
ALMA MATER STUDIORUM
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Dottorato di Ricerca in
Automatica e Ricerca Operativa

MAT/09 - XXII Ciclo

Orientation and layout problems

on graphs, with applications

Emiliano Traversi

Il Coordinatore Tutor
Prof. Claudio Melchiorri Prof. Alberto Caprara

A.A. 2006–2009

Keywords

Integer Linear Programming

Graph Orientation Problems

Personal Rapid Transit

Minimum Linear Arrangement

Betweenness Variables

Contents

List of figures iii

List of tables v

Preface vii

1 Introduction 1

2 Graph Orientation Problem 7

2.1 Motivation and previous work . 7
2.2 Introduction . 8
2.3 Problem formulations . 8

2.3.1 Common definitions . 8
2.3.2 Network Orientation - basic formulation 9
2.3.3 Network Orientation - empty vehicles 10
2.3.4 Network Orientation - capacitated version 11
2.3.5 Network Orientation - nonlinear formulation 12

2.4 Problem complexity . 13
2.5 Comparison of static vehicle flow assignment methods and micro-simulations . 15

2.5.1 The PRT micro-simulator iTS . 16
2.5.2 The example network . 17
2.5.3 Results . 19

2.6 LP-based approaches for solving NOP-EV . 20
2.6.1 NOP surrogate formulation . 20
2.6.2 Benders Decomposition . 22

2.7 Non LP-based approaches for solving NOP-EV 25
2.7.1 Lower bound computation based on shortest path 28

2.7.2 Fake lower bound computation based on “
1
2

-graph” 28
2.7.3 Edge selection . 29

i

2.8 LP-based approaches for NOP-FDC . 29
2.8.1 Two phase approaches . 33
2.8.2 Integrated aproach . 34

2.9 Description of the instances . 35
2.10 Computational results . 36

2.10.1 NOP-EV solution . 36
2.10.2 NOP-FDC . 43

3 Linear Arrangement Problem 49

3.1 Problem Description . 49
3.2 Previous Integer Linear Programming Formulations 49
3.3 New Integer Linear Programming Formulation 52
3.4 Polyhedral Study . 53

3.4.1 Triangle Equation . 54
3.4.2 de Inequalities . 55
3.4.3 Cut Polytope Inequalities . 56
3.4.4 Subgraph Inequalities . 60
3.4.5 Solution Scheme . 66
3.4.6 Feasibility Test . 67
3.4.7 Separation Routine . 67

3.5 Computational Results . 70

ii

List of Figures

2.1 (a) Example network of Rimini, (b) Central network node which shows stati-
cally assigned empty and full vehicle flows together with capacity limits (that
depend on local line speed). 18

2.2 Static and averaged dynamic vehicle flows for all network links. Empty vehicles
only in (a) and total vehicle flows in (b). 21

iii

iv

List of Tables

2.1 One hour Zone-to-zone ODM of example network. 19
2.2 Grid Instances - Cplex Results. 38
2.3 Grid Instances - Benders Decomposition . 39
2.4 Grid Instances - Benders Diving for NOP . 40
2.5 Grid Instances - Benders Diving for NOP - Deltas 40
2.6 Grid Instances - Benders Diving vs combinatorial bounds 41
2.7 Masdar - ILP . 42
2.8 Bologna - ILP . 42
2.9 Bologna - Benders . 43
2.10 Grid Instances - NOP Flow-Dependent Costs - ILP relaxation 44
2.11 Grid - NOP Flow-Dependent Costs - first x then ` 45
2.12 Grid Instances - NOP Flow-Dependent Costs - x & ` Heur 46
2.13 Grid Instances - NOP Flow-Dependent Costs - first x then ` vs x & ` 46
2.14 Bologna- NOP Flow-Dependent Costs - ILP 47
2.15 Bologna - NOP Flow-Dependent Costs - Heur compare 47

3.1 gd instances - all separation procedures - LB I 71
3.2 gd instances - triangle equation and odd cycle inequalities - LB II 71
3.3 gd instances - LB I vs. LB II vs: previous bound 72
3.4 bandwidth instances - all separation procedures 72

v

vi

Preface

This Ph.D. thesis includes the research activity developed together with my Advisor Profes-
sor Alberto Caprara during my Ph.D. course in ”Aut. and O.R.” (”Automatica e Ricerca
Operativa”) at the University of Bologna.

The topic of my thesis concerns optimization over graphs, and arises from the collaboration
with Professor Joerg Schweizer from the transportation institute of the department of Civil
Engineering of the University of Bologna and with Professors Gerhard Reine and Marcus
Oswald from the department of Combinatorial Optimization of the University of Heidelberg.

Two problems are presented in this work: a Graph Orientation Problem and a Graph
Lay-Out problem.

The Orientation Problem arises from real-world application studied together with the
transportation institute and with several private companies.

The Layout Problem is a classical problem known from the 1960s and in this joint work
with the Heidelberg University we provide interesting advancement on this subject.

In both problems I used a wide range of Operation Research subjects: Mixed Integer
Linear and Non-Linear Programming Theory, Graph Theory and Polyhedral Theory are the
main tool needed to solve the problem faced.

Solving problem arising from real-world situation means working together with people
coming from academic fields different from mine and with people coming from private com-
panies, this has given me the opportunity to learn how to communicate with them and to see
how much Operation Research can be flexible and effective in practice.

On the other hand the Layout Problem has been useful for work with people from the
same field of mine, allowing me to improve my knowledge of the subject and to see different
ways to work.

finally, it is also surprising how the knowledge obtained from working in solving a problem
can be reused in solving another one with a complete diverse subject, this is due to the
flexibility of the instrument used and is something I learned to appreciate during this years.

vii

Chapter 1

Introduction

Graph theory is a really wide area that has been studied deeply in the last decades.

Graphs are a flexible and useful mathematical tool, capable to model and solve a wide
range of really different problem provided by real-world situation (vehicle routing, network
design, timetabling are only few example of applications that makes an intense use of graphs
).
On the other hand graph theory provides a lot of challenging questions on itself really hard
to solve.

In this work we will talk about Orientation Problems, Flow Problems and Lay-Out prob-
lems, three big classes of problems on graphs.

A general Orientation Problem can be stated as follows:

Definition 1 (Orientation Problem) Input:

an undirected or mixed graph G = (V,E ∪A) with costs and capacities associated to its edges
and its nodes, plus eventually other additional condition (like connectivity condition).
Output:

an Orientation of G, i.e a directed graph G′ = (V,A′) with A′ = A ∪ A′′ and A′′ = {a ≡
(i, j) | ∃{i, j} ∈ E ∨ ∃{j, i} ∈ E}.
Subject to:

a certain optimum criteria on the final orientation.

A lot of problems fall into this class, unfortunately it does not exist an exhaustive and
unambiguous classification that really helps in identifying them. Roughly speaking, some of
the requirements that can be imposed on the final orientation are:

1

• Connectivity
given a set of pairs of nodes, it is required to ensure the existence of one ore more (edge
or node disjoint) paths between each pair in this set. Finding a strongly connected
orientation for a given mixed graph falls into this category and has been proved. in
1985 by to be polynomial algorithm for solving this problem [8].
A lot of reliability issues are part of this section: by imposing the existence of more
than one edge disjoint path for each pair of nodes we are sure the the graph will remain
connected even if one arcs is deleted.

• forbid certain class of subgraphs in the final orientation
the most frequent issue is to demand for a directed graph with no cycles (notice how
this property is somehow complementar of asking for a strongly connection).

• upper or lower bounds on the nodes degree
notice thatimposing the each nodes in the final orientation must have a certain value k
for his in-degree or out-degree value is different from imposing connectivity requirements.

• adding more general constraints like
∑

a∈δ+(S) xa ≥ f(S)∀S ⊂ V
In [13] Khanna et al. proved that this problem is polynomial if we impose require f to
be submodular and if we impose a linear objective function on the use of one arc .

For a partial survey on network orientation problems see [12] or TODO.

Flows problem are one of the earlier applcation of graph theory and linear programming.
Shortest Path Problem, Min Cost Flow Problem, are member of this important class of
problems. Among all these there is the well known Multicommodity Flow Problem.

Let G = (V,A) be a directed graph with arcs lengths `a and arcs capacities ca, let di be
the demand (if positive) or the offer (if negative) of flow for a node i, moreover let fa be a
set of continuous flow variable, one for each arc. the min xost multicommodity flow Problem
is stated as follows:

min
a∈A

fala (1.1)∑
a∈δ+(i) fa −

∑
a∈δ−(i) fa = −di, ∀i ∈ V (1.2)

fa ≤ ca, ∀a ∈ A (1.3)

fa ≥ 0, ∀a ∈ A (1.4)

Constraints (1.2 are the flow constraints and constraints (1.2) are the cpacity constraints.

2

In the first part of this work we deal with a problem that combines aspect of the Multi-
commodity Flow Problem with other related to the Orientation Problem. The basic idea is,
given an undirected graph, to provide the orientation with the lowest multicommodity flow.
Other constraints are added in order to meet the practical requirements of the application
studied but the idea remains basically the same.

Even if the problem is not completely new in the literature(see for exaple [7] or [12]) no
extensive computational experiments has been done so far for practically solve instancese of
decent size.

The practicall input of our work comes from the demand for algorithms able to design
large scale Personal Rapid Transit (PRT) networks.

PRT is an innovative pubblic transport system, based on automatic vehicles running on
a dedicated guideways, studied for providing an hight quality and capillary service.
The most simliar system to PRT are the Automatic Guided Vehices (AGV), from our applica-
tion point of view the main difference between AGV and PRT instances is that with PRT the
dimension of PRT instances is of several order of magnitude bigger that an typical instance
of an AGV instance.

In order to solve the problem we make extensive use of mathematical models. Beside the
issues related to the solution of these models, also the definition of a model itself is a non
trivial task. For this reason a wide range of formulation are proposed, in order to be able to
select the one who better fits the application faced.

In addition we use a PRT network simulator to validate the models provided.
A real wrold application is tested and we show how the results obtained in the simulation are
similar to the one obtained by the ILP model used.

Once we have ensured that the models used are valid, solving instances of decent size for
these models is not a trivial task. Exact and heuristic algorithm will be provided, comparing
their performances on different set of instances.

The main issue in modelling the problem is how to deal with the vehicle flows behaviour
and, more specifically, how to handle capacity limit and consequently congestions.

As first approximation we can suppose the problem as uncapacitated and feel free to send

3

any aammount of flow in an arc.
Techical specification of PRT systems says that the vehicle speed can be assumed constant as
long as the total arc flow remains under a certain limit. If the number of vehicles per section
exceed this limit for security reason the speed must decrease and this means that the path of
some vehicle can no longer be the shortes (in terms of time spent).

In real PRT instances congestions occurs quite likely, hence how to deal with them is not
a theroetical curiosity but one of the main issues in the desing of a PRT network . Models
are presented with an increasing level of complexity, directly related to the hipothesis used to
represents congestions.

Lay-out problem are another family of classical graph theory problem, they can be stated
as follows:

Definition 2 (Graph Lay-out Problem) Input:

an undirected graph G = (V,E) with costs associated to its edges.
Output:

a Lay-out of G, i.e a permutation p : |V | → |V |.
Subject to:

a certain optimum criteria on the final lay-out.

The definition ”lay-out” comes from the fact that the problem can be visualized as a linear
placement of the nodes on one with the distance between two nodes equal to the difference
between their position, i.e. |p(i)− p(j)|.

Some example of lay-out problems are :

• Minimum Bandwidth Problem
the objective function is min maxe≡{i,j}∈E |p(i)−p(j)| , i.e. the minimizing the maximum
distance between two nodes joined by and edge.
In [14], Caprara et al. provided an efficient enumerative algorithm for solving the
problem.

• Minimum Linear Arrangement Problem
the objective function is min

∑
e≡{i,j}∈E |p(i)− p(j)| , i.e. minimizing the

For a more detailed survey on Graph layout problems see [15].

In the second part of this work we deal with a new Integer Programming formulation
for the Linear Arrangement Problem. With this new approach we have been able to solve

4

benchmark instances never solved before and to drastically decrese the computational time
for the instances solved so far.

In Chapter 2 talks about the Graph Orientation Problem.
In Section 2.1 and Section 2.2 we presents the problem and its application.
In Section 2.3 we introduce the models used and in Section 2.4 complexity aspect are treated.
Section 2.5 is dedicated to the comparison between models used and the PRT simulator in
order to validate the models used.
Section 2.6-2.8 describes the method used to solve the models introduced. In Section 2.9 we
introduce the instances used and in Section 2.10 we discuss about the computational results.

In Chapter 3 the Linear arrangement problem is faced.
In Section 3.1 the problem is formally introduced and in Section 3.2 the previous solution
approaches are presented.
In Section 3.3 we present our approach based on a new IP formulation and in Section 3.4 a
Polyhedral analysis for this new formulation is described.
In Section 3.5 we provide preliminary computational results.

5

6

Chapter 2

Graph Orientation Problem

2.1 Motivation and previous work

This work is motivated by the requirements to design optimal, large scale Personal Rapid
Transit (PRT) networks for entire urban areas. PRT is an innovative type of public trans-
port [6], with the first system planned to operate in public by the end of 2010 at the new
terminal 5 of London-Heathrow airport. PRT is composed of a fleet of fully-automated and
electrically-driven vehicles for up to 6 passengers, running on a dedicated network of one-way
guide-ways with small dimensions. Similar to Taxis, PRT vehicles are available on-demand
and 24 hours a day. The access stations are off-line, ensuring that all vehicles can reach their
pre-programmed destinations without transfers or intermediate stops. PRT is seen as a truly
sustainable urban mobility alternative that offers high-quality, emission-free and low energy-
usage transportation which is accessible to and affordable for all social groups. This is why
PRT has been chosen as the exclusive transport system within the sustainable, completely
energy self-sufficient city of the Masdar (“The Masdar-Initiative”, Dubai, United Emirates),
covering a 5x5 kilometers area with approximately 100 stations and 40 kilometers of guide-
ways. Capacity limits of PRT systems are a crucial issue and are vital to the feasibility of
large-scale networks. In principle, exceeding these capacity limits can be avoided in three
ways: (i) by reducing headways between vehicles, (ii) by an intelligent, congestion-avoiding
vehicle routing, (iii) by network that is optimized for a-priory known trip demand patterns.
The present work is concerned with the last option, defining models in order to find an opti-
mized layout for a non trivial PRT network: starting from a network of initially undirected
links, travel costs and a demand matrix between origin- and destination-nodes, the proposed
method will orient all the links so as to obtain the best orientation, according to the traffic
hypothesis.

7

2.2 Introduction

As mentioned before, this work deals with models aimed at defining a “good” lay-out for a
PRT network. For a better understanding of the problem we must specify what are the data
and the decision variables involved in its definition. Suppose that we want to implement a
PRT system in a certain area. As input of the problem we know in advance: (i) where the
stations are positioned
(ii) all the available connections between the stations where the guide-ways for the PRT net-
work can lie
(iii) one (or a set of) origin-destination (OD) matrix, with the demand of vehicles between
each pair of stations.
Al the models examined take the above data as starting point; roughly speaking thsi cor-
responds to an undirected graph with a demand associated to some pairs of nodes. More
specifically we do not take into consideration the possibility of paying a cost for using a con-
nection between nodes. Hence all the connections can be used for free. Moreover as starting
analysis we consider only one single OD-matrix, usually the one corresponding to the peak-
hour demand in order to “tune” the system to the worst possible scenario.
Under this assumption all the models described share (almost) the same feasible region, i.e.
they provide an orientation of an undirected graph, representing how the guide-ways must
be directed in the final lay-out. Note that once the orientation is fixed the problem reduces
to finding an optimal multicommodity flow in the resulting oriented graph of vehicles that
satisfies the demand between stations.
Among all the possible orientations we must choose the one that provides the best level of
service for the customers. In our work we assume that this corresponds to minimizing the
sum of the total time spent by each of them in the system. A crucial assumption related to
this aspect is how to deal with capacities and congestions. In this work we deal with several
different ways to model congestions, with an increasing level of complexity. For each model
we propose exact and heuristic methods. In order to validate the effectiveness of the models
we compare their results with a software simulating a PRT systems.

2.3 Problem formulations

2.3.1 Common definitions

Let G = (V,E) be an undirected graph, with a length `e and a capacity ce = ci,j associated
with each edge e = {i, j} ∈ E. Moreover, let R ⊂ V × V be a set of origin-destination pairs,
with a demand dr associated with each origin-destination pair r = (sr, tr) ∈ R.
Let S ⊂ V be the set of all the stations defined as {v ∈ V : ∃r = (sr, tr) ∈ R, sr ≡ v∨ tr ≡ v}.

8

We let an orientation of G be a directed graph D = (V,A) such that each arc (i, j) ∈ A

corresponds to an edge {i, j} ∈ E and, for each edge {i, j} ∈ E, at most one of the arcs (i, j)
and (j, i) is in A.
Finally let n = |V | , m = |E| and s = |S| ≤ n.

2.3.2 Network Orientation - basic formulation

We address the problem of finding an orientation D of G, along with a path in D joining each
source-destination pair, so as to minimize the weighted sum of the lengths of these paths,
where the weight of the path joining each origin-destination pair r is equal to its demand dr,
and the length of each arc a = (i, j) is equal to `a = `i,j .

