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Introduction

This thesis deals with constant mean curvature surfaces in the Rieman-
nian three dimensional manifold H2 × R, where H2 is the hyperbolic real
plane. The modern study of classical constant mean curvature surfaces in
three dimensional manifolds began in the XX century with the work of Radò
[38] and Douglas [8] on Euclidean minimal surfaces. In the 60’s Osserman
[35] gave a relevant contribution to this theory: he proved that every com-
plete properly embedded minimal surface of R3 with finite total curvature
is a minimal embedding of a closed orientable surface pinched in a finite
number of points. This result has the consequence that minimal surfaces of
R3 are not bounded, hence in the following years the research in this field
moved to the understanding of non bounded parts of minimal surfaces. Such
a part is called end of the surface and it can be defined as a part that can
be realized as a complete embedding of a pinched disc. In the 80’s Schoen
proved that finiteness of total curvature is enough to completely determine
the asymptotic behavior of minimal ends. Indeed in [47] he proved that a
finite total curvature minimal end is asymptotically a plane or a catenoid.
This statement rises the converse question: what curve can be a boundary
of an end? If by exterior domain we mean the closure of the complement of
Ω′, a compact set diffeomorphic to a disc in R2, a natural way to address the
problem of existence of minimal ends is to look for solutions of the Dirichlet
problem of constant zero mean curvature on an exterior domain. Hence one
has to deal with minimal surfaces equation on non convex domains, and it
is well known ([9] and [19]) that non-convexity can lead to non existence of
the solution. In other words on non-convex domains it is possible to assign
boundary data so that there is no minimal graph assuming these data. This
Dirichlet problem on non convex domains has been considered by Krust [21],
Kuwert [24] and Tomi and Ye in [50], Ripoll and Sauer in [39]. In the late
90’s, Kutev and Tomi solved the problem in [23] and [22]. Indeed, in the sec-
ond paper the authors give sufficient conditions on boundary data in order
to obtain minimal exterior graphs with finite total curvature.
When in 2000 Perelman proved Thurston’s Geometrization Conjecture for
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three dimensional manifolds, the interest in constant mean curvature sur-
faces in non Euclidean spaces was renewed. One of the most relevant general
problems that have been proposed is the existence of pairs (M,h), where M
is a three dimensional manifold and h is a value for mean curvature, leading
to a precise behavior for ends as in the (R3, 0) case. In this thesis we consider
the manifold H2 × R. The theory of constant mean curvature surfaces (that
we will denote cmc surfaces) here is relatively not developed. What happens
in H2 × R is quite different from what happens in R3. Indeed, if we require
the completeness of the surface, in the Euclidean case we have a very neat
distinction between the minimal case and the h > 0 case. As it is well known,
the theory of Euclidean minimal surfaces is wide, deep and it has connections
with many branches of mathematics. An introduction to minimal surfaces
can be found in [36]. Some recent results are due to Hildebrandt and Tromba
[16], Hauswirth, Morabito and Rodriguez [15], Sa Earp and Toubiana [46],
Meeks and Frohman [10], Meeks and Pérez [26].
For two different positive values of the mean curvature, the Euclidean cmc
surfaces cannot be too different. It is a consequence of the fact that R3 is a
vector space and hence we can rescale any cmc surface so that its (constant)
mean curvature is equal to one. In this case we have both compact and non
compact surfaces. One can find an introduction to this subject in [17], and
[20].
In H2 × R it is no more possible to reduce the study of positive cmc surfaces
to a single value of mean curvature since rescaling is not defined. Roughly
speaking we have at least three distinct cases, according to the value of the
constant mean curvature. First of all, one has to consider the minimal case.
The study of these surfaces has been started in the 00’s by Nelli and Rosen-
berg [43] (and errata [44]). In this work the authors find some analogies with
minimal Euclidean surfaces (existence of catenoids, Jenkins-Serrin theorems)
and an important distinction: failure of Bernstein theorem. Other results are
due to Hauswirth [14], Meeks and Rosenberg [42] and [27], Rosenberg [40],
and, more recently, Daniel [6].
The theory for positive constant mean curvature started some years later with
the introduction of the generalized Hopf differential proposed by Abresch and
Rosenberg in [41]. This caused a fast development: Sa Earp and Toubiana in
[45] found examples of rotational constant mean curvature surfaces, Fernan-
dez and Mira in [29] proposed a construction of a Gauss Map for constant
mean surfaces in H2 × R. Moreover Nelli and Rosenberg in [31] and [30]
established theoretical results for these surfaces. Moreover for positive mean
curvature h we have, in constrast with the Euclidean case, to distinguish be-
tween the two intervals (0, 1

2
] and [1

2
,∞). For h = 1

2
two relevant phenomena

occur. The first one was discovered by Daniel in [5]. In this work sufficient
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conditions are given to immerge a surface in a 3−dimensional homogeneous
manifold with isometry group of dimension 4. Moreover the author discovers
a generalization of Lawson’s correspondence [25]. Daniel’s correspondence
establishses a local isometry between cmc surfaces of pairs of 3−dimensional
homogeneous manifold with isometry group of dimension 4. In particular it
states that any 1

2
−surface of H2 × R is locally isometric to a minimal sur-

face of the (Riemannian) Heisenberg group. The other relevant phenomenon
happening for h = 1

2
is described in the remarks following theorem 1.4 of

Spruck’s work [49]. What happens for h ∈ [1
2
,+∞) is that the mean cur-

vature of graphs of a distance function from the boundary of a bounded set
increases with distance. Thus these graphs can be useful to construct barri-
ers.
But to study the problem of ends, the most important papers are from Nelli
and Rosenberg [32], Sa Earp and Toubiana [45], Nelli and Sa Earp [33] and
Spruck [49]. In the first work it is proved that, for mean curvature h between
0 and 1

2
, there are no compact h−surfaces, hence it makes sense to look for

ends for these values of mean curvature. More precisely it is proved that any
exterior graph is non bounded. In the second paper, for each h ∈

(
0, 1

2

)
, is

given a one parameter family {Hh
α}α of rotational ends which have features

similar to the ones of Euclidean catenoids.
Hence Nelli and Sa Earp in [33], guessing that the rotational surfaces have

the standard asymptotic behavior, propose new examples of non rotational
constant mean curvature graphs on exterior domains, obtained through suit-
able perturbations of elements of the {Hh

α}α family. Precisely they consider a
curve lying on a rotational surface Hh

α, graph on the boundary of an exterior
domain. Using the fact that for every α the functions Hh

α have a different
asymptotic behavior, they considered an increasing sequence of boundary
data on these functions, and they built a new surface growing faster than
any element of the rotational family.

Our work starts here and has the objective of giving an existence theorem
for exterior graphs with constant mean curvature h ∈ (0, 1

2
). The technique

used by Nelli and Sa Earp cannot be extended to this case since for h ∈ (0, 1
2
)

all surfaces grow with the same rate.
Hence if we started with a curve on a rotational surface, and we imposed

conditions at infinity in terms of an increasing sequence of rotational sur-
faces, we would probably end up with a part of the first surface. Thus we
decided to consider as a boundary of the end a Jordan curve not necessarly
lying on a Hh

α surface. We end up with a Dirichlet problem on a non convex
and unbounded domain in H2. Dirichlet problem for mean curvature on hy-
perbolic space is considered by Spruck in [49]. In this work the author gives
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a priori estimates for constant mean curvature graphs on compact domains
of H2. Moreover Spruck gives sufficient conditions on the domain to solve the
Dirichlet problem of constant mean curvature. But these conditions exclude
the case where the domain is an annulus, hence this theorem cannot be used
in our case. Spruck establishes as well that when the mean curvature we are
prescribing is greater than 1

2
, it is possible to build barriers for the solution

using a distance function. This does not mean that for h ∈ (0, 1
2
) one cannot

use distance function to do barriers, but it means that standard ways fail.
In this thesis two main results are proved. The first one is a non existence
result for h−graphs on circular annuli of H2. This result follows from a-priori
estimates that can be obtained in a way similar to the one proposed by Finn
in [9] for the Euclidean case. The second result is an existence theorem for
h−graphs on non bounded annuli of the hyperbolic plane. The hypotheses of
this theorem are on the boundary γ of the exterior domain. The hypotheses
are given in terms of the curvature of γ and by requiring that it satisfies a
geometric condition associated to the {Hh

α}α surfaces. In order to complete
the result, we need to establish fine properties of the asymptotic behavior
of the family Hh

α, and a general result of evolution of curves under the flow
of the gradient of a distance function. These results have an independent
interest, since they describe properties of surfaces and curves, but they will
also be used to build barriers from below and from above for our solution.
This is done in terms of the Hh

α functions, at least if the boundary of the ex-
terior domain satisfies a suitable geometrical assumption expressed in terms
of growth of the elements of the family of rotational solutions(see the condi-
tion of r-admissibility below). In this way we will obtain a priori estimates
in the spaces of Hölder continuous functions. With a suitable adaptation of
Schauder theory and of the continuity method we conclude the proof of the
existence theorem.
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Notation

We will use the following notation

� We write Mn when M is a n−dimensional manifold

� Ω′ is the complement of the set Ω

� 〈., .〉 denotes scalar product of vectors

� Bp(r) is the closed ball of center p and radius r

� Sp(r) is the boundary of Bp(r)

� C∞(M) are the real valued C∞ functions on the manifold M

vii





Chapter 1

Some concepts of Riemannian
geometry

In this chapter we define the geometrical objects that will be used all over
the thesis. This part does not want to be comprehensive nor exhaustive. A
complete treatment of the basic Riemannian geometry subjects can be found,
for instance, in the books [7], [37], [2], [11] and [48]. We start with differential
objects to move later to the Riemannian setting.

1.1 Differentiable facts

Definition 1. Topological manifold
A second countable Hausdorff topological space Mn is said a topological
manifold of dimension n if each point in M has a neighborhood homeomorphic
to an open set in Rn.

Since our goal is to present calculus in manifolds, we have to deal with
objects having more structure than the topological one.

Definition 2. Differentiable manifold of class Ck

Consider Mn a topological manifold and a family
(
Uα, φα

)
α∈ I

where Uα ⊂
M is an open set and φα : Uα → Vα := φα(Uα) ⊂ Rn is an homeomorphism.
If for each α1, α2 such that Uα1 ∩ Uα2 6= ∅ the real valued map

φ−1
α1
◦ φα2 : Uα1 ∩ Uα2 → φ−1

α1
◦ φα2

(
Uα1 ∩ Uα2

)
is a diffeomorphism of class Ck, we say that

(
Uα, φα

)
α∈ I

is a differential

structure of class Ck for M , provided the union of the Uα covers M . A

1



2 CHAPTER 1. SOME CONCEPTS OF RIEMANNIAN GEOMETRY

differentiable manifold is a topological manifold together with a differentiable
structure.

For the sake of clarity, we state what we mean by parametrization and
local coordinates. Take p ∈ Mn and an element (φ, U) of the differentiable
structure of M such that p ∈ U . We then have an homeomorphism φ :
U → φ(U) = V ⊂ Rn. We call the function φ−1 a parametrization for M
near p and {(x1, . . . , xn) ∈ V ⊂ Rn} local coordinates for M near p. As we
shall see, some calculations are simpler in local coordinates, while others are
simpler when a parametrization is chosen. Parametrizations help the visual
intuition when are given for a submanifold of an ambient manifold, e. g. a
surface in R3.

It is possible to give a natural definition of differential sub-manifold. A
differentiable sub-manifold of dimension k ≤ n of Mn is a differentiable man-
ifold of dimension k contained in M with a differential structure inherited,
by intersection, from M .

A differentiable manifold is smooth if it is a C∞ manifold.

On differentiable manifolds we can define the concept of tangent vector.

Definition 3. Tangent space and tangent bundle
Consider p ∈ Mn and φ : U → V ⊂ Rn local coordinates for M near p.
We consider two C1 curves γ1(t), γ2(t) ⊂M passing through p at t = 0 and
we say that they are tangent at p if the Euclidean curves φ ◦ γi have same
tangent vector at time 0. The relation just defined is an equivalence relation
on the set of all curves passing through p because it is defined by means of
an equality. The tangent space of M at p, TpM , is the set of all curves on M
passing through p modulo this equivalence relation. This is a vector space
provided we induce the vector space structure via the φ map.
Taking the disjoint union of all the tangent spaces we obtain a 2n− dimen-
sional differentiable manifold, TM , called the tangent bundle of M

TM = ∪p∈MTpM = {(p, v) : p ∈ M and v ∈ TpM}

Now that we have tangent spaces, we can define the linearization of dif-
ferentiable functions.

Definition 4. Differentiable function
Let be Mm, Nn two differentiable manifolds and f : M → N a function. f
is differentiable if its composition with the inverse of a parametrization is
differentiable.
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Definition 5. Differential of a function
Consider f : Mm → Nn a differentiable function. Let be p ∈ M , v ∈ TpM
and q = f(p) ∈ N . Consider a curve γ(t) ⊂ M passing through p at time
0 and with tangent vector v at time 0. We define the differential of f at p
applied to the vector v as the tangent vector of the curve which is the image
of γ via f at time 0. Namely

dpf(v) =
( d
dt
f ◦ γ(t)

)
t=0

We remark that the differential of function at a point p is a linear function
mapping TpM in TqN .

It is useful to remark the following facts

Remark.

� It is a matter of computation to show that the definition just given
does not depend on the coordinate system, i.e. the representations of
a tangent vector in two different coordinate systems are related by the
(real) differential of the coordinate change.

� Given a differentiable structure, a basis for each tangent space is given.
Take p ∈ M and φ : U → V ⊂ Rn near p. Then the canonical basis

of Rn
{
ei

}
i=1, ..., n

induces the basis for TpM

∂

∂xi
=
(
dφ(p) φ

−1
)(
ei

)
� The tangent space of a submanifold is a vector subspace of the ambient

tangent space

We now define vectorf fields. The definition we give here can be found in
[7, Chapter 0, Definition 5.1]. A more formal definition expressed in terms
of sections can be found for instance in [11].

Definition 6. Vector field of class Ck

If Mn is a smooth manifold, a vector field on M is a function defined on M
which associates to each p a vector of TpM . We require this function to be
of class Ck when thought as a function between M and its tangent bundle.
We will use the symbol X(M) for the vector space of all vector fields of M .

Given a submanifold S ⊂ M , a vector field along S is a vector field
X : S → X(M), i. e. we do not require the vector field to be tangent to the
submanifold.
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Examples.

� The tangent vector to a curve is an example of a vector field along a
submanifold.

� The unit normal field of an orientable surface of the Euclidean space is
an example of a vector field along a submanifold.

� A local basis for TpM given by a system of coordinates near p is an
example of a frame, i.e. a local basis.

Vector fields generalize the concept of directional derivative of a function

Definition 7. Action of a field
Let X be a vector field on M and f ∈ C1(M) a smooth function. We define
the action of X on f as the function

X(f)(p) = dpf(X(p))

X(M) as much more structure than a plain vector space. Indeed there is
a natural operation defined on this space.

Definition 8. Consider X and Y two vector fields on M . For each f ∈
C2(M) we define

[X, Y ](f) = X(Y (f))− Y (X(f))

It is a matter of computation to verify that the object just defined is
actually a vector field.

The concept of flow of a vector field will prove to be useful .

Definition 9. Flow of a vector field
Consider Mn is a smooth manifold, X a Ck vector field on M and p ∈ M a
point. An integral curve of X in p is a curve whose tangent vector is X. In
other words it is a solution of the initial values problem:{

ϕ′p(t) = X(ϕp(t))
ϕp(0) = p

(1.1)

Choosing a local system of coordinates, this problem writes as an Eu-
clidean n−dimensional Cauchy problem. So for each p ∈ M it has solution
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defined on an open interval Ip ⊂ R containing t = 0. Moreover the solution
has a Ck dependence on the point p. We can therefore define a map

ϕ :
⋃
p∈M

(
{p} × Ip

)
→M

(q, t) 7→ ϕq(t)

where ϕq(t) is the solution of (1.1) with initial condition q at time t. We call
this function the flow of X

The flow of a vector field has some important properties that we now
summarize.

Proposition 1.
Let ϕ be the flow of the vector field X. Then ∀ p ∈ M

� ϕp(t+ s) = ϕϕp(t)(s) for each t, s small enough

� if we fix the time t, the function p 7→ ϕp(t) is a diffeomorphism on any
open set of its domain provided t is small enough.

A proof of these facts can be found in [2, Chapter IV, Theorem 3.12].
What we have just recalled means that the flow is a one parameter (the
time) group of local homeomorphisms. In other words we have given an
action of R on M . It is time to give an example of action of a vector field
and flow.

Example 1. Choose M2 = {(x, y) ∈ R2 : y > 0} and consider the field
X ∈ X(M)

X(x, y) =

(
X1(x, y)

∂

∂ x
+X2(x, y)

∂

∂ y

)
=

(
y − x2 + y2

2y

)
∂

∂ x
− x ∂

∂ y
=

then the flow of X is the function

ϕt(x, y) = r(x, y)
(
− sin (2 θ(x, y)− t) , cos (2 θ(x, y)− t) + 1

)
where

r(x, y) =
x2 + y2

2y
and θ(x, y) = − arctan

(
x

y

)
This flow is defined ∀ (x, y) ∈ M and ∀ t ∈

(
−2 θ(x, y)−π,−2 θ(x, y)+π

)
.

To show this fact we are going to use the defintion of flow and the global
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(cartesian) coordinates (x, y) for M . If we omit the dependence on (x, y), we
write

ϕt = (ϕ1(t), ϕ2(t)) =⇒ ϕ′t = ϕ′1
∂

∂ x
+ ϕ′2

∂

∂ y

Hence to calculate the flow of X we have to solve the differential system
ϕ′1 = X1(ϕt) = ϕ2 −

ϕ2
1 + ϕ2

1

2ϕ2

ϕ′2 = X2(ϕt) = −ϕ1

ϕ0(x, y) = (x, y)

Plugging the second equation into the first one we get

2ϕ2 ϕ
′′
2 − ϕ′2

2
= −ϕ2

2

whose solution is

ϕ2(t) = β

(
cos

(
1

2
(2α− t)

))2

where α, β will be determined later to fulfill intial conditions. Using the

bisection formula cos
(
ω
2

)2
= 1+cos(ω)

2
and the duplication formula cos(2ω) =

cos(ω)2 − sin(ω)2 we get

ϕ2(t) =
β

2
(1 + cos (2α− t))

ϕ2(0) = β cos(α)2 = y

Using the second relation of the definig system of the flow and the duplication
formula sin(2ω) = 2 sin(ω) cos(ω) we get

ϕ1(t) = −ϕ′2(t) = −β
2

sin(2α− t)

ϕ1(0) = −β sin(α) cos(α) = x

Now we find explicit expressions for α and β. We have

x

y
=
ϕ1(0)

ϕ2(0)
= − tan(α) =⇒ α = − arctan

(
x

y

)
Similarly we have

β =
y

cos

(
− arctan

(
x

y

))2 =⇒ β =
x2 + y2

y

being cos(arctan(ω)) = 1√
1+ω2
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1.2 Riemannian metrics and connections

So far we have dealt with differentiable objects, we are now introducing
objects depending on a metric.

