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Introduction

The growing interest for Integrated Optics for sensing, telecommunications
and even electronics is driving research to find solutions to the new challenges
issued by a more and more fast, connected and smart world.

This thesis deals with the design, the fabrication and the characterisation of
the first prototypes of Microring Resonators realised using ion implanted Lithium
Niobate (LiNbO3) ridge waveguides.

Optical Resonator is one among the most important devices for all tasks de-
scribed above. LiNbO3 is the substrate commonly used to fabricate optical modu-
lators thanks to its electro-optic characteristics. Since it is produced in high quan-
tity, good quality and large wafers its price is low compared to other electro-optic
substrate [1].

The possible technologies commonly used to fabricate waveguides in Lithium
Niobate are proton exchange and metal diffusion inside the crystal through ther-
mal process [2]. Both these two techniques increase the refractive index changing
the crystal density and are limited by the physical diffusivity of LN.

Ion-implantation, instead, is based on the refractive index change caused by
the bombardment of charged particles that produces damage into the crystal. So
the tailoring of the refractive index profile is possible by the suitable choice of im-
plantation parameters. This allows a much better control on the device footprints.

Moreover, we will show that ion implantation can be employed to enhance
the etching rate allowing for surface micro-machining of the material. This pro-
cess can produce a waveguide with very low roughness observed at the Scanning
Electron Microscope (SEM).

Finally it has been assessed a complete technological process for the fabrica-
tion of Microring Resonator devices in Lithium Niobate by ion implantation and
the first prototypes have been produced.

To achieve these results both the theoretical and the practical point of view
were followed simultaneously. Therefore this thesis is structured as follows:

Chapter 1 introduces the resonator theory starting from a simple application: the
Etalon. Then a view of the possible implementation and application of res-
onators is given with a particular attention for microring resonators.
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Chapter 2 explains the analytical and numerical methods chosen to design the
devices and the approximations lying upon they are based.

Chapter 3 analyses Lithium Niobate and its optical and chemical properties mod-
ification due to ion-implantation.

Chapter 4 gives a view of the Technological process developed to fabricate our
prototypes.

Chapter 5 collects all the results achieved during this work. Starting from the
design of the devices, its characterisation, correction and redesign proposal.

2



Chapter 1

Resonator Theory

In this chapter, the general features of a resonator will be introduced through
an example: the Fabry-Perot Cavity. The parameters describing the resonator’s
behavior will be defined and generalised to other device typologies.

1.1 Fabry-Perot Cavity

A Fabry-Perot cavity or Etalon is a device constituted by two semi-reflecting
mirrors separated by an homogeneous medium thick l. Depending on the applica-
tion desired, the characteristics of this medium can be different: linear, not linear,
lossless or lossy. To describe the working principle let’s suppose that the medium
interposed between the two mirrors is linear, reciprocal and lossless [3].

Let’s consider an incident Plane Wave with arbitrary direction compared to the
left mirror normal. It will be reflected and transmitted more and more times by
the two discontinuity surfaces (i.e. the mirrors). Considering a ray orthogonal to
the wavefronts, a working scheme of the device is illustrated in Figure 1.1.

Now we want to determinate the transfer matrix which describes the behaviour
of all the structure [4]. Let (a1, b1) and (a2, b2) be the direct and reflected wave
intensities at the two device surfaces, ϑi and ϑ are the angles of the incident and
reflected ray respectively, r1, t1 and r2, t2 are the reflecting and transmitting co-
efficients of the two mirrors respectively, while R and T are the reflecting and
transmitting coefficients of the complete structure. Let’s consider R2 + T 2 not
strictly unitary to maintain the generality of the problem: while the semi-reflecting
surfaces will be always lossless, the interposed medium, with refractive index n,
could be lossy or even with an intrinsic gain.

Finally let δ be the phase difference between two successive wavefront in-
troduced by the travelling into the structure. To calculate it, one has to take into
account the propagation effect and the reflections and transmissions on each wave-

3



Chapter 1. Resonator Theory

Figure 1.1: Working scheme of an Etalon

front. Assuming the air as external medium and recalling the Snell’s law, after
some calculations one gets [5]:

δ = 2nlk cosϑ (1.1)

where k is the vacuum wavenumber.
It’s now possible to calculate the shares that, summed all together, make the

total transmitted field. Each complete path into the cavity corresponds to a multi-
plication by r1r2e− jδ [5]. So if a is the incoming Plane Wave inside the cavity (see
Figure 1.1), its expression is given by:

a =
∞∑

n=0

(
r1r2e− jδ

)n
jt1a1 =

jt1

1 − r1r2e− jδa1 (1.2)

Using the equation [5]: [
b1

a

]
=

[
−r1 jt1

jt1 −r1

] [
a1

b

]
after some algebras one arrives at

b1 =
−r1 + r2e− jδ

1 − r1r2e− jδ a1 and b = − jt1r2e− jδ

1 − r1r2e− jδa1.

The outgoing wave from the structure b2 is a given by (1.2), delayed by a
propagation factor of e− jδ/2 and transmitted through the right mirror:

b = − t1t2e− jδ/2

1 − r1r2e− jδa1.
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1.1. Fabry-Perot Cavity

Since the structure is reciprocal, after repeating all the procedure illustrated
above, one arrives at the same results for b1 and b2, so we can assume a2 = a1.

Now the transfer matrix of the etalon ca be written as:

S =
1

1 − r1r2e− jδ

−
(
r1 − r2e− jδ

)
−t1t2e− jδ/2

−t1t2e− jδ/2 −
(
r2 − r1e− jδ

) . (1.3)

1.1.1 Etalon Spectral Characteristics
The law describing the power transmission (transmittance) through the Fabry-

Perot cavity is [5]:

|H( jω)|2 =
t2
1t2

2

(1 − r1r2)2 + 4r1r2 sin2 δ/2
. (1.4)

Till now no hypothesis about the kind of interposed medium or the mirror type
were made. Now we will consider a particular case: two equal lossless mirrors
(t1 = t2 = t, r1 = r2 = r, t2 + r2 = 1). In this case Eq. (1.4) becomes:

|H( jω)|2 =

(
1 − r2

)2
(1 − r2)2 + 4r2 sin2 δ/2

=
1

1 + F sin2 δ/2
(1.5)

where

F =
4r2(

1 − r2)2 .
So the transmittance depends on frequency. Its maxima are equals to 1 and

occur when sin2 δ/2 = 0, i.e. when δ is an even multiple of π. In this case, the so
called Resonance Condition, corresponds to frequency values given by:

fm =
mc

2nl cosϑ
(1.6)

where c is the speed of light. The transmittance maxima are spaced between them
by:

∆ f = fm+1 − fm =
c

2nl cosϑ
. (1.7)

The distance ∆ f is called Free Spectral Range (FSR) of the device. This distance
can be assumed constant while the refractive index n doesn’t change.

The transmittance minima occurs, instead, when sin2 δ/2 = 1, i.e. when δ is
an odd multiple of π. So the minimum transmittance value is

1
1 + F

=

(
1 − r2

)2(
1 + r2)2 .

5



Chapter 1. Resonator Theory

The ratio between the maximum and minimum of the transmittance is called Ex-
tinction Ratio, its value is (1 + F) and grows as r grows.

The Full Width at Half Maximum (FWHM) δ f of each maximum is defined
as the frequency interval between the two points in the transmittance curve with a
value equal to half of the maximum. Under certain approximations [5] it can be
written as:

δ f =
c

πnl cosϑ
1
√

F
=

2∆ f

π
√

F
. (1.8)

One can introduce the device Finesse defined as [5]:

F =
∆ f
δ f
= π

r
1 − r2 . (1.9)

The Finesse gives a quantitative evaluation to the frequency selectivity of the
device. In fact, the larger is the reflection coefficient, the larger results the Finesse
and so the frequency selectivity (see Figure 1.2).

2m 2(m+1)
0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ/π

|H
(jω

)|
2

 

 

0.7
2.5
7
30

Figure 1.2: Transmittance spectra of a Fabry-Perot Cavity for different values of
the Finesse F.

1.1.2 Lossy Etalon
Till now we have considered an ideal cavity without any kind of loss inside it.

In a real cavity there are loss due to various reasons. First of all, one has to take
into account the attenuation of the propagating field. This loss is due to both the
absorption and both the diffusion of interposed medium. It can be described with
the term e−α2l/ cosϑ for a complete path inside the cavity. Secondly also the mirrors
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1.1. Fabry-Perot Cavity

imperfections have to be considered since they produce a not ideal behaviour in
the reflected signal [5]. Another loss mechanism can be the power transfer to
radiating modes (i.e. power lost) inside a cavity made with an optical waveguide.
Starting from these considerations, Eq. (1.5) has to be rewritten using:

r = e−αtl/ cosϑ

here αt is an attenuation coefficient which describes all the loss mechanisms cited
above.

With this reflection coefficient Eq. (1.9) becomes:

F = π
e−αtl/ cosϑ

1 − e−2αtl/ cosϑ . (1.10)

The loss presence inside the cavity produce a performance degradation has shown
in Figure 1.3.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

α
r
 l / cosϑ

F
in

es
se

Figure 1.3: Finesse versus cavity loss factor αtl/ cosϑ

If αrl/ cosϑ ≪ 1, Eq. (1.10) yields [5]:

F ≈ π

2αtl/ cosϑ
.

Considering a paraxial propagation (i.e. ϑ = 0) one obtains, recalling Eq. (1.7)
and (1.9):

δ f =
∆ f
F
≈ c/2nl
π/2αtl

=
cαt

nπ
. (1.11)

Since αr is the effective attenuation coefficient in the space domain, cαt is the
effective attenuation coefficient in the time domain. So it’s possible to define a

7



Chapter 1. Resonator Theory

cavity time constant of the kind:

τt =
1

cαt
.

Then the FWHM can be rewritten as:

δ f =
1

2πτt
.

Now it is possible to define the cavity figure of merit Q so-called Quality factor
as:

Q =
2π Energy inside the cavity
Energy lost in one period

=
2π

cαt/ f0
(1.12)

where f0 is the cavity resonance frequency. Let’s write

Q =
f0

δ f
= 2π f0τt =

2
n

f0

∆ f
F (1.13)

and, since it’s reasonable to consider the cavity working frequency much greater
than the FSR, it holds also that Q ≫ F.

1.2 Overview of Optical Resonators
Once the main features of a resonator have been derived with reference to

a particular example of such a structure, it can also be noticed that many other
possible technical solutions realise devices with the same features simply varying
the physical mechanism that creates the resonance [6]. Considering this point of
view, resonators can be classified depending on:

Confinement by multiple reflection like the Vertical Cavity Surface Emitting
Laser (VCSEL) and the Photonic Crystal

Confinement by Total Internal Reflection (TIR) like microresonators based on
Spheres, Disks or Rings.

1.2.1 VCSEL
Since the first demonstration in 1979, VCSELs have received much attention

primarily because of the interest in the development of high density laser arrays
in optical communications and optical interconnect applications. In contrast to
a conventional edge emitting diode laser, the light is emitted from the VCSEL
perpendicular to the wafer substrate. In simplest terms, a VCSEL consists of a

8



1.2. Overview of Optical Resonators

semiconductor laser diode sandwiched vertically between two highly reflective
mirrors. The mirrors usually consist of either dielectric or semiconductor dis-
tributed Bragg reflectors (DBRs). In this context, a DBR is a multilayer stack of
alternating materials where the thickness of each layer is λ/4. In the centre of the
cavity, between the mirrors, there is a either a bulk gain region or one or more
quantum wells.

VCSELs work taking advantage of the Fabry-Perot Cavity (see section 1.1)
made by the two reflective surfaces which confine the field and make it rebound
from side to side. The Electromagnetic field is also amplified by stimulated emis-
sion inside the active region in the middle of the optical cavity. Examples of this
device are given in Figure 1.4 while for an extensive treatment of these devices
see [7].

