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Preface 

 

This PhD thesis concerns algorithms for Combinatorial Optimization Problems. In 

Combinatorial Optimization Problems the set of feasible solutions is discrete or can be reduced to a 

discrete one, and the goal is to find the best possible solution. 

Specifically, in this research we consider four different problems in the field of 

Combinatorial Optimization including Set Covering Problem (SCP), Cost Constrained Minimum 

Label Spanning Tree Problem (CCMLST), Capacitated m-Ring Star Problem (CmRSP) and 

Generalized Covering Salesman Problem (GCSP). All of these problems are NP-Hard. For each 

problem we propose a heuristic algorithm and we compare our results with the best known results in 

the literature. 

In chapter 1, we consider the Set Covering Problem, in which we are given m rows, n 

columns each with a specific positive cost, and an (mn) sparse matrix of zero-one elements aij . 

We say that row i can be covered by column j if and only if aij=1. We want to cover each row (at 

least once) with a subset of columns of minimum global cost. In the case of unicost SCP all the 

costs are the same, so we should cover the rows using the minimum number of columns.  

We propose a heuristic algorithm to solve the unicost version of the set covering problem 

based on the Electromagnetism Metaheuristic (EM). We add some new features to this heuristic, 

with respect to the standard electromagnetism scheme, applying a preprocessing procedure, 

imposing diverse and high quality solutions in the population, defining the core problem and 

applying mutation. 

We test the performance of the proposed method on the existing datasets from the literature. 

All of the best known results for the classical benchmark instances, where the number of columns is 

larger than the number of rows, are found by the proposed method and 12 best known solutions are 

improved by the proposed algorithm. By using different parameter settings the algorithm improves 

4 additional best known solutions. We also show the effectiveness of the EM approach in 

conducting the search in the solution space by using the related procedures in a Genetic Algorithm 

(GA) scheme. Although we improve the performance of this Modified GA method by adding a 

local search procedure, still the proposed algorithm EM performs better than the Modified GA 

method. Moreover, we modify the proposed algorithm EM for the general or non-unicost SCP. The 

modified algorithm can obtain all of the best known results from the literature.  

The results of this approach will appear in the European Journal of Operational Research 

[59].  
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In Chapter 2, we focus on the Capacitated m-Ring Star Problem (CmRSP), in which the goal 

is to find m rings, each visiting a central depot, subset of customers and a subset of Steiner nodes, 

so that the total visiting and allocation cost is minimized. Moreover, in each feasible solution each 

node can not be visited or allocated to two rings simultaneously, and the total number of customers 

allocated or visited in a ring cannot be greater than the capacity Q. We propose a heuristic algorithm 

to solve this problem. In the proposed heuristic, after the construction of the initial solution, we 

apply an improvement method based on a set of swap and Extraction-Assignment moves, followed 

by the Lin-Kernighan TSP procedure to find a better order of the visited nodes. Moreover, the 

proposed heuristic incorporates some random aspects obtained by perturbing the current solution in 

the shaking procedure, which is applied whenever the algorithm remains in a local optimum. 

We compare the proposed heuristic with the best state-of-the-art algorithms for the CmRSP 

on a set of benchmark instances from the literature. The results show the effectiveness of the 

proposed method. The proposed heuristic can obtain most of the optimal solutions, within a short 

computing time, and can improve most of the best known solutions for the instances whose optimal 

solution is not known.  

A paper based on the results of this approach has been submitted to the European Journal of 

Operational Research [70]. 

In chapter 3, we consider the Cost Constrained Minimum Label Spanning Tree (CCMLST) 

Problem. Given a graph G = (V, E), where each edge (i, j) has a label from the set L and an edge 

weight cij, and a positive budget B, the goal of the CCMLST problem is to find a spanning tree with 

the fewest number of labels whose weight does not exceed the budget B.  

We propose a Variable Neighborhood Search (VNS) method for the CCMLST problem. 

Considering the VNS as a framework, we start by constructing an initial solution. We then improve 

upon this initial solution using local search. Then, the improvement of the incumbent solution (R) 

continues in a loop until the termination criterion is reached. This loop contains a shaking phase and 

a local search phase. The shaking phase considers a specially designed neighborhood and makes 

random changes to the current solution that enables us to explore neighborhoods farther away from 

the current solution. The local search phase considers a more restricted neighborhood set and 

attempts to improve upon the quality of a given solution. Besides, we adapt two local search 

methods and a Genetic Algorithm, proposed by Xiong et al. [82] for the Label Constrained 

Minimum Spanning Tree Problem, to the CCMLST problem by means of the bisection method. 

To compare the results, we generate a set of small, medium-sized and large instances from the 

TSPLIB dataset. The VNS method performs very well for the CCMLST instances. Of the 191 

instances, it provides the best solution in 189 instances. For all the 104 instances, where the optimal 
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solution is known, the VNS method obtains the optimal solution. Furthermore, for the large 

instances, its running time is an order of magnitude smaller than those of the other heuristics. 

The results of this approach will appear in Computers & Operations Research Journal [57]. 

Finally, in chapter 4 we define a generalization of the Covering Salesman Problem (CSP) in 

which the goal is to find a minimum length tour of a subset of n given nodes, such that every node i 

not on the tour is within a predefined covering distance 
i

d  from a node on the tour. Considering the 

real world applications, sometimes satisfying the demand of a node and its neighbors by visiting it 

just once is not possible. In addition, in many applications there is a cost for visiting a node (e.g., 

cost of hotel for staying in a city for one night). So, we define the Generalized Covering Salesman 

Problem (GCSP) by specifying the coverage demand
i

k which denotes the number of times a node i 

should be covered and by including the node visiting costs (for nodes on the tour). We divide this 

problem into three variants:  Binary GCSP, Integer GCSP without overnight and Integer GCSP with 

overnight. In the Binary GCSP, the tour is not allowed to visit a node more than once and after 

visiting a node we must satisfy the remaining coverage demand of that node by visiting other nodes 

that can cover it. In the Integer GCSP without overnight, a node can be visited more than once, but 

overnight stay is not allowed. Therefore, to have a feasible solution, after visiting a node, the tour 

can return to this node, if necessary, after having visited at least one other node. Finally, the Integer 

GCSP with overnight is similar to the previous version, but overnight stay is allowed. 

We design two local search heuristics, LS1 and LS2, for these variants. Overall, LS2 

appears to be more robust in terms of its running time as well as its performance in terms of the 

number of times it finds the best solutions in the different variants. Since the Generalized Traveling 

Salesman Problem (GTSP) is a special case of the GCSP, we compare LS2 to 8 benchmark 

heuristics for the GTSP as well. The results show that LS2 performs quite well, finding high-quality 

solutions rapidly. 

A paper based on the results of this approach has been submitted to the Informs Journal on 

Computing [68].  

The results of the considered problems in this thesis have been presented in some international 

conferences such as INFORMS 2008 (Washington DC, US), 23rd Euro Conference on Operational 

Research (Bonn, Germany), MIC2009 (Hamburg, Germany) and AIRO 2009 (Siena, Italy). 
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Abstract 

In this chapter we propose a new heuristic algorithm to solve the unicost version of the well 

known Set Covering Problem. The method is based on the Electromagnetism Metaheuristic 

approach which, after generating a pool of solutions to create the initial population, applies a fixed 

number of local search and movement iterations based on the �electromagnetism� theory. In 

addition to some random aspects, used in the construction and local search phases, we also apply 

mutation in order to further escape from local optima. 

The proposed algorithm has been tested over 80 instances of the literature. On the classical 

benchmark instances, where the number of columns is larger than the number of rows, the 

algorithm, by using a fixed set of parameters, always found the best known solution, and for 12 

instances it was able to improve the current best solution. By using different parameter settings the 

algorithm improved 4 additional best known solutions. 

 Moreover, we proved the effectiveness of the Electromagnetism Metaheuristic approach for 

the unicost Set Covering Problem by embedding the procedures of the proposed algorithm in a 

Genetic Algorithm scheme. The worse results obtained by the Genetic Algorithm show the impact 

of the Electromagnetism Metaheuristic approach in conducting the search of the solution space by 

applying the movements based on the electromagnetism theory. Finally, we report the results 

obtained by modifying the proposed Electromagnetism Metaheuristic algorithm for solving the non-

unicost Set Covering Problem.  
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1.1. Introduction 

  In the general or non-unicost Set Covering Problem (SCP), we are given m rows and n 

columns, each with a specified positive cost cj, and an (mn) sparse matrix of zero-one elements aij . 

We say that row i can be covered by column j if and only if aij=1. We want to cover each row (at 

least once) with a subset of columns of minimum global cost. So we can formulate the problem 

through a binary linear programming model as follows: 

         Min j

Jj

j xc


                                                             (1.1) 

s.t      













)3.1(10

)2.1(1

Jjfororx

Iiforxa

j

j
Jj

ij

 

where },...,1{ mI  is the set of rows, },...,1{ nJ  the set of columns, and jx ( Jj ) a binary 

variable taking value 1 if and only if column j belongs to the optimal solution. 

In the case of unicost SCP all the costs are the same (i.e. Jjc j  ,1 ), so we want to cover 

the rows using the minimum number of columns. 

We denote the set of columns covering row i with ),...,1( miJ i   and the set of rows covered 

by column j with ),...,1( njI j  . Moreover, the number of ones in the binary matrix is denoted by 





n

j

j

m

i

i IJq
11

. By using this notation, in model (1.1)-(1.3) we can replace (1.2) with:  

     Iiforx
iJj

j 


1                                                  ( 2.1  ) 

   The Set Covering Problem is known to be NP-hard [33]. It has been considered in the 

literature as a basic formulation for many real-world optimization problems, therefore it is well 

known for its numerous applications. 

 Crew scheduling in railway and mass-transit transportation companies is one of the most 

relevant applications of the SCP [13]. Delivery and routing, location, distribution, scheduling, 

manufacturing, service planning, information retrieval and job assignment are some other 

applications of the SCP. A survey of these applications is provided in Ceria et al. [17]. 

   To challenge very large scale SCP instances, arising from crew scheduling in the Italian 

railway, Caprara et al. [14] designed a Lagrangian based heuristic algorithm, named CFT, which is 

one of the most effective techniques for the general SCP. Caprara et al. [15] compared different 

exact and heuristic algorithms and provided a complete survey of the existing literature. 
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   Haouari and Chaouachi [37] reported that the performance of a Probabilistic Greedy Search 

Method is better than that of the static greedy procedures for combinatorial optimization problems, 

and specially to solve SCP instances. Indirect Genetic Algorithms and Parallel Genetic Algorithms 

are two variants of the well-known Genetic metaheuristic approach, proposed simultaneously by 

Aickelin [1] and Solar et al. [73] for the general SCP. 

   Different kinds of Ant Colony Optimization (ACO) algorithms for the SCP and a 

comparison of them were reported in Lessing et al. [48]. Yagiura et al. [84] proposed a 3-flip 

neighborhood local search for the SCP, allowing their search to visit the infeasible region. They 

also used some information from the Lagrangian relaxation of model (1.1)-(1.3) to reduce the size 

of the problem. 

 A Tabu Search metaheuristic for large-scale set covering problems was presented by 

Caserta [16]. The author designed a dynamic primal-dual algorithm based on Tabu Search which 

progressively reduces the gap between the upper and the lower bound. Umetani and Yagiura [76] 

compared different relaxation heuristics for the SCP.  

   In the GRASP method, proposed by Bautista and Pereira [6], the unicost SCP is considered 

as a maximum constraint satisfiability problem (MAXSAT), and a GRASP algorithm to solve this 

new representation is considered. First they produce a feasible solution for the MAXSAT problem, 

by using a sequence of random selections from a candidate list, and then, as a local search 

procedure, they apply best flip or random flip to improve the current solution.  

 The Metaheuristic for Randomized Priority Search (Meta-RaPS) approach was proposed by 

Lan et al. [46] for both the general and the unicost SCP. By considering a candidate list, they 

construct an initial solution with a random selection between the best candidate and a member of 

the candidate list. After that, in the local search phase, some randomly chosen columns are removed 

and the corresponding partial SCP is solved by applying the constructive method. Preprocessing, 

random selection of the priority rules, definition of a core problem and penalization of the worst 

columns are characteristics of this method.  

   In this research, the Electromagnetism Metaheuristic (EM) approach [10] is considered as a 

framework of the proposed method (see Section 1.2). Some new ideas related to this heuristic, such 

as applying a preprocessing procedure, imposing diverse and high quality solutions in the 

population, defining the core problem and applying mutation, are presented.  

   The proposed EM algorithm, described in Section 1.3, is basically different from the GRASP 

and Meta-RaPS methods. However, in the construction of the solutions of the initial population, it is 

similar to the GRASP algorithm, although the GRASP method finds feasible solutions by solving an 

associated MAXSAT problem. Moreover, the ideas of preprocessing, core problem and removal of 



Algorithms for the Combinatorial Optimization Problems                                                                       Zahra Naji Azimi 
 

 5 

some columns in the local search phase make the proposed algorithm similar to the Caprara et al. 

[14], Haouari and Chaouachi [37] and Lan et al. [46] approaches, although the corresponding 

strategies are different. 

   Computational experiments on the benchmark instances of the literature, comparing the 

proposed EM algorithm with the most effective algorithms for the unicost SCP, are reported in 

Section 1.4.1. In addition, to investigate the effectiveness of the EM approach in conducting the 

search of the solution space, we embedded the proposed procedures in a Genetic Algorithm scheme 

[9]. The computational results, reported in Section 1.4.2 and comparing the proposed EM algorithm 

with the Genetic Algorithm, show the quality of the EM approach. Finally, we report the results 

obtained by modifying the proposed EM algorithm for solving the non-unicost SCP (see Section 

1.4.3) 

 

1.2.  Electromagnetism Metaheuristic 

   The Electromagnetism Metaheuristic approach has been recently proposed by Birbil and 

Fang [10] to solve a class of optimization problems of the form: 

                  Min  f(x)                       (1.4) 

                                                           s.t.    x[L,U]                       (1.5) 

where [L,U] = nkUxLx kkk

n ,...,1,|   and nxx ,...,1  represent the decision variables. Uk , 

Lk and f (x) represent, respectively, upper and lower bounds on the k-th variable (k =1, �, n) and the 

objective function value. 

   The principles of this algorithm are based on the real electromagnetism theory, so each 

solution is considered as a charged particle, whose charge depends on its objective function value. 

In the electromagnetic space all particles affect each other; in fact they attract or repel other 

particles according to their charge. In a similar way, all the forces exerted by other charged particles 

act upon each of them and determine the resultant force, according to which a particle is moved 

within its space.  

  Although the EM approach was introduced for continuous optimization problems, here we 

adapt it to solve a zero-one optimization problem.  

     The EM approach has been recently applied to solve several combinatorial optimization 

problems such as Examination Timetabling [67], Project Scheduling [27], Traveling Salesman [78], 

[41], Single Machine Scheduling [20], Nurse Scheduling [50], Flow Shop [26], [54], [64], and Job 

Shop [75]. 

   The general structure of the EM algorithm is described in algorithm 1.1 [10]. 
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                                Algorithm 1.1. The general Electromagnetism Approach 

 

 

   The EM algorithm starts with the Initialize procedure, which produces a pool of Pop_size 

solutions representing the initial population. Then for a fixed number of iterations (MAXITER), 

three different procedures are applied: Local Search, Calculate Forces and Move. 

   The Local Search procedure is applied LSITER times and tries to improve each solution of 

the current population. Then, according to their electromagnetic state, all the particles (solutions) 

impose �forces� on each other and the total force exerted on each of them is calculated in the 

Calculate Forces procedure. The total force is determined by calculating the charge of each solution 

X
i, which depends on its objective function value f(Xi

), and on the objective value of the current best 

solution Xbest in the population [10]. According to the EM algorithm a solution attracts those with 

higher charge and repels the others.  

   Finally in the Move procedure, by considering a random step length  uniformly 

distributed between 0 and 1, each solution is moved in the direction of the resultant force to its new 

location in the solution space.  

   The specific formulas for the Set Covering Problem used to calculate charges, forces and 

the movement action of each solution will be described in Sections 1.3.5 and 1.3.6. 

 

1.3. EM based heuristic for the unicost Set Covering Problem 

   The basic framework of our algorithm is based on the EM structure, with some 

modifications specific to deal with a 0-1 programming problem and other parts included to increase 

the overall performance.  

 

 

 

 
Algorithm EM (Pop_size, MAXITER, LSITER) 
1:   Initialize (Pop_size) 
2:   iteration :=1 
3:   While iteration   MAXITER do 
4:        Local Search (LSITER) 
5:        Calculate Forces 

6:        Move 

7:        iteration := iteration+1 
8:   End while 
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1.3.1. Preprocessing Procedure 

   The first procedure we call is a standard Preprocessing procedure aimed at speeding up 

the algorithm by reducing the problem dimension. There are different methods for pre-processing 

an SCP instance [7]. What we do here is to delete a column that covers a subset of rows covered by 

another column, i.e. we remove the so called dominated columns. Moreover we insert in all the 

solutions those columns by which a row is covered exclusively, i.e. we insert the so called essential 

columns. Note that if column j is essential, we can define a �reduced� SCP problem, equivalent to 

the original one, by removing column j and all the rows covered by j, and by adding 1 to the value 

of the objective function.  

   According to our computational experiments, preprocessing does not have an important 

effect on the quality of the solutions, but it generally decreases the overall computing time of the 

algorithm.  

 

1.3.2. Population Construction 

   After the preprocessing phase, we consider the remaining rows and columns and construct 

a pool of Pop_size feasible solutions (each consisting in a subset of columns covering all the rows) 

representing the initial population of the algorithm. Each solution iX  (i =1, �, Pop_size) is created 

by using a simple construction procedure consisting in a greedy search over a candidate list 

composed of the promising columns, i.e. those columns j for which the number of currently 

uncovered rows they cover ( jK ) is greater than a threshold, defined as a given percentage   of the 

maximum number of uncovered rows covered by a column. At each iteration of the construction 

procedure, a column uniformly randomly chosen from the candidate list is added to the current 

solution, until we obtain a feasible solution (i.e. all the rows are covered). Each time a column is 

added to the solution, the values jK  of the columns j covering the uncovered rows covered by the 

added column are updated.  

   One of our modifications to the standard EM framework is to impose some diversity to the 

solution space. To achieve this we consider two values of parameter   in order to give many 

columns the possibility to enter the solution. In this manner we have an elite population 

(corresponding to the largest value of  ) and a diverse one (corresponding to the smallest value of 

 ), and they both make up the whole pool of solutions (see Table 1.3 of Section 1.4 for additional 

details). 

   Moreover, in order to reduce the computing time of the local search procedure (see Section 

1.3.4), we construct a core problem C containing the columns of the candidate list. At each iteration 

of the construction procedure, C is updated to include the columns in the current candidate list. 
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After the construction procedure, C contains all the columns that were in one of the previously 

considered candidate lists. During the local search procedure we just consider the columns in C, in 

this way we deal with a smaller subset of columns and reduce the corresponding computing time.  

   By defining r (with },min{ nmr  ) as the cardinality of the solution, the time complexity for 

constructing each solution iX  is O(q+rn). 

    

1.3.3. Delete Redundant Columns Procedure 

  Since after the construction phase we may have some redundant columns, we define a 

procedure to delete them. A column is considered as redundant, with respect to a given solution, if 

after deleting it the solution remains feasible. Therefore, we check the columns of the solution to 

find possible removals. The time complexity of the corresponding procedure is O(q). 

 

1.3.4. Local Search Procedure 

   The idea used in the local search procedure is a modification of the improvement phase 

presented for SCP by Caprara et al. [14] in their refining procedure, and by Lan et al. [46] in their 

local search phase. We apply this procedure for LSITER iterations. For each iteration of the 

procedure, we first remove a column subset X  from the current solution X, so that we have a set 

I  of uncovered rows, and then we find a new subset of columns to cover the rows in I  . For each 

row Ii  , let 
i

J   denote the subset of columns in the core problem C covering row i, i.e.: 

                 CjJjJ
ii

 |            (1.6) 

In addition, let J   denote the subset of columns of C covering the uncovered rows, i.e. 

                   
i

Ii
JJ 


                           (1.7) 

We can now consider the following partial unicost Set Covering Problem: 

                                                             Min 



'Jj

jx                               (1.8) 

                                    s.t 













)10.1(10

)9.1(1

Jjorx

Iix

j

Jj
j

i  

which is solved by using again the construction procedure (See Section 1.3.2). As previously said, 

the idea of this method is similar to that of the improvement phases presented in algorithms CFT 

[14] and Meta-RaPS [46]. In CFT, the �worst� columns of X are removed, while in Meta-RaPS the 

columns are removed completely randomly. Here we have a �mixed� rule in which we remove from 
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X the columns according to a probability inversely related to the corresponding number of covered 

rows: 

           Pj = 1 / |Ij|                                          (1.11) 

Moreover, of course, each algorithm has its own �constructive� procedure to solve the generated 

partial SCP. 

The number ND of columns which are removed from the current solution X is determined as 

follows:  

          ND = X    Search_magnitude         (1.12) 

where Search_magnitude is a parameter which controls the number of the removed columns [46]. 

To remove a column, we generate a uniform random number r between 0 and 1, and choose a 

random column j from the current solution X. If r is less than or equal to PPj /  (where 



Xj

jPP ) 

then we remove the column, otherwise we continue with another random column until we find a 

suitable column to be removed. 

   Finally, after solving the partial SCP, we call the delete redundant columns procedure. Each 

time the local search procedure finds a better solution, the current best solution is updated. For each 

iteration, the time complexity of this procedure is O(q+r|C|), i.e. in the worst case it is equal to 

O(q+rn).  

      

1.3.5. Force Calculation Procedure 

   After applying the local search procedure to each solution in the current population, the 

solutions must be moved towards promising regions in order to get closer to the optimal solution. 

As mentioned before, by using the main structure of the Electromagnetism approach, we have a 

way to shift the current solutions towards the best ones. 

   To adapt the EM approach to deal with binary variables we represent each solution iX  (i 

=1, �, Pop_size) as a binary vector i
x , whose j-th component i

j
x  ( Jj ) takes value one if and 

only if i
Xj . To determine the new position of the solutions in the solution space, we calculate 

the total electromagnetic force exerted on each solution by the others according to their �charge�. 

The charge iq  and the components i

jF  ( Jj ) of the total force exerted on each solution iX are 

obtained by adapting the equations proposed by Birbil and Fang (2003) to deal with binary 

variables.  
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

                                                                                (1.15) 

and X
best is the current best solution in the population. The time complexity of this procedure is 

globally O( nsizePop 2_ ). 

 

1.3.6. Move Procedure 

   After receiving the effects of all the other solutions, each solution is moved according to the 

resultant force and a random step-length  , uniformly distributed between 0 and 1 and used to 

increase the probability of searching the unvisited regions. 

   The formulation proposed by Birbil and Fang [10] to compute the new location of i
x  is as 

follows: 

JjsizePopiRNG
F

F
xx

ji

i

ji

j

i

j
 ,_,...,1)(                                             (1.16) 

where 
j

RNG denotes the amount of feasible movement toward the upper bound or the lower bound 

for the j-th component. Since here the upper and lower bounds for the variables are one and zero, 

respectively, the adaptation of equation (1.16) for the binary variables i

j
x gives the following 

formula: 

   JjsizePopi

Fifx
F

F
xround

Fifx
F

F
xround

x
i

j

i

ji

i

ji

j

i

j

i

ji

i

ji

j

i

j





























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0))((
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



          (1.17) 

where 2/12
)(




Jj

i

j

i
FF . The time complexity of the move procedure is O(Pop_size n ). 
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  It is important to notice that we do not modify the best solution bestX  in the current 

population and apply the move procedure only to the other solutions.  

   Since after the move procedure the solutions may be no longer feasible, we consider the 

uncovered rows and the columns covering them and solve the corresponding partial SCP problem 

by using the construction procedure. Finally we apply the delete redundant columns procedure to 

remove the redundant columns. 

   To clarify the effect of the force and movement procedures on each solution, let us assume 

that we have a population with two members iX  and kX  and solution kX  has a smaller number of 

columns, so it should attract solution iX . Since we consider each solution as a binary string, this 

means that solution kX  should try to modify the components of solution iX  to make this solution 

similar to itself. Let us consider the j-th component of both solutions (i.e. i

jX  and k

jX ). Now we 

have 4 cases depending on the value of the j-th component in these solutions (0 or 1). Let us 

consider first the two cases corresponding to .1k

jX  If i

jX =0 the value of i

jF  will be a positive 

number (see (1.13)), so, from (1.16), the value of i

jX  will probably increase to 1, depending on the 

values of force 
i

jF  and . Otherwise, i.e. if i

jX =1, from (1.13) we have i

jF =0 and (1.16) does not 

change the value of i

jX . So in both cases the j-th component of solution iX  is made similar to the 

corresponding component of solution kX . Easy calculations show that when k

jX  is equal to 0, i

jX  

will be set to 0 with a probability depending on the values of force i

jF (which is negative in this 

case) and  . In the general case, in which we have more solutions in the population, the trend of 

moving each solution toward the best solutions remains the same. 

 

1.3.7. Mutation Procedure 

   Mutation is another way of perturbating the solutions and it generally helps to increase the 

diversity of the population. To achieve this aim, we apply the mutation procedure each time the 

difference between the values of the best and the worst solutions in the population is not larger than 

a given parameter denoted as mutation_control. The mutation consists in a random flip.  A solution 

iX  of the population and a column j are selected randomly. If column j belongs to iX , it is removed 

from iX , otherwise it is added to iX . In the case of removal, the new solution is not feasible, so the 

construction procedure is called to obtain a feasible solution that will be used at the next iteration. 

In this case the removed column is not allowed to be inserted in the new solution. 
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1.3.8. Overall algorithm 

  The procedures presented in the previous sections are applied iteratively, according to the 

scheme of Algorithm 1.2, until a given time limit is exceeded or a given number of iterations is 

reached. This stop criterion will be explained in details in Section 1.4.  

 

 

Algorithm 1.2. Overall EM Metaheuristic for unicost SCP 

 

 

1.4. Computational Results  

   In order to test the effectiveness of the proposed algorithm (EM), we use the benchmark 

instances of the OR-Library introduced by Beasley [8]. All the algorithms considered in this section 

have been implemented in C. The computational experiments have been performed on a processor 

 
        Algorithm EM Metaheuristic  

1:       Apply the Preprocessing Procedure 

2:       For i=1, �, Pop_size  

3:               Apply the Construction Procedure    

4:               Apply the Delete Redundant Columns Procedure     

5:       End For          

6:       While stop criterion not satisfied  

7:                  For i=1, � , Pop_size 

8:                         Apply the Local  Search Procedure 

9:                  End For 

10:                Apply the Force Calculation Procedure 

11:                Apply the Move Procedure (and possibly the Construction Procedure)     

12:                Let bestX  and worstX  be, respectively, the best and the worst solution 

                     in the current population 

13:                If  bestworst
XX   < mutation _control   

14:                     Then apply the Mutation Procedure (and possibly the Construction  

                          Procedure)    

15:     End While 
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Intel Core Duo CPU running at 1.7 GHz with 1 GB RAM. The characteristics of the instances are 

summarized in Tables 1.1 and 1.2. The density of an instance is defined as the ratio )/( nmq  . 

Notice that those reported in Table 1.1 are sets of instances with the same features, whereas in 

Table 1.2 only single instances are considered. 