Definition 10. Riemannian metric
Given Mn a differentiable manifold, a Riemannian metric on M is the datum,
for each p ∈ M , of a scalar product gp : TpM × TpM → R smoothly
dependending on p. Then, if x = (x1, . . . , xn) are local coordinates near p,
a metric is given in terms of the symmetric, smooth, non singular matrix of
order n defined by:

gij(x) = g(x)

(
∂

∂xi
,
∂

∂xj

)
i, j = 1, . . . , n

We will use the notations gp(. , . ) = 〈. , . 〉g = 〈. , . 〉M . For the elements of the

inverse of the metric we write gij(x). Moreover we set |. |g =
√
g(. , . ).

We remark that, by means of the partition of unity, it is possible to
show that each differentiable manifold admits a Riemannian metric. See, for
example, [7, Proposition 2.10, Chapter 1].
Now that we can measure length of vectors, we can define distance on a
manifold.

Definition 11.
Consider M a connected manifold equipped with a Riemannian metric g.
Consider a curve γ : [a, b]→M . We define the length of γ by setting

l(γ) =

∫ b

a

|γ′(t)|g dt

A curve is said parametrized by arc length when the tangent vector has length
constant and equal to one. As in the Euclidean case, it is possible to show
that any curve has a unique parametrization by arc-length.
Moreover given two points p, q ∈ M we can define their distance by setting

dist(p, q) = inf{l(γ) s.t. γ : [0, 1]→M with γ(0) = p and γ(1) = q} (1.2)

Then a Riemannian manifold is a metric space and the proof of this fact
can be found, for example, in [7].

Together with a scalar product, we always have a definition of angle. Take
v and w in TpM and define the angle between v and w by setting

cos ^(v, w) =
〈v, w〉g
|v|g |w|g

There is an important class of metrics characterized by the behavior on angles
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Definition 12.
Consider M a differentiable manifold and g, h two Riemannian metrics on M .
g is conformal with respect to h if there exists a positive function λ : M → R+

such that, for each p ∈ M it holds

g(p) = λ2(p)h(p)

Angles measured with two conformal metrics are the same, in fact ∀ p ∈ M
and v ∈ TpM we have |v|g = λ |v|h, hence

〈v, w〉g
|v|g |w|g

=
λ2

λ2

〈v, w〉h
|v|h |w|h

Definition 13. Isometry
Consider F : (Mn, g) → (Nn, h) a orientation preserving diffeomorphism
between orientable smooth Riemannian manifolds. F is an isometry if, for
each p ∈M and v, w ∈ TpM , it holds

gp(v, w) = hF (p)(dpF (v), dpF (w))

F is said a local isometry if the just given condition is satisfied locally.

We have an useful characterization of isometric manifolds via local coor-
dinates.

Proposition 2.
Two Riemannian manifolds (M, g) and (N, h) are locally isometric if and
only if the matrices of the metrics in some local coordinates coincide.

We are now ready to recall how to define calculus in Riemannian mani-
folds. A Riemannian metric is a good tool to give a coordinate independent
definition of gradient of a function because we can use Riesz duality.

Definition 14. Gradient
Consider (M, g) a Riemannian manifold and f ∈ C1(M) a function. For
each p ∈ M , we define the gradient of f in p as the vector ∇f satisfying

dpf(v) = gp(∇f, v) ∀ v ∈ TpM

From the variational point of view, the Riemannian gradient has the
same useful properties of the gradient of Euclidean multi-variable calculus.
We recall two of these properties:

f does not decrease along the integral curves of ∇f
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If p is an extremal point for f , then ∇f(p) = 0

We also write the formula for the gradient in local coordinates. One can
easily check that in local coordinates it holds

∇f(x) =
n∑
i=1

( n∑
j=1

gij(x)
∂ f

∂ xi
(x)
) ∂

∂xi
(1.3)

where gij are the local expressions of the inverse of the matrix of the metric.
Now we have all what we need to introduce derivatives of order higher

than one on manifolds.

Definition 15. Affine connection
An affine connection on the manifold M is a map ∇M : X(M) × X(M) →
X(M) satisfying the following relations for each X, Y, Z ∈ X(M)

C∞(M) linearity on the first argument. For all f, g ∈ C∞(M)

∇M
f X+g Y Z = f ∇M

X Z + g∇M
Y Z

R linearity on the second argument. For all α, β ∈ R

∇M
X

(
αY + β Z

)
= α∇M

X Y + β∇M
X Z

Liebniz rule on the second argument. For all f ∈ C∞(M)

∇M
X f Y = df(X)Y + f ∇M

X Y

Moreover, a connection is said torsion-free if it is well behaved with Lie
parenthesis:

[X, Y ] = ∇M
X Y −∇M

Y X

A connection is said compatible with the Riemannian metric g on M if
it satisfies X 〈Y, Z〉g =

〈
∇M
X Y, Z

〉
M

+
〈
Y,∇M

X Z
〉
M

for all X, Y, Z ∈ X(M).
It is well known that given a metric on a manifold, there is precisely one
torsion-free connection which is compatible with the metric.

Theorem 1. Levi-Civita
Given (M, 〈·, ·〉) a Riemannian manifold, there exists a unique torsion-free
connection compatible with the Riemannian structure. This connection is
called the Riemannian connection of M or the Levi-Civita connection of M .
Moreover, this connection satisfies ∀X, Y, Z,W ∈ X(M)

2
〈
∇M
X Y, Z

〉
= X 〈Y, Z〉+ Y 〈X,Z〉 − Z 〈X, Y 〉+

+ 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉 (1.4)
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For the proof we refer, for example, to [37, Chapter 2, Theorem 1.1].
The last theorem states that the metric of a manifold completely determines
its connection. Then it is reasonable to expect the connection to well behave
with isometries.

Proposition 3.

Let F :
(
M, g

)
→
(
N, h

)
an isometry. Then for each X, Y ∈ X(M) we

have

dF
(
∇M
X Y

)
= ∇N

dF (X) dF (Y ) (1.5)

Proof. We can proceed by direct calculation. If we prove that ∀W ∈ X(N)
we have

h
(
dF
(
∇N
X Y

)
,W
)

= h
(
∇N
dF (X) dF (Y ),W

)
we are done. We observe that, being F an isometry, we have W = dF (Z)
for a Z ∈ X(M). Thus we can write

h
(
dF
(
∇M
X Y

)
,W
)

= h
(
dF
(
∇M
X Y

)
, dF (Z)

)
= g
(
∇M
X Y, Z

)
=

1

2

(
X g(Y, Z) + Y g(X,Z)− Z g(X, Y )+

+ g([X, Y ], Z)− g([Y, Z], X) + g([Z,X], Y )
)

On the other hand, for each f ∈ C∞(N) and dF (X) ∈ X(N), we have

dF (X) f = X
(
f ◦ F

)
and

X g(Y, Z) = g(∇M
X Y, Z) + g(Y,∇M

X Z)

In the same way we can also prove that

dF
(

[X, Y ]
)

= [dF (X), dF (Y )]
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Thus we have

2h
(
∇N
dF (X) dF (Y ), dF (Z)

)
= dF (X)h

(
dF (Y ), dF (Z)

)
+

+ dF (Y )h
(
dF (X), dF (Z)

)
− dF (Z)h

(
dF (X), dF (Y )

)
+

+ h
(

[dF (X), dF (Y )], dF (Z)
)

− h
(

[dF (Y ), dF (Z)], dF (X)
)

+

+ h
(

[dF (Z), dF (X)], dF (Y )
)

which proves the claim.

Since we will need to write the Riemannian connection in local coordi-
nates, we introduce the Christoffel’s Symbols

Definition 16.
Take p ∈ M and (x1, . . . , xn) local coordinates near p. For each 1 ≤ i, j ≤ n
we define

∇M

∂

∂ xi

∂

∂ xj
=

n∑
k=1

Γkij
∂

∂xk

The functions Γkij are the Crhistoffel’s symbols of the connection ∇M in the
basis given by (x1, . . . , xn). Being the connection torsion-free, these functions
are symmetric in the lower indexes. Moreover, if gij is the expression of the
metric in local coordinates, we have the following formula

Γkij =
1

2

n∑
h=1

gkh
(
∂ghi
∂xj

+
∂ghj
∂xi
− ∂gij
∂xh

)
(1.6)

From now on when we will talk about a manifold, we will mean a Rie-
mannian manifold with the associated Riemannian connection.
The definition of connection is what we will use to define calculus objects on
Riemannian manifolds.

Definition 17. Divergence and laplacian
Consider X ∈ X(M). We define the divergence of X as the trace of the
linear function Y 7→ ∇M

Y X. The trace of a linear function on a vector space
does not depend on the base with respect to which it is calculated. Then we
have

div(X) =
n∑
i=1

〈
∇M
Ei
X,Ei

〉
M
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provided Ei is a local orthonormal frame for the tangent space to M .
Consider f ∈ C∞(M). We define the laplacian of f as the divergence of its
gradient:

∆f = div(∇f)

One can esaily check that the expression of the laplacian in local coordi-
nates is

∆f =
1√
det (g)

(
n∑
i=1

∂

∂xi

(√
det (g)

n∑
j=1

gij
∂f

∂xj

))

1.3 Geodesics and distance

The material defined until now is enough to make derivatives of any order
on Riemannian manifold. We introduce some concepts descending from the
Riemannian connection.

Definition 18. Covariant derivative and parallel field along a curve
Consider a curve γ(t) ∈ M of class C1 and X a vector field along γ. We
define the covariant derivative of X along γ as

D

dt
X = ∇M

γ′ X

X is parallel along γ if it satisfies

D

dt
X ≡ 0

The covariant derivative inherits all the properties of the Riemannian
connection, so it acts as an usual temporal derivative.

We now introduce an extremely important concept: geodesics.

Definition 19. Geodesic
A C2 curve γ in the Riemannian manifold M is a geodesics if it is not constant
and its tangent vector is parallel along the curve, that is

∇M
γ′ γ

′ ≡ 0

We will write γv for the geodesic leaving p with tangent vector v. Geodesics
are set of points together with a parametrization, in the sense that geodesics
are curves with speed proportional to arc length. This is seen directly

D

dt
|γ′|2 = ∇M

γ′ 〈γ′, γ′〉M = 2
〈
∇M
γ′ γ

′, γ′
〉
M
≡ 0
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We point out that geodesics have short time existence. More precisely,
∀ p ∈M it exists a Vp ⊂ TpM a neighborhood of 0 such that for each v ∈ Vp
exists an ε(v) > 0 and a unique geodesics γ(t) defined for t ∈ (ε(v), ε(v))
satisfying γ(0) = p and γ′(0) = v. A proof of this fact can be found, for
example, in [37, Chapter 5, Theorem 2.1].

Geodesics allow to extend the Euclidean concepts of convexity of domains
and curvature of a curve.

Definition 20. Geodesic curvature
Let γ ⊂ M be a curve parametrized by arclength. We define the geodesic
curvature of γ as the norm of the acceleration of γ

kg(γ) =

∣∣∣∣Ddt γ′
∣∣∣∣

If M has dimension two and is orientable, we can assign to the geodesic
curvature a sign. In order to do that we recall that, being M orientable, on
its tangent plane is defined J the operator making a counter-clock rotation
of π

2
radians. In other words J(v) is the unique vector orthogonal to v, with

same length as v that makes the ordered basis (v, J(v)) a positive basis of
TpM .

Definition 21. Normal curvature
Let M2 be a surface and γ ⊂ M be a curve not necessarily parametrized by
arclength. If T is a unit tangent vector, we define

kn(γ) = −
〈
∇M
T J T, T

〉
The function we have just defined adds to the previous one regularity and

sign.

Proposition 4. Let γ ⊂ M2 a curve arc-length parametrized. Then

|kn(γ)| ∝ kg(γ)2

Proof. The proof is a simple verify. Being γ parametrized by arc-lenrgth, the
acceleration is normal to the speed〈

D

dt
γ′, γ′

〉
=

1

2

D

dt
〈γ′, γ′〉

≡ 0
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Thus it exists a non vanishing smooth function ψ satisfying

J γ′ = ψ
D

dt
γ′

Then we have

kn(γ) = −
〈
∇γ′ J γ

′, γ′
〉

= −
〈
ψ′
D

dt
γ′ + ψ

D2

dt2
γ′, γ′

〉
= ψ

(
− D

dt

〈
D

dt
γ′, γ′

〉
+

〈
D

dt
γ′,

D

dt
γ′
〉)

= ψ

〈
D

dt
γ′,

D

dt
γ′
〉

which yields

|kn(γ)| = |ψ| kg(γ)2

But the most important feature of the normal curvature in dimension two
is that it characterizes geodesics

Proposition 5.
Let γ ⊂ M2 a curve parametrized by arc length. γ is a geodesic in M2 if
and only if its normal curvature vanishes identically

Proof. On one side being γ parametrized by arc length, its acceleration is
orthogonal to its tangent space. On the other side we have

−
〈
∇γ′ J γ

′, γ′
〉

=
〈
J γ′,∇γ′ γ

′〉
which means that the geodesic curvature of γ is identically zero if and only
if the normal component of the acceleration is identically zero. But this
component is the only one that could be non zero.

This property allows to think to the normal curvature as function quan-
tifying the distance of a curve from being a geodesic. Thus, from now on,
each time that we will deal with two dimensional manifolds, saying geodesic
curvature, we will refer to the normal curvature.
Before goin on, we observe a technical fact that will be helpful in the calcu-
lations
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Remark.
If T = V

|V | we have

kn(γ) = − 1

|V |3
〈∇V JV, V 〉

and the proof is straightforward:

kn(γ) = −〈∇T JT, T 〉

= − 1

|V |2

〈
∇V

JV

|V |
, V

〉
= − 1

|V |2

〈
V

(
1

|V |

)
JV +

1

|V |
∇V JV, V

〉
= − 1

|V |3
〈∇V JV, V 〉

Definition 22. Geodesically convex domain
Let Mn be a manifold. Consider Ω ⊂ Mn a compact and orientable sub-
manifold of dimension n−1. We call Ω a domain if it is connected and simply
connected. Moreover, we say that Ω is geodesically convex, briefly convex, if
for each p, q ∈ Ω exists a geodesic γ going from p to q contained in Ω

Geodesics are extremely useful because they locally minimize distance.
In our setting geodesics will be distance minimizing for all times, but this is
not the general situation.

Proposition 6.
Take p ∈ M . Then ∀ v ∈ TpM exists ε(v) > 0 such that γv(t) is distance
minimizing for each |t| ≤ ε(v)

The proof of this standard fact can be found, for instance, in [37, Theorem
5.1].

We now recall the definition of distance functions. These functions,
that will be used in a substantial way in Chapter 3, are strongly related
to geodesics.

Definition 23. Distance function
Consider U ⊂ M an open set and f ∈ C∞(U). f is a distance function if

|∇ f |M ≡ 1

The following definition should help justifying the name given to these
functions.
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Definition 24. Signed distance
Consider S ⊂ M a closed and orientable hypersurface. We call interior of
S the compact part of M bounded by S and exterior its complement. For
each p ∈ M we define dS(p) to be

dS(p) =


−miny ∈S d(p, y) if p ∈ Interior(S)

miny ∈S d(p, y) if p ∈ Exterior(S)
(1.7)

We call this function the signed distance from S

It is well-known that a signed distance function inherits the regularity
from the associated closed hypersurface. This fact can be found, for example,
in [28].

Remark.
We are going to prove that dS is a distance function on some open set U ⊂
M .
Using the exponential coordinates based on S of definition 27 we obtain the
following expression of dS

dS(p) = dS(expy(t η(y))) = t

which means that the only derivative appearing in the gradient formula (1.3)
is the one in the t direction. Thus, by orthogonality of ∂

∂t
to all other elements

of the frame induced by exponential coordinates, we get

∇f(x) =
∂

∂ t

since ∂
∂t

is the vector tangent to the geodesic expy(t η(y)) and this geodesics
leave y with speed |η(y)| = 1, we have∣∣∣∣ ∂∂ t

∣∣∣∣ ≡ 1

We present another result which is the ultimate good reason to call dis-
tance function a map with gradient of length one.

Proposition 7.
The integral curves of a distance function are geodesics

Proof. We are following the proof given in [37, Chapter 5, Lemma 3.6]. Take
U ⊂ M an open subset and f ∈ C∞(U) a distance function. Consider
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x, y ∈ U and consider γ : [0, ε]→ U going from x to y. We are going prove
that

f(y)− f(x) ≤ l(γ) (1.8)

We remark that,when this fact will be proved, to conclude the proof it will be
enough to show that integral curves of ∇f realizes equality. This is because
d(x, y) is defined as the infimum of the length of curves going from x to y.
We have

l(γ) =

∫ ε

0

|γ′(t)| dt

=

∫ ε

0

|∇ f(γ(t))| |γ′(t)| dt since |∇f | ≡ 1

≥
∫ ε

0

〈∇f(γ(t)), γ′(t)〉 dt by Cauchy-Schwarz inequality (1.9)

=

∫ ε

0

(
dγ(t)f

)
(γ′(t)) dt by definition of gradient

=

∫ ε

0

d

ds

(
f ◦ γ(s)

)
|s=t

dt by definition of differential

= f ◦ γ(ε)− f ◦ γ(0)

= f(y)− f(x) (1.10)

Moreover, by Cauchy-Schwarz inequality, equality is achieved if and only if
∇f(γ(t)) and γ′(t) are parallel. Then inequality (1.8) is an equality when γ
is an integral curve of a distance function.

It can happen that all geodesics emanating from each point of M are
defined on all the tangent space for all times. A manifold with this feature is
called geodesically complete. Completeness is a very important feature since
a complete manifold has topological properties similar to the Euclidean ones.

Theorem 2. Hopf-Rinow
Let M be a Riemannian manifold. Then the following conditions are equiv-
alent

1. M is geodesically complete

2. The compact sets of M are the bounded and closed ones

3. For each p, q ∈ M there exists a geodesic going from p to q whose
length equals d(p, q)
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4. M is a topological complete space with respect to the topology induced
by d

For the proof of this fact we refer to [37, Chapter 5, Theorem 7.1].

We are now going to make a technical assumption. Namely, we will
assume that all geodesics emanating from any point are defined until time
t = 1.

Remark.
The assumption just made is general. Assume p ∈ M and consider the
geodesic γv defined up to time ε(v). If we consider the geodesic γαv(t) =

γv(α t) we have that γαv is defined up to time ε(v)
α

> 0. So by taking α = 1
ε(v)

we have the claim. So the set Op ⊂ TpM for which γv is defined until time
t = 1 is non empty. It is also open because geodesics depend in a smooth
way on the initial speed.

We now define the exponential map

Definition 25. Exponential Map
Take p ∈ M , and consider Op as before. Then one defines

expp(v) : Op −→ M
v 7→ γv(1)

where γ is the geodesic satisfying γv(0) = p and γ′(0) = v.

This map induces a map on an open subset of TM , namely

O =
⋃
p∈M

Op (1.11)

The exponential map has many properties. We will only recall the ones that
will be used later.

Theorem 3.
For each p ∈ M the map expp is a diffeomorphism from a neighborhood of
0 ∈ TpM onto its image, a neighborhood of p ∈ M .

Proof. This result follows from implicit function theorem. The proof consists
in showing that the differential of the exponential map is non singular in 0 ∈
TpM . We are actually going to prove that this differential is the identity of
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T0 TpM , provided we assume the identification T0 TpM ' TpM . If v ∈ TpM
we have

d0 (expp) (v) =
d

dt

(
expp(t v)

)
t=0

=
d

dt

(
γtv(1))

)
t=0

=
d

dt

(
γv(t))

)
t=0

= v

Thus M can be locally described using geodesics.

