frequency. 

The dampings are computed for each peach of the WT and its trend varies with 

the amplitude of the peak, as it shows in Figure 3.4.10 Figure 3.4.11. It is 

noticeable that the value of the modal damping depends on the amplitude of the 

excitation. In this case each modal damping is computed in correspondence of the 

maximum value of the amplitude of the recorded signal. The natural frequencies 

and modal dampings of the system are summarized in table 5 and compared with 

results obtained through the classical PP method and EFDD. The results present 

a good agreement.  

 

 

Figure 3.4.10 Damping versus magnitude at frequency 1.719 Hz transversal mode; 

each point represents the damping associated to a track of the signal considered 
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Figure 3.4.11 Damping versus magnitude at frequency 2.782 Hz vertical mode; each 

point represents the damping associated to a track of the signal considered 

 

Table 5 Natural frequencies trough WT and PP, comparisons 

Mode type  
Frequency 

WT 

Frequency 

PP 

Damping 

WT 

Damping 

EFDD 

Vertical 

Bending 

1st 2.782 2.771 1.56 1.15 

2nd 5.483 5.493 0.39 0.32 

3rd 8.209 8.228 0.14 0.2 

4th 10.623 10.608 0.34 0.33 

5th 12.676 12.671 0.14 0.2 

6th 14.07 13.965 0.2 0.5 

7th 15.593 15.649 0.39 0.33 

Transversal 

Bending 

1st 1.719 1.721 1.03 1.21 

2nd 3.201 3.210 0.93 0.9 

3rd 4.222 4.224 0.53 0.41 

Torsional 1st 5.935 5.957 0.35 0.33 
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When the ambient time responses recorded from several points of the structure 

are available, phase and amplitude relationships between the different degrees of 

freedom of the system can be obtained through the wavelet transform analysis. 

Through eq. (3.11) an absolute value of the mode shape can be found, considering 

the ratio between the magnitude of the CWT of the signal acquired at generic 

section and the magnitude of the CWT of the signal acquired at the section of 

control (section 3). The sign of the point of the mode shape is define trhough the 

comparisons between the phase CWT of the signal at generic section and at 

section 3.  It is in this case, where we have different track with different time 

trend, to compare the phase at the same instant. When the CWT is plotted in 

the frequency domain, the maximum module for each time instant are considered. 

Of course these maximum values can happen in different time, characterized by a 

specific value of phase displacement. To obtain a coherent comparison between 

the phase od the signal acquired in a generic section and that one recorded in the 

section control, it is necessary to check that the same instants are considered. 

The mode shape, obtained by the WT are compared to the mode shape obtained 

by PP method (in blue the mode shapes obtained by PP are shown and in azure 

the mode shapes obtained by WT are represented). 

 
Figure 3.4.12 Mode 1 vertical fv = 2.782 Hz 

Figure 3.4.13 Mode 2 vertical fv = 5.483 Hz 
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Figure 3.4.14 Mode 3 vertical fv = 8.209 Hz 

 
Figure 3.4.15 Mode 4 vertical fv = 10.623 Hz 

 
Figure 3.4.16 Mode 5 vertical fv = 12.676 Hz 

 
Figure 3.4.17 Mode 6 vertical fv = 14.07 Hz 
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Figure 3.4.18 Mode 1 lateral, fv = 1.719 Hz 

Figure 3.4.19 Mode 2 lateral fv = 3.201 Hz 

 
Figure 3.4.20 Mode 3 lateral fv = 4.222 Hz 

 
Figure 3.4.21 Mode 1 torsional fv = 5.957Hz 
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Conclusive remarks 

This chapter shows how the Continuous Wavelet Transform can be used to define 

the modal parameters of a generic system, subject to dynamic test. CWT is 

applied with good results initially to a free vibration test; in this case it is very 

easy to define all modal parameters through only one transform for each signal 

acquired. The same procedure is applied on the signal acquired from an ambient 

test. In this case the natural frequencies of the system are immediately defined 

from the CWT, some difficult are, instead, present in the computation of the 

damping values. It is in this case necessary to consider only a part of the signal 

recorded and then the modal corresponding damping. The same thing is necessary 

to define the sign of the points, which define the mode shape. 

CWT is a good procedure to identify a dynamic system, it is easy to implement, 

computationally efficient and it is the only method, which is able to work in the 

time and frequency domain by only one transform. For this reason it can 

summarize the signal behaviour in both domains, then completely. 

  

 



CHAPTER FOUR 

FILTERING AND SIGNAL 

RECONTRUCTION THROUGH 

DISCRETE WAVELET TRANFORMS 

 

 

 

 

 



Chapter 4 

 

134 

 

4.1. Introduction  

 

The discrete wavelet transform was applied to denoise the signals acquired during 

an ambient test carried out on a very stiff bridge in masonry. The use of the 

some wavelets and translation invariant denoising were found to be very efficient 

for this purpose. An important improvement was obtained, as compared with 

Savitzky-Golay and Fourier, which are the most commonly used techniques for 

denoising in the instrumentation software packages [Savitzky-Golay, 1964]. A 

better removal of the noise and, especially, a better preservation of the shapes of 

very sharp peaks were achieved. Removal of the baseline variations was also 

investigated. Smoothing or filtering techniques, such as mean filtering, 

exponential smoothing, Savitzky-Golay, or Fourier are commonly used in many 

fields, because they are simple and easy to implement. Fourier, for instance, is a 

very efficient technique for the processing of analytical signals in which all real 

features have approximately the same width and shape (the signal is then called 

stationary); however, it is not efficient for the processing of signals containing 

features with varying shapes and widths (unstationary signals, as in the studied 

case) because of the global character of the sine and cosine basis functions. Some 

improvement can be achieved using the windowed Fourier transform, but the 

simultaneous processing of local and global changes in the signal is still not 

possible. To achieve proper denoising, a compromise has to be found between an 

accurate representation of temporally localized changes, such as peaks, and an 

efficient removal of noise, which is spread over the whole signal.  

4.2.  From CWT to DWT 

 

Wavelets are a family of basis functions, well-localized in both the time and 

frequency domains. They have a compact support, which means that they differ 

from zero only in a limited time domain. This property makes the wavelet very 
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appropriate to represent the different features of a signal, especially sharp signals 

and discontinuities.  

The foundations of DWT go back to 1976 when techniques to decompose discrete 

time signals were devised. Similar work was done in speech signal coding which 

was named as sub-band coding. In 1983, a technique similar to sub-band coding 

was developed which was named pyramidal coding. Later many improvements 

were made to these coding schemes which resulted in efficient multi-resolution 

analysis schemes [Hubbard, 1998; Walczak & Massart, 1997; Riuol & Verletti, 

1991; Daubechies et al., 1993].  

In CWT, the signals are analyzed using a set of basis functions which relate to 

each other by simple scaling and translation. In the case of DWT, a time-scale 

representation of the digital signal is obtained using digital filtering techniques. 

The signal to be analyzed is passed through filters with different cutoff 

frequencies at different scales. The WT decomposes the signal into a set of basis 

functions called a wavelet basis. Each member of the basis is obtained by dilation 

and translation of a single prototype, called the mother wavelet, as we already 

said previously. Thus is expressed by the following relation:  

( ) 1 -t b
t

aa

  Ψ = Ψ                                
 (4.1) 

where a is a scaling variable, and b is a translation variable.  

In practical signal processing a discrete version of wavelet transform is often 

employed by discretizing the dilation parameter a and the translation parameter 

b. In general, the procedure becomes much more efficient if dyadic values of a 

and b are used, i.e.,  

2 , 2 ; ,j ja b k j k Z= = ∈                            (4.2) 

where Z is a set of positive integers. Constraints on ( )tΨ , a and b ensure an 

orthogonal decomposition of the signal in order to avoid redundancy and to 
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achieve a perfect reconstruction of the signal; the corresponding discretized 

wavelets ( ){ },j k
Ψ  is  

( ) ( )2

,
2 2
j j

j k
t k

− −Ψ = Ψ −                                (4.3) 

constitute an orthonormal basis for L2(R). Using the orthonormal basis, the 

wavelet expansion of a function f(t) and the coefficients of the wavelet expansion 

are defined as  

 ( ) ( ), ,j k j k
j k

f t d t= Ψ∑∑  (4.4) 

and 

 ( ) ( ), ,j k j k
d f t t dt

+∞

−∞

= Ψ∫  (4.5) 

This is the form of the DWT. The wavelet coefficients 
,j k
d  are considered as a 

time-frequency map of the original generic function of time f(t). In discrete 

wavelet analysis the signal can be represented by its approximations and details. 

The detail at level j is defined as 

 ( ), ,j j k j k
k Z

D tα
∈

= Ψ∑  (4.6) 

And the approximation at level J is defined as 

 
J j

j J

A D
>

=∑  (4.7) 

It becomes obvious that  

 
1J J j

A A D− = +  (4.8) 

and 

 ( ) J j
j J

f t A D
≤

= +∑  (4.9) 

To define the DWT it is necessary to solve eq. (4.5). One of the first widely 

applied parent wavelets was developed by Daubechies. Development of this 

parent wavelet begins with the solution of a dilation equation to determine a 
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scaling function ( )tφ , dependent on certain restrictions. The scaling function is 

used to define the parent wavelet function, ( )tψ . The relation between the 

discrete scaling function and the wavelet function ( )tψ is  

 ( ) ( )
2

ˆ ˆ 2j

j

φ ω ψ ω
∞

=−∞

= ∑  (4.10) 

The discrete scaling function corresponding to DWT is  

 

 ( ) ( )2

,
2 2
j j

j k
t t kφ φ

− −= −  (4.11) 

This is used to discretize the signal; the sample value are defined as the scaling 

coefficients cj,k 

 ( ) ( ), ,j k j k
c f t t dtφ

+∞

−∞

= ∫  (4.12) 

We obtain the wavelet decomposition algorithm  

 

 

( ) ( ) ( )
( ) ( ) ( )

1

1

2

2

j j
l Z

j j
l Z

c k h l c k l

d k g l c k l

+
∈

+
∈

= −

= −

∑
∑

 (4.13) 

where the terms g and h are high-pass and low-pass filters derived from the 

wavelet function ( )tψ  and the scaling function ( )tφ . The coefficients ( )1j
d k+  and 

( )1j
c k+  represent a decomposition of the (j-1)th scaling coefficient into high-

frequency and low-frequency terms. Thus, the algorithm decomposes the original 

signal f(t) into different frequency bands in the time domain 

In particular a DWT algorithm was developed by Mallet, which computes the 

solution of Eq. (4.5) without solving for either ( ){ },j k
Ψ , or directly. The algorithm 

uses a series of high and low pass filters to progressively find the wavelet 

coefficients, , from the highest level to the mean value level. In the first iteration, 

the upper half of the frequency content is filtered from the original signal. The 

high pass signal is used to generate the wavelet coefficients that describe the high 

detail portion of the signal. The low pass filtered data is sent to the next 
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iteration. In the next iteration the upper one half of the remaining frequency 

content of the signal is high pass filtered once again, this time to generate the 

next wavelet coefficients. The iterations continue until all wavelet coefficients are 

determined. This is referred to as Mallet’s tree algorithm or Mallet’s pyramid 

algorithm.  

