

UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Dottorato di Ricerca in

Automatica e Ricerca Operativa

MAT/09

XXII Ciclo

Algorithms for Combinatorial Optimization Problems

Zahra Naji-Azimi

 Il Coordinatore Il Tutor

 Prof. Claudio Melchiorri Prof. Paolo Toth

A.A. 2007-2010

id27067437 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 II

Contents

Acknowledgements V

List of Tables VI

List of Algorithms VIII

List of Figures IX

Keywords X

Preface XI

Chap 1: An Electromagnetism Metaheuristic for the Unicost Set Covering Problem 1

Abstract 2

1.1. Introduction 3

1.2. Electromagnetism Metaheuristic 5

1.3. EM based heuristic for the unicost Set Covering Problem 6

1.3.1. Preprocessing Procedure 7

1.3.2. Population Construction 7

1.3.3. Delete Redundant Columns Procedure 8

1.3.4. Local Search Procedure 8

1.3.5. Force Calculation Procedure 9

1.3.6. Move Procedure 10

1.3.7. Mutation Procedure 11

1.3.8. Overall algorithm 12

1.4. Computational Results 12

1.4.1. Computational results of algorithm EM for the unicost SCP 14

1.4.2. The effectiveness of the EM approach for the unicost SCP 18

1.4.3. Adaptation of algorithm EM for the non-unicost SCP 22

1.5. Conclusions 25

Chap 2: A heuristic procedure for the Capacitated m-Ring-Star Problem 27

Abstract 28

2.1. Introduction 29

2.2. Description of the proposed algorithm 30

2.2.1. Initialization Procedure 31

2.2.2. Improvement Procedure 32

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 III

2.2.2.1. Swap Procedure 32

2.2.2.2. Steiner-Node-Removal 34

2.2.2.3. Extraction-Assignment Procedure 35

2.2.3. Shaking Procedure 36

2.3. Computational Results 37

2.4. Conclusion 43

2.5. Acknowledgments 43

Chap 3: Variable Neighborhood Search for the Cost Constrained Minimum Label Spanning

Tree Problem 44

Abstract 45

3.1. Introduction 46

3.2. Mathematical Formulation 47

3.3. Variable Neighborhood Search for the CCMLST Problem 50

3.3.1. Initial Solution 51

3.3.2. Shaking Phase 53

3.3.3. Local Search Phase 54

3.3.4. Discussion of Algorithmic Parameter Choices 56

3.4. Applying Heuristics for the LCMST Problem to the CCMLST Problem by Means of Binary

Search 57

3.5. Computational Results 60

3.5.1. Datasets 60

3.5.2. Results for CCMLST Instances 61

3.6. Conclusion 70

Chap 4: The Generalized Covering Salesman Problem 71

Abstract 72

4.1. Introduction 73

4.2. Problem Definition 75

4.2.1. Binary Generalized Covering Salesman Problem 76

4.2.2. Integer Generalized Covering Salesman Problem without Overnights 76

4.2.3. Integer Generalized Covering Salesman Problem with Overnights 76

4.2.4. Mathematical Formulation 76

4.3. Local Search Algorithms 79

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 IV

4.3.1. LS1 79

4.3.2. LS2 80

4.4. Computational Experiments 84

4.4.1. Test Problems 84

4.4.2. Comparison of LS1 and LS2 Current and Schilling�s Heuristic for the CSP 85

4.4.3. Comparison of LS1 and LS2 on GCSP Variants 87

4.4.4. GCSP with Steiner Nodes 88

4.4.5. Analyzing the Quality of LS2 on the Generalized TSP 89

4.5. Summary and Conclusions 90

References 99

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 V

Acknowledgments

First, I have special thanks for my PhD supervisor, Professor Paolo Toth, who permitted me

to be his PhD student. This opportunity is one of the honors in my life. I really appreciate his help

and his scientific suggestions and notes for improving the research work. His ideas were always

innovative and opening new ways of thinking. He has always been ready to answer my questions.

His kind behavior and his help in different fields are very grateful for me. He is a model for me to

follow for ever.

I want to thank other professors and PhDs in the Operations Research group of the

University of Bologna. In particular, I want to thank Professors Daniele Vigo, Silvano Martello,

Alberto Caprara, Andrea Lodi, Roberto Baldacci and Giovanni Marro for their lessons during this

PhD period. I also want to thank the PhD coordinator, Professor Claudio Melchiorri.

 In particular, I want to thank my colleague Dr. Laura Galli for having a common work.

Special thanks go to PhD student Majid Salari for his help and contributions during our common

projects. Many thanks go to Dr. Manuel Iori, Dr. Enrico Malaguti, Dr. Valentina Cacchiani, Dr.

Andrea Tramontani and two PhD students Victor Vera Valdes and Felipe Navarro, who have been

helpful from the beginning of my settle in Bologna until now. They have been very kind and always

ready to help.

During my PhD I spent some months at the University of Maryland, College Park, USA. I

want to thank Professors Bruce Golden and Raghu S. Raghavan for their contribution during my

stay there. They extended my view to new Operations Research problems.

My PhD thesis has been supported by MIUR (Ministero Istruzione, Universitã e Ricerca),

Italy, and my stay at the University of Maryland had an additional support called �Marcopolo

Program (University of Bologna)�. These supports are gratefully acknowledged.

Bologna March 29, 2010

 Zahra Naji-Azimi

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 VI

List of Tables

Table 1.1. Characteristics of the instance sets 13

Table 1.2. Characteristics of the single instances 13

Table 1.3. Parameters setting 14

Table 1.4. Results of algorithms EM and GRASP [6] 16

Table1.5. Results of algorithms EM, GRASP [6] and Meta-RaPS [46] 17

Table 1.6. Results of algorithm EM on data sets NRG and NRH. 17

Table 1.7. Improved solutions found by algorithm EM. 18

Table 1.8. Comparison of algorithm EM with the Modified GA method for the unicost SCP. 21

Table 1.9. Parameters setting for the non-unicost SCP. 23

Table 1.10. Comparison of algorithm EM (using seed 1) with algorithm Meta-RaPS [46] for the

 non-unicost SCP. 23

Table 1.11. The improved solutions of algorithm EM for the non-unicost SCP using 5 additional

seeds. 24

Table 2.1. Comparison of the proposed heuristic with algorithms H1, H2 and BC [5] for class A. 39

Table 2.2. Comparison of the proposed heuristic with algorithms H1, H2 and BC [5] for class B. 40

Table 2.3. Comparison of the proposed method with Hybrid Metaheuristic [52]. 41

Table 3.1. Parameter/Algorithmic Choices within the VNS Procedure for the CCMLST Problem 56

Table 3.2. VNS, GA, LS1, and LS2 for the CCMLST Problem on 10 nodes 62

Table 3.3. VNS, GA, LS1, and LS2 for the CCMLST Problem on 20 nodes 62

Table 3.4. VNS, GA, LS1, and LS2 for the CCMLST Problem on 30 nodes 63

Table 3.5. VNS, GA, LS1, and LS2 for the CCMLST Problem on 40 nodes 64

Table 3.6. VNS, GA, LS1, and LS2 for the CCMLST Problem on 50 nodes 65

Table 3.7. VNS, GA, LS1, and LS2 for the CCMLST Problem on 100 nodes 66

Table 3.8. VNS, GA, LS1, and LS2 for the CCMLST Problem on 150 nodes 67

Table 3.9. VNS, GA, LS1, and LS2 for the CCMLST Problem on 200 nodes 68

Table 3.10. VNS, GA, LS1, and LS2 for the CCMLST Problem on Large Datasets 69

Table 4.1. Parameters for LS1 85

Table 4.2. Parameters for LS2 85

Table 4.3. Comparison of Current and Schilling�s method with LS1 and LS2 for CSP 91, 92

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 VII

Table 4.4. Comparison of LS1 and LS2 on Binary GCSP 93

Table 4.5. Comparison of LS1 and LS2 on Integer GCSP without overnight 94

Table 4.6. Comparison of LS1 and LS2 on Integer GCSP with overnight 95

Table 4.7. Comparison of LS1 and LS2 on Steiner CSP 96

Table 4.8. Comparison of computing times of GTSP methods 97

Table 4.9. Comparison of LS2 against 8 other heuristics on benchmark GTSP instances in the

literature 98, 99

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 VIII

List of Algorithms

Algorithm 1.1. The general Electromagnetism Approach 6

Algorithm 1.2. Overall EM Metaheuristic for unicost SCP 12

Algorithm 1.3. GA method for SCP (Beasley and Chu [9]) 19

Algorithm 1.4. Modified GA with the EM procedures for the unicost SCP 20

Algorithm 2.1. Proposed heuristic for the CmRSP 30

Algorithm 2.2. Clustering algorithm for the Initialization Procedure 31

Algorithm 2.3. Improvement Procedure 32

Algorithm 2.4. Swap Procedure. 34

Algorithm 2.5. Extraction-Assignment Procedure. 35

Algorithm 2.6. Shaking Procedure. 36

Algorithm 3.1. Variable Neighborhood Search Algorithm for the CCMLST Problem 55

Algorithm 3.2. Binary Search Method for the CCMLST Problem 59

Algorithm 4.1. Local Search Algorithm 1 (LS1) for GCSP 81

Algorithm 4.2. Local Search Algorithm 2 (LS2) for the GCSP 83

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 IX

List of Figures

Figure 2.1. A special case of the Swap Procedure with a customer as a visited node. 33

Figure 2.2. A special case in the Swap Procedure with a Steiner node as a visited node. 33

Figure 2.3. Analyzing the effect of parameter P in total cost. 42

Figure 2.4. Analyzing the effect of parameter T in total cost. 42

Figure 3.1. An example illustrating the selection of labels for the initial connected subgraph 53

Figure 3.2. An example for the swap of used and unused labels 53

Figure 4.1. An example of decreasing the tour length by increasing the number of nodes in Rat99

(NC=7). 87

Figure 4.2. An example of decreasing the tour length by increasing the number of nodes in

KroA200 (NC=7). 87

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 X

Keywords

Combinatorial Optimization

Unicost Set Covering Problem

Electromagnetism Metaheuristic

Capacitated m-Ring-Star problem

Networks.

Minimum Spanning Tree Problem

Minimum Label Spanning Tree Problem

Mixed Integer Programming

Variable Neighborhood Search

Genetic Algorithm.

Covering Salesman Problem

Generalized Covering Salesman Problem

Generalized Traveling Salesman Problem

Heuristic Algorithms

Local Search

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 XI

Preface

This PhD thesis concerns algorithms for Combinatorial Optimization Problems. In

Combinatorial Optimization Problems the set of feasible solutions is discrete or can be reduced to a

discrete one, and the goal is to find the best possible solution.

Specifically, in this research we consider four different problems in the field of

Combinatorial Optimization including Set Covering Problem (SCP), Cost Constrained Minimum

Label Spanning Tree Problem (CCMLST), Capacitated m-Ring Star Problem (CmRSP) and

Generalized Covering Salesman Problem (GCSP). All of these problems are NP-Hard. For each

problem we propose a heuristic algorithm and we compare our results with the best known results in

the literature.

In chapter 1, we consider the Set Covering Problem, in which we are given m rows, n

columns each with a specific positive cost, and an (mn) sparse matrix of zero-one elements aij .

We say that row i can be covered by column j if and only if aij=1. We want to cover each row (at

least once) with a subset of columns of minimum global cost. In the case of unicost SCP all the

costs are the same, so we should cover the rows using the minimum number of columns.

We propose a heuristic algorithm to solve the unicost version of the set covering problem

based on the Electromagnetism Metaheuristic (EM). We add some new features to this heuristic,

with respect to the standard electromagnetism scheme, applying a preprocessing procedure,

imposing diverse and high quality solutions in the population, defining the core problem and

applying mutation.

We test the performance of the proposed method on the existing datasets from the literature.

All of the best known results for the classical benchmark instances, where the number of columns is

larger than the number of rows, are found by the proposed method and 12 best known solutions are

improved by the proposed algorithm. By using different parameter settings the algorithm improves

4 additional best known solutions. We also show the effectiveness of the EM approach in

conducting the search in the solution space by using the related procedures in a Genetic Algorithm

(GA) scheme. Although we improve the performance of this Modified GA method by adding a

local search procedure, still the proposed algorithm EM performs better than the Modified GA

method. Moreover, we modify the proposed algorithm EM for the general or non-unicost SCP. The

modified algorithm can obtain all of the best known results from the literature.

The results of this approach will appear in the European Journal of Operational Research

[59].

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 XII

In Chapter 2, we focus on the Capacitated m-Ring Star Problem (CmRSP), in which the goal

is to find m rings, each visiting a central depot, subset of customers and a subset of Steiner nodes,

so that the total visiting and allocation cost is minimized. Moreover, in each feasible solution each

node can not be visited or allocated to two rings simultaneously, and the total number of customers

allocated or visited in a ring cannot be greater than the capacity Q. We propose a heuristic algorithm

to solve this problem. In the proposed heuristic, after the construction of the initial solution, we

apply an improvement method based on a set of swap and Extraction-Assignment moves, followed

by the Lin-Kernighan TSP procedure to find a better order of the visited nodes. Moreover, the

proposed heuristic incorporates some random aspects obtained by perturbing the current solution in

the shaking procedure, which is applied whenever the algorithm remains in a local optimum.

We compare the proposed heuristic with the best state-of-the-art algorithms for the CmRSP

on a set of benchmark instances from the literature. The results show the effectiveness of the

proposed method. The proposed heuristic can obtain most of the optimal solutions, within a short

computing time, and can improve most of the best known solutions for the instances whose optimal

solution is not known.

A paper based on the results of this approach has been submitted to the European Journal of

Operational Research [70].

In chapter 3, we consider the Cost Constrained Minimum Label Spanning Tree (CCMLST)

Problem. Given a graph G = (V, E), where each edge (i, j) has a label from the set L and an edge

weight cij, and a positive budget B, the goal of the CCMLST problem is to find a spanning tree with

the fewest number of labels whose weight does not exceed the budget B.

We propose a Variable Neighborhood Search (VNS) method for the CCMLST problem.

Considering the VNS as a framework, we start by constructing an initial solution. We then improve

upon this initial solution using local search. Then, the improvement of the incumbent solution (R)

continues in a loop until the termination criterion is reached. This loop contains a shaking phase and

a local search phase. The shaking phase considers a specially designed neighborhood and makes

random changes to the current solution that enables us to explore neighborhoods farther away from

the current solution. The local search phase considers a more restricted neighborhood set and

attempts to improve upon the quality of a given solution. Besides, we adapt two local search

methods and a Genetic Algorithm, proposed by Xiong et al. [82] for the Label Constrained

Minimum Spanning Tree Problem, to the CCMLST problem by means of the bisection method.

To compare the results, we generate a set of small, medium-sized and large instances from the

TSPLIB dataset. The VNS method performs very well for the CCMLST instances. Of the 191

instances, it provides the best solution in 189 instances. For all the 104 instances, where the optimal

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 XIII

solution is known, the VNS method obtains the optimal solution. Furthermore, for the large

instances, its running time is an order of magnitude smaller than those of the other heuristics.

The results of this approach will appear in Computers & Operations Research Journal [57].

Finally, in chapter 4 we define a generalization of the Covering Salesman Problem (CSP) in

which the goal is to find a minimum length tour of a subset of n given nodes, such that every node i

not on the tour is within a predefined covering distance
i

d from a node on the tour. Considering the

real world applications, sometimes satisfying the demand of a node and its neighbors by visiting it

just once is not possible. In addition, in many applications there is a cost for visiting a node (e.g.,

cost of hotel for staying in a city for one night). So, we define the Generalized Covering Salesman

Problem (GCSP) by specifying the coverage demand
i

k which denotes the number of times a node i

should be covered and by including the node visiting costs (for nodes on the tour). We divide this

problem into three variants: Binary GCSP, Integer GCSP without overnight and Integer GCSP with

overnight. In the Binary GCSP, the tour is not allowed to visit a node more than once and after

visiting a node we must satisfy the remaining coverage demand of that node by visiting other nodes

that can cover it. In the Integer GCSP without overnight, a node can be visited more than once, but

overnight stay is not allowed. Therefore, to have a feasible solution, after visiting a node, the tour

can return to this node, if necessary, after having visited at least one other node. Finally, the Integer

GCSP with overnight is similar to the previous version, but overnight stay is allowed.

We design two local search heuristics, LS1 and LS2, for these variants. Overall, LS2

appears to be more robust in terms of its running time as well as its performance in terms of the

number of times it finds the best solutions in the different variants. Since the Generalized Traveling

Salesman Problem (GTSP) is a special case of the GCSP, we compare LS2 to 8 benchmark

heuristics for the GTSP as well. The results show that LS2 performs quite well, finding high-quality

solutions rapidly.

A paper based on the results of this approach has been submitted to the Informs Journal on

Computing [68].

The results of the considered problems in this thesis have been presented in some international

conferences such as INFORMS 2008 (Washington DC, US), 23rd Euro Conference on Operational

Research (Bonn, Germany), MIC2009 (Hamburg, Germany) and AIRO 2009 (Siena, Italy).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 1

Chapter 1:

An Electromagnetism Metaheuristic

for

the Unicost Set Covering Problem

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 2

Abstract

In this chapter we propose a new heuristic algorithm to solve the unicost version of the well

known Set Covering Problem. The method is based on the Electromagnetism Metaheuristic

approach which, after generating a pool of solutions to create the initial population, applies a fixed

number of local search and movement iterations based on the �electromagnetism� theory. In

addition to some random aspects, used in the construction and local search phases, we also apply

mutation in order to further escape from local optima.

The proposed algorithm has been tested over 80 instances of the literature. On the classical

benchmark instances, where the number of columns is larger than the number of rows, the

algorithm, by using a fixed set of parameters, always found the best known solution, and for 12

instances it was able to improve the current best solution. By using different parameter settings the

algorithm improved 4 additional best known solutions.

 Moreover, we proved the effectiveness of the Electromagnetism Metaheuristic approach for

the unicost Set Covering Problem by embedding the procedures of the proposed algorithm in a

Genetic Algorithm scheme. The worse results obtained by the Genetic Algorithm show the impact

of the Electromagnetism Metaheuristic approach in conducting the search of the solution space by

applying the movements based on the electromagnetism theory. Finally, we report the results

obtained by modifying the proposed Electromagnetism Metaheuristic algorithm for solving the non-

unicost Set Covering Problem.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 3

1.1. Introduction

 In the general or non-unicost Set Covering Problem (SCP), we are given m rows and n

columns, each with a specified positive cost cj, and an (mn) sparse matrix of zero-one elements aij .

We say that row i can be covered by column j if and only if aij=1. We want to cover each row (at

least once) with a subset of columns of minimum global cost. So we can formulate the problem

through a binary linear programming model as follows:

 Min j

Jj

j xc


 (1.1)

s.t













)3.1(10

)2.1(1

Jjfororx

Iiforxa

j

j
Jj

ij

where },...,1{ mI  is the set of rows, },...,1{ nJ  the set of columns, and jx (Jj) a binary

variable taking value 1 if and only if column j belongs to the optimal solution.

In the case of unicost SCP all the costs are the same (i.e. Jjc j  ,1), so we want to cover

the rows using the minimum number of columns.

We denote the set of columns covering row i with),...,1(miJ i  and the set of rows covered

by column j with),...,1(njI j  . Moreover, the number of ones in the binary matrix is denoted by





n

j

j

m

i

i IJq
11

. By using this notation, in model (1.1)-(1.3) we can replace (1.2) with:

 Iiforx
iJj

j 


1 (2.1 )

 The Set Covering Problem is known to be NP-hard [33]. It has been considered in the

literature as a basic formulation for many real-world optimization problems, therefore it is well

known for its numerous applications.

 Crew scheduling in railway and mass-transit transportation companies is one of the most

relevant applications of the SCP [13]. Delivery and routing, location, distribution, scheduling,

manufacturing, service planning, information retrieval and job assignment are some other

applications of the SCP. A survey of these applications is provided in Ceria et al. [17].

 To challenge very large scale SCP instances, arising from crew scheduling in the Italian

railway, Caprara et al. [14] designed a Lagrangian based heuristic algorithm, named CFT, which is

one of the most effective techniques for the general SCP. Caprara et al. [15] compared different

exact and heuristic algorithms and provided a complete survey of the existing literature.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 4

 Haouari and Chaouachi [37] reported that the performance of a Probabilistic Greedy Search

Method is better than that of the static greedy procedures for combinatorial optimization problems,

and specially to solve SCP instances. Indirect Genetic Algorithms and Parallel Genetic Algorithms

are two variants of the well-known Genetic metaheuristic approach, proposed simultaneously by

Aickelin [1] and Solar et al. [73] for the general SCP.

 Different kinds of Ant Colony Optimization (ACO) algorithms for the SCP and a

comparison of them were reported in Lessing et al. [48]. Yagiura et al. [84] proposed a 3-flip

neighborhood local search for the SCP, allowing their search to visit the infeasible region. They

also used some information from the Lagrangian relaxation of model (1.1)-(1.3) to reduce the size

of the problem.

 A Tabu Search metaheuristic for large-scale set covering problems was presented by

Caserta [16]. The author designed a dynamic primal-dual algorithm based on Tabu Search which

progressively reduces the gap between the upper and the lower bound. Umetani and Yagiura [76]

compared different relaxation heuristics for the SCP.

 In the GRASP method, proposed by Bautista and Pereira [6], the unicost SCP is considered

as a maximum constraint satisfiability problem (MAXSAT), and a GRASP algorithm to solve this

new representation is considered. First they produce a feasible solution for the MAXSAT problem,

by using a sequence of random selections from a candidate list, and then, as a local search

procedure, they apply best flip or random flip to improve the current solution.

 The Metaheuristic for Randomized Priority Search (Meta-RaPS) approach was proposed by

Lan et al. [46] for both the general and the unicost SCP. By considering a candidate list, they

construct an initial solution with a random selection between the best candidate and a member of

the candidate list. After that, in the local search phase, some randomly chosen columns are removed

and the corresponding partial SCP is solved by applying the constructive method. Preprocessing,

random selection of the priority rules, definition of a core problem and penalization of the worst

columns are characteristics of this method.

 In this research, the Electromagnetism Metaheuristic (EM) approach [10] is considered as a

framework of the proposed method (see Section 1.2). Some new ideas related to this heuristic, such

as applying a preprocessing procedure, imposing diverse and high quality solutions in the

population, defining the core problem and applying mutation, are presented.

 The proposed EM algorithm, described in Section 1.3, is basically different from the GRASP

and Meta-RaPS methods. However, in the construction of the solutions of the initial population, it is

similar to the GRASP algorithm, although the GRASP method finds feasible solutions by solving an

associated MAXSAT problem. Moreover, the ideas of preprocessing, core problem and removal of

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 5

some columns in the local search phase make the proposed algorithm similar to the Caprara et al.

[14], Haouari and Chaouachi [37] and Lan et al. [46] approaches, although the corresponding

strategies are different.

 Computational experiments on the benchmark instances of the literature, comparing the

proposed EM algorithm with the most effective algorithms for the unicost SCP, are reported in

Section 1.4.1. In addition, to investigate the effectiveness of the EM approach in conducting the

search of the solution space, we embedded the proposed procedures in a Genetic Algorithm scheme

[9]. The computational results, reported in Section 1.4.2 and comparing the proposed EM algorithm

with the Genetic Algorithm, show the quality of the EM approach. Finally, we report the results

obtained by modifying the proposed EM algorithm for solving the non-unicost SCP (see Section

1.4.3)

1.2. Electromagnetism Metaheuristic

 The Electromagnetism Metaheuristic approach has been recently proposed by Birbil and

Fang [10] to solve a class of optimization problems of the form:

 Min f(x) (1.4)

 s.t. x[L,U] (1.5)

where [L,U] = nkUxLx kkk

n ,...,1,|  and nxx ,...,1 represent the decision variables. Uk ,

Lk and f (x) represent, respectively, upper and lower bounds on the k-th variable (k =1, �, n) and the

objective function value.

 The principles of this algorithm are based on the real electromagnetism theory, so each

solution is considered as a charged particle, whose charge depends on its objective function value.

In the electromagnetic space all particles affect each other; in fact they attract or repel other

particles according to their charge. In a similar way, all the forces exerted by other charged particles

act upon each of them and determine the resultant force, according to which a particle is moved

within its space.

 Although the EM approach was introduced for continuous optimization problems, here we

adapt it to solve a zero-one optimization problem.

 The EM approach has been recently applied to solve several combinatorial optimization

problems such as Examination Timetabling [67], Project Scheduling [27], Traveling Salesman [78],

[41], Single Machine Scheduling [20], Nurse Scheduling [50], Flow Shop [26], [54], [64], and Job

Shop [75].

 The general structure of the EM algorithm is described in algorithm 1.1 [10].

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 6

 Algorithm 1.1. The general Electromagnetism Approach

 The EM algorithm starts with the Initialize procedure, which produces a pool of Pop_size

solutions representing the initial population. Then for a fixed number of iterations (MAXITER),

three different procedures are applied: Local Search, Calculate Forces and Move.

 The Local Search procedure is applied LSITER times and tries to improve each solution of

the current population. Then, according to their electromagnetic state, all the particles (solutions)

impose �forces� on each other and the total force exerted on each of them is calculated in the

Calculate Forces procedure. The total force is determined by calculating the charge of each solution

X
i, which depends on its objective function value f(Xi

), and on the objective value of the current best

solution Xbest in the population [10]. According to the EM algorithm a solution attracts those with

higher charge and repels the others.

 Finally in the Move procedure, by considering a random step length  uniformly

distributed between 0 and 1, each solution is moved in the direction of the resultant force to its new

location in the solution space.

 The specific formulas for the Set Covering Problem used to calculate charges, forces and

the movement action of each solution will be described in Sections 1.3.5 and 1.3.6.

1.3. EM based heuristic for the unicost Set Covering Problem

 The basic framework of our algorithm is based on the EM structure, with some

modifications specific to deal with a 0-1 programming problem and other parts included to increase

the overall performance.

Algorithm EM (Pop_size, MAXITER, LSITER)
1: Initialize (Pop_size)
2: iteration :=1
3: While iteration  MAXITER do
4: Local Search (LSITER)
5: Calculate Forces

6: Move

7: iteration := iteration+1
8: End while

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 7

1.3.1. Preprocessing Procedure

 The first procedure we call is a standard Preprocessing procedure aimed at speeding up

the algorithm by reducing the problem dimension. There are different methods for pre-processing

an SCP instance [7]. What we do here is to delete a column that covers a subset of rows covered by

another column, i.e. we remove the so called dominated columns. Moreover we insert in all the

solutions those columns by which a row is covered exclusively, i.e. we insert the so called essential

columns. Note that if column j is essential, we can define a �reduced� SCP problem, equivalent to

the original one, by removing column j and all the rows covered by j, and by adding 1 to the value

of the objective function.

 According to our computational experiments, preprocessing does not have an important

effect on the quality of the solutions, but it generally decreases the overall computing time of the

algorithm.

1.3.2. Population Construction

 After the preprocessing phase, we consider the remaining rows and columns and construct

a pool of Pop_size feasible solutions (each consisting in a subset of columns covering all the rows)

representing the initial population of the algorithm. Each solution iX (i =1, �, Pop_size) is created

by using a simple construction procedure consisting in a greedy search over a candidate list

composed of the promising columns, i.e. those columns j for which the number of currently

uncovered rows they cover (jK) is greater than a threshold, defined as a given percentage  of the

maximum number of uncovered rows covered by a column. At each iteration of the construction

procedure, a column uniformly randomly chosen from the candidate list is added to the current

solution, until we obtain a feasible solution (i.e. all the rows are covered). Each time a column is

added to the solution, the values jK of the columns j covering the uncovered rows covered by the

added column are updated.

 One of our modifications to the standard EM framework is to impose some diversity to the

solution space. To achieve this we consider two values of parameter  in order to give many

columns the possibility to enter the solution. In this manner we have an elite population

(corresponding to the largest value of ) and a diverse one (corresponding to the smallest value of

), and they both make up the whole pool of solutions (see Table 1.3 of Section 1.4 for additional

details).

 Moreover, in order to reduce the computing time of the local search procedure (see Section

1.3.4), we construct a core problem C containing the columns of the candidate list. At each iteration

of the construction procedure, C is updated to include the columns in the current candidate list.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 8

After the construction procedure, C contains all the columns that were in one of the previously

considered candidate lists. During the local search procedure we just consider the columns in C, in

this way we deal with a smaller subset of columns and reduce the corresponding computing time.

 By defining r (with },min{ nmr ) as the cardinality of the solution, the time complexity for

constructing each solution iX is O(q+rn).

1.3.3. Delete Redundant Columns Procedure

 Since after the construction phase we may have some redundant columns, we define a

procedure to delete them. A column is considered as redundant, with respect to a given solution, if

after deleting it the solution remains feasible. Therefore, we check the columns of the solution to

find possible removals. The time complexity of the corresponding procedure is O(q).

1.3.4. Local Search Procedure

 The idea used in the local search procedure is a modification of the improvement phase

presented for SCP by Caprara et al. [14] in their refining procedure, and by Lan et al. [46] in their

local search phase. We apply this procedure for LSITER iterations. For each iteration of the

procedure, we first remove a column subset X from the current solution X, so that we have a set

I  of uncovered rows, and then we find a new subset of columns to cover the rows in I  . For each

row Ii  , let
i

J  denote the subset of columns in the core problem C covering row i, i.e.:

  CjJjJ
ii

 | (1.6)

In addition, let J  denote the subset of columns of C covering the uncovered rows, i.e.

i

Ii
JJ 


 (1.7)

We can now consider the following partial unicost Set Covering Problem:

 Min 



'Jj

jx (1.8)

 s.t













)10.1(10

)9.1(1

Jjorx

Iix

j

Jj
j

i

which is solved by using again the construction procedure (See Section 1.3.2). As previously said,

the idea of this method is similar to that of the improvement phases presented in algorithms CFT

[14] and Meta-RaPS [46]. In CFT, the �worst� columns of X are removed, while in Meta-RaPS the

columns are removed completely randomly. Here we have a �mixed� rule in which we remove from

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 9

X the columns according to a probability inversely related to the corresponding number of covered

rows:

 Pj = 1 / |Ij| (1.11)

Moreover, of course, each algorithm has its own �constructive� procedure to solve the generated

partial SCP.

