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Introduction

The term Ambient Intelligence (AmI) refers to a vision on the future of the

information society where smart, electronic environment are sensitive and re-

sponsive to the presence of people and their activities (Context awareness). In

an ambient intelligence world, devices work in concert to support people in

carrying out their everyday life activities, tasks and rituals in an easy, natu-

ral way using information and intelligence that is hidden in the network con-

necting these devices. This promotes the creation of pervasive environments

improving the quality of life of the occupants and enhancing the human expe-

rience. AmI stems from the convergence of three key technologies: ubiquitous

computing, ubiquitous communication and natural interfaces.

Ambient intelligent systems are heterogeneous and require an excellent co-

operation between several hardware/software technologies and disciplines,

including signal processing, networking and protocols, embedded systems, in-

formation management, and distributed algorithms.

Since a large amount of fixed and mobile sensors embedded is deployed

into the environment, the Wireless Sensor Networks is one of the most relevant

enabling technologies for AmI. WSN are complex systems made up of a num-

ber of sensor nodes which can be deployed in a target area to sense physi-

cal phenomena and communicate with other nodes and base stations. These

simple devices typically embed a low power computational unit (microcon-

trollers, FPGAs etc.), a wireless communication unit, one or more sensors and

a some form of energy supply (either batteries or energy scavenger modules).

WNS promises of revolutionizing the interactions between the real physical

worlds and human beings. Low-cost, low-computational power, low energy

consumption and small size are characteristics that must be taken into consid-

eration when designing and dealing with WSNs.

To fully exploit the potential of distributed sensing approaches, a set of

challenges must be addressed. Sensor nodes are inherently resource-constrained

systems with very low power consumption and small size requirements which

enables than to reduce the interference on the physical phenomena sensed and

to allow easy and low-cost deployment. They have limited processing speed,



2 Introduction

storage capacity and communication bandwidth that must be efficiently used

to increase the degree of local ”understanding” of the observed phenomena.

A particular case of sensor nodes are video sensors [88, 98]. This topic holds

strong interest for a wide range of contexts such as military, security, robotics

and most recently consumer applications. Vision sensors are extremely effec-

tive for medium to long-range sensing because vision provides rich informa-

tion to human operators. However, image sensors generate a huge amount of

data, which must be heavily processed before it is transmitted due to the scarce

bandwidth capability of radio interfaces. In particular, in video-surveillance

[49], it has been shown that source-side compression is mandatory due to lim-

ited bandwidth and delay constraints. Moreover, there is an ample opportu-

nity for performing higher-level processing functions, such as object recogni-

tion that has the potential to drastically reduce the required bandwidth (e.g.

by transmitting compressed images only when something ‘interesting‘ is de-

tected) [94]. The energy cost of image processing must however be carefully

minimized.

Imaging could play and plays an important role in sensing devices for am-

bient intelligence. Computer vision can for instance be used for recognising

persons and objects and recognising behaviour such as illness and rioting.

Having a wireless camera as a camera mote opens the way for distributed

scene analysis. More eyes see more than one and a camera system that can

observe a scene from multiple directions would be able to overcome occlusion

problems and could describe objects in their true 3D appearance. In real-time,

these approaches are a recently opened field of research .

In this thesis we pay attention to the realities of hardware/software tech-

nologies and the design needed to realize systems for distributed monitoring,

attempting to propose solutions on open issues and filling the gap between

AmI scenarios and hardware reality. The physical implementation of an in-

dividual wireless node is constrained by three important metrics which are

outlined below.

Despite that the design of the sensor network and its sensor nodes is strictly

application dependent, a number of constraints should almost always be con-

sidered. Among them:

• Small form factor to reduce nodes intrusiveness.

• Low power consumption to reduce battery size and to extend nodes life-

time.

• Low cost for a widespread diffusion.

These limitations typically result in the adoption of low power, low cost de-

vices such as low power microcontrollers with few kilobytes of RAM and tenth
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of kilobytes of program memory with whom only simple data processing algo-

rithms can be implemented. However the overall computational power of the

WNS can be very large since the network presents a high degree of parallelism

that can be exploited through the adoption of ad-hoc techniques. Furthermore

through the fusion of information from the dense mesh of sensors even com-

plex phenomena can be monitored.

In this dissertation we present our results in building several AmI applica-

tions suitable for a WSN implementation. The work can be divided into two

main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Mul-

timodal Surveillance .

Low Power Video Sensor Nodes and Video Processing Alghoritms

In comparison to scalar sensors, such as temperature, pressure, humidity,

velocity, and acceleration sensors, vision sensors generate much higher

bandwidth data due to the two-dimensional nature of their pixel array.

We have tackled all the constraints listed above and have proposed solu-

tions to overcome the current WSN limits for Video sensor node. We have

designed and developed wireless video sensor nodes focusing on the

small size and the flexibility of reuse in different applications. The video

nodes target a different design point: the portability (on-board power

supply, wireless communication), a scanty power budget (500mW), while

still providing a prominent level of intelligence, namely sophisticated

classification algorithm and high level of reconfigurability. We developed

two different video sensor node: The device architecture of the first one is

based on a low-cost low-power FPGA+microcontroller system-on-chip.

The second one is based on ARM9 processor. Both systems designed

within the above mentioned power envelope could operate in a contin-

uous fashion with Li-Polymer battery pack and solar panel. Novel low

power low cost video sensor nodes which, in contrast to sensors that just

watch the world, are capable of comprehending the perceived informa-

tion in order to interpret it locally, are presented. Featuring such intelli-

gence, these nodes would be able to cope with such tasks as recognition

of unattended bags in airports, persons carrying potentially dangerous

objects, etc., which normally require a human operator. Vision algorithms

for object detection, acquisition like human detection with Support Vec-

tor Machine (SVM) classification and abandoned/removed object detec-

tion are implemented, described and illustrated on real world data.

Multimodal surveillance

In several setup the use of wired video cameras may not be possible. For

this reason building an energy efficient wireless vision network for mon-
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itoring and surveillance is one of the major efforts in the sensor network

community. Energy efficiency for wireless smart camera networks is one

of the major efforts in distributed monitoring and surveillance commu-

nity. For this reason, building an energy efficient wireless vision network

for monitoring and surveillance is one of the major efforts in the sensor

network community. The Pyroelectric Infra-Red (PIR) sensors have been

used to extend the lifetime of a solar-powered video sensor node by pro-

viding an energy level dependent trigger to the video camera and the

wireless module. Such approach has shown to be able to extend node

lifetime and possibly result in continuous operation of the node.Being

low-cost, passive (thus low-power) and presenting a limited form factor,

PIR sensors are well suited for WSN applications. Moreover techniques

to have aggressive power management policies are essential for achiev-

ing long-term operating on standalone distributed cameras needed to im-

prove the power consumption. We have used an adaptive controller like

Model Predictive Control (MPC) to help the system to improve the per-

formances outperforming naive power management policies.

0.1 Thesis Organization Outline

The reminder of the dissertation is organized as follows.

Chapter 1 introduces the basic concepts of Ambient Intelligence (AmI). It

provides a general definition of the main building blocks and defines the crit-

ical factors common to AmI applications. Several example AmI projects are

presented to provide an insight into the current research in this field.

Chapter 2 describes WSNs. This chapter highlights the characteristics of

WSN and the main application scenarios. A more detailed description of the

building block of a WSN, the Wireless Sensor Node, is provided together with an

overview of the state of the art of such devices.

Chapter 3 afterwards a Support Vector Machine (SVM) overview, we present

our work in developing video sensor notes and video processing techniques,

finally a little introduction on the low-cost, low-power Pyroelectric InfraRed

(PIR) .

Chapter 4 demonstrates how such sensors can be integrated within a video

surveillance network to augment its performance and to overcome some limi-

tations of the video systems. Moreover, the chapter describes how PIR sensors

can be used in conjunction with Wireless Video Sensor Nodes (WVSN) and

photovoltaic energy harvesting modules to extend node lifetime using power

management policies and Model Predictive Control.

Conclusions conclude the dissertation summarizing the results presented
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in this thesis.





Chapter 1

Ambient Intelligence

1.1 Ambient Intelligence: general definitions

In the AmI vision, humans will be surrounded by smart devices embedded in

everyday objects such as furniture, clothes, vehicles, roads and smart materials.

Devices are aware of human presence and activities, take care of his needs and

are capable of responding intelligently to spoken or gestured indications of

desire. Furthermore they are unobtrusive, often invisible: nowhere unless we

need them. Interaction should be relaxing and enjoyable for the citizen, and

not involve a steep learning curve [157].

The ISTAG (Information Society Technology Advisory Group) is a team that

has been set up to advise the European Commission on the overall strategy

to be followed in carrying out the IST thematic priority under the European

framework programme for research. The ISTAG reflects and advises on the

definition and implementation of a coherent policy for research in ICT in Eu-

rope. This policy should ensure the mastering of technology and its applica-

tions, and should help strengthen industrial competitiveness and address the

main European societal challenges [78].

The first ISTAG meeting took place in 1999 and defined the objective of the

group as

start creating an ambient intelligence landscape (for seamless de-

livery of services and applications) in Europe relying also upon

testbeds and open source software, develop user-friendliness, and

develop and converge the networking infrastructure in Europe to

world-class

— ISTAG, “Orientations for Workprogramme 2000 and beyond”

The ISTAG promotes the creation of pervasive environment improving the
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quality of life of the occupants and enhancing the human experience. Such

smart, electronic environment are proactive to the presence of people and their

activities. Context awareness is a key factor of this vision. Computer react based

on their environment. Devices collect information about the circumstances un-

der which they operate and react accordingly [131, 132].

Ambient Intelligence stems from the convergence of three key technologies:

Ubiquitous Computing

The vision of ubiquitous computing emerged in the late 80s at Xerox Palo

Alto Research Center (PARC) when a heterogeneous group of researcher

developed a novel paradigm of interaction between human and comput-

ers [156]. The term ubiquitous computing has been forged by Mark Weiser

few years later [154] and refers to omnipresent computers that serve peo-

ple in their everyday lives at home and at work, functioning invisibly

and unobtrusively in the background and freeing people to a large extent

from tedious routine tasks. Ubiquitous computing has as its goal the en-

hancing computer use by making many computers available throughout

the physical environment, but making them effectively invisible to the

user [155]. The technology required for ubiquitous computing is three-

fold: cheap, low-power electronic devices, a network that ties them all

together, and software systems implementing ubiquitous applications.

Human-smart environment interaction is possible through hand held de-

vices that collect information from the environment or context aware ser-

vices that are aware of people presence, understand their activities and

react in a proactive manner. Some people say that ubiquitous comput-

ing is the Third Wave of Computing, where the First Wave was many

people, one computer (mainframe), the Second Wave is the era of one

person, many computers (Personal Computers). The Third Wave will be

the era of many computers per person [16] (see figure 1.1).

Ubiquitous Communication

An important factor to fully exploit the power of ubiquitous system and

to provide information everywhere it is needed is the presence of a rich

wired and wireless communication infrastructure. Wireless communi-

cation is well suited for dynamic environment where the users moves

within smart ambients. In order to realize demands for ubiquitous com-

munication and pervasive computing, a change from the traditional ap-

proach of centralized, planned wireless communication networks such

as GSM, toward an adaptive, self-organizing, multi-user, multi-system

distributed wireless communications platform is essential [119] (see fig-

ure 1.2). To implement wireless technology on a wide level, however,



1.1 Ambient Intelligence: general definitions 9

Figure 1.1: Trends in computing

the wireless hardware itself must meet several criteria on the one hand,

while easy integration and administration as well as security of the net-

work must be ensured on the other. Some of the unique features that

the ambient intelligence scenario presents and that must be considered

are: very large networks (hundred or thousands of nodes), both mobile

and fixed nodes, node failure must be kept in mind, small battery size

(for easier integration) and data centric communication (i.e. redundant

data can be aggregated, compressed, dropped etc.). Incorporating these

unique features into protocol design is important in order to efficiently

utilize the resources of the environment [117].

Intelligent User Friendly Interfaces

Intelligent user interface have a fundamental role in ambient intelligence.

These interfaces go beyond the traditional keyboard, mouse, and display

paradigm to improve human computer interaction by making it more

intuitive, efficient, and secure. Thus, Ubiquitous computing inspires ap-

plication development that is off the desktop. In addition to suggesting a

freedom from well-defined spaces, this vision assumes that physical in-

teraction between humans and computation will be more like the way

humans interact with the physical world. Input has moved beyond the

explicit nature of textual input (keyboards) and selection (pointing de-

vices) to a greater variety of data types. This has resulted in not only a

greater variety of input technologies but also a shift from explicit means
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Figure 1.2: Distributed communication network

of human input to more implicit forms of input. Computer interfaces that

support more natural human forms of communication (such as hand-

writing, speech, and gestures) are beginning to supplement traditional

interfaces. Intelligent human computer interaction promises to support

more sophisticated and natural input and output, to enable users to per-

form potentially complex tasks more quickly, with greater accuracy, and

to improve user satisfaction.

In 2001, two years later the first meeting, the ISTAG group has published

a final report where four scenarios are described in order to offer provocative

glimpses of futures that can be realized [52]. Each scenario contains positive

and negative aspects that allow for a composite, even contrasted, picture of the

future.

The analysis of these scenarios allow to identify the critical factors in build-

ing AmI systems. The factors are divided into 3 main topics.

Socio-political factors AmI should facilitate human contact and be oriented

toward community and cultural enhancement. However to be acceptable

AmI should inspire trust and confidence and thus needs to be driven by

humanistic concerns, not technological ones since people do not accept

everything that is technologically possible and available [114]. A major

criticism came from the observation that being immersive, personalized,
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Figure 1.3: Intelligent Natural Interfaces (Photo:Philips)

context-aware and anticipatory it brings up social, political and cultural

concerns about the loss of privacy, the power concentration in large pri-

vate companies and fear for an increasingly individualized, fragmented

society [159]. This criticism should be kept in mind for a widespread ac-

ceptance of this new technology.

AmI also should exploit its great potential to enhance education and

learning. Everyday life skills will grow because of rising opportunities

and means of personal expression and interaction [51].

Business and industrial models Economic aspects of AmI are a fundamental

factor for the diffusion of this technology. The most important questions

are related to how translate technological and social changes into po-

tential business models. However a number of elements emerged from

the scenario that highlight several potentialities of AmI. Among them:

enhancements in the productivity and the quality of products and ser-

vices, comprehensive methods of monitoring and extracting information

on real-world, reducing reaction times in unforeseen circumstances, new

products and new services.

Technology requirements Five main technology requirements emerge from

the analysis of the scenarios [52]:

1. Very unobtrusive hardware. Miniaturization is necessary to achieve

dense dissemination of devices and to develop new sensors and
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smart materials. In addition self-generating power and micro-power

usage will be necessary due to poor scaling capability of batteries

technology and new displays and smart surfaces should be devel-

oped to provide satisfactory interaction with the environment.

2. A seamless mobile/fixed communications infrastructure. Complex

heterogeneous networks need to function and to communicate in a

seamless and interoperable way. This implies a complete integra-

tion of mobile and fixed and radio and wired networks. Advanced

techniques for dynamic network management will be necessary.

3. Dynamic and massively distributed device networks. A huge amount

of sensors will be spread in the environment. This networks should

be self configurable according to its specific, dynamic status and the

current task with variable actors and components. Databases should

be accessible on demand from anywhere in the system.

4. Natural feeling human interfaces. The design of novel multimodal,

multi-user, and multi purpose interface for speech, gesture, and pat-

tern recognition adaptive to user requirements is required.

5. Dependability and security. Technology should be safe for user both

from the physical and psychological point of view. Thus technology

should be tested and both hardware and software should be robust.

For this reason there is likely to be an emerging emphasis on self-

testing and self-organizing systems.

Ambient Intelligence will be brought to us with the promise of an enhanced

and more satisfying lifestyle. However, its social benefits cannot be realized

unless a number of requirements regarding socio political-issues, business model

and technology development have been met. Several field of research will be

involved in this change and furthermore novel interdisciplinary approaches

will be necessary. Issues such as environmental and social sustainability, pri-

vacy, social robustness and fault tolerance will determine the take up of AmI.

1.2 Ambient Intelligence projects

A number of leading technological organizations are exploring pervasive com-

puting apart from Xeroxs Palo Alto Research Center (PARC).

The Laboratory for Computer Science (LCS), the Artificial Intelligence Lab-

oratory (AIL) at the Massachusetts Institute of Technology (MIT) together with

several industrial partner have started the project Oxygen [108]. The mission

of the project is to bring an abundance of computation and communication within

easy reach of humans through natural perceptual interfaces of speech and vision so
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computation blends into peoples lives enabling them to easily do tasks they want to

do collaborate, access knowledge, automate routine tasks and their environment. The

project focus on network technologies to connect dynamically changing configu-

rations of self-identifying mobile and stationary devices to form collaborative

regions, on software technologies to develop software systems able to adapt to

users, to the environment, to change and to failure with minimal user inter-

vention and without interruption to the services they provide, on perceptual

technologies to build multimodal interaction with the electronic environment,

and on user technologies for user support.

IBM created a living laboratory, called Planet Blue, to understand how peo-

ple will interact with the emerging world of the wireless Internet [76]. The ap-

plications developed within this laboratory aim at highlight the requirements

of the underlying infrastructure needed to support workers. The objective of

Planet Blue is to define the future of post-PC personal computing and drive

IBM’s research in information access devices. The project focus on the devel-

opment of dynamic personal portals, enhanced Personal Information Manage-

ment (PIM) and smart meetings.

Carnegie Mellon University has started Project Aura that focuses on user

attention [34]. The project motivation come from the observation that also user

attention is a (limited) resource in a computer system. Aura’s goal is to provide

each user with an invisible halo of computing and information services that

persists regardless of location and support it. Aura’s related project includes:

distributed real-time object system and interactive media, mobile file access,

application-aware networking, wearable computers and cognitive assistance

for everyday computing.





Chapter 2

Wireless Sensor Networks

2.1 Wireless Sensor Networks overview

Advances in the fields of micro electronics, wireless communication, embed-

ded microprocessors and micro-fabrication allowed the the birth of one of the

most rapidly evolving research and development fields: Wireless Sensor Net-

works (WSN) [44, 167]. WSN are complex system consisting of spatially dis-

tributed autonomous devices, called Sensor Nodes, that collaborate to monitor

physical or environmental conditions at different locations. Design, implemen-

tation, and deployment of a WSN involves a wide range of disciplines and con-

siderations for numerous application-specific constraints [20]. In the last five

years, significant progress has been made in the development of WSNs, and

some WSN-based commercial products have already appeared on the market.

Even if WSN are strictly application dependent, it is possible to define a list

of basic features [77].

• Self-organizing capabilities.

• Short-range broadcast communication and multihop routing.

• Dense deployment and cooperative effort of sensor nodes.

• Frequently changing topology due to fading and node failures.

• Limitations in energy, transmit power, memory, and computing power.

These characteristics make WSN different from other wireless systems and

make them one of the most important enabling technologies for several ap-

plications.
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2.1.1 Wireless Sensor Network applications

Historically WSNs were developed for military applications [36], however there

has been a significant interest also in several other fields of human activities

[122]. Following a list of application is discussed.

Military

Being capable of self organization a large number of sensor nodes could

be rapidly deployed along defensive perimeter or into battlefields (for ex-

ample by dropping them from a helicopter as shown in figure 2.1). Once

on the field they would establish an ad hoc network and monitor for

hostile military units. For example in [105] a wireless network of many

low-cost acoustic sensors is used to determine both a snipers’s location

and the bullet’s trajectory. Furthermore even if the loss of some sensors

is likely to happen the ability to adapt to a changing topology will not

prevent a redundant network to work properly. Clearly, fusing the in-

formation from a heterogeneous set of sensors can improve the precision

and the number of inferences about the activity going on [72].

Figure 2.1: WSN Application on battlefield

Environmental and habitat monitoring

WSN have shown to provide an effective means to monitor geographi-

cally remote areas. Thanks to the ability of transmit collected data to a
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data repository on a server, WSNs have been a great improvement in tra-

ditional monitoring systems where data required manual downloading

by a maintenance team [106]. Some applications of environment monitor-

ing through WSN include the the Environmental Observation and Fore-

casting Systems (EOFS) project which is large-scale distributed system

designed to monitor, model, and forecast wide-area physical processes

such as river systems like the Columbia river estuary [142] and the Sensor

Web Project [113] which is a systems used to implement a global surveil-

lance program to study volcanoes. The system uses a network of sensors

linked by software and the internet to a satellite and has been designed

with a flexible, modular, architecture to facilitate expansion in sensors,

customization of trigger conditions, and customization of responses. Ex-

amples of WSNs applications for habitat monitoring include the Berke-

leys habitat modeling at Great Duck Island [143] (see figure 2.2).

Figure 2.2: Structure of the WSN for habitat monitoring on Great Duck Island

Health care

Patient monitoring systems can be used to collect patient physical status

related data at home and, in some cases, in outdoor scenarios, facilitate

disease management, diagnosis, prediction and follow-up. Use of WSN

can bring great benefit to this activity since the monitoring of people in

their natural environments is not practical when it is necessary to use ca-

bles to connect the sensors with the processing and communication units

[109]. Some example application includes elderly care [25], post stroke
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rehabilitation [115] and support of people who suffer of physical disabil-

ity in order to provide imminent feedbacks when occurs [29] (see 2.3).

Figure 2.3: Audio bio-feedback for impaired people support

Domotic

Home automation is a field within building automation that focus on the

application of automatic techniques for the comfort and security of home

residents. The possibility to embed a large number of sensors into ev-

eryday objects allow the continuous monitoring of the home status. This

results in a more efficient tuning of systems such as the heating, ventilat-

ing, and air conditioning (HVAC) and the easy and natural interface with

electronic devices [120].