Figure 1.4: Scanning Electron Microscope (SEM) picture of ion beam etched mi-
crolasers with diameters ranging from 1 to 5 µm [7].

1.2.2 Photonic crystals
Photonic crystals are artificial structures that have a periodic variation of the

refractive index along one, two, or three dimensions. Analogous to the energy
gap in pure semiconductor crystals in which electrons are forbidden these pho-
tonic bandgap (PBG) structures have a frequency stopband over which there is no
transmission of electromagnetic waves. Similar to a donor or acceptor state in a

9



Chapter 1. Resonator Theory

doped semiconductor, a small defect introduced into the photonic crystal creates
a resonant mode at a frequency that lies inside the bandgap. The defect in the
periodic array behaves as a microcavity resonator. For an example of this kind of
devices see Figure 1.5 while for further details see [8].

Figure 1.5: SEM picture of a Photonic Wire Bragg grating fabricated in SOI tech-
nology [9].

1.2.3 Microsphere Resonator
A Microsphere Resonator is a sphere usually in fused silica obtained by melt-

ing the core of an optical fibre which drop a perfect sphere. The injection and
detection bus-bar are usually made by two optical fibres put at a certain distance
from the sphere [10]. This kind of resonator has the best Quality factor (see §1.1.2
and [11]) compared to the Microdisks or Microrings (see paragraph 1.3) and is
normally used as a biomedical sensor [12]. For an example of this kind of device
see Figure 1.6 while for further details see [13] and [14].

1.2.4 Microring and Microdisk resonators
Microring and Microdisk resonators are based on ring or a disk integrated

on a dielectric substrate were the light is injected and detected by two coupled
waveguides placed near the resonator [16][17][18]. An example of each device is
given in Figure 1.7. In the next section this kind of devices will be illustrated with
more detail as they are the core of this work.
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1.3. Circular Optical Microresonators

Figure 1.6: Left: A silicate glass microsphere laser with a diameter of 50 µm dur-
ing a Green Up-Conversion. Right: top view with laterally coupled
optical fibre [15].

(a) (b)

Figure 1.7: SEM pictures of (a) a nano-imprinted Polystyrene Microring Resona-
tor between two bus waveguides [19] and (b) a SOI technology based
Microdisk Resonator on the top Silicon layer with bus waveguides
underneath [20].

1.3 Circular Optical Microresonators

For this kind of resonators a ring or a disk shaped dielectric cavity is placed
between two parallel dielectric straight waveguides. The straight waveguides can
be positioned either in the same plane (horizontal coupling scheme, see Figure
1.7a) or below (vertical coupling scheme, see Figure 1.7b) the cavity plane. These
two straight waveguides form four ports for the external connections, the two input
ports named “In-port” and “Add-port”, and the two output ports named “Through-
port” and “Drop-port” (see Figure 1.8).

To understand the functioning of the microresonators, for the sake of simplic-

11



Chapter 1. Resonator Theory

Figure 1.8: Ports displacement of a circular microresonator.

ity, only unidirectional fields (clockwise propagating) will be considered, where
only the In-port is illuminated, while there is no incoming signal at the Add-port.

Conventionally, the functioning of microresonators is described by the inter-
action of harmonic optical waves propagating along the straight waveguide and
the cavity, and the interferometric resonances of the waves inside the cavity [21].

A single frequency optical wave is launched at the In-port of the resonator.
As this signal propagates along the upper straight waveguide, that connects the
In-port and Through-port, part of it is evanescently coupled to the cavity. While
propagating along the cavity, part of this signal is coupled to the lower straight
waveguide and appears at the Drop-port. The remaining part of the signal prop-
agates along the cavity, and interferes with the newly in-coupled signal in the
upper interaction region. Depending upon the specific configuration, these two
fields undergo constructive or destructive interference.

If the cavity field is out of phase with the newly entering field, then destructive
interference takes place inside the cavity and as a result, there is only a small
amount of power inside the cavity. This is so-called off resonance conditions.
As shown in Figure 1.9a, most of the input power is directly transmitted to the
Through-port, and there is small power at the Drop-port.

On the other hand, if the field inside the cavity is in phase with the newly in-
coupled signal, then constructive interference occurs an energy increases inside
the cavity. This field gets coupled to the Drop-port waveguide. This is so-called
resonance conditions and there is a significant power observed at the Drop-port,
while much lower power appears at the Through-port. This situation is shown in
Figure 1.9b.

A typical spectral response of a microresonator device is shown in Figure 1.10.
Resonances appear as dips in the Through-port power curve and peaks in the
Drop-port power curve. In other words, the wavelengths for which a microres-
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Figure 1.9: Off-resonance state (a) and resonance state (b) of a Microring Reso-
nator.

onator is on resonance, will be “dropped” at the Drop-port. Also, for a symmetri-
cal device, if a new signal that corresponds to a resonance wavelength is launched
at the Add-port, it will get “added” to the off resonance signal launched at the
In-port, and appears at the Through-port. Therefore the arrangement shown can
be used as an add/drop filter.
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Figure 1.10: Spectral response of a microring resonator.

1.4 Existing approaches for modelling of circular mi-
croresonators

From §1.1.2 we know that the spectral response of a Fabry-Perot cavity de-
pends on the propagation of electromagnetic fields along the cavity and the qual-
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Chapter 1. Resonator Theory

ity of the mirrors. Following the same procedure [22][23] is possible, in first
approximation, to describe the spectrum of a microring or microdisk resonator as
a function of the geometrical parameters like the size of the cavity, the gap widths
between the cavity and the straight waveguides, and by material parameters like
refractive indices.

Several analytical, parametrical, pure numerical, and mixed analytical & nu-
merical models have been proposed for the analysis of these structures. Proper
understanding of the propagation of electromagnetic fields in the cavity is very
important, because the behavior of these fields is mainly responsible for the res-
onances in the spectral response. This is explained by a time domain model of
isolated (circular) cavities in terms of integer valued angular mode number and
complex valued eigenfrequencies [24]. But in the case of the ring resonators anal-
ysed, fabricated and characterized in this work, the cavity is coupled to two ex-
ternal straight waveguides. Since these bus waveguides are usually modelled in
terms of given real valued frequency a complex eigenfrequency model of (iso-
lated) cavities is not the most suitable choice to study a cavity coupled to straight
waveguides, in fact one have to match the two frequencies to get the complete
device behaviour.

For this reason, in literature, the coupling between a circular cavity and a
straight waveguide has been modelled with phenomenologically derived expres-
sions for the coupling coefficient [16], and with different versions of the Coupled
Mode Theory [25]. Coupled mode theory [5] proved to be a quite useful tool for
the analysis of the interaction between straight waveguides.

Concerning the modeling of three dimensional microresonators, by using the
Effective Index Method (EIM, see §2.1.1) certain 3-D structures can be reduced
to 2-D ones. These are then analyzed by means of phenomenologically derived
expressions for the coupling coefficients [26] or by conformal mapping method
[27].

Apart from the above analytical and parametrical methods, pure numerical
methods like Finite Difference Time Domain (FDTD) [6] are also used for the
simulation of microresonators. Since they are heavily time consuming, in case of
the 3-D structure the use of this approach becomes prohibitive. These simulation
approaches are generally reserved for benchmarking of the results obtained with
other techniques and not for practical design.

In the next chapter it will then be shown which methods, among the ones cited
above, can be used to calculate the geometrical parameters taking into account the
technological specifications of our approach. Their theoretical basis will be intro-
duced, their features described and application issues mentioned and commented.
In Chapter 5 these methods will be used to design and interpret measurement re-
sults.
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Chapter 2

Modelling

In this chapter we will introduce all the methods used in this work to design
a microresonator. As shown in §1.4 one can decide to use a complete analytical
approach an then try to correct it after the first fabrication process deriving some
effective design parameters both physical and geometrical.

This approach is suitable for a well known technology like SOI (Silicon On
Insulator, see [28]) but in our case, where the technology used is still in a develop-
ing phase, as it will be shown in Chapters 3 and 4, one needs also to use numerical
simulations to validate the approximations used in the analytic approach.

So in the next sections we will show the two approaches: analytic and nu-
merical simulation based. The case of study will be a microring resonator called
racetrack because the two coupling regions between the ring and the bus-bars are
made by two straight coupled waveguides. This layout was chosen for technolog-
ical reasons that will be explained in §4.1. A device scheme and an example in
SOI technology are given in Figure 2.1.

2.1 Analytic Approach
The methods explained in this section are used for a 2-D structure. Before

using them we need to transform a real 3-D structure to a 2-D one. This is possible,
under certain approximations, applying the Effective Index Method that will be
illustrated in the next section.

2.1.1 Effective Index Method
Through the EIM the section of a confined structure becomes a planar wave-

guide with the same propagation characteristics. Usually this reduction of one
dimension is widely used, to save both memory occupation and computational

15



Chapter 2. Modelling

(a) (b)

Figure 2.1: Racetrack microring resonator. (a) Device scheme indicating the two
analytical model used: Bent waveguide model (see §2.1.2) and Cou-
pled Mode Theory (see §2.1.3). (b) Racetrack resonator in SOI. The
waveguide width is 500 nm, the gap width is 230 nm [29].

time, in the propagation study of cylindrical structures [4]. In this case, one of
the two remaining dimensions is the propagation coordinate z and the other is the
transverse one, x in our case (see Figure 2.1).

The method resolves the Scalar Helmholtz Equation [5] for cylindrical struc-
tures:

∂2U
∂x2 +

∂2U
∂y2 +

(
k2n2(x, y) − γ2

)
U = 0 (2.1)

where U = Ex, Ey depending on which polarisation, TE or TM respectively, is
under investigation, k is the vacuum wavenumber, n(x, y) the refractive index dis-
tribution on the input plane (i.e. xy plane) and γ is the complex valued propagation
constant.

If a direction exists along which the refractive index is slowly variable, for
example y, one can assume:

U(x, y) = Φy(y)Φxy(x, y) (2.2)

with Φxy(x, y) slowly variable with y. Substituting Eq. (2.2) into (2.1) yields:

Φy(y)
∂2Φxy(x, y)
∂x2 +

∂

∂y

[
dΦy(y)

dy
Φxy(x, y) + Φy(y)

∂Φxy(x, y)
∂y

]
=

= −
(
k2n2(x, y) − γ2

)
Φy(y)Φxy(x, y).
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2.1. Analytic Approach

After some calculations one gets:

Φxy(x, y)
d2Φy(y)

dy2 + 2
dΦy(y)

dy
∂Φxy(x, y)
∂y

+

+ Φy(y)
[
∂2Φxy(x, y)
∂x2 +

∂2Φxy(x, y)
∂y2

]
=

= −
(
k2n2(x, y) − γ2

)
Φy(y)Φxy(x, y).

Since we assumed that Φxy(x, y) changes very slow with y, the:

∂Φxy(x, y)
∂y

≈ 0 and
∂2Φxy(x, y)
∂y2 ≈ 0

are well satisfied.
Then the equation to be solved becomes:

Φxy(x, y)
d2Φy(y)

dy2 + Φy(y)
∂2Φxy(x, y)
∂x2 =

= −
(
k2n2(x, y) − γ2

)
Φy(y)Φxy(x, y).

Dividing by Φy(y)Φxy(x, y) one obtains:

1
Φy(y)

d2Φy(y)
dy2 +

1
Φxy(x, y)

∂2Φxy(x, y)
∂x2 +

+
(
k2n2(x, y) − γ2 + k2n2

e f f (y) − k2n2
e f f (y)

)
= 0

after adding and subtracting k2n2
e f f (y) from the last term. Finally one obtains the

two equations:

d2Φxy(x, y)
dx2 +

(
k2n2(x, y) − k2n2

e f f (y)
)
= 0 (2.3)

d2Φy(y)
dy2 +

(
k2n2

e f f (y) − γ
)
= 0 (2.4)

where (2.4) depends only on y. In Eq. (2.3) ∂x was substituted by dx since
Φxy(x, y) is slowly variable with y and so one can assume that it varies only with
x.