The natural MILP formulation of the problem is the following. For convenience, let A
denote the set of the possible arcs arising from orientations of the edges in E. Moreover, for
a vertex i ∈ V , let δ+(i) and δ−(i) denote, respectively, the set of arcs in A exiting from and
entering in V . The MILP formulation contains binary variables xa ≡ xi,j , equal to one if the
arc a ≡ (i, j) ∈ A is present in D, i.e. if edge {i, j} is oriented from node i to node j, and
binary variables yra ≡ yri,j , equal to one if the path joining origin sr to destination tr uses arc
a ≡ (i, j) ∈ A. The corresponding Network Orientation Problem (NOP) reads:

Network Orientation Problem - Basic Formulation (NOP-BF)

min
∑

r∈R
∑

(i,j)∈A d
r`i,jy

r
i,j (2.1)

xij + xji ≤ 1, ∀{i, j} ∈ E (2.2)

∑
(i,j)∈δ+(i) y

r
ij −

∑
(j,i)∈δ−(i) y

r
ji =

1, if i = sr

−1, if i = tr

0, otherwise

, ∀i ∈ V,∀r = (sr, tr) ∈ R (2.3)

yrij ≤ xij , ∀(i, j) ∈ A, ∀r ∈ R (2.4)

xij ,∈ {0, 1}, ∀(i, j) ∈ A (2.5)

yrij ≥ 0, ∀(i, j) ∈ A, ∀r ∈ R (2.6)

Constraints (2.2) impose that D is an orientation of G. Equations (2.3) guarantee that
the arcs a with yra = 1 define a path from sr to tr in D, whereas inequalities (2.4) link the y
and the x variables. These paths represents flows of vehicles carrying users from their original
station to their destination (called full vehicle flows).

Note that the problem simply calls for an orientation of the edges of G so that the weighted
sum of the shortest-path distances between origin-destination pairs in the resulting directed

9

graph D is minimized.

From now on we call (2.1)-(2.5) the Network Orientation Problem in the Basic Formulation
(NOP).
Two extensions can be easily defined to take into account empty vehicles and capacities.

2.3.3 Network Orientation - empty vehicles

In order to guarantee that each vehicle goes back to its origin station, the full vehicle flow
described in section 2.3.2 must be counterbalanced by empty vehicle flows.
For this reason we add in each station empty vehicle flow conservation constraints by defining
a fictitious demand Di,res of empty vehicles for each station:

Di,res =
∑

r∈R:sr=i

dr −
∑

r∈R:tr=i

dr ∀i ∈ V (2.7)

This fictitious demand represents the algebraic difference between the number of exiting
and entering full vehicles at each demand-node, i.e. Di,res > (<) 0 means that there is a
demand (offer) of empty vehicles in node i.
In addition we add a set of continuous variables wa ≡ wi,j , representing the empty vehicle flow
on link a and we obtain the Network Orientation Problem with Empty Vehicles (NOP-EV):

Network Orientation Problem with Empty Vehicles (NOP-EV)

min
∑

r∈R
∑

(i,j)∈A d
r`ijy

r
ij +

∑
(i,j)∈A `ijwij (2.8)

xij + xji ≤ 1, ∀{i, j} ∈ E (2.9)

∑
(i,j)∈δ+(i) y

r
ij −

∑
(j,i)∈δ−(i) y

r
ji =

1, if i = sr

−1, if i = tr

0, otherwise

, ∀i ∈ V,∀r = (sr, tr) ∈ R (2.10)

yrij ≤ xij , ∀(i, j) ∈ A, ∀r ∈ R (2.11)∑
(i,j)∈δ+(i)wij −

∑
(j,i)∈δ−(i)wji = −Di,res ∀i ∈ V, (2.12)

wij ≤Mwxij , ∀(i, j) ∈ A (2.13)

xij ,∈ {0, 1}, ∀(i, j) ∈ A (2.14)

wij ≥ 0 ∀(i, j) ∈ A (2.15)

yrij ≥ 0, ∀(i, j) ∈ A, ∀r ∈ R (2.16)

Constraints (2.12) impose a multi-origin multi-destination flow in the oriented graph and

10

inequalities (2.13) link the w and the x variables, in this case we need a “big M” because the
wi,j are not binary; in fact we can set M to the sum of the demand of empty vehicles

Mw = Dtot =
∑

i∈V :Di,res≥0

Di,res (2.17)

The new objective function (2.8) takes into consideration also the total distance traveled
by the empty vehicles.
From a practical point we want to minimize the empty vehicle flow because we want to make
vehicles available as soon as possible for the incoming customers, according with the idea that
the customers must wait as little as possible.
From now on, we always consider models with also empty vehicles, noting that the equivalent
with no empty vehicle flows can be obtained simply by fixing to zero all the wij variables and
setting Di,res = 0∀i ∈ V .

2.3.4 Network Orientation - capacitated version

NOP-EV can be modified in order to take into consideration capacity constraints by adding
the following constraints:

wi,j +
∑

r∈R d
ryri,j ≤ ci,jxi,j , ∀(i, j) ∈ A (2.18)

As explained in more detail in Section (2.4), without the capacity constraints, having a
2-connected graph guarantees that we always have a feasible solution; on the other hand with
the capacity condition (2.18) finding a feasible solution becomes hard.
In this cases we can add a new set of continuous variables zij representing the overflow along
arc {i, j}, redefining the following relaxed version of the capacity constraints:

wij +
∑

r∈R d
ryrij ≤ cijxij + zij , ∀(i, j) ∈ A (2.19)

and substituting the objective function (2.8) with

min
∑

r∈R
∑

(i,j)∈A d
r`i,jy

r
i,j +

∑
(i,j)∈A `i,jwi,j +Mz

∑
(i,j)∈A zij (2.20)

obtaining the the Network Orientation Problem with Hard Capacity constraints (NOP-

11

HCC).
Here, Mz is fixed to a sufficiently large value in order to give priority to the minimization of
the total overflow.

If we want to deal with overflows in arcs in a more accurate way we need to introduce a
direct dependency between flows in the arcs and the time necessary to traverse them via the
introduction of non linearities as described in the next section.

2.3.5 Network Orientation - nonlinear formulation

If we keep the overflow equal to zero all the vehicles can drive at their maximum speed. At
the same time a certain amount of overflow can be admitted without collapsing the system,
the drawback of a congested connection being that the speed of the vehicles must decrease,
hence the total traveling time increases. This (partial) dependency of the arc costs on the
flow leads to a more precise description of the real behavior of the system.
We define the following parameters:
i) a first capacity limit c0a , the maximum amount of flow that can be assigned to an arc if we
do not want to have congestion
ii) a second capacity limit c1a , the maximum amount of flow that can be assigned to an arc
in any case
iii) the original length of an arc `0ij , equal to the constant `ij in the previous formulations
iv) the final length of an arc `′i,j when the total flow in the arc is equal to c1a
We add continuous variables fi,j representing the overflow in arc (i, j) and `i,j representing
the cost of an arc, being now continuous variables and not constant.
`i,j(fi,j) is defined as the following piecewise linear function :

`i,j(fi,j) =

 `0i,j +
`′i,j−`0i,j
c1i,j−c0i,j

fi,j , if 0 ≤ fi,j ≤ (c1i,j − c0i,j)

+∞, if fi,j > (c1i,j − c0i,j)
(2.21)

Under this assumption the Network Orientation Problem with Flow-Dependent Costs
(NOP-FDC) is the following :

12

Network Orientation Problem with Flow-Dependent Costs (NOP-FDC)

min
∑

r∈R
∑

(i,j)∈A d
r`i,jy

r
i,j +

∑
(i,j)∈A `i,jwi,j (2.22)

xij + xji ≤ 1, ∀{i, j} ∈ E (2.23)

∑
(i,j)∈δ+(i) y

r
ij −

∑
(j,i)∈δ−(i) y

r
ji =

1, if i = sr

−1, if i = tr

0, otherwise

, ∀i ∈ V,∀r = (sr, tr) ∈ R (2.24)

yrij ≤ xij , ∀(i, j) ∈ A, ∀r ∈ R (2.25)∑
(i,j)∈δ+(i)wij −

∑
(j,i)∈δ−(i)wji = −Di,res ∀i ∈ V, (2.26)

wij ≤Mwxij , ∀(i, j) ∈ A (2.27)∑
r∈R d

ryri,j + wa ≤ c0xi,j + fi,j , ∀(i, j) ∈ A (2.28)

`i,j ≥ `0i,j +
l′i,j−l0i,j
c1i,j−c0i,j

fi,j , ∀a ∈ A (2.29)

fi,j ≤ c1i,j − c0i,j , ∀(i, j) ∈ A (2.30)

xij ,∈ {0, 1}, ∀(i, j) ∈ A (2.31)

wij ≥ 0 ∀(i, j) ∈ A (2.32)

yrij ≥ 0, ∀(i, j) ∈ A, ∀r ∈ R (2.33)

fi,j ≥ 0, ∀(i, j) ∈ A (2.34)

li,j ≥ 0, ∀(i, j) ∈ A (2.35)

Inequalities (2.29) are used to describe the function (2.21) in the linear part and (2.30)
fix the upper bound for fi,j and consequently also for `i,j .
Note that the inequalities (2.28) do not ensure that yij or wij is greater than zero if and only
if the corresponding xij is equal to one; this is why constrains (2.13) and (2.4) are necessary
also in this model.
The source of nonlinearity is the objective function with the two products `i,jyri,j and `i,jwi,j .
Notice that NOP-FDC is a generalization of the uncapacitated and capacitated versions:
i) if c0a = c1a, then it becomes equivalent to the capacitated version
ii) if c0a = c1a = +∞, then it is equivalent to the uncapacitated version

2.4 Problem complexity

First of all, note that, in case the capacity constraint is imposed, even finding a feasible
solution to the problem is easily seen to be difficult.

Proposition 1 Testing if the NOP-HCC has a feasible solution is NP-complete.

13

Proof. In case ce = 1 for e ∈ E, the problem has a solution if and only if G contains |R|
edge-disjoint paths, one from sr to tr for r ∈ R. This is well known to be NP-complete. 2

Of course, this implies that finding a feasible solution to NOP-FDC is strongly NP-complete.
On the other hand, in case the capacity constraint is not imposed, finding a feasible solution
is easy, though not entirely trivial.

Proposition 2 In case the capacity constraint is not imposed, testing if NOP has a feasible
solution can be done in linear time.

Proof. Without capacity constraint, the problem has a solution if and only if there exists
an orientation of the edges of G such that, for r ∈ R, there exists a directed path from sr to
tr. This can be tested in linear time by the algorithm in [8]. 2

(The algorithm in [8] can also be applied to a mixed graph, in which some of the edges
are already oriented.) The above results, based on well-known facts, leave open the complex-
ity of the problem without capacity constraints. This is easily settled by using an old (and
not-so-well-known) result by [11].
In [12] Burkard et al. showed that the problem considered is NP-hard even in case the ca-
pacity constraint is not imposed and no empty vehicle flows are required. Here we provide an
alternative proof of the same result

Proposition 3 The NOP is strongly NP-hard

Proof. In [11], it is shown that the following problem is NP-complete: given G = (V,E),
find an orientation D of G of diameter 2, i.e. such that each node can be reached from
each other node by a path with at most two arcs. Given an instance of this problem, we
define the instance of our problem (without the capacity constraint) on the same G in which
R := {(i, j) : i, j ∈ V, i 6= j}, i.e. every ordered pair of nodes is an origin-destination pair, all
demands dr = 1 and all edge lengths `e = 1. Note that, for each of the |V |(|V | − 1)/2 node
pairs (i, j), considering the two origin-destination pairs (i, j) and (j, i), in every orientation
D of G one of the paths will have weight 1, whereas the other one will have weight at least 2.
This proves that the optimal value of our problem is at least 3/2|V |(|V | − 1). Moreover, the
optimal value is exactly 3/2|V |(|V | − 1) if and only if there exists an orientation of diameter
2, which shows that by finding an optimal solution to our problem we can solve the problem
of [11]. 2

This implies that, besides NOP-HCC and NOP-FDC, also NOP-EV is strongly NP-hard.

14

2.5 Comparison of static vehicle flow assignment methods and

micro-simulations

Even though the concept of PRT has been known for almost 50 years, it is surprising how little
work has been done on the development of static assignment models for PRT as a transport
offer. Planning studies have either been made by conventional assignment methods or by
micro-simulators, mimicking the dynamics of individual vehicles [4]. Optimization models
have been developed for the routing in automated guides vehicle systems (AGVs), used for
freight movement [7].

However, static assignment models are essential to PRT planning for several reasons:

• They allow one to get a rough estimate of link-flows and determine the required capac-
ities. This is useful to define PRT system requirements and to select the system.

• Static assignment models can be part of an algorithm that can optimize the topology
of the PRT network.

• Static models can verify micro-simulations. This is very important since micro-simulators
are very complex software tools and prone to errors and unexpected inaccuracies.

• Static models can be integrated with modal split or trip generation models.

Static models of PRT systems need to take into account at least two significant charac-
teristics of PRT systems:

• The role of centralized control which has the knowledge of the position of all vehicles
and the origin and destination of all users. The centralized control decides over the
path of each vehicle and may adopt different strategies. These strategies must be taken
into account when assigning the demand. Because of the centralized control system,
system optimum traffic assignment methods can be applied. This is in contrast with
road transport where path-choice is subject to the decision of the individual participant,
resulting in sub-optimal solution known as the user equilibrium.

• The empty vehicle flows which are superimposed to the full vehicle flows with passengers.
One needs to create a demand for the empty vehicles. In particular, if the travel demand
is asymmetric, empty vehicle flows can become significant and cannot be neglected.

In the previous sections we have proposed several mathematical programming model to
compute an optimal orientation of a PRT network. Every method proposed takes into con-
sideration a different method for evaluating empty and full vehicle flows in a PRT network.

15

If we fix an orientation we can use the method in Section (2.3) to compute the static
assignment of flows. The objective of this section is to verify whether the link flows computed
by the static assignment methods and the dynamic link flows determined by the microsimu-
lator give consistent results.
To better investigate this aspect a real case is analyzed. If static and averaged dynamic link
flows matched we would be able to verify that the static models and the complex microsimu-
lator do actually produce reliable results.

2.5.1 The PRT micro-simulator iTS

As mentioned above the main goal is to estimate the flows of full and empty vehicles on
all network links. Even if in the static flow assignments we assume a constant trip demand
throughout the period of observation, the micro-simulator produces random arrival times of
users at stations with a unit distribution over the observation interval.

As micro-simulations software, we used the in-house developed PRT simulator called inno-
vative Transport Simulator (iTS). This micro-simulator mimics the movement of each vehicle
and individual passengers on an arbitrary PRT network. PRT networks can be edited with a
graphical editor.

Regarding the PRT vehicle dynamics, the simulator is adopting an asynchronous vehicle
follower control approach, where each vehicle adapts its speed to the speed of the preceding
vehicle (or possibly a vehicle on a parallel track in merge and diverge situations). The vehicles
keep always a safe distance to the vehicle in front. This safe distance depends on the speed and
on the dynamic characteristics of the PRT system. For the present simulations, we assume
a PRT system guarantees 1.5m/s2 acceleration and deceleration during normal operation
and an emergency brake deceleration of 2.5m/s2. We further assume that the brick-wall
stopping criteria must be satisfied (vehicle in front can stop instantly) and the time from
detecting an emergency case to the actuation of the emergency brake is below 0.5s. The
maximum line speed is 12m/s (43km/h) and the headway is approximately 3s at maximum
speed. These parameters are similar to the technical characteristics of Urban Light Transport,
ULTra (2009), 2getthere (2009) and Vectus PRT (2008).

Passenger origin and destinations are determined by passing an Origin-to-Destination
Matrix (ODM) to the simulator. Boarding times are simulated as unit distributions in the
intervals 8s-12s for boarding and 5s-10s for alightning, assuming passengers with light luggage
only.

Concerning the logistics we have implemented an innovative empty vehicle management
that allows to cope with a particular problem of this PRT network: there are remote stations
with a high demand (such as the station at the P&R). This is a challenge for conventional PRT

16

logistics because empty (or full) vehicles must be sent to the remote car park before the users
arrive, otherwise prolonged waiting times are the consequence. If, on the contrary, the central
control is sending more vehicles to a remote station than needed for users (who may or may
not arrive at some time in the future), then there is the risk that vehicles which are already
under way are no longer needed at the station at the time they arrive. The consequence would
be that these empty vehicles would be needed elsewhere in the network. Moreover, if there is
not enough vehicle buffer capacity at the remote station, the empty vehicles in excess must
be sent back and added to the vehicle flow in other parts of the network. We have tried to
limit these negative effects by some substantial enhancements to the control strategies:

• Special ”buffer” stations which are placed at a strategic point where the empty vehicles
enter a (remote) car-park area. These buffer stations have two roles: (1) to absorb and
buffer empty vehicles that arrive at the car park and that are no longer needed; (2) to
dispatch the empty vehicles in the buffer to local car-park stations that are most in need
for empty vehicles. The idea behind is that if vehicles are located in a buffer-station
closer to a potential destination station, then they can be assigned to high demand
stations with a high probability of success (empty vehicles are still needed when they
arrive).

• Simple demand predictor: the predictor estimates the future demand for each station,
assuming constant arrival rates. It is clear that arrival rates are not constant. For this
reason the predictor updates its arrival rate estimation with the arrival time of every
newly arriving passenger. In addition the aforementioned vehicle buffers can average
out irregularities of user arrival times. Finally the estimated arrival rate is used to
determine the rate at which the vehicle management must send vehicles (either empty
of full) to a specific station. This strategy is particularly effective for long-range empty
vehicle missions.

The NOP formulation introduced in Section 2.3.2 is based on the assumption the we
are dealing with an assignment model named ”all or nothing” (AON). From the basic AON
the other mathematical programming formulations developed correspond to other assignment
models, like system optimum assignments or flow constraints. Anyway, AON is the model
that describes the state-of-the-art PRT control system behavior: the minimization of the total
distance traveled by the vehicles, independent of the link flows.

2.5.2 The example network

The example network is taken from a feasibility study that we conducted for the province
of Rimini: the objective was to establish a high-quality public transport service for tourists

17

and visitors between the highway exit and conference center (located south west of the city
center) with the beach area, hotels and restaurants (located east of the center), see Fig. 2.1.

