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Abstract 

 

The goal of this thesis work is to develop a computational method based on 

machine learning techniques for predicting disulfide-bonding states of cysteine residues in 

proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure 

prediction. Improvement in the prediction of disulfide bonding states of cysteine residues 

will help in putting a constraint in the three dimensional (3D) space of the respective 

protein structure, and thus will eventually help in the prediction of 3D structure of proteins. 

Results of this work will have direct implications in site-directed mutational studies of 

proteins, proteins engineering and the problem of protein folding. 

We have used a combination of Artificial Neural Network (ANN) and Hidden 

Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine 

learning technique to develop our prediction method. By using different global and local 

features of proteins (specifically profiles, parity of cysteine residues, average cysteine 

conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs 

and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable 

accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an 

accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset 

respectively. These accuracies are best so far ever reached by any existing prediction 

methods, and thus our prediction method has outperformed all the previously developed 

approaches and therefore is more reliable.  

Most interesting part of this thesis work is the differences in the prediction 

performances of Eukaryotes and Prokaryotes at the basic level of input coding when 

‘profile’ information was given as input to our prediction method. And one of the reasons 

for this we discover is the difference in the amino acid composition of the local 

environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. 

Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, 

where as Prokaryotic bonded examples lack it. 

.  
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Chapter 1: Introduction 
 

Development of sequencing (genome & proteome) projects has revolutionized 

Bioinformatics, specifically, the field of Structural Bioinformatics, which has an 

indirect role to play in pharmaceutical industry for designing drugs. Considering 

proteins to be the main targets of most of the drugs, knowledge of their 3D structures 

is important. Experimental methods based on X-ray crystallography and NMR-

techniques to reveal the protein 3D structures are very expensive and time taking. 

Considering the huge amount of proteome sequencing data coming up everyday with 

the different sequencing project running in different laboratories worldwide, 

importance of computational methods to handle, analyze and interpret this data is 

growing up. However, prediction of protein 3D structure via computational methods 

with 100% accuracy has still not been reached. And therefore it still remains an open 

problem for Structural Bioinformatics world. An alternative solution to tackle this 

bigger problem is to break it into sub-problems. And in this thesis work we have 

targeted one of the sub-problems, which is to predict the disulphide bonding states of 

cysteine residues in a protein sequence. 

 The introduction and description of this sub-problem follows in this chapter 

(section 1.3), with a literature survey on existing methods in section 1.4. The 

description of the machine learning methods used for this thesis work is done in 

chapter 2, followed by the description of prediction method we have developed in 

chapter 3. In chapter 4, we discuss the results and show that our method has 

outperformed all the previously existing approaches. Most interesting part of this 

thesis work is the differences in the prediction performances of Eukaryotes and 

Prokaryotes at the basic level of input coding when ‘profile’ information was given as 

input to our prediction method. And we discuss this interesting and new finding in 

section 4.4. 

 

 

1.1 . Protein structure 
 

Proteins are long organic polypeptide of amino acid residues, which are 

arranged in a linear chain (primary structure) and joined together by ‘peptide bonds’ 

(Fig. 1.1) between the carboxyl and amino groups of adjacent amino acid residues. 
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This linear chain actually consists of a uniform repetitive backbone, which is 

also called main chain, with a particular side chain attached to each residue. It is the 

side chain of the residue, which determines its physiochemical properties. 

 

 

 

 

Figure 1.1. Structure of a polypeptide chain showing peptide bonds. 

 

The sequence of amino acids in a protein is defined by the sequence of a gene, 

which is encoded in the genetic code of the organism. In general, genetic code 

specifies 20 standard amino acid residues. However, exceptionally certain organism 

can have extra residues like selenocysteine and pyrrolysine.  

Soon after its synthesis, most proteins fold into unique three-dimensional (3D) 

structures called interchangeably tertiary, folded, or native structure, which in turn is 

responsible for a specific function of the protein. The tertiary structure of a protein 

can provide important information about how the protein performs its function. 

Although many proteins can fold unassisted, simply through the chemical properties 

of their amino acids, others require the aid of molecular ‘chaperones’ to fold into their 

native states. 

Proteins can also work together to achieve a particular function, and they often 

associate to form stable complexes. Biochemically, proteins play a variety of roles in 

life process: 

i) Structural proteins: Proteins, whose primary function is to produce 

the structural components of the cell, e.g. viral coat protein, horny 

outer layer of human and animal skin, and proteins of the 

cytoskeleton. 

ii) Enzymes: Proteins that catalyse bio-chemical reaction, e.g. Insulin. 

iii) Transport and storage proteins: E.g. Haemoglobin. 
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iv) Regulatory proteins: These include hormones and receptor/signal-

transduction proteins. 

v) Gene transcription controlling proteins. 

vi) Proteins are also involved in recognition, including cell adhesion 

molecules, and antibodies and other proteins of the immune system. 

 

Proteins are macromolecules, and in many cases only a small part known as 

‘Active Site’ of the protein is directly functional. Rest of the part exists only to create 

and fix the spatial relationship among the active site residues. Proteins evolve by 

structural changes produced by mutations in the amino acid sequences and genetic 

rearrangements that bring together different combinations of structural subunits. 

 

1.1.1. Hierarchical classification of proteins 

It was the Danish protein chemist K.U. Linderstrom-Lang who 

classified the proteins into basically 3 classes: 

 

i) Primary structure: The amino acid sequence, defined by set of 

primary chemical bonds. 

ii) Secondary structure: The assignment of helices and sheets on the 

basis of hydrogen-bonding pattern of the mainchain. 

iii) Tertiary structure: The assembly and interaction of the secondary 

structures is called tertiary structure. Tertiary structure is generally 

stabilized by non-local interactions, most commonly the formation of a 

hydrophobic core, but also through salt bridges, hydrogen bonds, 

disulfide bonds, and even post-translational modifications. The term 

"tertiary structure" is often used as synonymous with the term fold. The 

Tertiary structure is what controls the basic function of the protein. 

 

Later, J.D. Bernal gave a fourth class of protein: 

iv) Quaternary structure: Proteins that are composed of more than one 

subunit. 
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Some additional level of hierarchy: 

v) Supersecondary structures: Proteins that show recurrent patterns of 

interaction between helices and strands of sheet close together in the 

sequence. For e.g. α-helix hairpin, β-hairpin and β-α-β unit. 

vi) Domains: Many proteins contain compact units with in the folding 

pattern of a single chain; they look as if they should have independent 

stability. These are called domains. E.g. RNA-binding protein L1. 

vii) Modular proteins: These are multidomain proteins, which often 

contain many copies of closely related domains.  

Domains recur in many proteins in different structural contexts; 

that is, different modular proteins can ‘mix and match’ sets of 

domains. E.g. firbonectin, a large extracellular protein involved in cell 

adhesion and migration, containing 29 domains including multiple 

tandem repeats of three types of domains called F1, F2 and F3. 

 

1.1.2. Structural classification of proteins 

 Structural classification of proteins is based on secondary and tertiary 

structures of proteins. 

i) α-helical: where the protein’s secondary structure is exclusively or 

almost exclusively α-helical. 

α -helix is a right- or left-handed coiled conformation, 

resembling a spring, in which every backbone N-H (amino) group 

donates a hydrogen bond to the backbone C=O (carboxyl) group of 

the amino acid four residues earlier. This secondary structure is also 

sometimes called a classic Pauling-Corey-Branson alpha helix. 
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Figure 1.2. An α-helix. Hydrogen bonds are formed between C=O (Carboxyl) group 

of a residue with the N–H  (Amino) group of 4
th
 successive residue. 

 

ii) β-sheet: where the protein’s secondary structure is exclusively or 

almost exclusively β-sheet. 

The β sheet (also β-pleated sheet) is the second form of    

regular secondary structure in proteins consisting of beta strands 

connected laterally by five or more hydrogen bonds, forming a 

generally twisted, pleated sheet. A beta strand is a stretch of amino 

acids typically 5–10 amino acids long whose peptide backbones are 

almost fully extended. 
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(a)       (b) 

 

Figure 1.3.  β-sheet structures. (a) Parallel β-sheet. All strands point in same direction. 

(b) Anti parallel β-sheet. All pairs of adjacent strands point in opposite direction. 

Hydrogen bonds are shown by dotted lines. 

 

 

iii) α + β: Those structures in which α-helices and β-sheets are separated 

in different parts of the molecule and there is absence of β – α – β 

supersecondary structure. 

iv) α /β: Those structures in which α-helices and β-sheets are assembled 

to form β – α – β supersecondary structure. 

v) Small Proteins: Proteins with little or no secondary structures. 
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1.2. Protein structure prediction 

 

Protein structure prediction refers to the problem of determining the three-

dimensional (3D) structure of proteins from one-dimensional (1D) chain of amino 

acid residues (primary structure). 

 

Protein structure prediction is of high importance in the field of medicine (for 

e.g. Drug designing) and in Biotechnology (for e.g. design of novel enzymes). 

Moreover, it is the structure of protein, which determines its biological function, and 

therefore study of protein structure is very important in order to understand the 

biological functions of proteins. 

 

The classical methods for protein’s 3D structure determination involve wet-lab 

experiments such as ‘X-ray crystallography’ and ‘Nuclear Magnetic Resonance’ 

(NMR). X-ray crystallography involves diffraction of x-rays from crystallised protein, 

which produces a 3D picture of the atoms involved in the protein crystal. NMR is 

based on quantum mechanical magnetic properties of an atom’s nucleus and is 

performed on the aqueous samples of highly purified proteins. The drawbacks are; 

both the above methods can only be applied to soluble proteins, they are expensive 

techniques and can take a long time (sometimes more than a year). On the other hand, 

the sequencing of proteins (determination of 1D structure of proteins) is relatively 

fast, simple, and inexpensive. As a result, there is a large gap between the number of 

known protein sequences and the number of known 3D protein structures. This gap 

has grown over the past decade and is expected to keep growing as a result of the 

various genome projects (study of complete genetic material of organisms) 

worldwide. Thus, computational methods that may give some indication of structure 

and/or function of proteins are becoming increasingly important. Since it was 

discovered that proteins are capable of folding into their unique native state without 

any additional genetic mechanisms, over 25 years of effort has been expended on the 

determination of the three-dimensional structure from the sequence alone, without 

further experimental data. Despite the amount of effort, the protein folding problem 

remains largely unsolved and is therefore one of the most fundamental unsolved 

problems in Structural Bioinformatics today. 
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Some of the general computational methods of protein structure predictions 

from amino acid sequences are: 

 

i) Secondary structure prediction: Methods, in which we try to predict 

the regions of the sequence forming α-helix and β-sheets, irrespective 

of what is their arrangement in 3D space. Eg: PSIPRED 

ii) Homology Modelling: It is the method by which we predict three-

dimensional structure of a protein with the help of already known 

structures of one or more related proteins. It is based on the reasonable 

assumption that two homologous proteins will share very similar 

structure. If the sequences of two related proteins have 50% or more 

identical residues in an optimal alignment, the structures are likely to 

have similar conformations over >90% of the model [Lesk AM, 2008]. 

Eg: MODELLER, SwissModel, BioSerf. 

iii) Fold recognition: Determination of folding pattern of the query 

sequence of unknown structure by comparing it with a library of 

known structures. Eg: GenTHREADER 

iv) Ab initio: Prediction of 3D structure of proteins based on basic 

physical principles of residues rather than previously solved structures. 

It is also known as ‘de novo’ protein modelling methods. Eg: Rosetta. 

 

So far, several approaches based on the general computational methods have 

been addressed to tackle this central problem of protein structure prediction, but till 

now without a general solution. However, we see that nature solves this problem 

everyday for billions of molecules in a single organism. The “ab initio” solution of the 

protein-folding problem is still lacking. And a typical alternative approach for solving 

this problem can be to identify a set of sub-problems, such as the prediction of protein 

secondary structures, solvent accessibility and/or prediction of residue contacts and/or 

design of heuristic solutions [Vassura et al., 2008].  

In this thesis we will focus on a sub-problem, prediction of disulfide bonding 

states of cysteine residues in proteins, and the description of this sub-problem follows 

in the next section.  
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1.3. Prediction of disulphide bonding states of cysteine 

residues (the sub-problem) 
 

Disulphide bonds also called ‘Disulphide Bridges’ or ‘SS-bonds’ are covalent 

bonds formed between two cysteine residues of a protein. 

Chemically, the bonding takes place between the thiol (SH) groups of two 

cysteine residues (Fig. 1.4). 

 

 

Figure 1.4. Disulphide bond between two Cysteine residues 

 

Disulphide bonds are classified into two types: 

i) Intra-bonded: when the bonding takes places between two-cysteine 

residue of the same protein chain. 

ii) Inter-bonded: when the bonding takes place between two cysteine 

residues of two different chains of the same protein. 

 

Disulfide bonds play an important role in the folding and stability of some 

proteins, usually proteins secreted to the extracellular medium [Sevier et al., 2002]. 

