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Abstract 

Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from 

Azores triple junction to the Continental margin of Morocco. Relative movement between the 

two plate change along the boundary, from transtensive near the Azores archipelago, through 

trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf 

of Cadiz area. This study presents the results of geophysical and geological analysis on the 

plate boundary area offshore Gibraltar. The main topic is to clarify the geodynamic evolution 

of this area from Oligocene to Quaternary. Recent studies have shown that the new plate 

boundary is represented by a 600 km long set of aligned, dextral trascurrent faults (the SWIM 

lineaments) connecting the Gloria fault to the Riff orogene. The western termination of these 

lineaments crosscuts the Gibraltar accretionary prism and seems to reach the Moroccan 

continental shelf.  

In the past two years newly acquired bathymetric data collected in the Moroccan offshore 

permit to enlighten the present position of the eastern portion of the plate boundary, 

previously thought to be a diffuse plate boundary.  

The plate boundary evolution, from the onset of compression in the Oligocene to the Late 

Pliocene activation of trascurrent structures, is not yet well constrained. The review of 

available seismics lines, gravity and bathymetric data, together with the analysis of new 

acquired bathymetric and high resolution seismic data offshore Morocco, allows to 

understand how the deformation acted at lithospheric scale under the compressive regime. 

Lithospheric folding in the area is suggested, and a new conceptual model is proposed for the 

propagation of the deformation acting in the brittle crust during this process. Our results show 

that lithospheric folding, both in oceanic and thinned continental crust, produced large 

wavelength synclines bounded by short wavelength, top thrust, anticlines. Two of these 
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anticlines are located in the Gulf of Cadiz, and are represented by the Gorringe Ridge and 

Coral Patch seamounts. Lithospheric folding probably interacted with the Monchique – 

Madeira hotspot during the 72 Ma to Recent, NNE – SSW transit. Plume related volcanism is 

for the first time described on top of the Coral Patch seamount, where nine volcanoes are 

found by means of bathymetric data. 40Ar-39Ar age of 31.4±1.98 Ma are measured from one 

rock sample of one of these volcanoes. Analysis on biogenic samples show how the Coral 

Patch act as a starved offshore seamount since the Chattian. We proposed that compression 

stress formed lithospheric scale structures playing as a reserved lane for the upwelling of 

mantle material during the hotspot transit. The interaction between lithospheric folding and 

the hotspot emplacement can be also responsible for the irregularly spacing, and anomalous 

alignments, of individual islands and seamounts belonging to the Monchique - Madeira 

hotspot.  
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Riassunto 

Il limite di placca tra Iberia e Africa nell’oceano Atlantico centrale si estende dalla giunzione 

tripla delle Azzorre ad est fino all’ orogene betico-rifano verso ovest. Il regime tettonico 

lungo il limite di placca varia da transtensivo nei pressi delle Azzorre, trascorrente lungo la 

zona di frattura Gloria, a compressivo nell’area del Golfo di Cadice. Qui la velocità di 

convergenza tra le due placche è attualmente di 4 mm/a (DeMets et al. 1994). Negli ultimi 

anni il Golfo di Cadice è stato interpretato come un limite diffuso di placca. Recentemente è 

stata scoperta una serie di lineamenti morfologici (lineamenti SWIM, dal progetto europeo 

che ha acquisito i dati batimetrici che hanno permesso la loro individuazione) attribuiti a 

strutture trascorrenti che interessano tutto il Golfo di Cadice. Questi sono stati proposti da 

Zitellini et al. (2009) come costituire il probabile limite di placca tra Iberia e Africa a partire 

dal Pliocene Superiore (2 Ma). I lineamenti connettono la zona di frattura Gloria con il 

margine Marocchino e la catena Betico Rifana. Su questo margine, a seguito di una campagna 

oceanografica avvenuta nel 2008 è stato possibile caratterizzare i lineamenti tramite 

batimetria ad alta risoluzione e sismica CHIRP. I lineamenti in questo settore si impostano sul 

prisma di accrezione di Gibilterra, causando evidenti fenomeni gravitativi nella sua parte 

superficiale. 

Uno degli obbiettivi di questa tesi è stato inoltre lo studio delle deformazioni a scala 

litosferica a partire dall’Oligocene fino ad oggi. La riattivazione di questo margine in regime 

compressivo è avvenuta a causa della rotazione antioraria di Iberia a partire dall’Oligocene. 

Tramite lo studio di linee sismiche e dati gravimetrici è stato proposto che a partire 

dall’Oligocene l’area del Golfo di Cadice sia stata interessata da piegamenti litosferici. Inoltre 

è stato possibile proporre un nuovo modello concettuale di come si manifestino nella crosta 

superiore processi legati a piegamento litosferico. Questo modello prevede che si formino 
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sinclinali ad ampia lunghezza d’onda (30 – 140 km) seguite da anticlinali con lunghezze 

d’onda minori (10 – 80 km).  

L’area in esame è stata interessata a partire da 72 Ma dal transito del punto caldo Monchique 

– Madeira. Numerosi monti sottomarini e piccole colline abissali ne segnano la traccia. In 

questo lavoro per la prima volta viene descritto in dettaglio uno di questi, il monte 

sottomarino Coral Patch. Nove edifici vulcanici minori sono stati descritti sulla sua sommità e 

uno di questi, campionato durante una crociera oceanografica nel 2004, è stato datato a 31 

Ma. Inoltre è stato ipotizzato che il magmatismo nell’area abbia interagito con i processi di 

piegamento litosferico. Questa interazione ha portato ad una distribuzione anomala dei 

vulcani che spesso, come nel caso del Coral Patch, si allineano lungo le zone di debolezza 

litosferica causate dai processi tettonici.  
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1 Introduction  

1.1 Study area 

The Gulf of Cadiz is the portion of the Eastern - Central Atlantic bounded by South Iberia and 

Northwest Morocco (Fig. 1.1.1). Here is located the Eastern end of the Azores-Gibraltar plate 

boundary. Nowadays, the kinematic of this plate boundary show a progressive change from 

extension at the Azores, pure right lateral strike slip in the middle at the Gloria trascurrent 

fault, compression in the Gulf of Cadiz with a relative plate velocity of about 4 mm/a (Argus 

et al., 1989, DeMets et al., 1994). To the East, the Azores - Gibraltar plate boundary ends 

against the Gibraltar accretionary prism (Fig. 1.1.2) formed by the westward motion of the 

Betic – Rif orogenic arc.  

 
Figure 1.1.1 Central Atlantic Sea. MAR: Mid Atlantic Ridge; TR: Terceira Ridge; GFZ: Gloria 
Fracture Zone; MTR: Madeira Tore Rise; SL: SWIM Lineaments; TP: Tagus abyssal Plain; HP: 
Horseshoe abyssal Plain; SP: Seine abyssal Plaine; Dashed line; Betic-Rifean Front; White box 
outlines area of figure 1.2; White arrows indicate relative plate motion along the plate boundaries. 

 

Several huge seamounts are present offshore in the Gulf of Cadiz, as the Gorringe Ridge and 

the Coral Patch seamounts. Associated to these seamounts are the greatest geoid anomaly in 
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the Atlantic sea with a gravity anomaly of about 400 mGal at the Gorringe and 200 mGal at 

the Coral Patch (Sandwell and Smith, 1997). 

 

Figure 1.1.2 Study area. Thin solid line, Gibraltar accretionary prism; thick solid line Gloria fracture 
zone and SWIM lineaments; grey arrow, track of the Monchique – Madeira hotspot. 
 

Natural seismicity is heavily concentrated along the Gloria Fracture Zone, while it becomes 

scattered in the Gulf of Cadiz and Gibraltar region (Fig 1.1.3). In this area the seismicity is 

located preferentially offshore South Iberia and it is not focused on some particular structures 

(Grimison and Chen, 1986).  

In the last 15 years, this sector of the Eurasia – Africa plate boundary was interpreted as a 

diffuse plate boundary (Sartori et al., 1994, Hayward, 1996). In particular, Sartori et al. (1994) 

showed that the compressional deformation is NW-SE trending, and distributed over a wide 

region. The Gulf of Cadiz is also the source area of several high- magnitude earthquakes, as 

the 1755 Great Lisbon earthquake with an estimate magnitude of M=8.5 to 8.7 (Martinez-

Solares and López Arroyo, 2004). The earthquake was followed by the largest tsunamis ever 
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experienced in the Western Europe Atlantic margin and was observed as far as the Caribbean 

and North American coasts. In the past twenty years several international project were 

focused on the area. Thanks to these efforts a huge geophysical and geological dataset was 

collected.  

 
Figure 1.1.3 Natural seismicity of the Gulf of Cadiz and surrounding area, from August 2007 to April 
2008, recorded during the NEAREST project. Blue triangle, OBS station; green triangle, land 
seismometers station 
 

The Gulf of Cadiz was almost completely mapped by means of high-resolution bathymetry 

and geophysical seismic data during the ESF SWIM project to constrain the major active 

structures of the area (Gracia et al., 2003; Zitellini et al., 2004). After the SWIM project new 

bathymetric compilation is now available (The SWIM multibeam compilation, Zitellini et al., 

2009). The SWIM compilation revealed a new set of lineaments, that were called the SWIM 

lineaments, cross cutting the Gulf of Cadiz from the eastern termination of the Gloria fault to 

the NW Moroccan offshore. Zitellini et al. (2009) proposed this structures to be the recent 

plate boundary between Iberia and Africa (Fig 1.1.4) and Rosas et al. (2009) showed how, in 

the last 2 Ma, the deformation was active on these trascurrent structures.  
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Figure 1.1.4 SWIM lineaments cross-cutting Horseshoe Abyssal plain and the Gibraltar accretionary 
prism. West to East view. Vertical exaggeration 5X. 
 

The Gulf of Cadiz evolution was also influenced by the transit of the Madeira – Monchique 

hotspot. The track of this hotspot is underlined by a 700 km long, 200 km wide chain of 

volcanic abyssal hills and seamounts (Fig. 1.1.2). The hotspot volcanism spans in age from 

the 70-72 Ma at the Monchique volcanic field, in South Portugal, to 14-0 Ma volcanism at 

Madeira archipelago (Morgan, 1981; Geldmacher et al., 2000). Up to day several aspect of 

this volcanism are still matter of debate: for example the alignment of seamounts such as the 

Coral Patch and Ormonde offsets the trace axis (Geldmacher et al., 2005). This anomalous 

feature of the Monchique – Madeira hotspot track is explained either as related to (1) a 

volcanism locally controlled by lithospheric discontinuities or (2) magmatism, possibly 

related to a weak pulsating plume (Merle et al, 2006; Geldmacher et al., 2005). In addiction, 
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the interaction of volcanism with tectonic processes nearby the plate boundary is still not yet 

well understood because of the scarce information about its submerged part.  

 

1.2 Objectives 

Aim of this work is to understand the tectonic processes, at crustal and lithospheric 

scale, acting in the area from the onset of the counterclockwise rotation of Iberia, during 

Oligocene, and the consequent reactivation of the Azores Gibraltar plate boundary between 

Iberia and Africa. The rotation of Iberia caused extension in the Bay of Biscay and the 

reactivation of a compressive stress regime offshore SW Iberia and in the Gulf of Cadiz. This 

study intend mainly to enlighten the processes that were active during this compressive stage. 

In this work, the interaction between tectonic setting and the alkaline hotspot 

volcanism belonging to the Madeira – Monchique volcanic province, is also analyzed. This 

volcanism is present in the area from Late Cretaceous in South Portugal to Recent at the 

Madeira archipelago. 

Furthermore, in this study the deformation associated to the WNW-ESE-oriented 

dextral strike-slip movement across the Gibraltar accretionary prism in the vicinity of the 

Moroccan coast is analyzed.  

  

1.3 Structure of the work 

This thesis is constituted by seven chapters. After a general introduction on the study area 

(chapter 1), the principal data and methodology used during this work are shown in chapter 2. 

Geological and Geomorphological setting of the study area are treated in chapter 3. Chapter 4 

presents a paper “submitted to Geology” focused on the mode of deformation acting near the 

Plate boundary, from Eocene to Pleistocene, while Chapter 5, contains a work on the tectonic 

process acting in this sector from Pleistocene to Recent, along and in the vicinity of the WNW 



14 

 

– ESE SWIM faults, on the plate boundary offshore Morocco. The following chapter 6, 

presents a paper concerning volcanism episodes not related to the opening of the Atlantic 

Ocean and examine the interaction of this volcanism with the tectonic processes acting in the 

area. This paper is submitted to Terra Nova. The main conclusions of this work are discussed 

in Chapter 7. 
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2 Data and methodology  

2.1 Swath bathymetry  

In the last decade the Gulf of Cadiz has been intensively investigated. One of the major 

outcomes of these researches was the publication of the “Bathymetry of the Gulf of Cadiz, 

North-East Atlantic: the SWIM multibeam compilation”  (Zitellini et al., 2009). This map is 

the result of a collaboration with several European and Italian scientific partners, 19 surveys 

for more than 200 days (Enclosure 1). The map was built from a dtm with 100 m x 100 m 

cells resolution and the digital data are available on line as supplementary material with cells 

resolution of 250 m x 250 m.  

 

Model  RESON SeaBat 8160 

Operating frequency:  50 KHz 

Swath angle:    150° 

Operating Depth:   5 – 3000 mt 

Beam number:   126 

Vertical resolution:   

1.4 cm with range until 750 m 

2.9 cm with range between 1000 m and 1500 m 

8.6 cm with range between 1500 m and 2500 m 

TABLE 2.1 Technical parameter of the RESON multibeam system of the R/V Urania during the 
NEAREST cruises. 
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Two of the surveys mentioned above were the Nearest 2007 and Nearest 2008 cruises carried 

out in the frame of the European project NEAREST (http://nearest.bo.ismar.cnr.it). Two 

bathymetric surveys were acquired and began part of the compilation. The research cruise was 

carried out with the 61 meter R/V Urania, owned and operated by SO.PRO.MAR. and on 

long-term lease to CNR. I had the opportunity to be on board and to acquire and reprocess the 

data at the Centro di Calcolo facilities in ISMAR-Bo.  

R/V Urania was equipped with a RESON 8160 multibeam systems and a DGPS FUGRO 

positioning system. The navigation and the bathymetric acquisition was done with the 

PDS2000 software by RESON. During the acquisition CTD casts were performed to calibrate 

the Sound velocity values on the acquisition software (Table 2.1). 

The data was stored in SIMRAD binary format (*.all) to be reprocessed by the most common 

bathymetric processing software. To reprocess the data I used the: NEPTUNE / Konsgberg, 

CARAIBES / Ifremer and MB system / Columbia University (Caress and Chayes, 2009) 

softwares. After reprocess classical digital terrain model (dtm) are built using GMT (Wessel 

and Smith, 1995 & 1998) to make bathymetric map. 

NEAREST 2007 survey was done on the South Portuguese continental shelf offshore 

Portimao (Fig. 2.1.1). This survey covers 400 km2 of the external continental shelf and the 

first part of the continental slope at depth between 100 m bsl and 300 m bsl. The shelf is 

characterized by a general flat morphology, somewhere interrupted by meter scale high 

hundreds meters long, bedrock ridges. The southern margin of the continental shelf and the 

slope characterized by the head of three small arcuate canyons. These develop on a 11° dip 

slope and connect to the continental shelf through a structural flat area at 300 m bsl.  