PRT

Motorway
P&R

Congress−
Hall

Rimini
Centre

Railway
Station

Protected
Area

Coastal
Area

static empty
flow

static full
flow

Coastal
Area

Railway
Station

capacity
limit

Congress−
Hall

(a) (b) s

Figure 2.1: (a) Example network of Rimini, (b) Central network node which shows statically
assigned empty and full vehicle flows together with capacity limits (that depend on local line
speed).

As travel demand we have used the morning peak-hour demand during a major event at
the congress hall. The zone-to-zone ODM in table 2.1 has been estimated based on data
about the conference visitors and their origin, the number of overnight visits, the number of
beds in the PRT covered area, number of parking spaces along the coast etc. The modal split
for PRT is at 100% as there is the intention to close the coastal zone to non residential traffic.
The zone-to-zone ODM has been equally distributed over the several PRT stations in case
there were more than one station per zone.

18

P&R Station Coastal Area Congress hall Center
P&R 0 0 398 0 20

Station 0 0 125 250 6
Coastal Area 20 13 0 750 20
Congress hall 0 25 75 0 38

Center 1 1 20 38 0

Table 2.1: One hour Zone-to-zone ODM of example network.

2.5.3 Results

The example network has been simulated by the micro-simulator with the peak-hour demand
of Table 2.1. We denote by f̂a the dynamic vehicle link flow on link a, averaged over one
hour simulation time and by ŵa the corresponding average empty vehicle flow. With the
same example network and ODM we have determined the static vehicle link flows fa and
static empty vehicle link flows wa using the method described in in Section 2.3.3. The static
and dynamic vehicle flows are compared in Figure 2.2. In order to give a figure of merit we
determined the weighted normalized standard deviation between static and dynamic flows.
In Equation 2.36 we have defined ew and ef to validate the differences of empty and total
vehicle flows, respectively:

ew =

√∑
a∈A(wa − ŵa)2∑

a∈Awa
, ef =

√∑
a∈A(fa − f̂a)2∑

a∈A fa
(2.36)

For the present simulation we obtained ew = 0.19 or 19% error between static and dynamic
empty vehicle flows and ew = 0.04 or 4% error between static and dynamic total vehicle link
flows.

The larger error of the empty-vehicle flows is due to several effects:

• The static empty vehicle flows can be considered a lower bound for the average dynamic
vehicle flows produced by the simulator. The reason is that the static assignment knows
in advance the entire demand, while the micro-simulator does only know the demand
for the users at the time they arrive at the station. This lack of information degrades
the performance of the real-time empty vehicle management. In the present case we
obtain from the static assignment a 26% empty vehicle share while the micro-simulator
calculated a 48% empty vehicle share.

• There are transitions at the beginning and end of the simulation where more empty
vehicles circulate.

• In general there may be more vehicles in circulation than necessary to satisfy flow

19

conditions in order to reduce waiting times — a quantity not considered in this paper.

• There are some vehicle “buffer” stations which are not used by the static assignment
method, but needed in practice for the empty vehicle management.

2.6 LP-based approaches for solving NOP-EV

2.6.1 NOP surrogate formulation

Even without the capacity constraints (2.18), the direct solution of MILP (2.1)-(2.5) by a
general-purpose MILP solver quickly becomes impractical as the size of G grows and the
solver with a real instance usually runs out of memory.
For large scale problems, in order do have a compact formulation to deal with we restate the
problem in a ”surrogated” formulation with fewer variables involved.
we substitute the set of variable ysij with a new set of continuous variable ysij that represents
the total flow of full vehicles originating from station s.

The model reads:

Network Orientation Problem - surrogate formulation (NOP-EV-surr)

min
∑

s∈S
∑

(i,j)∈A `ijy
s
ij +

∑
(i,j)∈A `ijwij (2.37)

(2.2)

∑
(i,j)∈δ+(i) y

s
ij −

∑
(i,j)∈δ−(i) y

s
ij =

∑

r∈R:sr≡s d
r, if i = s

−d(s,i), if (s, i) ∈ R
0, otherwise

, ∀i ∈ V,∀s ∈ S, (2.38)

ysi,j ≤
∑

r∈R:sr≡s d
rxi,j , ∀(i, j) ∈ A, ∀s ∈ S (2.39)∑

(i,j)∈δ+(i)wij −
∑

(j,i)∈δ−(i)wji = −Di,res ∀i ∈ V (2.40)

wi,j ≤Mwxij , ∀(i, j) ∈ A (2.41)

wi,j ≥ 0 ∀(i, j) ∈ A (2.42)

xi,j ∈ {0, 1}, ∀(i, j) ∈ A (2.43)

ysi,ja ≥ 0 ∀(i, j) ∈ A, ∀s ∈ S (2.44)

the new model contains O(nm) variables and O(n3 + n2m) constraints, instead of O(ms2)
variables and O(n2 + nm) constraints.
Note that this formulation is obtained from the NOP-EV one by first multiplying all the yri.j
variables by dr , by replacing them by the new “surrogate” variables ysi,j =

∑
r=(s,i)∈R y

r
i,j ,

20

(a
)

(b
)

Figure 2.2: Static and averaged dynamic vehicle flows for all network links. Empty vehicles
only in (a) and total vehicle flows in (b).

21

and by replacing constraints 2.11 by their surrogate version 2.39. This latter replacement
makes the new model weaker than the NOP-EV one.

2.6.2 Benders Decomposition

We also solve the Linear Programming (LP) relaxation of NOP-EV by a Benders decompo-
sition approach, with a Master Problem with the x and wa variables along with auxiliary
variables βr expressing the weighted length of the path from sr to tr in D, the objective
function being

∑
r∈R β

r.
The master problem is the following:

Benders Decomposition - Master Problem (MP)

min
∑

r∈R β
r +

∑
a∈A `awa (2.45)

(2.2), (2.12)− (2.15)∑
a∈A uaxa + βr ≥ vtr − vsr , ∀r ∈ R,∀(u, v) ∈ ErP (2.46)∑

a∈A uaxa ≥ vtr − vsr , ∀r ∈ R,∀(u, vs) ∈ ErR (2.47)

xa ∈ {0, 1}, ∀a ∈ A, ∀r ∈ R (2.48)

βr ≥ 0, ∀r ∈ R (2.49)

Constraints (2.46) represent the optimality cuts, they provide lower bounds on the values
of the weighted shortest path between each pair of stations.
Constraints (2.47) represent the feasibility cuts, they bound the extreme rays in the dual
subproblem in order to have it bounded, to ensure primal feasibility.

Solving an LP relaxation via Benders decomposition requires a two level approach, alter-
nating the solution of the Master Problem and the Subproblem until we have proved that the
Master Problem solution is optimal.

The Primal Sub-Problem PSP (x) associated with the Master Problem solution x is the
following:

22

Benders Decomposition - Primal Sub-Problem (PSP (x))

min
∑

r∈R
∑

a∈A d
r`ay

r
a, (2.50)

∑
a∈δ+(i) y

r
a −

∑
a∈δ−(i) y

r
a =

1, if i = sr

−1, if i = tr

0, otherwise

, ∀i ∈ V,∀r = (sr, tr) ∈ R,(2.51)

yri,j ≤ xi,j , ∀(i, j) ∈ A,∀r ∈ R, (2.52)

yra ∈ {0, 1}, ∀a ∈ A, ∀r ∈ R. (2.53)

The primal subproblem (PSP) decomposes into |R| independent problems, for the sake
of simplicity from now on we call each of them the subproblem PSPr(x), r being the corre-
sponding route.

The Dual Sub-Problem associated with PSPr(x) is the following:

Benders Decomposition - Dual Sub-Pproblem (DSPr(x))

max
∑

a∈A xau
r
a − vsr + vtr (2.54)

−ura − vri + vrj ≤ drla, ∀(i, j) ∈ A (2.55)

ura ≶ 0, ∀a ∈ A (2.56)

vri ≥ 0, ∀i ∈ V (2.57)

ErP introduced in (2.46) is defined as the set of all the vertices (extreme points) of the
polyhedron associated with the feasible region of DSPr. ErR introduced in (2.47) is defined
as the set of all the unbounded directions (extreme rays) of the polyhedron associated with
the feasible reason of c. We notice that the feasible region of a PSPr(x) does not depend on x.

Each primal subproblem corresponds to a min cost flow problem with capacity values x; it
is feasible if it admits an (sr, tr)-cut of value at least 1 for each route r. Therefore separating
the inequalities (2.47) corresponds to solving O(n2) Min-cut problems.

Every possible x provides a cut, between two optimality cuts it is possible to establish
a partial ordering and an optimality cuts can be strengthened by finding a cut that Pareto-
dominates it with a procedure for the first time defined by Magnanti and Wong [10].

Let x0 be a point in the interior of the set of all feasible points and let z(x) be the optimal
dual (or primal) solution associated to x

23

The strengthened optimality cut can be found by solving an additional dual subproblem:

Benders Decomposition - Pareto Optimal Dual Subproblem (DSPopt(r))

max
∑

a∈A x
0
au

r
a − vsr + vtr (2.58)

−ura − vri + vrj ≤ drla, ∀(i, j) ∈ A (2.59)∑
a∈A xau

r
a − vsr + vtr = z(x) (2.60)

ura ≶ 0, ∀a ∈ A (2.61)

vri ≥ 0, ∀i ∈ V (2.62)

The procedure to solve LP relaxation by Benders decomposition can be embedded in a
Branch and Bound scheme in order to find an exact solution to the problem.

The procedure used for solving a node in the B&B tree is the following:

Benders Decomposition for a node in the BB tree

begin

set BEST LB := 0 and STOP := 0

repeat

solve MP , read βr and the current solution x

if no βr is increased then STOP := 1
else

for r = 1 to |R| do

solve DSP (r)

if DSP (r) is feasible then store the optimality cut (2.46)
else add a feasibility cut (2.47)

if no feasibility cut has been found then add all the optimality cuts found
and set BEST LB := of

until STOP = 1

return BEST LB

end

24

In the B&B we adopt a depth-first-search procedure. The search tree is partitioned by
fixing at each node in the B&B tree one orientation in one edge (i, j) such that xij and xji

are fractional.
Two degrees of freedom are involved in the choice of the edge to fix:
i) what edge to select
ii) what orientation to give to this edge.
Three basic policies have been tested in the selection of the edge:
i) the one with the value closest to an integer, namely the edge (i, j) with the highest frac-
tional value max{xi,j , xj,i}
ii) the one with the highest value πe, where πe is the dual variable associated with orientation
constraints (2.2).
The reason for the first principle is due to the idea to change the integer solution as little
as possible from the continuous relaxation. The second principle follows the idea that a con-
straint with a higher dual value is “strongly” tight. In our case it means that both directions
are really important for the flows involved, hopefully this leads to a lower bound improvement
on both branches.
A third and forth hybrid policies has been tested in order to mix the two contributions:
iii) picking the one with highest value πe(max{xi,j , xj,is}); Once the edge is selected it is
oriented in the direction of the higher fractional value.
iv) picking the one with the value closest to an integer, in case of two or more variables with
the same fractional value selecting the one with the highest associated dual value .

The B&B proposed can be stopped once one feasible solution is found. Moreover the
optimality cuts can be used only to provide an estimation of the bound in the tree, hence
only some rounds of cuts can be added in each node in order to explore it more quickly.

Finally, a heuristic solution can be obtained by directly solving the Master Problem in
the root node with binary xij variables binary, keeping the corresponding orientation and
evaluating its value via a shortest path computation.

2.7 Non LP-based approaches for solving NOP-EV

Solving to optimality instances of realistic size is an hard task. The conjecture derived from
the instances analysis is that the hardness is due to the poor information on the optimal
integer solution that we can get from the LP relaxation and from the high amount of local
optima. In particular, in the large majority of the optimal LP solutions the vast majority of

the x variables takes values equal to
1
2

.

25

In this section we provide other Branch&Bound approaches with lower bounds computa-
tions that are combinatorial, and not LP-based, even if they are inspired by the LP behavior
during the solution of the B&B tree.

The branching scheme is still based on orienting one edge of the graph at each node of the
tree; the B&B schemes differ in the criteria used to select the edge to orient and to compute
the LB.

In the LP-based procedure the connectivity is guaranteed by the flow conservation con-
straints. In the combinatorial approach we must explicitly take into consideration the basic
observation that while we are orienting edges in the branching we need to ensure the connec-
tivity of the resulting mixed graph.
Every time that a new edge is oriented we call the “chain orientation” procedure described
below; this is done in order to:
i) avoid creating B&B nodes that are by definition infeasible
ii) obtain a partial orientation that is as strong as possible, i.e. with as many oriented edges
as possible

The procedure introduced is the following:

26

Chain Orientation Procedure

input

A mixed graph G = (V,E ∪A) with E set of edges and A set of arcs
begin

set STOP = 0 and NO ORIENT = 0
repeat

set STOP = 1

for r = 1 to |R| do

let r = (i, j), find a path p from i to j in G

if @p then set STOP = 1 and NO ORIENT = 1

else

let G′ be equal to G with the edges of p oriented from j to i

find a path p′ from i to j in G′

if @p′ then

explore G′ starting from i and mark all the visited nodes

if j is not reached then

find an edge (k, l) ∈ G with only k marked

orient in G the edge (k, l) from l to k, update E and A

set STOP = 0

until STOP = 1
output

if NO ORIENT = 1 then the orientation is infeasible
else return the mixed graph G = (V,E ∪A)

The above procedure ensures that we deal with a partial orientation that admits a feasible
solution.

In the following two sections two lower bound computation are described together with
the branching rules. For a better understanding we use the same variables notation used
in the NOP-EV mathematical formulation, i.e. dryri,j represents the quantity of full vehicle
flow of route r along arc (i, j) and wi,j the quantity of empty vehicle flow of route along arc i, j.

27

2.7.1 Lower bound computation based on shortest path

This LB computation corresponds to relax the original NOP eliminating the orientation con-
straints.
At each node the LB can be computed as the sum of the full- and empty-vehicle flows in the
mixed graph G = (V,A ∪E) : Let LBfv (resp. LBev) be the LB contribution due to the full
(resp. empty) vehicle flow:

LBsp
fv =

∑
r≡(i,j)∈R d

r(shortest path from i to j in G) (2.63)

LBsp
ev = (value of the min-cost-flow in G with residual demands (2.7)) (2.64)

The Shortest Path computation can be done with the Dijkstra algorithm. At each node of
the B&B tree we store the information about the edges involved in each shortest path, hence
after orienting new edges we recompute the shortest paths only for the routes where some of
these edges were used in the opposite direction.
The same applies for LBev: we recompute the min-cost-flow if and only if we reorient an edge
in a direction opposite to the one used in the predecessor node.

2.7.2 Fake lower bound computation based on “
1

2
-graph”

This heuristic exploits the idea that the optimal solution of the LP relaxation usually contains

the majority of the unfixed xi,j variables equal to
1
2

.
We comute an estimation of the LP value,which is not a valid lower bound in geneneral by

assuming that the values of all unfixed xi,j variables are equal to
1
2

.

Let G = (V,E ∪ A) be the mixed graph in the current node. Let G′ = (V,A′) be the
capacitated directed graph defined as follows: for each arc (i, j) ∈ A we add an arc from i to
j in A′ with capacity ci,j = 1 and for each edge {i, j} ∈ E we add an arc from i to j in A′

and an arc from j to i in A′ with capacity ci,j = cj,i = 1
2 . Finally, let Let G” = (V,A”) be

the capacitated directed graph defined as G′ with the capacity redefined as follows: for each
edge (i, j) ∈ E the corresponding capacity is ci,j = cj,i = Mw

2 and for each arc {i, j} ∈ A the
corresponding capacity is ci,j = Mw.

The LB contribution are the following :

LB
1
2
fv =

∑
r≡(i,j)∈R d

r(value of the min-cost-flow of one unit from i to j in G′) (2.65)

LB
1
2
ev = (value of the min-cost-flow in G′ with residual demands (2.7)) (2.66)

28

Note that the computation of LB
1
2
ev consists in a capacitated min cost flow, with arc ca-

pacity Mw
2 (almost the “big M”), this means that the computation of LB

1
2
ev is based on an

graph that in practice in uncapacitated.

As already mentioned, this LB computation corresponds to fixing all the free xi,j =
1
2

. The
chain orientation procedure ensures that we always deal with a feasible orientation, unfortu-
nately the LB provided is not always valid in general, hence the corresponding Branch&Bound
scheme is only an heuristic method for NOP-EV.

2.7.3 Edge selection

In both approaches described in Sections 2.7.1 and 2.7.2 the edge selection follows the same
approach.

Let Yi,j =
∑

r∈R d
ryri,j +wi,j be the total flow of empty and full vehicles in the edge (i, j)

in the direction from i to j.
The criteria used to orient one edge are the following:
i) the highest value max{Yi,j , Yj,i}

ii) the highest value max{ Yj,i
1 + Yi,j

,
Yi,j

1 + Yj,i
}

iii) the highest value Yi,j + Yj,i

th Criterion i) gives the priority to the arc with the highest amount of flow, criterion ii) has
the same idea of i) but tries to avoid edges with high flow in both directions and on the other
hand criterion iii) does the opposite, trying to branch on the most used edge.

Once the edge is selected we orient it according with the one with the higher quantity of
flow between the two directions.

After the edge selection the “chain orientation” procedure is executed before processing
the child nodes.