So the EIM asks to solve (2.3) to determinate both ne f f (y) and Φxy(x, y). Then
ne f f (y) can be substituted into Eq. (2.4) that, after been resolved, yields both γ and
Φy(y). This procedure has to be repeated for each waveguide mode.

Now it’s possible to introduce the Bent waveguide model used to compute the
bending loss of a microring resonator.
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Chapter 2. Modelling

2.1.2 Bent Waveguides
Let’s consider a bent slab waveguide with the y-axis as the axis of symmetry as

shown in Figure 2.2. We assume that the material properties and the fields do not
vary in the y-direction. Being specified by the radially dependent refractive index
n(r) (here n is piecewise constant), the waveguide can be seen as a structure that
is homogeneous along the angular coordinate θ. Hence one chooses an ansatz for
the bend modes with pure exponential dependence on the azimuthal angle, where
the angular mode number is commonly written as a product γR with a reasonably
defined bend radius R, such that γ can be interpreted as a propagation constant.

Figure 2.2: A bent slab waveguide. The core of thickness d and refractive in-
dex n f is embedded between an interior medium (“substrate”) with
refractive index ns and an exterior medium (“cladding”) with refrac-
tive index nc. The distance between the origin and the outer rim of
the bend defines the bend radius R.

Eigenvalue problem formulation

In the cylindrical coordinate system (r, y, θ), the functional form (in the usual
complex notation) of the propagating electric field E and the magnetic field H
reads

E(r, θ, t) = (Er, Ey, Eθ)(r)e j(ωt−γRθ)

H(r, θ, t) = (Hr,Hy,Hθ)(r)e j(ωt−γRθ) (2.5)

where γ is the propagation constant of the bend mode, and ω is the angular fre-
quency corresponding to vacuum wavelength λ.

Since an electromagnetic field propagating through a bent waveguide looses
energy due to radiation [30],γ is complex valued, denoted as γ = β − jα, where β
and α are the real valued phase propagation and attenuation constants. Note that
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2.1. Analytic Approach

the angular behaviour of the field (2.5) is determined by the product γR, where
the definition of R is arbitrary.

Given a bend mode, the values assigned to the propagation constant change, if
the same physical solution is described by using different definitions of the bend
radius R. The definition of the bend radius R as the radial position of the outer
interface of the core layer is still applicable when the guiding is effected by a single
dielectric interface only, i.e. for the description of whispering gallery modes [31].

If the ansatz (2.5) is inserted into the Maxwell equations, one gets the two
separate sets of equations

γR
r

Ey = −µ0ωHr

∂Ey

∂r
= − jµ0ωHθ

1
r
∂rHθ
∂r
+

jγR
r

Hr = − jε0εωEy


TE (2.6)

and
γR
r

Hy = ε0εωEr

∂Hy

∂r
= jε0εωEθ

1
r
∂rEθ
∂r
+

jγR
r

Er = jµ0ωHy


TM (2.7)

with vacuum permittivity ε0, vacuum permeability µ0, and relative permittivity
ε = n2.

For transverse electric (TE) waves the only nonzero components are Ey, Hr and
Hθ, which are expressed in terms of Ey, while for transverse magnetic (TM) waves
the only nonzero components are Hy, Er and Eθ, which are given by Hy. Within
radial intervals with constant refractive index n, the basic electric and magnetic
components are governed by a Bessel equation with complex order γR:

∂2ϕ

∂r2 +
1
r
∂ϕ

∂r
+ (n2k2 − γ

2R2

r2 )ϕ = 0 (2.8)

for ϕ = Ey or ϕ = Hy, where k = 2π/λ is the (given, real) vacuum wavenumber.
For TE modes, the interface conditions require continuity of Ey and of ∂rEy across
the dielectric interfaces. For TM modes, continuity of Hy and of ∂rHy across the
interfaces is required.

Eq. (2.8), together with the interface conditions and suitable boundary condi-
tions for r → 0 and r → ∞, represents an eigenvalue problem with the bend mode
profiles ϕ as eigenfunctions, and the propagation constants γ or angular mode
numbers ν = γR as eigenvalues.
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Chapter 2. Modelling

The equation is solved piecewise in the regions with constant refractive in-
dex. While the procedure is in principle applicable for arbitrary multilayer bent
waveguides, for the sake of brevity we discuss here the three layer configuration
as introduced in figure 2.2.

The general solution of Eq. (2.8) is a linear combination of the Bessel func-
tions of the first kind J and of the second kind Y . This representation is applicable
to the core region. Since Y tends to −∞ if r → 0, for the boundedness of the elec-
tric/magnetic field at the origin one selects only the Bessel function of the first
kind J for the interior region. In the outer region, we are looking for a complex
superposition of J and Y that represents outgoing waves. Such a solution can be
given in terms of the Hankel functions of the first kind H(1) or of the second kind
H(2). Using the asymptotic expansions of these functions [32]:

H(1)
ν (nkR) ∼

√
2
πnkr

e j(nkr−νπ/2−π/4)

H(2)
ν (nkR) ∼

√
2
πnkr

e− j(nkr−νπ/2−π/4)

(2.9)

and taking into account the harmonic time dependence e jωt (with positive fre-
quency), one observes that H(1) represents incoming waves, while outgoing waves
are given by H(2). Thus the piecewise ansatz for the basic components of the
electric/magnetic bent mode profile is

ϕ(r) =


AsJν(nskr) if 0 ≤ r < R−

A f Jν(n f kr) + B f Yν(n f kr) if R− ≤ r < R+

AcH(2)
ν (nckr) if r ≥ R+

(2.10)

where R− = R − d, R+ = R, and where As, A f , B f and Ac are so far unknown
constants.

The polarisation dependent interface conditions lead to a homogeneous system
of linear equations for As, A f , B f and Ac. The condition for a nontrivial solution
can be given in the form

Jν(n f kR−)
Jν(nskR−)

− qs
J′ν(n f kR−)
J′ν(nskR−)

Yν(n f kR−)
Jν(nskR−)

− qs
Y ′ν(n f kR−)
J′ν(nskR−)

=

Jν(n f kR+)

H(2)
ν (nckR+)

− qc
J′ν(n f kR+)

H(2)′
ν (nckR+)

Yν(n f kR+)

H(2)
ν (nckR+)

− qc
Y ′ν(n f kR+)

H(2)′
ν (nckR+)

(2.11)

with q j = n f /n j for TE polarisation, and with q j = n j/n f for TM polarised fields,
for j = s, c. Eq. (2.11) is the dispersion equation for the three layer bent slab
waveguide. For given frequency ω, this equation has to be solved to get the prop-
agation constants γ = ν/R.
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2.1. Analytic Approach

Bend mode normalisation

The power flow density associated with a bend mode is given by the time
averaged Poynting vector Sav =

1
2ℜ
[
E ×H

∗]
. The axial component S av,y vanishes

in the 2-D setting. For TE waves the radial and azimuthal components are

S av,r = −
1

2µ0ω
ℜ
[

jEy
∂E∗y
∂r

]
e−2αRθ

S av,θ =
β

2µ0ω

R
r
|Ey|2e−2αRθ

(2.12)

and for TM polarisation one obtains

S av,r =
1

2ε0εω
ℜ
[

jHy
∂H∗y
∂r

]
e−2αRθ

S av,θ =
β

2ε0εω

R
r
|Hy|2e−2αRθ

(2.13)

The total optical power transported by the mode in the angular direction is given
by Pθ(θ) =

∫ ∞
0

S av,θdr. Following the procedure explained in [25] one gets the two
expressions:

Pθ(θ) =
|Ac|2

2µ0ωαRπ
eαR(π−2θ) (T E)

Pθ(θ) =
|Ac|2

2ε0n2
cωαRπ

eαR(π−2θ) (T M)
(2.14)

for the modal power of TE and TM polarised modes, respectively. For further
details about this normalisation and the orthogonality of bend modes see [25].

Simulation Results

To solve the eigenvalue problem (2.11) a bend mode solver was implemented
both in MATLAB and FORTRAN 90 following the consideration explained in
[25]. This solver yields complex propagation constants and mode profiles in terms
of Eq. (2.10).

Table 2.1 lists values for angular mode numbers obtained with the mode solver
for the same bend configuration adopted in [25], together with reference data from
that source. Since the real parts of ν = γR resulted equals we put the accent on
the image parts with a good overall agreement, for both the developed implemen-
tations.

For many applications one is interested at the variation of the phase constant
β/k and the attenuation α with the curvature of the bend, expressed by the bend
radius R. Figure 2.3 shows corresponding plots for the configuration of Table 2.1.
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R[µm] ℜ [γR] ℑ [γR]
Reference [25] MATLAB FORTRAN

50.5 4.0189 · 102 −7.9973 · 10−2 −7.9974 · 10−2 −7.9974 · 10−2

100.5 8.0278 · 102 −9.6032 · 10−4 −9.6030 · 10−4 −9.6054 · 10−4

150.5 1.2039 · 103 −7.3914 · 10−6 −7.3920 · 10−6 −7.4350 · 10−6

200.5 1.6051 · 103 −4.8976 · 10−8 −5.5151 · 10−8
(
+9.8629 · 10−7

)
Table 2.1: T E0 angular mode numbers ν for bent waveguides of different bend

radius R according to figure 2.2, with (ns, n f , nc) = (1.6, 1.7, 1.6), d =
1 µm, for a vacuum wavelength λ = 1.3 µm.

As expected, for low curvature the value of β/k tend to the effective index of a
straight slab waveguide with equivalent refractive index profile (Figure 2.3a).
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Figure 2.3: Simulation results for bends according to Table 2.1. (a) Phase con-
stant β versus the bend radius R. The dashed line indicates the level of
the effective index of a straight waveguide with the cross section and
refractive index profile of the bent slabs. (b) Attenuation constant α
versus the bend radius R for the two different implementations.

In Figure 2.3b is shown that for low bend radii the agreement with [25] is very
good. In fact there is only a strange value in the FORTRAN implementation due
by numerical fluctuation (see the last row in Table 2.1).

With the present (semi) analytic solutions at hand, we have now a possibility
to validate “classical” expressions for the variation of the bend attenuation with
the bend radius. Beyond the high curvature region, Figure 2.3b shows a strict
exponential decay of α with respect to R, as predicted by an approximate loss
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formula given in [33] for symmetric bent slabs:

α =
R − w

R
g2

2βs(1 + gw)
h2

(n2
f − n2

s)k2
e2gwe−2(βs tanh−1(g/βs)−g)(R−w). (2.15)

Here βs is the propagation constant corresponding to the straight waveguide with
the width d = 2w and refractive index profile (ns, n f , ns) of the bent waveguide
under investigation. Derived quantities are g2 = β2

s−n2
sk

2 and h2 = (n2
f −n2

s)k
2−g2.

Figure 2.4 reveals a very good agreement with the attenuation constant calculated
by our procedure.
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Figure 2.4: Attenuation constant of the T E0 mode for symmetric bent waveguides
with n f = 1.7, ns = nc = 1.6, d = 1 µm, λ = 1.3 µm, for varying
bend radius R. The dashed line show the exponential decay according
to Eq. (2.15), the solid curve is the present analytic mode solver
implemented in MATLAB.

So, Eq. (2.15) can be used when one wants to minimise bending losses since
it works better for large bending radii.

Mode profiles

Beyond the values of the propagation constants, the present analytical mode
solver permits to evaluate modal fields for the full range of radial coordinates.
Figure 2.5 illustrates normalised profiles for the T E0 bend modes considered in
Table 2.1.