The number ND of columns which are removed from the current solution X is determined as

follows:

 ND = X  Search_magnitude (1.12)

where Search_magnitude is a parameter which controls the number of the removed columns [46].

To remove a column, we generate a uniform random number r between 0 and 1, and choose a

random column j from the current solution X. If r is less than or equal to PPj / (where 



Xj

jPP)

then we remove the column, otherwise we continue with another random column until we find a

suitable column to be removed.

 Finally, after solving the partial SCP, we call the delete redundant columns procedure. Each

time the local search procedure finds a better solution, the current best solution is updated. For each

iteration, the time complexity of this procedure is O(q+r|C|), i.e. in the worst case it is equal to

O(q+rn).

1.3.5. Force Calculation Procedure

 After applying the local search procedure to each solution in the current population, the

solutions must be moved towards promising regions in order to get closer to the optimal solution.

As mentioned before, by using the main structure of the Electromagnetism approach, we have a

way to shift the current solutions towards the best ones.

 To adapt the EM approach to deal with binary variables we represent each solution iX (i

=1, �, Pop_size) as a binary vector i
x , whose j-th component i

j
x (Jj) takes value one if and

only if i
Xj . To determine the new position of the solutions in the solution space, we calculate

the total electromagnetic force exerted on each solution by the others according to their �charge�.

The charge iq and the components i

jF (Jj) of the total force exerted on each solution iX are

obtained by adapting the equations proposed by Birbil and Fang (2003) to deal with binary

variables.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 10

)13.1(,_,...,1,
)(

)(
_

,1

2

2

JjsizePopi

XXif
xx

qq
xx

XXif
xx

qq
xx

F
sizePop

ik
k ik

ik

ki

k

j

i

j

ik

ik

ki

i

j

k

j

i

j




































 



where

 sizePopi
XX

XX
nq

sizePop

k

bestk

besti
i _,...,1),

|)||(|

||||
exp(

_

1







 

 (1.14)

 2/12))((i

j
Jj

k

j

ik
xxxx  



 (1.15)

and X
best is the current best solution in the population. The time complexity of this procedure is

globally O(nsizePop 2_).

1.3.6. Move Procedure

 After receiving the effects of all the other solutions, each solution is moved according to the

resultant force and a random step-length  , uniformly distributed between 0 and 1 and used to

increase the probability of searching the unvisited regions.

 The formulation proposed by Birbil and Fang [10] to compute the new location of i
x is as

follows:

JjsizePopiRNG
F

F
xx

ji

i

ji

j

i

j
 ,_,...,1)( (1.16)

where
j

RNG denotes the amount of feasible movement toward the upper bound or the lower bound

for the j-th component. Since here the upper and lower bounds for the variables are one and zero,

respectively, the adaptation of equation (1.16) for the binary variables i

j
x gives the following

formula:

 JjsizePopi

Fifx
F

F
xround

Fifx
F

F
xround

x
i

j

i

ji

i

ji

j

i

j

i

ji

i

ji

j

i

j






























 ,_,...,1,

0))((

0))1((





 (1.17)

where 2/12
)(




Jj

i

j

i
FF . The time complexity of the move procedure is O(Pop_size n).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 11

 It is important to notice that we do not modify the best solution bestX in the current

population and apply the move procedure only to the other solutions.

 Since after the move procedure the solutions may be no longer feasible, we consider the

uncovered rows and the columns covering them and solve the corresponding partial SCP problem

by using the construction procedure. Finally we apply the delete redundant columns procedure to

remove the redundant columns.

 To clarify the effect of the force and movement procedures on each solution, let us assume

that we have a population with two members iX and kX and solution kX has a smaller number of

columns, so it should attract solution iX . Since we consider each solution as a binary string, this

means that solution kX should try to modify the components of solution iX to make this solution

similar to itself. Let us consider the j-th component of both solutions (i.e. i

jX and k

jX). Now we

have 4 cases depending on the value of the j-th component in these solutions (0 or 1). Let us

consider first the two cases corresponding to .1k

jX If i

jX =0 the value of i

jF will be a positive

number (see (1.13)), so, from (1.16), the value of i

jX will probably increase to 1, depending on the

values of force
i

jF and . Otherwise, i.e. if i

jX =1, from (1.13) we have i

jF =0 and (1.16) does not

change the value of i

jX . So in both cases the j-th component of solution iX is made similar to the

corresponding component of solution kX . Easy calculations show that when k

jX is equal to 0, i

jX

will be set to 0 with a probability depending on the values of force i

jF (which is negative in this

case) and  . In the general case, in which we have more solutions in the population, the trend of

moving each solution toward the best solutions remains the same.

1.3.7. Mutation Procedure

 Mutation is another way of perturbating the solutions and it generally helps to increase the

diversity of the population. To achieve this aim, we apply the mutation procedure each time the

difference between the values of the best and the worst solutions in the population is not larger than

a given parameter denoted as mutation_control. The mutation consists in a random flip. A solution

iX of the population and a column j are selected randomly. If column j belongs to iX , it is removed

from iX , otherwise it is added to iX . In the case of removal, the new solution is not feasible, so the

construction procedure is called to obtain a feasible solution that will be used at the next iteration.

In this case the removed column is not allowed to be inserted in the new solution.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 12

1.3.8. Overall algorithm

 The procedures presented in the previous sections are applied iteratively, according to the

scheme of Algorithm 1.2, until a given time limit is exceeded or a given number of iterations is

reached. This stop criterion will be explained in details in Section 1.4.

Algorithm 1.2. Overall EM Metaheuristic for unicost SCP

1.4. Computational Results

 In order to test the effectiveness of the proposed algorithm (EM), we use the benchmark

instances of the OR-Library introduced by Beasley [8]. All the algorithms considered in this section

have been implemented in C. The computational experiments have been performed on a processor

 Algorithm EM Metaheuristic

1: Apply the Preprocessing Procedure

2: For i=1, �, Pop_size

3: Apply the Construction Procedure

4: Apply the Delete Redundant Columns Procedure

5: End For

6: While stop criterion not satisfied

7: For i=1, � , Pop_size

8: Apply the Local Search Procedure

9: End For

10: Apply the Force Calculation Procedure

11: Apply the Move Procedure (and possibly the Construction Procedure)

12: Let bestX and worstX be, respectively, the best and the worst solution

 in the current population

13: If bestworst
XX  < mutation _control

14: Then apply the Mutation Procedure (and possibly the Construction

 Procedure)

15: End While

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 13

Intel Core Duo CPU running at 1.7 GHz with 1 GB RAM. The characteristics of the instances are

summarized in Tables 1.1 and 1.2. The density of an instance is defined as the ratio)/(nmq  .

Notice that those reported in Table 1.1 are sets of instances with the same features, whereas in

Table 1.2 only single instances are considered.

Table 1.1. Characteristics of the instance sets

Data Set Problem Type
Number of
instances

Number of
rows

Number of
Columns

Density

4 Random 10 200 1000 2 %

5 Random 10 200 2000 2 %

6 Random 5 200 1000 5 %

A Random 5 300 3000 2 %

B Random 5 300 3000 5 %

C Random 5 400 4000 2 %

D Random 5 400 4000 5 %

E Random 5 50 500 20 %

NRE Random 5 500 5000 10 %

NRF Random 5 500 5000 20 %

NRG Random 5 1000 10000 2 %

NRH Random 5 1000 10000 5 %

Table 1.2. Characteristics of the single instances

Instances Problem Type Number of rows Number of columns Density
CLR10 Combinatorial 511 210 12.3 %

CLR11 Combinatorial 1023 330 12.4 %

CLR12 Combinatorial 2047 495 12.5 %

CLR13 Combinatorial 4095 715 12.5 %

CYC06 Logical 240 192 2.1 %

CYC07 Logical 672 448 0.9 %

CYC08 Logical 1792 1024 0.4 %

CYC09 Logical 4608 2304 0.2 %

CYC10 Logical 11520 5120 0.8 %

CYC11 Logical 28160 11264 0.02 %

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 14

1.4.1. Computational results of algorithm EM for the unicost SCP

 To compare the performance of algorithm EM with those of the most effective approaches

proposed for the unicost SCP, we report in Tables 1.4 and 1.5 the results of algorithm GRASP,

proposed by Bautista and Pereira [6], on all the benchmark instances (except data sets NRG and

NRH), and in Table 1.5 the results of algorithm Meta-RaPS, proposed by Lan et al. [46], on the

subset of instances considered by the authors (i.e. instances E, CLR and CYC). These methods are

currently the best available ones for the unicost SCP. It is important to note that Bautista and

Pereira [6] and Lan et al. [46] carried out their computational experiments on a 1.8 GHz and a 1.7

GHz PC, respectively, so we can compare the corresponding Computing times with those of

algorithm EM with a good approximation.

 Like for the other metaheuristic methods, the best values of the parameters to be used in the

overall algorithm are obtained by performing extensive computational experiments on a set of

benchmark instances. For algorithm EM the following parameters must be defined: Pop_size,  for

�elite population� and  for �diverse population� (Section 1.3.2), LSITER and Search_magnitude

(Section 1.3.4) and Mutation_control (Section 1.3.7). In addition, the Stop criterion to be used in

the overall algorithm (Section 1.3.8) has to be chosen. For the experimental definition of the �best

values� to be assigned to the parameters, we have considered the classical SCP benchmark

instances, having the number of columns larger than the corresponding number of rows (see Table

1.1). For these instances no results (with the exception of the trivial data set E) are reported for

algorithm Meta-RaPS [46], hence we have chosen the stop criterion by considering the results

reported for algorithm GRASP [6]. In particular, we stop the main loop of algorithm EM when the

global execution time reaches the CPU time spent by algorithm GRASP on the corresponding data

set (time limit = largest multiple of 5 not larger than the minimum GRASP time for the considered

data set). In any case, at most MAXITER (with MAXITER

Table 1.3. Parameters setting

Parameter Value

Pop_size 5 (2 elite and 3 diverse solutions)

 for elite population 0.9

 for diverse population 0.8

Search_magnitude
0.3 if 50X or d > 10

 0.6 otherwise

LSITER
200 if 50X or d > 10

 400 otherwise
Mutation_control 5

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 15

= 100) iterations of the main loop are performed. The values of the parameters used in the execution

of algorithm EM are given in Table 1.3.

All the times reported in the following tables are expressed in seconds. For all the instances,

the seed of the pseudo random number generator used in the execution of EM has been fixed to 1.

 Since some sets of instances are not considered in Bautista and Pereira [6] and Lan et al. [46], we

divide the computational results into 3 tables.

Table 1.4 reports the results obtained by algorithms EM and GRASP [6] on the classical SCP

data set 4, 5, 6, A, B, C, D, NRE and NRF. As already mentioned, no results are reported on these

data sets for algorithm Meta-RaPS [46]. For each instance, the solution value and the corresponding

final time are reported for the two considered algorithms; in addition, we report the time at which

the best solution is found by algorithm EM. For the final time of EM, the mark �(G)� means that

EM was stopped according to the GRASP final time.

 Table 1.5 reports the results obtained by algorithms EM, GRASP [6] and Meta-RaPS [46] on

data set E and on the �single instances� (see Table 1.2). In addition to the previous values, for

algorithm Meta-RaPS [46] we report the solution value and the time at which this value was found

(no information on the final time is given in [46]).

 Table 1.6 reports the results obtained by algorithm EM on the remaining data sets NRG and

NRH. No results on these data sets are reported in [6] and [46], so as stop criterion we just set the

maximum number of iterations equal to 100.

 In each table, the last two lines give the sum and the average of the values reported in the

corresponding column.

 Tables 1.4 and 1.5 show that algorithm EM performs better than algorithm GRASP,

improving the solution values for 15 instances (marked with a * in the tables), and finding 12 new

best known solutions (marked in bold in Table 1.4). Only for instance CYC11 algorithm EM finds a

solution worse than that found by algorithm GRASP. Moreover, it can be seen that all the solution

values found by algorithm EM are obtained in computing times generally much smaller than the

corresponding GRASP final times. In particular, for datasets NRE and NRF the EM final times as

well are always much smaller than the corresponding GRASP final times.

 Lan et al. [46] reported the results of algorithm Meta-RaPS only for data sets E, CLR and CYC.

Table 1.5 shows that, with respect to the solutions found by EM, algorithm Meta-RaPS obtains

better solutions for 3 instances, while for the remaining instances the results are the same. In

addition, the computing times of Meta-RaPS are smaller than those of EM. It has to be noted that

these instances have a particular structure. Indeed, the 5 instances of data set E are much smaller

than the other instances, and can be very easily solved to optimality by any greedy procedure. On

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 16

Table 1.4. Results of algorithms EM and GRASP [6]
Instance GRASP Sol GRASP final time EM Sol EM Sol time EM final time

4.1 38 85 38 22.70 80 (G)
4.2 37 86 37 1.57 80 (G)
4.3 38 85 38 3.00 80 (G)
4.4 39 87 38 * 74.38 80 (G)
4.5 38 87 38 2.40 80 (G)
4.6 38 86 38 3.17 80 (G)
4.7 38 84 38 17.00 80 (G)
4.8 38 89 38 3.07 80 (G)
4.9 38 88 38 0.57 80 (G)

4.10 38 86 38 6.72 80 (G)
5.1 35 313 34 * 6.84 305 (G)
5.2 34 319 34 220.05 305 (G)
5.3 35 316 34 * 25.91 305 (G)
5.4 34 322 34 27.16 305 (G)
5.5 34 327 34 5.84 305 (G)
5.6 34 329 34 297.62 305 (G)
5.7 34 315 34 6.34 305 (G)
5.8 35 314 34 * 61.41 305 (G)
5.9 36 313 35 * 33.30 305 (G)

5.10 35 308 34 * 7.87 305 (G)
6.1 21 113 21 1.87 110 (G)
6.2 20 115 20 79.71 110 (G)
6.3 21 115 21 0.08 110 (G)
6.4 21 114 21 10.89 110 (G)
6.5 21 113 21 2.09 110 (G)
A1 39 549 39 28.85 540 (G)
A2 39 543 39 182.56 540 (G)
A3 39 544 39 140.21 540 (G)
A4 38 549 38 18.74 540 (G)
A5 39 542 38 * 7.81 540 (G)
B1 22 960 22 44.32 935 (G)
B2 22 955 22 7.39 935 (G)
B3 22 964 22 7.04 935 (G)
B4 22 942 22 29.04 935 (G)
B5 22 938 22 42.86 935 (G)
C1 43 1074 43 921.96 1030 (G)
C2 44 1079 43 * 1023.79 1030 (G)
C3 44 1076 43 * 918.46 1030 (G)
C4 44 1074 43 * 28.49 1030 (G)
C5 44 1032 43 * 1007.09 1030 (G)
D1 25 2468 25 49.60 1939.06
D2 25 2456 25 18.76 1939.06
D3 25 2358 25 73.53 1731.99
D4 25 2435 25 50.56 2329.78
D5 25 2446 25 212.62 2444.16

NRE1 17 20373 16 * 1305.72 5109.44
NRE2 17 20381 17 22.61 4770.71
NRE3 17 20372 17 50.67 5407.35
NRE4 17 20376 17 43.31 4617.45
NRE5 17 20368 17 10.78 4128.57
NRF1 10 41960 10 145.71 1353.87
NRF2 10 41521 10 1325.44 1501.82
NRF3 10 41856 10 1399.77 1694.32
NRF4 10 41450 10 120.20 1582.85
NRF5 10 42076 10 1651.14 1709.79
SUM 1613 340326 1601 11810.59 59185.22
AVG 29.33 6187.75 29.11 214.74 1076.09

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 17

Table 1.5. Results of algorithms EM, GRASP [6] and Meta-RaPS [46]

Instances

GRASP

Sol

GRASP

final time

EM

Sol

EM Sol

time

EM final

time

Meta-RaPS

Sol

Meta-RaPS

Sol time

E1 5 54 5 0.01 4.77 5 0

E2 5 55 5 0.01 3.91 5 0.03

E3 5 51 5 0.01 2.32 5 0

E4 5 55 5 0.05 4.50 5 0.12

E5 5 56 5 0.02 2.62 5 0

CLR10 25 19 25 0.57 15 (G) 25 0.05

CLR11 23 250 23 15.53 250 (G) 23 3.03

CLR12 23 572 23 109.69 570 (G) 23 4.13

CLR13 23 4987 23 3539.45 4985 (G) 23 48.74

CYC6 60 6 60 0.08 5 (G) 60 0

CYC7 144 26 144 1.97 25 (G) 144 0

CYC8 348 645 344 * 303.40 645 (G) 344 38.91

CYC9 813 442 812 * 407.63 440 (G) 793 88.36

CYC10 1918 1922 1915 * 1892.06 1920 (G) 1826 80.56

CYC11 4268 42516 4272 12922.03 42515 (G) 4140 12656.75

SUM 7670 51656 7666 19192.51 51388.12 7426 12920.68

AVG 511.33 3443.73 511.06 1279.50 3425.87 495.07 861.38

Table 1.6. Results of algorithm EM on data sets NRG and NRH.

Set

EM Sol EM Sol time

EM final time

(100 iterations)

NRG1 63 101.75 2675.36
NRG2 63 127.87 3574.22
NRG3 63 124.47 3098.44
NRG4 63 117.15 4094.42
NRG5 63 32.38 2512.01
NRH1 34 755.72 14430.08
NRH2 34 464.40 12643.38
NRH3 34 1760.62 13201.37
NRH4 34 227.73 14334.96
NRH5 34 1912.47 11823.39

SUM 485 5624.56 82387.63

AVG 48.50 562.46 8238.76

the other hand, the 10 instances of data sets CLR and CYC derived from specific applications, and

have the number of rows greater than the number of columns, which is not the case for the majority

of the real world applications that can be formulated as a unicost Set Covering Problem. In addition,

it is worth to note that the tuning of the parameters used in algorithm EM (see Table 1.3) has

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 18

beencarried out by considering the classical unicost SCP instances whose results are reported in

Table 1.4. No comparison between algorithms EM and Meta-RaPS can, of course, be performed on

the other data sets.

 By using parameters different from those reported in Table 1.3, and different seeds of the

pseudo random number generator, algorithm EM was able to improve the best known solution

values of the literature for 4 additional classical instances, and the solution values obtained with the

fixed parameters setting for 5 instances of data sets CYC and NRG. The corresponding results are

reported in column 4 of Table 1.7. We have to note that for instances CYC10 and CYC11 the

solution values obtained by algorithm Meta-RaPS are still better than those obtained by algorithm

EM.

Table 1.7. Improved solutions found by algorithm EM.

Instance GRASP Sol EM Sol
EM improved

solution
Meta-RaPS

solution
4.6 38 38 37 * �

4.8 38 38 37 * �

6.4 21 21 20 * �

D.1 25 25 24 * �
CYC9 813 812 793 * 793

CYC10 1918 1915 1892 * 1826
CYC11 4268 4272 4267 * 4140
NRG1 � 63 62 �
NRG2 � 63 62 �

1.4.2. The effectiveness of the EM approach for the unicost SCP

 To investigate the effectiveness of the Electromagnetism Metaheuristic approach for the

unicost SCP, we executed the procedures of algorithm EM within a different metaheuristic scheme.

Since the main new ideas of the proposed algorithm are related to the Force Calculation Procedure

and the Move Procedure, we eliminated these two procedures and embedded the other procedures

in a different framework. In this way we can investigate if the high quality of the solutions found by

algorithm EM is only related to the other main procedures (i.e. the construction and local search

procedures) or if this is due to the EM approach that performs well in conducting the search in the

solution space. Since algorithm EM is a population based algorithm, we embedded its procedures in

a different population based metaheuristic approach: the Genetic Algorithm (GA) approach. In

particular, we considered the GA method proposed by Beasley and Chu [9] for the non-unicost SCP.

The main steps of the GA method are described in Algorithm 1.3 (for more details see [9]). Of

course, to reach our aim we must apply this method by replacing the original Beasley and Chu

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 19

procedures reported at Steps 1, 4 and 5 with the corresponding procedures used in algorithm EM, i.e.

the Construction Procedure, the Mutation Procedure and the Delete Redundant Columns Procedure.

 Although there is no local search procedure in the GA method proposed by Beasly and Chu

[9], we cannot ignore the impact of this procedure in our method. Therefore in the Modified GA

method we apply the Local Search Procedure after the construction of the initial population and

after the Mutation Procedure.

Algorithm 1.3. GA method for SCP [9].

 Moreover, before the execution of the Modified GA method, we apply the Preprocessing

Procedure. In this way, in the Modified GA method, we consider all the procedures proposed in

Section 1.3, except the Force Calculation Procedure and the Move Procedure, which are the native

procedures of the EM approach. The main steps of the Modified GA method are reported in

Algorithm 1.4.

 After a lot of computational experiments we found that, for the Modified GA method, the

best values of the parameters are those used for algorithm EM, except the size of the population

 Algorithm GA for SCP

1: Generate an initial population of Pop_size random solutions. Set t:=0.

2: Randomly select two solutions P1 and P2 from the population by using the binary

 tournament selection.

3: Combine P1 and P2 to form a new solution C by using the fusion crossover

 operator.

4: Mutate k randomly selected columns in C, where k is determined by the variable

 mutation schedule.

5: Make C feasible and remove possible redundant columns from C by applying the

 heuristic operator.

6: If C is identical to any one of the solutions in the population, go to step 2;

 otherwise set t:=t+1.

7: Replace a randomly chosen solution having an above-average fitness in the

 population with C (steady-state replacement method).

8: Repeat steps (2)-(7) until t=M (i.e. M non-duplicate solutions have been generated).

 The best solution found is the one with the smallest fitness in the population.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 20

which must be increased in the GA structure. Here the Pop_size parameter is equal to 100 (with 40

elite and 60 diverse solutions) i.e. the same value used by Beasley and Chu [9] in their paper.

 Table 1.8 reports the results of algorithm EM and of the Modified GA method on the

classical benchmark unicost SCP instances. The first four columns refer to algorithm EM and are

taken from Table 1.4, the last three columns report the solution values, the solution times, and the

Algorithm 1.4. Modified GA with the EM procedures for the unicost SCP.

final times of the Modified GA method. To have a fair comparison with algorithm EM the same

stopping criterion has been considered. Therefore we stop the execution of the Modified GA

method after 100 iterations of the main loop (Steps (4)-(10) in Algorithm 1.4) or when the GRASP

final time [6] is reached (shown with mark �(G)� on the final time reported in the last column of

Algorithm Modified GA using the EM procedures

1: Apply the Preprocessing Procedure.

2: Generate an initial population of Pop_size solutions by using the

 Construction Procedure.

3: Improve each solution of the initial population by using the Delete Redundant

 Columns Procedure and the Local Search Procedure.

4: Randomly select two solutions P1 and P2 from the population by using the binary

 tournament selection.

5: Combine P1 and P2 to form a new solution C by using the fusion crossover

 operator.

6: Apply the Mutation Procedure on C according to the mutation _control parameter.

7: Make C feasible and remove possible redundant columns in C by applying the

 Delete Redundant Columns Procedure.

8: Improve C by applying the Local Search Procedure.

9: If C is identical to any one of the solutions in the population, go to step (4);

10: Replace a randomly chosen solution having an above-average fitness in the

 population with C (steady-state replacement method).

11: Repeat steps (4)-(10) until the stop criterion is met.

 The best solution found is the one with the smallest fitness in the population.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 21

Table 1.8. Comparison of algorithm EM with the Modified GA method for the unicost SCP.

Instance EM Sol EM Sol time EM final time
Modified GA

Sol
Modified GA

Sol time

Modified GA

final time

4.1 38 22.70 80 (G) 38 36.17 80 (G)
4.2 37 1.57 80 (G) 37 2.04 80 (G)
4.3 38 3.00 80 (G) 38 4.49 80 (G)
4.4 38 74.38 80 (G) 38 75.41 80 (G)
4.5 38 2.40 80 (G) 39 1.49 80 (G)
4.6 38 3.17 80 (G) 37* 2.19 80 (G)
4.7 38 17.00 80 (G) 38 6.34 80 (G)
4.8 38 3.07 80 (G) 38 5.80 80 (G)
4.9 38 0.57 80 (G) 38 39.99 80 (G)

4.10 38 6.72 80 (G) 39 1.46 80 (G)
5.1 34 6.84 305 (G) 35 1.66 305 (G)
5.2 34 220.05 305 (G) 35 1.66 305 (G)
5.3 34 25.91 305 (G) 34 41.04 305 (G)
5.4 34 27.16 305 (G) 34 26.94 305 (G)
5.5 34 5.84 305 (G) 34 2.62 305 (G)
5.6 34 297.62 305 (G) 34 3.79 305 (G)
5.7 34 6.34 305 (G) 34 6.80 305 (G)
5.8 34 61.41 305 (G) 34 144.25 305 (G)
5.9 35 33.30 305 (G) 35 24.11 305 (G)

5.10 34 7.87 305 (G) 34 165.40 305 (G)
6.1 21 1.87 110 (G) 21 2.27 110 (G)
6.2 20 79.71 110 (G) 20 36.52 110 (G)
6.3 21 0.08 110 (G) 21 0.07 110 (G)
6.4 21 10.89 110 (G) 21 3.63 110 (G)
6.5 21 2.09 110 (G) 21 15.10 110 (G)
A1 39 28.85 540 (G) 39 291.50 540 (G)
A2 39 182.56 540 (G) 39 126.98 540 (G)
A3 39 140.21 540 (G) 39 296.24 540 (G)
A4 38 18.74 540 (G) 38 16.67 540 (G)
A5 38 7.81 540 (G) 39 57.73 540 (G)
B1 22 44.32 935 (G) 22 5.11 935 (G)
B2 22 7.39 935 (G) 22 8.20 935 (G)
B3 22 7.04 935 (G) 22 40.26 935 (G)
B4 22 29.04 935 (G) 22 78.85 935 (G)
B5 22 42.86 935 (G) 22 91.97 935 (G)
C1 43 921.96 1030 (G) 44 70.79 1030 (G)
C2 43 1023.79 1030 (G) 44 71.40 1030 (G)
C3 43 918.46 1030 (G) 44 114.34 1030 (G)
C4 43 28.49 1030 (G) 43 8.03 1030 (G)
C5 43 1007.09 1030 (G) 44 701.62 1030 (G)
D1 25 49.60 1939.06 25 1.17 1283.05
D2 25 18.76 1939.06 25 1.21 1311.68
D3 25 73.53 1731.99 25 28.62 1267.64
D4 25 50.56 2329.78 25 210.22 1264.45
D5 25 212.62 2444.16 25 721.09 1272.94

NRE1 16 1305.72 5109.44 17 81.77 2409.23
NRE2 17 22.61 4770.71 17 71.30 2465.47
NRE3 17 50.67 5407.35 17 6.61 2471.32
NRE4 17 43.31 4617.45 17 22.82 2517.28
NRE5 17 10.78 4128.57 17 384.18 2487.99
NRF1 10 145.71 1353.87 11 12.85 568.07
NRF2 10 1325.44 1501.82 11 13.10 563.29
NRF3 10 1399.77 1694.32 11 12.74 561.19
NRF4 10 120.20 1582.85 11 12.73 553.51
NRF5 10 1651.14 1709.79 11 12.71 560.36
SUM 1601 11810.59 59185.22 1615 4224.05 38482.47
AVG 29.11 214.74 1076.09 29.36 76.80 699.68

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 22

Table 1.8). The results of the Modified GA method which are better than those of algorithm EM are

shown with a star mark, and the worse results are written in bold. The Modified GA method obtains

a better result only in one case (instance 4.6), and is worse than algorithm EM for 15 instances.

Note however that the result obtained by the Modified GA method for instance 4.6 has been

achieved as well by algorithm EM, by using alternative parameters, as reported in Table 1.7. As for

the computing times, Table 1.8 shows that the global average solution time of the Modified GA

method is less than that of algorithm EM. However, to have a fair comparison we must consider

only the instances whose solution values are the same for both methods. Accordingly, the sum and

the average solution times of the EM method, over the 39 instances having the same solution values

as the Modified GA method, are, respectively, 1744.32 and 44.73, while these quantities are,

respectively, 3053.81 and 78.30 for the Modified GA method. Therefore, algorithm EM can be

considered faster than the Modified GA method in finding the same solution values.

1.4.3. Adaptation of algorithm EM for the non-unicost SCP

 We have adapted the proposed algorithm EM, designed for the unicost SCP, to the non-

unicost SCP. In the unicost SCP only the number of rows covered by a column is considered as the

fitness of a column, while in the non-unicost version the cost of each column should be considered

as well.

 To adapt algorithm EM to deal with the non-unicost SCP, we changed some parts of the

proposed procedures. In particular, in the Preprocessing Procedure and Delete Redundant Columns

Procedure (see Sections 1.3.1 and 1.3.3), where we try to remove dominated columns and

redundant columns, respectively, we check the possible removal of a column by considering a

subset of columns covering all the rows covered by the column and having a global cost not greater

than the cost of the column. In the Construction Procedure (Section 1.3.2) we define the promising

columns in the candidate list as those columns j for which the fitness value, defined as the ratio

between the cost of column j (
j

c) and the square of the number of currently uncovered rows

covered by column j (2

j
K), is less than a threshold, defined as a given percentage (1) of the

minimum amount of the fitness values. Moreover, in the Force Calculation Procedure (Section

1.3.5),)(k
Xf ,)(i

Xf and)(best
Xf substitute, respectively, k

X , i
X and best

X in (1.13) and

(1.14), where f(X) is the sum of the costs of the columns in solution X. We found as well that, for

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 23

Table 1.9. Parameters setting for the non-unicost SCP.

Parameter Value

Pop_size 5 (2 elite and 3 diverse solutions)

 for elite population 0.1

 for diverse population 0.8

Search_magnitude 0.3

LSITER 400

Table 1.10. Comparison of algorithm EM (using seed 1) with algorithm Meta-RaPS [46] for the non-unicost

SCP.