2.8 LP-based approaches for NOP-FDC

The nonlinearity in NOP-FDC is restricted to the objective function which is bilinear in the
`i,j , yri,j , wi,j variables, i.e. either by fixing `i,j or by fixing yri,j and wi,j it becomes linear. This
special case has been considered in [5] by McCormick, who provided a valid MILP relaxation
for a general bilinear problem. By solving the MILP relaxation we obtain valid LB to the
problem.
Let zri,j and ui,j be two sets of continuous variables representing respectively the linearization

29

of `i,jyri,j and of `i,jwi,j .
The variables `i,j , yri,j and wi,j have the same definition provided in Section 2.3.5, hence they
are bounded as follows:

LO`i,j ≤ `i,j ≤ UP `i,j (2.67)

LOyi,j,r ≤ y
r
i,j ≤ UP

y
i,j,r (2.68)

LOwi,j ≤ wi,j ≤ UPwi,j (2.69)

(2.70)

where

LO`i,j = `0i,j (2.71)

UP `i,j = `1i,j (2.72)

LOyi,j,r = 0 (2.73)

UP yi,j = 1 (2.74)

LOwi,j = 0 (2.75)

UP yi,j = Mw (2.76)

Using the procedure defined in [5] we can rewrite the connection between the new variables
z , u and `i,j , yri,j , wi,j as follows:

zri,j ≥ UP
y
i,j,r`i,j + UP `i,jy

r
i,j − UP `i,jUP

y
i,j,r (2.77)

zri,j ≥ LO`i,jyri,j + LOyi,j,r`i,j − LO
y
i,j,rLO

`
i,j (2.78)

(2.79)

ui,j ≥ UPwi,j`i,j + UP `i,jwi,j − UP `i,jUPwi,j (2.80)

ui,j ≥ LO`i,jwi,j + LOwi,j`i,j − LOwi,jLO`i,j (2.81)

(2.82)

By substituting UP and LO and adding it into the model we obtain the following lin-
earization of NOP-FDC:

30

min
∑

r∈R
∑

(i,j)∈A d
rzri,j +

∑
(i,j)∈A ui,j (2.83)

zri,j ≥ `0i,jyri,j , ∀(i, j) ∈ A,∀r ∈ R (2.84)

zri,j ≥ `′i,jyri,j + `i,j − `′i,j , ∀(i, j) ∈ A,∀r ∈ R (2.85)

ui,j ≥ `0i,jwi,j , ∀(i, j) ∈ A (2.86)

ui,j ≥ `′i,jwi,j +Dres
+ `i,j −Dres

+ `′i,j , ∀(i, j) ∈ A (2.87)

xij + xji ≤ 1, ∀{i, j} ∈ E (2.88)

∑
(i,j)∈δ+(i) y

r
ij −

∑
(j,i)∈δ−(i) y

r
ji =

1, if i = sr

−1, if i = tr

0, otherwise

, ∀i ∈ V,∀r = (sr, tr) ∈ R(2.89)

yrij ≤ xij , ∀(i, j) ∈ A,∀r ∈ R (2.90)∑
(i,j)∈δ+(i)wij −

∑
(j,i)∈δ−(i)wji = −Di,res ∀i ∈ V, (2.91)

wij ≤Mwxij , ∀(i, j) ∈ A (2.92)∑
r∈R d

ryri,j + wa ≤ c0xi,j + fi,j , ∀(i, j) ∈ A (2.93)

`i,j ≥ `0i,j +
l′i,j−l0i,j
c1i,j−c0i,j

fi,j , ∀a ∈ A (2.94)

fi,j ≤ c1i,j − c0i,j , ∀(i, j) ∈ A (2.95)

xij ,∈ {0, 1}, ∀(i, j) ∈ A (2.96)

wij ≥ 0 ∀(i, j) ∈ A (2.97)

yrij ≥ 0, ∀(i, j) ∈ A,∀r ∈ R (2.98)

fi,j ≥ 0, ∀(i, j) ∈ A (2.99)

li,j ≥ 0, ∀(i, j) ∈ A (2.100)

An interesting remark is that if for certain (i, j) ∈ A the corresponding zi,j or ui,j variables
take the value of their lower or upper bound the linearization is no longer an approximation
but provides the exact value of the corresponding products `i,jyri,j and `i,jwi,j .

As usual the MILP relaxation can be solved with a B&B technique, branching on the in-
teger variable. In addition we can solve the MINLP by branching on the continuous variables
y , ` and w. If we branch on a continuous variable one of its corresponding bounds (UP or
LO) changes, hence it is possible to rewrite a strengthened linearization constraints. Note
that this is a binary branching in the sense that at each node we generate two new nodes, on
the other hands we can branch several times on the same continuous variable, reducing its
upper bound or increasing its lower bound. The following example illustrates this process:

31

Example Let us consider the constraints related to the arc (1, 2) with LO`1,2 = 2 , UP `1,2 = 6
and Mw = 100 :

zr1,2 ≥ 2yr1,2, ∀r ∈ R (2.101)

zr1,2 ≥ 6yr1,2 + `1,2 − 6, ∀r ∈ R (2.102)

u1,2 ≥ 2w1,2 (2.103)

u1,2 ≥ 6w1,2 + 100`1,2 − 600 (2.104)

(2.105)

if we branch on `1,2 with the disjunction {`1,2 ≤ 3} ∨ {`1,2 ≥ 3} we obtain the following new
set of inequalities for the first part of the disjunction (i.e. the one with UP `1,2 = 3) :

zr1,2 ≥ 2yr1,2, ∀r ∈ R (2.106)

zr1,2 ≥ 3yr1,2 + `1,2 − 3, ∀r ∈ R (2.107)

u1,2 ≥ 2w1,2 (2.108)

u1,2 ≥ 3w1,2 + 100`1,2 − 300 (2.109)

(2.110)

and the following for the second part (i.e. the one with LO`1,2 = 3) :

zr1,2 ≥ 3yr1,2, ∀r ∈ R (2.111)

zr1,2 ≥ 6yr1,2 + l1,2 − 6, ∀r ∈ R (2.112)

u1,2 ≥ 3w1,2 (2.113)

u1,2 ≥ 6w1,2 + 100l1,2 − 600 (2.114)

(2.115)

2

As showed in the example by fixing one bound a set of constraints is changed, and remains
valid also for the child nodes.
Branching on continuous variables does not guarantee finiteness of the B&B process unless
we introduce a tolerance on the gap between LO and UP in order to stop splitting a variable
range of values. (It would also be possible to ensure finiteness in a methodologically more
elegant way, which however turns out to be less efficient in practice.)

Branching on the continuous variables bound has also an intuitive interpretation: with
regard to the ` variables, decreasing the UP corresponds to limit the total overflow of an

32

arc; conversely increasing the LO means requiring that a minimum amount of overflow must
be assigned to an arc. Similarly, by fixing the upper or lower bound for a w or y variable
we decrease the maximum quantity allowed of empty vehicle flow or increase the minimum
quantity of flows in an arc.

In the next section we present several procedures based on the above linearization.
Note that even if the orientation is assigned (i.e. all the x variables are fixed) the problem
and B&B framework reduces to a non trivial NLP. Also in this case the branching scheme
described can be used.
Generally speaking the procedures tested can be divided into two sets:

• “two phase” approaches:
we first orient the graph by fixing the x variables and then we assign the vehicle flows.
This procedure is intrinsically heuristic and we can use all the approaches described in
the previous sections in order to find the orientation.

• “integrated” approaches:
we simultaneously solve the orientation and the flow assignment.

2.8.1 Two phase approaches

Splitting the optimization into two phases is not only a practical choice due to the necessity
of limiting the computational effort. In several cases, once the orientation is fixed, forecasting
the exact flow behavior is an interesting and useful task on itself.
As phase one we use one of the procedure used for solving the NOP-EV or the NOP-HCC, if
the optimal value is not available we use the best solution found.

Once the orientation is completed we start the B&B approach for solving the flow assign-
ment. At each node of the B&B we solve the LP relaxation in order to obtain a valid LB
for the node. Note that the subproblem associated with the nodes has no integer variables
because all the integer variables have been fixed.
Once the flows are assigned we can find a valid upper bound (UB) by simply computing the
corresponding overflows associated with the current y and w and consequently updating the
real arc costs `.
If the current UB is bigger than the best known UB we can prune the node.
If all the ` are at the upper or lower bound the MILP relax value correspond to the optimal
MINLP value hence we don’t need to branch more because the current solution will remain
optimal.

33

Among the three sets of continuous variables we branch on the ` variables; this choice is
due to the fact that this affects the linearization of both the y and the w variables.

Let ` be the current values of the ` variables. In all the B&B tested we fix one variable
bound at each node. The criteria used to select the arc are the following:

i) the one with the lowest value
`i,j −

UP `
i,j+LO

`
i,j

2

UP `i,j − LO`i,j

ii) the one with the highest value Yi,j(1−
`i,j −

UP `
i,j+LO

`
i,j

2

UP `i,j − LO`i,j
)

Approach i) represents the normalized distance of `i,j from the middle value in the range
that it can assume; this value goes from 0 (exactly in the middle) to 1

2 (value corresponding
to one bound).
Approach ii) is an attempt to weigh the the value i) with the total flow in the arc, in order
to give the priority to the most “important” edges.

Additionally one heuristic option can be activated to speed up the B&B convergence to a
heuristic solution, at the price of losing guaranteed optimality. This “early fixing procedure”
aims at diminishing the number of free variables in order to focus only on the important one.
More specifically, every time that a continuous variable takes its current lower or upper bound
we fix this value, decreasing the solution space. Notice that by current value we mean the
bound updated with the branching done so far.
The conjecture under this “early fixing procedure” is that if at some point an arc flow is at
its upper bounds it will generally remain at the upper bound in the child nodes of the B&B
tree. The more we branch the more this procedure is called, accelerating the process when
we are close to the end.

2.8.2 Integrated aproach

This method integrates the branching rules explained in the second phase of the “two phase
approach” with the ones described in section 2.6.
At each node we compute the continuous relaxation of the MILP relaxation of the original
problem. The two branching approaches there are applied simultaneously by fixing one x
variable and one ` variable bound at each branchig here.
also in this case, even if we operate in a B&B framework we do not aim at solving the instances
to optimality. We restrict ourselves to a diving approach, using the information provided by
the LP relaxation to guide the fixing order of the variables.

34

The branching scheme used for the x and ` variables are the same described in Section 2.6.2
and Section 2.8 respectively. Instead of a specific branching rule for the “one phase” approach
we use a “priority” criterion to manage the two fixing previously introduced: after selecting
the edge to fix we fix the bound for one `i,j variable only if the corresponding xi,j is equal
to 1 in the last LP value. The idea of the “priority” criterion is that it worth to branch
on a continuous variable only if it corresponds to an arc that will be likely used in the final
orientation.

2.9 Description of the instances

We tested our algorithm on the following artificial and real-world instances.

• Grid instances.
Artificial instances based on a grid graph with nr rows and nc columns. The number of
nodes is equal to n = nrnc and the number of edges is m = 2nrnc− nc− nr. Each edge
has unitary length.
Two ODMs are tested: i) one asymmetric OD-matrix, with demand dr for each pair
of nodes uniformly distributed in [0, 99] and ii) a symmetric OD-matrix with demands
d′r defined as follows: for every di,j and dj,i (demands in the asymmetric case) let
d′i,j = d′j,i = di,j+dj,i

2 .

• Bologna
Instance based on the city of Bologna public transport network. The graph corresponds
the whole area covered by buses and trams. The ODM corresponds to the demand
measured in the afternoon peak hour.

• Masdar
Instance taken from the real world application cited in Section 2.1. The implementation
of the system has been splitted into different steps. At each step several configurations
and several OD-matrices are considered. Each step include the previous connections
plus new connections and new stations. One of the particular aspects of the PRT sys-
tem used in this application is that the guide-ways orientation can be easily changed
from phase to phase. This flexibility is due to the way the guideways are implemented:
they just need a flat surface to run, with corridors defined by barriers fixed on the
ground. The vehicles use an electric engine and the control system is not installed in
the corridors.
Under the mentioned assumptions the network lay out can drastically change from step

35

to step according to the necessity.

The instances tested are the following:

– phase 3 instances
mm city g05 consists of 533 nodes and 602 edges. for this phase the ODMs are
known and two of them are tested, corresponding to the morning and afternoon
peak hours.
masdar g02 consists of 467 nodes and 659 edges. It corresponds to an alternative
lay out, with stations placed in different positions, the ODM is unknown and two
ODMs are tested: i) an “all-one” ODM and ii) a random ODM with demands
uniformly defined in [0, 99].

2.10 Computational results

We have implemented all the the algorithms described in C language and we have executed
the tests on a PC XXX, Y GB Ram, ZZ GHz. as MILP and LP solver we have used CPLEX
10.1 with its standard settings.
When it is not specified the time limit is always 36000 seconds.

Objective of this analysis is to investigate the performance of the algorithms described in
the previous sections. As starting point we consider the grid instances, whom goal is to define
a benchmark set composed of instances having the same structure.
Among the grid instances the performances of the algorithms change if we apply the asym-
metric demand or not, this gives an interesting hint on which procedure to use if we know in
advance how much the instance is asymmetric.

2.10.1 NOP-EV solution

In this section we discuss the algorithm used to solve NOP 2.3.3.

Grid Instances

In Table 2.2 we consider the following MILP models:

• NOP-EV
this is the basic formulation with empty vehicle flows described in Sections 2.3.3 and 2.3.2.

36

objval ILP represents the best objective function found within the time limit, objval LP
is the LP relaxation value.

• NOP-EV-surr
this corresponds to the formulation introduced in Section 2.6.1. objval ILP surr is the
best objective function found within the time limit and objval LP is the LP relaxation
value.

In both cases the CPU time is reported.
The standard LP relaxation is available up to grid9x10, for bigger instances the solver runs
out of memory. The LP relaxation for the surrogated version does not have this problems for
instances of this size.
For instances bigger than grid5x6 both ILP formulations do not provide any feasible solution
within the time limit.
The Gap columns report the difference between the optimum value of the two linear relaxation
and the integer optimum, defined as :

Gap =
objval ILP − objval LP

objval ILP
(2.116)

The gap is showed only when the MILP optimum is available. It is not surprising that the
gap for the surrogated version is very weak: from 7% to 15% worse than for the standard
LP relaxation, though fairly small in any case. On the other hand the computation time is
always very small.
An interesting result is that the solution time for the ILP version in the surrogated version is
competitive with the original formulation.

In Table 2.3 we report the results concerning the following models:

• NOP-EV solved by Benders Decomposition (LP Bend and ILP Bend)
This model is described in Section (2.6.2). The time for computing the LP relaxation
corresponds to the time for computing the root node in the B&B tree. As branching
selection in the B&B tree we use the option iii), i.e. picking the one with highest value
πe(maxxi,j , xj,i).

• NOP-EV formulation with empty vehicles (lp cplex and ILP cplex)
like in Table 2.2, as comparison with the Benders results.

37

graph od matrix t tot lp objval lp Gap t tot lp surr objval lp surr Gap t tot ilp t tot ilp surr objval ilp
grid3x4 gra grid3x4 odm asymm 0 291890 0.13 1 241180 0.28 4 0 333740
grid3x4 gra grid3x4 odm symm 1 277920 0.12 1 227380 0.28 3 1 314700
grid4x4 gra grid4x4 odm asymm 0 575700 0.1 1 502000 0.21 31 6 636780
grid4x4 gra grid4x4 odm symm 1 548020 0.1 1 474740 0.22 32 6 608280
grid4x5 gra grid4x5 odm asymm 3 968920 0.12 1 853960 0.22 220 71 1095900
grid4x5 gra grid4x5 odm symm 2 925200 0.11 1 810640 0.22 315 84 1039600
grid5x5 gra grid5x5 odm asymm 9 1687700 0.11 1 1536680 0.19 5041 2864 1902280
grid5x5 gra grid5x5 odm symm 8 1629120 0.11 1 1478920 0.19 2078 3992 1820900
grid5x6 gra grid5x6 odm asymm 35 2546050 0.11 1 2340840 0.18 18725 10003 2865780
grid5x6 gra grid5x6 odm symm 20 2480800 0.1 1 2276640 0.18 19887 36000 2770200*
grid6x6 gra grid6x6 odm asymm 26 4193540 - 1 3925160 - - - -
grid6x6 gra grid6x6 odm symm 31 4085860 - 1 3818760 - - - -
grid6x7 gra grid6x7 odm asymm 56 5939230 - 1 5572020 - - - -
grid6x7 gra grid6x7 odm symm 61 5801580 - 1 5436300 - - - -
grid7x7 gra grid7x7 odm asymm 104 8843020 1 8400840 - - - -
grid7x7 gra grid7x7 odm symm 84 8640040 - 1 8200120 - - - -
grid7x8 gra grid7x8 odm asymm 328 12027970 - 1 11463720 - - - -
grid7x8 gra grid7x8 odm symm 221 11800160 - 1 11238780 - - - -
grid8x8 gra grid8x8 odm asymm 558 17107680 - 1 16444120 - - - -
grid8x8 gra grid8x8 odm symm 600 16757280 - 1 16097000 - - - -
grid9x9 gra grid9x9 odm asymm 2711 30583490 - 1 29605700 - - - -
grid9x9 gra grid9x9 odm symm 2397 29949120 - 1 28976480 - - - -

grid9x10 gra grid9x10 odm asymm 4925 38655890 - 2 37467700 - - - -
grid9x10 gra grid9x10 odm symm 6434 38095960 - 1 36913960 - - - -

grid10x10 gra grid9x10 odm asymm O.o.M - - 2 49936020 - - - -

Table 2.2: Grid Instances - Cplex Results.

The time ratio columns report the ratio between the solution time with Benders and with the
standard model:

time ratio MILP =
t sol ILP cplex

t sol ILP Bend
(2.117)

time ratio LP =
t sol LP cplex

t sol LP Bend
(2.118)

The time ratio is showed only when the ilp optimum is available.
In other words, a time ratio of 0.1 means that Benders decomposition is 10 times faster than
the standard model. The LP solution with Benders decomposition is from 5 to 20 times faster
than with the standard model. Also the MILP solution is faster: from 3 to 9 times faster.
Unfortunately even if the trend seems promising for instances bigger than grid5x6 not even
Benders decomposition is able to solve the problem.