The results of NEAREST 2008 survey offshore Morocco are presented and discussed on 

chapter 5. 
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Figure 2.1.1 NEAREST 2007 survey, bathymetric shaded relief map (Coloured area: 25 m x 25 m cell 
size resolution). Blue bathymetry from Gulf of Cadiz Multibeam Compilation (Zitellini et al., 2009) 
100 m x 100 m grid resolution.  

 

2.2 High-resolution CHIRP seismic  

Hull-mounted and towed sub-bottom profilers have become common within the academic 

community and are typically acquired during high-resolution multibeam bathymetric surveys. 

Sub-bottom profilers emit a chirp signal that characterized by frequencies of 3-7  KHz which 

often penetrates the bottom 100 meters or more. Sub-bottom profilers get more deep 

penetration with low frequency, thus a chirp center frequency near the “old” 3.5 kilohertz is 

generally used (Henkart, 2009).  

The high-resolution sub-bottom seismic data, acquired during NEAREST 2007 and 2008 

cruises with a BENTHOS CHIRP II (Table 2.2), were processed with SeisPrho (ISMAR) 

software (Gasperini and Stanghellini, 2009). The program allows the users to handle SEG-Y 
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data files (and other non-standard formats) carrying out a processing sequence over the data to 

obtain, as a final result, bitmap images of seismic sections. The resulting images have been 

interpreted on screen or printed, then the interpretation was reported on cartographic software 

as QGis or GMT. During this three years a large database of sub bottom lines acquired during 

several oceanographic cruises has been created using GIS software. 

Factory Benthos 

Model Chirp II 

Installation Hull mounted 

Number of transducers 16 

Transducers type AT 471 

Signal generator / DSP CAP-6600 Chirp II Workstation 

DSP Sonar Signal Processing 16 bit A/D, continuous FFT 

Operating sweep frequency 2 – 7 kHz 

Ping rate Variable, operator selectable (max 12 ping/sec) 

Sweep Length Variable, operator selectable 

Multiping option yes 

Gain Automatic gain control 

Bottom tracking Interactive 

Navigation / Annotation NMEA 0183 

Data format SEG Y 

Printer Alden 

Acquisition software SwanPRO / ChirpScan II 

Processing software SeisPRO / SwanPRO 

Location controller / recorder Recording room (room # 525) 

Table 2.2 CHIRP seismic sub bottom profiler on board R/V Urania during NEAREST cruises. 
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During this period I had the chance to take part in two oceanographic surveys, the Nearest 

2007 and Nearest 2008 cruises, in the area of the Gulf of Cadiz and to acquire directly Chirp 

data helpful to my study. In particular CHIRP data have been used for the geo-morphological 

interpretation of the NEAREST08 Morocco bathymetric survey (chapter 5) and for the 

geological interpretation of the Coral Patch seamount (chapter 6). 
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2.3 Seismic reflection data 

 2D seismic multichannel (MCS) data have been the main dataset used in this work. 

ISMAR-BO participated in the last 20 years to several international and national scientific 

projects during which a large dataset of seismic lines was acquired (Fig. 2.3.1). Data available 

and interpreted during this thesis belong to several survey: RIFANO 1992 (Sartori et al., 

1994), BIGSET 1998 (Zitellini et al., 2004 a), VOLTAIRE 2004 (Zitellini et al., 2004 b), 

IAM 1993 (Banda et al., 1995), SWIM 06, SISMAR 2001 (Contrucci et al., 2004) and 

ONHYM-ONAREP 1987 (Flinch, 1993).  

 
Figure 2.3.1 Seismic lines dataset collected in the last 15 years at ISMAR for the area offshore SW 
Iberia. TP: Tagus abyssal Plain; GB: Gorringe Bank; HP: Horseshoe abyssal Plain; CP: Coral Patch; 
SP: Seine abyssal Plain; GAP: Gibraltar Accretionary Prism. Red line: Seismic AR07 line in Fig. 
2.4.2. 
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Seismic interpretation is based on the recognizing of faults and unconformities, seismic facies 

and reflectors termination (Payton, 1977). Seismic facies are defined on the basis of change in 

reflection style including continuity, wavelength and amplitude (Mitchum et al., 1977; Bally 

1987).  

 
Figure 2.3.2 Seismic line AR 07 and 3D view bathymetry of the Gulf of Cadiz. (SW to NE view). 
Vertical scale in second Two way Time. For location see Fig. 2.4.1. 
 

In particular for this thesis about 5000 km of MCS were interpreted. The review of these 

seismic dataset collected in the last 15 years at ISMAR-BO permits to directly correlate, for 

the first time, the principal regional unconformity in the three main basins of the area, Seine, 

Horseshoe and Tagus Abyssal plains. In turn, this allows to correlate the main tectonic events 

and their temporal development on the whole oceanic domain of the Gulf of Cadiz. The 

constraining of the temporal evolution of the main tectonic events, at regional scale, permits 

to better understand the events responsible of the main geological structures in the area at 

lithospheric scale. 
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3 Geomorphological, structural and geophysical setting of the Gulf of Cadiz 

3.1 Structural Settings 

Kinematic model proposed in the last 10 years (Rosembaun et al., 2002; Schettino & Scotese 

2005) shows that the Gulf of Cadiz area was characterized by a poliphasic tectonic regime 

from the onset of Atlantic oceanization to Recent.  

Palinspastic restoration, based on the study of oceanic magnetic anomaly lineations 

(Srivastava et al., 1990), show how the Eurasia - Africa plate boundary (Fig. 3.1.1) owns the 

present day configuration only since Late Oligocene times. Since first continental break-up, 

the region recorded complex plate interactions outlined in Fig.3.1.2.  

 
Figure 3.1.1 The Azores Gibraltar plate boundary Line (AGL); NA: North America Plate; MAR: Mid 
Atlantic Ridge; TR: Terceira Ridge; GFZ: Gloria Fracture Zone; SL: SWIM Lineaments; Dashed line 
mark the Betic Rifean chain. 
 

The continental margins of South Iberia and Morocco formed during Jurassic continental 

break-up between North America and Africa while the western continental margin of Iberia 

formed as a result of the Cretaceous separation of from North America. As a consequence, the 

Tagus, Horseshoe and Seine Abyssal Plains correspond to oceanic crust of Late Jurassic-Early 
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Cretaceous age. Starting approximately from Chron M0 (~125 Ma) Iberia moved 

independently until Chron 34 (~85 Ma) when appeared welded to Africa. At Chron 13 (~34 

Ma), contemporaneously with the Pyrenean continental collision, the boundary jumped again 

South of Iberia and only at Chron 6 reached the present day plate-tectonic configuration.  

 

Figure 3.1.2 Plate kinematics reconstruction after Rosembaun et al., 2002, (in a fixed Eurasia 
references). Blue arrows: movement vectors for the Coral Patch Seamount; red arrows: movements 
vector for the Gorringe Bank. These two seamounts are chose to enlighten the stress field acting in the 
Horseshoe abyssal plain between them. Seismic lines permit to consider the Coral Patch as part of 
Africa plate and Gorringe Bank as part of Iberia plate since the Jurassic breakup. 
 

The Europe-Africa plate boundary now trends roughly E-W, connecting the Azores-Triple 

Junction to the Gibraltar Strait along the so called Azores-Gibraltar Line (AGL in Fig. 3.1.1). 

Along this line the plate motion is divergent East of the Azores with a dextral strike-slip 

component, transform in the middle segment, the Gloria fault, and convergent to the East of 

the Tore-Madeira Rise where the upper crust appears affected by diffuse compression (Sartori 
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et al., 1994). At about 2.0 Ma the localization of the deformation offshore Iberia started to be 

focused along ESE-WNW strike-slip faults (Rosas et al., 2009) controlling the present-day 

plate interaction between Iberia and Africa.  

Further eastward, the eastern part of the AGL is buried by deformed sediments of the 

accretionary wedge related to westward-trending Miocene emplacement of the Gibraltar 

orogenic arc.  

 
Figure 3.1.3 a) Stress map of the study area, color bar strain rate and b)Recent tectonic setting, 
(bottom arrow: direction of relative movement of Africa with respect to Iberia). GFZ: Gloria Fracture 
Zone; Modified after Zitellini et al. (2009). 
 

In the area between the Gorringe Ridge and the Gibraltar Strait, compressive stress trends 

mainly NNW-SSE with plate convergence rate of 4 mm/y (DeMets et al., 1994). The 

Gorringe Ridge, the Coral Patch Ridge, and the series of Abyssal hills in the Seine Abyssal 
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Plain formed by northwest to southeast-trending thrusting during the latest stages of the 

Eurasia-Africa convergence.  

 

3.2 Main geomorphologic features  

The main morphological features of the Gulf of Cadiz (Fig. 3.2.1) are described hereafter 

from South to North, from the Moroccan offshore to the West Iberia continental margin and 

abyssal plain systems. The Gibraltar accretionary prism domain is introduced at the end of the 

chapter.  

 
Figure 3.2.1 Morpho bathymetric map of the Gulf of Cadiz, SWIM compilation.  
(LC Lisboa Canyon; TAP Tagus Abyssal Plain; SV San Vicente Canyon; GB Gorringe Bank; HS 
Hirondelle seamount, HAP Horseshoe Abyssal Plain; AS Ampère seamount; CP Coral Patch 
seamount; CPR Coral Patch Ridge; GAP Gibraltar accretionary prism; SAP Seine abyssal plain; MP 
Mazagan Plateau).  
 

Zitellini et al. (2009) published a bathymetric compilation map of a great part of the Gulf of 

Cadiz (Fig.3.2.1 and Plate 1) merging high-resolution bathymetric surveys performed in the 
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last ten years by several European Oceanographic Institutes. The results is a bathymetric map, 

(100 m x 100 m grid resolution) that improved the knowledge of the whole area. 

The Moroccan Mazagan platform, West of Casablanca, is a 50-60 km wide continental shelf. 

In this sector four DSDP site (545, 544, 546, 547) (Hinz et al., 1982) reveal the stratigraphy 

and the evolution of the continental margin showing how the present day continental slope is 

strongly influenced by the presence of a Cretaceous drowned carbonate platform buried below 

it. The continental platform gently dips from the coast and is abruptly interrupted by a highly 

inclined slope connected to the Seine Abyssal plain. The slope, with a mean inclination about 

5°, presents a classical canyon - ridge - canyon morphology. In several parts this escarpment 

can reach slope values around 30°-40°, this steepness resulting by erosive process acting on 

the old carbonate platform buried below this escarpment.  

Northwest of the Moroccan shelf there is the Seine Abyssal Plain. This plain, about 400 km 

long x 250 km wide, has a mean depth of 4400 m and can be divided in two parts. Toward the 

West, there is a starved flat basin with only few abyssal hills on the northern side. East of 

10°30’ W the plain is interrupted by ridges and hills that arise up to 3500 m bsl. Seismic data 

show how these hills and ridges are of two types: the first one is formed by a regular, sub-

parallel top-thrust anticlines, the second one is formed by isolated to aligned diapiric hills. 

Ridges are commonly 10 to 20 km wide, with a maximum length about 50 km. Diapiric 

domes are generally of rounded in shape, 5 km wide, rising about 200-300 m from the flat 

plain. On the western margin a series of rounded shape hills arise for about 200 m from the 

4400 m deep, flat abyssal plain. Seismic data reveal that these structures are the 

morphological expression of deep diapiric structures flowing up to the sea-bottom (Fig. 

3.2.2). These diapiric domes are aligned ENE – WSW. Some of these hills are also present 

eastward, on the top of the Gibraltar accretionary prism.  
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The presence of these diapiric structures cutting all the sedimentary layers of the accretionary 

prism, without sign of tectonic lateral displacement, testify the inactivity of the accretionary 

prism at least at the toe of this structure.  

 
Figure 3.2.2 MCS line AR06 in the Seine Plain, Blue arrow: diapirs; Red arrow: thrust in the 

accretionary prism; Yellow line: onlap unconformity. 
 

The northern part of the Seine abyssal plain ends at the toe of the 200 km long, WSW-ENE 

oriented Coral Patch Ridge. This long chain of ridges and seamount starts from the North, at 

9°30’ W - 35° 30’N, with a 1000 m high seamount and ends to the South with the Coral Patch 

seamount. On the top of this ridge, halfway between the Coral Patch seamount and the 

northern Coral Patch Ridge, is located the site of DSDP 135 (see chap. 3.4). The Coral Patch 

seamount, well described in chapter 6, is a large seamount rising 3800 m from the 

surrounding abyssal plains. On the top at least nine well preserved volcanic edifices are 

present. The slopes of the seamount are steep and characterized by gully-like scours and 

gravitative phenomena. To the west, the Coral Patch is connected through a thin saddle to the 

Ampere seamount. This is a volcanic seamount rising up to 250 m bsl with a classical conic 

volcanic shape down to 1000 m bsl. The basal part of the Ampere seamount is elongated in a 

WSW-ENE direction as the Coral Patch. The Ampere and Coral Patch Ridge separates the 

Seine abyssal plain from the Horseshoe Abyssal Plain. This is long 300 km with a mean width 

of 65 km, is elongated toward NE with depth ranging from 4750 m and 4900 m bsl. Only few 
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abyssal hills rise from the HAP in the eastern sector. These hills seem to be aligned from 

WNW to ESE; they have been interpreted by Rosas et al. (2009) and Zitellini et al. (2009) as 

the morphological expression in the area of a set of trascurrent faults, the SWIM lineaments, 

crosscutting all the Gulf of Cadiz from the Gloria fault to the Moroccan coast. The Western 

termination of the Horseshoe Abyssal Plain corresponds to the Tore Madeira Rise, formed by 

a series of seamounts and abyssal hills, roughly aligned N-S.  

 
Figure 3.2.3 Gorringe Bank shaded relief map, Mercator Projection, coordinates in meters. White box 

location of Figure 3.2.4. 
 

The Horseshoe Abyssal Plain is bounded to the North by the impressive slope of the Gorringe 

Bank and Hirondelle Seamount. The Gorringe Bank is a 4800 m high seamount elongated SW 

- NE, 200 km long and 80 km wide. The top is made up of two main reliefs, the Gettisburg 

seamount on the southwestern part, and the Ormonde seamount on the northeastern end, both 

rising up to 50 m bsl. In between it is located the sites of DSDP 120 (see chap. 3.4), the two 
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peaks have a flat top surface because of winnowing process during last glaciations; observed 

morphologies suggest the presence of outcrops of the substratum. The North flank of the 

Gorringe is characterized by a slope with a mean inclination varying between 7° ad 10°. On 

this slope a giant landslide is present, with the head escarpment at 2500 m bsl, 20 km wide 

(Fig. 3.2.3, 3.2.4). The toe deposit of the slide is 20 km wide on the northern abyssal plain, at 

5000 m bsl. The slide surface is around 350 km2 and it is long 45 km from the hinge of the 

head escarpment to the toe of the accumulation zone. The source area is 20 km long and is 

from 15 to 20 km wide.  

 
Figure 3.2.4 Giant Slide on the Northern flank of the Gorringe Bank. Red line: headwall; Black 
dashed line: Toe deposit. Vertical exaggeration 5X, location on figure 3.2.3. 
 

The Hirondelle seamount, bounds the North western sector of the Horseshoe Abyssal Plain 

West of the Gorringe Bank, it arises 2000 m from the adjacent abyssal plains and is 

characterized by elongated SW-NE small ridges, probably due to the accretion of new oceanic 

crust during the initial stage of the oceanization (Rovere et al., 2004). Moreover, the 

Hirondelle is crosscut by a linear depression extended from the NW sector to ESE, this 
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depression is interpreted as part of the SWIM trascurrent lineaments (Zitellini et al., 2009). 

