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Preface

This thesis contains most of my works during my Ph.D. study at the Operations Research

Group, University of Bologna, and serves as documentation of my work done during the

years from 2007 until 2010. This work has been partially supported by MIUR (Ministero

Istruzione, Università e Ricerca), Italy. This support is gratefully acknowledged.

Combinatorial Optimization is a branch of optimization that deals with the problems

where the set of feasible solutions is discrete. Routing problem is a well studied branch

of Combinatorial Optimization that concerns the process of deciding the best way of

visiting the nodes (customers) in a network. Routing problems appear in many real world

applications including: Transportation, Telephone or Electronic data Networks.

During the years, many solution procedures have been introduced for the solution of

different Routing problems. Some of them are based on exact approaches to solve the

problems to optimality and some others are based on heuristic or metaheuristic search

to find optimal or near optimal solutions. There is also a less studied method, which

combines both heuristic and exact approaches to face different problems including those

in the Combinatorial Optimization area.

The aim of this dissertation is to develop some solution procedures based on the combi-

nation of heuristic and Integer Linear Programming (ILP) techniques for some important

problems in Routing Optimization. In this approach, given an initial feasible solution

to be possibly improved, the method follows a destruct-and-repair paradigm, where the

given solution is randomly destroyed (i.e., customers are removed in a random way) and

repaired by solving an ILP model, in an attempt to find a new improved solution.

This thesis contains four chapters. There are two other chapters and since the works

of these chapters are in progress, we have not reported them in this dissertation. The

results of this thesis have been presented in five research papers submitted or published

in International journals.

In the first chapter we focus on the Open Vehicle Routing Problem. This problem is a

variant of the “classical” (Capacitated and Distance Constrained) Vehicle Routing Prob-

lem (VRP) in which the vehicles are not required to return to the depot after completing

their service. We present an ILP-based improvement procedure for the OVRP based on

ILP techniques.

In Chapter 2 we apply the latter mentioned ILP-based improvement technique to the

solution of the Capacitated m-Ring Star Problem. We have also used this approach for the

solution of the Covering Salesman Problem and of the Median Cycle Problem successfully,

but, since they are Works-in-Progress, the results have not been reported in this thesis.

ix



Chapter 3 concerns the Label Constrained Minimum Labelling Spanning Tree Problem

that occurs in Telephone Networks and is motivated from applications in the communi-

cations sector.

Finally in Chapter 4 we study the Covering Salesman Problem and some of its gener-

alizations occurring in the routing of Transportation Networks.

x



Chapter 1

An ILP Improvement Procedure for

the Open Vehicle Routing Problem

1.1 Introduction

In this chapter1 we address the Open Vehicle Routing Problem (OVRP), a variant of the

“classical” (Capacitated and Distance Constrained) Vehicle Routing Problem (VRP) in

which the vehicles are not required to return to the depot after completing their service.

OVRP can be formally stated as follows. We are given a central depot and a set of n

customers, which are associated with the nodes of a complete undirected graph G = (V,E)

(where V = {0, 1, . . . , n}, node 0 represents the depot and V \{0} is the set of customers).

Each edge e ∈ E has an associated finite cost ce ≥ 0 and each customer v ∈ V \ {0} has

a demand qv > 0 (with q0 = 0). A fleet of m identical vehicles is located at the depot,

each one with a fixed cost F , a capacity Q and a total distance-traveled (duration) limit D.

The customers must be served by at most m Hamiltonian paths (open routes), each path

associated with one vehicle, starting at the depot and ending at one of the customers.

Each route must have a duration (computed as the sum of the edge costs in the route)

not exceeding the given limit D of the vehicles, and can visit a subset S of customers

whose total demand
∑

v∈S qv does not exceed the given capacity Q. The problem consists

of finding a feasible solution covering (i.e., visiting) exactly once all the customers and

having a minimum overall cost, computed as the sum of the traveled edge costs plus the

fixed costs associated with the vehicles used to serve the customers. OVRP is known

to be NP-hard in the strong sense, as it generalizes the Bin Packing Problem and the

Hamiltonian Path Problem.

1The results of this chapter appear in: Salari M., Toth P., and Tramontani A.: “An ILP improvement
procedure for the open vehicle routing problem”. Computers & Operations Research, To appear [68].
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In this paper we present a heuristic improvement procedure for OVRP based on Integer

Linear Programming (ILP) techniques. Given an initial feasible solution to be possibly

improved, the procedure iteratively performs the following steps: (a) randomly select sev-

eral customers from the current solution, and build the restricted solution obtained from

the current one by extracting (i.e., short-cutting) the selected customers; (b) reallocate

the extracted customers to the restricted solution by solving an ILP problem, in the at-

tempt of finding a new improved feasible solution. This method has been proposed by De

Franceschi et al. [20] and deeply investigated by Toth and Tramontani [77] in the context

of the classical VRP. The method follows a destruct-and-repair paradigm, where the cur-

rent solution is randomly destroyed (i.e., customers are removed in a random way) and

repaired by following ILP techniques. Hence, the overall procedure can be considered as

a general framework which could be extended to cover other variants of Vehicle Routing

Problems.

The notion of using ILP techniques to improve a feasible solution of a combinatorial

optimization problem has emerged in several papers in the last few years. Addressing the

split delivery VRP, Archetti et al. [2] developed a heuristic algorithm that integrates tabu

search with ILP by solving integer programs to explore promising parts of the solution

space identified by a tabu search heuristic. A similar approach has been presented by

Archetti et al. [1] for an inventory routing problem. Hewitt et al. [37] proposed to solve

the capacitated fixed charge network flow problem by combining exact and heuristic ap-

proaches. In this case as well a key ingredient of the method is to use ILP to improve

feasible solutions found during the search. Finally, the idea of exploiting ILP to explore

promising neighborhoods of feasible solutions has been also investigated in the context of

general purpose integer programs; see, e.g., Fischetti and Lodi [26] and Danna et al. [18].

The methods presented in [18] and in [26] are currently embedded in the commercial

mixed integer programming solver Cplex [39].

The chapter is organized as follows. Section 1.2 recalls the main works proposed in the

literature for OVRP. In Section 1.3 we describe a neighborhood for OVRP and the ILP

model which allows to implicitly define and explore the presented neighborhood. The im-

plementation of the heuristic improvement procedure is given in Section 1.4, while Section

1.5 reports the computational experiments on benchmark capacitated OVRP instances

from the literature (with/without distance constraints), comparing the presented method

with the most effective metaheuristic techniques proposed for OVRP. Some conclusions

are finally drawn in Section 1.6.
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1.2 Literature review

The classical VRP is a fundamental combinatorial optimization problem which has been

widely studied in the literature (see, e.g., Toth and Vigo [78] and Cordeau et al. [15]).

At first glance, having open routes instead of closed ones looks like a minor change, and

in fact OVRP can be also formulated as a VRP on a directed graph, by fixing to 0 the

cost of each arc entering the depot. However, if the undirected case is considered, the

open version turns out to be more general than the closed one. Indeed, as shown by

Letchford et al. [45], any closed VRP on n customers in a complete undirected graph

can be transformed into an OVRP on n customers, but there is no transformation in the

reverse direction. Further, there are many practical applications in which OVRP naturally

arises. This happens, of course, when a company does not own a vehicle fleet, and hence

customers are served by hired vehicles which are not required to come back to the depot

(see, e.g., Tarantilis et al. [75]). But the open model also arises in pick-up and delivery

applications, where each vehicle starts at the depot, delivers to a set of customers and

then it is required to visit the same customers in reverse order, picking up items that have

to be backhauled to the depot. An application of this type is described in Schrage [70].

Further areas of application, involving the planning of train services and of school bus

routes, are reported by Fu et al. [31].

OVRP has recently received an increasing attention in the literature. Exact branch-

and-cut and branch-cut-and-price approaches have been proposed, respectively, by Letch-

ford et al. [45] and Pessoa et al. [56], addressing the capacitated problem with no distance

constraints and no empty routes allowed (i.e., D = ∞ and exactly m vehicles must be

used). Heuristic and metaheuristic algorithms usually take into account both capacity

and distance constraints, and consider the number of routes as a decision variable. In

particular, an unlimited number of vehicles is supposed to be available (i.e., m =∞) and

the objective function is generally to minimize the number of used vehicles first and the

traveling cost second, assuming that the fixed cost of an additional vehicle always exceeds

any traveling cost that could be saved by its use (i.e., considering F =∞). However, sev-

eral authors address as well the variant in which there are no fixed costs associated with

the vehicles (i.e., F = 0) and hence the objective function is to minimize the total traveling

cost with no attention to the number of used vehicles (see, e.g., Tarantilis et al. [75]). Con-

sidering capacity constraints only (i.e., taking D = ∞), Sariklis and Powell [69] propose

a two-phase heuristic which first assigns customers to clusters and then builds a Hamil-

tonian path for each cluster, Tarantilis et al. [73] describe a population-based heuristic,

while Tarantilis et al. [74, 75] present threshold accepting metaheuristics. Taking into

account both capacity and distance constraints, Brandão [7], Fu et al. [31,32] and Derigs

3



and Reuter [21] propose tabu search heuristics, Li et al. [46] describe a record-to-record

travel heuristic, Pisinger and Ropke [58] present an adaptive large neighborhood search

heuristic which follows a destruct-and-repair paradigm, while Fleszar et al. [30] propose

a variable neighborhood search heuristic.

1.3 Reallocation Model

Let z be a feasible solution of the OVRP defined on G. For any given node subset

F ⊂ V \ {0}, we define z(F) as the restricted solution obtained from z by extracting (i.e.,

by short-cutting) all the nodes v ∈ F . LetR be the set of routes in the restricted solution,

I = I(z,F) the set of all the edges in z(F), and S = S(F) the set of all the sequences

which can be obtained through the recombination of nodes in F (i.e., the set of all the

elementary paths in F). Each edge i ∈ I is viewed as a potential insertion point which

can allocate one or more nodes in F through at most one sequence s ∈ S. We say that

the insertion point i = (a, b) ∈ I allocates the nodes {vj ∈ F : j = 1, . . . , h} through the

sequence s = (v1, v2, . . . , vh) ∈ S, if the edge (a, b) in the restricted solution is replaced

by the edges (a, v1), (v1, v2), . . . , (vh, b) in the new feasible solution. Since the restricted

routes, as well as the final ones, are open paths starting at the depot, in addition to the

edges of the restricted solution we also consider the insertion points (called appending

insertion points in the following) i = (pr, 0), where pr denotes the last customer visited by

route r ∈ R, which allow to append any sequence to the last customer of any restricted

route. Further, empty routes in the restricted solution are associated with insertion points

(0, 0).

For each sequence s ∈ S, c(s) and q(s) denote, respectively, the cost of the elementary

path corresponding to s and the sum of the demands of the nodes in s. For each insertion

point i = (a, b) ∈ I and for each sequence s = (v1, v2, . . . , vh) ∈ S, γsi denotes the

extra-cost (i.e., the extra-distance) for assigning sequence s to insertion point i in its best

possible orientation (i.e., γsi := c(s) − cab + min{cav1 + cvhb, cavh
+ cv1b}). Note that, for

the appending insertion points i = (pr, 0), γsi is computed as c(s) + min{cprv1 , cprvh
}. The

extra-cost for assigning the sequence s to the insertion point i = (0, 0) associated with an

empty route is simply c(s) + min{c0v1 , c0vh
}. For each route r ∈ R, I(r) denotes the set

of insertion points associated with r, while q̃(r) and c̃(r) denote, respectively, the total

demand and the total distance computed for route r, still in the restricted solution.

For each i ∈ I, Si ⊆ S denotes a sequence subset containing the sequences which can

be allocated to the specific insertion point i. The definition of Si will be discussed later

in this section. Then, a neighborhood of the given solution z can be formulated (and

explored) by solving an ILP problem (denoted as the Reallocation Model) based on the

4



decision variables

xsi =

{
1 if sequence s ∈ Si is allocated to insertion point i ∈ I,
0 otherwise

(1.1)

which reads as follows: ∑
r∈R

c̃(r) + min
∑
i∈I

∑
s∈Si

γsixsi (1.2)

subject to: ∑
i∈I

∑
s∈Si(v)

xsi = 1 v ∈ F , (1.3)

∑
s∈Si

xsi ≤ 1 i ∈ I, (1.4)∑
i∈I(r)

∑
s∈Si

q(s)xsi ≤ Q− q̃(r) r ∈ R, (1.5)

∑
i∈I(r)

∑
s∈Si

γsixsi ≤ D − c̃(r) r ∈ R, (1.6)

xsi ∈ {0, 1} i ∈ I, s ∈ Si, (1.7)

where, for any i ∈ I and v ∈ F , Si(v) ⊆ Si denotes the set of sequences covering

customer v which can be allocated to insertion point i. The objective function (1.2),

to be minimized, gives the traveling cost of the final OVRP solution. Constraints (1.3)

impose that each extracted node belongs to exactly one of the selected sequences, i.e.,

that it is covered exactly once in the final solution. Constraints (1.4) avoid to allocate

two or more sequences to the same insertion point. Finally, constraints (1.5) and (1.6)

impose that each route in the final solution fulfills the capacity and distance restrictions,

respectively. Note that, if there is a non-null fixed cost F associated with the vehicles,

it can be taken into account by simply adding F to the cost of the edges incident at the

depot node.

The Reallocation Model (1.2)–(1.7) defines a neighborhood of a given solution z which

depends on the extracted nodes F and on the subsets Si (i ∈ I). In particular, for

any given F , the choice of Si is a key factor in order to allow an effective exploration

of the solution space in the neighborhood of the given solution. The subsets Si are

built by following a column generation approach: we initialize the Linear Programming

(LP) relaxation of the Reallocation Model (LP-RM) with a subsets of variables with

small insertion cost, and afterwards we iteratively solve the column generation problem

5



associated with LP-RM, adding other variables with small reduced cost. The overall

procedure for building the subsets Si can be described as follows.

1. (Initialization) For each insertion point i = (ai, bi) ∈ I, initialize subset Si with

the basic sequence extracted from i (i.e., the, possibly empty, sequence of nodes

connecting node ai and bi in the given solution z) plus the feasible singleton sequence

with the minimum insertion cost (i.e., the sequence (v), with v ∈ F , with the

minimum extra-cost among all the singleton sequences which can be allocated to

i without violating the capacity and distance restrictions for the restricted route

containing i). Initialize LP-RM with the initial set of variables corresponding to the

current subsets Si, and solve LP-RM.

2. (Column generation) For each insertion point i ∈ I, solve the column generation

problem associated with i, adding to Si all the sequences s corresponding to ele-

mentary paths in F , whose associated variables xsi have a reduced cost rcsi under

a given threshold RCmax (i.e., variables xsi such that rcsi ≤ RCmax). If at least

one sequence/variable has been added, solve the new LP-RM and repeat step 2.

Otherwise terminate.

For any fixed insertion point i ∈ I, the column generation problem associated with i in

LP-RM is a Resource Constrained Elementary Shortest Path Problem (RCESPP), which

usually arises in the Set Partitioning formulation of the classical VRP (see, e.g., Feillet

et al. [24] and Righini and Salani [62]). Here, for each insertion point i ∈ I, we solve

the corresponding RCESPP through a simple greedy heuristic, with the aim of finding as

many variables with small reduced cost as possible. Hashing techniques are used to avoid

the generation of duplicated variables.

Note that each subset Si contains the basic sequence extracted from insertion point i,

and hence the current solution can always be obtained as a new feasible solution of the

Reallocation Model.

1.3.1 Column generation for the Reallocation Model

Let π1
v , π

2
i , π

3
r and π4

r be the dual variables associated, respectively, with constraints

(1.3), (1.4), (1.5) and (1.6) in LP-RM, where v ∈ F , i ∈ I and r ∈ R, and denote with

π̃ = (π̃1
v , π̃

2
i , π̃

3
r , π̃

4
r) the optimal dual solution of LP-RM. For any fixed i = (ai, bi) ∈ I,

consider the directed graph G̃(i, π̃) = (Vi, Ai), with Vi := {ai, bi} ∪ F and Ai := {(v, w) :

v ∈ Vi, w ∈ Vi}\{(ai, bi), (bi, ai)}. Associate with each arc a = (v, w) ∈ Ai, w 6= 0, a weight

θa equal to the cost of the corresponding edge e = (v, w) in the graph G, while set θa := 0

for each arc a = (v, 0) ∈ Ai, if 0 ∈ Vi. Associate with each arc a ∈ Ai a cost c′a = θa(1−π̃4
ri

),
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and associate with each node v ∈ F a weight qv and a cost q′v = −(π̃1
v + qvπ̃

3
ri

). Then,

let P = (VP , AP ) be an elementary path (ai, v1, . . . , vh, bi) connecting nodes ai and bi in

G̃(i, π̃), where VP := {v1, . . . , vh} ⊆ Vi and AP := {(ai, v1), . . . , (vh, bi)} ⊆ Ai. We say

that P is a feasible path if ∑
v∈VP

qv ≤ Q− d̃(ri),

∑
a∈AP

θa ≤ D − c̃(ri) + ci,

where ci denotes the cost of insertion point i = (ai, bi), while the cost of the path is

c′(P ) =
∑
a∈AP

c′a +
∑
v∈VP

q′v.

Any sequence s = (v1, . . . , vh) ∈ S is clearly associated with the elementary path

(ai, v1, . . . , vh, bi) in G̃(i, π̃). The reduced cost rcsi of variable xsi in LP-RM is defined by

rcsi := γsi −
∑
v∈VP

π̃1
v − π̃2

i − q(s)π̃3
ri
− γsiπ̃4

ri

and can easily be rewritten as

rcsi := −π̃2
i − ci(1− π̃4

ri
) +

∑
a∈AP

c′a +
∑
v∈VP

q′v.

Hence, the following proposition holds:

Proposition 1 For any i = (ai, bi) ∈ I, the column generation problem associated with i

in LP-RM is the problem of finding an elementary feasible path P from ai to bi in G̃(i, π̃),

with cost c′(P ) < π̃2
i + ci(1− π̃4

ri
).

As described above, the column generation problem for LP-RM associated with any inser-

tion point i ∈ I is a Resource Constrained Elementary Shortest Path Problem (RCESPP)

defined on graph G̃(i, π̃), whose size strictly depends on |F|. The orientation of G̃(i, π̃) is

required only when the considered i = (ai, bi) ∈ I is an appending insertion point (i.e., bi

is the depot node). Even in this case, the column generation problem could be addressed

on a mixed graph, where only the edges incident at the depot are replaced by directed

arcs (of different cost and weight) entering and leaving the depot. In the general case,

G̃(i, π̃) contains negative cycles (i.e., cycles in which the sum of the costs c′a associated

with the arcs and the costs q′v associated with the nodes is negative): indeed, while dual

variables π2
i , π

3
r , π

4
r are non positive, dual variables π1

v are free and usually assume positive

values. Positive values of variables π1
v can lead to negative node costs q′v and to negative

7



cycles in graph G̃(i, π̃). Therefore, the column generation problem in LP-RM is strongly

NP-hard.

In order to find a promising set of variables for the Reallocation Model in a short

computing time, we solve the RCESPP associated with each insertion point through a

simple heuristic. We say that a node v ∈ F is feasible for i ∈ I if the singleton sequence

(v) can be allocated to i without violating the capacity and distance restrictions on the

restricted route ri. For any given insertion point i = (ai, bi) ∈ I, we first build a reduced

graph G̃(i, π̃), obtained by considering only nodes ai, bi and the nf feasible nodes of

F with smallest insertion cost (i.e., the nf feasible nodes vk ∈ F , k = 1, . . . , nf , whose

associated singleton sequences (vk) have the smallest extra-cost for i). At each iteration of

the column generation step described in Section 1.3, nf is uniformly randomly generated

in [nfmin, nfmax]. Then, on the reduced graph G̃(i, π̃), we apply the following simple

heuristic:

1. Find an initial feasible path P = (ai, v, bi), in G̃(i, π̃).

2. Evaluate all the 1-1 feasible exchanges between each node w ∈ Vi \ VP and each

node v ∈ VP , and select the best one (with respect to the cost of the corresponding

path); if this exchange leads to an improvement, perform it and repeat step 2.

3. Evaluate all the feasible insertions of each node w ∈ Vi \VP in each arc (v1, v2) ∈ AP
and select the best one; if no feasible insertion exists, terminate; otherwise, force

such an insertion even if it leads to a worse path and repeat step 2.

Whenever a new path in G̃(i, π̃) is generated , the corresponding sequence is added to

Si if the reduced cost of xsi is smaller than a given threshold RCmax.

1.4 Heuristic Improvement Procedure

The Reallocation Model described in the previous section allows for exploring a neigh-

borhood of a given feasible solution, depending on the choice of the extracted customers

in F . We propose a heuristic improvement procedure for OVRP, based on model (1.2)–

(1.7), which iteratively explores different neighborhoods of the current solution. Given an

initial feasible solution z0 for OVRP (taken from the literature or found by any heuristic

method), the procedure works as follows.

1. (Initialization) Set kt := 0 and kp := 0. Take z0 as the incumbent solution and

initialize the current solution zc as zc := z0.

2. (Node selection) Build set F by selecting each customer with a probability p.

8



3. (Node extraction) Extract the nodes selected in the previous step from the cur-

rent solution zc and construct the corresponding restricted OVRP solution zc(F),

obtained by short-cutting the extracted nodes.

4. (Reallocation) Define the subsets Si (i ∈ I(zc,F)) as described in Section 1.3. Build

the corresponding Reallocation Model (1.2)–(1.7) and solve the model by using a

general-purpose ILP solver. Once an optimal ILP solution has been found, construct

the corresponding new OVRP solution and possibly update zc and z0.

5. (Termination) Set kt := kt+ 1. If kt = KTmax, terminate.

6. (Perturbation) If zc has been improved in the last iteration, set kp := 0; otherwise

set kp := kp+ 1. If kp = KPmax, “perturb” the current solution zc and set kp := 0.

In any case, repeat step 2.