Since most cellular compartments have reducing environments, disulfide bonds are 

generally unstable in the cytosol with some exceptions. Moreover, reduction of these 

disulphide bridges triggers functionally relevant conformational changes in the 

protein structure [Creighton T, 1996], and thus help in defining the function of 

protein. 
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Disulphide bond stabilize protein native structures by lowering global free 

energy. And they may be involved in the protein-folding pathways. In some proteins, 

the oxidation and reduction of cysteine residues are the essential part of their catalytic 

functionalities. The contribution of the disulfide bridge to the thermodynamic stability 

of proteins has been described as being due to a reduction in the conformational 

entropy of the unfolded polypeptide chain causing a destabilization of the unfolded 

state relative to the native state [Betz S.F., 1993]. It has been estimated both 

experimentally [Privalov P.L., 1988] and theoretically [Casadio et al, 1995]. Several 

analyses of the characteristics of disulfide bonds in proteins have been performed, 

including structural and sequence features and classification of connectivity [Harrison 

et al., 1994]. This strengthens the view that disulfide bonds increase the 

conformational stability of the protein mainly by constraining the unfolded 

conformation, as many experimental and theoretical studies suggest [Wedemeyer et 

al., 2000]. Disulfide bond has been recognized as a major contributor to protein 

thermal stability [Vieille et al., 2001]. A genome-wide survey has shown that 

hyperthermophile proteins tends to contain more disulfide bonds than proteins from 

thermophilic and mesophilic organisms [Beeby et al., 2005]. 

Considering the importance of disulphide bonds in defining the structure and 

function of the protein, prediction of disulphide bonding state of cysteine can be an 

important step in the field of protein structure prediction, as it will help in putting a 

constraint in three-dimensional space of protein structure. In the next section we have 

done a literature survey on the computational methods so far developed in the area of 

predicting disulphide-bonding state of cysteines. 
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1.4. Literature review (existing approaches) 

 

Disulphide bond prediction has been extensively studied in recent years and a 

number of successful machine-learning approaches exist. 

It was early 90s when statistical [Fiser et al., 1992] and neural network based 

[Muskal et al., 1990] methods were proposed to predict the cysteine bonding state 

with flanking residues. 

However, major breakthrough in this field came up in the year 1999, when 

Fariselli et al. described the role of evolutionary information for training a neural-

network based predictor for predicting disulphide bonding states of proteins. Standard 

feed forward networks were implemented with a back-propagation algorithm as 

learning procedure. The network architecture consisted of a perceptron with two 

output nodes, which discriminate bonded and free cysteine propensities, respectively, 

with no hidden layers. Six different types of input coding based on single-sequence 

input or multiple-sequence profiles and local features such as ‘Residue Charge’, 

‘Hydrophobicity’, ‘Conservation Weight’, and ‘Relative Entropy’ were considered. 

Training was performed using 2452 cysteine residues containing segments extracted 

from 641 non-homologous proteins of well-resolved three-dimensional structures. 

Using protein single sequence, the prediction accuracy on cysteine basis was 72%, 

which improved drastically up to 78% by incorporation of evolutionary information. 

Furthermore, an improvement of 2% was obtained when the conservation weight and 

relative entropy were also used. Finally a jury method improved the prediction 

accuracy up to 81%. 

In the year 2000, Fisher and Simon suggested that cysteines tend to occur in 

the same oxidation state within the same protein. Based on this “all or none” rule they 

proposed a new method [Fisher et al., 2000] for predicting the oxidation state of 

cysteine residues by conservation scores derived from multiple sequence alignments. 

A database of 81 protein alignments was used in their analysis. Conservation scores 

based upon the physico-chemical properties of amino acids were calculated for each 

position in each alignment. For each position in each protein, this score was then 

divided by the average conservation of the protein to give a relative conservation 

score Cr. The efficiency of the prediction was tested by the jack-knife procedure, and 

the prediction accuracy of the redox state of cysteines was above 82%. Since, the 
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prediction of this method is either all oxidized or all reduced, the practical usage in 

protein engineering is relatively limited. 

In the year 2002, Mucchielli-Giorgi et al., investigated the relative 

contribution of the segments flanking the target cysteines and the over all amino acid 

residue composition of the protein. A simple prediction method [Mucchielli-Giorgi et 

al., 2002] based on the training of logistic function was used, in which a decision rule 

was simply comparing the output of the logistic function with a given threshold. If the 

output value comes out to be great than or equal to the given threshold, the cysteine of 

interest was predicted as bonded, else free. A dataset of 559 proteins was used, and 

the evaluation was done with a 5 fold cross-validation procedure. They got a 

significant higher accuracy of 83% when considering a set of global features (overall 

residue composition, normalized protein size and cysteine occurrence), than an 

accuracy of 70% and 68% for local features of residues (“frequency description” and 

“binary description” respectively). These results suggested that, for the disulphide 

bonding state, the information on the residues flanking the cysteines (local 

information) is less informative than the amino acid content of the whole protein 

(global information). Additionally, they also used a combination of logistic function 

learned with a subset of proteins homogenous in terms of their residue contents, and 

reached to a prediction accuracy of 84%. 

Methods described so far were not able to capture global information with 

respect to cysteine examples belonging to the same protein, since they were predicting 

one cysteine at a time without keeping record of different cysteine predictions 

associated with same protein sequence. In other words, when a cysteine is predicted in 

a protein chain, no information about the predicted bonding state of other cysteines of 

the same chain was considered. And since to make a disulphide-bond, two cysteines 

are required, disulphide bonding cysteine chains should have even number of 

cysteines. In the year 2002, Martelli et al., used this trivial “even bonded cysteines” 

feature along with other global and local characteristic of protein chains, and 

proposed a method [Martelli et al., 2002] by implementing a hybrid system (hidden 

neural network) that combines a neural network (NN) and hidden markov model 

(HMM). On a sliding window of 27 residues centered at cysteine, local information in 

the form of profiles containing evolutionary information generated by multiple 

sequence alignment was given to a feed-forward NN. The output generated by NN 

was used as emission probabilities for a four-state HMM, which incorporated an 
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“even bonded cysteine” constraint as a global feature. A training set of 4136 cysteine-

containing segments extracted from 969 nonhomologous proteins of well resolved 

structure was used. Testing was done on two different sets; whole dataset (WD), 

which included proteins with single cysteine and a difficult reduced dataset (RD), 

which excluded proteins with single cysteine. A 20-fold cross validation was done in 

order to validate the results. Initially, when using only NN-based predictor average 

accuracies of 80% on cysteine basis and 57% on protein basis were obtained, which 

were similar to the previously obtained results of Fariselli et. al., in 1999. However, a 

remarkable increase in the accuracies was achieved on incorporating the hybrid 

system (HNN).  Average accuracies reached up to 88% and 84%, on cysteine basis 

and on protein basis, respectively. This improvement was seemingly caused by the 

introduction of the global constraint by the regular grammar implemented in the 

HMM, which not only captures the number of cysteines in a protein chain but also 

keep track of the bonding states of all the cysteine in the chains. 

In the year 2004, Song et al. introduced a two-class predictor, which explores 

the dipeptide composition of protein sequence, for predicting the oxidation state of 

cysteines in proteins by means of a linear discriminator [Song et al., 2004]. The idea 

of this new global feature of dipeptide composition came from the fact that none of 

the previous methods were using information contained in the order of residues in 

chains. The dataset they used for training consist of 8114 cysteine-containing 

segments extracted from 1856 non-homologous proteins. They used the jack-knife 

procedure to validate their results, and achieved an accuracy as high as 89.1% on 

cysteine basis and 85.2% on protein basis. 

In the same year of 2004, Chen et al. proposed a method based in Support 

Vector Machine (SVM) and achieved an extraordinary accuracy of 90% on protein 

basis. Their approach [Chen et al., 2004] consisted of two stages. In the first stage, 

SVM was used to predict the bonding state of cysteines. In addition to the local 

residue information defined by flanking residues of the interested cysteines, the amino 

acid composition was also used as input feature. The decision value obtained from 

SVM was further normalized by arctan transfer function and used as the state 

probability of each cysteine state in the next stage. In the second stage, a constraint of 

even number of cysteine was applied and with the help of branch-and-bound 

algorithm an optimized value of cysteine state sequences was computed. Same data 

set as used by Martelli et al. in 2004 was used for evaluation of the method. 
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In the most recent work of 2006 done by Ceroni et al., they have used an SVM 

binary classifier to predict the bonding state of cysteine residue, followed by a 

refinement stage that classifies all the cysteines in a chain by deciding the overall 

bonding state assignment of an entire chain rather than making several independent 

prediction. They have used both local feature (profile information for a local window 

of sequence centered at cysteine of interest) and global features (amino acid 

composition, chain length, number of cysteines and average cysteine conservation), 

but reach to an average accuracy of 88% on cysteine basis. 

 

 

1.5. Overview of the thesis 

 

 This whole thesis work is organized into four chapters. Chapter 1 comprises 

the introduction of the protein structures, the problem of protein structure prediction 

and existing methods of their prediction, followed by a sub-problem of prediction of 

disulphide bonding states of cysteine residues in protein structures (which is the 

ultimate goal of this thesis work). In section 1.3, we have defined and described this 

sub-problem, followed by a literature survey of the already existing methods (section 

1.4). 

 In chapter 2, we have described machine learning methods, specifically 

‘Artificial Neural Networks (ANN)’, ‘Hidden Markov Models (HMM)’ and ‘Hidden 

Neural Networks (HNN)’, and the algorithms associated with them, which we have 

used to develop the prediction methods for our sub-problem. 

 Chapter 3 comprises the description of the prediction methods we have 

developed for predicting the disulphide bonding states of cysteine residues. Section 

3.1 starts with the description of the dataset used for training and testing the machine 

learning methods, followed by the description of the importance of cross-validation so 

as to validate the results obtained on the datasets used (section 3.2). The description of 

various features used as input for the methods follows in section 3.3. In Section 3.4, 

we describe the implementation of the methods. Section 3.5, describes the statistical 

indexes we have used to measure the performances of our methods. 

 Chapter 4 consists of results and discussion. In section 4.1 and 4.2, we 

describe the performances of the methods developed in this thesis work on Eukaryotic 
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dataset and Prokaryotic dataset respectively, followed by a comparison of final results 

with the previously developed approaches (section 4.3), and we show that our final 

prediction method outperforms all the previously developed approaches. In section 

4.4, we explain why Eukaryotic dataset performed better than Prokaryotic dataset at 

the basic level of input coding when ‘profile’ information was given as input to our 

prediction methods, which is one of the most interesting part of this thesis work. 

Finally in section 4.5, we conclude the thesis with some remarks and future aspects of 

this work. 
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Chapter 2: Machine Learning Methods 

  

The concept of Machine Learning (ML) is a broad sub-field of Artificial 

Intelligence. It is concerned with design and development of algorithms and 

techniques that allow computers to learn “rules” from an existing dataset and to use 

them in order to “classify” a new unknown dataset.  

The major focus of machine learning research is to learn complex pattern from 

a given data and extract information from it automatically, by computational and 

statistical methods, and further use it in order to build a classifier, which can classify 

an unlabelled dataset.  

Regarding interference of human intuition in the machine learning process 

there are two understanding. Some machine learning systems attempt to eliminate the 

need for human intuition in data analysis, while others try to adopt a collaborative 

approach between human and machine. However, human intuition cannot be entirely 

eliminated, since the system's designer must specify how the data is to be represented 

and what mechanisms will be used to search for a characterization of the data. 

Machine learning can be viewed as an attempt to automate parts of the scientific 

method. 

Machine learning methods can be broadly classified into two; supervised and 

unsupervised, based on the amount of human intervention. The contrasting feature 

between the two is; in supervised learning the data comes with class label and we 

learn how to associate this labelled data with classes, where as in unsupervised 

learning all the data is unlabelled and the learning procedure consists of both defining 

the labels and associating objects with them [Tarca et al., 2007]. In section 2.1 and 

2.2, a further discussion follows on supervised learning and unsupervised learning, 

respectively. 

Both supervised and/or unsupervised learning methods have equal importance 

in life science research and have huge amount of literature available. For e.g., protein 

secondary structure prediction by using amino acid sequence information [Rost et al., 

2004], and classifying patients into different clinical groups and to identify new 

disease groups by using gene expression data [Perou et al., 1999 and Alizadeh et al., 

2000]. 
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2.1. Supervised Learning 

 

This technique is based on deducing a function from training dataset that maps 

input to a desired output. A priori, the training dataset consist of pairs of input object 

(typically vectors) and desired outputs. In a simpler way we can say that, objects in a 

given dataset are classified using a set of attributes or features as input, and the result 

of the classification process is a set of rules that prescribe assignments of objects to 

classes as output, based solely on values of features. In a biological context, example 

of object-to-class mapping can be protein sequences to their secondary structures, and 

features (input) can be presence or absence of a particular amino acid at a particular 

position in the protein sequence. 

The goal in supervised learning is to design a system able to accurately predict 

the class membership of new objects based on the available features.  