One observes the expected effects [33]: bends with large radii R support modes
with almost the familiar symmetric, well confined plane profiles of straight sym-
metric slab waveguides (see [5]). With decreasing bend radius, the phase profiles
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of the bend modes become more and more curved. Along with the increasing
attenuation, the maximum in the absolute value of the basic electric field shifts to-
wards the outer rim of the bend, and the relative field levels in the exterior region
grow. The mode profiles are essentially complex, with oscillatory behaviour of
the real and imaginary parts of the field profiles in the exterior region.
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Figure 2.5: T E0 mode profiles for bent waveguides according to the setting of
Table 2.1, with different bend radii R = 200.5, 50.5, 10.5, 5.5 µm. Ra-
dial dependence of the absolute value (solid line), the real and imag-
inary part (dashed and dash-dotted lines) and the phase of the basic
electric field component Ey. The profiles are normalised according to
Eq. (2.14), with the global phase adjusted such that Ey(R) is real and
positive.

Now that we know how to calculate bending losses and bent mode profiles we
can proceed with the modeling of the coupler constituted by two straight wave-
guides (see Figure 2.1).
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2.1. Analytic Approach

2.1.3 Coupled mode theory

In this section we will focalise our attention on a particular application of the
CMT: the co-directional coupling between two mono-modal waveguides. The
three hypotheses that lie under this method are [5]:

1. The radiation part of the electromagnetic field can be ignored since it is well
confined inside the waveguide. So the modes can’t be leaky or lossy.

2. There are no sensible variation in the propagation direction. The phase
constant β can be then considered unchanged. In other words the structure
is cylindrical.

3. The superposition principle is applicable, so the superstructure mode is
equivalent to the sum of each separate waveguide mode.

As it will be shown in the next chapters, since the technology used to fabricate
our devices is based on ridge waveguides, all these hypotheses are fulfilled.

Coupling coefficient

Let’s recall the co-directional coupling coefficient between two mono-modal
waveguides [5]:

κ =
ω

4

∫
S 2

∆ε Et2 · E
∗
t1 dS (2.16)

where the indices 1 and 2 indicate the two waveguides and t stands for transverse.
Now, in the case of two equal waveguides, one can introduce the coupling

length defined as

Lc =
π

2|κ| . (2.17)

At this propagation distance, in fact, the power transfer from one waveguide to the
other is complete.

Coupler transfer matrix

In Figure 2.6 is reported the scheme of the coupler region pointed out in Figure
2.1. Under the conditions that a single unidirectional mode of the resonator is
excited and that the coupling is lossless, one can describe the interaction by the
matrix relation [34]: [

bw

br

]
=

[
τ η
η∗ −τ∗

] [
aw

ar

]
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Chapter 2. Modelling

Figure 2.6: Generic description of dielectric waveguide coupled to ring resona-
tor.

where the complex mode amplitudes aw,bw and ar,br are normalised such that
their squared magnitude corresponds to the modal power. The coupling matrix is
unitary so that:

|η|2 + |τ|2 = 1

Now, it is useful to write here the more general formulation of Eq. (2.17) [5]:

Lcη =
arcsin|η|
|κ| . (2.18)

Eq. (2.18) represents the coupling length at which the power transferred to the
second guide (i.e. the ring) is equal to |η|2 times the input power. Note that, when
η = 1, Eq. (2.18) becomes (2.17).

Ring coupling

Let’s recall Figure 2.6. In the following, we will choose that input wave aw = 1
W so that all the field amplitudes will be normalised to aw. The transmission
around the ring is given by

ar = αre jδbr

where αr, the inner circulation factor, is real and δ is the phase difference between
the two waves inside the ring. The factor αr represents all the loss mechanisms in-
side the ring (e.g. by bending loss, material absorption, and sidewalls roughness).
Note that for zero internal loss αr = 1.
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2.1. Analytic Approach

Following the calculation shown in [34], at resonance one gets:

|bw|2 =
(αr − |τ|)2

(1 − αr|τ|)2 and |ar|2 =
α2

r (1 − |τ|)2

(1 − αr|τ|)2 (2.19)

The first part of Eq. (2.19) is of special interest. It shows that when αr = |τ|,
i.e. when the internal losses (represented by αr) are equal to the coupling losses
represented by |τ|, the transmitted power vanishes, i.e. |bw|2 = 0. This condition,
known in the microwave field as that of critical coupling [34], is due to perfect
destructive interference inside the outgoing waveguide between the transmitted
field τar and the internal field coupled into the output waveguide ηar. An other
important thing is that when αr|τ| = 1, one obtains, according to Eq. (2.19),
infinite transmission, i.e. laser oscillation.

Note that all these results depend only on τ and αr. They are independent of
the details of the coupling and those of the resonator. Their simplicity and form
are reminiscent of the basic relations describing the Fabry-Perot etalon (see §1.1).

Ring resonator fundamental parameters

In this subsection the same parameters pointed out for the Etalon in §1.1.2
are reported for the microring resonator as wavelength function [25] (see Figure
1.10).

So the FSR can be written has:

∆λ =
λ2

ne f f Lcav
(2.20)

where λ is the resonance wavelength, Lcav is the cavity length and ne f f can be
replaced by the group effective index [5]:

ne f f ,g = ne f f − λ
∂ne f f ,

∂λ

when the waveguide and ring dispersions are not negligible.
The FWHM, in the following indicated with ∆λ3dB, is

∆λ3dB =
λ2

πne f f Lcav

1 − α2
r |τ|2

αr|τ|
(2.21)

that in the best case possible, i.e. when αr = |τ| ≈ 1, reduces to:

∆λ3dB =
λ2(1 − |τ|2)
πne f f Lcav

=
λ2|η|2
πne f f Lcav

.
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Then, applying Eq. (1.9), one gets:

F = π
αr|τ|

1 − α2
r |τ|2

(2.22)

and
F =

π

1 − |τ|2 =
π

|η|2 when αr = |τ| ≈ 1.

for the Finesse in the two cases.
Finally, the Quality factor, given by Eq. (1.13), becomes:

Q =
λ

∆λ3dB
= π

ne f f Lcav

λ

αr|τ|
1 − α2

r |τ|2
=

ne f f Lcav

λ
F (2.23)

and, when αr = |τ| ≈ 1, it can be written as:

Q =
πne f f Lcav

λ|η|2 .

Coupling with the second waveguide

In our case the resonator is also coupled to a second waveguide (see Figure
2.6). From the point of view of the original waveguide, the presence of the second
(lower) waveguide merely modifies the internal loss parameter from αr to αr|τ2|
(the 1 and 2 subscripts now refer to the “In-Through” and “Drop-Add” wave-
guides, respectively). All the expressions given above apply, provided we set
τ → τ1 (η → η1) and αr → αr|τ2|. The output power |ad|2 from the second guide,
i.e. from the Drop-port, is of special interest. At resonance

|ad|2 =
(1 − |τ1|2)(1 − |τ2|2)αr

(1 − αr|τ1τ2|)2 . (2.24)

Full transfer of power from the input guide to the output guide, i.e. |ad|2 =
1, occurs when the two following conditions are satisfied: αr = 1 (negligible
internal losses) and |τ1| = |τ2| (identical coupling). The transfer of power between
waveguides can thus be controlled by small changes in |τ1| or |τ2|.

2.2 Numerical Simulations
As a conclusion of this chapter this section gives a survey of the two numerical

methods used in our work: Finite Difference Time Domain (FDTD) and Finite
Element Method (FEM). We will show only one example of each method without
explaining how them works since they are well known. However for a treatment
of both approaches see [35].
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2.2. Numerical Simulations

2.2.1 FDTD
Since is a time domain approach, its main advantage is the possibility to de-

scribe, in addition to steady state behaviour, also the transition one. The particular
3-D FDTD simulator used in this work is explained in [36].

Case of study

Here we report some results as an application example of the simulator. The
reference taken to test the FDTD method is a SOI technology based racetrack
microring resonator [37]. In Figure 2.7 both the device layout and geometrical
parameters definitions are reported.

(a) (b)

Figure 2.7: Racetrack ring resonator under test. (a) Device layout and port dis-
placement. (b) Parameters of the SOI technology used.

In Table 2.2 the values of such parameters are reported at λ = 1550 nm.

Simulation Results

In Figure 2.8a the main field component distribution, Ey i.e. TM polarised, is
reported in the resonance state while Figure 2.8b shows the time evolutions of Ey

at the ports. Note that after about 6 ps the device response is stable.
In Table 2.3 the fundamental parameters values of the resonator are reported.

This parameters where calculated using a curve fitting based on a lorentzian func-
tion [38].

Finally both transfer functions between In-port and Through-port, and be-
tween In-port and Drop-port are plotted in Figure 2.9.
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Parameter description Parameter name Value
Silicon refractive index n f 3.4
Silicon dioxide refractive index nc 1.6
Waveguides width w 0.4 µm
Film layer thickness t 0.4 µm
Cladding layer thickness h 0.4 µm
Gap between the ring and the bus-bars g 0.2 µm
Coupling length Lcη 1.0 µm
Ring radius R 3.0 µm

Table 2.2: Technological and geometrical parameters of the DUT.
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Figure 2.8: Racetrack simulation results. (a) Continuos wave simulation near
resonance of 1550 nm.(b) Time evolution of the main field component
Ey of the three principal device ports.

Name Value
λ 1550.41 nm

FS R 27.106 nm
Q 1482
F 26

ER -4.8403 dB

Table 2.3: Racetrack fundamental parameters computed around resonance.

Now, through this example FDTD has demonstrated its potential. In fact, after
a unique simulation we get all the parameters and the data necessary. However,
as will be clearer in §5.1, the geometrical parameters values chosen for our res-
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Figure 2.9: Through-port and Drop-port transfer functions. Port indexing refer
to Figure 2.7a

onators are such that the final device dimensions are too large to let us to simulate
them with FDTD.

2.2.2 FEM
The FEM solver used in this work is a commercial software called COMSOL

Multiphysics. The simulations performed have the aim to check if the approxima-
tions taken for the refractive indices distributions , taken during both the analysis
and the design processes, are reasonable (see §5.1).

We will show two mode computation examples applied to another case study
[39]. This particular example is chosen because the substrate is Lithium Niobate
and the geometry dimensions are closer to our fabricated device ones, then those
of SOI technology.

The ridge technological process showed in [39] is based on a selective etching
of the crystal via PE and then a waveguide fabrication through Titanium diffu-
sion. This technology is different from our approach completely based on ion-
implantation, but is useful to focalise the kind of devices we are going to design,
fabricate and characterise in the next chapters.

So, in Figure 2.10 is reported the fundamental mode of the Ti:LiNbO3 ridge
waveguide described in [39].

Figure 2.11 shows the fundamental mode of the same waveguide with a bend
radius R = 200 µm. Note how the maximum of the mode distribution is near the
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Figure 2.10: Mode profile of a Ti:LiNbO3 ridge waveguide. Contour plot indi-
cates the refractive index distribution.

outer rim. This is a case of whispering gallery mode i.e. guided only by the outer
rim not by the waveguide anymore [31].

Figure 2.11: Mode profile of a bent Ti:LiNbO3 ridge waveguide with R = 200 µm.
Contour plot indicates the Titanium concentration profile.

This result was obtained applying in COMSOL the conformal mapping method
to simulate the bending structure [27]. So thanks to its versatility the FEM solver
allows us to completely characterise the theoretical mode distribution of the modes
that propagate in the structure. This approach will be widely used in §5.1.
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Lithium Niobate

In this chapter we will focus our attention on the substrate used in this work:
Lithium Niobate (LiNbO3) and its optical characteristics modification through
ion-implantation processes.

Lithium Niobate (LN), i.e. Lithium and Niobium Oxide, is a birefringent
hexagonal crystal with a wide transparency from 340 nm to 4600 nm [40].