 

 

Table 1.1. Characteristics of the instance sets 

Data Set Problem Type 
Number of 
instances 

Number of 
rows 

Number of 
Columns 

Density 

4 Random 10 200 1000 2 % 

5 Random 10 200 2000 2 % 

6 Random 5 200 1000 5 % 

A Random 5 300 3000 2 % 

B Random 5 300 3000 5 % 

C Random 5 400 4000 2 % 

D Random 5 400 4000 5 % 

E Random 5 50 500 20 % 

NRE Random 5 500 5000 10 % 

NRF Random 5 500 5000 20 % 

NRG Random 5 1000 10000 2 % 

NRH Random 5 1000 10000 5 % 

 

 

Table 1.2. Characteristics of the single instances 

Instances Problem Type Number of rows Number of columns Density 
CLR10 Combinatorial 511 210 12.3 % 

CLR11 Combinatorial 1023 330 12.4 % 

CLR12 Combinatorial 2047 495 12.5 % 

CLR13 Combinatorial 4095 715 12.5 % 

CYC06 Logical 240 192 2.1 % 

CYC07 Logical 672 448 0.9 % 

CYC08 Logical 1792 1024 0.4 % 

CYC09 Logical 4608 2304 0.2 % 

CYC10 Logical 11520 5120 0.8 % 

CYC11 Logical 28160 11264 0.02 % 
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1.4.1. Computational results of algorithm EM for the unicost SCP  

  To compare the performance of algorithm EM with those of the most effective approaches 

proposed for the unicost SCP, we report in Tables 1.4 and 1.5 the results of algorithm GRASP, 

proposed by Bautista and Pereira [6], on all the benchmark instances (except data sets NRG and 

NRH), and in Table 1.5 the results of algorithm Meta-RaPS, proposed by Lan et al. [46], on the 

subset of instances considered by the authors (i.e. instances E, CLR and CYC). These methods are 

currently the best available ones for the unicost SCP.  It is important to note that Bautista and 

Pereira [6] and Lan et al. [46] carried out their computational experiments on a 1.8 GHz and a 1.7 

GHz PC, respectively, so we can compare the corresponding Computing times with those of 

algorithm EM with a good approximation. 

   Like for the other metaheuristic methods, the best values of the parameters to be used in the 

overall algorithm are obtained by performing extensive computational experiments on a set of 

benchmark instances. For algorithm EM the following parameters must be defined: Pop_size,   for 

�elite population� and   for �diverse population� (Section 1.3.2), LSITER and Search_magnitude 

(Section 1.3.4) and Mutation_control (Section 1.3.7). In addition, the Stop criterion to be used in 

the overall algorithm (Section 1.3.8) has to be chosen. For the experimental definition of the �best 

values� to be assigned to the parameters, we have considered the classical SCP benchmark 

instances, having the number of columns larger than the corresponding number of rows (see Table 

1.1).  For these instances no results (with the exception of the trivial data set E) are reported for 

algorithm Meta-RaPS [46], hence we have chosen the stop criterion by considering the results 

reported for algorithm GRASP [6]. In particular, we stop the main loop of algorithm EM when the 

global execution time reaches the CPU time spent by algorithm GRASP on the corresponding data 

set (time limit = largest multiple of 5 not larger than the minimum GRASP time for the considered 

data set). In any case, at most MAXITER (with MAXITER  

 

Table 1.3. Parameters setting     

Parameter Value 

Pop_size 5 (2 elite and 3 diverse solutions) 

  for elite population 0.9 

  for diverse population 0.8 

Search_magnitude 
0.3     if 50X  or d > 10 

                               0.6     otherwise 

LSITER 
200    if 50X  or d > 10 

                               400    otherwise 
Mutation_control 5 
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= 100) iterations of the main loop are performed. The values of the parameters used in the execution 

of algorithm EM are given in Table 1.3. 

All the times reported in the following tables are expressed in seconds. For all the instances, 

the seed of the pseudo random number generator used in the execution of EM has been fixed to 1.  

   Since some sets of instances are not considered in Bautista and Pereira [6] and Lan et al. [46], we 

divide the computational results into 3 tables.  

Table 1.4 reports the results obtained by algorithms EM and GRASP [6]  on the classical SCP 

data set 4, 5, 6, A, B, C, D, NRE and NRF. As already mentioned, no results are reported on these 

data sets for algorithm Meta-RaPS [46]. For each instance, the solution value and the corresponding 

final time are reported for the two considered algorithms; in addition, we report the time at which 

the best solution is found by algorithm EM. For the final time of EM, the mark �(G)� means that 

EM was stopped according to the GRASP final time.  

   Table 1.5 reports the results obtained by algorithms EM, GRASP [6] and Meta-RaPS [46] on 

data set E and on the �single instances� (see Table 1.2). In addition to the previous values, for 

algorithm Meta-RaPS [46] we report the solution value and the time at which this value was found 

(no information on the final time is given in [46]). 

   Table 1.6 reports the results obtained by algorithm EM on the remaining data sets NRG and 

NRH. No results on these data sets are reported in [6] and [46], so as stop criterion we just set the 

maximum number of iterations equal to 100.  

   In each table, the last two lines give the sum and the average of the values reported in the 

corresponding column. 

   Tables 1.4 and 1.5 show that algorithm EM performs better than algorithm GRASP, 

improving the solution values for 15 instances (marked with a * in the tables), and finding 12 new 

best known solutions (marked in bold in Table 1.4). Only for instance CYC11 algorithm EM finds a 

solution worse than that found by algorithm GRASP. Moreover, it can be seen that all the solution 

values found by algorithm EM are obtained in computing times generally much smaller than the 

corresponding GRASP final times. In particular, for datasets NRE and NRF the EM final times as 

well are always much smaller than the corresponding GRASP final times.  

   Lan et al. [46] reported the results of algorithm Meta-RaPS only for data sets E, CLR and CYC. 

Table 1.5 shows that, with respect to the solutions found by EM, algorithm Meta-RaPS obtains 

better solutions for 3 instances, while for the remaining instances the results are the same. In 

addition, the computing times of Meta-RaPS are smaller than those of EM. It has to be noted that 

these instances have a particular structure. Indeed, the 5 instances of data set E are much smaller 

than the other instances, and can be very easily solved to optimality by any greedy procedure. On  
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Table 1.4. Results of algorithms EM and GRASP [6] 
Instance GRASP Sol GRASP final time EM Sol EM Sol time EM final time 

4.1 38 85 38 22.70 80 (G) 
4.2 37 86 37 1.57 80 (G) 
4.3 38 85 38 3.00 80 (G) 
4.4 39 87 38 * 74.38 80 (G) 
4.5 38 87 38 2.40 80 (G) 
4.6 38 86  38 3.17 80 (G) 
4.7 38 84 38 17.00 80 (G) 
4.8 38 89 38 3.07 80 (G) 
4.9 38 88 38 0.57 80 (G) 

4.10 38 86 38 6.72 80 (G) 
5.1 35 313 34 * 6.84 305 (G) 
5.2 34 319 34 220.05 305 (G) 
5.3 35 316 34 * 25.91 305 (G) 
5.4 34 322 34 27.16 305 (G) 
5.5 34 327 34 5.84 305 (G) 
5.6 34 329 34 297.62 305 (G) 
5.7 34 315 34 6.34 305 (G) 
5.8 35 314 34 * 61.41 305 (G) 
5.9 36 313 35 * 33.30 305 (G) 

5.10 35 308 34 * 7.87 305 (G) 
6.1 21 113 21 1.87 110 (G) 
6.2 20 115 20 79.71 110 (G) 
6.3 21 115 21 0.08 110 (G) 
6.4 21 114 21 10.89 110 (G) 
6.5 21 113 21 2.09 110 (G) 
A1 39 549 39 28.85 540 (G) 
A2 39 543 39 182.56 540 (G) 
A3 39 544 39 140.21 540 (G) 
A4 38 549 38 18.74 540 (G) 
A5 39 542 38 * 7.81 540 (G) 
B1 22 960 22 44.32 935 (G) 
B2 22 955 22 7.39 935 (G) 
B3 22 964 22 7.04 935 (G) 
B4 22 942 22 29.04 935 (G) 
B5 22 938 22 42.86 935 (G) 
C1 43 1074 43 921.96 1030 (G) 
C2 44 1079 43 * 1023.79 1030 (G) 
C3 44 1076 43 * 918.46 1030 (G) 
C4 44 1074 43 * 28.49 1030 (G) 
C5 44 1032 43 * 1007.09 1030 (G) 
D1 25 2468 25 49.60 1939.06 
D2 25 2456 25 18.76 1939.06 
D3 25 2358 25 73.53 1731.99 
D4 25 2435 25 50.56 2329.78 
D5 25 2446 25 212.62 2444.16 

NRE1 17 20373 16 * 1305.72 5109.44 
NRE2 17 20381 17 22.61 4770.71 
NRE3 17 20372 17 50.67 5407.35 
NRE4 17 20376 17 43.31 4617.45 
NRE5 17 20368 17 10.78 4128.57 
NRF1 10 41960 10 145.71 1353.87 
NRF2 10 41521 10 1325.44 1501.82 
NRF3 10 41856 10 1399.77 1694.32 
NRF4 10 41450 10 120.20 1582.85 
NRF5 10 42076 10 1651.14 1709.79 
SUM 1613 340326 1601 11810.59 59185.22 
AVG 29.33 6187.75 29.11 214.74 1076.09 
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Table 1.5. Results of algorithms EM, GRASP [6] and Meta-RaPS [46]  

Instances 

 
GRASP 

Sol 

GRASP 

final time 

EM 

Sol 

EM Sol 

time 

EM final 

time 

Meta-RaPS 

Sol 

Meta-RaPS 

Sol time 

E1 5 54 5 0.01 4.77 5 0 

E2 5 55 5 0.01 3.91 5 0.03 

E3 5 51 5 0.01 2.32 5 0 

E4 5 55 5 0.05 4.50 5 0.12 

E5 5 56 5 0.02 2.62 5 0 

CLR10 25 19 25 0.57 15 (G) 25 0.05 

CLR11 23 250 23 15.53 250 (G) 23 3.03 

CLR12 23 572 23 109.69 570 (G) 23 4.13 

CLR13 23 4987 23 3539.45 4985 (G) 23 48.74 

CYC6 60 6 60 0.08 5 (G) 60 0 

CYC7 144 26 144 1.97 25 (G) 144 0 

CYC8 348 645 344 * 303.40 645 (G) 344 38.91 

CYC9 813 442 812 * 407.63 440 (G) 793 88.36 

CYC10 1918 1922 1915 * 1892.06 1920 (G) 1826 80.56 

CYC11 4268 42516 4272 12922.03 42515 (G) 4140 12656.75 

SUM 7670 51656 7666 19192.51 51388.12 7426 12920.68 

AVG 511.33 3443.73 511.06 1279.50 3425.87 495.07 861.38 

 

 

Table 1.6. Results of algorithm EM on data sets NRG and NRH. 

 

Set 

 
EM Sol EM Sol time 

EM final time 

(100 iterations) 

NRG1 63 101.75 2675.36 
NRG2 63 127.87 3574.22 
NRG3 63 124.47 3098.44 
NRG4 63 117.15 4094.42 
NRG5 63 32.38 2512.01 
NRH1 34 755.72 14430.08 
NRH2 34 464.40 12643.38 
NRH3 34 1760.62 13201.37 
NRH4 34 227.73 14334.96 
NRH5 34 1912.47 11823.39 

SUM 485 5624.56 82387.63 

AVG 48.50 562.46 8238.76 

    

the other hand, the 10 instances of data sets CLR and CYC derived from specific applications, and 

have the number of rows greater than the number of columns, which is not the case for the majority 

of the real world applications that can be formulated as a unicost Set Covering Problem. In addition, 

it is worth to note that the tuning of the parameters used in algorithm EM (see Table 1.3) has 
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beencarried out by considering the classical unicost SCP instances whose results are reported in 

Table 1.4. No comparison between algorithms EM and Meta-RaPS can, of course, be performed on 

the other data sets.  

   By using parameters different from those reported in Table 1.3, and different seeds of the 

pseudo random number generator, algorithm EM was able to improve the best known solution 

values of the literature for 4 additional classical instances, and the solution values obtained with the 

fixed parameters setting for 5 instances of data sets CYC and NRG. The corresponding results are 

reported in column 4 of Table 1.7. We have to note that for instances CYC10 and CYC11 the 

solution values obtained by algorithm Meta-RaPS are still better than those obtained by algorithm 

EM. 

 

Table 1.7. Improved solutions found by algorithm EM. 

Instance GRASP Sol EM Sol 
EM improved 

solution 
Meta-RaPS 

solution 
4.6 38 38 37 * � 

4.8 38 38 37 * � 

6.4 21 21 20 * � 

D.1 25 25 24 * �  
CYC9 813 812 793 * 793 

CYC10 1918 1915 1892 * 1826 
CYC11 4268 4272 4267 * 4140 
NRG1 � 63 62 � 
NRG2 � 63 62 � 

 

 

1.4.2. The effectiveness of the EM approach for the unicost SCP  

   To investigate the effectiveness of the Electromagnetism Metaheuristic approach for the 

unicost SCP, we executed the procedures of algorithm EM within a different metaheuristic scheme. 

Since the main new ideas of the proposed algorithm are related to the Force Calculation Procedure 

and the Move Procedure, we eliminated these two procedures and embedded the other procedures 

in a different framework. In this way we can investigate if the high quality of the solutions found by 

algorithm EM is only related to the other main procedures (i.e. the construction and local search 

procedures) or if this is due to the EM approach that performs well in conducting the search in the 

solution space. Since algorithm EM is a population based algorithm, we embedded its procedures in 

a different population based metaheuristic approach: the Genetic Algorithm (GA) approach. In 

particular, we considered the GA method proposed by Beasley and Chu [9] for the non-unicost SCP. 

The main steps of the GA method are described in Algorithm 1.3 (for more details see [9]). Of 

course, to reach our aim we must apply this method by replacing the original Beasley and Chu 
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procedures reported at Steps 1, 4 and 5 with the corresponding procedures used in algorithm EM, i.e. 

the Construction Procedure, the Mutation Procedure and the Delete Redundant Columns Procedure. 

   Although there is no local search procedure in the GA method proposed by Beasly and Chu 

[9], we cannot ignore the impact of this procedure in our method. Therefore in the Modified GA 

method we apply the Local Search Procedure after the construction of the initial population and 

after the Mutation Procedure.  

 

Algorithm 1.3. GA method for SCP [9]. 

 

  Moreover, before the execution of the Modified GA method, we apply the Preprocessing 

Procedure. In this way, in the Modified GA method, we consider all the procedures proposed in 

Section 1.3, except the Force Calculation Procedure and the Move Procedure, which are the native 

procedures of the EM approach. The main steps of the Modified GA method are reported in 

Algorithm 1.4. 

   After a lot of computational experiments we found that, for the Modified GA method, the 

best values of the parameters are those used for algorithm EM, except the size of the population 

 
        Algorithm GA for SCP   

1:       Generate an initial population of Pop_size random solutions. Set t:=0. 

2:       Randomly select two solutions P1 and P2 from the population by using the binary 

          tournament selection.  

3:       Combine P1 and P2 to form a new solution C by using the fusion crossover  

          operator.    

4:       Mutate k randomly selected columns in C, where k is determined by the variable  

           mutation schedule.     

5:       Make C feasible and remove possible redundant columns from C by applying the 

          heuristic operator.          

6:       If C is identical to any one of the solutions in the population, go to step 2; 

          otherwise set t:=t+1. 

7:       Replace a randomly chosen solution having an above-average fitness in the  

          population with C (steady-state replacement method). 

8:       Repeat steps (2)-(7) until t=M (i.e. M non-duplicate solutions have been generated).  

          The best solution found is the one with the smallest fitness in the population. 
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which must be increased in the GA structure. Here the Pop_size parameter is equal to 100 (with 40 

elite and 60 diverse solutions) i.e. the same value used by Beasley and Chu [9] in their paper.  

   Table 1.8 reports the results of algorithm EM and of the Modified GA method on the 

classical benchmark unicost SCP instances. The first four columns refer to algorithm EM and are 

taken from Table 1.4, the last three columns report the solution values, the solution times, and the  

 

Algorithm 1.4. Modified GA with the EM procedures for the unicost SCP. 

 

 

final times of the Modified GA method. To have a fair comparison with algorithm EM the same 

stopping criterion has been considered. Therefore we stop the execution of the Modified GA 

method after 100 iterations of the main loop (Steps (4)-(10) in Algorithm 1.4) or when the GRASP 

final time [6] is reached (shown with mark �(G)� on the final time reported in the last column of  

 
Algorithm Modified GA using the EM procedures 

1:       Apply the Preprocessing Procedure. 

2:       Generate an initial population of Pop_size solutions by using the  

          Construction Procedure. 

3:       Improve each solution of the initial population by using the Delete Redundant  

          Columns Procedure and the Local Search Procedure. 

4:       Randomly select two solutions P1 and P2 from the population by using the binary 

          tournament selection.  

5:       Combine P1 and P2 to form a new solution C by using the fusion crossover 

          operator.    

6:       Apply the Mutation Procedure on C according to the mutation _control parameter. 

7:       Make C feasible and remove possible redundant columns in C by applying the  

          Delete Redundant Columns Procedure.    

8:       Improve C by applying the Local Search Procedure.       

9:       If C is identical to any one of the solutions in the population, go to step (4); 

10:     Replace a randomly chosen solution having an above-average fitness in the  

          population with C (steady-state replacement method). 

11:     Repeat steps (4)-(10) until the stop criterion is met.  

          The best solution found is the one with the smallest fitness in the population. 
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Table 1.8. Comparison of algorithm EM with the Modified GA method for the unicost SCP. 

Instance EM Sol EM Sol time EM final time 
Modified GA  

Sol 
Modified GA  

Sol time  

Modified GA  

final time 

4.1 38 22.70 80 (G) 38 36.17 80 (G) 
4.2 37 1.57 80 (G) 37 2.04 80 (G) 
4.3 38 3.00 80 (G) 38 4.49 80 (G) 
4.4 38  74.38 80 (G) 38 75.41 80 (G) 
4.5 38 2.40 80 (G) 39 1.49 80 (G) 
4.6 38 3.17 80 (G) 37* 2.19 80 (G) 
4.7 38 17.00 80 (G) 38 6.34 80 (G) 
4.8 38 3.07 80 (G) 38 5.80 80 (G) 
4.9 38 0.57 80 (G) 38 39.99 80 (G) 

4.10 38 6.72 80 (G) 39 1.46 80 (G) 
5.1 34  6.84 305 (G) 35 1.66 305 (G) 
5.2 34 220.05 305 (G) 35 1.66 305 (G) 
5.3 34  25.91 305 (G) 34 41.04 305 (G) 
5.4 34 27.16 305 (G) 34 26.94 305 (G) 
5.5 34 5.84 305 (G) 34 2.62 305 (G) 
5.6 34 297.62 305 (G) 34 3.79 305 (G) 
5.7 34 6.34 305 (G) 34 6.80 305 (G) 
5.8 34  61.41 305 (G) 34 144.25 305 (G) 
5.9 35  33.30 305 (G) 35 24.11 305 (G) 

5.10 34  7.87 305 (G) 34 165.40 305 (G) 
6.1 21 1.87 110 (G) 21  2.27 110 (G) 
6.2 20 79.71 110 (G) 20 36.52 110 (G) 
6.3 21 0.08 110 (G) 21 0.07 110 (G) 
6.4 21 10.89 110 (G) 21 3.63 110 (G) 
6.5 21 2.09 110 (G) 21 15.10 110 (G) 
A1 39 28.85 540 (G) 39 291.50 540 (G) 
A2 39 182.56 540 (G) 39 126.98 540 (G) 
A3 39 140.21 540 (G) 39 296.24 540 (G) 
A4 38 18.74 540 (G) 38 16.67 540 (G) 
A5 38  7.81 540 (G) 39 57.73 540 (G) 
B1 22 44.32 935 (G) 22 5.11 935 (G) 
B2 22 7.39 935 (G) 22 8.20 935 (G) 
B3 22 7.04 935 (G) 22 40.26 935 (G) 
B4 22 29.04 935 (G) 22 78.85 935 (G) 
B5 22 42.86 935 (G) 22 91.97 935 (G) 
C1 43 921.96 1030 (G) 44 70.79 1030 (G) 
C2 43  1023.79 1030 (G) 44 71.40 1030 (G) 
C3 43  918.46 1030 (G) 44 114.34 1030 (G) 
C4 43  28.49 1030 (G) 43 8.03 1030 (G) 
C5 43  1007.09 1030 (G) 44 701.62 1030 (G) 
D1 25 49.60 1939.06 25 1.17 1283.05 
D2 25 18.76 1939.06 25 1.21 1311.68 
D3 25 73.53 1731.99 25 28.62 1267.64 
D4 25 50.56 2329.78 25 210.22 1264.45 
D5 25 212.62 2444.16 25 721.09 1272.94 

NRE1 16  1305.72 5109.44 17 81.77 2409.23 
NRE2 17 22.61 4770.71 17 71.30 2465.47 
NRE3 17 50.67 5407.35 17 6.61 2471.32 
NRE4 17 43.31 4617.45 17 22.82 2517.28 
NRE5 17 10.78 4128.57 17 384.18 2487.99 
NRF1 10 145.71 1353.87 11 12.85 568.07 
NRF2 10 1325.44 1501.82 11 13.10 563.29 
NRF3 10 1399.77 1694.32 11 12.74 561.19 
NRF4 10 120.20 1582.85 11 12.73 553.51 
NRF5 10 1651.14 1709.79 11 12.71 560.36 
SUM 1601 11810.59 59185.22 1615 4224.05 38482.47 
AVG 29.11 214.74 1076.09 29.36 76.80 699.68 
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Table 1.8). The results of the Modified GA method which are better than those of algorithm EM are 

shown with a star mark, and the worse results are written in bold. The Modified GA method obtains 

a better result only in one case (instance 4.6), and is worse than algorithm EM for 15 instances. 

Note however that the result obtained by the Modified GA method for instance 4.6 has been 

achieved as well by algorithm EM, by using alternative parameters, as reported in Table 1.7. As for 

the computing times, Table 1.8 shows that the global average solution time of the Modified GA 

method is less than that of algorithm EM. However, to have a fair comparison we must consider 

only the instances whose solution values are the same for both methods. Accordingly, the sum and 

the average solution times of the EM method, over the 39 instances having the same solution values 

as the Modified GA method, are, respectively, 1744.32 and 44.73, while these quantities are, 

respectively, 3053.81 and 78.30 for the Modified GA method. Therefore, algorithm EM can be 

considered faster than the Modified GA method in finding the same solution values.    

 

1.4.3. Adaptation of algorithm EM for the non-unicost SCP  

   We have adapted the proposed algorithm EM, designed for the unicost SCP, to the non-

unicost SCP. In the unicost SCP only the number of rows covered by a column is considered as the 

fitness of a column, while in the non-unicost version the cost of each column should be considered 

as well.  

   To adapt algorithm EM to deal with the non-unicost SCP, we changed some parts of the 

proposed procedures. In particular, in the Preprocessing Procedure and Delete Redundant Columns 

Procedure (see Sections 1.3.1 and 1.3.3), where we try to remove dominated columns and 

redundant columns, respectively, we check the possible removal of a column by considering a 

subset of columns covering all the rows covered by the column and having a global cost not greater 

than the cost of the column. In the Construction Procedure (Section 1.3.2) we define the promising 

columns in the candidate list as those columns j for which the fitness value, defined as the ratio 

between the cost of column j (
j

c ) and the square of the number of currently uncovered rows 

covered by column j ( 2

j
K ), is less than a threshold, defined as a given percentage ( 1 ) of the 

minimum amount of the fitness values. Moreover, in the Force Calculation Procedure (Section 

1.3.5), )( k
Xf , )( i

Xf  and )( best
Xf  substitute, respectively, k

X , i
X  and best

X  in (1.13) and 

(1.14), where f(X) is the sum of the costs of the columns in solution X. We found as well that, for  
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Table 1.9. Parameters setting for the non-unicost SCP. 

Parameter Value 

Pop_size 5 (2 elite and 3 diverse solutions) 

  for elite population 0.1 

  for diverse population 0.8 

Search_magnitude 0.3      

LSITER 400 

 

Table 1.10. Comparison of algorithm EM (using seed 1) with algorithm Meta-RaPS [46] for the non-unicost 

SCP. 

Instance Meta-RaPS Sol 
Meta-RaPS 

Sol time 

EM 

Sol 

EM 

Sol Time 

EM 

final time 

4.1 429 1.36 429 0.18 38.35 
4.2 512 0.24 512 0.03 46.83 
4.3 516 0.29 516 0.57 49.98 
4.4 494 0.39 494 4.57 45.24 
4.5 512 0.9 514 6.95 38.15 
4.6 560 0.1 560 3.38 46.61 
4.7 430 0.04 430 0.81 34.53 
4.8 492 1.46 492 0.03 39.32 
4.9 641 3.47 641 0.10 46.02 

4.10 514 0.08 514 3.18 40.34 
5.1 253 1.55 254 0.09 42.38 
5.2 302 0.59 302 38.45 49.60 
5.3 226 1.14 226 0.15 35.72 
5.4 242 0.32 242 32.65 43.35 
5.5 211 0.33 211 23.61 38.54 
5.6 213 0.14 214 24.33 34.56 
5.7 293 1.03 293 0.17 44.33 
5.8 288 0.08 288 0.49 44.52 
5.9 279 0.04 280 0.45 43.04 

5.10 265 0.03 265 0.92 44.97 
6.1 138 0.25 138 0.39 32.85 
6.2 146 0.02 146 6.42 30.20 
6.3 145 0.02 145 0.07 33.22 
6.4 131 0.34 131 0.01 36.90 
6.5 161 1.02 161 0.15 38.61 
A1 253 6.22 253 23.58 78.56 
A2 252 0.28 252 15.70 82.46 
A3 232 16.94 233 14.21 66.00 
A4 234 0.04 234 17.86 72.30 
A5 236 9.37 237 1.90 73.14 
B1 69 0.14 69 0.15 58.46 
B2 76 0.53 76 0.32 79.29 
B3 80 0.62 80 0.65 59.82 
B4 79 2.25 79 4.60 58.21 
B5 72 0 72 0.06 74.89 
C1 227 0.43 227 59.46 111.05 
C2 219 12.89 219 113.86 114.39 
C3 243 26.24 244 0.60 108.51 
C4 219 24.29 219 35.77 102.88 
C5 215 1.79 215 10.46 120.21 
D1 60 3.13 60 1.10 84.55 
D2 66 13.59 66 0.73 75.14 
D3 72 1.31 72 0.62 73.58 
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D4 62 0.2 62 0.12 95.65 
D5 61 0.29 61 0.23 106.33 

NRE1 29 0.73 29 0.18 130.05 
NRE2 30 46.17 30 0.18 103.49 
NRE3 27 5.95 27 0.74 111.21 
NRE4 28 39.64 28 0.57 135.00 
NRE5 28 0.81 28 0.20 180.69 
NRF1 14 4.29 14 0.56 160.16 
NRF2 15 3.8 15 0.45 167.57 
NRF3 14 1.84 14 0.88 133.58 
NRF4 14 5.44 14 0.65 144.54 
NRF5 13 33.27 13 2.83 109.87 
NRG1 176 289.97 176 63.44 434.94 
NRG2 154 222.34 154 345.14 411.24 
NRG3 166 21.56 169 6.24 361.31 
NRG4 168 194.21 170 347.98 393.57 
NRG5 168 47.57 172 1.18 362.17 
NRH1 63 3917.08 64 3.16 308.67 
NRH2 63 238.45 63 255.57 374.60 
NRH3 59 783.2 60 5.27 348.47 
NRH4 58 1358.28 58 154.71 321.04 
NRH5 55 5.62 55 285.24 289.48 
SUM 12762 7356.00 12781 1925.30 7695.23 
AVG 196.34 113.17 196.63 29.62 118.39 

 

 

Table 1.11. The improved solutions of algorithm EM for the non-unicost SCP using 5 additional seeds. 