The procedure performs KTmax iterations and at each iteration explores a randomly

generated neighborhood of the current solution zc. However, if zc is not improved for

KPmax consecutive iterations, we introduce a random perturbation (see Step 6) in order

to move to a different area of the solution space, so as to enforce the diversification of

the search. In particular, when performing a Perturbation Step, we randomly extract

np customers from zc (with np uniformly randomly chosen in [npmin, npmax] and with

each customer having the same probability to be extracted), and reinsert each extracted

customer, in turn, in its best feasible position. If a customer cannot be inserted in any

currently non-empty route (due to the capacity and/or distance restrictions), a new route

is created to allocate the customer. In general, when performing the Perturbation Step,

several customers cannot be inserted in the non-empty routes of the current solution, and

hence the new perturbed solution can use more vehicles than the current one.

1.5 Computational Results

The performance of the Heuristic Improvement Procedure (HIP) described in the previous

sections was evaluated on the 16 benchmark instances usually addressed in the literature,

taken from Christofides et al. [12] (instances C1–C14) and from Fisher [29] (instances

F11–F12), and on the 8 large scale benchmark instances proposed by Li et al. [46], and

also addressed by Derigs and Reuter [21] (instances O1–O8). The number of customers

of C1–C14 and F11–F12 ranges from 50 to 199. C1–C5, C11–C12 and F11–F12 have only

capacity constraints, while C6–C10 and C13–C14 are the same instances as C1–C5 and

C11–C12, respectively, but with both capacity and distance constraints. Instances O1–O8

have no distance restrictions and a number of customers varying from 200 to 480. As
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usual, for the problems with distance constraints, the route duration limit D is taken as

the original value for the classical VRP multiplied by 0.9.

HIP needs an initial solution to be given, which in principle could be computed through

any available constructive heuristic algorithm. We decided to run HIP starting from an

extremely-good feasible solution available from the literature (in several cases, the best

known solution reported in the literature), with the aim of attempting to improve it (this

is of course impossible if the initial solution is provably optimal, as it is the case for some

of them). In particular, we considered as initial solutions the ones obtained by Fu et

al. [31, 32], Pisinger and Ropke [58], Derigs and Reuter [21] and Fleszar et al. [30].

HIP has been tested on a Pentium IV 3.4 GHz with 1 GByte RAM, running under

Microsoft Windows XP Operative System, and has been coded in C++ with Microsoft

Visual C++ 6.0 compiler. The ILP solver used in the experiments is ILOG Cplex 10.0

[39]. HIP setting depends on the parameters RCmax, p, nfmin, nfmax, npmin, npmax,

and on the number of iterations KPmax and KTmax. Although these parameters could be

tuned considering the edge costs and the particular characteristics of each tested instance,

we preferred to run all the experiments with a fixed set of parameters: RCmax = 1,

p = 0.5 (i.e., 50% of the customers are selected on average), nfmin = 15, nfmax = 25,

npmin = 15, npmax = 25, KPmax = 50 and KTmax = 5, 000 (i.e., we perform globally

5,000 iterations, and the current solution is perturbed if it cannot be improved for 50

consecutive iterations). Further, since several authors address the problem considering as

objective function the minimization of the number of vehicles first and of the traveling cost

second (i.e., assuming F = ∞), while other authors considered as objective function the

minimization of the traveling cost (i.e., F = 0), we decided to run HIP without allowing

to change the number of vehicles used in the initial solution. However, as stated in Section

1.4, the Perturbation Step often requires additional routes to be created (to preserve the

feasibility of the solution). In such cases, we add a small penalty θ to the cost of the edges

incident at the depot, in order to force HIP to “recover” the solution in the following

iterations. After some preliminary tests, we decided to fix θ = 12 for the considered

instances. Finally, HIP is a randomized algorithm and hence the computational results

may depend on the randomization. For each tested instance (and each initial solution),

we considered 5 runs of the algorithm corresponding to 5 different seeds for generating

the random numbers.

The computational results are reported in Tables 1.1–1.3. All the CPU times are

expressed in seconds, and all the solution costs have been computed in double precision.

Table 1.1 reports the computational results on the 16 instances C1–C14 and F11–F12

obtained by starting from the solutions provided by Fu, Eglese and Li and obtained

through the algorithm proposed in [31]. In some cases, several solutions are provided for

10



the same instance, obtained by using slightly different versions of their algorithm, with

the same number of routes and different traveling cost. Among the different solutions

for the same instance, we considered as initial solution for HIP the best one provided.

For instances C1 and F11, all the solutions available from [31, 32] are provably optimal

(see, e.g., Letchford et al. [45]) and cannot be further improved. Thus, these instances

were not considered in this set of experiments. The upper part of the table reports the

solutions found by HIP. The first column gives the instance name (Pb). Columns 2–3

report the number of vehicles used in the initial solution (m) and the cost of the best

known solution using the same number of vehicles (P.best). Columns 4–5 report the cost

of the initial solution (cost) and the corresponding percentage deviation w.r.t. the best

known value (%dev), computed as 100*(cost-P.best)/P.best. Then, for each of the 5 runs

of the algorithm, we report the final solution cost provided by HIP and the corresponding

percentage deviation (again computed w.r.t. the best known value). When HIP was not

able to improve on the initial solution, we mark with a “—” the final solution cost. Finally,

we report the best, the worst and the average result out of the 5 different runs. Final

solution costs equal to the previously best known ones are underlined, new best solutions

are in bold face, while provably optimal solutions, taken from Letchford et al. [45], are

marked with an ∗. The lower part of the table gives the computing times. First, we report

the overall CPU time of the algorithm corresponding to the initial solution, obtained on

a Pentium IV 3 GHz. These times have been taken from [32]. However, the cost of the

initial solution for instance C8 is better than the ones reported in [32], and hence for this

initial solution we did not report the corresponding computing time. Then, for each run

of the algorithm, we report the overall computing time required to perform all the 5,000

iterations (t.time) and the CPU time required to reach the final solution (b.time). For a

“fair” calculation of the average values, when HIP was not able to improve on the initial

solution we considered b.time equal to the overall computing time. Finally, the last two

columns give the average CPU times (i.e., average t.time and average b.time) out of the

5 different runs.

Table 1.2 reports the computational results on the same instances by starting from

the best available solutions among the ones obtained by Fu et al. [31, 32], Pisinger and

Ropke [58], Derigs and Reuter [21] and Fleszar et al. [30]. The table has the same

structure as Table 1.1, but column 2 in the lower part of the table reports the source of

the initial solution used in the experiments. For instances C5, C7, C9, C13 and C14, the

best available solutions for the case F = ∞ and the case F = 0 are different. In such

cases, we considered both the solutions as initial solutions for HIP. For instances C1, C3,

C12 and F11, all the solutions available from [21], [30] and [58] are provably optimal and

hence these instances were not considered in this set of experiments.
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Finally, Table 1.3 reports the computational results on the 8 large scale instances O1–

O8 by starting from the solutions provided by Derigs and Reuter [21]. The table has the

same structure as Table 1.1, but the CPU time related to the initial solution (column 2

in the lower part of the table) was obtained on a Pentium IV 2.8 GHz.

The tables show that HIP is able to improve even extremely-good quality solutions,

obtained by some of the most effective metaheuristic techniques proposed for OVRP. It is

worth noting that the solutions and the CPU times provided by Fu et al. [31,32] and re-

ported in Table 1.1 are the best ones from among 20 runs of the corresponding randomized

algorithm with different seeds. Hence, taking into account the different performance of the

processors used for testing the different algorithms, the overall computing time required

by HIP is comparable with the others reported in the tables, and in several cases the final

improved solution is found very quickly. Our test-bed concerns in practice 35 different,

non provably optimal, initial solutions which could be possibly improved, corresponding

to 22 different instances. By considering the best result from among the 5 different runs

executed for each of these 35 initial solutions, HIP improves on the initial solution in 22

cases. For these cases, HIP reaches 6 times the previously best known solution (provably

optimal in 2 cases), while finds 12 times a new best solution. Considering the 13 initial

solutions which HIP does not improve, it is worth noting that all these solutions are the

best known ones in the literature (for the case F =∞ or F = 0). Looking at the different

runs executed for each initial solution, we can note that in some cases the results depend

on the seed used for the random generator. However, the method is overall quite consis-

tent since, by considering all the tested initial solutions, the average computing time and

the average final percentage deviation are only slightly affected by the choice of the seed.

In order to look for possible better solutions, we performed some additional experi-

ments. In particular, after the first 5,000 iterations, we ran HIP for 2,000 more iterations

with a slightly different parameter setting. Starting from the solutions provided by Fu

et al. [32], for instance C5 with 17 vehicles, after 5220 iterations and 237.4 seconds HIP

found a solution of cost 868.44 that corresponds to a further improvement on the previous

best known solution. Finally, still starting from the solutions by Fu et al. [32], we ran

HIP with a different tuning of parameter p, to investigate how the neighborhood size

affects the overall performance of the method, both in terms of quality of the solutions

found and of CPU time. Let zavg(p̄) be the average final solution cost obtained on the 14

instances C2–C14 and F12 with p = p̄, and let ttimeavg(p̄) be the corresponding average

CPU time in seconds. With p = 0.3, p = 0.5 and p = 0.7 we obtained the following results:

zavg(0.3) = 684.55 and ttimeavg(0.3) = 71.9, zavg(0.5) = 681.94 and ttimeavg(0.5) = 262.8,

zavg(0.7) = 683.32 and ttimeavg(0.7) = 460.0. As expected, the average CPU time consis-

tently increases with the number of extracted customers, while the best solution costs are
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obtained with the default setting of p (i.e., p = 0.5), thus indicating that extracting too

many customers leads in general to worse solutions (i.e., zavg(0.7) > zavg(0.5)). This is not

completely surprising, and it is essentially due to the column generation heuristic, which

falls in troubles in finding good variables for the Reallocation Model when the current

solution has been almost completely “destroyed” by the removal of too many customers.

As previously seen, the proposed algorithm is able to improve on high-quality initial solu-

tions. However, a natural question concerns the effectiveness of the method if the initial

solution is instead a “bad-quality” solution. To answer this question, we implemented

a modified version of the tabu search algorithm proposed by Fu et al. [31] (we refer the

reader to [31] for a detailed description of this algorithm). More precisely, we first com-

puted an initial random (and typically infeasible) solution, and then we applied only 200

iterations of the tabu search algorithm, with the aim of quickly finding a feasible solution,

possibly “far” from the good ones. The computational results provided by HIP on the 16

instances C1–C14 and F11–F12 when starting from such initial solutions are reported in

Table 1.4.

The table has the same structure as Table 1.1 and shows that HIP is quite effective

even when the initial solution is not a good-quality solution. First, we can note that all the

solutions are improved by all the 5 different runs. Further, even in this case the method

is quite consistent, as all the 5 different runs provide on average very similar results, both

in terms of quality of the solutions found and of CPU time. Finally, considering all the

instances and all the different runs, the average behavior of the algorithm is satisfactory:

starting from a set of initial solutions with an average percentage deviation (w.r.t. the

best known value) of 19.67, HIP finds a set of final solutions with an average percentage

deviation of 0.70 in an average overall computing time of 257.4 seconds.

The current best known solution costs for the tested instances are given in summary

in Table 1.5, where we also report the number of customers n and the route duration limit

D associated with the vehicles. Solution costs are given both for the case F = ∞ (i.e.,

when the objective is to minimize the number of used vehicles first and the traveling cost

second) and the case F = 0 (i.e., when the objective is to minimize the traveling cost).

As usual, the best known solution cost for the case F = 0 is reported only if the traveling

cost is smaller than the corresponding one for the case F =∞. For each instance whose

best known solution was not improved by HIP we report the algorithms providing the

corresponding best known costs. Previously best known solution costs reached also by

HIP (starting from a worse solution) are underlined, while new best solution costs found

by HIP are in bold face. For the capacitated instances, in the case F =∞, we also report

the best known lower bound LB taken from [45] and [56].
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Table 1.5: Current best known solution costs for the tested OVRP benchmark instances.

Inst. n D Best known solution

F =∞ F = 0

m LB cost best heuristics m cost best heursitiscs

C1 50 5 416.1 ∗416.06 [7], [21], [30], [31, 32], [46], [58] 6 412.96 [73], [74], [75]
C2 75 10 559.62 567.14 [21], [30], [31, 32], [46], [58] 11 564.06 [73], [74], [75]
C3 100 8 639.7 ∗639.74 [21], [30], [46] 9 639.57 [75]
C4 150 12 730.2 733.13 [21], [30], [46], [58]
C5 199 16 848.5 879.37 [74] 17 868.44
C6 50 180 6 412.96 [7], [21], [30], [31, 32], [46], [58]
C7 75 144 10 583.19 [58] 11 568.49 [21], [31, 32], [46]
C8 100 207 9 644.63 [7], [21], [30], [46]
C9 150 180 13 757.69 14 756.14 [21]
C10 199 180 17 874.71
C11 120 7 657.1 682.12 [21], [30], [58] 10 678.54 [75]
C12 100 10 534.2 ∗534.24 [21], [30], [46], [58], [73], [74], [75]
C13 120 648 11 899.16 12 894.19
C14 100 936 11 591.87 [21], [30], [46], [58] 12 581.81 [21]
F11 71 4 177.0 ∗177.00 [21], [31, 32], [46], [58]
F12 134 7 762.9 769.55

O1 200 5 6018.52 [21], [46]
O2 240 9 4573.53
O3 280 7 7731.46 [21]
O4 320 10 7251.74
O5 360 8 9197.61 [46] 9 9156.74
O6 400 9 9803.80 [46]
O7 440 10 10344.37
O8 480 10 12420.16 [21]

18



1.6 Conclusions and Future Directions

We addressed the Open Vehicle Routing Problem (OVRP), a variant of the “classical”

Vehicle Routing Problem (VRP) in which the vehicles are not required to return to the

depot after completing their service. OVRP has recently received an increasing attention

in the literature, and several heuristic and metaheuristic algorithms have been proposed

for this problem, as well as exact approaches.

We presented a heuristic improvement procedure for OVRP based on Integer Linear

Programming (ILP) techniques. Given an initial solution to be possibly improved, the

method follows a destruct-and-repair paradigm, where the given solution is randomly

destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP

model, in the attempt of finding a new improved solution.

Computational results on 24 benchmark instances from the literature showed that

the proposed improvement method can be used as a profitable tool for finding good-

quality OVRP solutions, and that even extremely-good quality solutions found by the

most effective metaheuristic techniques proposed for OVRP can be improved. Out of 30

best known solutions which are not provably optimal, in 10 cases the proposed method

was able to improve on the best known solution reported in the literature.

Future directions of work could involve more sophisticated criteria for removing cus-

tomers from the current solution, as well as more sophisticated algorithms for solving

the column generation problem related to the ILP model. On the other side, the overall

procedure can be considered as a general framework and it could be extended to cover

other variants of Vehicle Routing Problems, as, for example, Vehicle Routing Problems

with heterogenous vehicles and multi-depot Vehicle Routing Problems.
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Chapter 2

An Integer Linear Programming

Based Heuristic Approach for the

Capacitated m-Ring-Star Problem

2.1 Introduction

Introduced by Baldacci et al. [6] in 2007, the Capacitated m-Ring-Star Problem (CmRSP),

has many applications in telecommunication networks, in particular in the fiber optic

communication networks (see, e.g. Baldacci et al. [6])1.

The CmRSP can be described as follows: a mixed graph G = (V,E ∪ A) is given,

where V is the set of nodes, E = {{i, j} : i, j ∈ V, i 6= j} is the set of edges (undirected

arcs) and A is the set of arcs. The node set V is defined as V = {0}∪U ∪W , where node

0, U and W represent, respectively, the central depot, the set of customers and the set of

Steiner nodes and for each customer i ∈ U , Ci ⊂ U ∪W denotes the subset of nodes to

which customer i can be connected. The arc set A is defined as A = {(i, j) : i ∈ U, j ∈ Ci}.
Each edge e ∈ E has a non negative visiting cost ce and a non negative allocation cost

dij.

We refer to a simple cycle consisting of a subset of nodes and the depot as a ring and

if a customer is visited by the ring or allocated to a node of the ring, it is assigned to that

ring. Two input parameters m and Q are the number of rings and the capacity of each

ring, respectively, and we have mQ ≥ |U |.
A solution of the CmRSP is feasible if each customer is assigned to exactly one ring,

no Steiner node is used more than once, and the number of customers assigned to a ring

1The results of this chapter appear in: Naji-Azimi Z., Salari M., and Toth P.: “An Integer Linear
Programming Based Heuristic Approach for the Capacitated m-Ring-Star Problem”. Technical Report.
DEIS, University of Bologna, 2010 [53].
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is less than or equal to the capacity Q. The goal of the CmRSP is to find m rings with

the minimum global visiting and allocation costs. The CmRSP is known to be NP-hard

since it is the generalization of the Symmetric Traveling Salesman Problem (TSP), arising

when m = 1, Q = |U |, W = φ, A = φ.

Two Integer Linear Programming (ILP) formulations and a Branch-and-Cut (BC) ap-

proach have been proposed by Baldacci et al. [6] in 2007, but only the small-size instances

were solved to optimality within a reasonable time. Moreover, Baldacci et al. [6] proposed

two heuristic procedures (H1 and H2), for the solution of the CmRSP. The first heuristic,

H1, is based on the algorithm proposed for the multi-depot CmRSP [5] and executed

at the root node. The other heuristic, H2, is based on the information obtained by the

solution of the Linear Programming (LP) relaxation of the proposed ILP formulations to

construct a CmRSP solution and is executed on a given set of nodes of the enumeration

tree.

A hybrid metaheuristic approach, which combines GRASP and Tabu Search algo-

rithms, has been proposed by Mauttone et al. [49] in 2007.

An ILP formulation, based on a Set Covering model, and a Branch-and-Price (BP)

algorithm have been developed for the CmRSP by Hoshino and de Souza [38] in 2008.

Comparing the Branch-and-Cut (BC) and the Branch-and-Price (BP) approaches, shows

that their performance are approximately the same and both of these methods fail, in

many cases, in finding the optimal solutions, within two hours of computing time, for

instances with more than 50 nodes.

Finally in 2009, Salari et al. [65] proposed a heuristic approach for the solution of the

CmRSP. The proposed algorithm, after a construction phase, applies iteratively a series

of different local search procedures. A comparison of this heuristic with algorithms H1

and H2 proposed by Baldacci et al. [6] and the hybrid metaheuristic approach proposed

by Mauttone et al. [49] indicates that the heuristic outperforms the latter methods.

Studies on different variants of CmRSP, arising in telecommunication networks, have

been published in the literature and described in Baldacci et al. [6] and Labbé et al. [42,43].

In this work, considering the general scheme of the Variable Neighborhood Search

(VNS) approach, we incorporate an ILP based improvement method to enhance the qual-

ity of the current solution. The proposed algorithm is able to obtain, within reasonable

times, most of the optimal solutions and to improve some of the best known results

proposed in the literature for the CmRSP.

The utilization of using ILP techniques to improve a feasible solution of a combinatorial

optimization problem has been considered in recent years. Fischetti and Lodi [26] and

Danna et al. [18] used the idea of exploiting ILP to explore promising neighborhoods of

feasible solutions in Mixed Integer Programs. The methods presented in [18] and [26]
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are currently embedded in the commercial mixed integer programming solver Cplex [39].

This approach has been also used by De Franceschi et al. [20] and investigated by Toth

and Tramontani [77] in the context of the classical VRP. Archetti et al. [2] developed a

heuristic algorithm for the Split Delivery Vehicle Routing Problem that integrates Tabu

Search with ILP to explore promising parts of the solution space identified by the Tabu

Search. They also used a similar approach for an Inventory Routing Problem [1]. Hewitt

et al. [37] combined exact and heuristic approaches to solve the Capacitated Fixed Charge

Network Flow Problem by using ILP to improve feasible solutions found during the search.

Finally, Salari et al. [68] used ILP techniques to improve the solution of the Open Vehicle

Routing Problem.

The reminder of this paper is organized as follows. Section 2.2 describes the pro-

posed ILP embedded VNS method for the CmRSP. Experimental results on benchmark

instances from the literature and on a new set of large instances are provided in Section

2.3. Section 2.4 contains concluding remarks.

A preliminary version of this paper was presented at the International Symposium on

Combinatorial Optimization in Hammamet, Tunesia [64].

2.2 Description of the proposed algorithm

In this section, we develop a VNS algorithm, called NST, strengthened with an ILP based

improvement method to the solution of CmRSP. VNS is a metaheuristic approach, pro-

posed by Mladenovic and Hansen [50], which applies a strategy based on the dynamic

change of the neighborhood structures. The basic idea of the VNS approach is to choose

a set of neighborhood structures that vary in size. After constructing an initial solution,

the algorithm iterates through different neighborhood structures to improve the solution,

until a stopping criterion is met [50]. Considering the VNS approach as our basic frame-

work, we start by constructing an initial solution. We then improve upon this initial

solution, using a Local Search Procedure. Inside the VNS scheme, the improvement of this

solution continues in a loop until a termination criterion is reached. This loop contains a

Shaking Procedure and a Local Search Procedure. The Shaking Procedure follows the VNS

paradigm. It considers a specifically designed neighborhood and makes random changes

to the current solution so as to explore neighborhoods farther away from the current so-

lution. The Local Search Procedure considers a more restricted neighborhood and tries

to improve upon the quality of a given solution. Following the VNS scheme, in case of

having an improvement in the solution cost we return to the first neighborhood size; oth-

erwise we increase the size of the neighborhood to try to find a possible better solution by

calling the Local Search Procedure. Moreover, we have found useful the utilization of the
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threshold accepting criterion in updating the current solution at the end of each iteration

of the VNS algorithm. In particular, we accept a worse solution as the current one if

its cost is not greater than a given percentage P of the cost of the best known solution

or if the number J of consecutive iterations without any improvement does not exceed a

given value JMAX (where P and JMAX are two input parameters). The framework of

the proposed method is given in Algorithm 1, while in the following sections we describe

each procedure separately.

Beside some minor changes in the Shaking Procedure and threshold accepting idea,

the main differences of this approach with respect to the method proposed by Salari et

al. [65], are the ideas of using ILP techniques to improve the solutions and applying all of

these procedures in a VNS framework that leads to the better results.