The atomic arrangement within the stoichiometric hexagonal unit cell, as shown
in Figure 3.1a, consists of six LiNbO3 with Li (small light grey spheres) and Nb
(small dark grey spheres) ions located on the polar c-axis (crystal axis also in-
dicated with z) and the O (large dark grey spheres) atoms in general positions
(Figure 3.1b).

Li occupies an oxygen atom octahedron that shares faces with adjacent similar
octahedra on either side along the trigonal axis. One such octahedron is empty,
the other is occupied by Nb. The triple octahedron is repeated, with alternating
sequences having identical orientation, along the polar axis (Figure 3.1c). The
spacing between corresponding atoms in alternate sequences forms the c-axis re-
peat [1].

Note that this particular distribution of the three ionic species forms electric
dipoles and so, below a certain temperature, i.e. Curie Temperature (∼ 1142
°C [40]), LN is ferroelectric [42]. So it possess a so-called spontaneous electric
polarisation.

Other important physical properties due to its crystal structure are: pyro-
electricity, piezoelectricity, thermo-opticity and, most important for us, electro-
opticity.

Thus, in the next section we will describe its intrinsic optical characteristics.
Then we will proceed explaining how ion-implantation can be used to change both
optical and chemical characteristics of LN.
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(a) (b) (c)

Figure 3.1: Lithium Niobate crystal cell [41]. (a) Vertical view of a conventional
cell. (b) C-axis view. (c) Oxygen atom octahedron structure with Li
and Nb alternatively.

3.1 Optical Characteristics
As pointed out before, LiNbO3 is an anisotropic uniaxial crystal [43]. Its

extraordinary and ordinary refractive index dispersions, described by two different
Sellmeier equations, are plotted in Figure 3.2a with the coefficients reported in
[40]. Since no > ne LN is called a “negative” crystal (being ”positive” crystals
those with no < ne).

Some examples of LiNbO3 wafers are reported in Figure 3.2b. Depending on
which of the three crystal axes is perpendicular to the wafer plane they are called
x, y or z-cut.

The values of the electro-optic tensor, r, are given in Table 3.1 in two different
conditions based on the value of the applied electric field frequency: unclamped
( f < 500 kHz) and clamped ( f > 10 MHz), for further details about this behaviour
see [1].

r13 r22 r33 r51 rz

unclamped 10 7 33 33 18
clamped 9 3 31 28 19

Table 3.1: LN electro-optic coefficients (pm/V at λ = 633 nm).

Now we can proceed describing the core of this work: ion-implanted Lithium
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Figure 3.2: Lithium Niobate optical properties and aspect [40]. (a) Sellmeier dis-
persion curves at room temperature (27 °C). (b) Four inches wafers
after crystal growth. Depending on which of the three crystal axes is
perpendicular to the wafer plane they are called x, y or z-cut

Niobate. We will start with a brief description of the physical principles of charged
particles travelling through solids.

3.2 Ion Implantation effects
The specific energy loss of an ion through a solid material is called stopping

power and can be written as sum of different parts:[
−dE

dx

]
tot
=

[
−dE

dx

]
n
+

[
−dE

dx

]
e

(3.1)

here E is the energy and x is the coordinate along the travelling direction.
The first term of Eq. (3.1) represents the nuclear stopping power and the sec-

ond the electronic one. The nuclear stopping power is caused by a sequence of
elastic collisions statistically independent between the incident particle and the
lattice atoms. It is the predominant term at low velocities [44].

At high velocities prevails the electronic stopping power. This effect is due to
inelastic collisions between electrons in the medium and the ion moving through
it.

Finally, when an ion travels through a solid with a velocity close to the one of
its outer orbitals electrons, it has an high probability both to lose electrons to the
target and to capture target electrons. This charge exchange process can contribute
to the total stopping power [44].
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In a crystal, if the ion travelling direction is close to a crystallographic axis or
a low index crystallographic plane [42], one has to take into account the lattice
periodicity. In this case, in fact, the particle is deflected by a series of collisions
with the axial or planar channel walls. For this reason this phenomenon is so-
called channelling. If an ion is channelled by the crystal lattice, it has a much
larger penetration than a random incident one.

This effect will bring about undesirable problems when one wishes to have
accurate control of the implanted ion profiles in the crystal. In practice, the ion
beams are tilted at a slight angle (for example, ∼ 7◦) from the sample surface
normal planes for implantation into LiNbO3 crystals, by which the channelling
effect can be minimised.

Implanters, tandem accelerators, and so on are used to generate energetic
beams of both light and heavy ions. As described above, the incident ions lose
their energy mainly through electronic and nuclear energy-transferring mecha-
nisms. The ions, implanted at different stopping powers determined by the ion
mass, energy, and target materials, will cause damage through these two mecha-
nisms [45].

More in details, the damage generated by the nuclear scattering of the incident
ion with the target atoms, is so-called nuclear damage and is correlated with the
nuclear stopping power introduced before.

Besides this kind of damage, it is known that the dense excitation of the elec-
tronic sub-system, generated in a nanometre region surrounding the ion path, can
be partly converted into lattice damage so-called electronic damage [54].

Moreover, when an electronic stopping power threshold, dependent on the ion
velocity, is exceeded an amorphous track is directly generated by the ion passage
(for an application of this phenomenon see [46]).

Otherwise multiple ion trajectories overlapping are necessary to accumulate a
critical concentration of defects to induce a local lattice collapse. So far it has been
demonstrated that defects produced by electronic and nuclear processes are differ-
ent, as they produce a different response in multi-axial Rutherford Backscattering
Spectrometry-channeling (RBS-C) experiments [47].

High-fluence (normally above 1016 ions/cm2) light ions, typically referring to
H or He particles, at energies of several keV to MeV induce a nuclear damage
layer buried inside LiNbO3 crystals.

Middle-light-mass ions such as C, N, O, F, Si, Cl, Ni, or Cu at energies of
several MeV, can cause relatively strong modifications in the implanted regions
in LiNbO3 even at lower fluences of 1014 ions/cm2 [48]. In these cases, the elec-
tronic stopping powers are much higher than those of light ions. Nevertheless,
low-fluence heavy-ion-induced lattice disorders can also be removed by suitable
thermal annealing (200–300 °C).

Figure 3.3 shows the distributions of the electronic and nuclear energy depo-
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sition (i.e. the opposite of the stopping power) of 2 MeV He and 6 MeV O ions
implanted into LiNbO3 crystals from numerical simulations of SRIM (Stopping
and Ranges of Ions in Matter [49]).

(a) (b)

Figure 3.3: Distributions of electronic (solid lines) and nuclear (dashed lines)
energy deposition of (a) 2 MeV He and (b) 6 MeV O ion implanted
into LN crystals calculated by SRIM 2006.

For the purpose of photonic applications, ion implantation has proven to be
an efficient method for fabricating optical waveguide structures in many materi-
als due to its accurate control of the refractive indices of the substrates. In fact,
in some crystals with low phase transition temperatures or very stable chemical
properties, ion implantation is one of the most effective techniques to guide struc-
tures within them [45].

LiNbO3 waveguides produced by the implantation of light and heavy (medium-
mass) ion beams have been realised for many years and exhibit attractive proper-
ties for various photonic applications [1].

Now, we will describe two different uses of ion-implantation. The former
changes the refractive index profile in the vertical direction and will be discussed
in the next subsection. The latter allows the fabrication of ridge waveguides and
so provides lateral confinement. It will be explained in §3.2.2.

3.2.1 Refractive Index Tailoring
As pointed out before, for low particle velocities, the stopping power which

prevails and determines the damage profile inside the crystal is the nuclear one.
Figure 3.4 shows a defective phase diagram (N∗ is the defect fraction as mea-

sured by RBS-channeling) obtained following a predictive model based both on
empirical formulae and SRIM simulations described in [50].

The plot area is divided into two main regions, one dominated by nuclear dam-
age (N∗nuc,x > N∗el ) and the other dominated by the damage induced by electronic
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Figure 3.4: Defective phase diagram of ion-implanted LN for two different flu-
ences.

excitation (N∗nuc,x < N∗el ). Note that the border line depends on the irradiation
fluence.

The electronic damage region is further divided into two regions characterized
by sub-threshold damage and ion tracks (i.e. amorphous tracks as described in
§3.2). For a selected ion of a given energy it is possible to qualitatively predict
the main features of the damage generated by the energy loss into the LN sample
[51].

Of the three examples shown in the Figure 3.4, only 3.9 MeV carbon ions
produce nuclear damage with negligible electronic one. In fact its arrow (i.e. its
energy decreasing) doesn’t cross the electronic damage region nor the one of ion
tracks. In this case, it is possible to apply our refractive index variation model [52]
based both on SRIM simulations and m-lines measurements (see §5.2.1).

The model results are reported in Figure 3.5 where the two refractive indices
distributions are expressed in function of Ed, a normalisation parameter used to
correlate the results of different implantation processes. It is the product of the en-
ergy transferred to the target atoms Sn (i.e. the nuclear stopping power computed
by the SRIM program) and the ion fluence Φ:

Ed = Sn × Φ.

These two distributions are the best fit curves of literature data normalised to Ed

and represents the state of the art available at the beginning of the present work.
Note that ne goes above the bulk value (i.e. of virgin LN), nev, while no remains
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(a) (b)

Figure 3.5: Refractive index tailoring in Lithium Niobate by ion implantation.
Best fit curves of literature data of (a) ne and (b) no distributions in
function of Ed [52].

always under nov. The reason of these two different trends could be ascribed to
the three contributions to the indices change induced by nuclear damage: volume,
polarisability and spontaneous polarisation variations [42].

In fact the specific volume of LN increases with damage and this causes both
no and ne to decrease. On the other hand ion bombardment locally breaks crystal
order causing the reduction of LN anisotropy and consequently varying the polar-
isability and the spontaneous polarisation. This latter in particular decreases when
damage increases leading no and ne to converge (decrease of no, increase of ne)
towards a common value when polarisation becomes zero.

So no has two contributions which push its value down when damage increases
while ne has a volume contribution which pushes its value down and one due to
spontaneous polarisation which pushes its value up when damage increases. This
last contribution seems to prevail at medium-low damage while the volume one is
prevailing at high damage [52].

Therefore, an ion-implanted waveguide sustains extraordinary polarised modes
with almost no intrinsic loesses while the ordinary ones are lossy. So, typically af-
ter some mm of propagation through the waveguide, the contribution of ordinary
polarised modes to the output power is negligible and the light results polarised
along the extraordinary axis.

The two curves of Figure 3.5 have to be in the following way. First we choose
the ion (i.e. Carbon for the reasons described before) and then an implantation
energy which settles the depth of the ion barrier. Now the only free parameter
remained becomes the fluence which, at this point, determines the refractive index
profile.
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3.2.2 Etching Rate alteration
Before introducing how ion-implantation changes the LN etching properties

we have to explain how bulk LiNbO3 is etched.
Chemical etching in aqueous hydrofluoric solution of Lithium Niobate works

as following [53]. At first, the negatively charged free bonds of oxygen atoms at
the surface are saturated with H+ ions very rapidly by electrostatic attraction.

Then the oxygen can desorb from the surface in the shape of an OH− molecule
or as H2O after a further complex formation by another H+ ion. In a second step,
the metallic (Li and Nb) atoms can be removed by an attack from either HF or
HF−2 , leaving behind free oxygen bonds at the new surface and the process restart.

This kind of “slice” etching has a negligible rate in virgin Lithium Niobate
but, since it depends on the number of oxygen free bonds, increases with the
lattice damage.

For this reason heavily damaged layers were produced in LN by using dif-
ferent ion implantation parameters. For each condition, defects were generated
in the surface layer by a specific dominant energy release process, i.e. nuclear
or electronic. The chemical etching properties of the irradiated areas were then
correlated to the damage level evaluated by RBS-C [54].