Instance 

Meta-

RaPS 

Sol 

Meta-

RaPS 

Sol time 

EM 

Sol 

EM  

improved Sol 

EM  

improved  

Sol time 

EM  

improved  

final time 

4.5 512 0.9 514 512 38.55 221.43 
5.1 253 1.55 254 253 63.57 257.12 
5.6 213 0.14 214 213 103.17 210.65 
5.9 279 0.04 280 279 87.12 255.83 
A3 232 16.94 233 232 150.61 399.61 
A5 236 9.37 237 236 166.82 435.22 
C3 243 26.24 244 243 120.31 655.58 

NRG3 166 21.56 169 166 1810.84 2172.65 
NRG4 168 194.21 170 168 790.16 2368.93 
NRG5 168 47.57 172 168 365.16 2178.73 
NRH1 63 3917.08 64 63 1350.61 1846.54 
NRH3 59 783.2 60 59 699.54 2097.69 

 

the non-unicost SCP, removing columns completely randomly in the Local Search Procedure 

(Section 1.3.4) and applying the Mutation Procedure (Section 1.3.7) at each iteration of the 

algorithm increases the possibility of finding better solutions. The values of the parameters 

obtaining the best results for the non-unicost SCP are reported in Table 1.9. 

We considered the 65 classical benchmark instances for the non-unicost SCP of the OR-

Library [8], and executed the modified code for 100 iterations of the main loop, using again 1 as 

seed of the pseudo random number generator. Table 1.10 reports the solution values and the 

solution times of Meta-RaPS [46] and of the Modified EM algorithm. No information on the final 



Algorithms for the Combinatorial Optimization Problems                                                                       Zahra Naji Azimi 
 

 25 

times of Meta-RaPS is given in Lan et al. [46]. As it can be seen from Table 1.10, by using the 

standard seed 1, algorithm EM is able to obtain the best known solutions of the non-unicost version 

of SCP [14], [46] for 53 instances. For the remaining 12 instances the modified EM algorithm 

found worse solution values (shown in bold in Table 1.10). As for the computing time, by 

considering only the 53 instances whose solution values are the same for both methods, we have 

that the average solution times of algorithm EM and Meta-RaPS are, respectively, 28.55 and 44.10 

seconds. By performing in sequence, for each instance, 5 additional executions of the algorithm, by 

using 5 different seeds and 100 iterations of the main loop for each seed, algorithm EM can obtain 

the remaining 12 best known solutions (see Table 1.11). Therefore, by executing 6 independent runs 

of the code, using 6 different seeds, all the best known solutions of the non-unicost SCP are 

obtained by algorithm EM. By considering all the 65 benchmark instances, the average computing 

time of algorithm EM for finding its best solution is 111.92 seconds, which is comparable with the 

corresponding computing time of Meta-RaPS. 

 

1.5. Conclusions 

   We have proposed a new metaheuristic method for the unicost Set Covering Problem based 

on the Electromagnetism Metaheuristic approach. One of the new features with respect to the 

standard Electromagnetism scheme is the utilization of a Preprocessing Procedure to delete 

redundant columns, together with the definition of a core problem to speed up the algorithm. We 

construct the current population with both medium and high quality solutions to extend the diversity 

of the initial population, and apply a Mutation Procedure to enhance the possibility of visiting new 

regions of the solution space. The proposed algorithm is basically different from both the GRASP 

and the Meta-RaPS methods, because it uses diverse and elite solutions in the current population, 

instead of a single solution, and also because it applies the Mutation Procedure. Moreover, the 

proposed Local Search Procedure is able to explore a larger neighbourhood, with respect to the 

local search of algorithm GRASP [6], because it removes a subset of columns and tries to re-

optimize over the corresponding partial SCP. Finally, the removal of the columns in the Local 

Search Procedure is not completely random, as in algorithm Meta-RaPS [46], but is based on the 

�quality� of the columns as well. Moreover all the columns have a chance to be removed, and this 

feature makes the proposed Local Search Procedure different from the refining method proposed in 

algorithm CFT [14]. 

   On the classical benchmark instances from the literature, where the number of columns is 

larger than the number of rows, the proposed metaheuristic always found the best known solution 

and for 12 instances it was able to improve the current best solution by using a fixed set of 
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parameters. By using different parameter settings the algorithm improved 4 additional best known 

solutions. We also reported computational results on 10 additional instances for which no results are 

known from the literature. 

   Moreover, to investigate the effectiveness of the EM approach in conducting the search in 

the solution space we embedded the procedures of the proposed algorithm (except Force 

Calculation Procedure and Move Procedure which are the native parts of algorithm EM) in a new 

scheme based on the Genetic Algorithm (GA) method proposed by Beasley and Chu [9] for the 

non-unicost SCP. Although we have improved the performance of this Modified GA method by 

adding the Local Search Procedure, still the proposed algorithm EM performs better than the 

Modified GA method.  

   Finally a modification of algorithm EM to the non-unicost SCP is presented. This modified 

algorithm obtains, for the classical SCP instances, all the best known solutions from the literature.  
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A heuristic procedure  

for 
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Abstract: 

   In this chapter we propose a heuristic method to solve the Capacitated m-Ring-Star 

Problem which has many practical applications in communication networks. The problem consists 

of finding m rings (simple cycles) visiting a central depot, a subset of customers and a subset of 

potential (Steiner) nodes, while customers not belonging to any ring must be �allocated� to a visited 

(customer or Steiner) node. Moreover, the rings must be node-disjoint and the number of customers 

allocated or visited in a ring cannot be greater than the capacity Q given as an input parameter. The 

objective is to minimize the total visiting and allocation costs. The problem is a generalization of 

the Traveling Salesman Problem, hence it is NP-hard.  

In the proposed heuristic, after the construction phase, a series of different local search 

procedures are applied iteratively. This method incorporates some random aspects by perturbing the 

current solution through a �shaking� procedure which is applied whenever the algorithm remains in 

a local optimum for a given number of iterations. Computational experiments on the benchmark 

instances of the literature show that the proposed heuristic is able to obtain, within a short 

computing time, most of the optimal solutions and can improve some of the best known results.  
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2.1 Introduction 

The Capacitated m-Ring-Star Problem (CmRSP) has been introduced by Baldacci et al. [5] in 

2007. In the CmRSP, we are given a mixed graph G = (V, EA), in which V is the set of nodes, 

},,:},{{ jiVjijiE   is the set of edges (undirected arcs) and A is the set of arcs. The node 

set V is defined as WUV  }0{  in which node 0 represents the depot, U is the set of 

customers and W is the set of Steiner nodes. Each customer Ui  can be connected to a subset of 

nodes denoted by WUC
i

 , so the arc set A can be written as },:),{(
i

CjUijiA  . 

We consider a non negative routing cost 
e

c  for each edge Ee  and a non negative allocation cost 

ij
d  for each arc (i,j) A . A ring R is a simple cycle visiting a subset of nodes including the depot. 

A customer i is assigned to a ring R if it is visited by the ring or allocated to a node on the ring. The 

number of rings, m, and the capacity of each ring, Q, are given as input parameters, and it is 

assumed that UmQ  . In each feasible solution of the CmRSP, each customer has to be assigned 

to exactly one ring, each Steiner node can be visited at most once, and the number of customers 

assigned to a ring cannot be greater than the capacity Q.  

The goal of the CmRSP is to find m rings so that the global cost, given by the sum of the 

routing costs and of the allocation costs, is minimized. The CmRSP is NP-hard, since it generalizes 

the Symmetric Traveling Salesman Problem (TSP), arising when m=1, Q=|U|, W , A . 

The CmRSP has many applications in telecommunication networks, in particular in the fiber 

optic communication networks (see, e.g. Baldacci et al. [5]). 

Baldacci et al. [5] proposed two Integer Linear Programming (ILP) formulations and 

developed a Branch and Cut (BC) approach for the CmRSP. The algorithm has been tested on a 

large variety of problems, including real-world instances. The results show that the proposed 

algorithm is able to solve to optimality the small-sized instances in a reasonable computing time. 

Two heuristics are also proposed in [5]. The first one, H1, is an adaptation of the algorithm 

proposed by Baldacci and Dell�Amico [4] for the multi-depot CmRSP and is executed at the root 

node of the enumeration tree. The second heuristic, H2, takes advantage of the information obtained 

by the solution of the Linear Programming (LP) relaxation of the proposed ILP formulations to 

construct a CmRSP solution and is executed at a given set of nodes of the enumeration tree. 

Mauttone et al. [52] proposed a hybrid metaheuristic approach for the CmRSP in 2007. In 

their approach a combination of GRASP and Tabu Search algorithms has been proposed for solving 

the problem. 

Finally in 2008 Hoshino and de Souza [39] proposed an ILP formulation based on a Set 

Covering model and developed a Branch-and-Price (BP) algorithm for the CmRSP. Computational 
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experiments on the two exact algorithms proposed in [5] and [39] show that these methods do not 

dominate each other, and that, for instances with more than 50 nodes; they fail in many cases in 

finding the optimal solutions, even employing up to two hours of computing time. 

In this approach we propose a heuristic method for the CmRSP, which is able to obtain, 

within a short computing time, most of the optimal solutions and can improve some of the best 

known results proposed in the literature. 

Variants of the CmRSP, studied in the literature and arising in telecommunication networks, 

are described in Baldacci et al. [5] and Labbé et al. [44], [45].  

The rest of this chapter is organized as follows. The proposed heuristic is introduced in 

Section 2.2. Experimental results on the benchmark instances from the literature are presented in 

Section 2.3. Conclusions are given in Section 2.4. 

 

2.2. Description of the proposed algorithm 

This section presents a heuristic procedure developed for the CmRSP. In the proposed 

algorithm, we start with the Initialization Procedure which constructs a feasible solution.  

 

Algorithm 2.1. Proposed heuristic for the CmRSP. 

 

CurrentSolution := Initialization (); 
BestCost := Cost (CurrentSolution)  and    BestSolution := CurrentSolution; 
iter := 0; 

 

While iter  < Max_Iter do 
     iter := iter  + 1; 
      While CurrentSolution can be improved do 
 Improvement (CurrentSolution); 
       End While; 

       If (Cost (CurrentSolution)  <  BestCost ) Then  
            For each ring, call the Lin-Kernighan procedure to improve the ring length; 
            Update CurrentSolution, BestCost and BestSolution; 
       Else if (Cost (CurrentSolution) >  P* BestCost) then 

             CurrentSolution := BestSolution; 
       End If; 

       Shaking (CurrentSolution); 
End While. 

 

 

The main body of the heuristic consists of two major phases: Improvement Procedure and 

Shaking Procedure, which are iteratively executed. In the Improvement Procedure, the goal is to 

improve the current solution locally, by using the different moves developed for this problem. 

Whenever we are not able to improve the quality of the current solution by applying the 
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Improvement Procedure, the algorithm tries to escape from the local optimum by perturbing the 

current solution through the execution of the Shaking Procedure.  

Sometimes, by perturbing the current solution, the Improvement Procedure is not able to 

improve the best known solution found so far, and even to recover the current solution. In this 

situation, to enhance the performance of the algorithm, we use the threshold accepting idea, by 

accepting the worse solution as the current one if its cost is not greater than a given percentage P of 

the cost of the best known solution (where P is an input parameter). In addition, the Lin-Kernighan 

TSP procedure (see Lin and Kernighan [49] and Helsgaum [38] ) is applied for each ring. The 

outline of the proposed heuristic is described in Algorithm 2.1. In the following subsections we give 

the details of each step. In the description of the algorithm the term �node� refers to a customer or a 

Steiner node. 

 

2.2.1. Initialization Procedure 

To construct the initial solution, we apply the clustering algorithm proposed by Fischetti et 

al. [31] for the Generalized Traveling Salesman Problem (GTSP). This algorithm first constructs a 

set of m rings by considering the depot and m customers as far as possible one from each other. To 

do so, the algorithm chooses the depot as the first node and then selects m customers in turn, each as 

far as possible from the previous ones. As soon as the m customers are selected, m rings are 

obtained by connecting each customer to the depot. The remaining customers are assigned (i.e.  

 
Algorithm 2.2. Clustering algorithm for the Initialization Procedure. 

 

 

Input: m, U, ],[ wv
c  for Uwv  }0{, ; 

Output: the depot and m customers as far as possible one from each 
other;  
Comment let   :Sfar    SUvSwc wv \::minmaxarg ,   be the 

furthest customer from a given node subset US  }0{ ; 

 
Begin 

     1. :1center })0({far ; 
     2. For i = 2 to m+1 do  
             }),...,({: 11  ii centercenterfarcenter ; 

         End For; 

     3. For Ui do 
                If (customer i is not visited or allocated) Then 
                     Assign (i.e. visit or allocate) i to its best feasible position; 
         End For; 
End.  
(In max{.}arg , ties are broken by choosing the smallest argument.) 
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visited or allocated) to their best feasible position, i.e., to the feasible (with respect to the capacity 

constraint) position that generates the minimum insertion cost with respect to the current rings. Note 

that no Steiner node is used in the initialization procedure. The outline of the clustering algorithm is 

given in Algorithm 2.2.                 

 

2.2.2. Improvement Procedure  

In this phase, the algorithm tries to improve the current solution by applying the Swap, 

Steiner-Node-Removal and Extraction-Assignment procedures developed for the CmRSP. To do so, 

the algorithm iteratively applies the Swap procedure. As soon as the solution cannot be improved by 

using the moves of the Swap procedure, the algorithm continues by calling the Steiner-Node-

Removal procedure and, iteratively, the Extraction-Assignment procedure. The outline of the 

Improvement Procedure is given in Algorithm 2.3. In the following subsections the details of the 

proposed procedures are given.  

 

Algorithm 2.3. Improvement Procedure. 

 
   While the solution can be improved do 
        Swap (CurrentSolution); 
   End While; 

   Steiner-Node-Removal (CurrentSolution); 
   While the solution can be improved do 
        Extraction-Assignment (CurrentSolution); 
   End While. 

 

 

 

2.2.2.1. Swap Procedure 

 In this procedure we start by randomly selecting a customer and testing all the possible 

ways to swap this customer with another visited or allocated node which is near to the selected one, 

starting from the first nearest node up to the Tth nearest one (where T is an input parameter). As soon 

as a feasible swap move leads to an improvement, the current solution is updated and the remaining 

possible swap moves with the other near nodes are not considered. The procedure continues with 

the next randomly selected customer of the current solution that has not been considered yet, and 

stops when all the customers of the current solution have been considered. While doing the Swap 

moves, regardless of the status of the swapped nodes (visited or allocated) the procedure follows the 

main idea of the Swap move, i.e., it switches the position of the two selected nodes. This means that 

if one of the two nodes is a customer/Steiner node with some allocated customers, after the swap 
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move these customers are allocated, if the capacity constraint is satisfied, to the swapped node. The 

only exception to this rule is the case where both selected nodes are in the same ring, one of them, 

say i, which is a customer, is allocated and the other one, say j, which can be a customer or a Steiner 

node, is visited with some possible allocations. In this situation, since by changing the position of 

the two nodes the capacity of the ring remains the same, we apply a different rule. First we visit the 

allocated customer i in the current position of node j. The remaining nodes (i.e. node j and its  

 

Figure 2.1. A special case of the Swap Procedure with a customer as a visited node. 

 

 

 

 

 

 

 

 

 

Figure 2.2. A special case in the Swap Procedure with a Steiner node as a visited node. 

 

  

 

 

 

 

 

 

possible allocated customers) are first extracted from the current solution and then, in a random 

order and once at a time, are visited or allocated in their best feasible position, i.e, the position that 

generates the minimum insertion cost.  

An example of this case is given in Figure 2.1. In this example (see the left side of Figure 

2.1) customer i is allocated to node a and node j is a customer, with two allocated customers d and e. 

In the first step we visit customer i (between b and c). Then we search for the best position for 

visiting or allocating customers d, j and e. A possible positioning of these customers is given in the 
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right side of Figure 2.1. Figure 2.2 shows a similar example, but in this case node j is a Steiner node. 

So after the swap it no longer belongs to the solution.  

  The framework of this procedure is given in Algorithm 2.4. 

 

Algorithm 2.4. Swap Procedure. 

 
   Randomly order the customers; 
   For i  = 1,�, |U| do 
          For l = 1,�, T do 
                j := 

th
l  allocated or visited node nearest to customer i;  

               If (i and  j are in the same ring) and (i is visited and j is allocated, or viceversa) 
                      Then 
                       (suppose i is the allocated customer and j is the visited node) 
                        Construct NewSolution as follows: 
                              Visit customer i in the ring in the current position of node j; 
                              Extract node j, along with its possible allocated customers, from the ring;  
                              Consider each of these nodes in a random order and, if it is a customer,  
                              allocate or visit it in its best feasible position in the ring; 
                Else 

                       NewSolution := CurrentSolution with i and j swapped; 
                End If; 
                If  (NewSolution is feasible) and (cost (NewSolution) < cost (CurrentSolution)) Then 
                     CurrentSolution : = NewSolution; 
                     Possibly update BestCost and BestSolution; 
                     Break; 
                 End If; 

           End For; 

   End For. 

 

    
2.2.2.2. Steiner-Node-Removal 

 In this procedure, we extract, in a random order, each visited Steiner node, with its allocated 

customers, from the current solution, and reassign the extracted customers to new feasible positions, 

so as to decrease the global cost. Starting from the first randomly selected Steiner node, we extract 

the node along with all its allocated customers. Then, we reinsert each of the extracted customers in 

its best feasible position, by considering its T nearest nodes. If the new solution is not improved 

with respect to the current one, all the extracted nodes are reinserted in their previous position. 

Otherwise we update the current solution (and possibly BestSolution and BestCost). We repeat this 

procedure until all the Steiner nodes of the current solution have been examined. 
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2.2.2.3. Extraction-Assignment Procedure 

   In this procedure, we extract, in a random order, each customer i from its current position, 

and reassign it to a possibly better feasible position by using some specific moves designed for the 

procedure. 

Let us consider the case in which i is an allocated customer or a visited customer with no 

allocation. First we extract customer i from its current position. To speed up the search we consider 

a limited neighborhood of customer i containing only its T nearest nodes. Let us consider j as the th
l  

node nearest to i. If j is a visited customer or a visited/unvisited Steiner node, regardless of the 

status of customer i (visited with no allocation or allocated), we can consider three different 

possibilities for customer i. If j is a visited node, customer i can be allocated to node j, or visited  

 
Algorithm 2.5. Extraction-Assignment Procedure. 

 

 
Randomly order the customers;   
For i = 1,�, |U| do 

       If i is an allocated customer or a visited customer with no allocation Then 

              Extract i from its current position; 
              For l = 1,�, T do 
                    j := 

th
l  node nearest to customer i;  

                   If ( j is not an allocated customer ) Then 

                         State1. Consider the allocation of i to the visited node j; 
                         State2. Consider the visit of i before or after the visited node j; 
                         State3. If j is an unvisited Steiner node, Then  
                                          consider the allocation of i to j and visit j in its best feasible position  
                                          among its T nearest visited nodes; 
                                      End If; 
                         Select the feasible State corresponding to the minimum cost and possibly  
                         update BestState; 
                   End If; 

              End For; 

       Else 

             Extract customer i, along with all its allocated customers, from the current solution,   
             and assign each of them to  its best feasible position by considering its T nearest  
             visited nodes; 
             Possibly update BestState based on the new positions of the customers; 
        End If; 

        NewSolution := CurrentSolution by forcing the BestState; 
        If cost (NewSolution) < cost (CurrentSolution) Then 
             CurrentSolution := NewSolution; 
             Possibly update BestCost and BestSolution; 
        End If; 

End For. 
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before or after node j, depending on the position that yields the minimum insertion cost. Finally, if j 

is an unvisited Steiner node, customer i is allocated to node j, and j is visited in its best position 

among its T nearest visited nodes. After having considered all the possible extraction-assignment 

moves, by examining the T nodes nearest to i, we select the BestState, i.e. the move that yields the 

least total cost. Let us consider now the case in which the considered customer i is a visited one 

with some allocations, we follow the idea proposed in the Steiner-Node-Removal Procedure. This 

means that we extract customer i, along with all its allocated customers, from the current solution. 

Then, we reassign the extracted customers to their best feasible position and consider these 

assignments for defining the BestState.  

In both cases the new solution, corresponding to the extraction and reassignment of 

customer i, is obtained from the current solution by forcing the BestState. In case of improvement of 

the total cost, we update the current solution. The outline of this procedure is given in Algorithm 2.5. 

 

2.2.3. Shaking Procedure 

Since the Improvement Procedure could fail in improving the current solution, the algorithm 

tries to escape from the local optimum by perturbing the current solution. In particular, we extract in 

a random order I nodes (where I is an input parameter), along with their possible allocated 

customers, from the current solution and construct a restricted solution by short cutting them. Then, 

starting from the first extracted customer, we examine all possible positions for allocating or 

visiting the customer in the current restricted solution and reassign it to its best feasible position (i.e., 

to the feasible position that produces the minimum extra cost) in the current restricted solution. We 

iterate this procedure until all the extracted customers are visited or allocated. The outline of the 

Shaking Procedure is given in Algorithm 2.6. 

 
Algorithm 2.6. Shaking Procedure. 

 

   
    For i = 1,�, I do 
          Randomly extract a node, along with all its possible allocated customers,       
          from the current solution; 
    End For; 

    While all the extracted customers are not allocated or visited do 
           Consider the next unvisited or not allocated customer and assign it to its  
           best feasible position. 
     End While. 
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2.3. Computational Results 

The performance of the proposed heuristic for the CmRSP has been evaluated by 

considering the benchmark instances proposed by Baldacci et al. [5] derived from the TSPLIB 

library defined by Reinelt [65].  

The dataset used in [5] is divided into two classes (A and B) including instances from 26 to 

101 nodes. The topology of the underlying graphs in both classes is the same, but they are different 

in the cost structure. In particular, in class A the routing and allocation costs corresponding to a pair 

of given nodes i and j are the same and equal to the Euclidean distance ije , computed according to 

the TSPLIB standard. In class B the allocation cost is smaller than the routing cost. In particular, 

 ijij ec 7 and  ijij ed 3 , where ijc  and ijd  are the routing and allocation costs, respectively, 

corresponding to the pair of nodes i and j. The 6 additional real-world instances considered by 

Baldacci et al. [5] are not available. 

The overall algorithm has been implemented in C and the computational experiments have 

been performed on an Intel processor with 1.66 GHz and 1 GB RAM. The performance of the 

proposed heuristic depends on the parameters P and Max_Iter (Section 2.2), T (Sections 2.2.2.1, 

2.2.2.2 and 2.2.2.3) and I (Section 2.2.3). Like for other heuristics, extensive computational tests 

have been made to find a suitable set of parameters. The total number of iterations of the main loop 

of the algorithm, Max_Iter, is set to 2000. The other parameters were defined as: P = 1.05, T = 

0.2*|V| and I = 0.5*|U|. As it is customary in testing the performance of the randomized heuristic 

algorithms, we performed more independent executions of the algorithm. In particular, for each 

benchmark instance, 5 independent runs of the algorithm have been performed, with 5 different 

seeds for initializing the random number generator. The best, worst and average performance of the 

heuristic are provided in Tables 2.1 and 2.2. All the computing times are expressed in seconds. The 

first column gives the instance name, in which the numbers following n and m are the number of 

nodes and the number of rings, respectively. The second column gives the number of customers (|U|) 

and the third one shows the capacity (Q) of each ring. Columns 4 (H1) and 6 (H2) give the upper 

bounds obtained by using heuristics H1 and H2 proposed by Baldacci et al. [5]; their corresponding 

computing times are reported in columns 5 and 7, respectively. These results have been obtained by 

running the original codes (provided by Roberto Baldacci) on a Pentium IV computer with 3.4 GHz 

and 1 GB of RAM. Columns 8 and 9 report the optimal (or the best feasible) solution value 

obtained by the exact algorithm BC (Baldacci et al. [5]) and the corresponding computing time, 

respectively. These results (obtained on a Pentium IV computer with 2.2 GHz and 1 GB of RAM) 
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are taken from Tables 5 and 6 of Baldacci et al. [5]. For the BC algorithm the termination criterion 

is 2 hours of computing time. For the instances whose computing time is 7200 seconds, the optimal 

solution value is not available (the best upper bound found within the time limit is reported). The 

last 5 columns in Tables 2.1 and 2.2 provide the results of the proposed heuristic. For each instance 

the columns labeled by �Best� and �Worst� report the best and the worst solution values, 

respectively, obtained during the five independent runs of the algorithm. The column labeled by 

�Avg.Gap� gives the average gap of the five solution values with respect to the best value found by 

the heuristic during the five runs. Finally the last two columns report, respectively, the average 

solution time, i.e., the average computing time at which the best solution has been obtained, and the 

average running time required to execute the 2000 iterations of the main loop of the proposed 

heuristic. In both tables, for each instance, the values which are equal to the best solution value, are 

written in bold. The last three lines of the tables give, respectively, the average values of the 

corresponding columns, the number of best solutions found by the considered algorithms, and the 

computer used in the computational experiments. Whenever the optimal solution is not known and 

the proposed heuristic improves the best known solution value, this is shown with a star mark.   

Tables 2.1 and 2.2 show that for the instances solved to optimality by the BC algorithm, 

totally 63 out of  90 instances, the proposed heuristic is able to obtain 62 optimal solutions, by 

considering the best performance of the algorithm, while this value is 56 for its worst performance 

among the five independent runs. For the remaining 27 instances, whose optimal solution values are 

not available, the best performance of the heuristic improves the best known solution for 24 

instances, there are 2 ties, and just for one instance the proposed heuristic finds a solution worse 

than the best known one. By considering its worst performance on these 27 instances, the proposed 

heuristic improves the best known solution for 21 instances, in 2 cases the results are the same and 

in 4 cases the results are worse. The tables also show that the proposed heuristic clearly outperforms 

the heuristic algorithms H1 and H2 proposed by Baldacci et al. [5]. 

In terms of the global running time, the proposed algorithm is faster than heuristics H1 and 

H2: the average running times of the proposed method are 1.1 and 2.0 seconds for Classes A and B, 

respectively, while the average solution times of H1 and H2 are, respectively, 5.4 and 29.7 seconds 

for class A, and 5.9 and 28.9 seconds for Class B. The exact algorithm BC has of course much 

larger computing times.  

A comparison of the proposed heuristic with the Hybrid Metaheuristic approach presented 

by Mauttone et al. [52] is reported in Table 2.3. The performances of both methods are compared 

with those reported in Baldacci et al. [5], using the GAP and Time Ratio factors. For each instance, 

the GAP factor is calculated by using Equation (1), where Z* is the best solution value found by  
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Table 2.1. Comparison of the proposed heuristic with algorithms H1, H2 and BC [5] for class A. 

