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Introduction

The thesis work presented here is focused on X-ray Absorption Spectroscopy on

biological systems (BioXAS), intended both as the use of XAS to investigate

protein metal sites of biological relevance and as the development of methods

aimed to improve the XAS analysis itself. A consistent part of this work will con-

cern the high-resolution determination of metal binding clusters in energy trans-

ducing membrane proteins, for which X-ray Absorption Fine Structure (XAFS)

spectroscopy is an ideal tool. These studies are fundamental when the protein

structure has never been resolved by crystallography, because they carry unique

information for the elucidation of the protein function. However, even when

the metal cluster is known, the further geometrical notions retrieved by XAS

can bring insight into the role of the metal, thanks to its higher resolution with

respect to X-Ray Diffraction (XRD). Investigated metal centers can be either ex-

ogenously added in the protein or endogenously present in it (covering structural

or catalytic functions), depending on the biophysical goal; in this work we will

present one example for each case.

At present, BioXAS can be used as a valuable tool to characterize metal sites,

nevertheless its analysis method is still under development. Therefore we consid-

ered the technique not simply as a tool but also as a target for this study, and

tried to improve its capabilities by means of ab initio simulations and systematic

empirical observations; this brought to the determination of an efficient analy-

sis method, an outline of which is given in this work. For our determination of

metal binding clusters in membrane proteins, we used slightly modified versions

of the method, in order to adapt it to the specific biophysical problem under in-

vestigation; furthermore, the effectiveness of the method as a whole, disregarding

possible semplifications due to biophysical considerations, was successfully tested

for model proteins.

This work will be structured as follows:
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In Chapter 1 an overview of XAFS is given, with particular attention to its ap-

plications to biological systems. The theory underlying the technique is presented

without claim of exhaustivity, but with careful attention to the approximations

implemented in the different analysis programs we used.

Chapter 2 includes an outline of the XAFS analysis method we developed

for the unambiguous determination of protein Zn sites. The method is based on

the definition of quantitative criteria related to the nature of the binding cluster;

the criteria are obtained both by comparison with simulated XAFS spectra and

by the research of patterns in the spectra of known compounds. A test of the

method on known metal sites is presented.

In Chapter 3 we present our study on the inhibitory Zn2+ of Transhydroge-

nase (TH), a proton-translocating membrane protein. The metal binding site

was characterized in native and genetically modified TH, and the evidences were

interpreted also in the light of FTIR spectroscopy experiments. The results carry

important information about the transmembrane domain of the protein, the crys-

tallographic structure of which is still unavailable.

Chapter 4 is dedicated to the study of the Fe2+ site of the bacterial photosyn-

thetic Reaction Center (RC), which constituted the most challenging part of this

work from the experimental point of view: first of all we present a XAFS exper-

iment on RC embedded in different matrices, then a pump-probe time-resolved

XAFS study on RC in a non-interacting matrix. While the results of the static

study are evident and clearly understandable in the framework of matrix effect,

the time-resolved spectra show features that are barely distinguishable from the

noise. However, through careful data treatment we found indications of a confor-

mational change occurring at the Fe2+ site on a time scale of ∼500 µs after light

absorption.

Chapter 5 reports of a novel way to complement XAFS analysis with ab initio

Density Functional Theory (DFT) calculations: DFT was used to obtain infor-

mation about the dynamics of the heme atoms in MbCO, in order to fix the set

of dynamical parameters in XAFS analysis. It all allowed to focus the XAFS

analysis on the structural parameters, and to get subtle information of biological

relevance, that would have been impossible to obtain otherwise.
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Chapter 1

XAFS spectroscopy in biological

systems

1.1 Phenomenology of X-ray absorption

Photoelectric absorption is the main process occurring when radiation in the X-

ray energy region (1-30 keV) interacts with matter: in the total photon cross

section, indeed, its contribution dominates with respect to contributions due to

coherent and Compton scattering (Figure 1.1)

Figure 1.1: Total photon cross section (open circles) in carbon as a function of
energy. The relative contributions due to photoelectric absorption (τ), coherent
scattering (σcoh), Compton scattering (σincoh) and other processes are reported.
The figure is taken from the x-ray data booklet (http://xdb.lbl.gov/)

X-ray absorption spectroscopy is based on the measurement of the absorption

coefficient µ(E) as a function of the energy of the incoming radiation on the ma-

terial under study. The attenuation of a monochromatic x-ray beam of intensity

3



1.1. Phenomenology of X-ray absorption

I0 passing through an uniform layer of material of thickness x is ruled by the

Lambert-Beer law:

IT (E) = I0e
−µ(E)x (1.1)

where IT is the transmitted beam intensity. The absorption coefficient is directly

proportional to the photon cross section, and when the material is constituted

by n different atomic species it can be written as a summation over the atomic

densities ρi and the absorption cross sections σi of the constituent atoms:

µ(E) =
n∑
i=1

µi(E) =
n∑
i=1

ρiσi(E) (1.2)

The experimental measurement of µ(E) can be done by direct measurement of

the transmitted x-ray beam intensity as a function of the energy of the incoming

photons, as suggested by the inversion of equation (1.1). The general features of

the absorption coefficient for all materials are an overall decrease with increasing

photon energy and the presence of sharp edges, the position of which is charac-

teristic of each material (Figure 1.2). The edges are due to the excitation of inner

Figure 1.2: Schematic view of the x-ray absorption coefficient as a function of
incident photon energy. The figure is taken from [1].

shell electrons: when the energy of the incoming photon is equal or greater than

the core-electron binding energy, the photon is absorbed and the electron, called

photoelectron, is excited. When one electron is ejected from the 1s, 2s, 2p1/2 or

2p3/2 energy level the edge is called respectively K, L1, L2 or L3. The photoab-

sorption process is depicted in Figure 1.3, and the different edges arising in the

absorption coefficient are visible in Figure 1.2. The photoelectron is therefore

ejected with a final energy Ef equal to the energy of the incoming photon h̄ω

4



1.1. Phenomenology of X-ray absorption

Figure 1.3: Schematic representation of the x-ray absorption process by an 1s
electron. This process gives rise to the presence of a so called K-edge in the
absorption coefficient.

minus its binding energy Eb, as required by energy conservation:

Ef = h̄ω − Eb (1.3)

and it interacts with the neighboring atoms. Since the momentum of the photo-

electron is h̄k, its wave number k is directly derived from equation (1.3):

k =

√
2m(h̄ω − Eb)

h̄
(1.4)

According to the multiple scattering description of the phenomenon, the fine

structure of the absorption spectra can be interpreted by considering the pho-

toelectron as a wave and the atoms as point scatterers: the final state of of the

photoelectron is given by the interference between the photoelectron itself and

its backscattered wave function. The interference gives rise to a modulation of

the x-ray absorption coefficient after the edges, the so called fine structure which

is the object of X-ray Absorption Fine Structure (XAFS) spectroscopy.

The fine structure is evident both in the near-edge region (XANES, X-ray

Absorption Near Edge Structure) and in the extended region (EXAFS, Extended

X-ray Absorption Fine Structure), and is caused by the same physical process in

the two cases. Nevertheless, as we will see in detail in the next paragraphs, only

in the EXAFS region some approximations can be done in order to make the

mathematical description, and consequently the analysis strategy, much simpler.

The XANES region is given by the transitions of the photoelectron to bound

5



1.1. Phenomenology of X-ray absorption

states and to low-energy states in the continuum: it contains information about

the 3-D arrangement of the excited atom’s coordination shell and on its oxidation

state. In the EXAFS region, instead, the energy of the photoelectron is such that

its final state lies in the continuum and that it is weakly affected by the neighbor-

ing atoms’ potential; this allows an easier mathematical formulation in terms of

superposition of scattering paths, where the single scattering (SS) processes are

dominant and only a limited number of multiple scattering (MS) processes need

to be taken into account. The EXAFS spectrum as function of the photoelectron

momentum k is:

χ(k) =
µ(k)− µ0(k)

µ0(k)
(1.5)

where µ0(k) is the absorption coefficient of the isolated atom, in absence of neigh-

boring atoms. A XAFS spectrum is reported in Figure 1.4. The distinction be-

Figure 1.4: Fe K-edge X-ray absorption spectrum of Carbonmonoxy Myoglobin
(MbCO). In the upper inset the EXAFS spectrum obtained after background
subtraction is reported. A magnification of the XANES region is visible in the
lower inset.

tween the XANES and EXAFS region is quite arbitrary and is in general located

at roughly 50-70 eV after the edge. It is clear that, since a XANES study focuses

on the lineshape of the absorption coefficient as a whole while EXAFS requires

the extraction of its oscillatory part, the second one is more affected by noise

and requires a greater experimental effort. On the other hand, due to its simpler

mathematical formulation, several programs are available for a reliable quantita-

tive fitting of EXAFS spectra [2, 3, 4], while the quantitative analysis of XANES

spectra is still under development [5, 6, 7] and requires a considerable amount of

computational time.
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1.2. Approaches to the derivation of the absorption coefficient

1.2 Approaches to the derivation of the absorp-

tion coefficient

In this paragraph the general lines of XAFS theory are presented. The purpose is

to understand the key approximations assumed in the theoretical framework, and

what kind of approaches can be chosen to treat the problem, especially in relation

to the understanding of the data analysis programs used in this work. A detailed

description of XAFS theory can be found in several books and reviews [8, 1, 9].

The derivation of the absorption coefficient is in principle a complicated many-

body quantum mechanical problem, but a number of key approximations allow

to simplify the approach. First of all the one-electron approximation must be

invoked, which means that we consider only the photoelectron to be excited by

the incoming radiation, while the other N-1 electrons of the irradiated atom are

passive spectators. The absorption coefficient is proportional to the photoabsorp-

tion cross section (eq 1.2), the expression of which is given by the Fermi Golden

Rule:

µ(E) ∝ σ(E) ∝
∑
f

|Mgf |2δ(E − Ef ) (1.6)

where Mgf is the matrix element providing the probability of the transition of

one electron from the ground state to the final state. A second approxima-

tion, the dipole approximation, consists in neglecting the spatial variation of the

electromagnetic field inducing the interaction; it allows to write the perturbing

Hamiltonian as proportional to ε̂ · r, where ε̂ is the x-ray polarization vector and

r the position vector. The form of the matrix element appearing in eq. 1.6 is

therefore:

|Mgf |2 = |〈f |ε̂ · r|i〉|2. (1.7)

The initial state |i〉 can be represented by an atomic core orbital, while the final

state |f〉 can be either an unoccupied bound state or a state in the continuum.

The main difficulty in the theoretical calculation of XAFS spectra resides in

the computation of the final state; the problem can be addressed making use of

different approaches, in particular we mention the ones that are implemented in

the data analysis software employed for this work:

i) The Real Space Multiple Scattering (RSMS) approach, that avoids explicit

determination of the eigenstates by describing the final state as a superposi-

tion of scattering paths.

ii) The Finite Difference Method (FDM) approach, that solves the Schrödinger

7



1.2. Approaches to the derivation of the absorption coefficient

equation by discretization on a spherical volume centered on the absorbing

atom and therefore directly calculates the final states.

The RSMS approach has been developed starting from the early stages of the

EXAFS technique [10] and extended later on to the interpretation of the XANES

spectra [11]; an interesting summary of its historical evolution is given in refer-

ence [9]. According to a modern formulation of the RSMS theory [2], the golden

rule 1.6 can be written in the spectral representation, in terms of the one-electron

Green’s function G:

µ(E) ∝ 2

π
Im〈i|ε̂ · r′G(r′, r, E)ε̂ · r|i〉 (1.8)

This formula shows how the problem of the computation of the final states for

the photoelectron is replaced by the computation of the propagator G(r′, r, E).

Once the potential is chosen, radial wave functions and partial phase shifts can be

obtained by solving the Dirac equation and used to construct the Green’s func-

tion. The choice of the potential is crucial, and the approximations employed at

this stage dramatically influence the agreement between theoretical calculations

and experimental data, in particular in the XANES region; near the absorption

edge, indeed, the photoelectron has a low kinetic energy and is therefore strongly

sensitive to the details of the scattering potential. The RSMS approach is al-

ways associated to the Muffin Tin (MT) potential, a description of which will be

given in paragraph 1.2.1. The propagator G(r′, r, E) is given by the sum of a

central atom GC and a scattering contribution GSC . The latter is the sum over

the quantum numbers L = (l,m) and L′ = (l′,m′) of a series of contributions

GSC
Lc,L′c (where the subscript c indicates the central atom) that can be expressed

formally by the Multiple Scattering (MS) expansion:

GSC
Lc,L′c(E) =

∑
i

G0
Lc,L1i

tl1iG
0
L1i,L′c +

∑
i1,i2

G0
Lc,L1i1

tl1i1G
0
L1i1,L2i2

tl2i2G
0
L2i2,L′c + ...

(1.9)

where G0
L,L′ are the matrix elements of the free propagator and tl the elements

of the scattering matrix T, which is diagonal (Tl,l′ = tlδl,l′) when the potential is

spherically symmetric, as for MT potential; the indices i run over the different

atomic centers in the structure and summation over angular momentum indices

is implicit. Equation (1.9) is one of the possible formulations of the MS series: it

tells us that the x-ray absorption coefficient is given in principle by the summa-

tion of an infinite number of contributions, corresponding to all of the possible

8



1.2. Approaches to the derivation of the absorption coefficient

scattering paths experienced by the photoelectron in the material. A graphical

representation of some scattering paths is given in figure 1.5, where the central

atom is Fe.

Figure 1.5: Visual representation of single and multiple scattering paths corre-
sponding to the terms of sum 1.9. The depicted cluster is the Fe site of photo-
synthetic Reaction Center.

The definitions of EXAFS and XANES regions stem from this formula, being

the EXAFS region of the absorption spectrum the one where the series 1.9 con-

verges and a few terms approximate very well the modulations of the absorption

coefficient (see paragraph 1.2.2), to the contrary of the XANES region. To obtain

a reliable prediction of the XANES spectrum for a given material it is necessary

to sum MS contributions over all orders; it can be done in the so called Full

Multiple Scattering (FMS) treatment, by inverting the matrix in:

GSC = (1−G0t)−1G0 (1.10)

where the angular momentum and atomic site indices have been omitted for

brevity. The RSMS approach described so far provides a clear explanation of the

physical phenomena involved in XAS; it is implemented in the code feff8.2 [2],

which is able to calculate both EXAFS and XANES spectra making use of the

approximations described above, together with the MT shape for the scattering

potential.

9



1.2. Approaches to the derivation of the absorption coefficient

1.2.1 Choice of the potential

The potential experienced by the photoelectron in the the atomic cores regions

is dominated by the atomic charge densities, in the outer regions of the atoms

and in the interstitial regions by the distribution of charge determined by the

bonding properties of the material. In the latter case, the potential is anisotropic

and it depends on the nature of atoms and bonds present in the material. The

total potential appearing in the Schrödinger equation is given by the sum of this

Coulomb contribution Vcoul and a self-energy term Σ(E):

V (E) = Vcoul + Σ(E). (1.11)

Photoelectrons with energies greater than ∼30 eV above the absorption edge are

strongly scattered by the core regions and negligibly influenced by the details

of the anisotropic interstitial potential. In such a condition, i.e. in the EXAFS

energy region, the Muffin Tin (MT) approximation for the shape of the potential

is particularly suitable: the potential is spherically averaged inside MT spheres

centered at each atomic core, while a constant value is assigned to the interstitial

region. A pictorial representation is given in figure 1.6(a). The approximation

can be extended also to the near-edge energy region, provided that nonspherical

corrections are included; feff includes these corrections by allowing MT spheres

to overlap, furthermore it couples the use of the MT shape with Self Consistent

Field (SCF) calculations of the potential [2]; finally it adds the Hedin-Lundqvist

form of the self-energy term of equation (1.11) and uses this potential to compute

the propagators appearing in equation (1.9).

The tools mentioned above allow to extend the MT approximation of the

potential to the calculation of the XANES spectra for a wide set of structures;

nevertheless, independent tests of the method performed on metalloproteins [12,

13] showed that the approximation holds as long as the cluster of interest is close

to spherical symmetry (for example in 6-coordinated octahedral metal sites), but

it fails when the cluster is radically different from this geometry (for example in

4-coordinated tetrahedral metal sites).

An alternative method to deal with theoretical calculations of XANES spectra

is the Finite Difference Method implemented in the FDMNES program [5, 14].

The FDM is a general way to solve differential equations by discretizing them

over a grid of points in the volume of interest, and in this case it is applied to

the Schrödinger equation over a cluster centered on the absorbing atom. In this

approach the volume is divided in three regions, corresponding to three shapes

10



1.2. Approaches to the derivation of the absorption coefficient

of the potential:

1. atomic-core regions (up to 0.65 Å around each atomic center), where the

potential is spherically symmetric

2. interatomic region, where no approximation is made on its shape

3. outer-sphere region, where it is assumed to be constant.

The three zones are represented in figure 1.6(b). In region 2), the Local Den-

sity Approximation (LDA) is used to calculate the potential, as described in [5]:

at first the electronic density is computed starting from superposition of atomic

densities, then the Poisson equation is solved to get the Coulomb term of the po-

tential of equation (1.11), finally the exchange-correlation term is added following

the Hedin-Lundqvist approach. The program solves the Schrödinger equation on

Figure 1.6: Schematic two-dimensional representation of (a) Muffin Tin potential
and (b) the three regions considered by FDMNES in the non-MT approach. Panel
(a) is taken from reference [1], panel (b) from reference [5].

the mesh points imposing the continuity of the wave function and of its deriva-

tive between the different regions. This procedure corresponds to the numerical

calculation of the final states |f〉 of equation (1.7).