Unfortunately, westward to the Hirondelle, the unique bathymetric data are the Gebco 

predicted topography (Sandwell and Smith, 1997) that do not have the resolution sufficient to 

check the westward continuation of the SWIM lineaments.  

North of Gorringe Bank and Hirondelle seamounts, the deepest abyssal plain of the area, the 

Tagus Abyssal Plain, is present. This plain has a mean depth of 5000 m bsl and is bounded to 

the East by the Iberian continental slope. No particular features are detected at the sea-bottom 

on this extremely flat plain. The West Iberia Continental margin, instead, shows many of 

different morphological structures. In this work, is taken into consideration the part comprised 

between the Lisbon Canyon to the North and the S. Vicente Canyon to the south. Lisbon 

Canyon, as well as the Cape S. Vicente Canyon, starts on the continental platform and reaches 

the abyssal plain acting as a connector for the silicoclastic sediment transport from land to the 

distal abyssal systems (Purdy, 1975).  

The South Iberian continental platform starts East of Cape S. Vicente. It can be divided into 

two main levels at different depth. From the coast, often represented by high-cliffs and 

Ercinian basements outcrops, a first gently sloping platform extends for ten to twenty 

kilometers to a depth of 120 m, then, below, a second sub-horizontal platform at depth 

between 200 and 700 m is present (Terrinha et al, 1998; Rovere et al, 2002). The continental 

shelf morphology down to -120 m bsl is influenced by Ercinian substratum outcrops between 

Cape S. Vicente and Faro lagoon. The two set of plateau are formed by prograding neogenic 

units and then influenced by the strong Mediterranean Outflow Water (MOW) current.  

Both the Iberian and the Moroccan platforms terminate to the East against the Gibraltar 

Accretionary Prism. This is the offshore continuation of the Betic-Rifean arc. Overall, the 

accretionary wedge is characterized by a mean moderate slope (<2° in general). However, 

along its external and internal boundaries the seafloor can locally reach slopes up to 10°. The 
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surface appears scattered by large sub-circular scours and depressions (Rosas et al., 2009). 

Seismic data show that this morphology is the surface expression of the geological thrust and 

fold structures of the wedge, covered by few meters of recent sediments. The North-Eastern 

sector of the Gibraltar Accretionary Wedge is also affected by the Mediterranean Outflow 

Water current that models and control the local sediment fabric and transport, in fact many 

conturite fields are present. The central sector of the prism shows two lobes. The lower 

boundary of these two lobes corresponds approximately to the -2000 m bathymetric contour, 

and they are marked by arcuate bands of steep (around 10°) slopes. The southern lobe 

presents several elongated WNW-ESE lineaments cutting the sea-bottom. These lineaments 

are part of the SWIM lineaments of Zitellini et al. 2009. They cut all the prism from the HAP 

to the Moroccan margin. Lineaments in this sector influenced and drove the gravitational 

bodies that in several place are confined by these WNW – ESE oriented lineaments. 
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3.3 Gravimetric data 

Gravity data have been used to investigate crustal density variation. The Sandwell and Smith 

altimetry derived Free Air Anomaly (Sandwell and Smith, 1997) and the Multibeam 

topographic data have been used for the gravity inversion. The gravimetric processing was 

done at INGV La Spezia institute. First the gravity-bathymetric correlation was determined 

using the Nettleton approach in order to compute the best crustal density for Parker inversion; 

this method gave a 2600 g/cm3 as mean crustal density. Next, the predictable signal due to 

water/crust and crust/mantle boundaries were removed from the Free Air Anomaly.  

Figure 3.3.1 Free Air Anomaly (Sandwell and Smith, 1997), for the multibeam compilation 

area 
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This was done by using a crustal layer bounded by the topography and by a flat 14 km depth 

Moho. Finally a modified Parker algorithm (Caratori Tontini et al., 2008) was used to 

compute crustal lateral density variation. The range in density variation  is between 2.0 and 

3.1 g/cm3.These are preliminary results. In fact seismic line will be used to constrain 

sediment/basement and crustal/mantle bounderies in order to perform new gravity inversion. 

The gravimetric data are used to validate the lithospheric folding model presented on chapter 4. 
 

 

Figure 3.3.1: Bouguer anomaly, corrected for the Gulf of Cadiz Bathymetric Compilatio, UTM 29 
Projection. 
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Figure 3.3.3: Crustal density variation computed using the Caratori & Tontini (2008) algorithm. 
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3.4 DSDP  

The Atlantic continental margin between North Iberia and Morocco was matter of several 

studies implying ODP, IODP and DSDP project. In particular 4 zones were drilled on 27 sites 

during several leg of this projects.  

 
Figure 3.4.1 Location map of DSDP drilling sites: DSDP 120 and DSDP 135; TP: Tagus abyssal 
Plain; HP: Horseshoe abyssal Plain; SP: Seine abyssal Plain. 
 

The main topic of the drilling project was to study the mode of rifting, subsequent drifting and 

complete oceanization of the Atlantic Sea, that occurred from the late Jurassic to middle 

Cretaceous. In particular from North to South the Galizia Margin (ODP sites 103, 149, 173, 

637, 638, 639, 641, 398, 897, 898, 899, 900, 901, 1065, 1067, 1068, 1069, 1070, 1276, 1277 

Boillot et al., 1985; Sawyer et al., 1994; Whitmarsh et al., 1998), the Gorringe Bank (DSDP 

120) the Coral Patch Ridge (DSDP 135) and the Moroccan Margin (DSDP sites 370, 544, 

545, 546, 547) were drilled between 1970 and 2001. 

Two DSDP (120 and 135) wells drilled in the Gulf of Cadiz (Figures: 3.4.1, 3.3.2, 3.4.3) are 

used in this work to calibrate and correlate seismo – stratigraphic interpretation. 
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Figure 3.4.2 schematic stratigraphy. 

 

The well DSDP 120 (Ryan et al. 1973), located at 36°41.388'N 11°25.938'W on the northern 

flank of the Gorringe Bank, reach a depth of 253.4 m from the sea bottom (Fig 3.4.2). During 

the drilling, because of technical problem, only 8 core fragments were recovered, so the 

sampled material was only the 19.8% of the total length of the well. 

At DSDP 120, Lower-Middle Miocene and Lower Cretaceous (Albian, Aptian, Barremian) 

gray and green, partly silicified nannofossil oozes were cored. The inferred stratigraphic 

section (Fig. 3.4.2) contains two significant unconformities: (l) a hiatus in bathypelagic 

sedimentation between Cretaceous and Miocene; (2) an abrupt change in sediment facies 

across this unconformity, silicified nannofossil ooze yielding poor assemblages of planktonic 

foraminifera (suggestive of original deposition near or below the lysocline) and younger 

chalks and oozes unaffected by solution with rich, diverse assemblage. 

The well reached the basement at 251.7 m below the sea bottom, the basement rocks consist 

of spilitic basalt, serpentinite, and meta-gabbro. This ophiolitic rock give a radiometric 

Giurassic age.  
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Figure 3.4.3 DSDP 135 schematic stratigraphy. 
 

The well DSDP 135 (Hayes et al. 1972), located at 35°20.802'N 10°25.458'W on the Coral 

Patch Ridge, drilled 687 m of recent to Aptian sediments (Fig 3.4.3) and did not reach the 

basement.  

The upper part of the core consist of 325 m of calcareous mud from Pleistocene to Recent in 

age. Under this unit pelagic sediments with little carbonate fraction and terrigenous quartz 

dominated sediment are recovered. The bottom part of the DSDP 135 is characterized, below 

560 m, again by calcareous sediments, Aptian in age. A major unconformity is represented by 

a hiatus in the sedimentation between Oligocene and Upper Eocene. 
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ABSTRACT 

Quantitative analysis of deep penetrating multi-channel seismic (MCS) lines, supplemented 

by gravity data, documents the fine structure of intra-plate deformation adjacent to the 

convergent Europe-Africa plate boundary offshore Gibraltar, Central Atlantic. In the brittle 

lithosphere, the deformation is expressed by crustal folding with the development of 30-190 

km wide large wavelength synclines, bounded by short wavelength anticlines. The synclines 
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are almost symmetrical with wavelengths characteristic either for coupled or decoupled 

lithosphere. The spatial characteristics of the deformation show a striking similarity with the 

intraplate deformation in the northeastern Indian Ocean in terms of inferred mantle 

wavelengths. In contrast, the observation that in the Gulf of Cadiz only syncline structures are 

well expressed, suggests that gravity prevents the formation of anticlines of  the same 

wavelength during the first stages of plate convergence, and only later one vergence will 

prevail, as in the Indian Ocean.  

 

INTRODUCTION 

Since the discovery of intraplate deformation in the form of oceanic lithospheric folding in the 

Northeastern Indian Ocean, numerous studies have provided evidence in support of this style 

of deformation in several areas around the globe (e.g. Stephenson and Lambeck, 1985; 

Stephenson and Cloetingh, 1991; Burov et al., 1993; Burg and Podlachikov, 1999; Cloetingh 

et al., 1999). Most of these studies have addressed folding in continental lithosphere since, 

due to its mechanical stratification, continental lithosphere is in general more prone to folding 

than oceanic lithosphere (Sokoutis et al., 2005). However, studies of continental lithosphere 

folding have been hampered by sub-aerial erosion removing part of the record of associated 

vertical motions and wiping out much of the high-frequency, short-wavelength records of 

folding (Cloetingh et al., 1999). Oceanic lithosphere and offshore rifted margin lithosphere 

has no such drawbacks, allowing the determination of the full spectrum of intraplate 

wavelengths due to folding. Due to its high strength, folding of oceanic lithosphere requires 

high stress levels such as observed in the Indian plate (see also Cloetingh and Wortel, 1985, 

Stein et al, 1989). Similar high stress levels are likely generated also in the proximity of plate 

boundaries in contrast to the interiors of oceanic plates where exceptionally high stress levels 

are generally not observed.  Lithosphere regions adjacent to plate boundaries may thus be 

likely candidates for folding in oceanic domains. We present the results of a new quantitative 
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analysis of a set of MCS profiles offshore SW Iberia (Fig.1), acquired parallel to the motion 

vector of Africa with respect to Iberia. The data set, collected during the AR92 R/V Explora 

Cruise (Sartori et al., 1994), provides new evidence for folding of continental and oceanic 

lithosphere.  

 

GEOLOGICAL SETTING 

Palinspastic restorations (Plate 1), based on oceanic magnetic anomaly lineations (Srivastava 

et al., 1990), show that the Eurasia/Africa plate boundary underwent complex plate 

interactions, acquiring its present configuration only since late Oligocene times (Plate 1h). 

The continental margins of South Iberia and Morocco formed during Jurassic continental 

break-up between North America and Africa while the western continental margin of Iberia 

formed as a result of the Cretaceous separation between Iberia and North America (Plate 1c). 

As a consequence, the Tagus, Horseshoe and Seine Abyssal Plains correspond to oceanic 

crust of Late Jurassic-Early Cretaceous age.  

In the Atlantic, the Europe-Africa plate boundary (Plate 1h) now trends roughly E-W, 

connecting the Azores-Triple Junction to the Gibraltar Strait along the so-called Azores-

Gibraltar Line (AGL). Along this line, plate motion is divergent east of the Azores, transform 

in the middle segment (Gloria fault), and convergent to the east of the Tore-Madeira Ridge 

where the upper crust appears affected by diffuse compression (Sartori et al., 1994) with plate 

convergence of 4 mm/y (DeMets et al., 1994). Further eastward, the termination of the AGL 

is buried by the deformed sediments related to westward Miocene emplacement of the 

Gibraltar orogenic arc (Fig.1). During the Eocene-Late Pliocene stages of Eurasia-Africa 

convergence, northwest and southeast directed thrusting originated the Gorringe Ridge, the 

Coral Patch Ridge and the series of abyssal hills in the Seine Abyssal Plain (Zitellini et al., 

2009). At about 2.0 Ma (Rosas et al., in press) the localization of the deformation offshore 
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Iberia started to be focused along ESE-WNW strike-slip faults controlling the present-day 

plate interaction between Iberia and Africa (Zitellini et al., 2009).  

 

 

DEFORMATION OFF SW IBERIA: CONSTRAINTS FROM MCS DATA 

The seafloor off SW Iberia and in the Gulf of Cadiz has attracted considerable attention 

during the last decade (Sartori et al. 1994; Hayward et al. 1999; Gutscher et al., 2002; 

Terrinha et al., 2003; Gracia et al., 2003; Medialdea et al., 2004; Zitellini et al. 2001, 2004) 

due to the occurrence of pronounced anomalous topography. The area is also considered to be 

the source area of the 1755 Lisbon earthquake (Plate 1a). Spectacular features include the 

Gorringe Bank, a large uplifted block of oceanic mantle characterized by shallow-depth 

peridotite outcrops, and by one of the largest geoid anomalies of the oceans (Bergeron and 

Bonin, 1991). 

Figure 1 displays line drawings of three parallel MCS lines exhibiting the spatial variation of 

the deformation pattern of the area. Line AR10 encompasses the deformation of the thinned 

continental margin offshore SW Iberia. Lines AR03-08 and AR07 comprise the full 

deformation zone  of the oceanic domain, situated between the undeformed sediments of the 

Tagus and Seine Abyssal Plains.  

 

Line AR10 (Fig.1 and Plate 1j) shows the deformation due to Europe-Africa convergence of 

Late Jurassic-Early Cretaceous thinned continental crust of the rifted SW Iberia margin that 

began in the Eocene. The seismic line shows the presence of a large syncline bounded by two 

top thrust anticlines with opposing, outward verging, thrust planes. The width of this structure 

measured from the two opposite bounding faults is 90 Km (Fig.1) with peak to peak distance 

between the bounding anticlines of 63 km. The two bounding faults, as shown in Plate 1, are 

at high angle throughout the sediment cover and are blind thrusts, not reaching the surface. In 



42 
 

the upper crust however, they propagate at lower angle with a dip of 24° (Zitellini et. al., 

2001). The bounding faults merge on a common, almost horizontal, detachment fault at 11 

sec. TWT depth, at approximately 18 km, where the earthquake activity of the structure is 

concentrated. Zitellini et al. (2001) interpreted this horizon as an intra-crustal decoupling 

level.  

Within the sedimentary cover, which is approximately 3 sec TWT thick and which records 

presently active shortening (Zitellini et al., 2004), the unconformity that marks the onset of 

compression can be recognized (Plate 1, shot point 1500, 5s depth). Most of the deformation 

is concentrated on the bounding anticline structures while the intervening syncline, once 

formed, remained practically undeformed, becoming an important regional basin depocenter. 

At present, however, no clastic sedimentation occurs as a result of compression induced uplift 

that triggered the formation of the San Vicente Canyon within the syncline axis (Plate 1j). 