Definition 26. Exponential Coordinates
Take p ∈ M and suppose that expp : Vp → Up is a diffeomorphism. Then Up
can be described using the coordinates given by

(expp)
−1 : Up −→ Vp

q 7→ (x1, . . . , xn)

where (x1, . . . , xn) are real variables given by an identification of TpM with
Rn.

Actually more can be done, in fact we can let move the base point of
expp and still get local coordinates for a part of M . What we are going to
see is that, if we have S an orientable hypersurface of M , we can describe a
neighborhood of S with n−1 coordinates belonging to S and one coordinate
moving in the direction normal to S.
Consider S ⊂ M an orientable hypersurface and define the normal bundle
of S

TS⊥ = {(p, η) ∈ TM : p ∈ S and η ∈ (TpS)⊥ ⊂ TpM} (1.12)

Then we can define the normal exponential map by setting

exp⊥ : O ∩ TN⊥ −→ M
(p, η) 7→ expp(η)

where O is defined in (1.11). It is clear that d0 (expp
⊥) is non singular for each

p. Then, being S embedded, exp⊥ is a diffeomorphism of a neighborhood
of S × 0 ⊂ TS⊥ onto its image U ⊂ M . We have just proven that the
following definition is well posed.
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Definition 27. Exponential coordinates based on an hypersurface
Let S ⊂ M an orientable hypersurface. Then ∃U a neighborhood of S in
M such that, for each p ∈ U , we have

p = expy(t η(y)) (1.13)

for a unique y ∈ S and a unique t ∈ R. Here η(y) is one of the possible
unit normal fields of S.

Remark.
If (y1, . . . , yn−1) are local coordinates for S near y then we have local coordi-
nates for U given by (y1, . . . , yn−1, t).

Exponential coordinates are extremely useful because allow to make cal-
culus on manifolds in a way very similar to the Euclidean one. So it would be
very useful if these coordinates were global, i. e. if chosen a point p we could
describe the whole M by the coordinates of TpM . Clearly for general mani-
folds this is not possible, but it is possible for a class of manifolds to which
the hyperbolic plane belongs. Later we will state for what class of manifolds
exponential coordinates are global. Now we see that for closed hypersurfaces
we can use these coordinates to describe tubular neighbourhoods. Moreover
we can associate a signed distance to any closed and orientable hypersurface.

Proposition 8. Consider S ⊂ Mn a closed hypersurface and S ⊂ M . Let
d the signed distance function associated to S. If ϕt is the flow ot ∇d, then
∃ a > 0 such that

ϕ(t) : S −→ Ct
p 7→ ϕp(t)

is a diffeomorphism ∀ t ∈ [−a, a]

Proof. The essence of the proof is to show that the flow of a distance function
is gedesic so that one can use exponential coordinates. If a is small enough
we can parametrize V a via exponential coordinates in the following way ([13,
pag 32])

φ : S × [−a, a] −→ V a

(q, t) 7→ expq(t η(q))

where η is a unit normal field on S. We now show that the flow of d is
coincides with the exponential map on the normal direction to S. Take Sia
q ∈ S. Since, by proposition 7, the flow of a distance function is geodesic
and because two geodesics with same tangent field coincide, we verify that
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the two geodesics expq(t η(q)) and ϕq(t) leave q with same tangent vector.
We have

ϕ′q(0) = ∇d(ϕq(0)) = ∇d(q)

d

dt
(expq(t∇d(q))) |t=0 = (d0expq) (∇d(q))

= ∇d(q)

since d0expq = idTqS as in the proof of Theorem 3.

Definition 28. Injectivity Radius
Consider a complete manifold M and p ∈ M . One defines the injectivity
radius of M at p as

ρinj(p) = sup{r > 0 : expp is a diffeomorphism from B0r ⊂ TpM}

We can associate an injectivity radius to M by setting

ρinj(M) = inf
p∈M

ρinj(p)

It is clear from the definition that ρinj(M) = ∞ if and only if expp is a
diffeomorphism defined on the whole TpM which means, by completeness of

M via Hopf-Rinow theorem, that expp

(
TpM

)
= M .

1.4 Curvature

In this section we will omit the dependence of the connection on the
manifold unless it could lead to a misunderstanding.

Definition 29. Curvature
Consider Mn a Riemannian manifold and X, Y, Z ∈ X(M). One defines the
curvature function associated to M by setting

R(X, Y )Z = ∇Y ∇X Z −∇X ∇Y Z +∇[X,Y ] Z (1.14)

If we consider one more field W we define the following notation

(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉

The curvature function is actually a tensor since it can be proved to be
linear in each of its arguments. It can be considered as the core of Riemannian
geometry. However, here we will only recall the facts that will be useful in
the forecoming parts. One can find a handy treatment of the subject in [7].
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Proposition 9.
For all X, Y, Z,W ∈ X(M) we have

1. Bianchi Identity

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

2.

(X, Y, Z,W ) = −(X, Y,W,Z)

3.

(X, Y, Z,W ) = −(Y,X,Z,W )

4.

(X, Y, Z,W ) = (Z,W,X, Y )

Now we show that the curvature tensor can be understood by means
of a simpler curvature. In order to do this we will need to a notation for
planes spanned by vectors. Take X, Y ∈ X(M) two linearly independent
vector fields. For each p ∈ M we are writing by πp(X, Y ) ⊂ TpM the plane
spanned by X(p) and Y (p). From now on we are omitting the dependence
on p.

Definition 30. Sectional curvature
Take p ∈ M and two fields X, Y non zero in p. Then we define

Ksect(X, Y )(p) =
(X, Y,X, Y )

|X|2 |Y |2 − 〈X, Y 〉2
(p) (1.15)

Actually sectional curvature only depends on the plane spanned by X, Y ,
and not on the specific choice of X and Y .

Proposition 10.
Take X, Y ∈ X(M) two linearly independent fields. If W,Z ∈ X(M) span
the same plane as X, Y we have

Ksect(X, Y ) = Ksect(W,Z)

The proof of this standard result can be found, for instance, in [7, Chapter
4, Proposition 3.1].

We now recall that sectional curvature completely determines the curva-
ture tensor.
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Theorem 4.
Consider V a vector space with a scalar product 〈. , . 〉 and R,R′ : V × V ×
V → V two trilinear functions satisfying the same algebraic properties of
a curvature tensor, namely the properties of proposition 9. Taken x, y ∈ V
linearly independent, if we define

K(π(x, y)) =
〈R(x, y, x), y〉
|x|2 |y|2 − 〈x, y〉2

K ′(π(x, y)) =
〈R′(x, y, x), y〉
|x|2 |y|2 − 〈x, y〉2

we have the following implication

K(π) = K ′(π) ∀ plane π ⊂ V

⇓
R = R′

The proof of this result is completely algebraic, so we refer to [7, Chapter
4, Lemma 3.3] for the proof.

1.5 Immersed manifolds

In this section we will consider submanifolds with the Riemannian struc-
ture induced from an ambient manifold. We will recall geometric functions
determined by how the sub-manifold is placed in the ambient manifold.

1.5.1 Geometry on submanifolds

In this section Mn will be a complete Riemannian manifold and Sm,
m ≤ n a differentiable manifold.

Definition 31.
A smooth map Φ : S → M is an immersion of S provided its differential
is non singular at each point of S. If in addition Φ is injective and is an
homeorphism onto its image, Φ is called an embedding of S.

Definition 32. Induced Riemannian structure
Suppose Φ : S → M is an immersion. Then if the Riemannian structure of
M is given by the metric g, Φ induces a Riemannian structure on S defined
as follows. Consider p ∈ S. For each v, w ∈ TpS we define

hp(v, w) = gΦ(p)(dpΦ(v), dpΦ(w))
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This metric on S is called the pull-back metric.
Roughly speaking, we define a metric on S such that Φ is an isometry.
It turns out that the Riemannian connection ∇S is the projection of ∇M

on the tangent bundle of S. From now on we shall assume that all the
hypersurfaces that we take into account are orientable.

Definition 33.
Let M be a Riemannian manifold and S an hypersurface with unit normal
field η. For each X, Y ∈ X(S) and p ∈ S we define

∇S
X Y (p) =

(
∇MeX Ỹ

)tangent
(p) = ∇MeX Ỹ (p)−

〈
∇MeX Ỹ , η

〉
M
η(p)

where X̃ and Ỹ are extensions of X and Y to a neighborhood of p in M .

Proposition 11.

1. ∇S is well defined, i. e. it does not depend on the extension of X and
Y

2. ∇S is the unique connection compatible with the metric induced on S
by M

For the proof one can see, for example, [7, Chapter 6].

Definition 34. Shape operator
Let S ⊂ M be an orientable hypersurface with unit normal field η. Then
for each p ∈ S one defines the shape operator

A : TpS −→ TpS

v 7→
(
−∇M

v η
)tangent

The operator we have just defined is linear. Since we are going to prove it
is self adjoint, we can say that this operator is the Riemannian generalization
of the Euclidean differential of the Gauss map.

Proposition 12.
The Shape operator is self adjoint

Proof. We can proceed by direct computation. Clearly we have

−
〈
∇M
v η, w

〉
=
〈
∇M
v w, η

〉
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and

〈A(v), w〉 − 〈v,A(w)〉 =
〈
∇M
v w −∇M

w v, η
〉

= 0

since the Lie bracket of two fields tangent to a submanifold is tangent to the
submanifold.

It is useful to understand how the shape operator changes when moving
away form the hypersurface. To state the result solving this problem we
introduce some notation. Consider M a manifold and S ⊂M a sub-manifold.
If η is a unit normal field along S and X ∈ X(M) we define

Rη(X) = R(X, η)η (1.16)

Then the change of the shape operator along normal directions is described
by the following equation.

Theorem 5. Radial Curvature Equation
Consider S ⊂ M a submanifold with a unit normal vetor field η. Thus we
have

−∇ηA+ A2 = Rη (1.17)

where we recall that ∇ηA is defined as(
∇ηA

)
(X) = ∇η

(
A(X)

)
− A

(
∇ηX

)
We are not going to prove this fact. For a proof one can see, for example,

[13, Chapter 3, Lemma 3].

1.5.2 Mean Curvature

We can finally introduce the main object of study of this thesis.

Definition 35. Mean Curvature
Consider S ⊂ Mn an orientable hypersurface with unit normal field η. Then
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for each p ∈ S we define the mean curvature of S in x with respect to η as

H(p) = − 1

n− 1
trace(A)(p)

= − 1

n− 1

n−1∑
i=1

〈
∇M
Ei
η, Ei

〉
= − 1

n− 1
div(η)(p)

where E1, . . . , En−1 is an orthonormal frame of TyS for y near x

A few facts need to be observed.

Remark.

� The normal curvature for curves of definition 21 coincides with the
mean curvature just defined.

� The sign of H(x) changes if the unit normal field is changed.

� H is preserved by ambient isometries, i. e. if F : M → M is an
orientation preserving isometry, we have, for each x ∈ S

H(x) = H̃(F (x))

where H̃ is the mean curvature of F (S) calculated with respect to η̃ =
dF (η). This is true because mean curvature is a divergence. Indeed,
choose x ∈ S and E1, . . . , En−1 an orthonormal frame for TyS for y
near x. Then

−n H̃ =
n−1∑
i=1

〈
∇M
dF (Ei)

dF (η), dF (Ei)
〉

=
n−1∑
i=1

〈
dF
(
∇M
Ei
η
)
, dF (Ei)

〉
by (1.5)

=
n−1∑
i=1

〈
∇M
Ei
η, Ei

〉
= −nH

We end this general part on mean curvature proving a result describing
the mean curvature for level surfaces of distance functions. This is because
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distance functions are a standard tool to build barriers for solutions of Dirich-
let problems. We need some notation for level set manifolds. Let U ⊂ Mn

an open set and f : U → R a smooth function on U . For each 0 < a we
define

V a = {p ∈ U : −a ≤ f(p) ≤ a} (1.18)

Ca = {p ∈ U : f(p) = a} (1.19)

Proposition 13.
Consider d : U → R a distance function on the open set U ⊂ Mn. Let
ψ ∈ C2(R) a function such that ψ(0) = 0 and ψ′(0) > 0.

Assume p ∈ M and (ψ ◦ d) (p) = t. Thus ∀ q ∈ Ct we have

H(ψ ◦ d)(q) =
ψ′√

1 + ψ′2

(
H ′(q) +

ψ′′

ψ′ (1 + ψ′2)

)
(1.20)

where H is calculated with respect to the normal field − ψ′√
1+ψ′2

∇d and H ′(q)

is the mean curvature of the hyper-surface Cd(q) calculated with respect to the
field −∇d.

Proof. We proceed by direct computation. If q ∈ Ct we can write

(n− 1)H(ψ ◦ d)(q) = div

(
ψ′∇d√
1 + ψ′2

)

=

〈
∇

(
ψ′√

1 + ψ′2

)
,∇d

〉
+

ψ′√
1 + ψ′2

∆d(q)

=

(
ψ′′

(1 + ψ′)
3
2

)
|∇d|2 +

ψ′√
1 + ψ′2

∆d(q)

=

(
ψ′′

(1 + ψ′)
3
2

)
+

ψ′√
1 + ψ′2

H ′(q)

by definition of distance function.

We end this section with a remark on how we can write mean curvature
for two special parametrizations, namely the level-set case and the graph
case.
We recall that if U ⊂ Mn is an open set and u : U → R is a smooth
function, y ∈ R is a regular value for u, then the set Sy = u−1(y) is a
smooth hypersurface of Mn. Moreover ∇u is a normal vector on Sy which
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vanishes nowhere, thus, if renormalized, it is a normal unit vector field along
Sy.

H = − 1

n− 1
div

(
∇u
|∇u|

)
= − 1

n− 1

(
∆u

|∇u|
− 1

|∇u|2
〈∇ |∇u|,∇u〉

)

In local coordinates we have

∆u =
1

|g|

n∑
i=1

∂

∂xi

(√
|g|

n∑
j=1

gij
∂f

∂xj

)

|∇u|2 =
n∑

i,j=1

gij
∂f

∂xi

∂f

∂xj

〈∇ |∇u|,∇u〉 =
n∑

i,j=1

∂

∂xi
|∇u| gij ∂f

∂xk

We are now going to deduce a formula for mean curvature of hypersurfaces
expressed in form of a graph. Assume S is the graph of a function u : Nn−1 →
R where N ⊂ M is a smooth submanifold of dimension n − 1. Precisely if
p ∈ S we consider (x, xn) = (x1, . . . , xn−1, xn) local coordinates for M , with
(x1, . . . , xn−1) local coordinates for N . We assume that S = {(x, f(x)) : x ∈
Ω} for some f ∈ C∞(N). Thus if we define u(x, xn) = xn − f(x) we have
taht u has no singular points and thus S = u−1(0). We will calculate mean
curvature of S with respect to the upward normal vector which we define as
follows. Recall that ∇u ∈ TM , and is orthogonal to TS. Thus, as before,

we have ∇u =
∂

∂ xn
−∇f . Clearly we have

∣∣∣∣ ∂

∂ xn
−∇f

∣∣∣∣2 = 1 + |∇u|2. We

define the upward normal vector to S as the vector

η =
1√

gnn + |∇f |2

(
−∇f +

∂

∂xn

)

We use the adjective upward to strengthen the fact that the component of η
along ∂

∂xn
is positive.
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Proposition 14. ∀ q ∈ S close enough to p we have

H(q) = − 1

n− 1
div

 ∇f√
gnn + |∇f |2


= − 1

n− 1

(
∆f√

gnn + |∇f |2
− |∇u|

(gnn + |∇u|2)3/2
〈∇ |∇u|,∇u〉

)





Chapter 2

The manifold H2 × R

In this chapter we present the Riemannian manifold in which we will
study constant mean curvature surfaces. We will specialize the geometric
quantities we introduced in the preceding chapter to H2 × R. Our manifold
is a Riemannian product of a curved surface and the real line, then we begin
presenting the geometry of the surface.

2.1 Hyperbolic plane

There are several models of the hyperbolic plane. Here we will introduce
just two of them, the upper half-space and the Poincaré disc. We will intro-
duce the two models at the same time and we will develop the geometry in
parallel. We introduce two models because some aspects are more clear in
the upper half space model and others are more clear in the disc model.
We will give global coordinates on R2, i. e. we will see the hyperbolic
plane as a subset of R2 with a non flat metric. Thus, it is useful to use
complex notation for points of R2. Throughout this section, we will write
z = x+ i y = (x, y) for points of R2 and z̄ = x− i y for the complex conjugate
of z. Moreover we will see any function f : R2 → R2 as depending on the
two variables z, z̄. In this notation, if f = (f1, f2) with fi ∈ R, we have
f1 = Re(f) and f2 = Im(f). One of the most relevant benefits coming from
complex notation is that the differential of functions behaves like multiplica-
tion in C. In order to prove this fact we associate two vector fields to the z
and z̄ coordinates

∂

∂ z
=

1

2

(
∂

∂ x
− i ∂

∂ y

)
∂

∂ z̄
=

1

2

(
∂

∂ x
+ i

∂

∂ y

)

31
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These definitions make sense because R2 is a vector space, hence any of its
tangent spaces is intended as identified with R2.

Proposition 15.
Let U ⊂ R2 an open set and f : R2 → R2 be a C1 function. Consider
γ : [0, 1]→ U a C1 curve. Then we have(

dγf
)

(γ′) =
∂f

∂z

(
γ, γ
)
γ′ +

∂f

∂z

(
γ, γ
)
γ′

Proof. The proof we suggest is a verify that one can switch from one no-
tation to the other. Let’s write the differential of f applied to γ′ in the
usual notation. Assume γ(t) = (γ1(t), γ2(t)) = γ1(t) + i γ2(t) and f(z) =
(f1(z), f2(z)) = f1(z) + i f2(z). Then we have(

dγf
)

(γ′) =
(∂f1

∂x
γ′1 +

∂f1

∂y
γ′2,

∂f2

∂x
γ′1 +

∂f2

∂y
γ′2

)
On the other hand we have

∂f

∂z
=
∂f1

∂z
+ i

∂f2

∂z
=

1

2

(
∂f1

∂x
+
∂f2

∂y

)
+
i

2

(
∂f2

∂x
− ∂f1

∂y

)
∂f

∂z̄
=
∂f1

∂z̄
+ i

∂f2

∂z̄
=

1

2

(
∂f1

∂x
− ∂f2

∂y

)
+
i

2

(
∂f2

∂x
+
∂f1

∂y

)
Taking the product with the tangent vectors in C we get

∂f

∂z
γ′ =

1

2

((
∂f1

∂x
+
∂f2

∂y

)
γ′1 −

(
∂f2

∂x
− ∂f1

∂y

)
γ′2

)
+

+
i

2

((
∂f2

∂x
− ∂f1

∂y

)
γ′1 +

(
∂f1

∂x
+
∂f2

∂y

)
γ′2

)
and

∂f

∂z̄
γ′ =

1

2

((
∂f1

∂x
− ∂f2

∂y

)
γ′1 +

(
∂f2

∂x
+
∂f1

∂y

)
γ′2

)
+

+
i

2

((
∂f2

∂x
+
∂f1

∂y

)
γ′1 −

(
∂f1

∂x
− ∂f2

∂y

)
γ′2

)
and hence

∂f

∂z
γ′ +

∂f

∂z̄
γ′ =

∂f1

∂x
γ′1 +

∂f1

∂y
γ′2 + i

(
∂f2

∂x
γ′1 +

∂f2

∂y
γ′2

)
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Two models

This section is devoted to a presentation of the main results of hyperbolic
planar geometry. For each model we will present isometries, geodesics and
other constant curvature curves.