Moreover, combining both electronic and nuclear damage to get the maximum
defect fraction possible (N∗ ≈ 1) the etching rate was increased by 100 times
compared to that of bulk LiNbO3 [50].

In Figure 3.6a are reported three defect fractions for different fluences in the
case of 4 MeV Cu ion implanted in Lithium Niobate. Figure 3.6b shows the
etching profile for the best case: 1×1015 ions/cm2. Note that the amorphous layer
extension goes from the surface to the depth settled by the implantation energy.

So using a masking layer it’s possible to modify LN through this particular
ion-implantation recipe and one obtains very smooth sidewalls as shown in Figure
3.7. Note that the ridge shape is limited only by the particular photolithography
used as it will be clearer in the next chapter.
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(a) (b)

Figure 3.6: Etching Rate alteration. (a) Total defective fraction produced by 4
MeV Cu ion implantation in LN for three different fluences. (b) Mea-
sured (squares) and simulated (line) etching rate depth profile for a
LN sample implanted with 4 MeV Cu ion at the fluence of 1 × 1015

ions/cm2.

Figure 3.7: SEM image of a micrometric edge channel waveguide fabricated by
ion implantation /etching process. The height of the lateral walls is
about 1.4 µm.
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Chapter 4

Design and Fabrication

This chapter has a double aim. The first one is to show the design of our de-
vices following a standard procedure consolidated in forty years of technological
expertise achieved by the staff of CNR-IMM Laboratories in Bologna.

Secondly a brief documentation of our technological run, which is still under
development, will be given to permit a better understanding of the problems en-
countered during the fabrication of our prototypes and the solutions proposed in
§5.5.

Even if the technology commonly used at CNR-IMM is well know for Silicon,
it is not the same for LiNbO3 crystals since this material has a lot of physical
properties that have to be taken into account (see §5.3).

4.1 Project
We will start describing some general features of our devices starting from the

ones imposed by our technology.
The first limiting factor is the minimum feature size allowed by the photolitho-

graphic process used, which is directly correlated with the working wavelength of
the mask aligner UV lamp. In our case the minimum allowable feature size is ∼ 1
µm.

As shown in Figure 2.1b the minimum feature size in fabricated SOI devices
is usually ∼ 100 nm, thanks to the use of the e-beam lithography. In our case, we
used a hard-contact lithography which permits to obtain device dimensions in the
range of hundreds of microns, with the exact values computed in §5.1.

Another important feature of our devices is the ridge technology. In fact,
thanks to the strong lateral confinement provided by the surrounding medium,
i.e. air [25], ridge waveguides allow small bending radii (∼ 100 µm) compared to
embedded waveguides fabricated through PE or Ti-diffusion.
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Moreover, as pointed out in §3.2.1, our waveguide is an intrinsic polariser,
thanks to ion-implantation. Therefore, since the only polarisation guided is the
extraordinary one, and our devices are ring-based, to maintain the isotropy on the
propagation plane avoiding polarisation crosstalk [3], the wafer type chosen is
z-cut and so the polarisation guided will be the TM one.

The last general feature of our device, is the presence of electrodes to permit
the tuning of the resonance frequency of the ring by the electro-optic effect.

4.2 Mask Design
So two photolithographic masks were designed using the commercial soft-

ware tool CADENCE. One mask is for the devices, while the other one is for the
electrodes. Figure 4.1a shows the layout for a resonator. The red layer repre-
sents the rings mask fabricated for negative photoresist, while the green one is the
electrodes mask designed for positive photoresist.

(a) (b)

Figure 4.1: Mask Design. (a) Device example with two mask layers and (b) final
layout of the mask set.

The photoresist tone is not an accidental choice. In fact, the negative pho-
toresist commonly used at IMM of Bologna (ma-N 1420) is the best choice to
fabricate ridge waveguides, since it has more stopping power compared to the
positive photoresist (HPR 504). In other words: ma-N allows us to fabricate a
deeper ridge than the one obtained using HPR.

Instead the positive photoresist was chosen for the electrodes layer because its
higher reliability.

The complete layout of the final photomask is reported in Figure 4.1b. The
masks are fabricated on a soda-lime quartz substrate by an external company and
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have a lateral dimension of five inches. Note that the wafer is plotted in a super-
imposed reference layer colored in blue and has a diameter of three inches.

4.3 Technological Run

In this section we will illustrate the technological procedure followed to fab-
ricate the first prototypes of optical microring resonators based on ion-implanted
LiNbO3 ridge waveguides.

Even if many of the fourteen technological steps, taken during the devices
fabrication, are commonly used and well known from Electronics [55], their ap-
plication to LN crystals has to be performed appropriately.

4.3.1 Planar Waveguide

The first main step consists in the manufacturing of the surface planar wave-
guide for the vertical confinement of the light. Before performing this step a 100
nm thick film of Cr is evaporated onto the LN wafer. This is necessary to avoid the
electrostatic charge accumulation on the crystal surface during ion-implantation
which makes the wafer break (see Figure 4.2a). The Chrome will be used also as
adhesion layer for the photoresist in the next step.

(a) (b)

Figure 4.2: Planar waveguide manufacturing. (a) LN z-cut wafer (colored in
blue) with a 100 nm evaporated layer of Cr (colored in dark red).
(b) Planar waveguide formation by Carbon ions implantation (the
lighter regions inside the crystal indicate the C ions barrier).

Then the planar waveguide is obtained by implanting the whole LN wafer
with 3.9 MeV C ions at a fluence of 4 × 1014 ions/cm2 followed by annealing in
O2 atmosphere at 280 °C for 2 hours (see Figure 4.2b).
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(a) (b)

Figure 4.3: Ion Implantation. (a) 1.7 MV High Voltage Engineering Tandetron
4117HC and (b) our sample mounted on the tilted holder.

C ions were chosen because they produce the desired refractive index profile
(see §5.2) at a moderate fluence, without generating measurable electronic dam-
age in the guiding region (see §3.2.1).

Figure 4.3a shows the Tandetron 4117HC high voltage accelerator available
at CNR-IMM Laboratories in Bologna and Figure 4.3b displays a three inches
z-cut wafer mounted inside the vacuum chamber. Note the tilted holder to avoid
channelling (see §3.2).

4.3.2 Ridge Manufacturing
The definition of our ridge structures, as pointed in §4.2, is performed using as

masking layer a 2 µm thick negative PR layer, deposited onto the thin Cr adhesion
film and patterned by conventional photolithographic techniques (see Figure 4.4).

Then the Cr adhesion layer is defined through wet etching using the following
solution: [Ce(SO4)2 H2O]:H2O:H2SO4 with ratio 50 g :500 cc : 25 cc (see Figure
4.5a). Before the second ion-implantation step, i.e. the amorphising one, a thin
Gold layer is sputtered to avoid charge accumulation on the crystal surface (see
Figure 4.5b).

The maximum Cu energy that can be completely absorbed by this PR layer is 1
MeV, corresponding to an amorphised LN depth of 0.7 µm at a fluence of 1× 1015

ions/cm2 (see §3.2.2). In order to obtain an efficient lateral light confinement, a
ridge deeper than 1 µm is required (see §5.1), therefore we need to perform two
implantation/etching steps.

So after the first Cu implantation the Au film is removed through wet etch-

46



4.3. Technological Run

(a) (b)

Figure 4.4: Two steps of the negative photoresist patterning (colored in grey):
(a) PR spinning and (b) PR exposition (since it is negative it solvent
resistance increases with illumination an so is colored with a darker
grey).

(a) (b)

Figure 4.5: Ridge waveguide fabrication 1/2. (a) Cr wet etching and (b) LN amor-
phisation trough Cu ions implantation (amorphised regions colored
in light blue).

ing using the following solution: KI:I2:H2O with ratio 100 g :30 g : 475 cc. Then
the HF etching in 49% aqueous solution is performed to remove the amorphised
LiNbO3. The etch time is 60 sec.

Another cycle of Gold sputtering, Cu ions implantation and wet etching of
both Gold and LN is taken. Finally the Cr layer and the carbonised PR are re-
moved through a Chrome wet etching at 70 °C (see Figure 4.6a). The final result
is shown in Figure 4.6b.

In Figure 4.7 is reported the top view of the same device detail after the pho-
tolithographic process and after the ridge fabrication through etching rate alter-
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(a) (b)

Figure 4.6: Ridge waveguide fabrication 2/2. (a) Amorphised LN removed
through HF etching. (b) SEM image of the vertical section of a ridge
waveguide.

ation (see §3.2.2).

(a) (b)

Figure 4.7: Rings resonators patterning. (a) Optical microscope image of nega-
tive photoresist patterned at the end of the photolithographic process.
(b) SEM image of the same device portion at the end of the ridge fab-
rication process.
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4.3.3 Electrodes fabrication

In order to avoid losses due to plasmon effects [42], a 150 nm SiO2 layer is
evaporated on the wafer surface, after an accurate cleaning of the patterned crystal.
Then an Aluminium layer thick 500 nm is evaporated and covered a by positive
PR spun to get a thickness of 1.1 µm (see Figure 4.8a).

(a) (b)

Figure 4.8: Electrodes fabrication 1/2. (a) SiO2 evaporation (green) and Al evap-
oration (dark grey). (b) PR (beige) exposition (since it is positive its
solvent resistance decreases with illumination an so is colored with a
lighter beige).

So the PR is patterned by conventional photolithographic techniques (see Fig-
ure 4.8b). Then the electrodes layer is defined using a Reactive Ion Etching (RIE)
system (see Figure 4.9a) and the masking PR layer is removed. The final result is
shown in Figure 4.6b.

Figure 4.10 shows the final outcome of this procedure. In particular, Figure
4.10a displays the same part of Figure 4.7 for a different device. We can notice
that here there is no gap: this is the first technological issue that has changed the
theoretical device behaviour as will be clearer in §5.3.

Finally Figure 4.10b gives a view of the device core: the ring resonator cou-
pled to two straight waveguides.
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(a) (b)

Figure 4.9: Electrodes fabrication 2/2. (a) Al removed through RIE. (b) SEM
image of the vertical section of a ridge waveguide covered by SiO2.

(a) (b)

Figure 4.10: Optical Microring Resonators based on ion-implanted LiNbO3 ridge
waveguides. Optical microscope image of: (a) the coupling between
the ring resonator and one of the two bus-bars, (b) the total device
layout.

4.3.4 Optical preparation
Then the eighty devices produced were separated with a dicing saw an lapped

to prepare the surfaces for the optical characterisation. The lapping stage is one
of the most important and needs a lot of care since we have to glue our devices to
the tool shown in Figure 4.11a.

Finally it is inserted into the holder illustrated in Figures 4.11b and 4.11c with
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the two set of polishing plates. The whole process has a duration of about 4 hours

(a) (b) (c)

Figure 4.11: Optical preparation: polishing & lapping. (a) Lapping tool: the
devices are glued into the trenches. (b) Machine for surface prepa-
ration. (c) Machine for surface finishing.

for each surface. After this procedure our device, ready to be characterised, is
displayed in Figure 4.12.

Figure 4.12: Final device dimensions compared to an 1 € cent.
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Chapter 5

Results and Discussion

This chapter is a collection of all the results achieved in our work. We will start
showing the design parameters computed using both the approaches illustrated in
Chapter 2.

Then the issues, faced during the fabrication process shown in Chapter 4, will
be analysed and a solution for each of them will be proposed.

Finally some characterisation results confirming the models introduced in §3.2.1
will be illustrated and commented.

5.1 Geometrical parameters computation
As mentioned in the introduction both the theoretical and the practical points

of view were followed simultaneously. So, when we started the fabrication of
our ring resonators, the refractive index profiles were not known as explained in
§3.2.1. For this reason they were taken according to those of literature at the time
[45].

In Figure 5.1 the two profiles computed for our routinely ion-implantation
technological step: 3.9 MeV C ions at a fluence of 4 × 1014 ions/cm2 followed
by annealing (see §4.3.1) are reported. They were computed in the basis of the
information available at the beginning of the present work.