Instance Meta-RaPS Sol
Meta-RaPS

Sol time

EM

Sol

EM

Sol Time

EM

final time

4.1 429 1.36 429 0.18 38.35
4.2 512 0.24 512 0.03 46.83
4.3 516 0.29 516 0.57 49.98
4.4 494 0.39 494 4.57 45.24
4.5 512 0.9 514 6.95 38.15
4.6 560 0.1 560 3.38 46.61
4.7 430 0.04 430 0.81 34.53
4.8 492 1.46 492 0.03 39.32
4.9 641 3.47 641 0.10 46.02

4.10 514 0.08 514 3.18 40.34
5.1 253 1.55 254 0.09 42.38
5.2 302 0.59 302 38.45 49.60
5.3 226 1.14 226 0.15 35.72
5.4 242 0.32 242 32.65 43.35
5.5 211 0.33 211 23.61 38.54
5.6 213 0.14 214 24.33 34.56
5.7 293 1.03 293 0.17 44.33
5.8 288 0.08 288 0.49 44.52
5.9 279 0.04 280 0.45 43.04

5.10 265 0.03 265 0.92 44.97
6.1 138 0.25 138 0.39 32.85
6.2 146 0.02 146 6.42 30.20
6.3 145 0.02 145 0.07 33.22
6.4 131 0.34 131 0.01 36.90
6.5 161 1.02 161 0.15 38.61
A1 253 6.22 253 23.58 78.56
A2 252 0.28 252 15.70 82.46
A3 232 16.94 233 14.21 66.00
A4 234 0.04 234 17.86 72.30
A5 236 9.37 237 1.90 73.14
B1 69 0.14 69 0.15 58.46
B2 76 0.53 76 0.32 79.29
B3 80 0.62 80 0.65 59.82
B4 79 2.25 79 4.60 58.21
B5 72 0 72 0.06 74.89
C1 227 0.43 227 59.46 111.05
C2 219 12.89 219 113.86 114.39
C3 243 26.24 244 0.60 108.51
C4 219 24.29 219 35.77 102.88
C5 215 1.79 215 10.46 120.21
D1 60 3.13 60 1.10 84.55
D2 66 13.59 66 0.73 75.14
D3 72 1.31 72 0.62 73.58

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 24

D4 62 0.2 62 0.12 95.65
D5 61 0.29 61 0.23 106.33

NRE1 29 0.73 29 0.18 130.05
NRE2 30 46.17 30 0.18 103.49
NRE3 27 5.95 27 0.74 111.21
NRE4 28 39.64 28 0.57 135.00
NRE5 28 0.81 28 0.20 180.69
NRF1 14 4.29 14 0.56 160.16
NRF2 15 3.8 15 0.45 167.57
NRF3 14 1.84 14 0.88 133.58
NRF4 14 5.44 14 0.65 144.54
NRF5 13 33.27 13 2.83 109.87
NRG1 176 289.97 176 63.44 434.94
NRG2 154 222.34 154 345.14 411.24
NRG3 166 21.56 169 6.24 361.31
NRG4 168 194.21 170 347.98 393.57
NRG5 168 47.57 172 1.18 362.17
NRH1 63 3917.08 64 3.16 308.67
NRH2 63 238.45 63 255.57 374.60
NRH3 59 783.2 60 5.27 348.47
NRH4 58 1358.28 58 154.71 321.04
NRH5 55 5.62 55 285.24 289.48
SUM 12762 7356.00 12781 1925.30 7695.23
AVG 196.34 113.17 196.63 29.62 118.39

Table 1.11. The improved solutions of algorithm EM for the non-unicost SCP using 5 additional seeds.

Instance

Meta-

RaPS

Sol

Meta-

RaPS

Sol time

EM

Sol

EM

improved Sol

EM

improved

Sol time

EM

improved

final time

4.5 512 0.9 514 512 38.55 221.43
5.1 253 1.55 254 253 63.57 257.12
5.6 213 0.14 214 213 103.17 210.65
5.9 279 0.04 280 279 87.12 255.83
A3 232 16.94 233 232 150.61 399.61
A5 236 9.37 237 236 166.82 435.22
C3 243 26.24 244 243 120.31 655.58

NRG3 166 21.56 169 166 1810.84 2172.65
NRG4 168 194.21 170 168 790.16 2368.93
NRG5 168 47.57 172 168 365.16 2178.73
NRH1 63 3917.08 64 63 1350.61 1846.54
NRH3 59 783.2 60 59 699.54 2097.69

the non-unicost SCP, removing columns completely randomly in the Local Search Procedure

(Section 1.3.4) and applying the Mutation Procedure (Section 1.3.7) at each iteration of the

algorithm increases the possibility of finding better solutions. The values of the parameters

obtaining the best results for the non-unicost SCP are reported in Table 1.9.

We considered the 65 classical benchmark instances for the non-unicost SCP of the OR-

Library [8], and executed the modified code for 100 iterations of the main loop, using again 1 as

seed of the pseudo random number generator. Table 1.10 reports the solution values and the

solution times of Meta-RaPS [46] and of the Modified EM algorithm. No information on the final

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 25

times of Meta-RaPS is given in Lan et al. [46]. As it can be seen from Table 1.10, by using the

standard seed 1, algorithm EM is able to obtain the best known solutions of the non-unicost version

of SCP [14], [46] for 53 instances. For the remaining 12 instances the modified EM algorithm

found worse solution values (shown in bold in Table 1.10). As for the computing time, by

considering only the 53 instances whose solution values are the same for both methods, we have

that the average solution times of algorithm EM and Meta-RaPS are, respectively, 28.55 and 44.10

seconds. By performing in sequence, for each instance, 5 additional executions of the algorithm, by

using 5 different seeds and 100 iterations of the main loop for each seed, algorithm EM can obtain

the remaining 12 best known solutions (see Table 1.11). Therefore, by executing 6 independent runs

of the code, using 6 different seeds, all the best known solutions of the non-unicost SCP are

obtained by algorithm EM. By considering all the 65 benchmark instances, the average computing

time of algorithm EM for finding its best solution is 111.92 seconds, which is comparable with the

corresponding computing time of Meta-RaPS.

1.5. Conclusions

 We have proposed a new metaheuristic method for the unicost Set Covering Problem based

on the Electromagnetism Metaheuristic approach. One of the new features with respect to the

standard Electromagnetism scheme is the utilization of a Preprocessing Procedure to delete

redundant columns, together with the definition of a core problem to speed up the algorithm. We

construct the current population with both medium and high quality solutions to extend the diversity

of the initial population, and apply a Mutation Procedure to enhance the possibility of visiting new

regions of the solution space. The proposed algorithm is basically different from both the GRASP

and the Meta-RaPS methods, because it uses diverse and elite solutions in the current population,

instead of a single solution, and also because it applies the Mutation Procedure. Moreover, the

proposed Local Search Procedure is able to explore a larger neighbourhood, with respect to the

local search of algorithm GRASP [6], because it removes a subset of columns and tries to re-

optimize over the corresponding partial SCP. Finally, the removal of the columns in the Local

Search Procedure is not completely random, as in algorithm Meta-RaPS [46], but is based on the

�quality� of the columns as well. Moreover all the columns have a chance to be removed, and this

feature makes the proposed Local Search Procedure different from the refining method proposed in

algorithm CFT [14].

 On the classical benchmark instances from the literature, where the number of columns is

larger than the number of rows, the proposed metaheuristic always found the best known solution

and for 12 instances it was able to improve the current best solution by using a fixed set of

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 26

parameters. By using different parameter settings the algorithm improved 4 additional best known

solutions. We also reported computational results on 10 additional instances for which no results are

known from the literature.

 Moreover, to investigate the effectiveness of the EM approach in conducting the search in

the solution space we embedded the procedures of the proposed algorithm (except Force

Calculation Procedure and Move Procedure which are the native parts of algorithm EM) in a new

scheme based on the Genetic Algorithm (GA) method proposed by Beasley and Chu [9] for the

non-unicost SCP. Although we have improved the performance of this Modified GA method by

adding the Local Search Procedure, still the proposed algorithm EM performs better than the

Modified GA method.

 Finally a modification of algorithm EM to the non-unicost SCP is presented. This modified

algorithm obtains, for the classical SCP instances, all the best known solutions from the literature.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 27

Chapter 2:

A heuristic procedure

for

 the Capacitated m-Ring-Star Problem

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 28

Abstract:

 In this chapter we propose a heuristic method to solve the Capacitated m-Ring-Star

Problem which has many practical applications in communication networks. The problem consists

of finding m rings (simple cycles) visiting a central depot, a subset of customers and a subset of

potential (Steiner) nodes, while customers not belonging to any ring must be �allocated� to a visited

(customer or Steiner) node. Moreover, the rings must be node-disjoint and the number of customers

allocated or visited in a ring cannot be greater than the capacity Q given as an input parameter. The

objective is to minimize the total visiting and allocation costs. The problem is a generalization of

the Traveling Salesman Problem, hence it is NP-hard.

In the proposed heuristic, after the construction phase, a series of different local search

procedures are applied iteratively. This method incorporates some random aspects by perturbing the

current solution through a �shaking� procedure which is applied whenever the algorithm remains in

a local optimum for a given number of iterations. Computational experiments on the benchmark

instances of the literature show that the proposed heuristic is able to obtain, within a short

computing time, most of the optimal solutions and can improve some of the best known results.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 29

2.1 Introduction

The Capacitated m-Ring-Star Problem (CmRSP) has been introduced by Baldacci et al. [5] in

2007. In the CmRSP, we are given a mixed graph G = (V, EA), in which V is the set of nodes,

},,:},{{ jiVjijiE  is the set of edges (undirected arcs) and A is the set of arcs. The node

set V is defined as WUV  }0{ in which node 0 represents the depot, U is the set of

customers and W is the set of Steiner nodes. Each customer Ui can be connected to a subset of

nodes denoted by WUC
i

 , so the arc set A can be written as },:),{(
i

CjUijiA  .

We consider a non negative routing cost
e

c for each edge Ee and a non negative allocation cost

ij
d for each arc (i,j) A . A ring R is a simple cycle visiting a subset of nodes including the depot.

A customer i is assigned to a ring R if it is visited by the ring or allocated to a node on the ring. The

number of rings, m, and the capacity of each ring, Q, are given as input parameters, and it is

assumed that UmQ  . In each feasible solution of the CmRSP, each customer has to be assigned

to exactly one ring, each Steiner node can be visited at most once, and the number of customers

assigned to a ring cannot be greater than the capacity Q.

The goal of the CmRSP is to find m rings so that the global cost, given by the sum of the

routing costs and of the allocation costs, is minimized. The CmRSP is NP-hard, since it generalizes

the Symmetric Traveling Salesman Problem (TSP), arising when m=1, Q=|U|, W , A .

The CmRSP has many applications in telecommunication networks, in particular in the fiber

optic communication networks (see, e.g. Baldacci et al. [5]).

Baldacci et al. [5] proposed two Integer Linear Programming (ILP) formulations and

developed a Branch and Cut (BC) approach for the CmRSP. The algorithm has been tested on a

large variety of problems, including real-world instances. The results show that the proposed

algorithm is able to solve to optimality the small-sized instances in a reasonable computing time.

Two heuristics are also proposed in [5]. The first one, H1, is an adaptation of the algorithm

proposed by Baldacci and Dell�Amico [4] for the multi-depot CmRSP and is executed at the root

node of the enumeration tree. The second heuristic, H2, takes advantage of the information obtained

by the solution of the Linear Programming (LP) relaxation of the proposed ILP formulations to

construct a CmRSP solution and is executed at a given set of nodes of the enumeration tree.

Mauttone et al. [52] proposed a hybrid metaheuristic approach for the CmRSP in 2007. In

their approach a combination of GRASP and Tabu Search algorithms has been proposed for solving

the problem.

Finally in 2008 Hoshino and de Souza [39] proposed an ILP formulation based on a Set

Covering model and developed a Branch-and-Price (BP) algorithm for the CmRSP. Computational

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 30

experiments on the two exact algorithms proposed in [5] and [39] show that these methods do not

dominate each other, and that, for instances with more than 50 nodes; they fail in many cases in

finding the optimal solutions, even employing up to two hours of computing time.

In this approach we propose a heuristic method for the CmRSP, which is able to obtain,

within a short computing time, most of the optimal solutions and can improve some of the best

known results proposed in the literature.

Variants of the CmRSP, studied in the literature and arising in telecommunication networks,

are described in Baldacci et al. [5] and Labbé et al. [44], [45].

The rest of this chapter is organized as follows. The proposed heuristic is introduced in

Section 2.2. Experimental results on the benchmark instances from the literature are presented in

Section 2.3. Conclusions are given in Section 2.4.

2.2. Description of the proposed algorithm

This section presents a heuristic procedure developed for the CmRSP. In the proposed

algorithm, we start with the Initialization Procedure which constructs a feasible solution.

Algorithm 2.1. Proposed heuristic for the CmRSP.

CurrentSolution := Initialization ();
BestCost := Cost (CurrentSolution) and BestSolution := CurrentSolution;
iter := 0;

While iter < Max_Iter do
 iter := iter + 1;
 While CurrentSolution can be improved do
 Improvement (CurrentSolution);
 End While;

 If (Cost (CurrentSolution) < BestCost) Then
 For each ring, call the Lin-Kernighan procedure to improve the ring length;
 Update CurrentSolution, BestCost and BestSolution;
 Else if (Cost (CurrentSolution) > P* BestCost) then

 CurrentSolution := BestSolution;
 End If;

 Shaking (CurrentSolution);
End While.

The main body of the heuristic consists of two major phases: Improvement Procedure and

Shaking Procedure, which are iteratively executed. In the Improvement Procedure, the goal is to

improve the current solution locally, by using the different moves developed for this problem.

Whenever we are not able to improve the quality of the current solution by applying the

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 31

Improvement Procedure, the algorithm tries to escape from the local optimum by perturbing the

current solution through the execution of the Shaking Procedure.

Sometimes, by perturbing the current solution, the Improvement Procedure is not able to

improve the best known solution found so far, and even to recover the current solution. In this

situation, to enhance the performance of the algorithm, we use the threshold accepting idea, by

accepting the worse solution as the current one if its cost is not greater than a given percentage P of

the cost of the best known solution (where P is an input parameter). In addition, the Lin-Kernighan

TSP procedure (see Lin and Kernighan [49] and Helsgaum [38]) is applied for each ring. The

outline of the proposed heuristic is described in Algorithm 2.1. In the following subsections we give

the details of each step. In the description of the algorithm the term �node� refers to a customer or a

Steiner node.

2.2.1. Initialization Procedure

To construct the initial solution, we apply the clustering algorithm proposed by Fischetti et

al. [31] for the Generalized Traveling Salesman Problem (GTSP). This algorithm first constructs a

set of m rings by considering the depot and m customers as far as possible one from each other. To

do so, the algorithm chooses the depot as the first node and then selects m customers in turn, each as

far as possible from the previous ones. As soon as the m customers are selected, m rings are

obtained by connecting each customer to the depot. The remaining customers are assigned (i.e.

Algorithm 2.2. Clustering algorithm for the Initialization Procedure.

Input: m, U,],[wv
c for Uwv  }0{, ;

Output: the depot and m customers as far as possible one from each
other;
Comment let   :Sfar    SUvSwc wv \::minmaxarg ,  be the

furthest customer from a given node subset US  }0{ ;

Begin

 1. :1center })0({far ;
 2. For i = 2 to m+1 do
 }),...,({: 11  ii centercenterfarcenter ;

 End For;

 3. For Ui do
 If (customer i is not visited or allocated) Then
 Assign (i.e. visit or allocate) i to its best feasible position;
 End For;
End.
(In max{.}arg , ties are broken by choosing the smallest argument.)

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 32

visited or allocated) to their best feasible position, i.e., to the feasible (with respect to the capacity

constraint) position that generates the minimum insertion cost with respect to the current rings. Note

that no Steiner node is used in the initialization procedure. The outline of the clustering algorithm is

given in Algorithm 2.2.

2.2.2. Improvement Procedure

In this phase, the algorithm tries to improve the current solution by applying the Swap,

Steiner-Node-Removal and Extraction-Assignment procedures developed for the CmRSP. To do so,

the algorithm iteratively applies the Swap procedure. As soon as the solution cannot be improved by

using the moves of the Swap procedure, the algorithm continues by calling the Steiner-Node-

Removal procedure and, iteratively, the Extraction-Assignment procedure. The outline of the

Improvement Procedure is given in Algorithm 2.3. In the following subsections the details of the

proposed procedures are given.

Algorithm 2.3. Improvement Procedure.

 While the solution can be improved do
 Swap (CurrentSolution);
 End While;

 Steiner-Node-Removal (CurrentSolution);
 While the solution can be improved do
 Extraction-Assignment (CurrentSolution);
 End While.

2.2.2.1. Swap Procedure

 In this procedure we start by randomly selecting a customer and testing all the possible

ways to swap this customer with another visited or allocated node which is near to the selected one,

starting from the first nearest node up to the Tth nearest one (where T is an input parameter). As soon

as a feasible swap move leads to an improvement, the current solution is updated and the remaining

possible swap moves with the other near nodes are not considered. The procedure continues with

the next randomly selected customer of the current solution that has not been considered yet, and

stops when all the customers of the current solution have been considered. While doing the Swap

moves, regardless of the status of the swapped nodes (visited or allocated) the procedure follows the

main idea of the Swap move, i.e., it switches the position of the two selected nodes. This means that

if one of the two nodes is a customer/Steiner node with some allocated customers, after the swap

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 33

move these customers are allocated, if the capacity constraint is satisfied, to the swapped node. The

only exception to this rule is the case where both selected nodes are in the same ring, one of them,

say i, which is a customer, is allocated and the other one, say j, which can be a customer or a Steiner

node, is visited with some possible allocations. In this situation, since by changing the position of

the two nodes the capacity of the ring remains the same, we apply a different rule. First we visit the

allocated customer i in the current position of node j. The remaining nodes (i.e. node j and its

Figure 2.1. A special case of the Swap Procedure with a customer as a visited node.

Figure 2.2. A special case in the Swap Procedure with a Steiner node as a visited node.

possible allocated customers) are first extracted from the current solution and then, in a random

order and once at a time, are visited or allocated in their best feasible position, i.e, the position that

generates the minimum insertion cost.

An example of this case is given in Figure 2.1. In this example (see the left side of Figure

2.1) customer i is allocated to node a and node j is a customer, with two allocated customers d and e.

In the first step we visit customer i (between b and c). Then we search for the best position for

visiting or allocating customers d, j and e. A possible positioning of these customers is given in the

j

a

 d

 b

 i

 e

 c

j

a

 d

 b

 i

 e

 c

j

a

 d

 b

 i

 e

 c

j

a

 d

 b

 i

 e

 c

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 34

right side of Figure 2.1. Figure 2.2 shows a similar example, but in this case node j is a Steiner node.

So after the swap it no longer belongs to the solution.

 The framework of this procedure is given in Algorithm 2.4.

Algorithm 2.4. Swap Procedure.

 Randomly order the customers;
 For i = 1,�, |U| do
 For l = 1,�, T do
 j :=

th
l allocated or visited node nearest to customer i;

 If (i and j are in the same ring) and (i is visited and j is allocated, or viceversa)
 Then
 (suppose i is the allocated customer and j is the visited node)
 Construct NewSolution as follows:
 Visit customer i in the ring in the current position of node j;
 Extract node j, along with its possible allocated customers, from the ring;
 Consider each of these nodes in a random order and, if it is a customer,
 allocate or visit it in its best feasible position in the ring;
 Else

 NewSolution := CurrentSolution with i and j swapped;
 End If;
 If (NewSolution is feasible) and (cost (NewSolution) < cost (CurrentSolution)) Then
 CurrentSolution : = NewSolution;
 Possibly update BestCost and BestSolution;
 Break;
 End If;

 End For;

 End For.

2.2.2.2. Steiner-Node-Removal

 In this procedure, we extract, in a random order, each visited Steiner node, with its allocated

customers, from the current solution, and reassign the extracted customers to new feasible positions,

so as to decrease the global cost. Starting from the first randomly selected Steiner node, we extract

the node along with all its allocated customers. Then, we reinsert each of the extracted customers in

its best feasible position, by considering its T nearest nodes. If the new solution is not improved

with respect to the current one, all the extracted nodes are reinserted in their previous position.

Otherwise we update the current solution (and possibly BestSolution and BestCost). We repeat this

procedure until all the Steiner nodes of the current solution have been examined.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 35

2.2.2.3. Extraction-Assignment Procedure

 In this procedure, we extract, in a random order, each customer i from its current position,

and reassign it to a possibly better feasible position by using some specific moves designed for the

procedure.

Let us consider the case in which i is an allocated customer or a visited customer with no

allocation. First we extract customer i from its current position. To speed up the search we consider

a limited neighborhood of customer i containing only its T nearest nodes. Let us consider j as the th
l

node nearest to i. If j is a visited customer or a visited/unvisited Steiner node, regardless of the

status of customer i (visited with no allocation or allocated), we can consider three different

possibilities for customer i. If j is a visited node, customer i can be allocated to node j, or visited

Algorithm 2.5. Extraction-Assignment Procedure.

Randomly order the customers;
For i = 1,�, |U| do

 If i is an allocated customer or a visited customer with no allocation Then

 Extract i from its current position;
 For l = 1,�, T do
 j :=

th
l node nearest to customer i;

 If (j is not an allocated customer) Then

 State1. Consider the allocation of i to the visited node j;
 State2. Consider the visit of i before or after the visited node j;
 State3. If j is an unvisited Steiner node, Then
 consider the allocation of i to j and visit j in its best feasible position
 among its T nearest visited nodes;
 End If;
 Select the feasible State corresponding to the minimum cost and possibly
 update BestState;
 End If;

 End For;

 Else

 Extract customer i, along with all its allocated customers, from the current solution,
 and assign each of them to its best feasible position by considering its T nearest
 visited nodes;
 Possibly update BestState based on the new positions of the customers;
 End If;

 NewSolution := CurrentSolution by forcing the BestState;
 If cost (NewSolution) < cost (CurrentSolution) Then
 CurrentSolution := NewSolution;
 Possibly update BestCost and BestSolution;
 End If;

End For.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 36

before or after node j, depending on the position that yields the minimum insertion cost. Finally, if j

is an unvisited Steiner node, customer i is allocated to node j, and j is visited in its best position

among its T nearest visited nodes. After having considered all the possible extraction-assignment

moves, by examining the T nodes nearest to i, we select the BestState, i.e. the move that yields the

least total cost. Let us consider now the case in which the considered customer i is a visited one

with some allocations, we follow the idea proposed in the Steiner-Node-Removal Procedure. This

means that we extract customer i, along with all its allocated customers, from the current solution.

Then, we reassign the extracted customers to their best feasible position and consider these

assignments for defining the BestState.

In both cases the new solution, corresponding to the extraction and reassignment of

customer i, is obtained from the current solution by forcing the BestState. In case of improvement of

the total cost, we update the current solution. The outline of this procedure is given in Algorithm 2.5.

2.2.3. Shaking Procedure

Since the Improvement Procedure could fail in improving the current solution, the algorithm

tries to escape from the local optimum by perturbing the current solution. In particular, we extract in

a random order I nodes (where I is an input parameter), along with their possible allocated

customers, from the current solution and construct a restricted solution by short cutting them. Then,

starting from the first extracted customer, we examine all possible positions for allocating or

visiting the customer in the current restricted solution and reassign it to its best feasible position (i.e.,

to the feasible position that produces the minimum extra cost) in the current restricted solution. We

iterate this procedure until all the extracted customers are visited or allocated. The outline of the

Shaking Procedure is given in Algorithm 2.6.

Algorithm 2.6. Shaking Procedure.

 For i = 1,�, I do
 Randomly extract a node, along with all its possible allocated customers,
 from the current solution;
 End For;

 While all the extracted customers are not allocated or visited do
 Consider the next unvisited or not allocated customer and assign it to its
 best feasible position.
 End While.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 37

2.3. Computational Results

The performance of the proposed heuristic for the CmRSP has been evaluated by

considering the benchmark instances proposed by Baldacci et al. [5] derived from the TSPLIB

library defined by Reinelt [65].

The dataset used in [5] is divided into two classes (A and B) including instances from 26 to

101 nodes. The topology of the underlying graphs in both classes is the same, but they are different

in the cost structure. In particular, in class A the routing and allocation costs corresponding to a pair

of given nodes i and j are the same and equal to the Euclidean distance ije , computed according to

the TSPLIB standard. In class B the allocation cost is smaller than the routing cost. In particular,

 ijij ec 7 and  ijij ed 3 , where ijc and ijd are the routing and allocation costs, respectively,

corresponding to the pair of nodes i and j. The 6 additional real-world instances considered by

Baldacci et al. [5] are not available.

The overall algorithm has been implemented in C and the computational experiments have

been performed on an Intel processor with 1.66 GHz and 1 GB RAM. The performance of the

proposed heuristic depends on the parameters P and Max_Iter (Section 2.2), T (Sections 2.2.2.1,

2.2.2.2 and 2.2.2.3) and I (Section 2.2.3). Like for other heuristics, extensive computational tests

have been made to find a suitable set of parameters. The total number of iterations of the main loop

of the algorithm, Max_Iter, is set to 2000. The other parameters were defined as: P = 1.05, T =

0.2*|V| and I = 0.5*|U|. As it is customary in testing the performance of the randomized heuristic

algorithms, we performed more independent executions of the algorithm. In particular, for each

benchmark instance, 5 independent runs of the algorithm have been performed, with 5 different

seeds for initializing the random number generator. The best, worst and average performance of the

heuristic are provided in Tables 2.1 and 2.2. All the computing times are expressed in seconds. The

first column gives the instance name, in which the numbers following n and m are the number of

nodes and the number of rings, respectively. The second column gives the number of customers (|U|)

and the third one shows the capacity (Q) of each ring. Columns 4 (H1) and 6 (H2) give the upper

bounds obtained by using heuristics H1 and H2 proposed by Baldacci et al. [5]; their corresponding

computing times are reported in columns 5 and 7, respectively. These results have been obtained by

running the original codes (provided by Roberto Baldacci) on a Pentium IV computer with 3.4 GHz

and 1 GB of RAM. Columns 8 and 9 report the optimal (or the best feasible) solution value

obtained by the exact algorithm BC (Baldacci et al. [5]) and the corresponding computing time,

respectively. These results (obtained on a Pentium IV computer with 2.2 GHz and 1 GB of RAM)

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 38

are taken from Tables 5 and 6 of Baldacci et al. [5]. For the BC algorithm the termination criterion

is 2 hours of computing time. For the instances whose computing time is 7200 seconds, the optimal

solution value is not available (the best upper bound found within the time limit is reported). The

last 5 columns in Tables 2.1 and 2.2 provide the results of the proposed heuristic. For each instance

the columns labeled by �Best� and �Worst� report the best and the worst solution values,

respectively, obtained during the five independent runs of the algorithm. The column labeled by

�Avg.Gap� gives the average gap of the five solution values with respect to the best value found by

the heuristic during the five runs. Finally the last two columns report, respectively, the average

solution time, i.e., the average computing time at which the best solution has been obtained, and the

average running time required to execute the 2000 iterations of the main loop of the proposed

heuristic. In both tables, for each instance, the values which are equal to the best solution value, are

written in bold. The last three lines of the tables give, respectively, the average values of the

corresponding columns, the number of best solutions found by the considered algorithms, and the

computer used in the computational experiments. Whenever the optimal solution is not known and

the proposed heuristic improves the best known solution value, this is shown with a star mark.

Tables 2.1 and 2.2 show that for the instances solved to optimality by the BC algorithm,

totally 63 out of 90 instances, the proposed heuristic is able to obtain 62 optimal solutions, by

considering the best performance of the algorithm, while this value is 56 for its worst performance

among the five independent runs. For the remaining 27 instances, whose optimal solution values are

not available, the best performance of the heuristic improves the best known solution for 24

instances, there are 2 ties, and just for one instance the proposed heuristic finds a solution worse

than the best known one. By considering its worst performance on these 27 instances, the proposed

heuristic improves the best known solution for 21 instances, in 2 cases the results are the same and

in 4 cases the results are worse. The tables also show that the proposed heuristic clearly outperforms

the heuristic algorithms H1 and H2 proposed by Baldacci et al. [5].

In terms of the global running time, the proposed algorithm is faster than heuristics H1 and

H2: the average running times of the proposed method are 1.1 and 2.0 seconds for Classes A and B,

respectively, while the average solution times of H1 and H2 are, respectively, 5.4 and 29.7 seconds

for class A, and 5.9 and 28.9 seconds for Class B. The exact algorithm BC has of course much

larger computing times.

A comparison of the proposed heuristic with the Hybrid Metaheuristic approach presented

by Mauttone et al. [52] is reported in Table 2.3. The performances of both methods are compared

with those reported in Baldacci et al. [5], using the GAP and Time Ratio factors. For each instance,

the GAP factor is calculated by using Equation (1), where Z* is the best solution value found by

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 39

Table 2.1. Comparison of the proposed heuristic with algorithms H1, H2 and BC [5] for class A.

