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Abstract

I moderni sistemi embedded sono equipaggiati con risorse hardware che con-

sentono l’esecuzione di applicazioni molto complesse come il decoding audio

e video. La progettazione di simili sistemi deve soddisfare due esigenze op-

poste. Da un lato è necessario fornire un elevato potenziale computazionale,

dall’altro bisogna rispettare dei vincoli stringenti riguardo il consumo di en-

ergia. Uno dei trend più diffusi per rispondere a queste esigenze opposte

è quello di integrare su uno stesso chip un numero elevato di processori

caratterizzati da un design semplificato e da bassi consumi. Tuttavia, per

sfruttare effettivamente il potenziale computazionale offerto da una batteria

di processori è necessario rivisitare pesantemente le metodologie di sviluppo

delle applicazioni. Con l’avvento dei sistemi multi-processore su singolo chip

(MPSoC) il parallel programming si è diffuso largamente anche in ambito

embedded. Tuttavia, i progressi nel campo della programmazione paral-

lela non hanno mantenuto il passo con la capacità di integrare hardware

parallelo su un singolo chip.

Oltre all’introduzione di multipli processori, la necessità di ridurre i consumi

degli MPSoC comporta altre soluzioni architetturali che hanno l’effetto di-

retto di complicare lo sviluppo delle applicazioni. Il design del sottosistema

di memoria, in particolare, è un problema critico. Integrare sul chip dei

banchi di memoria consente dei tempi d’accesso molto brevi e dei consumi

molto contenuti. Sfortunatamente, la quantità di memoria on-chip che può

essere integrata in un MPSoC è molto limitata. Per questo motivo è nec-

essario aggiungere dei banchi di memoria off-chip, che hanno una capacità

molto maggiore, come maggiori sono i consumi e i tempi d’accesso. La

maggior parte degli MPSoC attualmente in commercio destina una parte

del budget di area all’implementazione di memorie cache e/o scratchpad.



Le scratchpad (SPM) sono spesso preferite alle cache nei sistemi MPSoC

embedded, per motivi di maggiore predicibilità, minore occupazione d’area

e – soprattutto – minori consumi. Per contro, mentre l’uso delle cache è

completamente trasparente al programmatore, le SPM devono essere es-

plicitamente gestite dall’applicazione.

Esporre l’organizzazione della gerarchia di memoria all’applicazione con-

sente di sfruttarne in maniera efficiente i vantaggi (ridotti tempi d’accesso

e consumi). Per contro, per ottenere questi benefici è necessario scrivere le

applicazioni in maniera tale che i dati vengano partizionati e allocati sulle

varie memorie in maniera opportuna. L’onere di questo compito comp-

lesso ricade ovviamente sul programmatore. Questo scenario descrive bene

l’esigenza di modelli di programmazione e strumenti di supporto che sem-

plifichino lo sviluppo di applicazioni parallele.

In questa tesi viene presentato un framework per lo sviluppo di software per

MPSoC embedded basato su OpenMP. OpenMP è uno standard di fatto per

la programmazione di multiprocessori con memoria shared, caratterizzato

da un semplice approccio alla parallelizzazione tramite annotazioni (diret-

tive per il compilatore). La sua interfaccia di programmazione consente di

esprimere in maniera naturale e molto efficiente il parallelismo a livello di

loop, molto diffuso tra le applicazioni embedded di tipo signal processing e

multimedia.

OpenMP costituisce un ottimo punto di partenza per la definizione di

un modello di programmazione per MPSoC, soprattutto per la sua sem-

plicità d’uso. D’altra parte, per sfruttare in maniera efficiente il poten-

ziale computazionale di un MPSoC è necessario rivisitare profondamente

l’implementazione del supporto OpenMP sia nel compilatore che nell’ambiente

di supporto a runtime. Tutti i costrutti per gestire il parallelismo, la suddivi-

sione del lavoro e la sincronizzazione inter-processore comportano un costo

in termini di overhead che deve essere minimizzato per non compromet-

terre i vantaggi della parallelizzazione. Questo può essere ottenuto soltanto

tramite una accurata analisi delle caratteristiche hardware e l’individuazione

dei potenziali colli di bottiglia nell’architettura. Una implementazione del



task management, della sincronizzazione a barriera e della condivisione dei

dati che sfrutti efficientemente le risorse hardware consente di ottenere ele-

vate performance e scalabilità.

La condivisione dei dati, nel modello OpenMP, merita particolare atten-

zione. In un modello a memoria condivisa le strutture dati (array, matrici)

accedute dal programma sono fisicamente allocate su una unica risorsa di

memoria raggiungibile da tutti i processori. Al crescere del numero di

processori in un sistema, l’accesso concorrente ad una singola risorsa di

memoria costituisce un evidente collo di bottiglia. Per alleviare la pres-

sione sulle memorie e sul sistema di connessione vengono da noi studiate

e proposte delle tecniche di partizionamento delle strutture dati. Queste

tecniche richiedono che una singola entità di tipo array venga trattata nel

programma come l’insieme di tanti sotto-array, ciascuno dei quali può es-

sere fisicamente allocato su una risorsa di memoria differente. Dal punto di

vista del programma, indirizzare un array partizionato richiede che ad ogni

accesso vengano eseguite delle istruzioni per ri-calcolare l’indirizzo fisico di

destinazione. Questo è chiaramente un compito lungo, complesso e soggetto

ad errori. Per questo motivo, le nostre tecniche di partizionamento sono

state integrate nella l’interfaccia di programmazione di OpenMP, che è stata

significativamente estesa. Specificamente, delle nuove direttive e clausole

consentono al programmatore di annotare i dati di tipo array che si vuole

partizionare e allocare in maniera distribuita sulla gerarchia di memoria.

Sono stati inoltre sviluppati degli strumenti di supporto che consentono di

raccogliere informazioni di profiling sul pattern di accesso agli array. Queste

informazioni vengono sfruttate dal nostro compilatore per allocare le par-

tizioni sulle varie risorse di memoria rispettando una relazione di affinità tra

il task e i dati. Più precisamente, i passi di allocazione nel nostro compila-

tore assegnano una determinata partizione alla memoria scratchpad locale

al processore che ospita il task che effettua il numero maggiore di accessi

alla stessa.
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Chapter 1

Introduction

1.1 Background

The scaling limitations of uniprocessors have led to an industry-wide turn towards chip

multiprocessor (CMP) systems. Today, with the rise of multicore processors, parallel

computing is everywhere. Multicore architectures have quickly spread to all computing

domains, from personal computers to high performance supercomputers to embedded

systems (1). Focusing on the latter, advances in multicore technology have significantly

increased the performance of embedded Multiprocessor Systems-on-Chip (MPSoCs).

As more and more hardware functions are integrated on the same device, embedded

applications are becoming extremely sophisticated (2). Unfortunately, knowledge and

experience in parallel programming have not kept pace with the trend towards parallel

hardware. Multicore architectures require parallel computation and explicit manage-

ment of the memory hierarchy, both of which add programming complexity and are

unfamiliar to most programmers. This increased complexity is making the production

of software the critical path in embedded system development (3).

This scenario calls for programming models and tools that aim at facilitating soft-

ware development for embedded MPSoCs. One dominant form of parallelism in the

embedded systems domain (e.g. signal processing applications) is data-level parallelism,

where the same instruction is performed on different pieces of data in parallel following

the Single Instruction Multiple Data model of execution.

This kind of parallelism is typically found within loop nests in an application, and

is amenable – to some extent – to automatic compiler parallelization. Compiler-based

1



1. INTRODUCTION

approaches to parallel application development have the key benefit that no burden of

parallelization is imposed on the programmer. On the other hand, the applicability

of this approach is usually limited to a set of applications with evident data-parallel

regions, or to signal processing applications whose behaviors are relatively static and

easily analyzable with the data-flow analysis methods.

A widely adopted alternative approach is that of extending standard languages from

the uniprocessor domain, such as C, with specific constructs to express parallelism.

Language-extension approaches require that the programmer provides information on

where and how to parallelize a program by means of annotations.

OpenMP (11) is a well-known example of language extension with annotations,

which has recently gained much attention in the embedded MPSoC domain. OpenMP

is a de-facto standard for shared memory parallel programming. It consists of a set of

compiler directives, library routines and environment variables that provide a simple

means to specify parallel execution within a sequential code. The adoption of OpenMP

as a programming model for embedded application development has three main bene-

fits:

1. It allows programmers to continue using their familiar programming model, to

which it adds only a little overhead for the annotations.

2. OpenMP is very efficient at expressing loop-level parallelism, which is an ideal

target for the considered class of embedded applications.

3. The OpenMP compiler is relieved from the burden of parallelism extraction and

can focus on exploiting the specified parallelism according to the target platform.

The OpenMP standard is very mature, but since it was originally designed for Sym-

metric Multi Processors (SMP) it assumes a uniform shared memory. On the contrary,

one of the distinctive features of embedded MPSoCs is their complex memory subsys-

tem. The chip has a limited area budget for on-chip memory that must be augmented

by bulk commodity off-chip memory (3) (4). On-chip memory is often implemented as

a set of scratchpad memories (SPM), each of which is tightly coupled to a processing

element. Most of today’s state-of-the-art processors for mobile and embedded systems

feature similar on-chip memory organization (5) (6) (7) (8) (9) (10). A widespread

memory model abstraction, which matches the described physical memory design, is

2



1.2 Thesis Contributions

the Partitioned Global Address Space (PGAS). The PGAS model assumes a set of

processors (nodes), each of which has its own local memory. Additionally, a single,

globally addressable memory is provided from a portion of the local memory on each

node. While accessing the global memory is more expensive than local memory ac-

cess, it can be done without interacting with other nodes. Indeed – while they may

be provided – explicit communication primitives (traditional send and receive opera-

tions) are unnecessary under the PGAS model since nodes may read and write shared

data independently. Contention for access to global memory creates synchronization

issues. A PGAS system must provide shared, atomic locking primitives to provide

synchronization features (e.g. test-and-set semaphores).

Implementing the OpenMP memory model on top of a PGAS MPSoC is non triv-

ial, and requires a careful design to take into account the NUMA organization of the

memory hierarchy. Furthermore, the OpenMP execution model assumes homogeneous

resources (processors and memories) when partitioning the workload among available

threads. NUMA memory breaks this assumption, as accessing shared data may re-

sult in different access latencies from different threads. Array partitioning techniques

are required to distribute shared data among appropriate memory segments in the

PGAS. However, current programming languages and runtime systems do not provide

the mechanisms necessary to efficiently exploit local memories to each core.

1.2 Thesis Contributions

In this thesis we first carry out a thorough study of the implementative challenges to

support the SIMD/OpenMP parallel execution model on an embedded PGAS MPSoC.

We then present an extended OpenMP API that augments the standard interface with

features to expose the memory system at the application level. More specifically we

make the following contributions.

• The design of API features to trigger data distribution and array partitioning,

and their integration in the standard OpenMP programming interface

• The implementation of compiler support to instrument accesses to distributed

arrays in the program with address translation routines for array partition local-

ization in memory

3



1. INTRODUCTION

• The implementation of a lightweight lookup mechanism based on compiler-generated

metadata for low-cost array references

• The definition and implementation of allocation passes that exploit profile infor-

mation on array access count to determine efficient placement of array partitions

in memory

Moreover, the described techniques have been extensively evaluated on generic and

representative PGAS MPSoC architectural templates. An initial evaluation of the

applicability of array partitioning techniques to MPSoCs with vertically stacked (3D)

memory is also provided.

1.3 Thesis Overview

We describe in this section the organization of the remainder of this thesis.

Automatic compiler parallelization identifies time-consuming loops and examines

their dependencies to find out data-parallel regions. Parallel loop execution then lever-

ages the SIMD model of computation, where the same loop code is assigned by the

compiler to parallel threads which operate on separate portions of the data space. The

SIMD execution model requires that threads synchronize on a global barrier after par-

allel region completion and prior to going ahead in the program. To achieve this goal

compilers generate code that invokes the services of a runtime library where all of the

support for thread creation, management and synchronization is implemented. The

design of such a support library for an embedded shared memory MPSoC is presented

in Chapter 2. Lightweight barrier implementation is also discussed and extensively

evaluated, investigating the impact of library overhead on the parallelization granular-

ity that can be exploited by the compiler.

OpenMP leverages similar kind of parallelism, but the approach is different. The

programmer provides hints on where and how to parallelize the code, and the compiler

focuses on generating optimized code for the specific platform. However, this goal can-

not be achieved by a translator only, since OpenMP directives only allow to convey

to the compiler high-level information about parallel program semantics. Most of the

4
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target hardware specificities are enclosed within the OpenMP runtime environment,

which is implemented as a library into which the compiler inserts explicit calls. The

many peculiarities of MPSoC hardware call for a custom design of the runtime library.

We present in Chapter 3 the implementation of an OpenMP compiler and runtime

environment for a generic embedded MPSoC template with explicitly managed mem-

ory hierarchy with NUMA organization. We found that an efficient exploitation of

the memory hierarchy is key to achieving a scalable implementation of the OpenMP

constructs.

Efficiently mapping loop-level parallelism in the OpenMP model requires parallel

threads to execute on top of uniform resources. This assumption is not immediately

applicable to PGAS MPSoCs, where accessing non-local memories is subject to NUMA

latencies. To effectively address this issue it is necessary to partition shared array

data. Each array slice must then be placed on the memory closest to the thread which

has highest affinity with that slice. We describe in Chapter 4 the design of suitable

OpenMP extensions to trigger array partitioning, as well as the necessary compiler

and runtime support. The techniques have been extensively evaluated on an embedded

PGAS MPSoC with explicitly managed local SPMs.

In Chapter 5 we discuss the applicability of array partitioning techniques to MP-

SoCs with vertically stacked DRAM memory. In the considered architectural template

the effect of NUMA latencies is even more pronounced, which calls for revisited com-

piler support.

Finally, in Chapter 6 we describe how our enhanced OpenMP programming frame-

work can further be extended to deal with different sources of heterogeneity in MP-

SoCs, namely non-uniform processing resources due to core aging effects. We present

techniques which leverage a partial recovery effect inherent in the considered aging

phenomenon, Negative Bias Temperature Instability (NBTI), to schedule work to pro-

cessor so as to maximize system lifetime.

Chapter 7 summarizes our achievements.
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Chapter 2

Loop Parallelism and Barrier

Synchronization

Many MPSoC applications are loop-intensive and amenable to automatic parallelization

with suitable compiler support.

In this chapter we describe the role of the runtime support library to parallelizing

compilers. Such a compiler is capable of extracting loop-level parallelism by assigning

independent iterations to available threads. After proper loop analysis and transforma-

tion has been applied, the compiler generates code that synergistically interacts with

the runtime library to orchestrate parallel execution.

One of the key components of any compiler-parallelized code is barrier instructions

which are used to perform global synchronization across parallel threads. The run-

time library also exposes synchronization facilities to the compiler. From the point

of view of performance it is important that the cost for inter-processor synchroniza-

tion is minimized to take advantage of the fine-grained parallelism enabled by compiler

optimization.

2.1 Introduction

One of the key problems to be addressed in order to harness the potential computa-

tional power of embedded MPSoCs is code parallelization, which can be described as

decomposing the application code into parallel threads which are then assigned to par-

allel cores for execution. Parallelizing an application requires skilled and knowledgeable

9



2. LOOP PARALLELISM AND BARRIER SYNCHRONIZATION

programmers, and involves several complex tasks such as concurrency extraction, data

partitioning and code generation for thread management, synchronization and commu-

nication. Compiler support for automated code parallelization can be therefore very

useful in practice.

Many array-intensive embedded applications are amenable to automatic paralleliza-

tion with suitable compiler support, since most of the array processing kernels are

typically implemented as a series of loop nests which the compiler can analyze.

One of the key components of any compiler-parallelized code is barrier instructions,

which are used to perform global synchronization across parallel processors. As com-

pared to programmer-parallelized codes, compiler-parallelized codes can contain larger

number of barriers, mainly because a compiler has to be conservative in parallelizing

an application (to preserve the original sequential semantics of the program), and this

means, in most cases, inserting extra barrier instructions in the code.

Apart from the performance overheads they bring, barriers cause significant power

consumption as well (1), and this power cost increases with the number of cores.

In the remainder of the chapter we describe the implementation of an MPSoC-

suitable runtime support library targeted by a parallelizing compiler frontend. Partic-

ular emphasis is given to barrier implementation, and to the evaluation of synchroniza-

tion cost induced by compiler-parallelized codes.

2.2 Background and Related work

Different schemes have been proposed for loop parallelization within different domains.

In the context of high-end computing, fundamental relevant studies include (5) (6)

(7) (8). Xue et al (9) explore a resource partitioning scheme for parallel applications

in an MPSoC. Ozturk et al (10) propose a constraint network based approach to code

parallelization for embedded MPSoCs, and Lee et al. (11) present a core mapping algo-

rithm that addresses the problem of placing and routing the operations of a loop body.

On the side of barrier synchronization many related work propose hybrid hardware-

software approaches to achieve both fast synchronization and power savings. Liu et

al (1) discuss an integrated hw/sw barrier mechanism that tracks the idle times spent

by a processor waiting for other processors to get to the same point in the program.

Using this knowledge they scale the frequency of the cores thus achieving power savings

10
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without compromising the performances. Sampson et al (12) (13) present a mechanism

for barrier synchronization on CMPs based on cache-lines invalidation. They ensure

that all threads arriving at a barrier require an unavailable cache line to proceed, and,

by placing additional hardware in the shared portions of the memory subsystem, they

starve their requests until they all have arrived. Li and al (14) present a mixed hw/sw

barrier mechanism to saving energy in parallel applications that exhibit barrier syn-

chronization imbalance. Their approach transitions the processors arriving early at the

barrier to a low power state, and wake them back up when the last processor gets there.

Complete surveys on synchronization algorithms for Shared Memory Multiprocessors

can be found in Kumar et al (15) and Mellor-Crummey (16).

2.3 Target Architecture

 

 

RISC 32 

I$ D$ SPM 

 

 

RISC 32 

I$ D$ SPM 

 

 

RISC 32 

I$ D$ SPM 

Figure 2.1: Shared memory architecture.

Our target MPSoC architectural template is depicted in Fig. 2.1. It consists of

a configurable number of processing elements (PEs), based on a RISC-32 core and

featuring on-tile instruction and data cache, plus scratchpad memory (SPM). Caches

are globally non-coherent (see below). All cores can communicate through a shared

memory device which is mapped in the global address space. Software synchronization

primitives are built on top of a dedicated hardware semaphore device. This synchro-

nization hardware can be viewed as a bank of memory mapped registers which are
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accesses with test-and-set semantics. More specifically, reading from one location in

this memory has the following semantic: reading a 0 from a register returns the value

(lock free) and atomically updates the value to 1 (lock acquired).

In this architectural template, cache coherency is not supported in hardware. To

guarantee data coherence from concurrent multiprocessor accesses shared memory can

be configured to be non-cacheable but in this case it can only be inefficiently accessed

by means of single transfers. Cacheability of the shared memory can be toggled, but

in this case explicit software-controlled cache flush operations are needed.

2.4 Software Infrastructure

Figure 2.2 depicts our toolchain. The application input code is a sequential C pro-

gram. As a first step, the program is processed by a parallelizing compiler frontend

based on the SUIF technology. Here data dependency analysis is applied to determine

which loops can be executed in parallel. After a parallel loop nest the compiler inserts a

barrier instruction. This compiler-generated code relies on the synchronization features

provided by our runtime library. The library is cross-compiled for the target architec-

ture with a standard GCC compiler along with the transformed application code. The

executable image is then loaded into our simulator.

Figure 2.2: Compilation flow.
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2.4 Software Infrastructure

2.4.1 Parallelizing Compiler Front-End

A vast majority of data-intensive embedded applications are structured as a series of

loop nests, each operating on large datasets. The most natural way of parallelizing such

an application is to distribute loop iterations across parallel processors. The compiler

front-end first extracts data dependencies; each data dependence can be represented

using a vector, called the data dependence vector. When all data dependence vectors

are considered together, the compiler figures out (conservatively) which loops in the

nest can be executed in parallel. Specifically, a loop can be run parallel if it does not

carry any data dependency.

Once candidate loop nests for parallel execution have been identified, the compiler

generates code that partitions the workload assigned to each processor based on its

physical ID, as shown in the green boxes in Fig. 2.3 (sequential loop → parallel loop).

Beyond the end of the loop code the compiler inserts a global synchronization call. The

purpose of this instruction is to prevent any processor to get ahead of the other proces-

sors and start executing the next piece of code in execution. Indeed, this may violate

data dependences and ultimately change the original semantics of the application.

Figure 2.3 also describes how the parallelizing compiler alters the execution flow

of the original sequential program to enable parallel execution. Loop code is extracted

from its original location in the program and is moved into a compiler-generated func-

tion (function outlining). Parallelized loop nests are replaced with calls to the doall

function in the runtime environment.

2.4.2 Runtime Library

The support library orchestrates parallel execution by synchronizing code execution on

the different cores. To keep the overhead for the execution of runtime services as small

as possible the library is designed as a standalone (OS-less) middleware layer. A static

task-to-processor mapping approach is adopted, where a single thread executes on each

core.

The library implements the main function, which is executed by every processor.

After a common initialization step, the processor with the highest ID is designated as

the controller, while the other processors are promoted as workers, available for parallel

computation.

13
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PARALLEL PROGRAM ENTRY POINT 

int start() 

{ 

  int i,j; 

  int A[M][N]; 

 

  seq_func_1 (); 

 

  doall (parallel_func_1); 

 

  seq_func_2 (); 

  return 0; 

} 

 

int parallel_func_1 () 

{ 

 

 

 

 

 

 

} 

  int chunk = M/NUM_PROCS;      parallel loop 

 

  for (i=ID*chunk; i<(ID*(chunk+1)); i++) 

    for (j=0; j<N, j++) 

      A[i][j] = 1.0; 

PARALLEL PROGRAM 

int main() 

{ 

  int i,j; 

  int A[M][N]; 

 

  seq_func_1 (); 

 

 

 

  

 

 

  seq_func_2 (); 

  return 0; 

} 

sequen!al loop 

  for (i=0; i<M; i++) 

    for (j=0; j<N, j++) 

      A[i][j] = 1.0; 

 

SERIAL PROGRAM 

/* Global parallel function pointer */ 

void *par_task; 

 

int main () 

{ 

  initialize (); 

  if (ID == NUM_PROCS) 

 

 

 

 

  else 

 

 

 

 

 

 

 

 

 

  return 0; 

} 

 

int doall(void *func) 

{ 

  par_task = func; 

 

  barrier (); 

  (*par_task)(); 

  barrier (); 

} 

 {         controller 

   start (); 

 }  

 {           worker 

   while (WORK LEFT TO DO) 

   { 

     barrier (); 

     (*par_task)(); 

     barrier (); 

   } 

 }  

RUNTIME LIBRARY 

Figure 2.3: Original serial code and transformed parallel code. Interaction between

parallel program and runtime library.

The main function in the original program is renamed by the compiler as start.

After library initialization the execution flow on the controller jumps to start (red

box), thus initiating target program execution, while workers enter a loop where they

wait on a barrier for the controller to provide parallel work to do (blue box).