Definition 36. Poincaré disc model
The disc D = {z ∈ R2 : |z| < 1} with the metric

h(z) =

(
2

1− |z|2

)2 (
dx2 + dy2

)
= λ(z)2

(
dx2 + dy2

)
is the Poincaré disc model of the hyperbolic real plane.

Definition 37. Upper half-space model
The upper real half plane US = {(x, y) ∈ R2 : y > 0} with the metric

g(z) = 1
y2

(
dx2 + dy2

)
is the hyperbolic real plane.

The two metrics we have defined are conformal to the Euclidean one
hence if z = (x, y) ∈ US and v ∈ TzUS we have |v|US = 1

y
|v|R2 . Moreover

the angle between two vectors tangent to US in any point is the same when
measured in the hyperbolic and in the Euclidean setting. Clearly all these
remarks apply to the Poincaré model as well.

What we have defined are just two different parametrizations of the same
Riemannian surface.

Proposition 16.
The function

Φ : D −→ US

z 7→ i z + 1

−z − i
(2.1)

is an isometry

Proof. One can check that the function

Φ−1(w) =
−iz − 1

z + i

is the inverse of Φ. Moreover Φ(D) ⊂ US since we have

Im(Φ(z)) =
1− |z|2

|z + i|2
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We remark that this formula also shows that Φ sends ∂D in ∂US.
To prove that Φ is an isometry, we show that it conserves lengths of curves.
Consider γ(t) : [0, 1]→ D a curve. Then

lD(γ) =

∫ 1

0

|γ′(t)|D dt

On the other side we have

lUS(f ◦ γ) =

∫ 1

0

| (f ◦ γ(t))′ |US dt

=

∫ 1

0

∣∣∣∣∂f∂z (γ(t)) γ′(t)

∣∣∣∣
US
dt

=

∫ 1

0

1

Im(f ◦ γ(t))

∣∣∣∣∂f∂z (γ(t)) γ′(t)

∣∣∣∣
R2

dt

where

∂f

∂z
=

2

(z + i)2

Im(f ◦ γ(t)) =
1− |γ(t)|2

|γ(t) + i|2

So we can write

lUS(f ◦ γ) =

∫ 1

0

2

1− |γ(t)|2
|γ′(t)|R2

=

∫ 1

0

|γ′(t)|D

We call the manifold parametrized by the two models the hyperbolic real
plane and we write H2.

Hyperbolic Isometries

We begin the study of hyperbolic geometry by its isometries. To do that
we need to do a digression in elementary Riemann surfaces theory.
With C we mean the compactification of C. In other words we define C = S2,
where the equality is realized via stereographic projection from the north pole
of S2. Thus it makes sense to indicate the north pole of S2 with ∞ .
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With stereographic projection in mind, one can see that a circle of C = S2 is
projected into a circle of C or into a straight line. One can be more precise:
every circle in S2 that does not contain the north pole is sent into a circle of
C and every circle of S2 containing the north pole is sent in a straight line
of C.
We can now define a class of functions that play a crucial role in our study
of hyperbolic isometries.

Definition 38. Möbius function
Consider f : C → C a function. f is a Möbius function if there exist
a, b, c, d ∈ C with ad− bc 6= 0 satisfying

f(z) =
az + b

cz + d

We write Möb+(C) for the set of all such functions.

This definition makes sense because any holomorphic rational linear func-
tion has precisely one pole p and has limit at infinity. Thus we define

f(p) =∞ ∈ C and f(∞) = lim
z→∞

f(z) ∈ C

Möbius functions have connections to many other theories, for example to
Lie groups theory. However here we will only summarize the features that
are relevant for hyperbolic geometry. An introduction to general theory of
Möbius functions can be found in [1, Chapter 2].

Theorem. Properties of Möbius functions
Möb+(C) is a group. Moreover if f ∈ Möb+(C) then

1. f is holomorphic and hence conformal

2. f acts transitively on triple of points of C

3. f maps circles of C in circles of C

For the proof of these facts we refer to [1, Chapter 2].
We specialize to Möbius functions which are diffeomorphsims of US. In order
to do that, we define

Möb+(US)R =

{
f ∈ Möb+(US) : f(z) =

az + b

cz + d

for a, b, c, d ∈ R and ad− bc 6= 0

}
We have the following characterization.
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Proposition 17.
f ∈ Möb+(US)R ⇐⇒ ∃ a, b, c, d ∈ R satisfying ad− bc = 1 such that

f(z) =
az + b

cz + d

The proof of this representation formula can be found in [1, Chapter 2,
Theorem 2.26].
We are now ready to state why Möbius are important for us.

Theorem 6.
Isom(H2) ' Möb+(US)R. Moreover the action of Isom(H2) is transitive,
hence H2 is an homogeneous manifold.

We are not going to prove this result because the proof would bring us
too far from our goal. A proof can be found in [1, Chapter 3, Theorem 3.19].
The isomorphism between Möbius functions and hyperbolic isometries can be
made precise. In the upper half space model the isomorphism is the identity.
In the Poincaré disc model the isomorphism is made conjugating elements of
Möb+(US)R with Φ.

What we are going to prove is a factorization of any hyperbolic isometry
in terms of three special functions.

Definition 39.

1. ∀ s ∈ R we define

ms : US −→ US
z 7→ z + s

(2.2)

2. ∀ t > 0 we define

τt : US −→ US
z 7→ t z

(2.3)

3. We define

R : US −→ US

z 7→ −1

z

(2.4)

To check that these definitions are well, we directly compute the imagi-
nary part of all these functions to see it is strictly positive. We have
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Im(ms(z)) = Im(z)

Im(τt(z)) = t Im(z)

Im(R(z)) =
Im(z)

|z|2

Before stating the factorization result, we show geometrical properties
that allow to think about m as a translation, τ as a dilation and R as a
rotation.

Proposition 18.

1. ms fixes horizontal Euclidean lines of US

2. τt fixes the vertical Euclidean line of US {Re(z) = 0}

3. R fixes hyperbolic circles of center i

Proof. Item 1 and 2 are a consequence of the linearity of Im. Being s, t ∈ R
we have Im(z + s) = Im(z) and Im(tz) = tIm(z) > 0.
Item 3 follows from the fact that z = i is the only fixed point of R.

It is useful to give a version of this result in the Poincaré disc model.
Given f ∈ Isom(US) we define f̃ = Φ−1 ◦ f ◦ Φ the conjugated element of
f in Isom(D).

Proposition 19.

1. m̃s fixes Euclidean circles tangent to −i ∈ ∂D

2. τ̃t fixes horizontal segments of D defined by Im(z) = 0

3. R̃ fixes Euclidean circles of center 0

Proof. Item 1 follows from the fact that Φ is a Möbius function and from the
fact that an Euclidean horizontal line has one point at infinity.
Item 2 follows from the fact that Φ is a Möbius function and from the fact
that the line {Re(z) = 0} asymptotically crosses the asymptotic boundary
of US orthogonally. Moreover it passes through i which is mapped to 0 by
Φ−1.
Item 3 is straightforward because Möbius functions preserve circles.
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We can now show the factorization of isometries in terms of the transla-
tions, rotation and dilations.

Proposition 20.
Let f ∈ Isom(US) . Then f can be obtained composing rotations, transla-
tions and dilations.

Proof. Assume we have

f(z) =
az + b

cz + d
for a, b, c, d ∈ R and ad− bc = 1

we separate two cases according to the value of c.
If c = 0, we have

f(z) = a2z + ab = mab ◦ τa2 (z)

If c 6= 0, we have

f(z) = ma
c
◦ τ 1

c2
◦R ◦m d

c
(z)

Indeed it holds

ma
c
◦ τ 1

c2
◦R ◦m d

c
(z) = ma

c
◦ τ 1

c2
◦R

(
z +

d

c

)
= ma

c
◦ τ 1

c2

(
− 1

z + d
c

)

= ma
c

(
− 1

c2z + dc

)
=

1

c

(
− 1

cz + d
+ a

)
=

1

c

(
acz + bc

cz + d

)
being ad− bc = 1

Sectional curvature

This section is devoted to showing that the sectional curvature of the
hyperbolic plane is constant and equal to -1. In order to do that we need
coordinate expressions of Christoffel symbols.
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Proposition 21.
In the upper half-space model the Christoffel’s symbols write

Γ1
11(x, y) = 0 Γ2

11(x, y) =
1

y

Γ1
12(x, y) = −1

y
Γ2

12(x, y) = 0

Γ1
22(x, y) = 0 Γ2

22(x, y) = −1

y

In the Poincaré disc model the Christoffel’s symbols write

Γ1
11(x, y) =

2x

1− |z|2
Γ2

11(x, y) = − 2y

1− |z|2

Γ1
12(x, y) = −Γ2

11(x, y) Γ2
12(x, y) = Γ1

11(x, y) (2.5)

Γ1
22(x, y) = −Γ1

11(x, y) Γ2
22(x, y) = −Γ2

11(x, y)

This proposition can be proved by a direct computation based on formula
1.6.

Proposition 22.
The sectional curvature of H2 is constant and equal to −1.

Proof. We will proceed by direct computation in the half space model. We
first recall that any two coordinate fields commute, i.e. their Lie bracket
is zero. This is a completely differentiable fact. However, it can be proved
using the fact that the Riemannian connection is torsion free and that the
functions that we are considering are smooth.
Consider z ∈ H2 and the basis of TzM induced by cartesian coordinates.
Thus we have

R

(
∂

∂ x
,
∂

∂ y

)
∂

∂ x
= − 1

y2

∂

∂ y



40 CHAPTER 2. THE MANIFOLD H2 × R

Indeed, by definition, we have

R

(
∂

∂ x
,
∂

∂ y

)
∂

∂ x
= ∇ ∂

∂ y

∇ ∂

∂ x

∂

∂ x
−∇ ∂

∂ x

∇ ∂

∂ y

∂

∂ x
+∇24 ∂

∂ x
,
∂

∂ y

35
∂

∂ x

= ∇ ∂

∂ y

(
Γ2

11

∂

∂ y

)
−∇ ∂

∂ x

(
Γ1

12

∂

∂ x

)

= ∇ ∂

∂ y

(
1

y

∂

∂ y

)
+∇ ∂

∂ x

(
1

y

∂

∂ x

)

= − 1

y2

∂

∂ y
+

1

y

(
Γ2

22

∂

∂ y

)
+

1

y

(
Γ2

11

∂

∂ y

)
= − 1

y2

∂

∂ y

Thus

Ksect

(
TzH2

)
=

〈
R

(
∂

∂ x
,
∂

∂ y

)
∂

∂ x
,
∂

∂ y

〉
∣∣∣∣ ∂∂ x

∣∣∣∣2 ∣∣∣∣ ∂∂ y
∣∣∣∣2

= −1

This fact has an extremely useful consequence, i. e. the globality of the
exponential map. Since it is a general result concerning manifolds with non
positive sectional curvature, we state it in the general form.

Theorem 7. Cartan - Hadamard
If M is a complete manifold with non positive sectional curvature, then
ρinj(M) =∞.

For a proof of this result we refer to [7, Chapter 7, Theorem 3.1].
Using this theorem we prove that, in a manifold with non positive curvature,
the flow of the distance function from a convex domain is global, i.e. it is
defined for all times.

Proposition 23.
Let Mn be a complete manifold with Ksect ≤ 0. Let Ω ⊂ M a convex domain
(see definition 22) and dΩ the distance function associated to Ω. Then the
flow of d is global, i.e.
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1. ∀ p ∈ ∂Ω ϕp(s), the flow of ∇d, is defined ∀ s ≥ 0

2. ∀ p 6= q ∈ ∂Ω we have ϕp(s1) 6= ϕq(s2) ∀ s1, s2 ∈ R+

Proof. Assertion 1 follows from the completeness of M together with the
fact that the flow of a distance function is geodesic. Assertion 2 is proved by
contradiction. Take p, q ∈ ∂Ω and s1, s2 ∈ R+ satisfying ϕp(s1) = ϕq(s2) =
m ∈ M . Thus the flows ϕp and ϕq coincide. It is because they are two
geodesics intersecting in a point where their tangent vectors are both equal
to ∇d(m). Thus we have a geodesic from p to q not contained in Ω. This is a
contradiction because if such a geodesic existed, it would have had a length
not smaller than l = d(p, q). Thus one of the two following cases would have
been given

1. The geodesic we are considering has length greater than l. Then it
would exist a time after which the geodesic would not minimize length
anymore. But this would imply ρinj(x) <∞ which contradicts Cartan-
Hadamard Theorem.

2. The geodesic we are considering has length equal to l, thus we would
have two distinct geodesics going from p to q minimizing distance.
Indeed one geodesic would be the flow of the distance function, the
other would exist by hypothesis of convex domain. But this would
mean ρinj(p) <∞

Constant curvature curves

We now study curves whose geodesic curvature (see remark following
proposition 5) is constant. This is because in the hyperbolic plane there are
three families of curves with constant geodesic curvature that will be used in
the last chapter. We begin by finding all the geodesics. After that we will
take into account curves with constant curvature equal or greater to one.

Proposition 24.
The geodesics of US are constant speed parametrizations of vertical Euclidean
lines or Euclidean half circles intersecting the {y = 0} line orthogonally.

Proof. We first show that that these curves are all the geodesics of the hy-
perbolic plane. It is an elementary geometric fact that, for each point z in
US and for each vector v ∈ TzH2 , there exists precisely one curve passing
trough z with tangent vector v belonging to the class of half circles with
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center on the {y = 0} line and vertical lines.
Then we prove that each one of these curves is a geodesic. We start from the
vertical lines. Let γ = {(x, y) ∈ H2 : x = t}. Thus

V =
∂

∂ y
with |V | = 1

y

is a tangent field to γ. To parametrize the curve by arc length we use γ̃,
the reparametrization of γ whose tangent field is T = V

|V | . This can be done
because any curve can be parametrized by arc length. Moreover two arc
length parametrizations can differ only on the orientation they induce on the
curve.
From T = γ̃′ it follows

∇T T = y∇ ∂

∂ y

y
∂

∂ y

= y
( ∂

∂ y
+ y Γ2

22

∂

∂ y

)
= y

( ∂

∂ y
− ∂

∂ y

)
= 0

If γ is an Euclidean circle with center on the {y = 0} line, we can suppose
that its center is (0, 0). This is because using a suitable isometry ms, defined
in (2.2), we can reduce to this case. Thus we assume that γ = {(x, y) ∈
H2 : x2 + y2 = r2} for some r > 0. Then a tangent field is given by

V = −y ∂

∂ x
+ x

∂

∂ y
with |V | =

√
x2 + y2

y
=
r

y

As in the preceding case, if we define T = V
|V | , we can consider γ̃ the arc
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length reparametrization of γ whose tangent field is T . Then we compute

∇T T =
y

r2

(
− y∇ ∂

∂ x

(
−y2 ∂

∂ x
+ xy

∂

∂ y

)
+

+ x∇ ∂

∂ y

(
−y2 ∂

∂ x
+ xy

∂

∂ y

))

=
y

r2

(
−y

(
−y2 Γ2

11

∂

∂ y
+ y

∂

∂ y
+ xy Γ1

12

∂

∂ x

)
+

+x

(
−2y

∂

∂ x
− y2 Γ1

12

∂

∂ x
+ x

∂

∂ y
+ xy Γ2

22

∂

∂ y

))
=

y

r2

(
xy

∂

∂ x
− 2xy

∂

∂ x
+ xy

∂

∂ x

)
= 0

It is useful to have the picture of what are geodesics in the Poincaré
model.

Proposition 25.
The geodesics of D are constant speed parametrizations of segments emanat-
ing from 0 or arcs of circle approaching ∂D orthogonally.

Proof. We just transport geodesics of US using Φ−1. Thus any geodesic γ̃
in D is the image of a geodesic γ in US. Hence γ is either a vertical line
or an half circle intersecting the {y = 0} line orthogonally. In both cases,
being Φ−1 a Möbius function, γ̃ is the intersection of a straight line or of
a circle with D. Moreover, since Φ is conformal as a function from C to
C, γ̃ asymptotically touches ∂D making the same angle made by γ when it
asymptotically touches {y = 0}. Thus we are done.

We use geodesics of the Poincaré model to give a relation between hyper-
bolic and Euclideann distance from a fixed point.

Proposition 26.
Let be z ∈ D with |z|R2 = r for some 0 < r. Thus if ρ = dH2(z, 0) we have

tanh
(ρ

2

)
= r
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Proof. We use the fact that suitable parametrizations of rays emanating from
0 are hyperbolic geodesics. One can esily check that the curve

γ(t) =

(
tanh

(
t

2

)
, 0

)
is an hyperbolic geodesic starting in 0. It is a geodesic since it is a ray and

|γ′(t)|H2 =

sech2

(
t

2

)
1− tanh2

(
t

2

) = 1

Hence we have ∀ t ≥ 0

dH2(γ(t), 0) =

∫ t

0

ds = t

dR2(γ(t), 0) = tanh

(
t

2

)

In figure 2.1 are shown geodesics and horocycles on H2 in the disc model.

Figure 2.1: Geodesics in blue and horocycles in red)
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2.1.1 Convexity and horocycle convexity

As we have seen in the definition 22, geodesics allow to define a concept
of convexity. In the Euclidean case it is possible to characterize geodesic
convexity in terms of the curvature of the boundary. Here an analogous
result holds. We recall that we compute geodesic curvature of closed curves
with respect to the normal field pointing toward the compact bounded by γ.

Proposition 27.
Let γ : [0, 1] → H2 a smooth closed curve. Call Ω the compact set bounded
by γ. Ω is geodesically convex if and only if kg(γ) ≥ 0

Proof. Consider H2 in the Poincaré disc model. We show that each point
of Ω has a convex neighborhood. Being H2 homogeneous, γ can be written
locally as a graph on a interval I of the horizontal axis. Namely we write
γ = (x, f(x)) for some function f . Recalling the definition of λ given in
definition 36, one can directly verify that

kg(γ) =
f ′′

λ (1 + f ′2)
3
2

+ terms in the first order derivatives f and λ

if Ω is in the super-graph of f

kg(γ) = − f ′′

λ (1 + f ′2)
3
2

+ terms in the first order derivatives of f and λ

if Ω is in the subgraph of f

Thus the curvature operator written in these coordinates is respectively el-
liptic and anti-elliptic.
We prove the claim in the super-graph case. The other one can be ruled
out in the same way. Consider p ∈ γ near which Ω is in the super-graph
of f and consider q1, q2 two points in γ close enough to p so that the graph
representation still holds. Here the curvature operator is elliptic, hence if φ
is the geodesic going from q1 to q2 minimizing length, the maximum principle
implies

φ ≥f in q1 and q2

0 = kg(φ) ≤kg(γ)
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then we have

φ ≥f all over φ

which means φ is in the super-graph of f

We have to show that local convexity implies global convexity. We use the
infinity of the injectivity radius in H2. In fact this allows us to reduce to
the Euclidean case. We retract H2 to T0H2 by means of the inverse of the
exponential map. Now we observe that Ω is geodesically convex if and only
if its retract on T0H2 is convex by straight lines. But in R2 local convexity
implies global convexity.

We now turn our attention to curves with constant positive geodesic cur-
vature. This is because they allow to give another definition of convexity
that is crucial in the existence theorem in the third chapter.