CurrentSolution:=Initialization();

BestCost :=Cost(CurrentSolution) and BestSolution:=CurrentSolution;

Local Search Procedure(CurrentSolution);

Update CurrentSolution, BestSolution and BestCost ;

J :=0;

while the time limit is not reached do
K :=Initial K ;

while K ≤ |U | /2 do
ShakingProcedure(CurrentSolution,K );

Local Search Procedure(CurrentSolution);

if Cost(CurrentSolution) < BestCost then
K :=Initial K ;

J :=0;
end

else
K :=K+1;

J :=J+1;
end

end

if (Cost(CurrentSolution) > P∗BestCost) or (J > JMAX) then
Set the best known solution as the current one;

end

end
Algorithm 1: The general framework of the proposed heuristic for CmRSP
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2.2.1 Initialization Procedure

Similar to what has been done for the heuristic method proposed by Salari et al. [65],

the initial solution is created by using the clustering algorithm proposed by Fischetti et

al. [27] for the Generalized Traveling Salesman Problem (GTSP). In this procedure, the

goal is to construct a feasible solution that only uses customers in the structure of the

rings. To do so, we pick the depot and m customers as far as possible one from each other.

Following this step we have m rings by connecting the customers to the depot. Then each

of the remaining customers are allocated or visited in their best feasible position, i.e., the

position that results in the minimum visiting or allocation cost.

2.2.2 Local Search Procedure

The Local Search Procedure consists of four major parts: Improvement Procedure, ILP-

based Procedure, solving the Generalized Assignement Problem over the star part of the

solution, i.e. for the customers assigned to the nodes of the rings, and finally, using the

Lin-Kernighan TSP solver (see Lin and Kernighan [47] and Helsgaum [36]).

The Improvement Procedure follows the major ideas of the analogous procedure con-

sidered in the heuristic proposed by Salari et al. [65] and includes the Swap and the

Extraction-Assignment procedures. The ILP-based Procedure, which is one of the major

differences between this method and the heuristic proposed in [65], has been designed

to further improve the solution and is based on Integer Linear Programming (ILP) tech-

niques. Moreover, since the objective function consists of minimizing two different costs,

i.e. allocation and visiting costs, we use the Generalized Assignement Problem and Lin-

Kernighan TSP procedure [36, 47], to check any possible improvement in the allocation

and visiting costs, respectively. Algorithm 2 describes the outline of the Local Search

Procedure.

In this procedure we start by calling the Improvement Procedure and as long as the

solution can be improved, we iterate to enhance the quality of the solution. After calling

the Improvement Procedure and in the case of having an improvement in the solution

cost, we apply the ILP-Improvement Procedure, for a given number of iterations, to try

to improve the current solution. Followed by the ILP-based Procedure, in the case of

having an improvement in the solution cost, the algorithm looks for possible further

improvement of the solution by solving the Generalized Assignement problem. To do

so, we extract all the customers allocated to visited nodes in the current solution and

reallocate them in their best feasible positions by solving the Generalized Assignement

problem. Following these steps, we call the Lin-Kernighan procedure to find a possible

better order of visited nodes in the rings. Whenever applying the ILP-based Procedure
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followed by the Generalized Assignement problem and Lin-Kernighan procedure results in

a better solution, we update the best known solution and call the Improvement Procedure

as long as the solution can be improved. All of these steps continues in a loop until the

solution cannot be improved any more.

while CurrentSolution can be improved do
ImprovementProcedure(CurrentSolution);

end

if Cost(CurrentSolution) < BestCost then

while Cost(CurrentSolution) < BestCost do
Update BestCost and BestSolution;

for i=1,· · · , ILP-Iter do
ILP based Procedure(CurrentSolution);

if i=1 or the CurrentSolution has been improved by calling the ILP based

Procedure then
Extract all the allocated customers to those visited in the tours and

reallocate them by solving the Generalized Assignment Problem to

optimality;
end

end

For each ring, call the Lin-Kernighan procedure to improve the CurrentSolution;

if Cost(CurrentSolution) < BestCost then
Update BestCost and BestSolution;

while CurrentSolution can be improved do
ImprovementProcedure(CurrentSolution);

end

end

end

end
Algorithm 2: Local Search Procedure

Improvement Procedure

The improvement of the current solution starts with the Swap Procedure. As soon as

the solution cannot be further improved by using the moves of the Swap Procedure, the

Improvement Procedure continues by calling the Extraction-Assignment Procedure. In

this section we briefly describe these procedures. For more details on the Swap and

Extraction-Assignment procedures, one can refer to Salari et al. [65].
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Swap Procedure In this procedure, for each customer in the current solution and in

a random order, we test all the possible ways to swap this customer with another visited

or allocated node which is near to the selected one, starting from the first nearest node

up to the T th nearest one (where T is an input parameter).

Extraction-Assignment Procedure In this procedure, we extract, in a random order,

each customer from its current position, and reassign it to a possibly better feasible

position. To this aim, we consider T nodes nearest to the extracted customer and check all

the possibilities for allocating the customer to one of these nodes or visiting the customer

in a ring, consecuently before or after one of the T nearest nodes. We then select the best

feasible movement, i.e. the one that results in the least cost solution.

ILP-based Procedure

In this section we present a heuristic improvement procedure based on ILP techniques.

Given an initial feasible solution to be possibly improved, the method follows a destruct-

and-repair paradigm, where the given solution is destroyed (i.e., some nodes are removed

from the solution) and repaired by solving an ILP model (called Reallocation Model), in

an attempt to find an improved feasible solution. A similar approach has been used by De

Franceschi et al. [20] and Toth and Tramontani [77] in the context of the classical Vehicle

Routing Problem (VRP), and by Salari et al. [68] for the solution of the Open Vehicle

Routing Problem.

Let z be the current feasible solution of the CmRSP and F a subset of customers or

Steiner nodes visited in the current solution. We define z(F ) as the restricted solution

obtained from z by extracting (i.e., by shortcutting) all the nodes in F . We then add to

F all the customers allocated to the nodes in F and the Steiner nodes not visited by z.

We can partition F into two subsets, i.e. F = F1 ∪ F2, where F1 and F2 are the set of

customers and the set of Steiner nodes, respectively. Now, let R = R(z, F ) be the set of

rings in the restricted solution. An insertion point is a potential location in the restricted

solution which can be used to insert a sequence or a node subset or to allocate one or

more customers. We have to notice that a sequence consists of a set of customers which

can be inserted between two visited nodes and a node subset consists of a single customer

which can be allocated to the nodes visited by the rings or it is a customer or Steiner

node with at least one customer allocated to that.

We use the notations I = I(z, F ) to define the set of insertion points corresponding

to edges in the restricted solution that can be used to insert a sequence or a node subset,

and J = J(z, F ) to define the set of customers or Steiner nodes visited in the restricted

solution, which can be considered as insertion points to allocate one or more customers.
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Moreover, we define I(r) and J(r) as the set of those insertion points belonging to ring

r ∈ R. Let S = S(F ) be the set of all the feasible sequences or node subsets which can

be obtained by recombining the nodes in F plus all the singleton customers in F that

can be allocated to the insertion points in J . We define q(s) as the number of customers

of the sequence or node subset s ∈ S. For each insertion point i ∈ I let Si ⊆ S be the

set of all feasible sequences or node subsets which can be inserted into i, and for each

insertion point j ∈ J let S ′j ⊆ S be the set of singleton customers that can be allocated

to j. Moreover, for each i ∈ I and w ∈ F we define Si(w) ⊆ Si as the set of sequences or

node subsets including node w which can be inserted into insertion point i. Let γsi be the

visiting or allocation cost for inserting sequence or node subset s ∈ S into insertion point

i ∈ I, and dvj the allocation cost for allocating customer v ∈ S
′
j to the insertion point

j ∈ J . We also define q̃(r) and c̃(r) as the number of customers and the cost of ring r

in the restricted solution z(F ), respectively. The Reallocation Model (RM) corresponding

to z and F can be defined as follows:

∑
r∈R

c̃(r) + min
∑
i∈I

∑
s∈Si

γsixsi +
∑
j∈J

∑
v∈S′j

dvjyvj (2.1)

subject to: ∑
i∈I

∑
s∈Si(v)

xsi +
∑
j∈J

yvj = 1 v ∈ F1, (2.2)

∑
i∈I

∑
s∈Si(w)

xsi ≤ 1 w ∈ F2, (2.3)

∑
s∈Si

xsi ≤ 1 i ∈ I, (2.4)∑
i∈I(r)

∑
s∈Si

q(s)xsi +
∑
j∈J(r)

∑
v∈S′j

yvj ≤ Q− q̃(r) r ∈ R, (2.5)

xsi, yvj ∈ {0, 1} i ∈ I, j ∈ J, s ∈ Si, v ∈ F1. (2.6)

where the decision variables xsi and yvj are defined as follows:

xsi =

{
1 if sequence or node subset s ∈ Si is inserted into insertion point i ∈ I,
0 otherwise

(2.7)
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and

yvj =

{
1 if customer v ∈ F1 is allocated to insertion point j ∈ J,
0 otherwise

(2.8)

The objective function (2.1), to be minimized, gives the total cost of the rings which

consists of both visiting and allocation costs. Constraints (2.2) impose that each ex-

tracted customer v to be visited or allocated exactly once, while constraints (2.3) force

each Steiner node to be used at most once. Constraints (2.4) impose that for each in-

sertion point i ∈ I we can insert at most one sequence or node subset. We have to

note that for the insertion points j ∈ J , we do not impose such a restriction. Finally,

constraints (2.5) impose that each ring in the final solution fulfills the capacity constraint.

Now, the main steps of the ILP-based Procedure can be expressed as follows:

• Selection Phase: Build set F by selecting from each ring of the current solution

z, with the same probability, all the visited nodes in odd or even positions.

• Extraction Phase: Extract from z the nodes selected in the previous step and

build the restricted solution z(F ). Add also to F all the customers currently allo-

cated to nodes in F and all the Steiner nodes not visited by z.

• Initialization Phase: For each insertion point i ∈ I, initialize Si with the possible

basic sequence or node subset extracted from i in the Extraction Phase, plus the

singleton sequence (consisting of one customer belonging to F ) having the mini-

mum visiting cost. For each insertion point i ∈ J , initialize S ′j with the customer

belonging to F having the minimum allocation cost. Initialize the Linear Program-

ming (LP) relaxation of the Reallocation Model (LP-RM) by considering the initial

subsets Si(i ∈ I) and S ′j(j ∈ J) and solve it.

• Column Generation Phase: For each insertion point i ∈ I (or j ∈ J), solve

the corresponding column generation problem by means of the Heuristic Column

Generation Procedure, described in the next section, and add to Si (or to S ′j) all the

sequences or node subsets (or customers belonging to F1) such that the associated

variables xsi (or yvj) have a reduced cost under a given threshold RCmax.

• Reallocation Phase: Using the sequences and node subsets generated up to this

step, build the corresponding reallocation model and solve it to optimality by using

an ILP solver.
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Heuristic Column Generation Procedure For each insertion point we use a heuris-

tic approach to solve the corresponding column generation phase. In particular, for each

insertion point j ∈ J and for each customer v ∈ F1, we consider the possible allocation

of {v} to j. If the reduced cost corresponding to this allocation (i.e., s = {v} to j) is

less than the given threshold, RCmax, we add v to S ′j. For each insertion point i ∈ I, say

i = (a, b), we first generate all the sequences s consisting of one or two customers belong-

ing to F1 and if the reduced cost corresponding to the insertion of s into i (obtained by

substituting (a, b) with (a, s, b)), is less than the given threshold, RCmax, we add sequence

s to Si. In the next step, we generate all the node subsets s obtained by allocating from

one to five customers belonging to F1 to a node belonging to F . Then if the resulted

reduced cost, obtained by substituting (a, b) with (a, s, b), is less than the given threshold,

we add the node subset s to Si. We note that for each insertion point of type I or J , we

just work with a limited percentage of the nodes (RP) nearest to that insertion point to

generate the sequences or node subsets.

2.2.3 Shaking Procedure

Following the Local Search Procedure, discussed in the previous section, we use Shak-

ing Procedure. The Shaking Procedure follows the VNS paradigm and dynamically ex-

pands the neighborhood search area. In this step, we produce a solution that is in the

neighborhood size K of the Current Solution, i.e. NK(CurrentSolution). Specifically,

NK(CurrentSolution) is defined as the set of solutions that can be obtained from the

Current Solution by removing K random nodes, along with their possible allocated cus-

tomers, from the Current Solution and then by assigning each of them, in a random order

and once at a time, to its best feasible position (i.e. the position that generates the

minimum visiting or allocation cost). In this procedure, we do not reinsert the possible

extracted Steiner nodes to the solution.

2.3 Computational Results

In this section we report on our computational results. To test the performance of the

proposed heuristic, we have used the datasets proposed by Baldacci et al. [6] as well as a

set of large instances that we have developed for this problem. The instances proposed

in [6], are varying in size from 26 to 101 nodes. There are two classes of instances (A

and B). The topology of the underlying graphs, i.e. the coordinates of the nodes and

the number of customer or Steiner nodes, in both classes are exactly the same and the

difference is in the structure of the distance matrices. In particular, in the first class of

29



instances, class A, the visiting and the allocation costs (cij and dij) are the same as the

euclidean distance between the considered nodes while in the second class of instances,

class B, the visiting and allocation costs are cij = d7eije and dij = d3eije, respectively,

where eij is the Euclidean distance between the pair of nodes i and j.

Beside considering classes A and B, we have also designed a set of 48 larger datasets,

derived from two instances of TSPLIB library [60], KroA150 and KroA200, containing

150 and 200 nodes, respectively. To design these instances, we have followed the rules

proposed by Baldacci et al. [6] for the smaller instances (i.e. instances from 26 to 101

nodes). Also, there are 6 additional real world instances used in the paper by Baldacci et

al. [6], which are not available.

The proposed heuristic, NST, has been implemented in C and tested on a Pentium IV

PC running at 3.4 GHz with 1 GB of RAM.

The list of parameters which should be determined for the proposed method includes

P , Initial K, JMAX, ILP Iter, T , RP and RC max (see section 2.2). The termination

criterion of the overall algorithm is considered as a given number of iterations of the

main loop without any improvement. After testing different values for the parameters

we fixed them as follows: P = 1.05, Initial K = 5, JMAX = 100, ILP Iter = 10,

T = 0.20 ∗ NoV ertices, RP = 0.30 ∗ NoV ertices and RCmax = 0.005 ∗ BestCost, in

which NoV ertices and BestCost are the number of vertices and the cost of the best

known solution for each tested instance, respectively. Finally, the termination criterion

used to run the experiments is 150 consecutive iterations of the main VNS loop (see

Algorithm 1), without an improvement.

The results of the proposed algorithm in comparison to heuristics H1 and H2 [6],

HP [65], and the exact algorithm BC [6], are given in Tables 2.1 to 2.3. For each instance

we have performed 5 independent executions of the proposed algorithm using 5 different

seeds for initializing the random number generator. The best (B.Cost) and the average

solution cost (Avg.Cost) among these runs have been reported in the tables. For each

instance the reported total time (T.T) is related to the total execution time corresponding

to different runs. All computing times are expressed in seconds.

Since the results of the large instances, reported in Table 2.3, can be improved by

increasing the number of runs, we have also reported the results of the NST and HP

[65] with 20 independent runs. It should be mentioned that increasing the number of

independent executions, more than 5 in the small instances and more than 20 in large

ones, would not cause any significant improvement in the solutions cost, so we ignored to

report more results.

In each table, the name of each instance (Data), the number of nodes (n), the number

of rings (m), the number of customers (|U|) and the capacity of each ring (Q) are given in
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columns 1 to 5, respectively. The results of heuristics H1 and H2 proposed by Baldacci et

al. [6] together with their computing time are given in columns 6-7 and 8-9, respectively,

while the results of BC algorithm [6] are reported in column 10. The time limit for the BC

algorithm is two hours of CPU time and for those instances whose optimal solutions can

not be obtained during this time, the best solutions found during the BC process have been

reported. The corresponding computing times of the BC algorithm are given in column

11. In columns 12 to 14, the best and the average solution costs obtained during 5 different

runs of HP [65] and the corresponding total computing time are reported, respectively.

In Table 2.3, the results of the execution of heuristic HP [65] with 20 independent runs

are given as well. In the last 3 columns of each table the best, the average cost and the

total time required for 5 and/or 20 independent runs of the NST algorithm are reported,

respectively. To provide the results reported in Tables 2.1 to 2.3, we have used the original

code of H1, H2 and BC algorithms (provided by Roberto Baldacci) and the original code

of HP [65]. In all tables, in each row the best solutions are written in bold and the average

values of each column (Avg) and the number of best solutions found by each algorithm

(NB) are reported in the last two rows of the tables.

Tables 2.1 and 2.2 show that for 63 out of 90 small instances, solved to optimality,

using the BC algorithm, NST could find all of the optimal solutions, while H1, H2 and HP

obtained 35, 38 and 62 of the optimal solutions, respectively. For the other 27 instances

whose optimal solutions are not available, NST achieved the best solution for 27 instances,

while H1, H2, BC and HP generated the best solutions 0, 0, 2 and 23 times, respectively.

As it can be seen from Tables 2.1 and 2.2, considering the best performance of the

heuristics, and the number of times that the proposed methods are able to reach the

best known results, NST algorithm is the best by obtaining all of the best known results

in both classes A and B. Moreover, the average computing time of NST algorithm in

small instances of classes A and B are 10.08 and 11.42 seconds, while H1, H2, BC [6] and

HP [65] take 5.4, 29.7, 2098.3 and 6.22 seconds in class A, and 5.89, 28.90, 2952.90 and

11.14 seconds in class B, respectively.

A comparison of NST algorithm with the methods H1, H2, BC and HP on the large

instances is reported in Table 2.3. For the large instances, clearly the proposed NST

method outperforms all the other algorithms. In these data sets since the proposed

heuristic is faster than H2 and BC, beside running NST and HP algorithms with 5 runs,

we prefered to execute them with 20 seeds as well. Considering only 5 independent runs of

the algorithm, the average of the best solution cost obtained by NST algorithm, is clearly

better than heuristic algorithms H1, H2 [6] and HP [65] and the exact algorithm BC [6].

Increasing the quality of the solutions by increasing the number of independent executions

of the algorithm can be seen in this table apparently. By considering 20 different runs,
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the proposed algorithm can obtain the best solutions for 40 out of 48 instances. This is in

comparison to H1, H2, BC [6] and HP [65] (with the same number of runs) which generate

3, 3, 11 and 17 best solutions, respectively. In terms of the computing time, H1 [6] is

a bit faster than totally 5 independent runs of NST algorithm, while the speed of the

proposed method is approximately equivalent with HP [65]. In any case by running the

NST algorithm even for 20 times, the method is still faster than H2 and BC algorithms [6].

2.4 Conclusion

We have proposed an ILP based VNS approach for the Capacitated m-Ring-Star Problem

(CmRSP). Considering the general scheme of the VNS, this method incorporates an ILP

improvement method whenever the Improvement Procedure is not able to enhance the

quality of the solution. We compared the proposed method with the available heuristic

and exact methods for CmRSP in the literature. The results clearly show the superiority

of the proposed method, especially as the instances get larger. The proposed method,

within a short computing time, can obtain 66 out of 67 optimal solutions and in the

remaining instances whose optimal solutions are not known, it can obtain 36 best known

solutions and improve 28 of the best results obtained by other heuristics and exact method.
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Table 2.1: Comparison of different solution procedures for the CmRSP problem on small
instances (Class A).