Heuristic Algorithm 
Instances |U| Q H1 Time H2 Time BC Time 

Best Worst Avg.Gap 
Avg.Sol 

Time 
Avg.Run 

Time 
A01-n026-m03 12 5 242 0.3 242 0.1 242 0.1 242 242 0.00 0.0 0.1 

A02-n026-m04 12 4 261 0.3 261 0.0 261 0.0 261 261 0.00 0.0 0.1 

A03-n026-m05 12 3 292 0.3 292 0.0 292 0.0 292 292 0.00 0.0 0.1 

A04-n026-m03 18 7 301 0.4 301 0.7 301 0.5 301 301 0.00 0.0 0.1 

A05-n026-m04 18 5 339 0.4 339 0.4 339 0.3 339 339 0.00 0.0 0.1 

A06-n026-m05 18 4 375 0.4 375 1.4 375 0.7 375 375 0.00 0.0 0.2 

A07-n026-m03 25 10 333 0.8 333 1.7 325 3.8 325 325 0.00 0.0 0.2 

A08-n026-m04 25 7 362 0.7 362 0.9 362 0.3 362 362 0.00 0.0 0.2 

A09-n026-m05 25 6 382 0.6 382 0.6 382 0.2 382 382 0.00 0.0 0.2 

A10-n051-m03 12 5 242 0.3 242 0.1 242 0.2 242 242 0.00 0.0 0.1 

A11-n051-m04 12 4 261 0.2 261 0.1 261 0.4 261 261 0.00 0.0 0.1 

A12-n051-m05 12 3 286 0.3 286 0.1 286 0.1 286 286 0.00 0.0 0.1 

A13-n051-m03 25 10 331 0.8 322 1.0 322 2.1 322 322 0.00 0.0 0.3 

A14-n051-m04 25 7 360 0.7 360 1.1 360 2.1 360 360 0.00 0.0 0.3 

A15-n051-m05 25 6 379 0.6 379 1.7 379 2.3 379 379 0.00 0.0 0.4 

A16-n051-m03 37 14 373 2.3 373 6.7 373 8.4 373 373 0.00 0.0 0.6 

A17-n051-m04 37 11 408 1.6 408 7.6 405 41.7 405 405 0.00 0.1 0.6 

A18-n051-m05 37 9 441 2.2 435 11.8 432 52.2 432 434 0.19 0.1 0.6 

A19-n051-m03 50 19 459 4.8 469 14.1 458 182.8 458 459 0.04 0.1 0.8 

A20-n051-m04 50 14 501 3.0 493 20.8 490 220.4 490 490 0.00 0.2 0.8 

A21-n051-m05 50 12 521 5.3 521 19.2 520 6334.2 520 521 0.15 0.1 1.0 

A22-n076-m03 18 7 330 0.7 330 2.9 330 48.3 330 330 0.00 0.0 0.3 

A23-n076-m04 18 5 385 0.6 385 2.7 385 30.6 385 385 0.00 0.0 0.3 

A24-n076-m05 18 4 448 0.8 448 4.2 448 63.7 448 448 0.00 0.0 0.4 

A25-n076-m03 37 14 407 2.2 409 9.5 402 567.7 402 402 0.00 0.1 0.8 

A26-n076-m04 37 11 462 2.3 461 16.5 460 7200.0 457 * 458 * 0.18 0.1 0.9 

A27-n076-m05 37 9 479 3.1 484 21.4 479 509.3 479 479 0.00 0.1 0.9 

A28-n076-m03 56 21 475 7.3 478 38.9 471 1584.4 471 471 0.00 0.3 1.5 

A29-n076-m04 56 16 523 7.1 524 50.5 523 7200.0 519 * 520 * 0.15 0.1 1.4 

A30-n076-m05 56 13 552 6.3 552 40.2 545 3221.3 545 549 0.55 0.2 1.5 

A31-n076-m03 75 28 570 14.8 565 45.0 564 479.5 564 569 0.18 0.6 2.2 

A32-n076-m04 75 21 617 15.3 628 57.4 606 7200.0 602 * 607 0.37 0.4 2.3 

A33-n076-m05 75 17 659 13.6 654 81.7 654 7200.0 640 * 651 * 1.38 0.6 1.6 

A34-n101-m03 25 10 363 0.9 363 3.2 363 8.7 363 363 0.00 0.0 0.5 

A35-n101-m04 25 7 415 1.1 415 9.2 415 91.8 415 415 0.00 0.0 0.6 

A36-n101-m05 25 6 448 1.5 448 10.8 448 680.4 448 448 0.00 0.0 0.7 

A37-n101-m03 50 18 503 6.5 501 58.8 500 7200.0 500 500 0.00 0.0 1.3 

A38-n101-m04 50 14 532 3.9 533 44.5 532 7200.0 528 * 528 * 0.00 0.1 1.5 

A39-n101-m05 50 12 571 4.0 568 48.4 568 7200.0 567 * 567 * 0.00 0.1 1.4 

A40-n101-m03 75 28 605 18.6 622 115.6 595 6690.1 595 595 0.00 0.5 2.6 

A41-n101-m04 75 21 629 13.3 635 74.5 625 7200.0 623 * 624 * 0.03 0.4 2.6 

A42-n101-m05 75 17 663 11.5 665 120.5 662 7200.0 657 * 661 * 0.24 1.0 2.4 

A43-n101-m03 100 38 672 31.7 672 134.3 646 283.0 647 656 0.68 2.0 5.0 

A44-n101-m04 100 28 702 26.5 704 109.0 680 7200.0 679 * 683 0.27 1.7 4.7 

A45-n101-m05 100 23 719 24.5 717 148.7 700 1310.8 700 700 0.00 2.3 4.5 
             

Average  448.40 5.4 448.82 29.7 444.62 2098.3 443.80 444.89 0.10 0.2 1.1 

# best  21 21 36 44 32  

 
Pentium IV, 

 3.4 GHz 
Pentium IV, 

 2.2 GHz 
Intel, 1.66 GHz  
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Table 2.2. Comparison of the proposed heuristic with algorithms H1, H2 and BC [5] for class B. 

Heuristic Algorithm 
Instances |U| Q H1 Time H2 Time BC Time 

Best Worst Avg.Gap 
Avg.Sol 

Time 
Avg.Run 

Time 
B01-n026-m03 12 5 1684 0.3 1684 0.1 1684 0.1 1684 1684 0.00 0.0 0.1 
B02-n026-m04 12 4 1827 0.2 1827 0.1 1827 0.1 1827 1827 0.00 0.0 0.1 
B03-n026-m05 12 3 2041 0.3 2041 0.0 2041 0.0 2041 2041 0.00 0.0 0.1 
B04-n026-m03 18 7 2104 0.4 2104 0.6 2104 0.5 2104 2104 0.00 0.0 0.1 
B05-n026-m04 18 5 2370 0.4 2370 1.5 2370 0.5 2370 2370 0.00 0.0 0.2 
B06-n026-m05 18 4 2615 0.5 2615 2.2 2615 0.7 2615 2615 0.00 0.0 0.2 
B07-n026-m03 25 10 2314 0.8 2251 1.6 2251 0.4 2251 2251 0.00 0.0 0.2 
B08-n026-m04 25 7 2510 1.1 2510 1.2 2510 0.5 2510 2510 0.00 0.0 0.2 
B09-n026-m05 25 6 2674 0.8 2674 2.9 2674 0.8 2674 2674 0.00 0.0 0.2 
B10-n051-m03 12 5 1681 0.3 1681 0.4 1681 0.8 1681 1681 0.00 0.0 0.2 
B11-n051-m04 12 4 1821 0.2 1821 0.6 1821 1.5 1821 1821 0.00 0.0 0.1 
B12-n051-m05 12 3 1972 0.3 1972 0.2 1972 0.3 1972 1972 0.00 0.0 0.2 
B13-n051-m03 25 10 2176 1.5 2176 1.6 2176 1.1 2176 2176 0.00 0.0 0.3 
B14-n051-m04 25 7 2476 1.1 2495 4.1 2470 7.2 2470 2470 0.00 0.0 0.3 
B15-n051-m05 25 6 2596 1.0 2579 2.4 2579 4.1 2579 2579 0.00 0.0 0.4 
B16-n051-m03 37 14 2507 2.3 2599 9.4 2490 17.9 2490 2490 0.00 0.2 0.7 
B17-n051-m04 37 11 2772 1.9 2811 10.5 2721 74.9 2721 2721 0.00 0.0 0.7 
B18-n051-m05 37 9 2938 2.2 2937 14.2 2908 145.0 2908 2941 0.23 0.2 0.8 
B19-n051-m03 50 19 3095 4.0 3071 17.4 3015 296.7 3015 3015 0.00 0.2 1.5 
B20-n051-m04 50 14 3365 3.6 3298 18.1 3260 336.6 3260 3260 0.00 0.2 1.4 
B21-n051-m05 50 12 3525 5.7 3516 18.9 3404 6470.7 3404 3404 0.00 0.6 1.5 
B22-n076-m03 18 7 2260 0.7 2259 2.6 2253 105.5 2253 2253 0.00 0.1 0.4 
B23-n076-m04 18 5 2625 0.5 2620 3.3 2620 29.5 2620 2620 0.00 0.0 0.4 
B24-n076-m05 18 4 3059 0.9 3059 3.4 3059 85.3 3059 3059 0.00 0.0 0.4 
B25-n076-m03 37 14 2742 3.1 2720 14.3 2720 1897.6 2720 2720 0.00 0.1 0.9 
B26-n076-m04 37 11 3176 2.7 3138 17.5 3138 7200.0 3100 * 3123 * 0.49 0.6 1.1 
B27-n076-m05 37 9 3339 3.0 3364 23.8 3311 7200.0 3284 * 3284 * 0.00 0.1 0.9 
B28-n076-m03 56 21 3112 7.1 3146 31.4 3088 7200.0 3044 * 3064 * 0.52 0.9 2.6 
B29-n076-m04 56 16 3447 5.1 3496 50.3 3447 7200.0 3415 * 3466 0.69 1.2 2.4 
B30-n076-m05 56 13 3652 4.6 3703 35.5 3648 7200.0 3636 * 3645 * 0.17 0.9 2.5 
B31-n076-m03 75 28 3786 14.1 3820 69.1 3740 7200.0 3652 * 3734 * 0.96 1.2 5.0 
B32-n076-m04 75 21 4057 13.9 4084 78.8 4026 7200.0 4003 * 4011 * 0.12 1.8 4.4 
B33-n076-m05 75 17 4442 15.9 4288 54.5 4288 7200.0 4217 * 4217 * 0.00 2.2 4.0 
B34-n101-m03 25 10 2437 0.7 2439 4.3 2434 24.2 2434 2434 0.00 0.0 0.7 
B35-n101-m04 25 7 2782 1.2 2819 9.5 2782 115.4 2782 2782 0.00 0.0 0.7 
B36-n101-m05 25 6 3043 1.0 3012 4.8 3009 862.4 3009 3009 0.00 0.0 0.8 
B37-n101-m03 50 18 3404 6.3 3387 37.2 3332 7200.0 3322 * 3322 * 0.00 0.3 1.7 
B38-n101-m04 50 14 3593 4.3 3586 32.1 3533 7200.0 3533 3533 0.00 0.1 1.8 
B39-n101-m05 50 12 3880 4.4 3872 33.2 3872 7200.0 3834 * 3841 * 0.15 1.4 2.0 
B40-n101-m03 75 28 3935 26.0 3923 260.7 3923 7200.0 3887 * 3889 * 0.02 2.7 4.6 
B41-n101-m04 75 21 4190 16.0 4202 63.5 4125 7200.0 4082 * 4114 * 0.16 2.0 4.5 
B42-n101-m05 75 17 4486 14.2 4458 47.9 4458 7200.0 4358 * 4358 * 0.00 1.6 3.8 
B43-n101-m03 100 38 4275 35.9 4155 103.0 4110 7200.0 4135 4193 0.38 9.3 13.4 
B44-n101-m04 100 28 4583 28.0 4608 97.4 4506 7200.0 4358 * 4391 * 0.45 6.2 10.8 
B45-n101-m05 100 23 4671 26.7 4639 114.6 4632 7200.0 4567 * 4597 * 0.21 6.4 9.3 

             
Average  3023.09 5.9 3018.42 28.9 2991.71 2952.9 2975.04 2983.67 0.10 0.9 2.0 

# best  14 17 30 44 32  

 Pentium IV, 
 3.4 GHz 

Pentium IV,  
2.2 GHz Intel, 1.66 GHz 
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Table 2.3. Comparison of the proposed method with Hybrid Metaheuristic [52]. 

Hybrid Metaheuristic Heuristic Algorithm 
Group 

GAP(%) Time Ratio GAP(%) Time Ratio 

Class N 
No. 

Instances 
Best Avg. Worst Min Max Best Avg. Worst Min Max 

A 26 9 0.00 0.34 2.09 < 1 2 0.00 0.00 0.00 0.00 19.02 

A 51 12 0.00 0.89 2.55 < 1 66 0.00 0.01 0.19 1.27 6598.39 

A 76 12 -0.43 1.51 3.47 3 208 -2.14 -0.12 0.89 101.34 8461.20 

A 101 12 0.28 2.04 4.71 < 1 194 -0.75 -0.06 1.55 24.44 5630.05 

B 26 9 0.55 1.24 3.29 < 1 < 1 0.00 0.00 0.00 0.00 4.46 

B 51 12 0.88 3.43 5.35 < 1 49 0.00 0.02 1.13 1.84 4397.75 

B 76 12 1.42 3.19 5.99 4 121 -2.35 -0.53 0.55 81.55 7916.96 

B 101 12 3.20 4.24 6.18 1 70 -3.28 -0.68 2.02 36.47 4205.84 

Overall Avg. 0.74 2.11 4.20  -1.07 -0.17 0.79  

 PC, 2 GHz Intel, 1.66 GHz 

 

*

*)(
*100

Z

ZZ
GAP

best 
                                                (2.1) 

Baldacci et al. [5] and Zbest is the best solution value found during the different executions of the 

Hybrid Metaheuristic [52] or of the proposed heuristic. As mentioned before, we have executed 5 

independent runs of the code, while 15 independent runs have been considered for the Hybrid 

Metaheuristic approach [52]. The other factor reported in Table 2.3, Time Ratio, is obtained by 

dividing, for each instance, the execution time of algorithm BC reported in [5] over the average 

computing time of the independent executions performed by each of the two heuristics. The 

computing times of the Hybrid Metaheuristic [52] refer to a PC computer with 2 GHz and 1 GB of 

RAM. 

Considering the average performance of the two heuristics, Table 2.3 shows the superiority 

of the proposed heuristic for the considered instances. As it can be seen from this table, by 

considering the average performance of the methods, the overall average GAP is 2.11 for the 

Hybrid Metaheuristic and -0.17 for the heuristic method. Moreover, mainly for the larger instances, 

the proposed heuristic is much faster than the Hybrid Metaheuristic.  

During its independent executions, the Hybrid Metaheuristic was able to obtain 2 new best 

solutions (instances A26 and A29) with respect to the solutions found by algorithm BC [5]. 

However the proposed heuristic not only was able to further improve these 2 new best solutions, but 

improved as well 22 additional best known solutions.  
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Finally, we executed the proposed heuristic with different tunings of parameters P and T, 

to investigate how the threshold accepting parameter (P) and the neighborhood size (T) affect the 

overall performance of the method. To do so, we considered all the instances proposed by Baldacci  

et al. [5] and fixed the maximum number of iterations. 

 

Figure 2.3. Analyzing the effect of parameter P in total cost. 
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Figure 2.4. Analyzing the effect of parameter T in total cost. 
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Figures 2.3 and 2.4 represent the sensitivity of the heuristic method with respect to the 

different considered values. In these figures the vertical lines represent the total cost of the 90 

benchmark instances for the different considered values of parameters P and T, as shown in the  

horizontal lines of Figures 2.3 and 2.4, respectively. As it can be seen from the figures, the 

minimum cost values occur for P=0.05 and T=0.2, which are the values considered to run the code.  

 

2.4. Conclusion 

  We have proposed an effective heuristic approach for the Capacitated m-Ring-Star Problem 

(CmRSP). In the proposed heuristic, after the construction of the initial solution, we apply an 

improvement method based on a set of swap and Extraction-Assignment moves, followed by the 

Lin-Kernighan TSP procedure to find a better order of the visited nodes. The proposed heuristic 

incorporates some random aspects obtained by perturbing the current solution in the shaking 

procedure, which is applied whenever the algorithm remains in a local optimum. 

We compared the proposed heuristic with the best state-of-the-art algorithms for the CmRSP 

on a set of benchmark instances from the literature. The results show the effectiveness of the 

proposed method. It turned out that in the considered instances the proposed heuristic can obtain 

most of the optimal solutions, within a short computing time, and can improve most of the upper 

bounds for the instances whose optimal solution is not known.  
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Abstract:    

Given an undirected graph whose edges are labeled or colored, edge weights indicating the 

cost of an edge, and a positive budget B, the goal of the Cost Constrained Minimum Label Spanning 

Tree (CCMLST) Problem is to find a spanning tree that uses the minimum number of labels while 

ensuring its cost does not exceed B. This problem is motivated from the design of 

telecommunication networks and is known to be NP-complete [82].  

In this chapter, we present a Variable Neighborhood Search (VNS) algorithm for the 

CCMLST problem. We test the VNS algorithm on existing data sets as well as a large-scale dataset 

based on TSPLIB [65] instances ranging in size from 500 to 1000 nodes. For the CCMLST problem, 

the procedures suggested in [82] (for the Label constraint Minimum Spanning Tree Problem) can be 

applied by means of a binary search procedure. Consequently, we compared our VNS algorithm to 

the GA and two local search procedures suggested in [82]. The overall results demonstrate that the 

proposed VNS algorithm is of high quality and computes solutions rapidly. On our test datasets, it 

obtains the optimal solution in all instances for which the optimal solution is known. Further, it 

significantly outperforms the GA and two local search procedures described in [82].  
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3.1. Introduction 

The Minimum Label Spanning Tree (MLST) problem was introduced by Chang and Leu 

[19]. In this problem, we are given an undirected graph  EVG ,  with labeled edges; each edge 

has a single label from the set of labels L and different edges can have the same label. The objective 

is to find a spanning tree with the minimum number of distinct labels. The MLST is motivated from 

applications in the communications sector. Since communication networks sometimes include 

numerous different media such as fiber optics, cable, microwave or telephone lines and 

communication along each edge requires a specific media type, decreasing the number of different 

media types in the spanning tree reduces the complexity of the communication process. The MLST 

problem is known to be NP-complete [19]. Several researchers have studied the MLST problem 

including Brüggemann et al. [11], Cerulli et al. [18], Consoli et al. [22], Krumke and Wirth [42], 

Wan et al. [79], and Xiong et al. [80, 81, 83].  

Recently Xiong et al. [82] introduced a more realistic version of the MLST problem called 

the Label Constrained Minimum Spanning Tree (LCMST) problem. In contrast to the MLST 

problem, which completely ignores edge costs, the LCMST problem takes into account the cost or 

weight of edges in the network (we use the term cost and weight interchangeably in this chapter). 

The objective of the LCMST problem is to find a minimum weight spanning tree that uses at most 

K labels (i.e., different types of communications media). Xiong et al. [82] describe two simple local 

search heuristics and a genetic algorithm for solving the LCMST problem. They also describe a 

Mixed Integer Programming (MIP) model to solve the problem exactly. However, the MIP models 

were unable to find solutions for problems with greater than 50 nodes due to excessive memory 

requirements. 

The Cost Constrained Minimum Label Spanning Tree (CCMLST) problem is another 

realistic version of the MLST problem. The CCMLST problem was introduced by Xiong et al. [82]. 

In contrast to the LCMST problem, there is a threshold on the cost of the minimum spanning tree 

(MST) while minimizing the number of labels. Thus, given a graph G = (V, E), where each edge 
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(i, j) has a label from the set L and an edge weight cij, and a positive budget B, the goal of the 

CCMLST problem is to find a spanning tree with the fewest number of labels whose weight does 

not exceed the budget B. The notion is to design a tree with the fewest number of labels while 

ensuring that the budget for the network design is not exceeded. (Notice that the objective function 

here is not the cost of the spanning tree, but rather the number of labels in the spanning tree). Xiong 

et al. [82] showed that both the LCMST and the CCMLST are NP-Complete. Thus, the resolution 

of these problems requires heuristics. 

In this research, we focus on the CCMLST problem. We propose a Variable Neighborhood 

Search (VNS) method for the CCMLST problem. The VNS algorithm uses neighborhoods defined 

on the labels. We then compare the VNS method to the heuristics described by Xiong et al. [82]. In 

fact, we adapt the procedures of Xiong et al. [82] by embedding them in a binary search. To do so, 

we consider existing data sets and also design a set of nine Euclidean large-scale datasets, derived 

from TSPLIB instances [65]. The VNS method performs extremely well on the CCMLST problem, 

with respect to solution quality and computational running time. 

The rest of this chapter is organized as follows. Section 3.2 describes the mathematical 

formulation proposed for the CCMLST problem. Section 3.3 describes the VNS method that we 

have proposed to solve the problem. Section 3.4 describes the procedures of Xiong et al. [82] for the 

LCMST problem, and explains the binary search procedure to apply them for the CCMLST 

problem. Section 3.5 reports on our computational experiments. Finally, Section 3.6 provides 

concluding remarks. 

 

3.2. Mathematical Formulation 

In this section, we provide a mixed integer programming (MIP) model for the CCMLST 

problem. It is based on a multicommodity network flow formulation, and is similar to the MIP 

model described in Xiong et al. [82] (though our notation is somewhat more compact). Further, we 

significantly strengthen the model by improving upon one of the constraints in their model.  
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The main idea in the multicommodity network flow model is to direct the spanning tree 

away from an arbitrarily selected root node, and to use flow variables to model the connectivity 

requirement. To help define the multicommodity network flow model, we define a bidirected 

network obtained by replacing each undirected edge {i, j} by a pair of directed arcs (i, j) and (j, i). 

Let A denote the set of arcs, L= {1,2,�,l} the set of labels, V= {1,2,�,n} the set of nodes in the 

graph, and B the budget. Also, let Ak denote the set of all arcs with label k and cij be the cost of arc (i, 

j). Note that the cost and label of arcs (i, j) and (j, i) are identical to those of edge {i, j}. To model 

the fact that the spanning tree must be connected, we use the following well-known idea [51] and 

multicommodity network flow model. We pick node 1 as the root node (any node of the graph may 

be picked for this purpose). We then observe that the spanning tree on the nodes can be directed 

away from the root node. Consequently, we create commodities, where each commodity has the 

root node as its origin and the destination is one of the nodes in {2, 3,�., n} (for a total of n-1 

commodities). Each commodity has a supply of 1 unit of flow and a demand of 1 unit of flow. The 

variables in the multicommodity network flow formulation are defined as follows: 






otherwise

selectedisklabelif
yk 0

1
 

1 ( , )

0ij

if arc i j is used
x

otherwise


 


 

and 

flow of commodity  along arc ( , )h

ijf h i j . 

 

The MIP formulation based on the multicommodity flow (mcf) model is as follows: 

(mcf)        
Lk

kymin                                                                                                 (3.1)    

subject to                      
( , )

1
ij

i j A

x n


                                                                                           (3.2) 
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 
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i j A

x n y k L


                                                        (3.8) 

 ,
ij ij

i j A

c x B


                                                                                          (3.9) 

                 , 0,1 , ,
ij k

x y i j A k L                                      (3.10) 

                     1\,,0 VhAjif
h

ij                                                         (3.11) 

 

In the objective function (3.1), we want to minimize the total number of labels used in the 

solution. Constraint (3.2) ensures the tree has exactly (n-1) arcs. Constraints (3.3) to (3.5) represent 

the flow balance constraints for the commodity flows. Constraint set (3.6) is a forcing constraint set. 

These constraints enforce the condition that if flow is sent along an arc, the arc must be included in 

the directed tree. Constraint set (3.7) ensures that either arc (i, j) or arc (j, i) can be in the solution, 

but not both (recall the tree must be directed away from the root node). Constraint set (3.8) is a 

forcing constraint set between arcs and labels. It says that if an arc with label k is used, then this 

label must be selected. Constraint (3.9) imposes the budget on the tree cost. Finally, constraint (3.10) 

defines the arc and label variables as binary, and constraint (3.11) defines the flow variables as non-

negative. 
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With the change in the objective function and constraint (3.9) the multicommodity flow 

formulation is virtually identical to Xiong et al. [82] (we have eliminated the edge variables in the 

Xiong et al. [82] model and thus our notation is somewhat more compact). However, this 

formulation can be considerable strengthened by using the technique of constraint disaggregation 

(see page 185 of [29]) on constraint set (3.8). We replace this constraint with the stronger:  

                                  , ( , )
ij k k

x y k L i j A     .                                                   )8.3(                                                             

In our computational work, we use the multicommodity flow model with constraint set (3.8�) 

to obtain lower bounds and optimal solutions on our test instances. We found that it is considerably 

stronger than the multicommodity flow model proposed by Xiong et al. [82] that has constraint 

(3.8).   

 

3.3. Variable Neighborhood Search for the CCMLST Problem 

In this section, we develop our Variable Neighborhood Search algorithm for the CCMLST 

problem. Variable Neighborhood Search is a metaheuristic proposed by Mladenovic and Hansen 

[53], which explicitly applies a strategy based on dynamically changing neighborhood structures. 

The algorithm is very general and many degrees of freedom exist for designing variants. 

The basic idea is to choose a set of neighborhood structures that vary in size. These 

neighborhoods can be arbitrarily chosen, but usually a sequence of neighborhoods with increasing 

cardinality is defined. In the VNS paradigm, an initial solution is generated, then the neighborhood 

index is initialized, and the algorithm iterates through the different neighborhood structures looking 

for improvements, until a stopping condition is met. 

We consider VNS as a framework, and start by constructing an initial solution. We then 

improve upon this initial solution using local search. Then, the improvement of the incumbent 

solution (R) continues in a loop until the termination criterion is reached. This loop contains a 

shaking phase and a local search phase. The shaking phase follows the VNS paradigm. It considers 

a specially designed neighborhood and makes random changes to the current solution that enables 
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us to explore neighborhoods farther away from the current solution. The local search phase 

considers a more restricted neighborhood set and attempts to improve upon the quality of a given 

solution.  

We now make an important observation regarding the relationship between the selected 

labels and the associated solution. Given a set of labels R L , the minimum cost solution on the 

labels R is the minimum spanning tree computed on the graph induced by the labels in R. We 

denote the minimum spanning tree on the graph induced by the labels in R as MST(R) and its cost 

by MSTCOST(R). These two can be computed rapidly using any of the well-known minimum 

spanning tree algorithms [43, 63]. Consequently, our search for a solution focuses on selecting 

labels (as opposed to edges), and our neighborhoods as such are neighborhoods on labels. Our 

solutions then are described in terms of the labels they contain (as opposed to the edges they 

contain). Furthermore, without loss of generality, we assume MSTCOST(L) ≤ B, because if B < 

MSTCOST(L) the problem is infeasible. 

 

3.3.1. Initial Solution 

Our procedure to construct an initial solution focuses on selecting a minimal set of labels 

that result in a connected graph. Let Components(R) denote the number of connected components in 

the graph induced by the labels in R. This can easily be computed using depth first search [74]. Our 

procedure adds labels to our solution in a greedy fashion. The label selected for addition to the 

current set of labels is the one (amongst all the labels that are not in the current set of labels) that 

when added results in the minimum number of connected components. Ties between labels are 

broken randomly. In other words, we choose a label for addition to the current set of labels R 

randomly from the set                    

       }{min:\ tRComponentsRLtS  .                                           (3.12) 

This continues until the selected labels result in a single component. 
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  In Figure 3.1, an example illustrating the initialization method is shown. Suppose there are 

three labels, namely a, b, and c, in the label set. Since the number of connected components after 

adding label c is less than for the two other labels, we add this label to the solution. However the 

graph is still not connected, so we go further by repeating this procedure with the remaining labels. 

Both labels a and b produce the same number of components, so we select one of them randomly 

(label b).   

Before considering the cost constraint, which we need to satisfy, we have found it useful to 

try to improve the quality of the initial solution slightly. To this aim, we swap used and unused 

labels in a given solution in order to decrease the cost of a minimum spanning tree on the selected 

labels. We scan through the labels in the current solution. We iteratively consider all unused labels 

and attempt to swap a given label in the current solution with an unused label if it results in an 

improvement (i.e., the cost of the minimum spanning tree on the graph induced by the labels 

decreases). As soon as an improvement is found, it is implemented and the next used label in the 

current solution is examined. This is illustrated with an example in Figure 3.2. Consider  cbA ,  

we have MSTCOST(A) = 12 and MSTCOST({ \ } })A b a  = 9. Therefore, we remove labelb and 

add label a to the representation of our solution.  

At this stage, it is possible that the set of labels in the current solution does not result in a 

tree that satisfies the budget constraint. To find a set of labels that does, we iteratively add labels to 

the current set of labels by choosing the label that, when added, results in the lowest cost minimum 

spanning tree.  In other words the label to be added is selected from 

})}{(min:)\({ tRMSTCOSTRLtS  ,                                           (3.13) 

and ties are broken randomly. We continue adding labels to the current solution in this fashion until 

we obtain a minimum spanning tree satisfying the cost constraint. (Recall since B ≥ MSTCOST(L) a 

feasible solution exists and the initialization phase will find one). 
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Figure 3.1. An example illustrating the selection of labels for the initial connected subgraph 
                                                                                                                                                                                                                                                                                                       
    2                2                                           Labels: 
                                                                                                                                                           
                                                                         1         3       1           3        1                            a                           
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Connected graph with labels b and c. 