Understanding the above concept of supervised learning in mathematical 

notations, we can consider a dataset of n objects (i = 1, … n) that are classified a 

priori into K (y = 1, … K) classes. For instance, if we want to distinguish between 

different types of secondary structure of proteins based on protein sequence 

information, then K would represent the number of known existing type of protein 

secondary structures (for e.g. α-helix, β-sheets, α+β, α/β etc). Suppose we have p (j = 

1, … p) number of features to describe each object i of our dataset, then we can 

organize our whole dataset of n objects on the basis of p features in an n * p matrix X 

= (xij), where xij represents the measured value of the variable (feature) j in the object 

(sample) i. Every row of the matrix X is therefore a vector xi with p features to which 

a class label yi is associated. For such multiclass classification problems, a classifier 

can be seen as an ensemble of K discriminant functions gk(x) such that the object i, 

described by the feature vector xi, will be assigned to the class K for which the 

function gk(x) is maximised. The classifier thus divides the feature space X into K 

subsets. 

 For the identification of the discriminant function gk(x) there are two main 

approaches. The first is to compute the probability density function of x for a given 

class and assign gk(x) = f(p(x | y = k)), where f is a monotonic increasing function (for 

e.g. logarithmic function). Intuitively, the resulting classifier will classify an object x 

in the class in which it has highest membership probability. In practise, p(x | y = k) is 
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unknown, and therefore needs to be estimated from a set of correctly classified 

samples named as “training set”. Parametric methods (such as, linear and quadratic 

discriminant) and nonparametric methods (such as k-nearest neighbour decision rule) 

are used for density estimation of the above function. The second approach is to use 

data to estimate the class boundaries directly, without explicit calculation of the 

probability density functions. Examples of algorithms in this category include 

decision trees, neural networks, and support vector machines (SVM).  

  

2.2. Unsupervised Learning 

 

Unsupervised learning is synonymously also known as “Clustering problem”. 

Since, the data in this case do not contains any predefined labelled class, the task is to 

group the given data into clusters based on the common features they share. 

Principally, one needs to explore the data and discover similarities between the 

objects. Therefore, the key point of clustering procedures is the definition of the 

degree of similarity between the analysed objects. And to measure this similarity, 

basically ‘Euclidean distance’ or ‘one minus correlation’ is used. However, to define a 

degree of similarity is a subject of consideration. 

Clustering procedure can be broadly classified into ‘Hierarchical Clustering’ 

and ‘Partition Clustering’; former divides the data into a hierarchical tree-like 

structure and later into certain number of clusters, respectively. 

Hierarchical clustering can be further divided into ‘bottom-up’ and ‘top-

down’, based on type of approach used to divide the dataset. In ‘bottom-up’ approach, 

each data point (or object) is initially considered as a cluster in itself. Subsequently, 

the clusters are iteratively grouped based on their similarity. In contrast, the top-down 

approach starts with a unique cluster containing all the objects, which is iteratively 

divided into smaller clusters until each cluster contains a single object. 

Partition clustering, starts with a predefined number of clusters as specified by 

the user. The most used algorithm is K-means clustering, where K is the number of 

clusters predefined by the user. Objects are assigned to these clusters based on their 

similarity (Euclidean distance) from each cluster. Subsequently, a two-step iterative 

procedure works as follows: 
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i) Recalculating the position (group mean) of clusters based on the 

current membership of each cluster. 

ii) Reassigning the objects to the K clusters. 

 

The algorithm ends, when no further change in the assignment of objects is 

possible. 

For an extensive review on supervised and unsupervised learning methods, 

please refer to Tarca et al., (2007). 

 

In coming sections 2.3, 2.4, and 2.5 we will discuss ‘Artificial Neural 

Networks’ (ANN), ‘Hidden Markov Models’ (HMM) and Hidden Neural Networks 

(HNN); three supervised learning techniques we have used in this thesis work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ARTIFICIAL NEURAL NETWORKS (ANN) 

 

 

20

 

2.3. Artificial Neural Networks (ANN)  

Artificial Neural Networks (ANN), also called as Neural Networks (NN) are 

mathematical/computational models, which belong to class of general computational 

structures based loosely on the anatomy and physiology of biological nervous system. 

 The biological nervous system, which broadly consists of brain and spinal 

cord, is managed by a group of specialized cells called ‘Neurons’ or ‘Nerve Cells’. 

Work of nerve cells is to communicate information about an organisms surroundings 

and itself by conducting and generating impulses between each other. Even though, in 

the beginning biological nervous system was the useful source of inspiration for the 

development of ANN, but it is clear today that artificial neurons used in most of 

ANNs are quite remote from biological neurons [Bower JM & Beeman D, 1995]. 

ANN has become an important tool in the arsenal of machine learning and can be 

applied to various fields to a wide variety of classification and pattern recognition 

problems, including computational biology. 

 At the most basic level, ANNs can be viewed as a broad class of 

parameterised graphical models consisting of networks with interconnected units 

(artificial neurons) evolving in time. A single artificial neuron (Fig. 2.1), in the 

computational scheme, is a node in a directed graph, with one or more entering 

connections designated as input, and a single leaving connection called as output. 

 

 

 

 

 

 

 

 

 

 

   

 
Figure 2.1. A single artificial neuron, which takes 3 inputs (i1,  i2,  i3) in binary form (0 

or 1) and gives a binary output based on the conditional formula. (if i1 +  i2 +  i3  > 2 

output is 1, else 0). 

if i1 + i2 + i3 > 2, 

output is 1, 

else 0 

i1 = 1 or 0 

i2 = 1 or 0 

i3 = 1 or 0 

i4 = 1 or 0 
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In the physiological metaphor, a neuron is said to be ‘fired’ if the output is 1, 

else it ‘didn’t fired’ if the output is 0. A simulated neuron differs in the number of 

input and output connection and the formula for deciding whether to fire or not. 

To make an ANN, several neurons are assembled together, so that output of 

some works as an input for others. Architecture of ANN can be a feed-forward, if it is 

devoid of directed loops, and it can be layered, if the units are partitioned into classes 

(also called as layers) and connectivity patterns are defined between the classes. 

For most of the problems related to molecular biology, layered feed-forward 

architectures of ANN (Fig. 2.2) are used. Also for this thesis work we have used the 

same. The ANN units are often partitioned into ‘visible’ units and ‘hidden’ units. The 

visible units are those, which are in direct contact with the external world, such as 

input and output units, and hidden units are those, which do not interact directly with 

the outside world. Most of the time, in simple architecture the input and output units 

are grouped in layers called ‘input layer’ and ‘output layer’ respectively. A layer 

containing only the hidden units is called the ‘hidden layer’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2. A layered feed-forward Artificial Neural Network (ANN). 
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An unlimited degree of complexity can be created depending on how the 

assembling and connection of neurons is done in an ANN, and by varying the strength 

of connections between the neurons. For a very simple example, considering the same 

(Fig. 2.1) of an input of 3 neurons (i1, i2 and i3) which together generate an output, by 

the formula i1 + i2 + i3, is equally sensitive for all the 3 inputs. The same architecture 

can be made more sensitive for some nodes by adding weights, for instance 10i1 + 5i2 

+ i3. In this case input node i1 becomes most sensitive and input node i3 least 

sensitive. Biologically, this may correspond to changing strengths of synapses 

between nerve cells. 

 

Mathematically, neural network models can be defined by a function,  

f : X ���� Y 

 
So as to say that, each unit i of ANN, receives a total input xi from the units 

connected to it, and then produces an output yi = fi(xi), where fi is a transfer 

function. 

  
In general, all the units in the same layer have the same transfer function, and 

the total input is a weighted sum of incoming outputs from the previous layer, so that 

 
xi = ∑

−∈ )(iNj

wij yj + wi 

 
Therefore, 

 

yi = fi(xi) = fi ( ∑
−∈ )(iNj

wij yj + wi ) 

 
Where, wi is called the bias, or threshold, of the unit. Weights wij and wi are 

the parameters of ANN.  

 

While a neural network does not have to be adaptive per se, its practical use 

comes with algorithms designed to alter the strength (weights) of the connections in 

the network to produce a desired signal flow. In a layered feed-forward architecture, 

all the units in a layer are updated simultaneously, and layers are updated sequentially 

in the obvious order. 
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2.3.1 Backpropagation Algorithm 
  

 The most important and interesting aspect of ANN is its possibility of learning 

by itself. Given a specific task to solve, and a class of functions F, learning means 

using a set of observations to find which solves the task in some optimal 

sense. 

 Backpropagation algorithm is the most common method of teaching ANN. 

Arthur E. Bryson and Yu-Chi Ho first described it in 1969, but it gained recognition 

in 1986 by the work of David E. Rumelhart, Geoffrey E. Hinton and Ronald J. 

Williams, and it led to a “renaissance” in the field of artificial neural network research 

[Russell S and Norvig P, 2003]. It has been one of the most studied and used 

algorithm for neural network learning ever since. 

It is a supervised learning method, and is most useful for feed-forward 

networks. It requires a differentiable activation function to be used by the artificial 

neurons/nodes/units. The backpropagation algorithm looks for the minimum of the 

error function in weight space using the method of gradient descent. The combination 

of weights, which minimizes the error function, is considered to be a solution of the 

learning problem. 

 
Summary of the Backpropagation technique: 

i) Give a training dataset to the ANN. 

ii) Compare the network's output to the desired/target output from that 

dataset, and calculate the error in each output neuron/unit. 

iii) For each neuron, calculate what the output should have been, and a scaling 

factor, how much lower or higher the output must be adjusted to match the 

desired output. This is called the local error. 

iv) Adjust the weights of each neuron to lower the local error. 

v) Assign "blame" for the local error to neurons at the previous level, giving 

greater responsibility to neurons connected by stronger weights. 

vi) Repeat from step 3 on the neurons at the previous level, using each one's 

"blame" as its error. 
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Actual algorithm for a 3-layer network (only one hidden layer): 

   

Initialise the weights in the network (often randomly) 

Do 

For each example e in the training set 

O = neural-net-output (network, e); forward pass 

T = teacher output for e 

Calculate error (T - O) at the output units 

Compute delta_wh for all weights from hidden layer to output layer;    

backward pass 

Compute delta_wi for all weights from input layer to hidden layer;  

backward pass continued 

Update the weights in the network 

  Until all examples classified correctly or stopping criterion satisfied 

  Return the network 

 

As the algorithm name implies, errors and therefore the learning, propagates 

backward from the output nodes to the inner nodes. Technically, Backpropagation 

algorithm is used to calculate the gradient of the error of the network with respect to 

the network's modifiable weights. This gradient is almost always then used in a 

simple stochastic gradient descent algorithm to find weights that minimize the error. 

Often the term "Backpropagation" is used in a more general sense, to refer to the 

entire procedure encompassing both the calculation of the gradient and its use in 

stochastic gradient descent. 

 

A detailed description of the ANN architecture used in this thesis work 

follows in chapter 3 section 3.4.1. 
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2.4. Hidden Markov Models (HMM) 

 

A Hidden Markov Model (HMM) is a statistical model in which the system being 

modelled is assumed to be a Markov process, i.e. one for which the likelihood of a 

given future state, at any given moment, depends only on its present state, and not on 

any past states. This important feature of HMM is also known as ‘Markov property’.  

 

The simplest Markov process is a first order process, where the choice of state is 

made purely on the basis of the previous state. For a first order process with M states, 

there are M
2
 transitions between states since it is possible for any one state to follow 

another. Associated with each transition is a probability called the state transition 

probability - this is the probability of moving from one state to another. These M
2
 

probabilities may be collected together in an obvious way into a state transition 

matrix. 

 

Mathematically, a simple regular markov model can be defined by (П, A), where  

П = (пi), is the vector of initial state probability, 

A = (aij), is the state transition matrix, Pr ( xi | xj ) 

 

Considering a very simple example (Fig. 2.3) of deducing weather conditions 

(sunny or rainy) between two consecutive days, a state transition matrix can be 

represented as in Fig. 2.4. 
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Figure 2.3. A regular markov model. The figure above shows all possible first order 

transitions between the states of the weather example. Notice, that for the 2 states 

(Sunny or Rainy), there are 2
2 
= 4 possible transitions. 

 

 

 

 

      Today 

Sunny   Rainy 

Sunny   0.55     0.45 

Yesterday 

Rainy   0.25     0.75 

 

 

Figure 2.4. The state transition matrix above shows possible transition probabilities 

for the weather example. If it was sunny yesterday, there is a probability of 0.55 that it 

will be sunny today, and 0.45 that it will be rainy. Notice that (because the numbers 

are probabilities) the sum of the entries for each row is 1. 

 

 

 

 

Sunny Rainy 0.55 

0.45 

0.75 

0.25 

Start 

0.6 0.4 
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In a regular Markov model, the state is directly visible to the observer, and 

therefore the state transition probabilities are the only parameters. In a hidden Markov 

model, the state is not directly visible, but output dependent on the state is visible. 