1.2.2 The EXAFS function

Sufficiently far from the absorption edge, the series 1.9 converges; this allows

a relatively straightforward mathematical description of the oscillatory part of

µ(k) in terms of the superposition of photoelectron waves backscatterd by the

surrounding shells of atoms. The standard EXAFS formula, the components of

11



1.2. Approaches to the derivation of the absorption coefficient

which will be explained in this paragraph, reads:

χ(k) = S2
0

∑
i

Ni|feff (k,Ri)|
kR2

i

sin(2kRi + 2δc + Φ)e−2Ri/λ(k)e−2σ2
i k

2

(1.12)

where the index i runs over the shells of atoms, each one charachterized by a

distance Ri from the absorber, and composed by Ni atoms. S2
0 is the amplitude

reduction factor, a parameter that accounts for the corrections to the one-electron

approximation by considering the relaxation of the N-1 passive electrons. It is

defined as the superposition of the many-body wave function of the N-1 passive

electrons before (|Ψi〉) and after (|Ψf〉) ejection of the photoelectron:

S2
0 = |〈Ψi

N−1|Ψ
f
N−1〉|

2. (1.13)

The amplitude reduction factor is in general empirically determined and its value

ranges from 0.7 to 1.0, depending on the experimental conditions.

|feff (k,Ri)| is the modulus of the effective backscattering amplitude relative

to an atom in shell i, and Φ is its phase factor: feff (k,R) = |feff (k,R)|eiΦ(k);

for a correct prediction of the EXAFS function, the calculation of feff must take

into account the curved-wave nature of the photoelectron [15]. δc is the phase

shift due to the central atom and λ(k) the energy-dependent mean free path of

the photoelectron. The exponential term e−2R/λ is therefore responsible for the

decay of the EXAFS signal due to the finite lifetime of the photoelectron, which

determines the short-range nature of this technique; EXAFS allows indeed to

probe a cluster of a few tens of Å in crystals and ∼5 Å in biomolecules, where no

long range order is present.

The last element of the formula is the Debye-Waller (DW) factor σ2
i , which

represents the mean square variation in the distance between the absorber and the

atoms of shell i. The Radial Distribution Function is described in the Gaussian

approximation (as shown by the term e−2k2σ2
in equation (1.12)), for which σ2

i is

the second order cumulant. The DW factors are therefore defined as the following

configurational average:

σ2
i = 〈[r̂ci · (uc(t)− ui(t))]2〉 (1.14)

where r̂ci is the unit vector relative to the segment connecting the absorber and

atom i, uc and ui are the instantaneous displacements of the two atoms with

respect to their equilibrium positions. The presence of the DW factors results in

the damping of each contribution to the EXAFS oscillations, since they appear
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1.3. Experimental techniques

in equation (1.12) as exponential terms; the reasons for the damping are both

disorder and thermal vibrations in the material, generally mentioned as statical

and dynamical component of the disorder respectively.

DW factors are crucial for the correct interpretation of EXAFS spectra, to the

contrary they can often be neglected in XANES calculations, since the exponential

decay depends on k2. In recent years, several studies based on Density Functional

Theory (DFT) [16, 17, 18, 19, 20] have been developed, aimed to perform ab initio

calculations of the DW factors in aperiodic systems. In particular Dimakis and

Bunker, in their works focused on Zn sites [17, 18], provide a parametrization of

DW factors relative to Zn-amino acid bondings as a function of temperature that

can be immediately applied in any other study relative to Zn-metalloproteins; in

Chapter 3 an application of this parametrization will be shown.

In the approach of Vila et al. [19], the damping due to the DWs is expressed

in terms of cumulants expansion up to third order, which represents a correction

to the Gaussian approximation (equation (1.14) is the second order term in the

expansion), and they are extracted from the dynamical matrix calculated with

DFT methods; in Chapter 5 an original test of this approach on Fe-MbCO will

be presented.

1.3 Experimental techniques

XAFS techniques require first of all continuous x-ray over a wide energy range,

which can be provided only by a synchrotron radiation source. Nevertheless, the

development of BioXAS occurred much later than XAFS studies on crystalline

solids, as a consequence of its more demanding experimental requirements that

have been fully satisfied only with the advent of third-generation synchrotron

light sources, in the early 1990s. Metalloproteins belong indeed to the cate-

gory of diluted samples (absorber concentration ≤ 1%), they require therefore a

high-intensity and focussed x-ray beam to give rise to a detectable XAFS signal;

because of dilution their absorpion coefficient must most often be measured in

the fluorescence mode (see Paragraph 1.3.1).

Two major types of beamlines (and relative experimental stations) are avail-

able in synchrotron radiation laboratories:

• Bending magnet (BM) beamlines: a magnet placed on the storage ring

curves the electron beam and causes electrons to emit synchrotron radia-

tion tangentially to the ring. The X-ray radiation obtained in this way is

characterized by moderately high flux (109-1010 photons/s).
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• Insertion device (ID) beamlines: an array of magnets is inserted into a

straight section of the storage ring, producing high-intensity synchrotron

light. The flux of the X-ray radiation in this case is higher (1012-1013 pho-

tons/s).

Two kinds of insertion devices exist: undulators and wigglers. In undulators,

the period of the array of magnets is tuned to the frequency of the radiation

produced by the electrons. Hence, when electrons traverse the structure, they

undergo small amplitude oscillations that interfere with each other, producing

very intense radiation in a narrow energy band. In wigglers instead, the applied

magnetic fields are higher and they are not tuned to the radiation produced by the

electrons; each electron radiates therefore independently, giving rise to a broader

spectrum.

When XAFS spectra are recorded on a BM beamline, practicle problems could

be encountered if the sample is very diluted, because in such case the flux could

be insufficient to record good signal-to-noise (S/N) spectra; however, the flux of

BM beamlines is suitable for the great majority of BioXAS experiments. In ID

beamlines, to the contrary, good S/N spectra are more easily achieved, but atten-

tion must be payed to the preservation of the sample during the measurements;

radiation damage could indeed occur [21], as well as a partial degradation of

the protein structure upon irradiation. Besides the x-ray dose, also temperature

and exposure time concur to activate radiation damage, therefore it is common

practice to irradiate the protein at low temperature and minimize the exposure

time; however, since the effects of radiation damage are clearly visible in the

XANES region, it is always important to check if any changes in the lineshape

occur between following spectra acquired on the same spot of the sample.

1.3.1 Detection modes

The most straightforward way to measure the x-ray absorption coefficient is the

transmission mode, which stems directly from the inversion of equation (1.1). It

requires the direct measurement of the flux of the incoming beam (I0) and of the

transmitted beam (IT ), in order to evaluate the quantity:

µ(E)x = ln
I0(E)

IT (E)
. (1.15)

Fluxes are in general measured by means of ionization chambers, choosing the

gas and its pressure depending on the energy range of interest. It has been

demonstrated [10] that the value µx ≈ 2 is the one that maximizes the signal
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S/N in transmission measurements. Samples must be thin, typically of the order

of 10 µm, and horizontally homogeneous; spectra measured in the transmission

mode usually have a high S/N, resulting in high quality data when it can be

applied.

Figure 1.7: Schematic representation of typical detection geometries for trans-
mission (left panel) and fluorescence (right panel) XAFS experiments.

Unfortunately this is almost never the case for metalloproteins, because in

diluted samples the variations in the absorption coefficient due to the absorbing

metals are not distinguishable from the background. In such cases the fluorescence

detection technique is most often employed: it relies on the physical principle of

radiative de-excitation of the absorber upon photoemission and allows therefore

to collect only the signal due to a specific element; this property makes the fluo-

rescence detection mode particularly suitable for diluted samples. The standard

setup for a fluorescence experiment is shown in figure 1.7: the detector is placed

at an angle of 90◦ with respect to the incoming beam, i.e. in the same direction

of the polarization vector of the beam, since the elastic scattering is minimum

in this direction. In this condition, and for uniform samples, the intensity of

fluorescent radiation revealed by the detector is [10]:

If (E) = I0εf
Ω

4π
· µA(E)

µT (E) + µT (Ef )
(1.16)

where εf is the fluorescence yield, Ω
4π

is the solid angle acceptance of the detector,

µA is the contribution of the absorber A to the total absorption coefficient µT ,

and Ef is the characteristic fluorescence energy. If µA � µT , the intensity of the

fluorescence radiation is proportional to µA, which explains why this technique is

suitable for diluted samples. The fluorescence energies are characteristic of each

metal, and they are conventionally named depending on the energy level of the

electron that undergoes the transition, as illustrated in Figure 1.8. To exploit

15



1.3. Experimental techniques

Figure 1.8: Transitions that give rise to the fluorescence emission.

the selectivity of this technique, the fluorescence detector must be able to isolate

the energy region corresponding to the emission line of the absorber, in such a

way that background signal due to Compton and elastic scattering and to Bragg

peaks do not contribute to the signal.

1.3.2 Standard XAFS beamline setup

In a beamline designed for XAFS experiments, the broad band X-ray radiation

produced by the electron beam accelerated in the storage ring is first of all con-

veyed through a series of optical elements in such a way to produce a monochro-

matic focused X-ray beam; the beam is then conveyed to the experimental hutch,

where an experimental chamber and detection elements for transmission and flu-

orescence experiments are present. A schematic view of the beamline layout is

given in Figure 1.9.

Figure 1.9: Pictorial side view of the basic components of a XAFS dedicated
beamline.

The central element in the optical hutch is the monochromator, which se-

lects the energy E = h̄ω, within a width ∆E, from the incoming white beam.
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Monochromators are based on the principles of perfect crystals, the outcoming

wavelength λ is the one allowed by Bragg’s law:

2dhklsinθ = nλ (1.17)

where dhkl is the distance between crystallographic plans, θ the incidence angle

and n an integer; clearly, not only the fundamental wavelength is reflected but

also the harmonics for which the form factor Fhkl is not zero; the harmonics are

a source of distortion for XAFS. The energy tuning is achieved by varying θ, i.e.

rotating the crystal around an axis parallel to the Bragg plans and perpendicular

to the beam direction. An important parameter for monochromators is the energy

resolution ∆E/E, obtained by differentiating equation (1.17):

∆λ

λ
=

∆E

E
= ∆θ · cotgθ (1.18)

it depends therefore on the angular spread ∆θ, determined by the angular spread

of the incident beam and the intrinsic reflection width of the monochromator; typ-

ical values for ∆E/E are in the range 10−4÷10−5. The exact theory of monochro-

mator physics for design and realization is derived in the dynamical diffraction

framework [22]. In general the monochromator is associated to the presence of

mirrors that reject the harmonics and focus the beam. Harmonic rejection is

based on the principle of total reflection: since the critical angle for total re-

flection depends on the wavelength, it is possible to choose the incidence angle

in such a way to reflect only the fundamental wavelength; moreover, the mirror

surface is slightly bent to focus the beam in the vertical plane.

The sample is mounted on the sample holder in the experimental hutch. Even

if measurements at room temperature can in principle be carried out also in

air, a vacuum system is highly desirable when fluorescence emission has to be

detected, and in particular for low count rates, because it helps to maximize

the fluorescence yield and minimize the air scattering. Moreover, when proteins

are embedded in solid matrices, the vacuum environment reduces the amount

of residual water in the sample and consequently the mobility of the protein,

which would the EXAFS signal to damp more quickly. A temperature regulation

system is always integrated with experimental chambers, with a cooling system

based either on liquid N (77 K) or liquid He (4 K) flow; low temperature is the

ideal condition to measure protein samples, since it lowers the thermal disorder

and minimizes the radiation damage. Several types of fluoresce detectors exist:

inorganic and organic scintillators, solid-state detectors, multi-element energy-
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resolved detectors. The latter are multi-element semiconductor (generally Ge)

detectors, and constitute at present the standard detection system in BioXAS

experiments.

The great majority of the experiments presented in this work has been carried

out at the beamline GILDA BM08 of ESRF. For this reason, GILDA is taken

here as an example of XAS-dedicated beamline and its specifications are recalled.

GILDA BM08 beamline of ESRF. The General purpose Italian beamLine

for Diffraction and Absorption (GILDA) [23] exploits a 0.8 T Bending Magnet

on the European Synchrotron Radiation Facility (ESRF) operating at 6 GeV

with typical currents of 100-200 mA. The beamline is characterized by an energy

resolution ∆E/E ∼ 10−4 and a maximum flux of 1011 ph/s, and operates in the

energy range 5-50 keV. Energy tuning, in the energy range 5-30 keV, is performed

by a double crystal monochromator made of two Si(111) or Si(311) single crystals

(the Si(111) configuration provides higher flux but lower energy resolution than

the Si(311)) employing dynamical sagittal focusing [24]; the horizontal focusing

is achieved by allowing the second Si crystal to bend. Harmonic rejection and

vertical focusing are performed by means of two mirrors, the surface of which is

divided into two parts, one coated with Pd, the other with Pt; the two different

coatings allow to reject the harmonics in the whole 5-30 keV range. The provided

fluorescence detector is a 13-element hyper-pure Ge detector equipped with fast

digital electronics and a peaking time of 1 µs [25].

1.4 Current status of BioXAS

Protein metal sites raise great interest in the scientific community, since they

are responsible for the life-sustaining processes operated by protein complexes.

Nowadays, crystallographic structures are provided for a large number of proteins,

however, a high-resolution structure of the metal site is not always attainable,

neither with XRD nor with NMR; the knowledge of the details of the metal ion

binding, of its electronic structure and oxidation state are most often necessary to

account for the protein function and to face the subject of structure-to-function

relation underlying structural biology. XAFS allows to resolve the geometry of a

cluster of ∼5 Å around the absorber, with a precision of the order of ∼0.01 Å,

therefore, since it was first applied to biomolecules, it has been considered as a

valuable tool to complement crystallographic information. A modern application

of the role of XAFS as a technique complementary to XRD consists in the inte-
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Figure 1.10: Experimental hutch of the beamline GILDA-BM08 of ESRF.

gration of both techniques in one experimental setup, in order to allow in situ

observation of the metal site during diffraction measurements and track eventual

changes in its geometry and/or its oxidation state [26]; in this regard, the com-

bined approach has also been used for the determination of the best experimental

conditions for x-ray crystallography, in order to avoid radiation damage [27]. Be-

sides crystallography, several other techniques have been matched to XAFS to

bring insight into protein structure (reviewed in [28]), like Raman spectroscopy,

anomalous dispersion, and computational chemistry.

Even though its short range contributed to develop the consideration of XAFS

as a complementary technique, in recent years much effort has been put in making

XAS a self-sufficient tool: data analysis softwares and strategies that serve this

purpose are now available or under development, as we will explain in detail in

Chapter 2. However, some limitations are intrinsically included in this technique

and they cannot be overcome with the improvement of data analysis: when several

binding sites for the same metal are present, the recorded XAFS spectrum is

given by their averaged signal, from which the individual contributions cannot

be singled out. This aspect can at present only be treated empirically; in the

case where the metal is exogenously added, as for inhibitory metals, the best

solution is to incubate the sample with sub-stoichiometric amounts of metal, in

order to maximize the occupancy of the highest affinity site. The case of double
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metal sites, instead, can only be treated in the analysis procedure and brings the

disadvantage of a significant increasing of the number of putative models to be

considered.

The most challenging subjects faced at present with XAS as a standalone

technique are probably the time-resolved studies. Time-resolved XAS was ini-

tially conceived in association to dispersive geometry [29], therefore measure-

ments could only be performed in the transmission mode, which made it impossi-

ble to extend the technique to proteins (i.e. diluted samples). A way to perform

pump-probe time-resolved XAS studies in the fluorescence mode was adopted by

Haumann et al. [30]: it consists in the irradiation of the protein sample at a fixed

energy value, corresponding to a significant feature of the absorption spectrum of

the target metal. In this way, the kinetics of the reactions involving the metal can

be tracked, and transient reactions intermediates can be detected, as it was done

for the Mn site of Photosystem II (for a review see [31]). Subsequently, Kleifeld

et al. proposed to trap the protein sample in its transient state by rapid freeze-

quench, in order to increase the time available for fluorescence measurements and

collect full XAFS spectra [32].
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Chapter 2

XAFS analysis methods for

metalloproteins

XAFS allows high resolution (∼0.01 Å) determination of the local structures of

metal sites in proteins, nevertheless the analysis procedure is at present feasible

only for expert users and it is in general complicated by the presence of multi-

ple solutions and by correlation between variables. Moreover, a disadvantage of

XAFS is that, to bring relevant contribution to the knowledge of a protein system,

it often requires a priori information on the protein itself, for example its whole

structure resolved by X-Ray Diffraction (XRD) or Nuclear Magnetic Resonance

(NMR); for these reasons XAFS has often been considered as a complementary

technique.

Only very recently the first ”black-box” approach for BioXAS analysis has

been developed [33], the aim of which is to make the technique available also

to non expert users. However, in spite of the usefulness of this approach in

spreading EXAFS through the protein research community, we believe that also

new users might prefer a non-blind approach to EXAFS analysis. Therefore we

have developed an original analysis method based on a combination of XANES

simulations, observations of recurring spectral features, and parametrization of

the Debye Waller factors based on DFT calculations for mononuclear Zn sites.

This collection of evidences based on physical phenomena helps to reduce the

number of putative clusters to fit to the experimental data and makes the analysis

procedure easier to handle in an insightful way.

In this chapter we introduce the basic steps of a XAFS analysis; at the same

time we present our collection of phenomenological evidences and their validation

on known Zn sites. It all proves that our method can be generalized in order to

lead to the unambiguous interpretation of BioXAS data, with the final objec-
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tive of making this technique free from the need of a priori information. The

results were published as: Giachini et al. Synergic approach to XAFS analysis

for the identification of most probable binding motifs for mononuclear zinc sites

in metalloproteins J. Synchrotron Rad., 2010, 17, 41-52 (reference [34]).

2.1 XANES analysis

The near-edge region of the absorption spectrum is very sensitive to the oxida-

tion state of the absorbing atom and to the 3-dimensional arrangement of first

shell ligands; the measurement of this region of µ(E) is convenient for the user,

because it does not require the atomic background subtraction and it usually

has a high signal-to-noise ratio. On the other hand, the importance of multiple

scattering effects in this region makes the mathematical formulation so compli-

cated that only a few programs are able to fit the XANES spectra with a limited

number of structural models (MXAN [35], FDMNES [5] that implement both

simulation and fitting tools, and FitIt [7] that fits given calculated spectra using

multidimensional interpolation approximation), and they all require a significant

amount of computational time. XANES analysis is at present mainly qualitative,

in particular one monitors some features of the spectra that are considered as

directly related to physical properties of the metal site, for example:

• The edge position changes when the oxidation state of the absorber changes [36,

37]; for example a Fe(II) → Fe(III) transition in a non-heme Fe compound

causes an energy shift of the order of 2-3 eV [38]. The edge position is

therefore monitored also when the oxidation state of the absorber is not

the direct target of the experiment, in order to check if the sample has

undergone radiation damage.