 

 

Figure 3.2. An example for the swap of used and unused labels 

 

                      2                2                                                                                                                                                                        
                                                             

                                                                                                                        1                   1                 1 
                        2            2 
 
                              1        3                                                                                    2.5          1              2.5 

 

             12, cbMSTCOST                                                                   9, caMSTCOST  

 

3.3.2. Shaking Phase 

The shaking phase follows the VNS paradigm and dynamically expands the neighborhood 

search area. Suppose R denotes the current solution (it really denotes the labels in the current 
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solution, but as explained earlier it suffices to focus on labels). In this step, we use randomization to 

select a solution that is in the size k neighborhood of the solution R, i.e., ( )
k

N R . Specifically 

( )
k

N R  is defined as the set of labels that can be obtained from R by performing a sequence of 

exactly k additions and/or deletions of labels. So 1( )N R  is the set of labels obtained from R by 

either adding exactly one label from R, or deleting exactly one label from R. )(2 RN  is the set of 

labels obtained from R by either adding exactly two labels, or deleting exactly two labels, or adding 

exactly one label and deleting exactly one label. 

The shaking phase may result in the selection of labels that do not result in a connected 

graph, or result in a minimum cost spanning tree that does not meet the budget constraint. If the set 

of labels results in a graph that is not connected, we add labels that are not in the current solution 

one by one, at random until the graph is connected. If the minimum spanning tree on the selected 

labels does not meet the budget constraint, we iteratively add labels to the current set of labels by 

choosing the label that when added results in the lowest cost minimum spanning tree.  

 

3.3.3. Local Search Phase 

       The local search phase consists of two parts. In the first part, the algorithm tries to swap each of 

the labels in the current solution with an unused one if it results in a lower minimum spanning tree 

cost. To this aim, it iteratively considers the labels in the solution and tests all possible exchanges      

of a given label with unused labels until it finds an exchange resulting in a lower MST cost. If we 

find such an exchange, we implement it (i.e., we ignore the remaining unused labels) and proceed to 

the next label in our solution. Obviously, a label remains in the solution if the algorithm cannot find 

a label swap resulting in an improvement.  

The second part of the local search phase tries to improve the quality of the solution by 

removing labels from the current set of labels. It iteratively, tries to remove each label. If the 

resulting set of labels provides a minimum spanning tree whose cost does not exceed the 
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Algorithm 3.1. Variable Neighborhood Search Algorithm for the CCMLST Problem 

VNS for CCMLST 

     R = ö;     
     Initialization Procedure(G,R); 
    Local Search (G,R); 
    While  Termination criterion not met 
           k = 1; 
           While k   5  

                R = Shaking_Phase (G,k,R); 

                 While Components ( R ) > 1 

                      Select at random a label \u L R and add it to R ; 
                 End; 

                 While MSTCOST( R ) > B 

                       })}{(min:)\({ tRMSTCOSTRLtS  ; 

                       Select at random a label Su  and  add it to R ;  
                 End; 

                  Local Search ( , )G R ; 

                 If R R  Then R R and k = 1 Else  k = k+1; 

           End ; 
    End. 

                         
Initialization Procedure(G,R)  

    While Components (R) > 1 

            }{min:\ tRComponentsRLtS  ; 

        Select at random a label Su and add it to R; 
    End. 

    Consider the labels i R one by one; 
        Swap the label i with the first unused label that strictly lowers the MST cost; 
    End; 
    While MSTCOST(R) > B 

        })}{(min:)\({ tRMSTCOSTRLtS  ; 

        Select at random a label Su  and add it to R;                                     
    End. 

 
Shaking_Phase (G,k,R) 

    For i =1,�,k 

        r = random(0,1) ; 
        If r 0.5 Then Delete at random a label from R Else Add at random a label to R; 
    End; 

    Return(R). 
 

Local Search(G,R) 

    Consider the labels i R one by one; 
        Swap the label i with the first unused label that strictly lowers the MST cost; 
    End; 
    Consider the labels i R one by one; 
        Delete label i from R, i.e. \ ;R R i  

        If Components (R) > 1 or MSTCOST(R) > B  Then ;R R i   

    End. 
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budget we permanently remove the label, and continue. Otherwise, the label remains in the solution. 

Our Variable Neighborhood Search algorithm is outlined in Algorithm 3.1. 

 

3.3.4. Discussion of Algorithmic Parameter Choices 

We now discuss the different components of our VNS algorithm and identify the rationale 

for the different choices made within the algorithm. In constructing the initial solution, we first 

chose labels to construct a connected graph. Our choice was to choose the label that resulted in the 

greatest decrease in the number of connected components. An alternative is to simply add labels 

randomly. We conducted experiments with these 2 variants for connectivity of the initial solution, 

and found that choosing to add labels so that they result in the greatest decrease in the number of 

connected components provided significantly better solutions. Table 3.1 identifies the different 

parts of the VNS algorithm for the CCMLST, the parameter or algorithmic choices within each part, 

and the choice that resulted in the best solution. For example, when comparing the use of swapping 

against no swapping in the construction of the initial solution, swapping labels provided the best 

results. In Table 3.1, the parameter cost constraint refers to the scenario where the cost of the 

solution is strictly greater than B. Here, in order to reduce the cost of the solution, Min Avg Cost 

considers the unused label with the smallest average cost to add to the solution. Feasibility post 

shaking phase refers to the part of the algorithm where feasibility of the solution obtained by the 

shaking phase is restored. As can be seen from Table 3.1, the best algorithmic choices within the  

 
Table 3.1. Parameter/Algorithmic Choices within the VNS Procedure for the CCMLST Problem 

 
Phase Parameter Varied Values Best Value 

Connectivity  Random, Min Components 
Min 

Componenets 
Swap Yes/No Yes 

Cost constraint 
Random, Min Avg Cost, Min MST 

Cost 
Min MST Cost  

Initial Solution 

Local search applied to Initial 
Solution 

Yes/No Yes 

Connectivity Random, Min Components Random Feasibility post Shaking 
Phase Cost Constraint Min Avg Cost, Min MST Cost Min MST Cost 

Local Search Swap Yes/No Yes 
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different parts of the VNS algorithm are the ones used in our VNS algorithm described in 

Algorithm 3.1. 

Before we turn our attention to our computational experiments we must note the recent work 

by Consoli et al. [22] on the MLST problem that includes a VNS method for the MLST problem. 

We briefly compare the two VNS methods (albeit on different problems). Both of the methods 

follow the main structure of VNS. Consequently, at a high level they are somewhat similar, but they 

are different in several details. For example, in the initialization phase instead of generating a 

random solution as done in the paper by Consoli et al. [22] we use a more involved procedure to 

generate an initial solution by considering the set of labels that produces fewer components and 

smaller MST cost. Additionally, we use local search to improve the solution found in the 

initialization phase prior to applying VNS. Finally, since the objectives of the CCMLST problem is 

somewhat different from the MLST problem, our local search operator is quite different from that in 

Consoli et al. [22]. 

 

3.4. Applying Heuristics for the LCMST Problem to the CCMLST Problem by Means of 

Binary Search 

We first describe the heuristics of Xiong et al. [82] for the LCMST problem. We then 

describe how any heuristic for the LCMST problem may be applied to the CCMLST problem by 

using binary search. This allows us to apply the heuristics of Xiong et al. [82] to the CCMLST 

problem.  

The first proposed heuristic, LS1, by Xiong et al. [82] for the LCMST, begins with an 

arbitrary feasible solution,  
K

aaaA ,...,, 21 , of K labels. Then, it starts a replacement loop as 

follows. It first attempts to replace a1 by the label in \L A  that gives the greatest reduction in MST 

cost. In other words, it checks each label in \L A  and selects the label \t L A  that results in the 

lowest value of MSTCOST( 1{ \ }A a t ). If it finds an improvement (i.e., 
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MSTCOST( 1{ \ }A a t )<MSTCOST( A )) it sets 1a t , otherwise it leaves a1 unchanged. Next, it 

repeats the procedure with label a2 attempting to replace it by the label in \L A  that gives the 

greatest reduction in MST cost. It continues the replacement loop in this fashion until it considers 

replacing label aK by the label in \L A  that gives the greatest reduction in MST cost. In one 

replacement loop all of the K labels in A are considered for replacement. This continues until no 

cost improvement can be made between two consecutive replacement loops [82]. 

In the second heuristic, LS2, the algorithm starts with an arbitrary feasible 

solution  
K

aaaA ,...,, 21  of K labels. Then, it attempts to find improvements as follows. It adds 

a label in 1 \
K

a L A

  to A. This results in a solution with K+1 labels, which is not feasible. 

Consequently, it chooses amongst these K+1 labels the label to delete that results in the smallest 

MST cost. To find the best possible improvement of this type, it searches among all possible 

additions of labels in \L A  to A and selects the one that provides the greatest improvement in cost. 

The procedure continues until no further improvement is found [82].  

In the GA proposed by Xiong et al. [82], a queen-bee crossover is applied. This approach has 

often been found to outperform more traditional crossover operators. In each generation, the best 

chromosome is declared the queen-bee and crossover is only allowed between the queen-bee and 

other chromosomes. For more details regarding crossover, mutation, etc., see [82].  

Binary search is a popular algorithmic paradigm (see page 171 of [61]) that efficiently 

searches through an interval of integer values to find the smallest (or largest) integer that satisfies a 

specified property. It starts with an interval 1,�,l. In each step it checks whether the midpoint of 

the interval satisfies the specified property. If so, one may conclude the smallest integer that 

satisfies the specified property is in the lower half of the interval, otherwise the smallest integer that 

satisfies the specified property is in the upper half of the interval. It recursively searches through the 

interval in which the solution lies, until (after 2log l  steps) the interval contains only one integer 

value and the procedure terminates. We now describe how to use the binary search method to apply 
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any algorithm for the LCMST problem to the CCMLST problem. Let ALG denote any heuristic for 

the LCMST problem. It takes as input a graph G and a threshold K. ALG attempts to find a 

minimum cost spanning tree that uses at most K labels. Either it returns a feasible solution, i.e., a set 

of at most K labels, or it indicates that no feasible solution has been found by sending back an 

empty set of labels. The cost of the solution can then be determined by MSTCOST(R) where R 

denotes the set of labels. Note that MSTCOST(R) is infinity if R is an empty set. 

    The details of the binary search method as applied to the CCMSLT problem are provided in 

Algorithm 3.2. The lower value for the number of labels is set to 1 and the upper value for the 

number of labels is set to l (the total number of labels). As is customary in binary search, ALG is 

executed setting the threshold on the number of labels to
2

upperlower 
. Note that since the number 

of labels must be integer, ALG rounds down any non-integral value of the threshold K. Essentially, 

anytime the cost of the tree found by ALG exceeds the budget B, we need more labels and increase 

the lower value to
2

upperlower 
. Anytime the cost of the tree found by ALG is within budget, we 

decrease the value of upper to
2

upperlower 
.  

 

Algorithm 3.2. Binary Search Method for the CCMLST Problem 
 

 

 

Begin 

   Set lower = 1 and upper = l; 
   While (upper - lower) 1   

         
2

upperlower
mid


 ; 

         R = ALG(G,mid); 
         If  MSTCOST(R) > B  Then lower = mid  Else upper = mid; 

   End 

   Output  R = ALG(G,upper); 
End 
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3.5. Computational Results 

In this section, we report on an extensive set of computational experiments on the CCMLST 

problem. All heuristics have been tested on a Pentium IV machine with a 2.61 GHz processor and 2 

GB RAM, under the Windows operating system. We also use ILOG CPLEX 10.2 to solve the MIP 

formulation.  

The two parameters that are adjustable within the VNS procedure are the value of k (the size 

of the largest neighborhood Nk(R) in the VNS method), and Iter, the number of iterations in which 

the algorithm is not able to improve the best known solution (which is the termination criterion). 

Increasing k, increases the size of the neighborhood but also increases the running time. We found 

that setting k=5 provides the best results without a significant increase in running time. Additionally, 

as the value of Iter is increased the running time of the algorithm is increase, though the quality of 

the solution improves. We found that setting Iter=10 provides the best results in a reasonable 

amount of running time. 

We now describe how we generated our datasets, and then discuss our computational 

experience on these datasets for the CCMLST problem.  

 

3.5.1. Datasets 

          Xiong et al. [82] created a set of test instances for the LCMST problem. These include 37 

small instances with 50 nodes or less, 11 medium-sized instances that range from 100 to 200 nodes, 

and one large instance with 500 nodes. All of these instances are complete graphs. We adapted the 

instances created by Xiong et al. [82] to the CCMLST as follows. Essentially, for the labeled graph 

instance, we create a set of different budget values. These budget values are selected starting from 

slightly more than MSTCOST(L) with increments of approximately 500 units. The small instances 

in Xiong et al. were somewhat limited in the sense that the number of labels is equal to the number 

of nodes in the graph. Consequently, using Xiong et al.�s code, we generated additional labeled 

graphs where the number of labels was less than the number of nodes in the graph.  
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The main aim of using the small instances was to test the quality of the VNS method and the 

binary search method on instances where we can find the optimal solution. Consequently, we 

restricted our attention on these small instances to problems where we were able to compute the 

optimal solution using CPLEX on our MIP formulation. In this way, we created 104 small instances 

(with 10 to 50 nodes) where the optimal solution is known, and 60 medium-sized instances (with 

100 to 200 nodes). We adapted the TSPLIB instances to create 27 large instances. We used the 

labeled graph generated from the TSPLIB instance, and created three instances from each labeled 

graph by varying the budget value. Specifically, we used budget values of 1.3, 1.6, and 1.9 times 

MSTCOST(L).  

 

3.5.2. Results  

The results on the 191 CCMLST instances are described in Tables 3.2 through 3.6 for the 

small instances, Tables 3.7 through 3.9 for the medium-sized instances, and Table 3.10 for the large 

instances. 

On the 104 small instances, the VNS method found the optimal solution in all cases (recall 

that the optimal solution is known in all of these instances), while LS1, LS2, and GA generated the 

optimal solution 100, 100, and 102 times, respectively, out of the 104 instances. The average 

running time of the VNS method was 0.05 seconds, while LS1, LS2, and GA took 0.06, 0.07, and 

0.18 seconds respectively. For the small and medium-sized instances, the termination criterion used 

was 10 iterations without an improvement. On the 60 medium-sized instances, the VNS method 

generated the best solution in 59 out of the 60 instances, while LS1, LS2, and GA generated the best 

solution 46, 50, and 50 times, respectively, out of the 60 instances. The average running time of the 

VNS method was 20.59 seconds, while LS1, LS2, and GA took 63.52, 68.75, and 62.19 seconds, 

respectively. This indicates that the VNS method finds better solutions in a greater number of 

instances much more rapidly than any of the three comparative procedures. For the large instances 

the termination criterion used was a specified running time which is shown in the tables with the  
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Table 3.2. VNS, GA, LS1, and LS2 for the CCMLST Problem on 10 nodes 
 

Exact method LS1 LS2 GA VNS # Labels Cost 
Restriction  Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time 

7000 2 0.23 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.02 
6500 2 0.02 2 0% 0.00 2 0% 0.00 2 0% 0.02 2 0% 0.00 
6000 2 0.03 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.02 
5500 2 0.02 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.00 
5000 2 0.11 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.00 
4500 2 0.09 2 0% 0.00 2 0% 0.00 2 0% 0.00 2 0% 0.00 
4000 2 0.05 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.00 
3500 2 0.06 2 0% 0.00 2 0% 0.00 2 0% 0.02 2 0% 0.00 
3000 3 0.03 3 0% 0.00 3 0% 0.00 3 0% 0.00 3 0% 0.00 

10 

2500 4 0.13 4 0% 0.01 4 0% 0.01 4 0% 0.02 4 0% 0.00 
 
 

Table 3.3. VNS, GA, LS1, and LS2 for the CCMLST Problem on 20 nodes 
 

Exact method LS1 LS2 GA VNS # Labels Cost 
Restriction  Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time 

7500 2 3.33 2 0% 0.01 2 0% 0.00 2 0% 0.02 2 0% 0.02 
7000 2 2.05 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.00 
6500 2 3.78 2 0% 0.01 2 0% 0.01 2 0% 0.00 2 0% 0.02 
6000 2 1.72 2 0% 0.01 2 0% 0.00 2 0% 0.00 2 0% 0.02 
5500 2 2.70 2 0% 0.01 2 0% 0.01 2 0% 0.00 2 0% 0.00 
5000 3 2.80 3 0% 0.01 3 0% 0.01 3 0% 0.02 3 0% 0.00 
4500 3 6.72 3 0% 0.01 3 0% 0.01 3 0% 0.00 3 0% 0.02 
4000 4 29.02 4 0% 0.01 4 0% 0.01 4 0% 0.02 4 0% 0.02 
3500 5 7.08 5 0% 0.01 5 0% 0.01 5 0% 0.02 5 0% 0.02 

10 

3050 8 0.84 8 0% 0.01 8 0% 0.01 8 0% 0.03 8 0% 0.02 
7500 2 0.69 2 0% 0.02 2 0% 0.02 2 0% 0.02 2 0% 0.02 
7000 2 0.34 2 0% 0.02 2 0% 0.02 2 0% 0.02 2 0% 0.00 
6500 2 1.14 2 0% 0.02 2 0% 0.02 2 0% 0.00 2 0% 0.00 
6000 3 2.98 3 0% 0.02 3 0% 0.02 3 0% 0.02 3 0% 0.00 
5500 3 15.98 3 0% 0.00 3 0% 0.02 3 0% 0.02 3 0% 0.02 
5000 4 4.30 4 0% 0.02 4 0% 0.02 4 0% 0.03 4 0% 0.02 
4500 5 18.16 5 0% 0.02 5 0% 0.02 5 0% 0.03 5 0% 0.02 
4000 6 12.28 6 0% 0.02 6 0% 0.02 6 0% 0.02 6 0% 0.02 
3500 8 3.83 8 0% 0.02 8 0% 0.02 8 0% 0.03 8 0% 0.02 

20 

3050 11 0.88 11 0% 0.02 11 0% 0.02 11 0% 0.06 11 0% 0.02 
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Table 3.4. VNS, GA, LS1, and LS2 for the CCMLST Problem on 30 nodes 
 

Exact method LS1 LS2 GA VNS # Labels Cost 
Restriction  Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time 

8000 2 31.61 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.02 
7500 2 77.45 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.02 
7000 2 20.59 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.02 
6500 2 41.84 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.02 
6000 3 45.59 3 0% 0.01 3 0% 0.01 3 0% 0.03 3 0% 0.02 
5500 3 134.80 3 0% 0.01 3 0% 0.01 3 0% 0.03 3 0% 0.02 
5000 3 56.22 3 0% 0.01 3 0% 0.01 3 0% 0.03 3 0% 0.02 
4500 4 33.39 4 0% 0.02 4 0% 0.01 4 0% 0.03 4 0% 0.02 
4000 5 15.42 5 0% 0.01 5 0% 0.01 5 0% 0.03 5 0% 0.03 

10 

3500 8 26.23 8 0% 0.02 8 0% 0.01 8 0% 0.06 8 0% 0.02 
8000 3 69.92 3 0% 0.02 3 0% 0.02 3 0% 0.08 3 0% 0.02 
7500 3 132.47 3 0% 0.02 3 0% 0.02 3 0% 0.08 3 0% 0.02 
7000 3 9.69 3 0% 0.02 3 0% 0.03 3 0% 0.08 3 0% 0.02 
6500 4 31.55 4 0% 0.03 4 0% 0.02 4 0% 0.09 4 0% 0.02 
6000 4 76.02 4 0% 0.02 4 0% 0.02 4 0% 0.08 4 0% 0.03 
5500 5 111.28 5 0% 0.03 5 0% 0.03 5 0% 0.09 5 0% 0.03 
5000 5 74.59 5 0% 0.03 5 0% 0.03 5 0% 0.09 5 0% 0.04 
4500 6 46.27 6 0% 0.03 6 0% 0.03 6 0% 0.09 6 0% 0.03 
4000 8 22.90 8 0% 0.03 8 0% 0.03 8 0% 0.13 8 0% 0.04 

20 

3500 14 177.91 14 0% 0.04 14 0% 0.04 14 0% 0.17 14 0% 0.03 
8000 3 19.12 3 0% 0.03 3 0% 0.03 3 0% 0.06 3 0% 0.05 
7500 4 33.04 4 0% 0.03 4 0% 0.03 4 0% 0.08 4 0% 0.03 
7000 4 62.60 4 0% 0.05 4 0% 0.03 4 0% 0.08 4 0% 0.05 
6500 4 16.01 4 0% 0.03 4 0% 0.05 4 0% 0.08 4 0% 0.05 
6000 5 4.56 5 0% 0.03 5 0% 0.05 5 0% 0.08 5 0% 0.05 
5500 6 45.34 6 0% 0.06 6 0% 0.06 6 0% 0.13 6 0% 0.05 
5000 7 82.30 7 0% 0.05 7 0% 0.05 7 0% 0.13 7 0% 0.06 
4500 8 95.27 8 0% 0.06 8 0% 0.08 8 0% 0.13 8 0% 0.06 
4000 10 55.84 11 10% 0.09 11 10% 0.08 11 10% 0.13 10 0% 0.06 

30 

3500 15 385.09 15 0% 0.09 15 0% 0.09 15 0% 0.30 15 0% 0.09 
 
 

 The best solutions are in bold. 
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Table 3.5. VNS, GA, LS1, and LS2 for the CCMLST Problem on 40 nodes 
 

Exact method LS1 LS2 GA VNS # Labels Cost 
Restriction Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time 

9000 2 6125.77 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.03 
8500 2 24107.41 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.02 
8000 2 74551.36 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.03 
7500 3 12550.08 3 0% 0.01 3 0% 0.01 3 0% 0.06 3 0% 0.02 
7000 3 1734.30 3 0% 0.01 3 0% 0.01 3 0% 0.05 3 0% 0.03 

10 

6500 3 1049.59 3 0% 0.02 3 0% 0.01 3 0% 0.05 3 0% 0.03 
9000 3 3344.61 3 0% 0.03 3 0% 0.04 3 0% 0.09 3 0% 0.03 
8500 3 3709.23 3 0% 0.03 3 0% 0.04 3 0% 0.09 3 0% 0.03 
8000 4 1064.82 4 0% 0.04 4 0% 0.04 4 0% 0.09 4 0% 0.05 

20 

7500 4 1475.95 4 0% 0.04 4 0% 0.04 4 0% 0.09 4 0% 0.05 
9000 5 1514.57 5 0% 0.12 5 0% 0.11 5 0% 0.19 5 0% 0.09 
8500 5 2223.00 5 0% 0.14 5 0% 0.11 5 0% 0.20 5 0% 0.09 
8000 6 17008.94 6 0% 0.14 6 0% 0.12 6 0% 0.20 6 0% 0.09 
7500 6 541.14 7 17% 0.16 6 0% 0.12 6 0% 0.20 6 0% 0.11 
7000 7 424.28 7 0% 0.16 7 0% 0.16 7 0% 0.27 7 0% 0.13 
6500 8 1713.71 8 0% 0.20 8 0% 0.17 8 0% 0.31 8 0% 0.14 
6000 9 2519.92 9 0% 0.20 9 0% 0.20 9 0% 0.31 9 0% 0.16 
5500 11 1437.73 11 0% 0.22 11 0% 0.22 11 0% 0.41 11 0% 0.16 

40 

5000 14 12402.04 14 0% 0.33 14 0% 0.27 14 0% 0.39 14 0% 0.19 
 
 
 

 The best solutions are in bold. 
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Table 3.6. VNS, GA, LS1, and LS2 for the CCMLST Problem on 50 nodes 
 

Exact method LS1 LS2 GA VNS # Labels Cost  
Restriction  Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time 

9500 2 9798.88 2 0% 0.02 2 0% 0.02 2 0% 0.6 2 0% 0.02 
9000 2 8972.91 2 0% 0.02 2 0% 0.02 2 0% 0.6 2 0% 0.02 
8500 2 8984.60 2 0% 0.02 2 0% 0.02 2 0% 0.6 2 0% 0.02 
8000 3 1443.76 3 0% 0.02 3 0% 0.02 3 0% 0.6 3 0% 0.03 
7500 3 24729.7 3 0% 0.02 3 0% 0.02 3 0% 0.6 3 0% 0.03 
7000 3 28404.6 3 0% 0.02 3 0% 0.02 3 0% 0.8 3 0% 0.03 
6500 4 46791.0 4 0% 0.02 4 0% 0.02 4 0% 0.8 4 0% 0.05 

10 

6000 4 6459.06 4 0% 0.02 4 0% 0.02 4 0% 0.9 4 0% 0.05 
9500 3 9216.76 3 0% 0.07 3 0% 0.06 3 0% 0.16 3 0% 0.05 
9000 3 1880.70 3 0% 0.05 3 0% 0.06 3 0% 0.17 3 0% 0.06 
8500 4 7873.89 4 0% 0.06 4 0% 0.07 4 0% 0.19 4 0% 0.08 
8000 4 12730.2 4 0% 0.06 4 0% 0.07 4 0% 0.19 4 0% 0.08 
7500 5 7572.67 5 0% 0.12 5 0% 0.07 5 0% 0.19 5 0% 0.08 
7000 5 49912.1 5 0% 0.08 6 20% 0.07 5 0% 0.22 5 0% 0.08 

20 

6500 6 22651.0 6 0% 0.07 6 0% 0.09 6 0% 0.28 6 0% 0.09 
9500 5 11111.3 5 0% 0.12 5 0% 0.14 5 0% 0.31 5 0% 0.09 
9000 5 12638.7 5 0% 0.12 5 0% 0.14 5 0% 0.30 5 0% 0.09 
8500 5 15358.5 5 0% 0.12 5 0% 0.14 5 0% 0.30 5 0% 0.13 

30 

8000 6 36336.0 6 0% 0.13 6 0% 0.15 6 0% 0.30 6 0% 0.13 
9000 7 1322.60 7 0% 0.33 7 0% 0.37 7 0% 0.52 7 0% 0.22 
8500 8 10455.0 8 0% 0.31 8 0% 0.39 8 0% 0.59 8 0% 0.22 
8000 8 62948.1 9 13% 0.31 9 13% 0.44 8 0% 0.61 8 0% 0.27 
7500 9 30317.9 9 0% 0.33 9 0% 0.42 9 0% 0.55 9 0% 0.25 
7000 11 97384.1 11 0% 0.50 11 0% 0.53 11 0% 0.98 11 0% 0.27 

50 

6500 12 119300. 13 8% 0.53 13 8% 0.58 13 8% 0.97 12 0% 0.31 
 
 
 

 The best solutions are in bold. 
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Table 3.7. VNS, GA, LS1, and LS2 for the CCMLST Problem on 100 nodes 

 

LS1 LS2 GA VNS # Labels Cost 
 Restriction Labels Time Labels Time Labels Time Labels Time 

11500 11 2.13 11 2.33 11 3.61 11 1.05 
11000 12 2.28 12 2.39 12 3.61 12 1.09 
10500 13 3.32 13 3.43 13 4.53 13 1.22 
10000 14 3.48 14 3.29 14 4.31 14 1.25 
9500 16 3.60 16 3.98 15 4.17 15 1.36 
9000 18 3.41 17 3.84 17 5.22 17 1.47 
8500 19 4.23 20 4.56 19 5.88 19 1.61 
8000 22 3.82 22 4.35 23 6.89 22 2.70 
7500 26 3.63 27 4.71 27 9.17 26 2.61 

50 

7000 36 3.78 36 3.65 36 9.13 36 1.36 
11500 16 7.22 16 8.94 16 7.95 16 2.73 
11000 17 8.28 17 9.98 17 9.95 17 3.20 
10500 20 8.58 19 10.33 19 9.86 19 3.13 
10000 21 10.41 21 11.01 21 10.31 21 3.13 
9500 23 9.67 23 11.36 23 12.09 23 3.59 
9000 25 12.68 25 11.68 25 11.86 25 3.83 
8500 28 14.09 28 12.01 28 11.42 28 4.39 
8000 32 15.07 32 12.95 33 15.81 32 4.84 
7500 39 17.44 38 17.66 39 16.09 38 5.23 