Heuristic Algorithm
Instances |U| Q H1 Time H2 Time BC Time

Best Worst Avg.Gap
Avg.Sol

Time
Avg.Run

Time
A01-n026-m03 12 5 242 0.3 242 0.1 242 0.1 242 242 0.00 0.0 0.1

A02-n026-m04 12 4 261 0.3 261 0.0 261 0.0 261 261 0.00 0.0 0.1

A03-n026-m05 12 3 292 0.3 292 0.0 292 0.0 292 292 0.00 0.0 0.1

A04-n026-m03 18 7 301 0.4 301 0.7 301 0.5 301 301 0.00 0.0 0.1

A05-n026-m04 18 5 339 0.4 339 0.4 339 0.3 339 339 0.00 0.0 0.1

A06-n026-m05 18 4 375 0.4 375 1.4 375 0.7 375 375 0.00 0.0 0.2

A07-n026-m03 25 10 333 0.8 333 1.7 325 3.8 325 325 0.00 0.0 0.2

A08-n026-m04 25 7 362 0.7 362 0.9 362 0.3 362 362 0.00 0.0 0.2

A09-n026-m05 25 6 382 0.6 382 0.6 382 0.2 382 382 0.00 0.0 0.2

A10-n051-m03 12 5 242 0.3 242 0.1 242 0.2 242 242 0.00 0.0 0.1

A11-n051-m04 12 4 261 0.2 261 0.1 261 0.4 261 261 0.00 0.0 0.1

A12-n051-m05 12 3 286 0.3 286 0.1 286 0.1 286 286 0.00 0.0 0.1

A13-n051-m03 25 10 331 0.8 322 1.0 322 2.1 322 322 0.00 0.0 0.3

A14-n051-m04 25 7 360 0.7 360 1.1 360 2.1 360 360 0.00 0.0 0.3

A15-n051-m05 25 6 379 0.6 379 1.7 379 2.3 379 379 0.00 0.0 0.4

A16-n051-m03 37 14 373 2.3 373 6.7 373 8.4 373 373 0.00 0.0 0.6

A17-n051-m04 37 11 408 1.6 408 7.6 405 41.7 405 405 0.00 0.1 0.6

A18-n051-m05 37 9 441 2.2 435 11.8 432 52.2 432 434 0.19 0.1 0.6

A19-n051-m03 50 19 459 4.8 469 14.1 458 182.8 458 459 0.04 0.1 0.8

A20-n051-m04 50 14 501 3.0 493 20.8 490 220.4 490 490 0.00 0.2 0.8

A21-n051-m05 50 12 521 5.3 521 19.2 520 6334.2 520 521 0.15 0.1 1.0

A22-n076-m03 18 7 330 0.7 330 2.9 330 48.3 330 330 0.00 0.0 0.3

A23-n076-m04 18 5 385 0.6 385 2.7 385 30.6 385 385 0.00 0.0 0.3

A24-n076-m05 18 4 448 0.8 448 4.2 448 63.7 448 448 0.00 0.0 0.4

A25-n076-m03 37 14 407 2.2 409 9.5 402 567.7 402 402 0.00 0.1 0.8

A26-n076-m04 37 11 462 2.3 461 16.5 460 7200.0 457 * 458 * 0.18 0.1 0.9

A27-n076-m05 37 9 479 3.1 484 21.4 479 509.3 479 479 0.00 0.1 0.9

A28-n076-m03 56 21 475 7.3 478 38.9 471 1584.4 471 471 0.00 0.3 1.5

A29-n076-m04 56 16 523 7.1 524 50.5 523 7200.0 519 * 520 * 0.15 0.1 1.4

A30-n076-m05 56 13 552 6.3 552 40.2 545 3221.3 545 549 0.55 0.2 1.5

A31-n076-m03 75 28 570 14.8 565 45.0 564 479.5 564 569 0.18 0.6 2.2

A32-n076-m04 75 21 617 15.3 628 57.4 606 7200.0 602 * 607 0.37 0.4 2.3

A33-n076-m05 75 17 659 13.6 654 81.7 654 7200.0 640 * 651 * 1.38 0.6 1.6

A34-n101-m03 25 10 363 0.9 363 3.2 363 8.7 363 363 0.00 0.0 0.5

A35-n101-m04 25 7 415 1.1 415 9.2 415 91.8 415 415 0.00 0.0 0.6

A36-n101-m05 25 6 448 1.5 448 10.8 448 680.4 448 448 0.00 0.0 0.7

A37-n101-m03 50 18 503 6.5 501 58.8 500 7200.0 500 500 0.00 0.0 1.3

A38-n101-m04 50 14 532 3.9 533 44.5 532 7200.0 528 * 528 * 0.00 0.1 1.5

A39-n101-m05 50 12 571 4.0 568 48.4 568 7200.0 567 * 567 * 0.00 0.1 1.4

A40-n101-m03 75 28 605 18.6 622 115.6 595 6690.1 595 595 0.00 0.5 2.6

A41-n101-m04 75 21 629 13.3 635 74.5 625 7200.0 623 * 624 * 0.03 0.4 2.6

A42-n101-m05 75 17 663 11.5 665 120.5 662 7200.0 657 * 661 * 0.24 1.0 2.4

A43-n101-m03 100 38 672 31.7 672 134.3 646 283.0 647 656 0.68 2.0 5.0

A44-n101-m04 100 28 702 26.5 704 109.0 680 7200.0 679 * 683 0.27 1.7 4.7

A45-n101-m05 100 23 719 24.5 717 148.7 700 1310.8 700 700 0.00 2.3 4.5

Average 448.40 5.4 448.82 29.7 444.62 2098.3 443.80 444.89 0.10 0.2 1.1

best 21 21 36 44 32

Pentium IV,

 3.4 GHz
Pentium IV,

 2.2 GHz
Intel, 1.66 GHz

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 40

Table 2.2. Comparison of the proposed heuristic with algorithms H1, H2 and BC [5] for class B.

Heuristic Algorithm
Instances |U| Q H1 Time H2 Time BC Time

Best Worst Avg.Gap
Avg.Sol

Time
Avg.Run

Time
B01-n026-m03 12 5 1684 0.3 1684 0.1 1684 0.1 1684 1684 0.00 0.0 0.1
B02-n026-m04 12 4 1827 0.2 1827 0.1 1827 0.1 1827 1827 0.00 0.0 0.1
B03-n026-m05 12 3 2041 0.3 2041 0.0 2041 0.0 2041 2041 0.00 0.0 0.1
B04-n026-m03 18 7 2104 0.4 2104 0.6 2104 0.5 2104 2104 0.00 0.0 0.1
B05-n026-m04 18 5 2370 0.4 2370 1.5 2370 0.5 2370 2370 0.00 0.0 0.2
B06-n026-m05 18 4 2615 0.5 2615 2.2 2615 0.7 2615 2615 0.00 0.0 0.2
B07-n026-m03 25 10 2314 0.8 2251 1.6 2251 0.4 2251 2251 0.00 0.0 0.2
B08-n026-m04 25 7 2510 1.1 2510 1.2 2510 0.5 2510 2510 0.00 0.0 0.2
B09-n026-m05 25 6 2674 0.8 2674 2.9 2674 0.8 2674 2674 0.00 0.0 0.2
B10-n051-m03 12 5 1681 0.3 1681 0.4 1681 0.8 1681 1681 0.00 0.0 0.2
B11-n051-m04 12 4 1821 0.2 1821 0.6 1821 1.5 1821 1821 0.00 0.0 0.1
B12-n051-m05 12 3 1972 0.3 1972 0.2 1972 0.3 1972 1972 0.00 0.0 0.2
B13-n051-m03 25 10 2176 1.5 2176 1.6 2176 1.1 2176 2176 0.00 0.0 0.3
B14-n051-m04 25 7 2476 1.1 2495 4.1 2470 7.2 2470 2470 0.00 0.0 0.3
B15-n051-m05 25 6 2596 1.0 2579 2.4 2579 4.1 2579 2579 0.00 0.0 0.4
B16-n051-m03 37 14 2507 2.3 2599 9.4 2490 17.9 2490 2490 0.00 0.2 0.7
B17-n051-m04 37 11 2772 1.9 2811 10.5 2721 74.9 2721 2721 0.00 0.0 0.7
B18-n051-m05 37 9 2938 2.2 2937 14.2 2908 145.0 2908 2941 0.23 0.2 0.8
B19-n051-m03 50 19 3095 4.0 3071 17.4 3015 296.7 3015 3015 0.00 0.2 1.5
B20-n051-m04 50 14 3365 3.6 3298 18.1 3260 336.6 3260 3260 0.00 0.2 1.4
B21-n051-m05 50 12 3525 5.7 3516 18.9 3404 6470.7 3404 3404 0.00 0.6 1.5
B22-n076-m03 18 7 2260 0.7 2259 2.6 2253 105.5 2253 2253 0.00 0.1 0.4
B23-n076-m04 18 5 2625 0.5 2620 3.3 2620 29.5 2620 2620 0.00 0.0 0.4
B24-n076-m05 18 4 3059 0.9 3059 3.4 3059 85.3 3059 3059 0.00 0.0 0.4
B25-n076-m03 37 14 2742 3.1 2720 14.3 2720 1897.6 2720 2720 0.00 0.1 0.9
B26-n076-m04 37 11 3176 2.7 3138 17.5 3138 7200.0 3100 * 3123 * 0.49 0.6 1.1
B27-n076-m05 37 9 3339 3.0 3364 23.8 3311 7200.0 3284 * 3284 * 0.00 0.1 0.9
B28-n076-m03 56 21 3112 7.1 3146 31.4 3088 7200.0 3044 * 3064 * 0.52 0.9 2.6
B29-n076-m04 56 16 3447 5.1 3496 50.3 3447 7200.0 3415 * 3466 0.69 1.2 2.4
B30-n076-m05 56 13 3652 4.6 3703 35.5 3648 7200.0 3636 * 3645 * 0.17 0.9 2.5
B31-n076-m03 75 28 3786 14.1 3820 69.1 3740 7200.0 3652 * 3734 * 0.96 1.2 5.0
B32-n076-m04 75 21 4057 13.9 4084 78.8 4026 7200.0 4003 * 4011 * 0.12 1.8 4.4
B33-n076-m05 75 17 4442 15.9 4288 54.5 4288 7200.0 4217 * 4217 * 0.00 2.2 4.0
B34-n101-m03 25 10 2437 0.7 2439 4.3 2434 24.2 2434 2434 0.00 0.0 0.7
B35-n101-m04 25 7 2782 1.2 2819 9.5 2782 115.4 2782 2782 0.00 0.0 0.7
B36-n101-m05 25 6 3043 1.0 3012 4.8 3009 862.4 3009 3009 0.00 0.0 0.8
B37-n101-m03 50 18 3404 6.3 3387 37.2 3332 7200.0 3322 * 3322 * 0.00 0.3 1.7
B38-n101-m04 50 14 3593 4.3 3586 32.1 3533 7200.0 3533 3533 0.00 0.1 1.8
B39-n101-m05 50 12 3880 4.4 3872 33.2 3872 7200.0 3834 * 3841 * 0.15 1.4 2.0
B40-n101-m03 75 28 3935 26.0 3923 260.7 3923 7200.0 3887 * 3889 * 0.02 2.7 4.6
B41-n101-m04 75 21 4190 16.0 4202 63.5 4125 7200.0 4082 * 4114 * 0.16 2.0 4.5
B42-n101-m05 75 17 4486 14.2 4458 47.9 4458 7200.0 4358 * 4358 * 0.00 1.6 3.8
B43-n101-m03 100 38 4275 35.9 4155 103.0 4110 7200.0 4135 4193 0.38 9.3 13.4
B44-n101-m04 100 28 4583 28.0 4608 97.4 4506 7200.0 4358 * 4391 * 0.45 6.2 10.8
B45-n101-m05 100 23 4671 26.7 4639 114.6 4632 7200.0 4567 * 4597 * 0.21 6.4 9.3

Average 3023.09 5.9 3018.42 28.9 2991.71 2952.9 2975.04 2983.67 0.10 0.9 2.0

best 14 17 30 44 32

 Pentium IV,
 3.4 GHz

Pentium IV,
2.2 GHz Intel, 1.66 GHz

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 41

Table 2.3. Comparison of the proposed method with Hybrid Metaheuristic [52].

Hybrid Metaheuristic Heuristic Algorithm
Group

GAP(%) Time Ratio GAP(%) Time Ratio

Class N
No.

Instances
Best Avg. Worst Min Max Best Avg. Worst Min Max

A 26 9 0.00 0.34 2.09 < 1 2 0.00 0.00 0.00 0.00 19.02

A 51 12 0.00 0.89 2.55 < 1 66 0.00 0.01 0.19 1.27 6598.39

A 76 12 -0.43 1.51 3.47 3 208 -2.14 -0.12 0.89 101.34 8461.20

A 101 12 0.28 2.04 4.71 < 1 194 -0.75 -0.06 1.55 24.44 5630.05

B 26 9 0.55 1.24 3.29 < 1 < 1 0.00 0.00 0.00 0.00 4.46

B 51 12 0.88 3.43 5.35 < 1 49 0.00 0.02 1.13 1.84 4397.75

B 76 12 1.42 3.19 5.99 4 121 -2.35 -0.53 0.55 81.55 7916.96

B 101 12 3.20 4.24 6.18 1 70 -3.28 -0.68 2.02 36.47 4205.84

Overall Avg. 0.74 2.11 4.20 -1.07 -0.17 0.79

 PC, 2 GHz Intel, 1.66 GHz

*

*)(
*100

Z

ZZ
GAP

best 
 (2.1)

Baldacci et al. [5] and Zbest is the best solution value found during the different executions of the

Hybrid Metaheuristic [52] or of the proposed heuristic. As mentioned before, we have executed 5

independent runs of the code, while 15 independent runs have been considered for the Hybrid

Metaheuristic approach [52]. The other factor reported in Table 2.3, Time Ratio, is obtained by

dividing, for each instance, the execution time of algorithm BC reported in [5] over the average

computing time of the independent executions performed by each of the two heuristics. The

computing times of the Hybrid Metaheuristic [52] refer to a PC computer with 2 GHz and 1 GB of

RAM.

Considering the average performance of the two heuristics, Table 2.3 shows the superiority

of the proposed heuristic for the considered instances. As it can be seen from this table, by

considering the average performance of the methods, the overall average GAP is 2.11 for the

Hybrid Metaheuristic and -0.17 for the heuristic method. Moreover, mainly for the larger instances,

the proposed heuristic is much faster than the Hybrid Metaheuristic.

During its independent executions, the Hybrid Metaheuristic was able to obtain 2 new best

solutions (instances A26 and A29) with respect to the solutions found by algorithm BC [5].

However the proposed heuristic not only was able to further improve these 2 new best solutions, but

improved as well 22 additional best known solutions.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 42

Finally, we executed the proposed heuristic with different tunings of parameters P and T,

to investigate how the threshold accepting parameter (P) and the neighborhood size (T) affect the

overall performance of the method. To do so, we considered all the instances proposed by Baldacci

et al. [5] and fixed the maximum number of iterations.

Figure 2.3. Analyzing the effect of parameter P in total cost.

1 1.05 1.1 1.2 1.3
153900

154000

154100

154200

154300

154400

P

T
o
ta

l
C
o
s
t

Threshold Value Analysis

Figure 2.4. Analyzing the effect of parameter T in total cost.

0.1 |V| 0.2 |V| 0.3 |V| 0.4 |V| 0.5 |V|
153900

154000

154100

154200

154300

154400
Reduction Parameter Analysis

T

T
o

ta
l

C
o

s
t

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 43

Figures 2.3 and 2.4 represent the sensitivity of the heuristic method with respect to the

different considered values. In these figures the vertical lines represent the total cost of the 90

benchmark instances for the different considered values of parameters P and T, as shown in the

horizontal lines of Figures 2.3 and 2.4, respectively. As it can be seen from the figures, the

minimum cost values occur for P=0.05 and T=0.2, which are the values considered to run the code.

2.4. Conclusion

 We have proposed an effective heuristic approach for the Capacitated m-Ring-Star Problem

(CmRSP). In the proposed heuristic, after the construction of the initial solution, we apply an

improvement method based on a set of swap and Extraction-Assignment moves, followed by the

Lin-Kernighan TSP procedure to find a better order of the visited nodes. The proposed heuristic

incorporates some random aspects obtained by perturbing the current solution in the shaking

procedure, which is applied whenever the algorithm remains in a local optimum.

We compared the proposed heuristic with the best state-of-the-art algorithms for the CmRSP

on a set of benchmark instances from the literature. The results show the effectiveness of the

proposed method. It turned out that in the considered instances the proposed heuristic can obtain

most of the optimal solutions, within a short computing time, and can improve most of the upper

bounds for the instances whose optimal solution is not known.

2.5. Acknowledgments

We would like to thank Roberto Baldacci who provided us the codes of algorithms H1 and

H2 proposed in Baldacci et al. [5].

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 44

Chapter 3:

Variable Neighborhood Search

For

 the Cost Constrained Minimum Label

Spanning Tree Problem

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 45

Abstract:

Given an undirected graph whose edges are labeled or colored, edge weights indicating the

cost of an edge, and a positive budget B, the goal of the Cost Constrained Minimum Label Spanning

Tree (CCMLST) Problem is to find a spanning tree that uses the minimum number of labels while

ensuring its cost does not exceed B. This problem is motivated from the design of

telecommunication networks and is known to be NP-complete [82].

In this chapter, we present a Variable Neighborhood Search (VNS) algorithm for the

CCMLST problem. We test the VNS algorithm on existing data sets as well as a large-scale dataset

based on TSPLIB [65] instances ranging in size from 500 to 1000 nodes. For the CCMLST problem,

the procedures suggested in [82] (for the Label constraint Minimum Spanning Tree Problem) can be

applied by means of a binary search procedure. Consequently, we compared our VNS algorithm to

the GA and two local search procedures suggested in [82]. The overall results demonstrate that the

proposed VNS algorithm is of high quality and computes solutions rapidly. On our test datasets, it

obtains the optimal solution in all instances for which the optimal solution is known. Further, it

significantly outperforms the GA and two local search procedures described in [82].

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 46

3.1. Introduction

The Minimum Label Spanning Tree (MLST) problem was introduced by Chang and Leu

[19]. In this problem, we are given an undirected graph  EVG , with labeled edges; each edge

has a single label from the set of labels L and different edges can have the same label. The objective

is to find a spanning tree with the minimum number of distinct labels. The MLST is motivated from

applications in the communications sector. Since communication networks sometimes include

numerous different media such as fiber optics, cable, microwave or telephone lines and

communication along each edge requires a specific media type, decreasing the number of different

media types in the spanning tree reduces the complexity of the communication process. The MLST

problem is known to be NP-complete [19]. Several researchers have studied the MLST problem

including Brüggemann et al. [11], Cerulli et al. [18], Consoli et al. [22], Krumke and Wirth [42],

Wan et al. [79], and Xiong et al. [80, 81, 83].

Recently Xiong et al. [82] introduced a more realistic version of the MLST problem called

the Label Constrained Minimum Spanning Tree (LCMST) problem. In contrast to the MLST

problem, which completely ignores edge costs, the LCMST problem takes into account the cost or

weight of edges in the network (we use the term cost and weight interchangeably in this chapter).

The objective of the LCMST problem is to find a minimum weight spanning tree that uses at most

K labels (i.e., different types of communications media). Xiong et al. [82] describe two simple local

search heuristics and a genetic algorithm for solving the LCMST problem. They also describe a

Mixed Integer Programming (MIP) model to solve the problem exactly. However, the MIP models

were unable to find solutions for problems with greater than 50 nodes due to excessive memory

requirements.

The Cost Constrained Minimum Label Spanning Tree (CCMLST) problem is another

realistic version of the MLST problem. The CCMLST problem was introduced by Xiong et al. [82].

In contrast to the LCMST problem, there is a threshold on the cost of the minimum spanning tree

(MST) while minimizing the number of labels. Thus, given a graph G = (V, E), where each edge

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 47

(i, j) has a label from the set L and an edge weight cij, and a positive budget B, the goal of the

CCMLST problem is to find a spanning tree with the fewest number of labels whose weight does

not exceed the budget B. The notion is to design a tree with the fewest number of labels while

ensuring that the budget for the network design is not exceeded. (Notice that the objective function

here is not the cost of the spanning tree, but rather the number of labels in the spanning tree). Xiong

et al. [82] showed that both the LCMST and the CCMLST are NP-Complete. Thus, the resolution

of these problems requires heuristics.

In this research, we focus on the CCMLST problem. We propose a Variable Neighborhood

Search (VNS) method for the CCMLST problem. The VNS algorithm uses neighborhoods defined

on the labels. We then compare the VNS method to the heuristics described by Xiong et al. [82]. In

fact, we adapt the procedures of Xiong et al. [82] by embedding them in a binary search. To do so,

we consider existing data sets and also design a set of nine Euclidean large-scale datasets, derived

from TSPLIB instances [65]. The VNS method performs extremely well on the CCMLST problem,

with respect to solution quality and computational running time.

The rest of this chapter is organized as follows. Section 3.2 describes the mathematical

formulation proposed for the CCMLST problem. Section 3.3 describes the VNS method that we

have proposed to solve the problem. Section 3.4 describes the procedures of Xiong et al. [82] for the

LCMST problem, and explains the binary search procedure to apply them for the CCMLST

problem. Section 3.5 reports on our computational experiments. Finally, Section 3.6 provides

concluding remarks.

3.2. Mathematical Formulation

In this section, we provide a mixed integer programming (MIP) model for the CCMLST

problem. It is based on a multicommodity network flow formulation, and is similar to the MIP

model described in Xiong et al. [82] (though our notation is somewhat more compact). Further, we

significantly strengthen the model by improving upon one of the constraints in their model.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 48

The main idea in the multicommodity network flow model is to direct the spanning tree

away from an arbitrarily selected root node, and to use flow variables to model the connectivity

requirement. To help define the multicommodity network flow model, we define a bidirected

network obtained by replacing each undirected edge {i, j} by a pair of directed arcs (i, j) and (j, i).

Let A denote the set of arcs, L= {1,2,�,l} the set of labels, V= {1,2,�,n} the set of nodes in the

graph, and B the budget. Also, let Ak denote the set of all arcs with label k and cij be the cost of arc (i,

j). Note that the cost and label of arcs (i, j) and (j, i) are identical to those of edge {i, j}. To model

the fact that the spanning tree must be connected, we use the following well-known idea [51] and

multicommodity network flow model. We pick node 1 as the root node (any node of the graph may

be picked for this purpose). We then observe that the spanning tree on the nodes can be directed

away from the root node. Consequently, we create commodities, where each commodity has the

root node as its origin and the destination is one of the nodes in {2, 3,�., n} (for a total of n-1

commodities). Each commodity has a supply of 1 unit of flow and a demand of 1 unit of flow. The

variables in the multicommodity network flow formulation are defined as follows:






otherwise

selectedisklabelif
yk 0

1

1 (,)

0ij

if arc i j is used
x

otherwise


 


and

flow of commodity along arc (,)h

ijf h i j .

The MIP formulation based on the multicommodity flow (mcf) model is as follows:

(mcf) 
Lk

kymin (3.1)

subject to
(,)

1
ij

i j A

x n


  (3.2)

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 49

}1{\1
),(:),(:

Vhff
Alhl

h

hl

Ahii

h

ih  


 (3.3)

}1{\1
),1(:

1
)1,(:

1 Vhff
All

h

l

Aii

h

i  


 (3.4)

hjVhff
Aljl

h

jl

Ajii

h

ij  


},1{\0
),(:),(:

 (3.5)

    1\,, VhAjixf ij

h

ij  (3.6)

  1 ,
ij ji

x x i j E    (3.7)

 

 
,

1
k

ij k

i j A

x n y k L


     (3.8)

 ,
ij ij

i j A

c x B


 (3.9)

    , 0,1 , ,
ij k

x y i j A k L     (3.10)

     1\,,0 VhAjif
h

ij (3.11)

In the objective function (3.1), we want to minimize the total number of labels used in the

solution. Constraint (3.2) ensures the tree has exactly (n-1) arcs. Constraints (3.3) to (3.5) represent

the flow balance constraints for the commodity flows. Constraint set (3.6) is a forcing constraint set.

These constraints enforce the condition that if flow is sent along an arc, the arc must be included in

the directed tree. Constraint set (3.7) ensures that either arc (i, j) or arc (j, i) can be in the solution,

but not both (recall the tree must be directed away from the root node). Constraint set (3.8) is a

forcing constraint set between arcs and labels. It says that if an arc with label k is used, then this

label must be selected. Constraint (3.9) imposes the budget on the tree cost. Finally, constraint (3.10)

defines the arc and label variables as binary, and constraint (3.11) defines the flow variables as non-

negative.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 50

With the change in the objective function and constraint (3.9) the multicommodity flow

formulation is virtually identical to Xiong et al. [82] (we have eliminated the edge variables in the

Xiong et al. [82] model and thus our notation is somewhat more compact). However, this

formulation can be considerable strengthened by using the technique of constraint disaggregation

(see page 185 of [29]) on constraint set (3.8). We replace this constraint with the stronger:

 , (,)
ij k k

x y k L i j A     .)8.3(

In our computational work, we use the multicommodity flow model with constraint set (3.8�)

to obtain lower bounds and optimal solutions on our test instances. We found that it is considerably

stronger than the multicommodity flow model proposed by Xiong et al. [82] that has constraint

(3.8).

3.3. Variable Neighborhood Search for the CCMLST Problem

In this section, we develop our Variable Neighborhood Search algorithm for the CCMLST

problem. Variable Neighborhood Search is a metaheuristic proposed by Mladenovic and Hansen

[53], which explicitly applies a strategy based on dynamically changing neighborhood structures.

The algorithm is very general and many degrees of freedom exist for designing variants.

The basic idea is to choose a set of neighborhood structures that vary in size. These

neighborhoods can be arbitrarily chosen, but usually a sequence of neighborhoods with increasing

cardinality is defined. In the VNS paradigm, an initial solution is generated, then the neighborhood

index is initialized, and the algorithm iterates through the different neighborhood structures looking

for improvements, until a stopping condition is met.

We consider VNS as a framework, and start by constructing an initial solution. We then

improve upon this initial solution using local search. Then, the improvement of the incumbent

solution (R) continues in a loop until the termination criterion is reached. This loop contains a

shaking phase and a local search phase. The shaking phase follows the VNS paradigm. It considers

a specially designed neighborhood and makes random changes to the current solution that enables

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 51

us to explore neighborhoods farther away from the current solution. The local search phase

considers a more restricted neighborhood set and attempts to improve upon the quality of a given

solution.

We now make an important observation regarding the relationship between the selected

labels and the associated solution. Given a set of labels R L , the minimum cost solution on the

labels R is the minimum spanning tree computed on the graph induced by the labels in R. We

denote the minimum spanning tree on the graph induced by the labels in R as MST(R) and its cost

by MSTCOST(R). These two can be computed rapidly using any of the well-known minimum

spanning tree algorithms [43, 63]. Consequently, our search for a solution focuses on selecting

labels (as opposed to edges), and our neighborhoods as such are neighborhoods on labels. Our

solutions then are described in terms of the labels they contain (as opposed to the edges they

contain). Furthermore, without loss of generality, we assume MSTCOST(L) ≤ B, because if B <

MSTCOST(L) the problem is infeasible.

3.3.1. Initial Solution

Our procedure to construct an initial solution focuses on selecting a minimal set of labels

that result in a connected graph. Let Components(R) denote the number of connected components in

the graph induced by the labels in R. This can easily be computed using depth first search [74]. Our

procedure adds labels to our solution in a greedy fashion. The label selected for addition to the

current set of labels is the one (amongst all the labels that are not in the current set of labels) that

when added results in the minimum number of connected components. Ties between labels are

broken randomly. In other words, we choose a label for addition to the current set of labels R

randomly from the set

     }{min:\ tRComponentsRLtS  . (3.12)

This continues until the selected labels result in a single component.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 52

 In Figure 3.1, an example illustrating the initialization method is shown. Suppose there are

three labels, namely a, b, and c, in the label set. Since the number of connected components after

adding label c is less than for the two other labels, we add this label to the solution. However the

graph is still not connected, so we go further by repeating this procedure with the remaining labels.

Both labels a and b produce the same number of components, so we select one of them randomly

(label b).

Before considering the cost constraint, which we need to satisfy, we have found it useful to

try to improve the quality of the initial solution slightly. To this aim, we swap used and unused

labels in a given solution in order to decrease the cost of a minimum spanning tree on the selected

labels. We scan through the labels in the current solution. We iteratively consider all unused labels

and attempt to swap a given label in the current solution with an unused label if it results in an

improvement (i.e., the cost of the minimum spanning tree on the graph induced by the labels

decreases). As soon as an improvement is found, it is implemented and the next used label in the

current solution is examined. This is illustrated with an example in Figure 3.2. Consider  cbA ,

we have MSTCOST(A) = 12 and MSTCOST({ \ } })A b a = 9. Therefore, we remove labelb and

add label a to the representation of our solution.

At this stage, it is possible that the set of labels in the current solution does not result in a

tree that satisfies the budget constraint. To find a set of labels that does, we iteratively add labels to

the current set of labels by choosing the label that, when added, results in the lowest cost minimum

spanning tree. In other words the label to be added is selected from

})}{(min:)\({ tRMSTCOSTRLtS  , (3.13)

and ties are broken randomly. We continue adding labels to the current solution in this fashion until

we obtain a minimum spanning tree satisfying the cost constraint. (Recall since B ≥ MSTCOST(L) a

feasible solution exists and the initialization phase will find one).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 53

Figure 3.1. An example illustrating the selection of labels for the initial connected subgraph

 2 2 Labels:

 1 3 1 3 1 a
 2 2
 b

 2.5 1 2.5
 c

Initial graph

 2 2

 3 3
 1 1 1
 2 2
 1

 2.5 2.5

   4aComponents   3bComponents   2cComponents

 2 2

 3 3
 2 2

 2.5 1 2.5

Connected graph with labels b and c.

Figure 3.2. An example for the swap of used and unused labels

 2 2

 1 1 1
 2 2

 1 3 2.5 1 2.5

    12, cbMSTCOST    9, caMSTCOST

3.3.2. Shaking Phase

The shaking phase follows the VNS paradigm and dynamically expands the neighborhood

search area. Suppose R denotes the current solution (it really denotes the labels in the current

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 54

solution, but as explained earlier it suffices to focus on labels). In this step, we use randomization to

select a solution that is in the size k neighborhood of the solution R, i.e., ()
k

N R . Specifically

()
k

N R is defined as the set of labels that can be obtained from R by performing a sequence of

exactly k additions and/or deletions of labels. So 1()N R is the set of labels obtained from R by

either adding exactly one label from R, or deleting exactly one label from R.)(2 RN is the set of

labels obtained from R by either adding exactly two labels, or deleting exactly two labels, or adding

exactly one label and deleting exactly one label.

The shaking phase may result in the selection of labels that do not result in a connected

graph, or result in a minimum cost spanning tree that does not meet the budget constraint. If the set

of labels results in a graph that is not connected, we add labels that are not in the current solution

one by one, at random until the graph is connected. If the minimum spanning tree on the selected

labels does not meet the budget constraint, we iteratively add labels to the current set of labels by

choosing the label that when added results in the lowest cost minimum spanning tree.

3.3.3. Local Search Phase

 The local search phase consists of two parts. In the first part, the algorithm tries to swap each of

the labels in the current solution with an unused one if it results in a lower minimum spanning tree

cost. To this aim, it iteratively considers the labels in the solution and tests all possible exchanges

of a given label with unused labels until it finds an exchange resulting in a lower MST cost. If we

find such an exchange, we implement it (i.e., we ignore the remaining unused labels) and proceed to

the next label in our solution. Obviously, a label remains in the solution if the algorithm cannot find

a label swap resulting in an improvement.