 

Line AR03-08 connects the Gorringe Bank with the Coral Patch Ridge (Fig. 1i). These two 

parallel ridges can be regarded as analogues, at a larger scale, of the anticline structures 

described above. The Gorringe/Coral Patch ridges show shortening accommodated mainly by 

two, inward directed faults bounding a less deformed, wide, syncline. The peak to peak 

distance of the anticlines is about 165 Km. At the Gorringe Bank the bounding thrust exposes 

mantle rocks, implying lithospheric, low angle decoupling whereas at the Coral Patch Ridge 

the bounding fault increases its dip upward, without reaching the surface, similar to the 

previous AR10 line case. The occurrence of mantle rocks at the Gorringe Ridge can be 

explained if the seafloor was floored by peridotite, exhumed during the initial stages of 

Cretaceous separation between Iberia and North America, as in the Galicia Bank (Rovere et 

al., 2004). Deformation across the Gorringe-Coral Patch ended during Middle-Late Miocene 

as indicated by the on-lapping sedimentary units of the Tagus and Horseshoe (HS) Abyssal 

Plains (Zitellini et al., 2004). As in line AR10, the syncline become a basin depocenter, 
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storing 3 km of syn-post deformation sedimentary deposits. Once more, we observe that most 

of the brittle deformation is concentrated at the bounding anticline structures while the 

syncline did not experience important deformation. The vertical set of faults cross-cutting the 

HS Plain are related to later dextral strike-slip motion (Zitellini et al., 2009) that started later, 

at the end of Pliocene time (2.0 Ma). 

 

Line AR07 illustrates the deformation that occurred on the 160 Ma old (Srivastava et 

al.,1990), Late-Jurassic, oceanic crust of the Seine plain, 200 km offshore Morocco. 

Expressed as a set of parallel folds emerging from the Seine Plain, the deformation took place 

from Eocene until Late Pliocene. In section, the presence of a large syncline is observed 

which encompasses and contains a smaller one. As in the previous cases, the synclines are 

confined laterally by a set of opposite verging high angle inverse faults, marked by anticlines 

(Fig.1 and Plate 1l). The spatial separation between two bounding anticlines of the same order 

is 82 km and 34 km. The onset of folding and faulting is recorded by a regional unconformity 

for the larger structure and by a local unconformity for the smaller one. The relations between 

these unconformities show that deformation moved toward the centre (centripetal) in time. 

However, once formed the larger and the smaller structures grow together. In this sector the 

onset of the compressional stage is synchronous with the onset of deformation in the HS area, 

as shown by the good correlation of a region-wide, pre-folding unit. A regional unconformity 

marks the end of the major stage of compression, at about 2 Ma, when deformation focused in 

the HS plain transcurrent structures (Zitellini et al. 2009).  

 

DISCUSSION AND CONCLUSIONS 

The seismic sections reveal that deformation in the brittle lithosphere is expressed as a 

set of large synclines possessing variable wavelengths (Fig. 1). These are bordered by short 

wavelength anticlines generated above two antithetic thrust faults dipping inward, towards the 
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syncline axis. Deformation of synclines with relatively shorter wavelengths involve the Late 

Jurassic continental crust of the Iberian continental margin (Line AR10) and the Jurassic 

oceanic crust offshore the Moroccan margin in the Seine Plain (Line AR07). Larger 

wavelength deformation appears to be restricted to the oceanic lithosphere of the 

Gorringe/Coral Patch region (Lines Ar03-08). Table 1 summarizes the main characteristics of 

these structures. We term these structure “Drakkar” given their close similarity with the hull 

of the Viking ships. 

Gravity data furnish the means to explore the lithosphere character of the Drakkar 

structures. In particular, lateral density variations are mirrored by the long wavelength of the 

gravity field (Cloetingh et al., 1999). Free-air gravity anomalies of the region (Plate 1b) 

appear directly correlated with the longer wavelength topographic structures of the area (Plate 

1a). In fact, the pronounced positive gravity anomalies over the Gorringe Bank and the Coral 

Patch ridge are separated by a gravity low, corresponding to the syncline that connects them. 

In contrast, the shorter wavelength Drakkar structures such as the set of folds in the Seine 

plain do not display any direct gravimetric correlation. This is an indication that the  Drakkar 

structures of the Gorringe/ Coral-Patch pair are conformable with the deep lithosphere 

deformation, while the short wavelength tectonic deformation occurring in the Seine Plain 

implies decoupling between the upper oceanic crust and the mantle.  

Figure 2 displays folding wavelengths against the thermal ages of the lithosphere as 

observed offshore SW Iberia together with other documented studies. There  is a good 

correlation between the wavelengths and the thermal ages of the Drakkar structures for 

different decoupling levels that have been inferred from MCS data. Besides the 18 km deep 

intra-crustal decoupling level along the continental margin of SW Iberia, Figure 2 reveals that 

two decoupling levels act in the Seine Plain, one within the crust and one deeper at the crust-

mantle transition. The Gorringe-Coral patch structure instead resides in the coupled crust-

mantle field. 
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Despite the general agreement between field data and previous theoretical models for the 

lithospheric folding wavelength in the upper crust, a substantial divergence is observed 

between folding models and the Drakkar structures. Classical models, in fact, predict 

deformation made up of synclines and anticlines with constant wavelength (Fig. 3a,c). We 

observe only the syncline development with deformation focused on the bounding top thrust 

anticlines with slight deformation within them as sketched in Fig. 3b,d. In the Gulf of Cadiz 

this occurs both in coupled and in mechanically decoupled lithosphere (Fig.2), suggesting that 

syncline development forms the principal mode by which the upper lithosphere responds to 

lithospheric folding during the initial stage of compressional deformation. This is also shown 

by Burov and Cloetingh (2009) (Figure DR-1) which presents the results of a numerical 

model for folding of a weak lithosphere similar to the case of the offshore Iberian margin (i.e. 

Line AR10); although generalized in terms of adopted timing, erosion and sedimentation 

rates, the model predicts that, in this rheologically state, asymmetric anticlines-synclines 

structures  can develop similar to those observed in the study area. 

 The most obvious force preventing the full development of anticlines is gravity, both 

for mechanically coupled and uncoupled lithosphere. Meanwhile, the sedimentary load of this 

basin can, as gravity, enhance the development of the synclines. An immediate consequence 

of this mechanical behavior of the upper lithosphere is the generation of almost symmetrical, 

barely deformed basins, of particularly large dimensions in cases of mechanically coupled 

lithosphere, which are predicted to occur during the first stage of plate convergence.  
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FIGURE CAPTIONS 

 

Figure 1. Sketch map of the studied area with line drawing of deep seismic reflection profiles 

showing the major compressional structures. The lines are located parallel to plate motion 
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direction active from Eocene to Late Pliocene. Inset shows the bathymetry of the studied area 

(Data from GEBCO97 Digital Atlas Web site:www.gebco.net) with toponyms. 

 

Figure 2. Comparison of observed (solid square, circle and triangle) wavelengths of folding 

offshore Iberia with theoretical predictions for oceanic lithosphere (McAdoo and Sandwell, 

1985) in the absence (solid line) or presence (dotted line) of a thick sedimentary column 

(representative for the intraplate area in the NE Indian Ocean) and continental lithosphere 

(gray bands) (Cloetingh et al., 1999). Also shown for comparison are other estimates (open 

squares, circles and triangles) for wavelengths documented from geological and geophysical 

studies (Arctic Canada: Stephenson and Cloetingh, 1991; Central Asia: Nikishin et al., 1993; 

Britany: Bonnet et al., 2000; Mainland Iberia: Cloetingh et al., 2002, NE Indian Ocean: 

McAdoo and Sandwell, 1985; Stein et al., 1989). Both offshore Iberia (solid square and 

circle) and mainland southern Iberia (open solid square and circle) are characterized by 

separate dominant wavelengths for crust and mantle folds, reflecting decoupled modes of 

lithosphere folding. Note the similarity in wavelength of the inferred folding in the Gorringe 

Bank and Ampere Patch area (solid triangle) and the Central Indian Ocean (open triangle). 

 

Figure 3. Four modes of continental folding: a) Folding of coupled oceanic lithosphere, 

typical for the NE Indian Ocean (McAdoo and Sandwell, 1985; Stein et al., 1989); b) Folding 

of partially decoupled oceanic lithosphere, with a possible decollement between crust and 

upper mantle at oceanic Moho depths. Activation depends on the degree of shortening and the 

magnitude of horizontal stress, which can lead to the development of large-scale synclinal 

deformation as observed in the Gorringe-Coral Patch area in the far field of the Africa-Iberia 

plate boundary (see Figs 1 and 2, line AR03-08) as well as to decoupled crustal scale folding 

in the area offshore Morocco closer to the Africa-Iberia plate boundary (see Figs 1 and 2, line 

AR07); c) Decoupled continental lithosphere folding with separate wavelengths for crustal 
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and upper mantle folding such as observed in mainland Southern Iberia (Cloetingh et al., 

2002); d) Folding of decoupled rifted Cretaceous continental margin lithosphere characteristic 

for offshore Iberia (see Figs. 1 and 2, line AR10).  

 

Table 1 

Constraints on timing, shortening rate and thermo-mechanical age of lithosphere in the Gulf 

of Cadiz. 

 

Plate 1 (a) Bathymetry of the Gulf of Cadiz and offshore SW Iberia (Data from GEBCO97 

Digital Atlas Web site:www.gebco.net). Solid thick lines mark the locations of deep 

penetration seismic profiles shown in Fig.1 and Plate 1, solid thin line marks the boundary of 

Gibraltar accretionary prism. Arrows show the relative motion between Europe and Africa. 

Star shows location of the 1755 Lisbon Earthquake epicenter. (b) Free-air gravity map of the 

area (Sandwell and Smith,1997), color bar in mgal. (c-h) Jurassic to Present Plate tectonic 

reconstruction modified after Srivastava et al. (1990). (i-l) Time-migrated seismic lines 

AR92-3, AR92-8, AR92-7 and AR92-10, and interpretation, modified after Sartori et al. 

(1994). 

 

Repository Data Figure Captions: 

 

Figure DR-1. A numerical model (Burov and Cloetingh, 2009) of folding of weak lithosphere 

of thermo-tectonic age and initial structure resembling the case of the line AR10 (visco-

elastic-plastic rheology) with quartz-dominated crust and olivine-dominated mantle. Note 

initially harmonic character of deformation that evolves in asymmetric folding during later 

stages.  Note that these results should be considered as illustrative only for the key features of 
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the observed intraplate deformation as the adopted sedimentation rates and timing are only a 

first order approximation of the characteristics of the study area. 
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5 Recent development of the Eurasia-Africa Plate Boundary offshore Morocco 

5.1 Introduction 

The Iberia Africa plate boundary was interpreted as a diffuse plate boundary in the last 15 

years (Sartori et al., 1994 ; Zitellini et al., 1999; Maldonado et al., 1999; Gutscher et al., 2002; 

Gracia et al., 2003; Gutsher, 2004; Zitellini et al., 2001, 2004; Medialdea et al., 2004). Recent 

high-resolution swath bathymetry compilation of the Gulf of Cadiz (Fig. 5.1.1 and Plate 1, 

Zitellini et al., 2009)  

 
Figure 5.1.1 Gibraltar accretionary prism shaded relief; A: El Arraiche mud volcano fiel; B: 
NEAREST 2008 survey acquired and processed during this work. UTM 29 Projection.  

 

provided new data that may solve the nature of the plate boundary. Zitellini et al. (2009) 

documented a series of tectonic lineaments cross-cutting the whole margin from the eastern 

termination of the Gloria fracture zone to the Moroccan continental shelf. Seismic 

multichannel lines from Horseshoe abyssal plain reveal that these lineaments are sub vertical 

faults.  
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Figure 5.1.2 NEAREST08 (this work) and, in the box, R/V Belgica 2002 (Van Rensbergen et al., 

2005), bathymetric surveys, shaded relief. Thin black line, CHIRP navigation tracks. 

 

The presence of pop up structures, flowers geometries and the linearity prove their trascurrent 

nature (Line AR08 Plate 2). Eastward to the Horseshoe plain, these lineaments intersect the 

toe of the Gibraltar accretionary prism few kilometers North of Coral Patch Ridge. In this 

sector the morphological deformation associated to the lineaments are well recognized. Rosas 

et al. (2009) performed analogue modeling experiment to reproduce the mode of deformation 

associated to the lineaments as their interaction with the shallow soft sediment.  

The experiment showed that the lineaments are related to crustal dextral trascurrent 

deformation started in the Late Pliocene at 1.8 Ma (Fig. 5.1.3).  
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Figure 5.1.3 Analog modeling of the SWIM lineaments, modified after Rosas et al., (2009).   

 

During the NEAREST 2008 R/V Urania cruise offshore Gibraltar, 1500 km2 of multibeam 

high-resolution swath bathymetry were acquired together with high-resolution CHIRP seismic 

(Fig 5.1.2 and Plate 3). The survey was planned to map the eastern end of the SWIM 

lineaments on the Moroccan shelf. New bathymetric data provide grid image of the seabottom 

with the resolution of 25 x 25 m, this resolution allows to study also the small-scale elements 

of the lineaments and the interaction with the top of the accretionary prism. 

The Gibraltar accretionary prism (Fig. 5.1.1), the offshore expression of the Betic Rifean 

orogenic arc extends for 350 km westward of Gibraltar Strait and is 150 km wide, in the 

North – South direction. To the North, it is bounded by the Guadalquivir Bank, an outcrop of 
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Hercinian Iberian basement. To the South, the prism is bounded by the Rharb submarine 

valley, the offshore extent of the Rharb basin, in Morocco. The frontal part of the prism ends 

against the Coral Patch Ridge which divided it in two lobes, one laying on the Seine and one 

laying on Horseshoe abyssal plains. These two frontal lobes present a markedly rough slope 

deformed by the high gravitational sliding of the prism. 

The internal portion of the Gibraltar arc is characterized by a series of curvilinear ridge and 

troughs (Gutscher et al., 2009). The lower portion, at depth ranging from 3000 m bsl to 4300 

m bsl, presents short wavelength (2-5 km), sub-parallel ridges, while in the shallower parts, 

up to 1000 m bsl, the ridges bound larger sub-rounded troughs. These ridges often are 

elongated parallel to the arcuate front of the prism. Offshore Morocco, the top of the prism 

has a very low slope, ≥1° and is flatter than its deeper parts.  

 

Figure 5.1.4 Al Idrissi mud volcano, located at the eastern termination of the Al Arraiche field, 
Shaded relief map, 25 x 25 m grid resolution. Image from NEPTUNE (Konsberg) multibeam data. 
Mercator projection. 
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The top of the prism presents several mud volcanoes clusters, frequently located at depth ≥ 

1000 m. For example the El Arraiche field (Fig 5.1.1 and 5.1.2), North of the NEAREST2008 

survey, consists of 8 mud volcanoes of various size and shape just below the Moroccan shelf 

edge. The largest mud volcano, Al Idrissi mud volcano (Fig. 5.1.4), is 225 m high and 5.3 km 

in diameter, the smallest observed mud volcano is only 25 m high and 500 m wide (Van 

Rensbergen et al., 2005). This area is cross cut by elongated sub linear features interpreted by 

Zitellini et al., 2009 as the eastern end of the SWIM lineaments. This linear features often 

correspond to two parallel ridges separated by deep narrow trough (Gutscher et al., 2009)  

 

5.2 NEAREST2008 offshore Morocco survey 

The investigated area is located on the continental slope offshore the Rharb basin, North 

Western Morocco, at depth variable from 170 m bsl down to 1100 m, in the South Western 

part (Fig. 5.1.2). 

This sector is located on the Gibraltar prism terminating on the southern part on the Rharb 

submarine valley. At regional scale the area present very low slope value ≥1° but, in the study 

area, higher slope values are associated to gravitative phenomena and mud volcanism. The 

largest features the Mekness Mud volcano (Van Rensberg et al., 2005), is located in the South 

western part of the Nearest survey, in a zone mapped by the R/V Belgica 2002 cruise (Fig. 