• Some pre-peak features are related to transitions that are forbidden by the

selection rule ∆l = ±1, derived in the dipole approximation [39]. Since the

selection rule holds strictly only for atomic orbitals with spherical geometry,

the further the coordination sphere of the absorber is from sphericity, the

higher will be the intensity of the pre-peak.

• The correlation between the white-line (WL) intensity and the coordination

number is very well documented for metalloproteins for a wide variety of

absorbing atoms [40, 12, 41, 42, 43]. In particular, it has been observed that

the WL intensity increases with the coordination number. The existence of
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such correlation can be understood qualitatively in the framework of molec-

ular orbital theory. In fact, the density of final states due to unoccupied

molecular orbitals is expected to increase, for similar ligands with similar

bond lengths, with the numbers of neighbors; since the absorption cross

section is directly proportional to the density of final states, the observed

correlation is reasonable.

These features are in general compared to the corresponding ones in reference

compounds; this approach is very effective, but since the model compounds are

chosen on purpose to be compared with the particular system under study, it

often lacks generality. In order to obtain more general information about the

XANES features of Zn protein sites, we performed ab initio simulations of the

spectra relative to a selected set of Zn binding motives; the approach consists

in identifying the commonest binding motives occurring in data bases and sys-

tematically simulating their XANES, in such a way to have a spectra data base

besides the structural one. Some information from the simulated spectra can be

extracted and applied whenever an unknown binding site is investigated.

2.1.1 Database search

Before tackling the XANES simulations, a data bank search is needed to deter-

mine which starting clusters should be considered; this can be achieved by means

of the Metalloprotein Database and Browser (MDB, [44]) statistical analysis fea-

ture and of the MESPEUS database [45], both available on the web with open

access. For each chosen metal and coordination number, the MDB search gives

an output histogram where the commonest sites and their frequencies are repre-

sented. We chose only mononuclear Zn sites where no ligands other than amino

acids from the protein are involved; for each coordination number, the binding

motives encountered in more than 15 PDB entries, reported in Table 2.1, were

singled out to form the initial set of 16 clusters to be simulated. The set included

only Zn sites with a coordination number of 3, 4 and 5, it was therefore completed

by adding the motif His His H2O H2O Asp Asp, which is the commonest one for

coordination 6, with 6 PDB entries.

We notice that no Cys residues appear in 5- and 6- coordinated clusters iden-

tified so far. To extract information about the presence of Cys in these sites, a

further database search can be done: searching Zn-Cys bonds in high resolution

(≤ 2.0 Å) crystal structures where Zn is 5-coordinated, by means of MESPEUS,

we encountered 49 protein structures presenting this pattern, 7 of which have 2

23



2.1. XANES analysis

Coordination number Binding motifs Counts in MDB

3

His His His 39
Asp His His 19
Cys Cys His 17

His H2O H2O 17

4

Cys Cys Cys Cys 484
Asp His His His 187
Cys Cys Cys His 183
Cys Cys His His 157
His His His H2O 74
Cys Cys His H2O 56
Glu His His H2O 27
Cys Cys Cys H2O 22
Asp Asp His Ser 16

Asp His H2O H2O 20
Asp Asp His His 16

5
Glu Glu His His H2O 35
Asp Asp His His His 19

Table 2.1: Ligand patterns for zinc metalloproteins with more than 15 PDB
entries according to the MDB. For the coordination number 6 all the ligand
patterns have less than 15 PDB entries in the MDB

Cys in the Zn cluster while in the remaining 42 have only one Cys out of five

ligands. The same search for 6-coordinated Zn yields no results. We can therefore

neglect the presence of more than two Cys in 5-coordinated Zn clusters and of

Cys at all in 6-coordinated clusters.

Finally, since Zn clusters with a low number of S and a high number of N/O

ligands did not appear among the commonest clusters retrieved through the MDB

search, and since the presence of Cys is known to have a crucial influence on XAFS

spectra [46], we performed a further set of simulations on a representative set of

clusters. For each coordination number N, the first binding motif with one Cys

out of the N ligands indicated by the MDB statistical analysis tool was selected.

The clusters were: Cys His His for N=3 (8 PDB entries), Cys His His His for

N=4 (12 entries), Cys His Asp H2O H2O for N=5 (4 entries).

2.1.2 XANES spectra data base

Ab initio XANES simulations of protein metal sites, when performed using pro-

grams based on the muffin-tin approximation, often provide poor agreement with

experimental data, especially in the case of tetrahedral sites [12, 13]. This can

be ascribed to the remarkable difference between the potential experienced by
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the photoelectron in the tetrahedral site and the spherical potential represented

by the muffin-tin approximation; this difference is less pronounced in octahedral

sites.

We chose therefore to make use of the Finite Difference Method (FDM), free from

muffin-tin approximation, implemented in the FDMNES program [5] to perform

the XANES simulations.

In order to build input clusters for simulations, we need to know first of

all the binding geometry for each coordination number; in the case of Zn, the

ideal stereochemistry is trigonal pyramidal for N=3, tetrahedral for N=4, trigo-

nal bipyramidal or square-based pyramidal for N=5, octahedral for N=6 [47]. It

is important to consider that metal coordination shells in proteins are in general

quite far from the ideal geometry determined by coordination chemistry, neverthe-

less there is no evidence to help us deciding what kind of deformation the cluster

should present; so for a systematic approach it is reasonable to use the regular

models. In addition we need the internal structural parameters from amino acids;

we adopted the bond length and angles provided by Engh and Huber [48], derived

from a statistical survey of X-ray structures of small compounds from the Cam-

bridge Structural Database (CSD). Finally, as metal-ligands distances we chose

the target distances reported in Table 2.2, provided by M.M.Harding and based

on the combined analysis of CSD and Protein Data Bank (PDB) determined at

or near atomic resolution [49, 50, 51, 52, 53].

OH2O OAsp/Glu NHis SCys
monodentate

(Å) (Å) (Å) (Å)
Fe 2.09 2.04 2.16 2.30
Cu 2.13 1.99 2.02 2.15
Zn 2.09 1.99 2.03 2.31

Table 2.2: Metal-ligand distances provided by M.M.Harding [53]

For each selected pattern mentioned in paragraph 2.1.1, the corresponding

target cluster was built according to these criteria and the XANES spectrum was

simulated; in order to be compared, all of the simulated spectra were normalized

at their value corresponding to the energy of 80 eV after the edge. The resulting

set of simulated spectra, the majority of which is shown in Figure 2.1, can be

used to identify recurring spectral features and can help to extract information

about unknown Zn sites just observing its XANES spectrum.
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Figure 2.1: XANES simulations performed with the Finite Difference Method
implemented in FDMNES for the 17 commonest Zn binding motives retrieved
through a MDB search. Each spectrum was normalized to its value corresponding
to the energy of 80 eV after the edge.

2.1.3 Correlation between spectral features and ligation

patterns

The correlation between WL intensity and coordination number encountered in

several experiments is systematically reproduced by simulations. In particular,

observing the spectra in Figure 2.1, we notice that the maximum of the normalized

simulated absorption coefficient is never higher than 1.5 when Zn occupies a

tetrahedral site, in agreement with Feiters et al [40] on experimental XANES

spectra of model compounds, and the upper limit of 1.5 is reached by clusters

where no Cys residues are involved. To the contrary, for coordination numbers

of 5 and 6 (see Figure 2.2(a)), we never observed in normalized spectra a WL

intensity lower than 1.6.
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Figure 2.2: Simulated Zn K-edge XANES spectra for binding motives involving
the same ligands but with different coordination numbers. Clusters reported in
panel (a) present Zn first shells characterized only by ligands with low Z donors
(His, carboxylic acids, water molecules); in clusters reported in panel (b) Zn has
a mixed first shell, binding one S from a Cys residue and N-1 low Z ligands.

In Figure 2.2(a) we show the simulated XANES spectra for a set of clusters

containing the same ligands (His, carboxylic acids and water molecules) but char-

acterized by different coordination numbers and coordinating geometries. This

clearly shows that when similar ligands are involved, the WL intensity increases

progressively with the coordination number. The clusters giving rise to the spec-

tra reported in Figure 2.2(b) are characterized by the presence of one Cys out

of N ligands: we see that the progressive increase of the WL intensity with the

coordination number holds also in this case; on the other hand we notice that the

WL of the spectrum relative to N=4 with one Cys is lower than the one of the

spectrum relative to N=3 with no Cys.

The presence of Cys residues has a strong influence on the site projected den-

sity of states, and consequently on the XANES spectrum. This is reasonable,

since the donor atom for Cys is S, the atomic number of which (Z=16) differs

radically from the one of the other usual donors (N, Z=7 and O, Z=8). Con-

sidering the coordination number N=4, for which a wide number of simulations

are available (Figure 2.1, left panel), we notice that in the presence of Cys the

normalized absorption coefficient extends over a narrower range of values than

in the absence of Cys: the difference between its maximum value (reached at or

in the vicinity of the white line) and its minimum value (corresponding to the

post-edge trough) is indeed lower. Moreover, increasing the number of Cys in the

cluster, the post-edge minimum appears at progressively higher energy values (up

to a maximum of 40 eV after the edge for the 4Cys cluster). These differences

are not marked enough to establish an absolute criterion, nevertheless they can
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be taken into account any time the XANES of an unknown Zn site is compared

to reference spectra.

2.2 EXAFS analysis in the Rigid Body Refine-

ment scheme

An important step for BioXAS as a technique for structural investigation of metal

sites in proteins was reached with the introduction of the Rigid Body Refinement

(RBR) scheme for data analysis [4]. The RBR consists in considering the amino

acid residues as structural units, allowing them to move rigidly with respect to

the absorber. In a quantitative EXAFS analysis it corresponds to the definition

of geometrical constrains in the refinement of each atomic position, in such a

way to define at most two degrees of freedom for each residue: rigid translation

and rotation with respect to the absorber (see Figure 2.3). The analysis package

EXCURV98 [54] is currently the only one that implements RBR by including a

data base of constrains for each amino acid residue, while in other packages the

constrains must be introduced by hand.

Figure 2.3: Rotation of a Glu residue taken into account in the Rigid Body
Refinement EXAFS analysis. The atom marked as M is the metal, the initial
positions of the Glu atoms are drawn with continuous lines, the final positions
after rotation with dashed lines.

In this paragraph an outline of the EXAFS analysis procedure is given; the

EXAFS data presented in the next chapters have been treated with this ap-

proach, introducing only slight variations whenever required by the specific sci-

entific problem. Although a great number of EXAFS analysis packages exists,

special attention will be given to the IFEFFIT package [55] and its graphic in-

terfaces Athena and Artemis [56], since they have been used for the data analysis

relative to this work.
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Raw data treatment. Once the experimental data have been collected, the

first step to undertake an EXAFS analysis is to extract the EXAFS function of

equation (1.5) by subtraction of the atomic background. Athena implements the

program AUTOBK [57], that automatically performs background subtraction on

the raw absorption coefficient µ(E). The EXAFS function can be extracted using

the relation:

χ(E) =
µ(E)− µ0(E)

∆µ0(E0)
(2.1)

where µ0(E) is the atomic-like absorption coefficient past the edge and ∆µ0(E0)

is the jump in the absorption coefficient at the edge step. The more familiar

function χ(k) is immediately recovered by using equation (1.4), once the edge

energy E0 has been evaluated; E0 is empirically determined as the energy value

of the first maximum of the derivative of µ(E). The normalization factor ∆µ0(E0)

is then derived, by taking the difference between the estrapolated pre-edge and

post-edge lines at the threshold energy E0 (see Figure2.4).

Figure 2.4: Example of background extraction on the Zn K-edge absorption co-
efficient of Thermolysin. The jump is evaluated from the estrapolated pre-edge
(green trace) and post-edge (purple trace) lines; a polynomial spline (red trace)
mimicking the atomic background is subtracted. The k3 weighted extracted signal
is shown in the lower panel.

Finally the atomic background must be determined; this is the most trou-
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2.2. EXAFS analysis in the Rigid Body Refinement scheme

blesome part of the signal extraction, since the energy dependence of µ0(E) is

unknown. AUTOBK approximates it using a cubic spline with a number of knots

Nbkg equal to

Nbkg = 1 +
2∆kRbkg

π
(2.2)

where ∆k is the k-range of data and Rbkg is the lower limit of the range of

significant data in the Fourier transformed signal χ̃(R). Equation (2.2) is derived

from information theory [58] and it represents the number of degrees of freedom in

the data below Rbkg. In this range, typically [0, 1] Å (see for example Figure 2.5),

no contribution can be given by the first neighbors of the absorber, therefore the

Fourier transformed spectrum should in principle be flat. The coefficients of the

spline are then chosen in such a way to minimize the components of the signal

below Rbkg.

First-shell analysis. The EXAFS formula (1.12) clearly shows that the EX-

AFS signal can be described by a sum of sine waves, each one characterized by

an amplitude and a phase; as such, it can be Fourier transformed in the space of

distances R in order to separate its frequency components. The resulting signal

χ̃(R) presents a series of peaks that represent the contributions of each shell of

atoms to the post-edge oscillations; examples are given in Figure 2.5. Neverthe-

less, the EXAFS Fourier Transform (FT) should not be mistaken for the Radial

Distribution Function (RDF), from which it differs for several reasons: first of

all, in the EXAFS FT the central R value of a peak due to a shell of atoms does

not correspond to the actual distance of the atoms from the absorber. This is a

consequence of the phase shift (2δc + Φ in equation (1.12)) caused by the interac-

tion between the photoelectron and the scattering atoms, and it depends on the

atomic number of the atoms. Moreover, Multiple Scattering signals contribute

significantly to the peaks of χ̃(R), at R positions corresponding to their effective

length corrected by the phase shift, and the finite mean free path of the photo-

electron causes the peaks intensity to decrease with R. A detailed description of

the properties of the FT of an EXAFS signal is given in reference [59].

Concerning metal sites in proteins, the analysis of the first peak of χ̃(R) is

very useful to identify the possible presence of S atoms in the metal coordination

sphere. The possible donors for a metal located in a protein, when no molecules

other than amino acids and water from the matrix are considered, are N, O,

and S; the metal-N and metal-O equilibrium distances are comparable to each

other for many metals, as confirmed by the target distances reported in Table 2.2,

while they differ more significantly from the metal-S distance. In addition, the
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Figure 2.5: Magnitude of the Fourier transformed Zn K-edge EXAFS signal for
three different protein samples: Cytochrome oxidase (COX, black trace, Zn bind-
ing motif: 4Cys), Wild Type Transhydrogenase incubated with exogenous Zn
(WT-Zn TH, red trace, Zn binding: 1Cys 2His 1Asp/Glu) and Thermolysin
(TLS, green trace, Zn binding: 2His 1Glu 1H2O). Dotted vertical lines represent
the first-shell fitting range relative to the WT-Zn TH spectrum.

phase shifts and backscattering amplitude produced by N/O are very similar,

while they differ dramatically from the ones due to a S atom. This results in a

spread in the distances for mixed first shells (i.e. containing both N/O and S

atoms), causing the first peak of χ̃(R) to broaden significantly. As an example,

in Figure 2.5 the FT EXAFS spectra of three tetrahedral Zn sites composed by

different ligands are reported: Zn in Thermolysin is bound only to N/O and

its FT spectrum shows a narrow first peak centered at ∼1.6 Å; in Cytochrome

Oxidase it is bound only to S atoms and the peak is centered at ∼1.9 Å; finally, in

Wilde Type Transhydrogenase it binds 3 N/O and 1 S atom, therefore the peak

is centered at ∼1.6 Å, but it shows as well a tail that extends till ∼2.0 Å.

The experimental evidence illustrated above can be taken into account in a

qualitative analysis based on the comparison with reference spectra, but they can

also provide quantitative information by means of a first shell fit. This means that

a fit of the first shell peak can be performed with any EXAFS analysis program:

once the coordination number N has been estimated by XANES analysis and the

R range has been properly chosen (see dotted lines in Figure 2.5), the number of

S atoms n can be set as a free parameter of the fit. The number of O/N will be

constrained to be N-n, but any attempt of distinguishing between the two atoms

could be misleading at this stage of the analysis [46], considering their similar
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scattering properties and the fact that the information content in this narrow R

range is limited.

Presence of His residues. It is well known that His residue, due to its ring

structure, generates multiple scattering (MS) contributions of significant ampli-

tude that contribute at high distances (≥ 3 Å) in the FT [60, 61]; to the contrary,

contributions in this region coming from other amino acids are very weak. There-

fore the Fourier Transform (FT) of the experimental spectrum contains important

information about the number of His residues present in the binding cluster from

which the XAFS signal is generated. The amplitude of multiple scattering con-

tributions at high R values is strongly influenced as well by two more factors: the

temperature-dependent Debye Waller factors associated to the MS paths and the

k-range of the data in which the FT is performed. It all suggests that the number

of His residues in an unknown metal site can by determined by comparing the

amplitude of high-R multiple scattering contributions in its FT spectrum with

the amplitude of such contributions shown by the spectra of reference metal sites,

for which the number of His is known; however it must be remembered that the

comparison is allowed only when the spectra have been collected at the same

temperature and Fourier transformed in the same k-range.

For mononuclear zinc proteins at room temperature, we have investigated

such relationship in a systematic way by performing many theoretical simula-

tions based on the target clusters contained in the database of Table 2.1 and by

comparing these results with experimental data. The DW factors of the theoreti-

cal simulations were kept fixed at the values corresponding to T=300 K provided

by DFT calculations [18]. The range used for the FT was 2-12 Å−1. From these

simulations and experimental data it appears that, for mononuclear zinc bind-

ing sites, the region in the FT which contains, almost exclusively, contributions

coming from His residues is included between 3 and 4 (see Fig. 2.6).