Each state has a probability distribution over the possible output tokens. Therefore the 

sequence of tokens generated by an HMM gives some information about the sequence 

of states. The adjective 'hidden' refers to the state sequence through which the model 

passes, not to the parameters of the model. That is to say that even if the model 

parameters are known exactly, the model is still 'hidden'. 

 

Mathematically, a hidden markov model can be defined by (П, A, B), where  

П = (пi), is the vector of initial state probability, and 

A = (aij), is the state transition matrix, Pr ( xi | xj t-1 )  

B = (bij), is the confusion matrix, Pr ( yi | xj ) 

Each probability in the state transition matrix and in the confusion matrix is time 

independent, i.e. the matrices do not change in time as the system evolves. 

 

Considering the same weather example we can make it a little complex in order to 

understand a hidden markov model. Say, we want to deduce the weather condition 

from a piece of seaweed. A folklore data says that `soggy' seaweed means wet 

weather, while `dry' seaweed means sunny weather. However, the state of the weather 

is not restricted to the state of the seaweed, so we may say on the basis of an 

examination that the weather is probably raining or sunny. A second useful clue 

would be the state of the weather on the preceding day (or, at least, its probable state). 

By combining knowledge about what happened yesterday with the observed seaweed 

state, we might come to a better forecast for today. 

In the above example, the observed sequence would be the seaweed and the 

hidden system would be the actual weather (Fig. 2.5 and 2.6). Therefore, now for this 

new example what we wish to predict is not what we observe, i.e. to say that the 

underlying system is hidden. 
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Figure 2.5. A Hidden Markov Model (HMM). The figure above shows the hidden and 

observable states in the weather example. It is assumed that the hidden states (the true 

weather) are modeled by a simple first order Markov process, and so they are all 

connected to each other. 

 

 
          Seaweed 

 Dry  Soggy 

Sunny   0.6     0.4 

Weather 

Rainy   0.3     0.7 

 

Figure 2.6. The confusion matrix above shows the probabilities of the observable 

states given a particular hidden state. Notice that (because the numbers are 

probabilities) the sum of the entries for each row is 1. 
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The connections between the hidden states and the observable states represent the 

probability of generating a particular observed state given that the markov process is 

in a particular hidden state. Therefore, all probabilities `entering' an observable state 

will sum to 1, since in the above case it would be the sum of Pr(Observable 

states|Sunny) and Pr(Observable states |Cloudy). 

 

Once a system can be described, as HMM, three canonical problems can be 

associated with it. 

i) Evaluation: Given the parameters of the model, i.e. an HMM, compute 

the probability of an observed sequence. This requires summation over all 

possible state sequences, but can be done efficiently using the forward 

algorithm, which is a form of dynamic programming. 

ii) Decoding: Given the parameters of the model and a particular output 

sequence, find the most probable sequence of hidden states that have 

generated that output sequence. This requires finding a maximum over all 

possible state sequences, but can similarly be solved efficiently by the 

Viterbi algorithm. 

iii) Learning: The third, and the hardest, problem associated with HMMs is to 

take a sequence of observations (from a known set), known to represent a 

set of hidden states, and fit the most probable HMM; that is, determine the 

( ,A,B) that most probably describes what is seen. No tractable algorithm 

is known for solving this problem exactly, but a local maximum likelihood 

can be derived efficiently using the Baum-Welch algorithm or the Baldi-

Chauvin algorithm. The Baum-Welch algorithm is also known as the 

forward-backward algorithm, and is a special case of the Expectation-

maximization algorithm. 

 

For this thesis work, the problem was related to both learning using a modified 

version of expectation-maximization algorithm [Martelli et al., 2002c] and decoding, 

which requires a Viterbi algorithm to solve. A short description of Viterbi algorithm 

follows next. 
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2.4.1 Viterbi Algorithm 

 

The Viterbi algorithm is a dynamic programming algorithm for finding the 

most likely sequence of underlying hidden states in an HMM, that might have 

generated it. The result of the algorithm is a sequence of observed events called 

Viterbi path. 

The name of the algorithm comes from its author Andrew Viterbi who 

invented it in 1967 [Viterbi AJ, 1967]. The general Viterbi learning idea is to replace 

calculations involving all possible paths with calculations involving only a small 

number of likely paths, typically only the most likely one, associated with each 

sequence. 

 

The algorithm makes a number of assumptions: 

First, both the observed events and hidden events must be in a sequence. This 

sequence often corresponds to time. 

Second, these two sequences need to be aligned, and an instance of an observed 

event needs to correspond to exactly one instance of a hidden event. 

Third, computing the most likely hidden sequence up to a certain point t must 

depend only on the observed event at point t, and the most likely sequence at point t − 

1. 

These assumptions are all satisfied in a first-order hidden Markov model. 

In a running example, Viterbi algorithm is used as follows: 

def example(): 

   return forward_viterbi(observations, 

states, 

start_probability, 

transition_probability, 

emission_probability) 

print example() 

 

 

A detailed description of the algorithm can be found elsewhere [Forney GD, 1973]. 

 

An HMM can be considered as the simplest dynamic Bayesian network. They are 

especially known for their application in temporal pattern recognition such as speech, 
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handwriting, gesture recognition, part-of-speech tagging, and Bioinformatics. HMMs 

have proved to be of great value in analysing real systems. Their usual drawback is 

the over-simplification associated with the Markov assumption - that a state is 

dependent only on predecessors, and that this dependence is time independent. 

A detailed description of the HMM model used in this thesis work follows in 

chapter 3 section 3.4.2. 

 

 

2.5. Hidden Neural Networks (HNN) 

 

A general framework of hybrids of hidden markov models (HMM) and neural 

networks (NN) are called hidden neural networks (HNN) [Krogh A & Riis SK, 1999]. 

In HNN, the usual HMM probability parameters are replaced by the outputs of 

state-specific neural networks. As opposed to many other hybrid networks, the HNN 

are normalized globally and therefore have a valid probabilistic interpretation. All 

parameters in the HNN are estimated simultaneously according to the discriminative 

conditional maximum likelihood criterion. The HNN can be considered as an 

undirected probabilistic independence network (a graphical model), where the neural 

networks provide a compact representation of the clique functions. 

Although HMM are good in capturing the temporal nature of processes such as 

speech recognition, they have a very limited capacity of recognizing complex patterns 

involving more than first-order dependencies on observed data. This is due to the 

first-order state process and the assumptions of state-conditional independence of 

observations. Multilayer perceptrons are almost the opposite; they cannot model 

temporal phenomenon very well but are good in recognizing patterns. Combining the 

two frameworks in a sensible way can therefore lead to a more powerful model with 

better classification abilities. 

A detailed description of the HNN model used in this thesis work follows in 

chapter 3 section 3.4.2. 
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Chapter 3: Prediction Methods 
 

3.1. Dataset 

 
The dataset adopted in this work is a subset of all (71788) protein chains 

downloaded from Protein Data Bank (PDB) in December 2006. PDB is the
 
single 

worldwide archive of structural data of biological macromolecules [Berman et al., 

2000]. 

This dataset required filtering so as to remove redundancy, and those chains, 

which were not fit for prediction. From these chains we removed all the chains having 

chain breaks by using the annotations given by ‘Define Secondary Structure of 

Proteins' (DSSP) program [Kabsch W & Sander C, 1983]. DSSP is a database of 

secondary structure assignments for all protein entries in the PDB. We removed these 

chains having chain breaks, because we were not sure of the folding pattern, and 

consecutively the disulphide bond (if any) it makes. We also removed those chains, 

which had no information about 3D coordinates of SG (Sulphur) atom of cysteine 

residue (if present), which actually participate in disulphide bond formation between 

two cysteine residues.  

With these 2 filtering steps we ended up with 42041 chains. We divided the 

resulting dataset of 42041 chains into (Eukaryotic+Virus) dataset with 21806 chains 

and Prokaryotic dataset with 20203 chains, with the help of organism classification 

annotation retrieved from their respective UniProt (Universal Protein Resource) files. 

UniProt is a central repository of protein sequences and annotation data.  

In order to remove redundancy in terms of homology between the chains, we 

used BLAST-p program on each sequence of the 2 datasets and clustered the 

sequences with a sequence identity > 25%. BLAST stands for ‘Basic Local Alignment 

Search Tool’ [Altschul et al, 1990], and is a set of programs, used to finds regions of 

local similarity between sequences (protein or nucleotide). The program compares 

nucleotide or protein sequences to sequence databases and calculates the statistical 

significance of matches. BLAST-p (also known as protein-protein BLAST) is a 

specific version of BLAST used for both identifying a query amino acid sequence and 

for finding similar sequences in protein databases. Sequence identity of 25% was 

chosen because of a general understanding, which is based on a conservative estimate 
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that sequences having more than 25% identical residues have similar 3D 

conformation. 

 Further, we refined the clusters by removing sequences with sequence length 

less than 50, and chains belonging to viruses (as their complete ‘taxonomic 

classification’ is still unknown, so as to say no one is sure if they belong to 

Eukaryotes or Prokaryotes). We picked the longest sequence from each cluster to 

make the non-homologues dataset. 

 

Further, we used Sequence Retrieval System (SRS) hosted by European 

Bioinformatics Institute (EBI) to download the cysteine disulphide bonding state 

annotation of whole PDB database. We have adopted theses annotations to label the 

bonding state of all the cysteines residues present in our Eukaryotic & Prokaryotic 

datasets. 

 

We also excluded all the inter-bonded (disulphide bonding between two 

cysteine residues of two different chains), metal bonded (cysteine that coordinate with 

metal atoms) and redox (cysteine which coordinates with other residues for a short 

duration of time in order to activate a biological process) cysteine residues from the 

dataset, and considered only intra-bonded (disulphide bonding between two cysteine 

residues of same chains) cysteine residues as disulphide bonded cysteine residues in 

our dataset. Redox cysteine annotation was retrieved from respective UniProt files. 

For retrieving metal-bonded cysteines, we computed the Euclidian distance between 

3D coordinates of SG (Sulphur) atom of cysteine residue and all the atoms of any 

metal containing compound present in the respective PDB structure. We excluded all 

those cysteines, which had a metal containing compound with in the radius of 4 

Angstrom around their SG atom’s 3D space. 

 

A detailed description of the final dataset is provided in below tables 3.1 and 

3.2. 
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Table 3.1. Dataset description on the basis of type of cysteine residues. For each 

category the number of cysteine residues and their relative percentage is given. 

 

 

                        Dataset 

Cysteine residues 

 

Eukaryotes 

 

Prokaryotes 

Total 4320 3640 

Bonded            1496 (35 %)               426 (12 %) 

Free            2824 (65 %)              3214 (88 %) 

 

 

Table 3.2. Dataset description on the basis of type of protein chains. For each 

category the number of protein chains and their relative percentage is given. 

 

 

                       Dataset 

PDB Chains 

 

Eukaryotes 

 

Prokaryotes 

Total 1041 1329 

With both bonded and 

free cysteine residues 

              71 (7 %)               36 (3 %) 

With only bonded 

cysteine residues 

             207 (20 %)              122 (9 %) 

With only free cysteine 

residues 

             763 (73 %)              1171 (88 %) 

With only one cysteine 

residue (free) 

              214 (21 %)                 431 (32 %) 

 

 
As we can see from the above tables we have 21 % of chains in Eukaryotic 

dataset and 32 % chains in Prokaryotic data set with just a single cysteine residue, 

which cannot make any intra-chain disulphide bridge, and therefore will remain in 

free states. Prediction of these chains is trivial. However they carry some information 

of being in free state. Therefore we divided our datasets in to Whole Dataset (WD) 
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and Reduced Dataset (RD), former including and later excluding single cysteine 

chains (Table 3.3). 

 
Table 3.3. Dataset description on the basis of type of dataset: Whole Dataset (WD) 

and Reduced Dataset (RD). For each category number of bonded, free and total 

number of cysteine residues is given. 

 
Dataset 

 

Eukaryotes 

(Cysteine residues) 

Prokaryotes 

(Cysteine residues) 

 

WD 

Total = 4320 

Bonded = 1496 

Free = 2824 

Total = 3640 

Bonded = 426 

Free = 3214 

 

RD 

Total = 4106 

Bonded = 1496 

Free = 2610 

Total = 3209 

Bonded = 426 

Free = 2783 

 

 

 
3.2. Cross-validation procedure 

 
The most important property of any predictor is its capability to generalize the 

rules it learns from the training dataset. A predictor, which is able to classify correctly 

the training dataset but is unable to generalize the learned rules on a new testing set is 

said to be gone under over fitting This can happen if the training set does not have 

enough representatives. 

  
In order to test the degree of generalization of the predictor, various methods 

have been used in previous works (chapter 1, section 1.4). However the basic idea of 

all the methods is to use a testing set which is disjoint from the training set. One of the 

procedure known as ‘Jack-Knife’ procedure separates one example from the whole 

dataset each time for testing and keeps remaining for the training, making it a N-fold 

cross validation procedure, where N is the no of examples in the whole dataset. This 

procedure is considered to be the best, as it assures the best estimate of predictor’s 



FEATURE ENCODING 

 

 

36

 

performance, but it becomes computationally complex for a large no of N. This 

procedure is also called as ‘one-leave-out method’. 