Data n m |U| Q H1 H2 BC HP NST
Cost T.T Cost T.T Cost T.T B.Cost Avg.Cost T.T B.Cost Avg.Cost T.T

A01 26 3 12 5 242 0.3 242 0.1 242 0.1 242 242.00 0.5 242 242.00 0.9
A02 26 4 12 4 261 0.3 261 0.0 261 0.0 261 261.00 0.5 261 261.00 0.8
A03 26 5 12 3 292 0.3 292 0.0 292 0.0 292 292.00 0.4 292 292.00 0.7
A04 26 3 18 7 301 0.4 301 0.7 301 0.5 301 301.00 0.8 301 301.00 1.2
A05 26 4 18 5 339 0.4 339 0.4 339 0.3 339 339.00 1.0 339 339.00 1.9
A06 26 5 18 4 375 0.4 375 1.4 375 0.7 375 375.00 1.6 375 375.00 1.3
A07 26 3 25 10 333 0.8 333 1.7 325 3.8 325 325.00 1.5 325 325.00 1.4
A08 26 4 25 7 362 0.7 362 0.9 362 0.3 362 362.00 1.2 362 362.00 1.1
A09 26 5 25 6 382 0.6 382 0.6 382 0.2 382 382.00 2.3 382 382.00 2.0
A10 51 3 12 5 242 0.3 242 0.1 242 0.2 242 242.00 0.6 242 242.00 0.7
A11 51 4 12 4 261 0.2 261 0.1 261 0.4 261 261.00 0.7 261 261.00 0.7
A12 51 5 12 3 286 0.3 286 0.1 286 0.1 286 286.00 0.6 286 286.00 0.6
A13 51 3 25 10 331 0.8 322 1.0 322 2.1 322 322.00 1.7 322 322.00 2.0
A14 51 4 25 7 360 0.7 360 1.1 360 2.1 360 360.00 1.9 360 360.00 2.2
A15 51 5 25 6 379 0.6 379 1.7 379 2.3 379 379.00 2.4 379 379.00 2.6
A16 51 3 37 14 373 2.3 373 6.7 373 8.4 373 373.00 3.2 373 373.00 2.5
A17 51 4 37 11 408 1.6 408 7.6 405 41.7 405 405.00 3.5 405 405.00 3.6
A18 51 5 37 9 441 2.2 435 11.8 432 52.2 432 432.80 3.8 432 432.00 4.7
A19 51 3 50 19 459 4.8 469 14.1 458 182.8 458 458.20 5.0 458 458.00 8.1
A20 51 4 50 14 501 3.0 493 20.8 490 220.4 490 490.00 5.4 490 490.00 7.2
A21 51 5 50 12 521 5.3 521 19.2 520 6334.2 520 520.80 6.2 520 520.80 8.2
A22 76 3 18 7 330 0.7 330 2.9 330 48.3 330 330.00 1.7 330 330.00 1.3
A23 76 4 18 5 385 0.6 385 2.7 385 30.6 385 385.00 1.6 385 385.00 0.7
A24 76 5 18 4 448 0.8 448 4.2 448 63.7 448 448.00 2.5 448 448.00 2.1
A25 76 3 37 14 407 2.2 409 9.5 402 567.7 402 402.00 4.6 402 402.00 4.7
A26 76 4 37 11 462 2.3 461 16.5 460 7200.0 457 457.80 4.8 457 458.00 5.6
A27 76 5 37 9 479 3.1 484 21.4 479 509.3 479 479.00 5.2 479 479.00 6.4
A28 76 3 56 21 475 7.3 478 38.9 471 1584.4 471 471.00 8.0 471 471.00 14.4
A29 76 4 56 16 523 7.1 524 50.5 523 7200.0 519 519.80 8.0 519 519.60 9.8
A30 76 5 56 13 552 6.3 552 40.2 545 3221.3 545 548.00 8.8 545 547.40 11.5
A31 76 3 75 28 570 14.8 565 45.0 564 479.5 564 565.00 12.5 564 566.20 18.8
A32 76 4 75 21 617 15.3 628 57.4 606 7200.0 602 604.20 12.0 602 602.50 23.6
A33 76 5 75 17 659 13.6 654 81.7 654 7200.0 640 648.80 12.5 640 642.00 33.0
A34 101 3 25 10 363 0.9 363 3.2 363 8.7 363 363.00 2.9 363 363.00 2.0
A35 101 4 25 7 415 1.1 415 9.2 415 91.8 415 415.00 3.0 415 415.00 1.6
A36 101 5 25 6 448 1.5 448 10.8 448 680.4 448 448.00 4.5 448 448.00 4.9
A37 101 3 50 18 503 6.5 501 58.8 500 7200.0 500 500.00 7.0 500 500.00 7.4
A38 101 4 50 14 532 3.9 533 44.5 532 7200.0 528 528.00 8.3 528 528.00 10.5
A39 101 5 50 12 571 4.0 568 48.4 568 7200.0 567 567.00 7.7 567 567.00 8.8
A40 101 3 75 28 605 18.6 622 115.6 595 6690.1 595 595.00 14.3 595 595.20 22.5
A41 101 4 75 21 629 13.3 635 74.5 625 7200.0 623 623.20 15.8 623 623.60 32.1
A42 101 5 75 17 663 11.5 665 120.5 662 7200.0 657 658.60 13.7 657 657.80 24.0
A43 101 3 100 38 672 31.7 672 134.3 646 283.0 648 651.00 26.5 646 649.80 52.6
A44 101 4 100 28 702 26.5 704 109.0 680 7200.0 679 680.20 25.9 679 679.80 50.3
A45 101 5 100 23 719 24.5 717 148.7 700 1310.8 700 700.00 23.8 700 700.40 50.9
Avg. 448.40 5.4 448.82 29.7 444.62 2098.3 443.82 444.36 6.2 443.78 444.14 10.1
NB 21 – 21 – 36 – 44 – – 45 – –
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Table 2.2: Comparison of different solution procedures for the CmRSP problem on small
instances (Class B).

Data n m |U| Q H1 H2 BC HP NST
Cost T.T Cost T.T Cost T.T B.Cost Avg.Cost T.T B.Cost Avg.Cost T.T

B01 26 3 12 5 1684 0.3 1684 0.1 1684 0.1 1684 1684.00 0.6 1684 1684.00 0.3
B02 26 4 12 4 1827 0.2 1827 0.1 1827 0.1 1827 1827.00 0.5 1827 1827.00 0.8
B03 26 5 12 3 2041 0.3 2041 0.0 2041 0.0 2041 2041.00 0.5 2041 2041.00 0.6
B04 26 3 18 7 2104 0.4 2104 0.6 2104 0.5 2104 2104.00 0.9 2104 2104.00 1.1
B05 26 4 18 5 2370 0.4 2370 1.5 2370 0.5 2370 2370.00 1.3 2370 2370.00 2.0
B06 26 5 18 4 2615 0.5 2615 2.2 2615 0.7 2615 2615.00 2.3 2615 2615.00 1.2
B07 26 3 25 10 2314 0.8 2251 1.6 2251 0.4 2251 2251.00 1.2 2251 2251.00 2.4
B08 26 4 25 7 2510 1.1 2510 1.2 2510 0.5 2510 2510.00 1.4 2510 2510.00 1.4
B09 26 5 25 6 2674 0.8 2674 2.9 2674 0.8 2674 2674.00 1.9 2674 2674.00 2.1
B10 51 3 12 5 1681 0.3 1681 0.4 1681 0.8 1681 1681.00 0.9 1681 1681.00 0.7
B11 51 4 12 4 1821 0.2 1821 0.6 1821 1.5 1821 1821.00 0.9 1821 1821.00 0.8
B12 51 5 12 3 1972 0.3 1972 0.2 1972 0.3 1972 1972.00 1.0 1972 1972.00 0.9
B13 51 3 25 10 2176 1.5 2176 1.6 2176 1.1 2176 2176.00 1.8 2176 2176.00 1.5
B14 51 4 25 7 2476 1.1 2495 4.1 2470 7.2 2470 2470.00 2.1 2470 2470.00 2.1
B15 51 5 25 6 2596 1.0 2579 2.4 2579 4.1 2579 2579.00 2.6 2579 2579.00 2.6
B16 51 3 37 14 2507 2.3 2599 9.4 2490 17.9 2490 2490.00 4.2 2490 2496.80 2.9
B17 51 4 37 11 2772 1.9 2811 10.5 2721 74.9 2721 2721.00 3.9 2721 2721.00 4.1
B18 51 5 37 9 2938 2.2 2937 14.2 2908 145.0 2908 2914.60 4.8 2908 2908.00 4.9
B19 51 3 50 19 3095 4.0 3071 17.4 3015 296.7 3015 3015.00 9.0 3015 3015.00 8.6
B20 51 4 50 14 3365 3.6 3298 18.1 3260 336.6 3260 3260.00 8.4 3260 3260.00 7.0
B21 51 5 50 12 3525 5.7 3516 18.9 3404 6470.7 3404 3404.00 9.1 3404 3420.60 11.1
B22 76 3 18 7 2260 0.7 2259 2.6 2253 105.5 2253 2253.00 2.2 2253 2256.60 1.8
B23 76 4 18 5 2625 0.5 2620 3.3 2620 29.5 2620 2620.00 2.1 2620 2620.00 1.2
B24 76 5 18 4 3059 0.9 3059 3.4 3059 85.3 3059 3059.00 2.4 3059 3059.00 1.9
B25 76 3 37 14 2742 3.1 2720 14.3 2720 1897.6 2720 2720.00 4.9 2720 2720.00 5.3
B26 76 4 37 11 3176 2.7 3138 17.5 3138 7200.0 3100 3115.20 6.8 3100 3113.80 6.7
B27 76 5 37 9 3339 3.0 3364 23.8 3311 7200.0 3284 3284.00 5.8 3284 3284.00 5.3
B28 76 3 56 21 3112 7.1 3146 31.4 3088 7200.0 3044 3060.00 14.8 3044 3049.40 14.1
B29 76 4 56 16 3447 5.1 3496 50.3 3447 7200.0 3415 3438.60 16.2 3415 3440.80 12.0
B30 76 5 56 13 3652 4.6 3703 35.5 3648 7200.0 3636 3642.20 15.0 3632 3643.20 15.2
B31 76 3 75 28 3786 14.1 3820 69.1 3740 7200.0 3652 3687.20 26.9 3652 3670.20 27.3
B32 76 4 75 21 4057 13.9 4084 78.8 4026 7200.0 4003 4006.40 23.9 3964 4002.80 31.6
B33 76 5 75 17 4442 15.9 4288 54.5 4288 7200.0 4217 4217.00 23.5 4217 4217.00 31.4
B34 101 3 25 10 2437 0.7 2439 4.3 2434 24.2 2434 2434.00 3.5 2434 2434.00 2.3
B35 101 4 25 7 2782 1.2 2819 9.5 2782 115.4 2782 2782.00 3.4 2782 2782.00 1.4
B36 101 5 25 6 3043 1.0 3012 4.8 3009 862.4 3009 3009.00 5.1 3009 3009.00 5.2
B37 101 3 50 18 3404 6.3 3387 37.2 3332 7200.0 3322 3322.00 9.4 3322 3322.00 9.9
B38 101 4 50 14 3593 4.3 3586 32.1 3533 7200.0 3533 3533.00 10.2 3533 3533.00 10.7
B39 101 5 50 12 3880 4.4 3872 33.2 3872 7200.0 3834 3839.60 12.1 3834 3839.20 13.8
B40 101 3 75 28 3935 26.0 3923 260.7 3923 7200.0 3887 3887.80 25.9 3887 3888.00 35.6
B41 101 4 75 21 4190 16.0 4202 63.5 4125 7200.0 4082 4088.40 25.2 4082 4091.40 31.0
B42 101 5 75 17 4486 14.2 4458 47.9 4458 7200.0 4358 4358.00 21.9 4358 4358.00 35.2
B43 101 3 100 38 4275 35.9 4155 103.0 4110 7200.0 4135 4150.40 74.7 4110 4126.00 52.0
B44 101 4 100 28 4583 28.0 4608 97.4 4506 7200.0 4358 4377.60 56.4 4355 4379.80 58.0
B45 101 5 100 23 4671 26.7 4639 114.6 4632 7200.0 4565 4568.40 50.4 4565 4566.40 46.4
Avg. 3023.09 5.89 3018.42 28.90 2991.71 2952.90 2975.00 2978.50 11.1 2973.42 2977.82 11.4
NB 13 – 17 – 30 – 41 – – 45 – –
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Chapter 3

Variable Neighborhood Search for

the Label Constrained Minimum

Spanning Tree Problem

3.1 Introduction

The Minimum Label Spanning Tree (MLST) problem was introduced by Chang and

Leu [10]. In this problem, we are given an undirected graph G = (V,E) with labeled

edges; each edge has a single label from the set of labels L and different edges can have

the same label. The objective is to find a spanning tree with the minimum number of

distinct labels. The MLST is motivated from applications in the communications sector.

Since communication networks sometimes include numerous different media such as fiber

optics, cable, microwave or telephone lines and communication along each edge requires

a specific media type, decreasing the number of different media types in the spanning

tree reduces the complexity of the communication process. The MLST problem is known

to be NP-complete [10]. Several researchers have studied the MLST problem including

Brüggemann et al. [8], Cerulli et al. [13], Consoli et al. [14], Krumke and Wirth [40], Wan

et al. [80], and Xiong et al. [83–85].

Recently Xiong et al. [82] introduced a more realistic version of the MLST problem

called the Label Constrained Minimum Spanning Tree (LCMST) problem. In contrast to

the MLST problem, which completely ignores edge costs, the LCMST problem takes into

account the cost or weight of edges in the network (we use the term cost and weight in-

terchangeably in this paper). The objective of the LCMST problem is to find a minimum

weight spanning tree that uses at most K labels (i.e., different types of communications

media). Xiong et al. [82] describe two simple local search heuristics and a genetic algo-
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rithm for solving the LCMST problem. They also describe a Mixed Integer Programming

(MIP) model to solve the problem exactly. However, the MIP models were unable to find

solutions for problems with greater than 50 nodes due to excessive memory requirements.

The Cost Constrained Minimum Label Spanning Tree (CCMLST) problem is another

realistic version of the MLST problem. The CCMLST problem was introduced by Xiong

et al. [82]. In contrast to the LCMST problem, there is a threshold on the cost of the

minimum spanning tree (MST) while minimizing the number of labels. Thus, given a

graph G = (V, E ), where each edge (i, j ) has a label from the set L and an edge weight

cij, and a positive budget B, the goal of the CCMLST problem is to find a spanning tree

with the fewest number of labels whose weight does not exceed the budget B. The notion

is to design a tree with the fewest number of labels while ensuring that the budget for the

network design is not exceeded. Xiong et al. [82] showed that both the LCMST and the

CCMLST are NP-complete. Thus, the resolution of these problems requires heuristics.

In this chapter1, we focus on the LCMST problem. We propose a Variable Neigh-

borhood Search (VNS) method for this problem. We then compare the VNS method to

the heuristics described by Xiong et al. [82]. To do so, we consider existing data sets

and also design a set of nine Euclidean large-scale datasets, derived from TSPLIB in-

stances [60]. The VNS method performs extremely well on the LCMST problem, with

respect to solution quality and computational running time.

The rest of this chapter is organized as follows. Section 3.2 describes the mathematical

formulation proposed for the LCMST problem. Section 3.3 describes the VNS method

that we have proposed to solve the problem. Section 3.4 reports on our computational

experiments. Finally, Section 3.5 provides concluding remarks.

3.2 Mathematical Formulation

In this section, we provide two mixed integer programming (MIP) models for the LCMST

problem. They are based on a singlecommodity and multicommodity network flow for-

mulations [82].

eij =

{
1 if edge (i, j) is used,

0 otherwise
(3.1)

1The results of this chapter appear in: Naji-Azimi Z., Salari M., Golden B., S. Raghacan, and Toth
P.: “Variable Neighborhood Search for the Cost Constrained Minimum Label Spanning Tree and Label
Constrained Minimum Spanning Tree Problems”. Computers & Operations Research, To appear [52].
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yk =

{
1 if label k is used,

0 otherwise
(3.2)

fij = flow on edge (i,j ) from i to j . (3.3)

The MIP formulation based on the single commodity flow (scf) model is as follows:

min
∑

(i,j)∈E

cijeij (3.4)

subject to ∑
(i,j)∈E

eij = n− 1, (3.5)

∑
i:(i,j)∈A

fij −
∑

l:(j,l)∈A

fjl = 1 j ∈ V \ {1}, (3.6)

∑
i:(i,1)∈A

fi1 −
∑

l:(1,l)∈A

f1l = −(n− 1), (3.7)

fij + fji ≤ (n− 1) · eij ∀(i, j) ∈ E, (3.8)∑
(i,j)∈Ek

eij ≤ (n− 1) · yk ∀k ∈ L, (3.9)

∑
k∈L

yk ≤ K, (3.10)

eij, yk ∈ {0, 1} ∀ (i, j) ∈ E,∀k ∈ L, (3.11)

fij ≥ 0 ∀ (i, j) ∈ A. (3.12)

In the objective function (3.4), we want to minimize the total cost or weight of spanning

tree. Constraint (3.5) ensures the tree has exactly (n-1) edges. Constraints (3.6) and (3.7)

are included to ensure the graph is connected. To do so, we pick node 1 as the root node

(any node of the graph may be picked for this purpose). A supply of n-1 units of flow

is available at this root node. All of the other nodes have a demand of 1 unit of flow.

Consequently, we need to send one unit of flow from the root node to all the other nodes.

Constraint set (3.8) is a forcing constraint set. These constraints enforce the condition

that if flow is sent along an edge, the edge must be included in the tree. Constraint set

(3.9) is a forcing constraint set between edges and labels. It says that if an edge with label

k is used, then this label must be selected. Constraint (3.10) imposes an upper bound on

the number of labels, and finally the variables are defined in (3.11) and (3.12).

This single commodity flow formulation is identical to Xiong et al. [82]. However, this
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formulation can be considerable strengthened by using the technique of disaggregation [81]

on constraint set (3.9). We replace this constraint with the stronger:

eij ≤ yk ∀k ∈ L,∀ {i, j} ∈ Ek. (3.13)

To describe the multicommodity formulation, we define a bidirected network obtained

by replacing each undirected edge (i,j ) by a pair of arcs (i,j ) and (j,i). Let A denote

the set of arcs. The variables eij and yk are, as before, in the single commodity flow

formulation. In addition we define

xij =

{
1 if arc (i, j) is used,

0 otherwise
(3.14)

fhij = flow of commodity h along arc (i,j ). (3.15)

The multicommodity flow formulation (mcf) can then be described as follows :

min
∑

(i,j)∈E

cijeij (3.16)

subject to ∑
(i,j)∈E

eij = n− 1, (3.17)

∑
i:(i,h)∈A

fhih −
∑

l:(h,l)∈A

fhhl = 1 ∀h ∈ V \ {1}, (3.18)

∑
i:(i,1)∈A

fhi1 −
∑

l:(1,l)∈A

fh1l = −1 ∀h ∈ V \ {1}, (3.19)

∑
i:(i,j)∈A

fhij −
∑

l:(j,l)∈A

fhjl = 0 ∀h ∈ V \ {1}, ∀j 6= h, (3.20)

fhij ≤ xij ∀ (i, j) ∈ A, ∀h ∈ V \ {1} , (3.21)

xij + xji ≤ eij ∀ (i, j) ∈ E, (3.22)

eij ≤ yk ∀k ∈ L,∀(i, j) ∈ Ek, (3.23)∑
k∈L

yk ≤ K, (3.24)

eij, yk ∈ {0, 1} ∀ (i, j) ∈ E,∀k ∈ L, (3.25)

xij ≥ 0 ∀ (i, j) ∈ A, (3.26)

fhij ≥ 0 ∀ (i, j) ∈ A, ∀h ∈ V \ {1}· (3.27)
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The objective function (3.16) and constraint (3.17) are identical to (3.4) and (3.5). In

the multicommodity flow model, each commodity has the root node as its origin and

the destination is one of the nodes in {2, 3, · · · , n}, for a total of n-1 commodities. Each

commodity has a supply of 1 unit of flow and a demand of 1 unit of flow. Thus, constraints

(3.18) to (3.20) represent the flow balance constraints for these flows. Constraints (3.21)

and (3.22) are forcing constraints. Constraint (3.21) ensures that if flow of a commodity

is sent on an arc, the arc is selected. Constraint (3.22) ensures that either arc (i, j) or arc

(j, i) can be in the solution, but not both. In fact, the tree must be directed away from

the root node. Constraints (3.23) and (3.24) are as before. We note that we have used the

strengthened version of the forcing constraint between the edge variables and the label

variables, as opposed to Xiong et al. [82] who have used the weaker version. Constraints

(3.25) define the edge and label variables as binary.

Constraints (3.26) and (3.27) define the arc and flow variables as continuous variables.

We note that these variables can be defined as binary. However, it is easy to see that if

the edge and label variables are binary then the arc and flow variables are automatically

integral.

In our computational work, we use the multicommodity flow model to obtain lower

bounds and optimal solutions on our test instances. We found that it is considerably

stronger than the multicommodity flow model proposed by Xiong et al. [82] that has the

aggregated version of constraint (3.23).

3.3 Variable Neighborhood Search for the LCMST

Problem

In this section, we develop our Variable Neighborhood Search algorithm for the LCMST

problem. Variable Neighborhood Search is a metaheuristic proposed by Mladenovic and

Hansen [50], which explicitly applies a strategy based on dynamically changing neighbor-

hood structures. The algorithm is very general and many degrees of freedom exist for

designing variants.

The basic idea is to choose a set of neighborhood structures that vary in size. These

neighborhoods can be arbitrarily chosen, but usually a sequence of neighborhoods with

increasing cardinality is defined. In the VNS paradigm, an initial solution is generated,

then the neighborhood index is initialized, and the algorithm iterates through the different

neighborhood structures looking for improvements, until a stopping condition is met.

We consider VNS as a framework, and start by constructing an initial solution. We

then improve upon this initial solution using local search. Then, the improvement of the
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incumbent solution (R) continues in a loop until the termination criterion is reached.

This loop contains a shaking phase and a local search phase. The shaking phase follows

the VNS paradigm. It considers a specially designed neighborhood and makes random

changes to the current solution that enables us to explore neighborhoods farther away from

the current solution. The local search phase considers a more restricted neighborhood set

and attempts to improve upon the quality of a given solution.

We now make an important observation regarding the relationship between the selected

labels and the associated solution. Given a set of labels, the minimum cost solution on

the labels R is the minimum spanning tree computed on the graph induced by the labels

in R. We denote the minimum spanning tree on the graph induced by the labels in R as

MST(R) and its cost by MSTCOST(R). These two can be computed rapidly using any

of the well-known minimum spanning tree algorithms [41, 59]. Consequently, our search

for a solution focuses on selecting labels (as opposed to edges), and our neighborhoods as

such are neighborhoods on labels. Our solutions then are described in terms of the labels

they contain (as opposed to the edges they contain).

3.3.1 Initial Solution

Since having more labels in the solution results in a less MSTCOST, our procedure to

construct an initial solution focuses on selecting a set of labels with the maximum number

of allowed labels that result in a connected graph. Let Components(R) denote the number

of connected components in the graph induced by the labels in R. This can easily be

computed using depth first search [76]. Our procedure adds labels to our solution in

a greedy fashion. The label selected for addition to the current set of labels is the one

(amongst all the labels that are not in the current set of labels) that when added results in

the minimum number of connected components. Ties between labels are broken randomly.

In other words, we choose a label for addition to the current set of labels R randomly

from the set

S = {t ∈ (L \R) : min Components (R ∪ {t})}. (3.28)

This continues until the selected labels result in a single component.

In figure 3.1, an example illustrating the initialization method is shown. Suppose

there are three labels, namely a, b, and c, in the label set. Since the number of connected

components after adding label c is less than for the two other labels, we add this label to

the solution. However the graph is still not connected, so we go further by repeating this

procedure with the remaining labels. Both labels a and b produce the same number of

components, so we select one of them randomly (label b).
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It is easy to observe that if R is a subset of labels, then the cost of an MST on any

superset T of R is less than or equal to the cost of the MST on R. In other words, if

R⊆T then MSTCOST(R) ≥ MSTCOST(T ). Consequently, in order to try to minimize

the cost, we iteratively add labels to the initial set of labels until we have K labels. To

do so we choose the label that, when added, results in the lowest cost minimum spanning

tree. In other words the label to be added is selected from

S = {t ∈ (L \R) : min MSTCOST (R ∪ {t})}. (3.29)

and ties are broken randomly. We continue adding labels to the current solution in this

fashion until we obtain a maximum number of labels.