Logistic

Tracking of goods is one of the most important aspect for modern com-

panies. In a globalized world, production process is distributed among

several country and many actors take part of it. WSN provide opportuni-

ties for the control and management of transport and logistics processes,

since sensor nodes can be associates with goods and track their path, who

used them and eventually report misuse. An overview of issues and pos-

sible approaches can be found in [57].
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Figure 2.4: WSN can be used for logistic support

Surveillance

As for military application WSN can be used to monitor the access to

building, restricted areas and other critical infrastructure such as power

and telecoms grids or roads and motorway. Heterogeneous systems that

comprise lower-cost sensors, such as presence or acoustic sensors, can

support more bulky and expensive sensors such as imagers, in order to

provide cost effective and efficient systems. The use of this setup is even

more effective if we consider that it is rather difficult for security guards

to continuously watch a set of video monitors when most of the time

nothing occurs is considered. Thus low-cost sensor can help to focus

their attention only where it is necessary [168].

2.2 Wireless Sensor Nodes

WSN basic building blocks are called Wireless sensor nodes or sensor nodes. A

sensor node is a device capable to collect data from one or more sensors, per-

form some sort of computation with it, than (wirelessly) send this data to other

nodes or system for further analysis.

The major characteristics and requirements of a sensor node can be listed

in the following [128]:
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Low cost

WSN may consist of hundred or thousand of sensor nodes, thus single

sensor node cost should be kept low. Also, it is likely that sensor node

will be embedded into everyday object, therefore, for a widespread dif-

fusion of sensor network, their cost should not be excessive.

Low cost requirement results in the adoption of low level components

such as low power microcontrollers with limited amount of data and pro-

gram memory available. As a consequence, even if, due to the high num-

ber of nodes working in parallel within the network, the overall compu-

tational power and memory available to the network can be quite high,

single node capabilities are strictly limited. Thus, application for WSN

should be made up of many simple tasks done in parallel by the nodes of

the network.

Limited size

Sensor nodes will be embedded into the surroundings, into object and

even into user garments. For this reason, unobtrusiveness is a critical

point in order not to impair normal activities. A consequence of minia-

turization is the evolution of sensor nodes from dedicated embedded de-

vices where commercial off the shelf components with emphasis on small

form factor, low-power processing and communication, share a common

board to system on chip sensor nodes where on a common die coexist an

MCU, a wireless transceiver and sensors.

Low power

Power consumption is one of the biggest issues in the design of WSNs.

Nodes, typically, are equipped with batteries, thus they have a limited

amount of available energy. Often a frequent change of batteries can

be unfeasible, specially in large WSN, or can not be possible when, for

example, nodes are placed in harsh environment. In many application

scenarios, the target node lifetime should be several years long. This im-

poses drastic constraints on power consumption that can drop down to

an average of few tenth of microwatts.

Limited power consumption usually is achieved using low power hard-

ware or performing several trade off between the energy consumption

and other network characteristics such as: quality of service, latency,

sensing accuracy, reactiveness to changes in topology, node size (since

batteries do not scale as quickly as integrated circuits).

Another approach is to rely on energy scavenging systems to extend node

lifetime. However energy harvesting, typically, provide a non constant

amount of energy that must be carefully managed to assure the desired
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service.

Wireless

Wireless is a key factor for many applications that rely on mobile nodes,

and in order to reduce WSN cost. In fact, sensor nodes, even if fixed,

may be placed in environment where communication infrastructure are

not present. In this situation the cost of wiring sensor nodes can be too

high and result in sensor network rejection.

Scalability and self organization

Wireless sensor nodes should be able to autonomously organize them-

self and to adapt to changes in their setup and number. This characteristic

is fundamental since often WSN are deployed without a precise control

of nodes position (for example, when dropped on battle field) and also

because, due to the low cost hardware used, nodes failure can be rather

common. For this reason sensor network should be able to provide a

graceful degradation as the number of nodes decrease. Furthermore, self

organization is necessary where mobile nodes move within different re-

gions and interact with a multitude of different other nodes.

Figure 2.5 presents the system architecture of a generic sensor node which,

typically, is made up of four basic building blocks.

• Sensing Unit.

• Computational Unit.

• Communication Unit.

• Power Unit.

Figure 2.5: Generic architecture of a sensor node

An example of wireless sensor node is presented in figure 2.6 [60].
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Figure 2.6: WiMoCA wireless sensor node

2.2.1 Computational Unit

Sensor nodes should collect data from the environment, process it and com-

municate. For this reason a central processing unit is needed. The CPU should

be able to manage the sensor node activity while meeting the energy consump-

tion, size and cost constraints. There are a large number of available microcon-

troller, microprocessors and FPGA that can be integrated within sensor nodes,

which allow a high degree of flexibility [150, 15].

Microcontrollers

Nowadays, microcontroller includes a sufficient amount of memory and

enough computational power to iterate with sensors and communication

devices such as short-range radio to compose a sensor node. Furthermore

they provide non-volatile memory for data storage and several other de-

vices such as: ADC, UART, SPI, counters and timers.

There are many types of microcontrollers, ranging from 4 to 32 bits, vary-

ing the number of timers, bits of ADC and power consumption. In par-

ticular they provide several different operating modes that allow to save

energy when the sensor node is idle.

FPGA

Field Programmable Gate Array (FPGA) presents some disadvantages

with respect to microcontrollers. The most important is related to power

consumption, which is not as low as microcontrollers one. However the

development of ultra low power FPGA can make these devices a suitable

solution for sensor node.
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2.2.2 Sensor and Actuator Unit

A sensor is a device that converts a physical phenomenon into an electrical

signal. On the other hand, an actuator convert an electrical signal into physical

phenomena. The first decade of the 21st century has been called as the ”Sensor

Decade” for the dramatic increase in sensor R&D over the past years [158].

Sensors are used to measure various physical properties sch as temperature,

force, pressure, flow, position, light intensity, acceleration, incident infrared

radiation, etc. [134].

Sensors may be classified in a number of ways. One useful way is to clas-

sify sensors either as active or passive. The former require an external source

of power, thus they consume power even when nothing is detected. The lat-

ter generate their electrical output signal without requiring external voltage or

current. A list of popular sensors is presented in table 2.1.

Most sensors require an output conditioning circuit to amplify and filter

their output in order to be processed by a microcontroller. Typical sensor

conditioning circuits include amplifier, filtering, level translation, impedance

transformation.

Property Sensor Active/Passive Output

Temperature
Thermocouple Passive Voltage

Silicon Active Voltage/Current
Thermistor Active Resistance

Force/Pressure
Strain Gage Active Resistance
Piezoelectric Passive Voltage

Accelerometer Accelerometer Active Capacitance

Infrared radiation Pyroelectric InfraRed Passive Voltage/Current

light intensity Photodiode Passive Current

Table 2.1: Popular sensors and their output.

2.2.3 Communication Unit

The wireless communication channel enables to transfer signals from sensors

to exterior world, and also an internal mechanism of communication to es-

tablish and maintain of WSN. This medium needs to be bidirectional, to be

energy-efficient, and have relatively slow date rate. Two basic techniques are

used: optical communication and radio frequency communication [151].

Optical communication

Two main technologies are available for optical communication: laser

and infrared.

Laser communication consumes less energy than RF over larger range,

is secure, since upon interception the signal is interrupted, and do not
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need antennas. However it requires line of sight and alignment between

transmitter and receiver and this is a major drawback since several appli-

cations presents randomly deployed nodes.

Also infrared is directional and requires line of sight between 2 communi-

cating nodes. It allows only short range (less than 10 meters), but do not

require antennas. An interesting solution is presented with the PushPin

project [91] in order to achieve omni-directional ifrared communication

on a single plane.

Radio frequency communication

Based on electromagnetic waves, one of the most important challenges

for this typology of communication is antenna design and size. However

RF communication present several advantages. It is easy to use, to inte-

grate and it is a well established technology. Power consumption of RF

communication is affected by type of modulation, data rate and trans-

mission power. An important aspect to consider when working with RF

transceiver is that idle state (radio active but not transmitting, nether re-

ceiving) drawn as much current as receive mode. Thus wireless protocols

must reduce as much as possible this waste of energy.

2.2.4 Power Unit

Power supply unit usually consists of a battery and a dc-dc converter. Thus,

the power needs of large wireless sensors network (maybe deployed in harsh

environment) is the current biggest impediment that keeps them from becom-

ing completely autonomous, forcing them to be either connected to an external

power source or have lifecycles that are curtailed by batteries. Furthermore,

in some application like gesture recognition, where sensor are embedded into

user garments, battery size is the most relevant factor when seeking unobtru-

siveness since battery technology tends to be a limiting factor in miniaturiza-

tion [116].

For this reason in the last years, energy harvesting has emerged as one al-

ternative to provide perpetual power solution to sensor network.

2.3 State of the art

In this section a we present a series of commercial and academic solutions of

wireless sensor nodes and their main features.
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2.3.1 Smart Dust

The goal of the Smart Dust project, founded by DARPA (Defense Advanced

Research Projects Agency), is to demonstrate that a complete sensor communi-

cation system can be integrated into a cubic millimeter package. This involves

both evolutionary and revolutionary advances in miniaturization, integration,

and energy management [22, 153]. A conceptual diagram of a Smart Dust mote

is presented in figure 2.7.

Figure 2.7: A diagram of the Smart Dust mote

Many sensors, including temperature, pressure, and acceleration sensors,

from MEMS and CMOS processes can be attached to a mote. In contrast to

typical computing systems, in an autonomous cubic-millimeter package com-

putation must focus on minimizing a given tasks energy consumption. This

is achieved through frequency and voltage scaling, since the computation re-

quirement for this motes are limited. Communication is possible by means

of two approaches: passive reflective systems between nodes and the base

stations and active steered laser systems between motes. The power system

consists either of a thick-film battery, or a solar cell with a charge-integrating

capacitor for periods of darkness, or both.

2.3.2 Intel mote

The Intel Mote is a new sensor node platform motivated by several design

goals: increased CPU performance for data compression as well as initial classi-

fication and analysis, improved radio bandwidth and reliability, and the usage

of commercial off-the-shelf components in order to maintain cost-effectiveness.

An important aspect of the platform design was to increase performance while
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preserve battery life. To satisfy these requirements, Intel chose a system on

chip from Zeevo Inc. including a CMOS Bluetooth radio and an ARM7TDMI

core operating at 12MHz and with 64KB SRAM and 512KB FLASH [112].

The Intel Mote is built on a 3× 3 cm circuit board that integrates the Zeevo

module, a surface-mount 2.4GHz antenna, various digital I/O options using

stackable connectors and a multi-color status LED (see figure 2.8).

Figure 2.8: The intel mote

Intel second generation of sensor nodes are the Intel Mote 2. This motes

are based on an Intel PXA270 XScale CPU with 32 MB of flash and 32 MB of

SDRAM resulting in high performance processing capabilities. The processor

integrates a DSP co processor, a security co processor and an expanded set

of I/O interfaces. The platform also provides an on-board 802.15.4 radio and

the option to add other wireless standards such as Bluetooth and 802.11b via

an SDIO interface. The complete platform is hosted on a single 36 × 48 mm

printed circuit board [87, 136](see figure 2.9).

Figure 2.9: The intel mote 2

2.3.3 Mica Mote

MICA Motes (see figure 2.10), developed by UC Berkeley research group on

wireless sensors, is a mote module used for research and development of low

power, wireless, sensor networks. The motes measures 3.16 × 6.35 cm and
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is created using off-the-shelf hardware, but the architecture and its capabili-

ties could be implemented in just a few square millimeters of custom silicon.

The main microcontroller is an Atmel ATMEGA128 running at 4MHz with

128kB of FLASH and 4kB of RAM. The radio module is based on an RF TR1000

transceiver operating at 916.5 MHz. Several sensor extension board can be con-

nected to the base board, such as: thermal temperature, barometric pressure,

magnetic fields, light, passive infrared, acceleration, vibration, and acoustics

[74].

Figure 2.10: The Mica mote

An evolution of the Mica motes are the Mica2 mote [40] and the the MICAz

[41] mote from Crossbow [42]. The latter, in particular, is a 2.4 GHz, IEEE

802.15.4/ZigBee, board used for low-power, wireless, sensor networks.

2.3.4 Tmote Sky

Tmote Sky [135] is an ultra low power wireless module for use in sensor net-

works, monitoring applications, and rapid application prototyping. On a sin-

gle 3, 22 × 6.55 cm board it integrates an ultra low power microcontrolloer

(MSP430 from TI), sensors (Humidity, temperature and light sensors), a Zig-

bee compliant radio (CC2420 from Chipcon), antenna and programming ca-

pabilities (see figure 2.11). Tmotesky offers a robust solution with hardware

protected external 1MB flash, in the event of a malfunctioning program, the

module loads a protected image from flash to restore proper operation.

Figure 2.11: The Tmote Sky mote
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2.3.5 BT Node

The BTnode (see figure 2.12) is an autonomous wireless sensor platform devel-

oped at ETH Zurich by the Computer Engineering and Networks Laboratory

(TIK) and the Research Group for Distributed Systems [56]. The mote is based

on a Bluetooth radio and a microcontroller. It serves as a demonstration plat-

form for research in mobile and ad-hoc connected networks (MANETs) and

distributed sensor networks. Currently the latest version is revision 3 which in-

cludes a core CPU Atmel ATmega128L with 4kByte EEPROM, 64kByte SRAM,

128kByte Flash and a dual radio device composed of a Zeevo ZV4002 Blue-

tooth radio and a low power Chipcon CC1000 radio operating at 868 MHz.

The BTnode rev3 is compatible to the old BTnode rev2 and the Berkeley Motes.

This twin device can operate both radios simultaneously or shut them down

independently when not in use.

Figure 2.12: The BTnode mote

2.3.6 System on chip

One of the main limitations of the platforms presented in the previous sections

is that they are built using commodity chips, which themselves are not specif-

ically designed for wireless sensor network applications. As a result, they suf-

fer several inefficiencies that lead to limited functional capabilities, high power

consumption, and limited operational lifetimes [59]. A breakthrough innova-

tion happened when the whole sensor node has been integrated on a single

chip. In the following sections we present the solutions proposed by 2 Original

Equipment Manufacturers (OEM).

Freescale solutions

With the mission of making the world a smarter place with leading embed-

ded semiconductor solutions for cars, mobile phones, networks and many

more, Freescale is a leading company that develops and produces electronic
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devices for many applications: automotive, computer networks, communica-

tions infrastructure, office buildings, factories, industrial equipment, tools, mo-

bile phones, home appliances and everyday consumer products. Freescale has

joined the Zigbee alliance in 2004 as a promoter and, since then it has develop

several solution for Zigbee.

In particular 2 system on chips have been developed for WSN.

MC1322x Platform in a Package (PiP)

The MC1322xV [67] is Freescales third-generation ZigBee platform which

incorporate a complete, low power, 2.4 GHz radio frequency transceiver,

32-bit ARM7 core based MCU, hardware acceleration for both the IEEE

802.15.4 MAC and AES security, and a full set of MCU peripherals into a

9.5×9.5mm Platform-in-Package (PiP). The MC13224V solution includes

a fully functional 32-bit TDMI ARM7 processor, 128KB FLASH, 96 KB

RAM and, 80K ROM containing boot code, all device drivers and fully

compliant IEEE 802.15.4 MAC. Typical power consumption is 21mA in

Rx mode and 29mA in Tx mode and drops to less than 1µA in stop

mode. This device can be used for wireless applications ranging from

simple proprietary point-to-point connectivity to complete ZigBee mesh

networking in order to provide a highly integrated, total solution, with

premier processing capabilities and very low power consumption.

MC1321x System in Package (SiP)

The MC1321x family is Freescales second-generation ZigBee platform

which incorporates an 8 bit MCU (MC9S08GT) with a Zigbee compliant

transceiver (MC1320x) into a single 9× 9mm package [67]. The MC13213

provides 60 K Flash memory and 4 K of RAM and can operate at up to

40MHz. It consumes 35mA in Tx mode and 42mA in Rx mode when the

MCU operates at 16MHz. By using the IEEE 802.15.4 Compliant MAC,

or BeeStack ZigBee Protocol Stack, the MC1321x solution can be used for

wireless applications from simple proprietary point-to-point connectivity

to a complete ZigBee mesh network.

Ember solutions

Ember’s mission is to be the leading provider of wireless sensor and control

network technologies that enable dramatic energy efficiency improvements for

businesses, homes, and the utilities that serve them. For this reason Ember

joined the Zigbee Alliance in 2003 as a promoter and developed several devices

and tools to develop Zigbee based applications [54].

Since 2005 ember produces the SN250, system on chip for Zigbee based

WSN. The EM250 combines a 2.4GHz IEEE 802.15.4 compliant radio transceiver
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with a 16-bit microprocessor with 128kB Flash and 5kB RAM in a 7×7mm pack-

age. Requiring 28mA in RX mode and 24 in TX mode and being able to drop

power consumption down to 1µA, it is optimized for designs requiring long

battery life and low external component count.



Chapter 3

Low Power Video Sensor

Nodes and Video Processing

Alghoritms

3.1 Overview

Due to the rapid evolution of semiconductor technology, on-die computing

capacity becomes exponentially smaller and cheaper. Small, low-power pro-

cessing elements as well as low-power radio interfaces and microfabricated

sensors have been recently exploited to build low-cost and low-power minia-

turized wireless sensor nodes [45, 61, 125]. These nodes can be deployed in a

target area to sense physical phenomena and communicate with other nodes

and base stations.

This work is dedicated to a particular case of such nodes: video sensors [88,

98]. This topic holds strong interest for a wide range of contexts such as mili-

tary, security, robotics and recently also consumer applications.

Vision sensors are extremely effective for medium- to long-range sensing

because vision provides rich information to human operators. However, im-

age sensors generate a huge amount of data, which must be heavily processed

before transmission due to the scarce bandwidth capability of radio interfaces.

In particular, it has been shown that in case of video-surveillance source-side

compression is mandatory due to limited bandwidth and delay constraints [49].

Moreover, there is an ample opportunity for performing higher-level pro-

cessing functions, such as object recognition, that has the potential to drasti-

cally reduce the required bandwidth (e.g. by transmitting compressed images

only when something relevant is detected) [94]. In contrast to sensors that
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Figure 3.1: MicrelEye node

just “watch” the world, todays research is aimed at developing intelligent de-

vices capable of comprehending the perceived information in order to inter-

pret it locally. Featuring such intelligence, these nodes would be able to cope

with such tasks as recognition of unattended bags in airports, persons carrying

potentially dangerous objects, etc., which normally require a human operator

[103, 86] . The energy cost of image processing must, however, be carefully

minimized.

The aforementioned energy and performance requirements emphasize the

potential benefits of exploiting hybrid architectures (i.e. microprocessor + FPGA

/DSP /ASIC) to enable efficient processing before transmission [123]. In this

case coprocessors must be coupled with software partitioning strategies for

specific applications. For example, complex but highly parallel motion estima-

tion algorithms commonly used by video coders can be replaced by efficient

hardware implementations running on FPGA [127, 97].

3.2 A low-power wireless video sensor node for dis-

tributed human detection

This chapter presents the design of a novel video sensor node architecture

based on a low-cost low-power FPGA + microcontroller system-on-chip (SoC).

The node features dynamic reconfiguration capabilities and supports low-power

local processing and wireless communication using various proprietary stan-

dards (e.g. Bluetooth). This new architecture addresses the bandwidth bottle-

neck by performing on-board image processing (e.g. pixel threshold analysis,

image recognition and classification, etc) and offers considerable flexibility in

exploring the trade-offs between processing and communication.
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The rest of the section is organized as follows. In the next subsection we

review related work. Section 3.2.2 presents the targeted video surveillance

scenario. The hardware architecture of the node is described in Section 3.2.4.

Video processing algorithm is presented in Section 3.2.10. In order to perform

object detection, we propose a new Support Vector Machine (Section 3.2.3) -

based (SVM-based) [147, 133] approximated algorithm suitable for embedded

systems implementation (called ERSVM). SVM-like algorithms are considered

here due to their good robustness and sparsity properties. The results obtained

on a specific case-study (people detection) are reported in Section 3.2.15. Tim-

ing analysis of different modes and energy requirements are discussed along

with obtained classification accuracies. Section 3.2.20 concludes the section.

3.2.1 Related work

A number of devices are available on the market for distributed video pro-

cessing. These devices contain DSPs [1, 2, 3], large FPGAs [4, 5, 6], dedicated

video processing engines [7, 8, 9, 10, 11, 12] and feature MIPS ratings from tens

to thousands of MIPS. The supported image resolutions range from QVGA to

2.0 Mpixels and the frame rate ranges from 15 fps to more than 200 fps. On

the other hand, the power consumption of these devices ranges from a few

Watts to tens of Watts. Hence, they typically require either connection to the

power grid, or massive rechargeable batteries and large solar panels for battery

recharging.

MicrelEye, the node proposed in this section, targets a different design

point respect to the ones above mentioned, in fact it targets a power budget

of 500mW instead of a few Watts or more, while still supporting 15 fps (pres-

ence/absence) person detection at QVGA (320× 240) image resolution. A sys-

tem designed within this power envelope could be operated in a continuous

fashion with a 5 × 5 × 3 cm Li-Polymer battery pack (3.6V, 5x850mAh) and

4× 5× 5 cm solar panels (1W in the sun). So MicrelEye is ideal for outdoor or

temporary application where the power supply is a critical constriction, in fact

there are many situations in which vast and inaccessible areas should be visu-

ally monitored to detect unusual events or to acquire environmental data over

long periods. Examples include natural environments such as forests, deserts,

and even planetary exploration as well as temporary market or stand. In this

cases MicrelEye thanks to low power and to on board wireless transceiver is a

optimal choice. On the other hand the high-end solutions based on commercial

video processors haven’t a so limited power budget and they are more pow-

erful processor and can use for a more computationally expensive as object

tracking or face recognition. So where is available a wired power and commu-
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nication and a complex algorithm is needed the best choice is a more powerful

and power expensive smart camera.as for example airport surveillance

Obviously, dealing with such a resource-constrained platform represents a

challenging task. Firstly, suitable classification methods must be designed in

order to fit the available resources; secondly, the designed classification meth-

ods must be implemented on the processing unit characterized by low power,

limited processing speed, low capacity memory.

In the field of wireless sensor networks, a few video sensor nodes have been

reported. All these nodes are based on commercial off-the shelf components

to meet the tight cost constraints typical of distributed sensing applications.