Consider the upper half-space model of H2. We define an horocycle to be
an horizontal Euclidean line or an Euclidean circle tangent to the {y = 0}
line. Moreover we can associate to each horocycle a relatively compact set,
called horodisc. We proceed as follows: consider an horizontal line {y = t}.
We call horodisc the set {y ≥ t}. Similarly, if we consider an Euclidean disc
γ tangent to {y = 0}, we call horodisc the Euclidean disc bounded by γ.
By means of Φ−1, the isometry between the upper half space model and
the Poincaré disc, we see that horocycles in the disc model are Euclidean
circles tangent to ∂D. Indeed Φ−1 is a Möbius function, hence maps circles
of C in circles of C. Hence it maps intersection of these circles with US in
intersection of circles with D. To conclude we observe that horizontal lines
of US and circles tangent to {y = 0} are circles of C with one point in the
asymptotic boundary of US. Being that Φ maps the asymptotic boundary
of a model into the asymptotic boundary of the other, we are done.

We now compute geodesic curvature of horocycles.

Proposition 28.
Horocycles have constant geodesic curvature equal to 1

Proof. We will do computations in the upper half space model. We begin
with the horizontal line case.
Suppose t > 0 and consider γ = {(x, y) ∈ H2 : y = t}. Thus we have

Jγ′ =
∂

∂ y
and then γ′ =

∂

∂ x
|γ′| = 1

t
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moreover

∇γ′ J γ
′ = ∇ ∂

∂ x

∂

∂ y

= Γ1
12

∂

∂ x
+ Γ2

12

∂

∂ y

=
1

t

∂

∂ x

thus

kg(γ) = − 1

|γ′|3
〈
∇γ′ Jγ

′, γ′
〉

= −t3 Γ1
12

1

t2

= 1

Now we take into account the case of a circle tangent to the {y = 0} line.
As we have seen, horizontal translations are hyperbolic isometries. Thus we
can assume that the horocycle we are considering is tangent to {y = 0} in
(0, 0). Then, if r > 0, any such circle can be described by

γ = {(x, y) ∈ H2 : x2 + (y − r)2 = r2}

Then a normal and tangent vector field are given by

J V = −
(
x
∂

∂ x
+ (y − r) ∂

∂ y

)
and V = −(y − r) ∂

∂ x
+ x

∂

∂ y

and

|V | = r

y

We claim that it holds

∇V JV = −
((
r +

x2 − r2

y

) ∂

∂ x
+
(
x− 2r x

y

) ∂

∂ y

)
(2.6)

To check the claim we make the explicit computations:

−∇V JV = ∇V

(
x
∂

∂ x

)
+∇V

(
(y − r) ∂

∂ y

)
= (y − r)∇ ∂

∂ x

(
x
∂

∂ x

)
− x∇ ∂

∂ y

(
x
∂

∂ x

)
+

+ (y − r)∇ ∂

∂ x

(
(y − r) ∂

∂ y

)
− x∇ ∂

∂ y

(
(y − r) ∂

∂ y

)
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using the expression of the Christoffel symbols in the half space model given
in proposition 21 we write

∇ ∂

∂ x

(
x
∂

∂ x

)
=

∂

∂ x
+
x

y

∂

∂ y

∇ ∂

∂ y

(
x
∂

∂ x

)
= −x

y

∂

∂ x

∇ ∂

∂ x

(
(y − r) ∂

∂ y

)
= −

(
y − r
y

)
∂

∂ x

∇ ∂

∂ y

(
(y − r) ∂

∂ y

)
=

(
1− y − r

y

)
∂

∂ y

Thus, we have obtained

−∇V JV =

(
(y − r) +

x2

y
− (y − r)2

y

)
∂

∂ x
+

+

(
x (y − r)

y
− x+

x (y − r)
y

)
∂

∂ y

To prove the claim we use the relation x2 + (y − r)2 = r2

According to (2.6) we compute

−〈∇V JV, V 〉 =
1

y2

(
(y − r)

(
r +

x2 − r2

y

)
− x

(
x− 2r x

y

))
=

1

y3

(
(y − r) (x2 − r2 + ry − x2) + rx2

)
=

r

y3

(
(y − r)2 + x2

)
=
r3

y3

To conclude we use |V | = y
r

to get

kg(γ) = − 1

|V |3
〈∇V JV, V 〉

=
y3

r3

r3

y3

= 1
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We can now give the definition of convexity descending from the existence
of horocycles.

Definition 40. Horocycle convexity
Consider Ω ⊂ H2 a compact and smooth domain. We say that Ω is horocycle
− convex, briefly h−convex, if ∀ p ∈ ∂ Ω there is an horocycle γ passing
through p such that Ω is contained in the horodisc associated to γ.

Figure 2.2 shows a comparison between Euclidean convexity and hyper-
bolic h−convexity.

Figure 2.2: Euclidean convexity (on the left) versus hyperbolic h−convexity
(on the right)

The h−convexity condition on Ω can be stated in terms of curvature of
its boundary.

Proposition 29.
Let γ : [0, 1] → H2 a smooth closed curve. Call Ω the compact set bounded
by γ. Ω is h−convex if and only if kg(γ) ≥ 1,
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One implication can be showed as in the geodesically convex case. The
other implication is less standard and can be found in [4].

We end this section showing that hyperbolic circles have constant geodesic
curvature greater than one. Recall that we calculate geodesic curvature of
closed curves with respect to the inner normal vector. The computation is
made in the disc model because hyperbolic circles can be parametrized in a
very efficient way.

Proposition 30.
Let 0 < ρ, z ∈ H2 and γρ(z) = {w ∈ H2 : dH2(w, z) = ρ}. Then

kg(γρ(z)) =
1 + tanh

(
ρ
2

)2

2 tanh
(
ρ
2

) (2.7)

Proof. Let’s consider the disc model of H2. Since H2 is homogeneous, we can
reduce to the case z = 0. Moreover, as we have seen in proposition 26, if
r = tanh

(
ρ
2

)
we have γρ(0) = {w ∈ D : |w|R2 = r}. We are going to prove

the claim by direct computations. We will have to carry out the following
steps

� Give an arc-length parametrization γ̃(s) of the circle

� Write T e N = JT

� Compute
kg(γ) = −〈(∇TN), T 〉

We recall that

λ(z) =
2

1− |z|2R2

and then

λ(γ̃) =
2

1− r2

If we define

fr(s) =
1− r2

2r
s

and we parametrize γ by

γ̃(s) = r (cos (fr(s)) , sin (fr(s)))
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s is an hyperbolic arc-length parameter. Indeed

T (s) = γ̃′(s) =
1− r2

2

(
− sin (fr(s))

∂

∂ x
+ cos (fr(s))

∂

∂ y

)
and, being ∀ v ∈ TzH2 |v|H2 = λ(z) |v|R2 , we have

|T (s)|H2 ≡ 1

Then if we define

N(s) = JT (s) = −1− r2

2

(
cos (fr(s))

∂

∂ x
+ sin (fr(s))

∂

∂ y

)
we obtain that the fields {T,N} are an orthonormal basis TH2 along γ. We

now compute ∇TN =
D

ds
N

D

ds
N =: w1 + w2

where

w1 = −1

r

(
1− r2

2

)2(
− sin (fr(s))

∂

∂ x
+ cos (fr(s))

∂

∂ y

)
w2 = −1− r2

2
cos (fr(s))

D

ds

∂

∂ x
+ sin (fr(s))

D

ds

∂

∂ y

and clearly

〈
D

ds
N, T

〉
= 〈w1, T 〉+ 〈w2, T 〉. But

〈w1, T 〉 = −1

r

(
1− r2

2

)3

λ(γ̃)2

= −1− r2

2r

〈w2, T 〉 =

(
1− r2

2

)2(
sin2(fr(s))

〈
D

ds

∂

∂ y
,
∂

∂ x

〉
− cos2(fr(s))

〈
D

ds

∂

∂ x
,
∂

∂ y

〉
+

+ sin(fr(s)) cos(fr(s))

(〈
D

ds

∂

∂ x
,
∂

∂ x

〉
−
〈
D

ds

∂

∂ y
,
∂

∂ y

〉))
=

1− r2

2

(
sin2(fr(s))

(
− sin(fr(s)) Γ2

12 + cos(fr(s)) Γ1
22

)
−

− cos2(fr(s))
(
− sin(fr(s)) Γ2

11 + cos(fr(s)) Γ2
12

))
+

+ sin(fr(s)) cos(fr(s))
(

sin(fr(s))
(

Γ2
12 − Γ1

11

)
+

+ cos(fr(s))
(

Γ1
12 − Γ2

22

)))
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The local coordinates expressions of Christoffel symbols given in (2.5) yields
the following relations

Γ2
11 = −Γ2

12 Γ1
22 = −Γ2

12

Γ2
11 = Γ2

12 Γ1
12 = Γ2

22

Thus we get

〈w2, T 〉 = −1− r2

2

(
sin(fr(s)) Γ1

12 + cos(fr(s)) Γ1
11

)
Being the hyperbolic metric conformal to the Euclidean one, if we define

µ = λ2 and z = (x, y) ∈ H2, we have

Γ1
11(x, y) =

1

2µ

∂µ

∂x
= xλ(x, y)

Γ1
12(x, y) =

1

2µ

∂µ

∂y
= y λ(x, y)

Thus

〈w2, T 〉 = −r

which yields

kgγ̃ = −〈∇TN, T 〉 =
1 + r2

2r

The computations we have just done imply the geodesic convexity of
hyperbolic discs.

Proposition 31.
Consider the Poincaré model of the hyperbolic plane. Any hyperbolic disc is
geodesically convex.

2.2 The product manifold

In this section we deal with the manifold H2 × R.
In the first part we will study its geometry. We will choose a model and then
we will discuss geodesics, isometries and curvature.
In the second part we will finally start studying constant mean surfaces.
From now on we will only use the Poincaré model for the hyperbolic plane.
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Geometry of H2 × R
Definition 41.
H2 × R = {(z, t) : z ∈ D and t ∈ R}. On this manifold one defines the
product metric

ds2(z, t) = λ2(z)
(
dx2 + dy2

)
+ dt2

In a manifold which is a product with the flat real line, many objects
split up in components. For example, if p = (z, t) ∈ H2 × R we have
TpH2×R = TzH2⊕TtR and the two tangent spaces are orthogonal. In other
words, we have X(H2 ×R) = X(H2)⊕X(R) and then if X ∈ X(H2 ×R) we
write X = X1 +X2 where X1 ∈ X(H2) and X2 ∈ X(R) are unique.

Clearly, the use of a product metric has consequences on the Riemannian
connection we obtain on the manifold. The result is that product connection
splits along components of the product.

Proposition 32.
Consider X, Y ∈ X(H2 × R). The affine connection defined by

∇H2×R
X Y = ∇H2

X1
Y1 +∇R

X2
Y2

is the Riemannian connection compatible with H2 × R.

This fact has as the immediate consequence that geodesics of H2×R are
product of geodesics of H2 and R.

Proposition 33.
γ ∈ H2×R is a geodesic if and only if γ = (γ1, γ2) where γ1 is a geodesic of
H2 and γ1 is a geodesic of R.

Proof. If γ = (γ1, γ2) ∈ H2 × R is a curve, we have

∇H2×R
γ′ γ′ = ∇H2

γ′1
γ′1 +∇R

γ′2
γ′2

and

∇H2

γ′1
γ′1 +∇R

γ′2
γ′2 = 0⇐⇒ ∇H2

γ′1
γ′1 = ∇R

γ′2
γ′2 = 0

because vectors tangent to different elements of a Riemannian product are
orthogonal.

Surprisingly, also the isometries group splits in components.

Proposition 34. Isom(H2 × R) = Isom(H2)× Isom(R)
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A proof of this proposition can be found, for example, in [5].
We will call vertical translations the isometries f(z, t) = (z, t + s), i.e. the
isometries originating from the R component, horizontal translations the
isometries f(z, t) = (τ̃t(z), t) where τ̃t is defined in proposition 19. The fact
that isometries of a product factor in product of isometries of the components
is not general. One can think to the product R2 × R to see that, in general,
multiplying Riemannian manifolds is a process setting up new isometries.
We remark one more useful properties of this manifold, always coming from
the product structure.

Proposition 35.
H2 × R is homogeneous

Proof. Take p ∈ H2 × R. We can operate a vertical translation to bring p
at height zero. Then we can use homogeneity of H2 × {0} to go in (0, 0) ∈
H2 × R.

We conclude this sketch of the geometry of H2 × R recalling the values
that sectional curvature can assume.

Proposition 36.
−1 ≤ Ksect(H2 × R) ≤ 0

2.3 CMC rotational surfaces: the Hh
α family

From now on, we will write cmc as a short for constant mean curvature.
In this section we propose a quick review of the theory of rotational constant
mean curvature surfaces in H2 × R, where by rotational we mean invariant
with respect to R. Since the three-manifold we are considering is rotation-
ally symmetric, it is natural to start the study of cmc surfaces considering
the rotational examplesIndeed it is a standard fact that finding a rotational
solution of a constant mean curvature problem reduces to an ODE. Requir-
ing the rotational symmetry, we assign a value to one of the two principal
curvatures in each point of the surface: the curvature of a circle. Hence find-
ing rotational h−surfaces is a problem that usually has an explicit solution
which is found integrating the associated ODE.
In this section we recall the rotational h−surfaces of H2 × R introduced
by Sa Earp and Toubiana in [45]. Consider H2 in the Poincaré disc model
and recall that R, the rotation about the {(0, 0)} × R axis, is an isometry
of H2 × R. Sa Earp and Toubina found, for each fixed value of the mean
curvature h ∈ (0, 1

2
], a one parameter (α) family of surfaces {Hh

α}α of ra-
dially symmetric solutions with constant mean curvature h. Here we will
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consider only the (0, 1
2
) case because we are interested in using these surfaces

as barriers for building h−graphs on exterior domains, and this problem for
h = 1

2
has been considered in [33]. We now recall the definition of the {Hh

α}α
h−surfaces.

Almost each element of the family is a rotational graph defined on the
complement of a disc of the hyperbolic plane. Hence we write ρh(α) for the
radius of the disc and we call base circle of Hh

α the boundary of this disc.

Definition 42. Hh
α

Let be h ∈ (0, 1
2
) and 0 ≤ α. Thus ρh(α) is defined as

ρh(α) = arccosh

(
−2αh+

√
1− 4h2 + α2

1− 4h2

)
(2.8)

If ρ is the hyperbolic distance from 0 ∈ H2, one defines ∀ ρ ≥ ρh(α)

Hh
α(ρ) =

∫ ρ

ρh(α)

uhα(r) dr (2.9)

where

uhα(ρ) =
−α + 2h cosh(ρ)√

sinh(ρ)2 − (−α + 2h cosh(ρ))2
(2.10)

Figure 2.3 shows the generating curves of these rotational surfaces.

For technical convenience we call φh the argument of the cosh giving ρh:

φh(α) =: arcosh(φh(α)) (2.11)

We recall without proof some properties of these functions. A proof can
be found in [45] and in the appendix of [34].

Proposition 37.
Let be h ∈ (0, 1

2
) and 0 ≤ α. Then we have

1. Each element of the familiy has constant mean curvature h

H(Hh
α) =

1

2
div

 ∇Hh
α√

1 + |∇Hh
α|

2

 ≡ h
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2. All the surfaces are zero valued on their boundary, i.e. on the circle
S0(ρh(α) we have:

Hh
α(ρhα) = 0

3. If α < 2h, the Hh
α functions are positive and vertical on their base

circle:

ρhα > 0

uhα(ρ) > 0 ∀ ρ > ρhα

uhα(ρhα) = +∞

4. If α = 2h, defining Hh
2h = Sh and uα = uhα, we have a simply connected

entire graph on H2. Moreover Sh is positive and has horizontal tangent
plane in 0 ∈ H2

ρh(2h) = 0 (2.12)

uh(ρ) > 0 ∀ ρ > 0 (2.13)

uα(0) = 0 (2.14)

5. If α > 2h, the Hh
α functions are negative on a circular annulus and

positive out of that annulus. Moreover all these surfaces are vertical on
their base circle:

ρhα > 0

uhα(ρ) > 0⇔ ρ > arccosh
( α

2h

)
uhα(ρhα) = −∞
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Figure 2.3: α < 2h, α = 2h and α > 2h





Chapter 3

Fine properties of curves and
surfaces in H2 × R

3.1 Evolution of curves in H2

In this section we introduce two results in hyperbolic geometry less stan-
dard than what we have seen until now. What we are going to consider are
two special evolutions of closed curves.

Evolution along the distance function

We are interested on the evolution of the geodesic curvature of a closed
curve γ ⊂ H2 along the flow of the distance function associated to the
compact bounded by γ. We now prove that in the hyperbolic setting we can
give explicit formulas for the evolution of curvature along this flow.

Proposition 38.
Consider γ ⊂ H2 a smooth Jordan curve and d the distance function associ-
ated to Ω the compact bounded by γ, positive in Ω′. Let a > 0 small enough
so that V a can be parametrized by the flow of d. Let q0 ∈ γ and k(q0) = k0

the geodesic curvature of γ in q0. If we write kx0(t) for the geodesic curvature
of the curve Ct = {p ∈ Ω′ : d(p) = t} and q(t) = ϕq0(t) we have

|k0| = 1 =⇒ |kq0(t)| ≡ 1

|k0| < 1 =⇒ kq0(t) = tanh
(
t− log

√
β
)

|k0| > 1 =⇒ kq0(t) = coth
(
t− log

√
β
)

(3.1)

where β = β(k0) =
∣∣∣1−k01+k0

∣∣∣.
59
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Proof. The proof is made of two parts. First of all we use the Radial Curva-
ture Equation (1.17) to write the evolution equation of the geodesic curvature
along the flow of d for a general manifold. After that, we will express the
equation in the hyperbolic setting and find an explicit expression in the hy-
perbolic case.
Consider Mn an orientable manifold and S a closed hypersurface with unit
normal field η and shape operator A. Call Ω the compact bounded by S and
define on Ω′ the distance function d(p) = distM(p, S). Let 0 < a such that
V a, as defined in (1.18), can be written in exponential coordinates on the
tangent bundle of M along S. Thus we have

0 ≤ t ≤ a, q ∈ S =⇒ ∇d(q, t) ⊥ T(q,t)St

We chose ηt = ∇dt as a unit normal field along Ct, and we define At to be
the shape operator associated to ηt. If we consider v1(t), . . . vn−1(t) an or-
thonormal frame of T(q,t)St diagonalizing At, the Radial Curvature Equation
(1.17) yields ∀ i = 1, . . . , n− 1(

−∇∇dAt
)
vi(t) +

(
At
)2
vi(t) = R (vi(t),∇d)∇d

with

−
(
∇∇dAt

)
vi(t) =

D

dt
(ki(t)vi(t))

This is a general fact following form the fact that A is self-adjoint. ∀X ∈
X(St) we have

(∇NtA
t)X = ∇Nt(A

tX)− At(∇NtX)

= ∇Nt(A
tX) being ∇NtX ⊥ TCt

Thus taking the scalar product with vi we get

−k′i(t) + ki(t)
2 = −sect(vi(t),∇d) (3.2)

The evolution equation we have just found is a Riccati equation. Being
the sectional curvature constant we can calculate an explicit solution. To
calculate this expression we plug hyperbolic planar geometry in this equa-
tion. Clearly n − 1 = 1 and −sect(vi(t),∇d) ≡ 1, thus the evolution of the
curvature is given by the solution of the following Cauchy problem:{

−k′(t) + k(t)2 = 1
k(0) = k0

Separating variables and integrating we find the claim.
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Remark.