  
Another method called ‘k-fold’ cross validation, where we divide our whole 

dataset into ‘k’ subsets with equal number of representatives in each subset. 

Cyclically, we test each subset on the basis of the model learned from the training of 

remaining subsets. 

  
For this thesis work we divided our datasets in to 20 subsets, so as to make it a 

20-fold cross validation procedure. 

 

3.3. Feature Encoding (input coding) 

  
A machine learning method requires some information based on features of 

the dataset (in our case cysteine examples) as an input in order to learn how to 

discriminate between labeled classes (in our case 2 classes, Bonded and Free 

cysteines). For this thesis work, these features are based on global and local properties 

of the respective cysteine examples. Global properties refer to the properties based on 

the whole protein sequence of the respective cysteine example, for e.g., length of the 

protein chain, total number of cysteine residues in the chain. Local properties refer to 

the properties based on the local environment of the cysteine residue, for e.g., 

composition of residues, and physiochemical properties of the residues in the local 

environment of the target cysteine.  

 
 For encoding local information, we need to consider a local environment of 

the cysteine residue of our interest. Computationally this local environment can be 

considered as a window or sub-string of the whole chain centered at the cysteine of 

our interest. In this work we have used a window of 27 residues, as we tested the 

performances of our prediction methods (based on the statistical index described in 

section 3.5) on different window sizes and found 27 to be the best. The local 

properties will be based on these 27 residues. We will see below different input 

features we have used for our predictor. 
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3.3.1. Single Sequence information 

 
Single sequence information can be considered as the most basic input feature. 

As local information, it tells the predictor about the presence of a particular residue at 

a particular position in a given length of window. This information can be encoded by 

using a vector of 20 (as we have 20 standard residues), putting ‘100’ for the presence 

of a particular residue and ‘0’ for the remaining 19 residues. For a window size of 27 

residues (centered on the cysteine of our interest) this method will lead to a total of 20 

* 27 = 540 values. Therefore, 540 values of ‘0’ or ‘100’ will encode single sequence 

information for each cysteine example. 

 
3.3.2. Sequence Profile composition 

 
Evolutionary information tells the frequency of the presence of a particular 

residue at a particular position in a chain with respect to the closely related sequences, 

which may perform same function. This approach generally increases the quality of 

prediction methods [Fariselli et al. 1999]. 

Sequence profiles were build in a 2-step procedure: 

 
i) Performing BLAST-p for all the chains present in our datasets 

against UniProt Knowledgebase database including both reviewed 

entries from Swissprot and non-reviewed entries from TREMBL 

databases. This steps searches for the similar sequences in the 

UniProt Knowledgebase database. 

 

ii) From each of the resultant BLAST-p files of step one, all the 

sequences reporting an alignment of > 25 % identity are collected 

and the frequency of each type of amino acid at each position of the 

chain is computed. 

 
This information was also encoded by 540 values as explained in section 

3.3.1. The only difference is that these values are not just ‘100’ or ‘0’, instead they 

real numbers >=0 and <=100. This is because; sum of 20 standard residues 

frequencies along with the ‘Gap’ value (for insertion/deletion of residues in the 
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sequence alignment) for each residue position is 100. Additionally, an extra value 

containing ‘Gap’ information for each residue position during the sequence alignment 

in profile files can also be used.  This will make a total of 21 * 27 = 567 values to 

encode for each cysteine example. 

 

3.3.3. Number of cysteine residues 

  
On top of profile information, we can add other global information about the 

protein chain. And one of this information is the total number of cysteine residues 

present in the respective protein chains of cysteine examples in our dataset. 

 This feature can be informative because, cysteines that are present alone in 

their respective chains will always be in free form (Fig. 3.1a and 3.1b), and chains 

having only bonded-cysteine examples will have an even number of total number of 

cysteine residues (obviously a pair of cysteine residue makes a disulphide bond). 

 

 This information was encoded by a single value (number of cysteine residues 

in the chain). A further discussion to encode the same information in a different way 

is done in the next section 3.3.4. 
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Figure 3.1. Comparison of the distribution of bonded versus free cysteine examples 

with respect to the total number of cysteine residues present in their respective chains. 

For both in (a) Eukaryotic WD and (b) Prokaryotic WD, majority of bonded cysteine 

example chains have an even total of cysteine residues in their respective chains, and 

majority of free cysteine examples have an odd total of cysteine residues in their 

respective chains. And cysteine examples, which were present alone in their 

respective chains, belong to free class. 

 

 
3.3.4. Parity of cysteine residues 

  
This is another global information, which tells weather the number of cysteine 

residues in a given chain is even or odd. This feature is also encoded by a single 

value, ‘100’ for even and ‘0’ for odd number of cysteine. In Fig. 3.2a and 3.2b we see 

that majority (> 80 %) of bonded cysteine residue examples have an even total of 

cysteine residues in their respective chains both in Eukaryotes and Prokaryotes. 

Instead, free cysteines residue examples are found to have roughly equal distribution 

among their respective chains having even or odd total number of cysteines. 
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Figure 3.2. Comparison of the distribution of bonded versus free cysteine examples 

with respect to the parity of cysteine residues present in their respective chains. For 

both (a) Eukaryotic WD and (b) Prokaryotic WD, bonded cysteine examples tend to 

have an even total of cysteine residues in their respective chains. Instead, free cysteine 

examples tend to have an equal distribution among their respective chains having 

even or odd total number of cysteines. 
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3.3.5. Average Cysteine Conservation 

  
For a given chain, adding the frequencies of all the cysteine residues from 

profiles and dividing them by the total number of cysteine residues, gives average 

cysteine conservation value. And with the Fig. 3.3a and 3.3b, we see that majority of 

bonded cysteines have a high conservation value, confirming their already known 

importance in protein structure and function (as discussed in chapter 1, section 1.3). 

However in case of Prokaryotes there is a set of bonded cysteine residues, which have 

a very low cysteine conservation value. These bonded cysteine examples are difficult 

to predict (a discussion follows in chapter 4, section 4.4d). 

  

This feature was encoded by a single value >=0 and <=100, as computed by 

the method discussed above. 
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Figure 3.3. Comparison of the distribution of bonded versus free cysteine examples 

with respect to the average cysteine conservation. For both (a) Eukaryotic WD and (b) 

Prokaryotic WD, bonded cysteine examples tend to have a high average conservation 

value. Instead, free cysteine examples tend to have a very low average conservation 

value. 

 

 
3.3.6. Correlated mutation in cysteine residues 

  
The tendency of residue positions in proteins to mutate coordinately is called 

Correlated Mutation [Pazos et. al. 1997].  

From the BLAST-p alignment of chains, for each cysteine residue we 

computed its frequency of being correlatively mutated with respect to all other 

cysteine residues present in the same chain, by counting the number of times two 

cysteine residue are either present together or absent together and dividing it by the 

total number of count. For each cysteine example, we took the maximum frequency 

value computed (as explained above) with respect to all the cysteine residues present 

in the respective chain, as its correlated mutation value.  

In Fig. 3.4a (for Eukaryotic WD) and 3.4b (for Prokaryotic WD), we see that 

majority of bonded cysteines examples have high correlated mutation value, which 

confirms the already known structural and functional importance of these cysteine 

residues in proteins of the same family and in their evolution (as discussed earlier in 

chapter 1, section 1.3). However, in case of Prokaryotes (Fig 3.4b) there is a sub-set 
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of cysteine examples, which in spite of being bonded have a very low correlated 

mutation value, and these examples got wrongly predicted. These are the same sub-set 

of bonded examples, which showed low average cysteine conservation (Fig. 3.3.b). 

These bonded cysteine examples are difficult to predict (a discussion follows in 

chapter 4, section 4.4e). 

 This feature was encoded by a single value >=0 and <=100, as 

computed by the method discussed above. 
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Figure 3.4. Comparison of the distribution of bonded versus free cysteine examples 

with respect to the correlated mutation. For both (a) Eukaryotic WD and (b) 

Prokaryotic WD, bonded cysteine examples tend to have a high correlated mutation 

value. Instead, free cysteine examples tend to have a very low correlated mutation 

value. 
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3.3.7. Sub-Cellular Localization 

 
Proteins with disulphide bonded cysteine residues are majorly found in extra-

cellular environment of cell. And the reason for this we know is, most of the cellular 

compartments have a reducing environment, which do not favor a disulphide bond 

formation, and therefore cysteine residues here tend to remain in free state. Contrary, 

the oxidizing extra-cellular environment favors the disulphide bond formation, and 

therefore cysteine residues here are mostly found in bonded state. However, as always 

some exceptions exist in Biology [Mallick et al. 2002, Riemer et al. 2009]. 

 
In Fig 3.5 below, which is based on the predictions of ‘BaCelLo- Balanced 

subCellular Localization’ predictor [Pierleoni et al., 2006 & 2007] shows that 

majority (~ 90 %) of the proteins of our Eukaryotic WD with bonded cysteine 

examples got predicted with ‘Secretory’ annotation, and majority of the proteins with 

free cysteine examples got predicted with ‘Cytoplasm’ annotation, confirming the 

general understanding of sub-cellular localization of proteins with disulphide bonded 

cysteines, as discussed above. 

 

We used these BaCelLo predictions as an input feature for our Eukaryotic 

dataset, instead of the experimental annotation from the respective UniProt files of 

their proteins because the majority of the UniProt files lack ‘Sub Cellular 

Localization’ annotation.  

 
This feature was encoded by a vector of 5 (since we have 5 types of sub-

cellular localization annotation predicted by Bacello), by putting ‘100’ for the 

presence of a sub-cellular localization and ‘0’ for the remaining 4 values. 

 

In case of Prokaryotes, since they lack cellular compartments, we cannot have 

annotation for the sub-cellular localization. However, another way to capture this 

information is the presence of ‘Signal Peptides’ discussed in next section 3.3.8. 
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Figure 3.5. Comparison of the distribution of bonded versus free cysteine examples of 

Eukaryotic WD with respect to the sub-cellular localization (as predicted by 

BaCelLo) of their respective chains. Majority of bonded cysteine examples belong to 

secretory proteins (found in extra-cellular region). Instead, majority of free cysteine 

examples belong to intracellular proteins. 

 
 

3.3.8. Signal peptide 

 
A Signal peptide is a short peptide chain made up of 3-60 amino acid residues 

that directs the transport of the protein to other cell organelles. In case of prokaryotes, 

since they lack cell organelles, these protein chain get directed to extra-cellular 

region, which has an oxidizing and stable environment. And as we discussed earlier, 

cysteine residues of these proteins in the extra-cellular environment form disulphide 

bonds to give stability to the structure of the protein, which is eventually responsible 

for the specific function of the protein. 

In Fig. 3.6, which is based on the signal peptide predictions given by the 

‘SPEPLip - Predictor of Signal Peptide and Lipoprotein Cleavage Sites in Proteins’ 

[Fariselli et al. 2003], we can see that majority (~ 96 %) of the Prokaryotic free 

cysteine residues lacked signal peptide in their respective protein chains, however 

approximately 60% of the bonded cysteine residues have signal peptide in their 

respective protein chain.  
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We used these SPEPLip predictions as an input feature for my Prokaryotic 

dataset, instead of the experimental annotation from the respective UniProt files of 

their proteins because the majority of the UniProt files lack signal peptide annotation.  

 
This feature is encoded by a single value, ‘100’ for the presence of a signal 

peptide and ‘0’ for the absence of the signal peptide. 
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Figure 3.6. Comparison of the distribution of bonded versus free cysteine examples pf 

Prokaryotic WD with respect to the presence of signal peptide (as predicted by 

SPEPLip) in their respective chains. Approximately 60 % of chains of bonded 

cysteine examples tend to have a signal peptide (i.e. are found in extra-cellular 

region). Instead, majority (~ 96 %) of chains of free cysteine examples tend to not 

have a signal peptide (i.e. are found in intra-cellular region).  
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3.4. Methods 
We have used two machine-learning techniques, namely ‘Artificial Neural 

Networks (ANN)’ and ‘Hidden Neural Network (HNN)’ for developing our 

prediction methods. 

 

3.4.1. ANN based predictor 
We implemented a standard feed-forward neural network (described in chapter 

2, section 2.3) with a back-propagation algorithm (described in chapter 2, section 

2.3.1) as a learning procedure. The network architecture (Fig. 3.7) is similar to that 

used previously [Fariselli et al., 1999 and Martelli et al., 2002a and 2002b] and 

consist of a two-layer perceptron with two hidden neurons, one output node for 

discriminating the disulphide bonded and free cysteine propensities respectively, and 

an input layer that consists primarily of 540 neurons (for 27 residue long window with 

profile or single sequence input information). Extra neurons were added on top of 

profile information to add the other global features (described in section 3.3). Table 

3.4 describes the total number of input neurons used to encode each feature used for 

training and testing the ANN predictor. 