Then we assumed, with a reasonable approximation [52], that both these pro-
files could be rescaled following Sellmeier index dispersions of virgin LN. So we
choose, as working wavelength of our devices, λ = 1500 µm as this is the standard
operation wavelength in optical systems.

Another issue concerns the ridge technology (based on etching rate alteration,
see §3.2.2), that was still at an early stage, at the beginning of this work. It was
supposed to be able to perform even three successive implantation/etching steps,
i.e. a ridge height ∼ 2.1 µm (see §4.3.2). For reasons explained in §5.3.2 these

53



Chapter 5. Results and Discussion

0 1 2 3 4 5
2.15

2.2

2.25

2.3

Depth (µm)

R
ef

ra
ct

iv
e 

In
di

ce
s

 

 

n
e

n
o

Figure 5.1: Refractive index profiles of ne and no at λ = 632.8 nm according with
[45] for LiNbO3 ion-implanted with 3.9 MeV C ions at a fluence of
4 × 1014 ions/cm2 followed by annealing.

steps were two instead, and so the obtained ridge height was ∼ 1.4 µm.
After these considerations we can now show the design process of the geomet-

rical parameters.

5.1.1 FEM modal simulations
To decide both the width, w, and the height, h, of the ridge waveguide several

FEM simulations were performed. Concerning the height, since we need strong
light confinement to get small bending radii, i.e. small device dimensions, we
choose the best ridge possible to us with h = 2.1µm.

In Figure 5.2a shows the FEM calculated modal simulation for a 3 µm wide
and 2.1 µm high guide with the two profiles reported in Figure 5.1. Figure 5.2b
displays the fundamental mode at λ = 1500 nm of the same guide with the two
profiles rescaled according to Sellmeier dispersions.

Note that these waveguide dimensions (especially the width) were chosen to
fabricate a mono-modal waveguide at λ = 1500 nm.

5.1.2 EIM validation
Before fixing the gap, g, and the bend radius R we have to validate the 3-D to

2-D transformation through the Effective index Method (see §2.1.1). To do so we
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(a) (b)

Figure 5.2: Fundamental mode FEM simulations at (a) λ = 632.8 nm and (b)
λ = 1500 nm of a LiNbO3 ridge waveguide with a width of 3 µm and
a heighth of 2.1 µm. The refractive index profiles used are given in
Figure 5.1.

made a comparison between the effective index computed by the FEM simulations
and the one given by the application of the EIM to our waveguide. The results are
reported in Table 5.1.

FEM EIM
λ (µm) ne f f ns n f ne f f

632.8 2.2019 1.0000 2.2043 2.2019
1400 2.1155 1.0000 2.1263 2.1153
1500 2.1088 1.0000 2.1210 2.1084
1600 2.1022 1.0000 2.1158 2.1016

Table 5.1: EIM validation. Comparison between FEM and EIM for a waveguide
with w = 3 µm at different working wavelengths.

Note how the EIM approximation taken is good and lets us to assume air as
surrounding medium. We can also consider LN as an isotropic material with a
refractive index equal to the extraordinary one (i.e. TM polarised fundamental
mode, see §4.1).

5.1.3 Bending loss

Now we can apply Eq (2.15) substituting the refractive indices computed by
the EIM. The results are reported in Figure 5.3 according to the data given in Table
5.1. Note that a ring resonator with R ≥ 10 µm has no bending loss.

We can proceed with the gap computation following the procedure illustrated
in §2.1.3.
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Figure 5.3: Bending loss trends according to Table 5.1.

5.1.4 Straight waveguides coupling
Before computing the coupling coefficient κ using Eq. (2.16), we need the

expression of Et1 and Et2. They are both given by the resolution of a symmetric
plane slab [5]. More in details we get (TM polarisation):

Et1 · ŷ = Ey1(x) = −η0
k
υ

b2eυx

Et2 · ŷ = Ey2(x) = η0
k
kt

a1 cos (kt (x + 2 d + g))
(5.1)

where d = w/2 and
υ =
√

n2
e f f k2 − k2 n2

s

kt =

√
k2 n2

f − n2
e f f k2.

The expression of the power constants a1 and b2 are given in [5]. So Eq. (2.16)
becomes:

κ =

∫ −d−g

−g−3 d

ω

4
ε0

(
n2

f − n2
s

)
Ey2(x) Ey1(x) dx =

=
ωε0

(
n2

c − n2
f

)
k2 η2

0 a1 b2e−υ (2 d+g) (υ cos(kt d) sinh(υ d) + kt sin(kt d) cosh(υ d))

4 kt υ
(
υ2 + k2

t

) .

(5.2)
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Then we choose a value for η and applying Eq. (2.18) we get the plots reported
in Figure 5.4 (η2 = 10−5).
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Figure 5.4: Coupling length between two equal waveguides for η2 = 10−5 in func-
tion of the gap and the working wavelength.

Since the smaller the gap is, the shorter the cavity length is and so the better
FSR we get, we choose g = 1 µm.

5.1.5 Ring coupling

Now we will try to reach the critical coupling condition (see §2.1.3). Since we
want to design on the worst case let’s suppose that the inner circulating factor αr

is:

αr = e−αtLcav

where αt represents all the loss mechanisms (e.g. by roughness, photolithographic
imperfections, material absorption) that could not be taken into account by simu-
lations. Only fabricating the device is possible to evaluate them.

So, recalling Eq. (2.18), we obtain for g = 1 µm the plot of τ and αr in
function of η2 displayed in Figure 5.5.

Looking to these trends we decided to take η2 = 10−5 which means Lcη =

918 µm. The geometrical parameters of our device are summarised in Table 5.2.
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Figure 5.5: Critical coupling at λ = 1500 nm with g = 1 µm.

Parameter description Parameter name Value
Waveguides width w 3.0 µm
Waveguides height h 2.1 µm
Gap between the ring and the bus-bars g 1.0 µm
Coupling length Lcη 0.918 mm
Ring radius R 100.0 µm

Table 5.2: Geometrical parameters of the designed ring resonator.

5.1.6 Fundamental parameters computation
Table 5.3 reports the values of Q (obtained from Eq. (2.23)), ∆λ3dB (obtained

from Eq. (2.21)) and F (obtained from Eq. (2.22)). The Free Spectral Range
value is computed via Eq. (2.20) which yelds:

∆λ = 433 pm.

So these are the theoretical performance of our LiNbO3 ring resonator. Now we
will proceed explaining the other research stream followed during this work: the
refractive index tailoring.

5.2 Tailoring
Together with the device design and fabrication we decide to put more atten-

tion to the refractive index distributions. So we performed a series of refractive
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αt Q ∆λ3dB F

(db/cm) (pm)
0.3 6.39E+05 2.35 185
0.4 4.80E+05 3.13 138
0.5 3.84E+05 3.91 111
0.6 3.20E+05 4.69 92
0.7 2.74E+05 5.47 79
0.8 2.40E+05 6.25 69
0.9 2.13E+05 7.03 62
1.0 1.92E+05 7.82 55

Table 5.3: Ring resonator fundamental parameters computation. The worst case
is highlighted in yellow

index measurements at different wavelengths [52] on different samples implanted
with 3.9 MeV C ions at a fluence of 4 × 1014 ions/cm2. These measurements are
illustrated in the next section.

5.2.1 M-lines

The technique employed to measure both the refractive indices of our LN sam-
ple is called dark m-lines [56] and is based on a prism coupler. In brief, this
method works as follows.

The coupling of a laser beam by a prism into a planar dielectric waveguide
is governed by the angle θ of incidence of the light onto the prism base (Figure
5.6). This angle determines the phase velocity in y direction, β = c/np sin θ, of the
incident wave in the prism (index np) and in the gap.

Strong coupling of light into the film occurs only when we choose θ so that β
equals the phase velocity βm of one of the characteristic modes of propagation in
the guide (m = 0, 1, 2, . . .).

So using the relation reported in [56] is possible to compute the effective in-
dices of the propagating modes. A view of the measurements setup is given in
Figure 5.7a.

The sample is mounted on a high precision rotary stage and the output in-
tensity is measured with a large area silicon PIN photodiode (Figure 5.7b). The
resolution in ne f f evaluations is estimated better than 0.001, mainly determined
by the uncertainty on apex angle and refractive indices of rutile prism and by the
precision of angle measurements.

The waveguide properties of two samples (z-cut wafer as implanted, AI, and
annealed, ANN, for 2 hours at 280 °C) have been investigated using this setup.
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Figure 5.6: Schematic cross section through a prism-film coupler applied to our
case.

(a) (b)

Figure 5.7: Dark m-lines measurement setup. (a) Beam line with a mirror, two
polarisers and a focus lense. (b) Detail of the light spot visible be-
tween the prism and the sample.

Both TE (for no) and TM (for ne) modes effective indices (ne f f ) of the samples
were measured at three different wavelengths: λ = 532, 632.8, 818 nm.

Figures 5.8a and 5.8b show respectively the measured ne f f of TE and TM
modes in the AI and ANN samples. The Sellmeier dispersion curves [40] of the
substrate are also shown as reference.

Effective indexes of TE and TM “mode 0” (higher measured ne f f values) are
close to the no and ne Sellmeier curves respectively. They systematically lie below
the substrate values in the case of no and above the substrate values in the case of
ne. This is a well known characteristic of ion implanted LN waveguides generi-
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(a) (b)

Figure 5.8: Dark m-lines measurement results for (a) TE and (b) TM modes.

cally attributed to a reduction of birefringence (decrease of no, increase of ne) due
to ion damage in the surface region [45].

The annealing process acts in opposite directions on no and ne, moving the TE
modes towards higher ne f f values and TM modes towards lower ne f f values. This
reflects an overall increasing of no and a lowering of ne mean value that can be
partially ascribed to birefringence recovery due to the annealing process [52].

These measurements allows us to correct the curves of Figure 3.5 with those
reported in Figure 5.9.

(a) (b)

Figure 5.9: Refractive index tailoring in Lithium Niobate by ion implantation.
Best fit curves of literature data of (a) ne and (b) no distributions
in function of Ed [52] corrected with the measurements reported in
Figure 5.8.

Appling these two distributions to the case of 3.9 MeV C ions at a fluence of
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4 × 1014 ions/cm2 followed by annealing, we obtain the two profiles reported in
Figure 5.10.
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Figure 5.10: Refractive index profiles of ne and no at λ = 632.8 nm according with
[52] for LiNbO3 ion-implanted with 3.9 MeV C ions at a fluence of
4 × 1014 ions/cm2 followed by annealing.

These profiles were also calculated using the Reflectivity Calculation Method
(RCM) [57], applied to the m-lines measurements at λ = 632.8 nm, assuming
a two half-Gaussian structure for no and a more complex one for ne taking into
account the buried raised-index region [52].

Note how these new profiles are different from those reported in Figure 5.1.
Besides the fact that the ordinary profiles are quite similar, the extraordinary ones
have substantially opposite trends. This fact yields to an Ey distribution for the
fundamental TM mode of the type reported in 5.11. The waveguide dimensions
are the same of Figure 5.2.

From Figure 5.11b we notice that, at λ = 1500 nm this waveguide doesn’t
work. However this waveguide is still a waveguide for visible light.

5.3 Fabrication issues
In this section we will focus our attention on the main issues faced during the

fabrication of our prototypes. This technological issues have changed the original
behaviour of the resonators. However their impact is less critical compared to
what we have presented above regarding the refractive index profiles.
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(a) (b)

Figure 5.11: Fundamental mode FEM simulations at (a) λ = 632.8 nm and (b)
λ = 1500 nm of a LiNbO3 ridge waveguide with a width of 3 µm and
a heighth of 2.1 µm. The refractive index profiles used are given in
Figure 5.10.