An early node prototype, Panoptes, is a camera device equipped with an Intel

StrongARM processor, a Logitech USB camera, and Linux OS [62]. Panoptes

features a StrongArm processor and a WiFi 802.11 network interface and con-

sumes more than 5W. Meerkats [104] is a device which maintains the same class

as Panoptes, but makes use of more recent components (e.g. XScale processor

replaces StrongARM).With respect to Panoptes and Panoptes, MicrelEye has a

much lower power consumption but on the other hand the MicrelEye exploit

less powerful devices. Cyclops is a much lower power device that features a

Xilinx CPLD and Atmel mocrocontroller unit (MCU) ATmega128L [124]. Even

though the authors do not quote an overall power consumption figure (e.g.

including DC/DC converter losses), it should be roughly 1/2 of that of Mi-

crelEye. However, it is a much lower-end device in that it achieves a frame

rate lower than 4 fps for basic (presence/absence) object detection task on a

small image (128 × 128). Similarly, the wireless node proposed by Ferrigno et

al. [65] is equipped with the Microchip PIC16LF877 microcontroller without

any HW acceleration and performs software image compression at low frame

rate (less than 1 fps). In respect to Cyclops and the last one node MicrelEye is

more computationally intelligent, capable to perform on board objects classifi-

cation locally as person detection with a good velocity, 15 fps, for a good locally

distributed base video surveillance, while this feature is not possible with the

node proposed by Ferrigno cause absence of on board intelligence and is too

slow with Cyclope. So this system are better for ultra low power applications.

3.2.2 Scenario

In this section we describe the scenario targeted by the detection framework

proposed below. Consider some area such as, for example, many-storied build-

ing, each entrance/exit being equipped with a powerful wired computer and

a video sensor (door-keeper station).

Intelligent wireless video nodes with moderate computational capacity and



3.2 A low-power wireless video sensor node for distributed human detection 35

self-contained power supply are installed throughout the building at key points

such as doors connecting different halls, elevators, etc. The door-keeper station

can collect images of people entering the building. Optionally it can have ac-

cess to database of suspicious persons in order to check whether the person

that enters into the building belongs to the group of suspicious ones or not.

What is important here is the fact that the door-keeper station can collect

or select the images of two classes of objects to be later distinguished by the

nodes. For example, these classes can be two different persons, or persons with

rucksack versus persons without it. In some other scenarios, like agricultural

holding, “person versus animal” classification can be required, etc.

After the images of two classes have been selected, the process of training

the corresponding classifier, optionally foregone by feature generation/selection/reduction

phase, is initiated by the door-keeper. As this training phase is done, the pa-

rameters describing the classifier can be sent to the base station, which in its

turn can distribute them among the nodes in order to perform classification

locally.

When motion or presence is detected by a node, the check-up of the motion

source is carried out. In case of positive outcome, the node transmits the image

of the motion source to the base station, where, for example, a human operator

can make final recognition and take some actions if needed.

In conclusion, it is worth mentioning that the roles of door-keeper station

and base station can be united.

3.2.3 Support Vector Machines

Support Vector Machines (SVM) is a supervised classifiers belonging to the

class of linear discriminant classifiers. Such classifiers build discriminant func-

tions that are a combination (either linear or not linear) of the input vectors’

components. Geometrically, a discriminant function defines an hyperplane

that separates two classes [53]. Several solution have been proposed to deal

also with non-separable data.

The original idea about SVM has been developed since 1979 by Vladimir

Vapnik [146, 148, 149]. Recently there has been an explosion in the number of

research papers on the topic of SVM. SVMs have been successfully applied to a

number of applications ranging from particle identification, face identification,

and text categorization to engine knock detection, bioinformatics, and database

marketing [21].

The simplest case deal with 2 classes linearly separable data. If we call xi

the vector with the features, and yi = ±1 the label of each input vector. A

discriminant function that is a linear combination of the components of x can
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be written as:
xi · w + b > +1 yi = 1

xi · w + b < −1 yi = −1
(3.1)

Where w is a weight vector that determines the orientation of the separating

hyperplane and b is a bias that indicate the distance from the origin of the

separating hyperplane see figure 3.2.

Figure 3.2: Best separating hyperplane in the separable case (feature space = 2)

It is clear that infinite planes can be defined to separate the two sets of sam-

ples. A smart choice is to select the one that presents higher margin. The hy-

perplane with higher margin can be found if ve consider the points where the

equality in equation 3.1 holds. Such points lay on 2 hyperplanes (H1, H2) that

share the same normal vector w and relative distance (margin) equal to 1
‖w‖ .

Thus we can find the optimal hyperplane (the one with maximum margin) by

minimizing ‖w‖2 subject to constraints 3.1.

Note how the only points needed to build the separating hyperplane are

the one that lay on H1 and H2. Such points are called support vectors.

In a more complex case, where we have to distinguish between more than

2 classes, 2 solutions are possible: build an hyperplane that separate each class

from all the other, build an hyperplane for each couple of classes (see figure

3.3).

Figure 3.3: Two options for building a set of separating hyperplanes in the multiple
class example
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This approach can be extended to handle non separable data. The idea is to

relax the constraints in equation 3.1, but only when necessary. In order to do it

we introduce a further cost called slack variables, ξi.

xi · w + b > +1− ξi yi = 1

xi · w + b < −1 + ξi yi = −1

ξi ≤ 0 ∀i

(3.2)

In equation 3.2 for an error to occur ξi must be greater than 1, hence
∑

ξi is

an upper bound of the training error. We can take this contribution into account

by changing the objective function to be minimized to ‖w‖2

2 + C(
∑

ξi)
k [32],

where C is a user defined constant. The higher is C the higher is the penalty

assigned to errors. A graphical representation of the use of slack variables is

presented in figure 3.4.

Figure 3.4: Separating hyperplanes in case of non separable data.

The concept above can be further extended to non linear hyperplanes. The

basic idea is to map the input feature vector into a space with much higher

dimensionality (n ≫ m) where they can be easily separated.

Φ : Rm → Rn (3.3)

It can be shown that in the training steps the vector of features appears

always as a product of vectors (xi · xj), thus if we are able to find a Kernel

function K(xi, xj) = Φ(xi) · Φ(xi) we will use only such functions and we do

not even need to know Φ.

Some example of kernel are presented in 3.4.
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K(x,y) =(x · y + 1)p

K(x,y) =e
‖x−y‖2

2σ2

K(x,y) = tanh(kx · y − δ)

(3.4)

3.2.4 Hardware architecture

The main objectives in MicrelEye’s hardware design can be summarized as

follows:

• Low power consumption (suitable for wireless sensor networks)

• Local ”intelligence” (on-board image processing capability)

• A reconfigurable architecture to achieve flexibility

• Wireless connectivity

In order to satisfy the above requirements we decided to use a SoC (Sys-

tem on Chip) which includes an FPGA and an MCU. This architecture is fully

programmable and supports FPGA acceleration of computationally demand-

ing image processing tasks, which would vastly exceed the MCU’s capabilities.

On the other hand, higher-end solutions based on commercial video processors

would not fit our limited power budget, while an ASIC solution would be way

too expensive in terms of non-recurring design costs and prototype fabrication.

ATMEL FPSLIC SoC [13] was chosen because it provides lower power con-

sumption than other FPGA and CPU solutions. It includes MCU, 40K gates

FPGA and SRAM on the same chip, thus reducing power consumption by

eliminating capacitive loading associated with inter-device PCB connections.

The FPSLIC architecture is optimal for our application target because it of-

fers the advantages of a hybrid processor+FPGA architecture without the high

power consumption and cost of higher-end system FPGAs. An external SRAM

has been added to provide necessary memory resources for computation.

In this work wireless communication is based on a Bluetooth transceiver.

Bluetooth was chosen because of its sufficiently high bandwidth and the ease to

interface MicrelEye with a host device (i.e. a personal computer, a PDA or any

other Bluetooth Serial Port Profile device). However, ZigBee radio interface is

also supported.

The whole system is designed to achieve low power consumption. Each

device provides a power saving mode to lower consumption when it is not

used.
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Figure 3.5: MicrelEye hardware architecture

The MCU is used to configure the image sensor at boot by setting its internal

registers. It also implements the last steps of the object recognition processing

flow.

The FPGA provides high-speed interface logic needed to capture images

from the sensor. It is used to manage the access to the SRAM memory and

for managing the synchronization with the continuous stream of data coming

from the image sensor. Furthermore, it is used to perform almost all image

processing needed for the detection operation. The block that manages inter-

facing between FPSLIC and the Bluetooth transceiver is also mapped on FPGA.

Finally the finite state machine (FSM) that governs the overall working of the

system runs on the FPGA as well.

The external SRAM is used to extend the limited amount of internal mem-

ory embedded on the FPSLIC chip and therefore to provide the memory for

image storage and subsequent image processing operations. As a result, the

embedded FPSLIC memory is not used for these operations and is all available

as shared memory for data exchange between FPGA and MCU.

3.2.5 CMOS image sensor

The sensing device is OV7640 from Omnivision, which supports 30 fps frame

rate in color mode and 60 fps in black-white (BW) mode. It operates at 2.5 V for

the internal core and 2.7V for external I/O. The power consumption is 40 mW

when operating at 30 fps and only 30 µW when in standby. It is a 640x480 capa-

ble device, but we chose to use a 320x240 (QVGA) resolution in order to reduce

the amount of data that need to be stored and processed. Though the sensor

can work with clock frequencies up to 24 MHz, we set its clock to 12 MHz in

order to satisfy the memory access time when saving a frame. BW mode has
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been used with 30 fps frame rate.

The device has several internal registers whose values can be set through

a two-wire SCCB (Serial Camera Control Bus). The registers control image

settings and provide the possibility to set a variety of output formats.

3.2.6 Processing core

The digital processing device is an FPSLIC produced by Atmel. It combines an

AT40K, a 40K gates FPGA and a high performance AVR 8-bit RISC microcon-

troller. A small cut of onboard SRAM is also available: 36KB are available, of

which a maximum of 16KB can be used as data memory with the remaining

20KB being reserved for MCU program storage. The data SRAM is accessible

to both MCU and FPGA.

Having MCU and FPGA on the same chip enables one to avoid off-chip

communications when exchanging data between the two devices in order to

reduce the overall power consumption. Furthermore, resources on 8-bit MCU

are not sufficient enough to interface with an image sensor that provides a

significant flow of data. For this reason, having also a small amount of pro-

grammable interface logic is the best choice. The core is clocked at 14.74 MHz

so it can achieve about 14 MIPS executing powerful instructions in a cycle. The

typical power consumption for MCU is about 2-3 mA per MHz.

3.2.7 External SRAM

In order to store both the frames acquired from the sensor and the processed

images, MicrelEye needs external memory. A static CMOS RAM (BS62LV8001

from BSI), which provides 1M x 8-bit, has been added to the system. The de-

vice has a wide Vcc operation voltage that ranges from 2.4V to 5.5V. Typical

standby current is 1.5 µA at 3 V/25 ◦C, with a maximum access time of 55 ns

at 3.0 V/85 ◦C (therefore two clock cycles are required at system speed of 24

MHz). Moreover, the chip has an automatic power down feature that signifi-

cantly reduces power consumption.

3.2.8 Bluetooth transceiver

Wireless capabilities of the node are provided by the integration of LMX9820A

Bluetooth transceiver, which was chosen for its low power consumption. This

device is a highly integrated radio, baseband controller and memory device.

It is a complete solution that includes hardware and firmware from antenna

and lower layers of the Bluetooth stack up to the application layers includ-

ing several connection profiles. Our application exploits the Serial Port Profile
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Figure 3.6: Video processing algorithm flow

that allows us to establish a link between the transceiver and a remote device

through a virtual serial port. LMX9820A features a small form factor, ideal for

our goals. Internal working is based on a processor and the Digital Smart Ra-

dio technology. The firmware supplied includes a Bluetooth stack v 1.1. Data

rates up to 704 kbps can be reached over RFComm. 230400 bps data rate has

been chosen for our design. In fact, even if the whole computation is done on-

board so that the amount of data to be transmitted is reduced to an minimum,

it may be needed to transmit a complete frame (e.g. to verify the scene when

an object has been recognized).

Power consumption for the transceiver with 2.7 V supply is only 2mA when

in idle mode and about 30 mA when a connection is established in continuous

transmit mode.

3.2.9 Power supply

The power supply section of the node includes a 4.28V battery and two DC/DC

converters. The first one is used to generate 2.7 V voltage reference for all

components except the image sensor core. The second converter generates the

2.5 V voltage reference for CMOS sensor core. Both components have been

chosen because of a low power consumption (max 225 µA at maximum output

current) and low drop-out voltage (about 120mV).

3.2.10 Video processing algorithm

The algorithm follows the block diagram in Figure 3.6. It has been split be-

tween FPGA and MCU to exploit parallelism thus reducing overall computa-

tion time. The first processing steps are done on the FPGA because of require-

ments in terms of speed and computational power to store and manipulate

images. In this section we describe in detail the algorithm steps as well as

hardware and software algorithm implementation.
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3.2.11 FPGA computation

The first hardware processing step performed on FPGA is frame acquisition

from the image sensor. Data coming from the sensor is in YUV 4:2:2 format:

for each pixel only two bytes are transmitted, one for the luminance component

and the other for solely one of the chrominance components (i.e. a typical out-

put bytes sequence is YUYVYUYV). Since we are interested in 8-bit grayscale

image, we use only ”Y” bytes. The hardware block that interfaces FPGA with

video sensor automatically discards chrominance components, sending only

luminance bytes to the memory store block.

Each frame is first stored in external memory, the subsequent operation be-

ing a pixel-by-pixel subtraction of a fixed background from the acquired frame

(the absolute value of the difference are computed). This fixed background

represents the reference scene and is acquired at boot. It can be updated at reg-

ular time intervals (e.g., to adapt to slow or permanent background changes).

The background can also be updated through an explicit command sent over

Bluetooth interface (e.g., for collaborative operation).

After background subtraction the region-of-interest (ROI), 128x64 subim-

age, is extracted starting from a position which can be changed on a frame-

by-frame basis. This variable subimage extraction phase allows tracking of

moving objects across different frames. Alternatively, the position of the sub-

frame can be set to a stationary value, for instance when monitoring a fixed

space region such as an entrance.

ROI is stored into on-chip memory in FPSLIC because the remaining pro-

cessing steps are performed by the microcontroller, which does not have a di-

rect access to external SRAM. The dual-RAM architecture is very useful be-

cause it enables parallelized computation between hardware and software. In

fact, while MCU is computing features and performing recognition on ROI

stored on internal memory, FPGA can acquire the next frame from CMOS sen-

sor and compute background subtraction because this operations only involves

external memory.

Once ROI of the subtracted image is transferred into internal memory, mi-

crocontroller computations start. This phase consists of the following two

steps: feature extraction and classification.

3.2.12 Feature extraction

In order to form the feature vector we calculated the average values of gray

for each column and row of ROI and normalized them to [0,1] range. Such

calculations normally require addition and division operations. However, the

dimensions of ROI have been chosen in such a way that both number of rows



3.2 A low-power wireless video sensor node for distributed human detection 43

and number of columns are powers of two. Thus, iterative division algorithm

can be replaced by a simple shifting operation. As a result, the dimensionality

of data to be fed to the classifier is reduced from 8192 elements of ROI to 192

elements of the feature vector, first 128 elements being rows averages followed

by the averages of 64 columns. Undoubtedly both smart ROI size and feature

extraction contribute significantly to resource sparing.

3.2.13 Classification algorithm (ERSVM)

As regards the classification step, a SVM-like hardware-oriented algorithm has

been developed and implemented.

Like Artificial Neural Networks (ANNs), SVMs [147, 133] are aimed at re-

covering unknown dependencies on the basis of available data. They have

been introduced by V. Vapnik and colleagues in 1990s, and have been primarily

applied to optical character recognition [38]. Proven to be efficient classifiers,

nowadays their area of application is spread from electricity load prediction

and biomedical engineering to face detection and face recognition. Some rea-

sons of such a success are reported below. First of all, SVMs are based on the

results of Statistical Learning Theory (Structural Risk Minimization principle, VC

dimension complexity measure) [147]. Secondly, SVMs reduce training phase

to solving Constrained Quadratic Optimization problem, which, in contrast to

ANNs training, does not suffer from local minima. In addition, it is worth

noticing that when applied to high-dimensional data, SVMs (in contrast to

other classifiers like NNs) do not suffer from curse of dimensionality. A de-

tailed description of SVM algorithm would require a considerable amount of

space and goes beyond the scope of this section. Below only key points of non-

linear SVM classifier are given. For a brief introduction we refer the readers

to [33].

Being a “learning from examples” technique, SVM is firstly trained on a set

of available data known as training set. Such a training phase is normally per-

formed offline and results in constructing the classification function, which is

then used online during the forward, or prediction phase. So, the computation-

ally expensive training phase can be performed by a powerful base station, and

the evaluated classification function is sent to the nodes, where the prediction

phase is run in order to classify the patterns under observation.

In fact, binary SVM is a linear classifier, i.e. patterns are discriminated by a

hyperplane, which is represented as a linear combination of a subgroup of the

training set patterns. However, linear algorithms are limited in their capabili-

ties since normally real-world data are not linearly separable. This obstacle is

overcome using the so-called kernel trick [133], which consists in implicit map-
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ping the patterns onto higher-dimensional space, where data is much more

likely to be separable by a hyperplane. Explicitly this leads to the following

form of classification function:

y(x) =

Nsv
∑

i=1

βiK(xi, x) + b (3.5)

where Nsv is the number of relevant patterns, Support Vectors xi from the train-

ing set, and K(u,v) is a kernel function. One of the most used, known, and

studied kernels is the so-called Gaussian kernel K(u,v) = e−γ‖xi−xj‖
2

.

As one can see, the complexity of the forward phase is proportional to Nsv

and depends on the complexity associated with calculating K(u,v). So, imple-

menting SVM classification on resource-limited platforms gives rise to the fol-

lowing two issues: reduction of Nsv and building hardware-oriented kernels.

Recently, both of them have been touched upon by scientific communities.

Firstly, various approaches have been proposed for the reduction of Nsv [93,

160, 161, 82]. In particular, in [160] SVs are considered as variables to be opti-

mized, and it has been demonstrated that it is enough to use much less “op-

timized” vectors in the classification function (3.5) in order to reach almost

the same accuracy. We used the modified version of the algorithm proposed

in [160]. As the result, the new classification function can be written as

y(x) =

Nev
∑

i=1

βiK(xev
i , x) + b (3.6)

where Nev is the number of optimized vectors xev
i called Expansion Vectors. In

our experiments xsvi has been reduced by the order of magnitude without any

significant loss of the classifier’s accuracy.

Secondly, we implemented a new kind of kernel function recently proposed

in [17], whose calculation implies only shifting and addition operations and

avoids more computationally-expensive multiplications. The kernel is as fol-

lows:

K(u,v) = 2−γ|xi−xj |1 . (3.7)

As compared to the Gaussian kernel, here the base of 2 is used instead of e.

Moreover, the distance is calculated using L1-norm rather than the Euclidean

one. Also, the parameter γ must be a power of two. All these modifications

lead to better use of microcontroller resources and lowering the overall com-

putational complexity. As reported in [17], using this kernel does not affect

SVM accuracy.

Once computation has been completed, the detection final result is a binary

information. Alternatively, the user can send a remote command to reconfigure
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Figure 3.7: Microcontroller implementation of ERSVM: architecture

the system to force it to send the whole image containing the recognized object

instead of the simple binary detection flag.

3.2.14 ERSVM: microcontroller implementation

Being designed for low-power applications, embedded AVR 8-bit RISC micro-

controller provides several low-power operating modes. Normally this means

small amount of available resources, which in turn implies that an accurate op-

timization of the code is required. Indeed, in FPSLIC there are 4-16 KB of Data

RAM and 16-32 KB (depending on the configuration) of Program RAM, while

the external memory can not be directly accessed. Therefore both program and

data have to meet this strong limitation. The Data RAM is both accessible from

FPGA side and AVR data memory bus, thus it can be used as an interface be-

tween the programmable logic and the microcontroller.

The macro blocks of the presented architecture are depicted in Fig. 3.7. The

estimation function of SVM is divided in two main blocks: the first one is used

to load all the SVM parameters in the memory. This process is executed at the

very beginning (power on) or whenever one wants to dynamically reconfigure

the device with a new set of machine parameters (e.g. to detect some other

kind of object).

The second function starts each time a new vector has to be classified. It

reads the previously generated feature vector and provides a classification.

For the sake of simplicity this function has been divided into three subparts:

norm1, kernel, and output register. In norm1 L1 norm is computed:
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norm1i =

d
∑

j=1

∣

∣xij − xev
ij

∣

∣

As regards the kernel unit, the following expression is computed through

a CORDIC-based algorithm:

kerneli = αi2
−γ·norm1i

In this way, as suggested in [17], the convergence of the algorithm is guaran-

teed.

The last module adds or subtracts all kerneli results and the bias according

to the related label yi.

The code has been written in C and then compiled using avr-gcc [14]. The

amount of memory required for instructions is 622 bytes. As regards the mem-

ory used for data, its amount (in bytes) depends on number of EVs (Nev) and

on number of features (d) as follows:

Mdata = d+ d ·Nev +Nev + 5 (3.8)

where the first term corresponds to the vector to be classified, the second term

is the memory needed to store EVs, then Nev bytes are used to store all the

αi, and the other bytes are used for bias, γ, and temporary variables such as

iterators.

The following approximate equation, which correlates the number of clock

cycles to perform a classification with d and Nev , has been empirically obtained

by averaging over different trials:

Nclk = c1 + c2 ·Nev + c3 · d ·Nev (3.9)

where on the average c1 = 120, c2 = 880, c3 = 88. Here the first term rep-

resents the time needed for function call/return and variables initialization.

The second term designates the clock cycles used upon running kernel and

output register blocks. Finally the third term concerns the time spent for com-

puting norm1.

3.2.15 Experimental results

We firstly focus on MicrelEye power and performance. Then, in Section 3.2.19

we describe the case study and report the obtained classification accuracies.