 

 

 

 

 

 

 

 

 
             : 
             :             
           .              
 

                
 
Figure 3.7. Feed-forward artificial neural network architecture used in this thesis 

work. Input layer consists of N number of neurons based on type of input features 

used (table 3.4). Hidden layer consist of two neurons. And output layer consist of one 

neuron. 
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Table 3.4. Description of Input features used as an input for training and testing ANN 

and HNN based predictors. For each type of input feature, total number of input 

neurons used for ANN is given. 

 
Method 

No. 

Input Feature No of input neurons 

(N) 

1. Single sequence  540 

2. Profiles 540 

3. Profiles + ‘Gap’ (Insertion/Deletion) information 567 

4. Profiles + Parity of cysteine residues in chains 541 

5. Profiles + Total no. of cysteine residues in chains 541 

6. Profiles + Average cysteine conservation 541 

7. Profiles + Correlated Mutation 541 

8. Profiles + Sub-cellular localization (for Eukaryotes) 

Profiles + Signal peptides (for Prokaryotes) 

545 

541 

9. Input features (2+3+4+6+7+8) (for Eukaryotes) 

Input features (2+3+4+6+7+8) (for Prokaryotes) 

575 

571 

 
An early learning-stopping procedure was used to train the network [Fariselli 

et al., 1999]. Also in order to assess the degree of generalization of the prediction 

method, we used a 20-fold cross validation method (as described in chapter 3, section 

3.2). 

Performances of the predictor were computed on basis of statistical indexes 

described in following section 3.5. 

Results obtained for both Eukaryotic and Prokaryotic datasets, based on this 

ANN method and different input features described in table 3.4 have been discussed 

in the next chapter 4. 
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3.4.2. HNN based predictor 

 
A vector-based HMM that can handle emission probability vectors, is used on 

top of the neural networks (described in section 3.4.1). The hybrid system is defined 

as ‘Hidden Neural Network (HNN)’ [Krogh and Riis, 1999]. 

 

Briefly, considering L as the total number of cysteine residues in the protein 

chain and A as the size of the alphabet over which vectors are built (i.e. A = 2, 

bonding and free cysteine states), a sequence vector can be referred with following 

notation 

s = s
1
s
2
 … s

L
 = [s

1
(1), s

1
(2)] [s

2
(1), s

2
(2)] … [s

L
(1), s

L
(2)] 

 
The components of each vector s

t
 are positive and sum to a constant value S 

(independent of position t). 

 

The HMM model (Fig 3.8) used for this thesis work consists of N states 

connected by means of the transition probabilities aij. The probability density function 

for the emission of a vector from each state is determined by a number A of 

parameters that are peculiar for each state k and are indicated with the symbol ek(c) 

(with c = 1,2, … , A): 

 
P(s

t
|π

t
 = k) = (1/Z)Σcs

t
(c) × ek(c) 

 
Where π

t 
is the t

th
 state in the path. Z is the normalizing factor with Σc ek(c) = 1 

 

The vector s
t
 is obtained directly from the neural network outputs as: 

 
s
t
 = [NN(B,W), NN(F,W)] 

 
Where W is the local context of the cysteine and NN(B,W) and NN(F,W) are the neural 

network estimated probabilities of being in bonding (B) and free (F) state, 

respectively. 
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Figure 3.8. HNN state architecture. The arrows represent the allowed transitions. The 

‘B’ and ‘F’ represent the bonding and free cysteine states, respectively. The label ‘e’ 

(even) and ‘o’ (odd) indicate the number of cysteines in bonding states so far 

processed. The path can end only from even state, which guarantees that only correct 

even predictions are assigned when considering intra-chain disulphide bonds. 

 

 
In order to assess the degree of generalization of the prediction method, a 

similar method (as used for ANN in section 3.4.1 above) of 20-fold cross validation 

was used. Training of HMM parameters is accomplished by using a modified 

expectation-maximization algorithm [Martelli et al., 2002c] In order to keep the 

constraint derived from HMM model (Fig. 3.8), the prediction of each cysteine is 

made using Viterbi decoding (as described in chapter 2, section 2.4.1). Performances 

of the predictor were computed on basis of statistical indexes described in following 

section 3.5. Results obtained for both Eukaryotic and Prokaryotic datasets, based on 

Stop 
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this HNN method and different input features (described in table 3.4) have been 

discussed in the next chapter 4. 

 
A vector based HMM similar to that used in this work has been applied for the 

prediction of Beta-barrel proteins [Martelli et al., 2002c] and in an earlier work of 

prediction of disulphide bonding state of cysteines [Martelli et al., 2002a and 2002b]. 

 
3.5. Measure of Performances 
 

The efficiency of predictors (ANN and HNN) was scored using the statistical 

indices defined as follows. 

 

The accuracy is, 

 

Q2 = P/N 

 

Where P is the total number of correctly predicted cysteines and N is the total number 

of cysteines. 

 

The correlation coefficient C is defined as, 

 

C(s) = [p(s) * n(s) – u(s) * o(s)] /{[p(s) + u(s)][p(s) + o(s)][n(s) + u(s)][n(s) +  

             o(s)]}
1/2 

 

 

Where for each class s (free or bonded cysteines), p(s) and n(s) are the total number of 

correct predictions and correctly rejected assignments, respectively and u(s) and o(s) 

are the number of under-prediction and over-predictions, respectively. 

 

The accuracy for each discriminated class (Bonded and Free cysteines) is evaluated 

as, 

 

Q(s) = p(s)/[p(s)+u(s)] 

 

The probability of correct predictions for each discriminated class s is computed as, 

 

P(s) = p(s)/[p(s)+o(s)] 

 

Finally the accuracy per protein is evaluated as, 

 

Q2prot = Pp/Np 

 
Where Pp is the number of the proteins whose cysteines are all correctly predicted and 

Np is the total number of proteins. 
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Chapter 4: Results & Discussion 

 

4.1. Performances of ANN and HNN on Eukaryotes 

 
The ANN-based predictor is to be considered as the basic component of the 

hybrid system (HNN). Table 4.1a and 4.1b show the results on Eukaryotic reduced 

dataset (RD) and whole dataset (WD) respectively, using ANN and different types of 

feature encoding as input (described in table 3.4 and in section 3.3). 

Table 4.2a and 4.2b show the results on Eukaryotic reduced dataset (RD) and 

whole dataset (WD) respectively, using HNN and different types of feature encoding 

as input (described in table 3.4 and in section 3.3). 

 From the results described in table 4.1 and 4.2, we can see that profile 

information improve the performances drastically as compared to the single sequence 

information. Adding other global features on top of profile information eventually 

improve the performances significantly. However, the most important features apart 

from profile information are sub-cellular localization, average cysteine conservation 

and correlated mutation. 

 And a combination of all the input features gives the maximum performance. 
 

Table 4.1. ANN-based predictor performances on Eukaryotic RD (a) and WD (b). A 20-fold 

cross-validation method was applied. Q2 and Q2prot stand for over all accuracy of correct 
prediction on cysteine basis and protein basis, respectively. Qbo and Pbo are accuracy and 

probability for correct prediction of bonded cysteine examples, respectively. Qfr and Pfr are 

accuracy and probability for correct prediction of free cysteine examples, respectively. C is 

the correlation coefficient. All the statistical indexes were computed based on the formulas 

described in chapter 3, section 3.5. Results in ‘red’ colour are the best performances. 

 

(a) 

 
 Method 

No. 

Input Feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.73 0.41 0.57 0.82 0.65 0.77 0.42 

2 Profiles 0.86  0.71  0.82  0.89  0.81  0.90 0.62 

3 2 + Gap 0.87  0.71  0.81  0.90  0.82  0.89 0.62 

4 2 + Parity 0.86 0.71 0.84 0.88 0.80 0.91 0.61 

5 2 + Total no. of CYS 0.86 0.71 0.82 0.89 0.81 0.90 0.62 

6 2 + Avg. CYS Conserv. 0.89 0.75 0.84 0.91 0.84 0.91 0.73 

7 2 + Correlated Mutation  0.88 0.74 0.81 0.92 0.85 0.90 0.69 

8 2 + Sub Cell Localization 0.92 0.83 0.89 0.94 0.89 0.94 0.83 

9 2 + 3 + 4 + 6 + 7 + 8 0.93 0.85 0.91 0.94 0.90 0.95 0.84 
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(b) 

 

 Method 

No. 

Input Feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.74 0.41 0.57 0.83 0.64 0.79 0.51 

2 Profiles 0.86  0.70  0.82  0.88  0.79  0.90 0.66 

3 2 + Gap 0.87  0.70  0.81  0.90  0.80  0.90 0.67 

4 2 + Parity 0.86 0.70 0.84 0.88 0.78 0.91 0.66 

5 2 + Total no. of CYS 0.86 0.70 0.82 0.88 0.79 0.90 0.66 

6 2 +Avg. CYS Conserved 0.88 0.73 0.85 0.89 0.81 0.92 0.73 

7 2 + Correlated Mutation  0.88 0.74 0.81 0.92 0.85 0.90 0.75 

8 2 + Sub Cell Localization 0.92 0.83 0.89 0.94 0.88 0.94 0.85 

9 2 + 3 + 4 + 6 + 7 + 8 0.93 0.85 0.91 0.95 0.90 0.95 0.87 

  
 

 

Table 4.2. HNN-based predictor performances on Eukaryotic RD (a) and WD (b). A 20-fold 

cross-validation method was applied. Q2 and Q2prot stand for over all accuracy of correct 
prediction on cysteine basis and protein basis, respectively. Qbo and Pbo are accuracy and 

probability for correct prediction of bonded cysteine examples, respectively. Qfr and Pfr are 

accuracy and probability for correct prediction of free cysteine examples, respectively. C is 

the correlation coefficient. All the statistical indexes were computed based on the formulas 
described in chapter 3, section 3.5. Results in ‘red’ colour are the best performances. 

(a) 

 

Method 

No. 

Input Feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.68 0.25 0.24 0.94 0.68 0.68 0.69 

2 Profiles 0.91 0.79 0.85 0.94 0.89 0.91 0.85 

3 2 + Gap 0.91 0.80 0.85 0.94 0.89 0.91 0.85 

4 2 + Parity 0.90 0.79 0.85 0.94 0.88 0.91 0.85 

5 2 + Total no. of CYS 0.91 0.79 0.85 0.94 0.89 0.91 0.85 

6 2 +Avg. CYS Conserved 0.90 0.79 0.84 0.94 0.88 0.91 0.85 

7 2 + Correlated Mutation  0.91 0.80 0.85 0.94 0.89 0.91 0.85 

8 2 + Sub Cell Localization 0.93 0.84 0.88 0.95 0.91 0.93 0.87 

9 2 + 3 + 4 + 6 + 7 + 8 0.93 0.86 0.90 0.95 0.91 0.94 0.88 

  

(b) 

 

Method 

No. 

Input Feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.68 0.26 0.24 0.94 0.68 0.70 0.75 

2 Profiles 0.91 0.80 0.85 0.94 0.89 0.92 0.88 

3 2 + Gap 0.91 0.80 0.85 0.95 0.89 0.92 0.88 

4 2 + Parity 0.91 0.79 0.85 0.94 0.88 0.92 0.88 

5 2 + Total no. of CYS 0.91 0.80 0.85 0.94 0.89 0.92 0.88 

6 2 +Avg. CYS Conserved 0.91 0.79 0.84 0.94 0.88 0.92 0.88 

7 2 + Correlated Mutation  0.91 0.80 0.85 0.95 0.89 0.92 0.88 

8 2 + Sub Cell Localization 0.93 0.84 0.88 0.95 0.91 0.94 0.90 

9 2 + 3 + 4 + 6 + 7 + 8 0.94 0.86 0.90 0.96 0.91 0.95 0.90 
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 On adding HMM on top of ANN i.e. using the hybrid system HNN with 

different input coding improves their performances respectively.  Method no. 9 in 

table 4.2a and 4.2b describes the final performances for Eukaryotes. We reached a 

remarkable accuracy both on cysteine bases, 93 % for difficult set (RD) and 94 % for 

whole dataset (WD), and on protein bases, 88 % for difficult set (RD) and 90 % for 

whole dataset (WD). These accuracies were obtained along with a very high 

correlation value of 0.86 for both the sets, and are the best so far, when compared 

with previously developed methods. A comparison of our predictor performances 

with other previously developed methods is shown in section 4.3 of this chapter. 
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4.2. Performances of ANN and HNN on Prokaryotes 

 

In case of Prokaryotic dataset a very poor performance has been noted at the 

basic level of input coding of single sequence and profile information (tables 4.3 and 

4.4).  

However, with the addition of the other global input features an increase in the 

Prokaryotic performances was also noted. And best features in case of prokaryotic 

dataset came out to be parity of cysteine residues and signal peptide information. 