5.3.1 Temperature
Let’s start from a basilar problem: thermal treatment of Lithium Niobate. Its

pyroelectricity, i.e. the change in spontaneous polarisation as a function of tem-
perature, is due to the movement of the lithium and niobium ions relative to the
oxygen layers [1]. Since the Li and Nb ions move only in a direction parallel to
the c-axis, z, in the case of z-cut wafer this effect is maximum (see Chapter 3).

The initial annealing made to recover the point-defects produced by ion im-
plantation (see §3.2) is, in fact, performed with two ramp with a precise timing
(less than 10 °C/min for heating and less than 4 °C/min for cooling) to avoid
thermal stress that could break the crystal through sparks.

Even if we followed these precautions during all the procedure (i.e. for each
bake that the conventional photolithography requires) a wafer broke making us
restart the run with another one.

5.3.2 Photoresist
The photoresist used as masking layer for our ridge waveguides, as pointed out

in §4.2, is commonly used at CNR-IMM Laboratories of Bologna for the metal
layer definition through “liftoff” processes.

In other words, the metal sputtering /evaporating step is performed after the
photolithographic patterning of the PR and consequently the removal of the resist
lift the metal off defining electrodes in an opposite way respect the one we used
for our electrodes definition (i.e. the mask tone is the opposite, see §4.3.3).

An example of the photoresist cross section is given by Figure 5.12. Looking
at this shape makes clear its application, in fact, the aspect ratio is made to respect
the feature size at the surface and to minimise the contact with the layer below.
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(a) (b)

Figure 5.12: Negative PR cross section. (a) Patterned photoresist. (b) SEM image
of the ridge waveguide obtained.

Figure 5.12b, together with Figures 4.6b and 4.9b, demonstrate how ion-
implantation transfers well the masking layer to the crystal, as pointed out in
§3.2.2. So, the fundamental mode of the real waveguide is reported in Figure
5.13, with the index profiles of Figure 5.10.

Figure 5.13: Fundamental mode FEM simulation at λ = 632.8 nm of the LiNbO3

ridge waveguide fabricated. The refractive index profiles used are
given in Figure 5.10. The cross section is the one reported in Figure
4.6b.

Another pattern transferring issue caused by this particular photoresist is shown
in Figure 5.14. As pointed before (§4.3.3), only 2 of the 80 devices were fabri-
cated with the gap between the busbars and the ring.

The last problem connected to the PR is the fact that it cannot effort more
than two implantation/etching steps since it is completely carbonised by ion-
implantation and is very difficult to remove it with the conventional technique
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Figure 5.14: SEM images of the coupling region between the straight waveguide
and the ring resonator. Note the pattern doubling in proximity of the
junction, due to double implantation /etching step, and the absence
of the gap.

(§4.3.2).

For this reason at the end of the whole procedure our ridges have an height
of 1.4 µm instead of 2.1 µm (i.e. three implantation/etching steps) as initially
thought.

5.3.3 Metal adhesion and jump sparks

The last two technological issues encountered are connected to the Aluminium
layer and the electrodes definition step (see §4.3.3).

The first one is illustrated by an example shown in Figure 5.15: in some de-
vices (∼ 20%) in the region were the Al layer crosses the ridge waveguide the
film is lifted up an consequently the oxide layer below was attacked by the RIE
process.

This problem is caused both by the track width designed (too narrow) and also
by a definition process adopted for the first time. In fact, as pointed out before,
the metal film definition technique usually performed at IMM of Bologna, is liftoff
based (see §5.3.2).

Moreover, the charge accumulated by the LiNbO3 during the RIE process as
a consequence of its ferroelectricity caused jump sparks between near tracks and
consequently the breaking of them (∼ 10% of the devices affected by this prob-
lem). Figure 5.16 shows this phenomenon that occurs despite the rounded design
of the tracks.
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(a) (b)

Figure 5.15: SEM images of the cross region between an electrode track and the
microring. (a) General view with Al lifted up. (b) Detail of the
crossing with silicon dioxide etched.

Figure 5.16: Optical images of the tracks broken by point effect.

5.4 Optical characterisation

All the results illustrated in the past sections put all together let us both to
verify the refractive index profile trends, that were not known at the time, and to
proceed with a new design phase with well established basis.

Before illustrating our new device proposal we need to confirm the simulation
illustrated in Figure 5.13. Since we know that the fabricated waveguides work
at λ = 632.8 nm we decide to perform some near field measurements at this
wavelength.
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5.4. Optical characterisation

5.4.1 Near Field Measurements

We built the setup for Near Field measurements [58] shown in Figure 5.17a.
This technique allows to measure the intensity of a beam of light coming out from
the waveguide.

(a) (b)

Figure 5.17: Built setup for Near field measurements. (a) View of the beam line,
the nanometric input stage, the sample-holder and the micrometric
output stages. (b) Detail of the two objective butt coupled with the
sample beneath a stereoscope.

The setup works as follows. A laser beam is focused by an objective (mag-
nifying factor, M = 40) at the input surface of the sample which was optically
prepared to avoid scattering (see §4.3.4) . Then the output light is collected by
another objective (M = 60) at a distance of 15 cm from it (i.e. the objective Back
Focal Length, BFL) the CCD detector is placed.

Before measuring the near field intensity one microring resonator we tested
the setup on an embedded waveguide produced through ion implantation. This
waveguide was obtained masking an x-cut LN wafer with an Au layer thick 1.1
µm before performing an ion-implantation with 3.9 MeV C ions at a fluence of
4 × 1014 ions/cm2 followed by annealing (Figure 5.18a).

The simulated main electric component of the fundamental mode for extraor-
dinary polarisation (TE in this case so Ex) is reported in Figure 5.18b.

Figure 5.19a shows the near field image of the fundamental mode of an em-
bedded waveguide with w = 9.5 µm. The total power distribution computed by
COMSOL is reported in Figure 5.19b.

The comparisons between simulation and measurement, with a very good
agreement, are reported in Figure 5.19c (horizontal section) and 5.19d (vertical
section).

67



Chapter 5. Results and Discussion

(a) (b)

Figure 5.18: Embedded ion-implanted waveguide. (a) Fabrication concept. (b)
Fundamental mode FEM simulation at λ = 632.8 nm of an embed-
ded waveguide 9.5 µm wide. The refractive index profiles used are
given in Figure 5.10.

Finally Figure 5.20a shows the near field measurement of one of our devices.
The simulated power distribution for the same device is given in 5.20b.

In this case there is not the good agreement between the measured data and the
simulation as in the embedded waveguide. In fact, in Figure 5.20a we recognise
also the superimposition of the fundamental mode of the plane slab obtained by
the C ions implantation.

Recall Figure 4.1a, the four device ports were spaced of 2 mm to permit fibre
coupling and to do so each bus-bar was designed with bent waveguides with R in
according with Table 5.2.

However reapplying the procedure shown in §5.1 one obtains R > 2 mm for
negligible bending loss. That means that a bend radius of 100 µm for the wave-
guide fabricated (recall Figure 5.13) is too narrow and send out of propagation the
light injected into the waveguide.

Now that all the issues encountered are explained we can conclude this chapter
illustrating a different waveguide which resolves many of these problems and can
be used as starting point for the design of new microring resonators.

5.5 New device proposal

In this section the possibility to fabricate efficient waveguides in the telecom-
munication band using ion-implantation technology will be illustrated showing
how powerful this method is.
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Figure 5.19: Near Field measure of an embedded waveguide at λ = 632.8 nm.
(a) CCD data. (b) Simulated power distribution for the fundamental
mode. Comparison between the measured data and the simulation
for (c) an horizontal section and (d) a vertical one.

5.5.1 Alternative implantation recipe

First of all the refractive index profiles shown in Figure 5.10 can be substituted
by two different ones with stronger variation that means a better light confinement.

So using our refractive index model (see §3.2.1) we implanted a z-cut LN
sample with 3.9 MeV C ions at a fluence of 16.5 × 1014 ions/cm2 followed by
annealing (2 h at 280 °C).

Then we measured it with the dark m-lines technique at λ = 632.8 and, using
the RCM algorithm (see §5.2.1), we obtained the two profiles shown in Figure
5.21. These two profiles are in very good agreement with our tailoring model.

5.5.2 Alternative photoresist

A lot of problems occur with the particular photoresist employed. So a better
alternative is SU-8: an high aspect ratio negative PR well known in Electronics

69



Chapter 5. Results and Discussion

(a) (b)

Figure 5.20: Near Field measure of ridge waveguide at λ = 632.8 nm. (a) Mea-
sured intensity distribution. (b) Simulated power distribution for the
fundamental mode.

0 1 2 3 4 5
2.15

2.2

2.25

2.3

Depth (µm)

R
ef

ra
ct

iv
e 

in
di

ce
s

 

 

n
e

n
o

Figure 5.21: Refractive index profiles of ne and no at λ = 632.8 nm according with
[52] for LiNbO3 ion-implanted with 3.9 MeV C ions at a fluence of
16.5 × 1014 ions/cm2 followed by annealing.

and Optics [55]. Figure 5.22 shows SU-8 patterned with our devices mask with
excellent results.

Since SU-8 has higher aspect ratio than ma-N 1420, it allows us to amorphise
more than 2 µm in a single step so we can fabricate, with two implantation /etching
steps a ridge high at least 4 µm.
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5.5. New device proposal

(a) (b)

Figure 5.22: SU-8 PR patterned with our devices photomask. (a) Cross section.
(b) Ring resonator footprint with gaps definition.

5.5.3 Final result
Combining the new refractive index profiles, the SU-8 photoresist and the

possibility to etch 4 µm of LiNbO3 the new ridge waveguide is displayed in Figure
5.23. Its dimensions are: w = 6 µm and h = 4 µm.

Figure 5.23: Fundamental mode FEM simulation at λ = 1500 nm of the LiNbO3

new ridge waveguide. The refractive index profiles are those given
in Figure 5.21 rescaled with Sellmeier equations.

Note that the simulation is performed at λ = 1500 nm. In conclusion we
obtained a mono-modal ridge waveguide in the telecom band with a rectangular
section as we desired at the beginning of this work.
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Conclusions and Future Work

This thesis described the work I have done in the last three years at the CNR-
IMM (Istituto per la Microelettronica e i Microsistemi) of Bologna studying and
realising optical microresonator in Lithium Niobate for telecom and sensing appli-
cations. The main challenge was the realisation of these devices with a technology
which was routinely used at CNR-IMM for Silicon substrates, but not yet for this
material

For the first time optical ring resonators were fabricated in Lithium Niobate
using only ion-implantation based technology to confine light inside the struc-
tures.

A complete device fabrication process was then setup and performed starting
from the theoretical modelling, the CAD design, the technological realisation up
to the final characterisation.

Ion-implantation is a powerful tool for refractive index profiles tailoring of
LN. For the first time on an international scale a method of refractive index pro-
files engineering was proposed. This method gives the possibility to design optical
waveguides tuned on different working frequencies depending on the desired ap-
plication.

For the first time on an international scale, a method of etching rate engineer-
ing through ion-implantation was developed. This method lets us to fabricate ridge
waveguides and other tridimensional structures. The results are very encouraging:
even preliminary samples show that the developed technological process allows
the fabrication of waveguides with very low sidewall roughness.

The combination of this two methods and the solutions of some issues con-
cerning the adaptation of silicon planar technologies to a very different substrate,
lets us to develop a new technological process. This procedure allows us to fabri-
cate complex integrated optical devices in Lithium Niobate.

Moreover a complete set of analytical and numerical tools were developed to
design ring resonators using this particular technology taking into account all its
peculiarities and challenges.

Even the measurement setup were designed and built to perform the necessary
characterisation of such devices and the future ones.
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Now, thanks to the experience matured during this training period, we are
ready to fabricate a new set of devices. The first steps into a new research path
has just been taken.
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