� If |kg(p)|
p

≥ 1 the geodesic curvature is monotone decreasing along
the flow of distance function. Thus if γ is a h−convex curve in H2,
its geodesic curvature does not grow during the evolution along the
distance flow.

Now we turn our attention to the case where we deform the curve by
mean curvature flow. Actually the flow we will use is a mean curvature flow
with one more constraint: conservation of volume. We briefly recall what is
the mean curvature flow.

Definition 43. Mean curvature flow
Consider Mn an orientable manifold and S ⊂ Mn an hypersurface oriented
by the unit normal field η. Assume S is the immersion of a manifold S̃
and I ⊂ R an open interval. Then, the mean curvature flow of S is a
one parameter family {X(t)}t∈ I of immersions of S̃ satisfying the following
differential system {

X(0) = S
d

dt
X(t) = −H(t) η(t)

(3.3)

where η(t) and H(t) are the normal vector and the mean curvature of X(t)S.

We now turn our attention to the mean curvature flow with constant
volume.

Definition 44. Constant volume mean curvature flow
Let be S ⊂ Mn a closed and oriented hypersurface and assume Mn ori-
entable. We define

H =
1

Area(S)

∫
S

H dσ

where d σ is the area element induced on S by the metric of M . Assume
X : S̃ → M is an immersion. Then the prescribed volume mean curvature
flow of S is a family of immersions {X(t)}t∈ I solving the following differential
system {

X(0) = S
d

dt
X(t) =

(
H(t)−H(t)

)
η(t)

(3.4)

We will write cvmcf for this flow.
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It is a matter of computation to show that the volume of the compact
bounded by X(t) S̃ is constant along this flow, whenever this compact ex-
ists. In the hyperbolic setting a very precise result has been established by
Cabezas-Rivas and Miquel [3]. The statement of this result is more general
than the one we recall here because it is true in the hyperbolic space of any
dimension. But we state the two dimensional case because it is what we will
use.

Theorem 8 (Number 1 in [3]).
Consider C ⊂ H2 a Jordan smooth h-convex curve (recall definition 40).
Then the cvmcf of C has a unique solution Ct satisying:

1. Ct is defined for all times

2. Ct is smooth and h-convex

3. Ct converges exponentially fast to an hyperbolic circle

Figure 3.1 sketches this flow.

Figure 3.1: Constant volume mean curvature flow
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Corollary.
Let γ ⊂ H2 a smooth Jordan curve and consider X its constant volume mean
curvature flow and call C its limit circle. Then ∀ ε > 0 exists t(ε) ∈ R+ such
that ∀t ≥ t(ε) we have

d(X(t), C) ≤ ε

|kg(X(t))− kg(C)| ≤ ε

The following corollary states that we can deform any h−convex curve of
H2 to any hyperbolic circle

Corollary. Consider C ⊂ H2 a Jordan smooth h-convex curve. Then ∀ 0 <
ρ∃{X(σ)}σ ∈ [0,1] : S1 → H2 a family of Jordan curves such that

X(0) = γ

X(1) = Sρ(0)

and X(σ) is h-convex for each σ ∈ [0, 1].

Proof. Up to a reparametrization we can assume that the cvmcf deforms γ
in an hyperbolic circle in a finite time τ . Up to an hyperbolic translation
along geodesics, we can also assume that this circle is centered in 0 ∈ D.
Now we continue the deformation decreasing the radius of the circke to the
desired one. The result follows from the fact that hyperbolic circles are
h−convex.

Remark. Here we make an assumption: we assume that the limit circle of
the constant volume mean curvature flow is centered in 0. It means we can
deform any h-convex curve into a circle centered in 0 by mean of the cvmcf
and a dilation. This is not restrictive because if the limit circle C̃ of a curve
γ̃ via cvmcf is not centered in 0, and τ is the translation sending C̃ to C a
circle centered in 0, the limit of the cvmcf of γ = τ(γ̃) is C. This follows
from unicity.

3.2 The asymptotic behavior of the Hh
α family

In this section we prove an important asymptotical property of the {Hh
α}α

surfaces. The explicit expression provided in (2.9), and standard Taylor
approximation ensure that

Hh
α(ρ) ≈ 2h√

1− 4h2
ρ+ ch,α e

−ρ + kh + o(e−ρ) (3.5)
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Since the leading term of the function Hh
α is independent of α, then all

the functions Hh
α have the same asymptotic behavior at the first order. This

is the main reason why the results of [33] cannot be applied for h ∈ (0, 1
2
).

Hence we need to understand the dependence of the constant kh on the vari-
able α.

To study the asymptotic behavior we need to introduce some notation
and to remark some facts.

Remark.

� We remark that if α 6= 2h, Hh
α is zero valued and vertical on the circle

S0(ρhα).

� The behavior of the elements of {Hh
α}α near the base circle changes if

α ∈ [0, 2h) or if (2h,+∞). It is useful to use two different notations
for these two intervals of the parameter. Thus we declare that, if the
parameter of the surface we are considering is greater than 2h, we use
the letter β and we write Hh

β .

� For α 6= 2h these surfaces can be extended to complete h−surfaces of
H2 × R. It is because they are vertical on their base circle. Hence
if we consider a reflection how Hh

α in the zero height slice we obtain
another h−surface that can be glued to the Hh

α along the base circle.
The gluing is smooth because it is made where the surface is vertical.
Moreover these complete surfaces are embedded for α < 2h and with
self intersection for α > 2h.

� Consider the completed surfaces associated to the {Hh
α} family. By

standard low dimensional topology these surfaces disconnect H2 × R.
Hence it makes sense to talk about interior and exterior of such a
surface. We call interior of a completed Hh

α the region of H2 × R
bounded by Hh

α containing the {(0, 0)} × R axis. We will also use the
words mean convex side as a synonym of interior.
By abuse of language we will talk about the mean convex side of a Hh

α

meaning the part of H2 × R+ where the upward normal vector of Hh
α

is pointing.

We now study the dependence of the radius of the base circles on the
parameter α.

Proposition 39.
Let h ∈ (0, 1

2
). Hence
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� For α ∈ [0, 2h] the radius ρh(α) is monotone decreasing with α

� For α ∈ [2h,+∞) the radius ρh(α) is monotone increasing with α

Proof. Given the definition of φh in (2.11) we show that

� φh is monotone decreasing when α ∈ [0, 2h]

� φh is monotone increasing when α ∈ [2h,∞)

We have
∂φh

∂α
(α) =

1

1− 4h2

(
−2h+

α√
1− 4h2 + α2

)
which is positive for α ≥ 2h. Being arccosh monotone increasing we are
done.

Corollary.
Let h ∈ (0, 1

2
). Hence we have

ρh
(

[0, 2h]
)

=

[
0, arccosh

(
1√

1− 4h2

)]
ρh
(

[2h,+∞)
)

=
[
0,+∞

)
Proof. We have

φh
(

[0, 2h]
)

=
[
φh(2h), φh(0)

]
=

[
1,

1√
1− 4h2

]
and

φh
(

[0, 2h]
)

=
[
φh(2h), lim

α→+∞
φh(α)

]
to conclude we apply arccosh to get

ρh
(

[0, 2h]
)

=

[
0, arccosh

(
1√

1− 4h2

)]
The other case can be done in the same way.

We can now state and prove the theorem describing of Hh
α depends on α

at infinity.
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Theorem 9.
Let be 0 < ρ large. Then ∃ β > 2h such that ∀ 0 < α̃ ≤ β we have

∂Hh
α

∂ α
(ρ)
|α=eα < 0

Proof. This proof is completely technical and is made of two parts: first of
all we prove that the derivative is negative for α < 2h. After that, we will
see it is equal to −∞ for α = 2h.
What we are going to do is a change of variable of the uhα so that the derivation
with respect to α does not interact with the singularity in ρh(α). We define
s = Cosh(r) and get dr = ds√

s2−1
. Omitting the dependence on α we have

Hh
α(ρ) =

∫ Cosh(ρ)

φ

−α + 2h s

(s− b)
1
2 (s− φ)

1
2

ds√
s2 − 1

where

b = −2hα +
√

1− 4h2 + α2

(1− 4h2)

is the negative zero of the denominator of uhα defined in (2.10).
To remove the dependence of singularity on the parameter we define z = s−φ,
z(ρ, α) = Cosh(ρ)− φ and we get

Hh
α(ρ) =

∫ z(ρ,α)

0

−α + 2h (z + φ)
√
z
√
z + φ− b

√
(z + φ)2 − 1

dz

=:

∫ z(ρ,α)

0

ũhα(z) dz

where φ > 1 and −b = |b| > 0. Thus the only singularity of the integrand
function in the interval [0, Cosh(ρ) − φ] is in 0. The only singularity that
could appear when we move α is z = 1 for α = 2h. But a simple calculation
shows that this singularity is canceled by a term in the numerator.
Let’s compute the derivative

∂Hh
α

∂α
(ρ) =

∫ z(ρ,α)

0

∂ũα
∂α

(z) dz + ũα(z(ρ, α))
∂z

∂α
(ρ, α)

where, being ρ large, the second term can be neglected because
∂z

∂α
(ρ, α) is
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a constant independent from ρ and

ũα(z(ρ, α)) =
1

Cosh(ρ)

2h− α

Cosh(ρ)√
1− φ

Cosh(ρ)

√
1− b

Cosh(ρ)

√
1− 1

Cosh(ρ)

The term that needs to be worked is the first one. We want to prove that
it is negative when ρ is big enough. We notice that here we have a neat
separation between the two cases α < 2h and β > 2h. In the first case the
integrand function is negative and thus if the integral converges, it converges
to a negative number. When β > 2h, the integrand function is positive near
0 and negative away form 0, so one cannot say anything about its sign.
To write the derivative of ũα, it is useful to use the following notation (we
omit the dependence of b and φ on α ). Here we will use the dot notation
for derivatives with respect to α.

ψ1(z) =
−1 + 2h φ̇

(z + φ− b)
1
2
(
(z + φ)2 − 1

) 1
2

=
−1 + 2h φ̇

(l − b)
1
2 (l2 − 1)

1
2

ψ2(z) = − (φ̇− ḃ) −α + 2h (z + φ)

2 (z + φ− b)
3
2 ((z + φ)2 − 1)

1
2

= − (φ̇− ḃ) −α + 2h l

2 (l − b)
3
2 (l 2 − 1)

1
2

ψ3(z) = −φ̇ (z + φ) (−α + 2h (z + φ))

(z + φ− b)
1
2 ((z + φ)2 − 1)

3
2

= −φ̇ l (−α + 2h l)

(l − b)
1
2 (l2 − 1)

3
2

where l = z + φ. Thus we have

∂ũα
∂α

(z) =
1√
z

(
ψ1(z) + ψ2(z) + ψ3(z)

)
(3.6)

Many of the terms involved have a sign which does not depend on h, α and
z. We have ∀z ≥ 0 e α 6= 2h:
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� z + φ− 1
h,α
> 0 being φ = Cosh(rh(α)) e rh(α) = 0⇔ α = 2h

� z + φ− b
h,α
> 0 being −b = |b| e φ− b =

2
√

1− 4h2 + α2

1− 4h2

� −1 + 2h φ̇
h,α
< 0 being φ̇ =

1

1− 4h2

(
− 2h+

α√
1− 4h2 + α2

)
� ḃ < 0 being ḃ =

1

1− 4h2

(
− 2h− α√

1− 4h2 + α2

)
Now assume α < 2h. We have the following equalities

� φ̇
h,α
< 0 being φ̇ ≤ 0⇔ α2 ≤ 4h2

� −α + 2h (z + φ)
h,α
> 0 being z + φ > 1

� ψ2(z)
h,α
> 0

Thus it is enough to prove that one of the following equivalent inequalities
holds.

ψ1(z) + ψ3(z) ≥ 0 ⇔ −ψ1(z)

ψ3(z)
≥ 1

To simplify calculations we define

c1 = −(−1 + 2h φ̇) > 0 c31 = −2h φ̇ > 0 c32 − αφ̇ > 0

and thus we get

−ψ1(z)

ψ3(z)
= c1

l2 − 1

c31l2 − c32l
≥ 1⇐⇒ (c1 − c31)l2 − c32l − c1 ≥ 0

where

c1 − c31 = 1− 2h φ̇+ 2h φ̇ = 1

The roots of the equation

l2 + c32l − c1 = 0

are the two distinct real numbers

l± =
−c32 ±

√
c32

2 + 4c1

2
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If we prove that

max{l−, l+} = l+
h,α

≤ φ

we have proven that the derivative is negative.

l+ ≤ φ⇔
√
c32

2 + 4c1 ≤ 2φ+ c32

⇔ φ2 + c32φ− c1 ≥ 0

⇔ φ2 − 1− φ̇(αφ− 2h) ≥ 0

which is always true because αφ− 2h
h,α

≤ 0. Indeed we have

αφ− 2h ≤ 0⇔ α
√

1− 4h2 + α2 ≤ 2h (1− 4h2 + α2)

⇔ α2 ≤ 4h2 (1− 4h2 + α2)

⇔ α ≤ 2h

We have just shown that when ρ is big enough, and α ∈ (0, 2h) the height
Hh
α(ρ) is strictly decreasing when α increases.

We now prove that for α = 2h the speed of descent is∞. We remark that this
fact implies the existence of β > 2h where the derivative is still negative. If
we evaluate equation (3.6) in α = 2h we obtain a non integrable singularity.
Being

φ̇(2h) = 0

φ(2h) = 1

b(2h) = −1 + 4h2

1− 4h2

ḃ(2h) = − 4h

1− 4h2

l(2h)− b(2h) = z +
2

1− 4h2

l(2h)2 − 1 = z(z + 2)

φ̇(2h)− ḃ(2h) =
4h

1− 4h2
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We have ψ3 ≡ 0 and

ψ1(z) + ψ2(z) = − 1√
z (z + 2)

√
z +

2

1− 4h2

+

+
4h2

1− 4h2

z√
z (z + 2)

(
z +

2

1− 4h2

) 3
2

= −
(1− 4h2)

(
z +

2

1− 4h2

)
+ 4h2 z

√
z (1− 4h2)

√
z + 2

(
z +

2

1− 4h2

) 3
2

= − 1√
z


√
z + 2

(1− 4h2)

(
z +

2

1− 4h2

) 3
2


Hence

∂ũα
∂α

(z)|α=2h contains the non integrable singularity

∂ũα
∂α

(z)|α=2h =
ψ1(z) + ψ2(z) + ψ3(z)√

z

= −1

z


√
z + 2

(1− 4h2)

(
z +

2

1− 4h2

) 3
2



Remark.
This proof cannot be used in the case α > 2h. Indeed here ũα(z) is positive
near z = 0. We can prove that ψ1(0) = −ψ3(0) and ψ2(0) > 0:

ψ1(0) + ψ3(0) =
(−1 + 2h φ̇) (φ2 − 1)− φ̇ φ (−α + 2hφ)

(φ− b) 1
2 (φ2 − 1)

3
2

=
1− φ2 − (2h− αφ )φ̇

(φ− b) 1
2 (φ2 − 1)

3
2



3.2. THE ASYMPTOTIC BEHAVIOR OF THE HH
α FAMILY 71

where, if we define g(h, α) = 1− 4h2 + α2, we have

1− φ2 =
−4h2 α2 + 4hα

√
g(h, α)− g(h, α) + (1− 4h2)

2

(1− 4h2)2

(2h− αφ) φ̇ =

(
2h (1− 4h2)− α (−2hα +

√
g(h, α) )

1− 4h2

) 
−2h+

α√
g(h, α)

1− 4h2


=
−(1 + 4h2)α2 + 4hα

√
g(h, α)− 4h2(1− 4h2)

(1− 4h2)2

=
−4h2 α2 + 4hα

√
g(h, α)− g(h, α) + (1− 4h2)

2

(1− 4h2)2

= 1− φ2

This result allows us to associate two concepts of distance between these
rotational surfaces.

Definition 45. Asymptotic vertical distance
Consider α such that 0 ≤ α < β. We define the asymptotic vertical distance
between Hh

β S
h to be

lim
ρ→+∞

Hh
β (ρ)Sh(ρ)

Now we can state the consequences of the last theorem in terms of the
relative positions of the element of the family according to the value of the
parameter.

Corollary.
Let be h ∈ (0, 2h].

� ∀α ∈ [0, 2h) Sh ∩Hh
α is a circle. Inside this circle we have Hh

α < Sh,
outside we have the opposite inequality.

� ∃ β ∈ (2h,+∞) such that ∀ β ∈ (2h, β) we have Sh ∩Hh
β = ∅ andSh

is in the mean convex side of Hh
β , and hence in the mean convex side

of the Hh
α for α ∈ [0, 2h]. In other words we have

Hh
β < Hh

α ∀ β ∈ (2h, β) and α ∈ [0, 2h]

� The vertical asymptotic distance between Sh and Hh
α is a positive real

number if α > 2h, negative id α < 2h. Moreover this number increases
with α.
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Figure 3.2: Asymptotic behavior

Figure 3.2 describes the situation.
We end this section defining the concept of asymptotic horizontal distance

for element of the {Hh
α}α family. This is the limit for t→ +∞ of the distance

between the circles obtained intersecting two distinct elements of the family
with the plane of height t.

Definition 46. Asymptotic horizontal distance
Consider 0 ≤ α ≤ 2h and 2h < β ≤ β . Hh

α, and Hh
β are asymptotically in-

vertible since their asymptotic behavior is linear. Thus their inverse functions(
Hh
β

)−1

and
(
Hh
α

)−1

are invertible and linear. We define the asymptotic dis-

tance between Hh
α and Hh

β to be

d∞(Hh
α, H

h
β ) = lim

t→+∞

∣∣∣∣(Hh
α

)−1

(t)−
(
Hh
β

)−1

(t)

∣∣∣∣
3.2.1 r−admissibility

What we have just established, together with the knowledge of the asymp-
totic behavior of the Hh

α, gives informations about the horizontal distance
between two distinct elements of the family. Recall the asymptotic expansion
(3.5):

Hh
α(ρ) ≈ 2h√

1− 4h2
ρ+ ch,α e

−ρ + khα + o(e−ρ)

and write ρα,t for the solution of Hh
α(ρ) = t. In other words ρt is the radius

of the circle in H2 whose image via Hh
α is contained in the plane H2 × {t}.
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Thus if α ∈ [0, 2h] and β ∈ (2h, β ] we have that

Hh
α(ρ) = t = Hh

β (ρ)

is equivalent to

2h√
1− 4h2

ρα,t + ch,α e
−ρα,t + khα =

2h√
1− 4h2

ρβ,t + ch,β e
−ρβ,t + khβ + o(e−ρ)

If we define c = 2h√
1−4h2 , we have

ρα,t − ρβ,t =
khβ − khα

c
+

1

c

(
ch,β e

−ρβ,t − ch,α e−ρα,t
)

+ o(e−ρ) (3.7)

Being ρα,t −→ +∞ when t → +∞ it is clear that the horizontal distance
between two different element of the family is a non zero number.