As it is clear through eq. (4.5) the DWT can be represented in a vector matrix 

form 

 f=w W  (4.14) 

where f is the signal of interest, w is the vector of the wavelet transform 

coefficients, and W is an orthogonal matrix consisting of the wavelet basis 

functions. Each basis vector is characterized by a set of coefficients d0, d1, d2, etc. 

The coefficients are organized in the matrix W into a low pass and a high pass 

filter. The first acts as a smoothing filter, and the latter brings out details of the 

signal. The wavelet coefficients obtained by convolving each basis function with 

the signal reflect a measure of the similarity of the signal with the basis function 

at a certain scale and position in time. The matrix W can be defined by the 

Mallet algorithm. The only restriction in applying this algorithm is that the 

length of the signal must be a power of 2. The full length vector describing the 

noisy signal is passed through the low-pass and the high-pass filters. Outputs are 

split in two into approximation and detail (or wavelet) coefficients. 

Approximation coefficients represent a smooth version of the signal at half 

resolution, and detail coefficients contain details of the signal at that level of 

decomposition. Approximation coefficients are then used as new input of the 

matrix W to obtain a new vector of approximation coefficients and new details of 

the signal. With increasing level of decomposition, less information is contained in 

the approximation coefficients. The information lost between approximation 

coefficients of two successive levels of decomposition is encoded in the detail 

coefficients. Detail coefficients of the first levels of decomposition contain 

information about the high frequency components of the signal, that is, noise, 

spikes, etc. In the last levels of decomposition, they mainly contain the low-
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frequency components of the signal.  

The process can continue until one approximation coefficient remains. At the end, 

the WT contains the mean of the signal and all of the encoded details at the 

different levels of decomposition. Reconstruction of the signal is done by the 

inverse wavelet transform, whose transform matrix is the transpose of the WT 

matrix, WT.  

The Wavelet Series is just a sampled version of CWT and its computation may 

consume significant amount of time and resources, depending on the resolution 

required. The Discrete Wavelet Transform (DWT), which is based on sub-band 

coding is found to yield a fast computation of Wavelet Transform. It is easy to 

implement and reduces the computation time and resources required. 

 

4.3.  Comparisons between CWT and DWT 

 

This section presents results of wavelet analysis for some simulated signals; the 

Daubechies wavelet DB4 was used in both and continuous transforms. The 

Morlet wave cannot be used in this section because it is not able to give good 

results in the case of discrete transforms because it is not orthogonal. The DB4 

has the shape illustrates in the following figure 
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Figure 4.3.1 Trend of the DB4 wave and its decomposition and reconstruction 

 

 The first simulated signal analyzed is expressed by the following relation 

 ( ) ( )( ) 10 sin 2 8 10 sin 2 2y t t tπ π= +  (4.15) 

And it is represented in the Figure 4.3.2 Simulated signal without any decay in 

time domain 
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Figure 4.3.2 Simulated signal without any decay in time domain 

At beginning we considered a signal without decay to investigate on the behavior 

of DWT only in frequency domain, compare with CWT.  In the figure below the 

signal decomposition through the eqs.  previously described is represented. As 

Figure 4.3.3 shows the DWT decomposes the signal in a sum of time function, by 

the same way used through the classical application of FFT. There is an 

important difference: the FFT decomposes the signal in a sum of sinusoidal signal 

or in other words in a sum of stationary time function. Instead the DWT is able 

to define the original signal as a sum of time function that can have different 

amplitudes in the time domain. For this reason the DWT is a powerful 

instrument to define the behavior of a non-stationary signal and it can overcome 

the principal limit of the application of FFT. 
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Figure 4.3.3 DWT decomposition until level 6 

Through this decomposition the matrix W can be computed and the DWT is 

represented in Figure 4.3.4, the DWT is compared with the corresponded CWT. 

The figures show clearly that the DWT introduces an important approximation 

in the representation of the simulated signal. 
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Figure 4.3.4 DWT of the signal, plane view 

 

Figure 4.3.5 CWT of the signal, plane view 

In this figure the CWT is represented in a plane scale-time. To define the 

frequency from the scale, the expression of the mother wave needs to be analysed. 

In general the realtion between scale and frequency is: 

 c
F

f
a t

=
∆

 (4.16) 

Where a is the scale, t∆  the sampling period and Fc is the center frequency of 

the mother wavelet considered. In this case a DB4 is considered, and in this case 

the centered frequency is equal to 0.7143
c
F Hz= . 
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So, note the scale where the magnitude of the CWT or DWT, it is possible to 

define the natural frequencies of the system easily. In the figures below, a 3D plot 

in both the case is represented. 

 

Figure 4.3.6 CWT, 3D representation 

 

Figure 4.3.7 DWT, 3D representation 

It is clear, observing Figure 4.3.6 and Figure 4.3.7, that the DWT introduces a 

very important approximation respect to the corresponding CWT. We want to 

underline that in this case we have used the DB4 wave; it defines with less 

accuracy the modal parameters obtained by the complex Morlet wave. The choice 
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was necessary to obtain a comparison between DWT and CWT. The situation 

becomes less clear when we simulated a signal with frequencies nearer  

 ( ) ( )( ) 25 sin 2 7.8 10 sin 2 10y t t tπ π= +  (4.17) 

Its trend is represented in the figure below 

 

Figure 4.3.8 Trend of simulated signal 

The DWT and CWT, represented in the plane scale-time, are reported below.  

 

Figure 4.3.9 2D representation of the DWT 
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Figure 4.3.10 2D representation of CWT 

It is more evident through the 3D graphs; for the DWT, in correspondence of the 

level three it is difficult to separate the two frequency. In the CWT graph, 

instead, the two frequencies are separated, because it is possible to define a 

variation of the scale with a lower interval, so a better frequency resolution can 

be achieved.  

 

Figure 4.3.11 3D DWT of a simulated signal with proximal natural frequencies 
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Figure 4.3.12 3D CWT of a simulated signal with proximal 

The difference between the two transforms is more evident when we consider a 

signal with a generic decay in the time. The simulated signal has the following 

expression and it is represented in Figure 4.3.13. 

 ( )( ) ( )2 0.05*6 2 0.05*10( ) 25 sin 2 6 13 10 sin 2 10t ty t t e t eπ ππ π π− −= + +  (4.18) 

 

Figure 4.3.13 Simulated non-stationary signal 

In this case the transform is used to define the modal damping, a very difficult 
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graph that remarks the time behavior of the signal in very accurate way. This 

does not happen with the DWT, as it is possible to see in the following figures: 

 

Figure 4.3.14 2D DWT of signal 

 

Figure 4.3.15  2D CWT of signal 
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Figure 4.3.16 3D DWT of signal 

 

Figure 4.3.17  3D CWT of signal 

At least we try to apply the two algorithms to define the DWT and the CWT in 

the case of a real signal, acquired during a dynamic test. 
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Figure 4.3.18 Response of the Vasco da Gama bridge after a release test 

 

Figure 4.3.19 2D DWT, plane representation 
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Figure 4.3.20  2D CWT, plane representation 

 

Figure 4.3.21 3D CWT of a real signal, acquired during an free vibration test 

 

timetimetimetime

sc
a
le

sc
a
le

sc
a
le

sc
a
le

Continuos Wavelet Transform, absolute coefficients

0 100 200 300 400 500 600

20

40

60

80

100



Chapter 4 

 

152 

 

 

Figure 4.3.22 3D DWT of a real signal, acquired during an free vibration test 

The graphs previously described show that the DWT introduce an important 

approximation of the signal analyzed on one hand and it is able to reduce the 

computation time on the other hand. The signals acquired during a dynamic test 

have usually a number of sampled points equal to 2^16. In this case the 

computation time using DWT it is not so different of that one using CWT. The 

difference it is important when a signal acquired during a monitoring of a generic 

structure is analyzed, where the signal length is very long. For this reason we 

decided to not use DWT to define the modal parameters of a generic structure 

when it is subject to a dynamic test, because in this case we want to obtain more 

precise reconstruction of the signal behavior both in time and frequency domain. 

The algorithm is instead used to filter the signal, during an ambient test carried 

out on a very stiff masonry bridge. The following paragraph describes how a 

generic signal can be filtered through DWT. 

4.4.  Filtering signal through DWT 

 

Discrete wavelet transform (DWT) denoising contains three steps: forward 

transformation of the signal to the wavelet domain, as it was explained in the 
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previous section, reduction of the wavelet coefficients, and inverse transformation 

to the native domain. Three aspects that should be considered for DWT 

denoising include selecting the wavelet type, selecting the threshold, and applying 

the threshold to the wavelet coefficients. Although there exists an infinite variety 

of wavelet transformations, orthonormal wavelet transforms are typically used, 

which include Haar, daublets, coiflets, and symmlets. Four threshold selection 

methods have usually considered: universal, minimax, Stein's unbiased estimate of 

risk (SURE), and minimum description length (MDL) criteria [Johnstone, & 

Silverman]. The application of the threshold to the wavelet coefficients includes 

global (hard, soft, garrote, and firm), level-dependent, data-dependent, 

translation invariant (TI), and wavelet package transform (WPT) thresholding 

methods. Many researchers tried to compare the results obtained through 

classical filtering methods with the DWT filtering and the comparisons have 

shown that most DWTs are very powerful methods for denoising and that the 

MDL and the TI methods are practical. The MDL criterion is the only method 

that can select a threshold for wavelet coefficients and select an optimal 

transform type. The TI method is insensitive to the wavelet filter so that for a 

variety of wavelet filters equivalent results were obtained.  

4.4.1. The mother wave 

Experimental measurements usually contain noise that interferes with the 

interpretation of the data. High noise levels may be due to the instrumental 

instability, temperature fluctuation, etc., especially, when the measured signal is 

close to the detection limit. Denoising often is a preprocessing step before other 

analyses. In the last years the DWT is used to denoise experimental data as an 

alternative method to the Fourier transform (FT) and Saitzky-Golay (SG). The 

commonly used wavelets are Haar, daublets, coiflets, and symmlets. Some 

wavelets are shown in Figure 4.4.1 
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Haar                         Daublet 4                Daublet 12                  Coiflet 3  

 

  

Symmlet4                   Symmlet 9  

Figure 4.4.1 Mother wavelet used with DWT 

WT decomposes the original domain data into a series of wavelets that have 

different scales and intensities. Mathematically, the computational procedures for 

these transforms are the same. The signal is multiplied by a transform matrix 

constructed from these filters. The results are permuted so that the detail and the 

smooth parts are separated, which is the first level transform. This procedure is 

repeated recursively on the smooth parts until the last level is reached at log2N 

steps. The wavelet computation is implemented by a sequence of special finite-

length filtering steps. The Haar transform is a special case of Daubechies 2. 