In Table 2.4 we compare different Benders-based heuristics. All of them are based on a
depth fist search in a B&B tree, stopping at the first integer value found.
The different columns represents the different branching strategies:

• x most int
at each node the most integer xij is selected

38

graph od matrix t sol ilp cplex t sol ilp Bend time ratio ilp t sol lp cplex t sol lp Bend time ratio lp lp val objval ilp
grid3x4 gra grid3x4 odm asymm 4 1 0.25 1 1 1 291890 333740
grid3x4 gra grid3x4 odm symm 3 1 0.33 1 1 1 277920 314700
grid4x4 gra grid4x4 odm asymm 31 13 0.42 1 1 1 575700 636780
grid4x4 gra grid4x4 odm symm 32 7 0.22 1 1 1 548020 608280
grid4x5 gra grid4x5 odm asymm 220 99 0.45 3 1 0.33 968920 1095900
grid4x5 gra grid4x5 odm symm 315 41 0.13 2 1 0.50 925200 1039600
grid5x5 gra grid5x5 odm asymm 5041 1286 0.26 9 3 0.33 1687700 1902280
grid5x5 gra grid5x5 odm symm 2078 568 0.27 8 1 0.13 1629120 1820900
grid5x6 gra grid5x6 odm asymm 18725 5998 0.32 35 4 0.11 2546050 2865780
grid5x6 gra grid5x6 odm symm 19887 2965 0.15 20 3 0.15 2480800 2770200
grid6x6 gra grid6x6 odm asymm - - - 26 7 0.27 4193540 -
grid6x6 gra grid6x6 odm symm - - - 31 8 0.26 4085860 -
grid6x7 gra grid6x7 odm asymm - - - 56 12 0.21 5939230 -
grid6x7 gra grid6x7 odm symm - - - 61 12 0.20 5801580 -
grid7x7 gra grid7x7 odm asymm - - - 104 21 0.20 8843020 -
grid7x7 gra grid7x7 odm symm - - - 84 15 0.18 8640040 -
grid7x8 gra grid7x8 odm asymm - - - 328 32 0.10 12027970 -
grid7x8 gra grid7x8 odm symm - - - 221 30 0.14 11800160 -
grid8x8 gra grid8x8 odm asymm - - - 558 55 0.10 17107680 -
grid8x8 gra grid8x8 odm symm - - - 600 49 0.082 16757280 -
grid9x9 gra grid9x9 odm asymm - - - 2711 153 0.06 30583490 -
grid9x9 gra grid9x9 odm symm - - - 2397 99 0.04 29949120 -

grid9x10 gra grid9x10 odm asymm - - - 4925 214 0.04 38655890 -
grid9x10 gra grid9x10 odm symm - - - 6434 185 0.03 38095960 -

grid10x10 gra grid10x10 odm asymm - - - O.o.M. 386 - 51271780 -

Table 2.3: Grid Instances - Benders Decomposition

• fist x then π

at each node the most integer xij is selected, if this occurs for more than one edge, the
one with the corresponding highest dual value πi,j is chosen

• fist x then π

at each node the xij with the highest product between xij and the corresponding dual
variable πi,j is selected.

For grid instances it seems that guiding the edge orientation with the help of the dual vari-
ables not helpful.

Table 2.4 provides more details about the comparison between the LP and MILP optimal
solution and the diving using the first branching rule. Columns delta LP (resp. delta MILP)
represents the gap between the best Upper Bound and the optimal LP (resp. MILP) value:

gap MILP =
best UB− opt val MILP

opt val MILP
(2.119)

gap LP =
best UB− opt val LP

opt val LP
(2.120)

The LP delta value is slightly decreasing with the increasing of the instances size. Also
the ILP delta value has the same behavior. An advantage of this diving heuristic is that it
provides solutions about 7% worse then the optimal value in a small amount of time.

39

graph od matrix lp val objval ILP t tot Bend Dive x most int best UB x most int t tot fist x then π best UB first x then π t tot π x best UB π x
grid3x4 gra grid3x4 odm asymm 291890 333740 0 369600 1 346060 1 335400
grid3x4 gra grid3x4 odm symm 277920 314700 1 342380 0 332100 0 332100
grid4x4 gra grid4x4 odm asymm 575700 636780 1 690760 2 648100 2 699100
grid4x4 gra grid4x4 odm symm 548020 608280 2 658920 1 684800 1 677580
grid4x5 gra grid4x5 odm asymm 968920 1095900 4 1179560 5 1203320 3 1221100
grid4x5 gra grid4x5 odm symm 925200 1039600 4 1106000 5 1194700 3 1152000
grid5x5 gra grid5x5 odm asymm 1687700 1902280 10 2023860 9 1992400 11 1953900
grid5x5 gra grid5x5 odm symm 1629120 1820900 10 1961000 9 1933880 11 2013920
grid5x6 gra grid5x6 odm asymm 2546050 2865780 24 2991560 23 3095500 21 3146560
grid5x6 gra grid5x6 odm symm 2480800 2770200 17 2932100 24 3126940 21 3125760
grid6x6 gra grid6x6 odm asymm 4193540 - 50 5094640 58 5089880 54 5151680
grid6x6 gra grid6x6 odm symm 4085860 - 46 4915800 60 4888880 64 5194340
grid6x7 gra grid6x7 odm asymm 5939230 - 115 6842460 118 7362360 117 7515840
grid6x7 gra grid6x7 odm symm 5801580 - 88 6680120 102 6891900 100 7083280
grid7x7 gra grid7x7 odm asymm 8843020 - 224 10449760 241 10796780 278 10850080
grid7x7 gra grid7x7 odm symm 8640040 - 188 10121340 241 10378220 294 10629180
grid7x8 gra grid7x8 odm asymm 12027970 - 431 14120640 466 14838820 480 14525120
grid7x8 gra grid7x8 odm symm 11800160 - 336 13706000 522 14324340 521 14232640
grid8x8 gra grid8x8 odm asymm 17107680 - 785 19931660 884 20478060 1037 20706400
grid8x8 gra grid8x8 odm symm 16757280 - 779 19379520 950 19891420 1194 20199700
grid9x9 gra grid9x9 odm asymm 30583490 - 2741 34531720 3636 37349500 4246 37192260
grid9x9 gra grid9x9 odm symm 29949120 - 2350 34141860 3885 38454520 3324 35431520

grid9x10 gra grid9x10 odm asymm 38655890 - 4927 44843540 7154 50093320 8192 47669760
grid9x10 gra grid9x10 odm symm 38095960 - 3740 42846760 8468 48428200 8045 46253600

grid10x10 gra grid10x10 odm asymm 51271780 - 7113 57827440 12742 64094120 10760 60911380
grid10x10 gra grid10x10 odm symm - - 7904 56613360 13308 62221640 12369 60819420

Table 2.4: Grid Instances - Benders Diving for NOP

graph od matrix lp val objval ILP t tot Bend Dive x most int best UB x most int gap LP gap ILP
grid3x4 gra grid3x4 odm asymm 291890 333740 0 369600 0.27 0.11
grid3x4 gra grid3x4 odm symm 277920 314700 1 342380 0.23 0.09
grid4x4 gra grid4x4 odm asymm 575700 636780 1 690760 0.20 0.08
grid4x4 gra grid4x4 odm symm 548020 608280 2 658920 0.20 0.08
grid4x5 gra grid4x5 odm asymm 968920 1095900 4 1179560 0.22 0.08
grid4x5 gra grid4x5 odm symm 925200 1039600 4 1106000 0.20 0.06
grid5x5 gra grid5x5 odm asymm 1687700 1902280 10 2023860 0.20 0.06
grid5x5 gra grid5x5 odm symm 1629120 1820900 10 1961000 0.20 0.08
grid5x6 gra grid5x6 odm asymm 2546050 2865780 24 2991560 0.17 0.04
grid5x6 gra grid5x6 odm symm 2480800 2770200 17 2932100 0.18 0.06
grid6x6 gra grid6x6 odm asymm 4193540 - 50 5094640 0.21 -
grid6x6 gra grid6x6 odm symm 4085860 - 46 4915800 0.20 -
grid6x7 gra grid6x7 odm asymm 5939230 - 115 6842460 0.15 -
grid6x7 gra grid6x7 odm symm 5801580 - 88 6680120 0.15 -
grid7x7 gra grid7x7 odm asymm 8843020 - 224 10449760 0.18 -
grid7x7 gra grid7x7 odm symm 8640040 - 188 10121340 0.17 -
grid7x8 gra grid7x8 odm asymm 12027970 - 431 14120640 0.17 -
grid7x8 gra grid7x8 odm symm 11800160 - 336 13706000 0.16 -
grid8x8 gra grid8x8 odm asymm 17107680 - 785 19931660 0.17 -
grid8x8 gra grid8x8 odm symm 16757280 - 779 19379520 0.16 -
grid9x9 gra grid9x9 odm asymm 30583490 - 2741 34531720 0.13 -
grid9x9 gra grid9x9 odm symm 29949120 - 2350 34141860 0.14 -

grid9x10 gra grid9x10 odm asymm 38655890 - 4927 44843540 0.16 -
grid9x10 gra grid9x10 odm symm 38095960 - 3740 42846760 0.12 -

grid10x10 gra grid10x10 odm asymm - - 7113 57827440 - -
grid10x10 gra grid10x10 odm symm - - 7904 56613360 - -

Table 2.5: Grid Instances - Benders Diving for NOP - Deltas

40

graph od matrix t tot best UB non-LP t tot Bend Dive x most int best UB x most int
grid3x4 gra grid3x4 odm asymm 0 378480 0 369600
grid3x4 gra grid3x4 odm symm 0 322020 1 342380
grid4x4 gra grid4x4 odm asymm 0 729900 1 690760
grid4x4 gra grid4x4 odm symm 0 680660 2 658920
grid4x5 gra grid4x5 odm asymm 0 1296640 4 1179560
grid4x5 gra grid4x5 odm symm 1 1129200 4 1106000
grid5x5 gra grid5x5 odm asymm 0 2116220 10 2023860
grid5x5 gra grid5x5 odm symm 1 1842580 10 1961000
grid5x6 gra grid5x6 odm asymm 0 3049920 24 2991560
grid5x6 gra grid5x6 odm symm 1 2823280 17 2932100
grid6x6 gra grid6x6 odm asymm 2 5230300 50 5094640
grid6x6 gra grid6x6 odm symm 2 4704820 46 4915800
grid6x7 gra grid6x7 odm asymm 3 7063980 115 6842460
grid6x7 gra grid6x7 odm symm 2 6435220 88 6680120
grid7x7 gra grid7x7 odm asymm 4 10469340 224 10449760
grid7x7 gra grid7x7 odm symm 6 9904920 188 10121340
grid7x8 gra grid7x8 odm asymm 8 14873460 431 14120640
grid7x8 gra grid7x8 odm symm 8 13447420 336 13706000
grid8x8 gra grid8x8 odm asymm 13 21385720 785 19931660
grid8x8 gra grid8x8 odm symm 14 18546680 779 19379520
grid9x9 gra grid9x9 odm asymm 34 45286040 2741 34531720
grid9x9 gra grid9x9 odm symm 32 34036880 2350 34141860

grid9x10 gra grid9x10 odm asymm 52 57661000 4927 44843540
grid9x10 gra grid9x10 odm symm 56 54042560 3740 42846760

grid10x10 gra grid10x10 odm asymm 82 73159410 7113 57827440
grid10x10 gra grid10x10 odm symm 86 74400320 7904 56613360

Table 2.6: Grid Instances - Benders Diving vs combinatorial bounds

Finally, in Table 2.6 we present the comparison between the UB founds by the best Benders

diving and the diving based on the
1
2

-lower bound described in Section 2.7.1 (best UB non-
LP), showing that the latter is much slower but the solution found by the former are much
better.

Real-World Instances

In this Section we take into consideration the Bologna and Masdar instances.
In Table 2.7 we report the following information about the Masdar instances:

• LP relaxation and best MILP value obtained from the surrogated version (LP surr and
MILP surr)
like in Table 2.2, the surrogated method is not able to find the optimal solution within
the time limit. We do not report the results concerning the standard formulation because
the problem size is too big and the solver goes out of memory.

• LP relaxation value provided by the solution of Benders decomposition (best LB Bend)

41

graph od matrix t tot LP surr objval LP surr best LB Bend T LIM 36000 best UB surr T LIM 36000 gap LP surr gap LP Bend
mm city g05 mm city ddummy 03 19 1558982 2404591 0.54
mm city g05 mm city dam 01 21 4866754 5607194 7150847 0.47 0.28
mm city g05 mm city dpm 01 20 3230226 4749240 0.47

et city g02 mm city ddummy 01 18 1480853 1878239 2379618 0.61 0.27
et city g02 mm city ddummy 01 rand01 18 73803766 92320069 116704013 0.58 0.26

Table 2.7: Masdar - ILP

graph od matrix t tot LP cplex t tot LP Surr t tot LP Bend objval LP objval LP Surr objval cplex ILP surr T LIM objval cplex ILP T LIM
MODBO GRAPH MODBO ODM 40 1 9 593820635 508019263 680280050 682294090

Table 2.8: Bologna - ILP

Benders decomposition is not able to solve the LP relaxation to optimality, this is the
best available lower bound.

The two columns gap LP describe the gap between the best UB found and the two LP
provided:

delta =
best UB− objval LP surr (or best LP Bend)

objval LP surr (or best LP Bend)
(2.121)

Benders decomposition turns out to be useful in order to increase the best LB found. It
is not clear if the high gaps between th beste LB and UB is due to the weakness of the first
or second value or on the weakness of the model itself. It is clear in any case the usefulness
of Benders decomposition in order to improve more than 30% the gap with the upper bound.
Finally it is interesting to note how the gap remains the same in both the symmetric and
asymmetric cases.

In Table 2.8 we report the same information described in Table 2.7 but concerning Bologna
instance. In addition is provided also the LP relaxation and the best upper bound found in
the solution of the standard formulation. Also in this case Benders decomposition is faster
than the standard formulation in computing the lower bound. An interesting result is that
the surrogated formulation, even relying on a weaker LP relaxation, provides an upper bound
better than the one provided by the standard formulation.

In Table (2.9) Benders heuristics are tested:

• Best solution found within T LIMIT (Benders)

• Benders diving (Dive)

For each modality the branching method described for Table 2.4 are reported.
The column delta describes the difference of the heuristics proposed with the best upper

42

graph od matrix mode t tot t sol lp lp val best UB delta
MODBO GRAPH MODBO ODM ILP surr 36000 1 508019263 680280050 0
MODBO GRAPH MODBO ODM Dive πx 45 9 593820635 694651520 0.021
MODBO GRAPH MODBO ODM Dive x most int 54 9 593820635 741077810 0.089
MODBO GRAPH MODBO ODM Dive first x most int then π 57 9 593820635 727781100 0.070
MODBO GRAPH MODBO ODM Benders x most int 36000 8 593820635 735229800 0.081
MODBO GRAPH MODBO ODM Benders πx 36000 9 593820635 681784380 0.002
MODBO GRAPH MODBO ODM Benders first x most int then π 36000 9 593820635 707993160 0.041

Table 2.9: Bologna - Benders

bound known so far, provided by the surrogated formulation:

delta(mode) =
UB mode− best UB surr

best UB surr
(2.122)

(2.123)

Among the three branching policies, πx is the most effective. It is interesting how in just
45 seconds it provides a solution 2% worst then the best solution found. In addition if we let
the program run until the time limit the two algorithms are almost comparable.

2.10.2 NOP-FDC

In this section we provide the results concerning the algorithms proposed for solving the
MINLP model described in Section (2.3.5).

Grid instances

In Table 2.10 we report the following information concerning the MILP relaxation of the
problem:

• LP relaxation (lpcplex)
This is the value of the LP relaxation of the MILP model. For instances of size greater
than grid3x4 it is the only available lower bound for the problem (only for grid3x4 we
knows the optimal value)

• best UB found for MILP relaxation (objval MILP cplex)
as mentioned above only for grid3x4 it is possible to solve to optimality the problem.
For instances bigger than grid5x5 no feasible solution has been found within the time
limit.

43

graph od matrix t tot lp objval lp cplex t tot ilp objval ilp cplex real objval ilp gap delta ilp - real objval
grid3x4 gra grid3x4 odm asymm 2 291890 512 8492142.92 13391262.32 44.88 0.58
grid3x4 gra grid3x4 odm symm 1 277920 398 7409627.36 11646666.64 40.91 0.57
grid4x4 gra grid4x4 odm asymm 11 575700 36000 19343782.25 66119100.10 113.85 2.42
grid4x4 gra grid4x4 odm symm 8 548020 36000 17189029.65 55792359.75 100.81 2.25
grid4x5 gra grid4x5 odm asymm 49 968920 36000 63001134.23 256652634.34 263.89 3.07
grid4x5 gra grid4x5 odm symm 36 925200 36000 51488472.30 164419003.63 176.71 2.19
grid5x5 gra grid5x5 odm asymm 308 1687700 36000 222873171.77 674768100.49 398.82 2.03
grid5x5 gra grid5x5 odm symm 209 1629120 36000 195711056.44 580045911.15 355.05 1.96
grid5x6 gra grid5x6 odm asymm 1272 2546050 T LIM - - - -
grid5x6 gra grid5x6 odm symm 1107 2480800 T LIM - - - -
grid6x6 gra grid6x6 odm asymm 4360 4193540 T LIM - - - -
grid6x6 gra grid6x6 odm symm 12336 4085860 T LIM - - - -
grid6x7 gra grid6x7 odm asymm 15645 5939230 T LIM - - - -
grid6x7 gra grid6x7 odm symm 17366 5801580 T LIM - - - -
grid7x7 gra grid7x7 odm asymm 36000 8843020 T LIM - - - -
grid7x7 gra grid7x7 odm symm T LIM - T LIM - - - -

Table 2.10: Grid Instances - NOP Flow-Dependent Costs - ILP relaxation

• real objective function value (real objval ilp)
This is the value of the nonlinear objective function with the empty- and full-vehicle
flows in the best solution of the ILP model.