When a parallel loop is encountered by the controller, a call to doall is issued.

Here the controller joins the barrier where workers are waiting, thus initiating parallel

execution on every processor. The outlined functions containing the code of parallel

loops are referenced by the library by means of a global function pointer.
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2.4.3 Barrier Implementation

The library exports a set of synchronization primitives, namely locks (mutexes) and

barriers, which are implemented on top of the test-and-set hardware semaphores de-

scribed in Sec. 2.3. Mutex variables are instantiated as pointers to the semaphore

memory. This allows to straightforwardly implement mutex lock and unlock as simple

read/write operations.

/∗ Point to the base address o f semaphore memory ∗/

volat i le char ∗mutex = SEMAPHORE BASE;

/∗ Acquire l o c k ∗/

void mutex lock ( int l ock ID )

{

while (mutex [ lock ID ] ) ;

}

/∗ Release l o c k ∗/

void mutex unlock ( int l ock ID )

{

mutex [ lock ID ] = 0 ;

}

A very simple and widely adopted barrier algorithm is the centralized shared barrier.

This kind of barrier relies on shared entry and exit counters, which are atomically

updated through lock-protected write operations.

/∗ Increase ENTRY count ∗/

mutex lock (ENTRY LOCK ID) ;

ent ry count++;

mutex unlock (ENTRY LOCK ID) ;

/∗ Wait f o r a l l p roces sor s to enter ∗/

while ( ent ry count < NUM PROCS) {}

/∗ Increase EXIT count ∗/

mutex lock (EXIT LOCK ID ) ;

ex i t c oun t++;

/∗ Last a r r i v i n g processor r e s e t s f l a g s ∗/

i f ( ex i t c oun t == NUM PROCS)

{

entry count = 0 ;

ex i t c oun t = 0 ;

}

mutex unlock (EXIT LOCK ID ) ;

/∗ SENSE REVERSAL: Wait f o r a l l p roces sor s to e x i t ∗/

while ( ent ry count < NUM PROCS) {}
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In a centralized barrier algorithm, each processor updates a counter to indicate that

it has arrived at the barrier and then repeatedly polls a flag that is set when all threads

have reached the barrier. Once all threads have arrived, each of them is allowed to

continue past the barrier. The flag can be a sense reversal flag, to prevent intervention

of adjacent barrier operations. A serious bottleneck arises with this algorithm, since

busy waiting to test the value of the flag occurs on a single, shared location. Moreover,

since our lock implementation accesses the semaphore memory through the intercon-

nect, operations that require mutually exclusive access to shared resources introduce

additional traffic on the network.

Compiler-generated parallel code may include more barriers than necessary, so it

is important to reduce the cost of a single barrier operation to a minimum. To this

aim we consider a Master-Slave barrier algorithm. In this approach the controller is

responsible for locking and releasing workers. This is accomplished in two steps. In the

Gather phase, the controller waits for workers to notify their arrival on the barrier.

This operation is executed without resource contention, since every worker signals its

status on a separate flag, e.g. separate locations of an array.

int gather [NWORKERS] ;

After this notification step, workers enter a waiting state, where they poll on a private

location.

/∗ Each processor has a p r i v a t e copy o f t h i s v a r i a b l e ∗/

int r e l e a s e ;

In the Release phase of the barrier, the controller broadcasts a release signal on each

slave’s poll flag.

Each worker notifies its presence on the barrier through the Worker Enter function,

by writing at the location corresponding to its id in the gather array .

void Worker Enter ( ) {

int ent = r e l e a s e ;

gather [PROC ID] = 1 ;

while ( ent == r e l e a s e )

; /∗ Busy wait on a p r i v a t e v a r i a b l e ∗/

}

The value of the release flag is read upon entrance, then busy waiting is executed

until this value is changed by the controller. The Gather and Release stages are initiated
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by the controller through the Controller Gather and Controller Release functions

shown below.

/∗ Gather workers on the ba r r i e r ∗/

void Contro l l e r Gather ( )

{

int i ;

for ( i =0; i <(NUM PROCS−1); i++)

while ( ! gather [ i ] )

; /∗ Wait f o r current worker to a r r i v e ∗/

}

/∗ Release workers ∗/

void Cont r o l l e r Re l e a s e ( )

{

for ( i =0; i <(NUM PROCS−1); i++)

{

int ∗ r e l = <point to i−th p ro c e s s o r r e l a s e f l ag > ∗/

(∗ r e l )++;

}

}

The Master-Slave barrier algorithm is expected to eliminate the bottleneck implied

by the use of shared counters. Authors of (2) leverage a similar barrier implemen-

tation. Anyhow, the traffic generated by polling activity is still injected through the

interconnect towards shared memory locations, potentially leading to congestion. This

situation may easily arise, for example, when the application shows load imbalance in

a parallel region.

To address this issue we divert all the polling traffic towards local memories to

every core. This can be done by exploiting a distributed implementation of the barrier

algorithm, i.e. allocating each of the slave’s poll flag onto their local L1 SPM, and

using a message passing-like approach for signaling. In this way, the numer of messages

actually injected in the interconnect is limited to 2 × (N − 1), where N is the number

of cores participating in a barrier operation.

2.5 Experimental Evaluation

The automatic parallelization framework described in this chapter has been analyzed in

details by means of a cycle-accurate virtual platform(3) that models all essential system

components. The fundamental parameters for our system are shown in table 2.1.
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processor ARM7, 200Mhz

data cache 4KByte, 4 way set associative

latency 1 cycle

instruction cache 8KByte, direct mapped

latency 1 cycle

scratchpad memory 16KByte

latency 1 cycle

shared memory latency 2 cycles

AMBA AHB 32 bit, 200Mhz, arbitration 2 cycles

Table 2.1: Architectural components details

2.5.1 Barrier cost

In this section we compare the performance of the three barrier implementations de-

scribed in Sec. 2.4.3. The first one is a centralized shared barrier with sense reversal.

The second is a Master-Slave barrier with flags allocated in the shared memory. The

third is a distributed Master-Slave barrier with flags spread among SPMs. The direct

comparison of these barriers is shown in Fig. 2.4.
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Figure 2.4: Cost of barrier algorithms with increasing number of cores.

The experiments have been carried out by executing barrier code only on the plat-

form. No other form of communication between cores takes place, thus allowing to

estimate how the algorithm scales with increasing traffic for synchronization only.
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The centralized shared barrier provides the worst results. The cost to perform

synchronization across 16 cores with this algorithm is around 4500 cycles. The behavior

of the barrier is linearly dependent on the number of cores N, so we can compute a

dependency of ≈ 270×N from linear regression. The high cost of this barrier algorithm

is not surprising, and is in fact cheaper than similar implementations. As a direct term

of comparison we report here results published by Jeun et al. (4) for two variants of

the centralized barrier implementation on an embedded MPSoC, which show trends of

≈ 725 × N (original) and ≈ 571 × N (optimized).

The master-slave barrier, as expected, mitigates the effects of the bottleneck due

to contended resources. The cost for each of the phases of the algorithm is plotted in

Figure 2.5.
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Figure 2.5: Shared and distributed implementations of the Master-Slave barrier.

Even when barrier flags are allocated in the shared memory the cost for synchroniz-

ing 16 cores is reduced to ≈ 3000 cycles (gather + release). Linear regression indicates

a slope of ≈ 150 × N . Employing a distributed algorithm allows to completely remove

the traffic due to busy-waiting. This ensures the lowest-cost implementation between

those envisioned. Synchronization among 16 cores costs around 1100 cycles, with a

tendency of ≈ 56 × N .
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2.5.2 Runtime library performance

To investigate the cost imposed over program execution time by runtime services two

synthetic patterns are adopted, to stress representative corner cases in which a pro-

gram kernel is either computation-dominated or communication-dominated (i.e. cpu-

or memory-bound). The simulations sweep both in the number of processors and in

the size of data. Performance plots show the breakdown of parallel code execution on

different processor counts into three main contributions:

• Init time: Time required for initialization library routines to complete

• Synchronization time: Time spent on barriers

• Effective execution time: Time spent over parallel computation

Each of these contributions was also measured in an ideal scenario, and the difference

between these numbers and the actual timings collected from the benchmark is referred

to as an overhead in the plots. We model the ideal cases as follows.

1. Time spent in barrier routines increases non-linearly with the number of cores

because of the increased contention on the shared bus. Since we are only inter-

ested in time increase due to synchronization (i.e. polling activity), we force the

controller to gather workers only after they have already entered the barrier. In

this case the controller has complete ownership of the bus, and only needs to

check each flag once.

2. Ideal parallel run-time is estimated by executing on a single processor the share

of work it would be assigned if the program was parallelized to evenly divide the

workload among n cores. So, for example, if eight processors are to process a

vector of 32 elements in parallel, each core would process 4 data elements. The

ideal execution time is that a single CPU would take to process a vector of 4

elements.

2.5.3 Communication-Dominated Benchmark

The first set of experiments leverages a square matrix filling kernel, and serves the

purpose of investigating how our runtime services and barrier implementation behave

in terms of scaling and cost. The impact of the dataset size (i.e. the number of
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Figure 2.6: Performance results for communication dominated applications (matrix

SIZE=32).

matrix rows/columns), has also been taken into account in the experiments. The

matrix size is parameterized with a SIZE macro. No computation is performed on array

elements, so communication towards memory is expected to become the bottleneck

limiting parallelization speedup.

for ( i=SIZE∗ id / nprocs ; i<SIZE∗( id +1)/nprocs ; i++)

for ( j =0; j<SIZE ; j++)

A[ i ] [ j ] = 1 . 0 ;

The plot in Fig. 2.6 shows the results gathered for matrix SIZE = 32. It depicts

the breakdown of the different contributions, measured as the overall number of cycles

taken by each operation. Initialization represents the number of cycles needed for the

library initialization routines to complete.

Synchronization cost is split into two contributions: ideal synchronization cycles and

relative overhead (the difference between measured cycles and ideal cycles). The picture

shows how the overhead grows with the number of cores. This is due to the additional

bus traffic generated by the cores polling over shared synchronization structures. This

kind of overhead is strongly dependent on the balancing of parallel threads. With

perfectly balanced workload all threads enter the barrier at almost the same time,

thus leading to ideal synchronization time. On the contrary, in the worst case a single

thread executes for a longer time than the others, which poll on shared barrier flags

thus generating the discussed overhead.

Ideal parallel execution time follows the intuitive trend of almost halving with the

doubling of the number of processors, but actual measurements show an execution-time

overhead that severely limit the potential speedup.
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All of the discussed sources of overhead are tangible with this set of experiments

due to the very small dataset size, which requires a very short program execution time.

This is an important result to understand how fine the granularity of parallel tasks can

be made before the overhead for parallelization support in our library overwhelms the

parallel speedups.

For processor counts up to 4 parallel execution scales well even for such very fine

granularity. For 8 processors, however, the overhead becomes predominant. Inter-

processor communication on our platform travels through a shared bus, which is known

to be a non-scalable interconnection medium. For this reason, when the number of

cores increases the bus gets congested and the requests are serialized, thus lengthening

parallel execution. The library has been designed keeping this limitation in mind. From

Fig. 2.6 it is possible to see, for example, that the distributed implementation of the

Master-Slave Barrier significantly mitigates the synchronization overhead.

On the other hand, nothing can be done from within the library to mitigate the

parallel execution overhead, which depends on the contention for shared data in the

program. A more scalable interconnection architecture, such as a crossbar, or a Network

on Chip (NoC), would solve this issue, as it will be shown in the following chapters.

Finally, the cost for library initialization increases with the number of cores. How-

ever, since initialization only occurs at system startup this cost is fixed, and becomes

quickly negligible as the granularity of parallel tasks increases.
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Figure 2.7: Performance results for communication dominated applications (matrix

SIZE=1024)

To demonstrate this we repeat the same experiments considering a matrix SIZE

= 1024. Results for this set of tests are reported in Fig. 2.7. The cost relative to

initialization becomes completely negligible, and so does synchronization cost. Parallel
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execution time overhead, on the other hand, is still there. As already explained, this

depends on the communication-dominated nature of the benchmark and on the limited

capabilities of the shared bus in managing the traffic generated by an increasing number

of cores.

2.5.4 Computation-Dominated Benchmark

The second set of experiments aims at investigating the cost for library support to

parallelization in computation-dominated situations with very few accesses to memory

resources. A vector is read in parts from shared memory, which is now declared as

cacheable, and a cycle of a variable number of iterations performs several sums on this

data. Reducing the accesses to shared memory and spending the largest fraction of

parallel time in doing computation should allow linear speedups, as long as the library

overheads are not significant. To verify this, we run a set of experiments where both

the size of the array and the number of kernel iterations are parameterized – with SIZE

and ITER, respectively.

for ( i =0; i<ITER; i++)

for ( j=SIZE∗ id / nprocs ; j<SIZE∗( id +1)/nprocs ; j++)

tmp += A[ j ] ;

return tmp

Figure 2.8 shows the results for the execution of this benchmark under varying

values of ITER and SIZE. For tiny array size (32x32) the overheads for synchronization
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Figure 2.8: Performance results for computation dominated parallel execution.

and initialization are non-negligible when the number of cores increases. Furthermore,

a small number of iterations (32) exhibits a lenghtening (w.r.t. serial execution) of
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2. LOOP PARALLELISM AND BARRIER SYNCHRONIZATION

parallel execution time on a single core due to a cold-cache effect. When the array

SIZE is increased to 256, the library overheads get completely negligible. Similarly, the

cold-cache effect disappears when ITER is increased to 256. It has to be pointed out

that this is very fine data and workload granularity, thus confirming that our library

implementation implies only a very little overhead.

2.5.5 JPEG Decoding

In this section we present the results of a real multimedia benchmark: a parallelized

version of the JPEG decoding algorithm. After the initialization, performed by every

core, the master core starts computing the sequential part of the algorithm (Huffman

decoding) while the slaves wait on a barrier. Then the computation is split between

cores. Specifically, each CPU executes a luminance dequantization and a inverse DCT

filter over a different slice of the image. Each of these two parallel kernels is synchro-

nized with a barrier. Results are shown in Fig. 2.9. The time taken by the master core

0

2

4

6

8

10

12

14

Serial 1 2 4 8

M
c
y

c
le

s

Centralized Shared Barrier

Ex overhead

Id execu!on

Serial region

Synchroniza!on

Ini!aliza!on

0

2

4

6

8

10

12

14

Serial 1 2 4 8

M
c
y

c
le

s

Master-Slave Barrier (SHARED)

Ex overhead

Id execu!on

Serial region

Synchroniza!on

Ini!aliza!on

0

2

4

6

8

10

12

Serial 1 2 4 8

M
c
y

c
le

s

Master-Slave Barrier (DISTRIB)

Ex overhead

Id execu!on

Serial region

Synchroniza!on

Ini!aliza!on

Figure 2.9: Performance results for parallel JPEG decoding

to execute sequential parts of the application is plotted as well. Initialization and syn-

chronization time is negligible due to the overall duration of the program and the small

number of barrier invocations. The behavior of the parallel portion of code follows

the one we already discussed for the computation-dominated benchmark. During this

section of the benchmark the cores access concurrently to shared data1, thus limiting

effective scalability to up to 4 cores. A larger number of processors would perform

worse on this shared bus-based architecture. Also, the execution time of the sequential

part increases drastically for more than 4 cores. This extra time is due to the polling

1As already discussed allowing these data to be cached would reduce this overhead
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activity of workers on the barrier while the master runs the sequential code. As dis-

cussed earlier, this problem can be addressed from the library by adopting a distributed

implementation of the Master-Slave barrier algorithm.

2.6 Conclusion

The advent of multicore processors in the embedded domain introduced radical changes

in software development practices. The many inherent difficulties in the parallelization

process call for tools that aid the application developer to accomplish this complex

task.

Compiler support to automatic program parallelization is typically focused on the

analysis and partitioning of loop nests which do not carry data dependencies. Advanced

techniques can also be applied to transform loop nests so as to remove dependencies

prior to parallelization.

This kind of parallelism is then mapped onto a SIMD model of computation, where

the same loop code is assigned by the compiler to parallel threads which operate on

separate portions of the data space. The SIMD execution model requires that threads

synchronize on a global barrier after parallel region completion and prior to going ahead

in the program. To achieve this goal compilers generate code that invokes the services

of a runtime library where all of the support for thread creation, management and

synchronization is implemented.

In this chapter we described a support library for the execution of compiler-generated

parallel code on an embedded shared memory MPSoC. Global synchronization is achieved

by means of lightweight barriers, which implementation has been extensively evaluated

using communication and computation intensive synthetic program patterns as well as

a real multimedia application.

Results indicate excellent scalability of the library services, whereas a detailed per-

formance analysis shows that the main performance blocker is the bus contention. This

interconnection medium limits the applicability of compiler-parallelized programs to

up to 8-core architectural templates for CPU-bounded kernels, and only 4-core for

memory-bounded kernels. While the results emphasize the importance of low cost bar-

riers with increased number of processors, they also clearly indicate that the library

never becomes a bottleneck in parallel execution. This allows to apply compiler-enabled
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2. LOOP PARALLELISM AND BARRIER SYNCHRONIZATION

fine-grained parallel programs on architectural templates where a bigger number of pro-

cessors is interconnected with a more scalable medium, such as a crossbar, or a Network

on Chip.

In the following chapters we will describe the integration of the library support

here presented in a widely adopted parallel programming model for shared memory

multiprocessors: OpenMP. The implementation of the compiler and runtime support for

this programming framework will specifically target more scalable MPSoC templates.
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Chapter 3

Evaluating OpenMP support

costs on MPSoCs

The ever-increasing complexity of MPSoCs is making the production of software the

critical path in embedded system development. Several programming models and tools

have been proposed in the recent past that aim at facilitating application development

for embedded MPSoCs. OpenMP is a mature and easy-to-use standard for shared mem-

ory programming, which has recently been successfully adopted in embedded MPSoC

programming as well. To achieve performance, however, it is necessary that the imple-

mentation of OpenMP constructs efficiently exploits the many peculiarities of MPSoC

hardware. In this chapter we present an extensive evaluation of the cost associated with

supporting OpenMP on such a machine, investigating several implementative variants

that efficiently exploit the memory hierarchy. Experimental results on different bench-

mark applications confirm the effectiveness of the optimizations in terms of performance

improvements.

3.1 Introduction

Advances in multicore technology have significantly increased the performance of em-

bedded Multiprocessor Systems-on-Chip (MPSoCs). As more and more hardware func-

tions are integrated on the same device, embedded applications are becoming extremely

sophisticated (4) (12). This increased complexity is making the production of software

the critical path in embedded system development. Embedded software design for a
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3. EVALUATING OPENMP SUPPORT COSTS ON MPSOCS

multicore platform involves parallel programming for heterogeneous multiprocessors,

under performance and power constraints (17). Being able to satisfy such constraints

requires programmers to deal with difficult tasks such as application/data partitioning

and mapping onto suitable harware resources. Efficiently tailoring an application to the

underlying ISA, communication architecture and memory hierarchy is key to achieving

performance.

Several programming models and tools have been proposed in the recent past that

aim at facilitating application development for embedded MPSoCs. A widely adopted

approach is that of extending standard languages from the uniprocessor domain, such

as C, with specific constructs to express parallelism. Language-extension approaches

require that the programmer provides information on where and how to parallelize a

program by means of annotations.

OpenMP (18) is a well-known example of language extension with annotations,

which has recently gained much attention in the embedded MPSoC domain. OpenMP

is a de-facto standard for shared memory parallel programming. It consists of a set of

compiler directives, library routines and environment variables that provide a simple

means to specify parallel execution within a sequential code. It was originally designed

as a programming paradigm for Symmetric Multi-Processors (SMP), but recently many

implementations for embedded MPSoCs have been proposed (8) (16) (10) (13) (14).

There are two main benefits in the OpenMP approach. First it allows programmers

to continue using their familiar programming model, to which it adds only a little over-

head for the annotations. Second, the OpenMP compiler is relieved from the burden of

parallelism extraction and can focus on exploiting the specified parallelism according to

the target platform. An OpenMP program is retargetable as long as there exists an as-

sociated OpenMP compiler for the target multicore processor. With this respect, since

GNU GCC adopted the GOMP OpenMP implementation (1), many GCC-enabled em-

bedded MPSoCs boast an OpenMP translator. However, platform-specific optimization

cannot be achieved by a translator only, since OpenMP directives only allow to convey

to the compiler high-level information about parallel program semantics. Most of the

target hardware specificities are enclosed within the OpenMP runtime environment,

which is implemented as a library into which the compiler inserts explicit calls. The

radical architectural differences between SMP machines and MPSoCs call for a custom

design of the runtime library. The original GCC implementation (libgomp) cannot
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be of use due to several practical reasons: the small amount of memory available, the

lack of OS services with native support for multicore and, above all, a memory layout

which features NUMA shared segments and assumes no cache coherence, but is rather

explicitly managed by the compiler or the programmer.

We found that an efficient exploitation of the memory hierarchy is key to achieving

a scalable implementation of the OpenMP constructs. In particular, leveraging local

and tightly coupled memory blocks to processors (e.g. scratchpads) plays a significant

role in:

1. Implementing a lightweight fork/join mechanism

2. Reducing the cost for data sharing through wise placement of compiler-generated

support metadata

3. Reducing the cost for synchronization directives

In this chapter we present an extensive evaluation of several implementative vari-

ants of the necessary support to OpenMP constructs, which take advantage of the

peculiarities of the memory hierarchy.

3.2 Background and Related Work

Several OpenMP implementations for MPSoCs have been presented in recent research.

One of the most welcome is undoubtedly that for the STI Cell BE (16). While be-

ing closely related to ours in the careful exploitation of hardware resources to achieve

performance, it presents in practice a completely different set of implementative chal-

lenges and choices. The Cell processor is a distributed memory machine, where SPEs

can only communicate with each other by means of DMA transfers from/towards the

main memory. The abstraction of a shared memory is thus provided by means of a

software implementation of a coherent caching mechanism. On the contrary, our ar-

chitectural template allows every processor to directly access each memory bank in

the hierarchy. For this reason, the implementative solutions here presented cannot be

directly supported on the Cell memory architecture.

Authors of (10) present an OpenMP implementation for OS-less MPSoCs. They

provide optimized implementation of the barrier directive, which we use as a direct

33



3. EVALUATING OPENMP SUPPORT COSTS ON MPSOCS

term of comparison in Sec. 3.5. In (13) (14) is described an extended OpenMP pro-

gramming framework for the Cradle 3SoC platform. Custom directives are provided to

enable parallel execution on DSPs and to exploit specific banks of the memory hierar-

chy for data placement. In (8) Chapman et al. describe a set of extensions that could

make OpenMP a valuable and productive programming model for embedded systems.

They also provide an initial implementation for a TI C64x+ -based MPSoC, with a

memory hierarchy very similar to the one we propose.

In the cited papers, however, a detailed evaluation of the implementative solutions

they describe is missing. We try to fill this gap by presenting an extensive set of

experiments aimed at highlighting the actual costs to support OpenMP programming

construts on a representative and generic MPSoC template. We then propose several

implementative variants to reduce the cost of most common OpenMP programming

patterns.