3.3.2 Shaking Phase

The shaking phase follows the VNS paradigm and dynamically expands the neighborhood

search area. Suppose R denotes the current solution (it really denotes the labels in the

current solution, but as explained earlier it suffices to focus on labels). In this step, we

use randomization to select a solution that is in the size k neighborhood of the solution

R, i.e., Nk(R). Specifically Nk(R) is defined as the set of labels that can be obtained

from R by performing a sequence of exactly k additions and/or deletions of labels. So

N1(R) is the set of labels obtained from R by either adding exactly one label from R, or

deleting exactly one label from R. N2(R) is the set of labels obtained from R by either

adding exactly two labels, or deleting exactly two labels, or adding exactly one label and

deleting exactly one label.

The shaking phase may result in the selection of labels that do not result in a connected

graph, or result in a solution that does not meet the label constraint. If the set of labels

results in a graph that is not connected, we add labels that are not in the current solution

one by one, at random until the graph is connected. If the number of labels in the

solution does not meet the label constraint, we iteratively delete labels from the current

set of labels by choosing the label that when removed results in the lowest cost minimum

spanning tree.

3.3.3 Local Search Phase

The local search phase consists of two parts. The first part adds labels to a given solution

until it has K labels. The additional labels are selected iteratively, each time selecting a

label that provides the greatest decrease in the cost of the minimum spanning tree, until

we have K labels. In fact we select at random a label from the set of (3.29) and we add
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it to the solution. The local search procedure then tries to swap each of the labels in

the current solution with an unused one, if it results in a lower minimum spanning tree

cost. To this aim, it iteratively considers the labels in the solution and tests all possible

exchanges of a given label with unused labels until it finds an exchange resulting in a lower

MST cost. If we find such an exchange, we implement it (i.e., we ignore the remaining

unused labels) and proceed to the next label in our solution. Obviously, a label remains in

the solution if the algorithm cannot find a label swap resulting in an improvement. This

is illustrated with an example in figure 3.2. Consider A = {b, c} we have MSTCOST(A)

= 12 and MSTCOST(A \ {b} ∪ a) = 9. Therefore, we remove label b and add label a to

the representation of our solution. The pseudocode for the VNS method for the LCMST

problem is provided in Algorithm 3.

Figure 3.1: An example illustrating the selection of labels for the initial connected
subgraph.
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Figure 3.2: An example for the swap of used and unused labels.

3.4 Computational Results

In this section, we report on an extensive set of computational experiments on the LCMST

problem. The proposed method has been tested on a Pentium IV machine with a 2.61

GHz processor and 2 GB RAM, under the Windows operating system. We also use ILOG

CPLEX 10.2 to solve the MIP formulation [39].

The two parameters that are adjustable within the VNS procedure are the value

of k (the size of the largest neighborhood Nk(R) in the VNS method), and Iter, the

number of iterations in which the algorithm is not able to improve the best known solution

(which is the termination criterion). Increasing k, not only increases the size of the

neighborhood but also increases the running time. We found that setting k=5 provides

the best results without a significant increase in running time. Additionally, as the value

of Iter is increased the running time of the algorithm is increase, though the quality

of the solution improves. We found that setting Iter=10 provides the best results in a

reasonable amount of running time. We now describe how we generated our datasets, and

then discuss our computational experience on these datasets for the LCMST problem.

3.4.1 Datasets

Xiong et al. [82] created a set of test instances for the LCMST problem. These include

37 small instances with 50 nodes or less, 11 medium-sized instances that range from 100

to 200 nodes, and one large instance with 500 nodes. All of these instances are complete

graphs. We also generated a set of 18 large instances that range from 500 to 1000 nodes.

These were created from nine large TSP instances in TSPLIB and considered to be Eu-

clidean (since the problems arise in the telecommunications industry, the costs of edges

are generally proportional to their length). To produce a labeled graph from a TSPLIB

instance, we construct a complete graph using the coordinates of the nodes in the TSPLIB
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instance. The number of labels in the instance is one half of the total number of nodes,

and the labels are randomly assigned. Then two values for K, as the maximum allowed

labels, have been considered. Specifically, we used K = 75 and K =150.

R=ϕ;

Initialization Procedure(G,R);

Local Search(G,R);

while Termination criterion not met do
k=1;

while k ≤ 5 do

R̄=Shaking Phase(G, k,R);

while Components(R̄) > 1 do

Select at random a label u ∈ L\R̄ and add it to R̄;

end

while
∣∣R̄∣∣ > K do

S={t ∈(L\R̄): min MSTCOST (R̄\{t})};
Select at random a label u ∈ S and delete it from R̄;

end

Local Search(G,R̄);

if MSTCOST(R̄) < MSTCOST(R) then

R̄=Ŕ and k=1;

end

else
k=k+1;

end

end

end

Initialization Procedure(G,R):

while Components(R) > 1 do
S={t ∈ (L\R) : min Components (R ∪ {t})};
Select at random a label u ∈ S and add it to R;

end

while |R| < K do
S={t ∈ (L \R) : min MSTCOST (R ∪ {t})};
Select at random a label u ∈ S and add it to R;

end

Shaking Phase(G,k,R):

for i=1,. . . ,k do
r=random(0,1);

If r ≤ 0.5 Then Delete at random a label from R Else Add at random a label to R;

Return(R);

end

Local Search(G,R):

while |R| < K do
S = {t ∈ (L\R) : minMSTCOST (R ∪ {t})};
Select at random a label u ∈ S and add it to R;

end

Consider the labels i ∈ R one by one

Swap the label i with the first unused label that strictly lowers the MST cost;

end

Algorithm 3: Variable Neighborhood Search Algorithm for the LCMST Problem
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3.4.2 Results

We have executed the proposed VNS method on 66 LCMST instances. The results are

described in Table 3.1 for the small instances, 3.2 for the medium-sized instances and 3.3

for the large instances.

On the 37 small instances, the VNS method found the optimal solution in all 37

instances (recall that the optimal solution is known in all of these instances), while LS1,

LS2, and GA generated the best solution 34, 33, and 29 times, respectively, out of the

37 instances. The average running time of the VNS method was 0.13 seconds while LS1,

LS2, and GA took 0.11, 0.11, and 0.05 seconds, respectively. For the small and medium-

sized instances, the termination criterion used was 10 iterations without an improvement.

On the 11 medium-sized instances, the VNS method generated the best solution in all

11 instances, while LS1, LS2, and GA generated the best solution 7, 8, and 3 times,

respectively, out of the 11 instances. The average running time of the VNS method was

9.82 seconds while LS1, LS2, and GA took 35.51 , 38.05, and 8.03 seconds, respectively.

This indicates that the VNS method finds better solutions in a much greater number

of instances than any of the three comparative procedures. This advantage is clear on

the medium-sized instances. For the large instances the termination criterion used was

a specified running time which is shown in the tables with the computational results.

On the 18 large instances, the VNS method generated the best solution in 12 out of the

18 instances, while LS1, LS2, and GA generated the best solution 2, 4, and 2 times,

respectively, out of the 18 instances. The average running time of the VNS method was

1089 seconds, while LS1, LS2, and GA took 3418, 3371, and 1617 seconds, respectively.

This suggests that the VNS method is the best method in that it rapidly finds solutions

for the LCMST problem the most number of times. However, there seem to be a fair

number of instances (about a third) where an alternate heuristic like LS1, LS2, or GA

obtains a superior solution. On the whole, the VNS method is clearly the best amongst

these four heuristics.

3.5 Conclusion

In this chapter, we considered the LCMST problem. We developed a VNS method for

solving this problem. We compared the solutions obtained by the VNS method to optimal

solutions for small instances and to solutions obtained by three heuristics LS1, LS2, and

GA that were previously proposed for the LCMST problem [82]. We generated a set

of large instances from the TSPLIB dataset. The VNS method was clearly the best

heuristic for the LCMST instances. Of the 66 instances, it provided the best solution in
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Table 3.1: VNS, GA, LS1, and LS2 for the LCMST problem on small datasets.
# Nodes, # Labels K MIP Value LS1 LS2 GA VNS

Gap Time Gap Time Gap Time Gap Time
20,20 2 6491.35 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.01

3 5013.51 0.00 0.04 0.00 0.04 0.00 0.00 0.00 0.02
4 4534.67 0.00 0.05 0.00 0.05 0.00 0.01 0.00 0.02
5 4142.57 0.00 0.05 0.00 0.04 0.00 0.01 0.00 0.02
6 3846.50 0.00 0.05 0.00 0.04 0.00 0.02 0.00 0.02
7 3598.05 0.00 0.05 0.00 0.05 0.00 0.02 0.00 0.03
8 3436.57 0.00 0.05 0.00 0.05 0.00 0.02 0.00 0.03
9 3281.05 0.00 0.04 0.00 0.05 0.00 0.02 0.00 0.03
10 3152.05 0.00 0.05 0.00 0.04 0.00 0.02 0.00 0.03
11 3034.01 0.00 0.05 0.00 0.04 0.00 0.03 0.00 0.03

30,30 3 7901.81 0.00 0.04 0.00 0.05 0.00 0.01 0.00 0.05
4 6431.58 0.00 0.06 0.00 0.05 0.00 0.02 0.00 0.05
5 5597.36 0.00 0.07 0.00 0.06 0.00 0.03 0.00 0.06
6 5106.94 0.00 0.11 0.00 0.07 0.00 0.04 0.00 0.06
7 4751.00 0.00 0.12 0.46 0.07 0.00 0.05 0.00 0.08
8 4473.11 0.00 0.07 0.00 0.07 0.00 0.05 0.00 0.09
9 4196.71 0.00 0.08 0.00 0.11 0.00 0.05 0.00 0.10
10 3980.99 0.52 0.09 0.52 0.16 0.00 0.06 0.00 0.12
11 3827.23 0.00 0.09 0.00 0.13 1.41 0.07 0.00 0.14
12 3702.08 0.00 0.09 0.23 0.09 0.00 0.07 0.00 0.13
13 3585.42 0.00 0.09 0.00 0.10 0.00 0.07 0.00 0.14

40,40 3 11578.61 0.00 0.05 0.00 0.06 0.00 0.02 0.00 0.11
4 9265.42 1.72 0.06 2.56 0.07 1.72 0.03 0.00 0.09
5 8091.45 0.00 0.09 0.00 0.10 0.75 0.03 0.00 0.15
6 7167.27 0.00 0.11 0.00 0.11 2.53 0.07 0.00 0.20
7 6653.23 0.13 0.12 0.00 0.13 0.13 0.05 0.00 0.23
8 6221.63 0.00 0.29 0.00 0.20 0.00 0.09 0.00 0.28
9 5833.39 0.00 0.26 0.00 0.22 0.48 0.10 0.00 0.25
10 5547.08 0.00 0.16 0.00 0.24 0.00 0.10 0.00 0.33
11 5315.92 0.00 0.18 0.00 0.20 0.00 0.15 0.00 0.31
12 5164.14 0.00 0.35 0.00 0.21 0.00 0.09 0.00 0.31

50,50 3 14857.09 0.00 0.07 0.00 0.08 3.08 0.02 0.00 0.14
4 12040.89 0.00 0.15 0.00 0.12 0.00 0.04 0.00 0.14
5 10183.95 0.00 0.21 0.00 0.26 0.00 0.12 0.00 0.28
6 9343.69 0.00 0.25 0.00 0.34 0.00 0.12 0.00 0.25
7 8594.36 0.00 0.30 0.00 0.31 1.51 0.12 0.00 0.25
8 7965.52 0.00 0.24 0.00 0.34 0.00 0.20 0.00 0.30

Table 3.2: VNS, GA, LS1, and LS2 for the LCMST problem on medium-sized datasets.
# Nodes, # Labels Labels LS1 LS2 GA VNS

Cost Time Cost Time Cost Time Cost Time
100, 50 20 8308.68 3.92 8308.68 3.26 8335.75 2.94 8308.68 1.54
100, 100 20 10055.85 5.89 10055.85 6.35 10138.27 1.70 10055.85 1.24
100, 100 40 7344.72 11.36 7335.61 12.70 7335.61 2.68 7335.61 2.44
150, 75 20 11882.62 7.47 11846.80 13.95 11854.17 4.49 11846.80 12.61
150, 75 40 9046.71 17.42 9046.71 18.57 9047.22 12.63 9046.71 2.83
150, 150 20 15427.54 25.33 15398.42 19.88 15688.78 3.82 15398.42 17.73
150, 150 40 10618.58 41.67 10627.36 55.38 10728.93 7.04 10618.58 18.45
200, 100 20 14365.95 27.19 14365.95 17.25 14382.65 10.64 14365.95 14.21
200, 100 40 10970.94 46.23 10970.94 49.26 10970.94 12.84 10970.93 5.80
200, 200 20 18951.05 44.61 18959.37 89.58 18900.25 13.06 18900.25 9.50
200, 200 40 12931.46 159.56 12941.85 132.40 12987.29 16.49 12931.46 21.64

• The best solutions are in bold.
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Table 3.3: VNS, GA, LS1, and LS2 for the LCMST problem on large datasets.
# Nodes, # Labels Labels LS1 LS2 GA VNS

Cost Time Cost Time Cost Time Cost Time Max time
532, 266 75 95671.13 397 95617.19 558 95808.91 383 95562.78 236 500

150 78418.55 703 78392.49 1011 78400.90 627 78400.90 363 500
574, 287 75 44799.25 451 44650.40 485 44682.80 415 44633.91 377 500

150 34521.44 850 34501.63 944 34502.26 753 34457.48 442 500
575, 287 75 8319.41 654 8309.18 706 8335.96 501 8307.45 335 500

150 6683.95 892 6683.48 996 6683.95 822 6683.48 370 500
654, 327 75 34751.11 861 34809.59 1117 34795.62 551 34722.55 451 1200

150 30107.18 1325 30092.77 1901 30103.64 1004 30090.78 1108 1200
657, 328 75 61970.46 2001 61978.58 1290 61977.86 684 61941.07 502 1200

150 47355.97 2430 47351.50 2624 47413.26 1443 47397.51 1185 1200
666, 333 75 3509.17 706 3500.22 981 3505.82 663 3496.59 414 1200

150 2821.43 1441 2821.70 2043 2820.87 1920 2820.63 773 1200
724, 362 75 56600.13 1374 56377.24 1435 56245.65 973 56510.83 700 1200

150 42874.35 4869 42855.57 3694 42847.26 2273 42835.26 1060 1200
783, 391 75 12560.76 2839 12539.51 2466 12529.96 1039 12542.81 875 1200

150 9509.07 2766 9495.57 3748 9502.96 2024 9495.57 1180 1200
1000, 500 75 27246908 9100 27280794 13092 27428732 4955 27257080 3333 7200

150 20196378 27869 20216576 21587 20258258 8085 20229668 5903 7200

• The best solutions are in bold.

60 instances.
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Chapter 4

The Generalized Covering Salesman

Problem

4.1 Introduction

The Traveling Salesman Problem (TSP) is one of the most celebrated combinatorial op-

timization problems. Given a graph G = (N,E), the goal is to find the minimum length

tour of the nodes in N , such that the salesman, starting from a node, visits each node

exactly once and returns to the starting node (see Dantzig et al., [19]). In recent years,

many new variants such as the TSP with profits [24], the Clustered TSP [11], the Gen-

eralized TSP [27], the Prize Collecting TSP [28], and the Selective TSP [44] have been

introduced and studied. The recent monograph by Gutin and Punnen [35] has a nice

discussion of different variations of the TSP and solution procedures.

Current [16] defined and introduced a variant of the TSP called the Covering Salesman

Problem (CSP). In the CSP the goal is to find a minimum length tour of a subset of n given

nodes, such that every node i not on the tour is within a predefined covering distance di

from a node on the tour. If di = 0 or di < minjcij, where cij denotes the shortest distance

between nodes i and j, the CSP reduces to TSP (thus it is NP-hard). Current and

Schilling [17] referred to several real world examples, such as routing of rural healthcare

delivery teams where the assumption of visiting each city is not valid since it is sufficient

for all cities to be near to some stops on the tour (the inhabitants of those cities which are

not in the tour are expected to go to their nearest stop). Current and Schilling [17] also

suggested a heuristic for the CSP where in the first step a Set Covering Problem (SCP)

over the given nodes is solved. Specifically, to solve the related Set Covering Problem, a

zero-one n × n matrix, i.e. matrix A, in which the rows and columns correspond to the

nodes is considered. If node i can be covered by node j (i.e., di ≥ cij) then aij is equal to
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1, otherwise it is 0. Since the value of covering distance di varies for each node i, it should

be clear that A is not a symmetric matrix, but for each node i we have aii = 1. We should

also mention that in the CSP there is no cost associated with the nodes, so the cost of

columns of matrix A are all equal to one. Therefore a unit cost Set Covering Problem is

solved in the first step of this algorithm to obtain the cities visited on the tour. Then the

algorithm finds the optimal TSP tour of the nodes over these cities. Since there might

be multiple optimal solutions to the SCP, Current and Schilling suggest that all optimal

solutions to the SCP be tried out (i.e., have an optimal TSP tour constructed over the

nodes selected in the optimal SCP), and the best solution be selected. The algorithm is

demonstrated on a sample problem, but no additional computational results are reported.

Arkin and Hassin [3] introduced a geometric version of the Covering Salesman Prob-

lem. In this problem each node specifies a compact set in the plane, its neighborhood,

within which the salesman should meet the stop. The goal is computing the shortest

length tour that intersects all of the neighborhoods and returns to the initial node. In

fact, this problem generalizes the Euclidean Traveling Salesman Problem in which the

neighborhoods are single points. Unlike the CSP in which each node i should be within a

covering distance di from the nodes which are visited by the tour, in the geometric version

it is sufficient for the tour to intersects the specific neighborhoods without visiting any

specific node of the problem. Arkin and Hassin [3] presented simple heuristics for con-

structing tours for a variety of neighborhood types. They show that the heuristics provide

solutions where the length of the tour is guaranteed to be within a constant factor of the

length of the optimal tour.

Other than Current [16], Current and Schilling [17], and Arkin and Hassin [3] the CSP

does not seem to have got much attention in the literature. However, some generalizations

of the CSP have appeared in the literature. One generalization and closely related problem

discussed in Gendreau et al. [34] is the Covering Tour Problem (CTP). Here, some subset

of the nodes must be on the tour while the remaining nodes need not be on the tour. Like

the CSP, a node i not on the tour must be within a predefined covering distance di from a

node on the tour. When the subset of nodes that must be on the tour is empty the CTP

reduces to the CSP, and when the subset of nodes that must be on the tour consists of

the entire node set the CTP reduces to the TSP. Gendreau et al. [34] proposed a heuristic

that combines GENIUS, a high quality heuristic for the TSP [33], with PRIMAL1, a high

quality heuristic for the SCP [4].

Vogt et al. [79] considered the Single Vehicle Routing Allocation Problem (SVRAP)

that further generalizes the CTP. Here, in addition to tour (routing) costs, nodes covered

by the tour (that are not on it) incur an allocation cost, and nodes not covered by the tour

incur a penalty cost. If the penalty costs are set high and the allocation costs are set to
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0, the SVRAP reduces to the CTP. Vogt et al. [79] discussed a tabu search algorithm for

the SVRAP that includes aspiration, path relinking and frequency based-diversification.

All of the earlier generalizations of the CSP assume that when a node is covered, its

entire demand can be covered. However, in many real-world applications this is not neces-

sarily the case. As an example, suppose we have a concert tour which must visit or cover

several cities. Since each show has a limited number of tickets, and large metropolitan ar-

eas are likely to have ticket demand which exceeds ticket supply for a single concert, there

must be concerts on several nights in each large city in order to fulfill the ticket demand.

Also in the rural healthcare delivery problem, discussed in Current and Schilling [17],

when we create a route for the rural medical team, on each day a limited number of peo-

ple can benefit from the services, so the team should visit some places more than once.

Consequently, rather than assuming that a node’s demand is completely covered when

either it or a node that can cover it is visited, we generalize the CSP by specifying the

coverage demand ki which denotes the number of times a node i should be covered. In

other words, node i must be covered ki times by a combination of visits to node i and

visits to nodes that can cover node i. If ki=1 for all nodes, we obtain the CSP. This gen-

eralization significantly complicates the problem, and is quite different from the earlier

generalizations that effectively deal with unit coverage (i.e., ki=1). In addition, since in

many applications there is a cost for visiting a node (e.g., cost of hotel for staying in a

city for one night) we include node visiting costs (for nodes on the tour) in the GCSP. In

the next section, we introduce and explain in more detail three different variations that

can arise in the GCSP (that deal with whether a node can be revisited or not). All these

variants are strongly NP-hard, since they contain the classical TSP as a special case.

The rest of this chapter1 is organized as follows. In Section 4.2, we formally define

the generalized covering salesman problem, and describe three variants. We also describe

a mathematical model for the problem. Section 4.3 describes two local search heuristics

for the GCSP. Section 4.4 discusses our computational experience on the three different

variants of the GCSP, as well as the CSP and the Generlized TSP (GTSP), which are

special cases of the GCSP. Section 4.5 provides concluding remarks and discusses some

possible extensions of the GCSP.

1The results of this chapter appear in: Golden B., Naji-Azimi Z., S. Raghacan, Salari M., and Toth
P.: “The Generalizaed Covering Salesman Problem”. INFORMS Journal on Computing. Submitted for
publication [51].
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4.2 Problem Definition

In the Generalized Covering Salesman Problem (GCSP), we are given a graph G = (N,E)

with N = {1, 2, · · · , n} and E = ({i, j} : i, j ∈ N, i < j) as the node and edge sets re-

spectively. Without loss of generality, we assume the graph is complete with edge lengths

satisfying the triangle inequality, and let cij denote the cost of edge {i, j} (cij may be

simply set to the cost of the shortest path from node i to j). Each node i can cover a

subset of nodes Di (note that i ∈ Di, and when coverage is based on distance Di, it can

be computed easily from cij) and has a predetermined coverage demand ki. Fi is the fixed

cost associated with visiting node i, and a solution is feasible if each node i is covered at

least ki times by the nodes in the tour. The objective is to minimize the total cost which

is the sum of the tour length and the fixed costs associated with the visited nodes.

We discuss three variants of the GCSP: Binary GCSP, Integer GCSP without overnight

and Integer GCSP with overnight. In the following we explain each of these variants.

Binary Generalized Covering Salesman Problem: In this version, the tour is not

allowed to visit a node more than once and after visiting a node we must satisfy the

remaining coverage demand of that node by visiting other nodes that can cover it. We

use the qualifier binary as this version only permits a node to be visited once.