The second part of the local search phase tries to improve the quality of the solution by

removing labels from the current set of labels. It iteratively, tries to remove each label. If the

resulting set of labels provides a minimum spanning tree whose cost does not exceed the

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 55

Algorithm 3.1. Variable Neighborhood Search Algorithm for the CCMLST Problem

VNS for CCMLST

 R = ö;
 Initialization Procedure(G,R);
 Local Search (G,R);
 While Termination criterion not met
 k = 1;
 While k  5

 R = Shaking_Phase (G,k,R);

 While Components (R) > 1

 Select at random a label \u L R and add it to R ;
 End;

 While MSTCOST(R) > B

 })}{(min:)\({ tRMSTCOSTRLtS  ;

 Select at random a label Su and add it to R ;
 End;

 Local Search (,)G R ;

 If R R Then R R and k = 1 Else k = k+1;

 End ;
 End.

Initialization Procedure(G,R)

 While Components (R) > 1

     }{min:\ tRComponentsRLtS  ;

 Select at random a label Su and add it to R;
 End.

 Consider the labels i R one by one;
 Swap the label i with the first unused label that strictly lowers the MST cost;
 End;
 While MSTCOST(R) > B

 })}{(min:)\({ tRMSTCOSTRLtS  ;

 Select at random a label Su and add it to R;
 End.

Shaking_Phase (G,k,R)

 For i =1,�,k

 r = random(0,1) ;
 If r 0.5 Then Delete at random a label from R Else Add at random a label to R;
 End;

 Return(R).

Local Search(G,R)

 Consider the labels i R one by one;
 Swap the label i with the first unused label that strictly lowers the MST cost;
 End;
 Consider the labels i R one by one;
 Delete label i from R, i.e. \ ;R R i

 If Components (R) > 1 or MSTCOST(R) > B Then ;R R i 

 End.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 56

budget we permanently remove the label, and continue. Otherwise, the label remains in the solution.

Our Variable Neighborhood Search algorithm is outlined in Algorithm 3.1.

3.3.4. Discussion of Algorithmic Parameter Choices

We now discuss the different components of our VNS algorithm and identify the rationale

for the different choices made within the algorithm. In constructing the initial solution, we first

chose labels to construct a connected graph. Our choice was to choose the label that resulted in the

greatest decrease in the number of connected components. An alternative is to simply add labels

randomly. We conducted experiments with these 2 variants for connectivity of the initial solution,

and found that choosing to add labels so that they result in the greatest decrease in the number of

connected components provided significantly better solutions. Table 3.1 identifies the different

parts of the VNS algorithm for the CCMLST, the parameter or algorithmic choices within each part,

and the choice that resulted in the best solution. For example, when comparing the use of swapping

against no swapping in the construction of the initial solution, swapping labels provided the best

results. In Table 3.1, the parameter cost constraint refers to the scenario where the cost of the

solution is strictly greater than B. Here, in order to reduce the cost of the solution, Min Avg Cost

considers the unused label with the smallest average cost to add to the solution. Feasibility post

shaking phase refers to the part of the algorithm where feasibility of the solution obtained by the

shaking phase is restored. As can be seen from Table 3.1, the best algorithmic choices within the

Table 3.1. Parameter/Algorithmic Choices within the VNS Procedure for the CCMLST Problem

Phase Parameter Varied Values Best Value

Connectivity Random, Min Components
Min

Componenets
Swap Yes/No Yes

Cost constraint
Random, Min Avg Cost, Min MST

Cost
Min MST Cost

Initial Solution

Local search applied to Initial
Solution

Yes/No Yes

Connectivity Random, Min Components Random Feasibility post Shaking
Phase Cost Constraint Min Avg Cost, Min MST Cost Min MST Cost

Local Search Swap Yes/No Yes

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 57

different parts of the VNS algorithm are the ones used in our VNS algorithm described in

Algorithm 3.1.

Before we turn our attention to our computational experiments we must note the recent work

by Consoli et al. [22] on the MLST problem that includes a VNS method for the MLST problem.

We briefly compare the two VNS methods (albeit on different problems). Both of the methods

follow the main structure of VNS. Consequently, at a high level they are somewhat similar, but they

are different in several details. For example, in the initialization phase instead of generating a

random solution as done in the paper by Consoli et al. [22] we use a more involved procedure to

generate an initial solution by considering the set of labels that produces fewer components and

smaller MST cost. Additionally, we use local search to improve the solution found in the

initialization phase prior to applying VNS. Finally, since the objectives of the CCMLST problem is

somewhat different from the MLST problem, our local search operator is quite different from that in

Consoli et al. [22].

3.4. Applying Heuristics for the LCMST Problem to the CCMLST Problem by Means of

Binary Search

We first describe the heuristics of Xiong et al. [82] for the LCMST problem. We then

describe how any heuristic for the LCMST problem may be applied to the CCMLST problem by

using binary search. This allows us to apply the heuristics of Xiong et al. [82] to the CCMLST

problem.

The first proposed heuristic, LS1, by Xiong et al. [82] for the LCMST, begins with an

arbitrary feasible solution,  
K

aaaA ,...,, 21 , of K labels. Then, it starts a replacement loop as

follows. It first attempts to replace a1 by the label in \L A that gives the greatest reduction in MST

cost. In other words, it checks each label in \L A and selects the label \t L A that results in the

lowest value of MSTCOST(1{ \ }A a t). If it finds an improvement (i.e.,

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 58

MSTCOST(1{ \ }A a t)<MSTCOST(A)) it sets 1a t , otherwise it leaves a1 unchanged. Next, it

repeats the procedure with label a2 attempting to replace it by the label in \L A that gives the

greatest reduction in MST cost. It continues the replacement loop in this fashion until it considers

replacing label aK by the label in \L A that gives the greatest reduction in MST cost. In one

replacement loop all of the K labels in A are considered for replacement. This continues until no

cost improvement can be made between two consecutive replacement loops [82].

In the second heuristic, LS2, the algorithm starts with an arbitrary feasible

solution  
K

aaaA ,...,, 21 of K labels. Then, it attempts to find improvements as follows. It adds

a label in 1 \
K

a L A

 to A. This results in a solution with K+1 labels, which is not feasible.

Consequently, it chooses amongst these K+1 labels the label to delete that results in the smallest

MST cost. To find the best possible improvement of this type, it searches among all possible

additions of labels in \L A to A and selects the one that provides the greatest improvement in cost.

The procedure continues until no further improvement is found [82].

In the GA proposed by Xiong et al. [82], a queen-bee crossover is applied. This approach has

often been found to outperform more traditional crossover operators. In each generation, the best

chromosome is declared the queen-bee and crossover is only allowed between the queen-bee and

other chromosomes. For more details regarding crossover, mutation, etc., see [82].

Binary search is a popular algorithmic paradigm (see page 171 of [61]) that efficiently

searches through an interval of integer values to find the smallest (or largest) integer that satisfies a

specified property. It starts with an interval 1,�,l. In each step it checks whether the midpoint of

the interval satisfies the specified property. If so, one may conclude the smallest integer that

satisfies the specified property is in the lower half of the interval, otherwise the smallest integer that

satisfies the specified property is in the upper half of the interval. It recursively searches through the

interval in which the solution lies, until (after 2log l steps) the interval contains only one integer

value and the procedure terminates. We now describe how to use the binary search method to apply

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 59

any algorithm for the LCMST problem to the CCMLST problem. Let ALG denote any heuristic for

the LCMST problem. It takes as input a graph G and a threshold K. ALG attempts to find a

minimum cost spanning tree that uses at most K labels. Either it returns a feasible solution, i.e., a set

of at most K labels, or it indicates that no feasible solution has been found by sending back an

empty set of labels. The cost of the solution can then be determined by MSTCOST(R) where R

denotes the set of labels. Note that MSTCOST(R) is infinity if R is an empty set.

 The details of the binary search method as applied to the CCMSLT problem are provided in

Algorithm 3.2. The lower value for the number of labels is set to 1 and the upper value for the

number of labels is set to l (the total number of labels). As is customary in binary search, ALG is

executed setting the threshold on the number of labels to
2

upperlower 
. Note that since the number

of labels must be integer, ALG rounds down any non-integral value of the threshold K. Essentially,

anytime the cost of the tree found by ALG exceeds the budget B, we need more labels and increase

the lower value to
2

upperlower 
. Anytime the cost of the tree found by ALG is within budget, we

decrease the value of upper to
2

upperlower 
.

Algorithm 3.2. Binary Search Method for the CCMLST Problem

Begin

 Set lower = 1 and upper = l;
 While (upper - lower) 1

2

upperlower
mid


 ;

 R = ALG(G,mid);
 If MSTCOST(R) > B Then lower = mid Else upper = mid;

 End

 Output R = ALG(G,upper);
End

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 60

3.5. Computational Results

In this section, we report on an extensive set of computational experiments on the CCMLST

problem. All heuristics have been tested on a Pentium IV machine with a 2.61 GHz processor and 2

GB RAM, under the Windows operating system. We also use ILOG CPLEX 10.2 to solve the MIP

formulation.

The two parameters that are adjustable within the VNS procedure are the value of k (the size

of the largest neighborhood Nk(R) in the VNS method), and Iter, the number of iterations in which

the algorithm is not able to improve the best known solution (which is the termination criterion).

Increasing k, increases the size of the neighborhood but also increases the running time. We found

that setting k=5 provides the best results without a significant increase in running time. Additionally,

as the value of Iter is increased the running time of the algorithm is increase, though the quality of

the solution improves. We found that setting Iter=10 provides the best results in a reasonable

amount of running time.

We now describe how we generated our datasets, and then discuss our computational

experience on these datasets for the CCMLST problem.

3.5.1. Datasets

 Xiong et al. [82] created a set of test instances for the LCMST problem. These include 37

small instances with 50 nodes or less, 11 medium-sized instances that range from 100 to 200 nodes,

and one large instance with 500 nodes. All of these instances are complete graphs. We adapted the

instances created by Xiong et al. [82] to the CCMLST as follows. Essentially, for the labeled graph

instance, we create a set of different budget values. These budget values are selected starting from

slightly more than MSTCOST(L) with increments of approximately 500 units. The small instances

in Xiong et al. were somewhat limited in the sense that the number of labels is equal to the number

of nodes in the graph. Consequently, using Xiong et al.�s code, we generated additional labeled

graphs where the number of labels was less than the number of nodes in the graph.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 61

The main aim of using the small instances was to test the quality of the VNS method and the

binary search method on instances where we can find the optimal solution. Consequently, we

restricted our attention on these small instances to problems where we were able to compute the

optimal solution using CPLEX on our MIP formulation. In this way, we created 104 small instances

(with 10 to 50 nodes) where the optimal solution is known, and 60 medium-sized instances (with

100 to 200 nodes). We adapted the TSPLIB instances to create 27 large instances. We used the

labeled graph generated from the TSPLIB instance, and created three instances from each labeled

graph by varying the budget value. Specifically, we used budget values of 1.3, 1.6, and 1.9 times

MSTCOST(L).

3.5.2. Results

The results on the 191 CCMLST instances are described in Tables 3.2 through 3.6 for the

small instances, Tables 3.7 through 3.9 for the medium-sized instances, and Table 3.10 for the large

instances.

On the 104 small instances, the VNS method found the optimal solution in all cases (recall

that the optimal solution is known in all of these instances), while LS1, LS2, and GA generated the

optimal solution 100, 100, and 102 times, respectively, out of the 104 instances. The average

running time of the VNS method was 0.05 seconds, while LS1, LS2, and GA took 0.06, 0.07, and

0.18 seconds respectively. For the small and medium-sized instances, the termination criterion used

was 10 iterations without an improvement. On the 60 medium-sized instances, the VNS method

generated the best solution in 59 out of the 60 instances, while LS1, LS2, and GA generated the best

solution 46, 50, and 50 times, respectively, out of the 60 instances. The average running time of the

VNS method was 20.59 seconds, while LS1, LS2, and GA took 63.52, 68.75, and 62.19 seconds,

respectively. This indicates that the VNS method finds better solutions in a greater number of

instances much more rapidly than any of the three comparative procedures. For the large instances

the termination criterion used was a specified running time which is shown in the tables with the

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 62

Table 3.2. VNS, GA, LS1, and LS2 for the CCMLST Problem on 10 nodes

Exact method LS1 LS2 GA VNS # Labels Cost
Restriction Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time

7000 2 0.23 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.02
6500 2 0.02 2 0% 0.00 2 0% 0.00 2 0% 0.02 2 0% 0.00
6000 2 0.03 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.02
5500 2 0.02 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.00
5000 2 0.11 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.00
4500 2 0.09 2 0% 0.00 2 0% 0.00 2 0% 0.00 2 0% 0.00
4000 2 0.05 2 0% 0.00 2 0% 0.01 2 0% 0.00 2 0% 0.00
3500 2 0.06 2 0% 0.00 2 0% 0.00 2 0% 0.02 2 0% 0.00
3000 3 0.03 3 0% 0.00 3 0% 0.00 3 0% 0.00 3 0% 0.00

10

2500 4 0.13 4 0% 0.01 4 0% 0.01 4 0% 0.02 4 0% 0.00

Table 3.3. VNS, GA, LS1, and LS2 for the CCMLST Problem on 20 nodes

Exact method LS1 LS2 GA VNS # Labels Cost
Restriction Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time

7500 2 3.33 2 0% 0.01 2 0% 0.00 2 0% 0.02 2 0% 0.02
7000 2 2.05 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.00
6500 2 3.78 2 0% 0.01 2 0% 0.01 2 0% 0.00 2 0% 0.02
6000 2 1.72 2 0% 0.01 2 0% 0.00 2 0% 0.00 2 0% 0.02
5500 2 2.70 2 0% 0.01 2 0% 0.01 2 0% 0.00 2 0% 0.00
5000 3 2.80 3 0% 0.01 3 0% 0.01 3 0% 0.02 3 0% 0.00
4500 3 6.72 3 0% 0.01 3 0% 0.01 3 0% 0.00 3 0% 0.02
4000 4 29.02 4 0% 0.01 4 0% 0.01 4 0% 0.02 4 0% 0.02
3500 5 7.08 5 0% 0.01 5 0% 0.01 5 0% 0.02 5 0% 0.02

10

3050 8 0.84 8 0% 0.01 8 0% 0.01 8 0% 0.03 8 0% 0.02
7500 2 0.69 2 0% 0.02 2 0% 0.02 2 0% 0.02 2 0% 0.02
7000 2 0.34 2 0% 0.02 2 0% 0.02 2 0% 0.02 2 0% 0.00
6500 2 1.14 2 0% 0.02 2 0% 0.02 2 0% 0.00 2 0% 0.00
6000 3 2.98 3 0% 0.02 3 0% 0.02 3 0% 0.02 3 0% 0.00
5500 3 15.98 3 0% 0.00 3 0% 0.02 3 0% 0.02 3 0% 0.02
5000 4 4.30 4 0% 0.02 4 0% 0.02 4 0% 0.03 4 0% 0.02
4500 5 18.16 5 0% 0.02 5 0% 0.02 5 0% 0.03 5 0% 0.02
4000 6 12.28 6 0% 0.02 6 0% 0.02 6 0% 0.02 6 0% 0.02
3500 8 3.83 8 0% 0.02 8 0% 0.02 8 0% 0.03 8 0% 0.02

20

3050 11 0.88 11 0% 0.02 11 0% 0.02 11 0% 0.06 11 0% 0.02

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 63

Table 3.4. VNS, GA, LS1, and LS2 for the CCMLST Problem on 30 nodes

Exact method LS1 LS2 GA VNS # Labels Cost
Restriction Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time

8000 2 31.61 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.02
7500 2 77.45 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.02
7000 2 20.59 2 0% 0.01 2 0% 0.01 2 0% 0.02 2 0% 0.02
6500 2 41.84 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.02
6000 3 45.59 3 0% 0.01 3 0% 0.01 3 0% 0.03 3 0% 0.02
5500 3 134.80 3 0% 0.01 3 0% 0.01 3 0% 0.03 3 0% 0.02
5000 3 56.22 3 0% 0.01 3 0% 0.01 3 0% 0.03 3 0% 0.02
4500 4 33.39 4 0% 0.02 4 0% 0.01 4 0% 0.03 4 0% 0.02
4000 5 15.42 5 0% 0.01 5 0% 0.01 5 0% 0.03 5 0% 0.03

10

3500 8 26.23 8 0% 0.02 8 0% 0.01 8 0% 0.06 8 0% 0.02
8000 3 69.92 3 0% 0.02 3 0% 0.02 3 0% 0.08 3 0% 0.02
7500 3 132.47 3 0% 0.02 3 0% 0.02 3 0% 0.08 3 0% 0.02
7000 3 9.69 3 0% 0.02 3 0% 0.03 3 0% 0.08 3 0% 0.02
6500 4 31.55 4 0% 0.03 4 0% 0.02 4 0% 0.09 4 0% 0.02
6000 4 76.02 4 0% 0.02 4 0% 0.02 4 0% 0.08 4 0% 0.03
5500 5 111.28 5 0% 0.03 5 0% 0.03 5 0% 0.09 5 0% 0.03
5000 5 74.59 5 0% 0.03 5 0% 0.03 5 0% 0.09 5 0% 0.04
4500 6 46.27 6 0% 0.03 6 0% 0.03 6 0% 0.09 6 0% 0.03
4000 8 22.90 8 0% 0.03 8 0% 0.03 8 0% 0.13 8 0% 0.04

20

3500 14 177.91 14 0% 0.04 14 0% 0.04 14 0% 0.17 14 0% 0.03
8000 3 19.12 3 0% 0.03 3 0% 0.03 3 0% 0.06 3 0% 0.05
7500 4 33.04 4 0% 0.03 4 0% 0.03 4 0% 0.08 4 0% 0.03
7000 4 62.60 4 0% 0.05 4 0% 0.03 4 0% 0.08 4 0% 0.05
6500 4 16.01 4 0% 0.03 4 0% 0.05 4 0% 0.08 4 0% 0.05
6000 5 4.56 5 0% 0.03 5 0% 0.05 5 0% 0.08 5 0% 0.05
5500 6 45.34 6 0% 0.06 6 0% 0.06 6 0% 0.13 6 0% 0.05
5000 7 82.30 7 0% 0.05 7 0% 0.05 7 0% 0.13 7 0% 0.06
4500 8 95.27 8 0% 0.06 8 0% 0.08 8 0% 0.13 8 0% 0.06
4000 10 55.84 11 10% 0.09 11 10% 0.08 11 10% 0.13 10 0% 0.06

30

3500 15 385.09 15 0% 0.09 15 0% 0.09 15 0% 0.30 15 0% 0.09

 The best solutions are in bold.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 64

Table 3.5. VNS, GA, LS1, and LS2 for the CCMLST Problem on 40 nodes

Exact method LS1 LS2 GA VNS # Labels Cost
Restriction Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time

9000 2 6125.77 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.03
8500 2 24107.41 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.02
8000 2 74551.36 2 0% 0.01 2 0% 0.01 2 0% 0.03 2 0% 0.03
7500 3 12550.08 3 0% 0.01 3 0% 0.01 3 0% 0.06 3 0% 0.02
7000 3 1734.30 3 0% 0.01 3 0% 0.01 3 0% 0.05 3 0% 0.03

10

6500 3 1049.59 3 0% 0.02 3 0% 0.01 3 0% 0.05 3 0% 0.03
9000 3 3344.61 3 0% 0.03 3 0% 0.04 3 0% 0.09 3 0% 0.03
8500 3 3709.23 3 0% 0.03 3 0% 0.04 3 0% 0.09 3 0% 0.03
8000 4 1064.82 4 0% 0.04 4 0% 0.04 4 0% 0.09 4 0% 0.05

20

7500 4 1475.95 4 0% 0.04 4 0% 0.04 4 0% 0.09 4 0% 0.05
9000 5 1514.57 5 0% 0.12 5 0% 0.11 5 0% 0.19 5 0% 0.09
8500 5 2223.00 5 0% 0.14 5 0% 0.11 5 0% 0.20 5 0% 0.09
8000 6 17008.94 6 0% 0.14 6 0% 0.12 6 0% 0.20 6 0% 0.09
7500 6 541.14 7 17% 0.16 6 0% 0.12 6 0% 0.20 6 0% 0.11
7000 7 424.28 7 0% 0.16 7 0% 0.16 7 0% 0.27 7 0% 0.13
6500 8 1713.71 8 0% 0.20 8 0% 0.17 8 0% 0.31 8 0% 0.14
6000 9 2519.92 9 0% 0.20 9 0% 0.20 9 0% 0.31 9 0% 0.16
5500 11 1437.73 11 0% 0.22 11 0% 0.22 11 0% 0.41 11 0% 0.16

40

5000 14 12402.04 14 0% 0.33 14 0% 0.27 14 0% 0.39 14 0% 0.19

 The best solutions are in bold.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 65

Table 3.6. VNS, GA, LS1, and LS2 for the CCMLST Problem on 50 nodes

Exact method LS1 LS2 GA VNS # Labels Cost
Restriction Labels Time Labels Gap Time Labels Gap Time Labels Gap Time Labels Gap Time

9500 2 9798.88 2 0% 0.02 2 0% 0.02 2 0% 0.6 2 0% 0.02
9000 2 8972.91 2 0% 0.02 2 0% 0.02 2 0% 0.6 2 0% 0.02
8500 2 8984.60 2 0% 0.02 2 0% 0.02 2 0% 0.6 2 0% 0.02
8000 3 1443.76 3 0% 0.02 3 0% 0.02 3 0% 0.6 3 0% 0.03
7500 3 24729.7 3 0% 0.02 3 0% 0.02 3 0% 0.6 3 0% 0.03
7000 3 28404.6 3 0% 0.02 3 0% 0.02 3 0% 0.8 3 0% 0.03
6500 4 46791.0 4 0% 0.02 4 0% 0.02 4 0% 0.8 4 0% 0.05

10

6000 4 6459.06 4 0% 0.02 4 0% 0.02 4 0% 0.9 4 0% 0.05
9500 3 9216.76 3 0% 0.07 3 0% 0.06 3 0% 0.16 3 0% 0.05
9000 3 1880.70 3 0% 0.05 3 0% 0.06 3 0% 0.17 3 0% 0.06
8500 4 7873.89 4 0% 0.06 4 0% 0.07 4 0% 0.19 4 0% 0.08
8000 4 12730.2 4 0% 0.06 4 0% 0.07 4 0% 0.19 4 0% 0.08
7500 5 7572.67 5 0% 0.12 5 0% 0.07 5 0% 0.19 5 0% 0.08
7000 5 49912.1 5 0% 0.08 6 20% 0.07 5 0% 0.22 5 0% 0.08

20

6500 6 22651.0 6 0% 0.07 6 0% 0.09 6 0% 0.28 6 0% 0.09
9500 5 11111.3 5 0% 0.12 5 0% 0.14 5 0% 0.31 5 0% 0.09
9000 5 12638.7 5 0% 0.12 5 0% 0.14 5 0% 0.30 5 0% 0.09
8500 5 15358.5 5 0% 0.12 5 0% 0.14 5 0% 0.30 5 0% 0.13

30

8000 6 36336.0 6 0% 0.13 6 0% 0.15 6 0% 0.30 6 0% 0.13
9000 7 1322.60 7 0% 0.33 7 0% 0.37 7 0% 0.52 7 0% 0.22
8500 8 10455.0 8 0% 0.31 8 0% 0.39 8 0% 0.59 8 0% 0.22
8000 8 62948.1 9 13% 0.31 9 13% 0.44 8 0% 0.61 8 0% 0.27
7500 9 30317.9 9 0% 0.33 9 0% 0.42 9 0% 0.55 9 0% 0.25
7000 11 97384.1 11 0% 0.50 11 0% 0.53 11 0% 0.98 11 0% 0.27

50

6500 12 119300. 13 8% 0.53 13 8% 0.58 13 8% 0.97 12 0% 0.31

 The best solutions are in bold.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 66

Table 3.7. VNS, GA, LS1, and LS2 for the CCMLST Problem on 100 nodes

LS1 LS2 GA VNS # Labels Cost
 Restriction Labels Time Labels Time Labels Time Labels Time

11500 11 2.13 11 2.33 11 3.61 11 1.05
11000 12 2.28 12 2.39 12 3.61 12 1.09
10500 13 3.32 13 3.43 13 4.53 13 1.22
10000 14 3.48 14 3.29 14 4.31 14 1.25
9500 16 3.60 16 3.98 15 4.17 15 1.36
9000 18 3.41 17 3.84 17 5.22 17 1.47
8500 19 4.23 20 4.56 19 5.88 19 1.61
8000 22 3.82 22 4.35 23 6.89 22 2.70
7500 26 3.63 27 4.71 27 9.17 26 2.61

50

7000 36 3.78 36 3.65 36 9.13 36 1.36
11500 16 7.22 16 8.94 16 7.95 16 2.73
11000 17 8.28 17 9.98 17 9.95 17 3.20
10500 20 8.58 19 10.33 19 9.86 19 3.13
10000 21 10.41 21 11.01 21 10.31 21 3.13
9500 23 9.67 23 11.36 23 12.09 23 3.59
9000 25 12.68 25 11.68 25 11.86 25 3.83
8500 28 14.09 28 12.01 28 11.42 28 4.39
8000 32 15.07 32 12.95 33 15.81 32 4.84
7500 39 17.44 38 17.66 39 16.09 38 5.23

100

7000 50 18.72 50 18.94 50 17.42 50 5.86

 The best solutions are in bold.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 67

Table 3.8. VNS, GA, LS1, and LS2 for the CCMLST Problem on 150 nodes

LS1 LS2 GA VNS # Labels Cost
Restriction Labels Time Labels Time Labels Time Labels Time

13000 17 14.96 18 12.83 17 17.00 17 4.78
12500 18 14.58 18 12.51 19 21.66 19 4.91
12000 20 23.81 20 17.57 20 21.30 20 5.44
11500 22 24.91 22 18.00 22 22.02 22 6.06
11000 25 22.48 25 19.98 24 22.64 24 10.36
10500 27 22.62 27 20.55 27 35.56 27 6.55
10000 31 18.92 31 20.08 30 35.53 30 7.84
9500 35 25.39 35 28.55 35 39.41 35 7.38
9000 41 25.09 41 22.48 41 35.78 41 7.61

75

8500 55 18.10 55 19.56 55 59.47 55 5.94
13000 28 48.99 28 50.86 28 36.38 28 12.80
12500 30 52.69 30 61.85 30 36.41 30 13.92
12000 32 59.57 32 51.53 32 36.17 32 16.52
11500 35 62.60 35 53.18 35 38.17 35 16.92
11000 38 62.58 38 66.05 38 42.80 38 18.20
10500 42 75.69 42 85.19 43 43.36 41 37.38
10000 47 73.85 46 86.46 46 45.80 46 33.22
9500 53 75.80 53 90.01 53 51.80 53 23.42
9000 62 78.06 62 80.87 62 58.53 62 25.27

150

8500 79 93.13 79 98.56 79 79.47 79 26.19

 The best solutions are in bold.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 68

Table 3.9. VNS, GA, LS1, and LS2 for the CCMLST Problem on 200 nodes

LS1 LS2 GA VNS # Labels Cost
Restriction Labels Time Labels Time Labels Time Labels Time

14000 22 37.67 22 46.45 22 50.78 22 13.05
13500 24 39.91 24 46.96 24 45.77 24 14.41
13000 26 55.61 26 63.99 26 59.70 26 15.33
12500 29 59.08 29 60.53 29 64.97 29 16.34
12000 32 66.69 32 69.67 32 62.81 32 17.47
11500 36 54.23 35 60.70 35 61.25 35 19.44
11000 40 70.93 40 80.11 40 83.45 40 20.30
10500 46 72.70 46 75.86 46 123.86 46 39.14
10000 55 81.17 55 87.80 55 138.72 55 22.73

100

9500 70 73.51 70 65.46 70 194.38 70 18.88
14000 35 188.07 35 179.56 35 136.59 35 37.94
13500 38 174.69 37 198.79 37 134.84 37 41.97
13000 40 184.59 40 201.66 41 134.27 40 64.90
12500 44 171.44 44 193.66 43 130.80 43 47.70
12000 48 172.10 48 211.57 49 163.52 48 51.02
11500 54 230.51 53 246.54 54 169.02 53 56.44
11000 60 215.70 60 236.61 60 178.59 59 133.78
10500 68 248.04 68 312.48 67 214.44 67 69.19
10000 80 280.02 80 300.20 80 290.39 80 73.61

200

9500 101 284.59 101 308.48 101 334.92 101 115.42

 The best solutions are in bold.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 69

Table 3.10. VNS, GA, LS1, and LS2 for the CCMLST Problem on Large Datasets

LS1 LS2 GA VNS
Nodes, # Labels

Cost
Restriction Labels Time Labels Time Labels Time Labels Time Max time

98800 70 5182 70 4890 70 3131 70 111 300

121600 44 3252 44 3505 44 2500 44 103 300 532, 266

144400 32 2468 32 3013 32 2157 32 81 300

42250 86 6830 86 7103 86 4234 85 278 300

52000 57 4999 57 51333 57 2945 56 190 300 574, 287

61750 42 3796 42 3753 42 2600 42 86 300

8190 79 6697 79 6575 79 4664 78 233 300

10080 47 4371 47 4585 47 2971 47 133 300 575, 287

11970 33 3272 33 3897 33 2695 33 70 300

39000 54 6839 55 7332 55 4279 54 203 700

48000 36 5422 36 5622 36 3494 35 257 700 654, 327

57000 28 4373 28 4542 28 3117 27 199 700

55900 95 15237 95 16660 95 8763 95 603 700

68800 61 10451 61 10294 61 6158 61 249 700 657, 328

81700 44 8139 44 8458 44 4789 44 183 700

3510 75 9763 75 10329 76 6466 75 477 700

4320 49 6815 49 6894 49 4089 48 647 700 666, 333

5130 35 5208 35 5340 35 3515 35 232 700

49400 102 18755 102 24650 102 13053 101 693 1000

60800 65 15802 65 17318 66 8995 65 478 1000 724, 362

72200 47 12550 47 12856 47 7522 47 259 1000

10660 111 26056 111 30572 111 16231 111 975 1000

13120 68 19425 69 19754 69 10605 69 492 1000 783, 391

15580 48 17509 48 16581 49 9539 48 358 1000

20800000 141 156482 140 188704 141 76294 140 2923 4000

25600000 86 134765 86 119253 86 49080 86 3920 4000 1000, 500

30400000 62 101576 62 103167 62 45996 62 3587 4000

 The best solutions are in bold.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 70

computational results. On the 27 large instances, the VNS method generated the best solution in 26

out of the 27 instances, while LS1, LS2, and GA generated the best solution 19, 18, and 14 times,

respectively, out of the 27 instances. The average running time of the VNS method was 667 seconds,

while LS1, LS2, and GA took 22,816, 25,814, and 11,477 seconds, respectively. This clearly shows

the superiority of the VNS method, especially as the instances get larger. It finds the best solution in

a greater number of instances (and for almost all instances) an order of magnitude faster than any of

the three comparative procedures.