5.1.2).  
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Figure 5.2.1 Landslide bathymetric shaded relief in the northern part of the Morocco survey. For 
location see Fig. 5.1.2, in Red is remarked the head domain, in Blue the translational zone and in 
yellow the toe deposits and track of the chirp line in Fig. 5.2.2 and 5.2.3. 
 

The Nearest 2008 survey area presents many remarkable morphological features that denote 

the complex processes acting on top of the accretionary wedge. The North sector of the 

survey is characterized by a 20 km long and 10 km wide slide. All the three domains of the 

slide are well imaged from East to West, the headwall domain, the translational and the toe 

domain. The landslide present a very clear headwall domain zone with well developed 

graben-type deep valleys (Fig. 5.2.1). The headwall valleys are elongated from SW to NE 

where they are connected with a deep WNW - ESE deep submarine valley marking the 

Northern end of the slide. To the South, the headwall domain is connected with a set of 

lineaments elongated in the same direction. The valley reach a depth of 300 m in the northern 

sector while in the southern part it is at maximum 100 m deep. The sliding plane is not 

imaged in the Chirp line because of the presence of pervasive reflective hyperboles, in 
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correspondence of the head valleys, which mask the reflectors (Fig. 5.2.2) while in the 

translational domain the maximum penetration is a few tens of meters, so that, also in this 

sector, the bottom shear surface is not imaged. 

The translational and toe domains are not well distinguished one from the other because the 

amount of translation of the landslide is very low. In fact, the slide moved downhill for a 

maximum of some hundreds of meters. Total displacement calculation in the head sector 

gives an estimate value decreasing from the Northern sector (with a maximum displacement 

of about 2.5 km) to the Southern margin (about 500 m). Uphill to the head valleys a series of 

extensional faults, driven by the opening of the head deep valleys, are present. 

 
Figure 5.2.2 CHIRP seismic line LEG3_68. Vertical scale x2. Reflection hyperbole from the slide 
front. 
 

The translational domain is connected in continuity with the head domain. The Northern 

lateral margin presents a deep incised valley corresponding with a long regional structural 

lineament. This valley presents a series of sigmoidal deep incisions suggesting a right lateral 

movements. A series of arcuate folds are present in this sector of the translational domain, 

which are interpreted as push ridge caused by the deformation of the higher head sector in to 

the translational domain. Chirp lines on the Western end of the translational domain of the 

slide show that the lateral continuity of the reflector is periodically interrupted every few km 

(Fig. 5.2.3). The reflectors are almost undeformed, quite horizontal, but are shifted along 
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vertical discontinuities, this pattern of blocks of truncated reflectors can be interpreted as 

longitudinal shear band in the sense of Bull et al., (2009). due to different slide velocity  

The toe scarp of the landslide presents a series of downhill elongated scour and small ridges 

(Fig. 5.2.2). These features are elongated for a maximum of 1 km and wide some tens of 

meters Chirp lines downhill the toe domain show how the toe area is the source for dense 

turbidites like fluxes deposited few hundred of meters downhill. These fluxes can be triggered 

by the occurrence of a slope increment at the toe of the landslide together with fluid expulsion 

and consequent reduction of internal strength of the sediment.  

A 100 m high scarp, with rough surface, delimits southward the landslide body. This limit 

corresponds to another regional lineament, probably bounding the gravitational movement of 

the landslide as the Northern lineament.  

 

Figure 5.2.3 CHIRP line Leg3_81. Vertical exaggeration x5. Dislocated reflector in the translational 

domain of the landslide.  

 

The sector of the survey, South of the landslide, is characterized by several lineaments that cut 

its Western sector. This is a flat continuous plain bounded by the slide body to the North and 

by a series of deep - incised valley to the South. To the East the plain prolongs into a slope 

between 500 m bsl and 800 m. On this slope several ridges and incisions are present, caused 

by gravitational creeping of the sea bottom.  
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Two order of lineaments can be recognized in the sector. First-order lineaments (WNW – ESE 

trending), are deep valleys with several sigmoidal depressions and pressure ridges, suggesting 

right-lateral movements. Second-order lineaments, branching out  from the first order one and 

are elongated preferentially SW – NE; one of these second-order lineaments extends to the 

North and is in correspondence with the head domain area of the North Slide. This SW – NE 

lineaments cause weakening of the slope, likely triggering the onset of gravitative 

deformation. Chirp lines cutting the lineaments did not solve the deep structure of this for the 

poor penetration of the seismic high resolution signal and because of the hyperbolas. 

 

Figure 5.2.4 Particular of the NEAREST08 survey, shaded relief. It is recognizable on the wenstern 
margin the rounded scour. A set of lineaments marked with popmarcs are visible in the central and 
eastern sector. 
 

The South sector of NEAREST 2008 survey presents principal lineaments elongated from the 

western margin toward ESE from which a series of small lineaments starts, often marked by 

pockmarks. Also in this case, as in the Northern sectors, the Chirp profiles didn’t show clearly 
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the nature of the lineaments. Several round scours are present at the Southwestern end of the 

surveyed zone (Fig. 5.2.4). These are from 1km to 4 km wide and present the uphill side 

deeper than the downhill one. Chirp lines show how these gravitative fenomena are associated 

with the tectonic lineament. The erosional features are probably due to the interaction of sea 

bottom current and gravitative phenomena.  

 

 
Figure 5.2.5 3D prospective of the lineaments in the central sector of the NEAREST 08 survey. On 
the top left side is present the landslide shows in Fig. 5.2.1. 
 

Summarizing, this zone is characterized by the presence of four main NW-SE lineaments 

cross cutting the whole area. These elongated lineaments are frequently connected with a 

number of subsidiary and secondary lineaments. To the West, in the shallower part of the 

area, often these lineaments are not well recognized both by multibeam bathymetry and 

CHIRP seismic profiles. This is probably due to the high sedimentary rate which masks the 

deformation. Available seismic MCS line parallel, 15 nm to the Moroccan coast, evidenced 

that there is a extention of this discontinuities landwards. Despite the fact that the Rharb Basin 

is well studied in the deep portions by oil and gas well (Flinch, 1993), it is not sufficiently 
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investigated near the surface to find the presence of structures that can be related to this 

lineaments. 
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Abstract  

New detailed swath bathymetry, high resolution seismics and dredged samples from Coral 

Patch and Ormonde seamounts, SW Iberia,  provide constraints on the emplacement of the 

Monchique-Madeira hotspot in the Eastern Atlantic Sea.  

Swath bathymetric data document that Coral Patch is a composite structure, made up by at 

least nine distinct volcanic centers. Lithified pelagic carbonates, infilling fissures in lava 

blocks and hosting planktonic foraminifers permit to date at the Early Miocene  the first 

documentation of Coral Patch acting as an offshore terrigenous-starved seamount. This setting 

extends to recent times. At Coral Patch seamount, similarly to what already observed at the 

Ormonde seamount, volcanism was emplaced on the top of a pre-existing relief and was 
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strongly affected by the regional tectonic compressive regime active, on this sector of the 

Africa Eurasia plate boundary, since the Oligocene.  

 

Introduction  

In the eastern Atlantic, a 700 km long belt of irregularly spaced seamounts stretches from SW 

Iberia to the Madeira archipelago (Fig.1). This feature is late Mesozoic to Recent in age and 

thought to represent the trace of the Monchique-Madeira hotspot (Morgan, 1981; Geldmacher 

et al., 2000).  

Rocks representing initial and later stages of the Monchique – Madeira hotspot outcrop at the 

Serra de Monchique complex (~72 Ma, Miranda et al., 2009), in southern Portugal, and at the 

Madeira and Porto Santo islands (14-0 Ma, Geldmacher et al., 2000), respectively. The 

knowledge of the submerged portion of the hotspot track is quite scarce, due to the paucity of 

related samples. Previously collected volcanic samples from the Madeira hotspot  related 

seamounts are alkaline in affinity, displaying a NE-SW decreasing age. Ages around 62-67 

Ma (Ormonde seamount: Feraud et al., 1982, 1986), 31 Ma (Ampère seamount: Geldmacher 

et al., 2000), 27 and 22 Ma (Unicorn and Seine Seamounts, respectively: Geldmacher et al., 

2005), 11-14 Ma (Porto Santo Island) and < 5 Ma  Madeira/Desertas volcanic complexes 

(Geldmacher et al., 2000) are known.  

Various aspects concerning style of emplacement, spatial distribution and alignment of these 

volcanic seamounts are still debated (Geldmacher et al. 2005). Indeed, the emplacement of 

seamounts, particularly those lying eastward to the proposed hotspot track (i.e. Coral Patch 

and Ormonde) can either be related to (1) a volcanism locally controlled by lithospheric 

discontinuities or (2) magmatism related to a weak pulsating plume (Merle et al, 2006; 

Geldmacher et al., 2005).  

The hotspot emplacement took place between Iberia and Africa plates. Since the earliest 

phase of continental break-up, the region recorded complex plate boundary interactions. 
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Nowadays, relative movement between Iberia and Africa is 4 mm/yr (DeMets et al., 1994). 

The rifting-drifting stage was accompanied by sub-crustal mantle exhumation and scarce 

volcanic products (Boillot et al., 1995; Whitmarsh and Wallace, 2001; Rovere et al., 2004; 

Manatschal, 2004). From middle Cretaceous to late Oligocene, Iberia was part of the Africa 

Plate, and the Gulf of Cadiz was unaffected by any important tectonic stress. During the 

Oligocene, the counterclockwise rotation of Iberia respect to Africa produced a transtensive 

regime in the Bay of Biscay and intraplate diffuse compressive deformation in the Gulf of 

Cadiz (Sartori et al., 1994; Galindo-Zaldivar et al, 2003). At about 2.0 Ma, the localization of 

the deformation started to be focused along ESE-WNW strike-slip faults (Zitellini et al., 

2009; Rosas et al., 2009).  

During this compressive stage, lithospheric folding developed in the area from Oligocene to 

Late Pliocene (Burov and Cloetingh, 2009; Zitellini et al., submitted). Zitellini et al. 

(submitted)  propose that lithospheric folding in the Gulf of Cadiz area caused the 

development of large synclines bounded by short thrust-top anticlines in the brittle crust, 

represented in this sector by the Coral Patch (CP) and the Gorringe Bank seamounts.  

This work presents new marine geophysical and geological data collected it the Gulf of Cadiz 

area in the frame of the ESF SWIM project (SWIM04 and SWIM05 cruises) to better 

constrain the evolution of the Monchique-Madeira hotspot. 

 

Materials and method 

During the SWIM04 cruise of R/V Urania the navigation was done by the PDS2000 software 

linked with a DGPS Fugro satellite positioning system. High-resolution seismics was acquired 

by a 16 transducers 3.5kHz to 5 kHz BENTHOSII chirp sub bottom profiler. Sampling was 

performed by means of large volume (60 liters) grab and 200 kg heavy dredges. 

During SWIM05 cruise of R/V Explora, 10000km2 of swath bathymetric data have been 

acquired with a RESON 8150 multibeam system. The 12 kHz 234 beams echosouder was 
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mounted on the ship’s keel and generated a swath of 150°. Daily CTD casts were performed 

during the survey from the surface down to 2000 m and integrated up to 5000m depth with 

available data from the Levitus Database (Locarnini et al., 2005). The positioning and the 

navigation was performed with the PDS2000 software connected to a satellite DGPS 

LandStar MK Veripos. 

The bathymetric data were processed on board with the PDS2000 and with the IFREMER 

Caraibes software, and at the ISMAR laboratory with the Konsberg NEPTUNE software to 

build a 50 x 50 m grid spacing digital terrain model (Fig.2) for elevation down to 1000 m bsl, 

100 x 100 m under 1000 m bsl.  

Volcanics (lavas and hyaloclastites) and sedimentary carbonates were recovered from the four 

sampling sites at the CP and Ormonde seamounts (Fig.3, Fig.4 and Appendix in 

Supplementary Material). The volcanic samples are strongly alterated, thus precluding 

conventional geochemical whole rock analyses. The principal petrographical and 

mineralogical characteristics of the studied samples (thin sections and Electron Probe 

Microanalyses) are given in Appendix S2 and S3 (Supplementary Material). The major 

element composition of phenocrysts of the lava samples was analyzed by means of a 

CAMECA SX50 electron microprobe, equipped with four WDS, at the IGG-CNR, Padova.  

40Ar-39Ar step-heating and single crystal analyses were performed on volcanic samples at the 

Ar-Ar laboratory, IGG-CNR, Pisa (details on analysis are in Supplementary Material). Errors 

are quoted at the ± 2σ level. 

Biostratigraphical investigation has been performed on dredges SWIM29 and SWIM28, 

sampled from western part of the CP (Fig.3 and Fig.4). The analyses are based on the 

Foraminiferal content identified in thin section.  

 

Morphobathymetry 
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The CP is a WSW-ENE elongated seamount that arises about 4000 m above the adjacent 

Horseshoe and Seine abyssal plains with a minimum depth of about 645 m (Fig.2). It is sub 

elliptical in shape, 120 km long and about 70 km wide.  

Available seismic multichannel data (Hayward et al., 1999; Contrucci et al., 2004, Zitellini et 

al., 2009) shows that CP, up to 2.500 m bsl, is sedimentary in nature. Nevertheless, at 

shallower levels volcanic rocks are present, as documented by ROV visual inspection 

(Hebbeln, 2008) and the sampling from the seamount (this study and Geldmacher and 

Hoernle, 2000).  

On the CP top, swath bathymetry documents the presence of several coalescent volcanic 

edifices emplaced on the upper part of the seamount. Nine principal volcanic centers are 

recognizable, eight of which are clustered on the southwestern margin, while a single isolated 

cone (referred to as Vince volcano: Fig. 2) arises 450 m from the northeastern side. All the 

minor volcanic edifices have a mean width of about 3-5 km and a mean height of about 100-

300 m. Instead the largest Vince volcano reaches a diameter of about 8 km. The volcanic 

edifices are recognized due to a sub-circular conic shape and well preserved morphology; at 

places, radial elongated lava flows are recognizable along their slopes (Fig.2).  

On the western side, the CP declines gently joining the eastern slope of the Ampère Seamount. 

The southeastern slope is steeper with inclinations from 5° to 20°. This part is characterized 

by several straight scour erosional features; the biggest one, starting above a steep scarp near 

the summit, is 11 km in length with a mean slope of about 12°. East of Vince edifice, the 

slope becomes less steep and is characterized by several scarps elongated preferentially NNE-

SSW. These scarps often are the head-scarps of important gravitative phenomena. 

The North side of CP is more complex. On the eastern side, the slope declines gently toward 

the Horseshoe Abyssal Plain and only linear, small, scours are developed along it. The central 

sector is characterized by a flat topography in the shallower part and by a series of sub parallel 

north verging scarps on the deeper part, probably due to gravitational phenomena. A series of 
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sub parallel antiform ridges oriented NE-SW occurs westwards. These ridges run for 30 km 

and are usually 2-3 km wide terminating in the Horseshoe Abyssal Plain 

 

Petrography  

The samples dredged from the CP (station SWIM29) (Fig.3) and one sample from the 

Ormonde Seamount (station SWIM34) consist of large (up to 30 cm) blocks of fractured lavas, 

infilled by foraminiferal limestone, plus loose biogenic skeletal sediment. The other volcanic 

samples are hyaloclastites (CP) and lavas (Ormonde). 