Coiflets usually consist of five filters, hence referred to as coiflet 1 to coiflet 5 

with corresponding filter lengths that are multiples of six coefficients. Thus the 

coiflet 1 has six coefficients and coiflet 5 has 30 coefficients. The symmlet family 

has seven members that range from symmlet 4 to symmlet 10 with filter lengths 

that are multiples of two. In general the choice of the mother wavelet depends on 

the analyzed signal; in the following section this problem is studied in the case of 

a simulated signal. 
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4.4.2. The thresholding of signal 

 

There are four common threshold selection methods: universal, minimax, Stein's 

unbiased estimate of risk (SURE), and minimum description length (MDL). The 

universal threshold is defined by  

 ( )2 lnt Nσ=  (4.19) 

Where N is the length of the data array and σ is the standard deviation of noise. 

For most real data, σ  is unknown, but can be estimated as s. The first detail 

part of the wavelet coefficients Xi can be used to estimate the noise by  

 
( )

0.6745

i
median x

s ≈  (4.20) 

The minimax criterion gives a table of the threshold values for given data sizes 

that is based on calculations of the minimax risk bound for the wavelet estimate. 

Minimax thresholds were first introduced for soft thresholding (see below for the 

thresholding methods). These threshold values are smaller in magnitude than the 

universal threshold values. Recently, minimax thresholds for hard, firm, and non-

negative garrote thresholding have been derived. Minimax thresholds optimize the 

risks for the worst cases, and therefore they are relatively conservative. This 

method estimates the noise level in the data using eq (4.20) and is biased toward 

retaining signal at the cost of retaining noise.  

SURE is used to obtain an unbiased estimate of the variance between the filtered 

and unfiltered data [Donoho, 1993]. SURE is defined as  

 ( ) ( ) ( )
2

:
1

, 2
i

N

ii d t
i

SURE t d N M d t
≤

=

= − + ∧∑  (4.21) 

for which t is the candidate threshold, di is the wavelet coefficient, N is the data 

size, and M is the number of the data points less than t.. The t that yields the 

minimum SURE value is selected as the threshold value. The last term in the 

SURE function determines the residual energy after thresholding (
i
d t∧  is the 
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minimum value between 
i
d  and t). This criterion was originally developed for 

leveldependent soft thresholding. The SURE criterion can be applied to other 

thresholding methods. A modification of SURE threshold for global thresholding, 

called SPINSURE, was proposed by combining the SURE and cycle-spinning 

technique (see below).  

The MDL criterion is defined by [Saito. 1994]  

 ( ) ( )( )* * 2 23
, min log log

2 2 m mk

N
MDL k m k N d d

  = + −   
∑  (4.22) 

for which k is the number of largest coefficients that are retained, m designates 

the filter type,dm for wavelet coefficients from transform type m, dmk for the k 

largest coefficients in amplitude, and k* and m* are the optimized values. The 

corresponding wavelet coefficient at k* is assigned as the threshold. The 3/2k log 

(N) term is a penalty function, which is proportional to the number of retained 

wavelet coefficients. The second log term characterizes the residual energy, which 

is the error between the reconstructed signal and the original noisy signal. Note 

this unique method not only picks a threshold but also a filter type. Neither the 

SURE nor the MDL criteria require an estimate of the noise level s.  

Thresholding methods refer to the ways of applying a threshold to the wavelet 

coefficients, i.e., how to modify the wavelet coefficients. Traditional thresholding 

methods all transformed coefficients whose magnitudes are below the threshold. 

There are other means to modify the coefficients. Because DWTs are multilevel 

transforms and the transformed coefficients come from different levels as shown in 

Figure 4.5.5, different thresholds may be applied to each different level. In DWT-

based denoising family, cycle-spining and wavelet packet transform are two 

special cases. Noise is assumed to have a Gaussian distribution due to the central 

limit theorem. Global thresholding assumes that Gaussian noise has the same 

frequency distribution and amplitude for all orthogonal bases that span the same 

data space. There are several ways to apply these thresholds to the wavelet 

coefficients: hard, soft, non-negative garrote, and firm [Gao, 1997]. They are 

defined as:  
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Hard 

 *
0

i

i

i i

if d t
d

d if d t

 <=  >
 (4.23) 

 

 

Soft 

 ( )( )
*

0
i

i

i i i

if d t
d

sign d d t if d t

 <=  − >
 (4.24) 

Garrote 
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0
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i
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i

if d t

d t
d if d t

d

 <=  − >

 (4.25) 

Firm 

 ( ) ( ) ( )
1

*

2 1 2 1 1 2

2

0
i

i i i i

i i

if d t

d sign d t d t t t if t d t

d if d t

 <= − − < < >

 (4.26) 

 

for which 
i
d  and *

i
d  stand for the wavelet coefficients before and after 

thresholding, respectively.  

For the first three methods, the wavelet coefficients are partitioned into two parts 

by the threshold t. Hard thresholding is a classic way to remove noise and is the 

only thresholding method whose function is discontinuous (i.e., removes 

coefficients with low magnitude). Soft thresholding shrinks all large coefficients by 

the value of the threshold as well as removes all small coefficients. Soft 

thresholding is analogous to apodization in the Fourier transform methods. Hard 

thresholding introduces discontinuities into the denoised data but has smaller 

RMS errors than soft thresholding. Soft thresholding tends to generate denoised 
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data that is continuous at the expense of larger RMS errors. Soft thresholding 

tends to over-smooth abrupt changes and broaden sharp peaks and may give a 

visually better estimator. Non-negative garrote thresholding shrinks the large 

coefficients by a nonlinear continuous function and removes small coefficients. 

Firm thresholding has two thresholds; the wavelet coefficients are partitioned into 

three treatments: (l) retain the large coefficients, (2) remove the small 

coefficients, and (3) linearly shrink the middle coefficients. Both garrote and firm 

thresholding methods attempt to moderate the limitations of the hard and soft 

thresholding methods.  

Level-dependent thresholding uses different thresholds for each transform level. 

SURE is usually applied to select thresholds for the coefficients in different levels. 

Universal soft threshold can also be applied if different levels have different noise 

values, as calculated by eq 2. SURE does not work well when the wavelet 

representations are sparse (i.e., contain mostly zero values). SURE has been 

combined with the universal method to yield a hybrid method that circumvents 

this problem. The hybrid method uses a sample variance at each level to 

determine if the representation at that level is sparse. If the level is not sparse, 

the SURE threshold is used, otherwise a universal threshold is used.  

Data-dependent threshold (DDT) is determined by a statistical test within each 

level. The change-point (CP) approach is a datadependent level-by-level recursive 

scheme, based on the standard likelihood ratio test. First, all coefficients in a 

level are assumed to represent noise. Then a test statistic is computed and 

compared with the critical value. If the test is significant, the largest absolute 

value is considered non-noise and is removed from the noise coefficients. Using 

the retaining coefficients, the procedure continually repeats until the test is 

insignificant. After determining the threshold, which is the maximum of the 

coefficients tested to be noise, a soft thresholding is performed. Therefore, this 

method tries to extract a subset of coefficients that behave like pure noise. By 

adjusting the level a of the hypothesis tests, one can control the smoothness of 

the resulting estimator. Common thresholding methods use the magnitudes of the 
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wavelet coefficients only. Because a sharp peak in the signal results in several 

nonzero wavelet coefficients that are adjacent to each other, it is possible to use 

CP approaches to take advantage of this positional information.  

Cycle-Spin Thresholding. DWT is similar to FT denoising in that denoising may 

introduce artifacts to the regenerated data, especially around some discontinuities 

such as sharp peaks or abrupt changes in the data. The cyclespin thresholding 

denoising method is intended to reduce the artifacts. The data are first cycle-spun 

(i.e., translated) by h points, transformed and thresholded, transformed back, and 

spun back by h points to their original position. Spinning refers to translating the 

data with the points shifted past the zero index added onto the other side of the 

data object (i.e., rotated). The reason for this transformation is that the artifacts 

caused by DWT are connected intimately with the actual location of the 

discontinuity in the data. A given signal can be realigned to minimize artifacts, 

but there is no guarantee that this will always be the case. For example, when a 

signal contains several discontinuities, they may interfere with each other: the 

best shift for one discontinuity may also be the worst shift for another 

discontinuity. Therefore, the idea of averaging all shifts, which is called 

translation invariant (TI) denoising, usually can give a much better result than 

ordinary cycle-spin denoising. Moreover, there is no guarantee that the TI 

averaging result is better  

There are several approaches for defining a threshold criterion. A global threshold 

may be applied to all the wavelet coefficients. A threshold may be defined for 

each level of the wavelet transform. A data-dependent threshold criterion can also 

be used, which is a special case of the level-dependent threshold. There are many 

other threshold criteria and methods that may be applied to wavelet denoising. 

than the results of best shift and the uncycled methods. The cycle-spin approach 

provides a natural way to generate multiple estimators for the same object. 

However, it is more computationally intensive compared to ordinary DWT de-

noismg.  
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Wavelet Packet Transform. Wavelet packet transform (WPT) is another 

powerful denoising tool. WPT is a generalized form of DWT, in which both 

smooth and detail parts are subject to further transforms. A full transformed 

matrix containing J (= log N) transform levels is used to search for a best basis. 

The best basis can be chosen using different criteria. Shannon entropy is a very 

common one, which is defined as  

 ( )log
i i

S p p=−∑  (4.27) 

for which 
2 2

i j
p d d= , and P log P = 0 for P = 0. By comparing the possible 

combinations of all the wavelet coefficients at the different levels, a best basis can 

be obtained that is the combination of coefficients x with minimum entropy. The 

other criteria include (A) minimum log
j
d∑ , (B) minimum number larger than 

t, and (C) minimum SURE.  

Practically, all of these DWT methods leave intact the last two or three levels, 

i.e., the four or eight points in wavelet domain spectrum, because they represent 

the most important information. In the last years many researchers studied this 

kind of filtering; they compared the results obtained with the classical threshold 

methods described previously with that one obtained by the WTP. This method 

is very powerful and very good results are obtained, but the limit of WPT is that 

the results depend strongly on the filter selected or in other word the mother 

wave. In the next paragraph we show this limit using a simulated sinusoidal 

signal with an additional Gaussian white noise. 
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4.4.3. WPT and the mother wavelet 

The choice of the mother wavelet depends on the signal that is analyzed. To 

understand which is the best wavelet it is possible to define reconstruction square 

error RSE, calculated starting from the denoised signal, Ds and the ideal, x(t) 

 ( ) ( )( )
2

1

N

s
t

RSE D t x t N
=

= −∑  (4.28) 

In practice this kind of estimation is easy when the ideal signal is know. To 

understand it we start from a simulated sinusoidal signal with an additional 

Gaussian white noise as it is represented below. In this case we try to filter the 

signal through the DB4, used previously, the Coif3 and Sym5.  