3.3 Target Architecture

The simplified block diagram of our MPSoC architectural template is shown in figure

3.1. The platform consists of a configurable (up to 16) number of processing ele-

ments(PEs), based on a simplified (RISC-32) design without hardware memory man-

agement. The interconnection network is a cross-bar, based on the ST STBus protocol,

which supports burst interleaving, multiple outstanding and split transactions, thus

providing excellent performance and scalability for the considered number of cores.

Support for synchronization is provided through a special hardware semaphore device.

The memory subsystem leverages a Partitioned Global Address Space (PGAS) or-

ganization. All of the on-chip memory modules are mapped in the address space of

the processors, globally visible within a single shared memory space, as shown in Fig.

3.2. The shared memory is physically partitioned in several memory segments, each of

which may be associated (i.e. tightly coupled, or placed in close spatial proximity) to

a specific PE.

Each PE has on-tile L1 memory, which features separate instruction and data cache,

plus scratchpad memory (SPM). Local L1 SPMs are tightly coupled to processors, and

thus very fast to access. Remote L1 SPMs can be either directly accessed or through

on-tile Direct Memory Access (DMA) engines.
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3.3 Target Architecture

Each PE is logically associated to a local L2 memory bank, where by default pro-

gram code and data private to the core are allocated. Local L2 memory is only cacheable

by local L1 cache. Accessing the local L2 memory of a different PE is possible, but

requires appropriate cache controls actions to avoid working with a stale copy of data

that local processor may have brought in cache.
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Figure 3.1: Target architectural template.
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Figure 3.2: PGAS.

Processors can also directly communicate through the L2 shared memory, which fea-

tures both cacheable and non-cacheable banks. Data allocated in the cacheable bank

can be cached by every processor, therefore multiple copies of the same shared memory

location may exist simultaneously in the L1 caches. This requires a cache coherence

protocol to be implemented. OpenMP specifies a relaxed consistency memory model,

which requires that a coherent view of shared data is enforced only at specific synchro-

nization points. Cache coherence is thus enforced through software flush instructions

in our runtime library.

Finally, threads executing on different PEs can also exchange data through the off-

chip shared L3 DRAM memory, which is also mapped in the address space of processors.
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3.4 OpenMP Support Implementation

An OpenMP implementation consists of a code translator and a runtime support library.

The framework presented in this chapter is based on the GCC 4.3.2 compiler, and its

OpenMP translator (GOMP). Most of the platform-specific optimizations are enclosed

in the runtime library, which on the contrary, does not leverage the original GCC

implementation. In the remainder of this section we explain the needed modifications

to the compiler and runtime to achieve functionality and performance on the generic

MPSoC architectural template presented in Sec. 3.3.

3.4.1 Execution Model

OpenMP adopts the fork-join model of parallel execution. An OpenMP program begins

as a single thread of execution, the master thread. The master thread executes sequen-

tially until it encounters a #pragma omp parallel directive. Here, a team composed

of the master thread and zero or more additional threads executes concurrently a set of

implicit tasks defined by the code inside the parallel construct. Beyond the end of the

parallel construct the threads synchronize on a barrier, then only the master thread

resumes execution. To support this execution model the compiler is in charge of alter-

ing the original program flow by replacing a parallel block with code that originates

multiple dynamic instances of the annotated task. This goal is typically achieved by

outlining the code within parallel regions into compiler-generated functions. The GCC

GOMP compiler also takes this approach. The parallel block is replaced with calls to

the runtime library, where the actual fork/join mechanism is implemented.

The GCC implementation of the runtime library (libgomp) is built on top of the

Pthreads library. Pthreads require abstraction layers that allow tasks on different cores

to communicate. Examples of OSs supporting this feature include SMP Linux (11) and

TIs DSP BIOS (2). SMP Linux is suitable for SMP architectures because it provides

a shared symmetric view. The heterogeneous nature of MPSoCs, however, is often

more suited to AMP (Asymmetric Multi-Processing) programming, where a separate

OS is installed on each core and is responsible for handling resources on that core only.

Inter-core communication to implement the OpenMP execution model requires specific

support, and has significant associated overheads (8).
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For this reason, we do not leverage the GCC libgomp library, and re-designed

the runtime environment from scratch, implementing it as a custom lightweight library

where the master core is responsible for orchestrating parallel execution among available

processors (similar to (5) (8) (10)). We assume a fixed allocation of the master and slave

threads to the processors. At boot time the executable image of the program+library is

loaded onto each processor’s local L2 memory. When the execution starts all processors

run the library code. After a common initialization step, master and slave cores execute

different code. Slave cores immediately start executing a spinning task, where they busy

wait for the master to provide useful work to do. The master core starts execution of

the OpenMP application. Since only the master thread executes the sequential parts

of the program, when a parallel region is encountered there is the need to notify the

slaves about where to find shared code and data. For this reason pointers to the

outlined function and to shared data are passed to the runtime environment through

the GOMP parallel start function. Different from the original GOMP compiler, our

customized translator only emits a call to this function, where the entire fork/join

mechanism takes place.

#pragma omp parallel {...}

gets transformed into

GOMP_parallel_start (foo.omp_fn.0, &mdata );

where foo.omp fn.0 is a pointer to the outlined function and mdata is compiler-

generated metadata to support data sharing (see Sec. 3.4.2). In our implementation

of this function, the master core copies this information in a predefined location for

the slaves to see, then notifies them about the availability of work to do. Master and

slave cores then start executing the outlined parallel code. At the end, a global barrier

synchronization step is performed. Slave cores re-enter the spinning task, while the

master core jumps back to the execution of the main application, thus implementing

the join mechanism.

The spinning task executed by the slaves while not into parallel regions must be

implemented in such a way that it does not interfere with the execution of sequen-

tial parts of the program on the master core. Polling or signaling activity should not

inject significant interferent traffic on the interconnect. To ensure this, we adopt a
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message exchange mechanism, where the slave cores spin on a local queue. Queues are

implemented as buffers residing on the local L1 SPM of every slave core, so transac-

tions generated by polling activity never enter the system interconnect. Upon entrance

into the GOMP parallel start the master sends a message containing task and frame

pointers in the queues of all slave cores.

Key to minimizing the overhead associated with the join mechanism is the choice

of a lightweight barrier algorithm. We discuss barrier implementation in Section 3.4.3.

3.4.2 Data Sharing and Memory Allocation

OpenMP provides several clauses to specify the sharing attributes of data items in a

program, but all of them can be broadly classified into shared and private classes of

data, The classification depends on whether each parallel thread is allowed to reference

a private instance of the datum (private) or they must be ensured to reference a

univocal memory location, be it through the entire parallel region (shared) or only

once at its beginning/end (firstprivate/lastprivate, reduction).

When a variable is declared as private within a parallel region the GOMP compiler

duplicates its declaration at the beginning of the parallel region code. In this way each

thread refers to a private copy of the variable. We do not need to modify this behavior

with our platform, since private data gets by default allocated onto local L2 memories

to each core, thus ensuring the correct semantics for the private clause.

Data items annotated with sharing clauses are typically declared within the scope

of the function enclosing a parallel directive. This implies that the variable declaration

lays within the task which is mapped onto the master thread, and for this reason it is

invisible to slaves. Once the program starts, only the master core executes sequential

parts, where shared variable declarations belong to. This implies that shared variables

reside on the stack of the master thread.

int foo()

{

/* Shared variable lives in master thread ’s stack */

double A[100];

int i;

#pragma omp parallel for shared(A) private(i)

for (i=0; i<N; i++)

A[i] = f(i);

}
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A very common solution to deal with this issue is that of relying on a sort of marshalling

operation where the compiler generates metadata containing pointers to shared data.

More precisely, the compiler collects shared variable declarations into a C-like typedef

struct.

/* Compiler -generated metadata */

typedef struct

{

double [100] *A;

} omp_data_s;

Before entering a parallel region the master core stores the address of shared variables

into metadata, then passes the structure’s address to the runtime environment, which

in turn makes it available to slaves.

int foo()

{

double A[100];

omp_data_s mdata;

/* Metadata points to shared data */

mdata.A = &A[0];

/* Then its address is passed to the runtime */

GOMP_parallel_start (foo.omp_fn0 , &mdata );

}

Finally, the compiler replaces all accesses to shared variables within the outlined parallel

function with references to the corresponding fields of the metadata structure.

int foo.omp_fn0 (omp_data_s *mdata)

{

int i;

for (i=LB; i<UB; i++)

/* Replace shared var accesses with metadata alias */

(mdata ->A)[i] = f(i);

}

On Symmetric Multi-Processors (SPM) with Pthreads support this solution pro-

vides correct data sharing semantics, since the stack of the master thread is allocated

in a memory region which is accessible to slave threads, and performance, since data is

accessed through multi-level coherent cache-based memory subsystem.
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On architectures with explicitly managed memory performance is trickier to achieve.

As explained in Section 3.3 each core features a local bank of memory (L2 local) onto

which stack/private data is by default allocated. Local L2 memory to a core can be

accessed by other processors, but the access latency is non-uniform, since it depends

on the physical distance of the core from the memory bank, the degree of contention

for the shared resource and the level of congestion of the interconnection medium.

We thus consider this default data sharing implementation solution as a baseline

for our investigations, to which we will later refer to as Mode 1.
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Figure 3.3: Allocation Mode 1.
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Figure 3.5: Allocation Mode 3.

Here slave processors access shared data/metadata from the master core’s local L2

memory. Since this memory bank also hosts all of master processor’s private code and

data, we expect it to be delayed by other processors’ activity on memory, as shown in
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Fig. 3.3.

The memory hierarchy of the considered MPSoC template is complex, and physical

allocation of shared data and metadata can lead to very different performance results.

For this reason we explore a set of compiler-directed placement alternatives that take

into account the memory subsystem organization.

The first variant consists in exploiting the L1 SPM local to each core to host private

replicas of metadata. Since metadata contains read-only variables no inconsistency

issues arise when allowing multiple copies. Our compiler modifies the outlined parallel

function code in such a way that upon entrance into a parallel region each core initiates

a DMA copy of metadata towards its L1 SPM.

int foo.omp_fn0 (omp_data_s *mdata)

{

int i;

int *local_buf;

/* Allocate space in local SPM to host metadata */

local_buf = SPM_malloc (sizeof (omp_data_s ));

/* Call runtime to initiate DMA */

__builtin_GOMP_copy_metadata (mdata , local_buf );

/* Point to local copy of metadata */

mdata = local_buf;

for (i=LB; i<UB; i++)

(mdata ->A)[i] = f(i);

}

This solution allows to remove all the traffic towards the master core’s L2 local memory

due to accesses to metadata (cfr, Fig. 3.4), and will be later referred to as Mode 2.

Since most of the memory traffic during parallel regions is typically due to shared

variable accesses, in the second placement variant the compiler checks for variables

annotated with sharing clauses and re-directs their allocation out of the master core’s

local L2 memory. Static declarations of shared data items are first transformed into

pointer declarations, and then pointed to the shared L2 memory. Since by default the

heap is mapped onto each processor’s L2 local memory as well, dynamically allocated

variables (i.e. pointers initialized through a malloc()) are re-initialized to point to the

shared L2 memory. We call this placement scheme Mode 3. Similar to Mode 2, it

aims at reducing the accesses from slave processors to the master’s local L2 memory by
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entirely shifting the traffic generated by accesses to shared data towards a “dedicated”

memory block (see Fig. 3.5). The combination of Mode 2 and Mode 3 is called

Mode 4.

When the number of processors increases and the program exhibits significant ac-

tivity on shared data another bottleneck arises. Multiple concurrent requests are seri-

alized on the port of the shared L2 memory. Many OpenMP applications exploit data

parallelism at the loop level, where shared arrays are accessed by threads in (almost)

non-overlapping slices. In this case array partitioning techniques (6) (3) (7), or the use

of (coherent) caches allow to allocate separate array portions on different memories,

thus eliminating the source of the bottleneck. To investigate this effect we allow shared

data to be placed on a cacheable region of the shared L2 memory. If metadata resides

on the master core’s local L2 we call this placement scheme Mode 5. If metadata is

replicated onto every core’s L1 SPM we call it Mode 6.

All of the discussed performance issues apply to global data as well. For this reason

we customized the GOMP compiler to treat global variables similar to shared variables.

3.4.3 Synchronization

OpenMP provides a number of means to perform synchronization between parallel

threads, the main directives being atomic, critical and barrier. Groups of in-

structions that need to execute atomically can be enclosed within a critical section,

whereas the atomic directive allows to mark a single instruction for mutually exclusive

execution. The compiler marks the beginning and the end of a critical/atomic sec-

tion with calls to library functions which acquire/release a lock. We leverage hardware

semaphores to implement support for these directives.

Global synchronization can be performed with the barrier directive. In the OpenMP

programming model barriers are often implied at the end of parallel regions or work-

sharing directives. For this reason they are likely to overwhelm the benefits of paral-

lelization if they are not carefully designed taking into account hardware peculiarities

and potential bottlenecks.

We consider the three barrier implementations described in the previous chapter.

42



3.5 Experimental Results

3.5 Experimental Results

In this section we present the experimental setup and the results achieved. An instance

of the MPSoC template described in Sec. 3.3 has been implemented within a SystemC

full system simulator (15). The effect of all the implementative variants describes in the

previous sections has been evaluated on several benchmarks from the OpenMP Source

Code Repository (9) benchmark suite.

3.5.1 Synchronization

In this section we evaluate the impact of the three barrier implementations described in

the previous chapter on most common OpenMP programming patterns. The first one

is a centralized shared barrier with sense reversal. The second is a Master-Slave barrier

with flags allocated in the shared memory. The third is a distributed Master-Slave

barrier with flags spread among L1 SPMs.

To investigate the impact of different barrier algorithms on real program execution

we give results for three benchmarks containing representative patterns in OpenMP

programs.

1. #pragma omp single: When the single directive is employed only a thread is

active, while the others wait for it to complete execution on the barrier. We

model this behaviour with a synthetic benchmark in which every iteration of a

parallel loop is only executed by the first encountering thread.

2. Matrix multiplication: This benchmark employs a variant of the fox algorithm

for matrix multiplication, which operates in two steps. Each processor performs

local computation on submatrices in parallel, then a left-shift operation takes

place, which cannot be parallelized and is performed by the master thread only.

The master block must be synchronized with two barriers, one upon entrance

and one upon exit.

3. Mandelbrot set computation: This benchmark is representative of a very

common case in which parallel execution is not balanced. The main computa-

tional kernel is structured as a doubly nested loop. The outer loop scans the set

of complex points, the inner loop determines – in a bounded number of iterations

– whether the point belongs to the Mandelbrot set. Being the number of inner
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iterations not equal (and possibly very different) for every point, parallelizing the

outermost loop with static scheduling leads to very unbalanced threads.

Results for each of these benchmarks are shown in Fig. 3.6.
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Figure 3.6: Impact of different barrier algorithms on real programs.

The plots confirm that the barrier implementation has a significant impact on real

programs adopting common programming patterns such as single and master sec-

tions. Focusing on the synthetic benchmark, it is possible to notice that the distributed

master-slave barrier allows the single directive to scale perfectly with an incresing

number of processors. On the contrary, the shared master-slave barrier and – in par-

ticular – the centralized barrier degrade significantly program performance when the

number of cores increases.

An analogous behavior can be seen in the Matrix Multiplication benchmark, where

a significant portion of the parallel loop is spent within the master block.

The same effect can be observed in Mandelbrot, and, more in general, whenever it

is impossible to ensure perfect workload balancing from within the application.

3.5.2 Data Sharing and Memory Allocation

In this section we explore the effect of placing shared data and support metadata onto

different memory modules in the hierarchy. We provide evidence that efficiently imple-

menting compiler and runtime support to data sharing through ad-hoc exploitation of

the memory hierarchy is key to achieving performance and to overcome scaling bottle-

necks.

As explained in Section 3.4.2, there are a number of possible allocation combinations

that can be explored in our MPSoC. We run our benchmarks under each of the possible

placement variants:
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• Mode 1: The default OpenMP placement. Data and metadata live in the mas-

ter thread’s stack, which physically resides onto master core’s local L2 memory

segment. Slave cores access them from there. This configuration is considered as

a baseline for our experiments.

• Mode 2: Shared data still resides onto master core’s local L2 memory, where it

was originally placed from the compiled program. Metadata, on the contrary, is

replicated and transferred onto each core’s scratchpad by means of a DMA trans-

fer upon entrance into the parallel region. This is expected to reduce contention

on master core’s L2 memory.

• Mode 3: Shared data is allocated onto the non-cacheable segment of the shared

L2 memory. Metadata resides on the master core’s local L2 memory. This is

expected to significantly reduce contention on master core’s L2 memory.

• Mode 4: Shared data is allocated onto the non-cacheable segment of the shared

L2 memory. Metadata is replicated onto every scratchpad and accessed from

there. This configuration reduces to a minimum the number of accesses to the

master core’s L2 memory for data sharing.

In case a program is memory bounded and most of the accesses are performed towards

shared arrays, high-contention on a single memory bank is bound to re-appear. In this

situation, as discussed in Section 3.4.2, splitting arrays and allocating each partition

on a different memory block allows to mitigate the effect of request serialization on

a single memory device port. To investigate the effect of this kind of contention, we

consider two additional placement variants which leverage the data cache to implement

array partitioning:

• Mode 5: Equivalent to mode 3, but shared data is placed on the cacheable

segment of the shared L2 memory.

• Mode 6: Equivalent to mode 4, but shared data is placed on the cacheable

segment of the shared L2 memory.

The considered allocation modes are summarized in Table 3.1. We run all of our
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Shared data Metadata

Mode 1 Master core’s local L2 Master core’s local L2

Mode 2 Master core’s local L2 Local L1 SPM

Mode 3 Non-cacheable Shared L2 Master core’s local L2

Mode 4 Non-cacheable Shared L2 Local L1 SPM

Mode 5 Cacheable Shared L2 Master core’s local L2

Mode 6 Cacheable Shared L2 Local L1 SPM

Table 3.1: Shared data and metadata allocation variants
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Figure 3.7: Scaling of different allocation strategies for data sharing support structures.

benchmarks under each of the described modes. The barrier adopted for this set of ex-

periments employs the distributed Master-Slave algorithm. Results of this exploration

are reported in Figure 3.7.

The curves there plotted show the scaling of the execution time speedup with the

number of cores. The speedup is referred to the run time of the baseline allocation

Mode 1 (the default OpenMP placement) on a single core. In general the various

allocation modes allow increasing degrees of improvement w.r.t. default placement

Mode 1, with the exception of benchmark Pi Computation, which shows no difference

between modes.

Pi computation computes pi by means of numerical integration. Parallel threads

compute a given number of integration steps, then a reduction operation sums all

contribution into a shared variable. The reduction operation is implemented in such
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a way that all processors accumulate partial results onto a private variable, which is

physically mapped onto each core’s local L2 memory. No contention arises during this

operation, and so neither the network nor any memory port ever gets congested. This

placement doesn’t change for any of the allocation modes. The shared variable is only

accessed at the end of the parallel loop. Every processor atomically updates it by

adding its partial integration result. Since the update only happens once, and has a

very brief duration w.r.t. loop execution, changing the allocation of the shared variable

does not result in any advantage, and thus all modes deliver similar performance.

Focusing on the rest of the benchmarks, it can be seen that replicating metadata

onto every processor’s L1 SPM (Mode 2) allows significant improvements with any

number of processors. For processor counts up to 8 is on average faster than simply

allocating shared data onto non-cacheable shared L2 memory (Mode 3), and slightly

slower than accessing metadata from local L1 SPMs and shared data from non-cacheable

shared L2 memory (Mode 4). This suggests that for most benchmarks our interconnect

medium is congested when both metadata and data are accessed from master core’s

local L2 memory, but it is sufficient to divert the traffic towards one of the two items

onto a different memory bank to offload the network.

For 16 processors the behavior changes slightly, and in many cases mode 4 gets stuck

and performs identical to modes 2 and 3. This happens in particular for benchmarks

Loops W Deps, Luminance Dequantization and Matrix Multiplication. Figure 3.8 shows

the speedup of Modes 2-6 against Mode 1 for 16 cores only. This plot shows that

on average Mode 2 allows ≈ 42% speedup. Mode 3 achieves ≈ 50% speedup, but

Mode 4 can not do any better. This behaviour is due the the above mentioned effect

of serialization of accesses on the port of the memory device hosting shared data.

As expected, allowing the cache to distribute shared data among different memory

banks solves the problem and achieves excellent scaling. Partitioning shared data also

magnifies the benefits of diverting metadata and/or shared data traffic out of master

core’s local L2 memory (Modes 3 and 4 vs. Modes 5 and 6).

LU decomposition shows the worst scaling performance, only allowing a peak 2, 8×

speedup for 8 cores and worsening for 16 cores. It has to be explained that this happens

because of the parallelization scheme and the dataset size. The algorithm operates on

32 × 32 matrices, which are scanned – with an upper-triangular pattern – within a

nested loop, the innermost loop being parallelized. More precisely, the outer loop scans
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Loops W 
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FFT
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Histogram
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Average

Mode 2 57,32% 28,89% 68,37% 28,70% 43,99% 57,81% 9,99% 42,15%

Mode 3 72,68% 42,09% 72,03% 28,25% 48,88% 56,65% 26,95% 49,65%

Mode 4 72,89% 41,02% 69,46% 29,54% 44,95% 62,47% 23,74% 49,15%

Mode 5 114,45% 82,26% 111,32% 40,17% 48,55% 67,00% 37,61% 71,62%
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Figure 3.8: Speedup of several data sharing support variants against the baseline for 16

cores.

matrix rows. Row elements are operated on in parallel within the innermost loop. Since

the number of row elements gets smaller as the row index increases, at some point there

will be more processors than elements to process. From this point of the computation

on, an increasing number of processors will be idle (up to N − 1 in the last iteration).

This “point” is obviously reached earlier for a bigger number of available core, thus

justifying the performace degradation from 8 to 16 cores.

3.6 Conclusion

Software development in the embedded MPSoC domain is becoming increasingly com-

plex as more and more feature-rich hardware is being designed. OpenMP is a mature

standard for shared memory parallel programming. Even if it was designed more than

a decade ago for Symmetric Multi-Processors (SMP), its adoption in the embedded

MPSoC domain has recently been proposed by several researchers. Pioneers pointed

out the challenges in porting OpenMP to complex and heterogeneous MPSoCs. Even

if there is consensus on the fact that OpenMP may be both suitable and profitable

for MPSoC programming, it is also unanimously recognized that compiler and run-
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time support must be revisited to account for the peculiarities of embedded MPSoC

hardware.

All of the previous research in this field either is specific to a platform, or lacks a

detailed analysis of performance implications of OpenMP programming patterns on the

underlying hardware. We rather target a generic and representative embedded MPSoC

template, and describe an OpenMP implementation based on a modified GCC 4.3.2

compiler and on a custom runtime library. We also present an exhaustive study of

the performance achieved by several implementative variants of the necessary support

for OpenMP constructs. We demonstrate that careful implementation of the shared

memory abstraction on top of non-uniform and explicitly managed memory hierarchies

is key to achieving performance.
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Chapter 4

Data Partitioning for Distributed

Shared Memory MPSoCs

Most of today’s state-of-the-art processors for mobile and embedded systems feature on-

chip scratchpad memories (SPM). To efficiently exploit the advantages of low-latency

high-bandwidth memory modules in the hierarchy there is the need for programming

models and/or language features that expose such architectural details. On the other

hand, effectively exploiting the limited on-chip memory space requires the programmer

to devise an efficient partitioning and distributed placement of shared data at the

application level.