We compare three different implementations of the object recognition al-

gorithm. In the first implementation (serial implementation) hardware and
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Figure 3.8: Resources utilization on FPGA

software processing have been serialized. When subimage transfer is com-

pleted, FPGA sends an interrupt to MCU which signals that feature extrac-

tion can start and then halt, while waiting for MCU processing to end. In the

second implementation (parallelized implementation) hardware and software

processing have been parallelized so that hardware runs continuously. When

subimage transfer finishes, the FPGA sends an interrupt to MCU but instead

of halting it immediately starts acquiring next frame from CMOS sensor. In

the last implementation (optimized implementation) the same parallelized ap-

proach has been used together with a more optimized version of the memory

access mechanism. This has been obtained by reducing the complexity of the

memory access request-acknowledge protocol between central FSM and mem-

ory interface block. In the non-optimized version every access starts with a

request from FSM, which then halts waiting for an acknowledge signal. In

the optimized version of the protocol waiting has been eliminated. By doing

this, each memory access is one cycle shorter than before (clearly, this reduced

flexibility requires constant memory access time). In our system this translates

into a significant reduction of the whole processing time, and this is due to

the large number of memory access required to store the frame and compute

background subtraction.

For each implementation several indicators have been measured to evalu-

ate performance in terms of execution time, power consumption and energy

per frame.

Power consumption for each component has been measured and the results

are reported in Figure 3.9. As one can see, power consumption of the DC-DC

converter is small, peripheral components (i.e. CMOS sensor, SRAM and Blue-

tooth transceiver) have comparable consumption, while the most consuming

component, as expected, is the FPSLIC (the processing device). Resources oc-

cupation on FPGA has also been measured in order to evaluate the possibility
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Table 3.1: Current for serial implementation steps

Processing Step Current

Frame Acquisition 156 mA
Background Subtraction 168 mA
Subimage Transfer 167 mA
MCU computation 152 mA

to add new features to the system. Figure 3.8 demonstrates that even if we

are working on a resource constrained device (only 40K gate FPGA), we have

about 63% of the device resources free.

3.2.16 Serial implementation

The overall time needed to complete serial implementation execution is 174 ms

(sum of frame acquisition, background subtraction, subimage transfer, feature

extraction, and SVM computation times). In particular, frame acquisition takes

about 63 ms. This is because, with the non-optimized version of the memory

access protocol each memory access takes 4 cycles to complete.

Background subtraction is completed in 42 ms. Each pixel subtraction takes

8 cycles to load two pixels (one from the background and one from the current

frame), a cycle to compute the difference and 4 cycles to store the result. This

operation must be repeated 77280 times (76800 pixels of a 320x240 frame plus

two additional row control pixels added at the end of each line).

Subimage transfer takes 3.3 ms, and it is the shortest step involving 8192

pixels (i.e. pixel contained in the 128x64 window extracted from the complete

frame).

Finally, microcontroller processing takes 66 ms. It consists of the loops re-

quired in order to compute row and column mean values for the features and

to compute SVM result.

For each of these steps, power consumption has been measured, and the

corresponding results are reported in Table 3.1. The maximum object recogni-

tion frame rate reached with the abovementioned timings is about 5 fps. Tak-

ing into consideration the values reported in Table 3.1 and 2.7 V voltage of the

power supply, we obtain 74.14 mJ per frame energy dissipation and a average

power consumption of about 0.43W.

3.2.17 Parallelized implementation

Hardware and software execution can be overlapped, exploiting the presence

of two distinct processing devices in the system. By doing this, overall time

necessary for frame processing (i.e. hardware execution time) is reduced to
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Figure 3.9: Power consumption for each component

Table 3.2: Current for parallel implementation steps

Processing Step Current

Frame Acquisition 179 mA
Background Subtraction 192 mA
Subimage Transfer 184 mA

108 ms, which is the real benefit of this implementation. As regards power

consumption, it remains almost equal to that in serial implementation.

Because of the different processing overlaps, single step consumptions can-

not be precisely measured. For parallel implementation we measured con-

sumption within hardware processing steps, while taking into account that

MCU consumption is also included in this measure. The results are reported

in Table 3.2. Thus, even if power consumption is greater, about 0.5W, time re-

duction brings to a value of 54 mJ for the energy per frame dissipation. The

maximum object recognition frame rate achievable within this implementation

is about 9 fps.

Figure 3.10: Hardware and software timings comparison
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3.2.18 Optimized implementation

The optimized version of the parallelized implementation differs significantly

from the previous one. This is due to the memory access time reduction. This

change not only affects overall time by requiring 3 clock cycles per access in-

stead of 4, but also reduces the time needed for access (particularly to write

memory) and it is possible to increase the frame rate of images coming from

the sensor.

Therefore in this new implementation CMOS sensor has been configured

for a 30 fps output and frame acquisition time has been reduced to 33 ms.

Memory access time reduction also affects background subtraction: the time

needed for this operation with new protocol is about 32 ms. Finally, the time

needed to transfer subimage to internal memory is also reduced and is equal to

2.68 ms. The overall time is therefore 68 ms, leading to about 2.5 times speed-

up with respect to the first solution. Therefore, the object recognition frame

rate is 15 fps. In terms of energy efficiency, this new solution needs 35 mJ per

frame, thus providing 53% reduction of energy consumption with respect to

the first solution and a 37% with respect to the second one. While the power

consumption is about the same of second one.

3.2.19 Classification accuracy

Firstly, the presented classification algorithm has been extensively validated on

multiple well-known standard data sets. The obtained accuracy values were

close to to the ones obtained with standard SVM, whereas the number of sup-

port vectors has been reduces by an order of magnitude. More details can be

found in [83]. Below the results obtained for the case study of people detection

are presented.

The initial images have been acquired during 4 different sessions. The ses-

sions differ by place, time, and lighting conditions. For example, some places

simultaneously had two different kinds of illumination sources: artificial (day-

light lamps) and natural (windows). So the people passing behind provoked

soft shadows in the camera field of view, and partial cloudiness added a slight

brightness fluctuation. Therefore the resulting data sets are characterized by

sufficiently high level of heterogeneity and soundness. As the result, 219 pos-

itive samples have been generated. Negative objects (like boxes, hall trees,

etc.) were less numerous. In order to create balanced data, additional negative

samples have been generated. To this aim poorly scaled or centered images of

people have been used (e.g. people located too close or too far). In total, 438

samples have been obtained. 140 randomly chosen ones have been preserved

for test set, whereas the rest 298 ones have been used for training.
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Table 3.3: Accuracy for person detection problem, Gaussian kernel (floating point) and
hardware-friendly kernel (HFK, floating point and fixed point). l denotes the
number of training samples. Fixed point: data width is 16 bit, fractional part
width is 8 bit

Gaussian HFK HFK,
Algorithm kernel fixed point

SVM 91.4% 94.3% 95.7%
ERSVM, Nev/l = 2% 94.3% 94.3% 93.6%
ERSVM, Nev/l = 4% 92.9% 94.3% 96.4%

Five-fold cross validation has been used for model selection. The summary

of results obtained for both kernels is presented in Table 3.3. Besides, ERSVM

accuracy remained almost the same when Nev has been decreased (this time

from 11 to 5), and this accuracy is compatible with that provided by classic

SVM, whereas Nev is much lower than Nsv : 5 versus 145 for the Gaussian ker-

nel, and 5 versus 221 for the hardware-friendly kernel.

In order to estimate minimal number of SVs that can be delivered by stan-

dard SVM, an alternative model selection has been also performed: 5-fold cross

validation has been used, but the number of SVs (instead of accuracy) has

been considered as the criterion. The best models were characterized by 46

SVs (Gaussian kernel) and 87 SVs (hardware-friendly kernel), both providing

92.9% accuracy. Summing up, even in this case the number of SVs is 9-17 times

higher than that provided by ERSVM, whereas the accuracy is lower.

The most frequently misclassified samples for both SVM and ERSVM cases

are presented in Fig. 3.11. As regards false negatives (two leftmost images), the

first sample corresponds to the situation when the contrast between the per-

son’s clothes and the background is low. Background subtraction procedure

led to a very ”dark” sample, which has been misclassified. The second image

represents a tricky situation: a person with extended arms, when fitting the en-

tire person led to non-standard scale. As regards false positives (two rightmost

images), the first image has been considered as a negative sample because of

poor person centering and additional object presence (at the left). The object in

the second image is a hall tree with a pullover and a backpack put on, which is

undoubtedly a tricky and controversial negative objects, and SVM could per-

mit itself to be mistaken in this case. So, the major part of these samples can be

considered as outliers.

3.2.20 Conclusions

In this work we presented MicrelEye, a low-power and low-cost, yet computa-

tionally intelligent video wireless sensor node. The device architecture is based
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Figure 3.11: The most frequently misclassified samples. Two leftmost: false negative
misclassifications, two rightmost: false positive misclassifications

Table 3.4: Total Power Consumption

Implementation Power Consumption

Sequential 430 mW
Parallel 500 mA
Optimized 500 mA

on low-cost off-the-shelf “FPGA + microcontroller” system-on-chip from At-

mel. It performs object classification locally on QVGA BW images at 15 fps

with an average power of 0.5W, thus achieving 35 mJ per frame power con-

sumption. This performance and power figures are already compatible with

battery powered operation and can be further improved by aggressive power

management, eventually moving to a low-voltage reconfigurable SoC architec-

ture.

As regards classification, we proposed and implemented a new SVM-like

hardware-oriented algorithm. As compared to standard SVM, the implemen-

tation of recently proposed hardware-friendly kernel along with significant re-

duction of the number of support vectors have led to at least one order of mag-

nitude reduction of classification phase complexity with typical classification

time being several milliseconds.

The case study considered in this work is people detection. The heteroge-

neous data sets have been generated. The obtained results, along with possi-

bility to perform classification at as high rates as 15 fps with a average power

of 500 mW, suggest that the present technology allows for the design of simple

intelligent video nodes capable of performing local classification tasks, thus

incrementing the notion of invisible and pervasive computing.
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3.3 Abandoned/removed object detection

for low power video surveillance systems

The demand for reliable surveillance systems is increasing, especially for mass

transit and public areas such as airports, railway and subway stations, sport

and concert event venues. For this reason, video surveillance systems that,

through the analysis of video sequences, perform automatic detection of security-

related events or aid human personnel at monitoring a place are gaining in-

creasing interest. A key aspect for current video surveillance systems is the

capability of reliably detecting common events such as abandoned and re-

moved object within the scene. Typical scenarios are, e.g., detection of unat-

tended packages in a railway station or in an airport [95, 92], and detection of

stolen objects in a museum [64]. Nevertheless many proposals have recently

addressed this specific task [130, 64, 95, 92, 24, 121, 141, 144, 140, 23, 129, 26],

none of them are based on an embedded and unobtrusive architecture able to

be long-term operating, to execute surveillance algorithms completely locally

and to rise alarms wirelessly only when suspicious events happen.

We aim at filling this gap by proposing a multi-modal video surveillance

system, characterized by low power consumption and low cost, and based on

a CMOS video sensor and a Pyroelectric InfraRed (PIR) sensor. The use of the

PIR sensor can notably reduce the overall power consumption of the system

in absence of events, as shown in [102], where an embedded video system

has been designed to detect structural effectively and rapidly changes in the

monitored scene by jointly exploiting camera and PIR. The objective of this

work is to propose a more advanced video analysis framework that, based on

similar low-cost and low-power architecture, is able to detect events such as

abandoned or removed objects.

Recently, applications which exploit Low-power Video Wireless Networks

(LP-VWN) consisting of networks of low-cost video sensors connected by low-

rate wireless channels and constrained by low-power budget, have gained in-

creasing attention. LP-VWNs, in fact, represent a strategic enabling technology

for a number of applications in surveillance, environmental monitoring, enter-

tainment and health care. Designing a distributed video system within the

tight power budget typical of mobile devices and wireless sensor networks is

a very challenging task. Typical applications are in the domain of object detec-

tion or tracking.

When an event is detected, if the full image is not essential for the particular

application, the system may transmit only some very limited amount of infor-

mation, such as number of objects, size, position, trajectory, etc. saving a large

amount of energy in wireless transmission and extending the autonomy of the
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batteries. Clearly, nothing should be done from the point of view of data trans-

mission and power consumption if the targeted object is not detected because

simple raw cameras are exploited. In this case, the detection of abandoned

or removed objects can be performed only after the collection of continuous

video streams transmitted to cumbersome power-unconstrained base station.

Of course this approach would be extremely energy and bandwidth inefficient,

difficult to port on stand-alone mobile embedded systems and ultimately not

scalable in a network. Smart wireless video networks architectures are pos-

sible only if they are based on devices with an adequate trade-off between

power consumption and processing capabilities, thus the key challenges we

addressed are the development of energy-efficient algorithms and low-power

architectures which can support vision-related tasks.

Research on low-cost video node design has been very active in the last

years and a number of node prototypes have been designed [47, 37, 90, 166, 63,

66, 68]. We can classify these approaches in three categories: (i) low-cost nodes

with wired interface (e.g., the node designed by Corely et al. at CMU [37]), (ii)

wireless nodes with significant power consumption (e.g., the Panoptes nodes

designed by Feng et al. [63]), (iii) application specific single ultra-low power

single chip solution (e.g., the chip designed by Zhang et al. [166]). Nodes in

the first category obviously do not satisfy the basic requirement of being wire-

less, while nodes in the second category consume roughly 10x more power

than typical nodes in a wireless sensor networks. Finally, the single-chip solu-

tion have extremely low power consumption, but it is not programmable nor

configurable in field. One important common point in current video wireless

nodes of the first and second category is that the digital signal processing sub-

system is the main power bottleneck. This is due to the fact that the high data

rate of CMOS image sensor imposes the selection of fast processors and mem-

ories with high power consumption. Hence, the main open challenge in this

area is to synergically develop algorithms and architectures for energy-efficient

image processing without giving up the flexibility of in-field configuration.

Energy autonomy and efficiency of the implemented algorithms are un-

doubtedly the primary design challenges to be addressed on systems subject

to low computational capabilities and memory constraints. Both issues are ad-

dressed by the integration of multi-modal information using additional ultra-

low power PIR sensors which increases energy efficiency because the camera

is triggered only when necessary and, in the same time, reduce considerably

the average power consumption of the wireless video node because camera is

in shutdown state in absence of events.

Other work presented a combination of video sensor with other low-cost

and low-level sensors, which are used mainly for triggering the camera at the
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right time and not to promote a reduction of the system energy requirements.

A distributed network of motes equipped with PIR, acoustic and magnetic sen-

sors with adjustable sensitivity have been proposed in [72], stealthiness and ef-

fectiveness in a military surveillance applications. A network of IR sensors and

cameras are used also in [126] to balance privacy and security in surveillance

applications.

We present a video sensor architecture designed for low-power and low-

cost video surveillance centered around a STR912F from ST-Microelectronics

equipped with an ARM966E 16/32-bit RISC, 96 MHz operating frequency, 96

KB SRAM and several interfaces. We implemented an algorithm for detecting

abandoned and removed objects within the scene which is optimized for low-

power architectures constrained by limited computational capabilities. The

main constraints when developing algorithms for such architectures character-

ized by small available memory is efficiency and timing performance. Further-

more optimizations have to be implemented taking into account that a floating-

point unit is unavailable. However, experimental results demonstrate the qual-

ity of our multi-modal ARM-based approach. Moreover we analyze different

configurations and characterize the system in terms of runtime execution and

power consumption, comparing the results of efficiency with floating point im-

plementations on personal computers.

The remainder of the section is organized as follows. In the next section

we present the system architecture focusing on the constraints of energy bud-

get, memory and computational capability offered by an ARM-based solution.

The developed system and the description of the several power modes used

by the application is also discussed.Section 3.3.3 depicts the algorithm imple-

mented for the detection of abandoned/removed objects. In particular we

discuss constraints and requirements of implementation on limited platform

when optimizations are necessary. Experimental measurements and achieved

performance are the focus of Section 3.3.4. Finally, Section 3.3.5 draws conclu-

sions.

3.3.1 System architecture

The developed smart camera is showed in Figure 3.13 and it consists of three

modules: an multi-sensor layer (MSL) equipped with an image sensor and a

pyroelectric sensor, a processing unit(PU) based on ARM9 architecture, and a

wireless communication unit (WCU), as shown in Figure 3.12.

The MSL includes a small PCB with 1 megapixel color CMOS imager VS6624.It

supports up to 15 fps SXGA with progressive scan and up to 30 fps with VGA

format with a typical power consumption of 120mW when active, while it
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Figure 3.12: Video sensor node architecture.

Figure 3.13: Developed prototype of the video sensor node.
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decreases down to 23mW in stand-by mode. The system exploits PIR Sen-

sor typically used in surveillance to provide simple, but reliable, digital pres-

ence/absence signals. The video sensor and the PIR sensor are built to cover

the same field of view, in this way the PIR sensor can be aware of the the move-

ments in the scene triggering the detection algorithm. The MSL is directly fitted

into a PU board which is employed for digital image processing using single-

cycle DSP instructions with configurable and flexible power management con-

trol. For example the typical current consumption for this microcontroller is

about 1, 7mA/MHz in RUN mode and only a few mA in SLEEP mode which

is an attracting feature for wireless sensor networks design where the power

consumption is a major constraint. Finally wireless communication is guar-

anteed by a Bluetooth transceiver adopted because of the bandwidth and the

easy interface to host devices (i.e. PC, PDA). However, ZigBee radio interface

is also supported.

The main goal of our system is to perform automatic detection of events

such as the presence of abandoned and/or removed objects in the scene using

non unobtrusive embedded platforms. Other specifications concern the need

for low power consumption, the use of a PIR sensor to reduce the presence of

false positives, and the possibility of sending an alarm to a remote host wire-

lessly. To satisfy the requirements, the information coming from the PIR sensor

is used to ”wake up” the system in occurrence of specific events, as well as to

evaluate when to start the video analysis stage. In fact, if the PIR sensor does

not identify any event, the camera is switched off and the microcontroller is set

to SLEEP mode minimizing the power consumption.

Figure 3.14 shows the flow chart of the application. When triggered by an

event from the PIR sensor, the system switches to RUN mode the ARM core,

which runs full speed and all clocks are on, while the camera is kept off until

movements in the field of view disappear. Then the camera is activated and

takes a picture of the environment which is processed by the detection appli-

cation, described in Section 3.3.3, then the system switches back into SLEEP

mode where the power consumption decreases up to 90% since only the PIR

module operates as reported in next sections. This way the number of false

positives is minimized beacuse the system processes the frames only in ab-

sence of moving objects in the monitored area enhancing robustness and au-

tonomy. Finally, when an object is recognized as abandoned or removed, the

system sends wirelessly alarms containing the number of objects, the regions

of interest, size... and the full picture if requested by the host. In power charac-

terization presented in this work, we considered a Bluetooth interface and we

decided to send the full content of the image in order to estimate the autonomy

of the platform.
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Figure 3.14: Flow chart of the application.

3.3.2 Pyroelectric InfraRed (PIR) Sensor Nodes

Pyroelectric InfraRed (PIR) sensors are devices able to transduce changes in

their temperature, due to incident infrared radiation, into an electric signal. A

pyroelectric element behaves like a polarized planar capacitor whose charge

varies according to ∆Q = A · p ·∆T (where A is the area of the sensing element

and p is the material specific pyroelectric coefficient). Typical PIR sensors em-

bed 2 elements placed in series with opposite polarization. As a consequence

when a body moves in front of the sensor 2 peaks, one positive and one nega-

tive, are produced (see figure 3.15).

PIR sensors are used in conjunction with an array of Fresnel lenses used to

shape the sensor Field of View.

Our prototype PIR sensor board has been designed using Commercial Off-

the-Shelf (COTS) components. The detector is Murata IRA E710 [111] and the

signal conditioning circuit is a double stage amplifier, which achieves a to-

tal gain of about 1400 and operates as a band-pass filter between 0.57Hz and

11Hz. This is a suitable range for detecting moving people [118]. Furthermore,

it biases the output voltage at Vdd

2 when no movements are detected. The con-

ditioning circuit board includes also a low power voltage regulator used to

decouple power supply lines from the transceiver ones and a comparator used

to generate a wake up signal when the board is in a low power state. The sen-
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Figure 3.15: PIR schematics and output when passages in the two directions (left to
right and right to left) occur.

sor and its conditioning circuits are hosted in the package of a PIR presence

detector, IS-215T [75].

3.3.3 The video analysis algorithm

This section describes the video analysis algorithm which is applied every time

the intrusion detection block based on the PIR sensor detects absence of move-

ments in the monitored scene and captures a new image from the scene acti-

vating the camera. By means of the PIR sensor, we can assume that all visible

changes appearing in the scene in absence of movements have to be considered

possible instances of removed or abandoned objects. Hence, a first stage of the

algorithm consists in a background subtraction approach aimed at detecting

visible changes in the scene background. Then, a labeling algorithm is imple-

mented to enumerate and locate the areas of the image, or Regions-of-Interest

(ROIs), where a stationary change of the background has taken place. Finally, a

blob analysis stage provides the classification of each ROI between abandoned

and removed object. All stages of the proposed video analysis algorithm have

to be particularly memory efficient and need to avoid the use of floating point

instructions given their implementation on the embedded architecture. Fig-

ure 3.16 shows the flow diagram of the algorithm.

Background subtraction To detect stationary visible changes in the scene, we

adopt a typical background subtraction approach, that is we compare the current

frame captured from the camera, F , with a model of the background of the

scene, B, computed at initialization time. To do this, each pixel at coordinates
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Figure 3.16: The flow diagram of the proposed change detection algorithm.

(x, y) in the current frame is compared with its homologous in the background

model by means of a function aimed at measuring the similarity between the

two image points.

To deal with illumination changes and photometric distortions that typ-

ically occur in real working conditions and may easily be misinterpreted as

structural changes, we compute the Normalized Cross-Correlation (NCC) [145],

which is invariant to linear photometric transformations between correspond-

ing windows on F and B, on a squared neighborhood (i.e. a window of radius

r) centered on the pixel under evaluation:

NCC(x, y) =
F (x, y) ◦B(x, y)

‖ F (x, y) ‖2 · ‖ B(x, y) ‖2
(3.10)

where the term at numerator is the dot product between B(x, y) and F (x, y),

and the two terms at denominator represent the L2 norms of F (x, y) and B(x, y),

respectively.