At the beginning the signal is filtered through DB4, already represented in Figure 

4.3.1, the threshold is SURE, soft and level independent. This kind of filtering 

does not modify the characteristic of the sinusoidal signal, as it is evident in the 

figure of the residuals. In this graph it is clear that only the noise is eliminated 

from the original signal.  
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Figure 4.4.2 Signal denoising through WPT 
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Figure 4.4.3 Simulated sinusoidal signal with an additional Gaussian noise 

In this case it is possible to define how much the denoise signal Ds is near to the 

ideal x(t), computing the RSE, defined in equation (4.28). 

 

Figure 4.4.4 Comparison of the original signal (black) and reconstructed signal 

through DWT (grey) 

The same procedure is applied choosing DMEY, COIF3 and SYM5, the RMS 

error are summarize in the table below: 
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Table 1 Values of RSM for different mother wavelet 

Mother Wavelet RSM 

DB4 0,8043 

DMEY 0,8749 

COIF3 0,8294 

SYM5 0,8368 

 

The table shows on one hand that good results are obtained for each mother 

wavelet, one the other hand it demonstrates that even in a ideal case there are 

some difference depending on the mother selected.  

The problem is that in the real case the ideal signal is unknown and the 

computation of RSE is not possible. In this case it is necessary define a process of 

optimization, defining a cost function able to define the best mother wavelet. In 

this section we do not want to study this problem, and we decide to look at the 

plot of the residuals, it can be a good indicator of the denoising obtained. It is 

necessary that the residuals plot does not contain any contents frequency of the 

signal analyzed. 

4.5. Application in a real case: the ambient vibration test on the 

Sao Lazaro Bridge 

 

In order to check the modal parameters extracted by a finite element model on 

the Sao Lazaro bridge, a free vibration test and an ambient vibration test were 

carried out in 2009. The structure is an asymmetric arch stone bridge, 

rehabilitated some years ago. Its span is almost 23 meters.  
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Figure 4.5.1 General view of the bridge 

An ambient vibration test is based on the measurement of time histories of the 

response at different points of the structure. Due to the stiffness of the structure 

and the low level of excitation, accelerometers are normally used, whose required 

sensitivity is very high, considering the typical low levels of vibration. 

The signals are acquired by four tri-axial 18-bit strong motion recorder. These 

devices, based on very sensitive internal force balance accelerometers (linear 

behaviour from DC to 100 Hz), analogue to digital converters with 18 bit (to 

guarantee a good resolution), batteries that enable autonomy for one day of tests, 

memories materialized by removable Compact Flash cards that permit a fast 

download of the acquired data and external GPS sensors to deliver a very 

accurate time, so that they can work independently and synchronously. With this 

equipment, the use of cables is avoided and the labour associated with the 

preparation of the dynamic test is drastically minimized. In order to obtain a 

good characterization of the mode shapes, on the total span the accelerations at 

10 sections were measured (Figure 4.5.2). As torsion modes were expected, at 

each section two points were instrumented. 
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Figure 4.5.2 Location of sensors during the signal acquisition 

In the developed test setups one recorder served as references, permanently 

located at section 5 on both sides of the deck. For each setup, time series of 8 

minutes were collected with a sampling frequency of 100 Hz, value that is 

imposed by the filters of the acquisition equipment. The bridge is very stiff and 

due to the signal acquired was noisy and it was very difficult to define the natural 

frequencies of the system. An example of the signal acquired is represented in the 

figure below. The signal was acquired at point 9, very close to the end of the 

bridge; in this case a high level of noise is expected.  

 

Figure 4.5.3 signal acquired during the ambient vibration test at point 1 
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Figure 4.5.4 Its 3-D Wavelet Transform 

As the previous figures show, it is very difficult to define the modal parameters of 

the structure, due to the presence of a lot of noise, combined to a low level of 

amplitude of the signal acquired. A denoising is in this case necessary, and it is 

obtained through the application of the DWT. In particular the mother DWT 

used was DB4, the threshold SURE-soft. 
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Figure 4.5.5 Signal denoising through WT, SURE threshoulding 

In this case looking at the plot of residuals the procedures eliminate only the 

noise component, the frequency contents are not modified.  

  

Figure 4.5.6 Signal after deinoising process and its 2 D CWT 
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Figure 4.5.7 3D CWT of the signal with noise 

 

Figure 4.5.8 3D CWT of the signal after WT filtering 

Using the decomposition of the signal obtained through the DWT, another kind 

of filtering can be applied. Performing an FFT of each signal decomposition, the 

frequency content can be defined, then a threshold level dependent can be applied 

to filter the signal, as Figure 4.5.9 shows 
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Figure 4.5.9 Signal denoising through WT, level dependent thresholding 

 

Figure 4.5.10 Signal after denoising through WT reconstruction 
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Figure 4.5.11 3D CWT after denoising 

As the figures show, almost the same results are obtained. This king of filtering is 

used to filter each signal acquired during the ambient test. The figures below 

describe the filtering process for the longitudinal component of signal acquired at 

point 6. 

 

Figure 4.5.12 Time trend of the longitudinal component of the signal acquired at 

section 6 
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Figure 4.5.13 CWT pre-denoising 

 

 

Figure 4.5.14 CWT after denoising process 

Finally we would like to underline that the noise is not so important in the 

transversal component of the signal acquired, as you can see through the 

following CWT 
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Figure 4.5.15 CWT of the transversal component without filtering 

Then, the signal acquired in x-direction are filtered by the method previously 

described, that one acquired in y-direction does not need to be filtered. The 

natural frequencies are extracted computing for each signal the CWT: in the 

following table, the results are summarized. 

Table 2 Natural frequencies and type mode of the structure 

MODO Frequency Type of mode 

1 7.83 Hz Transversal 

2 10.632 Transversal + longitudinal  

3 12.588 Transversal + longitudinal  

4 14.394 Transversal 

5 15.752 Torsional 

 

On the same bridge another dynamic test was performed; in particular the signal 

was acquired after some jumps of 4 people in the middle of the structure (first 

part of the signal) and after their running (second part of signal). In this case all 
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the sensors were positioned at point 5. An example of the signal acquired is 

represented in figure below 

 

Figure 4.5.16 Example of the signal acquired during the free vibration test 

                                                                                              

 

Figure 4.5.17 CWT of the transversal component, without any filtering 

In this case the noise is not predominant, as the CWT of the transversal 

component of the signal shows. From the CWT the natural frequencies of the 
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system are extracted, an example of the spectrum is described in the following 

figures in x, y and z direction for the signal acquire from sensor 4 at section 5.     

 

 

Figure 4.5.18: Spectrum of x-component, extracted from the relative CWT 

 

Figure 4.5.19 Spectrum of y-component, extracted from the relative CWT 
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Figure 4.5.20 Spectrum of z-component, extracted from the relative CWT 

The signal does not need of filtering (only detrend) and the results are 

summarized in the following table and they are compared with the frequencies 

obtained by ambient test. 

 

Table 3 Natural frequencies of system from the free vibration test and the ambient 

test 

MODO 

Frequency 

Ambient Test 

Type of mode 

Frequency 

Free test 

Type of mode 

1 7.83 Hz Transversal 7.84 Hz Transversal 

2 10.632 Hz 
Transversal + 

longitudinal 
10.471 Hz 

Transversal + 

longitudinal 

3 12.588 Hz 
Transversal + 

longitudinal 
12.809 Hz Longitudinal 

4 14.394 Hz Transversal 14.465 Hz 
Transversal + 

longitudinal 

5 15.752 Hz 
Longitudinal 

and vertical 
15.372 Hz 

Longitudinal and 

vertical 
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The table shows that similar results are obtained from the ambient and free 

vibration test. Of course due to the stiffness of the structure also the free 

vibration test was not able to excite strongly the bridge. In this kind of structure 

a better test can be a forced dynamic test. An ambient test can be used also, but 

the signal needs of an important post processing. Instead a forced test excites the 

structure and the noise it is not fundamental in the signal acquired. Some 

uncertainties can be overcame, besides the input is known and it is possible to 

define the quality of the signal acquired through its comparison with the recorded 

output, as it was described in chapter two.  
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CHAPTER FIVE 

 

The Humber Bridge: experimental and 

numerical survey  
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5.1. Introduction 

The Strornsund Bridge, in Sweden was considered the first cable-stayed bridge of 

the modern era. In effect, a systematic structural analysis was, for the first time, 

performed in connection with the bridge construction, which permitted a 

permanent control of the cable forces, assuring the efficiency of all cables in the 

final structure (Caetano, 2000; Gimsing, 1983).  

In the short period of about 45 years, the design and construction of cable-stayed 

bridges showed a very deep evolution. In effect, the technological progress of the 

last decades, conjugated with the development of numerical methods of analysis, 

have permitted both to take advantage of improved material properties and to 

analyse more complex highly indeterminate structures. For technical, economical 

and also aesthetic reasons, cable-stayed bridges, that became very popular in 

Germany in the post-war reconstruction, have gained an increasing importance, 

establishing themselves as a new category amongst classical structural systems, 

and their use quickly spread all over the world, in a multitude of innovative 

solutions.  

With the completion of the Normandy Bridge in France, in 1994, a multiple 

suspension bridge with a total length of 2141m and a record main span of 856m, 

it was even possible to prove that cable-stayed bridges, whose range of 

applications had been traditionally considered the 150m to 500m spans, can also 

be successfully applied, and with economic advantage, in the domain of the very 

long spans. The Tatara Bridge, which was completed in Japan in 1999, and has a 

main span of 890m, enhanced this aspect. In fact, since no element in the bridge 

has reached a feasibility threshold yet, and since the ratio cost/span has not 

shown a steep increase with the increase of span, it is still possible to expect an 

increase in the span range (Taylor, 1991). The former proposals for cable-stayed 

bridges with main span larger than 1000m are indeed older than 20 years.  

Leonhardt and Zellner (1980) mentioned the limit of 100m and 500m for highway 
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traffic and for railroad, respectively, in prestressed concrete cable-stayed bridges. 

As for steel cable-stayed bridges, they referred two proposals presented for the 

Messina Straits Crossing, with main spans of about 1300m and 1500m (6 lanes 

highway and 2 tracks railroad) which, according to the designers, presented no 

structural difficulties and even were superior to a classical suspension bridge, not 

only in terms of the required amount of steel, but also with respect to 

deformations and dynamic behavior.  