In this chapter we describe the necessary language features in embedded MPSoC

parallel programming to efficiently exploit explicitly managed memories. Such features

provide a means for the programmer to convey architectural awareness to the compiler,

which can optimize program execution time and/or energy consumption. The program-

ming framework here described combines the ease of use of OpenMP with simple yet

powerful language extensions to trigger array data partitioning. The compiler and run-

time environment exploit profiled information on array access count to automatically

generate data allocation schemes optimized for locality of references.

4.1 Introduction

The scaling limitations of uniprocessors have led to an industry-wide turn towards

chip multiprocessor (CMP) systems. CMPs are becoming ubiquitous in all computing
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domains, from high performance supercomputers to embedded systems (1). Focusing on

the latter, today’s embedded multi-processor systems on a chip (MPSoC) are capable

of executing sophisticated tasks such as audio and video decoding. This requires a

design that is capable of delivering high performance, while fitting tight energy and

area budgets (2).

Memory system design is a critical problem for MPSoC platforms. The chip has

a limited amount of on-chip memory that must be augmented by bulk commodity

memory off-chip. On-chip memory is faster and consumes less power but is of limited

capacity (3) (4). Most of todays state-of-the-art processors for mobile and embedded

systems feature on-chip cache and/or scratchpad memories (SPM) (5) (6) (7) (8) (9)

(10). Caches and SPMs are both made of SRAM cells. Caches are composed of tag and

data RAM plus management logic that makes them mostly transparent to the software.

On the contrary, SPM consists of a simple array of SRAM cells, without a tag RAM

and complex comparator logic. This simpler design has several practical advantages,

particularly profitable in the embedded domain. SPM requires up to 40% less energy

and 34% less area than cache (11). Additionally, SPM cost is lower and its software

management makes it more predictable, which is an important feature for real-time

systems. Typically the SPM is mapped into the physical address space as a contiguous

block of fast memory. Unlike caches, it is the up to the programmer (possibly with the

help of the compiler) to determine what parts of the code/data are placed in the SPM.

Placing the most frequently accessed parts of the program into the SPM can reduce

both the energy consumption and the execution time of an application (12).

Obviously, the choice of a memory model is closely coupled with the choice of a

parallel programming model which allows to efficiently map an application on top of

the hardware resources (13) (14). Typically, the higher degree of architectural aware-

ness is exposed to the programming model, the more its ease of use is affected. Parallel

extensions of traditional programming languages such as C, are appealing because they

adopt a simple and intuitive memory model, to which programmers are accustomed to,

with a single address space. Providing the abstraction of a shared memory and hiding

the details of the memory hierarchy organization increases ease of use, but may fail to

map efficiently to these architectures. On the other hand, exposing the memory hier-

archy organization to the application puts on the programmer the burden of efficiently
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partitioning data and distributing it through explicit transfer onto appropriate memory

banks.

This scenario calls for programming models and tools that ease this process. In this

chapter we describe a parallel programming framework for embedded MPSoCs based

on OpenMP (15). The OpenMP standard is very mature, but since it was originally

intended for homogeneous cache-coherent SMPs, it lacks any architectural awareness.

We combine the ease of use of the OpenMP programming style with the efficient ex-

ploitation of the memory hierarchy by extending the API with custom data placement

features. Specifically, we provide directives and clauses that allow the programmer to

mark arrays for partitioning and distributed allocation across the memory hierarchy.

Exploiting profiled information on array access count, during parallel regions array par-

titions (tiles) are allocated onto the SPM local to the processor that accesses it most

frequently. The programmer can also outline custom program regions where to capture

access locality. This information is then stored in specific metadata hold in the runtime

environment. Compiler-instrumented array references inspect metadata to determine

the position of the target array partition in memory. Array data layout in memory is

automatically updated through DMA movements upon region enter and exit.

4.2 Background and Related Work

Embedded parallel applications from the image processing domain are typically based

on decomposition of data array processing across parallel threads (SPMD). Image ar-

rays are logically divided in blocks or slices, each of which is independently processed.

Efficiently mapping this computational model onto a machine with multiple NUMA

memory modules requires data (array) structures to be partitioned in smaller chunks

(often called tiles), each of which has to be placed close to the processor that most fre-

quently references it. In the recent past, a plethora of programming models and APIs

providing features to ease this task has seen the light (see Sec. 4.2.1). To achieve perfor-

mance, typically these solutions require a high degree of programmer involvement, both

in identifying efficient partitioning schemes and in modeling communication through

appropriate memory modules.

We developed such techniques as a set of extensions of the OpenMP API, within

an MPSoC-suitable implementation of the OpenMP compiler and runtime library (see
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Chapter 3 or (16)). Due to its well-know ease of use, the OpenMP standard has al-

ready saw several (mainly vendor-specific) implementations with customized features

for NUMA machines. Related work on array data partitioning and OpenMP exten-

sions for data distribution on NUMA machines is discussed in Sec. 4.2.2. Typically,

NUMA OpenMP APIs expose directives for data distribution and loop parallelization

with affinity scheduling (i.e. loop iterations accessing a given array tile are assigned

to the processor in closest spatial proximity with the memory bank hosting the tile),

but the programmer is in charge of properly using the directives. This requires deep

understanding of the memory access pattern of the application. To mitigate this prob-

lem, we extend our programming framework with tools that automatically determine

an efficient data placement, based on application profiling. There is a vast amount of

literature describing static and dynamic techniques to place array data onto a single

SPM (in a single-processor system). Our target MPSoC, however, is a multicore system

where each processing element (PE) has fast access to a local SPM bank, and incurs

NUMA latency when accessing remote SPM banks. Only recently research has started

focusing on allocation techniques on multiple SPMs. We describe related work with

this respect in Sec. 4.2.3.

4.2.1 Programming the Memory Hierarchy

Programming models and compilers to explicitly take into account the memory hier-

archy at the application level have been actively investigated in the recent past by

several researchers (see (17) (13) (14) for good overviews). Sequoia (18) is a program-

ming language that abstractly exposes hierarchical memory in the programming model

and provides language mechanisms to describe communication vertically through the

machine and to localize computation to particular memory locations within it. This

execution model is particularly well-suited to data parallel computations. It enforces

strict locality of computation, since tasks run in isolation on a processor and can only

access data from within local memories. On the other hand, inter-node communication

is much more complicated and much less performance-efficient, since it has to take place

through dedicated sub-tasks. This, in turn, makes it very difficult to model different

kind of parallelism (e.g. task parallelism) with Sequoia constructs. Our approach al-

lows much more flexibility in modeling different kinds of parallelism and the cost for

inter-processor communication is carefully optimized.
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Recently, general purpose computation on graphic processors has received a lot of

attention as it delivers high performance computing at rather low power. CUDA (9),

Compute Unified Device Architecture, proposed by the GPU vendor NVIDIA, is a pro-

gramming model for General Purpose Graphics Processing Units (GPGPU) computing.

It provides a multi-threaded Single Instruction Multiple Data (SIMD) model for im-

plementing general-purpose computations on GPUs. Although the unified processor

model in CUDA abstracts underlying GPU architectures for better programmability,

its memory model is exposed to programmers. The main difficulty in writing CUDA

programs is that the programmer is deeply involved in leveraging hardware features

to achieve performance. As an example, loop tiling and memory coalescing, necessary

to achieve performance (and program correctness) are entirely left to the programmer.

Tools like CUDA-lite (19) are being proposed to take from the programmer the burden

of doing manually the transformations to exploit local memories. It has to be pointed

out, however, that CUDA-lite performs no automatic optimization, but rather relies

upon information from the programmer provided via annotations to perform its trans-

formations. Our programming framework efficiently couples the ease of programming

with annotations with profile-based compiler optimizations and runtime support for

effective exploitation of the memory hierarchy.

4.2.2 Data Partitioning and OpenMP Extensions for NUMA archi-

tectures

Data partitioning has been widely studied in the context of NUMA multiprocessors

and distributed shared memory systems (20). In particular there is a vast amount of

literature dealing with the integration of such techniques in OpenMP (21) (22) (23). All

these works introduce OpenMP API extensions to enable distribution of shared arrays

over multiple memories in a NUMA architecture, and they are closely related to ours in

the choice of exposing features for locality-aware data placement at the programming

model level. On the other hand, the differences at the architectural level between tra-

ditional NUMA multi-processors and embedded MPSoCs are very significant and have

far-reaching consequences. Traditional NUMA machines were organized as clusters of

computing nodes (e.g. the SGI Origin), where inter-node communication has orders-of-

magnitude lower speed than local operations. Remote memory access took place under
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software abstractions such as virtual memory paging. In these systems the cost asso-

ciated to such a memory management layer is hidden behind the huge communication

cost. In embedded MPSoCs the scenario is completely different. First, paged virtual

memory is not supported in hardware as it would be way too expensive to replicate a

complex MMU for all the element of a large-scale on-chip data-processor array1. Sec-

ond, all communication travels on-chip, where latency is much lower and bandwidth is

much higher. These major differences lead to completely different set of implemention

choices, that we will describe in details in the following sections. Moreover, all the cited

work provides means to convey to the compiler information to trigger and direct data

partitioning and distributed placement, but all decisions about how to actually carry

out those tasks are completely left to the programmer. We provide similar facilities, but

in addition to that we enrich our compilation toolchain with features to automatically

devise an efficient placement, leaving to the programmer only the burden of expressing

its will to enable locality optimizations on a particular data structure.

We are not the first to consider OpenMP in the context of MPSoC programming.

Even though OpenMP was originally intended for symmetric multiprocessors (SMP)

with shared address space, its appealing ease of use has led to the recent development

of several MPSoC-specific implementations, one representative example being O’Brien

et al.’s port for the STI Cell BE processor (25). Anyhow, being the Cell a distributed

memory machine, where accelerators can only reference data from local memories, the

abstraction of a shared memory is provided through a compiler-controlled software

cache that initiates DMA operations whenever needed. Implementing the OpenMP

memory model on top of the Cell memory model has the advantage of making memory

management completely transparent to the programmer, but comes at the cost of main-

taining coherency in software. In our MPSoC processors can access local memories to

other cores, but at an increased cost. As such, we face a different problem of optimizing

array tiles placement through a physically distributed shared memory space.

1in MPSoCs organized as a battery of DSP/accelerators coordinated by a general-purpose control

processor virtual memory may be supported on the latter, which usually runs a complex OS and

performs high-level orchestration (24)
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4.2.3 Scratchpad Management

Methods for static and dynamic placement of data and program objects on SPM have

been proposed in a huge amount of related work in literature. Representative examples

can be found in (26) (12) (27) (28) (29) (30) (31) (32). However, while constituting a

fundamental background to our work, the approaches here described focus on data/code

allocation on a single SPM (considering single-core architectures) We try instead to

solve the problem of efficiently allocating array data over multiple SPMs, with NUMA

organization.

The role of (multiple) scratchpads in the multicore domain has only recently come

to the research forefront. In (33) Yanamandra et al. explore the benefits of replacing

the cache with the SPM at different levels of the memory hierarchy. They also consider

hybrid architectural templates, similar to ours, in which both SPM and cache are

considered. The focus of their work, however, is on evaluating the role of SPMs in

optimizing sparse matrix-vector multiplication kernels, and thus their approach is less

general than ours.

Abdelkhalek and Abdelrahman introduce in (34) program constructs and runtime

support to dynamically manage data stored in the SPMs. Their approach is very similar

to ours, in that they provide the programmer with compiler directives aimed at directing

data allocation to specific memory banks (i.e. SPMs) and setting an affinity between

tasks and SPMs where data has been allocated. Anyhow, the proposed techniques are

less powerful than ours in two respects. First, data allocation is entirely left to the

programmer, which must necessarily have insights of the application to efficiently use

the proposed directives. On the contrary, we also provide a profile-based automatic

placement technique which requires much less programmer effort. Second, only entire

data structures can be placed on SPMs, thus encountering scalability bottlenecks when

multiple cores are accessing the same data item. We efficiently solve this issue by

providing support for (array) data partitioning.

In (35) Kandemir et al. present a compiler-directed optimization strategy for ex-

ploiting multiple SPMs (the Virtually-Shared Scratch-Pad Memory) in an embedded

multiprocessor system. Their approach is oriented toward eliminating extra off-chip

DRAM accesses caused by data sharing, and relies on performing loop transformations

to simplify the reuse pattern or to improve data locality. The main limitation of the
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approach is that it only works with statically analyzable (i.e. at compile time) applica-

tions with regular access patterns. Furthermore, the size of the SPM must be known at

compile time. Our techniques do not require this information, which can be retrieved

at runtime, and is capable of dealing with irregular applications as well. Finally, our

automatic allocation techniques take into account the NUMA organization of typical

VS-SPM systems.

4.3 Target Architecture

In the followin of this chapter we consider two architectural templates, whose simplified

block diagrams are shown in figure 4.1. The platform consists of a configurable number

of processing elements(PEs), based on a simplified (RISC-32) design without hardware

memory management (i.e. no MMU is available). The interconnection network is a

cross-bar, based on the ST STBus protocol, which supports burst interleaving, multiple

outstanding and split transactions, thus providing excellent performance. Support for

synchronization is provided through a special hardware semaphore device, implemented

as a set of memory-mapped on-chip registers with test-and-set semantics. Inter-core

communication takes place from within the external (DRAM) shared memory, more-

over, each processor tile hosts a small amount of low-latency, high-bandwidth SRAM.

We consider two alternative implementations for the on-chip memory hierarchy.

In the first template each PE features private data and instruction caches. In order

to maintain architectural scalability, hardware cache-coherency is not supported. A

consistent view of the shared memory from concurrent multiprocessor accesses is en-

forced through explicit insertion of cache flush operations in software. In this template

on-chip memory management is accomplished entirely in hardware, and thus is used as

a term of comparison for our techniques, which explicitly manage SPMs.

In the second architectural template on-tile SRAM is implemented as a combina-

tion of per-core small unified cache plus scratchpad memory (SPM). Overall SPM space

is organized as a Partitioned Global Address Space (PGAS) system, a.k.a. Virtually

Shared Scratch Pad Memory (VS-SPM). In this memory model each PE has fast lo-

cal access to its associated SPM (typically 1 cycle), since communication towards this

memory exploits a dedicated connection, and does not travel across the system in-

terconnect. Processors can also access remote SPMs through a dedicated slave port,
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but incur a non-uniform memory access (NUMA) latency (1 order of magnitude slower

than local references). Accessing the off-chip main memory is 2 orders of magnitude

slower than accessing the local SPM. In our framework SPM space is entirely devoted

to hosting shared array data1. Private data and code to each thread, as well as scalar

variables – currently not managed – are thus accessed through the cache.
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Figure 4.1: Architectural templates.

To reduce the overhead for data movement we also couple each processing element

with dedicated transfer hardware, i.e. a Direct Memory Access (DMA) engine. The

DMA enables memory transfers between the SPM and the main memory without pro-

cessor involvement. It is composed by a controller, which acts as the main interface with

the processor, and a transfer engine. The processor programs DMA jobs and checks

their status by writing/reading into/from the controllers address space. DMA jobs

contain information on the source/destination address and stride, which can be conve-

niently set/reset by leveraging the methods of a small API for DMA programming(36).

1As discussed in the previous chapter, a very small amount of each SPM’s space is used for the

implementation of runtime environment services, such as synchronization, task allocation, etc.
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Initiating a DMA transfers comes at the cost of invoking these functions to write nec-

essary information onto the DMA controller registers. Whenever the transfer engine

is free and the job queue is not empty, the DMA controller initiates a transaction on

the transfer engine. The transfer engine generates the necessary burst accesses to the

bus and SPM. The burst size to the bus can be configured through a parameter. The

transfer engine contains a 64B queue to store incoming/outgoing data waiting to be

forwarded to the SPM or to the main memory. Finally, it is connected to the memories

outside the processing tile through a master port. Communication towards the on-tile

SPM exploits a dedicated connection.

4.4 An Extended OpenMP API for Efficient SPM Man-

agement

OpenMP provides a relaxed-consistency shared-memory model, which specifies that

each thread is allowed to have its own temporary view of the memory. This can repre-

sent any kind of intervening structure, such as machine registers, cache, or other local

storage, between the thread and the memory. The temporary view of memory allows

the thread to cache variables and thereby avoid going to memory for every reference

to a variable. A coherent view of the memory is implicitly enforced when entering and

leaving a parallel region, at other synchronization points, and – explicitly – through

the use of the flush directive.

We can tailor the implementation of such a memory model to our architecture,

taking into careful account the peculiarities of the NUMA organization of the shared

memory hierarchy. In the following sections we describe how the original programming

interface has been augmented with several features to efficiently manage the NUMA

shared memory, providing the programmer with easy-to-use yet powerful means to

express the need for locality optimization on candidate data structures.

4.4.1 OpenMP Extensions for Array Partitioning

The programmer can trigger array partitioning in the compiler through the use of the

custom distributed directive.

double A[100];

#pragma omp distributed (A[, tilesize])
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When declaring an array as distributed in a program, an unique identifier (hereafter

called DISTVAR ID) is annotated into the intermediate representation (IR) for that

variable declaration. The tilesize parameter is used to specify the granularity of

partitioning, namely the size – expressed in terms of array elements – of the elementary

tile. If no such parameter is given, the array lays un-partitioned in memory, but unlike

statically declared data, it can be assigned to different memory modules in the hierarchy

if profitable.

In general, when an array is partitioned, each tile may reside on a different memory

module. Partitioning techniques have been implemented in the past, on distributed

shared memory machines, by relying on hardware and OS support for virtual mem-

ory, and – in particular – page migration facilities. On our MPSoC there are no such

facilities available, so there is the need to design an efficient and lightweight software

mechanism to correctly locate tiles in memory. Since our platform features a Parti-

tioned Global Address Space (PGAS) organization of the shared memory hierarchy,

this can be done without emulating heavy-weight page migration abstractions. Still,

partitioning an array introduces addressing difficulties. Since data tiles can become

not-contiguous in physical memory, we can no longer reference the data structure as a

whole by simple offset computation. Addressing an element involves finding its physi-

cal address, specified by a memory bank number and an offset within that bank. We

propose further extensions to the OpenMP API to deal with this issue.

Concurrent accesses to arrays take place within parallel regions, so there is the need

for language features to specify array access pattern at a specific region. To this aim,

the custom clauses tiled and split can be coupled to the parallel directive, or to

the worksharing for and sections directives, to capture two different access pattern

to distributed arrays in the program.

1. Each processor may access more than one array partition. In this case, at each

reference there is the need to identify which partition is being accessed, and at

which offset. In this case the array is annotated with the tiled clause.

2. Each processor accesses a single array partition. If this can be ensured by the

programmer, there is no need to check which partition is being accessed at every

array reference (this is only computed at first access). In this case the array is

annotated with the split clause.
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Annotating an array with the split or tiled clause within a parallel region replaces

the standard OpenMP shared qualifier for that array within the region. The semantics

of the shared clause guarantee that every reference to a shared array from every thread

in a parallel region points to the same shared location. The split and tiled clauses

augment this behavior by providing each thread with the knowledge of the base address

of each array partition. This information can be retrieved by inspecting the compiler-

generated metadata array tiles[DISTVAR ID][TILE ID]. The first index of the tiles

array uniquely identifies a distributed array in the program, whereas the second

index identifies a specific partition (tile) of the array. Dereferencing metadata through

a couple (DISTVAR ID, TILE ID) allows retrieving the base address of a specific array

tile. For each tiled array access the compiler identifies a TILE ID by dividing the

offset of the reference by the size of a tile. This information was conveyed to the

compiler through the distributed directive, along with the DISTVAR ID.

The physical placement of array tiles in memory (i.e. the addresses stored within

metadata) can be either directed by the programmer, or decided based on profile infor-

mation. We describe the generation of data layouts in Section 4.4.4. The instrumen-

tation process triggered by the use of the two custom clauses is shown in Figure 4.2.

On the topmost side we show a code snippet of a histogram creation kernel with two

distributed arrays. The parallelization scheme employed in this example leverages

static scheduling (i.e. loop iterations are evenly divided among threads in contiguous,

equally-sized chunks), so the image array img is accessed by threads in separate, non-

overlapping slices of size TSIZE2. In this case we can partion the array into tiles that

perfectly match the threads footprint, and annotate it for split access in the loop. On

the contrary, the array hist is accessed with an irregular pattern, being it subscripted

by array img. In this case it is impossible to determine an optimal partitioning for

the array hist a-priori. Here we partition it in blocks of size TSIZE1, generating as

many tiles as processors1. Since all processors could reference every tile, the array is

annotated for tiled access in the loop. On the bottom side of the figure we show the

transformed code of the outlined parallel region (encircled by a red frame). Here is

possible to notice the difference between split and tiled accesses. When annotating

1In general, the finer the partitioning, the more references can be satisfied from local memory in a

profile-based allocation strategy. On the other hand, the footprint of metadata grows with the number

of array tiles, so a tread-off has to be found.
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#define ROWS 240 
#define COLS 160 
#define NPROCS 4 
#define TSIZE1 (256/NPROCS) 
#define TSIZE2 (ROWS*COLS/NPROCS) 
 
void foo (...) 
{ 
  int hist[256]; 
  #pragma omp distributed(A,TSIZE1) 
  int img[ROWS][COLS]; 
  #pragma omp distributed(img,TSIZE2) 
 
  #pragma omp parallel for \ 
    tiled(hist) \ 
    split(img) 
  for (i=0; i<ROWS; i++) 
    for (j=0; j<COLS; j++) 
    { 
      hist[img[i][j]]++; 
    } 
 
} 

 

void foo.omp_fn.0 (...) 
{ 
  nthreads = omp_get_num_threads(); 
  tid = omp_get_thread_num(); 
  iters = ROWS; 
  chunk = iters/nthreads; 
  LB = tid * chunk; 
  UB = (tid + 1) * chunk; 
 
  /* The base address for a SPLIT array tile  
     is retrieved once at the beginning */ 

  int *base = *tiles[<DVAR(img)>][<TID(img)>]; 
 
  for (i=LB; i<UB; i++) 
    for (j=0; j<COLS; j++) 
    { 
      /* SPLIT array accesses are resolved 
         through a local pointer */ 

      int pix = *base[i*COLS+j]; 
 int tid = tmp/tilesize(hist); 
      /* The base address for a TILED array 

         tile is checked at every access */ 

      *tiles[DVAR(hist)][tid]++; 

    } 
} 

Figure 4.2: Compiler instrumentation of tiled and split arrays

an array for split access, the programmer ensures that all array references fall within

a single tile, so the base address for that tile is retrieved from metadata only once at

the beginning of the region and stored in a local pointer. Every array reference in

the thread is then resolved through this pointer. All accesses to tiled arrays, on the

contrary, are instrumented with code for tile identification and metadata lookup. It is

intuitive that accesses to split arrays are less costly than tiled accesses, since in the

latter case we re-compute the address at every reference.