Remark.
Take h ∈ (0, 1

2
). Consider α, β ∈ R+, with β close to 2h. We have proved

that

d∞(Hh
α, H

h
β ) = d∞(α, β) =

∣∣∣∣∣khβ − khαc

∣∣∣∣∣ (3.8)

As we have mentioned, in the third chapter we will use an Hh
β surface to

give a-priori C1 estimates for a cmc graph on an annuls of H2. Assume γ is
the inner boundary of the annulus. We will consider an horizontal transla-
tion of a precise Hh

β which makes the surface tangent to the γ. This τ(Hh
β )

will be a barrier, provided it is below the graph. To guarantee this hierarchy,
by the maximum principle, it will be enough to guarantee the hierarchy on
the boundary. The aim of the r−admissibility condition is to guarantee that
τ(Hh

β ) is actually below the h−graph. Thus we will have to assure that, dur-

ing the horizontal translation, the first contact between Hh
β and the h−graph

is on γ and not on Hh
α. Moreover we have to guarantee that τ(Hh

β )|γ ≤ 0.
We now make these remarks precise.

Consider γ ⊂ H2 a smooth Jordan curve. Assume the curve satisfies an
interior sphere condition of radius 0 < r. We associate to this curve two
elements of the {Hh

α}α family. First we consider the Hh
α whose base circle is

the biggest between all the circles contained in the compact part of Ω′. More
precisely we define

α = inf
{
α̃ ∈ [0, 2h) : Hh

α̃ ∩ {t = 0} ⊂ Ω
}
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The other surface is given by the r−sphere condition. Namely we take the
β ∈ (2h,+∞) such that ρh(β) = r if β ≤ β, where β is given in theorem
9. If the β such that ρh(β) = r is bigger than β, we reduce r to r̃ until
when β(r̃) ≤ β. This is possible by proposition 39. Moreover, if γ satisfies
an r−sphere conditions it also satisfies a r̃−sphere conditions. To see that
one can apply the maximum principle and recall that, by equation (2.7), the
curvature of an hyperbolic circle increases as the radius decreases.
Now we define d to be the hyperbolic distance between the base circle of Hh

β

and the circle where it has its minima (recall item 5 of proposition 37), i.e.

the hyperbolic circle of radius arccosh(β)
2h

. Thus we have

d =
arccosh(β)

2h
− ρh(β)

By other way we can define the quantity

x = min
{d

2
, d∞(α, β)

}
(3.9)

where d∞ is given in (3.8). Remark that since α and β depend only on γ,
the same holds for x. We can now say what we mean by r−admissibility.

Definition 47.
Let γ ⊂ H2 a smooth Jordan curve. Suppose γ satisfies an interior sphere
condition of radius r. We say that γ is r−admissible if it is contained int he
circular annulus Aγ with inner radius r = ρh(β) and outer radius ρh(β) + x.

Figure 3.3 gives a description of the definition. We now check that a
curve verifying this definition allows the Hh

β to be used as a barrier.

Proposition 40.
Let γ an r−admissible curve and take z ∈ γ. Consider τz(H

h
β ) an horizontal

translation of Hh
β tangent to γ in z.

Thus

1. τz(H
h
β ) is not in the mean convex side of Hh

α, i. e. τz(H
h
β ) < Hh

α

2. τz(H
h
β )|γ ≤ 0

Proof. The first fact follows directly from the definition. In fact, if γ is in the
circular annulus Aγ, the distance that has to be covered to make the circle
S0(r) tangent to S0(r + d

2
) is smaller than d∞(α, β). Moreover the distance

that needs to be covered to make S0(r) tangent to γ is strictly smaller than
the distance between the two circles.
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Figure 3.3: r−admissible curve

To prove the second statement we will proceed moving γ instead of Hh
β . If

we prove that any translation making S0(r+ d
2
) tangent to S0(r) is contained

in the disc B0(arccosh(β)
2h

) we are done. It is because in this disc Hh
β is negative

and, to make S0(d
2

+ r) tangent to S0(r), we need to cover a distance greater
than the distance we have to cover to make γ tangent to S0(r). But S0(d

2
+

r) ⊂ B0(arcosh
(
β
2h

)
).

An example of r−admissible curve is given by a small C2 perturbation of
a circle.





Chapter 4

CMC Graphs on non convex
domains

In this chapter we prove a non existence and an existence result for sur-
faces with mean curvature constantly equal to h ∈ (0, 1

2
), on an exterior

domain. Both results are obtained representing mean curvature as an ellip-
tic operator (in the sense recalled in appendix A). Indeed if we think to H2

in the disc model, it is immediate to recognize that if we consider S a surface
in H2 × R which is a graph on U ⊂ H2:

S = {(z, u(z)) ∈ H2 × R : z ∈ U}

the mean curvature operator on S is elliptic and it is uniformly elliptic if
|∇H2

u| is bounded

H(z) = Q(u)(z) =
1

2
divH2

 ∇H2
u√

1 + |∇H2u|2

 (z)

=
2∑

i,j=1

aij(z,∇u)
∂ u

∂xi ∂ xj
+ b(z,∇u)

4.1 A non existence result

The first non existence reult for mean curvature graphs is due to Finn
[9] in the Euclidean setting. If f denotes a solution of he minimal surfaces
problem on an annulus Ω, Finn established an estimate for |f | depending
only on the thickness of Ω and the value of f on the outer boundary of Ω.
This estimate is obtained using two half catenoids as a bounding box for the

77
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graph of f . Thus, for each fixed circular annulus, one can assign constant
boundary data leading to non existence: it is enough to assign a constant
boundary data very different on the two components of ∂Ω.
In this section we prove an hyperbolic version of this result for h−graphs on
circular annuli when h ∈ (0, 1

2
). In the Euclidean case the estimate follows

from properties of the mean curvature operator and existence of minimal
graphs with singular normal derivative defined in the complement of a disc.
In our setting the mean curvature operator has the same properties of the
Euclidean one and the Hh

α will play the role of catenoids.
To state the results leading to the estimate we need to define some notation.
We recall that we are using the disc model of H2.
Consider Ω ⊂ D a compact smooth annulus. Suppose ∂Ω = γ1 ∪ γ2 where
γi is a Jordan curve for i = 1, 2. Assume γ1 is contained in the compact set
bounded by γ2. We declare that we will compute normal derivatives along
γ1 with respect to the inward normal vector. Since we will not require differ-
entiability on the boundary, we need to define this derivative precisely. We
suppose that each z ∈ γ1 is the end point of a geodesic contained in int(Ω).
More precisely, we require ∀ z ∈ γ1 existence of a geodesic γ : [0, a] → H2

such that γ ⊂ int(Ω) and γ(a) = z. Now consider φ ∈ C1 (int(Ω)) a func-
tion and p ∈ Ω a point such that γ(t) = p. Using Taylor formula, if σ is
small enough, we can write

(
φ ◦ γ

)
(t+ σ) = φ(p) + (dpφ) (γ′(t)) σ + o(σ)

= φ(p) + 〈∇φ(p), γ′(t)〉 σ + o(σ)

and we define

= φ(p)− ∂φ

∂s
(σ) + o(σ)

In other words, ∂
∂s

is the opposite of the covariant derivative induced by γ,
provided that γ ends on γ1.
We can now state our estimate of the solution of cmc problem on annuli.

Lemma.
Assume Ω is a domain satisfying the hypothesis just described. Consider
φ0, φ : Ω→ R two functions such that:

1. φ0 ∈ C1(int(Ω),R) ∩ C(Ω)

limz→γ1
∂φ0

∂s
(z) = +∞ along all geodesics ending on γ1
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2. φ ∈ C1(Ω,R)

3. lim infx→γ2(φ0 − φ) ≥ 0

4. Q(φ0) ≤ Q(φ) in int(Ω), where Q(u, z) is a quasilinear and elliptic
second order operator with coefficients depending only on space and
on the gradient of u (see the Appendix for a definition of quasilinear
operators).

Then we have

lim inf
z→γ1

(φ0 − φ) ≥ 0

Proof. Since the proof proposed by Finn is based on topological properties
of open sets of R2, quasi-linearity of the operator and Taylor formula, we can
proceed in the same way. We are proving the result by contradiction.
Suppose lim infz→γ1(φ0 − φ) < 0 and we will end up with points in Ω where
the difference φ0 − φ is both positive and negative, which is a contradiction.
First of all we remark that lim infz→γ1(φ0 − φ) = l is finite because if it was
−∞ we would have had a contradiction with the hypothesis on the derivative
of φ0 approaching γ1. On the other hand, by definition of lim inf, it exists a
sequence Ω 3 zn −→ z1 with z1 ∈ γ1

lim inf
z→γ1

(φ0(z)− φ(z)) = lim inf
n→∞

(φ0(zn)− φ(zn))

Now define
φ̃0(z) = φ0(z)− l =⇒ lim inf

z→γ1
(φ̃0 − φ) = 0

Thus, by hypothesis of l < 0 and by definition of lim inf, we have

lim
z→γ1

(φ̃0 − φ) ≥ 0

lim
z→γ2

(φ̃0 − φ) ≥ 0

Then the comparison principle yields

φ̃0 − φ ≥ 0 on Ω

On the other hand, if y is close to zn, we can write

φ̃0(y)− φ(y) = φ̃0(zn)− φ(zn) +

(
∂φ

∂s
(zn)− ∂φ̃0

∂s
(zn)

)
σ + o(σ)

where the first difference goes to zero in n while the second goes to −∞.
Thus there are point where φ̃0 − φ is negative, which is a contradiction.
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We can now show an analogous to theorem 1 in [9]. For 0 < a < b we
define Ω(a, b) = {z ∈ D : a ≤ |z|H2 ≤ b}.

Theorem 10.
Let be 0 < h < 1

2
and consider u : Ω(a, b)→ R a smooth function such that

1

2
div

(
∇H2

u√
1 + |∇H2u|H2

)
= h

Assume u satisfies
m ≤ u| {|z|=b} ≤M

Then ∃ β ∈ (2h,+∞) such that ∀z ∈ Ω(a, b) it holds

−Hh
β (z) +Hh

β (b)−m ≤ u(z) ≤ Hh
β (z)−Hh

β (b) +M (4.1)

Proof. The β which will do the work is determined by a: we consider the Hh
β

with base circle equal to the inner boundary {|z| = a}. We define

β(a) = 2h cosh(a)−
√

cosh(a)2 − 1

To prove inequalities (4.1) we show that they hold on every circular annulus
Ω(a∗, b) for a < a∗. Let’s start with the inequality on the right. We define

φ0(x, y) = Hheβ(a∗)
(x, y)−Hheβ(a∗)

(b) +M

so we obtain
φ0|{|z|=b} = M ≥ φ{|z|=b}

To have the same inequality on {|z| = a∗} we observe that Hh
β(a∗) is vertical

on {|z| = a∗} and nearby this boundary negative, hence

limz→{|z|=a∗}
∂Hh

β

∂s
(z) = +∞

Moreover if Q is the mean curvature operator, we have

Q(φ0) = h = Q(φ)

and thus the lemma implies

φ0(a∗) ≥ φ|{|z|=a∗}

Iterating the maximum principle argument we get the inequality

u(z) ≤ φo(z) on Ω(a∗, b)
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To prove the left inequality we proceed in the same way. If

φ1(z) = −Hh
β(a∗)(z) +Hh

β(a∗) +m

we are able to prove

φ1(z) ≤ u(z) on Ω(a∗, b)

Figure 4.1 shows a vertical section of the bounding box we have just built.

Figure 4.1: Part of the bounding box given in lemma 10. Vertical section.

It is easy to derive the following corollary stating non existence of a
solution of the constant mean curvature problem on an hyperbolic circular
annulus.

Corollary.
Let Ω(a, b) be a circular annulus in D. Let be β = β(a). Then ∀ε > 0 the
following Dirichlet problem does not have a solution


1

2
div

(
∇H2

φ√
1 + |∇H2φ|H2

)
= h on Ω(a, b)

φ = c > 0 on {|z| = b}
φ = −Hh

β (a) +Hh
β (b)−m− ε on {|z| = a}
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Proof. Define γ1 = {|z| = a}. Since rays emanating from 0 ∈ H2 are
geodesics, each point z ∈ γ1 is the end point of at least one geodesics in
Ω(a, b). Thus Ω(a, b) is a domain where the theorem can be applied. Thus
any solution of the differential equation associated to the Dirichlet problem
is in the bounding box given by the inequalities (4.1) which does not depend
on ε.

Roughly speaking, the estimate we have just established means that h-
graphs on annular domains cannot grow much faster than the rotational ones.
Unfortunately this remark cannot be made more precise than that, and hence
has to be taken as a (hopefully) suggestive interpretation of what we have
just proven. We also remark that the Euclidean version of these estimates
has a physical counterpart. It is known that minimal surfaces model soap
bubbles (a pleasant reading on this subject is [18]) and it is a fact of everyday
life that a laminar soap bubble bounded by two planar and concentric circles
will blow if the two circles are too much departed along the axis through the
centers.

4.2 A priori estimates for h-graphs on annuli

In this section we give the a priori estimates of h−graphs that will be a
crucial step in the proof of existence of a such a graph, which will be presented
in the next section. These estimates are given under geometrical hypothesis
on the boundary of the domain and on boundary data. On one side, the
{Hh

α}α family has shown to give constraints on the graphs one can build, on
the other side they can be used as a building block for non rotational graphs.
Here, again, the Poincaré model of H2 is used. In what follows, if Ω ⊂ D is a
compact annulus, we write ∂Ω = γ1

⊔
γ2 and we assume that γ1 is contained

in the compact domain bounded by γ2.
Before stating the result, we recall that if γ is an r−admissible curve, see
definition 47, we associate to it an α(γ) = α(r) ∈ (0, 2h) and a β(γ) =
β(r) ∈ (2h,+∞) such that:

� ρh(β) = r, where ρhβ is defined in (2.8)

� Hh
α < Hh

β

� For each z ∈ γ ∃ τz(Hh
β ) an horizontal translation of Hh

β such that

τz
(
Hh
β

)
< Hh

α and τz
(
Hh
β

)
|γ < 0
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Theorem 11.
Let Ω ⊂ D a compact smooth annulus and write . Assume γ1 is r− admis-
sible, h-convex and γ2 is a circle. If h ∈ (0, 1

2
) and u ∈ C2,δ(Ω) is a solution

of the Dirichlet problem
1

2
div

 ∇u√
1 + |∇u|2

 = h in Ω

u = 0 in γ1

u = Hh
α(r) in γ2

then ∃C > 0 such that

||u||C2,δ(Ω) ≤ C (4.2)

and C = C(h, γ1).

Proof. By mean of item 1 and 2 of theorem 15 of the apendix, we reduce to
C1 estimates.

As a consequence we have to give estimates of u, boundary gradient esti-
mates of u and interior gradient estimates of u.
Since Hh

α > 0, we will call respectively γ1 and Hh
α |γ2 the lower and the up-

per boundary of the graph of u. Before going through the proof we state
that in this proof by Hh

α we mean a small negative vertical translation of
Hh
α and byHh

β we mean a small positive vertical translation of Hh
β . More

precisely making an abuse of language we will call Hh
α a the surface Hh

α − ε
with 0 < ε << 1 and we will call Hh

β the surface Hh
β + ε with 0 < ε << 1.

This is done because we are using these surfaces as barriers for the gradient
of the solution along the boundary and hence we need the normal derivative
to be finite.

� C0 estimates
We use the maximum principle.
Let’s prove that u is below Hh

α:

u|γ1 = 0 < Hh
α |γ1 being Hh

α positive on γ1

u|γ2 = Hh
α |γ2 by hypothesis

Q(u) =2h = Q(Hh
α)

and hence u ≤ Hh
α all over Ω.
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Let’s prove that u is bigger than Hh
β :

u|γ1 = 0 > Hh
β |γ1

by r-admissibility hypothesis

u|γ2 =Hh
α |γ2 > Hh

β |γ2
by the hierarchy (theorem 9)

Q(u) =2h = Q(Hh
β )

and hence u ≥ Hh
β all over Ω.

We have proved that the graph of u is in the compact region contained
between the graph of Hh

α and the graph of Hh
β .

� C1 estimates along ∂ Ω
We will prove four estimates. Some will be done using Hh

α and Hh
β as

barriers, others will be done using the same technique proposed in the
chapter 14 of [12], i. e. we will make barriers using distance function.

C1 estimates along γ1

This is maybe on the of the most difficult estimate to establish. Actu-
ally the r-admissibility concept has been introduced to carry out this
very estimate. We are building an upper barrier bending a distance
function and we are using the Hh

β as a lower barrier. We observe that,
even if the construction of the upper barrier is technically non trivial,
the difficult point is the construction of the lower barrier. Consider
z ∈ Ω and define d(z) = dH2(z, γ1).

Consider a ∈ R+ and V a the part of the tubular neighborhood of γ1

of thickness a contained in Ω. Consider ψ a real C2 function such that
ψ(0) = 0. and ψ′ > 0. Let be k ≤ 0 and ν ∈ R and define

w+(p) = (ψ ◦ d)() =
arctan

(
e−k
√
e2 c d − e2 k

)
c

+ ν (4.3)

where

c = c(γ1) = max
y0 ∈ γ1

kg(y0) (4.4)

We now show that we can choose ν and k so that w+is a global upper
barrier, i. e. it can be used as a barrier for u on γ1. We are going to do
that in two steps. First of all we show that the mean curvature of the
graph of ψ ◦ d is non positive and then we will choose the parameters
so that boundary conditions to have a barrier are fulfilled.
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– In order for w+ to be a barrier we need that

Q(w+) ≤ Q(u) = 2h in V a

where Q is the mean curvature operator. Using (1.20) we get
∀ p ∈ V a

1

2
Q(w+)(p) =

1√
1 + ψ′2

(
ψ′ kg(p) +

ψ′′

1 + ψ′2

)
where kg is the geodesic curvature of the curve {q ∈ Ω : d(q) =
d(p)} calculated with respect to the unit normal vector η = −∇d.
To go on, we need to use the h−convexity of γ1. According to
proposition 38 we can write

Q(w+)(q) ≤ 1√
1 + ψ′2

(
ψ′ kg(p) +

ψ′′

1 + ψ′2

)
where q = ϕp(t) for a unique p ∈ γ1 and 0 ≤ t ≤ a (ϕp(t) is the
flow of d). Thus we get

Q(w+)(q) ≤ 0 ⇐⇒ c ψ′ +
ψ′′

1 + ψ′2
≤ 0 (4.5)

To have an upper barrier, it is enough to find a solution of the
differential equation associated to the differential inequality just
written. We proceed separating variables and we do the following
change of variables  y = ψ ′

c y +
y′

1 + y2
= 0

The hypothesis ψ′ > 0 yields

y(d) =
ek√

e2 cd − e2k

where we impose k ≤ 0 to have the solution defined ∀ d ≥ 0. We
still have to solve

ψ̃(d) =

∫ d

0

ds√
e2 cs

e2k
− 1
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making the change of variable x = ecs

ek
and recalling that

(
arctan

(√
x2 − 1

))′
=

1

x
√
x2 − 1

we get

ψ̃(d) =
1

c
arctan

(
e−k√

e2 cd − e2 k

)
+ ν

Thus we have found a two parameter family of surfaces with non
positive mean curvature which are monotone increasing in the
parameter k.

– Boundary conditions for w+ to be an upper barrier along γ1 write
as

* w+
|γ1 ≥ u|γ1

* w+
|γ1 ≥ u|γ1

We use ν to fulfill the first condition

ν = −ψ̃(0)

and we define
w+(d) = ψ(d) = ψ̃(d)− ψ̃(0)

The first boundary condition for an upper barrier is satisfied be-
cause

w+
|γ1 = 0 = u|γ1

Being u ≤ Hh
α,to fulfill the second condition we choose

w+(a) ≥M (4.6)

where M = maxV a H
h
α.