Still worth of reference is the proposal dated from 1989 for a 1204m main span 

cablestayed bridge, presented in the bid for the construction of the East Bridge, 

across the Great Belt. At that time, the largest existent cable-stayed bridge was 

the Annacis Bridge, in Canada, a composite bridge with 465m main span. The 

cable-stayed bridge option was considered too risky for construction, and a 

suspension bridge with a main span of 1624m was chosen instead (Gimsing, 

1991).  

The most significant restriction to an increase of the span length of a cable-stayed 

bridge is associated with the development of high compression forces introduced 

in the deck by the stay cables. According to Mathivat (1994), this fact limits the 

main span length to about 1500m. Above this length, it is normally assumed that 

the classical suspension type, with cables anchored to the ground, is the best 

solution.  

But even in those large spans can the inclined stay cable suspension play an 

important role. In effect, the addition of inclined stay cables into a suspension 

bridge in the vicinity of the pylons provides a higher global stiffness for the 

bridge and, consequently, a better wind stability, and allows for a better control 

of static deformations, particularly important in the case of railroad bridges. This 

hybrid system was used in an empirical form by Roebling , in the railroad bridge 

across the Niagara River (1855), in the Ohio Bridge (1867) and in the Brooklyn 

Bridge (1883). And it was several times proposed for the construction of recent 

bridges, as is the case of a 1500m bridge across the Great Belt, presented in 1977 
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in an international bid. But no modern applications are known.  

Another hybrid approach, presented by Lin and Chow (1991), consists in a 

double cantilever suspension system, where the main cable is suspended from the 

tips of inclined struts, which are themselves back stayed to the pylons. This 

structural system was one of the considered feasible schemes for a 5km main span 

bridge to integrate a 14km Crossing at the Gibraltar Strait. A more recent 

proposal by Menn (1998) employs the same concept of conjugating the inclined 

stayed system with classical suspension cables, achieving simultaneously the 

purposes of increasing the lateral stiffness of the bridge, and minimizing the 

construction time.  

Most of the studies already performed for very long spans are based on the use of 

conventional materials, steel and concrete, whose properties were significantly 

improved during the last decades. But also during the last years investigation on 

the application of new high-strength lightweight materials has progressed a lot. 

Several small span girder bridges have already been constructed using the so-

called Advanced Composite Materials (ACM), in the form of carbon fibers and 

plastics . These materials have an enormous potential for long span cable-stayed 

bridges applications, since the self-weight of the deck can represent a high 

percentage of the bearing capacity in a very long span.  

The design of long span bridges is governed by their dynamic behaviour to wind 

and, for certain locations, to earthquake excitations. In spite of the tremendous 

progress achieved during the last decades in the areas of Dynamic Modelling, 

Seismic Analysis, Wind Stability, Structural Monitoring and Control of 

Vibrations, the vulnerability of these extremely complex systems to several types 

of dynamic actions has not been completely assessed yet.  

The large flexibility of cable-stayed bridges, which is naturally augmented with 

the large span lengths achieved in recent years, is responsible for an accentuated 

geometric nonlinear behaviour, in addition to the nonlinearity associated with the 
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cable sag, and with other nonlinearities related with the properties of the 

materials. These characteristics, combined with the various and complex types of 

actuating loads, are responsible for very demanding requirements of analysis and 

explain why only recently, during the last two decades, dynamic analysis has 

been incorporated on a regular basis in the design of cable-stayed bridges.  

The third and last level of approach in the numerical modelling of a cable-stayed 

bridge consists in the use of the finite element method. One of the former 

applications to cable-stayed bridge response analysis is due to Kajita & Cheung 

(1973), who discretized the bridge deck into a number of small shell elements 

supported at the cable anchorages by equivalent springs, and performed a three-

dimensional linear dynamic analysis, arriving at a set of torsional and bending 

vibration modes. More recent applications involve both linear and nonlinear static 

and dynamic analyses, using a variety of finite elements, and different possibilities 

for modelling joints and particular devices, such as cable dampers (Kanok-

Nukulchai, 1992; 1993).  

The progress in computer technology made the finite element method one of the 

most powerful tools for structural analysis, not only by offering a wide range of 

possibilities in terms of selection of finite element types and formulations, but 

also, by the possibility of running very large applications in PCs and 

workstations. In effect, most design companies have presently access to very 

sophisticated finite element software packages, allowing the performance of large 

displacement nonlinear material and geometric static and dynamic analyses, by 

idealization of the bridge as an association of several types of finite elements, like 

beam, shell and truss elements. The assessment of cable tensions and the control 

of displacements throughout the construction phase is also possible, by simple 

activation/de-activation of specific groups of finite elements in successive stages 

of the analysis. Moreover, the comparison between natural frequencies and modal 

shapes evaluated on the basis of these algorithms, and the corresponding 

measured values on the prototype, has proven that extremely good correlations 

can be obtained, what evidences the enormous sophistication that can be 
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achieved in structural analysis.  

An interesting aspect to emphasize is that, despite the various alternatives offered 

for the modelling of the stay cables, the most common numerical idealizations of 

cable-stayed bridges don't include an appropriate mass distribution for the stay 

cables, i.e., the dynamic behaviour of the stay cables is not included in the global 

dynamic analysis of the bridge, the problem of cable vibration being treated 

separately. The dynamic interaction between the cables and the structure, here 

designated as cable-structure interaction, has been investigated by several 

researchers, such as Kovacs (1982), Maeda et al. (1983), Causevic and Sreckovic 

(1987), Abdel-Ghaffar and Khalifa (1991), Fujino (1993) and Tuladhar et al. 

(1995). Although different approaches have been followed, most authors stressed 

the importance of the performance of a global dynamic analysis, where the stay 

cables' dynamics is included in the global numerical model of the bridge. For this 

purpose, the distributed mass of the stay cables is required to be conveniently 

modelled, either by employing specific cable elements, like the two-node curved 

element (Gambhir & Batchelor, 1977), the elastic catenary element (Jayaraman 

& Knudson, 1981), or the four-node isoparametric truss element (Ali, 1991), or by 

discretizing the stays into series of truss elements.  

In this chapter a numerical model of a suspended bridge is proposed. In particular 

the Humber Bridge was subjected to an ambient test, carried out by the 

laboratory ViBest of the University of Porto. The model tries to update the 

natural frequencies of the bridge, obtained through the processing of data 

acquired during the test.  

More of all, the FEM model is able to find some local modes, which cannot be 

indentified during the dynamic test. 

5.2. The Humber Bridge Prototype 

The Humber Bridge, with a main span of 1410 m, had the longest bridge span in 
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the world, 112 m more than the previous longest, Verrazano Narrows Bridge in 

New York. In particular it held the world record as the longest single span 

suspension bridge for 17 years. Now the Bridge is the fifth-largest single-span 

suspension bridge in the world. A long-span bridge was necessary because the 

Humber estuary has a mobile bed and 1410 m covers the likely movements of the 

navigation channel; piers supporting short spans would have interfered with the 

natural regime of the river.  

 

Figure 5.2.1 General view 

The north tower is sited just above the high water line and the south tower is in 

the estuary about 500 m from the shore line. Because of topological and 

geological conditions there is a marked inequality in the lengths of the two side 

spans: that on the north side is 280 m long and that on the south side 830 m. 

However the bridge is so long that the asymmetry is not readily apparent.  

The bridge has been built to aid industrial and social development along both 
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banks of the estuary. The structure carries dual two-lane roadways (which gives 

it a practicable capacity of about 40000 vehicles a day) with a combined footpath 

and cycle track along each side of the bridge. The underside of the road deck is a 

minimum 30 m above high water to give clearance for shipping using the river.  

Design of the Humber Bridge and all the associated works was undertaken by 

Freeman Fox & Partners who had been retained as consulting engineers for the 

project since 1928, and had proposed designs in 1930, 1935, 1955 and 1966.  

The bridge has been designed to carry the highway loading intensity specified in 

British Standard 5400 which deals with steel, concrete and composite bridges. 

The load intensity varies with the length of load considered with a minimum lane 

load of 8.7 kNm-1; for short loaded lengths, the load intensity increases to 32.1 kN 

m – 1. In addition the bridge has been designed to carry a special vehicle with an 

all-up weight of 176 kN (180 tons). Consideration has been given to many 

patterns and combinations of loading, e.g. alternate spans being fully loaded with 

traffic on one side and empty on the other, so that the most onerous 

combinations of loading are catered for throughout the different elements (deck, 

suspenders, cables, towers, anchorages) of the bridge.  

Wind loading and its effects are of major importance for a bridge of this size of 

span and the design caters for wind speeds of approximately 47 m/s on the deck 

structure and, for the towers, a speed that increases with height to 66 m/s at the 

top. Of even greater significance than the highest wind loadings are-pace Tacoma 

Narrows Bridge oscillations due to dynamic instability. The deck girder for 

Humber has a streamlined cross section of the type previously used successfully 

by the designers, Freeman Fox & Partners, for the Severn Bridge (main span 988 

rn, completed in 1966) and the Bosporus Bridge (1074 m, 1973). Wind tunnel 

tests were carried out at the National Maritime Institute at Teddington on 

models of the proposed Humber deck to establish its aerodynamic stability and to 

determine lift and drag coefficients. Similarly, tests were also made on a model of 

a tower to determine drag coefficients for various angles of wind incidence and 
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the possibility of tower oscillation during erection (i.e. when the tower is free 

standing without any restraining effect by the cables of the completed structure).  

The forces involved in a structure are very large. For example, the deck structure, 

before the application of live load, weighs some 21000 t and the maximum pull in 

each main cable is 194000 t. From these and other primary loads and the 

geometry of the structure stresses can be calculated for any point in the 

structure. However, an additional complication of any suspension bridge is that it 

does not respond linearly to applied loads. Furthermore, good judgment is 

required to assess what loads will, or will not, occur simultaneously - for example 

it is improbable that maximum traffic loads will be experienced at the same time 

as very high wind speeds - and the worst likely combination has to be catered for.  

Fluctuating stresses  

Bridges were at that time designed to have a normal life of 120 years and 

appropriate regard has to be paid to components subjected to fluctuating stresses 

so that proper allowance is made for fatigue. It is in matters such as this that 

sound engineering experience and appreciation of structural and materials 

behaviour are of great value in tempering the results of stress investigations.  

Long-span bridges are very flexible structures subject to very large movements 

arising both from strain due to external load and from temperature effects. To 

accommodate these movements between - 20C and + 60 T the three spans at 

Humber are supported at each end by A-frame rockers (two-legged hinged struts) 

mounted on the bottom cross-beam of the towers and on the anchorage blocks 

that permit longitudinal movement and small changes in gradient of the deck but 

constrain lateral movement. At the towers continuity of road surface above the 

rockers is provided by a joint of the “rolling leaf” type which works after the 

fashion of a roll-top desk. At the Barton Tower the joint can cope with a 

movement of 2.8 m, partly due to temperature but mainly due to longitudinal 

movement of the cables under uneven traffic loading. At the anchorages road 
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continuity is provided by rubber joints.  