4.4.2 OpenMP Extensions for Data Movement

Having data layouts change at different regions in the program implies the necessity

for data movements. We allow the programmer to trigger different types of transfers,

coupled with the use of the partitioning clauses presented in the previous section. Let us

consider the slightly modified histogram creation example in Fig. 4.3. Both the arrays

hist and img have been partitioned in as many tiles as processors. Upon entrance into

the parallel region, there is the need to copy data into the SPMs. As already pointed

out, tiles of the hist array are accessed by multiple processors, without information

about which tile is being accessed at any istant in time. For this reason it is necessary to
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copy the entire array before executing code in the parallel region. Similarly, since array

hist is used after the parallel region, it is flushed upon region exit from SPMs back to

main memory. To copy in/out entire distributed arrays we provide the copyarrayin

and copyarrayout clauses.

double A[100];

#pragma omp distributed (A[, tilesize])

...

#pragma omp parallel tiled(A) \

copyarrayin(A) copyarrayout(A)

{

Code block

}

The compiler defers actual DMA programming to the runtime, into which inserts calls

employing the library builtins

__builtin_GOMP_copy_to_scratch

(uint src_addr , uint tsize );

__builtin_GOMP_copy_to_extmem

(uint src_addr , uint tsize );

The semantics of these functions is blocking. DMA transfers are scheduled in a First

Come First Served fashion to available processors until there are tiles to copy. At the

end all processors synchronize on a barrier before going ahead. The parameters passed

to the runtime library are the base address of the array in external memory, and the size

of a tile. The destination address in SPM space for every tile is automatically retrieved

by looking up in the tiles metadata array described in Sec. 4.4.1. Once the address

is known, the runtime checks wheter the current tile was actually selected for SPM

allocation at compile time before actually initiating the DMA transfer. Indeed, due

to SPM space limitations or low access frequency, the allocation pass (cfr. Sec.4.4.4)

may have decided to leave the tile on the main memory, and access it from there. In

this way, DMA movements are strictly limited to those tiles which are guaranteed to

achieve some benefits from on-chip allocation. Moreover, since the runtime checks at

every tile movement request for available SPM space, it is actually possible to override

compile-time decisions on tile allocation, thus making it not necessary to know the

actual SPM size at compile time.

The img array, on the contrary, has split semantics, so every thread accesses a single

tile. For this reason, every thread is responsible for copying the target tile onto a local
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 #define ROWS 240 
#define COLS 160 
#define NPROCS 4 
#define TSIZE1 (256/NPROCS) 
#define TSIZE2 (ROWS*COLS/NPROCS) 
 
void foo (...) 
{ 
  int hist[256]; 
  #pragma omp distributed(A,TSIZE1) 
  int img[ROWS][COLS]; 
  #pragma omp distributed(img,TSIZE2) 
  int i, j; 
  int pid = omp_get_thread_num(); 
 
  #pragma omp parallel for  \ 
    tiled(hist)  \ 
    split(img)  \ 
    copytilein(img,pid) \ 
    copyarrayin(hist) \ 
              copyarrayout(hist) 
  for (i=0; i<ROWS; i++) 
    for (j=0; j<COLS; j++) 
    { 
      hist[img[i][j]]++; 
    } 
 
  printf(“hist[127]=%d”, hist[127]); 
} 

 

 #define ROWS 240 
#define COLS 160 
#define NPROCS 4 
#define TSIZE1 (256/NPROCS) 
#define TSIZE2 (ROWS*COLS/NPROCS) 
 
void foo (...) 
{ 
  int hist[256]; 
  #pragma omp distributed(A,TSIZE1) 
  int img[ROWS][COLS]; 
  #pragma omp distributed(img,COLS) 
 
  #pragma omp parallel        \ 
    tiled(hist)       \ 
    copyarrayin(hist) 
  #pragma omp for         \ 
      schedule(dynamic,1,inout(img)) 
  for (i=0; i<ROWS; i++) 
    for (j=0; j<COLS; j++) 
    { 
      hist[img[i][j]]++; 
    } 
 
} 

 

Figure 4.3: Usage of array copy in/out

clauses
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    split(img)  \ 
    copytilein(img,pid) \ 
    copyarrayin(hist) \ 
              copyarrayout(hist) 
  for (i=0; i<ROWS; i++) 
    for (j=0; j<COLS; j++) 
    { 
      hist[img[i][j]]++; 
    } 
 
  printf(“hist[127]=%d”, hist[127]); 
} 

 

 #define ROWS 240 
#define COLS 160 
#define NPROCS 4 
#define TSIZE1 (256/NPROCS) 
#define TSIZE2 (ROWS*COLS/NPROCS) 
 
void foo (...) 
{ 
  int hist[256]; 
  #pragma omp distributed(A,TSIZE1) 
  int img[ROWS][COLS]; 
  #pragma omp distributed(img,TSIZE2) 
  int i, j; 
  int pid = omp_get_thread_num(); 
 
  #pragma omp parallel for  \ 
    tiled(hist)  \ 
    split(img)  \ 
    copytilein(img,pid) \ 
    copyarrayin(hist) \ 
              copyarrayout(hist) 
  for (i=0; i<ROWS; i++) 
    for (j=0; j<COLS; j++) 
    { 
      hist[img[i][j]]++; 
    } 
 
  printf(“hist[127]=%d”, hist[127]); 
} 

 

Figure 4.4: Usage of tile copy in/out

clauses

buffer in its SPM. The programmer can inform the compiler about single tile transfers

through the use of the custom copytilein and copytileout clauses To trigger DMA

transfers, the compiler relies to the custom library builtins:

__builtin_GOMP_single_copy_to_scratch

(uint src_addr , uint dst_addr , uint tsize );

__builtin_GOMP_single_copy_to_extmem

(uint src_addr , uint dst_addr , uint tsize );

There is no synchronization among threads when using these clauses, since each pro-

cessor is only forced to wait for its local transfer to complete before executing parallel

code. The copytilein and copytileout clauses can also be coupled with the for

construct, to exploit finer partitioning schemes.

split access semantics typically takes place at regular loops. Let us consider

the slightly different parallelization scheme of the histogram creation kernel in Fig.

4.4. Here dynamic scheduling is employed, so each iteration of the outermost loop is
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scheduled independently to first available thread. In this example, this leads to par-

allel threads accessing the img array in contiguous chunks of COLS elements. Again,

the partitioning strategy can capture this access pattern by appropriate use of the

distributed directive

int img[ROWS][COLS];

#pragma omp distributed(img ,COLS)

While for the hist array we still need a tiled access, and thus a monolitic copyin/-

copyout of the entire data structure, the img array is accessed with split pattern, and

thus tiles of the size of an image row can be continuously copied in and out for at the

beginning and end of each loop iteration. Furthermore, the parallel loop iterator can

be used to identify the tile being processed. This is a very common case in OpenMP

programs, and suggests that scheduling clauses for parallel loops could be extended to

automatically initiate DMA transfers before executing code in the loop body and after

computation has been done. We allow this to be done by providing the inout keywork

as an optional additional parameter to the OpenMP scheduling clauses dynamic and

static.

#pragma omp for schedule(dynamic [, 1, inout(img )])

Accesses to the img array are treated as split references, but they no longer rely on

compiler-generated metadata for allocation, since the thread-to-tile access pattern is

completely known at compile time. DMA transfers towards thread-private buffers in

local SPMs are automatically scheduled by the compiler at the beginning and end of

each loop body, exploiting the loop iterator as a tile identifier.

4.4.3 Customizing Program Regions

Since the array access pattern may change at different program regions (e.g. across

different parallel loops), the most appropriate data (tile) layout in memory should

ideally change accordingly. Stated another way, we are able to deliver best locality

of accesses if several instances of metadata arrays are provided, to capture the access

pattern occurring at different program points. By default, the lexical extent of the

directive to which the tiled clause is coupled (i.e. parallel, for, sections) identifies

such regions, for each of which metadata describing the array tiles layout in memory is
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created. Anyhow, such a granularity may turn out to bee too coarse (or fine) to deliver

efficient execution, due to the cost for frequent data movements. Indeed, metadata

provides threads with a consistent view of distributed data layout in memory, but

there is the need for DMA transfers to actually update the content of SPMs upon

entrance into the program region described by metadata itself. A typical example of

such a case is when a parallel region is nested within one or more loops (see the LU

decomposition benchmark in Sec. 4.5).

for (i=0; i<N; i++)

#pragma omp parallel for tiled(A) \

copyarrayin(A) copyarrayout(A)

for (j=0; j<M; j++)

{

Code block

}

Changing data layout at every parallel region, in this case, may leads to a big number

of DMA transfers, which may overwhelm the benefits of improved access locality.

Depending on architecture-specific cost for DMA on one hand, and remote SPM

access on the other, it may be advantageous to sacrifice a little on the side of the access

locality to reduce DMA cost. We provide the programmer with the profiled locality

directive to outline custom program regions which identify suitable points for data lay-

out re-organization. Accesses to distributed arrays within profiled locality blocks

are considered in isolation during the allocation step, and specific metadata for these

regions is generated. All the clauses for partitioning and DMA described in Sections

4.4.1 and 4.4.2 can be coupled to the profiled locality directive.

#pragma omp profiled_locality tiled(A) \

copyarrayin(A) copyarrayout(A)

{

for (i=0; i<N; i++)

#pragma omp parallel for

for (j=0; j<M; j++)

{

Code block

}

}
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4.4.4 Automatic Generation of Data Layouts

As explained in the previous sections, the compiler handles a tiled clause by re-

computing the address of a distributed array reference within a parallel region. This

computation is based on the identification of the tile being accessed and lookup in meta-

data to retrieve its base address. There may be different ways to determine the content

of metadata, which corresponds to finding an efficient allocation for a given partition-

ing. In the following subsections we describe the two means available in our framework

for specifying data placement, namely block/cyclic and profile-based allocation.

4.4.4.1 Cyclic Tile Allocation

Previous work related to ours on data partitioning for NUMA machines completely

relies on the programmer to specify a BLOCK or CYCLIC allocation. We provide this

option as well. By default, once a partitioning (i.e. a tile/block size) has been specified

through the use of the distributed directive, tiles are assigned cyclically to SPMs

until all tiles have been allocated, or there is no space left on SPMs. A few examples

of cyclic allocation are shown in Fig. 4.5

#pragma omp distributed(A,3) 

#pragma omp distributed(A,2) 

 SPM 0 SPM 1 SPM 2 SPM 3 

Figure 4.5: Block/Cyclic tile allocation

Cyclic placement works fine with regular applications, where most of the accesses to

distributed arrays can be marked as split references, or nearest-neighbor computa-

tions, where only a few elements are known to reside on remote SPMs. Anyhow, when

dealing with less regular applications cyclic allocation may lead to SPM space wastage

and poor locality. A better solution to deal with similar scenarios is that of relying on
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profiled array access count information. We explain how this option is supported in

our framework in the following section.

4.4.4.2 Profile-Based Tile Allocation

By providing a custom -fomp-distributed flag, our compiler is capable of instru-

menting the program to produce access count information for arrays declared within

the distributed directive. More specifically, when the programmer is unsure about

the access pattern performed at different regions in the program, he can simply anno-

tate possible candidate arrays with the #pragma omp distributed directive, compile

the program with the -fomp-distributed flag, and launch a profile run. During this

program run, an execution trace containing all references to distributed arrays from

every processor is collected. Every row in the trace file contains an address belonging

to a distributed array element and the ID of the processor that performed the access.

When this information is available, our toolchain can exploit it to carry out a more

efficient allocation strategy, aimed at maximizing the number of local references for

every processor. The problem of allocating on SPM space the subset (i.e. a number of

tiles) of a given number of partitioned arrays which brings the maximum benefit can

be modeled as a variant of the multiple knapsack problem (37). A first constraint in

our problem is the size of the global SPM space (i.e. the sum of single SPM sizes),

which is often smaller than the array footprints (i.e. the sum of the array sizes). The

overall access count to a tile could be a good metric to identify candidate tiles to allo-

cate on-chip. On the other hand, the NUMA organization of the SPM space imposes

another constraint. Unless a tile is accessed by a single thread, the choice of a target

SPM for placement influences the global cost of all accesses from multiple threads. To

minimize this cost we should ideally map the tile onto the SPM local to the processor

with the highest access frequency, but in case there is no space left on that SPM things

get more complicated.

To solve the allocation problem we adopt an algorithm which implements a greedy

heuristic for the knapsack problem (38).

A single access to a distributed array access is represented within the allocation

pass through the mem access data structure.
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/* A memory access descriptor */

typedef struct

{

/* The ID of the processor accessing the array */

int pid;

/* The address of the mem reference */

int address;

} mem_access;

The trace file collected during the profile run is parsed into an array R of mem access

descriptors, which constitutes the input of the allocation algorithm. The number of

available processors P is also passed as an input. Since each processor has an associated

SPM, the number of SPMs S is equal to P. The output of the algorithm is metadata

describing the target memory bank chosen for every single array tile. The analysis is

carried on by exploiting specific tile descriptors, whose internal representation within

the allocation pass is provided below.
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/* A tile descriptor */

typedef struct

{

/* The unique ID of the DISTRIBUTED array to

* which the tile represented by this struct

* belongs

*/

int distributed_array_id;

/* The ID of the tile within the array */

int tile_ID;

/* The ID of the tile w.r.t. global ordering */

int global_tile_ID;

/* Base address of the array in memory */

int dram_address;

/* Size of the tile (bytes) */

int tile_size_B;

/* Base address of the current tile */

int start;

/* End address of the current tile */

int end;

/* Per -processor tile access count */

int access_count[P];

/* Accesses from all processors */

int overall_access_count;

/* Cost for allocation on different SPMs */

double cost[S];

/* Profit of having the tile on -chip */

double avg_profit;

/* Target SPM for allocation */

int spm_id;

/* Offset w.r.t. SPM base address */

int spm_offset;

} tile;

Each input memory reference in R is inspected in turn to estabilish which distributed

array – and which tile within that array – it belongs to (line 5 ). The base address of

the distributed array is stored in the dram address field of the target tile descriptor.

Along with the size in bytes of a tile – determined through the programmer-specified

partitioning granularity and the array type size, and stored in the tile size B field

– this information is necessary to determine the range of addresses belonging to the

considered tile, so that every memory reference parsed from the trace file can be brought

back to a specific tile. A profit metric to estabilish the benefit obtained by placing a

tile on-chip (whatever SPM) is the total number of accesses performed from whatever
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Algorithm 1 Profile-based Tile Allocation(R)

Require: R - A set R[] of mem access references to distributed arrays within a region.

Ensure: M - Metadata for array tile placement is SPMs.

1: for all mem accessR[I] ∈ R do

2: Identify which tile J the reference R[I].address belongs to

3: Increase global access counter for tile J

4: Increase processor’s R[i].pid access counter for tile J

5: end for

6: for all tiles T [I] ∈ T do

7: for all processors P [J ] ∈ P do

8: Compute cost to allocate tile T [I] on SPM P [J ]

9: end for

10: Compute profit for allocating tile T [I] on-chip

11: end for

12: Sort T by decreasing avg profit

13: for all tiles T [I] ∈ sorted T do

14: if T [I].avg profit ≤ MIN PROFIT then

15: Continue

16: end if

17: Sort array of SPM allocation cost T [I].cost by increasing values

18: for all SPMs J ∈ sorted T [I].cost do

19: if SPM J has room to allocate tile T [I] then

20: Allocate T [I] on SPM J

21: Break

22: end if

23: end for

24: end for

25: Generate M

processor to that tile, so once the tile has been identified, its overall access count

counter is incremented (line 6 ).

On our architecture, accessing a remote SPM encounters a much higher latency

than accessing the local SPM. For this reason, to achieve maximum benefit from tile

allocation onto SPM space we must be able to satisfy the maximum number of each

processor’s references from its local SPM. To annotate access frequency information
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on a processor basis, each tile descriptor contains an access count array field, which

holds a separate counter for each processor (line 7 ).

Based on this information, every SPM in turn is considered for tile placement, and

an associated cost is computed. The array field cost of the tile descriptor stores the

estimated cost for tile placement on different SPMs (lines 8–10 ).

Once the entire trace file has been parsed, all of the program’s memory references

to distributed arrays are represented with a list of tile descriptors, each of which can

be easily accessed through its program-wise identifier (the global tile ID field in

the descriptor), or by specifying the identifier of the distributed array it belongs to

(distributed array ID) and a tile identifier within that array (tile ID).

Since different partitioning granularity can be specified for different distributed

arrays (i.e. tile sizes may differ from an array to another), the actual profit of placing a

specific tile on-chip is computed by dividing the tile access count by its size, and stored

in the avg profit field of its descriptor (line 11 ).

Elements of the tile descriptors array are sorted by decreasing avg profit (line 12 ),

so that ordered scanning of the array considers most-advantageous tiles first for SPM

placement. For each tile descriptor elements of the cost array are sorted by increasing

values (line 16 ), then considered in this order (minimum cost first) for SPM placement

(line 17 ). If there is no space left on an SPM, the ordered cost array is scanned to find

the first available SPM slot (lines 18–20 ). The hosting SPM id is stored in the spm id

field of the descriptor, and the offset relative to the position of the tile within that SPM

is annotated in the spm offset field. If no SPM can host a tile, it is assigned to its

original position in external memory. The process continues until all tiles are allocated.

Based on the spm id and spm offset fields of the descriptor the allocation pass

generates metadata arrays for tiled accesses in the program (line 21 ).

4.4.5 Tool Implementation

Figure 4.6 depicts the entire transformation flow and the tools that we developed. The

original application is annotated with custom directives and clauses by the programmer.

In particular, the granularity of array partitioning is specified through the distributed

directive. The rest of the compilation, profiling and optimization process is automated

by several scripts, which are globally managed from a top-level exec all program. The

entire process can be summarized in the following steps:
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 #define ROWS 240 
#define COLS 160 
#define NPROCS 4 
#define TSIZE1 (256/NPROCS) 
#define TSIZE2 (ROWS*COLS/NPROCS) 
 
void foo (...) 
{ 
  int hist[256]; 
  #pragma omp distributed(A,TSIZE1) 
  int img[ROWS][COLS]; 
  #pragma omp distributed(img,TSIZE2) 
  int i, j; 
  int pid = omp_get_thread_num(); 
 
  #pragma omp parallel for  \ 
    tiled(hist)  \ 
    split(img)  \ 
    copytilein(img,pid) \ 
    copyarrayin(hist) \ 
              copyarrayout(hist) 
  for (i=0; i<ROWS; i++) 
    for (j=0; j<COLS; j++) 
    { 
      hist[img[i][j]]++; 
    } 
 
  printf(“hist[127]=%d”, hist[127]); 
} 
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Figure 4.6: Tool flow

1. A first Makefile is generated. Programmer hints about data distribution are

discarded, and entire distributed arrays are placed in the shared memory.

2. A -fomp-distributed flag is passed to the compiler to instrument the application

so that accesses to these arrays are monitored.

3. A first simulation step takes place. A script collects array access information into

a convenient trace file.

4. A second Makefile is generated which actually triggers array partitioning in the

compiler. This task is accomplished by generating look-up operations into allo-

cation metadata.

5. The trace file is fed to our allocation algorithm – which is hooked to the OpenMP

expansion pass in the compiler – to generate metadata.

6. A second simulation step takes place, with arrays partitioned and distributed

across SPMs.
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4.5 Experimental Results

We describe in this section the experimental setup used to evaluate our programming

framework and the results obtained.

Architecture Simulation: We implemented an instance of the two platform tem-

plates presented in Sec. 4.3 within a SystemC full system simulator (39). Our CMP

die hosts 8 processor tiles, based on a RISC32 CPU. The parameters for the on-tile

SRAM organization are shown in table 4.1 for the cache-based (architecture A) and

SPM-based (architecture B) platforms. Since the focus of this work is on data place-

Architecture A Architecture B

Cache-based SPM-based

I-cache 8KB, direct mapped 8KB, direct mapped

latency (cycles): 1 latency (cycles): 1

D-cache 16KB, 4way set-assoc 4KB, 4way set-assoc

latency (cycles): 1 latency (cycles): 1

SPM – 16KB

latency (cycles):

1 (local), 10 (remote)

Table 4.1: On-tile SRAM memory organization

ment, in both templates code management is entirely accomplished through instruction

caches (8KB). Architecture A features a 16KB data cache to cope with data manage-

ment. The runtime library enforces a consistent view of shared data through flush

instructions. Architecture B leverages a 16KB scratchpad memory (SPM) for shared

array data, whereas thread-private data is accessed through a small data cache (4KB).

Accesses to local caches and SPMs exploit a dedicated connection and are subjected

to only 1 cycle latency. For remote SPMs this cost depends on the internal memory

interface latency (≈ 2 cycles), the contention level on the network, the remote memory

interface latency (≈ 2 cycles), and the remote SPM latency (1 cycle). We model

the zero-load latency for each core to traverse the interconnect for remote memory

access with 10 cycles. The cost for an off-chip shared memory access is 100 cycles.

If interconnect resources are shared with other concurrent transactions, the latency

increases.

Architecture B exploits a DMA engine on each processor tile to reduce the copy

cost between main (off-chip DRAM) shared memory and SPMs. DMA transfers are
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initiated within our runtime library by means of a small high-level API (36). Initiat-

ing/terminating a DMA transfer on the processor has a cost of ≈ 400 cycles (included

the call overhead to API functions). Data is transferred in bursts of 8 words.

Benchmarks: We show results obtained with two code kernels, extracted from the

OpenMP Source Code Repository (40) benchmark suite, and two real applications. All

of the considered benchmarks are representative of the memory access patterns found in

typical embedded applications from the matrix and image processing (array-intensive)

domain:

• LU decomposition – This code kernel decomposes a square matrix into the

product of a lower triangular matrix (L) and an upper triangular matrix (U). LU

decomposition is frequently adopted for matrix inversion, which plays a significant

role in 3D graphics

• FFT – A Fast Fourier Transform computation kernel based on the Cooley-Turkey

algorithm

• NCC (Normalized Cut Clustering) – This application is adopted in envi-

ronmental monitoring through wireless sensor networks. Changes in a monitored

area (e.g. people entering a room) are detected by means of a clustering algo-

rithm that computes image affinity between frequently captured images and the

reference background (e.g. the image of the empty room)

• JPEG decoding – A complete JPEG decoder application

The baseline for all our experiments is a program configuration in which all shared data

is placed in the off-chip shared memory, and is accessed from there by means of single

transfers. Benchmarks are then executed on architectures A and B, under several data

placement variants:

• CACHE - Architecture A: Shared data is fetched from main memory through the

caches. Coherence is maintained in software (flushes).

• tiled - Architecture B: Arrays are annotated with the tiled clause and the

content of SPMs is updated at each parallel region with the copyarrayin and

copyarrayout clauses.
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• profiled locality - Architecture B: The programmer defines custom regions for

profile-based data placement by using the profiled locality directive. Data is

copied in/out SPMs only once at region enter and exit.

• inout - Architecture B: The schedule clause for loop parallelization is combined

with the inout clause. Each thread operates on a local buffer where data is

transferred automatically in/out at every scheduling event.