Two columns are added in order to compare the data described above:

• gap =
real objval ILP− objval LP cplex

objval LP cplex
Tthis value indicates how much the UB found is bigger than the current LB

• delta ILP − real objval =
real objval ILP− objval ILP

objval ILP
This indicator gives an idea about how much the MILP relaxation is far from the real
value.

For instances of realistic size the lower bounds provided are really poor: from 40 to almost
400 times lower than the best upper bound found. In addition the real objective function is
from 0.5 to 3 times higher than the best MILP relaxation found.
This high differences between the real objective function value and its estimators is due to
the linearization, which turned out to be fairly weak.

In Table 2.11 we report the following results concerning the “two-phase” approach (see
Section 2.8.1). As first phase we solve NOP-HCC, described in Section (2.3.4), with capacity
equal to the maximum capacity available c1 and edge length equal to the maximum length l1.
The idea of this approach is to solve the orientation problem as “fully congested”, i.e. with
all all the overflows at their maximum values. Once the orientation is fixed we branch on the
` variables. At each node in the B&B tree we compute the real objective function value for

44

graph od matrix t tot first objval objval improvement
grid3x3 11 gra grid3x3 11 odm asymm 2 1141139 1123693 0.02
grid3x3 11 gra grid3x3 11 odm symm 1 381600 377389 0.01
grid3x4 11 gra grid3x4 11 odm asymm 15 13965250 13965250 0
grid3x4 11 gra grid3x4 11 odm symm 9 11576078 11576078 0
grid4x4 11 gra grid4x4 11 odm asymm 231 54119486 42602919 0.21
grid4x4 11 gra grid4x4 11 odm symm 145 55792359 55019912 0.014
grid4x5 11 gra grid4x5 11 odm asymm 1544 232420918 156466041 0.33
grid4x5 11 gra grid4x5 11 odm symm 1524 210694999 145387561 0.31
grid5x5 11 gra grid5x5 11 odm asymm 22845 648673630 343999750 0.47
grid5x5 11 gra grid5x5 11 odm symm 14839 762228750 344547967 0.55

Table 2.11: Grid - NOP Flow-Dependent Costs - first x then `

the current empty and full vehicle flows. The search is finished when no more branching is
needed and before the backtracking.
The information provided by Table 2.11 is the following:

• best solution found (objval)

• first solution found (first objval)
this is the real objective function corresponding to the empty- and full-vehicle flows
assigned after phase one, it is used to verify how much is important the second phase
in the improvement of the upper bound.
Column improvement measures this aspect:

improvement =
first objval− objval

first objval
(2.124)

The second phase is fundamental in the improving of the solution: for big instances the
branching on ` decreases the phase one solution by about 30% to 50%.

Table 2.12 reports the results for a ”one-phase” approach. As explained in Section (2.8.2)
we branch on the x and ` variables together. The usual behavior is that first we start to
branch only on the x variables (because the ` are at their lower bounds). After few branching
some ` values start to move and we start the double branching. At each node in the B&B
tree the branching scheme is done with the following disjunction:

{xi,j = 1 ∧ `k,h ≤ `k,h} ∨ {xi,j = 0} ∨ {xi,j = 1 ∧ `k,h ≥ `k,h} (2.125)

The data reported are relative to the same B&B method with two stopping criteria:

45

graph od matrix tot nodes x&l t tot dive x&l objval dive x&l objval T LIM 3600
grid3x4 gra grid3x4 odm asymm 13 12 35682144.27 13391262.32
grid3x4 gra grid3x4 odm symm 11 19 21848298.76 11646666.64
grid4x4 gra grid4x4 odm asymm 17 222 104673326.39 66119100.11
grid4x4 gra grid4x4 odm symm 23 439 63363401.29 55792359.75
grid4x5 gra grid4x5 odm asymm 29 2309 264418032.71 315068140.96
grid4x5 gra grid4x5 odm symm 22 1791 244234455.19 261516625.79
grid5x5 gra grid5x5 odm asymm 43 11949 730874518.43 1318384973.65
grid5x5 gra grid5x5 odm symm 28 14591 777763155.27 no sol found
grid5x6 gra grid5x6 odm asymm - T LIM - -

Table 2.12: Grid Instances - NOP Flow-Dependent Costs - x & ` Heur

graph od matrix objval first x then ` objval x and `

grid3x4 gra grid3x4 odm asymm 13965250 13391262.32
grid3x4 gra grid3x4 odm symm 11576078 11646666.64
grid4x4 gra grid4x4 odm asymm 42602919 66119100.10
grid4x4 gra grid4x4 odm symm 55019912 55792359.75
grid4x5 gra grid4x5 odm asymm 156466041 256652634.34
grid4x5 gra grid4x5 odm symm 145387561 164419003.63
grid5x5 gra grid5x5 odm asymm 343999750 674768100.49
grid5x5 gra grid5x5 odm symm 344547967 580045911.15

Table 2.13: Grid Instances - NOP Flow-Dependent Costs - first x then ` vs x & `

• diving (dive)
The exploration ends all x variable are either fixed or integer and all ` variables are
equals to one of their bounds.
Notice that the tree depth is not fixed because the number of branching on the ` variables
is not unique.

• time limit (T LIM 3600)
Notice that, even if the time necessary to dive the whole tree is greater than 3600
seconds, if after this time limit all the x variables has been fixed a valid UB for the
problem is available in any case.

In Table 2.13 a comparison of the two heuristics is provided. It is clear how the two phases
optimization provides better results, on the other hand the one-phase approach is faster and
is able to provide a feasible solution in only one hour of computational time.

46

graph od matrix t tot ilp objval ilp cplex real objval ilp t tot lp objval lp cplex
MODBO GRAPH MODBO ODM 36000* 747317670.96 2006306172.93 218 593820635

Table 2.14: Bologna- NOP Flow-Dependent Costs - ILP

graph od matrix t tot dive x&l objval dive x&l Real objval ILP 3600
MODBO GRAPH MODBO ODM 10212 1640246128.24

Table 2.15: Bologna - NOP Flow-Dependent Costs - Heur compare

Real-World Instances

In this section we mainly focus on the Bologna instance because the Masdar instance is too
large to be solved with the method proposed.
In Table 2.14 we provide the results related to the MILP relaxation. In Table 2.15 the x&l
diving results are reported.

The x&l diving provides a better solution than the one provided by the computation of
the MILP relaxation.

47

48

Chapter 3

Linear Arrangement Problem

3.1 Problem Description

MinLAP can be stated as follows: given an undirected graph G(V,E) with |V | = n , |E| = m

and a weight we associated with each edge e , find a labeling π : V → {1, . . . , n} that minimizes∑
(i,j)∈E

wi,j |π(i)− π(j)|.

For a given graph G we call lap(G) the linear arrangement optimum value.
From now on we define S(n) as the set of all possible labeling of n elements. Moreover when
we deal with a graph G we always refers to V and E as the sets denoting respectively his
vertices and edges, and with n = |V | , m = |E| their cardinality.
Notice that in the rest of this section we will consider the unweighted case, i.e. when we = 1
∀e ∈ E, all the results and th e procedure described hold also for the weighted case.

3.2 Previous Integer Linear Programming Formulations

MinLAP can be formulated as an Integer Linear Programming in a descriptive way.
We introduce a set of binary variables xij , one for every pair of nodes i, j,∈ V , xij is equal to
one if the node i is placed in position j (i.e. if π(i) = j), and a set of variables de ≡ d{i,j},
one for every edge e ≡ {i, j} ∈ E, representing the distance between nodes i and j, i.e.
d{i,j} = |π(i)− π(j)|.

49

min
∑
e∈E

de (3.1)∑
j∈V

xi,j = 1 i ∈ V, (3.2)

∑
i∈V

xi,j = 1 j ∈ V, (3.3)

d{i,j} ≥ |p− q|(xip + xjq − 1), {i, j} ∈ E, p, q ∈ V, (3.4)

xij ∈ {0, 1}, i, j ∈ V (3.5)

Constraints (3.2) and (3.3) force every node to be placed in exactly one position ad every
position to be used by exactly one node. (3.4) are the linking constraints between de and xij .
Defining an effective solution method based on this formulation is hard because of the weak-
ness of the LP relaxation (it is easy to see that the LP solution xij = 1/n,∀i, j ∈ V and
de = 0 ∀e ∈ E is feasible and has value zero) and of the huge number of constraints.

Liu and Vannelli [1] considered a formulation based only on the de variables. This choice is
due to the consideration that the variables xij do not appear in the objective function, hence
if we do not pretend to have a compact formulation for the problem they can be eliminated. A
general condition on the de variables are the so-called rank-inequalities, one for every subgraph
G′ of G. With this set of inequalities we obtain the following sparse formulation with de:

min
∑
e∈E

de (3.6)∑
e∈E(G′)

de ≥ lap(G′),∀G′ ∈ G (3.7)

Where G is the set of all subgraphs of G .
The rank inequalities are based on the simple but really useful observation that the sum of
the distances associated with the edges of a subgraph G′ must be at least equal to the optimal
value lap(G′) associated with it.
If we enumerate all the (exponentially many) rank inequalities by definition we obtain an
exact formulation of the problem (because also G is a subgraph of itself) but this is not
helpful because it is as hard as solving the problem itself.
If we restrict ourselves to add only a subset of the rank-inequalities we can compute valid
lower bounds for the problem, and the strength and the difficulty of the LP depends on how

50

we chose this subset, for example we can focus only on special class of subgraphs of G, like
stars, cliques, paths. Among all the possible subgraphs the separation of the rank-inequalities
concerning stars turns out to be very easy.
The key aspect in the procedure suggested by Liu and Vannelli is the simple and general
principle that we can use information concerning a subgraph of G to obtain information on
G, this concept has been used also in the next approach described by Caprara et al. [2] and
in our work.

The sparse formulation uses one distance variable de for every edge existing in the graph
G, this minimizes the number of variables but limts its “flexibility“.

In [2] Caprara et al. proposed an approach based on a dense formulation with the distance
variables, let Kn = (V, F) be the complete graph on n vetices and let K be the set of all edge
induced subgraphs K ′ of Kn and let F (K ′) be the set of edges in subgraph K ′. They introduce
a set of variables d{i,j} , for each edge {i, j} of F (i.e. one for each pair of vertices in V)
that represent the distance between vertices i and j in the arrangement.

min
∑
e∈E

de (3.8)∑
{i,j}∈F (H)

d{i,j} ≥ lap(K), k ∈ K (3.9)

d{i,j} ≤ d{i,k} + d{k,j}, ∀i, j, k ⊆ V (3.10)

As we see the objective function takes into account the edges in the original graph G.
Working on the complete graph allows one to add the set of triangle inequalities (3.10 that
allows one to obtain stronger LP relaxations than in the sparse case.
Like for the sparse formulation also in this case one must use a subset of K to obtain practi-
cally computable lower bounds.

The link between sparse and dense formulation provided by Caprara et al. is the so
called projected LP relaxation, the idea is to remove the rank inequalities and substitute the
d{i,j} variables in the dense formulation with the variables de representing the shortest path
between i and j in the original graph G. Practically speaking it is possible to precompute
all the shortest paths between each pair of nodes in the original graph G and then do the
separation in the complete graph.
It is easy to prove that the feasible region of the projected relaxation is the projection over
<E of the feasible region of the dense formulation.

51

As we will see in the next sections it is interesting how the parallelism between sparse and
dense formulation exists also in our work, even if we deal with a different set of variables.

3.3 New Integer Linear Programming Formulation

As mentioned in the previous section for MinLAP we have: i) the existence of a dense and a
sparse formulation, and ii) the possibility to use information about subgraphs of the original
graph to obtain valid inequalities for it.

The new ILP formulation uses the so called betweenness variabless, already known in the
literature [CIT].
Given a graph G, for each triple i, j, k , (i, j) ∈ E, k ∈ V \{i, j} and a labeling π ∈ S(n) we
define a binary variable xikj s.t.

xikj =

 1 if
π−1(i) < π−1(k) < π−1(j) or
π−1(i) > π−1(k) > π−1(j)

0 otherwise

(3.11)

In other words, xikj is equal to one if k is between i and j in the labeling π, note that no
information is directly provided about the distance between two of the three elements of the
triple i, j, k, the only information required being if k lies between i and j.
Even if there is no difference between the notation x132 and x231, for sake of uniformity we
always use an ordered notation with the first index lower than the third one, hence among
the two notation we alway use the first one. For a given graph G the number of betweenness
variable is m(n− 2).

We introduce the betweenness polytope for a given graph G = (V,E)

PGBTW = conv{x ∈ <|E||V−2||x is a valid set of betweenness variable for a given π ∈ S(n)}(3.12)

Even if it is not explicit the information about distances in the permutation can be easily
obtained by the following relation:

|π(i)− π(j)| = 1 +
∑

k∈V \{i,j}

xikj (3.13)

Thus we can redefine the MinLAP objective function as follows :

52

min
x∈PG

BTW

∑
(i,j)∈E

(1 +
∑

k∈V \{i,j}

xikj) = m+ min
x∈PG

BTW

∑
(i,j)∈E

∑
k∈V \{i,j}

xikj (3.14)

the new xikj variables can be viewed as an ”expansion” of the previous de variable, some-
thing like splitting the general integer variable into several binary variable, obtaining an higher
quantity of information.

As we will see better in the next section some of the constraints valid for PGBTW have a
counterpart in the formulation by Caprara et al. but some other are specific for the between-
ness approach and exploit the addition of the ”middle index”, that gives the opportunity of
introducing other inequalities that turned out to be really useful in practice.

3.4 Polyhedral Study

In this section we will describe some results related to PGBTW , comparing them with the results
obtained for the de formulation by Caprara et al.

Optimizing over the dominant of a polytope is equivalent to optimizing over the polytope
if the objective function is non-negative, thus sometimes we will focus on the dominant for
PGDIST and for PGBTW .

Before starting we define the polytope PGDIST , his dominant DG
DIST and DG

BTW , the
dominant of PGBTW

PGDIST = conv{de ∈ <|E||∃π : de = |π(i)− π(j)| ∀e ≡ (i, j) ∈ E} (3.15)

DG
DIST = {de ∈ <|E||∃d′e ∈ PGDIST : de ≥ d′e} (3.16)

DG
BTW = {xikj ∈ <|E||V−2||∃x′ikj ∈ PGBTW : xikj ≥ x′ikj} (3.17)

Like for the formulations based on distance variables also for the betweenness variables it
is possible to introduce a dense formulation where instead of optimizing over G we optimize
over the corresponding complete graph Kn:

53

min
x∈PKn

BTW

∑
(i,j)∈E

∑
k∈V \{i,j}

1 + xikj = m+ min
x∈PKn

BTW

∑
(i,j)∈E

∑
k∈V \{i,j}

xikj (3.18)

In this new formulation we give a unitary cost only to the edges that belong to G.
Note that this approach can be generalize optimizing over every graph obtained from G and
adding to it any number of missing edges.
Let G′ = (V,E′) with E′ ⊆ E, the set of variable defining PG

′
BTW is a subset of the one defining

PGBTW .
The valid inequalities for PGBTW include:

i) triangle equations
ii) de inequalities
iii) ”subgraph” inequalities
iv) cut polytope inequalities

the last category is even more than a simple set of inequalities, it is the tool used to reduce
the dense formulation to the sparse formulation in the betweenness variable polytope.

3.4.1 Triangle Equation

The so called triangle equations are the core of the betweenness approach.

Proposition 4 For any triple of vertices i, j, k ∈ V the following triangle equation is valid
for PK

n

BTW :

xikj + xijk + xjik = 1 (3.19)

Proof. It is trivial to see that in any feasible lay-out exactly one index lays between the two
others. 2

In addition when we talk about triangle inequalities we are referring to (3.19) with ≥ instead
of =.
For a complete graph Kn the number of triangle inequalities is

(
n

3

)
The introduction of the triangle equation gives us the opportunity to establish a bound

on the dimension of PKn
BTW :

Proposition 5 The dimension of PKn
BTW is bounded from above by

2
(
n

3

)
(3.20)

54

Proof. As mentioned before the number of betweenness variable is m(n−2). For a complete

graph the number of edges is equal to
(
n

2

)
.

In a complete graph the number of triangle equation is
(
n

3

)
. Hence the dimension of PKn

BTW

is bounded by: (
n

2

)
(n− 2)−

(
n

3

)
=
n! (n− 2)
(n− 2)! 2!

−
(
n

3

)
(3.21)

= 3
n!

(n− 3)! 3!
−
(
n

3

)
= 3
(
n

3

)
−
(
n

3

)
(3.22)

= 2
(
n

3

)
(3.23)

2

3.4.2 de Inequalities

Starting from 3.13 it is possible to establish the correlation between distance variables de and
betweenness variables xikj :

d{i,j} = 1 +
∑

k∈V \{i,j}

xikj (3.24)

By relation (3.24) we can use all the inequalities defined by Caprara et al. [2] and reuse
them in our model. For the sake of brevity we report only the main results related to stars
and clique:

Proposition 6 For any n ≥ 2, and for any S ⊆ N(i), the star inequality∑
j∈S

d{i,j} ≥ b(|S|+ 1)2/4c (3.25)

is valid for DG
DIST and faced inducing if |S| 6= 2

if we apply equation 3.24 to 3.25 we obtain the star inequality for PGBTW :∑
j∈N(i)

∑
k∈N(i),k 6=j

xikj ≥ b(|S| − 1)2/4c (3.26)

For a complete graph Kn the number of p-star inequalities is
(

n

p+ 1

)
, with p ≤ n− 1.