Main towers and deck 

The main towers of the Humber Bridge are of reinforced concrete, a complete 

break from tradition at that time. Previously, all the major suspension bridges 

(spans over 700 m) had been built with steel towers. The towers, however, are 

essentially compression members and concrete is an inherently good material in 

compression. The towers are slightly tapered and hollow and one leg in each 

tower contains a service lift for maintenance purposes. 

 

 

Figure 5.2.2 The main tower of the bridge 

The concrete is heavily reinforced. At the Forth Bridge the steel towers oscillated 

in the wind when free standing (i.e. before the cables and deck were in position) 

and on subsequent bridges with steel towers measures were taken to prevent this. 

At Humber, although provision was made to damp down any oscillation, no such 

movement was experienced. Prior to erection of the cables, the tops of the towers 
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had to be pulled backwards by some 900 mm to ensure that they would be 

vertical when the deck structure was in place.  

The stiffening girder at Humber is a streamlined hollow box. The upper flange of 

which is covered with mastic asphalt and provides the roadway surface. This 

shape is preferred because it greatly reduces the wind forces on the structure, at 

the same time enabling the required strength and stability to be achieved with 

less steel than with a truss girder. The box section also bestows a number of 

other advantages. The smaller weight of the deck (0.032 m) reduces the forces in 

(and therefore the size of) the cables and, consequently, the size of the 

anchorages. The towers benefit in a twofold manner, since both the dead load and 

the wind load from the suspended structure are reduced.  

 

Figure 5.2.3 View of the inside of the deck. 
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Figure 5.2.4 The box-girder shape of the deck of Humber Bridge 

The box section is shallower than the corresponding truss which improves the 

appearance of the structure. It is also vastly easier to paint the large flat surfaces 

of the boxes than the many components of a truss, with its large number of joints 

to clean and protect. In other words the box dramatically reduces points where 

corrosion is likely to start. 
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Figure 5.2.5 Typical section of the box-girder 

On Humber, as at Severn and Bosporus, any incipient oscillation of the deck due 

to aerodynamics excitation is further checked by the 'triangulated' suspension 

system. Although the inclined hangers or suspenders apply some constraint on 

longitudinal movement of the deck, the resulting strain energy generated in each 

suspender by any movement is dissipated by the hysteresis characteristics of the 

spirally wound wire ropes to dampen out oscillation.  

Foundations and anchorages  

The design and construction of the foundations of the Humber Towers and of the 
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anchorages were dictated by the geology of the site which differs greatly between 

the north and south side of the estuary. On the north side a deep bed of chalk 

comes to the surface and resolving foundation problems there was relatively 

straightforward. On the south side, however, the chalk has been eroded by glacial 

action; leaving a 30 m deep bed of boulder clay, gravel saturated alluvium 

overlying a thick bed of over-consolidated Kimmeridge clay. The foundations for 

both the tower and anchorage had to be taken down into the clay but laboratory 

tests had shown that the clay, when in contact with water, turned into a slurry, 

It was therefore necessary to design and construct the foundations so that the 

clay was exposed for only a short period, with only relatively small areas 

excavated at anyone time.  

For the foundation of the south tower the contractor first built an artificial sand 

island inside a steel cofferdam: severe scouring of the river bed followed and 

12000 t of chalk had to be dumped in the river to provide protection. Two 

circular concrete caissons, each 24 m in diameter, were sunk through the sand 

island and into the river bed by excavating the ground below them, but the rate 

of sinking was much slower than expected. Further delay was experienced when 

the west caisson struck a pocket of underground water and the resulting inflow of 

water flushed away the lubricating skin of Bentonite on the outside of the 

caissons, greatly increasing the friction and thus the load required to sink them. 

Attempts to restore the Bentonite were unsuccessful and 3000 t of temporary 

steel ingots -'kentledge'- and 4000 t of permanent concrete had to be added to 

each caisson before they could be sunk sufficiently (8 m) into the Kimmeridge 

clay. The bottom of the caissons were 'plugged' with a concrete slab and the tops 

capped and bridged to form the concrete pier that provides the base for the 

tower.  
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Figure 5.2.6 Barton anchorage nearing completion.  

The south anchorage consists of a large concrete structure. 20 m high, 65 m long 

and 36 m wide, built above a massive cellular box founded in the Kimmeridge 

clay 35 m below ground level. The box was built within a framework of 

diaphragm walls that divided the site into five longitudinal strips. These strips 

were excavated no more than two at a time, thereby limiting the extent of open 

excavation, the walls being supported by permanent concrete struts between 

them. The bottom of each trench was sealed with a concrete slab and the cellular 

box structure built within the protection of the diaphragm walls and back-filled 

with sand and water to restore ground loading. Because of the massive size of the 

anchorage structure itself, concrete had to be placed at rates up to 1000 m ' per 

day. To reduce the heat of hydration and lessen the risk of cracking, up to 60% of 

the Portland cement was replaced by blast furnace slag. The anchorage, including 
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the substructure, has a total mass approaching 300000t and to maintain a 

uniform pressure on the clay and prevent any tilting of the anchorage as the pull 

on the cables increased, parts of the upper block of the anchorage, including the 

architectural facings and the deck, were built step-by-step as the erection of the 

bridge proceeded.  

The stiffening girder, or deck, at Humber is built of welded stiffened steel plate 

panels that were fabricated off site. The panels were then assembled and welded 

in a disused railway yard about a mile from the bridge into 124 boxes, generally 

18.1 m long, that formed a section of the deck 22 m wide and 4.5 m deep, with 3 

m wide panels cantilevering from each side to carry the walkways. So that the 

boxes would closely fit together ready for welding when erected into the bridge, 

they were assembled in threes using a completed box from the preceding batch of 

three as a template for the next two and so on. For erection into the structure 

the boxes (each weighing about 140 t) were taken up river by pontoon and lifted 

into place by travelling gantries running on the main cables.  

The first boxes were erected adjacent to the two anchorages and at the middle of 

the main span. Erection then continued on four fronts, working towards the 

towers. Initially the concentration of load at the centre of the main span caused 

the boxes to adopt a sagging profile that was self-correcting as erection 

progressed. When the boxes were correctly aligned, they were spliced together by 

welding. The deck was then given a mastic asphalt wearing surface.  

A large number of calculations were required to analyse loads, deflections and 

stresses at the different stages of erection of the bridge, when components would 

be lacking the support that would be forthcoming when the structure was 

complete. These calculations were primarily concerned with the suspended 

structure. For example, the most severe conditions on the tower due to wind 

loading occurs when all the deck is suspended from the cables but not yet 

connected at its ends to the towers.  
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Prevention of corrosion is essential for all large steel structures in exposed sites. 

Following established practice for bridgework and prior to assembly of the boxes, 

each panel was blast cleaned and given a preliminary protective coat of primer 

followed by three coats of epoxy-ester paint. After erection all external surfaces of 

the steel were given two further coats of chlorinated rubber paint. Similarly the 

main cables, each of which are made up of 14948 parallel wires of drawn steel 5 

mm in diameter and heavily galvanised, have to be fully protected against 

corrosion. The wires were laid into place by 'aerial spinning', involving assembly 

of the cables four wires at a time. The cables were then compacted by a travelling 

ring of jacks and the cable bands, to which the suspenders are attached, put into 

place. With the deck in position the cables were almost fully loaded and 

compaction complete. The cables then received a thick coat of red lead paint and 

were bound with soft iron wire which formed a casing that was finally painted 

along with the rest of the exposed steel.  

The following table summarizes the structural geometrical characteristics of the 

main elements that constitute the bridge. 
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Table 1 Humber Bridge: geometrical characteristics 

Main span 1410 m 

Hessle side span 280 m 

Barton side span 530 m 

Total length between anchorages 2220 m 

Clearance over high water 30 m 

Carriageways 
Dual two-lane carriageways plus separate 

footpaths 

Deck width excluding footpaths 22 m 

Total deck width including footpaths 28.5  m 

Depth of deck 4.5 m 

Tower height above piers 155.5 m 

Main cables 

Two cables, each of 14,948 wires of 5mm 

diameter and 1540MN/m2 uts plus an extra 

800 similar wires in each cable on the 

Hessle side. 

Diameter of main cables 0.68 m 

Total length of wire 71000 Km 

Total cable pull of each anchorage 40000 tonnes 

Load in each cable 19400 tonnes 

Weight of steel in deck structure in main 

cables 
16500 tonnes 

Total weight of concrete 480000 tonnes 

Mass of Hessle anchorage 300000 tonnes 

Mass of Barton anchorage 190000 tonnes 

Depth of foundations:  

Hessle anchorage 21 m 

Barton anchorage 35 m 

Hessle tower 8 m 

Barton tower 36 m 
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5.3. Experimental survey on the Humber bridge 

From the 14th to the 18th of July of 2008 an ambient vibration test was 

preformed on the Humber Bridge under the leadership of Prof. James Brownjohn 

from the University of Sheffield, with the collaboration of the Laboratory of 

Vibration and Structural Monitoring (ViBest - www.fe.up.pt/vibest) of the 

Faculty of Engineering of the University of Porto and the Profs. Ivan Au and 

Paul Lam from the City University of Hong Kong.  

The team from the Faculty of Engineering of the University of Porto (FEUP) 

provided 6 of the 10 used recorders, contributed to the test planning, helped on 

the configuration and calibration of the measuring equipment and was deeply 

involved on the field test and on the in situ validation of the acquired database. 

The test was conducted using 10 triaxial Geosig seismographs, model GSR-24. 

During the test of the main span, two pairs of seismographs were permanently 

located at two reference sections (marked with the red circles in Figure 5.3.1), 

while the other 6 worked as moving sensors, three in each side of the bridge, 

covering the remaining measurement points in different test setups. Each 

measured section was instrumented at both side walk [Magalhães et al, 2008].  

The side spans are not monolithically connected to the main span. Therefore, the 

existence of local modes is expected. As a consequence, for the setups that include 

sections of the side spans, additional reference sections were adopted, reducing 

the number of moving sensors from 6 to 4.  

The choice of the reference points stems from inspection of the set of 

experimental and calculated mode shapes of the bridge presented in the report of 

the ambient vibration test performed in 1985 [Browjonh et al, 1986], trying to 

guarantee that the reference points are not close to nodal points of the majority 

of the most significant modes of vibration.  

During the last day of tests, measurements were performed also at several points 
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of the towers. However, the analysis of the tower modal ordinates is reserved to 

the data analysis with more powerful methods that will certainly allow to obtain 

3D representations of the global mode shapes.  

The measurements were performed using a sampling frequency of 100Hz and for 

each layout of the sensors, 4 time segments of 895 seconds were recorded, which 

correspond to a total acquisition time of almost one hour.  