Moreover we observe a systematic increase of the quantity

I =

∫ 4

3

FT [k3χ(k)]dk (2.3)

with the number of His present in the cluster. The evaluation of the quantity I

for the simulated EXAFS spectra of a chosen set of clusters allowed to identify

a criterion that provides the estimation of the number of His bound to Zn. The

relation is summarized in Table 2.3 and allows to recognize the number of His

residues in an unknown Zn site by simple calculation of I, when the EXAFS

32



2.2. EXAFS analysis in the Rigid Body Refinement scheme

Figure 2.6: Magnitude of the Fourier Transform of experimental data collected
at room temperature for Thermolysin (TLS) and Super oxide Dismutase (SOD).
The shadowed areas overlapped to the spectra represent the sum of the His contri-
butions generated in the EXAFS simulations of the binding motives His His Glu
H2O (TLS) and His His His Asp (SOD). It is noticeable that, in both cases, the
contributions due to His residues cover the quasi-totality of the MS contributions
in the region 3-4 Å.

spectrum is measured at room temperature and Fourier transformed in the k-

range [2, 12] Å−1. In Figure 2.6 the FT spectra of Thermolysin (TLS) and Super

oxide Dismutase (SOD), chosen as reference proteins, are reported: as shown by

X-ray crystallography, and confirmed by XAFS analysis, both proteins contain a

mononuclear tetrahedral Zn site, the binding motif of which is His His Glu H2O

in TLS [62] and His His His Asp in SOD [63]. The values of I relative to the

experimental spectra are 1.1 for TLS and 1.5 for SOD, and they belong to the

intervals predicted by simulations for a number of His equal to two and three

respectively. The sum of the contributions due to His residues in theoretical

calculations are overlapped to the experimental spectra in Figure 2.6 to prove

that the theoretical values of I reproduce pretty well the experimental evidences;

the negligible difference between the two could be due to the minor multiple

scattering contributions given by non His residues.

k-space fits. After having collected information about the number and the na-

ture of first shell ligands with the methods described above, all of the possible

amino acid clusters consistent with these information can be built and fitted to

the experimental signal. Depending on the requirement of each specific experi-
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coordination number number of His interval of I values

3, 4
1 0.4 - 0.8
2 0.8 - 1.2
3 1.2 - 1.6

5, 6
1 0.5 - 1.0
2 1.0 - 1.5
3 1.5 - 2.0

Table 2.3: Correlation between the value of the integral I defined in equation (2.3)
and the number of His residues present in a Zn binding motif. In the intervals re-
ported in the third column, the lower limit is included, the upper one in excluded.
The correlation was derived for T=300 K, by means of EXAFS simulations for
Zn clusters characterized by a different number of His. The k-range [2, 12] Å−1

was used for the Fourier Transform.

ment, the clusters can be chosen between the commonest ones retrieved through

database searches, or they can be built considering all permutations of the pos-

sible ligands for the metal of interest. The last option is the most demanding

because a large number of putative models are taken into account, however it

allows to discover eventual binding sites not encountered yet in the PDB. A very

useful list of the possible amino acid ligands for each metal, derived from obser-

vations and statistical analysis in the PDB and the CDS [49, 50, 51, 52, 53], is

available on the web (http://tanna.bch.ed.ac.uk/).

For the putative clusters, initial geometries can be built as described in para-

graph 2.1.2 for the target clusters used for XANES simulations, and the list of

spatial coordinates and atomic numbers generated can be processed through a

program able to calculate ab initio scattering amplitudes and phases. For the

studies presented in this work, we used feff8.2 [64] for ab initio calculations,

combined with Artemis [56] to carry out the fitting procedure for each putative

cluster.

Fits are performed directly in the k space, with a k weight of 3. The main

problem encountered in EXAFS analysis is the presence of multiple solutions for

the set of parameters to be determined, which causes the system to converge to

local minima that strongly depend on the initial values; this often happens when

metal-ligands distances and DW factors are set as free parameters at the same

time. To attenuate this problem, we propose two possible solutions:

1. Making use of a parametrization based on DFT calculations for the Debye

Waller factors as a function of the distance from the absorber.

2. Using a step-by-step procedure to fit alternatively distances and DW fac-

tors.
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The first option relies on the possibility to employ the parametrization of

the DWs provided by Dimakis and Bunker for amino acids bound to Zn [17, 18]

and for Fe2+-Porphyrin complexes [20]. According to the parametrization, Single

Scattering and the most effective Multiple Scattering DW factors can be written

as:

σ2(∆R, T ) = σ2(R0, T ) + A(T )∆R +B(T )∆R2 (2.4)

where R0 is the equilibrium distance predicted by DFT calculations and provided

by the authors, σ2(R0, T ), A(T ) and B(T ) are third order polynomials the co-

efficients of which are tabulated for each amino acid. Once the temperature is

defined, the value in equation (2.4) is a function of the displacement from the

equilibrium distance, and it can be inserted into the analysis procedure as a con-

strained parameter. In Chapter 5 we will also present a valuable procedure aimed

to calculate DWs from the dynamical matrix obtained with DFT methods, meant

to overcome the need of given values.

When ab initio calculated values are not available, or when the scientific issue

requires to fit the DW factors, a step-by-step fitting procedure can be applied [65];

this has the effect to minimize the correlation between structural and dynamical

parameters, avoiding the convergence to local minima. The steps are basically

three, and they can be summarized as follows:

1. Metal-amino acid distances and bending angles are fitted in the Rigid Body

Refinement scheme, starting from their target values, whereas the DWs are

kept fixed at reasonable values.

2. Structural parameters are set to the best fit values from the previous step

and DWs are allowed to vary.

3. DWs are set to the best fit values from the previous step and structural

parameters are fitted again.

The DWs to be fixed in the first step can be derived either from the litera-

ture (when available) or from ab initio simulations. The fitting model can be

considered appropriate only if in step 3 the system converges to the previously

determined values; moreover step 3 has the function to improve the precision of

structural results.

35



2.2. EXAFS analysis in the Rigid Body Refinement scheme

Statistical choice of the most probable cluster. The fitting criterion we

used, relies on the minimization of the R factor, defined as:

R =
∑
i=1,Np

(k3
i χ̃idata

− k3
i χ̃ifit

)2/
∑
i=1,Np

(k3
i χ̃idata

)2 (2.5)

where Np is the number of experimental points and χ̃ is the EXAFS function.

When different fitting models are applied to the same set of data, a confidence

analysis is needed to test the statistical significance of eventual differences in

the resulting goodness-of-fit. Fits are compared on the basis of the reduced chi-

square, i.e. χ2
ν , defined as [66]:

χ2
ν =

1

ν

Nind

Np

∑
i=1,Np

(
χ̃idata

− χ̃ifit

σ

)2

(2.6)

where σ is the noise in the dataset, p is the number of free parameters and

ν = Nind − p is the number of degrees of freedom in the fit; Nind is the number

of independent points defined as [66]:

Nind =
2∆k∆R

π
+ 2 (2.7)

where ∆k and ∆R are the intervals in the real and reciprocal space in which

the fit has been performed. The noise σ can be evaluated either from Poisso-

nian statistics, by calculating the square root of the total number of counts, or

empirically as the standard deviation of the data in the high-k region, where

structural oscillations are no longer detectable. Even in the presence of ”good”

fits, i.e. at relatively low values of the R factor, the values calculated for χ2
ν are

usually much larger than 1. This situation is commonly encountered in XAFS

analysis and attributed to small inadequacies of the model and/or to systematic

experimental errors [67]. In view of this, the standard fluctuation in χ2
ν (which is

equal to
√

2/ν) can be rescaled to χ2
ν ·
√

2/ν [66, 67]. The comparison between

two different fits of the same data set (corresponding to two different clusters, a

and b) is performed according to the following criterion [67]: fit to cluster b is

considered significantly better than fit to cluster a when

(χ2
ν(a)− χ2

ν(b)) ≥

√
2

[
(χ2

ν(a))2

ν(a)
+

(χ2
ν(b))

2

ν(b)

]
(2.8)

which corresponds to the confidence level of 1σ.
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2.3 Testing the method on model proteins

The XAFS analysis procedure described in this chapter consists in a collection of

methods and tools originated by the efforts of several groups dedicated to XAS

research; however, the way they are combined and complemented with the trans-

lation of empirical observations into quantitative criteria is original. In the last

years we have applied this synergic approach, or slightly different versions of it,

to investigate unknown Zn2+ binding sites in several charge translocating protein

complexes, namely: inhibitory Zn2+ sites in photosynthetic Reaction Center [68],

in Cytochrome bc1 complexes [13] and in Transhydrogenase (Chapter 3 and ref-

erence [69]), and the structural Zn2+ site of NADH-Q oxidoreductase [70]. In

the totality of these systems, our approach brought to the characterization of

the metal binding motif. In order to achieve a final validation of the method,

we applied it to three zinc sites whose structure was already known from protein

crystallography:

1. The structural Zn site of bovine heart Cytochrome oxydase (COX)

2. The catalytic Zn site of Thermolysin (TLS)

3. The catalytic Zn site of Superoxide Dismutase (SOD)

COX is the terminal component of the respiratory chain: it catalyzes the oxida-

tion of cyt c reduced by the cyt bc1 complex, reducing O2 to H2O and pumping

4 protons across the mitochondrial membrane. There are a wide number of crys-

tallographic structures available for bovine heart COX in different states (fully

oxidized, fully reduced, azide-bound, and carbon monoxide-bound) with resolu-

tion up to 1.8 Å [71, 72, 73]. All the available crystallographic structures show the

existence of an endogenous Zn2+ bound to subunit Vb. The local structure around

the zinc ion, reported in all the crystallographic structures, is formed by 4 cys-

teines; this binding motif is the commonest in nature. TLS is a thermostable neu-

tral metalloproteinase enzyme produced by the gram-positive bacterium Bacillus

thermoproteolyticus. It contains a zinc site which catalyzes the hydrolysis of pep-

tide bonds involving hydrophobic amino acids. The identification of the amino

acids that bind to the catalytic zinc ion was allowed by crystallographic analy-

ses [74] and confirmed by XAFS [75]. These studies show that the zinc cluster is

formed by two His, one Glu and one water molecule (H2O). SOD catalyzes the

dismutation of superoxide into oxygen and hydrogen peroxide. Crystallographic

data have shown the existence of a catalytic zinc site formed by three His and

one Asp [76, 77].
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2.3.1 Materials and Methods

Sample preparation. Bovine heart cytochrome c oxidase (COX), containing

10 nmoles of heme a+a3 mg−1 protein, was purified as described in [78]. Ther-

molysin (TLS) and CuZn superoxide dismutase from bovine eritrocytes (SOD)

were purchased from Calbiochem and Sigma-Aldrich, respectively. TLS was re-

crystallized as described in [79] . Measurements were performed on polyvinyl

alcohol (PVA) protein films, prepared by adding 350 µL of a 10 % solution of

PVA (Fluka) to 1 ml of 80 µM COX or to 1 ml of TLS suspension (15 mg/ml

protein) or SOD suspension (3mg/ml protein), respectively. After mixing, the

protein-PVA solutions were layered into 3×3×0.3 cm3 teflon holders and dried

under nitrogen flow until PVA films were formed.

XAFS data collection and analysis. Zn K-edge XAFS measurements were

performed at the BM8 GILDA beam-line of the European Synchrotron Radiation

Facility (ESRF), the specifications of which are described in Paragraph 1.3.2.

The photon flux was of the order of 1010 ph/s and the spot size ∼1×1 mm2. The

analyzed spectrum for COX was obtained from a scan with an integration time

of 15 s/point with a maximum number of counts per channel of 6 × 103. The

analyzed spectrum for TLS was obtained from the average of two scans for a total

integration time of 30 s/point. The maximum number of counts per channel was

3 × 104. For SOD the analyzed spectrum was obtained from the average of 3

scans for a total integration time of 45 s/point. The maximum number of counts

per channel was 6 × 103.

The analysis was performed following the steps of the method described in

this chapter, using feff8.2 for theoretical calculation of amplitudes and phases and

Artemis for the fitting procedure; the putative clusters were identified amongst

the ones reported in Table 2.1. The value of S2
0 was calculated by feff8.2 from

atomic overlap intervals, and its value was kept fixed during the fitting procedure.

For each putative cluster, metal-amino acids distances and bending angles were

set as free parameters of the fit, together with a shift in the energy origin ∆E0

common to all paths; when more than one amino acid of the same nature was

present in the putative cluster, they were treated in a non-degenerate mode, i.e.

to each amino acid two independent structural parameters (distance from the

metal and bending angle) were assigned. The Debye Waller factors were set as

constrained parameters in the fit, by making use of the parametrization (2.4).
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2.3.2 Results

The normalized XANES spectra for the three Zn sites are reported in Fig-

ure 2.7(a). Their WL intensities are all lower than 1.5, which indicates that the

putative clusters should be searched amongst the 3- and 4-coordinated binding

motives.

Figure 2.7: Panel (a): experimental XANES spectra for COX, SOD and TLS
normalized at their value at 9740 eV. Panel (b): experimental k3 weighted EXAFS
functions (open circles) for COX, SOD and TLS. Continuous lines represent the
fits obtained for the binding motives Cys Cys Cys Cys, His His Glu H2O and His
His His Asp for COX, TLS and SOD respectively. Vertical dashed lines indicate
the fitting range 2.3-12.3 Å−1 used for all fits.

The analysis for COX is straightforward, since a fit of the first shell peak

of its FT spectrum indicates the presence of S atoms in the Zn coordination

sphere, whereas no N and/or O are detected. The only binding motif included in

Table 2.1 and consistent with these information is Cys Cys Cys Cys ; this model

provides a very good k-space fit of the EXAFS function of COX, as shown in

Figure 2.7(b), with an R factor of 3.7 and a reduced chi-square of 50±19. If the

list of putative clusters is extended to less common or occasionally found binding

motives (at least 5 PDB entries in the MDB), the cluster Cys Cys Cys must be

taken into account as well and fitted to the data: it provides a worse fit than

the previous one, with an R factor of 6.3 and a reduced chi-square of 87±31.

When the significance of the difference in the goodness-of-fit is tested by means

of the criterion (2.8), the actual binding motif Cys Cys Cys Cys is unambiguously

chosen as the most probable one.

Concerning TLS, first shell analysis excludes the presence of S atoms. Multiple

Scattering contributions in the region 3-4 Å, shown in Figure 2.6, reveal the

presence of His residue; their intensity, calculated with equation (2.3), is I=1.1,
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which implies that two His residues are present, by simply comparing this value

with the intervals reported in Table 2.3. Matching the information, the putative

Zn binding clusters singled out from the list in Table 2.1 are: His His Asp, His His

Glu H2O and His His H2O H2O. The R factor and reduced chi-square relative to

the fit of the TLS experimental spectrum with each putative model are reported

in Table 2.4: His His Glu H2O is identified as the best fitting model, and the

chi-square test confirms the significance of the difference in the goodness-of-fit.

Protein Binding Motif Rfactor (%) χ2
ν

TLS
His His Asp 10 119 (35)

His His H2O H2O 5 69 (21)
His His Glu H2O 4 35 (11)

SOD
His His His 10 138 (43)

His His His H2O 7 97 (31)
His His His Asp 5 60 (18)

Table 2.4: Values obtained for the R factor, the reduced chi-square and its stan-
dard fluctuation χ2

ν ·
√

2/ν for the models selected for TLS and SOD.

The same analysis procedure is applied to SOD; the presence of Cys residues is

excluded by first shell analysis and value of I is calculated as 1.5, which belongs to

the range of values associated with the presence of 3 His residues. The putative

clusters, chosen amongst the commonest patterns (more than 15 PDB entries,

Table 2.1) are therefore: His His His, His His His Asp, His His His H2O. The

R factor and reduced chi-square relative to the k-space fits based on each chosen

model are reported in Table 2.4; the best fitting model is again the actual one,

His His His Asp, that is significantly better than the models His His His and His

His His H2O within confidence intervals of 2σ and 1σ respectively, according to

the chi-square test of equation (2.8). Best fits given by the most probable model

for each Zn site are shown in Figure 2.7(b).

Concerning the structural parameters resulting from these fits, comparisons

with PDB structures and extension of the method in order to consider also occa-

sionally found binding motives, we address the reader to our recent paper treating

in detail the test of this analysis method [34]. With the summary presented here,

we wish to demonstrate the effectiveness of the method in the characterization of

unknown binding sites, in order to put the basis for the treatment of the diverse

biophysical problems encountered in this and in future works. Although the ef-

forts we put into the determination of criteria that correlate features of XAFS

spectra to properties of the metal binding site were dedicated only to Zn sites,

it is worthwhile to notice that the same approach could be undertaken for any
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metal, leading of course to different sets of criteria.
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Chapter 3

Inhibitory metal sites in

proton-translocating proteins

Divalent metal ions, such as Zn2+ and Cd2+, inhibit the catalytic cycle of a num-

ber of important membrane proteins, including the cytochrome bc1 complex [80]

cytochrome oxidase [81, 82], and the bacterial photosynthetic reaction center [83].

There is evidence that in each case the metal ions block proton-transfer steps.

In photosynthetic reaction centers the metal-ion binding site was located at the

cytoplasmic surface of the protein by x-ray crystallography. The Zn2+-ligand

cluster is formed by the imidazole side chains of two His residues, by the side

chain of an Asp, and most likely by a water molecule [84]. The tetrahedral coor-

dination geometry was subsequently confirmed by x-ray absorption fine structure

(XAFS), which allowed a high-resolution determination of the bond lengths [68].

Cd2+ can also bind at this site but in an octahedral geometry by a cluster which

involves the same amino acid residues and possibly four water molecules [85]. The

x-ray crystallography and XAFS data provide detailed structure information on

the mechanism by which Zn2+ and Cd2+ obstruct proton entry into the reaction

center protein [83, 84, 85].

Biochemical studies indicate that a similar mechanism may be relevant to

metal-ion inhibition of other H+-translocating redox complexes [80, 81, 82, 86].

Structural information on the high-affinity Zn2+-binding sites of cytochrome bc1

complex [87, 13] and of cytochrome c oxidase [71, 88] are consistent with the

proposed inhibition mechanism, and indicate that at least one His residue is

always present in the metal binding cluster.