Integer Generalized Covering Salesman Problem without Overnights: Here a

node can be visited more than once, but overnight stay is not allowed. Therefore, to have

a feasible solution, after visiting a node, the tour can return to this node, if necessary,

after having visited at least one other node. In other words, the tour is not allowed to

visit a node more than one time consecutively. We use the qualifier integer as this version

allows a node to be visited multiple (or an integer number of) times.

Integer Generalized Covering Salesman Problem with Overnights: This ver-

sion is similar to the previous one, but overnight stay at a node is allowed.

In the CSP, ki = 1 for all nodes i ∈ N . Clearly, the CSP is a special case of the binary

GCSP. When there are unit demands there is no benefit to revisiting a node, consequently

the CSP can also be viewed as a special case of the integer variants of the GCSP. Thus

the CSP is a special case of all three variants of the GCSP. As the TSP is a special case

of the CSP, all three GCSP variants are strongly NP-hard.

We now discuss the issue of feasibility of a given instance of the problem. For the

binary GCSP, the problem is feasible if demand is covered when all nodes in the graph
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are visited by the tour. In other words if hj denotes the number of nodes that can

cover node j (i.e., the number of nodes i for which j ∈ Di), then the problem is feasible

if kj ≤ hj. For the integer GCSP with and without overnights, the problem is always

feasible, since a tour on all nodes in the graph may be repeated until all demand is covered.

We now formulate the three different variants of the GCSP. We first provide an in-

teger programming formulation for the binary GCSP, and then an integer programming

formulation for the integer GCSP. Our models are on directed graphs (for convenience,

as they can easily be extended to asymmetric versions of the problem). Hence we replace

the edge set E by an arc set A, where each edge {i, j} is replaced by two arcs (i, j) and

(j, i) with identical costs. Also, from the problem data we have available

aij =

{
1 if node j can cover node i,

0 otherwise
(4.1)

We introduce the decision variables:

wi =

{
1 if node i is on the tour,

0 otherwise
(4.2)

xij =

{
1 if arc (i, j) is chosen to be in the solution,

0 otherwise
(4.3)

The integer programming model can now be stated as:

BinaryGCSP:

min
∑

(i,j)∈A

cijxij +
∑
i∈N

Fiwi (4.4)

subject to: ∑
j:(j,i)∈A

xji =
∑

j:(i,j)∈A

xij = wi ∀i ∈ N, (4.5)

∑
j∈N

aijwj ≥ ki ∀i ∈ N, (4.6)∑
l∈S

∑
k∈N\S

xlk +
∑
k∈N\S

∑
l∈S

xkl ≥ 2(wi + wj − 1) S ⊂ N, 2 ≤ |S| ≤ n− 2 (4.7)

i ∈ S, j ∈ N \ S,

xij ∈ {0, 1} ∀(i, j) ∈ A, (4.8)
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wi ∈ {0, 1} ∀(i) ∈ N. (4.9)

The objective is to minimize the sum of the tour costs and the node visiting costs.

Constraint set 4.5 ensures that for each on-tour customer, we have one incoming and one

outgoing arc. Constraint set 4.6 specifies that the demand of each node must be covered.

Constraint set 4.7 is a connectivity constraint that ensures that there are no subtours.

Note that there are an exponential number of connectivity constraints. Constraints 4.8

and 4.9 define the variables as binary.

For the integer GCSP without overnights we introduce two additional variables to rep-

resent the number of times a node is visited, and the number of times an arc is traversed

in the tour.

yi: Number of times that node i is visited by the tour.

zij: Number of times arc (i, j) is traversed by the tour.

The integer programming model can now be stated as:

IntegerGCSP:

min
∑

(i,j)∈A

cijzij +
∑
i∈N

Fiyi (4.10)

subject to: ∑
j:(j,i)∈A

zji =
∑

j:(i,j)∈A

zij = yi ∀i ∈ N, (4.11)

∑
j∈N

aijyj ≥ ki ∀i ∈ N, (4.12)

yi ≤ Lwi ∀i ∈ N, (4.13)

zij ≤ Lxij ∀(i, j) ∈ A, (4.14)∑
l∈S

∑
k∈N\S

xlk +
∑
k∈N\S

∑
l∈S

xkl ≥ 2(wi + wj − 1) S ⊂ N, 2 ≤ |S| ≤ n− 2 (4.15)

i ∈ S, j ∈ N \ S,

xij ∈ {0, 1}, zij ∈ Z+ ∀(i, j) ∈ A, (4.16)

wi ∈ {0, 1}, yi ∈ Z+ ∀(i) ∈ N. (4.17)

where L is a sufficiently large positive value. The objective is to minimize the sum

of the tour costs and the node visiting costs. Constraint set 4.11 ensures that if node i

is visited yi times, then we have yi incoming and yi outgoing arcs. Constraint set 4.12
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specifies that the demand of each node must be covered. Constraint sets 4.13 and 4.14

are linking constraints, ensuring that wi and xij are 1 if yi or zij are greater than 0 (i.e.,

if a node is visited or an arc is traversed). Note that it suffices to set L = maxi∈N {ki}.
Constraint set 4.15 is a connectivity constraint that ensures that there are no subtours.

Note again, that there are an exponential number of connectivity constraints. Finally,

constraint sets 4.16 and 4.17 define the variables as binary and integer as appropriate. For

the integer GCSP with overnights, the above integer programming model (IntegerGCSP)

is valid if we augment the arc set A with self loops. Specifically, we add to A the arc set

{(i, i) : i ∈ N} (or A = A ∪ {(i, i) : i ∈ N}) with cii the cost of self loop arcs (i, j) set to

0.

Note that both the binary GCSP and the integer GCSP formulations rely heavily on

the integrality of the node variables. Consequently, the LP-relaxations of these models

can be quite poor. Further, these models have an exponential number of constraints,

implying that this type of model can only be solved in a cutting plane or a branch-and-

cut framework. Thus considerable strengthening of the above formulations is necessary,

before they are viable for obtaining exact solutions to the GCSP. In this paper, we focus

on local search algorithms to develop high-quality solutions for the GCSP.

4.3 Local Search Algorithms

In this section we propose two local search solution procedures, and refer to them as LS1

and LS2, respectively. They are designed to be applicable to all variants of GCSP. In

both algorithms, we start from a random initial solution. As we discussed in Section 4.2,

assuming that a problem is feasible (which can be checked easily for the binary GCSP)

any random order of the n nodes produces a feasible solution for the binary GCSP, and

repeating this ordering until all demand is covered produces a feasible solution for the

integer GCSP. We provide an initial solution to our local search heuristics by considering

a random initial ordering of the nodes in the graph and repeat this ordering for the integer

variants (if necessary) to cover all of the demand.

A solution is represented by the sequence of nodes in the tour. Thus for the binary

GCSP no node may be repeated on the tour, while in the integer GCSP nodes may be

repeated on the tour. For the integer GCSP with no overnights a repeated node may not be

next to itself in the sequence, while in the integer GCSP with overnights a repeated node

is allowed to be next to itself in the sequence. Thus 〈1, 2, 3, 4, 5, 8, 9〉, 〈1, 2, 3, 4, 3, 2, 8〉,
〈1, 1, 2, 3, 3, 8〉 represent tour sequences that do not repeat nodes, repeat nodes but not

consecutively, and repeat nodes consecutively. Observe that if the costs are non-negative,
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then in the integer GCSP with overnights there is no benefit to going away from a node

and returning to revisit it.

4.3.1 LS1

LS1 tries to find improvements in a solution S by replacing some nodes of the current

tour. It achieves this in a two step manner. First, LS1 deletes a fixed number of nodes.

(The number of nodes removed from the tour is equal to a predefined parameter, Search-

magnitude, multiplied by the number of nodes in the current tour. If this number is

greater than 1 it is rounded down, otherwise it is rounded up.) It removes a node k from

the current solution S with a probability that is related to the current tour and computed

as:

Pk = Ck/
∑
s∈S

Cs (4.18)

where Ck is the amount of decrease in the tour cost by deleting node k from S (while

keeping the rest of the tour sequence as before). Since the deletion of some nodes from the

tour S may result in a tour S ′ that is no longer feasible, LS1 attempts to make the solu-

tion feasible by inserting new nodes into S ′. We refer to this as the Feasibility Procedure.

Suppose that P is the set of nodes that can be added to the current tour. For the binary

GCSP P, consists of the nodes not in the tour S ′, while in the integer GCSP P, consists of

all nodes that do not appear more than L times in S ′. We select the node k ∈ P for which

Ik/N
2
k = minj∈P

(
Ij/N

2
j

)
(4.19)

Here Ik is the amount of increase in the tour cost by insering node k into its best position

in the tour, while Nk is the number of uncovered nodes (or uncovered demand) which can

be covered by node k. We update the calculation of Nk for all nodes in P and repeat

the selection and insertion of nodes procedure until we obtain a feasible solution. After

this step, LS1 checks for the possible removal of “redundant” nodes from the current tour

in the Delete Redundant Nodes Procedure. A node is redundant if, by removing it, the

solution remains feasible.

Next, in the case LS1 finds an improvement, i.e., the cost of S ′ is less than the cost

of S, it tries to improve the tour length (and thus the overall cost) by applying the

Lin-Kernighan Procedure [47] to the solution S ′. We apply the Lin-Kernighan code LKH

version 1.3 of Helsgaun [36] that is available for download on the web. Since the procedure

is computationally expensive, we only apply it after max k (a parameter) improvements

over the solution S.

In order to get out locally optimum solutions, and to search through a larger set in

56



the feasible solution space, we apply a Mutation Procedure whenever the algorithm is not

able to increase the quality of the solution for a given number of consecutive iterations.

In the mutation procedure, a node is selected randomly and if the node does not belong

to the solution it is added to the solution in its best place (i.e. the place which causes the

minimum increase in the tour length); otherwise it is removed from the solution. In the

latter case, the algorithm calls the feasibility procedure to ensure the solution is feasible,

and updates the best solution if necessary.

To add diversity to the search procedure, we allow downhill moves with respect to

the best solution that LS1 has found. In other words, if the cost of the solution S ′ that

LS1 obtains is better than (1 + α) times the best solution found we keep it as the current

solution (over which we try and find an improvement), otherwise we use the best solution

obtained so far as the current solution. The stopping criterion for LS1 is a given number

of iterations that we denote by max iter. The pseudo-code of LS1 is given in Algorithm 4.

The parameters to be tuned for LS1 and their best values obtained in our computational

testing are described in Table 4.1 (see Section 4.4).

4.3.2 LS2

This local search procedure tries to improve the cost of a solution by either deleting a node

on the tour if the resulting solution is feasible; or by extracting a node and substituting

it with a promising sequence of nodes. In contrast to LS1, this local search algorithm

maintains feasibility (i.e., it only considers feasible neighbors in the local search neigh-

borhood). LS2 mainly consists of two iterative procedures: the Improvement Procedure

and the Perturbation Procedure. In the Improvement Procedure the algorithm considers

extraction of nodes from the current tour in a round robin fashion. (In other words, given

some ordering of nodes on the tour, it first tries to delete the first node on the tour, and

then it tries to delete the second node on the tour, and so on, until it tries to delete the

last node on the tour.) If by removing a node on the tour the solution remains feasible,

the tour cost has improved and the node is deleted from the tour. On the other hand, ex-

tracting a node from the tour may cause some other nodes to lose their covering demands

(meaning that their demand is no longer fully covered and the solution becomes infeasi-

ble). Consequently, in such cases we try to obtain a feasible solution by substituting the

deleted node with a new subsequence of nodes. To this aim, the algorithm considers the

T nodes nearest to the extracted node and generates all the promising subsequences with

cardinality one or two. Then it selects the subsequence s that has the minimum insertion

cost (i.e., the cost of the tour generated by substituting the deleted node by subsequence s

minus the cost of tour with the deleted node). In the case of improvement in the tour cost
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(i.e., when the minimum insertion cost is negative) we make this substitution; otherwise,

we disregard it (i.e. reinsert the deleted node back into its initial position) and continue.

The improvement procedure is repeated until it cannot find any improvements (i.e., no

change is found while extracting nodes from the current tour in a round robin fashion).

In the Perturbation Phase, LS2 tries to escape from a locally optimum solution by

perturbing the solution. In the perturbation procedure we iteratively add up to K nodes

to the tour. It randomly selects one node from among the nodes eligible for addition to

the tour (in the binary GCSP the nodes must be selected from those out of the current

tour, while for the two other GCSP variants the nodes can be selected as well from those

visited in the current tour) and inserts it in the tour in its best possible position. Since

the tour is feasible prior to the addition of these nodes, the tour remains feasible upon

addition of these K nodes. In one iteration of the procedure the improvement phase

and perturbation phase are iteratively applied J times. After one iteration, when the

best solution has improved (i.e., an iteration found a solution with lower cost) we use the

Lin-Kernighan Procedure [47], to improve the current tour length (and thus the cost of the

solution). The stopping criterion for LS2 is a given number of iterations that we denote

by max iter. The pseudo-code for LS2 is given in Algorithm 5, and the parameters to be

tuned for LS2 and their best values obtained in our computational testing are described

in Table 4.2 (see Section 4.4).

4.4 Computational Experiments

In this section we report on our computational experience with the two local search

heuristics LS1 and LS2 on the different GCSP variants. We first consider the CSP, and

compare the performance of the two proposed heuristics LS1 and LS2, with that of the

method proposed by [17] for the CSP. Next we compare LS1 and LS2 on a large number

of GCSP instances for the three variants. We also consider a Steiner version of the GCSP,

and report our experience with the two local search heuristics. Finally, in order to compare

the quality of the solutions found by the two heuristics, we compare them with existing

heuristics for the GTSP where there exist well studied instances in the literature. All of

the experiments suggest that the heuristics are of a high quality and run very rapidly.

4.4.1 Test Problems

Since there are no test problems in the literature for the CSP (as well as the variants of

the GCSP we introduce), we created datasets based on the TSP library instances (Reinelt,

1991). In particular we constructed our datasets based on 16 Euclidean TSPLIB instances
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Begin
S := An initial random tour of n nodes, S* := S and BestCost := Cost(S* );
CS= Decrease in the tour cost by short cutting node s;
IS= Increase in the tour cost by adding node s to its best position in the tour;
NS= max{1, Number of uncovered nodes covered by node s};
No Null Iter= Number of iterations without improvement;
Set k := 0; No Null Iter := 0;
for i=1,. . . ,max iter do

for j=1,. . . ,Search-magnitude×|S| do
Delete node k from S according to the probability Ck/

∑
s∈S Cs ;

end
S′:= Restricted solution obtained by shortcutting the nodes deleted in the previous step;
Apply Feasibility Procedure(S′);
Apply Delete Redundant Nodes Procedure(S′);
if Cost(S′) < Cost(S) then

If (k=max k) Obtain TSP tour(S′) by calling Lin-Kernighan Procedure and set k := 0;
Else k := k+1;

end
if Cost(S′) > BestCost ×(1+α) then

S :=S* ;
No Null Iter := No Null Iter + 1;

end
else

S := S′;
if Cost(S) < BestCost then

Update S∗ := S, BestCost := Cost(S) and No Null Iter := 0;
end

end
If No Null Iter > Mutation Parameter then apply Mutation Procedure(S);

end
Obtain TSP tour(S*) by calling Lin-Kernighan Procedure. Output the solution S*;
End.

Feasibility Procedure(S′):
P = The set of nodes that can be entered into the solution;
while there exist uncovered nodes do

Select node k ∈ P such that Ik / N2
k = minj∈P (Ij / N2

j );

Insert node k in its best position in S′;
For each node j update the remaining coverage demand, Ij and Nj ;

end

Delete Redundant Nodes Procedure(S′):
for i ∈ S′ do

If by removing node i from S′ the solution remains feasible, then remove node i ;
end

Mutation Procedure(S);
Select a random node k from the set of nodes P ;
If node k /∈ S then add node k to S in its best position;
Else remove node k from S and call Feasibility Procedure(S);
If Cost(S) < BestCost then update S* := S, BestCost := Cost(S).

Algorithm 4: Local Search Algorithm 1 (LS1) for the GCSP
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whose size ranged from 51 to 200 nodes. In the datasets created, each node can cover its

7, 9 or 11 nearest nodes (resulting in 3 instances for each TSPLIB instance), and each

node i must be covered ki times, where ki is a randomly chosen integer number between

1 and 3. We generated the datasets to ensure that a tour over all of the nodes covers

the demand (i.e., we ensured that the binary GCSP instances were feasible). Although

the cost for visiting a node can be different from node to node, for simplicity we consider

the node visiting costs to be the same for all nodes in an instance. In fact, if we assign

a high node visiting cost, the problem becomes a Set Covering Problem (as the node

visiting costs dominate the routing cost) under the assumption that a tour over all the

nodes covers the demand. On the other hand, if the node visiting cost is insignificant

(i.e., the routing costs dominate), there is no difference between the integer GCSP with

overnight and the CSP. This is because if there is no node visiting cost, a salesman will

stay overnight at a node (at no additional cost) until he/she covers all the demand that

can be covered from that node. After testing different values for the node visiting cost,

to ensure that its effect was not to either extreme (Set Covering Problem or CSP), we

fixed the node visiting cost value to 50 for all the instances (which turned out to be an

appropriate amount for the different kinds of instances studied in this paper). In this

fashion we constructed 48 datasets for our computational work.

After considerable experimentation on a set of small test instances, we determined the

best values of the parameters to be used in both LS1 and LS2. Tables 4.1 and 4.2 show

the different values that were tested for various parameters and the best value obtained

for the parameters in LS1 and LS2. Both LS1 and LS2 were implemented in C and tested

on a Windows Vista PC with an Intel Core Duo processor running at 1.66 GHz with 1

GB RAM. As is customary in testing the performance of randomized heuristic algorithms,

we performed several independent executions of the algorithms. In particular, for each

benchmark instance, 5 independent runs of the algorithms LS1 and LS2 were performed,

with 5 different seeds for initializing the random number generator and the best and the

average performances of the two heuristics are provided.

In all tables reporting the computational performance of the heuristics, the first column

is related to the instance name which includes the number of nodes. The second column

(NC) gives the number of nearest nodes that can be covered by each node. Moreover,

for each method the best and the average cost, the number of nodes in the best solution

(NB), the average time to best solution (Avg.TB), i.e. the average time until the best

solution is found (note the local search heuristic typically continues after this point until

it reaches its termination criterion), and the average time (Avg.TT) are reported (TT is

the total time for one run of the local search heuristic). In all tables, in each row the best

solution is written in bold and the last two rows give the average of each column (Avg)
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Begin
S := An initial random tour of n nodes, S* := S and BestCost := Cost(S* );
N (S) = Number of nodes in S ;
for i=1,. . . ,max iter do

bestimprove := false;
for j=1,. . . ,J do

improve := true;
Repeat
Improvement Procedure(S,improve)
Until (improve = false)
if Cost(S) < BestCost then

S∗ := S ;
BestCost := Cost(S);
bestimprove := true;

end
Else S := S∗;
Perturbation Procedure(S);

end
if bestimprove=true then

Obtain TSP tour(S∗) by calling Lin-Kernighan Procedure. Output the solution S∗;
S := S∗ and BestCost := Cost(S∗);

end

end
End.

Improvement Procedure(S, improve):
Begin
improve :=false;
r :=1;
while r ≤ N(S) do

Extract the rth node of the tour from the current solution S ;
if the new solution (obtained from extracting the rth node of S) is feasible then

S := new solution;
improve := true;

end
else

Generate all subsequences with cardinality 1 or 2, by considering the T closest nodes to the extracted
node;
Extra Cost := Extra cost for the subsequence with the minimum insertion cost;
if Extra Cost < 0 then

Update S by substituting the new subsequence for the extracted node;
improve := true;

end

end
r := r+1;

end

Perturbation Procedure(S):
Begin
for i=1,. . . ,K do

Randomly select an eligible node;
Insert the node in its best feasible position in the tour;

end
End.

Algorithm 5: Local Search Algorithm 2 (LS2) for the GCSP
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Table 4.1: Parameters for LS1.
Parameters Different values tested Best value
Search-magnitude {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} 0.2
Mutation parameter {5, 10, 15, 20} 10
max k {5, 10, 15, 20} 10
α {0, 0.1, 0.01, 0.001} 0.001
max iter {1500, 3500, 5500, 7500, 8500} 3500 (CSP and Binary GCSP)

7500 (Integer GCSP)

Table 4.2: Parameters for LS2.
Parameters Different values tested Best value
J {50, 100, 150, 200, 250, 300} 200
K {5, 10, 15, 20} 10
T {5, 10, 15} 10
max iter {15, 20, 25, 30, 35, 40, 45, 50, 55, 60} 25 (CSP and Binary GCSP)

50 (Integer GCSP)

and the number of best solutions found by each method (No.Best), respectively. All the

computing times are expressed in seconds.

4.4.2 Comparison of LS1, LS2 and Current and Schilling’s Heuris-

tic for the CSP

Since Current and Schilling [17] introduced the CSP and proposed a heuristic for it,

we compare the performance of LS1 and LS2 against their heuristic. Recall, their al-

gorithm was described in Section 4.1. Since there are no test instances or computa-

tional experiments reported in Current and Schilling’s paper, we coded their algorithm

to compare the performance of the heuristics. For Current and Schilling’s method, we

used CPLEX 11 [39] to generate all optimal solutions of the SCP, and since solving

the TSP to optimality is computationally quite expensive on these instances we use the

Lin-Kernighan Procedure [47] to find a TSP tour for each solution. Sometimes finding all

the optimal solutions of an SCP instance is quite time consuming, so we only consider

those optimal solutions for the SCP that can be found in less than 10 minutes of running

time.