 

Figure 5.3.2 sensors location during the ambient test 

The modal parameters of the bridge were computed by the University of Porto; 

in particular the signal was preprocessed and an application of  the classical 

Peak-Picking method, identifies more than 30 natural frequencies in the frequency 

range 0-1 Hz. The estimates of the corresponding modal shapes were obtained on 

the basis of the transfer functions relating the ambient response at each 

measurement point with the corresponding response at one of the reference 

points. All the modes shapes were estimated using each reference section and then 

the best estimate was chosen.  

The experimental results, obtained by the team of ViBest, are used to improve 

the FEM model of the bridge, described in the following sections. 
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5.4. The FE model: the first example (1985) 

The first finite element model of the Humber Bridge was realized in 1981, when 

the bridge was ended (in 1985), by Prof Brownjonh, of the University of Bristol. 

The model was defined in order to obtain modal parameters similar to that one 

defined by an ambient vibration test, carried out on the bridge when it was 

opened. The main objective of the test was to check the accuracy of the 

mathematical model developed for asynchronous excitation analyses. There are 

several features of the model which can be checked:  

i) The mechanism of the main cables and hangers with particular regard to 

geometric stiffness properties.  

ii) The connections between towers/anchorages and main/side spans.  

iii) The simulation of the box-girder deck.  

iv) The linear elastic behaviour of all elements.  

This section sets out to examine all these features by comparing the measured 

modal frequencies and shapes with those predicted by the model.  

The mathematical model is described fully in [Browjonh et al, 1986]. A brief 

description and sets of eigenmodes for two-dimensional vertical and horizontal 

plane representations and for a full three-dimensional version are given below. 

Each hanger is represented by a single beam element, as are the sections of deck 

and main cable between hangers. The three-dimensional mesh is similar, but with 

the deck being represented by 4-noded thin plate/shell elements.  

Comparison of mode shapes had been done for lateral and vertical modes using 

the two-dimensional representations, and for the torsional modes using the full 

three-dimensional representation. In the comparisons, sets of modes have been 

identified where direct correspondence between predicted and measured mode 
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shapes and frequencies is possible. Some measured modes and some predicted 

modes in the lateral plane do not bear comparison. Comparison of measured and 

predicted modes is not as straightforward as for vertical modes for a number of 

reasons. Firstly, some of the measured modes are ambiguous, consisting of two or 

three close modes with similar mode shapes. Secondly, some of the predicted 

modes indicate appreciable cable motion. No measurements were made of cable 

motion, and depending on the degree of excitation and damping of the cables, the 

deck motion accompanying these modes, if they occur, could be insignificant by 

comparison with deck-only modes or vice-versa. Thirdly, there is no well-defined 

sequence of symmetry or constantly increasing numbers of nodes and antinodes.  

5.5. Actual FE model 

 

Starting from the John Brownjonh’s model defined in 1986, the goal of this 

chapter is an improving of the original model in order to obtain the natural 

frequencies, extracted through the ambient vibration test carried out on the 

Humber Bridge in 2008 by the University of Porto, previously described. The 

University of Porto works in collaboration with the University of Bristol to 

improve the Bridge model, realized in 1985. The Prof. Brownjonh made available 

the original 2d and 3d model, developed in eighteen. At the beginning the 2d 

Model, edited in Sap IV, was imported in Sap 2000. This model was very easy 

and all the characteristics used in its definition were very clear in the test file 

used in Sap IV. The imported model works well and the natural frequency are 

very near to that one of the original model. The same procedure was applied for 

the 3D model. Of course this one is more complicated and the test file, used in 

Sap IV it is sometimes difficult to understand, in particular in the definition of 

the shell, which models the bridge deck. In this case the imported model did not 

work, and very different frequencies were obtained, mainly for lateral modes. For 

this reason, we prefer to create the 3d model, directly in Sap2000, starting from 

the 2d model of Prof. Brownjonh. The first 3d model is very easy and it is 
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characterized by this kind of elements: frame for all the towers; shell for the deck 

and cable for all the cables present. The attach of the deck with the tower is 

modeled by 2 rigid link that permit only longitudinal movement and rotation 

around lateral and vertical axes. Another model was implemented, where the 

deck is model as a frame element and the cable are connected through horizontal 

rigid link. The first one works better and in the following figure its results are 

illustrated. 

The modes predicted by the three-dimensional model can also be compared with 

the experimental modes, and some correspondence is found for the first three or 

four modes. The three-dimensional model has more degrees of freedom and should 

therefore be more flexible. Despite this the predicted frequencies are generally 

higher, and there is also a certain amount of coupling between main and side 

spans.  

The results seem good, there are some differences with the high modes; for 

example the new model is not able to see some horizontal modes, obtained in the 

experimental evalutation, like the 16° mode. The model presents other modes 

where only the cables are involved, so the deck is almost fix and they cannot see 

with the experimental test (the sensors were putted only on the deck). 

The figures below shows a graphical comparisons between the experimental mode 

shape, obtained by ViBest and reprented in blu and imported from [Magalhães et 

al, 2008]; the mode shape obtained by the first model, implemented by Prof. 

Brownjohn, represented in black and imported from [Browjonh et al, 1986]; the 

mode shape of the model implemented in Sap2000, represented in green. The 

respective frequency are also reported. 

 

 

 



Chapter 5 

 

202 

 

 

MODE1 HORIZONTAL 

 

 

 

 

F= 0,06199 Hz  
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MODE2 VERTICAL 

 

 

 

F= 0,11485 Hz  
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MODE3 HORIZONTAL 

 

 

 

F = 0,14 Hz  
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MODE4 VERTICAL 

 

 

 

F= 0,15047 Hz  
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MODE5 VERTICAL 

 

 

 

F = 0,17476 Hz 
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MODE6 VERTICAL 

 

 

 

F = 0,21525 Hz 
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MODE7 VERTICAL 

 

 

F = 0,23235 Hz 
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MODE 8 HORIZONTAL 

 

 

 

 

F = 0,23711 Hz 
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MODE9 HORIZONTAL 

 

There is an error and the real frequency is 0,269 Hz. 

 

F = 0,25586 Hz (model not present) 
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MODE 10 VERTICAL 

 

 

 

 

 

F = 0,29894 Hz 
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MODE 11 HORIZONTAL 

 

 

 

 

 

F = 0,30261 Hz (model 0,329 Hz) 
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MODE 12 VERTICAL 

 

 

 

 

 

F = 0,3428 Hz 
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MODE 13 VERTICAL 

 

 

 

F = 0,34924 Hz 
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MODE 14 HORIZONTAL 

 

 

 

 

F = 0,36746 Hz 
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MODE 15 VERTICAL 

 

 

 

F = 0,37064 Hz 

 

 

 



FE model of the Humber Bridge 

 

217 

 

MODE 16 HORIZONTAL 

 

MODE 17 HORIZONTAL 

 

 

 

F = 0,38796 Hz 
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MODE 18 VERTICAL 

 

 

 

F= 0,44191 Hz 
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MODE 19 HORIZONTAL 

 

 

 

 

F = 0,45821 Hz 
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MODE 20 HORIZONTAL 
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MODE 21 HORIZONTAL 

 

 

F = 0,49111 Hz 
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MODE 22 HORIZONTAL 
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MODE 23 VERTICAL 

 

 

 

 

F = 0,50538 Hz  
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MODE 24 VERTICAL 

 

 

 

F = 0,55971Hz 
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MODE 25 HORIZONTAL 

 

 

 

MODE 26 HORIZONTAL 

 

 

F = 0,54355 Hz 
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MODE 27 VERTICAL 

 

 

F = 0,60219 Hz 
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MODE 28 HORIZONTAL 

 

 

F = 0,63069 Hz 
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Torsional mode 1 

 

 

 

F = 0,3249 Hz 
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Torsional  MODE 2 

 

 

 

F = 0,4359 Hz 

 

 



Chapter 5 

 

230 

 

 

 

Torsional  MODE 3 

 

 

 

F = 0,5256  Hz 
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Torsional MODE 5 

 

 

F = 0,5815 Hz 

 

The model, presented in this chapter, is characterized by natural frequencies very 

proximal to that one obtained experimentally through the ambient test on it 

performed. In particular, the following table summarizes the comparison between 
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the frequency obtained by dynamic test in situ and the frequency obtained by the 

proposed model. For each one the error is computed.  

 

Table 1 Natural frequencies: comparison between experimental and numerical 

results 

 

Mode Type of mode 
Frequency 

model 

Experimental 

frequency 
Error 

1 horizontal 0,06199 0,056 9,66 

2 vertical 0,11485 0,115 0,13 

3 horizontal 0,14 0,132 5,71 

4 vertical 0,15047 0,156 3,68 

5 vertical 0,17476 0,176 0,71 

6 vertical 0,21525 0,217 0,81 

7 vertical 0,23235 0,239 2,86 

8 horizontal 0,23711 0,239 0,80 

9 horizontal 0,25586 0,269 5,14 

10 vertical 0,29894 0,308 3,03 

11 horizontal 0,30261 0,31 2,44 

12 torsional 0,3249 0,31 4,57 

13 vertical 0,3428 0,317 7,53 

14 vertical 0,34924 0,332 4,94 

15 horizontal 0,36746 0,378 2,87 

16 vertical 0,37064 0,383 3,33 
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17 horizontal - 0,4 - 

18 horizontal 0,38796 0,41 5,68 

19 vertical 0,44191 0,461 4,32 

20 horizontal 0,45821 0,469 2,35 

21 horizontal - 0,469 - 

22 horizontal 0,49111 0,478 2,67 

23 torsional 0,4359 0,479 9,89 

24 horizontal - 0,51 - 

25 vertical 0,50538 0,537 6,26 

26 vertical 0,555971 0,537 3,41 

27 horizontal - 0,549 - 

28 horizontal 0,54355 0,583 7,26 

29 torsional 0,5256 0,596 13,39 

30 vertical 0,60219 0,625 3,79 

31 horizontal 0,63069 0,637 1,00 

 

The table 2 shows that good results are obtained for high modes too. The mean 

error is about 4%, and it is maximum for the 29th torsional mode. An error of 

about 10% occurs for the first horizontal mode, but the first model confirms this 

result. Some horizontal modes are not present in the model, but they are high 

modes, difficult to define. A good agreement is in general obtained in term of 

frequencies and mode shapes. 

The figures below shows some of the local mode obtained through the 

implemented model 
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Figure 5.5.1 Local mode at frequency 0,306 Hz 

 

Figure 5.5.2 Local mode at frequency 0,435 Hz 
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Figure 5.5.3 Local mode at frequency 0,436 Hz 

 

The presence of local mode, where only the cables are involved, cannot be in 

anyway identified through a dynamic test. The numerical model, constructed on 

real data collected by an experimental test, is able to define all the structural 

behavior and this is the principal reason of this kind of study. We would like to 

underline how an easy model is able to check the experimental natural frequencies 

but it able to define local modes at the same time. The proposed model is until 

now object of some improvements, to obtain results more accurate. In particular, 

a more sophisticated model of the deck is in progress. 
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6.1.  Overview 

In this thesis the complex problem of the dynamic identification of an existent 

structure has been discussed. The goal of dynamic identification is the 

computation of the modal parameters of a system, i.e. natural frequencies, modal 

damping and mode shapes, through a post-processing of the signal acquired 

during a test in situ. The procedures applied to extract the modal parameters are 

various and they are different for the different way, used to excite the structure. 