3.6. Conclusion

In this paper, we considered the CCMLST problem and we developed a VNS method for

solving this problem. We compared the solutions obtained by the VNS method to optimal solutions

for small instances and to solutions obtained by three heuristics LS1, LS2, and GA that were

previously proposed for the LCMST problem (but can be easily adapted to the CCMLST problem

as well). We generated small and medium-sized instances in a similar fashion to Xiong et al. [82],

and generated a set of large instances from the TSPLIB dataset.

The VNS method was clearly the best heuristic for the CCMLST instances. Of the 191

instances, it provided the best solution in 189 instances. For all the 104 instances where the optimal

solution was known, the VNS method obtained the optimal solution. Furthermore, for the large

instances, its running time is an order of magnitude faster than those of the three other heuristics.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 71

Chapter 4:

The Generalized Covering Salesman Problem

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 72

 Abstract:

 Given a graph (,)G N E , the Covering Salesman Problem (CSP) is to identify the minimum

length tour �covering� all the nodes. It seeks the minimum length tour visiting a subset of the nodes in

N such that each node i not on the tour is within a predetermined distance di from a node on the tour.

In this chapter we define and develop a generalized version of the CSP, and refer to it as the

Generalized Covering Salesman Problem (GCSP). Here each node i needs to be covered at least
i

k

times and there is a cost associated with visiting each node. We seek a minimum cost tour such that

each node i is covered at least
i

k times by the tour. We define three variants of the GCSP. In the first

case, each node can be visited by the tour at most once. In the second version visiting a node i more

than once is possible but it is not allowed to stay overnight (i.e. for revisiting a node i, the tour has to

visit another node before it can return to i). Finally, in the third variant, the tour can visit each node

more than once consecutively. In this chapter, we develop two local search heuristics to find high-

quality solutions to the three GCSP variants. For testing the proposed algorithms, we generated

datasets based on TSP Library instances. Since the CSP and the Generalized Traveling Salesman

Problem are special cases of the GCSP, we tested our heuristics on both these two problems as well.

Overall the results show that our suggested heuristics find high-quality solutions very rapidly.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 73

4.1. Introduction

The Traveling Salesman Problem (TSP) is one of the most celebrated combinatorial

optimization problems. Given a graph (,)G N E , the goal is to find the minimum length tour of the

nodes in N, such that the salesman, starting from a node, visits each node exactly once and returns to

the starting node (see [25]). In recent years, many new variants such as the TSP with profits [30], the

Clustered TSP [21], the Generalized TSP [31], the Prize Collecting TSP [33], and the Selective TSP

[47] have been introduced and studied. The recent monograph by Gutin and Punnen [36] has a nice

discussion of different variations of the TSP and solution procedures.

In 1981 Current [23] defined and introduced a variant of the TSP called the Covering

Salesman Problem (CSP). In the CSP the goal is to find a minimum length tour of a subset of n given

nodes, such that every node i not on the tour is within a predefined covering distance
i

d from a node

on the tour. If 0
i

d  or min
i ij

j
d c , where

ij
c denotes the shortest distance between nodes i and j, the

CSP reduces to TSP (thus it is NP-hard). Current and Schilling [24] referred to several real world

examples, such as routing of rural healthcare delivery teams where the assumption of visiting each

city is not valid since it is sufficient for all cities to be near to some stops on the tour (the inhabitants

of those cities which are not in the tour are expected to go to their nearest stop). Current and Schilling

[24] also suggested a heuristic for the CSP where in the first step a Set Covering Problem (SCP) over

the given nodes is solved. Specifically, to solve the related Set Covering Problem, a zero-one nn

matrix, i.e. matrix A, in which the rows and columns correspond to the nodes is considered. If node i

can be covered by node j (i.e., di >=
ij

c) then
ij

a is equal to 1, otherwise it is 0. Since the value of

covering distance
i

d varies for each node i, it should be clear that A is not a symmetric matrix, but for

each node i we have 1
ii

a . We should also mention that in the CSP there is no cost associated with

the nodes, so the cost of columns of matrix A are all equal to one. Therefore a uni cost Set Covering

Problem is solved in the first step of this algorithm to obtain the cities visited on the tour. Then the

algorithm finds the optimal TSP tour of the nodes over these cities. Since there might be multiple

optimal solutions to the SCP, Current and Schilling suggest that all optimal solutions to the SCP be

tried out (i.e., have an optimal TSP tour constructed over the nodes selected in the optimal SCP), and

the best solution be selected. The algorithm is demonstrated on a sample problem, but no additional

computational results are reported.

Arkin and Hassin [2] introduced a geometric version of the Covering Salesman Problem. In

this problem each node specifies a compact set in the plane, its neighborhood, within which the

salesman should meet the stop. The goal is computing the shortest length tour that intersects all of the

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 74

neighborhoods and returns to the initial node. In fact, this problem generalizes the Euclidean

Traveling Salesman Problem in which the neighborhoods are single points. Unlike the CSP in which

each node i should be within a covering distance
i

d from the nodes which are visited by the tour, in

the geometric version it is sufficient for the tour to intersects the specific neighborhoods without

visiting any specific node of the problem. Arkin and Hassin [2] presented simple heuristics for

constructing tours for a variety of neighborhood types. They show that the heuristics provide solutions

where the length of the tour is guaranteed to be within a constant factor of the length of the optimal

tour.

Other than Current [23], Current and Schilling [24], and Arkin and Hassin [2] the CSP does

not seem to have got much attention in the literature. However, some generalizations of the CSP have

appeared in the literature. One generalization and closely related problem discussed in Gendreau et al.

[35] is the Covering Tour Problem (CTP). Here, some subset of the nodes must be on the tour while

the remaining nodes need not be on the tour. Like the CSP, a node i not on the tour must be within a

predefined covering distance
i

d from a node on the tour. When the subset of nodes that must be on

the tour is empty the CTP reduces to the CSP, and when the subset of nodes that must be on the tour

consists of the entire node set the CTP reduces to the TSP. Gendreau et al. [35] proposed a heuristic

that combines GENIUS, a high quality heuristic for the TSP [34], with PRIMAL1, a high quality

heuristic for the SCP [3].

Vogt et al. [77] considered the Single Vehicle Routing Allocation Problem (SVRAP) that

further generalizes the CTP. Here, in addition to tour (routing) costs, nodes covered by the tour (that

are not on it) incur an allocation cost, and nodes not covered by the tour incur a penalty cost. If the

penalty costs are set high and the allocation costs are set to 0, the SVRAP reduces to the CTP. Vogt et

al. [77] discussed a tabu search algorithm for the SVRAP that includes aspiration, path relinking and

frequency based-diversification.

All of the earlier generalizations of the CSP assume that when a node is covered, its entire

demand can be covered. However, in many real-world applications this is not necessarily the case. As

an example, suppose we have a concert tour which must visit or cover several cities. Since each show

has a limited number of tickets, and large metropolitan areas are likely to have ticket demand which

exceeds ticket supply for a single concert, there must be concerts on several nights in each large city

in order to fulfill the ticket demand. Also in the rural healthcare delivery problem, discussed in

Current and Schilling [24], when we create a route for the rural medical team, on each day a limited

number of people can benefit from the services, so the team should visit some places more than once.

Consequently, rather than assuming that a node�s demand is completely covered when either it or a

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 75

node that can cover it is visited, we generalize the CSP by specifying the coverage demand
i

k which

denotes the number of times a node i should be covered. In other words, node i must be covered

i
k times by a combination of visits to node i and visits to nodes that can cover node i. If

i
k =1 for all

nodes, we obtain the CSP. This generalization significantly complicates the problem, and is quite

different from the earlier generalizations that effectively deal with unit coverage (i.e.,
i

k =1). In

addition, since in many applications there is a cost for visiting a node (e.g., cost of hotel for staying in

a city for one night) we include node visiting costs (for nodes on the tour) in the GCSP. In the next

section, we introduce and explain in more detail three different variations that can arise in the GCSP

(that deal with whether a node can be revisited or not). All these variants are strongly NP-Hard, since

they contain the classical TSP as a special case.

The rest of this chapter is organized as follows. In Section 4.2, we formally define the

generalized covering salesman problem, and describe three variants. We also describe a mathematical

model for the problem. Section 4.3 describes two local search heuristics for the GCSP. Section 4.4

discusses our computational experience on the three different variants of the GCSP, as well as the

CSP and the Generlized TSP (GTSP), which are special cases of the GCSP. Section 4.5 provides

concluding remarks and discusses some possible extensions of the GCSP.

4.2. Problem Definition

In the Generalized Covering Salesman Problem (GCSP) we are given a graph  ,G N E

with  nN ,...,2,1 and ({ , }: , ,)E i j i j N i j   as the node and edge sets respectively. Without

loss of generality, we assume the graph is complete with edge lengths satisfying the triangle

inequality, and let cij denote the cost of edge { , }i j (cij may be simply set to the cost of the shortest

path from node i to j). Each node i can cover a subset of nodes
i

D (note that
i

i D , and when

coverage is based on distance
i

D can be computed easily from cij) and has a predetermined coverage

demand
i

k . iF is the fixed cost associated with visiting node i, and a solution is feasible if each node i

is covered at least
i

k times by the nodes in the tour. The objective is to minimize the total cost which

is the sum of the tour length and the fixed costs associated with the visited nodes.

We discuss three variants of the GCSP: Binary GCSP, Integer GCSP without overnight and

Integer GCSP with overnight. In the following we explain each of these variants.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 76

4.2.1. Binary Generalized Covering Salesman Problem

In this version, the tour is not allowed to visit a node more than once and after visiting a node

we must satisfy the remaining coverage demand of that node by visiting other nodes that can cover it.

We use the qualifier binary as this version only permits a node to be visited once.

4.2.2. Integer Generalized Covering Salesman Problem without Overnights

Here a node can be visited more than once, but overnight stay is not allowed. Therefore, to

have a feasible solution, after visiting a node, the tour can return to this node, if necessary, after

having visited at least one other node. In other words, the tour is not allowed to visit a node more than

one time consecutively. We use the qualifier integer as this version allows a node to be visited

multiple (or an integer number of) times.

4.2.3. Integer Generalized Covering Salesman Problem with Overnights

This version is similar to the previous one, but overnight stay at a node is allowed.

 In the CSP ki=1 for all nodes i N . Clearly the CSP is a special case of the binary GCSP. When

there are unit demands there is no benefit to revisiting a node, consequently the CSP can also be

viewed as a special case of the integer variants of the GCSP. Thus the CSP is a special case of all

three variants of the GCSP. As the TSP is a special case of the CSP, all three GCSP variants are

strongly NP-Hard.

We now discuss the issue of feasibility of a given instance of the problem. For the binary

GCSP, the problem is feasible if demand is covered when all nodes in the graph are visited by the tour.

In other words if hj denotes the number of nodes that can cover node j (i.e., the number of nodes i for

which
i

j D), then the problem is feasible if
j j

k h . For the integer GCSP with and without

overnights, the problem is always feasible, since a tour on all nodes in the graph may be repeated until

all demand is covered.

4.2.4. Mathematical Formulation

We now formulate the three different variants of the GCSP. We first provide an integer

programming formulation for the binary GCSP, and then an integer programming formulation for the

integer GCSP. Our models are on directed graphs (for convenience, as they can easily be extended to

asymmetric versions of the problem). Hence we replace the edge set E by an arc set A, where each

edge { , }i j is replaced by two arcs (,)i j and (,)j i with identical costs. Also, from the problem data

we have available

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 77

1 if node j can cover node i

0 otherwise ij
a


 


We introduce the decision variables:

1 if node is on the tour

0 otherwise i

i
w


 


1 if arc (,) is chosen to be in the solution

0 otherwiseij

i j
x


 


The integer programming model can now be stated as:

(BinaryGCSP) Min
(,)

ij ij i i

i j A i N

c x F w
 

  (4.1)

 Subject to:

:(,) :(.)
ji ij i

j j i A j i j A

x x w i N
 

     (4.2)

ij j i

j N

a w k i N


   (4.3)

SNjSinSNSwwxx ji

SNk Sl

kl

Sl SNk

lk \,,22,)1(2
\\

 
  

 (4.4)

 0,1 (,)
ij

x i j A   (4.5)

  Niwi  1,0 (4.6)

The objective is to minimize the sum of the tour costs and the node visiting costs. Constraint

set (4.2) ensures that for each on-tour customer, we have one incoming and one outgoing arc.

Constraint set (4.3) specifies that the demand of each node must be covered. Constraint set (4.4) is a

connectivity constraint that ensures that there are no subtours. Note that there are an exponential

number of connectivity constraints. Constraints (4.5) and (4.6) define the variables as binary.

For the integer GCSP without overnights we introduce two additional variables to represent

the number of times a node is visited, and the number of times an arc is traversed in the tour.

:iy Number of times that node i is visited by the tour.

:
ij

z Number of times arc (i,j) is traversed by the tour.

The integer programming model can now be stated as:

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 78

 (IntegerGCSP) Min
(,)

ij ij i i

i j A i N

c z F y
 

  (4.7)

 Subject to:

:(,) :(,)
ji ij i

j j i A j i j A

z z y i N
 

     (4.8)

ij j i

j N

a y k i N


   (4.9)

NiLwy ii  (4.10)

(,)
ij ij

z Lx i j A   (4.11)

 SNjSinSNSwwxx ji

SNk Sl

kl

Sl SNk

lk \,,22,)1(2
\\

 
  

(4.12)

  0,1 , (,)
ij ij

x z Z i j A


    (4.13)

 0,1 ,i iw y Z i N


    (4.14)

where L is a sufficiently large positive value. The objective is to minimize the sum of the tour costs

and the node visiting costs. Constraint set (4.8) ensures that if node i is visited yi times, then we have

yi incoming and yi outgoing arcs. Constraint set (4.9) specifies that the demand of each node must be

covered. Constraint sets (4.10) and (4.11) are linking constraints, ensuring that wi and xij are 1 if yi or

zij are greater than 0 (i.e., if a node is visited or an arc is traversed). Note that it suffices to set

max{ }
i

i N
L k


 . Constraint set (4.12) is a connectivity constraint that ensures that there are no subtours.

Note again, that there are an exponential number of connectivity constraints. Finally, constraint sets

(4.13) and (4.14) define the variables as binary and integer as appropriate. For the integer GCSP with

overnights, the above integer programming model (IntegerGCSP) is valid if we augment the arc set A

with self loops. Specifically, we add to A the arc set {(,) : }i i i N (or {(,) : }A A i i i N  ) with cii

the cost of self loop arcs (,)i i set to 0.

Note that both the binary GCSP and the integer GCSP formulations rely heavily on the

integrality of the node variables. Consequently, the LP-relaxations of these models can be quite poor.

Further, these models have an exponential number of constraints, implying that this type of model can

only be solved in a cutting plane or a branch-and-cut framework. Thus considerable strengthening of

the above formulations is necessary, before they are viable for obtaining exact solutions to the GCSP.

In this research, we focus on local search algorithms to develop high-quality solutions for the GCSP.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 79

4.3. Local Search Algorithms

In this section we propose two local search solution procedures, and refer to them as LS1 and

LS2, respectively. They are designed to be applicable to all variants of GCSP. In both algorithms, we

start from a random initial solution. As we discussed in Section 4.2, assuming that a problem is

feasible (which can be checked easily for the binary GCSP) any random order of the n nodes produces

a feasible solution for the binary GCSP, and repeating this ordering until all demand is covered

produces a feasible solution for the integer GCSP. We provide an initial solution to our local search

heuristics by considering a random initial ordering of the nodes in the graph and repeat this ordering

for the integer variants (if necessary) to cover all of the demand.

A solution is represented by the sequence of nodes in the tour. Thus for the binary GCSP no

node may be repeated on the tour, while in the integer GCSP nodes may be repeated on the tour. For

the integer GCSP with no overnights a repeated node may not be next to itself in the sequence, while

in the integer GCSP with overnights a repeated node is allowed to be next to itself in the sequence.

Thus <1,2,3,4,5,8,9>, <1,2,3,4,3,2,8>, <1,1,2,3,3,8> represent tour sequences that do not repeat nodes,

repeat nodes but not consecutively, and repeat nodes consecutively. Observe that if the costs are non-

negative, then in the integer GCSP with overnights there is no benefit to going away from a node and

returning to revisit it.

4.3.1. LS1

LS1 tries to find improvements in a solution S by replacing some nodes of the current tour. It

achieves this in a two step manner. First LS1 deletes a fixed number of nodes. (The number of nodes

removed from the tour is equal to a predefined parameter, Search-magnitude, multiplied by the

number of nodes in the current tour. If this number is greater than 1 it is rounded down, otherwise it is

rounded up.) It removes a node k from the current solution S with a probability that is related to the

current tour and computed as:

kP = /
k s

s S

C C


 (4.15)

where
k

C is the amount of decrease in the tour cost by deleting node k from S (while keeping the rest

of the tour sequence as before). Since the deletion of some nodes from the tour S may result in a

tour S  that is no longer feasible, LS1 attempts to make the solution feasible by inserting new nodes

into S  . We refer to this as the Feasibility Procedure. Suppose that P is the set of nodes that can be

added to the current tour. For the binary GCSP P consists of the nodes not in the tour S  , while in the

integer GCSP P consists of all nodes that do not appear more than L times in S  . We select the node

k P for which

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 80

 2 2/ min(/)
k k j j

j P
I N I N


 . (4.16)

Here
k

I is the amount of increase in the tour cost by insering node k into its best position in the tour,

while
k

N is the number of uncovered nodes (or uncovered demand) which can be covered by node k.

We update the calculation of
k

N for all nodes in P and repeat the selection and insertion of nodes

procedure until we obtain a feasible solution. After this step, LS1 checks for the possible removal of

�redundant� nodes from the current tour in the Delete_Redundant_Nodes Procedure. A node is

redundant if, by removing it, the solution remains feasible.

Next, in the case LS1 finds an improvement, i.e., the cost of S  is less than the cost of S, it tries

to improve the tour length (and thus the overall cost) by applying the Lin-Kernighan Procedure [49]

to the solution S  . We apply the Lin-Kernighan code LKH version 1.3 of Helsgaun [38] that is

available for download on the web. Since the procedure is computationally expensive, we only apply

it after max_k (a parameter) improvements over the solution S.

In order to get out locally optimum solutions, and to search through a larger set in the feasible

solution space, we apply a Mutation Procedure whenever the algorithm is not able to increase the

quality of the solution for a given number of consecutive iterations. In the mutation procedure, a node

is selected randomly and if the node does not belong to the solution it is added to the solution in its

best place (i.e. the place which causes the minimum increase in the tour length); otherwise it is

removed from the solution. In the latter case, the algorithm calls the feasibility procedure to ensure the

solution is feasible, and updates the best solution if necessary.

To add diversity to the search procedure, we allow downhill moves with respect to the best

solution that LS1 has found. In other words, if the cost of the solution S  that LS1 obtains is better

than (1+á) times the best solution found we keep it as the current solution (over which we try and find

an improvement), otherwise we use the best solution obtained so far as the current solution. The

stopping criterion for LS1 is a given number of iterations that we denote by max_iter. The pseudo-

code of LS1 is given in Algorithm 4.1. The parameters to be tuned for LS1 and their best values

obtained in our computational testing are described in Table 4.1 (see Section 4.4).

4.3.2. LS2

This local search procedure tries to improve the cost of a solution by either deleting a node on

the tour if the resulting solution is feasible; or by extracting a node and substituting it with a

promising sequence of nodes. In contrast to LS1, this local search algorithm maintains feasibility (i.e.,

it only considers feasible neighbors in the local search neighborhood).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 81

Algorithm 4.1. Local Search Algorithm 1 (LS1) for GCSP
Begin

 S:= An initial random tour of n nodes, S* : = S and BestCost := Cost(S*);
 Cs= Decrease in the tour cost by short cutting node s;
 Is = Increase in the tour cost by adding node s to its best position in the tour;
 Ns = max{1, Number of uncovered nodes covered by node s};
 No_Null_Iter:= Number of iterations without improvement;
 Set k =0; No_Null_Iter=0;
 For i =1, �, max_iter do

 For j =1, �, Search-magnitude |S| do

 Delete node k from S according to the probability 
Ss

sk CC / ;

 End For

 S = Restricted solution obtained by shortcutting the nodes deleted in the previous step;
 Apply Feasibility Procedure (S );
 Apply Delete_Redundant_Nodes Procedure (S );
 If Cost(S ) < Cost(S) then
 If k = max_k then Obtain TSP_tour(S ) by calling Lin-Kernighan Procedure and k=0;
 Else k=k+1;
 End If

 If Cost(S ) > BestCost (1+á) then

 S:=S*;
 No_Null_Iter:= No_Null_Iter +1;
 Else

 SS : ;
 If Cost(S) < BestCost then

 Update S*=S, BestCost=Cost(S),and No_Null_Iter:=0;
 End If;
 End If;

 If No_Null_Iter > Mutation_Parameter then apply Mutation Procedure (S);
 End For;

 Obtain TSP_tour(S*) by calling Lin-Kernighan Procedure. Output the solution S*.
End.

Feasibility Procedure (S ):
 P = The set of nodes that can be entered into the solution;
 While there exist uncovered nodes do

 Select node k P such that 2 2/ min(/)
k k j j

j P
I N I N


 ;

 Insert node k in its best position in S  ;

 For each node j update the remaining coverage demand, jI and jN ;

 End While.

Delete_Redundant_Nodes Procedure (S ):

 For i S  | do
 If by removing node i from S  the solution remains feasible, then remove node i;
 End For.

Mutation Procedure (S):

 Select a random node k from the set of nodes P;
 If node Sk then add node k to S in its best position;
 Else remove node k from S and call Feasibility Procedure (S);
 If Cost(S) < BestCost then update S*=S, BestCost=Cost(S).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 82

LS2 mainly consists of two iterative procedures: the Improvement Procedure and the

Perturbation Procedure. In the Improvement Procedure the algorithm considers extraction of nodes

from the current tour in a round robin fashion. (In other words, given some ordering of nodes on the

tour, it first tries to delete the first node on the tour, and then it tries to delete the second node on the

tour, and so on, until it tries to delete the last node on the tour.) If by removing a node on the tour the

solution remains feasible, the tour cost has improved and the node is deleted from the tour. On the

other hand, extracting a node from the tour may cause some other nodes to lose their covering

demands (meaning that their demand is no longer fully covered and the solution becomes infeasible).

Consequently, in such cases we try to obtain a feasible solution by substituting the deleted node with a

new subsequence of nodes. To this aim, the algorithm considers the T nodes nearest to the extracted

node and generates all the promising subsequences with cardinality one or two. Then it selects the

subsequence s that has the minimum insertion cost (i.e., the cost of the tour generated by substituting

the deleted node by subsequence s minus the cost of tour with the deleted node). In the case of

improvement in the tour cost (i.e., when the minimum insertion cost is negative) we make this

substitution; otherwise, we disregard it (i.e. reinsert the deleted node back into its initial position) and

continue. The improvement procedure is repeated until it cannot find any improvements (i.e., no

change is found while extracting nodes from the current tour in a round robin fashion).

In the Perturbation Phase, LS2 tries to escape from a locally optimum solution by perturbing

the solution. In the perturbation procedure we iteratively add up to K nodes to the tour. It randomly

selects one node from among the nodes eligible for addition to the tour (in the binary GCSP the nodes

must be selected from those out of the current tour, while for the two other GCSP variants the nodes

can be selected as well from those visited in the current tour) and inserts it in the tour in its best

possible position. Since the tour is feasible prior to the addition of these nodes, the tour remains

feasible upon addition of these K nodes.

In one iteration of the procedure the improvement phase and perturbation phase are iteratively

applied J times. After one iteration, when the best solution has improved (i.e., an iteration found a

solution with lower cost) we use the Lin-Kernighan Procedure [49], to improve the current tour

length (and thus the cost of the solution). The stopping criterion for LS2 is a given number of

iterations that we denote by max_iter. The pseudo-code for LS2 is given in Algorithm 4.2, and the

parameters to be tuned for LS2 and their best values obtained in our computational testing are

described in Table 4.2 (see Section 4.4).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 83

Algorithm 4.2. Local Search Algorithm 2 (LS2) for the GCSP

Begin

 S:= An initial random tour of n nodes, S* : = S and BestCost := Cost(S*);
 N(S) = Number of nodes in S;
 For i = 1, �, max_iter do
 For j = 1, �, J do
 While the solution can be improved do
 Improvement Procedure (S);
 End While

 If Cost of the current tour is greater than the BestCost then

 update the solution with the best known solution;
 Perturbation Procedure (S);
 End For;

 If by applying the Improvement Procedure the best known solution has been improved then

 Call Lin-Kernighan Procedure(S);
 End For;

End.

Improvement Procedure(S):

Begin

 r := 1;
 While   r N S do

 Extract the th
r node of the tour;

 If the solution is feasible then
 Update the solution;
 Else

 Generate all sequences with cardinality one or two, by considering the T nodes nearest
 to the extracted node;

 CostExtra _ := Extra cost (the cost generated by substituting sequence s with the
 extracted node) related to the sequence that has the minimum insertion cost;
 If CostExtra _ < 0 then

 Update BestCost and the current solution by substituting the new sequence with the
 extracted node;
 End If;

 End If;

 r := r+1;
 End While;

End.

Perturbation Procedure(S):

Begin

 For i = 1,�, K do
 Randomly select a node;
 Insert the node in its best feasible position in the tour;
 End For;

End.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 84

4.4. Computational Experiments

In this section we report on our computational experience with the two local search heuristics

LS1 and LS2 on the different GCSP variants. We first consider the CSP, and compare the

performance of the two proposed heuristics LS1 and LS2, with that of the method proposed by

Current and Schilling [24] for the CSP. Next we compare LS1 and LS2 on a large number of GCSP

instances for the three variants. We also consider a Steiner version of the GCSP, and report our

experience with the two local search heuristics. Finally, in order to compare the quality of the

solutions found by the two heuristics, we compare them with existing heuristics for the GTSP where

there exist well studied instances in the literature. All of the experiments suggest that the heuristics are

of a high quality and run very rapidly.

4.4.1. Test Problems

 Since there are no test problems in the literature for the CSP (as well as the variants of the

GCSP we introduce), we created datasets based on the TSP library instances [65]. In particular we

constructed our datasets based on 16 Euclidean TSPLIB instances whose size ranged from 51 to 200

nodes.

In the datasets created, each node can cover its 7, 9 or 11 nearest nodes (resulting in 3

instances for each TSPLIB instance), and each node i must be covered
i

k times, where
i

k is a

randomly chosen integer number between 1 and 3. We generated the datasets to ensure that a tour

over all of the nodes covers the demand (i.e., we ensured that the binary GCSP instances were

feasible). Although the cost for visiting a node can be different from node to node, for simplicity we

consider the node visiting costs to be the same for all nodes in an instance. In fact, if we assign a high

node visiting cost, the problem becomes a Set Covering Problem (as the node visiting costs dominate

the routing cost) under the assumption that a tour over all the nodes covers the demand. On the other

hand, if the node visiting cost is insignificant (i.e., the routing costs dominate), there is no difference

between the integer GCSP with overnight and the CSP. This is because if there is no node visiting

cost, a salesman will stay overnight at a node (at no additional cost) until he/she covers all the demand

that can be covered from that node. After testing different values for the node visiting cost, to ensure

that its effect was not to either extreme (Set Covering Problem or CSP), we fixed the node visiting

cost value to 50 for all the instances (which turned out to be an appropriate amount for the different

kinds of instances studied in this paper). In this fashion we constructed 48 datasets for our

computational work.

After considerable experimentation on a set of small test instances, we determined the best

values of the parameters to be used in both LS1 and LS2. Tables 4.1 and 4.2 show the different values

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 85

that were tested for various parameters and the best value obtained for the parameters in LS1 and LS2.

Both LS1 and LS2 were implemented in C and tested on a Windows Vista PC with an Intel Core Duo

processor running at 1.66 GHz with 1 GB RAM. As is customary in testing the performance of

randomized heuristic algorithms, we performed several independent executions of the algorithms. In

particular, for each benchmark instance, 5 independent runs of the algorithms LS1 and LS2 were

performed, with 5 different seeds for initializing the random number generator and the best and the

average performances of the two heuristics are provided.

Table 4.1. Parameters for LS1
Parameters Different values tested Best value

Search-magnitude {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} 0.2
Mutation_parameter {5, 10, 15, 20} 10

max_k {5, 10, 15, 20} 10
Á {0, 0.1, 0.01, 0.001} 0.001

Max_iter {1500, 3500, 5500, 7500, 8500}
3500 (CSP & Binary GCSP)

7500 (Integer GCSP)

Table 4.2. Parameters for LS2
Parameters Different values tested Best value

J {50, 100, 150, 200, 250, 300} 200
K {5, 10, 15, 20} 10
T {5, 10, 15} 10

max_iter {15, 20, 25, 30, 35, 40, 45, 50, 55, 60}
25 (CSP & Binary GCSP)

50 (IntegerGCSP)

In all tables reporting the computational performance of the heuristics, the first column is

related to the instance name which includes the number of nodes. The second column (NC) gives the

number of nearest nodes that can be covered by each node. Moreover, for each method the best and

the average cost, the number of nodes in the best solution (NB), the average time to best solution

(Avg.TB), i.e. the average time until the best solution is found (note the local search heuristic

typically continues after this point until it reaches its termination criterion), and the average time

(Avg.TT) are reported (TT is the total time for one run of the local search heuristic). In all tables, in

each row the best solution is written in bold and the last two rows give the average of each column

(Avg) and the number of best solutions found by each method (No.Best), respectively. All the

computing times are expressed in seconds.

4.4.2. Comparison of LS1 and LS2 Current and Schilling�s Heuristic for the CSP

Since Current and Schilling [24] introduced the CSP and proposed a heuristic for it, we

compare the performance of LS1 and LS2 against their heuristic. Recall, their algorithm was

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 86

described in Section 4.1. Since there are no test instances or computational experiments reported in

Current and Schilling�s paper, we coded their algorithm to compare the performance of the heuristics.