Then, the NCC function is thresholded yielding a binary image, referred

to as change mask, C, which highlights those parts of the current frame which

have been subject to a change with respect to the background model:

C(x, y) =

{

changed, NCC(x, y) < τNCC

unchanged, otherwise
(3.11)

The use of the NCC is motivated by the fact that the system ought to be

robust toward these kinds of distortions which can typically be found since the

background model is computed once at initialization. On the other side, the

implementation of the NCC function is particularly simple compared to more

advanced approaches, and this aspect is particularly relevant since the algo-

rithm has to be implemented on an ARM-based embedded architecture using

a fixed point approach to maximize performance. In particular, to perform the

square root and division operations of ( 3.10) a fixed-point square root function
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for ARM and a integer division have been utilized.

A typical effect of the use of the NCC over a window is that the segmen-

tation of the foreground in the change mask becomes less accurate along the

borders of the objects. In particular, there’s a typical fattening effect, that is the

object appears bigger since its borders are increased by a number of pixels pro-

portional to r. To deal with this effect, a simple binary morphology operator of

erosion is applied on the change mask as many times as the chosen value of r.

Labeling After the background subtraction stage, a labeling algorithm is ap-

plied to group together connected components of the change mask. In this case,

we use the algorithm proposed in [48], which is an efficient algorithm with low

memory requirements for the labeling of binary images. In particular, the algo-

rithm only requires two image scans and it has a memory complexity of O(1).

Once the labeling is performed, another image scan is deployed to compute the

ROI coordinate of each connected component. Then a simple area-closing ap-

proach is performed to eliminate spurious components that might have been

generated by noise.

Blob analysis In the last stage of the algorithm, each valid ROI is classified

either as an abandoned or removed object. The key idea beyond the adopted

classification algorithm is that if an object is abandoned on the background,

in F the number of edges along the borders of the corresponding connected

component should increase compared to B. Conversely, if an object is removed

from the background model, then F should display much less edges along the

borders of the area where the object was initially located compared to B.

Hence, the approach relies on the estimation of the number of edges that

appear on F along the borders of the connected component we want to classify.

First of all, we detect all contour points within the ROI as those points that

belong to the foreground and have at least one of their 8-connected neighbors

set as background. On each contour point of coordinate (x, y), we compute

the horizontal and vertical derivatives Dx, Dy of point F (x, y) by means of the

Sobel operator Then, we approximate the magnitude of the gradient in (x, y)

as:

|G(x, y)| = max (|Dx(x, y)|, |Dy(x, y)|) (3.12)

A threshold is used to classify the contour point as being or not in presence

of an edge in F . Then, the number of contour points associated with edges,

NCE is computed and thresholded:

Class(x, y) =

{

removed, NCE < τC

abandoned, otherwise
(3.13)
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to yield final classification of the ROI.

3.3.4 Experimental results

The above-mentioned application was fully implemented in ARM9 firmware.

In the following we will focus on video sensor node power and performance.

Since for this work we used only the internal 96KB SRAM, the camera is set

to grab a 160x120 pixel (QCIF) gray scale image in YCbCr 4:0:0 format. The

amount of byte for one image in this format is only 19200bytes, since each

pixel uses only a byte. The abandoned/remove algorithm needs at least 3 im-

ages to work properly. In fact we need a stored background to achieve the

NCC background subtraction and two images to store the change mask and

the eroded image. For this reason, the total amount of RAM to stored all the

required images grows up 76800bytes.

Power consumption is reported in Table 3.5a) while Table 3.5b) depicts also

the processing time necessary to discriminate if objects are abandoned or re-

moved from the environment. The time to elaborate the blob analysis depends

on the number and size of ROIs. So it will be zero if the system does not de-

tect any blob and about 100 ms for three ROIs 16x16. These results show how

the power consumed by the whole system in SLEEP mode is less than 10% of

power requirements of a fully active node. So without the information of a low-

cost PIR sensors, the systems would waste the 90% of its energy, in the worst

case. Moreover through PIR sensor information, the platform is able to switch

on the camera as late as possible, reducing the camera power consumption

again of around 20%. Moreover, the power consumption of wireless commu-

nication is minimized because of higher accuracy of the detection reduces the

number of false positive.

To perform a quantitative evaluation of the abandoned/removed object

detection algorithm, a dataset of images was acquired under real conditions

within two sessions which differ by location and illumination conditions. A

total of 50 images has been collected, each one showing different objects and

simulating the frame collected by the system when the camera is switched on.

In particular, each image includes a number of abandoned/removed objects

that varies between one and three. Different tests with different backgrounds,

chosen among the images of the dataset, have been performed, for a total of

141 cases of abandoned/removed objects tested (70 abandoned objects, 71 re-

moved objects). Figure 3.17 shows a subset of the dataset.

In terms of change detection, our algorithm detected a total of 162 objects.

In particular, it was always able to detect the presence of objects placed in the

scene, with a percentage of false negatives (missed detections) equal to 0%.
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(a) Power consumption of the video sensor node.

Component Power
[mW ]

ARM9 mode (RUN / IDLE / SLEEP) 450 / 49,5 / 15

Video sensor mode (ON / IDLE) 165 / 23

TX/RX mode (ACTIVE / IDLE) 98 / 10

PIR sensor 1,5

Video Node

Active with/without video sensor 626,5 / 484,5

Alarms Transmission 572,5

SLEEP, only PIR is Active 51

(b) Energy requirement of each task.

Task Energy Time
[mJ ] [ms]

Frame Acquisition 58,5 93,5

NCC Background
Subtraction 455,8 940

Labeling 29 60

Blob Analysis 0 - 48,6 0 - 95

Image 160x120 Transmission 601,1 1050

Table 3.5: Energy requirements of the low-power video system.

Figure 3.17: Subset of the dataset used for the experimental evaluation.
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Instead, there’s a number of false positives (false alarms) equal to 13% of the

total number of detected objects.

To evaluate the fixed point approach we used the same datasets of im-

ages to compare the changed mask obtained from a NCC implementation on

a floating-point Pentium4 architecture and on the presented fixed-point ARM-

based solution. The difference concerns only 1% of the number of the pixels

pointed out from the NCC implementation on a PC. However, after the mor-

phology operator of erosion, the accuracy of ROI detection on fixed-point ARM

is not degraded with respect to the implementation on a Pentium4.

As for the performance reported by the classification algorithm, it yielded a

number of misclassified objects equal to 7.8%. In particular, the percentage of

correct detection for the removed object class is 98.6%, while the percentage of

correct detection for the abandoned object class is 85.7%.

3.3.5 Conclusions

The interest in low-cost and small size video surveillance systems able to col-

laborate in networks of detection systems has been increasing over the last

years. In this section we have presented a multi-modal video sensor node de-

signed for low-power and low-cost video surveillance which is able to detect

objects abandoned or removed in the environment. The system is multi-modal

and a PIR sensor assists a CMOS video camera to increase the efficiency of

the algorithm and to extend the life time of the system. We addressed differ-

ent configurations and characterized the system in terms of runtime execution,

power consumption and efficiency.



Chapter 4

Multimodal surveillance

4.1 Overview

Video surveillance and other security-related applications have gained many

credits due to the terroristic threats of the last years. Several industrial and

academic projects have recently started to increase the accuracy of (semi) au-

tomatic surveillance systems. In addition, the abatement of hardware costs

allows the deployment of thousands of cameras for surveillance purposes at a

reasonable cost.

The ever-increasing demand of security and the low cost of cameras con-

tributed to the diffusion of the research in distributed multi-camera surveil-

lance systems. Multiple cameras enable the surveillance of wider areas and the

exploitation of redundant information (provided by the different viewpoints)

might solve classical limitations of single-camera systems, such as occlusions.

Moreover energy efficiency for wireless smart camera networks is one of

the major efforts in the distributed monitoring and surveillance community.

If video cameras are equipped with circuits that receive and convert energy

from regenerative sources such as solar cells, an effective power management

becomes essential for the design of small sized and perpetually powered de-

vices, which can be deployed unattended for years and feature smart vision

applications.

Pyroelectric InfraRed (PIR) detectors take advantage of pyroelectricity, which

is the electrical response of a polar, dielectric material to a change in its temper-

ature, to detect a body at thermal disequilibrium with the surrounding envi-

ronment. These sensors are typically used in commercial applications to detect

presence of individuals to trigger alarms and can be used to have a multimodal

surveillance system.

PIR sensors can be integrated within a video surveillance network also to
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increase the lifetime of Wireless Video Sensor Nodes (WVSN). Low-cost video

surveillance systems based on wireless sensor networks will hit the market

with the promise of flexibility, quickly deployment and providing accurate

real-time visual data. However, many technical problems have to be still over-

come for a widespread diffusion of such a technology. For instance, even if

research continues to develop higher energy-density batteries, capacity con-

straints limit the lifespan of common wireless sensor nodes. For this reason,

energy-aware design and maximization of the sensor network lifetime become

the major key research challenges for WVSN and their applications.

To enhance vision sensor networks, two successful strategies can be adopted:

1. exploiting alternative power sources which increase the autonomy of the

nodes considerably;

2. exploring multi-modal sensor integration which can save on-board power

consumption

Recently, several researchers have proposed alternative power sources and

Energy Scavenging techniques to extract and convert power from the surround-

ing environment and to replenish energy buffers like batteries or supercapac-

itors. In particular, photovoltaic (PV) harvesters are the most promising to

enable perpetual operation of WSNs [28, 139]. Unfortunately if the power con-

sumption of a device can be estimated, the power generated by a PV module

changes non-linearly under varying temperature or solar irradiance and tech-

niques which automatically tune the operating point of the solar cell should be

considered to provide the maximum output power.

From the sensor capability point of view, CMOS imagers are generally high-

power consuming devices and accuracy of the information increases the re-

quired power. Therefore they should be activated very carefully in order to

save energy and their functions could be replaced by low-power low-level vi-

sion devices during the idle intervals, when the density of the events or the

energy stored is low. Being able to detect variations of incident infrared ra-

diation, due to movement of bodies not at thermal equilibrium compared the

environment, the use of a network of PIR may lead to the extraction of more

complex data such as object direction of movements, speed, distance from sen-

sor and other characteristics [137]. The combination of several vision devices

with heterogeneous features allows the development of multimodal surveil-

lance applications with efficient energy policies. In fact, video would still pro-

vide high-level information when required, and PIR sensors would assure a

continuous monitoring service triggering the CMOS camera when an event is

detected.
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In this chapter we present the design, implementation and characteriza-

tion of a self powered video sensor node, able to detect people and supported

by PIR sensors to enhance energy efficiency [101, 100]. Moreover we show a

simple but optimal power management tailored for multi-modal video sensor

nodes and based on model predictive controller (MPC)[99]. Finally we pro-

pose a cooperative policy to manage power consumption of a WVN powered

by solar scavengers and supported by a network of PIR sensors that perform a

coarse classification of movements.

4.2 A solar-powered video sensor node for energy

efficient multimodal surveillance

Building an energy efficient wireless vision network for monitoring and surveil-

lance is one of the major efforts in the sensor network community. In this sec-

tion we describe an application for people detection, which exploits both net-

work architecture flexibility and on-board processing capabilities. The appli-

cation, based on support vector machine engine (SVM), is able to detect events

(e.g. when the environment is changed due to the movement of subject in the

scene), and distinguishes the presence of people or human bodies rather than

objects or animals in the field of view before generating alarms or sending in-

formation through the wireless link. We focus on the design, implementation

and characterization of a self-powered video sensor node, able to detect people

and supported by PIR sensors to enhance energy efficiency.

The video sensor node is designed to support flexibility in terms of distri-

bution of the processing tasks across the network and is powered by a solar

scavenger using a 70 cm2 photovoltaic panel. Keeping the nodes constantly

active is clearly impracticable, because of the power consumption of compo-

nents such as imager, transceiver and microprocessor. Therefore the proposed

architecture follows a hardware/software hierarchical design with three layers

which can be separately activated, as showed in figure 4.1.

The figure considers a hypothetical surveillance scenario where events oc-

cupy the 4% of the time and only 20% of them results in an alarm to report. The

objective is to wake up the video acquisition only in presence of people and to

reduce the number of not-interesting events in order to guarantee longer life-

time while the system is recharged by a fluctuating and unpredictable energy

source. Once the video is waken-up, the node locally classifies input images

and wirelessly sends to a base station only relevant ones, thus saving energy

by reducing the amount of transmitted data.

We developed a novel method to modulate the status of each layer by ex-
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Figure 4.1: Hierarchical design of the video sensor node, with three different layers for
the alert system.

ploiting a PIR based wake-up circuit and local image processing. The sensitiv-

ity of the trigger signal from the PIR detector is adjusted dynamically accord-

ing to the available energy in the reservoirs, the average contrast of the images

taken from the scene and the probability of seeing a person in the camera FOV.

4.2.1 Related work

Recent years witness a rapid growing of research and development of surveil-

lance and multimodal applications using multiple sensors, including video

and other kind of sensors. The aim of such systems is both to overcome some

points of failure of a particular kind of sensor and to balance different parame-

ters fixed by the application among which power consumption plays a central

role.

Power management is a critical issue when dealing with wireless sensor

networks and it is well known that batteries does not scale as much as elec-

tronic device [116] thus posing a severe limitation in the achievable unobtru-

siveness. Also the cost of batteries often exceeds the one of nodes. At last,

in some application, it may be not possible to reach the sensors (i.e. due to

dangerous environment, like battlefields) in order to replace batteries.

In [70] the authors attempt to formalize and analyze the trade-off between

power conservation and quality of surveillance in target tracking sensor net-

works. In [165] a dynamic sensor selection is applied to efficiently use avail-

able sensor energy and extend overall network life. Another attempt to extend

network life by capitalizing on low power states of its node can be found in

[19]. In this work the amount of data collected by the system is tuned in or-

der to minimize power consumption while achieving high accuracy. Finally

in [72], a distribute network of motes equipped with acoustic and magnetic

sensors have been deployed in order to achieve longevity, adjustable sensitiv-
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ity, stealthiness and effectiveness in a military surveillance application. Since

in this paper the authors aim at achieving longevity through sensor selection

techniques, they use a high number of low power nodes with low resolution

(magnetic field detector) and network life extension is obtained by reducing

number of active sensors when any activity is detected and successively wake

them up. In contrast we have a unique sensor, which provides much more in-

formation and we modulate its activity through the use of another low power

sensor.

In contrast to the work presented in this session none of the cited works

attempted to reduce the node power consumption except using low power

hardware, and they either do not consider a stochastic source of energy as the

one provided by an energy scavenging system.

4.2.2 System architecture

The hardware architecture of the solar-powered video sensor is displayed in

section 3.3.1 and consists of several modules: the solar harvesting unit, the

vision board which hosts both the CMOS imager and the PIR sensor with a

common area under monitoring, the wireless module, the microprocessor and

other peripherals.

Computational unit and CMOS imager

The core of the video node consists of an STR91xF microprocessor from STMi-

croelectronics with an ARM966E 16/32-bit RISC architecture, 96 MHz operat-

ing frequency, 96 KB SRAM and several peripheral interfaces that can be dis-

abled if not used. The microprocessor provides the high-speed logic interface

necessary to capture images from the camera and processing data for people

detection or object classification, it also offers configurable and flexible power

management control through operative frequency scaling.

The vision module includes a SXGA CMOS color digital camera targeted

for mobile applications featuring low-size and low-power consumption and a

Pyroelectric Infrared Detectors, which detection area is overlapped with the

field of view of the video sensor.

Wireless communication capabilities have been supported through a suit-

able interface for both Zigbee and Bluetooth compliant transceiver. The mod-

ule has a stackable design as the sensor node, hence the wireless layer is easy to

replace. We implement hardware and software interfaces in order to host dif-

ferent wireless standard used in wireless sensor network community such as

Zigbee and Bluetooth or proprietary protocols. All the performance and mea-

surements discussed in this section are referred to the version with Bluetooth
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capability.

Figure 3.13 shows the developed prototype, the whole system is designed

with low power consumption as the primary goal. The system is powered by

an energy management module which hosts solar harvesting capability. The

solar cell used to replenish the energy reservoirs has a nominal output power

of 500mW under full outdoor irradiance and a harvesting circuit extracts the

maximum power available from the solar cell following the optimal operating

point at the minimum energy cost.

4.2.3 Energy harvesting unit

Energy harvesting is a low cost-effective operation, in term of energy har-

nessed, device size and efficiency. One of the primary issues to address is min-

imizing the power consumed by the harvester itself. Less power will require

the circuit, faster will be the growth of the harvested energy in the accumulator.

The I-V characteristic of a PV module is given by the following equation:

Io = Ig − Isat

{

e
q

AKT
(Vo+IoRs) − 1

}

(4.1)

where Ig is the generated current, Isat is the reverse saturation current, q is the

electronic charge, A is a dimensional factor, K is the Boltzmann constant, T the

temperature in degree Kelvin, Rs the series resistance of the cell. The internal

shunt resistance is neglected in this model. The plot of the PV module adopted

in our solar harvester is shown in figure 4.2(a).

One key design challenge is how to optimize the efficiency of solar en-

ergy collection under non stationary light conditions and therefore maximum

power point tracking techniques (MPPT) aim to automatically find the oper-

ating point (VPV , IPV ) at which a PV module should operate to provide the

maximum output power following it when light intensity changes. There are

several methods and algorithms to track the MPP [55], we adopt one based

on Fractional Open-Circuit Voltage (FOCV) which is the most used and cost-

effective in medium and small-scale solar harvester. This method exploits the

nearly linear proportional relationship between the operating voltage at MPP

(VMPP ) of the main photovoltaic module and the open circuit voltage of a small

additional PV array used as pilot-cell (Vpilot cell) under the same light L and

temperature T conditions (4.2).

VMPP (T,L) ≈ KMPP · Vpilot cell (T,L) (4.2)

We adopt the CPC1824 from Clare, Inc. [107] for the pilot-cell. It is a mono-
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Figure 4.2: Characteristic of the photovoltaic module.
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lithic photovoltaic module of only 9 mm2, and it works as irradiance sensor

providing feedback information to the harvester. The pilot cell follows almost

linearly the behavior of the main PV module during light variations. As shown

in figure 4.2(b), the ratio between the operating voltage at the MPP of the main

module and Vpilot cell is almost constant under several solar intensities.
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Figure 4.3: Conceptual schematic of solar harvester: buck power converter and MPP
tracker.

Figure 4.3 depicts the schematic of the solar scavenging circuit for the video

sensor node. By measuring the pilot-cell voltage the circuit estimates the MPP

of the main module generating a lower and an upper threshold around its

value. Then an ultra-low power comparator continuously checks the oper-

ating point of the main cell to the thresholds adjusting dynamically the duty

cycle and the frequency of the control signal which drives the power converter

circuit. Solar energy harvesters usually exploit buck configuration because the

voltage level of the energy reservoirs is lower than the nominal operating volt-

age of the solar cell. In our implementations we exploit supercapacitors as

energy storage devices, since they overcome many drawbacks of batteries that

are critical in WSN applications and for long-live maintenance-free embedded

systems. The harvester achieves an efficiency of the 80% and depending on so-

lar irradiation can provide a maximum output power of about 500mW while

the power consumed by energy harvesting process is less than 1mW .
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4.2.4 PIR Model analysis

Figure 4.4 shows the PIR output as a function of distance.

Figure 4.4: Output of a PIR sensor in case of passages at different distances.

From this plot, we can see how signal duration increases with distance

while signal amplitude is at a maximum for passages in the middle position.

Signal duration increase is due to the FoV conic shape. In fact, a PIR is

mostly sensitive to entrances and exits from its FoV and these two instants are

more distant when a person walks far from the sensors.

Output peak-to-peak amplitude decreases with distance because far bodies

result in a smaller change in the incident radiation. Amplitude reduction for

closer passages is due to the interaction of the two sensitive elements. In figure

4.5 we highlighted each elements’ FoV. In proximity of the sensor the two FoVs

are overlapped, thus compensating each other.

In case of isolated people, each passage can be easily segmented using two

thresholds above and below V dd
2 . The starting of the passage is detected when

one of the threshold is broken, the end when the PIR output remains between

the threshold for a certain time T . According to results from previous work of

our group [164], we placed the thresholds at V dd
2 ± 300mV and T = 1sec.

When a passage is detected, each sensor extracts its duration and the PIR

output amplitude. These two features are wirelessly sent to a central unit in or-

der to evaluate the distance of passage, thus reducing the power consumption

related to wireless communication and the bandwidth required. The central

unit calculates the ratio between homogeneous features (duration and ampli-
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Figure 4.5: Schematic of a typical C.O.T.S. PIR. Two sensing elements are used in series
with opposite polarization, the output is pre-amplified through a built in
MOS transistor. Highlighted with shading, the FoV of each sensing element.
Notice how, in proximity of the device, the two FoVs are overlapped.

tude). Therefore each passage results in a two-elements vector of features (rel-

ative duration and relative amplitude) with whom we estimate the position of

the person ((see figure 4.6)).

Figure 4.6: Task allocation for distance detection.

In figure 4.7, we plotted such vectors for a subset of samples from passages

at different distances. As can be seen from this figure, it is not possible to define

well separated region of the space for each distance of passage, so we decided
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to rely on a classifier in order to estimate it.

Figure 4.7: Mapping of input vector in the two dimensional feature space. The three
classes are located into partially overlapped areas of the space.

4.2.5 PIR sensors wake-up unit

As in the other works presented in this section (see sections 3.3.2) we used

a commercial PIR detector that includes 2 sensitive elements placed in series

with opposite polarization. The details of this device have been presented ear-

lier in section 3.3.2, a schematic of this device is presented in figure 3.15.

In particular in this work we are interested in the amplitude of the output

signal which, outside the area where the FoV of the 2 elements is overlapped

(see figure 4.5), is inversely proportional to the distance from the detector as

can be seen in figure 4.8.