Low concentrations of Zn2+, Cd2+ and other metal ions were recently shown

to inhibit specific catalytic steps in transhydrogenase [89, 90]. This enzyme,

found in the inner mitochondrial membrane of animal cells and in the cyto-
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plasmic membrane of many bacteria, couples a redox reaction, hydride transfer

between NAD(H) and NADP(H), to proton translocation through the mitochon-

drial membrane. Since no crystal structure exists for the transmembrane do-

main of the enzyme, the metal-ion binding site cannot be located by protein

crystallography; however, Attenuated Total-Reflectance Fourier-Transformed In-

frared (ATR-FTIR) spectroscopy studies [90] suggested that the highly conserved

residue βHis91 is somehow (directly or not) involved in Zn binding. The presence

of at least one His residue in the metal coordination sphere is expected, since it

would confirm that the proposed mechanism of inhibition, based on competition

between metal and H+ binding to His residues, holds also for transhydrogenase.

In this chapter we present a XAFS characterization of the Zn2+ binding site in

wild type transhydrogenase (TH) and its βHis91→Lys (βH91K) mutant, aimed to

bring insight into the mechanism of metal inhibition; the results were published as:

Veronesi et al. X-ray absorption studies of Zn2+-binding sites in Escherichia coli

transhydrogenase and its βH91K mutant, Biochimica et Biophysica Acta (BBA)

- Bioenergetics, 2010, 1797, 494 - 500 (reference [69]).

3.1 Transhydrogenase : structure and function

Transhydrogenase (TH) is an enzyme situated in animal mitochondria and bacte-

ria which couples the redox reaction between NAD(H) and NADP(H) to proton

translocation across the membrane:

NADH +NADP+ +H+
out ↔ NAD+ +NADPH +H+

in (3.1)

where H+
out and H+

in denote hydrogen ions outside and inside the intact coupling

membrane system (for review see [91, 92]). Under physiological conditions, TH

normally utilizes the electrochemical gradient generated by the respiratory elec-

tron transport chains to drive NADP+ reduction. The resulting NADPH is used

for biosynthesis and for reduction of glutathione, in order to limit damages caused

by free radicals generated in the respiratory chain [93]. The free energies of the

products of equation (3.1) are similar to those of the reactants; this allows the re-

action to be driven either from left to right, using the electrochemical gradient ∆p

generated by the respiratory chain, or from right to left, using the redox potential

difference between NADPH and NAD+ to increase ∆p. Proton translocation and

redox reaction take place in a 1:1 ratio, due to the coupling of the two processes.

TH is a dimer, each of its monomers is composed by three subunits: dI and dIII

bind NAD(H) and NADP(H) respectively and protrude from the membrane, while
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3.1. Transhydrogenase : structure and function

the dII subunit spans the membrane (see Figure 3.1). The single hydride transfer

Figure 3.1: Structure of a dI2:dIII1 complex from Rhodospirillum rubrum [94].

site in the complex is at the interface between dI and dIII. Two conformational

states have been identified for the enzyme:

• open configuration. Bound nucleotides can rapidly exchange with the ones

in the solvent, but their nicotinamide rings are held apart to prevent re-

dox reaction. When this configuration is activated, product nucleotides

dissociate from the enzyme and are replaced by fresh substrates.

• occluded configuration. Bound nucleotides cannot exchange with the ones in

the solvent and their nicotinamide rings are held together to favor hydride

transfer.

The switching mechanism between the two conformational states is summarized

in Figure 3.2. Proton translocation through dII activates the interconversion

between the open and the occluded configuration, probably as a consequence

of long range (≥ 30 Å) conformational changes transmitted from the proton

pathway to the redox site [91]. These conformational changes probably involve

relative motions of rigid elements of dII, like transmembrane helices, but the

nature of these motions is still unknown and could be clarified with the advent of

a high resolution crystallographic structure of the subunit. No structure indeed

is available at the moment for the whole enzyme, while several high resolution

structures are available for isolated dI, dIII and for a dI2-dIII1 complex (reviewed
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3.2. Inhibition of Transhydrogenase activity

Figure 3.2: The binding-change mechanism of transhydrogenase: upon proton
translocation, the two monomers of the enzyme switch from the open to the
occluded configuration, allowing exchange of nucleotides with those in the solvent
or hydride transfer between nicotinamide rings. The figure is taken from [91].

in [95]). The information available on the membrane-spanning domain dII have

been provided by amino acid-sequence analysis, mutagenesys studies [96, 97], and

site-specific chemical labeling [98]; they show that, depending on the species, dII

has between 12 and 14 transmembrane helices per monomer. The topology of the

dII component of TH is shown in Figure 3.3.

Pink-colored letters in Figure 3.3 represent the conserved residues throughout

the totality of the available sequences (∼ 160), while blue letters represent the

highly-conserved residues. Mutagenesys studies have been carried out [99, 100,

101] in order to clarify whether these residues are involved in proton transloca-

tion: once a conserved amino acid has been mutated, the effect on the rate of

reaction (3.1) is monitored. Such studies demonstrated that only a few residues

are essential for the sustainment of TH activity, namely the dII residues βHis91,

βAsn222, βAsp213 or those in the sequence βCys260-βSer266. This strongly ar-

gues for the involvement of these residues in the conduction of protons through

dII or in the energy-transduction device itself.

3.2 Inhibition of Transhydrogenase activity

Metal ions-induced inhibition of transhydrogenase activity as a function of pH

has been studied by Whitehead et al [89, 90] in membrane vesicles from both

E. Coli and Rhodospirillum rubrum. Reverse transhydrogenation (left arrow in

equation (3.1)) was measured as the reduction of the NAD+ analogue acetylpyri-

dine adenine dinucleotide (AcPdAD+) by NADPH, through the measurement of
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3.2. Inhibition of Transhydrogenase activity

Figure 3.3: Topology of the transmembrane domain dII of transhydrogenase,
taken from [92]. The putative helices H1-H14 are numbered on the top row; The
number on the rows underneath refer to the E.Coli residues numbering. Grey-
colored helix H5 is missing in the E. Coli type and in Rhodospirillum Rubrum, H1
only in Rhodospirillum Rubrum. Residues shown in pink are invariant and 100%
conserved throughout the 160 available sequences of transhydrogenase, whereas
those depicted in blue are highly conserved.

the absorbance at 375 nm. The rate of cyclic transhydrogenation was monitored

as well: this reaction is wholly unphysiological, and consists in the combined

reduction of NADP+ by NADH and oxidation of NADPH by AcPdAD+; the

peculiarity of cyclic reaction is that it takes place without dissociation of the

nucleotides from the enzyme, therefore it does not require the interconversion

between conformational states.

Many metal ions have been found to inhibit reverse transhydrogenation and

to stimulate the cyclic reaction at neutral and high pH, as shown in Figure 3.4

for Zn2+. The order of effectiveness of the metals is:

Pb2+ >Cu2+ >Zn2+= Cd2+ >Ni2+ >Co2+.

As mentioned before, inhibition of TH activity takes place as well when some

specific amino acids situated in the transmembrane domain are substituted. The

implication of the highly conserved residue βHis91 in proton translocation has

been proved by several studies [101, 102, 103], some of which showed that the

substitution of βHis91 inhibits reverse and stimulates cyclic transhydrogena-

tion [104, 105]. This scenario suggests a mechanism of inhibition which is common

to metal ions binding and to βHis91 substitution: both processes could cause the

enzyme to lock in the occluded state, preventing the nucleotides to exchange with

the solvent, condition that hinders the physiological TH activity but favors the
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3.2. Inhibition of Transhydrogenase activity

Figure 3.4: Effect of Zn2+ on (A) reverse transhydrogenase activity and (B) cyclic
transhydrogenation at three different pH conditions: pH 6.2 (black circles), pH
7.2 (open circles) and pH 8.2 (black triangles). The figure is taken from [90].

cyclic reaction. The origin of the mechanism is likely to be the direct inhibition

of proton translocation through the dII domain, that would prevent the confor-

mational changes that cause interconversion between states. This hypothesis fits

very well with the general mechanism of inhibition by metal ions, based on the

competition between metal and proton binding.

The characterization of the Zn2+ binding site and its location in the enzyme

would therefore help to trace the proton pathway. To address this issue, White-

head et al [90] carried out an Attenuated Total-Reflectance Fourier-Transformed

Infrared Spectroscopy (ATR-FTIR) study on wild type TH from E. Coli and its

βH91K mutant. The study consisted in recording the differential FTIR spec-

tra induced by Zn2+ perfusion for both enzymes and attribute the peaks in the

spectra to perturbated vibrational modes of some specific amino acids; the amino

acids detected in this way are likely to compose the Zn2+ binding cluster, or to be

indirectly perturbated by Zn binding. In Figure 3.5 the differential FTIR spectra

for wild type TH and βH91K are shown: the peak at 1602 cm−1 and the trough

at 1556 cm−1, appearing in both samples, were attributed to perturbation of the

vibrational modes of carboxylic acids (Asp/Glu) upon Zn binding; moreover, the

resemblance of the spectral features of TH with the ones of a poly-L-His sample

suggests that His residues must be involved in Zn binding.

Since the intensity of the peaks of differential FTIR spectra was found to be

from 30% to 50% lower in the mutant than in the native enzyme, Whitehead et al

concluded that the mutated residue is involved in Zn binding: upon βHis91→Lys

substitution, indeed, spectral contributions due to amino acids perturbated by Zn

binding are reduced. In this framework, our XAFS study was undertaken in order

to characterize the Zn2+ binding site in wild type and βH91K transhydrogenase,
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3.3. XAFS study of Zn2+ in native and genetically modified TH

Figure 3.5: Zn-induced difference FTIR spectra of wild type transhydrogenase
(top spectra, solid line), of its βH91K mutant (top spectra, dotted line) and of a
poly-L-His sample (bottom spectrum.)

and make clear whether the Zn ion influences by direct binding or not the βHis91

residue. This kind of experiment can help to trace the proton pathway through

the transmembrane dII domain.

3.3 XAFS study of Zn2+ in native and geneti-

cally modified TH

In the following paragraphs we present an XAFS analysis of Zn2+-binding sites

in purified transhydrogenase complexes from E. coli. In order to test the possible

involvement of βHis91 in coordinating the metal, we have analyzed XAFS spectra

acquired with the wild-type enzyme and with the βH91K mutant. A single Zn2+-

binding cluster formed by one Cys, two His and one Asp/Glu residue, arranged in

the same tetrahedral coordination geometry, best accounts for the XAFS spectra

of both the wild-type and the mutant transhydrogenase, indicating that βHis91

does not directly participate in the binding site.

3.3.1 Materials and methods

Sample preparation. Transhydrogenase purification and preparation were car-

ried out by the group of J.Baz Jackson, operating at the School of Biosciences in

Birmingham University (UK). Wild-type E.coli transhydrogenase and its βH91K

mutant, each carrying a cleavable His tag at the N-terminus of the α subunit,
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3.3. XAFS study of Zn2+ in native and genetically modified TH

were expressed from pSI4 and pSI5, respectively, and purified by Ni2+ chromatog-

raphy, as described [90]. Precautions were taken to limit contamination of the

protein by metal ions in the buffer solutions, as indicated in the earlier report.

The tag was removed from both proteins with Factor Xa, and the transhydroge-

nases were separated from the cleavage enzyme and products by gel permeation

chromatography [90]. Protein quantities were determined using the bicinchoninic

acid assay [106], and are given below in mol of ”dI-dII-dIII monomer”. The pro-

teins were stored in 50 mM HEPES-KOH, pH 7.5, 0.2 M NaCl, 0.05% Anapoe35,

25% w/v glycerol at -20 oC, as described [90]. Following storage the proteins

(0.10 µmol wild-type protein in 20 mL of storage buffer, and 0.11 µmol βH91K

in 15 mL) were dialysed against 50 mM HEPES-KOH, pH 8.2, 2 mM MgCl2

0.05% Anapoe35. The two proteins were concentrated to a volume of approx

1.5 mL using Vivascience 100k cut-off filters, and then further dialysed against

similar buffer before concentrating to approx 0.6 mL. The wild-type and mutant

transhydrogenases were each mixed with appropriate stock solutions to give 1.0

mL of 45 µM protein, 3.3% w/v polyvinyl alcohol (PVA, Mr ≈ 130,000, Fluka),

50 mM HEPES-KOH, pH 8.2, 2 mM MgCl2, 0.05% Anapoe35. Separate 1.0 mL

samples, identical to these but for the presence of 36 µM added ZnCl2, were

also prepared. The four solutions were each transferred to 3×3×0.3 cm3 Teflon

holders, and dehydrated under dry nitrogen flow, incurring a volume decrease

of about 10 fold. The incorporation of membrane complexes at high concentra-

tion into PVA films yields samples that are stable and easy to handle [68, 13].

Thermolysin (TLS) and superoxide dismutase (SOD) from bovine erythrocytes

were purchased from Calbiochem and Sigma-Aldrich, respectively. TLS was re-

crystallized as described in [79]. Films were prepared by adding 350 µl of a 10%

w/v solution of PVA to 1 mL of 20 mM Ca-acetate, pH 7.5 containing 15 mg TLS

and to 1 mL of 50 mM Tris-HCl, pH 7.5 containing 3 mg SOD. The solutions

were dehydrated under nitrogen as described above.

Transhydrogenation assay. Rates of reverse transhydrogenation by the pu-

rified, detagged protein were measured by recording the reduction of acetyl pyri-

dine adenine dinucleotide (AcPdAD+, 200 µM) by NADPH (200 µM) in 50 mM

HEPES, pH 7.2, 2 mM MgCl2 (see [90]). Rates of cyclic transhydrogenation were

measured from the reduction of AcPdAD+ (200 µM) by NADH (200 µM) in the

presence of NADP+ (50 µM) in the same buffer. The reaction rates were similar

to those measured under similar conditions in previous work form Whitehead et

al [90].
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XAFS data collection and analysis. Experimental Zn K-edge spectra of

the protein films were collected at beamline GILDA-BM08 [23] of the European

Synchrotron Radiation Facility, the specifications of which are described in para-

graph 1.3.2. The spot size was approximately 1×1 mm2 and the flux on the

sample 3×1010 photons s−1. Data were collected at 80 K; the total integration

time was 45 s/point for the two samples with added Zn and 90 s/point for samples

without added Zn. In order to check for possible modifications in the local struc-

ture of the Zn site caused by irradiation during the measurement, we compared

5 consecutive spectra which had been acquired on the same position of the sam-

ples containing the wild-type transhydrogenase or its βH91K mutant. The first

XANES spectrum, which required an acquisition time of 20 minutes, was indis-

tinguishable from the spectra acquired subsequently, leading to exclude radiation

damage. No changes were also detected in the EXAFS region between consecu-

tive spectra, even in the case of a maximum total exposure of 8 hours. EXAFS

analysis was performed by means of the IFEFFIT package [55] and its graphic

interfaces Athena and Artemis [56], following the steps described in Chapter 2.

Theoretical scattering amplitudes and phase shifts were calculated by means of

the ab initio code FEFF8.2 [1], including Self Consistent Field calculations for

the potential in a radius of 4.8 Å around the absorber. All of the multiple scat-

tering signals arising from up to five single scattering events relative to the same

amino acid and with an effective length ≤5 Å were taken into account in the

fitting procedure. The amplitude reduction factor S2
0 was calculated from atomic

overlap integrals by the program: its value was fixed to 0.95 during the analysis.

Input clusters for FEFF8.2 were built using MOLDRAW [107] for visualization

and manipulation, setting first neighbor distances to the target values provided

by M. M. Harding (see [53] and references therein) and interatomic distances and

angles relative to each amino acid to the values provided by Engh and Huber [48].

Initial Debye Waller (DW) factors values were derived from the parameterization

provided by Dimakis and Bunker [18]. Fits were performed directly in k space,

with a k weight of 3, in the range 2.5-12.5 Å−1, minimizing the R factor. The

Rigid Body Refinement scheme was applied [4].

3.3.2 Results

PVA films of intact, purified, detergent-dispersed transhydrogenase from E.coli

were prepared in the absence and presence of ZnCl2. From titrations of the

inhibitory effect of Zn2+ on the rate of reverse transhydrogenation the Kd for the

metal ion is 2.5 µM at pH 8.2 [90]. Assuming for the moment that there is only
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one metal-ion binding site per protein monomer then, in the solutions used to

prepare the films (45 µM protein, 36 µM ZnCl2), 68% of the Zn2+ sites would be

occupied and the concentration of free Zn2+ (or Zn2+ bound to water molecules)

would be 5.4 µM. During dehydration of the film the volume reduction will have

led to an increase in binding, and a corresponding decrease in the amount of

free Zn2+. This should ensure that the contribution of free metal ion to the

XAFS spectra is negligible (and see below). XAFS spectra were acquired in films

containing wild-type transhydrogenase and its βH91K mutant in the absence

(samples designated WT and BH91K, respectively) and presence of added Zn

ions (WT-Zn and BH91K-Zn, respectively - Figures 3.6 and 3.7).

Figure 3.6: Experimental XANES spectra. K-edge Zn XANES spectra for wild-
type transhydrogenase without and with added Zn2+ (WT and WT-Zn, respec-
tively), for its βH91K mutant without and with added Zn2+ (BH91K and BH91K-
Zn, respectively), and for a reference sample obtained by embedding ZnCl2 in a
PVA matrix (Zn-PVA). All spectra were measured at 80 K.

There was much lower but nevertheless significant Zn Kα fluorescence in the

two samples prepared without added Zn2+ indicating a low level of contaminating

metal ion in both the wild-type and βH91K proteins. Because the film thickness

was not homogeneous, and because fluorescence is strongly affected by experi-

mental geometry, these data cannot be used to evaluate accurately the amount

of contaminating Zn2+. We therefore used a functional assay of the purified pro-

tein in solution to show that the amount of the bound metal ion is indeed very

low. Firstly, we confirmed that the inhibitory effect of added Zn2+ (50 µM) on
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reverse transhydrogenase, and the stimulatory effect of the metal ion on cyclic

transhydrogenation, were relieved (by 85%) upon subsequent addition of 200 µM

EDTA [89, 90]. This shows that the EDTA effectively removes Zn2+ from the

inhibitory site on the enzyme. Then in duplicate samples of purified transhy-

drogenase in the absence of added Zn2+, we found that 200 µM EDTA neither

stimulated the rate of reverse transhydrogenation nor inhibited the rate of the

cyclic reaction. This shows that the amount of contaminating Zn2+ bound to

the transhydrogenase under assay conditions is less than the error in the rate

measurements (approx 5%, see [90]).