100 

7000 50 18.72 50 18.94 50 17.42 50 5.86 
 
 

 The best solutions are in bold. 
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Table 3.8. VNS, GA, LS1, and LS2 for the CCMLST Problem on 150 nodes 

 

LS1 LS2 GA VNS # Labels Cost  
Restriction Labels Time Labels Time Labels Time Labels Time 

13000 17 14.96 18 12.83 17 17.00 17 4.78 
12500 18 14.58 18 12.51 19 21.66 19 4.91 
12000 20 23.81 20 17.57 20 21.30 20 5.44 
11500 22 24.91 22 18.00 22 22.02 22 6.06 
11000 25 22.48 25 19.98 24 22.64 24 10.36 
10500 27 22.62 27 20.55 27 35.56 27 6.55 
10000 31 18.92 31 20.08 30 35.53 30 7.84 
9500 35 25.39 35 28.55 35 39.41 35 7.38 
9000 41 25.09 41 22.48 41 35.78 41 7.61 

75 

8500 55 18.10 55 19.56 55 59.47 55 5.94 
13000 28 48.99 28 50.86 28 36.38 28 12.80 
12500 30 52.69 30 61.85 30 36.41 30 13.92 
12000 32 59.57 32 51.53 32 36.17 32 16.52 
11500 35 62.60 35 53.18 35 38.17 35 16.92 
11000 38 62.58 38 66.05 38 42.80 38 18.20 
10500 42 75.69 42 85.19 43 43.36 41 37.38 
10000 47 73.85 46 86.46 46 45.80 46 33.22 
9500 53 75.80 53 90.01 53 51.80 53 23.42 
9000 62 78.06 62 80.87 62 58.53 62 25.27 

150 

8500 79 93.13 79 98.56 79 79.47 79 26.19 
 
 
 

 The best solutions are in bold. 
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Table 3.9. VNS, GA, LS1, and LS2 for the CCMLST Problem on 200 nodes 

 

LS1 LS2 GA VNS # Labels Cost 
Restriction Labels Time Labels Time Labels Time Labels Time 

14000 22 37.67 22 46.45 22 50.78 22 13.05 
13500 24 39.91 24 46.96 24 45.77 24 14.41 
13000 26 55.61 26 63.99 26 59.70 26 15.33 
12500 29 59.08 29 60.53 29 64.97 29 16.34 
12000 32 66.69 32 69.67 32 62.81 32 17.47 
11500 36 54.23 35 60.70 35 61.25 35 19.44 
11000 40 70.93 40 80.11 40 83.45 40 20.30 
10500 46 72.70 46 75.86 46 123.86 46 39.14 
10000 55 81.17 55 87.80 55 138.72 55 22.73 

100 

9500 70 73.51 70 65.46 70 194.38 70 18.88 
14000 35 188.07 35 179.56 35 136.59 35 37.94 
13500 38 174.69 37 198.79 37 134.84 37 41.97 
13000 40 184.59 40 201.66 41 134.27 40 64.90 
12500 44 171.44 44 193.66 43 130.80 43 47.70 
12000 48 172.10 48 211.57 49 163.52 48 51.02 
11500 54 230.51 53 246.54 54 169.02 53 56.44 
11000 60 215.70 60 236.61 60 178.59 59 133.78 
10500 68 248.04 68 312.48 67 214.44 67 69.19 
10000 80 280.02 80 300.20 80 290.39 80 73.61 

200 

9500 101 284.59 101 308.48 101 334.92 101 115.42 
 

 

 The best solutions are in bold. 
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Table 3.10. VNS, GA, LS1, and LS2 for the CCMLST Problem on Large Datasets 

LS1 LS2 GA VNS 
# Nodes, # Labels 

Cost  
Restriction Labels Time Labels Time Labels Time Labels Time Max time 

98800 70 5182 70 4890 70 3131 70 111 300 

121600 44 3252 44 3505 44 2500 44 103 300 532, 266 

144400 32 2468 32 3013 32 2157 32 81 300 

42250 86 6830 86 7103 86 4234 85 278 300 

52000 57 4999 57 51333 57 2945 56 190 300 574, 287 

61750 42 3796 42 3753 42 2600 42 86 300 

8190 79 6697 79 6575 79 4664 78 233 300 

10080 47 4371 47 4585 47 2971 47 133 300 575, 287 

11970 33 3272 33 3897 33 2695 33 70 300 

39000 54 6839 55 7332 55 4279 54 203 700 

48000 36 5422 36 5622 36 3494 35 257 700 654, 327 

57000 28 4373 28 4542 28 3117 27 199 700 

55900 95 15237 95 16660 95 8763 95 603 700 

68800 61 10451 61 10294 61 6158 61 249 700 657, 328 

81700 44 8139 44 8458 44 4789 44 183 700 

3510 75 9763 75 10329 76 6466 75 477 700 

4320 49 6815 49 6894 49 4089 48 647 700 666, 333 

5130 35 5208 35 5340 35 3515 35 232 700 

49400 102 18755 102 24650 102 13053 101 693 1000 

60800 65 15802 65 17318 66 8995 65 478 1000 724, 362 

72200 47 12550 47 12856 47 7522 47 259 1000 

10660 111 26056 111 30572 111 16231 111 975 1000 

13120 68 19425 69 19754 69 10605 69 492 1000 783, 391 

15580 48 17509 48 16581 49 9539 48 358 1000 

20800000 141 156482 140 188704 141 76294 140 2923 4000 

25600000 86 134765 86 119253 86 49080 86 3920 4000 1000, 500 

30400000 62 101576 62 103167 62 45996 62 3587 4000 

 The best solutions are in bold. 
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computational results. On the 27 large instances, the VNS method generated the best solution in 26 

out of the 27 instances, while LS1, LS2, and GA generated the best solution 19, 18, and 14 times, 

respectively, out of the 27 instances. The average running time of the VNS method was 667 seconds, 

while LS1, LS2, and GA took 22,816, 25,814, and 11,477 seconds, respectively. This clearly shows 

the superiority of the VNS method, especially as the instances get larger. It finds the best solution in 

a greater number of instances (and for almost all instances) an order of magnitude faster than any of 

the three comparative procedures. 

 

3.6. Conclusion 

In this paper, we considered the CCMLST problem and we developed a VNS method for 

solving this problem. We compared the solutions obtained by the VNS method to optimal solutions 

for small instances and to solutions obtained by three heuristics LS1, LS2, and GA that were 

previously proposed for the LCMST problem (but can be easily adapted to the CCMLST problem 

as well). We generated small and medium-sized instances in a similar fashion to Xiong et al. [82], 

and generated a set of large instances from the TSPLIB dataset. 

The VNS method was clearly the best heuristic for the CCMLST instances. Of the 191 

instances, it provided the best solution in 189 instances. For all the 104 instances where the optimal 

solution was known, the VNS method obtained the optimal solution. Furthermore, for the large 

instances, its running time is an order of magnitude faster than those of the three other heuristics.  

 

 

 

 

 

 

 



Algorithms for the Combinatorial Optimization Problems                                                                       Zahra Naji Azimi 
 

 71 

 

 

 

 

Chapter 4: 

 

 

The Generalized Covering Salesman Problem 
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 Abstract: 

     Given a graph ( , )G N E , the Covering Salesman Problem (CSP) is to identify the minimum 

length tour �covering� all the nodes. It seeks the minimum length tour visiting a subset of the nodes in 

N such that each node i not on the tour is within a predetermined distance di from a node on the tour. 

In this chapter we define and develop a generalized version of the CSP, and refer to it as the 

Generalized Covering Salesman Problem (GCSP). Here each node i needs to be covered at least 
i

k  

times and there is a cost associated with visiting each node. We seek a minimum cost tour such that 

each node i is covered at least 
i

k  times by the tour. We define three variants of the GCSP. In the first 

case, each node can be visited by the tour at most once. In the second version visiting a node i more 

than once is possible but it is not allowed to stay overnight (i.e. for revisiting a node i, the tour has to 

visit another node before it can return to i). Finally, in the third variant, the tour can visit each node 

more than once consecutively. In this chapter, we develop two local search heuristics to find high-

quality solutions to the three GCSP variants. For testing the proposed algorithms, we generated 

datasets based on TSP Library instances. Since the CSP and the Generalized Traveling Salesman 

Problem are special cases of the GCSP, we tested our heuristics on both these two problems as well. 

Overall the results show that our suggested heuristics find high-quality solutions very rapidly. 
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4.1. Introduction 

The Traveling Salesman Problem (TSP) is one of the most celebrated combinatorial 

optimization problems. Given a graph ( , )G N E , the goal is to find the minimum length tour of the 

nodes in N, such that the salesman, starting from a node, visits each node exactly once and returns to 

the starting node (see [25]). In recent years, many new variants such as the TSP with profits [30], the 

Clustered TSP [21], the Generalized TSP [31], the Prize Collecting TSP [33], and the Selective TSP 

[47] have been introduced and studied. The recent monograph by Gutin and Punnen [36] has a nice 

discussion of different variations of the TSP and solution procedures. 

In 1981 Current [23] defined and introduced a variant of the TSP called the Covering 

Salesman Problem (CSP). In the CSP the goal is to find a minimum length tour of a subset of n given 

nodes, such that every node i not on the tour is within a predefined covering distance 
i

d  from a node 

on the tour. If 0
i

d   or min
i ij

j
d c , where

ij
c denotes the shortest distance between nodes i and j, the 

CSP reduces to TSP (thus it is NP-hard). Current and Schilling [24] referred to several real world 

examples, such as routing of rural healthcare delivery teams where the assumption of visiting each 

city is not valid since it is sufficient for all cities to be near to some stops on the tour (the inhabitants 

of those cities which are not in the tour are expected to go to their nearest stop). Current and Schilling 

[24] also suggested a heuristic for the CSP where in the first step a Set Covering Problem (SCP) over 

the given nodes is solved. Specifically, to solve the related Set Covering Problem, a zero-one nn  

matrix, i.e. matrix A, in which the rows and columns correspond to the nodes is considered. If node i 

can be covered by node j (i.e., di >=
ij

c ) then 
ij

a  is equal to 1, otherwise it is 0. Since the value of 

covering distance 
i

d  varies for each node i, it should be clear that A is not a symmetric matrix, but for 

each node i we have 1
ii

a . We should also mention that in the CSP there is no cost associated with 

the nodes, so the cost of columns of matrix A are all equal to one. Therefore a uni cost Set Covering 

Problem is solved in the first step of this algorithm to obtain the cities visited on the tour. Then the 

algorithm finds the optimal TSP tour of the nodes over these cities. Since there might be multiple 

optimal solutions to the SCP, Current and Schilling suggest that all optimal solutions to the SCP be 

tried out (i.e., have an optimal TSP tour constructed over the nodes selected in the optimal SCP), and 

the best solution be selected. The algorithm is demonstrated on a sample problem, but no additional 

computational results are reported. 

Arkin and Hassin [2] introduced a geometric version of the Covering Salesman Problem. In 

this problem each node specifies a compact set in the plane, its neighborhood, within which the 

salesman should meet the stop. The goal is computing the shortest length tour that intersects all of the 
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neighborhoods and returns to the initial node. In fact, this problem generalizes the Euclidean 

Traveling Salesman Problem in which the neighborhoods are single points. Unlike the CSP in which 

each node i should be within a covering distance 
i

d  from the nodes which are visited by the tour, in 

the geometric version it is sufficient for the tour to intersects the specific neighborhoods without 

visiting any specific node of the problem.  Arkin and Hassin [2] presented simple heuristics for 

constructing tours for a variety of neighborhood types. They show that the heuristics provide solutions 

where the length of the tour is guaranteed to be within a constant factor of the length of the optimal 

tour.  

Other than Current [23], Current and Schilling [24], and Arkin and Hassin [2] the CSP does 

not seem to have got much attention in the literature. However, some generalizations of the CSP have 

appeared in the literature. One generalization and closely related problem discussed in Gendreau et al. 

[35] is the Covering Tour Problem (CTP). Here, some subset of the nodes must be on the tour while 

the remaining nodes need not be on the tour. Like the CSP, a node i not on the tour must be within a 

predefined covering distance 
i

d  from a node on the tour. When the subset of nodes that must be on 

the tour is empty the CTP reduces to the CSP, and when the subset of nodes that must be on the tour 

consists of the entire node set the CTP reduces to the TSP. Gendreau et al. [35] proposed a heuristic 

that combines GENIUS, a high quality heuristic for the TSP [34], with PRIMAL1, a high quality 

heuristic for the SCP [3]. 

Vogt et al. [77] considered the Single Vehicle Routing Allocation Problem (SVRAP) that 

further generalizes the CTP. Here, in addition to tour (routing) costs, nodes covered by the tour (that 

are not on it) incur an allocation cost, and nodes not covered by the tour incur a penalty cost. If the 

penalty costs are set high and the allocation costs are set to 0, the SVRAP reduces to the CTP. Vogt et 

al. [77] discussed a tabu search algorithm for the SVRAP that includes aspiration, path relinking and 

frequency based-diversification. 

All of the earlier generalizations of the CSP assume that when a node is covered, its entire 

demand can be covered. However, in many real-world applications this is not necessarily the case. As 

an example, suppose we have a concert tour which must visit or cover several cities. Since each show 

has a limited number of tickets, and large metropolitan areas are likely to have ticket demand which 

exceeds ticket supply for a single concert, there must be concerts on several nights in each large city 

in order to fulfill the ticket demand. Also in the rural healthcare delivery problem, discussed in 

Current and Schilling [24], when we create a route for the rural medical team, on each day a limited 

number of people can benefit from the services, so the team should visit some places more than once. 

Consequently, rather than assuming that a node�s demand is completely covered when either it or a 
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node that can cover it is visited,  we generalize the CSP by specifying the coverage demand
i

k which 

denotes the number of times a node i should be covered. In other words, node i must be covered 

i
k times by a combination of visits to node i and visits to nodes that can cover node i. If 

i
k =1 for all 

nodes, we obtain the CSP. This generalization significantly complicates the problem, and is quite 

different from the earlier generalizations that effectively deal with unit coverage (i.e., 
i

k =1). In 

addition, since in many applications there is a cost for visiting a node (e.g., cost of hotel for staying in 

a city for one night) we include node visiting costs (for nodes on the tour) in the GCSP. In the next 

section, we introduce and explain in more detail three different variations that can arise in the GCSP 

(that deal with whether a node can be revisited or not). All these variants are strongly NP-Hard, since 

they contain the classical TSP as a special case.  

The rest of this chapter is organized as follows. In Section 4.2, we formally define the 

generalized covering salesman problem, and describe three variants. We also describe a mathematical 

model for the problem. Section 4.3 describes two local search heuristics for the GCSP. Section 4.4 

discusses our computational experience on the three different variants of the GCSP, as well as the 

CSP and the Generlized TSP (GTSP), which are special cases of the GCSP. Section 4.5 provides 

concluding remarks and discusses some possible extensions of the GCSP. 

 

4.2. Problem Definition 

In the Generalized Covering Salesman Problem (GCSP) we are given a graph  ,G N E  

with  nN ,...,2,1  and ({ , }: , , )E i j i j N i j    as the node and edge sets respectively. Without 

loss of generality, we assume the graph is complete with edge lengths satisfying the triangle 

inequality, and let cij denote the cost of edge { , }i j  (cij may be simply set to the cost of the shortest 

path from node i to j). Each node i can cover a subset of nodes 
i

D  (note that 
i

i D , and when 

coverage is based on distance
i

D can be computed easily from cij) and has a predetermined coverage 

demand 
i

k . iF  is the fixed cost associated with visiting node i, and a solution is feasible if each node i 

is covered at least 
i

k  times by the nodes in the tour. The objective is to minimize the total cost which 

is the sum of the tour length and the fixed costs associated with the visited nodes. 

We discuss three variants of the GCSP: Binary GCSP, Integer GCSP without overnight and 

Integer GCSP with overnight. In the following we explain each of these variants. 
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4.2.1. Binary Generalized Covering Salesman Problem 

In this version, the tour is not allowed to visit a node more than once and after visiting a node 

we must satisfy the remaining coverage demand of that node by visiting other nodes that can cover it. 

We use the qualifier binary as this version only permits a node to be visited once. 

 

4.2.2. Integer Generalized Covering Salesman Problem without Overnights  

Here a node can be visited more than once, but overnight stay is not allowed. Therefore, to 

have a feasible solution, after visiting a node, the tour can return to this node, if necessary, after 

having visited at least one other node. In other words, the tour is not allowed to visit a node more than 

one time consecutively. We use the qualifier integer as this version allows a node to be visited 

multiple (or an integer number of) times. 

 

4.2.3. Integer Generalized Covering Salesman Problem with Overnights 

This version is similar to the previous one, but overnight stay at a node is allowed. 

  

    In the CSP ki=1 for all nodes i N . Clearly the CSP is a special case of the binary GCSP. When 

there are unit demands there is no benefit to revisiting a node, consequently the CSP can also be 

viewed as a special case of the integer variants of the GCSP. Thus the CSP is a special case of all 

three variants of the GCSP. As the TSP is a special case of the CSP, all three GCSP variants are 

strongly NP-Hard. 

We now discuss the issue of feasibility of a given instance of the problem. For the binary 

GCSP, the problem is feasible if demand is covered when all nodes in the graph are visited by the tour. 

In other words if hj denotes the number of nodes that can cover node j (i.e., the number of nodes i for 

which
i

j D ), then the problem is feasible if 
j j

k h . For the integer GCSP with and without 

overnights, the problem is always feasible, since a tour on all nodes in the graph may be repeated until 

all demand is covered. 

 

4.2.4. Mathematical Formulation  

We now formulate the three different variants of the GCSP. We first provide an integer 

programming formulation for the binary GCSP, and then an integer programming formulation for the 

integer GCSP. Our models are on directed graphs (for convenience, as they can easily be extended to 

asymmetric versions of the problem). Hence we replace the edge set E by an arc set A, where each 

edge { , }i j  is replaced by two arcs ( , )i j  and ( , )j i  with identical costs. Also, from the problem data 

we have available 
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1 if node j can cover node i

0 otherwise                         ij
a


 


 

We introduce the decision variables: 

1 if node  is on the tour

0 otherwise                   i

i
w


 


           

1 if arc ( , ) is chosen to be in the solution

0 otherwiseij

i j
x


 


 

 

The integer programming model can now be stated as: 

 

(BinaryGCSP)  Min 
( , )

ij ij i i

i j A i N

c x F w
 

                                                                                          (4.1) 

            Subject to: 

:( , ) :( . )
ji ij i

j j i A j i j A

x x w i N
 

                                                                                       (4.2) 

ij j i

j N

a w k i N


                                                                                                   (4.3) 

SNjSinSNSwwxx ji

SNk Sl

kl

Sl SNk

lk \,,22,)1(2
\\

 
  

  (4.4)                      

 0,1 ( , )
ij

x i j A                                                                                                  (4.5) 

  Niwi  1,0                                                                                                     (4.6) 

  

The objective is to minimize the sum of the tour costs and the node visiting costs. Constraint 

set (4.2) ensures that for each on-tour customer, we have one incoming and one outgoing arc. 

Constraint set (4.3) specifies that the demand of each node must be covered. Constraint set (4.4) is a 

connectivity constraint that ensures that there are no subtours. Note that there are an exponential 

number of connectivity constraints. Constraints (4.5) and (4.6) define the variables as binary. 

For the integer GCSP without overnights we introduce two additional variables to represent 

the number of times a node is visited, and the number of times an arc is traversed in the tour. 

:iy Number of times that node i is visited by the tour. 

:
ij

z Number of times arc (i,j) is traversed by the tour. 

The integer programming model can now be stated as: 
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   (IntegerGCSP)         Min    
( , )

ij ij i i

i j A i N

c z F y
 

                                                                           (4.7) 

 

            Subject to: 

:( , ) :( , )
ji ij i

j j i A j i j A

z z y i N
 

                                                                                      (4.8) 
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where L is a sufficiently large positive value. The objective is to minimize the sum of the tour costs 

and the node visiting costs. Constraint set (4.8) ensures that if node i is visited yi times, then we have 

yi incoming and yi outgoing arcs. Constraint set (4.9) specifies that the demand of each node must be 

covered. Constraint sets (4.10) and (4.11) are linking constraints, ensuring that wi and xij are 1 if yi or 

zij are greater than 0 (i.e., if a node is visited or an arc is traversed). Note that it suffices to set 

max{ }
i

i N
L k


 . Constraint set (4.12) is a connectivity constraint that ensures that there are no subtours. 

Note again, that there are an exponential number of connectivity constraints. Finally, constraint sets 

(4.13) and (4.14) define the variables as binary and integer as appropriate. For the integer GCSP with 

overnights, the above integer programming model (IntegerGCSP) is valid if we augment the arc set A 

with self loops. Specifically, we add to A the arc set {( , ) : }i i i N  (or {( , ) : }A A i i i N   ) with cii 

the cost of self loop arcs ( , )i i  set to 0. 

Note that both the binary GCSP and the integer GCSP formulations rely heavily on the 

integrality of the node variables. Consequently, the LP-relaxations of these models can be quite poor. 

Further, these models have an exponential number of constraints, implying that this type of model can 

only be solved in a cutting plane or a branch-and-cut framework. Thus considerable strengthening of 

the above formulations is necessary, before they are viable for obtaining exact solutions to the GCSP. 

In this research, we focus on local search algorithms to develop high-quality solutions for the GCSP. 
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4.3. Local Search Algorithms 

In this section we propose two local search solution procedures, and refer to them as LS1 and 

LS2, respectively. They are designed to be applicable to all variants of GCSP. In both algorithms, we 

start from a random initial solution. As we discussed in Section 4.2, assuming that a problem is 

feasible (which can be checked easily for the binary GCSP) any random order of the n nodes produces 

a feasible solution for the binary GCSP, and repeating this ordering until all demand is covered 

produces a feasible solution for the integer GCSP. We provide an initial solution to our local search 

heuristics by considering a random initial ordering of the nodes in the graph and repeat this ordering 

for the integer variants (if necessary) to cover all of the demand. 

A solution is represented by the sequence of nodes in the tour. Thus for the binary GCSP no 

node may be repeated on the tour, while in the integer GCSP nodes may be repeated on the tour. For 

the integer GCSP with no overnights a repeated node may not be next to itself in the sequence, while 

in the integer GCSP with overnights a repeated node is allowed to be next to itself in the sequence. 

Thus <1,2,3,4,5,8,9>, <1,2,3,4,3,2,8>, <1,1,2,3,3,8> represent tour sequences that do not repeat nodes, 

repeat nodes but not consecutively, and repeat nodes consecutively. Observe that if  the costs are non-

negative, then in the integer GCSP with overnights there is no benefit to going away from a node and 

returning to revisit it. 

 

4.3.1. LS1  

LS1 tries to find improvements in a solution S by replacing some nodes of the current tour. It 

achieves this in a two step manner. First LS1 deletes a fixed number of nodes. (The number of nodes 

removed from the tour is equal to a predefined parameter, Search-magnitude, multiplied by the 

number of nodes in the current tour. If this number is greater than 1 it is rounded down, otherwise it is 

rounded up.) It removes a node k from the current solution S with a probability that is related to the 

current tour and computed as:  

kP = /
k s

s S

C C


                    (4.15) 

where
k

C is the amount of decrease in the tour cost by deleting node k from S (while keeping the rest 

of the tour sequence as before). Since the deletion of some nodes from the tour S may result in a 

tour S  that is no longer feasible, LS1 attempts to make the solution feasible by inserting new nodes 

into S  . We refer to this as the Feasibility Procedure. Suppose that P is the set of nodes that can be 

added to the current tour. For the binary GCSP P consists of the nodes not in the tour S  , while in the 

integer GCSP P consists of all nodes that do not appear more than L times in S  . We select the node 

k P  for which  
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Here
k

I is the amount of increase in the tour cost by insering node k into its best position in the tour, 

while
k

N is the number of uncovered nodes (or uncovered demand) which can be covered by node k. 

We update the calculation of
k

N for all nodes in P and repeat the selection and insertion of nodes 

procedure until we obtain a feasible solution. After this step, LS1 checks for the possible removal of 

�redundant� nodes from the current tour in the Delete_Redundant_Nodes Procedure. A node is 

redundant if, by removing it, the solution remains feasible.  

Next, in the case LS1 finds an improvement, i.e., the cost of S  is less than the cost of S, it tries 

to improve the tour length (and thus the overall cost) by applying the Lin-Kernighan Procedure [49] 

to the solution S  . We apply the Lin-Kernighan code LKH version 1.3 of Helsgaun [38] that is 

available for download on the web. Since the procedure is computationally expensive, we only apply 

it after max_k (a parameter) improvements over the solution S. 

In order to get out locally optimum solutions, and to search through a larger set in the feasible 

solution space, we apply a Mutation Procedure whenever the algorithm is not able to increase the 

quality of the solution for a given number of consecutive iterations. In the mutation procedure, a node 

is selected randomly and if the node does not belong to the solution it is added to the solution in its 

best place (i.e. the place which causes the minimum increase in the tour length); otherwise it is 

removed from the solution. In the latter case, the algorithm calls the feasibility procedure to ensure the 

solution is feasible, and updates the best solution if necessary.  

To add diversity to the search procedure, we allow downhill moves with respect to the best 

solution that LS1 has found. In other words, if the cost of the solution S   that LS1 obtains is better 

than (1+á) times the best solution found we keep it as the current solution (over which we try and find 

an improvement), otherwise we use the best solution obtained so far as the current solution. The 

stopping criterion for LS1 is a given number of iterations that we denote by max_iter. The pseudo-

code of LS1 is given in Algorithm 4.1. The parameters to be tuned for LS1 and their best values 

obtained in our computational testing are described in Table 4.1 (see Section 4.4). 

 

4.3.2. LS2 

This local search procedure tries to improve the cost of a solution by either deleting a node on 

the tour if the resulting solution is feasible; or by extracting a node and substituting it with a 

promising sequence of nodes. In contrast to LS1, this local search algorithm maintains feasibility (i.e., 

it only considers feasible neighbors in the local search neighborhood). 
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Algorithm 4.1. Local Search Algorithm 1 (LS1) for GCSP 
Begin 

   S:= An initial random tour of n nodes, S* : = S and BestCost := Cost(S*); 
   Cs= Decrease in the tour cost by short cutting node s; 
   Is  = Increase in the tour cost by adding node s to its best position in the tour; 
   Ns = max{1, Number of uncovered nodes covered by node s}; 
   No_Null_Iter:= Number of iterations without improvement; 
   Set k =0; No_Null_Iter=0; 
    For i =1, �, max_iter do 

         For j =1, �, Search-magnitude  |S| do 

               Delete node k from S according to the probability 
Ss

sk CC / ; 

         End For 

         S = Restricted solution obtained by shortcutting the nodes deleted in the previous step;  
         Apply Feasibility Procedure ( S  ); 
         Apply Delete_Redundant_Nodes Procedure ( S  ); 
         If Cost( S  ) < Cost(S) then 
             If  k = max_k then Obtain TSP_tour( S  ) by calling Lin-Kernighan Procedure and k=0; 
             Else k=k+1; 
         End If 

         If Cost( S  ) > BestCost (1+á) then 

               S:=S*; 
               No_Null_Iter:= No_Null_Iter +1;      
         Else 

               SS : ; 
               If Cost(S) < BestCost then 

                      Update S*=S, BestCost=Cost(S),and No_Null_Iter:=0; 
               End If; 
         End If; 

         If No_Null_Iter > Mutation_Parameter then apply Mutation Procedure (S); 
     End For; 

     Obtain TSP_tour(S*) by calling Lin-Kernighan Procedure. Output the solution S*. 
End. 

 

Feasibility Procedure ( S  ): 
    P = The set of nodes that can be entered into the solution;  
    While there exist uncovered nodes do  

           Select node k P such that 2 2/ min( / )
k k j j

j P
I N I N


 ; 

           Insert node k in its best position in S  ; 

           For each node j update the remaining coverage demand, jI  and jN ; 

    End While. 