Our plots show the execution time of each benchmark under the above described data

placement configurations, normalized to the baseline. Thus, we show both the effec-

tiveness of our techniques in a (data) cache-less machine and a comparison against a

cache-only solution. We provide a breakdown of the execution time into three main

contributions:

• CPU+Mem - Time taken from actual parallel computation, plus the time spent

on memory accesses

• DMA tran - Time spent on DMA transfers

• DMA prog - Time spent on DMA programming

4.5.1 LU Reduction

4.5.1.1 Parallelization

We provide a detailed description of different parallelization schemes on this benchmark

to show a concrete usage of our custom directives. Let us consider the LU decomposition

code kernel shown in Fig. 4.7. Computation takes place within a triply-nested loop,

and is done on progressively smaller submatrices in the lower right-hand corner of

the arrays L and M. The outermost loop scans elements on the diagonal, the loop

in the middle scans matrix rows, and the innermost loop scans columns. The loop

nest in the middle is parallelized with dynamic scheduling, thus originating threads

working independently on separate matrix rows. We consider three data distribution

variants for this kernel. The simplest one, useful in absence of any insights on the

application array access pattern, is that of accessing the arrays with tiled references,

and updating the content of SPM space at every parallel region. In case the programmer
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double M[SIZE][SIZE]; 
#pragma omp distributed(M,SIZE) 
double L[SIZE][SIZE]; 
#pragma omp distributed(L,SIZE) 

/* Scan sub-matrices */

for (k=0; k<SIZE-1; k++) 

#pragma omp parallel for schedule(dynamic) \ 
 tilein(M,k)         \ 
 tileinout(M,i)    \ 
 tileinout(L,i) 

  for (i=k+1; i<SIZE; i++) 
  { 
    L[i][k] = M[i][k] / M[k][k]; 

    for (j=k+1; j<SIZE; j++) 
    { 
      M[i][j] -= L[i][k] * M[k][j]; 
    } 
  } 

 

 

k=4 

i=k+1 

j=k+1 

Figure 4.7: LU decomposition kernel

can not determine a suitable partitioning, it is possible to provide tentative values to

the distributed directive (TSIZE parameter).

The main drawback of this solution is that it implies a high amount of DMA traffic,

since the parallel region is nested within a loop, thus requiring frequent re-organization

of data layouts in memory. Even if profile based allocation guarantees excellent locality

of references within the specified region, in this situation, local accesses are not likely

to repay the cost for frequent data movement.

In this case we could consider a coarser program region by enclosing the entire

outermost loop within a profiled locality directive, thus triggering a single copy-in

and a single copy-out DMA transfer. Considering profile data for a coarser program

region is likely to lead to a higher number of non-local references, but the overhead

for degraded locality would probably be much smaller than that required for intensive

DMA.
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double L[SIZE][SIZE];

#pragma omp distributed(L,TSIZE );

double M[SIZE][SIZE];

#pragma omp distributed(M,TSIZE );

...

#pragma omp profiled_affinity \

copyarrayin(M,L) copyarrayout(M,L)

{

// Outermost loop is enclosed within the

// PROFILED_AFFINITY directive

for (k=0; k<SIZE -1; k++)

{

#pragma omp parallel tiled(M,L)

{

#pragma omp for schedule(dynamic)

for (i=k+1; i<SIZE; i++)

{ Loop body }

}

}

}

Finally, it is possible to notice that employing dynamic scheduling (with chunk size =

1) in this program generates threads operating on an entire matrix row. Coupling the

inout keyword with dynamic scheduling leads to a partitioning with maximum affinity

with the thread footprint. Single rows can be brought inside local SPM by each thread

before processing, and stored back in their original position after that. Besides updating

elements from the i-th row of matrices L and M, each thread also accesses row k from

matrix M. Since references to this tile are read-only (dashed line rectangles in Fig. 4.7),

it is possible to copy it on each SPM without incurring in memory inconsistency issues.

We do this through the use of the tilein clause. Since this tile is never written within

the loop, there is no need for a tileout clause.
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double L[SIZE][SIZE];

#pragma omp distributed(L,SIZE);

double M[SIZE][SIZE];

#pragma omp distributed(M,SIZE);

...

for (k=0; k<SIZE -1; k++)

{

#pragma omp parallel tilein(M,k)

{

#pragma omp for schedule(dynamic ,1,inout(M,L))

for (i=k+1; i<SIZE; i++)

{ Loop body }

}

}

}

4.5.1.2 Results

We execute the LU Reduction benchmark employing all of the three data distribution

schemes described above. Results are shown in Fig. 4.8. We consider three partitioning

granularities, namely tile sizes equal to 4, 2 and 1 row. Focusing on the three tiled bars,

as expected a huge penalty for frequent DMA is paid, thus leading to worse performance

than the cache. Besides the cost for DMA transfers, a significant amount of time is spent

on initiating and terminating the transfers themselves. It is possible to see that this

cost increases as the tilesize is reduced, since this implies initiating a higher number of

transfers. On the other hand, employing finer partitioning granularity provides better

locality, and thus reduces the time spent on memory.

The profiled locality solution allows to remove the DMA overhead, while pre-

serving the benefits of improved locality with finer partitioning. An average 2,3×

speedup is achieved with this solution against the cache.

Finally, dynamic scheduling + inout DMA provides excellent results, with a 1,8×

improvement w.r.t. the cache.

4.5.2 Fast Fourier Transform (FFT)

This program adopts a Cooley-Turkey algorithm for FFT computation. Even in this

case the main parallel loop is nested within an outer loop. As confirmed by the results in

Fig. 4.9, this leads to the already discussed problems with repeated DMA. Nonetheless,

it is possible to notice that for this benchmark this is not a relevant issue. Since parallel

84



4.5 Experimental Results

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 CPU+Mem

DMA tran

DMA prog

Figure 4.8: Results for LU decomposition benchmark

threads contain a significant amount of work to perform, the cost for DMA is less

pronounced, and allows the tiled approach to execute 23,60% faster than the cache.

This is mainly due to the fact that dynamic scheduling here generate threads that

access the main distributed array in an irregular fashion. The profile-based approach

is insensitive to that, whereas the cache is subject to frequent misses. Employing the

profiled locality directive to reduce DMA traffic leads to a 68,92% speedup against

the cache. The inout approach is not applicable to this benchmark.

4.5.3 Normalized Cut Clustering (NCC)

The main kernel in this application is amenable to dynamic loop parallelization, with

independent rows being processed within parallel threads. Pixel data is computed based

on a nearest-neighbor pattern on a 5×5 window, thus exhibiting a significant degree of

spatial locality of accesses. In this case we expect the cache to be favoured. We consider

an array partitioning scheme with the same granularity (i.e. one row per tile), both

implicitly with inout scheduling, and explicitly with the tiled clause. Three arrays

are annotated for partitioning and SPM allocation, only 56% of their overall footprint

fitting on (the sum of) SPM space, and thus inherently limiting the effectiveness of the

tiled approach (since part of the array space lays off-chip during the parallel region).

This is confirmed by looking at Fig. 4.10, where the tiled bars provides the worst
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Figure 4.9: Results for Fast Fourier

Transform benchmark
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Figure 4.10: Results for Normalized Cut

Clustering benchmark

performance (2,93× slower than the cache). Since the arrays are accessed with a regular

pattern in time, it is possible to split the parallel region in two smaller regions with the

profiled locality directive, so that the entire array subsets accessed by the threads

are always on-chip. This solution allows to speed up the execution by 3,77× w.r.t. the

tiled approach, and by 1,3× w.r.t. the use of the cache. Finally, since the memory

access pattern allows the use of inout scheduling, iteration-specific fetches of array

tiles can be exploited, thus leading to 3,88× speedup w.r.t. the cache.

4.5.4 JPEG Decoding

The JPEG Decoding benchmark features three main tasks, namely Huffman decoding,

luminance dequantization and inverse DCT. Huffman decoding is not parallelized, thus

is carried out entirely by the master thread. Luminance dequantization can be executed

in parallel employing both static or dynamic scheduling. The image is decomposed

into 600 DCT blocks (8x8 pixels), each of which can be processed independently by

the others. The main parallel loop scans the image blocks, thus we can create threads

operating on an arbitrary number of iterations, i.e. working on an arbitrary number of

adjacent blocks. When the size of an array tile and the chunk size employed for loop

parallelization are equal, we can exploit inout scheduling. When employing different
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Figure 4.11: Results for the Luminance

Dequantization kernel (JPEG benchmark)
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Figure 4.12: Results for the Inverse DCT

kernel (JPEG benchmark)

partitioning granularities, the image array can be annotated as tiled, and all of the

allocation is left to our runtime.

Figure 4.11 shows the results for those two partitioning strategies, where we also

provide different granularities for the tiled approach. It must be pointed out that the

entire image does not fit into the sum of all the SPMs. For this reason, finer partitionig

allows a greater number of tiles to be accomodated within SPM space. The simplest

partitioning scheme, namely that of dividing the array in as many tiles as available

threads, leads to a situation in which a single tile is bigger than a SPM. For this reason

our allocator is not capable of placing any subset of the image array on-chip, and

always accesses it from external DRAM. This leads to the worst case execution time

shown. Reducing the granularity of partitioning allows fitting an incresing number of

tiles on-chip. On the other hand, as already noticed with the LU benchmark, initiating

a bigger number of transfers to move all tiles to SPM space also increases the cost

for DMA programming. In this case this is not a major concern, and employing the

finest array partitioning leads to the best performance results for the tiled approach,

affording a 1,93× speedup w.r.t. the cache. Unsurprisingly, the inout approach allows

further speedups, since the entire image array is accessed from the SPMs. In this case

we achieve a 4,28× speedup.
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The results for the IDCT kernel are shown in Fig. 4.12, and basically trace those

obtained with the luminance dequantization kernel. This kernel exhibits more com-

putation, as well as a higher number of accesses to neighboring array elements, thus

allowing the cache to do slightly better than in the previous kernel. Similarly, the cost

for DMA transfers is less predominant with this kernel, thus making the speedup of

the inout approach against the cache even more relevant (7,63×).

4.6 Conclusion

The emergence of MPSoCs with Explicitly Managed Memories (EMM) raised the ne-

cessity for programming models and tools that aid the programmer in the difficult task

of achieving performance through efficient exploitation of high-bandwidth, low-latency

scratchpad memories (SPM). From one side, efficient exploitation of the hardware re-

sources calls for programming patterns that expose them at the application level. On

the other hand higher-level abstractions are desireable for the sake of programming sim-

plicity. In this chapter we described how on-chip SPMs can be easily leveraged from

the programming interface by means of simple but powerful extensions to the OpenMP

API. Several custom features have been added which allow the programmer to simply

express the need for optimized data partitioning and placement through annotations.

The details of how partitioning is implemented, however, are hidden from its view and

are accomplished by synergistic interaction of profile-based compiler optimization and

runtime support for dynamic update of SPM content. In this way at each parallel

access to shared arrays every processor references its share of data from its local SPM.

Experimental results on several benchmarks confirm the effectiveness of the approach,

which allows up to 7,63× speedup against a cache-only solution.
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Chapter 5

Data Mapping for Multicore

Platforms with Vertically

Stacked Memory

Emerging TSV-based 3D integration technologies have shown great promise to over-

come scalability limitations in 2D designs by stacking multiple memory dies on top of

a many-core die. Application software developers need programming models and tools

to fully exploit the potential of vertically stacked memory. In this chapter, we focus

on efficient data mapping for SPMD parallel applications on an explicitly managed

3D-stacked memory hierarchy, which requires placement of data across multiple verti-

cal memory stacks to be carefully optimized. We investigate the applicability of the

array partitioning techniques described in the previous chapter to 3D-stacked memory

hierarchies. The problem of optimizing array tile placement so as to minimize remote

references is even more pressing when dealing with heterogeneous interconnect facilities

such as the one we propose here. Vertical (TSV-based) interconnect provides fast ac-

cess and high bandwidth, whereas accesses to remote memories are transported through

the Network on Chip (NOC) in the horizontal plane, thus being subject to increasing

access latencies and decreasing bandwidth with the physical distance. This calls for

revisitations of the already proposed NUMA-aware placement techniques.
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5.1 Introduction

Three-dimensional (3D) stacking technology has recently risen to the research forefront

as one of the most high-potential technology innovations for many-core integrated plat-

forms, both in general purpose and embedded computing (11) (12) (6) (4). 3D inte-

gration technology provides a number of means to overcome the scalability limitations

imposed on many processor designs as 2D technology reaches the nanometer scale.

It gives the opportunity to revisit the traditional architectural tradeoffs based on the

evidence that the processor and memory sub-systems had to be placed side by side.

In 3D stacking they can be placed on top of each other, and linked through vertical

interconnects which are more than two orders of magnitude more energy-efficient and

denser than the most advanced off-chip I/O channels.

The main benefit of this disruptive technology in high-end embedded computing

is to enable the construction of many-core data-processing systems with low latency

and high bandwidth access to multiple, large DRAM banks in close spatial proximity.

The availability of such an efficient physical layer for processor-to-memory communi-

cation and of an enormously increased amount of space in tightly coupled memories

will trigger deep changes in high-performance embedded programming. In a nutshell,

3D integration enables distribution in space not only of computation but also of main

memory storage to an unprecedented level. Clearly, this brings new distinctive compile-

and run-time software development challenges which are just starting to be assessed by

the scientific community.

Our first goal is to define a conceptual framework to address these challenges. We

model a vertically stacked memory system with the abstraction of memory neighbor-

hood: each physical processing element in a large many-core array has fast, large-

bandwidth access to a vertical stack of memory banks on top. The processor can also

address (in a globally shared memory model) vertical stacks on top of other processors,

but corresponding memory transactions will have to be transported through a hori-

zontal on-chip interconnect fabric, typically a Network-on-chip (NoC). This implies a

notion of distance: the cost (increased latency and decreased bandwidth) of a memory

access sharply increases as we move to memory neighborhoods to far away processors.

Fig. 5.1 depicts a high-level view of a 3D integrated architecture and its memory neigh-

borhoods. In this chapter we focus on a concrete embodiment of this model targeting
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embedded computing, namely a 3D-integrated platform for multi-dimensional array

processing (e.g. antenna arrays, radar images, video images) with explicitly managed

data memories.

Typical applications in the domain of array and image processing require the im-

plementation of algorithms for enhancement, analysis, synthesis of multidimensional

arrays of “pixel” data. Many of these algorithms are amenable to SPMD (Single Pro-

gram, Multiple Data) parallelization, based on decomposition of data array processing

across parallel threads. Mapping this computation model onto a 3D-stacked memory

architecture requires careful data placement across multiple physical memories. Placing

entire arrays onto a single shared memory encounters scalability problems. Moreover,

accessing remote memory stacks induces severe latency overheads. These issues can be

efficiently addressed by partitioning data and placing each partition onto the DRAM

neighborhood of the processor that mostly references it.

Preliminary results reported in this chapter give clear evidence that 3D-memory

aware programming model and application development environment is critically re-

quired to achieve high execution efficiency on a vertically integrated embedded mul-

ticore platform. The scope of this approach is here precisely limited to SPMD-type

parallel applications targeted on a MPSoC with explicitly managed memory hierar-

chy. Results indicate that a neighborhood-aware software development environment

can boost application execution efficiency by up to 6,25×.

5.2 Background and Related Work

Recently, several 3D memory designs have been announced, confirming the benefits

of 3D technology for high-efficiency next-generation memory systems (1) (2) (3). The

benefits of 3D memories have mostly been explored for high performance systems (4)

(5) (3). Kgil et al. (4) present a high performance server architecture where DRAM

is stacked on a multicore processor chip. Overall power improvements of 2 − 3× with

respect to a 2D multi core architecture are reported. Similarly, (5) presents a 3D

stacked memory architecture for CMP. By changing the internal DRAM architecture

(based on true 3D memory organization proposed by (3)), the author claims a 75%

speedup. On the industrial front, many companies, including industry leaders IBM

and Intel are active in technology and architecture exploration (6) (7) (8) (9).
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On the research side, Li et. al investigate in (10) the challenges for L2 design and

management in 3D chip multiprocessors. They propose a router architecture and a

topology design that makes use of a network architecture embedded into the L2 cache

memory. Their term of comparison is 2D NUCA systems, which employ dynamic data

migration to place more frequently-accessed data in the cache banks closer to the pro-

cessor. Experiments show that a 3D L2 memory design with no dynamic data migration

generates better performance than a 2D architecture that employs data migration.

3D memory integration is also actively explored in the embedded computing do-

main. All major players in the mobile wireless platform markets are very actively

looking into how to integrate memories on top of MPSoC platforms for next-generation

hand-held terminals (11). More in general, the system size reduction, coupled with

orders-of-magnitude improvements in memory interface energy efficiency are key en-

ablers for disruptive innovation in embedded computing (12), possibly even more than

in performance-centric general-purpose computing. In (13), Ozturk et al. explore core

and memory blocks placement in a 3D architecture with the goal of minimizing data

access costs under temperature constraints. Using integer linear programming, the best

2D placement vs the best 3D placement are compared. Experiments with both single-

core and multi-core systems show that the 3D placement generates much better results

(in terms of data access costs) under the same temperature bounds.

5.3 Target 3D Architecture

The platform template targeted by this work is the 3D-stacked MPSoC depicted in Fig.

5.1. The bottom layer hosts the processing elements of the chip, while the others are

composed by DRAM memory banks(5). Each vertical stack features a bank of private

memory, only accessible from the local processor, and a bank of shared memory. The

collection of all the shared segments is organized as a globally addressable NUMA

portion of the address space. In the considered 3D template, memory and CPUs are

allocated onto different layers, but our software framework can be applied to different

stacking approaches. The bottom layer in Fig.5.1 illustrates the block diagram of the 2D

multi core subsystem. It is made by several computational tiles composed by a RISC-

like CPU and a small amount of local memory (SPM, caches). Interactions between
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Figure 5.1: Target 3D hardware architecture.

CPUs and memories take place through the overall 3D interconnecting system, which

is composed by two main orthogonal and heterogeneous facilities:

• on-layer communication network (NoC), for horizontal communication on the

bottom layer

• fast vertical DRAM controller with TSV DRAM physical interface for vertical

communication to upper layers.

The whole memory sub-system is accessible from the bottom layer by every tile through

this heterogeneous 3D interconnection. Every CPU can reach every SPM memory

through the bottom-layer horizontal communication network, but also every sub-bank

memory allocated in the upper layers via the on-layer communication network and the

appropriate vertical memory controller interface. However, different CPU-to-memory

paths have different communication latencies. Shorter paths provide faster communi-

cation, while multi-hop paths imply higher latency. Fig.5.1 shows two memory access
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examples: the black path denotes a fast communication since the CPU is accessing a

memory region which is right above it, while the white path has a higher latency be-

cause the transaction has to travel across two links on the bottom layer before reaching

the right TSV. Multi-hop transactions are affected by the delay of the links that they

need to cross. Moreover, they cause congestion of the overall system interconnect.

5.4 Neighborhood programming

Embedded systems applications can be broadly classified as event-driven (e.g. auto-

motive) or compute and data intensive (e.g. wireless, biomedical, multimedia). Data

intensive embedded applications are designed to handle and perform on large data

structures. In these programs a high degree of data parallelism is available, where

the SPMD execution model is used to replicate the computational kernels in parallel

threads working on different subsets of the target data array. In general terms, in the

SPMD model each instance of a parallel task (i.e. each thread) accesses only a subset

of the shared data. Part of the shared data-set may overlap among different threads,

but typically only few border elements are actually accessed by multiple threads. The

benefits in placing frequently accessed data close to the processor are well known, par-

ticularly when dealing with complex memory hierarchies with NUMA organization.

From a practical point of view this has been historically dealt with by means of data

transfer to constantly keep in small and fast on-chip SRAM memories such data, with

the goal of satisfying most memory references from there.

In 3D architectures, three-dimensional stacking of DRAM (main) memory greatly

mitigates the memory size limitation and thus the need for frequent data movements,

but it does not solve the problem of efficiently mapping data to physical memory banks.

Naive topology-agnostic data placement techniques which allocate entire arrays on a

single memory neighborhood may create interconnect bottlenecks and suffer significant

latency penalties. Stacking-aware allocation schemes are needed, where different parts

of a shared data structure (hereafter called tiles) can be mapped to different physical

memory stacks with the goal of minimizing accesses to non-neighbor stacks.

In our view of the neighborhood programming model, the programmer can express

at the application level the necessity for distributed placement of a shared data struc-

ture. Partitioning is then triggered in the compiler, which transforms the program to
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synergistically interact with the runtime environment to find the most convenient place-

ment. We describe in the following how we adapt the OpenMP-based programming

framework described in the previous chapter and its support for array partitioning to

the 3D MPSoC presented in Sec. 5.3.

5.4.1 Distributed Data Placement

The target 3D MPSoC features both private and shared regions of the address space.

Our compiler efficiently deals with thread-private variables by allocating them onto

the private block of their host processor’s neighborhoods. Dealing with shared data is

trickier. The OpenMP memory model assumes a single memory space and provides no

facilities to specify how data is to be arranged within the memory space. To specify data

placement onto a specific memory neighborhood we extend our custom distributed

directive.

int A[N ] [M] ;

#pragma omp d i s t r i b u t e d (A[ , mem id ] ) ;

As before, declarations of distributed variables are changed by the compiler into point-

ers, which point to a region in the shared address space. On the contrary, the optional

mem id parameter has here a different meaning. It specifies a target memory neigh-

borhood for placement.

5.4.2 Array Data Partitioning

OpenMP provides work-sharing directives to divide computation among parallel threads,

but it lacks means to specify an affinity between the data set touched by a thread and

its physical placement on a memory block. We leverage our API extensions to add

this feature. The partitioning process can be triggered within a parallel region by

annotating the shared array with the custom split clause. Similar to our previous

2D implementation, if the split clause is specified, the programmer assures that all

references issued by a thread fall within a single tile.

#pragma omp p a r a l l e l for s p l i t ( a )

for ( i =0; i <8; i++)

a [ i ] = foo ( ) ;

This functionality is similar to those found in High Performance Fortran (HPF) or

OpenMP extensions[18][20] for data distribution. Anyhow, our partitioning technique
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is much more flexible, in that – unlike cited approaches – the granularity of array

blocking can be arbitrarily small at a very contained cost (see Sec. 5.4.3.2).

Similar parallelization schemes in which each processor touches distinct portions of

an array are quite common in OpenMP programs. In this case data tiles are straightfor-

wardly placed close to processors hosting the logically associated thread. In less regular

programs often happens that threads need to reference non-local data. Typical imple-

mentations of data distribution techniques for NUMA machines rely on heavyweight

virtual memory paging techniques to fetch remote data. Here the cost for virtualization

is hidden behind the high latencies of the communication medium. On our platform

this solution is unfeasible, since we are lacking both the hardware (i.e. MMUs) and

software (a full-fledged operating system) support for virtual memory. Furthermore,

the high cost for such a virtualization layer would no longer be paid off, due to the

low cost for communication in our interconnection system. Thus, our implementation

rather relies on a streamlined support for address translation, based on metadata for

array indexing that is explicitly managed and allocated (see Sec. 5.4.3). At the appli-

cation level, we provide the tiled clause, that can be coupled with a parallel directive

to describe an irregular access pattern. In the following example each array element is

placed on a distinct memory, and every thread accesses all of them. Thus, three out of

four accesses are to remote memories.