The high degree of alteration of the volcanic sample recovered from CP precludes 

conventional whole-rock analyses, necessary to properly classify the volcanic rocks, thus the 

magmatic affinity of this sample is only based on mineralogical criteria. The CP sample 

consists of three large blocks of olivine-phyric lavas cemented by biogenic limestone (Fig.3). 

The lava blocks, classified as basanites, have a mineralogical assemblage made of olivine 

(Fo83-81), diopside (Wo47-50-En29-39) clinopyroxene. It is to note that the sampling of basanitic 

lavas from the CP improves our knowledge on the magmatism affecting this structure, since 

up to present only hawaiitic lavas were known (Geldmacher and Hoernle, 2000).  

Four altered volcanic samples were recovered from the Ormonde Seamount (stations 

SWIM32 and 34), thus also for these samples, like the CP sample, the magmatic affinity is 

based on mineralogical criteria. These samples resemble the highly alkaline, silica-

undersaturated volcanics previously recovered from the seamount (Corner, 1982; Geldmacher 

and Hoernle, 2000; Schärer at al., 2000). In detail, samples SWIM32/1, SWIM32/2 and 

SWIM32/3 show a mineralogical assemblage similar to the lamprophyric dikes cutting the 

north-eastern part of the seamount (Corner, 1982). These rocks are porphyric with altered 

olivine and diopsidic clinopyroxene (Wo47-52-En26-41) phenocrysts set in a groundmass 

consisting of these phases plus altered feldspar, phlogopite, opaque and altered glass. The 

other Ormonde sample (SWIM34) has rare phenocrysts of a mineral of the sodalite group and 



74 
 

resorbed biotite set in a microlitic fluidal groundmass consisting of these phases plus altered 

nepheline, feldspar, opaque and altered glass. 

 

Biostratigraphy and geochronology  

The micropaleontological analysis was performed on carbonate veins infilling fissures of the 

volcanic bedrock. A rich and  well preserved planktonic foraminiferal fauna is present in CP 

sample SWIM29. Thin section study positively identified Globoquadrina aff. dehiscens 

(primitive forms), Globorotalia ex gr opima nana/mayeri (Fig.3) and especially the absence 

of Globigerinoides spp. documents the lowermost part of the Miocene Epoch. Following Bolli 

& Sauders 1985, this fauna is  a characteristic element of the Catapsydrax stainforthi Zone  

correlable with the lower part of the M1 Zone of  Berggren et al. 1995 spanning from 23.8 to 

21.5 Ma. 

 40Ar-39Ar step-heating (SH) of the ground mass of sample (SWIM04-29/1) gives a disturbed 

age spectrum, with only a mini-plateau at 31.48 ± 1.98 Ma (28.4% of 39Ar release, 

MSWD=0.24) (Fig.3). It is worth noting that the high degree of alteration of the sample 

allows considering the 40Ar-39Ar datum only as indicative.  

At Ormonde, two biotites separated from station SWIM32 and SWIM34 give isochron ages of 

63.31±0.87 Ma (SWIM04-32/3, SH, 41.7 % of 39Ar release, MSWD=1.3) and 63.85±0.61 Ma 

(SWIM04-34, SH, 100% of 39Ar release MSWD=2.0). Single crystal laser fusion (SCLF) 

analyses of SWIM04-34 biotites display a probability plot slightly asymmetric toward 

younger ages, likely due to alteration. See Supplementary Material for details on the analyses. 

These new Ormonde age data are all within the limits reported in literature (Feraud et al., 

1982, 1986). 
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Discussion and Conclusion 

The geomorphological setting of CP seamount is quite complex as revealed by the detailed 

swath bathymetric data. Indeed, this new dataset shows that at the top of the seamount at least 

nine distinct volcanic coalescent cones are located. These were emplaced on a preexisting 

structural high and all of them have a well preserved morphology. The single volcanic sample 

recovered from one of the volcanic cones recognized on the western sector of the CP 

seamount is a strongly altered basanite whose groundmass suggests a middle Oligocene age 

(31 Ma). The Early Miocene age of the sediments infilling the basalt fractures further 

constrain the emplacement age of the volcanic complex at the CP. The combined petrologic 

evidence of our own data coupled with published data by Geldmacher et al. (2006) suggest 

that the magmatism affecting the CP seamount has a basanite-hawaiite range, comparable to 

that observed at the Ampère Seamount (Geldmacher and Hoernle, 2000). Geochemical 

composition from Ampère lavas permitted to relate their origin to different degrees of partial 

melting above discrete pulses of a mantle plume (Geldmacher and Hoernle, 2000). A similar 

process could control the basanite-hawaiite variation observed in the CP lavas, but more 

volcanic samples from this seamount are required to better constrain such an hypothesis.  

Recently, Zitellini et al. (2009) showed that the whole sector of the Eurasia – Africa plate 

boundary was affected, since the Oligocene, by lithospheric folding. This implies an overlap 

of the two processes: oblique lithosphere collision and hotspot related volcanism. The ENE-

WSW orientation of the major seamounts of the area, such as the Gorringe Bank and the CP 

Seamount, suggest that magmatism affecting these structures is also locally controlled by 

propagating lithospheric fractures.  

Burov and Cloetingh (2009) showed how the impact of a mantle plume may result in a 

reduction of the folding wavelength of the overlying lithospheric plate. In the Gulf of Cadiz, 

lithospheric folding is manifested in a confined region near the plate boundary and above the 

hotspot track, thus folding and thrusting in this area were influenced by the plume 
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emplacement. Following the Burov and Cloetingh (2009) model, folding in a low 

convergence rate (< 1.5 cm/yr) area, having relatively young (<150 Ma) lithosphere, can only 

occur if an external perturbation such as a mantle plume, is also present. 

Furthermore, as documented by our study, the volcanism affects pre-existing seamount 

structures suggesting that the lithospheric folding anticlines developed in the Gulf of Cadiz 

acted as preferential paths for the upwelling of mantle material. We suggest that the 

interaction between lithospheric folding and the hotspot emplacement can also be responsible 

for both the irregularly spaced hotspot seamounts, with large km-sized gaps in between, and 

for the WSW-ENE orientation of the volcanic centre at the CP and Ormonde seamounts. 

Finally, available seismic data integrated with new paleontological, and morphological 

evidences suggest that the CP was not affected by subsidence since early Miocene. 
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Figure Caption 

 

Figure 1  

Bathymetry of the Central Eastern Atlantic Sea (Sandwell and Smith, 1997); thin black line: 

Gibraltar accretionary prism; thick black line: Iberia – Africa plate boundary proposed by 

Zitellini et al., (2009); transparent arrow: Monchique Madeira hot spot track; black triangle: 

SWIM sample on the Coral Patch and Ormonde seamounts; date of the seamount after 

Geldmacher et al., 2006. 
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Figure 2  

a) Shaded relief of the SWIM 05 survey, contour lines step 100m. b) Morphological and 

structural interpretation. 
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Figure 3 

Sample SWIM 29 dredged on the Coral Patch seamount (coordinates in Table 1 supp. mat.). 

A lava blocks infilled by bioclastic sediments; B planktic assemblage, a Globoquadrina aff. 

dehiscens (primitive forms), b Globorotalia ex gr opima nana/mayeri; C SEM photo (in 

back-scattered electrons) of one lava block. ol=olivine, cpx=clinopyroxene; (ps)= 

pseudomorphs, having the shape of feldspathoids, composed of aggregate of zeolites and 

carbonate; gm=groundmass ; D 40Ar-39Ar step-heating age and K/Ca spectrum of the ground 

mass separated from sample SWIM 29-1. Horizontal bar indicates plateau steps and error box 

are ±2σ. See Supplementary Material for analytical details. 
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Figure 4 

Various types of sedimentary products sampled from Coral Patch seamount: 1. Sliced slab of 

the olivine-phyric sample (St. SWIM29) reported in Fig.3A; note fouling recent epifauna, 

including serpulid tubes (s) and indetermined solitary coral base (c). 2. Carbonate hardground 

from St. SWIM28,958/725m; the fresh cut shows many elongated vugs due to dissolution of 

former deep-water coral branches; the external surface is blakneded by Mn-Fe oxide coating 

and affected by intense bioerosion (Trypanites - ichnofacies). 3. Carbonate hardground 

recovered at St. SWIM28, showing different stages of lithification. 4. Close-up of same 

sample in Fig. 4.3 displaying coarse skeletal component entrapped in poorly lithified matrix, 

including (g) benthic (Amphissa acutecostata) and holoplanktonic (h) gastropods, (m) deep-

water branching corals (Madrepora oculata) and others. 5. Coarse coral frame bearing 



84 
 

hardground made up by degraded and bioeroded Madrepora, st. SWIM028. 6. Living hydroid 

(Sertularella sp.,identification courtesy of G. Bavestrello) growing on carbonate coral rubble 

(st. SWIM28). 7. Palimpsest skeletal assemblage from St. SWIM28; coarse coral-mollusc 

hash is mostly composed by more or less degared shell material, including molluscs (b= the 

bivalve Asperarca), brachiopods (t=Terebratula), corals (c=Deltocyathus sp.), barnacles, 

serpulids, echinoids etc. 

 

 

The supplementary material of the paper is presented as Appendix of this work  

 

Appendix S1: Sampling site, typology of sampling and recovery sample used in this work 

from SWIM 2004 cruise. 

Appendix S2: Petrographical semples description. 

Appendix S3: Petrographical analysis . 

Appendix S4: 40Ar-39Ar Dating. 

Appendix S5: 3D shaded relief of the Coral Patch Seamount. 
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7 Conclusion 

The Gulf of Cadiz lies at the eastern end of the Azores Gibraltar plate boundary. It was 

considered in the last 15 years as a diffuse plate boundary, characterized by scattered 

seismicity and active tectonic structures (Sartori et al., 1994). recently, an high resolution 

bathymetric map, compilated by Zitellini et al. (2009) and built up in the frame of the ESF 

SWIM project by 12 European Institution, permitted to clarify the recent tectonic setting of 

this area. Zitellini et al. (2009) proposed that the deformation of the plate boundary, starting 

about 2 Ma ago, focused on a set of right trascurrent lineaments, cross cutting the whole Gulf 

of Cadiz from the eastern end of the Gloria Fracture Zone to the Moroccan margin.  

One of the main task of this thesis was to investigate the deformation style offshore Gibraltar 

in the Eocene to late Pliocene time interval: It is here proposed that during this time the stress 

related to the compression between Africa and Eurasia caused lithospheric folding. Seismic 

lines interpretation and gravity data analysis permitted to develop a new concept on the mode 

of deformation caused by lithospheric folding in the upper lithosphere. In particular, the 

deformation is expressed by the development of large wavelength (8 – 130 km) “crustal 

scale” synclines bounded by short wavelength top thrust anticlines (2 – 40 km). This new 

concept predict that horizontal stress in the lithosphere do not form periodic anticlines and 

synclines, but develops asymmetric structures as large synclines and short anticlines. Further 

on, seismic multichannel data show that folding and faulting start both at the onset of the 

compression.  

The lithospheric folding processes interact in the Gulf of Cadiz with the Monchique Madeira 

hot spot emplaced in the area from the 72 Ma old Monchique volcanic complex to recent 

Madeira Archipelago, and testified by a 700 km long series of abyssal volcanic seamounts. In 

this work it is the characterized, for the first time, a 31 Ma old basanitic volcanism related to 

the upwelling of mantle plume material at the Coral Patch seamount, and it is shown how it 
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interacts with the lithospheric folding. This seamount has been completely mapped by high 

resolution swath bathymetry, revealing that is more complex than previously thought. At least 

nine volcanic edifices are described and one of this has been sampled, giving an 40Ar-39Ar 

age of 31.4±1.98 Ma, dating for the first time the top of the Coral Patch seamount. Analysis of 

bathymetry, seismic lines and paleontological samples testify that Coral Patch was not 

affected by subsidence since Chattian (28 Ma). This suggests that the tectonic horizontal 

stress and mantle plume thermal bulging are acting on this seamount since Oligocene. 

During Late Pliocene, at the plate boundary, compression focused on the SWIM lineaments, a 

series of right lateral trascurrent faults. The interaction of these lineaments with the Gibraltar 

accretionary prism was studied in the last part of this thesis, after an oceanographic cruise that 

acquired new bathymetric and geophysical data offshore Moroccan in 2008. The bathymetric 

and high-resolution seismic survey was focused on the acquisition of new data at the eastern 

end of the SWIM lineaments, near the Moroccan shelf. The new dataset provide evidence 

about the interaction of the relatively young trascurrent faults and the Mio-Pliocene arc. In 

particular, it illustrates how the SWIM lineaments interact with the Pleistocene to Recent 

gravitative and fluid escape phenomena characterizing the top of the Gibraltar arc in the 

Moroccan offshore. 
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10.3 Supplementary material of the Paper submitted to Terra Nova  
(see Chapter 6) 
Appendix S1 
 

 
Appendix S2 
 

Sample Rock type Texture Mineralogical assemblage Notes 
CORAL PATCH     

 
29/1 

 
 
 
 
 

Microprobe 
analyses 
(EMPA): 

ol, cpx 

 
basanite 

 
Almost aphyric, 
microvesicular, 
intersertal 

 

 
Phenocrysts: rare of olivine 
(ol) totally or largely 
pseudomorphically replaced by 
iddingiste and calcite, and 
pseudomorphs (ps) having the 
shape of feldspathoids but 
composed of aggregate of 
zeolites and carbonate. 
Groundmass: ol, 
clinopyroxene (cpx), ps (totally 
replaced by zeolites), dendritic 
crystals, brown glass  
 

 
Secondary 
minerals (zeolite 
and calcite) 
partially or totally 
infill the vesicles. 

 
29/2, 29/3, 29/4, 

29/5 
 

 
hyaloclastites 

 
Basic shards totally 
altered to palagonite 
and cemented by 
calcite 

  

 
29/6 

 

Granulite-facies 
metadiorite 

Polygonal 
granoblastic 

Plagioclase +K-feldspar +Ti-
pargasite 
+ Orthopyroxene+ 
Clinopyroxene + Fe-Ti oxides 
+ Biotite 
 

Slightly 
retrogressed rock 
(sericite, chlorite). 
Thin retrograde 
mylonitic to 
cataclastic shear 
zones. 

 
29/7, 29/8 

 

 
sediments 

   

ORMONDE     
 

32/1, 32/2, 32/3 
 
 

 
lamprophyre 

(var. monchiquite) 

 
Porphyric, 
intersertal 

 
Phenocrysts: ol, totally 
pseudomorphically replaced by 
iddingiste and calcite; rare 

 
Secondary 
minerals (zeolite 
and calcite) 

 Station Latitude Longitude Depth m Type Recovery 

C
or

al
 P

at
ch

 

SWIM28 34,95336 -11,91209 958/725 dredge Sediments and volcanics 

SWIM29 34,96606 -11,95575 1011/742 dredge Sediments and volcanics 

O
rm

on
de

 SWIM32 36,74908 -11,05070 317 grab Sediments and volcanics 

SWIM34 36,73478 -11,05161 103 grab Volcanics  



 
 
 

microprobe: 
cpx 

zoned cpx sometime with a 
greenish core. 
Groundmass: ol, cpx, ps 
(having rectangular or rounded 
shape and different extinction), 
biotite, opaques, totally altered 
glass.  
 

partially or totally 
infill the vesicles. 
In sample 32/3, an 
ocello made of 
brown cpx + 
biotite + glass is 
present. 
 