 

Delete_Redundant_Nodes Procedure ( S  ): 

     For i S  | do 
            If by removing node i from S   the solution remains feasible, then remove node i; 
     End For. 

 

Mutation Procedure (S): 

     Select a random node k from the set of nodes P; 
     If node Sk  then add node k to S in its best position;  
     Else remove node k from S and call Feasibility Procedure (S); 
     If Cost(S) < BestCost then update S*=S, BestCost=Cost(S). 
 



Algorithms for the Combinatorial Optimization Problems                                                                       Zahra Naji Azimi 
 

 82 

LS2 mainly consists of two iterative procedures: the Improvement Procedure and the 

Perturbation Procedure. In the Improvement Procedure the algorithm considers extraction of nodes 

from the current tour in a round robin fashion. (In other words, given some ordering of nodes on the 

tour, it first tries to delete the first node on the tour, and then it tries to delete the second node on the 

tour, and so on, until it tries to delete the last node on the tour.) If by removing a node on the tour the 

solution remains feasible, the tour cost has improved and the node is deleted from the tour. On the 

other hand, extracting a node from the tour may cause some other nodes to lose their covering 

demands (meaning that their demand is no longer fully covered and the solution becomes infeasible). 

Consequently, in such cases we try to obtain a feasible solution by substituting the deleted node with a 

new subsequence of nodes. To this aim, the algorithm considers the T nodes nearest to the extracted 

node and generates all the promising subsequences with cardinality one or two. Then it selects the 

subsequence s that has the minimum insertion cost (i.e., the cost of the tour generated by substituting 

the deleted node by subsequence s minus the cost of tour with the deleted node). In the case of 

improvement in the tour cost (i.e., when the minimum insertion cost is negative) we make this 

substitution; otherwise, we disregard it (i.e. reinsert the deleted node back into its initial position) and 

continue. The improvement procedure is repeated until it cannot find any improvements (i.e., no 

change is found while extracting nodes from the current tour in a round robin fashion). 

In the Perturbation Phase, LS2 tries to escape from a locally optimum solution by perturbing 

the solution. In the perturbation procedure we iteratively add up to K nodes to the tour. It randomly 

selects one node from among the nodes eligible for addition to the tour (in the binary GCSP the nodes 

must be selected from those out of the current tour, while for the two other GCSP variants the nodes 

can be selected as well from those visited in the current tour) and inserts it in the tour in its best 

possible position. Since the tour is feasible prior to the addition of these nodes, the tour remains 

feasible upon addition of these K nodes. 

In one iteration of the procedure the improvement phase and perturbation phase are iteratively 

applied J times. After one iteration, when the best solution has improved (i.e., an iteration found a 

solution with lower cost) we use the Lin-Kernighan Procedure [49], to improve the current tour 

length (and thus the cost of the solution). The stopping criterion for LS2 is a given number of 

iterations that we denote by max_iter. The pseudo-code for LS2 is given in Algorithm 4.2, and the 

parameters to be tuned for LS2 and their best values obtained in our computational testing are 

described in Table 4.2 (see Section 4.4). 
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Algorithm 4.2. Local Search Algorithm 2 (LS2) for the GCSP 

Begin 

    S:= An initial random tour of n nodes, S* : = S and BestCost := Cost(S*); 
    N(S) = Number of nodes in S; 
   For i = 1, �, max_iter do 
        For j = 1, �, J do  
              While the solution can be improved do 
                     Improvement Procedure (S); 
               End While 

               If Cost of the current tour is greater than the BestCost then 

                     update the solution with the best known solution;  
              Perturbation Procedure (S); 
        End For; 

        If by applying the Improvement Procedure the best known solution has been improved then 

             Call Lin-Kernighan Procedure(S); 
   End For; 

End. 

 
Improvement Procedure(S): 

Begin 

     r := 1; 
     While   r N S  do     

          Extract the th
r  node of the tour; 

          If  the solution is feasible then 
              Update the solution; 
          Else  

               Generate all sequences with cardinality one or two, by considering the T  nodes nearest  
                to the extracted node; 

                CostExtra _ := Extra cost (the cost generated by substituting sequence s with the     
                                     extracted node) related to the sequence that has the minimum insertion cost; 
                If CostExtra _  < 0 then 

                      Update BestCost  and the current solution by substituting the new sequence with the  
                      extracted node;  
                End If; 

          End If; 

          r := r+1; 
     End While; 

End. 

 

Perturbation Procedure(S): 

Begin 

   For i  = 1,�, K do 
       Randomly select a node; 
       Insert the node in its best feasible position in the tour; 
    End For; 

End. 
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4.4. Computational Experiments 

In this section we report on our computational experience with the two local search heuristics 

LS1 and LS2 on the different GCSP variants. We first consider the CSP, and compare the 

performance of the two proposed heuristics LS1 and LS2, with that of the method proposed by 

Current and Schilling [24] for the CSP. Next we compare LS1 and LS2 on a large number of GCSP 

instances for the three variants. We also consider a Steiner version of the GCSP, and report our 

experience with the two local search heuristics. Finally, in order to compare the quality of the 

solutions found by the two heuristics, we compare them with existing heuristics for the GTSP where 

there exist well studied instances in the literature. All of the experiments suggest that the heuristics are 

of a high quality and run very rapidly. 

 

4.4.1. Test Problems 

  Since there are no test problems in the literature for the CSP (as well as the variants of the 

GCSP we introduce), we created datasets based on the TSP library instances [65]. In particular we 

constructed our datasets based on 16 Euclidean TSPLIB instances whose size ranged from 51 to 200 

nodes. 

In the datasets created, each node can cover its 7, 9 or 11 nearest nodes (resulting in 3 

instances for each TSPLIB instance), and each node i must be covered 
i

k  times, where 
i

k  is a 

randomly chosen integer number between 1 and 3. We generated the datasets to ensure that a tour 

over all of the nodes covers the demand (i.e., we ensured that the binary GCSP instances were 

feasible). Although the cost for visiting a node can be different from node to node, for simplicity we 

consider the node visiting costs to be the same for all nodes in an instance. In fact, if we assign a high 

node visiting cost, the problem becomes a Set Covering Problem (as the node visiting costs dominate 

the routing cost) under the assumption that a tour over all the nodes covers the demand. On the other 

hand, if the node visiting cost is insignificant (i.e., the routing costs dominate), there is no difference 

between the integer GCSP with overnight and the CSP. This is because if there is no node visiting 

cost, a salesman will stay overnight at a node (at no additional cost) until he/she covers all the demand 

that can be covered from that node. After testing different values for the node visiting cost, to ensure 

that its effect was not to either extreme (Set Covering Problem or CSP), we fixed the node visiting 

cost value to 50 for all the instances (which turned out to be an appropriate amount for the different 

kinds of instances studied in this paper). In this fashion we constructed 48 datasets for our 

computational work.  

After considerable experimentation on a set of small test instances, we determined the best 

values of the parameters to be used in both LS1 and LS2. Tables 4.1 and 4.2 show the different values 
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that were tested for various parameters and the best value obtained for the parameters in LS1 and LS2. 

Both LS1 and LS2 were implemented in C and tested on a Windows Vista PC with an Intel Core Duo 

processor running at 1.66 GHz with 1 GB RAM. As is customary in testing the performance of 

randomized heuristic algorithms, we performed several independent executions of the algorithms. In 

particular, for each benchmark instance, 5 independent runs of the algorithms LS1 and LS2 were 

performed, with 5 different seeds for initializing the random number generator and the best and the 

average performances of the two heuristics are provided. 

 

Table 4.1. Parameters for LS1 
Parameters Different values tested Best value 

Search-magnitude {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} 0.2 
Mutation_parameter {5, 10, 15, 20} 10 

max_k {5, 10, 15, 20} 10 
Á {0, 0.1, 0.01, 0.001} 0.001 

Max_iter {1500, 3500, 5500, 7500, 8500} 
3500 (CSP & Binary GCSP) 

7500 (Integer GCSP) 
 
 

Table 4.2. Parameters for LS2 
Parameters Different values tested Best value 

J {50, 100, 150, 200, 250, 300} 200 
K {5, 10, 15, 20} 10 
T {5, 10, 15} 10 

max_iter {15, 20, 25, 30, 35, 40, 45, 50, 55, 60} 
25 (CSP & Binary GCSP)  

50 (IntegerGCSP) 
 

In all tables reporting the computational performance of the heuristics, the first column is 

related to the instance name which includes the number of nodes. The second column (NC) gives the 

number of nearest nodes that can be covered by each node. Moreover, for each method the best and 

the average cost, the number of nodes in the best solution (NB), the average time to best solution 

(Avg.TB), i.e. the average time until the best solution is found (note the local search heuristic 

typically continues after this point until it reaches its termination criterion), and the average time 

(Avg.TT) are reported (TT is the total time for one run of the local search heuristic). In all tables, in 

each row the best solution is written in bold and the last two rows give the average of each column 

(Avg) and the number of best solutions found by each method (No.Best), respectively. All the 

computing times are expressed in seconds. 

 

4.4.2. Comparison of LS1 and LS2 Current and Schilling�s Heuristic for the CSP  

Since Current and Schilling [24] introduced the CSP and proposed a heuristic for it, we 

compare the performance of LS1 and LS2 against their heuristic. Recall, their algorithm was 
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described in Section 4.1. Since there are no test instances or computational experiments reported in 

Current and Schilling�s paper, we coded their algorithm to compare the performance of the heuristics. 

For Current and Schilling�s method, we used CPLEX 11 [40] to generate all optimal solutions of the 

SCP, and since solving the TSP to optimality is computationally quite expensive on these instances 

we use the Lin-Kernighan Procedure [49] to find a TSP tour for each solution. Sometimes finding all 

the optimal solutions of an SCP instance is quite time consuming, so we only consider those optimal 

solutions for the SCP that can be found in less than 10 minutes of running time. 

Table 4.3 reports the results obtained by LS1, LS2 and our implementation of Current and 

Schilling�s method. In this table, the number of optimal solutions (NO) of the set covering problem is 

given. In Table 4.3 instances for which all the optimal solutions to the set covering problem cannot be 

obtained within the given time threshold are shown with an asterisk. As can be seen in Table 4.3 for 

the CSP, both LS1 and LS2 can obtain, in a few seconds, better solutions than Current and Schilling�s 

method. The results of both the heuristics in all except one case (where they are tied with Current and 

Schilling�s method) are better than Current and Schilling�s method, while they are several orders of 

magnitude faster than Current and Schilling�s method. Between LS1 and LS2, LS2 outperforms LS1 

as it obtains the best solution in all 48 instances, while LS1 only obtains the best solution in 38 out of 

the 48 instances.  
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From Table 4.3 we can make the following counter-intuitive observation. Sometimes by 

selecting a set of nodes with a larger cardinality, we are able to find a shorter tour length, so the 

optimal solution of the Set Covering Problem is not necessary a good solution for the Covering 

Salesman Problem. Figures 4.1 and 4.2 illustrate two examples of CSP (Rat99 and KroA200) in 

which, by increasing the number of nodes in the tour, the tour length is decreased. 

 

4.4.3. Comparison of LS1 and LS2 on GCSP Variants 

In Table 4.4 the results of the two local search heuristics on the binary GCSP are given. As can 

be seen in this table, for the binary GCSP the two local search heuristics are very competitive with 

each other. Although on average LS2 is a bit faster than LS1, in terms of the average cost, average 

time to best solution, and the number of best solutions found LS1 is better than LS2. Over the 48 

Figure 4.1. An example of decreasing the tour length by increasing the number of nodes in Rat99 (NC=7). 
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 a) Number of nodes in the tour: 14, Tour length: 572          b) Number of nodes in the tour: 18, Tour length: 486                            

 
 

Figure 4.2. An example of decreasing the tour length by increasing the number of nodes in KroA200 (NC=7).    
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  a) Number of nodes in the tour: 28, Tour length: 14667           b) Number of nodes in the tour: 34, Tour length: 13285      
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instances, the two heuristics were tied in 22 instances. While, in 14 instances LS1 is strictly better 

than LS2, and in 12 instances LS2 is strictly better than LS1. 

Table 4.5 provides a comparison of LS1 and LS2 on the integer GCSP without overnights. 

Here, the table contains one additional column reporting the number of times a solution revisits cities 

(NR).  Here, over 48 test instances, LS1 is strictly better than LS2 in 12 instances, LS2 is strictly 

better than LS1 in 11 instances, while they are tied in 26 instances. Again the running time of both 

LS1 and LS2 is extremely small, taking no more than 20 seconds even for the largest instances. 

Table 4.6 compares LS1 and LS2 on integer GCSP with overnights. Here, the table contains 

one additional column reporting the number of times a solution stays overnight at a node (ON). Here, 

over 48 test instances, LS1 is strictly better than LS2 in 8 instances, LS2 is strictly better than LS1 in 

30 instances, and they are tied in 10 instances. However, the running time of LS1 increases 

significantly compared to LS2. This increase in running time appears to be due to a significant 

increase in the number of times LS1 calls the Lin-Kernighan Procedure. Overall, LS2 appears to be a 

better choice than LS1 for the integer GCSP with overnights. 

Notice that a solution to the binary GCSP is a feasible solution to the integer GCSP without 

overnights, and a feasible solution to the integer GCSP without overnights is a feasible solution for 

the integer GCSP with overnights. Hence, we should expect that the average cost of the solutions 

found should go down as we move from Table 4.4 to 4.6. This is confirmed in our experiments. 

 

4.4.4. GCSP with Steiner Nodes 

In our earlier test instances every node had a demand. We now construct some Steiner 

instances, i.e., ones where some nodes have 
i

k  set to zero (the rest of the demands remain unchanged). 

In these cases, a tour could contain some  �Steiner nodes� (i.e., nodes without any demand) that can 

help satisfy the coverage demand of the surrounding (or nearby) nodes. On the other hand, if fewer 

nodes have demands then it is likely that fewer nodes need to be visited (in particular the earlier 

solutions obtained are feasible for the Steiner versions), and thus we would expect the cost of the 

solutions to the GCSP with Steiner nodes to decrease compared to the instances of the GCSP without 

Steiner nodes. Table 4.7 confirms this observation. Here we compare LS1 and LS2 on the CSP with 

Steiner nodes. For each CSP instance (in Table 4.3) we select 10 percent of the nodes randomly and 

set their corresponding demands to zero. The behavior of LS1 and LS2 is similar to that of the earlier 

CSP instances. Specifically, over the 48 test instances LS1 was strictly better once, LS2 was strictly 

better 6 times, and the two methods were tied 41 times. Overall LS2 runs slightly faster than LS1. For 

brevity, we have limited the comparison to the CSP with Steiner nodes. 
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4.4.5. Analyzing the Quality of LS2 on the Generalized TSP 

Overall, LS2 seems to be a better choice than LS1, in that it is more robust than LS1. It 

outperforms LS1 on the CSP and the integer GCSP with overnights, while it is tied with LS1 for the 

binary GCSP and integer GCSP without overnights. Further, the run time of LS2 remains fairly stable. 

However, since we do not have lower bounds or optimal solutions for the CSP and GCSP instances, it 

is hard to assess the quality of the solutions. Noting that the generalized TSP (GTSP) is a special case 

of the CSP (we explain how momentarily), we use some well studied GTSP instances in the literature 

[31] and compare LS2 with eight different heuristics designed specifically for the GTSP; as well as to 

the optimal solutions on these instances obtained by Fischetti et al [31] using a branch-and-cut method. 

In the GTSP, the set of nodes in the graph are clustered into disjoint sets and the goal is to find the 

minimum length tour over a subset of nodes so that at least one node from each cluster is visited by 

the tour. This can be formulated as a CSP, where each node has unit demand (i.e., 
i

k =1 for each node 

i) and each node in a cluster covers every other node in a cluster (and no other nodes).  

We executed LS2 on the benchmark GTSP dataset (see [31]) by first tuning its parameters. 

The tuned parameters of LS2 are configured as follows: J=300, K=10, T=10, max_iter = 50 and 10 

independent runs of LS2 were performed. We compared LS2 to eight other heuristics in the literature 

that are described below. 

1. MSA: A Multi-Start Heuristic by Cacchiani et al. [12], 

2. mrOX: a Genetic Algorithm by Silberholz and Golden [71], 

3. RACS: a Reinforcing Ant Colony System by Pintea et al. [62], 

4. GA: a Genetic Algorithm by Snyder and Daskin [72], 

5. 3
GI : a composite algorithm by Renaud and Boctor [66], 

6. NN: a Nearest Neighbor approach by Noon [60], 

7. FST-Lagr and FST-root: Two heuristics by Fischetti et al. [31]. 

In order to perform a fair comparison on the running times of the different heuristics, we 

scaled the running times for the different computers as indicated in Dongarra [28]. The computer 

factors are shown in Table 4.8. The columns indicate the computer used, solution method used, 

Mflops of the computer, and r the scaling factor. Thus the reported running times in the different 

papers are appropriately multiplied by the scaling factor r. We note that an identical approach was 

taken in Cacchiani et al. [12] to compare across these heuristics for the GTSP. Since no computer 

information is available for the RACS heuristic, we use a scaling factor of 1. 

Table 4.9 reports on the comparison. For each instance we report the percentage gap with 

respect to the optimal solution value and the computing time (expressed in seconds and scaled 

according to the computer factors given in Table 4.8) for all the methods but for B&C (for which we 
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report only the computing time). Some of the methods (RACS, 3
GI , and NN) only reported solutions 

for 36 of the 41 instances. Consequently, in the last four rows of Table 4.9 we report for each 

algorithm, the average percentage gap and the average running time on the 36 instances tested by all 

the methods, as well as over all 41 instances (for all methods except RACS, 3
GI , and NN). We also 

summarize the number of times the optimum solution was found by a method. As Table 4.9 indicates, 

although LS2 was not explicitly developed for the GTSP (but rather for a generalization of it), it 

performs quite creditably. On average it takes 2.2 seconds, finds solutions that are on average 0.08% 

from optimality, and found optimal solutions in 30 out of 41 benchmark GTSP instances.  

 

4.5. Summary and Conclusions 

In this chapter we considered the CSP, and introduced a generalization quite different from 

earlier generalizations of the CSP in the literature. Specifically, in our generalization nodes must be 

covered multiple times (i.e., we introduce a notion of coverage demand of a node). This may require a 

tour to visit a node multiple times (which is not the case in earlier generalizations), and there are also 

node visiting costs. We discussed three variants of the GCSP. The binary GCSP where revisiting a 

node is not permitted, the integer GCSP without overnights where revisiting a node is permitted only 

after another node is visited, and the integer GCSP with overnights where revisiting a node is 

permitted without any restrictions. We designed two local search heuristics, LS1 and LS2, for these 

variants. Overall LS2 appears to be more robust in terms of its running time as well as its performance 

in terms of the number of times it found the best solutions in the different variants. When LS2 is 

compared to 8 benchmark heuristics for the GTSP (that were specifically designed for the GTSP), 

LS2 performs quite well, finding high-quality solutions rapidly. 

We introduced two integer programming models for the binary and integer GCSP respectively. 

However, both these models require considerable strengthening and embedding in a branch-and-cut 

framework in order to obtain exact solutions to the GCSP. This is a natural direction for research on 

the GCSP (as it will provide an even better assessment of the quality of heuristics for the GCSP), and 

we hope researchers will take up this challenge. 

Some natural generalizations of the GCSP (along the lines of the earlier generalizations of the 

CSP) may be considered in future research. The earlier generalizations of the CSP (see [77]) included 

requirements in terms of (i) requiring some nodes to be on the tour, (ii) requiring some nodes not to be 

on the tour, (iii) allowing a node not to be covered at a cost (for our GCSP that would mean the 

covering demand of a node could be partially covered at a cost), and (iv) including a cost for 

allocating nodes not on the tour to the tour. These would be natural generalizations of this multi-unit 

coverage demand variant of the CSP that we have introduced. 
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Table 4.3. Comparison of Current and Schilling�s method with LS1 and LS2 for CSP 

Current and Schilling LS1 LS2 
Instance NC 

NO Cost NB TB TT 
Best 
Cost 

Avg. 
Cost 

NB 
Avg. 
TB 

Avg. 
TT 

Best 
Cost 

Avg. 
Cost 

NB 
Avg. 
TB 

Avg. 
TT 

7 13 194 7 0.07 0.21 164 164.0 10 0,20 1,48 164 164.0 10 0.04 0.77 

9 309 169 6 1.92 1.97 159 159.0 8 0.10 1.34 159 159.0 9 0.03 0.61 Eil 51 

11 282 167 5 0.59 1.70 147 147.0 7 0.04 1.22 147 147.0 8 0.03 0.55 

7 2769 4019 8 19.39 21.04 3887 3966.2 11 0.08 1.68 3887 3887.0 11 0.26 0.67 

9 11478 3430 7 26.08 94.14 3430 3435.8 7 0.10 1.41 3430 3430.0 7 0.04 0.62 Berlin 52 

11 11 3742 5 0.22 0.26 3262 3262.0 6 0.02 1.60 3262 3262.0 6 0.02 0.34 

7 32832 297 10 232.24 454.07 288 288.0 11 0.11 1.86 288 288.0 12 0.05 1.03 

9 18587 271 9 173.87 176.00 259 259.0 10 0.05 1.79 259 259.0 10 0.05 1.22 St 70 

11 1736 269 7 13.21 13.74 247 247.0 10 0.16 1.98 247 247.0 10 0.04 0.88 

7 241 241 11 1.15 2.46 207 210.6 15 0.53 2.09 207 207.0 15 0.17 1.11 

9 1439 193 9 7.43 13.95 186 186.8 11 0.26 1.98 185 185.0 11 0.05 1.13 Eil 76 

11 7050 180 8 30.48 78.88 170 176.4 11 0.05 2.14 170 170.0 11 0.05 1.07 

7 26710 53255 11 54.20 170.41 50275 51085.0 14 0.55 1.86 50275 50275.0 14 0.78 1.27 

9 326703* 45792 10 6743.66 9837.36 45348 45348.0 12 0.27 2.01 45348 45348.0 12 0.26 1.12 Pr 76 

11 20 45955 7 0.11 0.20 43028 43418.4 10 0.48 1.95 43028 43028.0 10 0.07 1.03 

7 3968 572 14 22.74 32.75 486 486.4 18 0.08 2.20 486 486.0 18 0.16 1.77 

9 170366 462 12 1749.66 2729.67 455 455.6 15 0.67 2.38 455 455.0 15 0.11 1.92 Rat 99 

11 16301 456 10 88.87 140.18 444 444.8 12 0.43 2.25 444 444.0 12 0.09 1.75 

7 208101* 10306 15 6303.03 6475.95 9674 9674.0 19 0.38 2.06 9674 9674.0 19 0.31 2.04 

9 95770 9573 12 524.49 1365.42 9159 9159.0 15 0.13 2.28 9159 9159.0 15 0.14 1.85 KroA 100 

11 33444 9460 10 409.47 433.97 8901 8912.2 13 0.19 2.56 8901 8901.0 13 0.13 1.62 

7 4068 11123 14 45.62 48.35 9537 9537.0 20 0.39 1.99 9537 9537.0 20 0.33 1.93 

9 133396 9505 12 2112.57 2623.76 9240 9262.2 15 0.54 2.13 9240 9240.0 15 0.16 1.99 KroB 100 

11 90000* 9049 10 1056.27 2895.35 8842 8842.6 13 1.34 2.62 8842 8842.0 13 0.09 1.83 

7 129545* 10367 15 3391.82 4212.98 9728 9728.6 18 0.72 2.46 9723 9723.0 17 0.17 1.97 

9 5028 9952 12 35.91 52.25 9171 9184.4 13 0.12 2.45 9171 9171.0 13 0.19 1.91 KroC 100 

11 75987* 9150 10 1389.84 2482.00 8632 8632.0 13 0.14 2.74 8632 8632.0 13 0.09 1.85 

7 1392 11085 14 10.29 15.58 9626 9626.0 20 1.35 2.39 9626 9626.0 20 0.21 1.83 

9 700 10564 11 6.18 7.74 8885 8903.8 13 0.75 2.38 8885 8885.0 13 0.12 2.04 KroD 100 

11 85147* 9175 10 968.39 2761.51 8725 8730.4 13 0.48 2.83 8725 8725.0 13 0.13 1.89 

7 92414* 11323 15 1971.32 3075.58 10150 10154.8 19 0.14 2.48 10150 10150.0 19 1.06 1.84 

9 85305* 9095 12 1918.72 2764.70 8992 8992.0 13 0.33 2.69 8991 8991.0 14 0.16 1.90 KroE 100 

11 70807* 8936 10 609.81 2335.43 8450 8450.0 13 0.36 2.89 8450 8450.0 13 0.08 1.97 
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Current and Schilling LS1 LS2 
Instance NC 

NO Cost NB TB TT 
Best 
Cost 

Avg. 
Cost 

NB 
Avg. 
TB 

Avg. 
TT 

Best 
Cost 

Avg. 
Cost 

NB 
Avg. 
TB 

Avg. 
TT 

7 2520 4105 14 24.43 4196.23 3461 3478.2 18 0.31 2.53 3461 3485.6 18 0.24 1.83 

9 95242* 3414 12 1798.14 3118.93 3194 3211.4 16 0.91 2.65 3194 3194.0 16 0.25 1.76 Rd 100 

11 1291 3453 10 8.60 22.11 2944 2944.0 12 0.44 3.1 2922 2922.0 13 0.14 1.54 

7 97785* 12367 22 2252.50 3499.43 11480 11548.8 27 0.89 2.68 11423 11481.0 28 1.97 2.91 

9 69377* 11955 17 2454.99 2477.69 10072 10072.0 23 0.71 2.78 10056 10056.0 26 1.91 2.75 KroA150 

11 169846* 10564 15 5483.07 5518.26 9439 9439.0 21 1.06 2.82 9439 9439.0 21 0.39 2.68 

7 14400 12876 21 196.85 270.94 11490 11517.0 30 1.39 2.58 11457 11463.6 30 1.66 3.08 

9 137763* 11774 18 2760.03 4572.81 10121 10173.4 24 1.19 2.77 10121 10121.0 24 0.64 2.78 KroB 150 

11 1431 10968 14 26.64 46.96 9611 9639.8 21 0.61 2.88 9611 9611.0 21 0.28 2.88 

7 53686* 14667 28 537.60 1170.37 13293 13345.2 34 1.05 3.25 13285 13313.8 34 3.99 4.28 

9 64763* 12683 23 1504.07 1628.36 11710 11753.6 29 1.23 2.80 11708 11725.0 28 3.25 3.88 KroA 200 

11 29668* 12736 19 398.25 671.55 10748 10813.4 29 1.04 3.16 10748 10814.8 29 3.10 3.65 

7 107208* 14952 29 365.08 3351.89 13280 13297.6 36 0.46 2.83 13051 13147.4 35 2.24 4.38 

9 38218* 13679 23 637.66 805.04 11864 11898.6 29 1.02 2.98 11864 11937.8 29 2.30 4.02 KroB 200 

11 67896* 12265 20 493.64 1410.60 10644 10714.0 29 0.98 2.81 10644 10650.4 29 3.10 3.72 

Avg  55896 9808.02 13 1017.94 1626.68 9031.4 9070.3 17 0.52 2.35 9023.6 9031.5 17 0.65 1.95 

No.Best   1    38     48     
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Table 4.4. Comparison of LS1 and LS2 on Binary GCSP 

LS1 LS2 
Instance NC Best 

Cost 
Avg. 
Cost 

NB 
Avg. 
TB 

Avg. 
TT 

Best 
Cost 

Avg. 
Cost 

NB 
Avg. 
TB 

Avg. 
TT 

7 1224 1224 20 0.10 1.65 1190 1191.6 19 0.24 1.08 
9 991 996.2 15 0.48 1.63 991 993.4 15 0.21 1.10 Eil 51 