The XANES regions of the spectra (Figure 3.6) and the EXAFS functions

(Figure 3.7) were very similar for all four samples indicating just a single class of

Zn2+-binding sites. Evidently the sites are similar in the wild-type protein and the

Figure 3.7: The experimental EXAFS spectra and their fits based on the 1Cys
2His 1Asp/Glu model. Zn K-edge EXAFS spectra for wild-type transhydrogenase
without and with added Zn2+ (WT and WT-Zn, respectively), and for its βH91K
mutant without and with added Zn2+ (BH91K and BH91K-Zn, respectively),
measured at 80 K (circles). For each spectrum the continuous line shows the
corresponding k-space best fit. Dashed lines indicate the fitting range 2.5-12.5 Å−1

βH91K mutant and, moreover, the contaminating Zn2+ populates a small fraction

of the sites occupied by the added metal ion. In Figure 3.6 we also show the

XANES spectrum of a sample made of ZnCl2 embedded in PVA in the absence of
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protein (Zn-PVA). The higher white line intensity and the lack of inflection points

after the white line and up to 9675 eV make this markedly different from the

XANES spectra of the transhydrogenase samples. This difference indicates that

no significant spectral contribution from PVA-bound Zn is present in the spectra

of the transhydrogenase samples, suggesting that essentially all the metal ions

detected by XAS in the transhydrogenase samples are bound to the protein and

that contributions from unbound ions dispersed in the PVA matrix are negligible.

Information on the coordination number of Zn2+ in the transhydrogenase samples

can be obtained by comparing the observed XANES spectra with our XANES

simulations data base (see Paragraph 2.1.2). For all TH samples, the white line

intensity is 1.4, that indicates that the coordination number could be either 3 or

4 according to the criterion defined in Paragraph 2.1.3. The coordination number

of 3 has been found in PDB structures, therefore it was taken into account in the

systematic approach to XAFS analysis described in Chapter 2; however, such a

coordination is most often ascribed to a interactions of the metal with solvent

molecules that are not visible in the electron density map or to the crystallization

procedure employed [108], and they are interpreted as 4-coordinated sites where

one ligand is lost because of perturbations due to sample treatment. We can

assume therefore that the Zn in all TH samples is four-coordinated, and neglect

coordination 3 unless the analysis lacks of consistency.

The relative number of S atoms and N/O atoms in the Zn coordination sphere

can be determined by an R-space first-shell fit, as described in Paragraph 2.2 In

this calculations the number of S atoms, n, was a free parameter of the fit, while

the total number of Zn neighbors was set to 4. The remaining (4-n) atoms could

be either N or O; Zn-S and Zn-N/O distances were also free variables of the fit

and their convergence to reasonable values was checked. The fourth and last

free parameter in these fits was a common shift in the energy origin (∆E0) of

the included scattering paths. DW factors were fixed to values calculated from

the parameterization provided in [20]. The Fourier transformed (FT) EXAFS

spectrum for WT-Zn is shown in 3.8 (empty circles), together with its first-shell

fit performed in the R region 1.0-2.2 Å (continuous line). According to the fit

results, indicating the presence of 0.9±0.1 S atoms, and consequently 3.1±0.1

N/O, we expect Zn2+ to bind 1 Cys and 3 more ligands to be identified most

probably from His, carboxylic acids and water molecules [47]. We propose that

the S atom can indeed be assigned to a Cys residue on the basis of a Metalloprotein

Database and Browser (MDB) search: where S atoms provide a ligand for Zn2+,

they are always located in Cys residues, never Met.
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An inspection of the 3-4 Å region of the FT spectrum can provide information

on the number of His residues present in the cluster, as argued in Paragraph 2.2;

the quantitative criterion proposed, however, refers only to Zn sites in proteins

measured at room temperature, for which we had a wide collection of experi-

mental observations. For TH, measured at 80 K we cannot use such a criterion,

nevertheless a qualitative comparison with reference samples can serve the pur-

pose: we compared the transhydrogenase FT spectrum with those of reference

samples recorded in similar experimental conditions, and in which the number of

His residues per Zn2+ cluster is known. The chosen reference proteins were Ther-

molysin (TLS) and Superoxide Dismutase (SOD). Structural information about

Figure 3.8: Experimental Fourier Transformed EXAFS spectra of model proteins
and wild-type transhydrogenase, and its first-shell fit. The Fourier Transformed
K-edge Zn spectra of wild type transhydrogenase with added Zn2+ (open circles),
superoxide dismutase (filled squares), and of thermolysin (filled circles), embed-
ded in PVA films, are shown. The spectra were collected at 80 K and transformed
in the k range 2.5-12.5 Å−1. The continuous line shows the first-shell fit for the
transhydrogenase spectrum; the fitting range 1-2.2 Å is indicated by the dashed
lines.

the Zn sites in the two proteins are given in Paragraph 2.3; we recall that Zn2+

is 4-coordinated in both cases, and the number of coordinated His residues is 2

in TLS, 3 in SOD. The FT spectra reported in Figure 3.8 clearly show that the

amplitude of the MS contribution in the 3-4 Å region of the WT-Zn transhydro-

genase spectrum is comparable to that of TLS. Measuring the amplitude of these
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contributions by numerical integration in the region 3-4 Å we obtain a value of

1.20 for the WT-Zn spectrum, very close to the value of 1.29 calculated for TLS

and markedly different from the value of 1.85 obtained for SOD. We can therefore

assume that Zn2+ in the WT-Zn sample is bound to 2 His residues, like the Zn2+

of TLS. The fourth ligand could be either a carboxylic acid residue or a water

molecule, but since ATR-FTIR experiments indicated a change in the vibrational

modes of Asp/Glu residues upon Zn2+ binding [90], it is reasonable to assume

the presence of an Asp/Glu in the Zn2+ coordination shell.

We therefore chose a 1Cys 2His 1Asp/Glu coordination shell as a starting

model. In order to minimize the correlation between the fitting parameters, the

fit to the EXAFS function in k space was performed in the step-by-step procedure

described in Paragraph 2.2. In steps (1) and (3) the free parameters of the fit

were three first-shell distances (one for each different amino acid residue), and the

bending angle of Asp/Glu. In step (2) the free parameters were first-shell Single

Scattering (SS) DWs and a common value, σ2
MS, for all of the Multiple Scattering

(MS) paths. When fitting the EXAFS spectra measured in the experimental

samples the distances obtained in step (3) always converged to values that were

in close agreement with those found in step (1), proving the robustness of the

fitting procedure. In all fitting steps a shift in the energy origin (∆E0) was

included as a free parameter. The fitting model was chosen and tested on the

WT-Zn data, and then extended to that from the other experiments. The fits

for all four samples are shown in Figure 3.7 as continuous lines. The agreement

between the fitting curve and the experimental signal is very good, particularly

in the WT-Zn and BH91K-Zn samples, where the signal-to-noise ratio (S/N) is

higher as a consequence of the higher Zn fluorescence counts. The best-fit first-

shell distances (i.e. the output of step 3 of the fitting procedure) relative to the

model, 1Cys 2His 1Asp/Glu, are reported in Table 3.1.

The corresponding DW factors (i.e. the output of step 2) are given in Ta-

ble 3.2. First-shell distances are the same within the error in all samples except

in BH91K, which has a slightly shorter first-shell average distance. The fact that

the same model provides a good fit for WT and WT-Zn, as well as for BH91K

and BH91K-Zn, confirms that the contaminating Zn2+ in the samples with no

exogenous metal ion populates a fraction of the same site resolved in the presence

of added Zn2+.

Since the same cluster of residues nicely fits the signals measured in samples

containing the native and the mutant transhydrogenase, we are led to think that

the Zn2+ binding site is indeed the same, i.e. that the mutated βHis91 is not
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∆E0 Zn-S Zn-Nε2 Zn-Oδ1/ε1 α Rfactor

(eV) (Å) (Å) (Å) ( ◦) (%)
WT -2.7 (1.3) 2.288 (0.013) 2.016 (0.016) 1.972 (0.025) 112 (3) 7.2
WT-Zn -2.4 (1.0) 2.290 (0.009) 2.018 (0.014) 1.969 (0.015) 114 (2) 6.1
BH91K -4.6 (1.5) 2.268 (0.011) 1.976 (0.013) 1.99 (0.03) 106 (1) 7.3
BH91K-Zn -2.0 (0.8) 2.287 (0.007) 2.018 (0.010) 1.968 (0.015) 113 (2) 4.8

Table 3.1: Best-fit first-shell distances. First-shell distances were obtained by
fitting the EXAFS spectra of the four samples to the 1Cys 2His 1Asp/Glu model
described in the text. The parameter α is the angle Zn-Oδ1-Cγ or Zn-Oε1-Cγ

of the Asp/Glu residue respectively, and whose starting value is set to 105 ◦. A
common distance for Zn-Nε2 has been assigned to the two His residues, and this
therefore indicates the average of the two actual distances. The values in brackets
are the 1σ errors.

σ2
Zn−S σ2

Zn−N σ2
Zn−O σ2

MS Rfactor

(10−3Å2) (10−3Å2) (10−3Å2) (10−3Å2) (%)
WT 3.9 (1.0) 3.5 (2.5) 5 (5) 7.6 (2.2) 7.2
WT-Zn 3.1 (0.7) 4 (3) 2 (4) 4.4 (1.1) 6.2
BH91K 2.3 (0.8) 3.1 (1.4) 4.0 (2.0) 6.9 (2.5) 7.2
BH91K-Zn 2.3 (0.6) 2.9 (1.4) 3.6 (2.3) 4.5 (1.0) 4.8

Table 3.2: Best-fit Debye Waller factors. First-shell Single Scattering Debye
Waller factors and a Multiple Scattering DW common to all MS paths, as deter-
mined by fitting the four EXAFS spectra with the 1Cys 2His 1Asp/Glu model.
The subscripts relative to Nε2 of His and Oδ1/Oδ2 of Asp/Glu have been omitted.
The values in brackets are the 1σ errors.

involved in the binding cluster. If it were, the spectrum of the BH91K-Zn sample

would differ from that of WT-Zn, and it would reveal a Lys residue instead of one

of the His ligands in the coordinating cluster. In order to test quantitatively this

possibility we have fitted the BH91K-Zn spectrum with the model, 1Cys 1His

1Lys 1Asp/Glu. Figure 3.9 compares the best fit to the two models. It clearly

shows that the Lys-containing cluster gives a poorer fit to the spectrum. This

is particularly evident when comparing the FT signals (lower panel): the 1Cys

1His 1Lys 1Asp/Glu model (indicated with LYS in the figure) gives a worse fit

to the experimental data than the 1Cys 2His 1Asp/Glu model (indicated with

HIS), both in the first shell and in the 3-4 Å region where the His contributions

are predominant. In fact, the R factor of the fit increases from 4.8% to 7.1%

when a His is replaced with a Lys. The inadequacy of the LYS model is further

illustrated by the best-fit value found for the DW factor common to all MS paths,

i.e. σ2
MS=0.000±0.002 Å2. The DW factors and the amplitude reduction factor S2

0

are correlated fit parameteres; the value of S2
0=0.95 was calculated and kept fixed

during the analysis, which could affect the resulting values of the DWs. Although
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Figure 3.9: The EXAFS spectrum of Zn in the βH91K mutant of transhydroge-
nase fitted with two different models. Upper panel: the experimental Zn K-edge
EXAFS spectrum of the BH91K-Zn sample (open circles) and its k-space fits
(continuous lines) based on the 1Cys 1His 1Lys 1Asp/Glu model (indicated by
the tag LYS), and the 1Cys 2His 1Asp/Glu model (indicated by HIS). Lower
panel: Fourier Transforms of the experimental spectra (black dots) and of the
fits (continuous lines) shown in the upper panel.

a value of 0.95 is quite reasonable for S2
0 we have tested the effect of varying this

value on the DW factors. We fitted the BH91K-Zn spectrum to the 1Cys 1His

1Lys 1Asp/Glu model setting S2
0 to 0.8, a lower but still reasonable value. This

procedure led again to the best fit value σ2
MS=0.000±0.002 Å2, and to a worse fit,

as indicated by the R factor of 8.6%. The result of a null multiple scattering DW

factor, independent of the choice of the S2
0 value, would lack physical meaning,

indicating that the MS contributions relative to the LYS model are too weak to

reproduce the experimental spectrum, and that they could fit only if they were

not damped (i.e. associated to a null Debye Waller factor). The differences in the

R factors and in the reduced chi squared values (53±16 and 130±40 respectively

for the HIS and LYS models) are at the limit of resolution from a statistical point

of view. However, all the evidence reported above strongly supports the idea
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that the Zn2+-binding site does not involve a Lys residue. Moreover, if one of the

two His residues present in the Zn2+-binding motif of wild type transhydrogenase

were replaced by another ligand in the mutant, we would encounter differences

in the XANES regions of the spectra. However, these regions are nearly identical

to one another (Figure 3.6). Finally, we must in principle consider also the

possibility that in the βH91K mutant Zn2+ loses one of its ligands and results

in a coordination number of 3. In fact, if βHis91 were one of the Zn2+ ligands

in the wild type protein, its substitution with a Lys would introduce a positively

charged amino acid into the coordination sphere, which would clearly have a

lower propensity to bind Zn2+. This possibility can however be excluded because

a decrease in the coordination number would cause a significant decrease in the

EXAFS oscillation amplitude and in the XANES white-line intensity which we

do not observe at all in the BH91K spectra. In conclusion, XANES and EXAFS

analysis identifies the same Zn2+-binding cluster, formed by 1Cys, 2His, and

1Asp/Glu residue in the native transhydrogenase and in its βH91K mutant (see

Figure 3.10). This strongly argues against an involvement of βHis91 in the Zn2+-

binding site that is detected by XAFS.

3.3.3 Discussion

The Zn K-edge XAS spectra of purified E. coli transhydrogenase described above

were interpreted in terms of a single Zn2+-binding site. The existence of two (or

more) sites with different structures and binding affinities is unlikely: it would

contradict the finding that spectra obtained with low levels of contaminating Zn2+

have very similar features to those obtained with much higher concentrations of

the metal ion. Thus, even small differences in binding affinity would lead to

significant changes in the relative site occupation, to which XAS is rather sensi-

tive. The existence of two structurally different sites with identical Zn2+-binding

affinities is not ruled out by these observations but would be difficult to reconcile

with the internal consistencies of the XAS analysis, notably the convergence of

results from different fitting procedures.

It is likely therefore that there is indeed only a single site in transhydroge-

nase that binds Zn2+ in the concentration range of our experiments; the XAS

experiments indicate that the site is a tetrahedral cluster formed by the imida-

zole rings of two His residues, and the side chains of a Cys and an Asp/Glu

(Figure 3.10). We propose that Zn2+ inhibition of proton translocation by tran-

shydrogenase [89, 90] is a consequence of the metal ion binding to this site. In

the absence of metal ions, one or more of the amino acid residues in the cluster

59



3.3. XAFS study of Zn2+ in native and genetically modified TH

Figure 3.10: The proposed Zn2+-binding cluster. Wireframe structure of the
Zn2+-binding cluster which gives the best fit of the experimental XAFS data
obtained for both the wild-type transhydrogenase and its βH91K mutant.

may be involved in proton transfer, and Zn2+ would inhibit by competing with

H+ binding to the site. The inhibitory Zn2+-binding sites in reaction centers of

Rhodobacter sphaeroides [84, 68], and in avian and bovine cytochrome bc1 com-

plexes [13] also have two His and one Asp/Glu residues, and these sites too are

thought to be involved in proton transfer and to bind the metal ion competitively.

Mutation of βHis91 to Lys was found to have somewhat similar effects on

transhydrogenase reactions to treatment of the enzyme with Zn2+. An analy-

sis of these effects led to the conclusion that both the amino acid substitution,

and metal-ion binding, interfere with proton translocation. In other experiments

the addition of Zn2+ to wild-type transhydrogenase led to changes in the ATR-

FTIR difference spectrum that were attributable to effects on His and Asp/Glu

residues in the protein [90]. In the βH91K mutant the amplitude of the signals

due to Asp/Glu, and particularly those due to His, in the Zn2+-induced difference

spectrum were decreased prompting the suggestion that βHis91 in wild-type tran-

shydrogenase might be a ligand for the Zn2+. However, in the present study we

found that the Zn XANES and EXAFS spectra were very similar in the wild-type

and in the βH91K mutant. The same binding cluster of 1Cys, 2His and 1Asp/Glu

residue provides the best fit for both sets of data. An alternative model, a 1Cys,

1His, 1Lys, and 1Asp/Glu Zn2+-binding cluster, yielded a worse fit to the mea-

sured spectra of the mutant protein. The inadequacy of the mutated cluster was

particularly evident in the spectral region dominated by the His contributions. It
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is very unlikely that βHis91 participates directly in Zn2+-binding.

It seems that, although βHis91 and the Zn2+-sensitive site both function in

the proton-translocation pathway of transhydrogenase, they are spatially sepa-

rate. Indeed, it was noted [14] that the low residual rate of reverse transhydro-

genation in βH91K was further inhibited by Zn2+, and that the elevated rate of

cyclic transhydrogenation in the mutant was further stimulated by metal ions.

To reconcile the present XAFS results with the effects of the βHis91→Lys mu-

tation on the Zn2+-induced FTIR difference spectra we propose the following.