 
34 

 
 
 

microprobe: 
cpx, k-fd, noseana, 

flogopite 

 
phonolite 

 
 

 
Porphyric, 

fluidal 

 
Phenocrysts: rare feldspatoids 
of the sodalite group (noseana); 
ps having the shape of 
nephelina but replaced by 
zeolites; resorbed 
microphenocrysts of biotite. 
Groundmass: feldspar, ps, 
opaques and glass. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Seamount: Coral Patch
Sample 29/1
Phase Ol Ol Ol Ol Ol Ol Ol

2a8 3a6 3a7 3a9 3a10 3a14 4a1

SiO2 39.79 39.99 39.99 40.11 40.08 51.11 39.86

TiO2 0.00 0.00 0.11 0.05 0.04 1.65 0.00

Al2O3 0.00 0.04 0.06 0.02 0.03 3.08 0.04

Cr2O3 0.07 0.07 0.00 0.00 0.10 0.34 0.00

FeO 16.28 16.36 16.70 17.23 16.84 6.07 16.26

MnO 0.23 0.31 0.30 0.25 0.24 0.12 0.17

MgO 43.70 43.81 43.65 43.48 43.37 15.02 43.44

CaO 0.46 0.31 0.26 0.33 0.25 22.68 0.26

Na2O 0.01 0.00 0.00 0.00 0.01 0.36 0.06

Totale 100.54 100.89 101.08 101.47 100.97 100.42 100.08

Fo% 82.50 82.41 82.06 81.59 81.90 81.23 82.50

Sample
Phase Ol Ol Ol Ol Ol Ol Ol

5a1 5a8 5a10 5a12 6a2 6a5 6a11

SiO2 39.49 40.48 40.25 40.04 39.48 40.74 40.58

TiO2 0.17 0.03 0.06 0.04 0.02 0.00 0.02

Al2O3 0.40 0.02 0.02 0.02 0.00 0.00 0.00

Cr2O3 0.04 0.00 0.01 0.07 0.03 0.00 0.00

FeO 17.54 17.31 16.01 16.23 16.66 16.72 16.48

MnO 0.22 0.25 0.16 0.27 0.29 0.20 0.22

MgO 42.43 43.01 43.90 43.90 43.49 43.41 43.72

CaO 0.34 0.28 0.24 0.29 0.35 0.28 0.26

Na2O 0.02 0.05 0.04 0.00 0.00 0.00 0.00

Totale 100.67 101.44 100.70 100.86 100.33 101.35 101.29

Fo% 80.98 81.36 82.87 82.58 82.06 82.05 82.35



Seamount: Ormonde
Sample 32/1
Phase cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx

2b1 2b2 2b3 2b4 2b7 2b9 4b2 4b3 4b5 4b6 4b7

SiO2 47.04 46.00 46.14 46.61 47.47 46.48 52.63 50.55 51.92 42.43 48.76

TiO2 2.93 3.24 3.59 3.62 2.76 2.98 0.71 1.50 0.99 4.78 2.30

Al2O3 6.36 7.28 6.95 6.97 6.21 6.39 2.54 4.65 3.33 9.39 5.16

Cr2O3 0.00 0.06 0.05 0.00 0.07 0.04 0.41 0.60 0.07 0.05 0.02

FeO 6.67 7.21 6.38 5.92 6.75 6.92 7.22 5.97 6.16 7.67 6.29

Mno 0.13 0.12 0.07 0.08 0.08 0.05 0.29 0.09 0.17 0.21 0.25

MgO 13.34 12.31 12.71 12.79 12.91 13.14 12.95 13.24 14.58 11.65 13.84

CaO 24.33 23.26 24.27 24.38 23.91 24.04 22.70 23.35 23.29 23.82 24.23

Na2O 0.31 0.66 0.32 0.38 0.41 0.30 1.26 0.79 0.77 0.48 0.47

K2O 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Totale 101.14 100.14 100.50 100.75 100.57 100.34 100.70 100.73 101.27 100.49 101.32

Wo 50.01 49.28 51.10 51.33 49.94 49.82 46.69 48.78 46.79 50.80 49.20

En 38.15 36.27 37.22 37.47 37.52 37.87 37.05 38.50 40.76 34.56 39.12

Fs 10.70 11.93 10.48 9.74 11.00 11.19 11.59 9.74 9.65 12.77 9.97

Sample 32/2
Phase cpx cpx cpx cpx cpx cpx

1d3 322s9 322s10 322s11 322s13 322s14

SiO2 46.44 47.21 39.57 51.83 50.97 47.46

TiO2 2.61 2.78 6.01 1.33 1.83 2.17

Al2O3 5.92 6.07 11.04 2.58 3.36 5.92

Cr2O3 0.04 0.02 0.00 0.05 0.00 0.00

FeO 6.11 6.04 8.00 6.20 7.09 12.38

Mno 0.11 0.14 0.06 0.28 0.16 0.29

MgO 13.44 13.69 10.50 14.08 13.63 8.94

CaO 24.35 23.71 23.49 23.52 23.77 22.00

Na2O 0.24 0.32 0.41 0.73 0.69 1.61

K2O 0.01 0.03 0.03 0.03 0.01 0.00

Totale 99.27 100.00 99.11 100.63 101.51 100.78

Wo 50.46 49.36 52.10 47.74 48.00 46.80

En 38.75 39.64 32.41 39.76 38.29 26.45

Fs 9.88 9.81 13.86 9.83 11.18 20.56

Sample 32/3
Phase cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx

3a1 3a2 3a3 3a4 3a5 3a6 3a9 3a17 3a19 3a23 3a24 3a25 3a26 3a28

SiO2 51.25 48.27 48.59 46.53 45.48 46.67 46.48 43.45 46.20 47.04 49.70 49.43 49.65 46.63

TiO2 1.19 2.33 2.19 3.35 3.04 2.61 2.94 4.27 2.72 2.44 1.78 1.75 1.79 2.54

Al2O3 2.44 4.86 4.42 5.76 6.56 5.77 6.21 8.24 6.04 6.92 4.33 4.61 4.52 6.70

Cr2O3 0.08 0.05 0.01 0.00 0.01 0.06 0.00 0.00 0.07 0.06 0.07 0.06 0.11 0.22

FeO 6.24 7.17 7.36 6.22 6.52 6.21 6.41 6.44 6.94 5.89 5.80 5.81 5.95 6.49

Mno 0.19 0.06 0.26 0.10 0.10 0.13 0.10 0.10 0.07 0.13 0.07 0.08 0.11 0.04

MgO 14.57 13.73 12.94 13.26 13.19 13.78 13.17 12.20 13.40 12.61 14.03 14.26 14.27 12.89

CaO 23.21 23.65 23.29 23.77 24.38 24.50 24.16 24.03 23.91 23.70 23.85 23.72 23.38 23.21

Na2O 0.61 0.37 0.70 0.38 0.27 0.36 0.28 0.42 0.30 0.70 0.55 0.54 0.47 0.75

K2O 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.02 0.00 0.01 0.02 0.00 0.00 0.00

Totale 99.78 100.51 99.77 99.37 99.55 100.08 99.78 99.17 99.65 99.50 100.20 100.27 100.25 99.46

Wo 46.92 48.24 48.21 49.78 50.46 49.84 50.34 51.36 49.28 50.32 48.78 48.32 47.98 48.80

En 40.98 38.97 37.27 38.63 37.99 38.99 38.19 36.27 38.43 37.25 39.92 40.43 40.75 37.71

Fs 9.85 11.42 11.90 10.17 10.53 9.86 10.43 10.74 11.17 9.75 9.26 9.24 9.54 10.65

Seamount: Coral Patch
Sample 29/1
Phase cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx

b 1a1 1a2 1a3 1a5 1a6 1a8 2a5 2a10 2a11 3a1 3a2 3a4 3a5 3a13

SiO2 42.56 41.08 41.84 41.31 41.88 42.71 41.55 41.47 40.60 44.68 41.93 42.08 47.48 41.23 42.19

TiO2 5.48 6.48 5.16 6.20 5.02 5.31 5.56 5.29 5.38 3.90 5.24 5.17 2.63 5.38 5.32

Al2O3 9.37 10.20 9.53 10.01 9.91 8.84 9.79 9.53 10.10 7.17 9.21 9.15 5.79 9.44 8.86

Cr2O3 0.01 0.01 0.11 0.11 0.00 0.05 0.03 0.05 0.05 0.07 0.01 0.05 0.39 0.00 0.15

FeO 9.66 9.72 10.41 9.52 9.87 9.13 10.25 10.35 10.40 9.20 10.47 9.14 6.90 11.40 9.35

Mno 0.21 0.10 0.16 0.13 0.15 0.11 0.16 0.11 0.12 0.11 0.12 0.12 0.12 0.15 0.10

MgO 10.51 9.90 10.14 10.18 10.02 10.79 10.04 10.07 9.65 12.31 10.19 10.45 13.34 9.69 10.87

CaO 22.10 22.08 21.94 22.00 22.18 22.22 21.57 21.56 22.22 22.12 21.67 22.25 22.97 21.43 22.03

Na2O 0.44 0.56 0.64 0.56 0.59 0.58 0.65 0.61 0.53 0.53 0.59 0.61 0.33 0.69 0.58

K2O 0.02 0.04 0.01 0.00 0.03 0.00 0.00 0.00 0.03 0.01 0.02 0.00 0.00 0.00 0.03

Totale 100.36 100.18 99.94 100.02 99.66 99.75 99.60 99.05 99.10 100.11 99.46 99.02 99.94 99.40 99.49

Wo 49.04 49.68 48.42 49.31 49.41 48.91 48.24 48.18 49.68 46.67 48.06 49.41 48.34 47.57 48.40

En 32.45 30.99 31.12 31.75 31.06 33.07 31.25 31.32 30.02 36.14 31.44 32.29 39.08 29.92 33.24

Fs 16.73 17.07 17.92 16.66 17.17 15.69 17.89 18.05 18.15 15.15 18.12 15.85 11.33 19.76 16.04

Sample
Phase cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx cpx

4a2 4a3 5a3 5a11 5a14 5a15 5a16 6a1 6a8 6a9 291s2 291s4 291s5

SiO2 44.16 41.34 41.94 45.96 43.05 42.30 42.18 42.84 41.72 42.06 40.22 41.19 45.19

TiO2 4.00 5.80 5.70 3.44 5.34 5.25 5.43 5.22 5.76 5.56 5.92 5.89 3.83

Al2O3 8.19 9.34 9.82 7.18 8.85 9.52 9.20 9.03 10.34 9.50 9.94 9.69 6.86

Cr2O3 0.10 0.00 0.01 0.30 0.08 0.01 0.02 0.00 0.00 0.04 0.01 0.00 0.30

FeO 9.03 10.15 10.11 7.76 8.91 10.24 9.26 9.68 9.40 10.91 11.24 10.71 8.12

Mno 0.15 0.14 0.14 0.03 0.08 0.08 0.12 0.18 0.02 0.13 0.08 0.15 0.08

MgO 11.67 10.02 10.04 12.57 11.00 9.98 10.56 10.34 10.27 9.85 9.48 9.76 12.73

CaO 21.79 21.95 22.22 22.77 21.97 21.87 21.75 22.45 22.30 22.02 21.88 21.75 21.95

Na2O 0.44 0.54 0.58 0.44 0.60 0.58 0.48 0.62 0.59 0.51 0.63 0.62 0.50



K2O 0.00 0.02 0.00 0.02 0.03 0.06 0.02 0.00 0.00 0.00 0.02 0.02 0.00

Totale 99.51 99.30 100.56 100.46 99.90 99.87 99.03 100.35 100.39 100.59 99.42 99.78 99.59

Wo 47.51 49.00 49.24 48.34 48.49 48.83 48.83 49.32 49.57 48.74 48.65 48.54 46.79

En 35.40 31.13 30.95 37.12 33.77 31.00 32.98 31.60 31.76 30.35 29.32 30.30 37.76

Fs 15.36 17.68 17.49 12.86 15.35 17.84 16.22 16.61 16.31 18.86 19.51 18.65 13.51



Seamount Ormonde

Sample 34
Phase Noseana Noseana

SiO2 36.82 37.55

TiO2 0.00 0.00

Al2O3 33.30 33.97

Cr2O3 0.00 0.00

FeO 0.12 0.18

MnO 0.00 0.01

MgO 0.00 0.03

CaO 2.32 1.98

Na2O 18.90 17.86

K2O 0.77 0.62

SO3 6.96 6.73

Totale 99.19 98.93

Seamount: Ormonde
Sample 34
Phase flogopite flogopite flogopite flogopite flogopite

SiO2 35.28 34.63 34.74 35.52 35.47

TiO2 4.88 4.78 4.63 4.52 4.42

Al2O3 13.00 13.09 13.05 12.73 12.93

Cr2O3 0.00 0.05 0.00 0.00 0.01

FeO 24.16 23.68 24.44 23.40 23.40

MnO 1.07 1.03 1.09 0.95 0.86

MgO 8.62 8.49 8.65 8.83 8.70

CaO 0.00 0.01 0.04 0.02 0.00

Na2O 0.59 0.62 0.52 0.50 0.59

K2O 8.37 8.34 8.34 8.16 8.28

SO3
Totale 95.97 94.72 95.50 94.63 94.86

Sample 34
Phase K-fd K-fd K-fd

microlite microlite microlite

SiO2 67.69 65.06 66.95

TiO2 0.00 0.09 0.00

Al2O3 18.83 19.11 18.64

Cr2O3 0.00 0.02 0.00

FeO 0.39 1.17 0.42

MnO 0.02 0.01 0.06

MgO 0.03 0.36 0.01

CaO 0.11 0.11 0.12

Na2O 5.77 5.29 5.95

K2O 7.70 7.02 7.32

Totale 100.53 98.25 99.46

Ab % 52.96 53.06 54.90



An % 0.55 0.59 0.63

Or % 46.49 46.35 44.48



APPENDIX: 40Ar-39Ar DATING 

 

Samples 

Three samples were considered for 40Ar-39Ar dating: a lava block from Coral Patch seamount 

(SWIM04-29/1) and two small volcanic fragments from Ormonde seamount (SWIM04-32/3 and 

SWIM04-34). Coral Patch lava is heavily altered and full of empty cavities. The sample was cut in 

slices and the less altered inner parts were chosen for grinding, sieving and ground mass separation. 

The fraction chosen for the analysis (>180 μm) was leached in ultrasonic bath at 30 °C with HCl 

3.5N (60 minutes) and HNO3 1N (60 minutes) and then thoroughly washed with deionised water. 

Biotites of Ormonde seamount samples were separated with conventional magnetic and gravimetric 

methods followed by hand picking. SWIM04-34 biotites appeared fresh, while the few biotite 

crystals obtained from SWIM04-32/3 were relatively dirty. Biotites were washed with methanol and 

de-ionized water in ultrasonic bath. 

 

Method 

Samples were packed in Al foil and piled in a quartz tube along with multiple samples of the 

neutron fluence monitor FCT sanidine (28.03 Ma, Jourdan & Renne, 2007). The package was 

irradiated for 8 hours in the core of the 250 kW TRIGA reactor of Pavia University.  