11 844 869.4 13 0.27 1.49 844 849.4 13 0.19 1.14 
7 5429 5429.0 17 0.06 1.65 5429 5514.6 17 0.11 1.11 
9 4807 4818.8 14 0.09 1.49 4807 4834.0 14 0.08 1.08 Berlin 52 

11 4590 4655.0 13 0.27 1.58 4590 4639.6 13 0.30 0.85 
7 1836 1841.6 29 0.56 2.58 1834 1836.4 29 0.45 1.33 
9 1461 1468.8 22 0.35 1.76 1460 1460.0 22 0.42 1.38 St 70 

11 1268 1270.2 19 0.90 1.73 1268 1270.2 19 0.45 1.37 
7 1610 1630.8 26 0.52 2.51 1610 1623.0 26 0.25 1.63 
9 1270 1319.8 20 0.37 1.83 1296 1301.2 21 0.83 1.64 Eil 76 

11 1117 1130.8 18 0.31 1.87 1117 1122.2 18 1.04 1.61 
7 66789 66850.8 28 0.66 1.46 66455 66887.8 29 0.83 1.71 
9 62907 62916.0 23 0.18 1.71 63114 63203.6 25 0.83 1.68 Pr 76 

11 52175 52527.0 19 0.25 1.58 52175 52175.0 19 0.32 1.47 
7 2341 2346.0 34 0.64 3.07 2325 2340.2 33 0.98 2.17 
9 1936 1940.4 27 0.24 1.97 1936 1941.2 27 1.01 2.43 Rat 99 

11 1686 1714.2 23 0.31 1.80 1686 1691.2 23 1.21 2.39 
7 14660 14660 41 0.53 2.18 14660 14726.6 41 1.26 2.25 
9 12974 12974 33 0.13 1.65 12974 12987.2 33 0.47 2.38 KroA 100 

11 11970 11977.2 28 0.42 1.57 11942 11942.0 29 0.41 2.38 
7 14415 14451.8 44 0.87 1.91 14459 14577.6 42 0.43 2.23 
9 12222 12296.4 34 0.86 2.17 12194 12247.0 33 2.18 2.27 KroB 100 

11 11276 11277.2 28 1.20 2.55 11276 11315.2 28 0.83 2.43 
7 13830 13888.8 41 0.13 2.88 13830 13850.2 41 2.08 2.24 
9 12149 12190.2 33 0.64 2.12 12149 12189.6 33 1.45 2.21 KroC 100 

11 11032 11032 26 0.11 2.00 11032 11032.0 26 1.74 2.22 
7 13567 13666.4 38 0.06 2.53 13704 13857.2 38 0.31 2.42 
9 12409 12448.6 32 1.03 1.92 12419 12479.8 31 2.08 2.48 KroD 100 

11 11486 11520.8 28 0.43 1.76 11443 11515.6 29 1.34 2.11 
7 15321 15485.0 41 0.37 2.62 15471 15700.6 41 0.30 1.99 
9 12482 12482 32 0.19 1.64 12482 12482.0 32 0.40 2.33 KroE 100 

11 11425 11452.4 30 0.66 1.48 11456 11490.6 28 2.24 2.26 
7 6209 6210.8 37 0.30 2.20 6170 6251.4 37 0.70 2.33 
9 5469 5595.0 29 0.23 2.10 5469 5477.2 29 1.06 2.44 Rd 100 

11 4910 4985.6 28 0.52 1.63 4910 4965.2 28 1.17 2.22 
7 17258 17274.6 55 0.96 4.52 17270 17425.8 54 2.11 3.63 
9 15007 15042.6 46 1.07 3.68 15007 15145.4 46 2.60 4.20 KroA150 

11 13666 13755.6 40 1.20 2.93 13762 14010.8 41 2.50 3.75 
7 17639 17745.8 60 2.94 4.16 17639 18141.4 60 2.18 3.56 
9 15505 15688.0 50 0.90 3.61 15506 15854.8 50 3.71 3.76 KroB 150 

11 13740 13899.0 42 1.82 2.97 13719 13836.4 40 2.82 3.69 
7 21388 21553.8 74 3.23 8.11 21346 21543.8 76 3.71 4.73 
9 17843 17999.4 59 2.33 5.70 17893 18103.8 60 3.09 4.91 KroA 200 

11 16591 16702.4 54 1.84 4.94 16380 16580.4 55 3.80 4.85 
7 20736 20960.0 79 2.30 8.71 20882 21117.6 79 3.88 4.52 
9 18266 18377.4 66 1.94 6.28 18269 18500.6 67 3.05 4.73 KroB 200 

11 15961 16428.8 55 2.37 4.71 16173 16372.0 55 3.57 4.65 
Avg  13035.2 13103.6 35 0.79 2.72 13041.9 13137.4 35 1.40 2.49 

No.Best  36     34     
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Table 4.5. Comparison of LS1 and LS2 on Integer GCSP without overnight 

LS1 LS2 
Instance NC Best 

Cost 
Avg. 
Cost 

NB NR 
Avg. 
TB 

Avg. 
TT 

Best 
Cost 

Avg. 
Cost 

NB NR 
Avg. 
TB 

Avg. 
TT 

7 1185 1199.8 19 1 0.28 4.19 1185 1187.0 19 1 0.96 3.83 
9 991 992.8 15 0 1.59 4.09 991 996.2 15 0 0.85 3.30 Eil 51 

11 843 845.0 13 1 1.27 4.77 843 843.0 13 1 1.12 3.22 
7 5429 5429.0 17 0 0.14 3.99 5429 5429.0 17 0 0.18 3.37 
9 4785 4796.8 15 1 0.02 4.17 4785 4807.6 15 1 0.12 2.69 Berlin 52 

11 4590 4651.4 13 0 0.12 3.27 4590 4620.0 13 0 0.66 2.51 
7 1778 1783.4 28 3 1.21 6.56 1782 1786.0 28 1 0.48 5.10 
9 1461 1497.8 22 0 0.23 5.27 1460 1461.2 22 0 1.46 4.56 St 70 

11 1268 1268.0 19 0 1.33 3.31 1241 1264.2 18 1 1.70 4.03 
7 1600 1626.6 26 1 1.69 6.67 1600 1619.4 26 2 2.27 5.11 
9 1270 1291.6 20 0 1.26 5.10 1270 1294.0 20 0 1.93 4.79 Eil 76 

11 1117 1121.2 18 0 0.89 4.13 1117 1117.0 18 0 0.48 4.63 
7 65990 66615.8 28 1 1.47 4.73 64111 65560.8 29 4 1.70 5.44 
9 57147 57945.2 29 1 1.14 5.17 54907 55862.4 29 6 1.37 4.94 Pr 76 

11 51587 51650.0 20 2 1.52 4.42 49445 49445.0 21 3 1.02 4.22 
7 2311 2315.0 33 1 0.65 7.39 2311 2341.2 33 1 2.70 7.61 
9 1936 1937.8 27 0 1.53 5.85 1936 1949.4 28 0 1.99 7.19 Rat 99 

11 1683 1704.4 23 0 2.07 4.55 1683 1701.0 23 0 1.87 6.77 
7 14660 14678.8 41 0 1.52 6.35 14660 14784.4 41 0 2.40 8.18 
9 12974 12974.0 33 0 0.53 4.98 12974 13090.0 33 0 2.27 7.49 KroA 100 

11 11737 11737.0 29 1 0.47 4.59 11737 11737.0 29 1 2.03 0.30 
7 14246 14394.2 45 6 3.00 6.16 14297 14316.8 43 3 3.54 8.83 
9 12200 12348.6 34 3 2.39 4.91 12189 12197.8 33 2 1.56 7.35 KroB 100 

11 11268 11394.2 27 2 0.30 6.38 11268 11378.0 27 2 0.74 6.95 
7 13520 13644.0 42 5 3.42 7.49 13792 13999.8 41 1 2.55 8.42 
9 12119 12209.0 33 1 1.22 6.76 12119 12119.0 33 1 1.18 7.22 KroC 100 

11 11032 11032.0 26 0 0.57 9.82 11032 11074.4 26 0 0.85 6.19 
7 13501 13517.6 39 2 4.97 7.61 13501 13635.0 39 2 1.97 8.84 
9 12261 12303.2 31 1 0.62 6.20 12257 12279.6 31 1 1.98 7.71 KroD 100 

11 11452 11534.0 29 1 2.79 9.43 11409 11450.2 30 1 1.65 7.30 
7 15308 15386.8 42 1 2.71 7.05 15471 15767.2 41 0 4.37 8.02 
9 12482 12541.8 32 0 0.42 5.72 12482 12485.0 32 0 1.29 7.18 KroE 100 

11 11344 11417.8 30 1 2.89 7.40 11344 11373.6 30 1 2.92 6.68 
7 6078 6182.8 37 2 0.86 6.78 6078 6199.6 37 2 2.05 7.45 
9 5384 5501.0 30 2 3.54 6.39 5384 5418.8 30 2 2.60 7.15 Rd 100 

11 4853 4916.6 29 1 1.73 4.14 4853 4867.2 29 1 1.58 6.29 
7 16947 16974.0 57 4 3.29 13.36 16976 17143.0 56 3 7.22 12.50 
9 15007 15158.6 46 0 2.55 9.47 15000 15136.8 49 3 2.40 11.80 KroA150 

11 13580 13709.4 40 2 1.92 7.47 13683 13791.8 41 2 4.76 10.60 
7 17621 17776.8 59 1 5.55 11.46 17639 18136.2 60 0 3.15 12.15 
9 15332 15609.8 48 3 3.90 10.68 15383 15556.0 48 3 4.83 11.78 KroB 150 

11 13554 13582.0 41 2 2.76 7.66 13554 13670.8 41 2 4.96 10.82 
7 21337 21415.2 79 3 10.35 20.03 21120 21294.8 78 6 10.09 16.92 
9 17812 17927.0 62 2 6.77 14.37 17832 18186.8 64 5 10.91 14.97 KroA 200 

11 16290 16517.8 54 4 9.14 12.56 16370 16485.0 53 4 10.41 14.48 
7 20628 20808.2 78 2 5.91 20.45 20862 21027.4 77 2 6.62 16.01 
9 18247 18387.6 67 3 4.75 14.88 18260 18448.6 68 3 8.84 14.79 KroB 200 

11 15888 16150.0 56 3 4.03 11.73 15688 15968.8 56 4 8.01 13.80 
Avg  12825.7 12925.0 35 1 2.36 7.50 12706.3 12839.7 35 2 2.97 7.74 

No.Best  37      36      
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Table 4.6. Comparison of LS1 and LS2 on Integer GCSP with overnight 

LS1 LS2 
Instance NC Best 

Cost 
Avg. 
Cost 

NB ON 
Avg. 
TB 

Avg. 
TT 

Best 
Cost 

Avg. 
Cost 

NB ON 
Avg. 
TB 

Avg. 
TT 

7 1146 1146.0 19 10 0.60 10.21 1146 1146.0 19 10 0.09 2.81 
9 958 980.8 15 5 0.77 8.26 958 968.4 15 5 0.70 3.15 Eil 51 

11 842 866.8 13 5 1.66 7.85 827 829.4 13 4 0.33 2.90 
7 4969 4981.6 19 11 5.65 9.22 4966 4976.0 18 9 0.66 2.87 
9 4272 4301.2 16 8 3.00 6.74 4272 4324.0 16 8 0.58 2.35 Berlin 52 

11 3962 4149.2 14 8 0.10 8.09 3962 3962.0 14 8 0.12 2.17 
7 1654 1656.2 27 15 2.95 17.46 1655 1655.0 27 14 0.35 4.26 
9 1442 1453.0 23 12 1.07 11.21 1416 1438.6 22 9 0.40 3.79 St 70 

11 1196 1226.8 18 6 1.71 8.30 1196 1213.0 18 6 1.77 3.75 
7 1554 1587.0 26 10 6.00 12.37 1562 1578.4 26 10 1.06 4.63 
9 1268 1307.2 21 7 4.23 9.54 1268 1298.2 21 7 1.00 4.22 Eil 76 

11 1107 1125.6 18 3 4.99 8.01 1107 1110.2 18 4 0.68 4.08 
7 53270 56065.2 29 15 1.41 16.58 53266 54142.0 30 16 1.97 4.61 
9 47226 49028.4 26 15 7.40 12.84 46912 47245.8 27 17 0.72 3.99 Pr 76 

11 44036 46104.0 19 8 0.73 11.47 44028 44029.6 20 10 0.99 3.62 
7 2229 2241.8 33 10 3.43 10.24 2229 2259.4 33 10 3.09 6.34 
9 1908 1940.6 27 5 5.58 10.05 1922 1947.0 28 8 3.17 6.19 Rat 99 

11 1673 1697.2 24 9 3.89 10.84 1650 1686.6 23 6 0.73 5.71 
7 12474 12762.4 42 24 10.20 28.73 12006 12322.6 43 26 1.34 6.69 
9 11671 11733.4 34 21 16.59 22.31 11218 11245.2 35 21 1.00 6.28 KroA 100 

11 10886 10931.8 29 17 6.79 19.91 10665 10700.8 31 17 2.20 5.64 
7 12728 12920.6 39 18 7.31 21.13 12273 12530.0 43 25 3.31 7.21 
9 11176 11232.0 34 19 3.11 17.40 11128 11133.2 35 21 3.65 6.59 KroB 100 

11 10302 10534.6 28 15 5.28 16.54 10302 10409.8 28 15 1.69 6.04 
7 12202 12401.6 41 22 11.17 32.46 12043 12269.2 45 27 2.52 6.63 
9 11196 11374.8 33 16 3.63 17.75 11031 11141.0 35 20 1.95 5.71 KroC 100 

11 10445 10629.2 27 15 2.00 18.27 10299 10406.2 28 15 1.26 5.42 
7 11868 12115.4 38 20 5.13 22.28 11725 11827.8 39 20 1.70 6.56 
9 11062 11287.0 31 16 6.55 15.75 10742 10869.6 35 20 2.56 6.11 KroD 100 

11 10523 10714.0 27 13 4.35 15.30 10404 10469.4 29 16 1.10 5.83 
7 13101 13332.4 42 25 6.35 24.37 12689 12859.6 45 28 1.83 6.01 
9 10821 11193.2 34 20 6.03 24.89 10821 10905.0 34 20 1.52 5.61 KroE 100 

11 10007 10190.6 29 17 4.59 16.30 10007 10136.4 29 17 0.59 5.34 
7 5626 5834.2 37 17 4.83 20.75 5570 5645.6 39 20 2.72 6.55 
9 4950 5129.4 32 18 4.24 13.02 5037 5093.2 30 13 0.81 5.89 Rd 100 

11 4541 4705.8 27 13 4.72 15.30 4514 4581.8 27 12 2.01 5.23 
7 15341 15483.2 59 32 19.02 41.95 15385 15644.6 60 37 3.34 9.56 
9 13475 13714.2 49 28 6.60 30.64 12944 13288.6 51 28 6.32 10.07 KroA150 

11 12151 12399.4 43 25 4.31 21.24 12215 12407.4 44 25 3.31 8.92 
7 15825 15964.0 58 31 8.91 32.67 15252 15774.2 61 32 4.47 10.49 
9 13198 13415.8 52 30 21.04 36.04 13139 13372.0 52 31 8.28 9.78 KroB 150 

11 12418 12933.0 40 24 6.91 28.11 12174 12561.6 44 26 3.46 9.06 
7 18093 18186.4 76 39 27.64 47.57 17873 18431.8 82 49 6.32 13.74 
9 15562 15979.4 63 37 10.07 37.55 15782 16141.6 64 35 3.48 12.36 KroA 200 

11 14873 14933.0 55 30 20.95 30.29 14629 14835.0 56 32 4.41 11.39 
7 18119 18436.6 82 46 36.42 56.66 17701 18108.4 85 51 8.09 13.98 
9 16289 16395.4 68 36 28.23 40.13 15766 16264.4 66 37 8.69 12.27 KroB 200 

11 14217 14705.8 54 26 13.26 29.64 14360 14490.8 56 27 7.99 11.37 
Avg  11246.9 11529.7 35 18 7.74 20.50 11125.8 11284.9 36 19 2.51 6.54 

No.Best  18      40      
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Table 4.7. Comparison of LS1 and LS2 on Steiner CSP 

LS1 LS2 
Instance Best 

Cost 
Avg. Cost NB 

Avg. 
TB 

Avg. 
TT 

Best Cost 
Avg. 
Cost 

NB 
Avg. 
TB 

Avg. 
TT 

163 163.0 8 0.02 1.29 163 163.0 9 0.03 0.69 
159 159.40 8 0.38 4.90 159 159.0 9 0.03 0.52 Eil 51 
147 147.0 7 0.10 2.08 147 147.0 8 0.03 0.57 

3470 3483.60 10 0.09 1.45 3470 3470.0 10 0.33 0.68 
3097 3097.0 7 0.98 4.45 3097 3097.0 7 0.03 0.51 Berlin 52 
2956 2959.60 6 0.05 2.46 2956 2956.0 6 0.02 0.54 
288 288.0 11 0.11 1.64 287 287.0 12 0.08 0.89 
259 259.0 9 0.04 4.53 259 259.0 10 0.06 1.07 St 70 
245 245.80 10 0.46 2.71 245 245.0 10 0.04 0.82 
207 211.40 15 0.11 1.64 207 210.0 15 0.25 0.91 
186 186.40 11 0.76 4.39 185 185.0 10 0.04 0.99 Eil 76 
169 170.80 10 0.19 2.63 169 169.0 11 0.04 0.92 

49773 50566.80 13 0.18 1.61 49773 49773.0 13 0.18 1.15 
44889 44889.0 12 0.47 4.65 44889 44889.0 12 0.12 1.08 Pr 76 
42950 43399.20 9 0.34 2.84 42950 42950.0 9 0.05 0.87 
483 483.0 17 0.19 1.91 482 482.0 18 0.29 1.54 
454 454.0 14 0.56 4.38 454 454.0 14 0.09 1.67 Rat 99 
444 444.40 12 0.76 3.09 444 444.0 12 0.08 1.47 

9545 9545.0 18 0.31 2.04 9545 9545.0 18 0.39 1.75 
9112 9112.0 15 0.09 1.72 9112 9112.0 15 0.35 1.55 KroA 100 
8833 8841.40 13 0.23 3.42 8833 8833.0 13 0.08 1.32 
9536 9536.0 19 0.33 1.93 9536 9536.0 19 0.37 1.62 
9199 9205.80 15 0.66 1.53 9199 9199.0 15 0.09 1.64 KroB 100 
8763 8763.0 11 0.50 3.55 8763 8763.0 11 0.12 1.61 
9591 9591.0 15 0.17 1.97 9590 9590.0 16 0.14 1.72 
9171 9171.0 13 0.70 1.79 9171 9171.0 13 0.27 1.52 KroC 100 
8632 8632.0 13 0.39 3.55 8632 8632.0 13 0.09 1.63 
9526 9526.0 19 0.21 1.83 9526 9526.0 19 0.15 1.51 
8885 8885.40 13 0.78 1.87 8885 8885.0 13 0.15 1.83 KroD 100 
8725 8731.40 13 0.77 3.69 8725 8725.0 13 0.10 1.65 
9800 9800.0 16 1.06 1.84 9800 9800.0 16 0.16 1.54 
8987 8987.0 13 0.29 2.02 8986 8986.0 14 0.11 1.56 KroE 100 
8450 8450.0 13 0.40 3.85 8450 8450.0 13 0.11 1.70 
3412 3412.0 18 0.24 1.83 3412 3434.4 18 0.25 1.60 
3194 3206.80 16 0.43 1.87 3194 3194.0 16 0.31 1.52 Rd 100 
2761 2761.0 12 0.49 3.66 2761 2761.0 12 0.09 1.33 
10939 10939.0 27 1.97 2.91 10939 11099.6 27 0.85 2.45 
9808 9823.20 23 0.25 2.25 9808 9808.0 23 0.20 2.26 KroA150 
9360 9382.60 20 1.13 3.46 9360 9360.0 20 0.29 2.30 
11225 11288.6 30 1.66 3.08 11225 11240.4 30 1.08 2.48 
10121 10211.40 24 1.10 2.35 10121 10121.0 24 0.64 2.31 KroB 150 
9542 9556.60 20 0.86 3.54 9542 9542.0 20 0.19 2.55 
13042 13042.0 32 3.99 4.28 13227 13268.0 35 1.12 3.62 
11392 11429.20 27 0.22 2.42 11392 11424.0 27 0.83 3.18 KroA 200 
10527 10615.80 24 0.51 4.02 10525 10673.8 26 0.79 2.95 
13020 13160.20 34 2.24 4.38 13020 13092.0 34 1.77 3.41 
11712 11788.60 28 0.79 2.63 11712 11837.2 28 1.89 3.39 KroB 200 
10614 10769.40 28 1.62 3.60 10614 10734.8 28 0.89 2.99 

Avg 8911.73 8953.56 16 0.63 2.82 8915.4 8930.9 16 0.33 1.65 
No.Best 42     47     
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Table 4.8. Comparison of computing times of GTSP methods 

Computer Mflops r Method 

Gateway Profile 4MX 230 1.568 GA 

Sun Sparc Station LX 4.6 0.032 GI
3

, NN 

HP 9000/720 2.3 0.016 FST-Lagr, FST-Root, B&C 

Unknown - 1 RACS 

Dell Dimension 8400 - 1 mrOX 

Pentium(R) IV, 3.4 Ghz 295 2.03 MSA 

Our 145 1 LS2 
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Table 4.9. Comparison of LS2 against 8 other heuristics on benchmark GTSP instances in the literature 

LS2 MSA mrOX RACS GA GI
3

 NN FST-lagr FST-Root B&C 
Instances 

gap time gap time gap time gap gap time gap time gap time gap time gap time time 

Att48 0 0.4 0 0 0 0.8 - 0 0 - - - - 0 0 0 0 0.0 

Gr48 0 0.4 0 0 0 0.6 - 0 0.8 - - - - 0 0 0 0 0.0 

Hk48 0 0.5 0 0 0 0.6 - 0 0.4 - - - - 0 0 0 0 0.0 

Eil51 0 0.5 0 0 0 0.6 0 0 0.2 0 0 0 0 0 0 0 0 0.0 

Brazil58 0 0.6 0 0 0 1.6 - 0 0.4 - - - - 0 0 0 0 0.0 

St70 0 0.7 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2 

Eil76 0 0.8 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2 

Pr76 0 0.9 0 0 0 1.0 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2 

Rat99 0 1.2 0 0 0 1.0 0 0 1.0 0 0.2 0 0.2 0 0 0 0.8 0.8 

KroA100 0 1.2 0 0 0 1.2 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2 

KroB100 0 1.3 0 0 0 1.2 0 0 0.6 0 0.2 0 0 0 0 0 0.4 0.4 

KroC100 0 1.2 0 0 0 1.2 0 0 0.4 0 0.2 0 0.2 0 0 0 0.2 0.2 

KroD100 0 1.2 0 0 0 1.4 0 0 0.6 0 0.2 0 0. 0 0 0 0.2 0.2 

KroE100 0 1.3 0 0 0 1.2 0 0 1.2 0 0.2 0 0 0 0 0 0.2 0.2 

Rd100 0 1.2 0 0 0 1.0 0 0 0.4 0.08 0.2 0.08 0.2 0.08 0 0 0.2 0.2 

Eil101 0 1.1 0 0 0 1.0 0 0 0.4 0.4 0.2 0.4 0 0 0 0 0.4 0.4 

Lin105 0 1.3 0 0 0 1.2 0 0 0.4 0 0.4 0 0.2 0 0 0 0.2 0.2 

Pr107 0 1.2 0 0 0 1.0 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2 

Gr120 0 1.1 0 0 0 1.4 - 0 0.8 - - - - 1.99 0 0 0.6 0.6 

Pr124 0 1.5 0 0 0 1.4 0 0 1.0 0.43 0.4 0 0.4 0 0 0 0.4 0.4 

Bier127 0.04 1.6 0 0 0 1.6 0 0 0.8 5.55 1.0 9.68 0.2 0 0.2 0 0.4 0.4 

Pr136 0 1.8 0 0 0 1.6 0 0 0.8 1.28 0.4 5.54 0.2 0.82 0.2 0 0.6 0.6 

Pr144 0 1.6 0 0 0 2.0 0 0 0.4 0 0.4 0 0.4 0 0 0 0.2 0.2 

KroA150 0 2.1 0 0 0 2.0 0 0 2.0 0 0.6 0 0.6 0 0.2 0 1.4 1.5 

KroB150 0 1.9 0 0 0 2.0 0 0 1.6 0 0.4 0 0.6 0 0.2 0 0.8 0.8 

Pr152 0 2.0 0 0 0 2.0 0 0 2.4 0.47 0.6 1.8 0.4 0 0.2 0 0.8 1.5 
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Table 4.9. Comparison of LS2 against 8 other heuristics on benchmark GTSP instances in the literature 

LS2 MSA mrOX RACS GA GI
3

 NN FST-lagr FST-Root B&C 
Instances 

gap time gap time gap time gap gap time gap time gap time gap time gap time gap 

U159 0 2.2 0 0 0 2.0 0.01 0 1.0 2.6 0.6 2.79 0.8 0 0.2 0 2.0 2.0 

Rat195 0 2.5 0 0.2 0 2.8 0 0 1.0 0 1.2 1.29 2.6 1.87 0.2 0 3.5 3.5 

D198 0.32 3.4 0 0 0 3.2 0.01 0 1.8 0.6 1.8 0.6 3.6 0.48 0.2 0 10.8 10.8 

KroA200 0 2.8 0 0 0 3.4 0.01 0 4.2 0 0.8 5.25 1.6 0 0.2 0 2.6 2.6 

KroB200 0 2.7 0 0 0.05 3.2 0 0 2.2 0 1.0 0 4.0 0.05 0.2 0 3.9 3.9 

Ts225 0 2.9 0 4.3 0.14 3.4 0.02 0 3.9 0.61 2.6 0 3.6 0.09 0.2 0.09 18.5 538.2 

Pr226 0.09 2.5 0 0 0 3.0 0.03 0 1.6 0 0.8 2.17 2.0 0 0.2 0 1.4 1.4 

Gil262 0.79 3.6 0 7.1 0.45 7.2 0.22 0.79 3.0 5.03 3.5 1.88 3.6 3.75 0.2 0.89 20.5 94.2 

Pr264 0.59 3.6 0 0 0 4.8 0 0 2.0 0.36 2.0 5.73 4.5 0.33 0.4 0 4.9 4.9 

Pr299 0.04 4.5 0 1.4 0.05 9.2 0.24 0.02 9.7 2.23 0.2 2.01 8.5 0 0.4 0 11.6 11.6 

Lin318 0.01 4.4 0 0 0 16.2 0.12 0 5.5 4.59 6.2 4.92 9.7 0.36 0.8 0.36 12.0 23.8 

Rd400 0.98 6.2 0 0.6 0.58 29.2 0.87 1.37 5.5 1.23 12.2 3.98 34.7 3.16 0.8 2.97 71.5 99.9 

Fl417 0.01 5.8 0 0 0.04 16.4 0.57 0.07 3.8 0.48 12.8 1.07 40.8 0.13 1.0 0 237.5 237.5 

Pr439 0.09 7.1 0 3.9 0 38.2 0.79 0.23 14.4 3.52 18.4 4.02 37.8 1.42 2.0 0 76.9 77.1 

Pcb442 0.16 6.9 0 1.6 0.01 46.8 0.69 1.31 16.0 5.91 17.0 0.22 25.6 4.22 1.2 0.29 76.1 835.1 

Average (36) 0.09 2.5 0 0.53 0.04 6.12 0.10 0.10 2.58 0.98 2.42 1.48 5.21 0.46 0.26 0.13 15.61 54.32 

# Opt (36) 25 36 29 24 30 19 18 23 31 36 

Average (41) 0.08 2.2 0 0.47 0.03 5.38  0.09 2.31     0.46 0.22 0.11 13.72 47.71 

# Opt (41) 30 41 34  35     27 36 41 
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