If we take k big in absolute value, we are done. It is because
the argument of arctanh in (4.3) is a product of two terms one
of which is positively divergent for k −→ −∞ while the other
converges to the positive constant ecd.

We now prove the estimate from below. This will be done using Hh
β as

a punctual lower barrier.
Take p ∈ γ1. By r−admissibility hypothesis on γ1 follows the existence
of an horizontal translation τz

(
Hh
β

)
of Hh

β tangent to γ1 in z with
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τz
(
Hh
β

)
≤ Hh

α. This hypothesis implies as well that Hh
β γ1

< 0. We

have proven that

τz
(
Hh
β

)
|γ1
< 0 = u|γ1

τz
(
Hh
β

)
|γ2
< Hh

α |γ2 = u|γ2

Q(τz
(
Hh
β

)
) = 2h = Q(Hh

α) in Ω

hence, by the maximum principle, we have

τz
(
Hh
β

)
≤ u in Ω

but being τz
(
Hh
β

)
(p) = 0 = u(z) we have given a lower bound for the

normal derivative of u in p. From the compactness of Ω together with
the regularity of u we get a bound for ||∇u||C0(γ1).

C1 estimates on γ2

These estimates follow directly from our construction.
To give a lower barrier we observe that, by the maximum principle, u
is below the minimal slice Ω × {height(Hh

α(γ2))}, where height is the
projection on the third component of H2 × R. Hence u assumes its
global maximum on γ2 and so here the normal derivative is non negative
(calculated with respect to the exterior normal to γ2 ) because if this
derivative had been negative, the function would have had to grow
when considering internal points close to γ2.
On the other hand, Hh

α is clearly a global upper barrier for the normal
derivative if u on γ2.

� C1 estimates in int(Ω)
These estimates are a consequence of Theorem 3.1 of Spruck’s work
[49]. Actually this theorem gives an interior estimate for ∇u in terms
of the C0 estimate of u and the C1 norm on the boundary, provided
∂ Ω is C3.

All estimates depending only translations of Hh
α and Hh

β depends only on h

and γ1 because these two parameters are enough to determine Hh
α and Hh

β .
The only estimate which is not made using these two surfaces is the one
made via ψ ◦d on γ1. It only depends on γ because w+ depends on the three
parameters c, ν and k, where

� c is the maximum of the geodesic curvature of γ1

� k depends only on Hh
α, as seen in (4.6).
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� ν depends on c and k

In figure 4.2 we sketch how we carry out the height estimates

Figure 4.2: A priori estimates

Remark.
The C0 estimate from below could have been done using Sh. Consider a
negative vertical translation of Sh whose intersection with the plane {t = 0}
bounds a disc containing γ2. Then the u is greater than this translation.
Indeed:

uγ1 ≥ Sh because here Sh is negative and u is zero

uγ2 ≥ Sh because we can assume the translation of Sh is below Hh
α

Q(u) = 2h = (Sh)

4.3 A modified method of continuity

We give a proof of a deformation theorem for quasilinear operators. This
result is standard but cannot be found in the literature, hence we propose
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a proof. This result tells that, if we have a solution of a Dirichlet problem,
we can solve any problem obtained by a deformation of the boundary data,
provided the a priori estimates along the deformation are uniformly bounded.
Since the proof is after the ones given in [12, Chapter 17, Section 2], we will
use the same language and notation. The theorem works for fully non linear
operator, hence we allow the coefficients of the second order terms of the
operator to depend on ∇2.

The reason for which we need to prove such a result is that the deforma-
tions theorems proposed in [12, Chapter 17, Section 2] consider a family of
operators along the deformation which depends linearly on the parameter of
the deformation. We will need these operators to depend on the parameter
in a more general way.

Theorem 12.
Consider Ω ⊂ R2 a compact set and U ⊂ C2,δ(Ω) an open set. Consider a
second order Frechet differentiable operator

F : U × [0, 1] −→ C0, α(Ω)
(u, σ) 7→ F σ(u)

Assume the Dirichlet problem{
F (u, 1) = 0 in Ω

u = φ in ∂Ω for φ ∈ C2, δ(∂Ω)

has solution in C2,δ(Ω).
If

i) F σ is strictly elliptic ∀σ ∈ [0, 1]

ii) F σ
z ≤ 0 ∀σ ∈ [0, 1], where Fz is the partial derivative of F

iii) E = {u ∈ U /∃σ ∈ [0, 1] : F (u, σ) = 0 with u|∂Ω = ϕ} is bounded

iv) Ē ⊂ U

Then the Dirichlet problem{
F (u, 0) = 0 in Ω
u = φ in ∂Ω

has solution in C2,δ(Ω).
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Proof. We are going to show that the set

S = {σ ∈ [0, 1] /∃u ∈ U : F (u, σ) = 0 with u|∂Ω = ϕ} (4.7)

is non empty, open and closed, and hence it coincides with [0, 1].
Clearly hypothesis i implies that S is non empty.
We now prove that S is open. Let σ0 ∈ S and u0 such that F (u0, σ0) = 0.
If the Frechet derivative of F with respect to z is invertible, we can apply
the local invertibility theorem [12, Chapter 17, Theorem 6] and obtain that
S is open. Following the notation of [12] we write F 1

(u0,σ0) for this derivative

evaluated in (u0, σ0). Thus we have

F 1
(u0,σ0)(h) = Fij(x;σ0) ∂ijh+ bi(x;σ0) ∂ih+ c(x;σ0)

where

Fij(x;σ0) = Fij(x, u0(x), Du(x0), D2u(x0);σ0)

bi(x;σ0) = Fpi(x, u0(x), Du(x0), D2u(x0);σ0)

c(x;σ0) = Fz(x, u0(x), Du(x0), D2u(x0);σ0)

Thus in order to have invertibility of F 1 in (u0, σ0) we have to solve a linear
Dirichlet problem. This is done using the theorem of existence and unique-
ness of the solution for the linear case [12, Chapter 6, Theorem 14].
If we take the regularity of the coefficients for granted, sufficient hypothesis
for solving a linear problem are: strict ellipticity of the operator and neg-
ative zero order term. Since these hypotheses are assumed by ii) and iii),
we have the invertibility of the derivative. Hence the local invertibility theo-
rem [12, Chapter 17, Theorem 6] yields V a neighborhood of σ0 in S where
F (u, σ) = 0 is solvable, and so S is open.

We now show that S is closed. It is a consequence of the boundedness
of E Ascoli-Arzelà theorem. This theorem establishes that E is compact.
Indeed clearly E is compact. But E is closed as well. To see that, take
{un} ⊂ E and u0 ∈ E such that un −→ u0. We check that u0 ∈ E.
Being un ∈ E, it exists {σn} ⊂ [0, 1] such that F (un, σn) = 0. From the
compactness of [0, 1] we deduce the existence of a converging subsequence
σn −→ σ0 ∈ [0, 1]. Hence we have

lim
n→+∞

(un, σn) = (u0, σ0)

0 = lim
n→+∞

F (un, σn) = F (u0, σ0) being F continuous
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which implies u0 ∈ E. We still have to see that S is closed. We proceed in
the same way: we take σn → σ0 ∈ [0, 1], and we prove that σ0 ∈ S. By
definition of S ∀n ∃ un ∈ E such that F (un, σn) = 0. Being E compact it
exists a converging subsequence un → u ∈ E. As in the preceding case this
yields σ0 ∈ S.

4.4 Existence of h-graphs on annuli

In this section we prove two existence theorems. First of all we will prove
an existence theorem for h−graph on compact annuli and after that we will
prove an existence result on non compact annuli, more precisely on comple-
ment of compact domains of H2. The technique we use is completely new,
and it is based on the idea of deforming the solutions Hh

α described in the
previous chapters. Indeed the only analogous existing result is due to [33]
and refer to the case h = 1

2
, but it is largely based on the fact that in that

case all the functions Hh
α have a different behavior at infinity. Since we have

seen that for h ∈ (0, 1
2
) all the solutions Hh

α have the same behavior at first
order at infinity, a new approach to the problem is needed.

The first theorem is proved by means of a deformation argument shown
in theorem 12, and the estimate established in the preceding section. The
second theorem will easily follow from the existence on compact annuli.
As in the preceding section we take h ∈ (0, 1

2
) and we refer to the Poincaré

model of the hyperbolic plane. As before, in the compact case we consider
Ω a smooth compact annulus in H2 whose inner and outer boundaries are
respectively γ1 and γ2.

Theorem 13.
Let h ∈ (0, 1

2
) and r > 0. Let Ω ⊂ H2 be a compact annulus.

Assume γ1 is r-admissible, h−convex and that γ1 can be smoothly deformed
into a circle, with r−admissibility and h−convexity preserved along the de-
formation.
Assume γ2 is a circle.
Then the Dirichlet problem

1

2
div

 ∇u√
1 + |∇u|2

 = h in Ω

u = 0 in γ1

u = Hh
α(r) in γ2

(D)

has a solution u ∈ C2,δ(Ω).



92 CHAPTER 4. CMC GRAPHS ON NON CONVEX DOMAINS

Proof. This proof is done by the deformation method proved in theorem 12.
Hence we need to define a family of Dirichlet problems linking our problem
to one whose solution is known to exist. After that we will need to prove
that this path in C2,δ(Ω) is bounded.
First of all we define the operator F (σ, u). If by D2 we mean the com-
pact domain bounded by γ2, we are going to show that we can deform
Hh
α |D2∩(B0(ρh(α))′) to a function on Ω preserving the mean curvature and with-

out loosing any regularity. More precisely, what we are going to do is to
deform γ1 to the base circle of Hh

α, i. e. S0(ρ) = S0(ρhα) = {z ∈ D : |z|H2 =
ρh(α)}. Without loss of generality we can suppose that the deformation as-
sumed in the hypothesis is parametrized by σ ∈ [0, 1] and we write γσ1 for
the evolution at time σ of γ1. We also assume γ0

1 = γ1 and γ1
1 = S0(ρ).

We define Aσ to be the annulus whose inner and outer boundaries are re-
spectively γσ1 and γ2. Here we could already define the family of Dirichlet
problems linking problem (D) to the one whose solution is Hh

α. But since in
theorem 12 all the problems have the same domain, we need a small techni-
cal effort to give a family of Dirichlet problems defined in the same domain.
To do that, consider A ⊂ R2 a compact annulus with inner boundary a1

and outer boundary a2. Let {φσ}σ ∈ [0,1] be a family of smooth orientation
preserving embedding of A in D such that φσ(A) = Aσ. The compactness of
[0, 1] together with the smoothness of the family {φσ} yields the existence of
0 < C which does not depend on σ such that:

‖ϕσ‖C2,δ(A) < C (4.8)

We now define the operator F (σ, u) to do the deformation argument.

F (u, σ) = Q(u ◦ φσ)− 2h

This definition and the remark on the C2,δ norm of φσ imply that an estimate
for ‖u‖C2,δ(Aσ) is equivalent to an estimate of ‖u ◦ φσ‖C2,δ(A). Hence we can
define the family of Dirichlet problems. If we write ∀σ ∈ [0, 1] uσ = u◦φσ,
we introduce 

F (uσ, σ) = 0 in A
uσ = 0 in a1

uσ = Hh
α in a2

(Dσ)

We are going to show that, for each σ ∈ [0, 1], we can apply theorem 11 and
get an a priori estimate not depending on σ. We observe that the preservation
of h−convexity and r−admissibility along the deformation assumed in the
hypothesis, allows to use the estimates of our preceding result. Clearly all
the estimates given in terms of Hh

α and Hh
β do not depend on σ because
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neither Hh
α nor Hh

β do. Hence the only estimate that could depend on σ is
the estimate of ∇uσ on γσ1 because, as shown by (4.4) and (4.3), the barrier
depends on the geodesic curvature of γσ1 . But to remove the dependence on
σ we use the compactness of [0, 1] and the smoothness dependence of γσ1 on
σ to redefine c in (4.3) to be

c = max
σ ∈ [0, 1]
y0 ∈ γσ1

kg(γ
σ
1 )(y0)

which depends only on γ and h.

With this theorem proved we can state the existence result on exterior
domains, which is the main geometrical result of this work. We are going
to prove the existence of non rotational constant mean curvature h vertical
ends. Figure 4.3 sketches the output of the result we are going to prove.

Figure 4.3: Constant mean curvature graph on an exterior domain

Remark.
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� Recalling the non existence theorem 10, it should be clear why we
introduced the r−admissibility definition 47. Indeed it is one of the
two sufficient conditions for a curve to be the boundary of a vertical
end of curvature h ∈ (0, 1

2
).

� An example of a curve satisfing all the hypotheses of the theorem is a
small C2 deformation of an hyperbolic circle. Indeed corollary 3.1 shows
that we can use constant volume mean curvature flow to deform the
curve into a circle without loosing any regularity nor r−admissibility
along the flow.

Theorem 14.
Fix h ∈ (0, 1

2
). Let Ω be the complement of a compact domain of H2 with

boundary a Jordan smooth curve γ1. Assume γ1 is r-admissible, h−convex
and that γ can be smoothly deformed into a circle, with r−admissibility and
h−convexity preserved along the deformation.
Then the following Dirichlet problem


1

2
div

 ∇u√
1 + |∇u|2

 = h in Ω

u = 0 in γ1

lim|z|H2→+∞ u(z) = +∞

(E)

has a solution u ∈ C2,δ(Ω).

Proof. The proof consists in considering a sequence of compact annuli Ωn

converging to Ω, build a sequence of C2,δ(Ω) solutions by mean of theorem
13 and prove convergence in C2,δ(Ω).
To accomplish the first step we consider {ρn}n∈N a sequence of positive re-
als monotonically diverging to +∞. We define γn to be the circle S0(ρn).
Then we define Ωn to be the annulus whose inner and outer boundary are
respectively γ1 and γn. We introduce the Dirichlet problem

div

 ∇un√
1 + |∇u|2

 = 2h in Ωn

un = 0 in γ1

un = Hh
α in γn

Because of theorem 13 this sequence exists, i.e. ∀n ∈ N we have un ∈
C2,δ(Ωn) an h−graph on Ωn. Moreover theorem 11 gives an estimate for
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‖un‖C2,δ(Ω) which does not depend on n. To see that assume we have

‖un‖C2,δ(Ωn) < C

with C independent from n. Then we can consider an extension of un to Ω
with C2,δ norm proportional to the one of un. This is a well known result
in a priori estimates that can be found in [12, Chapter 6, Lemma 37]. So if
we prove the independence on n of the estimates given by theorem 11 we are
done. In this case the independence from the parameter n is even simpler
than in the compact case. Indeed we recall that the bound given in theorem
11 depend only on γ1 and h.
Hence {un}n is bounded and equicontinuous sequence in C2,δ(Ω). By Ascoli
- Arzelà theorem, up to passing to a subsequence, we have the convergence
in C2,δ(Ω).





Chapter 5

Appendix

In this appendix we recall some Dirichlet problem theory and we will
specialize it to the H2 × R space. In the the first section we recall some
of the standard PDE theory for Dirichlet Problem, in the second we write
the mean curvature operator in the hyperbolic setting. We will deal with
classical Dirichlet problems, i.e. all derivatives are strong.

We begin with recalling the functional spaces which show to be natural
when dealing with classical Dirichlet problem, Hölder differentiable functions.
Before going through the material we recall some notation of multi-variables
calculus. Assume U ⊂ R2 is an open domain described by coordinates
z = (x1, x2) and f ∈ C∞(Ω). If h = (h1, h2) ∈ N2 is a multi-index, we write

|h| = h1 + h2

∂hf

∂ph
=

∂h1∂h2 f

∂x1
h1 ∂x2

h2

Moreover we will use ∇2 u to mean the set of second derivatives of u. With
this notation we can define Hölder continuous functions.

Definition 48. Hölder spaces
Consider Ω ⊂ R2 a compact domain. Take 0 < δ < 1 and define

Ck,δ(Ω) =

{
u ∈ Ck(Ω) :

∀ z, w ∈ Ω, ∀ |j| ≤ k

∣∣∣∣∂ju∂xj (z)− ∂ju

∂xj
(w)

∣∣∣∣ ≤ C |z − w|δ
}

for some 0 < C independent from z, w.

97
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Moreover on this space we define

the semi-norm ||u||k,δ = sup
z 6=w

∣∣∣∣∂ju∂xj (z)− ∂ju

∂xj
(w)

∣∣∣∣
|z − w|δ

the norm ||u||Ck,δ(Ω) =
k∑

h=0

||u||h,δ

We recall that all the Ck,δ(Ω) spaces are Banach spaces when equipped
with the norm just defined. Since the mean curvature operator involves de-
rivtives of order at most two, we recall the definition of second order operator.

Definition 49. Second order elliptic quasi-linear operator
Consider u ∈ C2,δ(Ω) and a second order quasi-linear operator on C2,δ(Ω) is
a function Q : C2,δ(Ω)→ C0,δ(Ω) such that

Q(u) =
2∑
i,j

aij(x, u,∇u)
∂2 u

∂xi ∂xj
+ b(x, u,∇u) (5.1)

where

aij : Ω× R× R2 → R
b : Ω× R× R2 → R

are C0,δ(Ω) functions.
If ∃ 0 < l ≤ L ∈ R such that for each (x, z, p) ∈ Ω×R×R2 and v ∈ R2 we
have

l |v|R2 ≤ 〈A(x, z, p) v, v〉R2 ≤ L|v|R2

Moreover Q is uniformly elliptic if L/l is bounded in Ω.

It is well known that prescribing boundary conditions is necessary in order
to have uniqueness of solutions of differential equations. Hence we recall the
definition of Dirichlet problem which prescribes the value of the solution on
the boundary.

Definition 50. Dirichlet problem
Let 0 < δ < 1 and consider Ω ⊂ R2 a compact domain of class C2,δ.
Consider Q a quasilinear elliptic operator and φ ∈ C0(∂Ω) a function. We
call Dirichlet problem the problem of finding a C2(Ω) function u : Ω → R
such that {

Q(u) = 0 in Ω
u = φ in ∂Ω

(P)
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The theory of classical Dirichlet problem is enormous. A study of the
elliptic case can be found in [12]. Here we will summarize, without proof,
some facts.

Theorem 15.
Consider the Dirichlet problem (P). Then

� Maximum principle:

If Q is locally uniformly elliptic, aij are independent from u(x), b
is non increasing in u(x), aij are C1

if u, v ∈ C2,δ(Ω) satisfy

u ≤ v on ∂Ω

Q(u) ≥ Q(v) on Ω
Then we have

u ≤ v in Ω

� Schauder Estimates I:
Let u ∈ C2,δ(Ω) be a solution of (P). Then, being Q quasi-linear and
elliptic, we have

||∇u||C0(Ω) ≤ C̃1 =⇒ ||∇u||C0,δ(Ω) ≤ C̃

� Schauder Estimates II:
Let u ∈ C2,δ(Ω) be a solution of (P). Then, being Q quasi-linear and
elliptic, we have

||u||C0(Ω) + ||∇u||C0(Ω) + ||∇u||C0,δ(Ω) < C1 =⇒ ||u||C2,δ(Ω) ≤ C

The proof of these facts can be found respectively in [12, Chapter 10,
Theorem 1], [12, Chapter 6, Lemma 6] and [12, Chapter 11, Theorem 4], [12,
Chapter 11].
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