In particular in the thesis three different dynamic tests have been considered: 

forced vibration tests in the first part and free and ambient test in the second 

part. The main difference between them is that in the first one it is possible to 

control the force applied to the system in the other one the excitation is 

unknown. Thus entails different kind of acquired signal: stationary in the first 

case, unstationary in the second case. The procedures applied in the two contests 

are methods in frequency domain (FRF through FTT and Lissajous Diagrams) 

and method in time-frequency domain (CWT and DWT), respectively. 

The extracted modal parameters are important and efficient estimators of the 

dynamic behaviour of a structure. They can be used in different way, for 

example, if a dynamic test is performed on the same structure in different time of 

its life, the comparisons of the modal parameters can be an index of how the 

stiffness is changed during the time (see chapter 2). They can be used to update a 

FE model of the structure, due to remove some uncertainties, for example about 

the behaviour of material used (see chapter 2, uncertainty about Young module 

of laminated timber). In general the experimental modal parameters are used to 

obtain a FE model, able to reproduce the real dynamic behaviour of a complex 

structure. This aspect of the identification process is discussed in the last chapter, 

where an implemented 3-D model of a suspended bridge is implemented, 
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beginning from experimental data acquired during an ambient test carried out on 

it. 

6.2. Principal results 

6.1.1.  Forced vibration test 

 

The modal parameters of a laminated timber footbridge are obtained by the 

application of two methods, both in frequency domain and for forced vibration 

test. From what has been said, the FRF can be constructed through classical 

FFT or the geometric characteristics of an ellipse and the same results can be 

reached. The proposed method allows on the one hand the construction point by 

point of the FRF, by which the modal parameters can be extracted through PP 

method or circle-fit; on the other hand it is a way to define the correlation 

between the signal that excites the structure and the response acquired as its 

acceleration. In particular, the ellipse construction can be a good way to test, 

from the direct comparison between input-output signals, to test the goodness of 

the signal recorded during the dynamic test.  In general, a high dispersion of the 

points around the ellipse that better approaches them means that the response of 

the system is not coherent with the force, which excites the structure. Thus is 

very evident for the low frequency, where the sinusoidal force is so low that it not 

able to excites strongly the structure. Often in this case we have very bad 

recorded signal and the constructed FRF could not detect by its peaks the real 

resonances. The goal is to define which is the natural frequency without 

considering another kind of test, using only the data collected during the forced 

vibration test. To understand which frequency between them can be the real 

natural frequency of the system, the correlation between the structure reply 

registered in correspondence of each accelerometer and the perfectly sinusoidal 

force applied by the vibrodyna can be observed for both the tests. The 

assumption is that, for the real resonance frequency, the structure reply will be 

almost sinusoidal and will be greater than the applied force.  
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Then, this correlation can be computed for each accelerometer using the r2 

correlation index. In particular, the computation of r2 defines the distance 

between the points, relating to the real case, and the ellipse that better 

approaches their distribution (the best fit is obtained through the minimum least 

squares method).   

Of course, the r2 index varies more as the structure reply becomes less sinusoidal 

(the distance of the points, which directly represent the comparison input-output, 

from the LS ellipse increases as the structure reply becomes less sinusoidal). If the 

signal input and the signal output are two sinusoids, the points describe a perfect 

ellipse and r2 = 1. Then in the real case the maximum r2 defines the most 

probable natural frequency, detected through the FRF. 

6.1.2. Free and ambient vibration test 

 

The unstationary signals, acquired during an impact test or an ambient vibration 

test, cannot be analysed through the methods proposed in chapter two, because 

they work only if the force, that excites the structure is known. In this contest a 

method, able to investigate the time behaviour of the signal, is necessary. The 

aim of the second part of the thesis is the application of the CWT due to define 

the modal parameters of a structure, when the force is in general unknown. The 

validation of this procedure is obtained through the comparisons between the 

results obtained by classical methods, like PP or FDD, and the results obtained 

through CWT.  

The comparison between the modal parameters extracted by Peak-Picking 

method and Wavelet Transforms shows in general a good agreement both in 

ambient and impact tests. In the free vibration test on the Vasco da Gama 

Bridge the modal parameters are very similar, only the modal damping at 

frequency 0.591 Hz is different and a possible interpretation of this important 

variation is the presence of very close torsional mode around that frequency and 

the interaction of local cable modes. The CWT defines good results in the 

definition of mode shapes. 
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In the ambient vibration test the procedure is able to define easily and accurately 

the natural frequencies of the system, some difficulties occur in the computation 

of the modal damping. The signal acquired during an ambient test is constituted 

by different track, for example corresponding to the crossing of various vehicles. 

Each track is characterized by different time trend and then by different modal 

damping. In chapter three a correlation between the amplitude of the track and 

the value of the modal damping is defined. In particular, as expected, the modal 

damping increases when the amplitude of the track increases. The identification 

of the modal damping through the WT is obtained considering always the trend 

in the time domain of the acquired signal in correspondence of its maximum 

amplitude. This choice is made from the comparison of the modal dampings to 

the dampings obtained by EFDD. Similar mode shapes are also obtained, 

sometimes there is only an inversion of the sign of the vibration mode. 

To minimize the computational time of the procedure in chapter four the Discrete 

Wavelet Transform was applied. The results were not so accurate, as that one 

obtained by CWT, for each modal parameters. The conclusion is that, when the 

signal analysed is acquired during an ambient test, then the sample time it is not 

so long, the CWT is computationally efficient and the results are very accurate. If 

the signal is acquired during a monitoring of a generic structure, then the sample 

points of the acquired signal are a lot, the algorithm is not even efficient and it is 

necessary to apply the DWT. Then, in the contest of modal parameters 

extraction the CWT is the best way. 

The DWT is a very interesting and efficient way to filter a noisy signal. The 

procedure, easy to implement and very flexible, was applied to the signal acquired 

during an ambient test on a very stiff bridge, characterized by the presence of a 

lot of noise. The algorithm works well and good results are obtained. 
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6.1.3. Model updating 

 

In the last chapter another important aspect of the experimental modal analysis, 

the model updating, is discussed. In order to obtain a FE model, able to define 

the real behaviour of a complex structure, a dynamic test is performed on the 

building, object of study. The experimental modal parameters are then extracted 

and a FE model, characterized by very similar modal parameters, is after 

implement. This procedure is often applied for very complex structures, the 

experimental survey is necessary to check if the numerical model of the system 

works and it is able to describe how dynamically the realized structure behaves. 

The model updating is applied on the Humber Bridge, characterized by a span of 

1.4 Km. The goal of the model is the possibility to find the local modes, where 

only the cables are involved. 

 

The first finite element model of the Humber Bridge was realized in 1981, when 

the bridge was ended (in 1985), by Prof Brownjonh, of the University of Bristol. 

The model was defined in order to obtain modal parameters similar to that one 

defined by an ambient vibration test, carried out on the bridge when it was 

opened. The main objective of the test was to check the accuracy of the 

mathematical model developed for asynchronous excitation analyses  

Starting from the John Brownjonh’s model defined in 1985, the goal of this 

chapter is an improving of the original model in order to obtain the natural 

frequencies, extracted through the ambient vibration test carried out on the 

Humber Bridge in 2008 by the University of Porto, previously described.  

The model implemented is very easy, it is in fact characterized by frame element 

for all the towers; shell for the deck and cable for all the cables present. The 

attach of the deck to the tower is modeled by two rigid links, which permit only 

longitudinal movement and rotation around lateral and vertical axes. The model 

reproduces almost the same natural frequencies obtained by the post-processing of 

the data collected during the ambient test. The trend of the mode shape is almost 
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the same also. Then, the implemented model is able to describe the dynamic 

behavior of the real structure.  

This model detects some local modes, which cannot be in anyway identified 

through a dynamic test. This is the principal futures of the numerical model, 

because the interaction cable-structure, critical point in the study of a suspended 

bridge, cannot study easily experimentally. The model, if well constructed, can 

give some important information about the cable behavior, missed in the 

experimental survey. 

6.3. Limitations and future works 

 

The research presented in this thesis has tried to describe the dynamic 

identification problem in all its various aspects. The first part is focused on the 

modal parameters extraction from a forced vibration test. In this context a 

different method in frequency domain has been applied. The goal of the method is 

the possibility to define a correlation between the known force and the recorded 

response of the structure. In fact, the idea comes from a particular situation, 

occurred during the processing of some data acquired from a forced vibration test. 

As it was explained in chapter two, an FRF characterized by two very proximal 

peaks in correspondence of the first natural frequency was obtained. It was 

necessary to define a methodology able to predict which one is the more probable 

resonance. Of course, only a specific case was analyzed; to ensure that the 

procedures work, it is necessary to apply it to more tests.  

The third chapter is focused on the processing of signals acquired during ambient 

or free vibration test. The application of the CWT is proposed, and it is shown 

that it works well in both the case. Some special considerations are necessary, 

when an ambient test is considered to obtain good results in terms of modal 

damping and mode shapes. The procedure is based on the application of the 

Morlet as mother wave, the limit of the CWT is that the results can be 

influenced by the choice of the mother. A possible improvement of the 
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methodology can be a studied choice of the wave aimed to obtain better results, 

or an investigation to understand how the mother wave influences the computed 

CWT. A limit of the CWT is the computational time, which tends to increases 

when a good time-frequency resolution would be reached. For this reason it 

cannot be an efficient way to process data collected from direct monitoring of 

structure, because the length of the signal makes the computational time too 

much long. 

For this reason in the chapter four a procedure based on the application of DWT 

was applied. It was shown that the approximation caused by the discretization 

entails not accurate results, when a short time signal is analyzed, like that one 

acquired during a dynamic test. A possible development can be the application of 

the DWT on signals acquired during a structural monitoring, where its short 

computational time can be an important feature.   

The last chapter concerns the model updating, starting from an experimental 

survey, development by the staff of ViBest, University of Porto. The FE model of 

the Humber bridge is a work in progress. Until now a very easy 3D-model has 

been implemented, to check the presence of some local modes, unavailable by a 

dynamic test in situ. The FE model, although it has reached good results in terms 

of natural frequencies, needs of various improvements. For example, the deck is 

modeled as a simple 4-points shell element; another model, where the real 

trapezoidal shape is modeled, is under study. The attach deck-towers, modeled by 

two rigid links, can be too object of deeper investigation.  
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