Table 4.3 reports the results obtained by LS1, LS2 and our implementation of Current

and Schilling’s method. In this table, the number of optimal solutions (NO) of the set

covering problem is given. In Table 4.3 instances for which all the optimal solutions to

the set covering problem cannot be obtained within the given time threshold are shown

with an asterisk. As can be seen in Table 4.3 for the CSP, both LS1 and LS2 can obtain,

in a few seconds, better solutions than Current and Schilling’s method. The results of

both the heuristics in all except one case (where they are tied with Current and Schilling’s

method) are better than Current and Schilling’s method, while they are several orders
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Table 4.3: Comparison of Current and Schilling’s method with LS1 and LS2 for CSP.
Instance NC Current and Schilling LS1 LS2

NO Cost NB TB TT BestCost Avg.Cost NB Avg.TB Avg.TT BestCost Avg.Cost NB Avg.TB Avg.TT
Eil 51 7 13 194 7 0.07 0.21 164 164.0 10 0,20 1,48 164 164.0 10 0.04 0.77

9 309 169 6 1.92 1.97 159 159.0 8 0.10 1.34 159 159.0 9 0.03 0.61
11 282 167 5 0.59 1.70 147 147.0 7 0.04 1.22 147 147.0 8 0.03 0.55

Berlin 52 7 2769 4019 8 19.39 21.04 3887 3966.2 11 0.08 1.68 3887 3887.0 11 0.26 0.67
9 11478 3430 7 26.08 94.14 3430 3435.8 7 0.10 1.41 3430 3430.0 7 0.04 0.62
11 11 3742 5 0.22 0.26 3262 3262.0 6 0.02 1.60 3262 3262.0 6 0.02 0.34

St 70 7 32832 297 10 232.24 454.07 288 288.0 11 0.11 1.86 288 288.0 12 0.05 1.03
9 18587 271 9 173.87 176.00 259 259.0 10 0.05 1.79 259 259.0 10 0.05 1.22
11 1736 269 7 13.21 13.74 247 247.0 10 0.16 1.98 247 247.0 10 0.04 0.88

Eil 76 7 241 241 11 1.15 2.46 207 210.6 15 0.53 2.09 207 207.0 15 0.17 1.11
9 1439 193 9 7.43 13.95 186 186.8 11 0.26 1.98 185 185.0 11 0.05 1.13
11 7050 180 8 30.48 78.88 170 176.4 11 0.05 2.14 170 170.0 11 0.05 1.07

Pr 76 7 26710 53255 11 54.20 170.41 50275 51085.0 14 0.55 1.86 50275 50275.0 14 0.78 1.27
9 326703* 45792 10 6743.66 9837.36 45348 45348.0 12 0.27 2.01 45348 45348.0 12 0.26 1.12
11 20 45955 7 0.11 0.20 43028 43418.4 10 0.48 1.95 43028 43028.0 10 0.07 1.03

Rat 99 7 3968 572 14 22.74 32.75 486 486.4 18 0.08 2.20 486 486.0 18 0.16 1.77
9 170366 462 12 1749.66 2729.67 455 455.6 15 0.67 2.38 455 455.0 15 0.11 1.92
11 16301 456 10 88.87 140.18 444 444.8 12 0.43 2.25 444 444.0 12 0.09 1.75

KroA 100 7 208101* 10306 15 6303.03 6475.95 9674 9674.0 19 0.38 2.06 9674 9674.0 19 0.31 2.04
9 95770 9573 12 524.49 1365.42 9159 9159.0 15 0.13 2.28 9159 9159.0 15 0.14 1.85
11 33444 9460 10 409.47 433.97 8901 8912.2 13 0.19 2.56 8901 8901.0 13 0.13 1.62

KroB 100 7 4068 11123 14 45.62 48.35 9537 9537.0 20 0.39 1.99 9537 9537.0 20 0.33 1.93
9 133396 9505 12 2112.57 2623.76 9240 9262.2 15 0.54 2.13 9240 9240.0 15 0.16 1.99
11 90000* 9049 10 1056.27 2895.35 8842 8842.6 13 1.34 2.62 8842 8842.0 13 0.09 1.83

KroC 100 7 129545* 10367 15 3391.82 4212.98 9728 9728.6 18 0.72 2.46 9723 9723.0 17 0.17 1.97
9 5028 9952 12 35.91 52.25 9171 9184.4 13 0.12 2.45 9171 9171.0 13 0.19 1.91
11 75987* 9150 10 1389.84 2482.00 8632 8632.0 13 0.14 2.74 8632 8632.0 13 0.09 1.85

KroD 100 7 1392 11085 14 10.29 15.58 9626 9626.0 20 1.35 2.39 9626 9626.0 20 0.21 1.83
9 700 10564 11 6.18 7.74 8885 8903.8 13 0.75 2.38 8885 8885.0 13 0.12 2.04
11 85147* 9175 10 968.39 2761.51 8725 8730.4 13 0.48 2.83 8725 8725.0 13 0.13 1.89

KroE 100 7 92414* 11323 15 1971.32 3075.58 10150 10154.8 19 0.14 2.48 10150 10150.0 19 1.06 1.84
9 85305* 9095 12 1918.72 2764.70 8992 8992.0 13 0.33 2.69 8991 8991.0 14 0.16 1.90
11 70807* 8936 10 609.81 2335.43 8450 8450.0 13 0.36 2.89 8450 8450.0 13 0.08 1.97

Rd 100 7 2520 4105 14 24.43 4196.23 3461 3478.2 18 0.31 2.53 3461 3485.6 18 0.24 1.83
9 95242* 3414 12 1798.14 3118.93 3194 3211.4 16 0.91 2.65 3194 3194.0 16 0.25 1.76
11 1291 3453 10 8.60 22.11 2944 2944.0 12 0.44 3.1 2922 2922.0 13 0.14 1.54

KroA150 7 97785* 12367 22 2252.50 3499.43 11480 11548.8 27 0.89 2.68 11423 11481.0 28 1.97 2.91
9 69377* 11955 17 2454.99 2477.69 10072 10072.0 23 0.71 2.78 10056 10056.0 26 1.91 2.75
11 169846* 10564 15 5483.07 5518.26 9439 9439.0 21 1.06 2.82 9439 9439.0 21 0.39 2.68

KroB 150 7 14400 12876 21 196.85 270.94 11490 11517.0 30 1.39 2.58 11457 11463.6 30 1.66 3.08
9 137763* 11774 18 2760.03 4572.81 10121 10173.4 24 1.19 2.77 10121 10121.0 24 0.64 2.78
11 1431 10968 14 26.64 46.96 9611 9639.8 21 0.61 2.88 9611 9611.0 21 0.28 2.88

KroA 200 7 53686* 14667 28 537.60 1170.37 13293 13345.2 34 1.05 3.25 13285 13313.8 34 3.99 4.28
9 64763* 12683 23 1504.07 1628.36 11710 11753.6 29 1.23 2.80 11708 11725.0 28 3.25 3.88
11 29668* 12736 19 398.25 671.55 10748 10813.4 29 1.04 3.16 10748 10814.8 29 3.10 3.65

KroB 200 7 107208* 14952 29 365.08 3351.89 13280 13297.6 36 0.46 2.83 13051 13147.4 35 2.24 4.38
9 38218* 13679 23 637.66 805.04 11864 11898.6 29 1.02 2.98 11864 11937.8 29 2.30 4.02
11 67896* 12265 20 493.64 1410.60 10644 10714.0 29 0.98 2.81 10644 10650.4 29 3.10 3.72

Avg 55896 9808.02 13 1017.94 1626.68 9031.4 9070.3 17 0.52 2.35 9023.6 9031.5 17 0.65 1.95
No.Best 1 38 48

of magnitude faster than Current and Schilling’s method. Between LS1 and LS2, LS2

outperforms LS1 as it obtains the best solution in all 48 instances, while LS1 only obtains

the best solution in 38 out of the 48 instances.

From Table 4.3 we can make the following counter-intuitive observation. Sometimes by

selecting a set of nodes with a larger cardinality, we are able to find a shorter tour length,

so the optimal solution of the Set Covering Problem is not necessary a good solution

for the Covering Salesman Problem. Figures 4.1 and 4.2 illustrate two examples of CSP

(Rat99 and KroA200) in which, by increasing the number of nodes in the tour, the tour

length is decreased.
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Figure 4.1: An example of decreasing the tour length by increasing the number of nodes
in Rat99 (NC=7).

Figure 4.2: An example of decreasing the tour length by increasing the number of nodes
in KroA200 (NC=7).
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4.4.3 Comparison of LS1 and LS2 on GCSP Variants

In Table 4.4 the results of the two local search heuristics on the binary GCSP are given.

As can be seen in this table, for the binary GCSP the two local search heuristics are

very competitive with each other. Although on average LS2 is a bit faster than LS1, in

terms of the average cost, average time to best solution, and the number of best solutions

found LS1 is better than LS2. Over the 48 instances, the two heuristics were tied in 22

instances. While, in 14 instances LS1 is strictly better than LS2, and in 12 instances LS2

is strictly better than LS1. Table 4.5 provides a comparison of LS1 and LS2 on the integer

GCSP without overnights. Here, the table contains one additional column reporting the

number of times a solution revisits cities (NR). Here, over 48 test instances, LS1 is strictly

better than LS2 in 12 instances, LS2 is strictly better than LS1 in 11 instances, while

they are tied in 26 instances. Again the running time of both LS1 and LS2 is extremely

small, taking no more than 20 seconds even for the largest instances. Table 4.6 compares

LS1 and LS2 on integer GCSP with overnights. Here, the table contains one additional

column reporting the number of times a solution stays overnight at a node (ON). Here,

over 48 test instances, LS1 is strictly better than LS2 in 8 instances, LS2 is strictly better

than LS1 in 30 instances, and they are tied in 10 instances. However, the running time

of LS1 increases significantly compared to LS2. This increase in running time appears

to be due to a significant increase in the number of times LS1 calls the Lin-Kernighan

Procedure. Overall, LS2 appears to be a better choice than LS1 for the integer GCSP with

overnights. Notice that a solution to the binary GCSP is a feasible solution to the integer

GCSP without overnights, and a feasible solution to the integer GCSP without overnights

is a feasible solution for the integer GCSP with overnights. Hence, we should expect that

the average cost of the solutions found should go down as we move from Tables 4.4-4.6.

This is confirmed in our experiments.

4.4.4 GCSP with Steiner Nodes

In our earlier test instances every node had a demand. We now construct some Steiner

instances, i.e., ones where some nodes have ki set to zero (the rest of the demands remain

unchanged). In these cases, a tour could contain some “Steiner nodes” (i.e., nodes without

any demand) that can help satisfy the coverage demand of the surrounding (or nearby)

nodes. On the other hand, if fewer nodes have demands then it is likely that fewer nodes

need to be visited (in particular the earlier solutions obtained are feasible for the Steiner

versions), and thus we would expect the cost of the solutions to the GCSP with Steiner

nodes to decrease compared to the instances of the GCSP without Steiner nodes. Table

4.7 confirms this observation. Here we compare LS1 and LS2 on the CSP with Steiner
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Table 4.4: Comparison of LS1 and LS2 on Binary GCSP.
Instance NC LS1 LS2

BestCost Avg.Cost NB Avg.TB Avg.TT BestCost Avg.Cost NB Avg.TB Avg.TT
Eil 51 7 1224 1224 20 0.10 1.65 1190 1191.6 19 0.24 1.08

9 991 996.2 15 0.48 1.63 991 993.4 15 0.21 1.10
11 844 869.4 13 0.27 1.49 844 849.4 13 0.19 1.14

Berlin 52 7 5429 5429.0 17 0.06 1.65 5429 5514.6 17 0.11 1.11
9 4807 4818.8 14 0.09 1.49 4807 4834.0 14 0.08 1.08
11 4590 4655.0 13 0.27 1.58 4590 4639.6 13 0.30 0.85

St 70 7 1836 1841.6 29 0.56 2.58 1834 1836.4 29 0.45 1.33
9 1461 1468.8 22 0.35 1.76 1460 1460.0 22 0.42 1.38
11 1268 1270.2 19 0.90 1.73 1268 1270.2 19 0.45 1.37

Eil 76 7 1610 1630.8 26 0.52 2.51 1610 1623.0 26 0.25 1.63
9 1270 1319.8 20 0.37 1.83 1296 1301.2 21 0.83 1.64
11 1117 1130.8 18 0.31 1.87 1117 1122.2 18 1.04 1.61

Pr 76 7 66789 66850.8 28 0.66 1.46 66455 66887.8 29 0.83 1.71
9 62907 62916.0 23 0.18 1.71 63114 63203.6 25 0.83 1.68
11 52175 52527.0 19 0.25 1.58 52175 52175.0 19 0.32 1.47

Rat 99 7 2341 2346.0 34 0.64 3.07 2325 2340.2 33 0.98 2.17
9 1936 1940.4 27 0.24 1.97 1936 1941.2 27 1.01 2.43
11 1686 1714.2 23 0.31 1.80 1686 1691.2 23 1.21 2.39

KroA 100 7 14660 14660 41 0.53 2.18 14660 14726.6 41 1.26 2.25
9 12974 12974 33 0.13 1.65 12974 12987.2 33 0.47 2.38
11 11970 11977.2 28 0.42 1.57 11942 11942.0 29 0.41 2.38

KroB 100 7 14415 14451.8 44 0.87 1.91 14459 14577.6 42 0.43 2.23
9 12222 12296.4 34 0.86 2.17 12194 12247.0 33 2.18 2.27
11 11276 11277.2 28 1.20 2.55 11276 11315.2 28 0.83 2.43

KroC 100 7 13830 13888.8 41 0.13 2.88 13830 13850.2 41 2.08 2.24
9 12149 12190.2 33 0.64 2.12 12149 12189.6 33 1.45 2.21
11 11032 11032 26 0.11 2.00 11032 11032.0 26 1.74 2.22

KroD 100 7 13567 13666.4 38 0.06 2.53 13704 13857.2 38 0.31 2.42
9 12409 12448.6 32 1.03 1.92 12419 12479.8 31 2.08 2.48
11 11486 11520.8 28 0.43 1.76 11443 11515.6 29 1.34 2.11

KroE 100 7 15321 15485.0 41 0.37 2.62 15471 15700.6 41 0.30 1.99
9 12482 12482 32 0.19 1.64 12482 12482.0 32 0.40 2.33
11 11425 11452.4 30 0.66 1.48 11456 11490.6 28 2.24 2.26

Rd 100 7 6209 6210.8 37 0.30 2.20 6170 6251.4 37 0.70 2.33
9 5469 5595.0 29 0.23 2.10 5469 5477.2 29 1.06 2.44
11 4910 4985.6 28 0.52 1.63 4910 4965.2 28 1.17 2.22

KroA150 7 17258 17274.6 55 0.96 4.52 17270 17425.8 54 2.11 3.63
9 15007 15042.6 46 1.07 3.68 15007 15145.4 46 2.60 4.20
11 13666 13755.6 40 1.20 2.93 13762 14010.8 41 2.50 3.75

KroB 150 7 17639 17745.8 60 2.94 4.16 17639 18141.4 60 2.18 3.56
9 15505 15688.0 50 0.90 3.61 15506 15854.8 50 3.71 3.76
11 13740 13899.0 42 1.82 2.97 13719 13836.4 40 2.82 3.69

KroA 200 7 21388 21553.8 74 3.23 8.11 21346 21543.8 76 3.71 4.73
9 17843 17999.4 59 2.33 5.70 17893 18103.8 60 3.09 4.91
11 16591 16702.4 54 1.84 4.94 16380 16580.4 55 3.80 4.85

KroB 200 7 20736 20960.0 79 2.30 8.71 20882 21117.6 79 3.88 4.52
9 18266 18377.4 66 1.94 6.28 18269 18500.6 67 3.05 4.73
11 15961 16428.8 55 2.37 4.71 16173 16372.0 55 3.57 4.65

Avg 13035.2 13103.6 35 0.79 2.72 13041.9 13137.4 35 1.40 2.49
No.Best 36 34
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Table 4.5: Comparison of LS1 and LS2 on Integer GCSP without overnight.
Instance NC LS1 LS2

BestCost Avg.Cost NB NR Avg.TB Avg.TT BestCost Avg.Cost NB NR Avg.TB Avg.TT
Eil 51 7 1185 1199.8 19 1 0.28 4.19 1185 1187.0 19 1 0.96 3.83

9 991 992.8 15 0 1.59 4.09 991 996.2 15 0 0.85 3.30
11 843 845.0 13 1 1.27 4.77 843 843.0 13 1 1.12 3.22

Berlin 52 7 5429 5429.0 17 0 0.14 3.99 5429 5429.0 17 0 0.18 3.37
9 4785 4796.8 15 1 0.02 4.17 4785 4807.6 15 1 0.12 2.69
11 4590 4651.4 13 0 0.12 3.27 4590 4620.0 13 0 0.66 2.51

St 70 7 1778 1783.4 28 3 1.21 6.56 1782 1786.0 28 1 0.48 5.10
9 1461 1497.8 22 0 0.23 5.27 1460 1461.2 22 0 1.46 4.56
11 1268 1268.0 19 0 1.33 3.31 1241 1264.2 18 1 1.70 4.03

Eil 76 7 1600 1626.6 26 1 1.69 6.67 1600 1619.4 26 2 2.27 5.11
9 1270 1291.6 20 0 1.26 5.10 1270 1294.0 20 0 1.93 4.79
11 1117 1121.2 18 0 0.89 4.13 1117 1117.0 18 0 0.48 4.63

Pr 76 7 65990 66615.8 28 1 1.47 4.73 64111 65560.8 29 4 1.70 5.44
9 57147 57945.2 29 1 1.14 5.17 54907 55862.4 29 6 1.37 4.94
11 51587 51650.0 20 2 1.52 4.42 49445 49445.0 21 3 1.02 4.22

Rat 99 7 2311 2315.0 33 1 0.65 7.39 2311 2341.2 33 1 2.70 7.61
9 1936 1937.8 27 0 1.53 5.85 1936 1949.4 28 0 1.99 7.19
11 1683 1704.4 23 0 2.07 4.55 1683 1701.0 23 0 1.87 6.77

KroA 100 7 14660 14678.8 41 0 1.52 6.35 14660 14784.4 41 0 2.40 8.18
9 12974 12974.0 33 0 0.53 4.98 12974 13090.0 33 0 2.27 7.49
11 11737 11737.0 29 1 0.47 4.59 11737 11737.0 29 1 2.03 0.30

KroB 100 7 14246 14394.2 45 6 3.00 6.16 14297 14316.8 43 3 3.54 8.83
9 12200 12348.6 34 3 2.39 4.91 12189 12197.8 33 2 1.56 7.35
11 11268 11394.2 27 2 0.30 6.38 11268 11378.0 27 2 0.74 6.95

KroC 100 7 13520 13644.0 42 5 3.42 7.49 13792 13999.8 41 1 2.55 8.42
9 12119 12209.0 33 1 1.22 6.76 12119 12119.0 33 1 1.18 7.22
11 11032 11032.0 26 0 0.57 9.82 11032 11074.4 26 0 0.85 6.19

KroD 100 7 13501 13517.6 39 2 4.97 7.61 13501 13635.0 39 2 1.97 8.84
9 12261 12303.2 31 1 0.62 6.20 12257 12279.6 31 1 1.98 7.71
11 11452 11534.0 29 1 2.79 9.43 11409 11450.2 30 1 1.65 7.30

KroE 100 7 15308 15386.8 42 1 2.71 7.05 15471 15767.2 41 0 4.37 8.02
9 12482 12541.8 32 0 0.42 5.72 12482 12485.0 32 0 1.29 7.18
11 11344 11417.8 30 1 2.89 7.40 11344 11373.6 30 1 2.92 6.68

Rd 100 7 6078 6182.8 37 2 0.86 6.78 6078 6199.6 37 2 2.05 7.45
9 5384 5501.0 30 2 3.54 6.39 5384 5418.8 30 2 2.60 7.15
11 4853 4916.6 29 1 1.73 4.14 4853 4867.2 29 1 1.58 6.29

KroA150 7 16947 16974.0 57 4 3.29 13.36 16976 17143.0 56 3 7.22 12.50
9 15007 15158.6 46 0 2.55 9.47 15000 15136.8 49 3 2.40 11.80
11 13580 13709.4 40 2 1.92 7.47 13683 13791.8 41 2 4.76 10.60

KroB 150 7 17621 17776.8 59 1 5.55 11.46 17639 18136.2 60 0 3.15 12.15
9 15332 15609.8 48 3 3.90 10.68 15383 15556.0 48 3 4.83 11.78
11 13554 13582.0 41 2 2.76 7.66 13554 13670.8 41 2 4.96 10.82

KroA 200 7 21337 21415.2 79 3 10.35 20.03 21120 21294.8 78 6 10.09 16.92
9 17812 17927.0 62 2 6.77 14.37 17832 18186.8 64 5 10.91 14.97
11 16290 16517.8 54 4 9.14 12.56 16370 16485.0 53 4 10.41 14.48

KroB 200 7 20628 20808.2 78 2 5.91 20.45 20862 21027.4 77 2 6.62 16.01
9 18247 18387.6 67 3 4.75 14.88 18260 18448.6 68 3 8.84 14.79
11 15888 16150.0 56 3 4.03 11.73 15688 15968.8 56 4 8.01 13.80

Avg 12825.7 12925.0 35 1 2.36 7.50 12706.3 12839.7 35 2 2.97 7.74
No.Best 37 36
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Table 4.6: Comparison of LS1 and LS2 on Integer GCSP with overnight.
Instance NC LS1 LS2

BestCost Avg.Cost NB ON Avg.TB Avg.TT BestCost Avg.Cost NB ON Avg.TB Avg.TT
Eil 51 7 1146 1146.0 19 10 0.60 10.21 1146 1146.0 19 10 0.09 2.81

9 958 980.8 15 5 0.77 8.26 958 968.4 15 5 0.70 3.15
11 842 866.8 13 5 1.66 7.85 827 829.4 13 4 0.33 2.90

Berlin 52 7 4969 4981.6 19 11 5.65 9.22 4966 4976.0 18 9 0.66 2.87
9 4272 4301.2 16 8 3.00 6.74 4272 4324.0 16 8 0.58 2.35
11 3962 4149.2 14 8 0.10 8.09 3962 3962.0 14 8 0.12 2.17

St 70 7 1654 1656.2 27 15 2.95 17.46 1655 1655.0 27 14 0.35 4.26
9 1442 1453.0 23 12 1.07 11.21 1416 1438.6 22 9 0.40 3.79
11 1196 1226.8 18 6 1.71 8.30 1196 1213.0 18 6 1.77 3.75