55

Proposition 7 For any n ≥ 2, and for any S ⊆ V inducing a clique in G, the clique
inequality

∑
{i,j}⊆S

d{i,j} ≥
(
|S|+ 1

3

)
(3.27)

is valid and facet inducing for DG
DIST

For a complete graph Kn the number of p-clique inequalities is
(
n

p

)
with p ≤ n.

Equation (3.24) can be used to translate one inequality valid for PGDIST into one valid for
PGBTW .

Example A valid inequality for PKn
DIST related to a 3-star centered in i = 1 is the following:

d1,2 + d1,3 + d1,4 ≥ 4 (3.28)

hence the corresponding valid inequality for PGBTW is:∑
k∈V {i,j}

x1k2 +
∑

k∈V {i,j}

x1k3 +
∑

k∈V {i,j}

x1k4 ≥ 1 (3.29)

2

Unfortunately if we apply the substitution (3.24) the inequalities (3.25) and (3.27) are no
longer facet defining for DG

BTW or PGBTW , as shown in the example in the following section.

3.4.3 Cut Polytope Inequalities

Together with the triangle equations (3.19) the following proposition is the main advantage
of working with PGBTW instead of PGDIST : From a computation point of view they turned out
to be really effective in the computation of good lower bound for the problem. In addition
to the practical aspect also from a theoretical point of view the cut polytope inequalities are
useful in the classification of facet defining inequalities of simple graphs.

For our purpose we need first to define the cut polytope PGCUT for a generic graph G as
the convex hull of the incidence vectors of all edge sets of cuts of G.
We also need the definition of the semimetric polytope PGSEMIMETRIC

Definition 3 Let G = (V,E) be an undirected graph, C be the set of all chordless cycles of
G and E be the set of the edges of G that do not belong to a 3-edge cycle of G. For an edge

56

function x ∈ RE and an edge subset F ⊆ E, let x(F) =
∑

e∈F xe. The semimetric polytope
PGSEMIMETRIC associated with G is defined by the followiong linear system:

x(C�F)− x(F) ≤ |F | − 1,∀F ⊆ C with |F | odd and C ∈ C (3.30)

0 ≤ xe ≤ 1, e ∈ E (3.31)

Proposition 8 Let PG|kBTW ⊆ <|E| be the projection of PGBTW onto the variables xikj for a
fixed middle node k.
P
G|k
BTW is isomorphic to the cut polytope PG

′
CUT with G′ = G\k

Proof. If we take a generic labeling π and we consider all the variables xiaj for a fixed vertex
a, the corresponding vector χπiaj is equal to one if and only if a is between i and j, hence a
can be viewed as the cut that divides the rest of the vertices into two shores, regardless of the
position of i and j, this is exactly the definition of a cut in G\{a}. 2

Proposition 8 is extremely useful as it gives us the opportunity to use all the knowledge
about the cut polytope PGCUT in the search of valid inequality for PGBTW .

Proposition 9 (trivial lifting - G|k) A valid inequalities for PG|kBTW remains valid even if
lifted to PGBTW .

Proof. it is a direct consequence of Proposition 8. 2

More precisely a really useful property is the relation with the semimetric polytope of a
graph PGSEMIMETRIC , that is PGSEMIMETRIC ⊆ PGCUT .

Among all the possible inequalities we made extensive use of the following theorem by
Jünger, Reinelt and Rinaldi:

Proposition 10 Consider an LP-solution over the semimetric polytope of a connected graph
G(V,E). Let a P (u, v)− path be a path in G from u to v and let x(S) =

∑
e∈S xe . For each

missing edge e = (u, v) /∈ E lower and upper bounds of the (artificial) LP value xe are given
by:

ξl = max{x(F)− x(P\F)− |F |+ 1 : P (u, v)− path, F ⊆ P, |F |odd} (3.32)

ξu = min{−x(F) + x(P\F) + |F | : P (u, v)− path, F ⊆ P, |F |even} (3.33)

Condition (3.33) can be stated as inequality in the following form:

57

xikj ≤ −x(F) + x(P\F) + |F |, P (i, j)-path in G,F ⊆ P, |F | even (3.34)

Among all the possible inequalities (3.34) the ones obtained by fixing |F | = 0 play a special
role in our separation procedure :

xikj ≤ x(P), P (i, j)-path in G (3.35)

Note that any path from i to j provides a valid inequality but if we restrict to the path
with no cycles it is enough to be sure to exclude dominated inequalities.
Inequalities (3.34) are valid for PGSEMIMETRIC and consequently for PGCUT . Hence (3.35)
apply to PG|kBTW , providing the so-called (simple odd-cycle inequality) the inequalities (3.35):

xikj ≤ x(P), P (i, j)-path in G|k (3.36)

Example Let’s consider K4, all the valid simple odd-cycle inequality forK4|3 are the following

x132 ≥ x134 + x234 (3.37)

x134 ≥ x132 + x234 (3.38)

x234 ≥ x132 + x134 (3.39)

Analogously it is possible to write the simple odd-cycle inequality for K4|1 and K4|2. 2

Beside being a valid inequality for PGBTW , simple odd-cycle inequalities become useful in
obtaining valid inequalities for PGBTW from valid inequalities for PKn

BTW .

Note that the right hand side of the inequality (3.34) consists of variables belonging only
to PGBTW , hence if (i, j) ∈ E(G) the inequality is directly valid for PGBTW . Additionally (3.34)
can be used to substitute in an inequality of the form αx ≥ β, valid for PK

n

BTW , all the variables
that belong only to PK

n

BTW and not to PGBTW with positive coefficient α.

Example Suppose to work with the following graph G = (V,E) with V = {1, 2, 3, 4, 5} and
E = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {3, 4}, {4, 5}}. The following triangle inequality

x123 + x213 + x132 = 1 (3.40)

58

is valid only for for PK5
BTW but not for PGBTW because {1, 3} /∈ E hence variable x123 can not

be used.
It is possible to move around this limitation via adding the following odd cycle inequality:

x123 ≤ x124 + x324 (3.41)

obtaining the inequality:

x124 + x324 + x213 + x132 ≥ 1 (3.42)

that is valid also for PGBTW . 2

With the last example it is more clear how simple odd cycle inequalities are used in or-
der to work only implicitly on the complete graph, keeping the formulation smaller from the
number of variable point of view.

If we substitute a missing variable xikj with a suitable path from i to j in G|k we can
work with a complete graph .

For a given fractional solution x∗ we call G∗|k the graph isomorphic to G but with every
edge {i, j} ∈ E with a weight associated equal to x∗ikj .

Because we need to find a path that is violated as much as possible we need do find a
path that provides an upper bound as low as possible , hence a good choice is to search for
the shortest path in G∗|k between i and j.

Notice that all the procedure described for simple odd cycle inequalities can be extended
to the case with odd cycle inequalities 3.34 with |F | ≥ 1. In Section 3.4.7 this approach is
described in details.

Finally, for a better understanding of the relation between de-inequalities on one side and
triangle and cut-polytope inequalities on the other we give the following example:

Example

Let’s consider the following simple concerning valid inequalities for PK4
DIST and DK4

BTW . In
the d{i,j} space this is a valid inequality:

dij + dik + dil ≥ 4 (3.43)

it is a 3-star inequality (3.25), centered in i. As shown in Proposition 6 it is faced defining fo
DK4

DIST .

59

The equation (3.24) applied to the distance variable is the following:

dij = 1 + xikj + xilj dik = 1 + xijk + xilk dil = 1 + xikl + xijl (3.44)

and we obtain

xikj + xilj + xijk + xilk + xikl + xijl ≥ 1 (3.45)

which can be rewritten as sum of the triangle equation (3.19)

xjlk + xkjl + xjkl = 1 (3.46)

and 3 odd-cycle inequalities

xilk + xilj − xjlk ≥ 0 xijk + xijl − xkjl ≥ 0 xikl + xikj − xjkl ≥ 0 (3.47)

hence (3.25) is no longer facet defining (since it is the sum of others valid inequalities). 2

3.4.4 Subgraph Inequalities

Under this definition we identify all the constraints that exploit the following property:

This leads to the property that :

Proposition 11 (trivial lifting - G ⊆ G′) Let G and G′ be two graphs with G ⊆ G′. every
valid inequality αx ≥ β for PGBTW is still valid for PG

′
BTW ,

For small graphs it is possible to compute the complete description of PBTW using PORTA
[3], a tool for computing the outer description of a polyhedron via Fourier-Motoring elimina-
tion.

Valid inequalities for Kn

Proposition 12 For PK3
BTW the complete description is given by the following equation:

x123 + x132 + x213 = 1 (3.48)

x ≥ 0 (3.49)

note that triangle are inequality are valid for all complete graphs

60

Proposition 13 For all permutation of {1, 2, 3, 4} these are valid facets for PK4
BTW :

x123 + x132 + x214 + x314 ≥ 1 (3.50)

Inequalities (3.50), together with triangle equation are the complete description of PK4
BTW

Besides the computational proof provided by PORTA, the validity of inequality (3.50) can
also be proved with logic considerations. With the indexing it has the following explanation:
in any possible arrangement one of the following sentence must be true:
i) 1 is either between 2 and 4 or between 3 and 4
ii) 1 is either not between 2 and 4 or not between 3 and 4

The presence of equation makes the complete description not uniquely defined.
Inequality (3.50) is the sum of the triangular equation

x123 + x132 + x213 = 1 (3.51)

and the simple odd cycle inequality

x213 ≤ x214 + x314 (3.52)

Hence from PK4
BTW we don’t get really useful information about new inequality, qualita-

tively different from the cut-polytope inequalities.

61

Proposition 14 For all permutations of {1, 2, 3, 4, 5} these are facets for PK5
BTW :

x132 + x154 + x245 + x315 + x324 ≥ 1 (3.53)

x125 + x132 + x134 + x135 + x142 + x154

+x213 + x214 + x215 + x243 + x325 + x354 ≥ 3 (3.54)

x125 + x132 + x143 + x153 + x213 + x214

+x215 + x234 + x243 + x345 + x354 + x425 ≥ 3 (3.55)

x132 + x134 + x135 + x142 + x143 + x145

+x153 + x154 + x213 + x214 + x325 + x425 ≥ 3 (3.56)

x125 + x132 + x134 + x135 + x143 + x154

+x213 + x214 + x215 + x243 + x254 + x325 + x345 + x354 + x425 ≥ 3 (3.57)

x124 + x125 + x132 + x134 + x143 + x152

+x213 + x214 + x243 + x245 + x315 + x324 + x354 + x435 ≥ 4 (3.58)

x124 + x125 + x132 + x134 + x142 + x153

+x213 + x215 + x243 + x254 + x435 + x324 + x345 + x435 ≥ 4 (3.59)

x125 + x132 + x134 + x135 + x142 + x215

+x253 + x143 + x145 + x153 + x213 + x214 + x325 + x354 + x425 ≥ 4 (3.60)

x123 + x125 + x132 + x143 + x145 + x154

+x214 + x215 + x253 + x435 + x435 ≥ 5 (3.61)

x123 + x125 + x132 + x134 + x142 + x145

+x153 + x154 + x214 + x215 + x235 + x243 + x253 + x254 + x435 + x315 + x324 + x345

+x425 + x435 ≥ 6 (3.62)

Inequalities (3.53)-(3.62), together with triangle equation and inequalities (3.50) are the com-
plete description of PK5

BTW

The presence of inequalities with more than three middle indices ensure that those in-
equalities are not sum of triangle and odd cycle inequalities, providing new inequalities.

For n ≥ 6 the complete description is too big for being computed explicitly by PORTA.

62

Valid inequalities for Stars

Proposition 15 Let K1,3 be a 3-star with center node 1. The complete description of PK1,3

BTW

is

x123 + x124 + x132 + x134 + x142 + x143 ≥ 1 (3.63)

−x123 + x124 − x132 − x134 + x142 − x143 ≥ −1 (3.64)

+x123 − x124 + x132 − x134 − x142 − x143 ≥ −1 (3.65)

−x123 − x124 − x132 + x134 − x142 + x143 ≥ −1 (3.66)

−x123 + x124 + x132 − x134 − x142 + x143 ≥ −1 (3.67)

+x123 − x124 − x132 + x134 + x142 − x143 ≥ −1 (3.68)

x ≥ 0 (3.69)

From now on we will refer to inequality 3.63 as cycle inequality.

Proposition 16 Let K1,4 be a 4-star with center node 1. The complete description of PK1,4

BTW

is

−x123 − x125 − x132 + x135 − x152 + x153 ≥ −1 (3.70)

−x123 + x125 − x132 − x135 + x152 − x153 ≥ −1 (3.71)

−x123 + x124 − x132 − x134 + x142 − x143 ≥ −1 (3.72)

−x124 − x125 − x142 + x145 − x152 + x154 ≥ −1 (3.73)

−x134 − x135 − x143 + x145 − x153 + x154 ≥ −1 (3.74)

x123 − x124 + x132 − x134 − x142 − x143 ≥ −1 (3.75)

−x134 + x135 − x143 − x145 + x153 − x154 ≥ −1 (3.76)

−x124 + x125 − x142 − x145 + x152 − x154 ≥ −1 (3.77)

x124 − x125 + x142 − x145 − x152 − x154 ≥ −1 (3.78)

x123 − x125 + x132 − x135 − x152 − x153 ≥ −1 (3.79)

x134 − x135 + x143 − x145 − x153 − x154 ≥ −1 (3.80)

−x123 − x124 − x132 + x134 − x142 + x143 ≥ −1 (3.81)

63

−x123 + x125 + x132 − x135 − x152 + x153 ≥ −1 (3.82)

−x124 + x125 + x142 − x145 − x152 + x154 ≥ −1 (3.83)

−x134 + x135 + x143 − x145 − x153 + x154 ≥ −1 (3.84)

x134 − x135 − x143 + x145 + x153 − x154 ≥ −1 (3.85)

x124 − x125 − x142 + x145 + x152 − x154 ≥ −1 (3.86)

x123 − x125 − x132 + x135 + x152 − x153 ≥ −1 (3.87)

x123 − x124 − x132 + x134 + x142 − x143 ≥ −1 (3.88)

−x123 + x124 + x132 − x134 − x142 + x143 ≥ −1 (3.89)

−x123 + 2x124 + x125 + x132 − 2x134 + x135 + x152 − x153 + 2x154 ≥ −1 (3.90)

2x132 − x134 + x135 − 2x142 + x143 + x145 + 2x152 + x153 − x154 ≥ −1 (3.91)

x123 − 2x124 + x125 − x132 + 2x134 + x135 − x152 + x153 + 2x154 ≥ −1 (3.92)

−2x132 + x134 + x135 + 2x142 − x143 + x145 + 2x152 − x153 + x154 ≥ −1 (3.93)

x123 + 2x124 − x125 + x132 + 2x134 − x135 + x152 + x153 − 2x154 ≥ −1 (3.94)

2x123 + x124 − x125 + x142 + 2x143 − x145 + x152 − 2x153 + x154 ≥ −1 (3.95)

x123 − x124 + 2x125 + x132 − x134 + 2x135 + x142 + x143 − 2x145 ≥ −1 (3.96)

x123 + x124 − 2x125 − x132 + x134 + 2x135 − x142 + x143 + 2x145 ≥ −1 (3.97)

−2x123 + x124 + x125 − x142 + 2x143 + x145 − x152 + 2x153 + x154 ≥ −1 (3.98)

−x123 + x124 + 2x125 + x132 + x134 − 2x135 + x142 − x143 + 2x145 ≥ −1 (3.99)

2x123 − x124 + x125 + x142 − 2x143 + x145 + x152 + 2x153 − x154 ≥ −1 (3.100)

2x132 + x134 − x135 + 2x142 + x143 − x145 − 2x152 + x153 + x154 ≥ −1 (3.101)

64

−x124 − x125 − 2x132 + 2x134 + 2x135 + x142 + x145 + x152 + x154 ≥ −1 (3.102)

x123 + x125 − x132 − x135 + 2x142 − 2x143 + 2x145 + x152 + x153 ≥ −1 (3.103)

−2x123 + 2x124 + 2x125 − x134 − x135 + x143 + x145 + x153 + x154 ≥ −1 (3.104)

−x123 − x125 + x132 + x135 − 2x142 + 2x143 + 2x145 + x152 + x153 ≥ −1 (3.105)

2x123 − 2x124 + 2x125 + x134 + x135 − x143 − x145 + x153 + x154 ≥ −1 (3.106)

x123 + x125 + x132 + x135 + 2x142 + 2x143 − 2x145 − x152 − x153 ≥ −1 (3.107)

x123 + x124 + x132 + x134 − x142 − x143 + 2x152 + 2x153 − 2x154 ≥ −1 (3.108)

x124 + x125 + 2x132 − 2x134 + 2x135 − x142 − x145 + x152 + x154 ≥ −1 (3.109)

2x123 + 2x124 − 2x125 + x134 + x135 + x143 + x145 − x153 − x154 ≥ −1 (3.110)

x123 + x124 − x132 − x134 + x142 + x143 + 2x152 − 2x153 + 2x154 ≥ −1 (3.111)

x124 + x125 + 2x132 + 2x134 − 2x135 + x142 + x145 − x152 − x154 ≥ −1 (3.112)

−x123 − x124 + x132 + x134 + x142 + x143 − 2x152 + 2x153 + 2x154 ≥ −1 (3.113)

−x123 + 2x124 − x125 − x132 − x134 + 2x135 + x143 − x145 + x152 − x154 ≥ −2 (3.114)

−x123 + x125 − x132 + x134 + 2x142 − x143 − x145 − x152 + 2x153 − x154 ≥ −2 (3.115)

2x123 − x124 − x125 − x134 + x135 + x142 − x143 − x152 − x153 + 2x154 ≥ −2 (3.116)

x123 − x125 − x132 − x134 + 2x135 + 2x142 − x143 − x145 − x152 + x154 ≥ −2 (3.117)

x123 − x124 − x132 + 2x134 − x135 − x142 + x145 + 2x152 − x153 − x154 ≥ −2 (3.118)

x124 − x125 + 2x132 − x134 − x135 − x142 − x143 + 2x145 − x152 + x153 ≥ −2 (3.119)

−x123 + x124 − x132 + x135 − x142 + 2x143 − x145 + 2x152 − x153 − x154 ≥ −2 (3.120)

2x123 − x124 − x125 + x134 − x135 − x142 − x143 + 2x145 + x152 − x153 ≥ −2 (3.121)

−x123 − x124 + 2x125 − x132 + 2x134 − x135 + x142 − x145 + x153 − x154 ≥ −2 (3.122)

−x123 − x124 + 2x125 + x132 − x135 − x142 + 2x143 − x145 − x153 + x154 ≥ −2 (3.123)

−x124 + x125 + 2x132 − x134 − x135 − x142 + x143 − x152 − x153 + 2x154 ≥ −2 (3.124)

−x123 + 2x124 − x125 + x132 − x134 − x143 + x145 − x152 + 2x153 − x154 ≥ −2 (3.125)

+x134 + x135 + x143 + x145 + x153 + x154 ≥ 1 (3.126)

x123 + x124 + x132 + x134 + x142 + x143 ≥ 1 (3.127)

x123 + x125 + x132 + x135 + x152 + x153 ≥ 1 (3.128)

x124 + x125 + x142 + x145 + x152 + x154 ≥ 1 (3.129)

x ≥ 0 (3.130)

65

Inequalities (3.126)-(3.126) are analogous to the inequalities (3.63).
As mentioned in Section (3.4.2), inequality (3.63) can be viewed as sum of the following de
constraints and odd cycle inequalities applied to PK3

BTW :

x234 + x243 + x324 ≥ 1 (3.131)

x132 + x134 − x234 ≥ 0 (3.132)

x142 + x143 − x243 ≥ 0 (3.133)

x123 + x124 − x324 ≥ 0 (3.134)

With the example provided we have directly proved the following statement:

Proposition 17 trivial lifting (11) does not keep the facing inducing property.