The sensor output signal is conditioned as in 3.3.2

In addition to the amplifier we designed a trigger with adjustable thresh-

old. The schematic of the circuit is presented in figure 4.9. Here the series of

R1, R2 (where R1=R2) and the digital potentiometer produces the 2 thresholds

which are symmetrical to Vdd

2 and their reciprocal distance increases with the

resistance of the digital potentiometer. When the amplified output breaks one

threshold it generate an interrupt for the Video node core. Thus, by on-line

programming the potentiometer we can adjust the sensitivity of the wake-up

signal.
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Figure 4.8: Output of a PIR sensor when a person moves at different distances

Figure 4.9: Schematics for trigger generation using PIR output signal.

4.2.6 System analisys

4.2.7 Sensor node characterization

The ARM microprocessor STR91xFoffers configurable and flexible power man-

agement control which allows dynamic power consumption reduction. It sup-

ports three global power control modes: RUN, IDLE and SLEEP. SLEEP mode

is used by the video sensor node when no events are registered in the filed of

view. When triggered by an event from the PIR sensor, the system switches into
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Component Power [mW ]

ARM9 (RUN mode) 450
ARM9 (IDLE mode) 49,5

ARM9 (SLEEP mode) 15
Video sensor (ON mode) 165

Video sensor (IDLE mode) 23
TX/RX module (ACTIVE mode) 98

TX/RX module (IDLE mode) 10
PIR sensor 1,5

Solar Harvester 0,98

Video Node (Active) 650
Video Node (Sleep) 50

Table 4.1: Power consumption of the video sensor node.

RUN mode starting the detection application until the PIR trigger events or re-

gions of interest are discovered in the current image, then the system switches

back into SLEEP mode where the power consumption decreases up to 90%

since only the PIR module operates. Power consumptions are reported in table

4.1.

4.2.8 Human detection application

Figure 4.10 presents the main steps of the implemented algorithm for human

body detection. After triggered by the PIR sensor, all the system wakes up

and the CMOS imager acquires and sends a frame to the microprocessor with

YCbCr 4:0:0, grayscale, 8-bit format. In order to isolate a 128 × 64 region-of-

interest (ROI) of the event we initially perform a background subtraction using

the three-frame algorithm sub-image [80]. A pixel-by-pixel subtraction is per-

formed using the first and second frame stored in the memory, then another

pixel-by-pixel subtraction uses the second and third frame. Finally the two re-

sults pass in a logical AND to have a difference-image that allows to detect and

track moving objects across different frames.

This new image is stored in SRAM and we use it to search and isolate region

of interests (ROI) in a 128 × 64 sub-image. To obtain the vector of feature for

the following classification step, we calculate the average values of gray for

each column and row in ROI (which is equivalent to project the ROI image

onto horizontal and vertical axes). Thus the size of the input vector for the

classifier is reduced from 8192 to 192 elements. Undoubtedly both smart ROI

size and efficient feature extraction algorithm contribute significantly to save

energy and time processing.

Regarding the classification function, a highly tuned SVM-like hardware

oriented algorithm has been implemented for the STR91xF [85]. A detailed de-
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Figure 4.10: Flow chart of the human detection application.
Task Energy [mJ ] time [ms]

Three Frame Difference 440 720
ROI Extraction 12,2 20

Feature Extraction 9,6 16
SVM 21,21 35

Table 4.2: Energy requirement

scription of this algorithm and its performance in people recognition can be

found in [84]. Being a ”learning from examples” technique, SVM [148, 133] it

is firstly trained on a set of available data known as training set. Such a com-

putationally expensive training phase is performed off-line by a powerful base

station, then the classification function are loaded to the nodes to classify the

patterns under observation.

Thanks to background subtraction the training set is independent from the

node position and orientation, thus all SVM can be trained at once using the

same training set.

The output of the classification can be simply binary report of the presence

of the human body in the field of view, or an image of the region of interest

with the detected subject. This result can be sent via wireless to a controller

unit.

4.2.9 Autonomy of the system

We considered a typical application scenario of an outdoor surveillance. As-

suming a rate of events as presented at the beginning of this section we esti-

mated the capacity necessary to perform a complete and effective service dur-

ing the night using the energy harvested and saved during the day. Exper-

imental results using different size supercapacitors without solar harvesting

capabilities, show that the system can achieve autonomy of several hours (fig-

ure 4.11). Increasing the capacity up to 500F it is possible to operate for about
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8 hours, till the next morning.
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Figure 4.11: Autonomy of the system varying the capacity of the reservoirs without en-
vironmental harvested energy

4.2.10 Dynamic adjustment of the detection area

In a distributed vision network several nodes cooperate for an efficient surveil-

lance service and the area under monitoring is covered by multiple nodes de-

ployed in the environment and the whose projections of camera field of views

are usually overlapped. For this reason it is possible to develop distributed

policies for smart dynamic coverage of the region under surveillance. For in-

stance when a node is lacking of energy it could reduce its detection area and

consequently its activity while other cooperative nodes compensate augment-

ing PIR sensitivity for longer distance events. In such a cooperative vision, a

dynamic adjustment of the detection area on each single video is necessary.

Figure 4.12 shows the amplitude of the PIR signal as a function of the dis-

tance of the detected object. This result highlights how is possible to modulate

the detection area by adjusting the thresholds used to generate a wake-up sig-

nal for the video node.

If we assume a uniform probability that a person moves in a certain point

of the area of interest, by increasing the threshold we reduce the sensitivity of

the trigger and the area covered by the PIR and consequently the probability

to activate the camera.

For this reason the threshold (4.3) is regulated as a function of the following

parameters:

• contrast of the image, C;

• the energy available in the supercapacitor, ECAP ;
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Figure 4.12: Amplitude of the PIR Output signal as function of the distance of the object.

• the probability of seeing a person moving in a certain point at a certain

time, p.

Vthreshold = α
p

ECAP

+ βC (4.3)

Images with low contrast C may result in a loss of accuracy of the SVM

algorithm. Thus, it is better to suspend the vision algorithm saving energy

when the contrast of the image is lower than a defined value C < Cth. Concur-

rently, when the contrast of the images is low, the threshold of the PIR could

be reduced in order to extend the area under monitoring and sending alarms

relying only on PIR detection. The value of the threshold should be inversely

proportional to the energy available in the supercapacitor and directly propor-

tional to the probability density of a people moving in the field of view. In fact

when more energy is available a higher number of detection can be tolerated.

On the other hand, if the probability of detecting a person is higher, lack of

energy in the accumulator forces a higher reduction of the field of view of the

PIR if we want to extend the lifetime.

A simulation to verify the performance of the proposed dynamic thresh-

old is depicted in figure 4.13(a). The energy harnessed from the solar cell is

powering the sensor node and replenishing the energy storage ECAP with the

exceeding energy. When the energy in the storage is enough to sustain the de-

sired quality of service, the detection area covered by PIR sensor increases (up

to 4m in our scenario). Similarly, as soon as the available energy decreases due

to a reduction of the harvesting supplying, the threshold switches diminishing

the area covered by PIR and consequently the rate of activation of the cam-
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era. The simulation covers about five hours of operation of the sensor node,

and the threshold function is approximated using discrete values. It worth to

notice that simulations are performed using energy storage devices with lim-

ited capacitance of 33F and a constant contrast C of the images higher than

the threshold Cth. To prove the effectiveness of the dynamic adjustment of the

monitored area, figure 4.13(b) illustrates the behavior of the node with differ-

ent configurations. The plot compares the energy stored in the supercapacitor

in the same operating condition of figure 4.13(a) with the situation when the

threshold of PIR sensor is fixed with a constant size of the area under monitor-

ing of 3m (dashed plot). Using a fixed threshold the trade-off between energy

and sensitivity is off-line design parameter and wide detection areas increase

the probability to be out of service because of the empty energy accumulator,

as happens in the figure during the interval IOFF [111, 168]. The plot shows

also the performance of the video node without solar harvester and when no

environmental energy is stored in the accumulator. Obviously in this case the

video node has a limited lifetime as for all battery-operated systems.

4.2.11 Conclusion

An integrated self-powered video sensor node for energy efficient surveillance

has been proposed. The adoption of a solar harvester for supplying the node

leads to several benefits such as the possibility to extend the lifetime of the vi-

sion sensor network. However since the amount of energy provided by the

photovoltaic module cannot be predicted the status of the system must be dy-

namically adjusted. A multimodal platform equipped with different family of

vision sensor with heterogeneous features of power consumption and resolu-

tion permits to adopt very effective energy management techniques reducing

considerably the activation of the camera, the microprocessor and other power

consuming devices. In the proposed system the sensitivity of a low power PIR

based wake-up circuit is adjusted dynamically according to the available en-

ergy on-board, to the contrast and the probability of moving subjects enter the

video node field of view. With such a technique, under a hypothetical surveil-

lance scenario, we estimated that using a 500F super capacitor the wireless

video node is able to operate for about 8 hours during nighttime.

4.3 Adaptive Power Control for Solar Harvesting Mul-

timodal Wireless Smart Camera

The interest on distributed, smart and reliable surveillance systems based on

Wireless Sensor Networks (WSN) has recently gained momentum.Mass tran-
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Figure 4.13: Simulation results of the energy efficiency using a dynamic PIR sensitivity
threshold.

sit, public areas, sport and event venues are the places where flexible and low-

cost smart cameras could be the breakthrough for the next decade and could

gain large part of the security and surveillance marketplace, provided that they

have the capability of operating immediately after the deployment without

running out of energy for years. The importance of deploying cameras in un-

obtrusive locations, forces the installation in areas which are hard-to-wire or

where there is no pre-established infrastructure. Therefore, the autonomy of

the system becomes one of the primary design constraints.

For this reason, in contrast to cameras that just watch the world or under-

stand what happens around by performing some simple algorithms locally, we

aim at developing intelligent devices that are capable of taking care of them-

selves and that perform actions autonomously which serve to extend the sys-

tem lifetime. At the same time, the cooperating devices should guarantee ade-



4.3 Adaptive Power Control for Solar Harvesting Multimodal Wireless Smart Camera 83

quate accuracy and quality of service of the surveillance application.

Developing energy efficient wireless video nodes and aggressive power

management policies are essential for achieving a long-term operation of a dis-

tributed system of standalone cameras. Recently, video nodes have been also

enhanced with energy harvesting circuits, able to receive and convert energy

from regenerative sources in the environment using transducers such as photo-

voltaic modules [101, 58]. A smooth optimum control of the power consump-

tion is a striking concept for reducing the size of the solar cell, for coping with

the unpredictable profile of the energy intake and developing smart cameras

which can be deployed unattended for years.

We present an optimal feedback controller for power management and per-

formance optimization tailored for multi-modal video surveillance applica-

tions. The objective is to achieve continuous operation, dynamically tuning op-

eration modes according to the status of the system and the amount of energy

in the storage, while maximizing the monitoring performance. The controller

adapts the size of the detection area, to achieve a the maximum autonomy and

lifetime of the system and to guarantee, at the same time, an adequate accuracy

of the detection application fixed by the end-user. So the main contribution of

our work is an approach for dynamic control, which allows tradeoffs between

energy-efficiency and system performance by adjusting the sensitivity of the

system.

The application used as case study is a human and body image recogni-

tion and classification. Computation intensive tasks for video elaboration are

triggered by Pyroelectric Infrared Sensors (PIR) and employ state-of-the-art

Support Vector Machine (SVM) technology, highly tuned for low power con-

sumption [86]. The combination of several vision devices with heterogeneous

features allows the development of multimodal surveillance applications with

efficient energy policies. In fact, video would still provide high-level informa-

tion when required, and PIR sensors would assure a continuous monitoring

service triggering the CMOS camera when an important event is detected.

Our dynamic management problem has been formulated as a discrete-time

optimal control problem and has been solved using the theory and computa-

tional tools developed in the field of model-predictive control (MPC) [18, 96].

The optimization process is by taking into account the power consumption of

the node during the execution of the application, the amount of the energy col-

lected by the solar cell, the predicted amount of energy intake estimated in the

near future, the accuracy requirements and the size of the area under monitor-

ing.

The remainder of the section is organized as follows. Related work is re-

viewed in the next section. Section 4.3.2 describes the current implementation
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of our video system for wireless sensor networks and illustrates the design

of the Model Predictive Controller. Section 4.3.5 shows the performance of a

system with the proposed controller, highlighting the difference with previous

heuristic approaches. Finally Section 4.3.10 concludes the section.

4.3.1 Related Work

Research on low-cost video nodes constrained by low-power budgets has been

very active in the last years and a number of node prototypes have been pre-

sented [47, 90, 166, 63, 66, 68] confirming that video wireless networks repre-

sent a strategic enabling technology for a number of applications in surveil-

lance, environmental monitoring, entertainment and health care.

Low-cost video systems with wired interfaces [37] represent the first gener-

ation of stand-alone nodes. To satisfy the basic requirement of being wireless,

prototypes such as the Panoptes-class [63] consumes roughly ten times more

power than typical nodes in a wireless sensor networks. Rather than sending

the raw sensor data through the network for processing, a recent approach [35]

focused on mote platform to perform computer vision problems through in-

network processing of sensory data. This allows the node to processes the data

and sends only key data elements through the network to a central server, sav-

ing the energy for large image transmission. In this work we push towards the

power reduction adapting the behavior of the node to the available energy.

Distributed networks of motes equipped with video sensors have been pro-

posed in [73] to guarantee stealthiness in military surveillance applications. A

network of IR sensors and cameras is presented also in [126] to balance pri-

vacy and security in surveillance applications. One important issue in current

video wireless nodes is that the digital signal processing subsystem is the main

consumer of energy. This is due to the fact that the high data rate of CMOS

image sensor imposes the selection of fast processors and memories with high

power consumption. Hence, the main open challenge in this area is to syner-

getically develop algorithms and architectures for energy-efficient image pro-

cessing without giving up the flexibility of in-field configuration within tight

power budgets typical for WSNs.

Power management is a critical issue when dealing with surveillance sys-

tems which could be long-term operating and unobtrusive. The size of bat-

teries often exceeds that of nodes themselves. Thus accurate evaluation of

the trade-off between power conservation and quality of surveillance in tar-

get tracking sensor networks has been presented in [71]. A first step towards

power consumption reduction has been introduced by multi-modal systems

with the combination of vision devices with heterogeneous features. Video
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Figure 4.14: Video sensor node architecture.

sensors still provide high-level information when required, while low-cost and

low-power sensors such as PIR sensors assure a continuous monitoring service.

The design objective of multi-modal surveillance systems is to overcome some

points of failure of a particular kind of sensor as well as to balance various

parameters such as power consumption vs. surveillance quality. For instance,

PIR sensor capabilities of detecting both presence and direction of movement

have been exploited in [43] to enhance a video surveillance system, while [31]

presents a camera for remote surveillance which is equipped with a PIR sen-

sor. The PIR provides triggers for a light during night time that illuminates

the scene in presence of moving animals. Finally, another attempt to minimize

power consumption while guaranteeing accuracy is presented in [19] where

network lifetime is extended by capitalizing on low power states of multi-

modal video nodes.

4.3.2 System Architecture

We optimized the performance of the system using a vision application which

performs human and people detection in camera snapshots and a video node

similar to [101]. The sensor node is based on a wireless smart camera for sensor

networks which is equipped with an ARM9 core.

Figure 4.14 shows the hardware architecture of the smart camera. It is

a multilayer system with reconfigurable features. The multi-sensor layer is

equipped with a SXGA CMOS color digital camera and a PIR sensor, the pro-

cessing unit is based on a STR912F ARM9 microprocessor from STMicroelec-

tronics, operating at 96Mhz and with 96KB SRAM on die, while wireless com-

munication has been implemented supporting both Zigbee and Bluetooth pro-
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Figure 4.15: Amplitude of the PIR Output signal as function of the distance of the object.

tocols. The system is equipped with an energy harvester unit to provide power

supply. The regenerative source is the solar energy collected by a small pho-

tovoltaic module. The scavenging circuit adjusts dynamically the operating

point of the photovoltaic panel (Vpanel, Ipanel) to obtain a fixed output power

under steady environmental conditions (e.g. light irradiance, temperature).

If the collected power is the maximum achievable, such a technique is called

Maximum Power Point Tracking (MPPT).

Our power management approach is general, as it could be adopted to sys-

tems where the available regenerative energy from the environment can be

predicted to some extent. To guarantee long lifetime we dynamically adjust

the threshold level which forces the pyroelectric sensor to trigger an event and

to wake-up the camera. In a monitored area several video nodes cooperate and

a dynamic reduction of the detection area of a video node can be compensated

by others, if necessary.

Figure 4.15 shows the amplitude of the PIR signal as a function of the dis-

tance of the detected object. This result highlights how it is possible to modu-

late the detection area by adjusting the thresholds used to generate a wake-up

signal for the video node. If we assume a uniform probability that a person

moves in a certain point of the area of interest, y increasing the threshold, we

reduce the sensitivity of the trigger and as a result, we also reduce the area cov-

ered by the PIR device and the probability to activate the camera, as illustrated

in Figure 4.16. The PIR threshold is directly regulated by the Model Predictive

Controller which determines a viable trade-off between the quality of service

of the monitoring application in terms of area covered by the people detection

algorithm, and the long-term autonomy of the surveillance system.

Figure 4.17 shows the model of the proposed approach. High level Model

Predictive Control (MPC) [18] is exploited to adjust the sensitivity of the pyro-

electric infrared sensor. MPC aims at improving the performance of the system

using predicted values of input or output variables under specified restrictions
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of some features. We assume that the harvester provides to the video node an

amount energy Ei(t) within the unit time interval starting at time t. This en-

ergy is stored in a storage device, e.g. a battery. In the same interval the system

can use energy from the battery. The available energy at time interval t is de-

noted as Ea(t). The energy intake form the harvester Ei(t) is also used by the

predictor module for delivering estimations Es(k, t) of the future expected en-

ergy according to the length of the selected horizon. The energy consumption

of video processing in the unit time interval starting at t depends on the sensi-

tivity threshold of PIR trigger Ps(t) in the same interval. In this condition, the

controller dynamically adjusts the PIR sensitivity at regular time intervals. If

the controller increases the sensitivity of PIR, the events detected will be more

frequent and the video application will detect and classify more persons, but

consequently the power consumption will increase.
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4.3.3 Model Predictive Controller Design

Model Predictive Control [18, 96] is an advanced control technique used ex-

tensively in industrial process control applications, which aims at achieving

defined system performance under specified restrictions on input and output

variables. Its major advantage is that it can deal with multi-input-multi-output

control problems where the system performance depends on the correlation

among several parameters. The basic idea of such an approach is to optimize

an appropriate objective function defined over a time interval in the future. A

model of the system is used to predict the behavior over N prediction inter-

vals where each one has a length of L unit intervals. The total length N ∗ L

is called the prediction horizon, as depicted in Figure 4.18. The solution of

the optimization problem is computed by selecting an input trajectory which

includes the control inputs in the following N prediction intervals and which

maximizes the objective function while satisfying the constraints. Once the

solution is computed over the whole control horizon, only the first feedback

control action which is related to the first prediction interval, is applied to the

system. Then the solution is computed again at the beginning of the next pre-

diction interval. In this way, Model Predictive Control provides performance

prediction, optimization, constraint satisfaction, and feedback control within a

single algorithm.

A model of the system is used to predict the behavior over N prediction

intervals and all of them is called the prediction horizon and the solution of

the optimization problem is computed by selecting an input trajectory which

includes the control inputs in the following N predicted interval periods and

which maximize the objective function while satisfying the constraints, Fig-

ure 4.18. Once the solution is computed over the whole control horizon, only

the first feedback control action is applied to the system, and the solution is

computed again at the end of sampling period. In this way, Model Predictive

Control provides performance prediction, optimization, constraint satisfaction,

and feedback control into a single algorithm.

Figure 4.18: Predicted horizon for MPC when t = 0.

The algorithm has the same complexity as solving a Linear Program (LP).

It can be implemented as an implicit solver which requires LP solutions under
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Figure 4.19: Trade-offs using different algorithms.

real-time constraints. This causes an increment of the computational effort as

depicted in Figure 4.19(a). Another solution is to implement the Model Predic-

tive Controller as an explicit approach. In this way we pre-compute off-line a

lookup table of linear control actions [18]. As a result, the computation of the

optimization problem is translated into a linear combination of input parame-

ters according to gain and offset coefficients that depend on input parameters.

In this way, as illustrated in Figure 4.19(b), we shift the effort of solving a LP

on-line to an increase in memory requirements, due to the storage of pre-solved

control laws that are computed off-line. Moreover, with a certain order of ap-

proximation, most of the control laws can be clustered reducing the memory

occupancy [110].

In our approach, the predictor uses tuples (t, Ei(t))for all times t ≥ 1 and

delivers N predictions, i.e. for the energy production of the energy source

within one of the next N prediction intervals. Following well known prediction

equations based on Exponentially Weighted Moving Average (EWMA) [39,

110, 81], the predictor produces estimations Es(k, t) where 1 ≤ k ≤ N denotes

the prediction interval, see Figure 4.18.

The problem of adjusting the PIR sensitivity has been formulated as linear

program (LP), and the performance objective is to maximize the monitoring

area and thus, to guarantee higher QoS by maximizing the maximum number

of processed events (e.g. the higher number of detected people which cross

the monitored area). For this objective, a previous work [101] proposes an

heuristic algorithm where the size of the detection area depends linearly on

the energy stored on the on-board reservoirs (e.g. battery or supercapacitor),

which consequently attempts to decrease the monitored area, by a reduction

of the PIR sensitivity, when the scavenged energy is low (e.g. at night) and

increase the area when scavenged energy is high (e.g. during the day). In
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contrast to the work shown in last section, we propose to compute the optimal

solution using MPC. The LP presented in this section models a large variety of

application scenarios, constraints and optimization objectives.

4.3.4 Linear Program Specification

In this section we will show the linear problem specification. Before formulat-

ing the problem we introduce the following equation:

Ea(t+ k · L) = Ea(t)− k · L · Ep +

k−1∑

j=0

Es(t, j) +

−L · Ev · Ps(t+ j · L)

It shows the expected content of the energy storage at times t + kL for 1 ≤

k ≤ N . The Ep is the energy consumption, independent from time, of our

system when it is in sleep mode and only the PIR sensor is used by the system.