Eil 76 7 1554 1587.0 26 10 6.00 12.37 1562 1578.4 26 10 1.06 4.63
9 1268 1307.2 21 7 4.23 9.54 1268 1298.2 21 7 1.00 4.22
11 1107 1125.6 18 3 4.99 8.01 1107 1110.2 18 4 0.68 4.08

Pr 76 7 53270 56065.2 29 15 1.41 16.58 53266 54142.0 30 16 1.97 4.61
9 47226 49028.4 26 15 7.40 12.84 46912 47245.8 27 17 0.72 3.99
11 44036 46104.0 19 8 0.73 11.47 44028 44029.6 20 10 0.99 3.62

Rat 99 7 2229 2241.8 33 10 3.43 10.24 2229 2259.4 33 10 3.09 6.34
9 1908 1940.6 27 5 5.58 10.05 1922 1947.0 28 8 3.17 6.19
11 1673 1697.2 24 9 3.89 10.84 1650 1686.6 23 6 0.73 5.71

KroA 100 7 12474 12762.4 42 24 10.20 28.73 12006 12322.6 43 26 1.34 6.69
9 11671 11733.4 34 21 16.59 22.31 11218 11245.2 35 21 1.00 6.28
11 10886 10931.8 29 17 6.79 19.91 10665 10700.8 31 17 2.20 5.64

KroB 100 7 12728 12920.6 39 18 7.31 21.13 12273 12530.0 43 25 3.31 7.21
9 11176 11232.0 34 19 3.11 17.40 11128 11133.2 35 21 3.65 6.59
11 10302 10534.6 28 15 5.28 16.54 10302 10409.8 28 15 1.69 6.04

KroC 100 7 12202 12401.6 41 22 11.17 32.46 12043 12269.2 45 27 2.52 6.63
9 11196 11374.8 33 16 3.63 17.75 11031 11141.0 35 20 1.95 5.71
11 10445 10629.2 27 15 2.00 18.27 10299 10406.2 28 15 1.26 5.42

KroD 100 7 11868 12115.4 38 20 5.13 22.28 11725 11827.8 39 20 1.70 6.56
9 11062 11287.0 31 16 6.55 15.75 10742 10869.6 35 20 2.56 6.11
11 10523 10714.0 27 13 4.35 15.30 10404 10469.4 29 16 1.10 5.83

KroE 100 7 13101 13332.4 42 25 6.35 24.37 12689 12859.6 45 28 1.83 6.01
9 10821 11193.2 34 20 6.03 24.89 10821 10905.0 34 20 1.52 5.61
11 10007 10190.6 29 17 4.59 16.30 10007 10136.4 29 17 0.59 5.34

Rd 100 7 5626 5834.2 37 17 4.83 20.75 5570 5645.6 39 20 2.72 6.55
9 4950 5129.4 32 18 4.24 13.02 5037 5093.2 30 13 0.81 5.89
11 4541 4705.8 27 13 4.72 15.30 4514 4581.8 27 12 2.01 5.23

KroA150 7 15341 15483.2 59 32 19.02 41.95 15385 15644.6 60 37 3.34 9.56
9 13475 13714.2 49 28 6.60 30.64 12944 13288.6 51 28 6.32 10.07
11 12151 12399.4 43 25 4.31 21.24 12215 12407.4 44 25 3.31 8.92

KroB 150 7 15825 15964.0 58 31 8.91 32.67 15252 15774.2 61 32 4.47 10.49
9 13198 13415.8 52 30 21.04 36.04 13139 13372.0 52 31 8.28 9.78
11 12418 12933.0 40 24 6.91 28.11 12174 12561.6 44 26 3.46 9.06

KroA 200 7 18093 18186.4 76 39 27.64 47.57 17873 18431.8 82 49 6.32 13.74
9 15562 15979.4 63 37 10.07 37.55 15782 16141.6 64 35 3.48 12.36
11 14873 14933.0 55 30 20.95 30.29 14629 14835.0 56 32 4.41 11.39

KroB 200 7 18119 18436.6 82 46 36.42 56.66 17701 18108.4 85 51 8.09 13.98
9 16289 16395.4 68 36 28.23 40.13 15766 16264.4 66 37 8.69 12.27
11 14217 14705.8 54 26 13.26 29.64 14360 14490.8 56 27 7.99 11.37

Avg 11246.9 11529.7 35 18 7.74 20.50 11125.8 11284.9 36 19 2.51 6.54
No.Best 18 40
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nodes. For each CSP instance (in Table 4.3) we select 10 percent of the nodes randomly

and set their corresponding demands to zero. The behavior of LS1 and LS2 is similar to

that of the earlier CSP instances. Specifically, over the 48 test instances LS1 was strictly

better once, LS2 was strictly better 6 times, and the two methods were tied 41 times.

Overall LS2 runs slightly faster than LS1. For brevity, we have limited the comparison to

the CSP with Steiner nodes.

4.4.5 Analyzing the Quality of LS2 on the Generalized TSP

Overall, LS2 seems to be a better choice than LS1, in that it is more robust than LS1.

It outperforms LS1 on the CSP and the integer GCSP with overnights, while it is tied

with LS1 for the binary GCSP and integer GCSP without overnights. Further, the run

time of LS2 remains fairly stable. However, since we do not have lower bounds or optimal

solutions for the CSP and GCSP instances, it is hard to assess the quality of the solutions.

Noting that the generalized TSP (GTSP) is a special case of the CSP (we explain how

momentarily), we use some well studied GTSP instances in the literature (see Fischetti

et al. [27]) and compare LS2 with eight different heuristics designed specifically for the

GTSP; as well as to the optimal solutions on these instances obtained by Fischetti et

al. [27] using a branch-and-cut method. In the GTSP, the set of nodes in the graph are

clustered into disjoint sets and the goal is to find the minimum length tour over a subset

of nodes so that at least one node from each cluster is visited by the tour. This can be

formulated as a CSP, where each node has unit demand (i.e., ki=1 for each node i) and

each node in a cluster covers every other node in a cluster (and no other nodes). We

executed LS2 on the benchmark GTSP dataset (see Fischetti et al. [27]) by first tuning

its parameters. The tuned parameters of LS2 are configured as follows: J = 300, K = 10,

T = 10, max iter = 50 and 10 independent runs of LS2 were performed. We compared

LS2 to eight other heuristics in the literature that are described below.

• MSA: A Multi-Start Heuristic by Cacchiani et al. [9]

• mrOX: a Genetic Algorithm by Silberholz and Golden [71],

• RACS: a Reinforcing Ant Colony System by Pintea et al. [57],

• GA: a Genetic Algorithm by Snyder and Daskin [72],

• GI3: a composite algorithm by Renaud and Boctor [61],

• NN: a Nearest Neighbor approach by Noon [54],

• FST-Lagr and FST-root: Two heuristics by Fischetti et al. [27].
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Table 4.7: Comparison of LS1 and LS2 on Steiner CSP.
Instance LS1 LS2

Best Cost Avg. Cost NB Avg. TB Avg. TT Best Cost Avg. Cost NB Avg. TB Avg. TT
Eil 51 163 163.0 8 0.02 1.29 163 163.0 9 0.03 0.69

159 159.40 8 0.38 4.90 159 159.0 9 0.03 0.52
147 147.0 7 0.10 2.08 147 147.0 8 0.03 0.57

Berlin 52 3470 3483.60 10 0.09 1.45 3470 3470.0 10 0.33 0.68
3097 3097.0 7 0.98 4.45 3097 3097.0 7 0.03 0.51
2956 2959.60 6 0.05 2.46 2956 2956.0 6 0.02 0.54

St 70 288 288.0 11 0.11 1.64 287 287.0 12 0.08 0.89
259 259.0 9 0.04 4.53 259 259.0 10 0.06 1.07
245 245.80 10 0.46 2.71 245 245.0 10 0.04 0.82

Eil 76 207 211.40 15 0.11 1.64 207 210.0 15 0.25 0.91
186 186.40 11 0.76 4.39 185 185.0 10 0.04 0.99
169 170.80 10 0.19 2.63 169 169.0 11 0.04 0.92

Pr 76 49773 50566.80 13 0.18 1.61 49773 49773.0 13 0.18 1.15
44889 44889.0 12 0.47 4.65 44889 44889.0 12 0.12 1.08
42950 43399.20 9 0.34 2.84 42950 42950.0 9 0.05 0.87

Rat 99 483 483.0 17 0.19 1.91 482 482.0 18 0.29 1.54
454 454.0 14 0.56 4.38 454 454.0 14 0.09 1.67
444 444.40 12 0.76 3.09 444 444.0 12 0.08 1.47

KroA 100 9545 9545.0 18 0.31 2.04 9545 9545.0 18 0.39 1.75
9112 9112.0 15 0.09 1.72 9112 9112.0 15 0.35 1.55
8833 8841.40 13 0.23 3.42 8833 8833.0 13 0.08 1.32

KroB 100 9536 9536.0 19 0.33 1.93 9536 9536.0 19 0.37 1.62
9199 9205.80 15 0.66 1.53 9199 9199.0 15 0.09 1.64
8763 8763.0 11 0.50 3.55 8763 8763.0 11 0.12 1.61

KroC 100 9591 9591.0 15 0.17 1.97 9590 9590.0 16 0.14 1.72
9171 9171.0 13 0.70 1.79 9171 9171.0 13 0.27 1.52
8632 8632.0 13 0.39 3.55 8632 8632.0 13 0.09 1.63

KroD 100 9526 9526.0 19 0.21 1.83 9526 9526.0 19 0.15 1.51
8885 8885.40 13 0.78 1.87 8885 8885.0 13 0.15 1.83
8725 8731.40 13 0.77 3.69 8725 8725.0 13 0.10 1.65

KroE 100 9800 9800.0 16 1.06 1.84 9800 9800.0 16 0.16 1.54
8987 8987.0 13 0.29 2.02 8986 8986.0 14 0.11 1.56
8450 8450.0 13 0.40 3.85 8450 8450.0 13 0.11 1.70

Rd 100 3412 3412.0 18 0.24 1.83 3412 3434.4 18 0.25 1.60
3194 3206.80 16 0.43 1.87 3194 3194.0 16 0.31 1.52
2761 2761.0 12 0.49 3.66 2761 2761.0 12 0.09 1.33

KroA150 10939 10939.0 27 1.97 2.91 10939 11099.6 27 0.85 2.45
9808 9823.20 23 0.25 2.25 9808 9808.0 23 0.20 2.26
9360 9382.60 20 1.13 3.46 9360 9360.0 20 0.29 2.30

KroB 150 11225 11288.6 30 1.66 3.08 11225 11240.4 30 1.08 2.48
10121 10211.40 24 1.10 2.35 10121 10121.0 24 0.64 2.31
9542 9556.60 20 0.86 3.54 9542 9542.0 20 0.19 2.55

KroA 200 13042 13042.0 32 3.99 4.28 13227 13268.0 35 1.12 3.62
11392 11429.20 27 0.22 2.42 11392 11424.0 27 0.83 3.18
10527 10615.80 24 0.51 4.02 10525 10673.8 26 0.79 2.95

KroB 200 13020 13160.20 34 2.24 4.38 13020 13092.0 34 1.77 3.41
11712 11788.60 28 0.79 2.63 11712 11837.2 28 1.89 3.39
10614 10769.40 28 1.62 3.60 10614 10734.8 28 0.89 2.99

Avg 8911.73 8953.56 16 0.63 2.82 8915.4 8930.9 16 0.33 1.65
No.Best 42 47
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Table 4.8: Comparison of computing times of GTSP methods.
Computer Mflops r Method
Gateway Profile 4MX 230 1.568 GA
Sun Sparc Station LX 4.6 0.032 GI3, NN
HP 9000/720 2.3 0.016 FST-Lagr, FST-Root, B&C
Unknown - 1 RACS
Dell Dimension 8400 290 2 mrOX
Pentium(R) IV, 3.4 Ghz 295 2.03 MSA
Our 145 1 LS2

In order to perform a fair comparison on the running times of the different heuristics, we

scaled the running times for the different computers as indicated in [22]. The computer

factors are shown in Table 4.8. The columns indicate the computer used, solution method

used, Mflops of the computer, and r the scaling factor. Thus the reported running times

in the different papers are appropriately multiplied by the scaling factor r. We note that

an identical approach was taken in [9] to compare across these heuristics for the GTSP.

Since no computer information is available for the RACS heuristic, we use a scaling factor

of 1.

Table 4.9 reports on the comparison. For each instance we report the percentage gap

with respect to the optimal solution value and the computing time (expressed in seconds

and scaled according to the computer factors given in Table 4.8) for all the methods but

for B&C (for which we report only the computing time). Some of the methods (RACS,

GI3, and NN) only reported solutions for 36 of the 41 instances. Consequently, in the last

four rows of Table 4.9 we report for each algorithm, the average percentage gap and the

average running time on the 36 instances tested by all the methods, as well as over all 41

instances (for all methods except RACS, GI3, and NN). We also summarize the number

of times the optimum solution was found by a method. As Table 4.9 indicates, although

LS2 was not explicitly developed for the GTSP (but rather for a generalization of it), it

performs quite creditably. On average it takes 2.2 seconds, finds solutions that are on

average 0.08% from optimality, and found optimal solutions in 30 out of 41 benchmark

GTSP instances.

4.5 Summary and Conclusions

In this chapter we considered the CSP, and introduced a generalization quite different

from earlier generalizations of the CSP in the literature. Specifically, in our generaliza-

tion nodes must be covered multiple times (i.e., we introduce a notion of coverage demand

of a node). This may require a tour to visit a node multiple times (which is not the case

in earlier generalizations), and there are also node visiting costs. We discussed three
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Table 4.9: Comparison of LS2 against 8 other heuristics on benchmark GTSP instances in
the literature.

Instances LS2 MSA mrOX RACS GA GI3 NN FST-lagr FST-Root B&C
gap time gap time gap time gap gap time gap time gap time gap time gap time time

Att48 0 0.4 0 0 0 0.8 - 0 0 - - - - 0 0 0 0 0.0
Gr48 0 0.4 0 0 0 0.6 - 0 0.8 - - - - 0 0 0 0 0.0
Hk48 0 0.5 0 0 0 0.6 - 0 0.4 - - - - 0 0 0 0 0.0
Eil51 0 0.5 0 0 0 0.6 0 0 0.2 0 0 0 0 0 0 0 0 0.0
Brazil58 0 0.6 0 0 0 1.6 - 0 0.4 - - - - 0 0 0 0 0.0
St70 0 0.7 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2
Eil76 0 0.8 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2
Pr76 0 0.9 0 0 0 1.0 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2
Rat99 0 1.2 0 0 0 1.0 0 0 1.0 0 0.2 0 0.2 0 0 0 0.8 0.8
KroA100 0 1.2 0 0 0 1.2 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2
KroB100 0 1.3 0 0 0 1.2 0 0 0.6 0 0.2 0 0 0 0 0 0.4 0.4
KroC100 0 1.2 0 0 0 1.2 0 0 0.4 0 0.2 0 0.2 0 0 0 0.2 0.2
KroD100 0 1.2 0 0 0 1.4 0 0 0.6 0 0.2 0 0. 0 0 0 0.2 0.2
KroE100 0 1.3 0 0 0 1.2 0 0 1.2 0 0.2 0 0 0 0 0 0.2 0.2
Rd100 0 1.2 0 0 0 1.0 0 0 0.4 0.08 0.2 0.08 0.2 0.08 0 0 0.2 0.2
Eil101 0 1.1 0 0 0 1.0 0 0 0.4 0.4 0.2 0.4 0 0 0 0 0.4 0.4
Lin105 0 1.3 0 0 0 1.2 0 0 0.4 0 0.4 0 0.2 0 0 0 0.2 0.2
Pr107 0 1.2 0 0 0 1.0 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2
Gr120 0 1.1 0 0 0 1.4 - 0 0.8 - - - - 1.99 0 0 0.6 0.6
Pr124 0 1.5 0 0 0 1.4 0 0 1.0 0.43 0.4 0 0.4 0 0 0 0.4 0.4
Bier127 0.04 1.6 0 0 0 1.6 0 0 0.8 5.55 1.0 9.68 0.2 0 0.2 0 0.4 0.4
Pr136 0 1.8 0 0 0 1.6 0 0 0.8 1.28 0.4 5.54 0.2 0.82 0.2 0 0.6 0.6
Pr144 0 1.6 0 0 0 2.0 0 0 0.4 0 0.4 0 0.4 0 0 0 0.2 0.2
KroA150 0 2.1 0 0 0 2.0 0 0 2.0 0 0.6 0 0.6 0 0.2 0 1.4 1.5
KroB150 0 1.9 0 0 0 2.0 0 0 1.6 0 0.4 0 0.6 0 0.2 0 0.8 0.8
Pr152 0 2.0 0 0 0 2.0 0 0 2.4 0.47 0.6 1.8 0.4 0 0.2 0 0.8 1.5
U159 0 2.2 0 0 0 2.0 0.01 0 1.0 2.6 0.6 2.79 0.8 0 0.2 0 2.0 2.0
Rat195 0 2.5 0 0.2 0 2.8 0 0 1.0 0 1.2 1.29 2.6 1.87 0.2 0 3.5 3.5
D198 0.32 3.4 0 0 0 3.2 0.01 0 1.8 0.6 1.8 0.6 3.6 0.48 0.2 0 10.8 10.8
KroA200 0 2.8 0 0 0 3.4 0.01 0 4.2 0 0.8 5.25 1.6 0 0.2 0 2.6 2.6
KroB200 0 2.7 0 0 0.05 3.2 0 0 2.2 0 1.0 0 4.0 0.05 0.2 0 3.9 3.9
Ts225 0 2.9 0 4.3 0.14 3.4 0.02 0 3.9 0.61 2.6 0 3.6 0.09 0.2 0.09 18.5 538.2
Pr226 0.09 2.5 0 0 0 3.0 0.03 0 1.6 0 0.8 2.17 2.0 0 0.2 0 1.4 1.4
Gil262 0.79 3.6 0 7.1 0.45 7.2 0.22 0.79 3.0 5.03 3.5 1.88 3.6 3.75 0.2 0.89 20.5 94.2
Pr264 0.59 3.6 0 0 0 4.8 0 0 2.0 0.36 2.0 5.73 4.5 0.33 0.4 0 4.9 4.9
Pr299 0.04 4.5 0 1.4 0.05 9.2 0.24 0.02 9.7 2.23 0.2 2.01 8.5 0 0.4 0 11.6 11.6
Lin318 0.01 4.4 0 0 0 16.2 0.12 0 5.5 4.59 6.2 4.92 9.7 0.36 0.8 0.36 12.0 23.8
Rd400 0.98 6.2 0 0.6 0.58 29.2 0.87 1.37 5.5 1.23 12.2 3.98 34.7 3.16 0.8 2.97 71.5 99.9
Fl417 0.01 5.8 0 0 0.04 16.4 0.57 0.07 3.8 0.48 12.8 1.07 40.8 0.13 1.0 0 237.5 237.5
Pr439 0.09 7.1 0 3.9 0 38.2 0.79 0.23 14.4 3.52 18.4 4.02 37.8 1.42 2.0 0 76.9 77.1
Pcb442 0.16 6.9 0 1.6 0.01 46.8 0.69 1.31 16.0 5.91 17.0 0.22 25.6 4.22 1.2 0.29 76.1 835.1
Average 36 0.09 2.5 0 0.53 0.04 6.12 0.10 0.10 2.58 0.98 2.42 1.48 5.21 0.46 0.26 0.13 15.61 54.32
# Opt 36 25 36 29 24 30 19 18 23 31 36
Average 41 0.08 2.2 0 0.47 0.03 5.38 0.09 2.31 0.46 0.22 0.11 13.72 47.71
# Opt 41 30 41 34 35 27 36 41

72



variants of the GCSP. The binary GCSP where revisiting a node is not permitted, the

integer GCSP without overnights where revisiting a node is permitted only after another

node is visited, and the integer GCSP with overnights where revisiting a node is permit-

ted without any restrictions. We designed two local search heuristics, LS1 and LS2, for

these variants. Overall LS2 appears to be more robust in terms of its running time as

well as its performance in terms of the number of times it found the best solutions in the

different variants. When LS2 is compared to 8 benchmark heuristics for the GTSP (that

were specifically designed for the GTSP), LS2 performs quite well, finding high-quality

solutions rapidly. We introduced two integer programming models for the binary and in-

teger GCSP respectively. However, both these models require considerable strengthening

and embedding in a branch-and-cut framework in order to obtain exact solutions to the

GCSP. This is a natural direction for research on the GCSP (as it will provide an even

better assessment of the quality of heuristics for the GCSP), and we hope researchers

will take up this challenge. Some natural generalizations of the GCSP (along the lines of

the earlier generalizations of the CSP) may be considered in future research. The earlier

generalizations of the CSP (see Vogt et al. [79]) included requirements in terms of (i)

requiring some nodes to be on the tour, (ii) requiring some nodes not to be on the tour,

(iii) allowing a node not to be covered at a cost (for our GCSP that would mean the

covering demand of a node could be partially covered at a cost), and (iv) including a cost

for allocating nodes not on the tour to the tour. These would be natural generalizations

of this multi-unit coverage demand variant of the CSP that we have introduced.

73



Bibliography

[1] Archetti C., Bertazzi L., Hertz A., and Speranza M.G.: A hybrid heuristic for an

inventory-routing problem. Technical Report, n. 317, University of Brescia, Brescia,

Italy (2009).

[2] Archetti C., Speranza M.G., and Savelsbergh M.W.P.: An optimization-based heuris-

tic for the split delivery vehicle routing problem. Transportation Science 42, 22–31

(2008).

[3] Arkin E.M., and Hassin R.: Approximation algorithms for the geometric covering

salesman problem. Discrete Applied Mathematics 55(3), 197-218 (1994).

[4] Balas E. and Ho A.: Set covering algorithms using cutting planes, heuristics, and

subgradient optimization: A computational study. Mathematical Programming 12,

37-60 (1980).

[5] Baldacci R., and Dell’Amico M.: Heuristic algorithms for the design of urban optical

networks. Technical Report, n. 63, Department of Sciences and Methods for Engineer-

ing, University of Modena and Reggio Emilia, Reggio Emilia, Italy (2004).

[6] Baldacci R., Dell’Amico M., and Salazar González J.J.: The capacitated m-Ring-Star
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