For Current and Schilling�s method, we used CPLEX 11 [40] to generate all optimal solutions of the

SCP, and since solving the TSP to optimality is computationally quite expensive on these instances

we use the Lin-Kernighan Procedure [49] to find a TSP tour for each solution. Sometimes finding all

the optimal solutions of an SCP instance is quite time consuming, so we only consider those optimal

solutions for the SCP that can be found in less than 10 minutes of running time.

Table 4.3 reports the results obtained by LS1, LS2 and our implementation of Current and

Schilling�s method. In this table, the number of optimal solutions (NO) of the set covering problem is

given. In Table 4.3 instances for which all the optimal solutions to the set covering problem cannot be

obtained within the given time threshold are shown with an asterisk. As can be seen in Table 4.3 for

the CSP, both LS1 and LS2 can obtain, in a few seconds, better solutions than Current and Schilling�s

method. The results of both the heuristics in all except one case (where they are tied with Current and

Schilling�s method) are better than Current and Schilling�s method, while they are several orders of

magnitude faster than Current and Schilling�s method. Between LS1 and LS2, LS2 outperforms LS1

as it obtains the best solution in all 48 instances, while LS1 only obtains the best solution in 38 out of

the 48 instances.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 87

From Table 4.3 we can make the following counter-intuitive observation. Sometimes by

selecting a set of nodes with a larger cardinality, we are able to find a shorter tour length, so the

optimal solution of the Set Covering Problem is not necessary a good solution for the Covering

Salesman Problem. Figures 4.1 and 4.2 illustrate two examples of CSP (Rat99 and KroA200) in

which, by increasing the number of nodes in the tour, the tour length is decreased.

4.4.3. Comparison of LS1 and LS2 on GCSP Variants

In Table 4.4 the results of the two local search heuristics on the binary GCSP are given. As can

be seen in this table, for the binary GCSP the two local search heuristics are very competitive with

each other. Although on average LS2 is a bit faster than LS1, in terms of the average cost, average

time to best solution, and the number of best solutions found LS1 is better than LS2. Over the 48

Figure 4.1. An example of decreasing the tour length by increasing the number of nodes in Rat99 (NC=7).

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

0

50

100

150

200

250

 a) Number of nodes in the tour: 14, Tour length: 572 b) Number of nodes in the tour: 18, Tour length: 486

Figure 4.2. An example of decreasing the tour length by increasing the number of nodes in KroA200 (NC=7).

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 a) Number of nodes in the tour: 28, Tour length: 14667 b) Number of nodes in the tour: 34, Tour length: 13285

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 88

instances, the two heuristics were tied in 22 instances. While, in 14 instances LS1 is strictly better

than LS2, and in 12 instances LS2 is strictly better than LS1.

Table 4.5 provides a comparison of LS1 and LS2 on the integer GCSP without overnights.

Here, the table contains one additional column reporting the number of times a solution revisits cities

(NR). Here, over 48 test instances, LS1 is strictly better than LS2 in 12 instances, LS2 is strictly

better than LS1 in 11 instances, while they are tied in 26 instances. Again the running time of both

LS1 and LS2 is extremely small, taking no more than 20 seconds even for the largest instances.

Table 4.6 compares LS1 and LS2 on integer GCSP with overnights. Here, the table contains

one additional column reporting the number of times a solution stays overnight at a node (ON). Here,

over 48 test instances, LS1 is strictly better than LS2 in 8 instances, LS2 is strictly better than LS1 in

30 instances, and they are tied in 10 instances. However, the running time of LS1 increases

significantly compared to LS2. This increase in running time appears to be due to a significant

increase in the number of times LS1 calls the Lin-Kernighan Procedure. Overall, LS2 appears to be a

better choice than LS1 for the integer GCSP with overnights.

Notice that a solution to the binary GCSP is a feasible solution to the integer GCSP without

overnights, and a feasible solution to the integer GCSP without overnights is a feasible solution for

the integer GCSP with overnights. Hence, we should expect that the average cost of the solutions

found should go down as we move from Table 4.4 to 4.6. This is confirmed in our experiments.

4.4.4. GCSP with Steiner Nodes

In our earlier test instances every node had a demand. We now construct some Steiner

instances, i.e., ones where some nodes have
i

k set to zero (the rest of the demands remain unchanged).

In these cases, a tour could contain some �Steiner nodes� (i.e., nodes without any demand) that can

help satisfy the coverage demand of the surrounding (or nearby) nodes. On the other hand, if fewer

nodes have demands then it is likely that fewer nodes need to be visited (in particular the earlier

solutions obtained are feasible for the Steiner versions), and thus we would expect the cost of the

solutions to the GCSP with Steiner nodes to decrease compared to the instances of the GCSP without

Steiner nodes. Table 4.7 confirms this observation. Here we compare LS1 and LS2 on the CSP with

Steiner nodes. For each CSP instance (in Table 4.3) we select 10 percent of the nodes randomly and

set their corresponding demands to zero. The behavior of LS1 and LS2 is similar to that of the earlier

CSP instances. Specifically, over the 48 test instances LS1 was strictly better once, LS2 was strictly

better 6 times, and the two methods were tied 41 times. Overall LS2 runs slightly faster than LS1. For

brevity, we have limited the comparison to the CSP with Steiner nodes.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 89

4.4.5. Analyzing the Quality of LS2 on the Generalized TSP

Overall, LS2 seems to be a better choice than LS1, in that it is more robust than LS1. It

outperforms LS1 on the CSP and the integer GCSP with overnights, while it is tied with LS1 for the

binary GCSP and integer GCSP without overnights. Further, the run time of LS2 remains fairly stable.

However, since we do not have lower bounds or optimal solutions for the CSP and GCSP instances, it

is hard to assess the quality of the solutions. Noting that the generalized TSP (GTSP) is a special case

of the CSP (we explain how momentarily), we use some well studied GTSP instances in the literature

[31] and compare LS2 with eight different heuristics designed specifically for the GTSP; as well as to

the optimal solutions on these instances obtained by Fischetti et al [31] using a branch-and-cut method.

In the GTSP, the set of nodes in the graph are clustered into disjoint sets and the goal is to find the

minimum length tour over a subset of nodes so that at least one node from each cluster is visited by

the tour. This can be formulated as a CSP, where each node has unit demand (i.e.,
i

k =1 for each node

i) and each node in a cluster covers every other node in a cluster (and no other nodes).

We executed LS2 on the benchmark GTSP dataset (see [31]) by first tuning its parameters.

The tuned parameters of LS2 are configured as follows: J=300, K=10, T=10, max_iter = 50 and 10

independent runs of LS2 were performed. We compared LS2 to eight other heuristics in the literature

that are described below.

1. MSA: A Multi-Start Heuristic by Cacchiani et al. [12],

2. mrOX: a Genetic Algorithm by Silberholz and Golden [71],

3. RACS: a Reinforcing Ant Colony System by Pintea et al. [62],

4. GA: a Genetic Algorithm by Snyder and Daskin [72],

5. 3
GI : a composite algorithm by Renaud and Boctor [66],

6. NN: a Nearest Neighbor approach by Noon [60],

7. FST-Lagr and FST-root: Two heuristics by Fischetti et al. [31].

In order to perform a fair comparison on the running times of the different heuristics, we

scaled the running times for the different computers as indicated in Dongarra [28]. The computer

factors are shown in Table 4.8. The columns indicate the computer used, solution method used,

Mflops of the computer, and r the scaling factor. Thus the reported running times in the different

papers are appropriately multiplied by the scaling factor r. We note that an identical approach was

taken in Cacchiani et al. [12] to compare across these heuristics for the GTSP. Since no computer

information is available for the RACS heuristic, we use a scaling factor of 1.

Table 4.9 reports on the comparison. For each instance we report the percentage gap with

respect to the optimal solution value and the computing time (expressed in seconds and scaled

according to the computer factors given in Table 4.8) for all the methods but for B&C (for which we

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 90

report only the computing time). Some of the methods (RACS, 3
GI , and NN) only reported solutions

for 36 of the 41 instances. Consequently, in the last four rows of Table 4.9 we report for each

algorithm, the average percentage gap and the average running time on the 36 instances tested by all

the methods, as well as over all 41 instances (for all methods except RACS, 3
GI , and NN). We also

summarize the number of times the optimum solution was found by a method. As Table 4.9 indicates,

although LS2 was not explicitly developed for the GTSP (but rather for a generalization of it), it

performs quite creditably. On average it takes 2.2 seconds, finds solutions that are on average 0.08%

from optimality, and found optimal solutions in 30 out of 41 benchmark GTSP instances.

4.5. Summary and Conclusions

In this chapter we considered the CSP, and introduced a generalization quite different from

earlier generalizations of the CSP in the literature. Specifically, in our generalization nodes must be

covered multiple times (i.e., we introduce a notion of coverage demand of a node). This may require a

tour to visit a node multiple times (which is not the case in earlier generalizations), and there are also

node visiting costs. We discussed three variants of the GCSP. The binary GCSP where revisiting a

node is not permitted, the integer GCSP without overnights where revisiting a node is permitted only

after another node is visited, and the integer GCSP with overnights where revisiting a node is

permitted without any restrictions. We designed two local search heuristics, LS1 and LS2, for these

variants. Overall LS2 appears to be more robust in terms of its running time as well as its performance

in terms of the number of times it found the best solutions in the different variants. When LS2 is

compared to 8 benchmark heuristics for the GTSP (that were specifically designed for the GTSP),

LS2 performs quite well, finding high-quality solutions rapidly.

We introduced two integer programming models for the binary and integer GCSP respectively.

However, both these models require considerable strengthening and embedding in a branch-and-cut

framework in order to obtain exact solutions to the GCSP. This is a natural direction for research on

the GCSP (as it will provide an even better assessment of the quality of heuristics for the GCSP), and

we hope researchers will take up this challenge.

Some natural generalizations of the GCSP (along the lines of the earlier generalizations of the

CSP) may be considered in future research. The earlier generalizations of the CSP (see [77]) included

requirements in terms of (i) requiring some nodes to be on the tour, (ii) requiring some nodes not to be

on the tour, (iii) allowing a node not to be covered at a cost (for our GCSP that would mean the

covering demand of a node could be partially covered at a cost), and (iv) including a cost for

allocating nodes not on the tour to the tour. These would be natural generalizations of this multi-unit

coverage demand variant of the CSP that we have introduced.

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 91

Table 4.3. Comparison of Current and Schilling�s method with LS1 and LS2 for CSP

Current and Schilling LS1 LS2
Instance NC

NO Cost NB TB TT
Best
Cost

Avg.
Cost

NB
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB
Avg.
TB

Avg.
TT

7 13 194 7 0.07 0.21 164 164.0 10 0,20 1,48 164 164.0 10 0.04 0.77

9 309 169 6 1.92 1.97 159 159.0 8 0.10 1.34 159 159.0 9 0.03 0.61 Eil 51

11 282 167 5 0.59 1.70 147 147.0 7 0.04 1.22 147 147.0 8 0.03 0.55

7 2769 4019 8 19.39 21.04 3887 3966.2 11 0.08 1.68 3887 3887.0 11 0.26 0.67

9 11478 3430 7 26.08 94.14 3430 3435.8 7 0.10 1.41 3430 3430.0 7 0.04 0.62 Berlin 52

11 11 3742 5 0.22 0.26 3262 3262.0 6 0.02 1.60 3262 3262.0 6 0.02 0.34

7 32832 297 10 232.24 454.07 288 288.0 11 0.11 1.86 288 288.0 12 0.05 1.03

9 18587 271 9 173.87 176.00 259 259.0 10 0.05 1.79 259 259.0 10 0.05 1.22 St 70

11 1736 269 7 13.21 13.74 247 247.0 10 0.16 1.98 247 247.0 10 0.04 0.88

7 241 241 11 1.15 2.46 207 210.6 15 0.53 2.09 207 207.0 15 0.17 1.11

9 1439 193 9 7.43 13.95 186 186.8 11 0.26 1.98 185 185.0 11 0.05 1.13 Eil 76

11 7050 180 8 30.48 78.88 170 176.4 11 0.05 2.14 170 170.0 11 0.05 1.07

7 26710 53255 11 54.20 170.41 50275 51085.0 14 0.55 1.86 50275 50275.0 14 0.78 1.27

9 326703* 45792 10 6743.66 9837.36 45348 45348.0 12 0.27 2.01 45348 45348.0 12 0.26 1.12 Pr 76

11 20 45955 7 0.11 0.20 43028 43418.4 10 0.48 1.95 43028 43028.0 10 0.07 1.03

7 3968 572 14 22.74 32.75 486 486.4 18 0.08 2.20 486 486.0 18 0.16 1.77

9 170366 462 12 1749.66 2729.67 455 455.6 15 0.67 2.38 455 455.0 15 0.11 1.92 Rat 99

11 16301 456 10 88.87 140.18 444 444.8 12 0.43 2.25 444 444.0 12 0.09 1.75

7 208101* 10306 15 6303.03 6475.95 9674 9674.0 19 0.38 2.06 9674 9674.0 19 0.31 2.04

9 95770 9573 12 524.49 1365.42 9159 9159.0 15 0.13 2.28 9159 9159.0 15 0.14 1.85 KroA 100

11 33444 9460 10 409.47 433.97 8901 8912.2 13 0.19 2.56 8901 8901.0 13 0.13 1.62

7 4068 11123 14 45.62 48.35 9537 9537.0 20 0.39 1.99 9537 9537.0 20 0.33 1.93

9 133396 9505 12 2112.57 2623.76 9240 9262.2 15 0.54 2.13 9240 9240.0 15 0.16 1.99 KroB 100

11 90000* 9049 10 1056.27 2895.35 8842 8842.6 13 1.34 2.62 8842 8842.0 13 0.09 1.83

7 129545* 10367 15 3391.82 4212.98 9728 9728.6 18 0.72 2.46 9723 9723.0 17 0.17 1.97

9 5028 9952 12 35.91 52.25 9171 9184.4 13 0.12 2.45 9171 9171.0 13 0.19 1.91 KroC 100

11 75987* 9150 10 1389.84 2482.00 8632 8632.0 13 0.14 2.74 8632 8632.0 13 0.09 1.85

7 1392 11085 14 10.29 15.58 9626 9626.0 20 1.35 2.39 9626 9626.0 20 0.21 1.83

9 700 10564 11 6.18 7.74 8885 8903.8 13 0.75 2.38 8885 8885.0 13 0.12 2.04 KroD 100

11 85147* 9175 10 968.39 2761.51 8725 8730.4 13 0.48 2.83 8725 8725.0 13 0.13 1.89

7 92414* 11323 15 1971.32 3075.58 10150 10154.8 19 0.14 2.48 10150 10150.0 19 1.06 1.84

9 85305* 9095 12 1918.72 2764.70 8992 8992.0 13 0.33 2.69 8991 8991.0 14 0.16 1.90 KroE 100

11 70807* 8936 10 609.81 2335.43 8450 8450.0 13 0.36 2.89 8450 8450.0 13 0.08 1.97

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 92

Current and Schilling LS1 LS2
Instance NC

NO Cost NB TB TT
Best
Cost

Avg.
Cost

NB
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB
Avg.
TB

Avg.
TT

7 2520 4105 14 24.43 4196.23 3461 3478.2 18 0.31 2.53 3461 3485.6 18 0.24 1.83

9 95242* 3414 12 1798.14 3118.93 3194 3211.4 16 0.91 2.65 3194 3194.0 16 0.25 1.76 Rd 100

11 1291 3453 10 8.60 22.11 2944 2944.0 12 0.44 3.1 2922 2922.0 13 0.14 1.54

7 97785* 12367 22 2252.50 3499.43 11480 11548.8 27 0.89 2.68 11423 11481.0 28 1.97 2.91

9 69377* 11955 17 2454.99 2477.69 10072 10072.0 23 0.71 2.78 10056 10056.0 26 1.91 2.75 KroA150

11 169846* 10564 15 5483.07 5518.26 9439 9439.0 21 1.06 2.82 9439 9439.0 21 0.39 2.68

7 14400 12876 21 196.85 270.94 11490 11517.0 30 1.39 2.58 11457 11463.6 30 1.66 3.08

9 137763* 11774 18 2760.03 4572.81 10121 10173.4 24 1.19 2.77 10121 10121.0 24 0.64 2.78 KroB 150

11 1431 10968 14 26.64 46.96 9611 9639.8 21 0.61 2.88 9611 9611.0 21 0.28 2.88

7 53686* 14667 28 537.60 1170.37 13293 13345.2 34 1.05 3.25 13285 13313.8 34 3.99 4.28

9 64763* 12683 23 1504.07 1628.36 11710 11753.6 29 1.23 2.80 11708 11725.0 28 3.25 3.88 KroA 200

11 29668* 12736 19 398.25 671.55 10748 10813.4 29 1.04 3.16 10748 10814.8 29 3.10 3.65

7 107208* 14952 29 365.08 3351.89 13280 13297.6 36 0.46 2.83 13051 13147.4 35 2.24 4.38

9 38218* 13679 23 637.66 805.04 11864 11898.6 29 1.02 2.98 11864 11937.8 29 2.30 4.02 KroB 200

11 67896* 12265 20 493.64 1410.60 10644 10714.0 29 0.98 2.81 10644 10650.4 29 3.10 3.72

Avg 55896 9808.02 13 1017.94 1626.68 9031.4 9070.3 17 0.52 2.35 9023.6 9031.5 17 0.65 1.95

No.Best 1 38 48

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 93

Table 4.4. Comparison of LS1 and LS2 on Binary GCSP

LS1 LS2
Instance NC Best

Cost
Avg.
Cost

NB
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB
Avg.
TB

Avg.
TT

7 1224 1224 20 0.10 1.65 1190 1191.6 19 0.24 1.08
9 991 996.2 15 0.48 1.63 991 993.4 15 0.21 1.10 Eil 51

11 844 869.4 13 0.27 1.49 844 849.4 13 0.19 1.14
7 5429 5429.0 17 0.06 1.65 5429 5514.6 17 0.11 1.11
9 4807 4818.8 14 0.09 1.49 4807 4834.0 14 0.08 1.08 Berlin 52

11 4590 4655.0 13 0.27 1.58 4590 4639.6 13 0.30 0.85
7 1836 1841.6 29 0.56 2.58 1834 1836.4 29 0.45 1.33
9 1461 1468.8 22 0.35 1.76 1460 1460.0 22 0.42 1.38 St 70

11 1268 1270.2 19 0.90 1.73 1268 1270.2 19 0.45 1.37
7 1610 1630.8 26 0.52 2.51 1610 1623.0 26 0.25 1.63
9 1270 1319.8 20 0.37 1.83 1296 1301.2 21 0.83 1.64 Eil 76

11 1117 1130.8 18 0.31 1.87 1117 1122.2 18 1.04 1.61
7 66789 66850.8 28 0.66 1.46 66455 66887.8 29 0.83 1.71
9 62907 62916.0 23 0.18 1.71 63114 63203.6 25 0.83 1.68 Pr 76

11 52175 52527.0 19 0.25 1.58 52175 52175.0 19 0.32 1.47
7 2341 2346.0 34 0.64 3.07 2325 2340.2 33 0.98 2.17
9 1936 1940.4 27 0.24 1.97 1936 1941.2 27 1.01 2.43 Rat 99

11 1686 1714.2 23 0.31 1.80 1686 1691.2 23 1.21 2.39
7 14660 14660 41 0.53 2.18 14660 14726.6 41 1.26 2.25
9 12974 12974 33 0.13 1.65 12974 12987.2 33 0.47 2.38 KroA 100

11 11970 11977.2 28 0.42 1.57 11942 11942.0 29 0.41 2.38
7 14415 14451.8 44 0.87 1.91 14459 14577.6 42 0.43 2.23
9 12222 12296.4 34 0.86 2.17 12194 12247.0 33 2.18 2.27 KroB 100

11 11276 11277.2 28 1.20 2.55 11276 11315.2 28 0.83 2.43
7 13830 13888.8 41 0.13 2.88 13830 13850.2 41 2.08 2.24
9 12149 12190.2 33 0.64 2.12 12149 12189.6 33 1.45 2.21 KroC 100

11 11032 11032 26 0.11 2.00 11032 11032.0 26 1.74 2.22
7 13567 13666.4 38 0.06 2.53 13704 13857.2 38 0.31 2.42
9 12409 12448.6 32 1.03 1.92 12419 12479.8 31 2.08 2.48 KroD 100

11 11486 11520.8 28 0.43 1.76 11443 11515.6 29 1.34 2.11
7 15321 15485.0 41 0.37 2.62 15471 15700.6 41 0.30 1.99
9 12482 12482 32 0.19 1.64 12482 12482.0 32 0.40 2.33 KroE 100

11 11425 11452.4 30 0.66 1.48 11456 11490.6 28 2.24 2.26
7 6209 6210.8 37 0.30 2.20 6170 6251.4 37 0.70 2.33
9 5469 5595.0 29 0.23 2.10 5469 5477.2 29 1.06 2.44 Rd 100

11 4910 4985.6 28 0.52 1.63 4910 4965.2 28 1.17 2.22
7 17258 17274.6 55 0.96 4.52 17270 17425.8 54 2.11 3.63
9 15007 15042.6 46 1.07 3.68 15007 15145.4 46 2.60 4.20 KroA150

11 13666 13755.6 40 1.20 2.93 13762 14010.8 41 2.50 3.75
7 17639 17745.8 60 2.94 4.16 17639 18141.4 60 2.18 3.56
9 15505 15688.0 50 0.90 3.61 15506 15854.8 50 3.71 3.76 KroB 150

11 13740 13899.0 42 1.82 2.97 13719 13836.4 40 2.82 3.69
7 21388 21553.8 74 3.23 8.11 21346 21543.8 76 3.71 4.73
9 17843 17999.4 59 2.33 5.70 17893 18103.8 60 3.09 4.91 KroA 200

11 16591 16702.4 54 1.84 4.94 16380 16580.4 55 3.80 4.85
7 20736 20960.0 79 2.30 8.71 20882 21117.6 79 3.88 4.52
9 18266 18377.4 66 1.94 6.28 18269 18500.6 67 3.05 4.73 KroB 200

11 15961 16428.8 55 2.37 4.71 16173 16372.0 55 3.57 4.65
Avg 13035.2 13103.6 35 0.79 2.72 13041.9 13137.4 35 1.40 2.49

No.Best 36 34

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 94

Table 4.5. Comparison of LS1 and LS2 on Integer GCSP without overnight

LS1 LS2
Instance NC Best

Cost
Avg.
Cost

NB NR
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB NR
Avg.
TB

Avg.
TT

7 1185 1199.8 19 1 0.28 4.19 1185 1187.0 19 1 0.96 3.83
9 991 992.8 15 0 1.59 4.09 991 996.2 15 0 0.85 3.30 Eil 51

11 843 845.0 13 1 1.27 4.77 843 843.0 13 1 1.12 3.22
7 5429 5429.0 17 0 0.14 3.99 5429 5429.0 17 0 0.18 3.37
9 4785 4796.8 15 1 0.02 4.17 4785 4807.6 15 1 0.12 2.69 Berlin 52

11 4590 4651.4 13 0 0.12 3.27 4590 4620.0 13 0 0.66 2.51
7 1778 1783.4 28 3 1.21 6.56 1782 1786.0 28 1 0.48 5.10
9 1461 1497.8 22 0 0.23 5.27 1460 1461.2 22 0 1.46 4.56 St 70

11 1268 1268.0 19 0 1.33 3.31 1241 1264.2 18 1 1.70 4.03
7 1600 1626.6 26 1 1.69 6.67 1600 1619.4 26 2 2.27 5.11
9 1270 1291.6 20 0 1.26 5.10 1270 1294.0 20 0 1.93 4.79 Eil 76

11 1117 1121.2 18 0 0.89 4.13 1117 1117.0 18 0 0.48 4.63
7 65990 66615.8 28 1 1.47 4.73 64111 65560.8 29 4 1.70 5.44
9 57147 57945.2 29 1 1.14 5.17 54907 55862.4 29 6 1.37 4.94 Pr 76

11 51587 51650.0 20 2 1.52 4.42 49445 49445.0 21 3 1.02 4.22
7 2311 2315.0 33 1 0.65 7.39 2311 2341.2 33 1 2.70 7.61
9 1936 1937.8 27 0 1.53 5.85 1936 1949.4 28 0 1.99 7.19 Rat 99

11 1683 1704.4 23 0 2.07 4.55 1683 1701.0 23 0 1.87 6.77
7 14660 14678.8 41 0 1.52 6.35 14660 14784.4 41 0 2.40 8.18
9 12974 12974.0 33 0 0.53 4.98 12974 13090.0 33 0 2.27 7.49 KroA 100

11 11737 11737.0 29 1 0.47 4.59 11737 11737.0 29 1 2.03 0.30
7 14246 14394.2 45 6 3.00 6.16 14297 14316.8 43 3 3.54 8.83
9 12200 12348.6 34 3 2.39 4.91 12189 12197.8 33 2 1.56 7.35 KroB 100

11 11268 11394.2 27 2 0.30 6.38 11268 11378.0 27 2 0.74 6.95
7 13520 13644.0 42 5 3.42 7.49 13792 13999.8 41 1 2.55 8.42
9 12119 12209.0 33 1 1.22 6.76 12119 12119.0 33 1 1.18 7.22 KroC 100

11 11032 11032.0 26 0 0.57 9.82 11032 11074.4 26 0 0.85 6.19
7 13501 13517.6 39 2 4.97 7.61 13501 13635.0 39 2 1.97 8.84
9 12261 12303.2 31 1 0.62 6.20 12257 12279.6 31 1 1.98 7.71 KroD 100

11 11452 11534.0 29 1 2.79 9.43 11409 11450.2 30 1 1.65 7.30
7 15308 15386.8 42 1 2.71 7.05 15471 15767.2 41 0 4.37 8.02
9 12482 12541.8 32 0 0.42 5.72 12482 12485.0 32 0 1.29 7.18 KroE 100

11 11344 11417.8 30 1 2.89 7.40 11344 11373.6 30 1 2.92 6.68
7 6078 6182.8 37 2 0.86 6.78 6078 6199.6 37 2 2.05 7.45
9 5384 5501.0 30 2 3.54 6.39 5384 5418.8 30 2 2.60 7.15 Rd 100

11 4853 4916.6 29 1 1.73 4.14 4853 4867.2 29 1 1.58 6.29
7 16947 16974.0 57 4 3.29 13.36 16976 17143.0 56 3 7.22 12.50
9 15007 15158.6 46 0 2.55 9.47 15000 15136.8 49 3 2.40 11.80 KroA150

11 13580 13709.4 40 2 1.92 7.47 13683 13791.8 41 2 4.76 10.60
7 17621 17776.8 59 1 5.55 11.46 17639 18136.2 60 0 3.15 12.15
9 15332 15609.8 48 3 3.90 10.68 15383 15556.0 48 3 4.83 11.78 KroB 150

11 13554 13582.0 41 2 2.76 7.66 13554 13670.8 41 2 4.96 10.82
7 21337 21415.2 79 3 10.35 20.03 21120 21294.8 78 6 10.09 16.92
9 17812 17927.0 62 2 6.77 14.37 17832 18186.8 64 5 10.91 14.97 KroA 200

11 16290 16517.8 54 4 9.14 12.56 16370 16485.0 53 4 10.41 14.48
7 20628 20808.2 78 2 5.91 20.45 20862 21027.4 77 2 6.62 16.01
9 18247 18387.6 67 3 4.75 14.88 18260 18448.6 68 3 8.84 14.79 KroB 200

11 15888 16150.0 56 3 4.03 11.73 15688 15968.8 56 4 8.01 13.80
Avg 12825.7 12925.0 35 1 2.36 7.50 12706.3 12839.7 35 2 2.97 7.74

No.Best 37 36

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 95

Table 4.6. Comparison of LS1 and LS2 on Integer GCSP with overnight

LS1 LS2
Instance NC Best

Cost
Avg.
Cost

NB ON
Avg.
TB

Avg.
TT

Best
Cost

Avg.
Cost

NB ON
Avg.
TB

Avg.
TT

7 1146 1146.0 19 10 0.60 10.21 1146 1146.0 19 10 0.09 2.81
9 958 980.8 15 5 0.77 8.26 958 968.4 15 5 0.70 3.15 Eil 51

11 842 866.8 13 5 1.66 7.85 827 829.4 13 4 0.33 2.90
7 4969 4981.6 19 11 5.65 9.22 4966 4976.0 18 9 0.66 2.87
9 4272 4301.2 16 8 3.00 6.74 4272 4324.0 16 8 0.58 2.35 Berlin 52

11 3962 4149.2 14 8 0.10 8.09 3962 3962.0 14 8 0.12 2.17
7 1654 1656.2 27 15 2.95 17.46 1655 1655.0 27 14 0.35 4.26
9 1442 1453.0 23 12 1.07 11.21 1416 1438.6 22 9 0.40 3.79 St 70

11 1196 1226.8 18 6 1.71 8.30 1196 1213.0 18 6 1.77 3.75
7 1554 1587.0 26 10 6.00 12.37 1562 1578.4 26 10 1.06 4.63
9 1268 1307.2 21 7 4.23 9.54 1268 1298.2 21 7 1.00 4.22 Eil 76

11 1107 1125.6 18 3 4.99 8.01 1107 1110.2 18 4 0.68 4.08
7 53270 56065.2 29 15 1.41 16.58 53266 54142.0 30 16 1.97 4.61
9 47226 49028.4 26 15 7.40 12.84 46912 47245.8 27 17 0.72 3.99 Pr 76

11 44036 46104.0 19 8 0.73 11.47 44028 44029.6 20 10 0.99 3.62
7 2229 2241.8 33 10 3.43 10.24 2229 2259.4 33 10 3.09 6.34
9 1908 1940.6 27 5 5.58 10.05 1922 1947.0 28 8 3.17 6.19 Rat 99

11 1673 1697.2 24 9 3.89 10.84 1650 1686.6 23 6 0.73 5.71
7 12474 12762.4 42 24 10.20 28.73 12006 12322.6 43 26 1.34 6.69
9 11671 11733.4 34 21 16.59 22.31 11218 11245.2 35 21 1.00 6.28 KroA 100