Ev is the power consumption of image processing when an event happens and

it is a constant value. Figure 4.18 shows the meaning of k, N , and L. Finally we

can write the linear program which optimize the behavior of the multi-modal

video node:

maximize λ subject to:

Ps(t+ k · L) ≥ λ ∀0 ≤ k < N

Ea(t+ k · L) = Ea(t)− k · L · Ep +

+
∑k−1

j=0
(Es(t, j)− L · Ps(t+ j · L) · Ev) ≥ 0 ∀1 ≤ k ≤ N

Ea(t+N · L) ≥ Ea(t)− 100

The first inequality states that the threshold of the PIR should be regulated to

maximize the monitored area. The second inequality gives the energy balance

of the system, taking into account the power consumption when the video al-

gorithm is activated and the energy intake form the solar harvester. Finally the

last inequality is used to guarantee a stable behavior of the system, constrain-

ing the controller not to plan the exploitation of all the energy before the end

of the prediction interval.
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Component Power [mW ]

ARM9 (RUN mode) 450
ARM9 (SLEEP mode) 15

Video sensor (ON mode) 165
Video sensor (SLEEP mode) 0

TX/RX module (ACTIVE mode) 98
TX/RX module (SLEEP mode) 0

PIR sensor 1,5
Solar Harvester 0,98

Video Node (Active) 650
Video Node (Sleep) 17,5

Table 4.3: Power consumption of the video sensor node.

4.3.5 Experimental Results

We have compared our adaptive management approach with three other heuris-

tic solutions. The first is proposed in [101] where a simple controller adjusts the

sensitivity of the PIR sensor according only to the amount of energy in the bat-

tery. The others are extensions of the same controller where the information

form the predictor and future state of system are added as available knowl-

edge of the controller. In this way we can identify the contribution of the MPC

and how it outperforms controllers with the same input variables.

4.3.6 People detection application

The vision algorithm implemented on the video sensor node is a human de-

tection application based on a SVM-like classification for embedded systems

[85]. It forces the system to the sleep mode until the PIR sensor detects an

event. Then the camera is activated to acquire a frame and the microprocessor

begins the analysis of the captured image. The video processing lasts for about

3s. The power consumption of all power modes and components is given in

Table 4.3.

We considered a typical application scenario of outdoor surveillance. In our

simulations we assume to take a rate of events which represent people passing

in the field of view of the video node. We considered the main entrance of

our School and we collected the profile of the events during 10 consecutive

days and the number of people who entered the building. In the same way,

we measured the energy intake from the energy harvesters and the solar light

intensity during the same period. All the information was stored in files used

as input to our simulations.

Notice that the controller does not know in advance the number of persons

which enter the monitored area, generating an event. Clearly the system have
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to count this contribution and the simulation will use the following equation

for the state of the system:

Ea(t) = Ea(t− 1)− Ep + Ei(t)− Ev · Ps(t) ·Np(t) (4.4)

where Np(t) is the number of events for unit of sensitivity depicted in Fig-

ure 4.20. In spite the MPC gives only continuous values of Ps the system dis-

cretizes the optimal solution to have just five values even if this solution will

be sub-optimal. We assume that the controller gives just five values of Ps (1..5)

and the number of detected people is linear with PIR sensitivity.

Figure 4.20: Profile of the people entered in the monitored area and detected by PIR
sensor in 10days.

4.3.7 Adaptive controller vs. heuristic algorithm with and with-

out energy prediction

Under the above mentioned assumption, the first comparison shows a system

without an adaptive controller. To dynamically adjust the PIR sensitivity we

used only the energy stored in the battery. So when the stored energy is at the

maximum value the system can set the PIR sensitivity to highest value to de-

tect all the events in its field of view (up to 5 m in our scenario) and guarantee

the best performance. Instead if the energy is decreasing, due to a reduction

of the harvesting processing, the area covered by video node decreases. Con-

sequently the rate of activation of the camera is shortened because the PIR

sensitivity is lower. For our simulations we assume to have only five areas like

Figure 4.16 shows. Moreover we assume a linear distribution of events in the

area. Under this assumption if the PIR covers the III area, it detects 3 times

the value of events of I. The battery level was divided in five portions and each

portion has an associated level of PIR sensitivity. The lowest level of sensitivity

corresponds to the lowest battery level, and vice versa.

Figure 4.21 shows how the adaptive controller is able to maintain PIR sensi-

tivity always at a higher level, in contrast to the heuristic controller which has

to follow the energy level. By exploiting the prediction of incoming energy, the

adaptive controller maximizes the monitored area. Note that PIR sensitivity of

the adaptive controller is higher than the heuristic approach even if the avail-

able energy is lower, in fact when it knows that the system will have enough
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Figure 4.21: Comparison between adaptive controller and dynamic heuristic controller
with and without prediction. The elliptical areas show that the MPC con-
troller keeps a higher monitored area also when a battery low situation
happened.

energy in future, the controller speculates on the detection of more events. The

figure shows also an optimization of heuristic dynamic controller. In this situ-

ation the system knows the prediction of the energy intake. The effect of this

second version is that the sensitivity of PIR is more reactive to the future values

of energy. The Figure 4.22 shows how the heuristic controller with prediction

is faster than the first one, but still worse than a controller based on MPC, even

though we used the exact value of future energy at the time t+1 as estimations.

Figure 4.22: Comparison of heuristic controllers. The elliptical areas show how the con-
troller with prediction is faster to increase or decrease the monitored area
taking advantage from prediction.

4.3.8 Adaptive controller vs. advanced heuristic

The last simulation uses both the prediction and a new way to elaborate the

maximal area to cover as equation (3) shows. This controller finds the maximal

value of Ps(t) that satisfies equation (3), hence at least X = 20 detection for

unit of PIR sensitivity in the next period of time. Es(t) is the exact value of

future energy at time t and Em is a fixed value of battery to guarantee the sur-

vival of the node, in our model Em is the 10% of the maximal level of battery.

Figure 4.23 shows the comparison of our adaptive model with this approach.

The main feature of the advanced heuristic controller is the capability to in-
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crease the monitored area when the energy intake is plentiful, but as soon as

the battery is discharging the controller decreases remarkably more than other

approaches.

Ea(t) = Ea(t− 1)− Ep + Es(t)− Ev · Ps(t) ·X ≥ Em (4.5)

Figure 4.23: Comparison between MPC based controller and heuristic advanced con-
troller. In this comparison in the elliptical areas you can see how the heuris-
tic controller brings the system in a critical battery low situation and con-
sequently to decrease the monitored area

4.3.9 Comparison

The simulations have demonstrated that an intelligent control with MPC en-

sures that the minimum area under monitoring is always maximized compared

to other algorithms. Heuristic algorithms which depends only on the knowl-

edge of the energy are greedy and quickly reach lower area when the available

energy is low.

The controller based on MPC also increasing the area under surveillance on

average. Comparing the rate of the coverage, measured as the integral of the

covered area during the time, MPC keep the area larger than other algorithms

as shown in Figure 4.24.

4.3.10 Conclusion

A simple but optimal feedback controller for power management based on

model predictive controller (MPC) has been presented for achieving perfor-

mance maximization under defined system constraints. The controller adapts

parameters of the application, such as the size of the detection area adjusting

the sensitivity of a low power PIR based wake-up circuit, in order to guaran-

tee the maximum lifetime of the system while keeping high accuracy of the

surveillance application. Simulation results and measurements on the video

sensor node demonstrate that our approach outperforms naive power man-

agement policies, while improving performance.
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Figure 4.24: Comparison of the global coverage during the simulation.

4.4 Energy Efficient Cooperative Multimodal Am-

bient Monitoring

Recent years are witnessing the ever-growing demand for security in both pub-

lic and private spaces. This feeling has pushed for the development of video

surveillance and other security-related applications. As new generation of low-

power, low-cost devices hits the market it is likely that new scenarios were a

large number of cameras are embedded in the environment will emerge.

Thanks to their flexibility and ability to provide accurate real-time visual

data Wireless Video Sensor Networks (WVN) are gaining many credits. A WVN

is made up of several wireless Video Sensor Nodes (VSNs) and each of them

embeds a low-power imaging sensors, processors, and communication units

to survey the Area of Interest (AoI). Power-aware design and maximization of

the sensor network lifetime becomes one of the main objective [50, 69].

Typical approaches for energy consumption reduction in Wireless Sensor

Networks (WSN) include: selection of low-power components [74], use of im-

proved wireless protocols [138] and adapting parameters such as clock rate [89]

or sample rate [79].

Exploiting renewable energy resources in the devices’s surrounding is an

alternative solution to increase nodes lifetime [116]. In particular, photovoltaic

(PV) harvesters are good candidates to achieve perpetual operation of WSN

[30]. Unfortunately if the power consumption of a device can be estimated

runtime for a certain interval in the future, the power generated by a PV mod-

ule changes nonlinearly under varying temperature or solar irradiance. Tech-
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niques which automatically tune the operating point of the solar cell should be

considered to provide the maximum output power, since they lead to several

benefits such as: the possibility to use smaller PV modules, to reduce the capac-

ity of the energy reservoir, or to allow higher power consumption operations

onto a sensor node.

The major constraint when dealing with circuits for high efficient energy

harvesting is that implementing maximum power point tracking techniques

using small-size PV modules is practicable only if the power consumed by the

additional hardware is considerably lower than the amount of output power

that it gains. Thus the area of the deployment and the availability of the envi-

ronmental energy need particular attention at design time when an estimation

of the energy intake during the day or along a year is fundamental.

These approaches try to address the power consumption issue by extend-

ing single nodes lifetime. However, WVNs prompt for the development of

high level Power Management (PM) policies. For example in [162] the author

proposes two scalable and flexible techniques for WVNs power management

by considering the content of the video data sensed both locally and by other

video nodes within the network.

If we consider the energy issue at a network level we can exploit the use

of heterogeneous network. Surveillance, as well as target tracking and classifi-

cation, are classical applications which require global information of a certain

spatial-temporal region and exploiting Multi modal-sensors is a promising ap-

proach to increase effectiveness of such systems [46]. On the other hand, gen-

erally sensor nodes only has a local view and spreading global information

increases the communication traffic and the overall power consumption.

In addition, the redundancy provided by a mesh of heterogeneous nodes

can be used to perform power-performances trade-off. The typical approach

here is to support high-power CMOS imagers with a mesh of low-power, low-

cost sensors densely spread in the environment [72]. While the former are kept

into a low power state, the latter operate as a trigger to provide continuous area

monitoring. In Boettcher et al. [27] low-power acoustic sensors are used to de-

tect position of moving vehicle through a time-difference of arrival technique.

This information is used in conjunction to an imager used to take an image of

the vehicle and send it to the base station. Another example can be found in the

work of Wang et al. [152] where a WVN is supported by a network of micro-

phones. The latter are used to provide an indication of the distance of a vehicle

from the video sensor node. This information, together with the recognition

accuracy of the video sensor node estimated at training time and the actual

energy of the video sensor node, is used to evaluate a cost function used by a

cluster head to select which video sensor node should be turned on.
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In this section we present a combination of PM techniques optimized for

multi modal surveillance systems:

• a set of wireless VSN are used in conjunction with a network of low-

cost, low-power Pyroelectric InfraRed (PIR) sensors to detect presence of

people moving along a path in an outside area;

• the architecture is scalable and can be extended to an ambient of any

size and shape. The minimum cluster of node is composed by 2 VSNs

used in conjunction with a network of low-cost, low-power Pyroelectric

InfraRed (PIR) sensors to detect presence of people moving along a path

in an outside area;

• particular surveillance applications are interested in distinguishing the

presence of human bodies rather than objects or animals in the field of

view before generating alarms or sending information through the wire-

less link. Furthermore we implement algorithms capable to process im-

ages, to detect the particular target and finally to send only the image

that shows the face of the person. It is a particular needs for unobtrusive

video-surveillance solutions which has to handle both security and pri-

vacy issues, guaranteeing to not process or record private data, while still

detecting and identifying potential threats;

• the video sensor nodes are powered by a solar scavenger using a 70 cm2

photovoltaic panel, to guarantee the maximum energy autonomy of the

systems and flexibility for the reuse of the system or the adjustment of

the deployment.

• to guarantee a balanced energy usage a trade-off between energy avail-

ability and quality of the service is adopted and VSNs are activated only

when they can provide a useful contribution at the minimum energy ex-

penditure. Thus a bidding-like protocol is engaged to select the most

suitable offer to perform the image analysis.

The PM techniques is performed in a distribute manner, since obviously

nodes constantly active makes unfeasible to meet the energy requirements.

We use the information from the PIR sensor network to activate only a sub-

set of wireless VSNs enhancing an efficient collaborative approach. In fact, the

pir-network is capable to detect and to estimate the position and direction of

movement of the people along the track and therefore it identifies which VSN

faces the persons. When the PIR sensor network detects a body moving in the

area of interests it broadcasts a message to the VSNs with an indication of the

body presence and direction of movement. According to this information and
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the available energy provided by the harvesting system, each VSN calculates

a cost function and broadcast this value to the other VSNs. Each node com-

pares its own cost function with the ones received from the other nodes of the

network. The node with higher cost function wakes up and monitor the area

of interest. This PM policies guarantees that for any passage at least one node

wakes up even in presence of message losses. At the same time we can keep the

majority of VSNs into a low power state to preserve or replenish their energy

storages.

Our approach is similar to the one presented in [152]. However our dis-

tributed policy is more robust to nodes failure and messages loss. In fact in

the work of Wang et al. if the cluster head fails the whole cluster is not able to

operate until maintenance is performed. Furthermore, if node communication

is compromised at a certain time, the nodes of the network can not be waken

up to classify object passing by. In our work, instead, all nodes check locally

if they are the one that should be turned on, therefore even if communication

among nodes is not possible, in the worse case, all VSNs will wake up and

analyze the image.

The rest of the section is organized as follow. Sections 4.4.1 and 3.3.2 presents

the WVN and the PIR sensor network that compose our system. Section 4.4.3

explains how the two sensor networks are used in conjucntio and the dis-

tributed power management techniques. Section 4.4.5 describes our network

simulation and compares our approach with the case presented in [101]. Fi-

nally Section 4.4.7 concludes the section providing further comments on the

results we achieved and comparison with the state of the art.

4.4.1 Video Sensor Nodes Description

The hardware architecture of the solar-powered video sensor is composed of

four main modules (see figure 4.14) and designed to achieve low power con-

sumption of the overall system. Each module can autonomously operate in

different states to save energy when its contribution is not needed, as you can

see in previous section.

As in the other works presented in this section (see sections 3.3.2, 4.2.5)

we used a commercial PIR detector that includes 2 sensitive elements placed

in series with opposite polarization. To form a PIR sensor node, this board

is connected to a Zigbee module that provides wireless connectivity with the

other nodes of the network.

An overview of the node power consumption in different operating states

is reported in Table 4.4.
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Component Power [mW ]

Active Radio TX 48
Active Radio RX 37
Active Radio Off 13

Sleep 0.6
PIR board prototype 0.2

Table 4.4: Power consumption of the PIR sensor node.

4.4.2 PIR based people tracking.

In this work the PIR sensor network should provide to the video system a

coarse estimation of people position and direction of movement. For this rea-

son we adopt the solution presented in [163]. In this setup the area of interest

is covered by an array of PIR sensor nodes that are organized in small clus-

ters. Each cluster is an autonomous network basic block and is made up of

two sensors facing each other that locally detect body position and direction

of movement through the classification of simple features (signal duration and

peak to peak amplitude) extracted from PIR output. One of the two nodes act

as a block manager. It receives the features from the other node and perform

the classification step. This information is used in conjunction with the simple

detection of the first peak direction (either positive or negative) that indicates

the direction of movement (see figure 3.15).

A linear Support Vector Machine (SVM) classifier has been used to clas-

sify people position into three classes according to their distance from the two

PIRs (see figure 4.25). According to the results presented in [163] linear SVM

presents a good trade-off between correct position detection (86.06 %) and com-

putational and memory cost (respectively, 6 multiplication, 6 sums and 2 max,

and 6 bytes of Flash) and can be efficiently implemented by the low-cost low-

power microcontroller that manage the PIR sensor nodes. The confusion ma-

trix for the linear SVM classifier is presented in table 4.5.

Table 4.5: Support Vector Machines classifier’s confusion matrix

classified as
close to 1 middle close to 2

close to 1 166 32 0
middle 14 181 12

close to 2 0 29 190

As can be seen from this table, this classifiers present limited uncertainty

since passages in proximity of one PIR sensor are never confused with passages

close to the other one.
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Figure 4.25: Basic configuration used to estimate people position and distance.

4.4.3 Cooperative Ambient Monitoring

In this work we address the scenario where an outdoor, isolated Area of Inter-

est (AoI) is covered by a heterogeneous network made up of our VSNs and PIR

sensor nodes. While PIR sensors provide a coarse but continuous coverage of

the AoI, VSN are used to identify and report relevant events such as people

passages.

The nodes of the network are organized in clusters made up of 2 or 4 VSN

and 2 PIR sensor nodes each arranged as presented in figures 4.26 and 4.27. The

PIR sensor nodes are in the configuration presented in figure 4.25, while the

VSNs point toward the PIR sensors. Each cluster monitors a small part of the

AoI and is used in conjunction with other identical ones to cover bigger areas.

Each cluster works independently from the others and, with the exception of

the final people recognition result, wireless communication is performed only

locally among the nodes of a cluster. In our scenario we assume that people

move only along three passages, namely Zone 1, Middle Zone and Zone 2.

4.4.4 Multimodal Distributed Power Management

When no transit occurs, the sensor nodes of the network are kept into a low

power state. Periodically the VSNs wake-up and poll the PIR manager for

synchronization and indication of passages. As the PIR motes detect a transit,

the direction of movement is evaluated as well as the zone the body is moving.

This information is broadcast to the VSNs of the cluster.

Based on body direction and position and available energy, each VSN com-

putes a cost function that represent the ability offered to wake-up the camera
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Figure 4.26: Cluster with 2 VSN.

Figure 4.27: Cluster with 4 VSN.
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Direction VSN A VSN B

Left to Right 20 1
Right to Left 1 20

Table 4.6: Values for the D factor for the 2 VSNs cluster

Direction VSN 1 VSN 2 VSN 3 VSN 4

Left to Right 20 20 1 1
Right to Left 1 1 20 20

Table 4.7: Values for the D factor for the 2 VSNs cluster

and to correctly identify the body. For this reason the cost function returns a

higher value when the body is moving toward the VSN and in its field of view

center.

The cost function has the following expression:

CF =
E

C
·

1

P ·D
· γ(E,C) (4.6)

Where E denotes the actual energy available of the node, C the max capacity

of battery, P and D are weights factors depending on body position and direc-

tion and γ(E,C) is a non linear factor used to decrease the weight of nodes

with low energy. The ratio of the energy used in comparison to the accumula-

tor capacity represents an important parameters to trade off with the accuracy

of the calssification and the selection of the best camera.

Position and direction influence the CF and the performance during simu-

lations. Tables 4.6, 4.7 and 4.8 present the optimal values.

As can be seen from tables 4.6 and 4.7 when a body is moving toward a VSN

the value of D is much smaller. As a consequence the VSNs that see the face

of the person are selected even if the others have much more available energy.

When the two VSNs facing the front of the person are close to run out of energy

the others result in a higher CF and can still provide some information on the

people passing.

The value of the P factor is used only in the 4 VSNs cluster (in the 2 VSNs

cluster is always 1) in order to distinguish between VSNs that face the front of

the body and select the one that better points toward it.

Finally, the value of γ helps to reduce the probability that a node with low

available energy is activated. This parameter assumes the following values:
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Zone VSN 1 VSN 2 VSN 3 VSN 4

Zone 1 1 3 1 3
Zone Middle 1 1 1 1

Zone 2 3 1 3 1

Table 4.8: Values for the P factor (used only in the 4 VSNs cluster)

if
E

C
≥ TH γ = 1 (4.7)

else γ = 0.5 (4.8)

Once the nodes compute their own CF they broadcast it to the other VSNs.

A timeout is used in order not to stuck at if any other nodes message is lost.

Than locally, each VSN check if its own CF is higher than the others. If any of

the CF from the other VSNs is higher than the local one the VSN switches on is

imager and start processing the image.

Since the camera mote knows at least its own CF, when the timeout expires,

if any message has been received it consider itself the best VSN and starts ac-

quiring the image. Therefore, if a transit is detected by PIR sensors at least

one VSN turns on. Such approach is robust and guarantees that every event

detections will be served. In fact, if some bidding messages does not arrive,

the camera deems to have the highest CF providing an activation. In the worst

case, more cameras will be activated after a single event. This guarantees to not

miss any events, but on the other hand there is an overhead form the power

consumption point of view.

To show the influence of the chosen parameters figure 4.28 presents the

energy level of the four nodes in the hypothetical case where passages happen

only from right to left in Zone 2 and no energy is harvested. In this case, if all

VSNs have the same amount of energy, VSN 1 is the best candidate to detect

the body. However as its energy decreases at a certain point VSN 2 will result

in a higher CF and starts detecting transits. After a while also VSN 3 and 4 start

processing images even if they can not see the face of the person since also VSN

2 energy is depletehd and its CF is lower than the one of VSN 3 and 4.

4.4.5 System Lifetime Evolution

We compared the two variants of the proposed approach with the case where

the area of interest is covered by 4 VSNs equipped with a PIR sensor that pro-

duce a wake-up signal in presence of bodies [101]. In the latter case the camera

and the ARM9 microcontroller are active when a person enter in the field of
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Figure 4.28: Simulation of VSNs energy level when passages occur always in the same
position.

view of the imager. Once the node is awake, it processes the image from the

CMOS camera in the same manner as described above. The size of the VSN

field of view is modulated by changing the threshold above which the PIR sen-

sor produces a wake-up trigger.

In this case VSNs do not have to broadcast the value of their cost function,

thus they can save energy. However, the system do not use efficiently its re-

sources. In fact the presence of other VSN that cover the same field of view is

not taken into account and when a body moves in proximity of multiple VSNs

all of them wake up. Moreover the work presented [101] do not consider peo-

ple direction of movement in order to select which camera can better identify

the subject.