The binding of Zn2+ to a site in transhydrogenase dII formed by 1Cys 2His and

1Asp/Glu, causes conformational changes that are transmitted to the somewhat

more distant βHis91 residue. The FTIR difference spectra detect changes in all

His residues that result from Zn2+ binding, including βHis91 and one or both of

the His residues which form the binding site. When βHis91 is mutated into a Lys,

Zn2+ binding still perturbs the vibrational bands of the His residue(s) that act as

ligand(s), but the absence of the contribution from βHis91 causes the observed

decrease in the overall His FTIR signal.
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Chapter 4

The Fe2+ site of Photosynthetic

Reaction Center

The photosynthetic Reaction Center (RC) of purple bacteria is the pigment-

protein complex that initiates solar energy conversion. It was, in 1982, the first

membrane protein the crystal structure of which was determined by X-ray diffrac-

tion, yielding to Hartmut Michel, Johann Deisenhofer and Robert Huber the

Nobel prize in 1988. Moreover, being the smallest unit capable of performing

light-driven electron transfer, RC became a model system in the study of the

relation between the electron transfer process and protein conformational dy-

namics. The RC activity, indeed, has been demonstrated to be conformationally

gated, but the cause and the nature of the conformational changes are still de-

bated. An Fe2+ atom is located along the electron pathway in the photosynthetic

apparatus of RC: a structure-stabilizing role has been proposed for such atom,

and no evidences of the direct participation of Fe2+ in the redox processes have

been reported so far. Nevertheless, weak evidences of transient modifications of

the Fe2+ environment upon light absorption have been provided, and this might

mean that Fe2+ is involved in the conformational changes that allow or inhibit

electron transfer.

The Fe2+ site of RC is clearly a very interesting probe to investigate electron

transfer, therefore we present in this chapter the XAFS studies performed on

such system, both in static and in pump-probe time-resolved mode. Part of the

results has been published as: Veronesi et al. The Fe2+ Site of Photosynthetic

Reaction Centers Probed by Multiple Scattering X-ray Absorption Fine Structure

Spectroscopy: Improving Structure Resolution in Dry Matrices Biophys. J., 2008,

95, 814-822 (reference [109]).
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4.1 Structure and function of RC

The bacterial photosynthetic RC is made up of three subunits, L, M and H, and of

the following cofactors: four bacteriochlorophylls, two bacteriopheophytins (HA

and HB), two quinones (QA and QB) and one non-haem iron atom (Fe2+); a

detailed review of the structure and function of bacterial RC is given in refer-

ence [110]. Two of the four bacteriochlorophylls form the special pair (usually

labeled as P or D), that works as the primary donor by ejecting an electron upon

solar light absorption. The three dimensional structures of RCs from Rhodobacter

sphaeroides (see Figure 4.1) and Rhodopseudomonas viridis are similar, as well as

the cofactor arrangement, except for the presence in Rps viridis of a four-haem

cytochrome on its periplasmic site. XRD structures [111, 112, 113, 114] reveal

Figure 4.1: XRD structure of the RC from Rb. sphaeroides. The photosynthetic
apparatus, situated in the deep interior of the protein, is reported on the right,
together with white arrows indicating the electron pathway. In the bottom of the
figure, the redox reactions performed by the protein and their characteristic time
scales are indicated.

the presence of 11 transmembrane α-helices in the complex, five each for the L

and M subunits and one in the H subunit; the L and M subunits compose a cylin-

drical core in which the photosynthetic apparatus is enclosed. The cofactors are

arranged along two branches, A and B (L and M in Rps viridis), approximately

related to each other by a two-fold symmetry axis perpendicular to the membrane

plane and crossing the Fe2+ site; however, the redox reactions chain takes place

spontaneously along the A branch, where the rate of electron transfer is at least

20 times larger than along the B branch. This is ascribed to small deviations

from the 2-fold symmetry [115].
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4.1.1 Photochemistry of RC

The energy conversion operated by bacterial RC starts with charge separation in

the bacteriochlorophyll special pair (indicated as D in Figure 4.2); a sequence of

redox reactions involving the RC cofactors delivers the electron to the primary

quinone QA, situated ∼25 Å away from the special pair (step 1 in Figure 4.2).

The special pair is then reduced by a cytochrome (step 2) and the charge of

QA is passed to the secondary quinone acceptor QB (step 3). Absorption of a

second photon activates another turnover of the RC photochemistry, leading to

double reduction of QB; subsequently, two protons are uptaken in order to form

an hydroquinone that leaves the RC (step 7) and is replaced by an exogenous

neutral quinone (step 8), allowing the cycle to start again. A detailed description

of the photochemical cycle can be found in reference [110].

Figure 4.2: The photochemical cycle operated by photosynthetic RC from purple
bacteria.

Step 1 takes place in ∼ 200 ps, while the intermediate acceptor bacterio-

pheophitine HA is reduced in a time interval of the order of 3 ps: the short time

intervals characterizing the first steps of the cycle are crucial to avoid recombi-

nation of the electron with the bacteriochlorophyll special pair.

The solar light wavelengths able to initiate the RC turnover are determined by

the electronic structure of the photosynthetic apparatus formed by the cofactors;

the overall UV/Vis absorption spectrum of RC from Rb. Sphaeroides is shown in

Figure 4.3. Three main peaks are evident in the long-wavelengths region of the

spectrum, each one originated by the prevalent contribution of a different cofactor:

the peak at∼750 nm has been empirically attributed to the bacteriopheophytines,

the one at ∼800 nm to monomeric bacteriochlorophylls and the peak at ∼860 nm
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Figure 4.3: UV/Vis absorption spectrum of reaction centers isolated from Rb.
Sphaeroides.

to the special pair. A quantitative study of the RC absorption bands can be

found in reference [116].

4.1.2 Conformational gating and the role of the Fe2+ site

Independent experimental evidences showed that the electron transfer from QA

to QB is rate limited by the dynamics of a conformational change in the pro-

tein [117, 118]; this conformational change is thought to be central for a full

understanding of the general mechanism of electron-transfer coupled to proton

uptake in energy transducing proteins. A possible explanation has been proposed

by Stowell et al. [111] on the basis of the XRD structure of RC frozen in dark

and in the light: in the light-induced charge-separated D+QAQ−B state, Q−B is

located approximately 5 Å from the QB position in the charge-neutral (DQAQB)

state, and has undergone a 180◦ twist around the isoprene chain. This was in-

terpreted as the light-induced switch from a distal-inactive to a proximal-active

position, the latter bringing QB close enough to QA to allow electron transfer

(see Figure 4.1). Subsequent evidences based mainly on vibrational spectroscopy

argued against this model, rather supporting the existence of a single QB site in-

dependently on temperature and illumination conditions [119, 120]. Alternative

models have been proposed for the gating process, including protonation and/or

changes in H-bonds patterns, protein relaxation, or a combination of the two

processes [121, 122, 123]. It is clear that, in spite of the efforts dedicated to the
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investigation of the rate-limiting step in RC’s photochemistry, the interpretation

of this scenario is still debated and no conclusive evidence has been reported so

far.

The Fe2+ ion is located between the two quinones (Figure 4.1) and binds

the Nε2 atoms of 4 His residues and the 2 oxygens (Oε1, Oε2) of the Glu-M234

residue in a bidentate configuration (see Figure 4.5), as confirmed by XRD struc-

tures [111, 112, 113, 114]; His-M219 is H-bonded to QA, and His-L190 to QB,

when the secondary quinone is in the proximal position. This arrangement gives

rise to a quinone-His-Fe “bridge”. Due to its position and tight coupling with the

surroundings, the Fe2+ atom can therefore serve as a probe for the local structural

changes associated with the final electron-transfer steps of the RC, hence it has

been extensively studied: a pioneering work made by Debus et al. [124] showed

that Fe-depleted RCs could still carry out electron transfer, but with slower rate

constant and lower efficiency; however, when RCs were reconstituted with other

divalent metal ions, included Zn2+ which cannot undergo a change in its oxida-

tion state, they recovered essentially the same electron transfer properties of the

native protein. In a more recent time, Hermes et al. performed a time-resolved

XAS study of the Fe2+ [125], yielding no evidence of a change in the Fe oxidation

state upon light absorption. It all strongly argues against the involvement of

Fe2+ in the redox reactions chain; the atom is therefore expected to be a passive

spectator of the electron transfer between the two quinones and of the eventual

conformational changes connected to it.

4.2 Using XAFS to improve structural resolu-

tion in dry matrices

XAFS represents a method of choice to detect subtle modifications of the Fe2+

site, nevertheless relatively few XAFS studies have been performed on such site.

Two pioneering works [126, 127] first revealed the presence of six atoms in the Fe2+

coordination shell, a result subsequently confirmed by XRD. These early analyses

were based on the comparison with spectra of model Fe compounds and provided

an average distance between Fe2+ and first-shell atoms. A more recent XAFS

study was aimed to resolve temperature- and light-induced structural changes in

the Fe2+ site [128]; this analysis, however, did not consider the Multiple Scattering

(MS) contributions to the XAFS signal. Moreover, none of the three XAFS

studies performed so far took explicitly into account possible heterogeneities in

the first shell distances, yielding at most a common distance between Fe2+ and
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the four His nitrogen atoms, and a single average distance for the two oxygen

atoms of the Glu residue coordinating in a bidentate configuration [128].

We conducted a XAFS study on the Fe2+ site of RC embedded in different

matrices: a non-interacting PVA film and a strongly dehydrate trehalose ma-

trix. The study brought to the determination of high-resolution Fe-ligands bond

length and underlined the effect of a strongly interacting matrix on a non-solvent-

exposed portion of the protein such as the Fe2+ ligating cluster.

4.2.1 Materials and methods

Sample preparation. The RC was isolated and purified from Rb. sphaeorides

R-26, a carotenoid-less spontaneous mutant, according to Gray et al. [129]. EDTA

was present at 10 µM in all buffers used during the reaction center isolation. In

order to remove traces of exogenous proteins and metals, the purified RC sus-

pension was additionally flowed through a DEAE-Sephadex (Sigma) column, di-

alyzed for 15 hours, at 4 ◦C, against 10mM Tris buffer, pH 8.00, 0.025% LDAO,

10 µM EDTA, supplemented with 5 gr Chelex resin (Chelex 100, Bio-Rad) /

100mL, and concentrated to 60 µM by ultafiltration (VIVASPIN 50 kDa cut-off,

VIVASCIENCE, Hannover, Germany). The magnesium/iron molar ratio in the

RC final sample, determined by Inductively Coupled Plasma Atomic Emission

Spectroscopy, was 4.9±0.5. A previous, similar metal analysis, performed by

atomic absorption spectroscopy on a highly purified reaction center preparation,

yielded a Mg/Fe ratio equal to 5.2±0.3 [130]). Considering 4 bacteriochlorophyll

molecules for each reaction center, the iron content of our preparation was slightly

sub-stoichiometric with respect to the RC, indicating that no exogenous iron was

present in the samples used for XAFS measurements. Polyvinyl alcohol (PVA)

- RC films were prepared starting from 1.4 mL of 24 µM RC, 2.5% PVA solu-

tion (PVA 130000 MW, Fluka), dried under nitrogen flow into a 3.0×3.0×0.3 cm

Teflon holder. The PVA-RC film was folded several times prior to be exposed to

the X-ray beam. Trehalose (>99% purity) was purchased from Sigma and used

without any additional purification. RC-trehalose dried glasses were prepared

as follows: 800 µL of 60 µM RCs were concentrated to 170 µL under nitorgen

flow, raising the RC concentration to 282 µM. A sugar/RC molar ratio equal to

103 was achieved by direct addition of solid trehalose into the RC solution. The

trehalose-RC solution was layered onto a sintered boron nitride support (Good-

fellow Cambridge, Huntingdon, England) and extensively dried under nitrogen

flow.

The content of residual water in the PVA and trehalose matrices can be evalu-
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ated by near-infrared (NIR) spectroscopy from the area of the combination band

of water in the 1930-1960 nm spectral region, using the RC absorption band at

802 nm as an internal standard [131]. In the case of the PVA sample, this esti-

mate was performed directly on the sample used for XAFS measurements. For

the trehalose sample, a direct determination was prevented by the boron nitride

support. Parallel measurements on trehalose matrices of the same composition,

layered on a transparent optical glass, showed that the extensive dehydration

treatment resulted in a similar content of residual water in the PVA film and in

the trehalose matrix, i.e., ∼4×103 water molecules per RC protein. Further desic-

cation under nitrogen flow at room temperature did not reduce the water content

further, in agreement with previous determinations [132, 131, 133]. To test the

structural and functional integrity of the protein after XAFS measurements, both

the PVA and trehalose samples were redissolved with the proper amount of water.

For both samples, visible-NIR spectra taken after irradiation were indistinguish-

able from that of the RC solution before preparation of the dehydrated matrices.

Moreover, no alteration of primary photochemistry was detected, as evaluated

from the extent of the primary donor (P+) photo-oxidized by a laser pulse and

from the unaffected lifetime of the primary P+Q−A charge-separated state. The

experimental details of these time-resolved optical spectroscopy measurements

were given elsewhere [132, 131].

XAFS data collection and analysis. Fe K-edge measurements were per-

formed at the GILDA-BM08 beam-line [23] of the European Synchrotron Radi-

ation Facility (ESRF). A Si(111) double crystal monochromator employing dy-

namical sagittal focusing was used; the photon flux was of the order of 1011

photons per second and the spot size was ∼1×1 mm2. Data were collected in

fluorescence mode. Samples were measured at room temperature in the energy

range 6900-7910 eV; the final spectra are given by the average of multiple scans

for a total integration time of 60 s/point for each sample. The molecular graphics

program MOLDRAW [107] was used to build the structural model of the Fe2+

site. Signal extraction and k-space fits were performed accordingly to the proce-

dures described in Chapter 2.2, by means of the IFEFFIT package [55] and its

graphic interfaces Athena and Artemis [56]. Theoretical amplitudes and phase

shifts were calculated using FEFF8.2 [1], in which scattering potentials are calcu-

lated by overlapping the free atom densities in the muffin-tin approximation and

then adding the Hedin-Lundqvist form for the exchange potential. The amplitude

reduction factor, S2
0 , was estimated as 0.94 by the program for the starting model
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and was kept fixed during the fitting procedure. All of the multiple scattering

signals constituted by up to five scattering paths involving atoms belonging to the

same residue and with an effective length ≤ 5 Å were taken into account. The fits

were performed directly in k-space, in the range 2.5-10 Å−1 and with a k weight

of 3, following the step by step procedure described in Paragraph 2.2, even if no

parametrization of the DWs is available for non-heme Fe clusters (recall that in

the first step of the fitting procedure the DWs are fixed to the values provided by

Dimakis and Bunker’s parametrization [18, 17, 20] and only structural parameters

are fitted): in order to assign the DW factors, we performed ab initio simulations

grouping the atoms in three shells, depending on their distance from Fe2+. The

values providing the oscillation amplitude most similar to the experimental one

(i.e. 0.005 Å2 , 0.009 Å2 and 0.007 Å2 for the three shells respectively) were

chosen.

4.2.2 Results

In the near-edge region, our spectra (see Figure 4.4) are very similar to the ones

reported in previous studies which indicated six ligands in the Fe2+ coordination

shell [126]. Considering this, and the XRD information about the Fe ligation

Figure 4.4: Normalized XANES region of the spectra measured for RC embedded
in a PVA film (continuous line) and in a strongly dehydrate trehalose matrix
(dashed line).
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pattern reported in paragraph 4.1.2, the distorted octahedral cluster shown in

Figure 4.5 was built and used as a starting structural model. Structures of single

amino acids and first shell distances were derived from the statistics described

in Paragraph 2.1.2. The vertices of the basis of the octahedron are the Nε2

atoms of His-M219 and His-L190 and the two oxygen atoms of Glu-M234; the

corresponding amino acids lie in the plane defined by this basis (see the caption

of Figure 4.5 for numeric values of the structural parameters); the two remaining

vertices are occupied by the Nε2 of His-M266 and His-L230. For Glu in bidentate

conformation, a distribution of Fe-Oε distances is found, indicating a correlation

between Fe-Oε1 and Fe-Oε2 bond lengths (see the database MESPEUS, MEtal

Sites in Proteins at Edinburgh UniverSity [45] and reference [53]). In order to

build a reliable starting model, the coordination geometry of the Glu residue

was parametrized using the Fe-Oε1 distance and the angle α (see Figure 4.5,

insert); to set their starting values, the Fe site for a number of XRD structures of

photosynthetic RCs with resolution higher than 2.4 Å (PDB codes: 1DXR, 1E6D

, 1EYS, 6PRC, 1AIJ), found through searching the MDB, was considered and

the average values of Fe-Oε1 (2.12 Å) and α (94◦) were set as the starting one.

The Fe-Oε2 distance for the Glu residue follows from the Fe-Oε1 distance and α

parameters, according to the equation:

(Fe−Oε2)2 = (Fe−Oε1)2+(Oε1−Oε2)2−2[(Fe−Oε1)(Oε1−Oε2)]cos(α−β) (4.1)

where β is the Oε2Ôε1Cδ angle (see Figure 4.5, inset). Its value (29◦), as well as

the distance (2.20 Å) appearing in (4.1), is derived from the Engh and Huber’s

survey of amino acids structures [48] and kept fixed all over the analisys. The

XAFS oscillations measured in the PVA and in the trehalose matrices are shown

as dotted lines in Figure 4.6 (a) and (b), respectively. The corresponding best

fitting XAFS functions are represented as continuous lines. The figures also

show the main contributions to the best fitting signal, coming from both single

and multiple scattering (the two curves at the bottom of each panel report the

multiple scattering contributions with greatest amplitudes). In both spectra,

three main oscillations are evident at 4, 6 and 8 Å−1, but their shape and relative

amplitudes differ in the two cases, presumably as a consequence of a different

arrangement of first-shell atoms in the two different matrices. The structural

refinement was carried out in the Rigid Body Refinement scheme [4], initially

using as fitting structural parameters: (i) a common shift in the energy origin for

all paths; (ii) a distance variation for Fe-Oε1; (iii) a Glu bending angle ∆α (see

Figure 4.5, insert); (iv) a Fe-Nε2 distance variation for the four Fe-coordinating
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Figure 4.5: Reference structural model of the Fe2+ ligand cluster. The inset
shows the bending of the Glu residue, i.e. a rigid rotation by an angle ∆α around
an axis through Oε1. The angle α was set to 94◦, and the Fe2+-Oε1 distance to
2.12 Å; the Oε2 atom of Glu is thus placed at 2.34 Å from Fe2+. The two His
residues in plane with the Glu residue are placed symmetrically, so that the angle
between the two Fe2+-Nε2 bonds of the two His, and the angles between each
Fe2+-Nε2 bond and the direction Fe2+-Cδ of the Glu are equal (120◦). The target
Fe2+-Nε2 distance for the His residues was 2.16 Å (see text for details).

histidines. The fit was initially performed with a model in which only a single,

common Fe-Nε2 average distance was considered for the four amino acids (this

will be referred to as the 4 His model).