11 10886 10931.8 29 17 6.79 19.91 10665 10700.8 31 17 2.20 5.64
7 12728 12920.6 39 18 7.31 21.13 12273 12530.0 43 25 3.31 7.21
9 11176 11232.0 34 19 3.11 17.40 11128 11133.2 35 21 3.65 6.59 KroB 100

11 10302 10534.6 28 15 5.28 16.54 10302 10409.8 28 15 1.69 6.04
7 12202 12401.6 41 22 11.17 32.46 12043 12269.2 45 27 2.52 6.63
9 11196 11374.8 33 16 3.63 17.75 11031 11141.0 35 20 1.95 5.71 KroC 100

11 10445 10629.2 27 15 2.00 18.27 10299 10406.2 28 15 1.26 5.42
7 11868 12115.4 38 20 5.13 22.28 11725 11827.8 39 20 1.70 6.56
9 11062 11287.0 31 16 6.55 15.75 10742 10869.6 35 20 2.56 6.11 KroD 100

11 10523 10714.0 27 13 4.35 15.30 10404 10469.4 29 16 1.10 5.83
7 13101 13332.4 42 25 6.35 24.37 12689 12859.6 45 28 1.83 6.01
9 10821 11193.2 34 20 6.03 24.89 10821 10905.0 34 20 1.52 5.61 KroE 100

11 10007 10190.6 29 17 4.59 16.30 10007 10136.4 29 17 0.59 5.34
7 5626 5834.2 37 17 4.83 20.75 5570 5645.6 39 20 2.72 6.55
9 4950 5129.4 32 18 4.24 13.02 5037 5093.2 30 13 0.81 5.89 Rd 100

11 4541 4705.8 27 13 4.72 15.30 4514 4581.8 27 12 2.01 5.23
7 15341 15483.2 59 32 19.02 41.95 15385 15644.6 60 37 3.34 9.56
9 13475 13714.2 49 28 6.60 30.64 12944 13288.6 51 28 6.32 10.07 KroA150

11 12151 12399.4 43 25 4.31 21.24 12215 12407.4 44 25 3.31 8.92
7 15825 15964.0 58 31 8.91 32.67 15252 15774.2 61 32 4.47 10.49
9 13198 13415.8 52 30 21.04 36.04 13139 13372.0 52 31 8.28 9.78 KroB 150

11 12418 12933.0 40 24 6.91 28.11 12174 12561.6 44 26 3.46 9.06
7 18093 18186.4 76 39 27.64 47.57 17873 18431.8 82 49 6.32 13.74
9 15562 15979.4 63 37 10.07 37.55 15782 16141.6 64 35 3.48 12.36 KroA 200

11 14873 14933.0 55 30 20.95 30.29 14629 14835.0 56 32 4.41 11.39
7 18119 18436.6 82 46 36.42 56.66 17701 18108.4 85 51 8.09 13.98
9 16289 16395.4 68 36 28.23 40.13 15766 16264.4 66 37 8.69 12.27 KroB 200

11 14217 14705.8 54 26 13.26 29.64 14360 14490.8 56 27 7.99 11.37
Avg 11246.9 11529.7 35 18 7.74 20.50 11125.8 11284.9 36 19 2.51 6.54

No.Best 18 40

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 96

Table 4.7. Comparison of LS1 and LS2 on Steiner CSP

LS1 LS2
Instance Best

Cost
Avg. Cost NB

Avg.
TB

Avg.
TT

Best Cost
Avg.
Cost

NB
Avg.
TB

Avg.
TT

163 163.0 8 0.02 1.29 163 163.0 9 0.03 0.69
159 159.40 8 0.38 4.90 159 159.0 9 0.03 0.52 Eil 51
147 147.0 7 0.10 2.08 147 147.0 8 0.03 0.57

3470 3483.60 10 0.09 1.45 3470 3470.0 10 0.33 0.68
3097 3097.0 7 0.98 4.45 3097 3097.0 7 0.03 0.51 Berlin 52
2956 2959.60 6 0.05 2.46 2956 2956.0 6 0.02 0.54
288 288.0 11 0.11 1.64 287 287.0 12 0.08 0.89
259 259.0 9 0.04 4.53 259 259.0 10 0.06 1.07 St 70
245 245.80 10 0.46 2.71 245 245.0 10 0.04 0.82
207 211.40 15 0.11 1.64 207 210.0 15 0.25 0.91
186 186.40 11 0.76 4.39 185 185.0 10 0.04 0.99 Eil 76
169 170.80 10 0.19 2.63 169 169.0 11 0.04 0.92

49773 50566.80 13 0.18 1.61 49773 49773.0 13 0.18 1.15
44889 44889.0 12 0.47 4.65 44889 44889.0 12 0.12 1.08 Pr 76
42950 43399.20 9 0.34 2.84 42950 42950.0 9 0.05 0.87
483 483.0 17 0.19 1.91 482 482.0 18 0.29 1.54
454 454.0 14 0.56 4.38 454 454.0 14 0.09 1.67 Rat 99
444 444.40 12 0.76 3.09 444 444.0 12 0.08 1.47

9545 9545.0 18 0.31 2.04 9545 9545.0 18 0.39 1.75
9112 9112.0 15 0.09 1.72 9112 9112.0 15 0.35 1.55 KroA 100
8833 8841.40 13 0.23 3.42 8833 8833.0 13 0.08 1.32
9536 9536.0 19 0.33 1.93 9536 9536.0 19 0.37 1.62
9199 9205.80 15 0.66 1.53 9199 9199.0 15 0.09 1.64 KroB 100
8763 8763.0 11 0.50 3.55 8763 8763.0 11 0.12 1.61
9591 9591.0 15 0.17 1.97 9590 9590.0 16 0.14 1.72
9171 9171.0 13 0.70 1.79 9171 9171.0 13 0.27 1.52 KroC 100
8632 8632.0 13 0.39 3.55 8632 8632.0 13 0.09 1.63
9526 9526.0 19 0.21 1.83 9526 9526.0 19 0.15 1.51
8885 8885.40 13 0.78 1.87 8885 8885.0 13 0.15 1.83 KroD 100
8725 8731.40 13 0.77 3.69 8725 8725.0 13 0.10 1.65
9800 9800.0 16 1.06 1.84 9800 9800.0 16 0.16 1.54
8987 8987.0 13 0.29 2.02 8986 8986.0 14 0.11 1.56 KroE 100
8450 8450.0 13 0.40 3.85 8450 8450.0 13 0.11 1.70
3412 3412.0 18 0.24 1.83 3412 3434.4 18 0.25 1.60
3194 3206.80 16 0.43 1.87 3194 3194.0 16 0.31 1.52 Rd 100
2761 2761.0 12 0.49 3.66 2761 2761.0 12 0.09 1.33
10939 10939.0 27 1.97 2.91 10939 11099.6 27 0.85 2.45
9808 9823.20 23 0.25 2.25 9808 9808.0 23 0.20 2.26 KroA150
9360 9382.60 20 1.13 3.46 9360 9360.0 20 0.29 2.30
11225 11288.6 30 1.66 3.08 11225 11240.4 30 1.08 2.48
10121 10211.40 24 1.10 2.35 10121 10121.0 24 0.64 2.31 KroB 150
9542 9556.60 20 0.86 3.54 9542 9542.0 20 0.19 2.55
13042 13042.0 32 3.99 4.28 13227 13268.0 35 1.12 3.62
11392 11429.20 27 0.22 2.42 11392 11424.0 27 0.83 3.18 KroA 200
10527 10615.80 24 0.51 4.02 10525 10673.8 26 0.79 2.95
13020 13160.20 34 2.24 4.38 13020 13092.0 34 1.77 3.41
11712 11788.60 28 0.79 2.63 11712 11837.2 28 1.89 3.39 KroB 200
10614 10769.40 28 1.62 3.60 10614 10734.8 28 0.89 2.99

Avg 8911.73 8953.56 16 0.63 2.82 8915.4 8930.9 16 0.33 1.65
No.Best 42 47

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 97

Table 4.8. Comparison of computing times of GTSP methods

Computer Mflops r Method

Gateway Profile 4MX 230 1.568 GA

Sun Sparc Station LX 4.6 0.032 GI
3

, NN

HP 9000/720 2.3 0.016 FST-Lagr, FST-Root, B&C

Unknown - 1 RACS

Dell Dimension 8400 - 1 mrOX

Pentium(R) IV, 3.4 Ghz 295 2.03 MSA

Our 145 1 LS2

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 98

Table 4.9. Comparison of LS2 against 8 other heuristics on benchmark GTSP instances in the literature

LS2 MSA mrOX RACS GA GI
3

 NN FST-lagr FST-Root B&C
Instances

gap time gap time gap time gap gap time gap time gap time gap time gap time time

Att48 0 0.4 0 0 0 0.8 - 0 0 - - - - 0 0 0 0 0.0

Gr48 0 0.4 0 0 0 0.6 - 0 0.8 - - - - 0 0 0 0 0.0

Hk48 0 0.5 0 0 0 0.6 - 0 0.4 - - - - 0 0 0 0 0.0

Eil51 0 0.5 0 0 0 0.6 0 0 0.2 0 0 0 0 0 0 0 0 0.0

Brazil58 0 0.6 0 0 0 1.6 - 0 0.4 - - - - 0 0 0 0 0.0

St70 0 0.7 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2

Eil76 0 0.8 0 0 0 0.8 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2

Pr76 0 0.9 0 0 0 1.0 0 0 0.4 0 0 0 0 0 0 0 0.2 0.2

Rat99 0 1.2 0 0 0 1.0 0 0 1.0 0 0.2 0 0.2 0 0 0 0.8 0.8

KroA100 0 1.2 0 0 0 1.2 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2

KroB100 0 1.3 0 0 0 1.2 0 0 0.6 0 0.2 0 0 0 0 0 0.4 0.4

KroC100 0 1.2 0 0 0 1.2 0 0 0.4 0 0.2 0 0.2 0 0 0 0.2 0.2

KroD100 0 1.2 0 0 0 1.4 0 0 0.6 0 0.2 0 0. 0 0 0 0.2 0.2

KroE100 0 1.3 0 0 0 1.2 0 0 1.2 0 0.2 0 0 0 0 0 0.2 0.2

Rd100 0 1.2 0 0 0 1.0 0 0 0.4 0.08 0.2 0.08 0.2 0.08 0 0 0.2 0.2

Eil101 0 1.1 0 0 0 1.0 0 0 0.4 0.4 0.2 0.4 0 0 0 0 0.4 0.4

Lin105 0 1.3 0 0 0 1.2 0 0 0.4 0 0.4 0 0.2 0 0 0 0.2 0.2

Pr107 0 1.2 0 0 0 1.0 0 0 0.6 0 0.2 0 0.2 0 0 0 0.2 0.2

Gr120 0 1.1 0 0 0 1.4 - 0 0.8 - - - - 1.99 0 0 0.6 0.6

Pr124 0 1.5 0 0 0 1.4 0 0 1.0 0.43 0.4 0 0.4 0 0 0 0.4 0.4

Bier127 0.04 1.6 0 0 0 1.6 0 0 0.8 5.55 1.0 9.68 0.2 0 0.2 0 0.4 0.4

Pr136 0 1.8 0 0 0 1.6 0 0 0.8 1.28 0.4 5.54 0.2 0.82 0.2 0 0.6 0.6

Pr144 0 1.6 0 0 0 2.0 0 0 0.4 0 0.4 0 0.4 0 0 0 0.2 0.2

KroA150 0 2.1 0 0 0 2.0 0 0 2.0 0 0.6 0 0.6 0 0.2 0 1.4 1.5

KroB150 0 1.9 0 0 0 2.0 0 0 1.6 0 0.4 0 0.6 0 0.2 0 0.8 0.8

Pr152 0 2.0 0 0 0 2.0 0 0 2.4 0.47 0.6 1.8 0.4 0 0.2 0 0.8 1.5

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 99

Table 4.9. Comparison of LS2 against 8 other heuristics on benchmark GTSP instances in the literature

LS2 MSA mrOX RACS GA GI
3

 NN FST-lagr FST-Root B&C
Instances

gap time gap time gap time gap gap time gap time gap time gap time gap time gap

U159 0 2.2 0 0 0 2.0 0.01 0 1.0 2.6 0.6 2.79 0.8 0 0.2 0 2.0 2.0

Rat195 0 2.5 0 0.2 0 2.8 0 0 1.0 0 1.2 1.29 2.6 1.87 0.2 0 3.5 3.5

D198 0.32 3.4 0 0 0 3.2 0.01 0 1.8 0.6 1.8 0.6 3.6 0.48 0.2 0 10.8 10.8

KroA200 0 2.8 0 0 0 3.4 0.01 0 4.2 0 0.8 5.25 1.6 0 0.2 0 2.6 2.6

KroB200 0 2.7 0 0 0.05 3.2 0 0 2.2 0 1.0 0 4.0 0.05 0.2 0 3.9 3.9

Ts225 0 2.9 0 4.3 0.14 3.4 0.02 0 3.9 0.61 2.6 0 3.6 0.09 0.2 0.09 18.5 538.2

Pr226 0.09 2.5 0 0 0 3.0 0.03 0 1.6 0 0.8 2.17 2.0 0 0.2 0 1.4 1.4

Gil262 0.79 3.6 0 7.1 0.45 7.2 0.22 0.79 3.0 5.03 3.5 1.88 3.6 3.75 0.2 0.89 20.5 94.2

Pr264 0.59 3.6 0 0 0 4.8 0 0 2.0 0.36 2.0 5.73 4.5 0.33 0.4 0 4.9 4.9

Pr299 0.04 4.5 0 1.4 0.05 9.2 0.24 0.02 9.7 2.23 0.2 2.01 8.5 0 0.4 0 11.6 11.6

Lin318 0.01 4.4 0 0 0 16.2 0.12 0 5.5 4.59 6.2 4.92 9.7 0.36 0.8 0.36 12.0 23.8

Rd400 0.98 6.2 0 0.6 0.58 29.2 0.87 1.37 5.5 1.23 12.2 3.98 34.7 3.16 0.8 2.97 71.5 99.9

Fl417 0.01 5.8 0 0 0.04 16.4 0.57 0.07 3.8 0.48 12.8 1.07 40.8 0.13 1.0 0 237.5 237.5

Pr439 0.09 7.1 0 3.9 0 38.2 0.79 0.23 14.4 3.52 18.4 4.02 37.8 1.42 2.0 0 76.9 77.1

Pcb442 0.16 6.9 0 1.6 0.01 46.8 0.69 1.31 16.0 5.91 17.0 0.22 25.6 4.22 1.2 0.29 76.1 835.1

Average (36) 0.09 2.5 0 0.53 0.04 6.12 0.10 0.10 2.58 0.98 2.42 1.48 5.21 0.46 0.26 0.13 15.61 54.32

Opt (36) 25 36 29 24 30 19 18 23 31 36

Average (41) 0.08 2.2 0 0.47 0.03 5.38 0.09 2.31 0.46 0.22 0.11 13.72 47.71

Opt (41) 30 41 34 35 27 36 41

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 100

References

[1] Aickelin U. An indirect genetic algorithm for set covering problems. Journal of the

Operational Research Society 53, 1118-1126 (2002).

[2] Arkin E.M. and Hassin R. Approximation algorithms for the geometric covering salesman

Problem, Discrete Applied Mathematics 55(3), 197-218 (1994).

[3] Balas E. and Ho A. Set covering algorithms using cutting planes, Heuristics, and

Subgradient Optimization: A Computational Study. Math. Programming 12, 37-60 (1980).

[4] Baldacci R., Dell�Amico M. Heuristic algorithms for the design of urban optical networks.

Technical Report, 63, Department of Sciences and Methods for Engineering, University of

Modena and Reggio Emilia, Reggio Emilia, Italy, (2004).

[5] Baldacci R., Dell�Amico M., and Salazar González J.J. The Capacitated m-Ring-Star

Problem. Operations Research 55(6),1147-1162 (2007).

[6] Bautista J, Pereira J. A GRASP algorithm to solve the unicost set covering problem.

Computers & Operations Research 34, 3162-3173 (2007).

[7] Beasley J.E. An algorithm for set covering problems. European Journal of Operational

Research 31, 85-93 (1987).

[8] Beasley J.E. OR-Library: distributing test problems by electronic mail. Journal of the

Operational Research Society 41, 1069-1072 (1990).

[9] Beasley J.E, Chu P.C. A genetic algorithm for the set covering problem. European Journal of

Operational Research 94, 392-404 (1996).

[10] Birbil S.I, Fang S.C. An Electromagnetism-like mechanism for global optimization. Journal

of Global Optimization 25, 263-282 (2003).

[11] Brüggemann T., Monnot J., Woeginger G.J. Local search for the minimum label spanning

tree problem with bounded color classes. Operations Research Letters 31, 195-201 (2003).

[12] Cacchiani V., Fernandes Muritiba A.E., Negreiros M., and Toth P. A Multi-Start

Heuristic For the Equality Generalized Traveling Salesman Problem, Networks, to appear

(2010).

[13] Caprara A, Fischetti M, Toth P, Vigo D, Guida P.L. Algorithms for Railway Crew

Management. Mathematical Programming 79, 125-141 (1997).

[14] Caprara A, Fischetti M, Toth P. A heuristic method for the set covering problem.

Operations Research 47, 730-743 (1999).

[15] Caprara A, Fischetti M, Toth P. Algorithms for the set covering problem. Annals of

Operations Research 98, 353-371 (2000).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 101

[16] Caserta M, Tabu search-based metaheuristic algorithm for large-scale set covering problems.

In: Doerner K.F, Gendreau M, Greistorfer P, Gutjahr W.J, Hartl R.F, Reimann M (Eds),

Metaheuristics, Progress in Complex Systems Optimization, Springer,43-63 (2007).

[17] Ceria S, Nobili P, Sassano A. Set Covering Problem. In: Dell�Amico M, Maffioli F,

Martello S (Eds), Annotated Bibliographies in Combinatorial Optimization, John Wiley and

Sons USA: New York; 415-428 (1998).

[18] Cerulli R., Fink A., Gentili M., Voß S.: Metaheuristics comparison for the minimum

labelling spanning tree problem. In: Golden B., Raghavan S., Wasil E. (Eds.), The Next Wave

in Computing, Optimization, and Decision Technologies, Springer-Verlag, Berlin, 93-106

(2008).

[19] Chang R.-S., Leu S.-J. The minimum labeling spanning trees. Information Processing

Letters 63(5), 277-282 (1997).

[20] Chen S.-H, Chang P.-C, Chan C.-L, Mani V. A hybrid electromagnetism-like algorithm for

single machine scheduling problem. Lecture Notes in Computer Science 4682, 543-552 (2007).

[21] Chisman, J. A. The Clustered Traveling Salesman Problem, Computers and Operations

Research 2, 115-119 (1975).

[22] Consoli S., Darby-Dowman K., Mladenovic N., Moreno-Perez J.A. Greedy randomized

adaptive search and variable neighbourhood search for the minimum labelling spanning tree

problem. European Journal of Operational Research 196(2), 440-449 (2009).

[23] Current J.R. 1981. Multi-objective design of Transportation Networks, Ph.D thesis,

Department of Geography and Environmental Engineering. The Johns Hopkins University,

Baltimore.

[24] Current J.R., and Schilling D.A. The Covering Salesman Problem. Transportation

Science 23(3), 208-213 (1989).

[25] Dantzig G.B., Fulkerson R., and Johnson S.M. Solution of a Large Scale Traveling

Salesman Problem. Operations Research 2: 393-410 (1954).

[26] Davoudpour H, Hadji Molana M. Solving flow shop sequencing problem for deteriorating

jobs by using Electro Magnetic algorithm. Journal of Applied Sciences 8(22), 4121-4128

(2008).

[27] Debels D, De Reyck B, Leus R, Vanhoucke M. A hybrid scatter search/electromagnetism

metaheuristic for project scheduling. European Journal of Operational Research 169(2), 638-

653 (2006).

[28] Dongarra J.J. Performance of various computers using standard linear equations

software, Technical Report CS-89-85, Computer Science department, University of

Tennessee (2004).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 102

[29] Eiselt H.A., Sandblom C.-L. Integer Programming and Network Models. Springer, (2000).

[30] Feillet D., Dejax P., and Gendreau M. Traveling Salesman Problems with Profits.

Transportation Science 39(2), 188-205 (2005).

[31] Fischetti M., Salazar González J.J. , Toth P. A Branch-and-cut Algorithm for the Symmetric

Generalized Traveling Salesman Problem, Operations Research 45, 378-394 (1997).

[32] Fischetti M., and Toth P. An Additive Approach for the Optimal Solution of the Prize-

Collecting Traveling Salesman Problem. In Vehicle Routing: Methods and Studies.

Golden B. L. and Assad A. A. (eds.). North-Holland, Amsterdam, 319-343 (1988).

[33] Garey M.R, Johnson D.S. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, USA: San Francisco (1979).

[34] Gendreau M., Hertz A., and Laporte G. New Insertion and Postoptimization Procedures for

the Traveling Salesman Problem. Operations Research 40, 1086-1094 (1992).

[35] Gendreau M., Laporte G., and Semet F. The Covering Tour Problem. Operations

Research 45(4), 568-576 (1997).

[36] Gutin G. Punnen A.P. (Eds.). The Traveling Salesman Problem and Its Variations.

Kluwer Academic publishers, Netherlands (2002).

[37] Haouari M, Chaouachi J.S. A probabilistic greedy search algorithm for combinatorial

optimization with application to the set covering problem. Journal of the Operational

Research Society 53, 792-799 (2002).

[38] Helsgaun K. An Effective Implementation of the Lin-Kernighan Traveling Salesman

Heuristic. European Journal of Operational Research 126 (1), 106-130 (2000).

[39] Hoshino E. A. and de Souza C. C. Column Generation algorithms for the Capacitated m-

Ring-Star Problem. Computing and Combinatorics, 14th Annual International Conference,

COCOON , Dalian, China 2008, Proceedings, LNCS, 631-641 (2008).

[40] ILOG Cplex 11.0, User�s Manual and Reference Manual, ILOG, S.A.,

http://www.ilog.com (2007).

[41] Javadian N, Gol Alikhani M, Tavakkoli-Moghaddam R. A discrete binary version of the

electromagnetism-like heuristic for solving traveling salesman problem. Lecture Notes in

Computer Science 5227; 123-130 (2008).

[42] Krumke S.O., Wirth H.C. On the minimum label spanning tree problem. Information

Processing Letters 66(2), 81-85 (1998).

[43] Kruskal J.B. On the shortest spanning subset of a graph and the traveling salesman sroblem.

In: Proceedings of the American Mathematical Society 7(1), 48-50 (1956).

[44] Labbé M., Laporte G., Martin I. R., and Salazar González J. J. The Ring Star Problem:

Polyhedral Analysis and Exact Algorithm. Networks 43(3), 177-189 (2004).

http://www.ilog.com

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 103

[45] Labbé M., Laporte G., Martin I. R., and Salazar González J. J. Locating Median Cycles in

Networks. European Journal of Operations Research 160, 457-470 (2005).

[46] Lan G, DePuy G.W, Whitehouse G.E. An effective and simple heuristic for the set covering

problem. European Journal of Operational Research 176, 1387-1403 (2007).

[47] Laporte G., and Martello S. The Selective Traveling Salesman Problem. Discrete

Applied. Mathematics, 26, 193-207 (1990).

[48] Lessing L, Dumitrescu I, Stützle T. A comparison between ACO algorithms for the set

covering problem. Lecture Notes in Computer Science 3172, 1-12 (2004).

[49] Lin S. and Kernighan BW. An Effective Heuristic Algorithm for the Traveling Salesman

Problem, Operations Research 20, 498-516 (1973).

[50] Maenhout B, Vanhoucke M. An electromagnetism metaheuristic for the nurse scheduling

problem. Journal of Heuristics 13(4), 359-385 (2007).

[51] Magnanti T, Wolsey L. Optimal trees. In: Ball M, Magnanti T, Monma C, Nemhauser G,

editors. Network models. Handbooks in operations research and management science.

Amsterdam: North-Holland 7:503-615 (1996).

[52] Mauttone A., Nesmachnow S., Olivera A., Robledo F. A Hybrid Metaheuristic Algorithm to

Solve the Capacitated m-Ring Star Problem. International Network Optimization Conference

(2007).

[53] Mladenovic N., Hansen P. Variable neighborhood search. Computers & Operations Research

 24, 1097-1100 (1997).

[54] Naderi B, Zandieh M, Khaleghi Ghoshe Balagh A, Roshanaei V. An improved simulated

annealing for hybrid flowshops with sequence-dependent setup and transportation times to

minimize total completion time and total tardiness. Expert Systems with Applications

36(6), 9625-9633 (2009).

[55] Naji-Azimi Z. Comparison of metaheuristic for Examination Timetabling problem. Journal

of Applied Mathematics and computing 16(1-2), 337-354 (2004).

[56] Naji-Azimi Z. Hybrid Heuristic Methods for Examination Timetabling Problem. Applied

Mathematics and Computation Journal 163, 705-733 (2005).

[57] Naji-Azimi Z., Salari M., Golden B., Raghavan S., Toth P. Variable Neighborhood Search

for the Cost Constrained Minimum Label Spanning Tree and Label Constrained Minimum

Spanning Tree Problems. Computers & Operations Research, To appear (2010).

[58] Naji-Azimi Z., Salari M., Toth P. An integer linear programming based heuristic approach

for the Capacitated m-Ring Star Problem. Technical Report, DEIS, University of Bologna

(2010).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 104

[59] Naji-Azimi Z., Toth P., Galli L. An Electromagnetism Metaheuristic for the Unicost Set

Covering Problem. European Journal of Operational Research, To appear (2010).

[60] Noon C. E. The generalized traveling salesman problem, Ph.D. Dissertation, University of

Michigan (1988).

[61] Papadimitriou C. H., Steiglitz K. Combinatorial Optimization: Algorithms and Complexity.

Prentice-Hall, New Jersey (1982).

[62] Pintea C.M., Pop P.C., and Chira C. The Generalized Traveling Salesman Problem

Solved with Ant Algorithms, Journal of Universal Computer Science 13, 1065-1075 (2007).

[63] Prim R.C. Shortest connection networks and some generalizations. In: Bell System Technical

Journal 36, 1389-1401 (1957).

[64] Rahmati K, Molavi M, Naderi B, Soltani M. A hybridization of simulated annealing and

electromagnetism for flowshop problems with skipping probability. Journal of Applied

Sciences 9(13), 2438-2444 (2009).

[65] Reinelt, G. A Traveling Salesman Problem library. ORSA Journal on Computing 3, 376-

384 (1991).

[66] Renaud J., and Boctor F.F. An efficient composite heuristic for the symmetric

generalized traveling salesman problem, European Journal of Operational Research, 108,

571-584 (1998).

[67] Salari M, Naji-Azimi Z. Introduction to Electromagnetism algorithm for the Examination

Timetabling Problem and comparison of it with other metaheuristics. Pacific Journal of

Optimization 2, 341-366 (2006).

[68] Salari M., Naji-Azimi Z., Golden B., Raghavan S., Toth P., The Generalized Covering

Salesman Problem. Submitted to the Informs Journal on Computing.

[69] Salari M., Naji-Azimi Z., Toth P. A Variable Neighborhood Search and its application

to a Ring Start Problem Generalization, International Symposium on Combinatorial

Optimization, Hammamet, Tunisia March, 2010, Proceeding, Electronic notes on Discrete

Mathematics, To appear (2010).

[70] Salari M., Naji-Azimi Z., Toth P., A heuristic Procedure for The Capacitated m-Ring

Star Problem. Submitted to European Journal of Operational Reseach.

[71] Silberholz J. and Golden B. The Generalized Traveling Salesman Problem: a new

Genetic Algorithm approach, in Baker E.K., Joseph A., Mehrotra A., and Trick M.A.(eds.)

Extending the Horizons: Advances in Computing, Optimization Decision Technologies,

Springer, 165-181 (2007).

[72] Snyder L.V., and Daskin M.S. A random-key genetic algorithm for the generalized

traveling salesman problem, European Journal of Operational Research 174, 38-53 (2006).

Algorithms for the Combinatorial Optimization Problems Zahra Naji Azimi

 105

[73] Solar M, Parada V, Urrutia R. A parallel genetic algorithm to solve the set covering problem.

Computers & Operations Research 29, 1221-1235 (2002).

[74] Tarjan R. Depth first search and linear graph algorithms. SIAM Journal of Computing 1(2),

215-225 (1972).

[75] Tavakkoli-Moghaddam R, Khalili M, Naderi B. A hybridization of simulated annealing and

electromagnetism-like mechanism for job shop problems with machine availability and

sequence-dependent setup times to minimize total weighted tardiness. Soft Computing

13(10), 995-1006 (2009).

[76] Umetani S, Yagiura M. Relaxation heuristics for the set covering problem. Journal of the

Operations Research Society of Japan 50, 350-375 (2007).

[77] Vogt L., Poojari CA. and Beasley JE. A Tabu Search algorithm for the Single Vehicle

Routing Allocation Problem, Journal of Operational Research Society 58, 467-480 (2007).

[78] Wu P, Yang K.-J, Fang H.-C. A revised EM-like algorithm + K-OPT method for solving

traveling salesman problem. First International Conference on Innovative Computing,

Information and Control 2006, ICICIC�06;art no.1691858; 546-549 (2006).

[79] Wan Y., Chen G., Xu Y. A note on the minimum label spanning tree. Information

Processing Letters 84, 99-101 (2002).

[80] Xiong Y., Golden B., Wasil E. A one-parameter genetic algorithm for the minimum labeling

 spanning tree problem. IEEE Transactions on Evolutionary Computation 9(1), 55-60

 (2005).

[81] Xiong Y., Golden B., Wasil E. Worst-case behavior of the MVCA heuristic for the

minimum labeling spanning tree problem. Operations Research Letters 33(1), 77-80

(2005).

[82] Xiong Y., Golden B., Wasil E., Chen S.: The label-constrained minimum spanning tree

problem. In: Raghavan S., Golden B., Wasil E. (Eds.), Telecommunications Modeling,

Policy, and Technology, Springer 39-58 (2008).

[83] Xiong Y., Golden B., Wasil E. Improved heuristics for the minimum label spanning tree

problem. IEEE Transactions on Evolutionary Computation 10(6), 700-703 (2006).

[84] Yagiura M, Kishida M, Ibaraki T. A 3-flip neighborhood local search for the set

covering problem. European Journal of Operational Research 172, 472-499 (2006).