4.4.6 Experimental result vs Camera with PIR

To evaluate the effectiveness of our approach, we simulated how the energy of

the VSNs evolved as people passed across the PIR sensors.

People passages are modeled according to a profile of events that describes

passages during 2 consecutive days in front our our lab (see figure 4.29). The

energy intake from the energy harvesters has been modeled by measuring the

incident solar light intensity measured during the same period (see figure 4.30).

Figure 4.31 compares VSNs over the 2 days period time. All VSNs are equipped

with a 40F supercapacitor to store energy from the solar harvester.

At simulation start, when no events are detected and no energy is harvested

we see how the solution proposed in [101] presents less power consumption.

This is related to the fact that no wireless messages are sent for synchronization

and can be seen comparing the nodes energy levels on the box on the left part
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Figure 4.29: Number of events detected from PIR sensors in 2 consecutive days
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Figure 4.30: Energy incoming from energy harvesters during 2 consecutive days.
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Figure 4.31: Simulation 4 cameras against a camera with PIR and 2 cameras in 2 sides

of figure 4.31.

As people start passing the solution with on board PIR (dotted line) quickly

consumes its energy since all four VSNs are waken-up at every passage, de-

spite person position and direction of movements. As a results after few hours

the node has already exhausted his energy and can not monitor the area of

interest anymore. To perform continuous operation in the proposed scenario,

each sensor node should be equipped with a 300F supercapacitor.

The solution with 2 VSNs performs better than the previous one. As we

can see from figure 4.31 computation is balanced among the two VSNs, thus

the system is able to monitor the area of interest until evening when the gates of

the building close. However, before the sun set the VSNs do not collect enough

energy to operate all night long. Furthermore, as the second day starts, they

need time to replenish their energy, so this system is not able to continuously

operate during the second morning. To perform continuous operation each

VSN should be equipped with a 102F supercapacitor.

Finally the solution with 4 VSNs is able to operate continuously with a 40F

supercapacitor.

4.4.7 Conclusion

Wireless Video Sensor Networks (WVN) made up of a large number of Wireless

Video Sensor Nodes (VSN) are gaining popularity as a flexible mean to monitor

remote areas.

For this kind of systems, power-aware design is crucial since battery re-

placement is often unfeasible or too expensive.

Low power hardware that can operate in low power states when no events

occur is a standard choice when dealing with power-aware design. Further-

more, a network of low power sensors (i.e. passive infrared sensors) may pro-

vide trigger capabilities in order to keep the system into a low power state as



4.4 Energy Efficient Cooperative Multimodal Ambient Monitoring 107

long as no events are detected. Solar harvesting capabilities may further ex-

tend nodes lifetime in an outdoor scenario. However since solar irradiance is

not predictable, careful power management is still necessary.

Further power saving policies can be defined when considering the net-

work as a whole. In this case redundancies can be exploited to balance works

among the nodes of the network and relax the constraints on the harvested

energy.

In this section we presented a multimodal ambient monitoring system where

all system design steps are optimized for low-power consumption. This sys-

tems stems from the conjunction of 2 sensor network: a low power, low cost

PIR based sensor network and a WVN. The former is responsible to provide

a coarse, yet continuous monitoring, the latter is activated only when events

are detected and aim at a better classification of the event itself. Nodes are

organized in clusters made up of 2 or 4 VSN and 2 PIR sensors.

We proposed a distributed policy where each VSN, on the basis of the infor-

mation from the PIR sensor network and its available energy, computes a cost

function that is broadcast to the other nodes of the network. By comparing

its own cost with the one received from the other nodes a VSN understands

if it must monitor the event or it can stay into low power state. In the former

case the VSN CMOS imager is turned on, an image is acquired and classified

in order to understand if the event was generated by a person.

This is a robust policy, since for every event at least one VSN is activated,

despite some messages may be lost. In fact each VSN has at least its own cost,

therefore, if any other message is received it turns on. Furthermore, since this

policy is distributed among the nodes of the network we do not have single

point of failure for the whole system.

We compared our solutions with the one proposed in a previous work

shown in 4.2. We showed that with our approaches we can achieve continuous

operation with a 40F or 102F supercapacitor (4 or 2 VSN respectively) which

are respectively 7.5 and 3 times smaller than the one needed for continuous

operation of the system described in the previous work (300F).





Conclusions

Ambient Intelligence promotes pervasive and distributed technologies that are

not intrusive and always present. Wireless Sensor Network (WSN) is certainly

the most important of these technologies and allows an environment (such as a

room, a building, a park) to be user-interactive and to be aware of the intentions

of the users.

The dependence on a large amount of fixed and mobile sensors embedded

into the environment makes Wireless Sensor Networks (WSNs) one of the most

relevant enabling technologies for AmI. WSNs are complex systems made up

of a number of sensor nodes, simple devices that typically embed a low power

computational unit (microcontrollers, FPGAs etc.), a wireless communication

unit, one or more sensors and a some form of energy supply (either batteries

or energy scavenger modules). Low-cost, low-computational power, low en-

ergy consumption and small size are characteristics that must be taken into

consideration when designing and dealing with WSNs.

Low-cost and low-power video surveillance systems based on networks of

wireless video sensors will soon enter the marketplace with the promise of

flexibility, quick deployment and providing accurate and real-time visual data.

Energy autonomy and efficiency of the implemented algorithms are undoubt-

edly the primary design challenges to be addressed on systems subject to low

computational capabilities and memory constraints.

In this thesis we have discussed our results about the hardware/software

design of monitoring systems that can receive their energy from regenerative

sources such as solar cells. We started with the design of video sensor nodes,

suitable also for wearable computing applications and we have continued with

the analysis of embedded video processing algorithm to achieve an intelligent

node and use the wireless communication just when it is needed.

We then focused on the problem of extension of battery lifetime of a wire-

less surveillance system. We shown how we can extend the lifetime of a wire-

less video node powered by a solar scavenger using a PIR sensor and a tun-

able wake-up threshold. Moreover we show how the design of a multimodal

platform equipped with different family of vision sensors with heterogeneous
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features of power consumption and resolution permits us to adopt very effec-

tive energy management techniques reducing considerably the activation of

the camera and other power consuming devices.

In conclusion, Ambient Intelligence will have a major impact on software

and embedded systems design. It will introduce many new media applications

and new user interface concepts, bringing innovations in several fields of hu-

man activity. In this thesis we have contributed tackling some of the numerous

open research challenges in the sensor networks domain.



Publications

During the Phd several papers are published for some journals and interna-

tional conferences. Below the list:

Journal

A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini. A low-power wireless

video sensor node for distributed object detection. Journal of Real-Time Image Pro-

cessing, Springer, Vol.2(4):331342, 2007

Alex E. Susu, Michele Magno, Andrea Acquaviva, David Atienza, Giovanni

De Micheli. Exploration of Reconfiguration Strategies for Environmentally Pow-

ered Devices. Transactions on HiPEAC-1, Lecture Notes in Computer Science

(LNCS), Springer-Verlag Berling Heidelberg New York. 2007

Conferences

A. Kerhet, F. Leonardi, A. Boni, P. Lombardo, M. Magno, and L. Benini. Dis-

tributed video surveillance using hardware-friendly sparse large margin classifiers.

In AVSS 2007: Proceedings of the 2007 IEEE International Conference on Ad-

vanced Video and Signal based Surveillance, 2007.

M. Magno, L. Benini A Low-Power Configurable Wireless Video Sensor Node for

Distributed Vision Applications. In Proc. International Conference on Distributed

Smart Cameras. 2007

M. Magno, D. Brunelli, P. Zappi, and L. Benini.A self-powered video node trig-

gered by pir sensors. In 5th European Conference on Wireless Sensor Networks

(EWSN), Ganuary 2008.



112 Publications

M. Magno, D. Brunelli, P. Zappi, and L. Benini. A solar-powered video sen-

sor node for energy efficient multimodal surveillance. In DSD 08: Proceedings of

the 2008 11th EUROMICRO Conference on Digital System Design Architec-

tures,Methods and Tools, pages 512519, Washington, DC, USA, 2008. IEEE

Computer Society.

M. Magno, F. Tombari, D. Brunelli, L. Di Stefano, and L. Benini. Multi-modal

video surveillance aided by pyroelectric infrared sensors. In Proc. ECCV Workshop

on Multi-camera and Multi-modal Sensor Fusion, Algorithms and Applica-

tions (M2SFA2), 2008.

M. Magno, D. Brunelli, L. Benini Detection of abandoned/removed objects with

a video sensor node aided by Infrared Sensor. In Proc. 6th European Conference on

Wireless Sensor Networks. 2009

M. Magno; F. Tombari; D. Brunelli; L. Di Stefano; L. Benini Multimodal

Abandoned/Removed Object Detection for Low Power Video Surveillance Systems.

In Proc. Sixth IEEE International Conference on Advanced Video and Signal

Based Surveillance, Genova 2009

M. Magno, D. Brunelli, L. Thiele and L. Benini Adaptive Power Control for

Solar Harvesting Multimodal Wireless Smart Camera. In Proc. Third ACM/IEEE

International Conference on Distributed Smart Cameras (ICDSC 2009)

Submitted

Magno M., Zappi P., Brunelli D., L. BENINI Energy Efficient Cooperative Multi-

modal Ambient Monitoring.

Magno M., Lanza A. Brunelli D., Di Stefano L., Benini L. Energy aware mul-

timodal video surveillance embedded system.

Magno M., Brunelli D., Benini L. Resource manager for video surveillance em-

bedded system.



Bibliography

[1] VC 4465 www.vision-components.com.

[2] EyeSpector? 4400 www.eyespector.com.

[3] VETECH VE 262 www.canpolar.com/vetech/.

[4] Bi-i V301 www.analogic-computers.com.

[5] LW-1.3-G-1394 www.isgchips.com.

[6] Elphel 333 www3.elphel.com/en/products.

[7] Pixel Velocity www.pixelvelocity.com/.

[8] Iris P-Series www.matrox.com/imaging/products/.

[9] Tag Plus www.tattile.com/new.site/start.htm.

[10] Dica21 www.apptech.philips.com/industrialvision.

[11] Imapcar www.eu.necel.com/applications/automotive.

[12] XC1-XS1 www.sonybiz.net/biz/.

[13] Atmel FPSLIC www.atmel.com/products/FPSLIC/.

[14] Gnu project http://www.gnu.org/.

[15] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor

networks: A survey. Computer Networks, 38:393–422, 2002.

[16] Alan Daniels. Ubiquitous computing.

http://www.cc.gatech.edu/classes/cs6751 97 fall/projects/gacha/

daniels essay.html, 1997.

[17] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi. Feed-forward support vector

machine without multipliers. IEEE Trans. on Neural Networks, 17(5):1328–1331,

2006.

[18] A. Bemporad, F. Borrelli, and M. Morari. Model Predictive Control Based on Lin-

ear Programming - The Explicit Solution. IEEE Transactions on Automatic Control,

47(12):1974–1985, Dec. 2002.

[19] A. Y. Benbasat and J. A. Paradiso. Groggy wakeup - automated generation of

power-efficient detection hierarchies for wearable sensors. In 4th International

Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007) March 26

28, 2007 RWTH Aachen University, Germany, 2007.

[20] L. Benini, E. Farella, and C. Guiducci. Wireless sensor networks: Enabling tech-

nology for ambient intelligence. Microelectron. J., 37(12):1639–1649, 2006.

[21] K. P. Bennett. Support vector machines: Hype or hallelujah? SIGKDD Explo-

rations, 2:2000, 2000.

[22] Berkley. http://robotics.eecs.berkeley.edu/ pister/SmartDust/.

113



114 BIBLIOGRAPHY

[23] M. Beynon, D. Van Hook, M. Seibert, A. Peacock, and D. Dudgeon. Detecting

abandoned packages in a multi-camera video surveillance system. In Proc. IEEE

Conf. on Advanced Video and Signal Based Surveillance (AVSS 03), pages 221–228,

2003.

[24] M. Bhargava, C. Chen, M. Ryoo, and J. Aggarwal. Detection of abandoned objects

in crowded environments. In Proc. of IEEE Conf. on Advanced Video and Signal

Based Surveillance (AVSS07), pages 271–276, 2007.

[25] D. Bhatia, L. Estevez, and S. Rao. Energy efficient contextual sensing for elderly

care. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual

International Conference of the IEEE, pages 4052–4055, Aug. 2007.

[26] N. Bird, S. Atev, N. Caramelli, R. Martin, O. Masoud, and N. Papanikolopoulos.

Real time, online detection of abandoned objects in public areas. In Proc. IEEE

Conf. on Robotics and Automation (ICRA06), pages 3775 – 3780, 2006.

[27] P. W. Boettcher and G. A. Shaw. Energy-constrained collaborative processing for

target detection, tracking, and geolocation. In IPSN, pages 254–268, 2003.

[28] D. Brunelli, L. Benini, C. Moser, and L. Thiele. An efficient solar energy harvester

for wireless sensor nodes. In DATE ’08: Proceedings of the conference on Design,

automation and test in Europe, pages 104–109, New York, NY, USA, 2008. ACM.

[29] D. Brunelli, E. Farella, L. Rocchi, M. Dozza, L. Chiari, and L. Benini. Bio-feedback

system for rehabilitation based on a wireless body area network. Pervasive Com-

puting and Communications Workshops, 2006. PerCom Workshops 2006. Fourth An-

nual IEEE International Conference on, pages 5 pp.–531, March 2006.

[30] D. Brunelli, C. Moser, L. Benini, and L. Thiele. An efficient solar energy harvester

for wireless sensor nodes. In DATE ’08: Proceedings of the conference on Design,

automation and test in Europe, 2008.

[31] P. Bryant and H. W. Braun. Some applications of a motion detecting camera

in remote environments. Technical report, University of California San Diego,

HPWREN, 2003.

[32] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[33] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, Kluwer Academic, 2(2):121–167, 1998.

[34] Carnegie Mellon University. Aura project overview.

http://www-2.cs.cmu.edu/ aura/.

[35] P. Chen, P. Ahammad, C. Boyer, H. Shih-I, L. Leon, E. Lobaton, M. Meingast,

O. Songhwai, S. Wang, Y. Posu, A. Yang, Y. Chuohao, C. Lung-Chung, J. Ty-

gar, and S. Sastry. Citric: A low-bandwidth wireless camera network platform.

In Distributed Smart Cameras, 2008. ICDSC 2008. Second ACM/IEEE International

Conference on, pages 1–10, Sept. 2008.

[36] C.-Y. Chong and S. Kumar. Sensor networks: evolution, opportunities, and chal-

lenges. Proceedings of the IEEE, 91(8):1247–1256, Aug. 2003.

[37] D. Corley and E. Jovanov. A low power intelligent video-processing sensor. In

Proc. Thirty-Fourth Southeastern Symposium on System Theory, pages 176–178, 2002.

[38] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20, 1995.



BIBLIOGRAPHY 115

[39] D. R. Cox. Prediction by exponentially weighted moving average. pages 414–422,

1961.

[40] CrossBow. http://www.xbow.com/Products/productdetails.aspx?sid=174.

[41] CrossBow. http://www.xbow.com/Products/productdetails.aspx?sid=164.

[42] CrossBow. http://www.xbow.com/index.aspx.

[43] R. Cucchiara, A. Prati, R. Vezzani, L. Benini, E. Farella, and P. Zappi. Using

a wireless sensor network to enhance video surveillance. Journal of Ubiquitous

Computing and Intelligence (JUCI), 1:1–11, 2006.

[44] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. IEEE

Computer, 37(8):41–49, 2004.

[45] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. IEEE

Computer, August 2004.

[46] D. Datcu, Z. Yang, and L. J. M. Rothkrantz. Multimodal Surveillance: Sensors,

Algorithms, and Systems, chapter Multimodal, pages 311–338. Artech House Pub-

lishers, July 2007.

[47] P. de la Hamette et al. Architecture and applications of the fingermouse: a smart

stereo camera for wearable computing hci. Personal Ubiquitous Comput., 12(2):97–

110, 2008.

[48] L. Di Stefano and A. Bulgarelli. A simple and efficient connected components

labeling algorithm. In Proc. Int. Conf. on Image Analysis and Processing (ICIAP 99),

pages 322–327, 1999.

[49] C. P. Diehl. Toward Efficient Collaborative Classification For Distributed Video Surveil-

lance. PhD thesis, Carnegie Mellon University, 2000.

[50] Q. Dong. Maximizing system lifetime in wireless sensor networks. In IPSN ’05:

Proceedings of the 4th international symposium on Information processing in sensor

networks, page 3, Piscataway, NJ, USA, 2005. IEEE Press.

[51] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. Burgelman. Thats what

friends are for ambient intelligence (ami) and the is in 2010. In Innovations for an

e-society, 2001.

[52] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. C. Burgelman. Scenarios

for ambient intelligence in 2010. Technical report, IST Advisory Group, February

2001.

[53] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,

2001.

[54] Ember. http://www.ember.com/index.html.

[55] T. Esram and P. Chapman. Comparison of photovoltaic array maximum power

point tracking techniques. Energy Conversion, IEEE Transaction on, 2:439–449,

2007.

[56] ETH Zurich. http://www.btnode.ethz.ch/.

[57] L. Evers, M. Bijl, M. Marin-Perianu, R. Marin-Perianu, and P. Havinga. Wireless

sensor networks and beyond: A case study on transport and logistics, 2005.

[58] X. Fan, W. Shaw, and I. Lee. Layered clustering for solar powered wireless visual

sensor networks. In ISM ’07: Proceedings of the Ninth IEEE International Sympo-

sium on Multimedia, pages 237–244, Washington, DC, USA, 2007. IEEE Computer

Society.



116 BIBLIOGRAPHY

[59] W.-C. Fang, S. Kedar, S. Owen, G.-Y. Wei, D. Brooks, and J. Lees. System-on-chip

architecture design for intelligent sensor networks. In IIH-MSP ’06: Proceedings

of the 2006 International Conference on Intelligent Information Hiding and Multimedia,

pages 579–582, Washington, DC, USA, 2006. IEEE Computer Society.

[60] E. Farella, A. Pieracci, and A. Acquaviva. Design and implementation of wimoca

node for a body area wireless sensor network. Systems Communications, 2005.

Proceedings, pages 342–347, Aug. 2005.

[61] J. Feng, F. Koushanfar, and M. Potkonjak. System-architectures for sensor net-

works issues, alternatives, and directions. IEEE International Conference on Com-

puter Design (ICCD), 2002.

[62] W.-C. Feng, B. Code, E. Kaiser, M. Shea, and L. Bavoil. Panoptes: scalable low-

power video sensor networking technologies. In Proceedings of the ACM Inter-

national Multimedia Conference, pages 562–571, Berkeley, Calif, USA, November

2003. TeX Users Group.

[63] W.-c. Feng, B. Code, E. Kaiser, M. Shea, W.-c. Feng, and L. Bavoil. Panoptes:

scalable low-power video sensor networking technologies. In MULTIMEDIA ’03:

Proceedings of the eleventh ACM international conference on Multimedia, pages 562–

571, New York, NY, USA, 2003. ACM.

[64] S. Ferrando, G. Gera, and C. Regazzoni. Classification of unattended and stolen

objects in video-surveillance system. In Proc. IEEE Int. Conf. on Advanced Video

and Signal Based Surveillance (AVSS 06), 2006.

[65] L. Ferrigno, S. Marano, V. Paciello, and A. Pietrosanto. Balancing computational

and transmission power consumption in wireless image sensor networks. In

IEEE International Conference on Virtual Environments, Human-Computer Interfaces,

and Measurement Systems, 2005.

[66] L. Ferrigno and A. Pietrosanto. A low cost visual sensor node for bluetooth based

measurement networks. In Proc. 21st IEEE Instrumentation and Measurement Tech-

nology Conference IMTC 04, volume 2, pages 895–900 Vol.2, 2004.

[67] Freescale. http://www.freescale.com/webapp/sps/site/prod summary.jsp?

code=MC13224V&nodeId=0106B9869925657103.

[68] P. Garda, O. Romain, B. Granado, A. Pinna, D. Faura, and K. Hachicha. Archi-

tecture of an intelligent beacon for wireless sensor networks. In Proc. NNSP’03

Neural Networks for Signal Processing 2003 IEEE 13th Workshop on, pages 151–158,

2003.

[69] A. Giridhar and P. R. Kumar. Maximizing the functional lifetime of sensor net-

works. In IPSN ’05: Proceedings of the 4th international symposium on Information

processing in sensor networks, page 2, Piscataway, NJ, USA, 2005. IEEE Press.

[70] C. Gui and P. Mohapatra. Power conservation and quality of surveillance in

target tracking sensor networks. In MobiCom ’04: Proceedings of the 10th annual

international conference on Mobile computing and networking, pages 129–143, New

York, NY, USA, 2004. ACM.

[71] C. Gui and P. Mohapatra. Power conservation and quality of surveillance in

target tracking sensor networks. In MobiCom ’04: Proceedings of the 10th annual

international conference on Mobile computing and networking, pages 129–143, New

York, NY, USA, 2004. ACM.



BIBLIOGRAPHY 117

[72] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,

P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. Vigilnet: An

integrated sensor network system for energy-efficient surveillance. ACM Trans.

Sen. Netw., 2(1):1–38, 2006.

[73] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,

P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh. Vigilnet: An

integrated sensor network system for energy-efficient surveillance. ACM Trans.

Sen. Netw., 2(1):1–38, February 2006.

[74] Hill. Mica: a wireless platform for deeply embedded networks. Micro, IEEE,

22(6):12–24, Nov/Dec 2002.

[75] Honeywell security and custom electronic. Is-215t datasheet, 2008.

[76] IBM. Planet blue project overview.

http://www.research.ibm.com/compsci/planetblue.html.

[77] M. Ilyas, I. Mahgoub, and L. Kelly. Handbook of Sensor Networks: Compact Wireless

and Wired Sensing Systems. CRC Press, Inc., Boca Raton, FL, USA, 2004.

[78] Information Society Technology. Istag mission.

http://cordis.europa.eu/ist/istag.htm, 1999.
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