Even though, on the basis of global statistical indexes of Q2 and Q2prot prokaryotes 

also performed equally well as of Eukaryotes, but the correlation coefficient (C) value 

was comparably lesser than as of Eukaryotes. Reason behind the poor performances 

of prokaryotic dataset as compared to eukaryotic dataset at the primary level of single 

sequence information and profile information when given as input, and a lower 

correlation value even after adding other global features has been analysed and 

discussed in the section 4.4 of this chapter. 

 

Table 4.3. ANN-based predictor performance on Prokaryotic RD (a) and WD (b). A 20-fold 

cross-validation method was applied. Q2 and Q2prot stand for over all accuracy of correct 
prediction on cysteine basis and protein basis, respectively. Qbo and Pbo are accuracy and 
probability for correct prediction of bonded cysteine examples, respectively. Qfr and Pfr are 

accuracy and probability for correct prediction of free cysteine examples, respectively. C is 

the correlation coefficient. All the statistical indexes were computed based on the formulas 
described in chapter 3, section 3.5. Results in ‘red’ colour are the best performances. 
 

(a) 

Method 

No. 

Input feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.85 0.21 0.20 0.95 0.40 0.89 0.72 

2 Profiles 0.85 0.38 0.48 0.91 0.44 0.92 0.72 

3 2 + Gap 0.86 0.39 0.48 0.92 0.47 0.92 0.72 

4 2 + Parity 0.88 0.45 0.47 0.95 0.57 0.92 0.76 

5 2 + Total no. of CYS 0.84 0.38 0.54 0.88 0.41 0.93 0.66 

6 2 + Avg. CYS Conserved 0.87 0.38 0.41 0.94 0.51 0.91 0.76 

7 2 + Correlated Mutation 0.87 0.41 0.44 0.94 0.52 0.92 0.77 

8 2 + Signal Peptide  0.92 0.62 0.58 0.97 0.76 0.94 0.89 

9 2+ 3 + 4 + 6 + 7 + 8 0.93 0.64 0.57 0.98 0.81 0.94 0.89 
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(b) 

 

Method 

No. 

Input feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.87 0.21 0.20 0.96 0.37 0.90 0.80 

2 Profiles 0.86 0.36 0.46 0.92 0.42 0.93 0.78 

3 2 + Gap 0.86 0.37 0.48 0.92 0.43 0.93 0.78 

4 2 + Parity 0.90 0.46 0.47 0.95 0.57 0.93 0.84 

5 2 + Total no. of CYS 0.84 0.36 0.54 0.88 0.37 0.93 0.72 

6 2 + Avg. CYS Conserved 0.87 0.36 0.41 0.94 0.46 0.92 0.81 

7 2 + Correlated Mutation 0.89 0.41 0.44 0.94 0.51 0.93 0.84 

8 2 + Signal Peptide  0.92 0.59 0.58 0.97 0.70 0.94 0.90 

9 2 + 3 + 4 + 6 + 7 + 8 0.93 0.64 0.57 0.98 0.79 0.94 0.92 

 

 
 

Table 4.4. HNN-based predictor performance on Prokaryotic RD (a) and WD (b). A 20-fold 

cross-validation method was applied. Q2 and Q2prot stand for over all accuracy of correct 
prediction on cysteine basis and protein basis, respectively. Qbo and Pbo are accuracy and 

probability for correct prediction of bonded cysteine examples, respectively. Qfr and Pfr are 

accuracy and probability for correct prediction of free cysteine examples, respectively. C is 

the correlation coefficient. All the statistical indexes were computed based on the formulas 

described in chapter 3, section 3.5. Results in ‘red’ colour are the best performances. 
(a) 

 

Method 

No. 

Input feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.87 0.0 0.0 1.0 0.0 0.87 0.82 

2 Profiles 0.89 0.36 0.17 0.996 0.88 0.89 0.85 

3 2 + Gap 0.88 0.25 0.09 0.997 0.83 0.88 0.84 

4 2 + Parity 0.89 0.43 0.31 0.98 0.75 0.90 0.86 

5 2 + Total no. of CYS 0.90 0.44 0.24 0.995 0.90 0.90 0.86 

6 2 + Avg. CYS Conserved 0.89 0.43 0.27 0.99 0.81 0.90 0.86 

7 2 + Correlated Mutation 0.90 0.44 0.28 0.99 0.82 0.90 0.86 

8 2 + Signal Peptide  0.93 0.65 0.57 0.98 0.82 0.94 0.90 

9 2 + 3 + 4 + 6 + 7 + 8 0.92 0.63 0.59 0.97 0.77 0.94 0.90 

  
(b) 

 

Method 

No. 

Input feature Q2 C Qbo Qfr Pbo Pfr Q2prot 

1 Single Sequence 0.88 0.0 0.0 1.0 0.0 0.88 0.88 

2 Profiles 0.90 0.37 0.17 0.996 0.88 0.90 0.90 

3 2 + Gap 0.89 0.26 0.09 0.997 0.83 0.89 0.89 

4  2 + Parity 0.91 0.44 0.31 0.99 0.75 0.91 0.90 

5  2 + Total no. of CYS 0.91 0.44 0.24 0.996 0.90 0.91 0.91 

6 2 + Avg. CYS Conserved 0.91 0.43 0.27 0.99 0.81 0.91 0.91 

7 2 + CorrMutOcc 0.91 0.45 0.28 0.99 0.82 0.91 0.91 

8 2 + Signal Peptide 0.94 0.65 0.57 0.98 0.82 0.95 0.93 

9 2 + 3 + 4 + 6 + 7 + 8 0.93 0.64 0.59 0.98 0.77 0.95 0.93 
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Prediction at the second level i.e. using the hybrid system HNN showed an 

improvement in the performances at both cysteine and protein level (Fig. 4.4a and 

4.4b). Signal peptide information on top of profiles came out to be the best input for 

predicting prokaryotes. Method no. 8 in table 4.3a and 4.3b describes the final 

performances for Prokaryotes. We reached a remarkable accuracy both on cysteine 

bases; 93 % for difficult set (RD) and 94 % for whole dataset (WD), and on protein 

bases; 90 % for difficult set (RD) and 93 % for whole dataset (WD). These accuracies 

were obtained along with a decent correlation value of 0.65 for both the sets, and are 

the best so far, when compared with previously developed methods. A comparison of 

our predictor performance with other previously developed methods is shown in 

section 4.3 of this chapter. 

 

 

4.3. Comparison of results with previously developed 

methods 
 

It is difficult to compare methods tested on different databases. However, it 

can be claimed that the performances obtained when considering Eukaryotes and 

Prokaryotes separately, and with the incorporation of global features specifically 

parity of cysteine residues, average cysteine conservation, correlated mutation, sub-

cellular localization, and signal peptide, are greater than that previously described and 

obtained with other methods. 

 

Table 4.5a & 4.5b show a comparison of results of different methods 

developed in recent years. In the most recent work done by Ceroni et al. in 2006 and 

Chen et al. in 2004, they have not shown the performances on the difficult set (RD) 

(table 4.5a). Also in the work of Chen et al., they have not shown performance on 

protein basis. In the work of Ceroni et al in 2006, they have not shown the most 

important statistical index of Correlation Coefficient (C). It is important to compute 

this index because it tells how well the method is capable to learn and discriminate 

between two classes with equal efficiency. In these terms, the only previous work 

[Martelli et al. 2002a and 2002b] clearly shows the performances on all the possible 

statistical indexes and allows us for a direct comparison with our results. Our work is 

principally based on the hybrid method HNN using profile information as a primary 

input, developed by Martelli et al. in 2002. Addition of more global protein features 



COMPARISON OF RESULTS WITH PREVIOUSLY DEVELOPED METHODS 

 

 

58

 

on top of profile information, and considering eukaryotic and prokaryotic dataset 

separately has made our method to outperform all the previous methods. 

 

Table 4.5. Comparison of performances of our final prediction method (as described 

in table 4.2 and 4.4) with previously developed methods in terms of RD (a) and WD 

(b). Statistical indexes are the same as described in above tables. NA means data ‘Not 

Available’. 

 

(a) 

 

Method Q2 C Q(B) Q(F) P(B) P(F) Q2prot 
Martelli et al. 

(2002) 

87.4 0.73 78.1 92.8 86.3 88.0 80.2 

Song et al. 

(2004) 

NA NA NA NA NA NA NA 

Chen et al. 

(2004) 

NA NA NA NA NA NA NA 

Ceroni et al. 

(2006) 

NA NA NA NA NA NA NA 

This work on 

Eukaryotes 

(2009) 

 

93.0 

 

0.86 

 

90.0 

 

95.0 

 

91.0 

 

94.0 

 

88.0 

This work on 

Prokaryotes 

(2009) 

 

93.0 

 

0.65 

 

57.0 

 

98.0 

 

82.0 

 

94.0 

 

90.0 

 

(b) 

Method Q2 C Q(B) Q(F) P(B) P(F) Q2prot 
Martelli et al. 

(2002) 

88.0 0.73 78.1 93.3 86.3 88.8 84.0 

Song et al. 

(2004) 

89.1 0.71 92.2 79.3 NA NA 85.2 

Chen et al. 

(2004) 

90.0 0.77 77.0 97.0 91.0 89.0 NA 

Ceroni et al. 

(2006) 

88.0 NA NA NA NA NA 83.0 

This work on 

Eukaryotes 

(2009) 

 

94.0 

 

0.86 

 

90.0 

 

96.0 

 

91.0 

 

95.0 

 

90.0 

This work on 

Prokaryotes 

(2009) 

 

94.0 

 

0.65 

 

57.0 

 

98.0 

 

82.0 

 

95.0 

 

93.0 
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4.4. Why Eukaryotes perform better than Prokaryotes ? 

  

 As we have seen in our result section (tables 4.1 - 4.4), that even though we 

have reached to approximately equal accuracies in our final methods (in ‘red’ colour) 

at both cysteine (Q2) and protein level (Q2prot), for both eukaryotic and prokaryotic 

datasets, but still the correlation coefficient (C) value for Prokaryotes is lesser than as 

compared to that of Eukaryotes. Reason for this is, statistical indexes concerning to 

bonded cysteines (Q(B) & P(B)) in prokaryotes is lesser than that of free cysteine 

(Q(F) & P(F)) examples. Which indicates, that in case of Prokaryotes even though 

our method learns very well to predict free cysteine examples but do not learns 

equally well for predicting bonded cysteine example.  

Possible reasons for this we found, are discussed below: 

 

a) Highly unbalanced prokaryotic dataset: 

Number of bonded cysteine examples (426) in prokaryotic dataset was 

very less than their number of free cysteine examples (3214), making it a ratio 

of 1:8. And as discussed earlier in chapter 3 (section 3.2), an unbalanced 

dataset may lead to over fitting of the results. However a balancing procedure 

was adopted by repeating the bonded cysteine examples in the training set so 

as to equalize the ratio of both the classes, but no significant improvement in 

performances was observed. 

However in case of Eukaryotes, this difference between bonded (1496) 

and free (2824) cysteine examples was in a ratio 1:2 respectively, which was 

quite low as compared to that in Prokaryotes. Here also we adopted the same 

balancing procedure, but ended up with no significant improvement in the 

performances. 

  

b) Composition of residues in the local environment 

Considering the local environment of 27-residue window centered at 

the cysteine of our interest in the respective protein chains of bonded and free 

cysteine examples, we computed frequency Fsi of each 20 standard residue ‘i’ 

by using the formula: 

Fsi = ni/N 
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Where ‘s’ is the class (bonded or free). ‘ni’ is the total number of times the 

residue ‘i’ is present in 27-residue window of ‘s’ examples, and ‘N’ is the total 

number of residues in 27-residue window of ‘s’ examples. 

 Eukaryotes show a significant difference in terms of amount of 

cysteine residue in bonded and free cysteine examples (Fig 4.1a). Eukaryotic 

bonded cysteine examples tend to have a cysteine rich environment as 

compared to their free cysteine examples. However, in case of Prokaryotes 

this difference is approximately zero (Fig 4.2b). This feature seemed to be 

very important and a further investigation and discussion is done in next 

section 4.4c. 

Apart from Cysteine residue, small differences in amount of ‘Glycine’, 

‘Proline’, ‘Serine’, ‘Threonine’, and ‘Glutamic Acid’ were also noted. For the 

rest of the residues the differences in their amount were roughly the same for 

both Eukaryotes and Prokaryotes.  
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Prokaryotes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

V L I M F W Y G A P S T C H R K Q E N D

Residue (i )

F
re

q
u

e
n

c
y
 (
F
s
i)

Bonded

Free

 

(b) 

 

Figure 4.1. Comparison of frequencies of residues in the local (27-residue window) 

environment of bonded and free cysteine examples of Eukaryotes (a) and Prokaryotes 

(b). Error bars were plotted by computing the standard error of the mean.  