#pragma omp p a r a l l e l t i l e d ( a )

for ( i =0; i <4; i++)

a [ i ] = foo ( ) ;

Fig. 5.2 shows how the wanted array element is accessed through address translation.

Every single reference to distributed array a is instrumented by our compiler with a call

to the library function GOMP access tiled array(). Based on the reference offset, the

runtime computes a tile ID, then looks up in the tiles metadata array for the correct

address.

5.4.3 Runtime Support to Data Partitioning and Placement

The partitioning technique described above relies on metadata (the tiles array) con-

taining the base address of data tiles. Metadata is replicated onto each processor’s

memory neighborhood for fast local inspection. By default, arrays are partitioned in
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P0 

main.omp_fn.0 (...) 
{ 
  double * base; 
 
  for (i=0; i<4; i++) { 
    base = GOMP_access_tiled_array 

(<offset>, <distvar_id>); 
 
    (*base)[i] = foo(); 
  } 
} 

tiles[0][0] = 0x22000028; 

tiles[0][1] = 0x22100028; 

tiles[0][2] = 0x22200028; 

tiles[0][3] = 0x22300028; 

GOMP_access_tiled_array (int 
offset, int dvar_id) 
{ 
  int tile; 
  double * base; 
 
  tile = offset/tilesize[dvar_id]; 
  base = tiles[dvar_id][tile]; 
 
  return (double *)(base + offset) 
} 

double a[8]; 

Figure 5.2: Compiler instrumentation of tiled arrays

a number of tiles that is equal to the number of worker threads (i.e. cores), and ad-

dresses for each tile are generated by the compiler according to a cyclic distribution

onto memory neighborhoods. This default choice has three advantages:

1. it captures the thread-to-memory affinity of static loop scheduling (the most

common in OpenMP programs).

2. it enables the coarsest partitioning scheme, which generates metadata with very

small memory footprint.

3. it requires almost no intervention from the programmer.

The default scheme provides good results for regular applications, that are amenable

to static loop parallelization. For programs with strided or irregular memory patterns,
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cyclic placement and coarse-grained partitioning may lead to high rates of remote ac-

cesses. We show in the following subsections the solutions we provide to improve

locality.

5.4.3.1 Automatic Generation of Affinity-based Data Layouts

Default cyclic tile placement can be overridden by providing a custom tile layout de-

scriptor (metadata) in a specific header file. Devising an efficient placement requires

insights on the application behavior on memory. To make this task easier we enriched

our compilation toolchain with scripts that automatically find affinities between threads

and data tiles, based on access count information gathered during a profile run of the

application. Metadata representing a placement that minimizes the number of remote

references in the program is automatically generated and included for compilation.

The algorithm used to accomplish this task is very similar to the one presented in

the previous chapter. The main differences reside in a brand new set of architectural

parameters:

1. Memory neighborhoods are composed of DRAM memory, as opposed to the

SRAM cells employed by scratchpad memories (SPM). Accurately modeling ex-

pected access time in the compiler requires considering appropriate latencies for

different memory traffic patterns.

2. In our previous implementation of the allocation passes we considered an intercon-

nection medium with uniform latencies (i.e. a crossbar). With this assumption

remote SPM accesses are much less sensitive to the physical distance w.r.t. a

NoC. In this case the effect of NUMA latencies is much more pronounced, and

depends on the actual processor-to-memory communication pattern (see Sec. 5.5.

To conceptually show the benefits of affinity-based placement w.r.t. cyclic place-

ment, let us consider the following example. A loop is statically parallelized among

four threads, and default cyclic partitioning is enabled.

#pragma omp p a r a l l e l for schedu le ( stat ic ) s p l i t ( a r r )

for ( i =20; i<N; i++)

ar r [ i ] = foo ( ) ;

We represent the footprint of threads on the array in Fig. 5.3. Threads are represented

with dashed lines, and array tiles with thick black borders. Since the lower boundary
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of the iteration space is greater than zero, the portions of the array accessed by the

four threads do not overlap completely with the array tiles. In Fig. 5.3.a) we show

cyclic (default) tile placement. Color coding is used to associate a tile to a thread, so

each tile is associated to a different thread in a cyclic fashion. We use plain and dashed

filling to represent local and remote references, respectively. In Fig. 5.3.b) we show

affinity-based tile placement. Here tiles are allocated onto the memory neighborhood

local to the processor that mostly references it. It is possible to notice that affinity-

based placement accounts for the irregularity in loop boundaries. Both tiles 1 and 2 are

allocated local to thread 1, and the number of remote accesses is significantly reduced.

5.4.3.2 Refining Partitioning Granularity

Keeping the size of metadata small is profitable when memory space is strictly con-

strained (e.g. when using SPM space for data allocation). On the other hand, in

irregular programs exploiting few large tiles may result in poor approximation of the

thread footprint on memory, resulting in poor locality. On our 3D architecture there

are no strict memory space constraints, so we can refine the granularity of partitioning.

The programmer can specify the number of tiles for partitioning. The finer the parti-

tioning is done, the more overlapping of data tiles with accessed locations is achieved.

This is shown in the comparison between coarse-grained affinity-placement (Fig. 5.3.b)

and fine-grained affinity-placement (Fig. 5.3.c) for the example loop introduced in the

previous section.

In Fig. 5.3.c the array is partitioned in eight tiles, each of which is placed locally

to the processor with higher affinity. This significantly reduces the number of remote

accesses.

It is worth underlining here that data distribution on traditional NUMA machines

either only provide page granularity for partitioning(21) (which is often too coarse to be

beneficial), or resorts to very tricky and expensive techniques (e.g. data padding at the

page level) to provide finer partitioning(19). We can support fine-grained partitioning

with much better efficiency, with arbitrarily small data tiles at the same cost for address

translation and at the only increased cost for memory footprint of metadata.
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Figure 5.3: Comparison of miss rate for cyclic, coarse-grained affinity-based and fine-

grained affinity-based placement

5.5 Experimental Results

We describe in this section the experimental setup used to evaluate our programming

framework and the results obtained.

We implemented an instance of the 3D platform template presented in Sec. 5.3

within our SystemC full system simulator. We simulate a 3D chip composed by three

layers. The bottom level hosts 16 processor tiles, while memory stacks (16 MB each)

reside on the topmost two layers. Each processor tile features a RISC-like CPU coupled

with 16KB scratchpad memory (SPM) and a small unified cache (16KB) for private
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Figure 5.4: Floorplan and scheme for interconnect latency modeling

data and instructions. Caches only manage private data, therefore any coherence issue

is prevented. The network on chip on the CMP die is based on the ST STBus protocol.

In the image on the left of Fig. 5.4 we show the layout of processing tiles on the

CMP die. Processor IDs increase with the pattern indicated by the arrow. The master

core is kept in a central position in the CMP die to balance communication cost among

cores towards its memory stack. The memory access time is not constant for the entire

hierarchy, but depends on the transaction path. Accesses to local SPM are subjected

to only 1 cycle latency. For remote SPMs this cost depends on the internal memory

interface latency (≈ 2 cycles), the number of hops to the target memory controller, the

contention level on the network, the neighborhood interface latency (≈ 2 cycles), the

neighborhood memory latency (1 cycle for SPM, ≈ 5 cycles for 3D stacked DRAM).

The zero-load latencies for each core to traverse the interconnect for remote memory

access are modeled as depicted in the image on the right. For instance, in absence of

contention accessing data on the memory neighborhoods of processors 4, 14 or 10 from

processor 12 is subject to a latency of 20 cycles. If interconnect resources are shared

with other concurrent transactions, the latency will be higher.

We show results obtained with two benchmark applications. The first is a normal-

ized cut clustering (NCC) image processing kernel, and the second is a JPEG decoding

algorithm. Performance plots with a breakdown of parallel execution time for each

processor (on the X-axis) highlight:

1. Mem port congestion - Idle time due to congestion on the memory port (seri-

alization of transactions)
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2. Latency - Time spent in delivering/retrieving data through the network (zero-

load latencies)

3. CPU time - Time spent on computation

Such plots are drawn for three program configurations:

Baseline: All shared data is placed in the memory neighborhood of the master pro-

cessor.

Basic Tiling: Coarse-grained partitioning with affinity-based placement.

Fine-Grained Tiling: Fine-grained partitioning with affinity-based placement.

To further evaluate the effectiveness of the granularity optimization we also provide

plots that show the percentage of local memory accesses for decreasing tile sizes.

5.5.1 NCC benchmark

The main program loop is parallelized with static scheduling, but the overall number

of iterations does not evenly divide the number of processors. An equal number of

iterations is assigned to all processors but the one with the highest ID, which has a

lighter workload. This behavior justifies the shorter execution time for processor 15 in

the baseline plot (Fig. 5.5).

When all shared data resides in the master core’s memory stack – as expected –

severe penalties due to memory port congestion are encountered. Latencies to access

remote memory neighborhoods also lengthen significantly execution time. The con-

gestion problem is completely removed when applying partitioning, even with coarsest

granularity (Fig. 5.6).

This yields a 6× speedup w.r.t. the baseline technique (the plots have different

scales). For processors 0, 6 and 12, all memory references are satisfied from the local

neighborhood, whereas other processors suffer varying degrees of penalty for accessing

remote neighborhoods. Fine-grained partitioning (Fig. 5.6) with eight times smaller

tiles allows a further significant reduction of the time spent on the interconnect (an

additional 15% speedup). It has to be pointed out that the considered interconnect

architecture has very low zero-load latencies, thus limiting the benefits of fine-grained

partitioning. We expect it to be even more profitable when considering NoCs with

higher zero-load latencies. The cost for fine partitioning is the increased footprint of
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metadata in memory. Coarse partitioning employs as many tiles as processors, which

requires 64 bytes-metadata. The finest partitioning considered in these experiments

generates metadata which has a footprint of 512 bytes (2,5% of the decoded image

size). In Fig. 5.11 we plot the percentage of accesses satisfied from local neighborhood.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mem Port Conges!on Latency CPU !me

Figure 5.5: Baseline

(NCC benchmark). Exe-

cution time breakdown.
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Figure 5.6: Basic tiling

(NCC benchmark). Exe-

cution time breakdown.
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Figure 5.7: Fine tiling

(NCC benchmark). Exe-

cution time breakdown.

On the X-axis the granularity of partitioning (1 corresponds to the basic technique.

1/2 means tile sizes halved and so on). Locality is improved by 11,43% for array 1 and

by 23,60% for array 2 when 1/8 sized tiles are considered.

5.5.2 JPEG decoding benchmark

This benchmark is parallelized with dynamic scheduling. Chunks of iterations are

distributed in a FCFS fashion to worker threads. We choose the chunk size to be a

fraction (up to 1/8) of the tile size for the coarsest partitioning. This can be considered

as a worst-case for the coarse-grained tiling technique. Indeed, even if affinity-based

placement allocate tiles close to the processor with highest rate of accesses, still multiple

threads insist on the same tile. When the entire image lays un-partitioned in the

master processor’s memory neighborhood (Fig. 5.9) we experience the usual contention

penalties. Due to the high contention on its local neighborhood, the master core is

delayed in executing its work. This results in a fewer number of invocations to the

runtime library for work assignment, which justifies the shorter time spent on CPU

computation.

As expected, coarse-grained tiling (Fig. 5.9) suffers a high number of remote refer-

ences, which also implies some interconnect congestion. This notwithstanding, a 2,7×
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Figure 5.8: Baseline

(JPEG benchmark). Ex-

ecution time breakdown.
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Figure 5.9: Basic tiling

(JPEG benchmark). Ex-

ecution time breakdown.
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Figure 5.10: Fine tiling

(JPEG benchmark). Ex-

ecution time breakdown.

speedup is achieved w.r.t. the baseline. Refining the granularity at 1/8 tile size leads

to 15% reduction of the time spent on memory subsystem (Fig. 5.10), with a metadata

footprint on memory which amounts to 1,3% of the image size.
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Figure 5.11: % local references with de-

creasing tile size (NCC benchmark)
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Figure 5.12: % local references with de-

creasing tile size (JPEG benchmark)

Fig. 5.12 shows that fine-grained partitioning allows almost perfect overlapping of

thread and data space, thus leading to excellent locality.

5.6 Conclusion

In this chapter we moved a first step toward the definition of 3D-aware programming

abstractions and tools to enable effective exploitation of the large potential for increased

computational efficiency offered by 3D-integrated memory architectures. We outlined
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5.6 Conclusion

the concept of memory 3D neighborhood programming, and we developed language ex-

tensions, compiler enhancements and run-time support for neighborhood programming

within the standard OpenMP shared memory programming environment.

The approach is specifically focused to explicitly-managed memory architectures

and applications with SPMD parallelism. Results demonstrate that array partitioning

techniques are extremely important to achieve performance on such a NUMA machine,

and that our lightweight compiler support for metadata-based address translation al-

lows interesting speedups even for fine grained parallelization schemes.

Much work remains to be done both in advanced optimization techniques and in

extending the scope of applicability of the memory neighborhood concept to other

classes of architectures (e.g. cache-coherent SMP) and application classes with different

forms of parallelism.

Moreover, while for 2D architectures with SPM we were able to develop language

and compiler support for dynamic data movement through DMA, it is possible that

with 3D MPSoCs this will no longer be an efficient solution. Indeed, updating the

content of small SPMs does not bring much transfer overhead, but with 3D-stacked

DRAM the amount of tightly coupled memory for data management is increased to

an unprecedent level. Dynamically swapping the content of memory banks to capture

the access pattern in the program may require much too big transfers, thus leading

to reduced performance and increased energy consumption. In this context it may be

more profitable to statically determine a starting data partitioning scheme and then

dynamically adapt the workload so as to assign threads to processors with maximum

affinity. Data should never be moved, whereas threads should be allowed to migrate

when the access pattern in the program changes. Ideas from work-stealing and dynamic

loop parallelization techniques could be borrowed to investigate this approach.
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Chapter 6

OpenMP Support for

NBTI-induced Aging Tolerance

in MPSoCs

Aging effect in next-generation technologies will play a major role in determining system

reliability. In particular, wear-out impact due to Negative Bias Temperature Instability

(NBTI) will cause an increase in circuit delays of up to 10% in three years(8). In these

systems, NBTI-induced aging can be slowed-down by inserting periods of recovery

where the core is functionally idle and gate input is forced to a specific state. This

effect can be exploited to impose a given common target lifetime for all the cores.

In this chapter we present a technique that exploits and extends the OpenMP

parallel programming model to allow core-wear-out dependent insertion of recovery

periods during loop executions so that the wear-out process can be finely controlled.

At this level, performance loss can be compensated based on the knowledge of recovery

periods. Loop iterations are re-distributed so that cores with longer recovery will be

allocated less iterations.

6.1 Introduction

Embedded multiprocessor systems-on-chips (MPSoCs) fabricated in upcoming nanome-

ter technologies will be increasingly affected by aging mechanisms leading to threshold

voltage increase (9) which implies circuit slowdown. As a consequence, guardbands
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(GB) are inserted to compensate for circuit delay. These guardbands will shrink dur-

ing core activity until their complete consumption will lead to timing violations. In

absence of correction mechanisms, these violations will determine system failure. With

respect to single core systems, in multicore platforms an additional reliability issue is

that both the initial GB margin and its consumption rate are not uniform across the

cores. As a consequence, to prevent the less reliable core to dictate the overall system

lifetime, the GB consumption must be equalized as much as possible. At system level,

this can be obtained by monitoring the guardband consumption (2) (4) and slowing

down the aging process of less reliable cores (16).

The strategy to slowdown aging of cores depends on the considered aging effect. The

main aging phenomena affecting nanometer devices are Negative Bias Temperature

Instability (NBTI) and Hot Carrier Injection (HCI), for which wear-out takes place

only during activity periods. In particular, NBTI has gained much attention from

recent research because it is considered a dominant effect (10). NBTI is due to the

dissociation of Si-H bonds along the silicon-oxide interface in presence of a negative

bias (Vgs = −Vdd) on PMOS transistors, which causes the generation of traps. These

traps lead to the increase in the threshold voltage. Recent studies demonstrate that

NBTI will be relevant in forthcoming technologies, leading to up to 10% voltage increase

in three year lifetime (8).

The NBTI degradation model is characterized by a recovery effect, caused by the

reduction of interface traps when the negative bias is removed. As a result, the thresh-

old voltage decreases. Thus, NBTI-induced aging can be partially compensated by

imposing a virtual ground (i.e. a logical “1”) to PMOS transistors gates for a certain

period of time, namely the recovery period, where the core is idle from a functional

viewpoint. As a result, it is possible to slow-down GB degradation by interleaving

normal core activity with idle periods where the core can be placed in a recovery state.

The impact of NBTI does not depend on the granularity and distribution of stress/re-

covery periods but only on their total duration (11). This allows to efficiently distribute

the required idleness with convenient granularity. This can be flexibly tuned to match

the characteristics of the workload/programming model chosen to parallelize the target

application. The programming model ultimately reflects the features of the underlying

hardware platform.
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Figure 6.1: Performance loss to support aging-tolerant loop parallelization.

In this chapter we consider embedded MPSoCs for data-intensive processing under

the SIMD (Single Instruction Multiple Data) execution model. Aging issues in this kind

of platforms can be very critical since they are intensively used during their lifetime,

so techniques to hide the effects of aging are desirable. Applications running on these

systems focus on a very common data parallel scenario where each core works on a

portion of a data structure (e.g. array or matrix) and must synchronize with the others

on a barrier. Similar parallelization schemes are typically focused on parallel loops,

whose iterations are spread among several concurrent threads. OpenMP is the de-facto

standard for such a parallel execution model. In the OpenMP model idleness insertion

can be managed at the granularity of a single iteration (or chunks of iterations). This

choice allows very fine control on the actual duration of idle and active periods, and

thus on the entity of stress and recovery phenomena applied to cores.

Idleness insertion impacts workload balancing because of non-uniform GB consump-

tion rates. Starting from a balanced workload distribution, the addition of idleness in-

creases the overall execution time. In barrier-based parallelization schemes, the overall

lengthening of the parallel region – hereafter indicated as performance loss – is dictated

by the more degraded core (i.e. the one with the longest idle period). This situation

is depicted in Figure 6.1. Residual guard bands are indicated as percentages. Longer

idle periods are allocated to processors with smaller GB.

The impact of idleness on loop execution time can be evaluated so that iteration

redistribution among the cores can be exploited to minimize it. More precisely, perfor-

117

7/figures/example.eps


6. OPENMP SUPPORT FOR NBTI-INDUCED AGING TOLERANCE
IN MPSOCS

mance loss can be compensated by proper re-allocation of workload to cores depending

on the idleness distribution. The compiler can allocate less iterations to cores with

smaller guard bands (and longer idle periods).

The proposed workload re-allocation strategy has been integrated within the GCC

OpenMP(GOMP) compiler. The OpenMP interface has been extended with custom

clauses to be coupled with the worksharing directives. These clauses augment the exist-

ing static and dynamic parallelization schemes with aging-tolerant scheduling facilities.

The execution time of each iteration is retrieved through compiler-inserted profiling

instructions. Based on this information, actual idleness distribution is achieved by in-

teracting with the runtime library. The library API has been extended with functions

that support duty cycling and partitioning algorithms aimed at minimizing performance

loss.

6.2 Background and Related Work

Aging problems can be tackled at various abstraction levels, ranging from transistor

level, architectural and system software level. Software approaches are very attractive

because they can exploit workload knowledge to reduce the performance impact of these

techniques. A common purpose of various approaches recently proposed is to provide

wanted performance and match real-time constraints through statistical scheduling (17)

or learning algorithms (18). In (15) Roberts et al. present a scheduling approach which

is aimed at recovering the performance impact due to non-uniform chip degradation.

They propose an integer linear programming method to determine an optimal schedul-

ing for streaming applications. Moreover, task migration is also considered as solution

to handle the time dependent effect of wear-out. A complete framework, called Facelift,

performing scheduling and voltage scaling to slow down aging is presented in (16). It

exploits a non linear optimization strategy to find the optimal scheduling and voltage

changes.

Comparing to this work, our techniques are focused on compiler-level strategies,

and for this reason we implement aging tolerance at the parallel application level and

not at the operating system level. As explained in Chapter 3, most MPSoCs fea-

ture heterogeneous runtime support on different processing tiles. Consequently, typical
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MPSoC-suitable OpenMP implementations are OS-less. Moreover, our approach re-

duces the performance hit by playing with loop iteration re-scheduling, which is not

possible at the OS-level, where tasks are given. A similar approach is taken by authors

of (5). They propose a variability-aware algorithm that maps computations onto avail-

able processors so that each processor runs at its peak frequency rather than simply

using chip-wide lowest frequency amongst all cores and highest cache latency. Unlike

ours, this technique aims at maximizing performance, but does not cope with wear-out

phenomena in any manner. In presence of aging, exercising processors with different

degrees of GB consumption at the same rate (i.e. at their peak performance) leads to

a situation in which the most degraded core dictates overall system lifetime.

6.3 Aging Model and Idleness Constraints

Multicore designs in current technologies suffer significant within-die process variation,

thus leading to nominally identical processors supporting non-homogeneous maximum

frequencies. Furthermore, during processor service life stresses induced on transistors

by normal switching activity results in gradually slower critical paths. In order to

meet system lifetime constraints, designers add timing guardbands to their designs to

absorb any increase in critical path delay. One conservative approach to deal with this

source of heterogeneity, which is often employed to simplify the design, is to use a single

frequency domain where the slowest core determines the frequency of the whole chip.

Moreover, if processors are exercised at a similar rate, the slowest core will consume

its own guardband earlier than the others. These effects can strongly impact system

lifetime and for this reason an increasing effort is put at the various layers of MPSoC

design to detect and compensate them. Designers implemented delay monitors (4) (2)

spread across the chip that provide degradation information in terms of circuit delay,

from which the guardband consumption can be derived. As such, the guardband size

provides a upper bound on the allowed ∆Vth for each core.