As we will show in Section 3.5 inequalities (3.63) are still useful even if not faced defining
in general after trivial lifting. It is still an open question for what classes of graph inequali-
ties (3.63) after trivial lifting are still faced defining.

3.4.5 Solution Scheme

All the polyhedral information has been embedded in a Branch and Cut scheme based on the
betweeness variables in the sparse formulation.

Starting point of the process is the LP model with the objective function 3.14 and the non
negativity constraints.
A each node of the B&B tree we apply three steps:
i) solving the LP model
ii) feasibility test (if integer solution)
ii)separation routine

Because we don’t have a complete formulation for a generic PGBTW we need to test if an
integer solution corresponds to a feasible arrangement. We use a techniques borrowed from
the Consecutive Ones Problem to test if a set of integer variable is feasible (more details about
this procedure are explained in Section 3.4.6). If the current integer solution is found to be
unfeasible we add the inequality∑

i∈J
xi −

∑
i∈V�J

xi ≤ |J | − 1 (3.135)

66

with J = {i ∈ V | xi = 1 in the current solution} If the integer solution is feasible we stop
the procedure, otherwise we resolve the LP model.
If the solution is fractional we run the separation procedure, adding violated inequalities
explained in section in Sections 3.4.1, 3.4.2, 3.4.3 and 3.4.4.
This procedure is repeatedly executed as long as the increase in the linear programming
objective function value remains greater than a certain ε fixed a priori.
As branching policy we use a best first approach branching on the most fractional betweeness
variable.

3.4.6 Feasibility Test

Notice that we don’t know a complete ILP formulation for PGBTW . Hence if an integer solution
is found it is not clear if it is feasible or not.
For doing so we use a generalization of the linear arrangemente problem, the Consecutive
Ones Problem [19]. The idea is transforming the lAP in a Consecutive Ones problem. Here,
a 0/1 matrix M is given, with the task to permute the columns, such that in each row, the
ones appear consecutively.
In our case, M will be a matrix with rows of dimension n. For every edge ik â E we look at all
the vertices in Vik = j|xijk = 1. If Vik = ∅, we know that i and k should be adjacent in any
arrangement, so we insert a row r, with ri = rk = 1 and 0 otherwise. Else, all the vertices in
Vik are adjacent to each other as well as i and k, with the latter ones lying at the margins.
So we add two rows, one with ones at index i and j ∈ Vik and another with ones at index k
and j ∈ Vik . Now, there is a permutation to put M in consecutive ones form, if and only if
there is an arrangement that is described by x. To solve the Consecutive Ones Problem, we
use the P Q-tree algorithm that has linear run time and outputs all feasible permutations.
An implementation is pro- vided by [CITE].

3.4.7 Separation Routine

Let x be the current fractional point in the betweeness space (i.e. x ∈ <|E| ∩ [0, 1]|E|).

The Separation routine consists of the following phases:
i) preprocessing and odd-cycle separation
ii) triangle inequalities separation
iii) stars inequalities separation
iv) other separation

Each separation step adds a set of violated inequalities to the LP model. An upper bound
ncut on the total number of cuts to be added is imposed, in order to limit the LP size.

67

Additionally only if in the odd-cycle separation no cuts is added the procedure continues to
the further steps, this is done in order to speed up the first rounds of separation, mainly
consisting on adding odd-cycle inequalities.

Preprocessing

For every vertex a ∈ V we construct a weighted graph Ga = G with edges weights xiaj . Let
y be a vector of size |V |3. For every generic vertex a let yiaj be equal to the value of the
shortest path between i and j in the graph Ga.
For every triple i, j, k we store the corresponding vale yikj and the current shortest path in
Gk.
During the computation of the shortest path if we find a triple of nodes {i′, k, j′} for which
the edge (i, j) ∈ G and where the value of the shortest path in Gk is lower than xikj then we
have found a violated odd cycle inequality 3.34 and we add it directly to the LP. Notice that
in this way all the violated odd-cycle inequalities are added to the LP.
y can be viewed as betweeness variables of an auxiliary complete graph, over his corresponding
polytope we run all the next separation procedures. no violated odd-cycle inequalities is the
necessary condition for start separating other inequalities, this is due to the fact the we want
to have a y space consistent in order to obtain effective inequalities.

Cuts Separation

As first step we separate triangle equation for y. We randomly enumerate all the triplets of
nodes of G with an probability uniformly distributed. for every triple i, j, k. If we find a triple
with

yikj + yijk + yjig < 1 (3.136)

we add to the LP the equation

yikj + yijk + yjik = 1 (3.137)

in doing so we substitute every yikj with the corresponding shortest path in Gk. Note that
with this substitution the constrains is no longer an equation but becomes an inequality.
Moreover, we substitute a yikj variable if and only if the corresponding xikj does not exist,
this is ensured by the fact that we separate on the y only if no odd-cycle inequality is violated,
hence if an edge e ≡ {i, j} exists, in any Gk the shortest path from i to j will be the edge

68

{i, j} if we want the odd cycle inequality 3.36 to be valid.

Now it becomes more clear why we decided to separate on the y variable only if no odd
cycle inequality is found. Instead of implicitly including them in several constraints we prefer
to add them just once and use the corresponding x variable in the other inequalities.

After the triangle equation we start the star separation.
In this procedure we separate the inequalities (3.26) in the y space:∑

j∈N(i)

∑
k∈N(i),k 6=j

yikj ≥ b(|S| − 1)2/4c (3.138)

for a given center node i and neighborhood N(i).
As mentioned in previous section 3-star inequalities can be seen as sum of triangle equation
and odd cycle inequalities. Moreover also the complete description of PK1,4

BTW does not contains
inequalities (3.26). Hence we decide to focus on n-stars with n ≥ 5.

As first search we enumerate all the stars with size greater than 5 that are subsets of the
original graph G and test if the corresponding inequality (3.138) is violated. If a violation is
found we substitute the y with the corresponding x variable and we add the inequality to the
LP model.

As second step we execute the following procedure for every node i in the graph:
i) search among all the nodes j ∈ V�i the four index j, k, l,m that provides the lowest value

s1 = yijk + yikj + yijl + yilj + yijm + yimj + yikl + yilk + yikm + yimk + yilm + yiml (3.139)

ii) once the first 4 nodes are fixed we test all the remaining nodes and check if the correspond-
ing 5-star inequality 3.138 is violated. iii) keeping the same 4 initial nodes we do the same
for n-stars with n strictly greaterr than 5 by enumerating all the possible pair, triples that
together with the original node may provide a violated inequality.

Notice that the three separation procedure explained are executed starting from the fastest
and that in any moment that we find ncut cuts we stop the procedure and we solve again the
LP.
As we will show in the computation part this hierarchy is chosen also in order to give privilege
to the most effective classes.

69

3.5 Computational Results

We have implemented all the the algorithms described in C++ language and we have executed
the tests on a PC XXX, Y GB Ram, ZZ GHz. as LP solver we have used CPLEX 8 with its
standard settings.
As Branch and Cut framework we used the ABACUS software. More details about this frame-
work can be found in [16].

As test instances we use the well-known graph drawing instances (gd) from the Petit test
set [15], available at [17].
We also considered the bandwidth instances addressed in [14], available at [18].

Tables 3.1, 3.2 and 3.3 are related to the gd instances. we fixed 6 hours as time limit and
we ran the code with two different setting for the LB computation:
i) LB I
with this setting the separation procedure explained in Section 3.4.7 is executed entirely; at
each iteration we add at most ncut = 2700 violated inequalities.
ii) LB II
with this option the separation routine does not include the star separation explained in the
second part of Section 3.4.7; in other word only odd cycles and stars are generated; also in
this case we keep ncut = 2700

In Tables 3.1 and 3.2 we report our results related to the graph drawing instances. time
tot and lp sol time indicate the total computational time and the time used in computing
the LP model. tot BB nodes indicates how many branch and bound nodes are computed, tot
lp indicates the number of times that the LP model is solved. Finally the best lower bound
obtained is indicated in best LB.

In Table 3.3 a comparison of LB I and LB II is reported, compared with the results
obtained by Caprara et al. in [2].

Bandwidth instances results are showed in table 3.4, i this case all the results a related to
LB I and with a time limit of 2 hours.

For the first time we are able to solve the instances gd95c and gd96c in less than one day
of computation, additionally we have provided the best LB so far for gd96b.

In the large majority of the instances tested our algorithm spends all the time in the root

70

instance time tot lp sol time tot BB nodes tot lp best LB
gd95c 0:01:01 0:00:54 1 138 506
gd96b 6:00:00 0:49:58 1 2176 1395
gd96c 0:06:25 0:05:54 1 281 519
gd96d 6:00:00 5:18:15 1 594 1953

Table 3.1: gd instances - all separation procedures - LB I

instance time tot lp sol time tot BB nodes tot lp best LB
gd95c 0:01:15 0:01:07 1 151 506
gd96b 6:00:00 5:47:26 35 5466 1199
gd96c 0:03:49 0.03:31 1 303 519
gd96d 6:00:00 0:03:57 1 236 1314

Table 3.2: gd instances - triangle equation and odd cycle inequalities - LB II

nodes, even if the instance is solved to optimality the cuts provided are sufficient in order to
solve it.

Moreover, the comparison between LB I and LB II shows that LB II is enough for
solving the instances gd95c and gd96c. Computational results shows how triangle and odd
cycle inequalities inequalities are the breakthrough aspect of our method. Star inequalities
comes into play when we want to increase the bound for big instances.
This results show also the validity of the hierarchical choice between the separation method.

Finally, the most interesting instance to look if we want to improve our method are the
following: i) instances not solved in the rood node: bcspwr01 , bcspwr01 and nos4.mtx.rnd
ii) instances where a consistent quantity of time is spent in the separation: bcspwr04, dwt 245

for this instances the cuts provided are not enough and we need to branch (class i)) or
the separationg procedure is too slow (class ii)).

71

time LB I LB I time LB II LB II time LB Cap et al. LB Cap et al.
gd95c 0:01:15 506 0:01:01 506 0:01:53 443
gd96b 6:00:00 1199 6:00:00 1395 0:08:13 1281
gd96c 0:03:49 519 0:06:25 519 0:03:38 402
gd96d 6:00:00 1314 6:00:00 1953 0:27:49 2021

Table 3.3: gd instances - LB I vs. LB II vs: previous bound

time tot lp sol time tot BB nodes tot lp best LB opt best LB Cap et al.
bcspwr01.graph 0:00:08 00:00:04 23 42 106 y 91
bcspwr02.graph 0:00:06 00:00:05 1 22 161 y 144
bcspwr03.graph 0:31:16 00:25:25 1 349 662 y 588
bcspwr04.graph 2:00:00 01:17:18 1 224 2581 n 3700
can 24.graph 0:00:02 0:00:02 1 4 210 y 203
can 61.graph 0:17:19 0:17:04 1 138 1137 y 1119
can 62.graph 0:00:30 0:00:25 1 57 210 y 187
can 73.graph 2:00:00 1:59:00 1 296 1000 n 971
can 96.graph 2:00:00 0:01:11 1 228 1779 n 2105
can 144.graph 2:00:00 01:58:17 1 261 2413 n 2304
can 161.graph 2:00:00 01:57:48 1 227 2805 n 5657
can 187.graph 2:00:00 01:50:00 1 323 2664 n 3827
can 229.graph 2:00:00 01:42:42 1 214 3179 n 7461
dwt 59.graph 0:00:42 0:00:36 1 77 289 y 258
dwt 66.graph 0:00:01 0:00:01 1 8 192 y 192

cdwt 72.graph 0:01:47 0:00:25 27 71 167 y 150
dwt 87.graph 2:00:00 1:45:00 1 189 2869 n 897
dwt 162.graph 2:00:00 1:54:53 1 320 2052 n 2032
dwt 198.graph 2:00:00 1:56:33 1 333 2526 n x
dwt 209.graph 2:00:00 1:44:53 1 229 3355 n 5905
dwt 221.graph 2:00:00 1:41:20 1 202 2617 n 3603
dwt 245.graph 2:00:00 1:04:49 1 236 2393 n 3422
lund a.mtx.rnd 2:00:00 1:57:00 1 150 6311 n 10772
lund b.mtx.rnd 2:00:00 1:58:25 1 156 6327 n 10712

nos4.mtx.rnd 1:13:57 1:08:22 21 298 1031 y 976
steam3.mtx.rnd 0:34:07 0:31:59 1 548 1416 y 1406

Table 3.4: bandwidth instances - all separation procedures

72

Bibliography

[1] W. Liu & A. Vannelli (1995) Generating lower bounds for the linear arrangement problem.
Discr. Appl. Math., 59, 137-151.

[2] A. Caprara, A.N. Letchford & J.J. Salazar Gonzales Decorous Lower Bounds for Mini-
mum Linear Arrangement To be published

[3] T. Christof. Low-dimensional 0/1-polytopes and branch-and-cut in combina- torial opti-
mization. PhD thesis, Dissertation, Uni. Heidelberg, Shaker Verlag, Aachen, 1997.

[4] Andréasson, I (1994). Vehicle Distribution in Large Personal Rapid Transit Systems.
Transportation Research Record, No. 1451, pp 95-99, Transportation Research Board,
Washington, D.C.

[5] McCormick, G. P. (1976) . Computability of global solutions to factorable noncon-
vex programs Part I Convex underestimating problems. Mathematical Programming,
10:147â175.

[6] Anderson, J.E. et al. (1998). Special issue: emergin systems for pubblic transportation.
Journal of Advanced Transportation, 32, 1, 1-128.

[7] Kaspi, M. and Tanchoco, J.M.A. (1990). Optimal flow path design of unidirectional AGV
systems. International Journal of Production Research, 28, 1023-1030.

[8] Chung, F.R.K., Garey, M.R., Tarjan, R.E. (1985). Strongly connected orientations of
mixed multigraphs. Networks, 15, 477-484.

[9] Benders, J.F. (1962). Partitioning procedures for solving mixed variables programming
problems. Num. Math, 4, 238-252.

[10] Magnanti, T.L., Mireault, P., Wong, R.T.(1986) Tailoring Benders decomposition for
uncapacitated network design. Mathematical Programming Study, 26, 112-154

[11] Chvatal, V., Thomassen, C. (1978). Distances in orientations of graphs. Journal of Com-
binatorial Theory Ser. B, 24, 61-75.

73

[12] Burkard, R.E., Feldbacher K., Klinz, B., Woeginger, G.J.(1999) Minimum-cost strong
network orientation problems: Classification, complexity, and algorithms NETWORKS
Volume: 33 Issue: 1 Pages: 57-70 .

[13] Khanna, S., Naor, J.S. , Shepherd, F.,2000 Directed network design with orientation con-
straints PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM
ON DISCRETE ALGORITHMS : 663 2000

[14] Caprara , A. , Salazar-González , J.J., 2005 Laying Out Sparse Graphs with Provably
Minimum Bandwidth NFORMS JOURNAL ON COMPUTING Vol. 17, No. 3, pp. 356-
373

[15] Dı́az, J. Petit, J. , Serna, M. , 2002 A Survey of Graph Layout Problems ACM Computing
Surveys Volume 34 , Issue 3 Pages: 313 - 356

[16] Jünger, M. , Thienel, S. ,2000 The ABACUS system for branch-and-cut-and-price algo-
rithms in integer programming and combinatorial optimization. Software Practice and
Experience, 30:1325â1349

[17] http://www.lsi.upc.edu/â1
4 jpetit/MinLA/Experiments/.

[18] http://www.informs.org/site/IJOC/article.php?id=42.

[19] Oswald, M., 2003 Weighted Consecutive Ones Problems. PhD thesis, Ruprecht- Karls-
Universität Heidelberg,

74