 

 

c) Eukaryotes bonded cysteine examples have a ‘symmetric-cysteine-

rich’ environment 

In order to understand more deeply about the presence of cysteine 

residues in the local environment (27-residue window) of bonded and free 

cysteine examples separately, we computed the percentage of amount of 

cysteine residue (PCsj) for each 27 positions ‘j’, by using a formula: 

 

PCsj = ((TCsj) * 100) / Ns 

 

Where ‘s’ is the class (bonded or free). ‘TCsj’ is the total number of times a 

cysteine residue is present at position ‘j’ in ‘s’ examples. And ‘Ns’ is the total 

number of  ‘s’ examples. 
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And as per our expectation derived from the Fig. 4.1a above, that 

Eukaryotes have a significant difference with respect to the amount of cysteine 

residue in bonded and free cysteine examples, Fig. 4.2a below confirms this 

difference more clearly with respect to each 27 position of the local 

environment. This result gives a more clear interpretation that Eukaryotic 

bonded cysteine examples tend to carry a very rich cysteine environment as 

compared to their free cysteine examples. And this seemed to be the most 

important feature learned by our predictor to discriminate between the two 

classes (bonded and free) based on the basic input of single sequence 

information or profile information.  

Prokaryotes lacked this feature (Fig 4.2b) substantially, and this was 

one of the reasons behind their poor prediction performances at the basic level. 

Addition of other global features could not improve the statistical indexes 

(Q(B), P(B) & C) comparable to Eukaryotes because they were already 

performing badly at the very basic level.  

Another interesting thing about Eukaryotes was that they showed a 

perfect symmetry (Fig 4.2a) in terms of the amount of the cysteine residue 

present in both the directions (+13 to –13) of target cysteine residue. However, 

in case of Prokaryotes (Fig. 4.2b), only few (+10 & –10, +6 & –6, and +5 & –

5) were important symmetric positions for bonded cysteine examples. 
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Figure 4.2. Comparison of percentage of cysteine residues in the local (27-residue 

window) environment of bonded and free cysteine examples of Eukaryotes (a) and 

Prokaryotes (b). 

 

d) Prokaryotic bonded cysteine residues are poorly conserved 

As evident from the comparison of Fig. 3.3a and 3.3b, prokaryotic 

bonded cysteine examples on an average are less conserved than eukaryotic 

bonded cysteine examples.  

During evolution of proteins, those residues tend to remain conserved, 

which play an important role in structural and functional properties of 

proteins. As discussed earlier in chapter 1 section 1.3, Cysteine is an important 

residue in putting structural constraint on the three-dimensional structure of 

proteins by making disulphide bridges with another cysteine residue, which 

ultimately decides a unique fold for the protein. This unique fold or structure 

is responsible for a unique function of the protein. In case of Eukaryotes (Fig. 

3.3a) this rationale comes out to be quite true. However, approximately 50% 

of bonded cysteine examples of Prokaryotes (Fig. 3.3b) seem to not follow this 

general rule, and show a poor conservation in their respective profile 

alignments.  

As expected both in Eukaryotes (Fig. 3.3a) and Prokaryotes (Fig 3.3b), 

majority of free cysteine examples have a very low conservation value in their 

respective profile alignments, confirming that being in free state they do not 
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have an important role to play in deciding structure and function of their 

respective protein. 

This feature of ‘Average Cysteine Conservation’, which had a more 

clear discrimination between bonded and free cysteine examples in Eukaryotes 

than in Prokaryotes, was eventually learned better by the ANN predictor in 

case of testing Eukaryotes (table 4.1a and 4.1b, method no. 6) and gave better 

performance, than in Prokaryotes (table 4.3a and 4.3b, method no. 6). 

 

e) Prokaryotic bonded cysteine residues have a low correlated mutation 

value 

As evident from the comparison of Fig. 3.4a and 3.4b, prokaryotic 

bonded cysteine examples tend to have a poor correlated mutation values as 

compared to Eukaryotic bonded cysteine examples. 

In terms of protein evolution, the two-cysteine residues will be present 

or absent together when they have a coordinated structural role to play. In case 

of bonded cysteine examples, they will form a disulphide bridge only if both 

of them are present and therefore will share a high correlation value with 

respect to each other. On the other hand, free cysteines being structurally 

unimportant do not share any relationship with any other cysteine residue and 

thus leading to a very low correlation mutation values. 

Eukaryotes tend to follow this rationale very well, and therefore have a 

quite clear discrimination between bonded and free cysteine examples (Fig. 

3.4a), and thus it is easier for a predictor to correctly classify them (table 4.1a 

and 4.1b, method no. 7). 

Prokaryotes on the other hand, do not follow this feature well (Fig. 

3.4b) and therefore the classification is more difficult, and our predictor shows 

lower performances in this case (table 4.3a and 4.3b, method no. 7). 

As expected, free cysteine examples, in case of both Eukaryotes and 

Prokaryotes have a very lower correlated mutation values, confirming their 

unimportance in structural and functional properties of their respective 

proteins. 

 

 



WHY EUKARYOTES PERFORMED BETTER THAN PROKARYOTES ? 

 

 

65

 

f) Prokaryotes lacked disulphide bond rich ‘Small Proteins’ 

We did a SCOP classification of proteins in our datasets and found that 

approximately 23.3% of the Eukaryotic bonded cysteine examples belong to 

‘Small Proteins’ class (Fig. 4.3a), as compared to just 1.5% in Prokaryotes 

(Fig. 4.3b). SCOP stands for (Structural Classification Of Proteins) is an 

online database which provides a broad survey of all known protein folds and 

annotates the folding class for the known protein structures present in PDB.  
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Figure 4.3. SCOP classification of cysteine examples. In Eukaryotic dataset (a) ‘Small 

Proteins’ have contributed significantly (23.3% of the total bonded cysteine 

examples), whereas in Prokaryotic dataset (b) their contribution is negligible. 
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These ‘Small Proteins’ in Eukaryotes (table 4.6a) were found to be 

very rich in cysteines with a cysteine/protein ratio of 8.2:1, and also very rich 

in disulphide bonds with a bonded/free cysteine ratio of 35:1.  

 

Table 4.6. Description of dataset on the basis of SCOP class. In Eukaryotic dataset (a) 

‘Small Proteins’ (in red color) have the highest cysteine/protein ratio of 8.2:1 and 

highest bonded/free cysteine ratio of 35:1. In Prokaryotic dataset (b) their examples 

are very few. 

(a) 

SCOP  

Class 

No. of 

Proteins 

No. of 

Cysteine 

Cysteine/ 

Protein 

Bond Free Bonded/ 

Free 

All Alpha 177 652 3.7 258 394 0.7 

All Beta 215 775 3.6 376 399 0.9 

Alpha/Beta 208 968 4.7 144 824 0.2 

Alpha+Beta 219 659 3.0 162 497 0.3 

Small 44 360 8.2 350 10 35.0 

Multi Domain 12 65 5.4 2 63 0.03 

Membrane Cell 

Surface 

9 33 3.7 4 29 0.1 

Coiled Coils 4 11 2.8 8 3 2.7 

Low Resolution 7 38 5.4 4 34 0.1 

Peptides 1 1 1.0 0 1 0 

Designed 1 8 8.0 0 8 0 

Not Found 199 750 3.8 188 562 0.3 

 

(b) 

SCOP 

Class 

No. of 

Proteins 

No. of 

Cysteine 

Cysteine/ 

Protein 

Bond Free Bonded/ 

Free 

All Alpha 179 362 2.0 44 318 0.1 

All Beta 178 407 2.3 140 267 0.5 

Alpha/Beta 472 1418 3.0 90 1328 0.1 

Alpha+Beta 360 804 2.2 86 718 0.1 

Small 4 12 3.0 6 6 1.0 

Multi Domain 23 78 3.4 2 76 0.02 

Membrane Cell 

Surface 

19 38 2.0 6 32 0.2 

Coiled Coils 0 0 0 0 0 0 

Low Resolution 7 13 1.9 0 13 0 

Peptides 1 1 1.0 0 1 0 

Designed 0 0 0 0 0 0 

Not Found 190 507 2.7 52 455 0.1 
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These bonded cysteines of ‘Small Proteins’ were found to be very 

highly conserved in their respective ‘Profile’ files as compared to other 

bonded cysteine examples of other SCOP classes (Fig. 4.4a and 4.4b). 
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Figure 4.4. Comparison of SCOP classes versus conservation (frequency, ‘Fb’) of 

bonded cysteine residues in ‘Profiles’. ‘L’ = Low (0 > Fb <=33), ‘M’ = Medium (33 > 

Fb <=66), and ‘H’ = High (66 > Fb <=100). Bonded cysteine examples belonging to 

‘Small Proteins’ were almost all found to be highly conserved both in Eukaryotes (a) 

and Prokaryotes (b). 
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And these bonded cysteines of ‘Small Proteins’ were getting predicted 

correctly with a very high accuracy of 98% in case of Eukaryotes (Fig. 4.5a).  

 

(a) 

Eukaryotes

215 309

69

134

0
1

344 8

2

0 0

149

43 67

75

28

2
3

6 0

2

0 0

39

0%

20%

40%

60%

80%

100%

A
lp

ha
Beta

Alp
ha/B

eta

Alp
ha+Beta

M
ulti

 D
om

ain

M
em

b. C
ell 

Surf.

S
m

all

C
oile

d C
oils

Low
 R

esolu
tio

n

Peptid
es

D
esig

ned

N
ot F

ound

SCOP Class

B
o

n
d

e
d

 C
Y

S
 e

g

W

C

 

(b) 

Prokaryotes

16

101

23
36

0

2
3

0 0 0 0
14

28

39

67
50

2

4
3

0 0 0 0

38

0%

20%

40%

60%

80%

100%

A
lp

ha
Beta

Alp
ha/B

eta

Alp
ha+Beta

M
ulti

 D
om

ain

M
em

b. C
ell 

Surf.

S
m

all

C
oile

d C
oils

Low
 R

esolu
tio

n

Peptid
es

D
esig

ned

N
ot F

ound

SCOP Class

B
o

n
d

e
d

 C
Y

S
 e

g

W

C

 

Figure 4.5. Comparison of SCOP classes versus prediction of bonded cysteine 

examples in (a) Eukaryotes and (b) Prokaryotes. ‘C’ = Correct Prediction and ‘W’ = 

Wrong Prediction. 98% of bonded cysteine examples of ‘Small Proteins’ in 

Eukaryotes were found to be correctly predicted. 

 

Importance of disulphide bonds in ‘Small Proteins in already known by 

SCOP definition, that ‘Small Proteins’ are usually rich in disulphide bonds, 

which are known to contribute critically to their stability, since they usually 

lack a strong hydrophobic core. 
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4.5. Concluding remarks 

  

In this thesis, we have tried to develop a computational method based on 

machine learning to address a sub-problem of predicting disulphide-bonding states of 

cysteine residues in protein structures, which will eventually help the field of protein 

structure prediction to move one step ahead. 

We have reached to remarkable accuracies of 94% on cysteine basis for both 

Eukaryotic and Prokaryotic datasets, and of 90% and 93% on protein basis for 

Eukaryotic dataset and Prokaryotic dataset respectively. We have obtained these 

accuracies with a very high correlation value of 0.86 for Eukaryotes and a very decent 

correlation value of 0.65 for Prokaryotes. These accuracies are best so far ever 

reached by any existing prediction methods, and thus our prediction methods have 

outperformed all the previously developed approaches and therefore are more reliable. 

Differences in the sequence environment of bonding and free cysteine 

examples in Eukaryotes and Prokaryotes motivates to do more research for finding if 

the principal governing factors for disulphide bonding in cysteine residues are 

different for Eukaryotes and Prokaryotes. Also we found that a set of bonded cysteine 

(~ 50%) examples in Prokaryotes, which were getting wrongly predicted, have a very 

low conservation and correlated mutation value in their profiles, and thus have a 

lower structural importance. This finding is contrary to the general understanding we 

know about the structural importance of disulphide bonded cysteine residues. 

Eukaryotes followed it very well and gave a better performance at the basic level of 

input of profile information. 

Prokaryotes (certain types of bacteria and specifically Archaea), which live in 

very extreme environments (thermophilic, methanogenic, halophilic), are more prone 

to go under mutations in short time so as to adjust themselves with the environmental 

conditions and therefore show more diversity in their genomic content. Malllick et al. 

in 2002 has showed that intracellular proteins of archaeal microbes (especially of 

Pyrobaculum aerophilum and Aeropyrum pernix) are rich in disulphide bonds, which 

is contrary to our general understanding that disulphide bonds are mostly found in 

extracellular environment and rarely in intracellular environment. 

The Endoplasmic Reticulum (ER) was long considered to be the only 

compartment of Eukaryotic cell in which protein folding was accompanied by 
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enzyme-catalyzed disulphide bond formation. However, in a very recent article by 

Riemer et al. in 2009, has showed that Eukaryotic cells harbor a second oxidizing 

compartment, the mitochondrial intermembrane space, where disulphide bond 

formation facilitates protein translocation from the cytosol. 

In summery, more study is required to understand the principal governing 

features of disulphide bond formation in Eukaryotes and Prokaryotes separately, and 

specifically for Prokaryotes, which because of their extreme habitat show more 

exceptions in following the already known principals which govern disulphide bond 

formation. 
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