Based on this information, our objective is to equalize GB consumption time among

the cores. In principle, we can set a predefined target lifetime, which would be equal

for all the cores. In order to achieve a wanted target lifetime, we need to slow down

aging rate for less reliable cores (the ones with smaller GB). For NBTI-induced aging

it is possible to slow-down core degradation by imposing idle periods. In these periods,
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if the core is set into a particular state (recovery state) where the gates of PMOS

transistors are tied to a virtual ground (i.e. a logical “1” is applied) the threshold

voltage degradation is partially recovered. The increase in Vth during the stress phase

can be modeled as follows (16):

∆Vth,stress = ANBTI · tox ·
√

Cox (Vdd − Vth) · exp
(

Vdd−Vth

tox E0
−Ea

kT
)
·t0.25

stress (6.1)

where tstress is the time under stress, tox is the oxide thickness and Cox is the gate

capacitance per unit area. E0 , Ea and k are constant equal to 0.2V/nm, 0.13eV and

8.6174 ·10−5eV/K while ANBTI is a constant dependent on the aging rate. The recovery

phase is governed by the following equation:

∆Vth = ∆Vth,stress · (1 −

√

η ·
trec

tstress + trec
) (6.2)

where trec is the time under recovery and η is a constant equal to 0.35. Depending on

the guardband value we can compute the maximum ∆V i
th each core i can accommodate

before failing. The relationship between ∆V i
th and the guardband value GBi is given

by the following standard switching delay expression:

T i
s =

VddLeff

µ(Vdd − V i
th)α

(6.3)

Now, since T i
s = DCP i + GBi where DCP i is the initial delay critical path of core i ,

we can compute the guardband size as a function of the threshold voltage:

∆V i
th = V init ,i

th − V stress,i
th (6.4)

where V init ,i
th is the voltage threshold corresponding to the initial critical path delay

DCP i , while V stress,i
th is the maximum voltage threshold corresponding to the largest

allowed delay (i.e. guardband fully consumed). Thus we can substitute delay expres-

sions into this equation to obtain the maximum allowed voltage increase for each core

as a function of its current GB:
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∆V max ,i
th = f(GBi ) (6.5)

On the other side, Eq. (6.1) allows to express the voltage increase as a function of the

stress and recovery time:

∆V i
th = f(tistress , t

i
rec) (6.6)

Combining (6.1) and (6.4) and considering a given target lifetime:

tlife = tistress + tirec (6.7)

we can compute the amount of recovery time tirec needed to consume ∆V i
th in a time

tlife , the same for all the cores. The recovery time obtained in this way can be used

to compute the percentage of idleness I i to be allocated to maintain the wanted target

lifetime:

I i = tirec/tlife . (6.8)

Cores having larger GBs, whose values can be read from circuit monitors, will be

allocated less idleness. Monitors can be implemented either using hardware circuits

to measure circuit delays (2) or by monitoring activity (stress) periods and using an

analytical model to compute the related circuit delay increase.

The OpenMP extensions we developed leverage this information to perform idleness

distribution and iteration allocation at each loop execution to the cores depending on

their GB values. We refer to the percentages of idleness needed on different cores to

compensate for aging effects as “aging indexes”. Aging indexes are computed based

on the formulas described above, and can be inspected by the runtime environment

to take decisions on workload and idleness distribution. More precisely, we read aging

indexes at each loop execution. Based on this feedback, we tune the amount of work on

each core by means of a custom partitioning algorithm (see Section 6.4), and allocate

a corresponding recovery period, so that the wanted lifetime is respected.
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6.4 Aging-aware OpenMP Support Implementation

The basic directive provided by the OpenMP API for specifying parallel execution

within the code is #pragma omp parallel. As explained in Chapter 3, enclosing a

portion of code within the scope of this directive allows the programmer to identify a

parallel task, and instructs the compiler to generate code to fork worker threads onto

which the parallel task is mapped. The use of this directive is typically coupled with

one of the two work-sharing directives, #pragma omp for and #pragma omp sections.

The former enables data parallelism by partitioning the iteration space of a for loop

between worker threads, whereas the latter leverages task parallelism. The OpenMP

work-sharing model provides means to achieve balanced execution among processors

by outlining parallel tasks containing similar amounts of work.

The basic idea of our aging-tolerant policies is that of lengthening the lifetime of

degraded cores to match that of the most reliable core, thus meeting expected system

service life. This is achieved through explicit insertion of idleness periods, which are

interleaved with normal activity. The granularity at which we perform duty cycling

(i.e. the duration of active periods) is specified by the use of a particular work-sharing

directive. For task parallelism the granularity is that of the task itself, whereas for data

parallelism the granularity may be that of a single iteration, or of a chunk of iterations.

The compiler inserts time sampling instructions at the beginning and at the end of

the work block (with the discussed granularity), then instantiates a call to the custom

omp sleep library function passing it the profiled execution time of the work block. The

sleep time is a function of the execution time and the aging of the target processor.

Information on the aging of each processor is embedded within specific metadata in

the custom OpenMP runtime environment. This “aging index” is as a number between

0 and 1, which expresses the percentage of idleness needed on a core to compensate

for its degradation. It can be inspected whenever needed through a call to the custom

omp get aging index function, which implements the aging model described in Section

6.3.

The described mechanism efficiently augments OpenMP with an infrastructure for

duty cycling. Processors with different aging indexes require different sleep times,

thus leading to parallel tasks with non-homogeneous duration and finally implying

unbalanced execution. While the balancing issue can be easily addressed by integrating
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our duty cycling mechanism with the runtime support for dynamic scheduling (see

Sec. 6.4.2), things get more complicated when dealing with static scheduling (see

Sec. 6.4.1). The schedule(static) clause is useful when parallelizing loops whose

iterations have roughly the same duration, since it affords good balancing with very

small scheduling overhead w.r.t. dynamic approaches. Furthermore, smart combination

of static scheduling and chunking is the only means provided by the OpenMP API to

achieve good data locality. For this reason it is very important to consider static

scheduling in our aging-tolerant framework. As described in Section 6.1 and shown in

Figure 6.1, simply inserting idle periods in presence of static scheduling would lead to

very unbalanced overall loop execution time. The barrier implied at the end of the

parallel region forces all cores to wait for the less reliable, thus leading to the highest

performance degradation.

In the following sections we present custom extensions to the OpenMP API that

allow to efficiently address this issue and reduce performance loss.

6.4.1 Static Scheduling

The simplest algorithm to parallelize a doall loop is that of evenly dividing its iteration

space among available worker threads. OpenMP allows to do it with the use of the

schedule(static) clause combined with the for directive:

#pragma omp p a r a l l e l for schedu le ( stat ic )

for ( i =0; i<N; i++)

{ /∗ body ∗/ }

The compiler transforms the loop so that lower and upper bounds are computed locally

by each thread, based on the number of concurrent workers and on their IDs.

int nthreads = omp get num threads ( ) ;

int t i d = omp get thread num ( ) ;

int chunk = N/nthreads ;

int LB = t id ∗ chunk ;

int UB = ( t i d + 1) ∗ chunk ;

for ( i=LB; i<UB; i++)

{ /∗ body ∗/ }

As discussed in the previous section, duty cycling helps in achieving homogeneous

guard-band consumption, but introduces imbalance. To achieve load balancing while

123



6. OPENMP SUPPORT FOR NBTI-INDUCED AGING TOLERANCE
IN MPSOCS

hiding the effects of aging on system lifetime, we replace the original partitioning algo-

rithm in the compiler with a simple yet effective aging-aware scheduling technique. In

what follows the number of iterations (Wi) needed to equalize execution time (Ti) of

all the cores is computed.

Let us consider the following parameters:

N Total loop iterations

M Number of processors

Ai Aging index for the i-th core

∆T Iteration duration

Wi Work iterations for i-th core

Overall work time for the i -th core can be expressed like

TW,i = ∆T · Wi (6.9)

Total loop time for processor i is expressed by the formula

TT,i = TW,i + TS,i (6.10)

where the sleep time is a function of the active time and the aging index

TS,i = (1 − Ai) · TW,i

which can be substituted in (6.10)

TT,i = (2 − Ai) · TW,i

Loop execution time must be balanced between cores, namely

TT,i = TT,j ∀i, j

At system startup, our runtime inspects the reliability of each core, and designates the

most reliable processor as the master (hereafter core M). Sleep times are normalized to

that of the less degraded core M, so we consider

TT,M = TW,M
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and express the number of iterations of each slave core as a fraction of the iterations of

the master (M) core

TW,M = TT,i = (2 − Ai) · TW,i ∀i ∈ [1, M)

WM · ∆T = (2 − Ai) · Wi · ∆T

Wi =
WM

(2 − Ai)
(6.11)

The iterations of the master core can be computed by balancing the iterations

∑

i

Wi = N ⇒ WM +
M−1
∑

i=1

WM

(2 − Ai)
= N

which finally leads to

WM =
N

1 +
∑M−1

i=1
1

(2−Ai)

(6.12)

Having WM we can compute Wi using eq.6.11.

The aging-aware partitioning algorithm is triggered by the use of the custom

schedule(static rel) clause

#pragma omp p a r a l l e l for schedu le ( s t a t i c r e l )

for ( i =0; i<N; i++)

{ /∗ body ∗/ }

The compiler has been customized to emit the following parallel code

int t i d = omp get thread num ( ) ;

omp pa r t i t e r a t i on spac e (N, t i d ) ;

int LB = omp get lower bound ( t i d ) ;

int UB = omp get upper bound ( t i d ) ;

long s t a r t , stop ;

for ( i=LB; i<UB; i++)

{

s t a r t = omp get wtick ( ) ;

/∗ body ∗/

stop = omp get wtick ( ) ;

omp sleep ( stop−s t a r t ) ;

}

Lower and upper bounds for each thread are no longer computed locally, but rather

retrieved through calls to the runtime library. Timestamp sampling instructions are

inserted to compute the duration of the loop body, which is then passed to the runtime

to force the needed amount of idleness.
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The omp part iteration space() function implements our aging-aware partition-

ing algorithm. Every thread inspects its aging index, then the master core executes

the partitioning algorithm. Slave cores wait on a barrier for lower and upper bounds to

be computed for every thread. After this synchronization step, every thread retrieves its

chunk of the original iteration space through a call to the custom omp get lower bound()

and omp get upper bound() functions.

The extensions to the OpenMP library (libgomp) are summarized in Tab. 6.1.

6.4.2 Dynamic Scheduling

Non-uniform duration of different loop iterations can lead to load imbalance issues

when using static scheduling schemes. To deal with this problem OpenMP provides a

schedule(dynamic, chunk) clause. The programmer decides the granularity at which

the scheduler is invoked by specifying a chunk size. This parameter represents the

number of loop iterations that are folded within a single task. Each thread participating

in a dynamically scheduled parallel loop continuously invokes the runtime to obtain the

next available work chunk.

When enhancing dynamic scheduling scheme to support duty cycling we no longer

need to cope with load balancing issues, since lengthening the execution time of a thread

by inserting idle periods has a side effect of having it invoke the scheduler less frequently.

More reliable cores will instead increase the number of requests for chunk assignment,

thus “stealing” part of the iterations originally assigned to degraded processor. To

adapt the framework to support duty cycling one possible solution is that of profiling

execution time at chunk granularity.

The use of the custom schedule(dynamic rel[, chunk] ) clause

#pragma omp p a r a l l e l for schedu le ( dynamic re l , 2 0 )

for ( i =0; i<N; i++)

{ /∗ body ∗/ }

instructs the compiler to generate code that calls custom versions of the library func-

tions for dynamic loop scheduling, namely GOMP loop dynamic start rel() and

GOMP loop dynamic next rel(). The scheduling algorithms in these custom functions

do not introduce any changes with respect to the original, but they are enhanced with

execution time profiling instructions. The collection of timestamps for execution time
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profiling at the granularity of a single chunk is performed within these functions. Idle-

ness insertion is forced at every scheduling event, namely every time that a thread

queries the runtime for another chunk of iterations to process. Once the duration of

the chunk has been retrieved, it is passed to the omp sleep function actual insertion of

idleness.

void omp part iteration space (int iterations,

int pid)

Computes lower and upper bound for each thread par-

ticipating in a parallel loop. Boundaries are computed

exploiting our partitioning algorithm and stored in li-

brary metadata.

int omp get lower bound (int pid) Returns lower bound for thread pid’s iteration space.

int omp get upper bound (int pid) Returns upper bound for thread pid’s iteration space.

GOMP loop dynamic start rel(...) Initializes metadata for aging-aware dynamic schedul-

ing.

GOMP loop dynamic next rel(...) Dynamically schedules next work chunk in an aging-

driven manner.

int omp get wtick (void) Returns current timestamp.

int omp get aging index (int pid) Returns current aging index for processor pid.

int omp sleep (long cycles) Forces wanted idleness on the caller core based on its

aging index and on the profiled execution time.

Table 6.1: API extensions to support aging-tolerant scheduling

6.5 Experimental Setup and Results

The MPSoC architectural template that we target in this work is composed by 16

RISC-like processing elements, each featuring private L1 instruction and data caches

as well as a scratchpad memory. On-chip shared and private memories are accessed

through a shared bus (amba AHB), and synchronization facilities are provided by a

hardware semaphore device. We assume all cores to operate at the same frequency.

Aging indexes are implemented as special registers that are periodically updated by

the aging model, and that can be inspected by the software library.

Table 6.2 lists the benchmarks used to conduct the experiments. We provide four

classes of results and plots to highlight:

• Overhead: A breakdown of the sources of overhead in our algorithms

• Idleness: The precision of our technique in distributing the wanted amount of

idleness
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Benchmark Source

LU Decomposition (c lu) OmpSCR(3)

Loops with dependences (c loop dep) OmpSCR

Jacobi (c jacobi) OmpSCR

Computing Π (c pi) OmpSCR

Mandelbrot set area (c mandel) OmpSCR

Embarassing parallel (ep) NAS Parallel Benchmarks(6)

Table 6.2: Benchmarks

• Balancing: The load balancing achieved by our partitioning schemes w.r.t. the

original application

• Performance: The effectiveness of our scheduling policies in minimizing the

performance loss due to duty cycling

For each benchmark we provide results for the following program configurations:

• static: The program is parallelized with the original OpenMP static clause.

There is no awareness of platform aging at the software level.

• static + sleep: The program is parallelized with the original OpenMP static

clause, but the framework is aware of system aging, and is augmented with duty

cycling. No aging-aware workload distribution policy is enabled, thus leading to

worst-case performance loss.

• static rel : The program is parallelized with the custom static rel clause.

Aging-aware loop partitioning takes place.

• dynamic: The program is parallelized with the custom dynamic rel clause to

deal with non-uniform duration of loop iterations. Dynamic scheduling of itera-

tions is augmented with duty cycling.

• chunked : The program is parallelized with the custom dynamic rel clause to

deal with non-uniform duration of loop iterations. Ten iterations are folded within

a single chunk of work. Dynamic scheduling of iterations is augmented with duty

cycling.

We consider ten different degradation scenarios, namely ten aging index distributions,

with worst-case degradation requiring up to 63% idleness. Results are then shown as

128



6.5 Experimental Setup and Results

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

sta c_rel dynamic sta c_rel dynamic sta c_rel dynamic sta c_rel dynamic chunked sta c_rel dynamic sta c_rel dynamic

c_Jacobi c_LU c_Pi c_loop_dep c_mandel EP

Overhead

Loop Par  oning Time Sampling omp_sleep

Figure 6.2: Sources of overhead

an average of several program runs under these platform degradation scenarios. In the

following subsections we provide detailed information for each class of results.

6.5.1 Overhead

Figure 6.2 shows a breakdown of the considered sources of overhead, namely:

1. Loop partitioning : Time taken by the aging-aware partitioning algorithm to com-

pute iteration spaces for every thread

2. Time sampling : Overhead due to loop body instrumentation for measuring the

duration of iterations

3. omp sleep: Overhead due to computation of idle time (based on profiled active

time and aging index) in omp sleep function

For benchmarks c Jacobi , c Pi , c mandel and EP the overhead is always very small

(under 3%). Parallelizing the main loop in benchmark c LU with the static rel

clause brings a 9% overhead, which is mainly due to the execution time taken by the

partitioning algorithm. This happens because this benchmark features a two-level loop

nest, with the innermost nest being parallelized. Since this nest scans the rows of

an upper-triangular matrix, decreasing amounts of work are scheduled with repeated
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invocations to the partitioning algorithm. This overhead notwithstanding, we will

show in Section 6.5.4 that our aging-aware static rel clause achieves the best results

in minimizing the performance loss.

Benchmark c loop dep is a synthetic benchmark in which a backward loop carried

dependency is resolved through array replication. Each iteration in this program only

contains a single write/read instruction in the array. Thus, in this benchmark all sources

of overhead – which are usually negligible in real applications – are visible. When

applying static aging-aware partitioning (static rel) the biggest source of overhead (≈

10%) is the computation of the required sleep time for each core. Second for importance,

is the overhead for profiling iteration execution time (≈ 4%). Finally, loop partitioning

accounts for an additional 1% overhead. Overall, the overhead introduced by our aging-

tolerant facilities amounts to around 15% for static scheduling and 11% for dynamic

scheduling. It is important to stress that the overhead is big because of the synthetic

nature of the program and the poor computation performed in each iteration. When

specifying a chunk size of 10 (i.e. folding ten iterations in a single task) we are able to

reduce our techniques’ overhead for the class of loops represented by the c loop dep

benchmark to less than 3% (chunked bar). In the following – if not differently specified

– dynamic scheduling for c loop dep benchmark is chunked.

6.5.2 Idleness

Table 6.3 shows the results of rest time accuracy. Numbers in the table represent the

percent error in distributing on each core the target amount of idle time. This error is

caused by overhead code which is not managed by our aging-aware balancing policies.

Since each parallel region may feature multiple loop nests, as well as code not contained

within work-sharing constructs, we compute the actual core idleness as a percentage

of the overall parallel region execution time to estimate the error. The results show

c Jacobi c LU c Pi c loop dep c mandel EP

static + sleep -0,08 0,02 0,81 -2,84 0,01 -0,30

static rel -0,17 -3,98 0,74 -3,26 -0,09 -0,58

dynamic -0,08 0,24 0,62 -2,32 0,00 -0,29

chunked - - - -0,65 - -

Table 6.3: Percent error in target idleness distribution
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that the error is always under 4%, thus confirming the effectiveness of the technique

in offering idleness distribution precision. Benchmark c LU has a very small error for

static + sleep and dynamic configurations. The error is bigger when using static

aging-aware scheduling (static rel). This was expected, since as discussed in Section

6.5.1 the use of this clause carries an overhead that is not considered in duty cycling,

thus leading to the error in idleness distribution. Similarly, for benchmark c loop dep

sources of overhead present both in static and dynamic parallelization schemes lead

to an error in idleness distribution accuracy that is greatly reduced when employing

chunked scheduling.

6.5.3 Load balancing

As described in Section 6.4.1, we devised a partitioning algorithm that aims at keeping

different threads workload as balanced as possible. In this section we provide results

that confirm the effectiveness of the proposed approach.

Standard deviation of parallel execution time over cores has been normalized to the

mean to provide a qualitative measure of the load imbalance. Results are shown in

Figure 6.3 for different parallelization schemes. The black bars represent the original
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Figure 6.3: Load balancing

program parallelized with aging-agnostic OpenMP facilities, and thus is considered as

a baseline. Looking at the black bars only, our set of benchmarks can be divided in
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two categories. c Jacobi, EP, c Pi and c loop dep are regular and balanced. Each

of them shows a deviation from average execution time which is contained within 13%.

On the other hand, c LU and c mandel have a degree of imbalance greater than

30%. c mandel is known to have very unbalanced iterations, since decision on whether

complex points belong to the Mandelbrot set area are taken within an inner loop which

may take very different number of (inner) iterations to reach convergence. Similarly, LU

decomposition has decreasing duration of inner loop iterations due to the diminishing

number of elements in scanning an upper triangular matrix.

For all benchmarks, the naive static + sleep approach – which simply introduce

idle times without re-allocating workload – un-surprisingly increase imbalance. Our

partitioning algorithm (static rel) is expected to never increase imbalance. This is

confirmed by the plot. In cases like c LU our algorithm reduces imbalance, since it

schedules iterations in a smarter way. For example, when there are less iterations than

cores, work is allocated to most reliable processors – which require smaller idle times –

thus reducing the impact of duty cycling on load imbalance. Dynamic scheduling was

originally meant to deal with balancing issues, so – as expected – even when augmented

with aging-related features it preserves excellent balancing.

6.5.4 Performance Loss

As previously discussed, distributing idleness to degraded cores has a cost in terms

of performance. Our partitioning algorithm aims at reducing this performance loss.

According to the description given in section 6.4.1, part of the iterations originally

assigned to degraded cores are re-distributed to more reliable cores. To estimate the

effectiveness of this approach, we compare the parallel execution time of our aging-

aware scheduling techniques against the naive static + sleep approach. The results

are plot as a series of bars (for different program configurations) in Figure 6.4. We see

that for all benchmarks except c mandel , our static rel clause affords a significant

reduction in performance loss w.r.t. static + sleep (around 50%). As explained in

the previous section, for unbalanced applications such as c mandel static scheduling

schemes should be avoided. If iterations are known to have different duration, evenly

dividing the iteration space among cores results in unbalanced execution time. The

same clearly applies to our aging-aware partitioning algorithm, so we did not expect

static rel to provide good results. It is important here to stress that this is NOT
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Figure 6.4: Performance loss reduction

a problem of our partitioning scheme, but rather an inherent limitation of static par-

allelization. The knowledgeable programmer would rather employ dynamic scheduling

to deal with similar scenarios. For this benchmark in particular, employing a dynamic

scheduling policy achieves better performance results than the original static scheduling

notwithstanding the idle periods. Finally, we can notice that there is a big difference

in performance loss reduction between static and dynamic aging-aware scheduling for

benchmark c loop dep (red and green bars). This is justified by the fact that dynamic

scheduling here employs chunking, thus reducing the sources of overhead described in

Section 6.5.1.

6.6 Conclusion

In this chapter we described a compiler-supported technique for NBTI-induced aging

tolerance in data-intensive MPSoCs. The technique is able to finely insert periods of

recovery to various cores within loop executions to compensate non-homogeneous core

degradation and minimize the performance impact through loop iteration reallocation

among cores.

This technique has been implemented as a set of extensions to the OpenMP parallel

programming model. Experimental results on a distributed shared memory multipro-

cessor platform demonstrate its accuracy in idleness allocation and performance impact
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minimization.

Much work remains to be done to accurately model the effect of idle periods on

degraded cores. The aging models in our simulator must be enhanced to actually

provide a feedback on the entity of the recovery induced by the applied idleness. This

will allow to revisit and extend the aging-tolerant techniques in two main directions:

1. Currently the duration of idle periods is decided based on the profiled execution

time of a chunk of iterations. This clearly also includes time spent on memory or

I/O, which may not be actually impacting core degradation.

2. Currently the techniques are focused on loop-level parallelism (pragma omp for),

whereas at the moment for task-level parallelism (pragma omp sections) we only

allow duty cycling at a coarse task-wide granularity.
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Chapter 8

Conclusion

The efficient use of a machine’s memory system and parallel processing resources has

become one of the most important challenges in program optimization for embedded

MPSoCs. Moreover, efficient use of the memory hierarchy is increasingly important

because of the power cost of data access through the program. Architecture trends

are leading to large scale parallelism using simpler cores and progressively deeper and

complex memory hierarchies. These new architecture designs have improved power

characteristics and can offer large increases in performance, but traditional program-

ming techniques are inadequate for these architectures.

In this dissertation, we explored programming features and runtime support for

making efficient use of the memory hierarchy. More specifically, we extend the pro-

gramming API of OpenMP with custom directives and clauses that allow to identify

candidate arrays in a program for partitioning. Partitioned arrays are distributed

among the memory hierarchy so as to maximize the number of each processor’s ref-

erences that are satisfied from its local SPM. We evaluated the applicability of this

enhanced OpenMP programming framework on generic and representative embedded

PGAS MPSoC templates. We also provide preliminary results and experience with

adapting the array partitioning techniques to MPSoCs with vertically stacked DRAM

memory.

Finally, we describe how our enhanced OpenMP programming framework can fur-

ther be extended to deal with different sources of heterogeneity in MPSoCs, namely

non-uniform processing resources due to core aging effects. We present techniques

which leverage a partial recovery effect inherent in the considered aging phenomenon,
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8. CONCLUSION

Negative Bias Temperature Instability (NBTI), to schedule work to processor so as to

maximize system lifetime.
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