All samples were step-heated (SH) and single crystals total fusion (SCTF) experiments were 

performed on both micas. In step-heating experiments the defocused beam of a diode-pumped Nd-

YAG infra-red (IR) continuous wave laser was used as heating device at progressively higher power 

levels. The defocused laser beam passed through a faceted lens that produces an even spatial 

distribution of the beam power. When the laser beam surface was smaller than the sampled area, the 

beam was slowly rastered over the entire sample. The evolved gas was cleaned with two SAES 

AP10 getters held at ~400 °C and one SAES GP50 getter held at room temperature. Argon was 

measured with a Mass Analyser Products (MAP) 215-50 mass spectrometer, operated in electron 

multiplier mode. System blanks were measured every two-four analyses. The mass discrimination 

was monitored using an on-line air pipette. The steps ages were corrected for system blanks, mass 

discrimination, radioactive decay of 37Ar and 39Ar and nuclear interferences through the 

ArArCALC software (Koppers, 2002) (see the Analytical Table). 40Ar-39Ar plateau ages were 

calculated on at least three consecutive steps that yield concordant ages at the 2σ level. In fact these 

samples never satisfy the criterion of Fleck et al. (1977) that requires at least 50% of the total K-

derived 39Ar for a reliable plateau and their age computation is discussed below. Unlike plateau 

ages, where an atmospheric initial isotopic ratio is assumed, isochron ages calculations correct for 



the initial 40Ar/36Ar ratio of the system, whichever its value. Isochron ages were calculated using 

ISOPLOT (Ludwig, 2003).  

 

Results 

SWIM04-29/1 ground mass displays a disturbed age spectrum, with older ages at low laser power 

(i.e. temperature) and younger ages at higher temperatures. The K/Ca shows a monotonic decrease 

from the second step, compatible with the progressive degassing of pyroxene. The only K-bearing 

phase in the sample is glass (see main text for further discussion). 

SWIM04-32/3 mica SH analysis was performed on a population of variable grain-size and limited 

weight (~1 mg). The sample displays a slightly disturbed age spectrum, with apparent ages slowly 

decreasing towards higher laser powers (i.e. temperatures) (Fig. 1). The majority of the age 

spectrum is also characterized by relatively low K/Ca ratios for a biotite. Five steps, equivalent to 

41.7 % of 39Ar release give a weighted plateau age of 64.02±0.48 Ma (MSWD=2.6), and K/Ca 

ratios varying from 23 to 7. The same steps identify an isochron age of 63.31±0.87 Ma 

(MSWD=1.3), with a poorly defined initial 36Ar/40Ar intercept (453±180) (Fig. 1). The limited 

amount of 39Ar release and the overall shape of the age spectrum question the validity of the 

obtained age.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. SWIM04-32/3- Left: age and K/Ca spectrum. Error boxes are ± 2 σ. The horizontal bar 

indicates the steps used to calculate the plateau age and the average K/Ca ratio. Right: Isotope 

correlation diagram: solid squares represent the plateau steps and have been used to calculate the 

isochron age, empty squares are all the other points. 
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The four single crystal total fusion analyses might suggest an explanation for the age spectrum 

shape, although the data are affected by high uncertainties due to the low analytical signal. Two 

crystals have almost no Ca, high 40Ar radiogenic yields (>95%) and ages of 63-64 Ma; two crystals 

have K/Ca ratios <1, lower 40Ar radiogenic yields (66-88%) and younger ages (~ 58 Ma).   The 

shape of the SH age spectrum might derive by the mixing of two population of micas, an older 

pristine one, and a younger altered one. The yield of the overall sample (95.7 %, see the Analytical 

Table) allows to consider that pristine micas prevail in the analysed population. The isochron age of 

63.31±0.87 Ma is considered the best estimate of the age of this sample. 

SWIM04-34 mica SH analysis evidences a flattish age spectrum, with an overall plateau age 

hampered by a low age intermediate temperature step (1.3 W). Two mini-plateau are calculated on 

steps 1-8, 64.03±0.39 Ma (MSWD=1.8, 45.8 % of 39Ar release) and steps 10-14, 64.07±0.32 Ma 

(MSWD=1.39, 44.9 % of 39Ar release) (Fig. 2). The data obtained on the two groups of steps are 

equivalent and overlap within error to the integrated age of 63.95±0.25 Ma.  All data points identify 

an isochron 63.85±0.61 Ma (MSWD=2.0, initial 36Ar/40Ar intercept =286±26) (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

Fig. 2. SWIM04-34- Left: age spectrum. Right: Isotope correlation diagram. Legend as in figure 1.  
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Eight SCTF analyses on relatively big crystals of SWIM04-34 evidence the presence of a unique 

population, with a weighted average age of 64.18±0.42 Ma  (Fig. 3) (see main text). Both SH and 

SCTF analyses of this biotite give concordant ages and the isochron age is chosen as more 

representative. 
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Fig. 3.  SWIM04-34. Age probability plot of single crystal laser total fusion experiments.WA= 

Weighted Average. 
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Analytical Table 
 
Legend:  Argon isotopes are in moles. 

 Steps used to calculate plateau and isochron ages are in bold. SH= Step-heating 
 analysis; SCTF= Single crystal laser fusion analysis. 

Columns headings are as follows: 36Ar(atm) = atmospheric 36Ar; 38Ar(Cl) = Cl-derived 
38Ar; 39Ar(K) = K-derived 39Ar; 40Ar(rad) = radiogenic 40Ar; 40Ar(rad)(%) = percentual 
ratio of  radiogenic 40Ar over total 40Ar. 

Total fusion age is calculated summing the isotopic measurements of all steps, and its 
error includes uncertainty on J value. Errors quoted for individual analyses ages 
include analytical error only. 

 
SWIM04-32/3 biotite  SH    J=0.0007318±0.0000011 (±1σ) 

Laser 
power 36Ar(atm)

37Ar(Ca)
38Ar(Cl)

39Ar(K)
40Ar(rad)

39Ar(K) Age ± 2σ 40Ar(rad) K/Ca ± 2σ 
W           % Ma   %     

            
0.2 1.64E-17 1.80E-17 6.79E-19 5.76E-17 1.71E-15   0.63 38.82 13.14  26.1 1.70 0.29
0.4 8.14E-18 1.21E-17 1.40E-18 1.56E-16 8.44E-15   1.71 69.93 5.01  77.8 6.84 2.72
0.6 5.49E-18 1.41E-17 1.36E-18 5.08E-16 2.57E-14   5.57 65.69 1.47  94.1 19.14 5.27
0.75 4.63E-18 2.10E-17 1.91E-18 8.83E-16 4.39E-14   9.68 64.54 0.88  97.0 22.29 4.64
0.9 1.35E-18 1.51E-17 2.22E-18 6.54E-16 3.21E-14   7.18 63.70 0.55  98.8 23.03 12.81
1.05 3.87E-18 6.53E-17 3.20E-18 9.60E-16 4.72E-14  10.53 63.75 0.44  97.6 7.80 1.07
1.2 1.75E-18 6.01E-17 3.30E-18 7.95E-16 3.94E-14   8.71 64.29 0.54  98.7 7.01 0.91
1.35 3.72E-18 9.66E-17 4.05E-18 8.60E-16 4.13E-14   9.44 62.29 0.66  97.4 4.72 0.40
1.55 3.65E-18 1.87E-16 4.40E-18 9.01E-16 4.35E-14   9.88 62.58 0.47  97.6 2.55 0.17
1.7 4.93E-18 2.62E-16 4.78E-18 1.03E-15 4.86E-14  11.31 61.21 0.51  97.1 2.08 0.10
1.9 5.35E-18 2.08E-16 3.76E-18 9.83E-16 4.58E-14  10.78 60.41 0.47  96.6 2.51 0.14
2.2 4.49E-18 5.25E-17 3.19E-18 9.84E-16 4.73E-14  10.79 62.37 0.52  97.3 9.93 1.43
2.5 2.40E-18 b.d.l. 9.46E-19 2.20E-16 1.07E-14   2.41 63.14 1.85  93.8 n.d.  
fuse 1.47E-18 b.d.l. 1.47E-19 1.25E-16 5.71E-15   1.37 59.41 2.77  92.9 n.d.  
            
TF             62.80 0.29 95.7 4.78 0.20

 
SWIM04-32/3 biotite SCTF   J=0.0007318±0.0000011 (±1σ) 

# ID 36Ar(atm)
37Ar(Ca)

38Ar(Cl)
39Ar(K)

40Ar(rad) Age ± 2σ 40Ar(rad) K/Ca ± 2σ 
            Ma   %     

           
Fuse 3.52E-18 1.07E-16 9.18E-19 1.77E-16 7.88E-15 57.96 2.99 88.3 0.87 0.10
Fuse 3.45E-18 1.01E-16 3.71E-19 4.41E-17 1.98E-15 58.31 13.3 66.1 0.23 0.04
Fuse 1.40E-18 2.19E-18 5.89E-19 1.69E-16 8.20E-15 62.86 3.12 95.2 40.94 208.58
Fuse 1.08E-18 b.d.l. 7.87E-19 3.49E-16 1.72E-14 63.97 1.6 98.2 n.d   

 
 
SWIM04-34 biotite SH    J=0.0007318±0.0000011 (±1σ) 

Laser 
power 36Ar(atm)

37Ar(Ca)
38Ar(Cl)

39Ar(K)
40Ar(rad)

39Ar(K) Age ± 2σ 40Ar(rad) K/Ca ± 2σ 
W           % Ma   %     

            
0.3 3.36E-18 3.48E-18 1.43E-19 3.64E-17 1.75E-15 0.21 62.51 17.73 63.8 5.54 10.58
0.5 7.07E-18 b.d.l. 1.86E-18 5.29E-16 2.62E-14 3.09 64.21 1.33 92.6 n.d.  
0.65 5.02E-18 b.d.l. 1.50E-18 7.34E-16 3.69E-14 4.28 65.17 0.95 96.1 n.d.  



0.8 4.52E-18 b.d.l. 3.01E-18 9.61E-16 4.73E-14 5.61 63.86 0.75 97.2 n.d.  
0.9 4.26E-18 b.d.l. 2.70E-18 1.14E-15 5.60E-14 6.66 63.6 0.63 97.8 n.d.  
1 5.46E-18 b.d.l. 4.23E-18 1.53E-15 7.58E-14 8.92 64.32 0.49 97.9 n.d.  
1.1 4.64E-18 b.d.l. 3.88E-18 1.27E-15 6.21E-14 7.41 63.45 0.64 97.8 n.d.  
1.2 6.82E-18 b.d.l. 4.02E-18 1.65E-15 8.14E-14 9.61 64.1 0.52 97.6 n.d.  
1.3 5.58E-18 b.d.l. 3.43E-18 1.39E-15 6.78E-14 8.14 63.07 0.56 97.6 n.d.  
1.4 4.13E-18 b.d.l. 3.86E-18 1.46E-15 7.21E-14 8.51 64.12 0.55 98.3 n.d.  
1.55 3.34E-18 b.d.l. 4.06E-18 1.67E-15 8.24E-14 9.74 64.02 0.45 98.8 n.d.  
1.7 4.37E-18 b.d.l. 1.66E-18 1.77E-15 8.69E-14 10.32 63.8 0.43 98.5 n.d.  
1.9 2.60E-18 b.d.l. 4.21E-18 1.51E-15 7.52E-14 8.82 64.57 0.51 99.0 n.d.  
2.2 3.78E-18 b.d.l. 3.46E-18 1.29E-15 6.38E-14 7.55 63.97 0.57 98.3 n.d.  
fuse 1.33E-18 b.d.l. 5.81E-19 1.89E-16 8.93E-15 1.11 61.18 3.61 95.8 n.d.  
            
TF             63.95 0.25 97.7     

 
SWIM04-34 biotite SCTF   J=0.0007318±0.0000011 (±1σ) 

# ID 36Ar(atm)
37Ar(Ca)

38Ar(Cl)
39Ar(K)

40Ar(rad) Age ± 2σ 40Ar(rad)

            Ma   % 
         
Fuse 2.66E-18 b.d.l. 9.03E-19 2.55E-16 1.25E-14 63.55 1.36 94.1 
Fuse 3.02E-18 b.d.l. 2.58E-18 1.05E-15 5.25E-14 64.53 0.45 98.3 
Fuse 1.75E-18 b.d.l. 1.21E-18 5.97E-16 2.92E-14 63.43 0.77 98.2 
Fuse 2.03E-18 b.d.l. 1.94E-18 7.26E-16 3.59E-14 64.01 0.60 98.3 
Fuse 1.47E-18 b.d.l. b.d.l. 1.94E-16 9.34E-15 62.41 1.94 95.5 
Fuse 2.12E-18 b.d.l. 1.74E-18 4.37E-16 2.18E-14 64.63 0.69 97.2 
Fuse 1.51E-18 b.d.l. 8.47E-19 3.22E-16 1.57E-14 63.41 1.16 97.2 
Fuse 1.43E-18 b.d.l. 3.93E-18 1.14E-15 5.67E-14 64.43 0.70 99.2 

 
SWIM29/1 g.m.    J=0.0007318±0.0000011 (±1σ) 

Laser 
power 36Ar(atm)

37Ar(Ca)
38Ar(Cl)

39Ar(K)
40Ar(rad)

39Ar(K) Age ± 2σ 40Ar(rad) K/Ca ± 2σ 
W           % Ma   %     

            
0.2 1.29E-16 1.59E-16 4.97E-18 1.75E-16 7.25E-15 9.76 53.87 7.06 16.0 0.5840 0.0799
0.4 6.02E-17 1.35E-16 7.23E-18 1.92E-16 6.31E-15 10.69 42.97 6.09 26.2 0.7529 0.0854
0.55 1.08E-17 1.33E-16 1.57E-17 1.44E-16 6.42E-15 8.06 57.77 3.35 66.8 0.5734 0.0818
0.7 9.95E-18 4.93E-16 3.30E-17 2.35E-16 9.30E-15 13.12 51.46 1.81 76.0 0.2527 0.0209
0.85 9.49E-18 9.26E-16 2.77E-17 2.30E-16 8.78E-15 12.85 49.61 1.69 75.8 0.1318 0.0100
1 8.88E-18 2.00E-15 1.96E-17 2.49E-16 7.52E-15 13.90 39.41 2.19 74.1 0.0660 0.0047
1.15 9.45E-18 2.43E-15 9.85E-18 1.66E-16 4.02E-15 9.25 31.69 3.19 59.0 0.0362 0.0024
1.3 6.46E-18 2.61E-15 4.36E-18 1.05E-16 2.60E-15 5.85 32.44 3.71 57.6 0.0213 0.0015
1.6 6.57E-18 4.84E-15 4.84E-18 1.21E-16 2.76E-15 6.73 29.94 5.31 58.7 0.0132 0.0009
2 5.75E-18 1.31E-14 4.94E-18 1.17E-16 2.76E-15 6.55 30.76 4.47 61.9 0.0048 0.0003
fuse 4.17E-18 6.03E-14 3.82E-18 5.79E-17 2.59E-15 3.23 58.13 24.55 67.7 0.0005 0.0001
            
TF             43.88 1.45 43.9 0.011 0.001

 
 
Age monitor for the second set of samples: FCT sanidine, 28.03 Ma (Jourdan & Renne, 2007). 
The correction factors for reactor induced interfering reactions were: 39Ar/37Ar (Ca) = 0.00075 ± 0.000075; 36Ar/37Ar 
(Ca) = 0.00024 ± 0.00002; 40Ar/39Ar (K) = 0.00925 ± 0.0009. 
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