The relatively poor results obtained with this approach (as testified by the

high R factor of the fit, see Table 4.1), suggested us to introduce different Fe-Nε2

distances for the different coordinating His residues, i.e. an heterogeneity in the

His cluster. We considered in particular two fitting models in which two distinct

Fe-Nε2 distances were introduced. In the first, which we call 2+2 His model, we

have considered two groups, each composed by two His residues, and we assign to

each group an independent distance from Fe2+ (Fe-Nε2(1) and Fe-Nε2(2)). In the

second, which we call the 3+1 His model, the His cluster is divided in one group

of three residues, for which we consider one common, average distance from Fe2+

(Fe-Nε2(1)), and one single His residue, which is allowed to move independently

(Fe-Nε2(2)). The quantitative results obtained for each model, i.e. the first-

shell distances, the bending angle ∆α, and the first-shell Debye-Waller factors,

are reported in Table 4.1, together with the goodness-of-fit indicators, the R

factor and the reduced chi-square (χ2
ν). The fitting criterion relies in fact on

72



4.2. Using XAFS to improve structural resolution in dry matrices

Figure 4.6: Experimental k3 weighted XAFS functions (dots) measured in RCs
embedded into (a) the PVA film and (b) in the dry trehalose matrix. For both
spectra we report its best fit to the 2+2 His model (continuous bold lines),
and the corresponding dominating contributions coming from single and multiple
scattering. The values of best fitting parameters are given in Table 4.1.
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the minimization of the R factor, and the statistical choice of the most probable

cluster on the reduced chi-square test (see Chapter 2.2).

Matrix Model Fe-Nε2(1) Fe-Nε2(2) Fe-Oε1 ∆α σ2 ∆E0 R (%) χ2
ν

(Å) (Å) (Å) (◦) (10−3 Å2) (eV)

PVA

4 His 2.14 (2) - 1.94 (3) 6 (2) 6 (2) 7 (2) 34 (10) 46 (14)

2+2 His 2.18 (4) 1.99 (3) 2.09 (3) 3 (2) 4 (1) 5 (3) 18 (6) 13 (4)

3+1 His 2.16 (3) 1.97 (6) 2.02 (3) 5 (2) 5 (2) 6 (2) 25 (8) 33 (11)

Treha.

4 His 2.16 (2) - 1.98 (3) 5 (3) 6 (1) 7 (2) 29 (9) 22 (7)

2+2 His 2.17 (5) 2.04 (2) 2.15 (7) 2 (2) 5 (1) 5 (2) 21 (6) 12 (4)

3+1 His 2.12 (2) 1.98 (4) 2.19 (5) 1 (2) 5 (1) 6 (2) 23 (7) 21 (7)

Table 4.1: Structural and dynamical parameters determined in the PVA and in
the trehalose matrix. The bending angle of the Glu residue is indicated by ∆α,
and the first-shell Debye-Waller factor by σ2. For each RC-matrix system the fit
was performed according to three structural models, characterized by a different
grouping of the four His residues (see text for details). The number reported
in bracket is the 1σ error on the least significant digit calculated by the fitting
program.

4.2.3 Discussion

Removing degeneracy in the His coordination. The introduction of multi-

ple scattering contributions allowed to better resolve the structure of the histidine

cluster in the Fe2+ coordinating shell, partially removing the degeneracy present

in the previous studies. Our analysis revealed in fact that the four His residues

of the cluster can be split up into two groups, each consisting of two histidines,

characterized by a different average distance from Fe2+: 2.18 Å and 1.99 Å re-

spectively for RCs embedded in a weakly interacting medium (PVA). Such a

variation cannot be predicted from XRD data of RC crystals, even at the maxi-

mal resolution (1.87 Å) attained at present [114]. Crystallographic structures of

the RC show, however, differences and asymmetries in the environment experi-

enced by the four His residues which coordinate the Fe2+ atom. In particular,

His-M219 appears to be hydrogen bonded to the primary quinone acceptor QA

(bond length 2.84 Å [114]). A second histidine (His-L190) is at hydrogen bond

distance (2.71 Å [114]) from the QB molecule, when the quinone moves to the

proximal configuration. These hydrogen bond interactions could be responsible

for the heterogeneity resolved by us in the histidine Fe-Nε2 distances. In this
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respect, we observe that the occupancy of the proximal QB position appears to

be 65% even in the dark XRD structure at pH 8.0 [114], so that almost two of the

four His residues may be expected to be hydrogen bonded under our measuring

conditions. The suggestion that the two different Fe-Nε2 distances observed stem

from the interaction of two His residues with the bound quinones is in line with

the observation that only one of the distances is changed when the RC is em-

bedded in a strongly interacting matrix (trehalose glassy matrix), rather than in

the weakly interacting PVA film (see below). Our model also allowed to remove

degeneracy in Fe2+ coordination by the two oxygen atoms [128]. According to the

crystallographic model, a Glu residue (Glu-M234) is bonded to Fe2+ in bidentate

configuration. For this residue, our analysis yields in PVA a coordination distance

Fe-Oε1 = 2.09 Å with ∆α=3◦, which correspond to Fe-Oε2 = 2.43 Å. The average

of these two Fe-O distances (2.26 Å) differs markedly from the Fe-O distance

of 1.88 Å determined in a previous XAFS study [128]. We note that this latter

value is hardly compatible with distances encountered in data banks for biden-

tate carboxylate groups (see the database MESPEUS and ref [45]). Exploration

of metal coordination by carboxylates in bidentate configuration has revealed,

in the case of Co, Cu, and Zn an inverse proportionality between the O1 and

O2 distances from the metal [53]. Figure 4.7 shows a correlation plot between

the Fe-O1 and Fe-O2 distances, extracted from the MESPEUS Database. Only

distances obtained from XRD studies at a resolution higher than 1.5 Å have been

included. It appears that, also in the case of Fe, the two distances are inversely

related. An average Fe-O distance of 1.88 Å [128] is clearly incompatible with

the data clustering of Figure 4.7, to which, at variance, the Fe-Oε1 and Fe-Oε2

distances obtained by fitting our data to the 2+2 His model, nicely conform,

both in trehalose and in PVA (see closed symbols in Fig. 4.7).

Finally we note that from the first shell distances resolved in the present

work (Table 4.1) an average coordination distance of 2.14±0.02 Å is obtained

in the PVA film. Such a value is in excellent agreement with those determined

in the pioneering studies by Eisenberger et al. [127] and Bunker et al. [126], i.e.

2.10±0.02 Å and 2.14±0.02 Å, respectively.

Matrix effect. In a previous study [65], performed on cyt c, we have shown

that XAFS is a sensitive tool in revealing both structural and dynamical local

effects induced on protein metal sites by the incorporation in strongly dehydrated

trehalose matrices. In the case of cyt c, such effects consist in: (1) the induction

of severe distortions of the metal coordinating geometry, with respect to the local
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Figure 4.7: Relationship between the Fe-O1 and Fe-O2 distances in bidentate co-
ordination with Asp and Glu residues. Data shown as open circles were extracted
from the MESPEUS database, developed at Edinburgh University [45], selecting
XRD protein structures at resolutions higher than 1.5 Å. Solid symbols corre-
spond to distances determined in the PVA (circles) and in the trehalose matrix
(squares) in this study (see Table 4.1 and text for details). The labels O1 and
O2 can be permuted, so that each carboxylate group is shown twice in the plot,
which is symmetrical about the diagonal line, d(Fe-O1) = d(Fe-O2).

metal site structure observed in liquid solutions and in PVA films; (2) a decrease

of the DW factors, indicating a strong reduction, at the local level, in the static

and/or dynamical disorder of the protein.

In view of these results, in the present work, we have performed a comparative

analysis of the Fe2+ site in RCs embedded in PVA films and in extremely dehy-

drated trehalose matrices. The aim was to ascertain whether or not the trehalose

effects observed on the local structure/dynamics of a small, soluble protein (like

cyt c) were also detectable in the case of a large membrane protein, like the RC.

By analyzing the RC Fe2+ site, we have found that two of the coordinating His

residues are placed on average further on from the Fe2+ atom in the trehalose

matrix, as compared to the PVA film. The Fe-Nε2(2) distance, 1.99 Å in PVA,

increases in fact to 2.04 Å in trehalose (Table 4.1). Interestingly, the other two co-

ordinating His residues, instead, do not change their average distance Fe-Nε2(1),

strongly suggesting a tighter bond. We propose to identify these latter two His

residues with His-M219 and His-L190, which could show a firmer attachment to

their position, being also hydrogen bonded to the quinones QA and QB, respec-
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tively. In trehalose, also the Glu residue undergoes a sizeable displacement with

respect to the position in PVA, as inferred from the stretching of the Fe-Oε1 bond

(see Table 4.1). Although the Fe-Oε1 distance increases from 2.09 Å in PVA to

2.15 Å in trehalose, the Fe-Oε2 distance does not vary appreciably (2.41 Å and

2.43 Å in trehalose and PVA, respectively), because the value of ∆α changes

from 3◦ in PVA to 2◦ in the trehalose matrix. It turns out, in summary, that, as

observed in the case of the heme Fe of cyt c, the incorporation into a dehydrated

trehalose matrix causes the selective elongation of some of the coordinating bonds.

Although the elongations observed in the first-ligand distances are 3-4 times

smaller in the RC Fe2+ site, as compared to the cyt c iron, it is noteworthy that

a detectable, local deformation occurs at a site of the RC which is well shielded

by the protein matrix from the surrounding water-trehalose matrix. This argues

in favor of a strong protein-water-trehalose interaction at the RC surface, the

structural effects of which propagate to the interior of the protein over a distance

of at least 15 Å. This value is inferred from the minimum distance of His-M266

and His-L230 from the surface water molecules identified by XRD [114] (pdb

file 2J8C). These evidences of long-range structural effects due to the strong

interaction between the RC surface and the water-trehalose matrix are consistent

with the large effects induced on electron transfer by incorporation of the RC into

a dried trehalose matrix [132, 133] and with the much less severe effects observed

in PVA films [131, 133].

The first-shell DW factors determined in the PVA film and in the dehydrated

treahlose matrix are the same (within the experimental error, see Table 4.1). This

is in contrast with what observed for the heme Fe of cyt c; in this case, in fact, the

incorporation in trehalose leads to a dramatic decrease of the DW factors [65].

The behavior observed in the RC can be rationalized when considering that both

static (structural) and dynamical (vibrational) disorder contributes to the DW

factors. Since the incorporation into an extensively dehydrated trehalose matrix

is expected to reduce drastically protein dynamics also in the case of the RC (see

ref [133], and references therein), the lack of trehalose effects on the DW factors

suggests that the values of the DW factors, both in PVA and in the trehalose ma-

trix, are largely dominated by the static (structural), local heterogeneity of the

Fe2+ site, being the dynamical (vibrational) contribution essentially negligible. In

line with this interpretation, Eisenberger et al. [127], by examining the tempera-

ture dependence of the DW factor, concluded that the disorder probed by their

XAFS analysis was predominantly static (structural) in nature. They estimated

a static disorder parameter ≥0.01 Å2. The DW factors we found (see Table 4.1)
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are even smaller than this estimate of the static component only, indicating that

the vibrational contribution has to be negligible.

This notion is further supported by a recent molecular dynamics study [134]

in which a coarse-grained model of the wild type Rb. sphaeroides RC was used to

obtain a rigidity profile of the protein, made up of force constants describing the

ease of displacements of each residue with respect to the rest of the structure. The

result of this local flexibility study was that regions around the Fe2+ center exhibit

the largest force constants, and that the Fe2+ ligands are among those yielding the

highest values. It is not surprising, therefore, that the dominating contribution to

the measured DW factors comes from static disorder and that, as a consequence,

a possible reduction in the dynamics, induced by incorporation in the trehalose

matrix, has no effect on the measurable DW factors. At the same time, the high

local rigidity of the Fe2+ coordinating residues, and of the surrounding protein

region, can explain the sizeable structural distortions observed in the Fe2+ site

when the RC is embedded in the trehalose matrix.

We propose that locking the RC surface to the water-trehalose matrix, and

hardening the embedding structure upon decreasing the content of residual water,

strains the protein surface, most likely through the formation of water-mediated

hydrogen bonds between the sugar molecules and surface protein groups. Such

a perturbation, due to the rigidity of the interposed protein region, is expected

to propagate to the buried Fe2+ site, and to be strong enough to distort the

geometry of the Fe2+ site. Our suggestion that the two His residues, which move

further from the Fe2+ atom in trehalose, are His-M266 and His-L230 is consistent

with the values of the force constants calculated by Sacquin-Mora et al [134]

for these residues (∼200 kcal mol−1Å−2 and ∼306 kcal mol−1Å−2, respectively),

which are systematically lower than those evaluated for the other two His residues

(i.e. ∼330 kcal mol−1Å−2 for His-L190 and ∼540 kcal mol−1Å−2 for His-M219,

which forms a strong H-bond with QA).

4.3 Time-resolved XAFS experiments

In spite of the amount of studies aimed to clarify the details of RC’s photochem-

istry, the role of the Fe2+ site in the photosynthetic apparatus is still debated,

as introduced in Paragraph 4.1.2. A time-resolved XAFS study is ideal to fucus

right on this site, however its feasibility is strongly compromised by the diffi-

culty of obtaining a high enough signal-to-noise ratio in pump-probe conditions.

Only one time-resolved XAFS study has been reported so far [125] and it pro-
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vided weak evidences of a conformational change in the Fe2+ ligands cluster in a

characteristic time of the order of 500 µs in QB-reconstituted RCs.

We present here a time-resolved XAFS study of the Fe2+ site in QB-depleted

RCs, where the electron transfer to QA is followed by recombination of the electron

with the bacteriochlorophyll special pair.

4.3.1 Materials and methods

Sample preparation. The RC was isolated and purified from Rb. sphaeorides

R-26 as described in Paragraph 4.2.1.

The PVA film was prepared starting from a solution containing RC 100 µM,

0.025% LDAO, 10 mM O-phenantroline and and PVA 2.5% in 10 mM TRIS

buffer, pH 8.00. 2 µl of the solution were layered on a pure SiO2 disk, into a

circular track with internal and external radii of 4.6 cm and 5.0 cm respectively

(see Figure 4.8), delimited by paraffin wax. The sample was dried overnight under

N flow, then the paraffin was removed.

Figure 4.8: Sample for the time resolved experiment: RCs from R-26 Rhodobacter
sphaeroides are embedded in a PVA matrix and layered over a quartz CD.

Experimental setup. XAS spectra were collected at the the NW14A beam-

line [135] of the Photon Factory Advanced Ring (PF-AR). The 6.5 GeV syn-

chrotron PF-AR operates in single-bunch mode, delivering X-ray pulses at a fre-

quency of 749 kHz with a pulse duration of about 100 ps. The X-ray beam was
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conveyed by an undulator with period length of 36 mm (U36), able to provide an

intense monochromatic X-ray source by use of a double crystal monochromator

and a focusing mirror, covering the energy range 5-20 keV. Laser pulses were de-

livered by a Ti:sapphire laser system with 800 nm fundamental wavelength. The

repetition rate was 473 Hz, and the laser power 22.5 mW; the laser spot size was

∼1.9 mm2, so the resulting energy density was 25 J/mm2. The X-ray spot size

was 0.9 mm2 and it was completely included in the area irradiated by the laser.

The geometry of the experiment is shown in figure 4.9: the sample is mounted

on a rotating step-motor and forms an angle of 45◦ with the incoming X-rays;

the laser direction is displaced of 10◦ with respect to the X-rays. The photo-

multiplier detector is placed at 90◦ with respect of the X-ray beam and 45◦ with

respect to the sample plane; a 3 µm Mn high-pass filter was used to eliminate

the fluorescence due to elastic scattering.

Figure 4.9: Top view of the experimental setup for the pump-probe time resolved
experiment at the beamline NW14A of the PF-AR synchrotron. The sample is
mounted over a step motor that allows it to rotate at the chosen frequency. The
X-ray beam forms an angle of 45◦ with the sample, and the angle between laser
and X-ray beams is 10◦.

The rotation frequency of the sample disk is determined by the photochem-
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istry of the protein: since the system takes at least 300 ms to relax after a pho-

toexcitation, this is the minimum time that must elapse between two following

excitations of the same spot (i.e. the revolution time of the disk). Moreover, the

disk rotation step must be such that two following X-ray beam and laser spots

do not overlap; to calculate the minimum frequency we must take into account

the laser spot size in the direction of the rotation movement (the X-ray spot is

smaller) and consider this as the minimum possible step. In summary, the range

of allowed frequencies was determined as follows:

• Maximum rotation frequency determined by the RC relaxation time:

1 revolution in 300 ms ⇒ 1/300=3.3 Hz

• Minimum rotation frequency determined by the laser spot size:

νmin = 1/(r ∗ (289/s)) (4.2)

where 289 mm is the length of the probed circumference, s is the laser spot

size in mm and r is the repetition time in seconds.

The lower limit of the frequencies interval was calculated as 2.2 Hz, therefore we

chose as the disk rotation frequency the central value of 2.7 Hz.

Synchronization between X-rays from PF-AR and the laser pulse was achieved

by means of a 1 kHz chopper as described in reference [135]; the timing chart for

an example of a NW14A time-resolved experiment is depicted in Figure 4.10.

The chosen delay times between laser and X-ray pulses ranged from 10 µs

to 500 µs. The general settings chosen for the experiment are summarized in

table 4.2.

Energy intervals 7100-7170 eV
Energy steps 1 eV
Integration time 4 s
Filter Mn
Laser wavelength 800 nm
Laser energy density 25 J/m2

Delay time 10-200-500 µs
Disk rotation frequency 2.7 Hz

Table 4.2: Chosen settings for RC pump-probe measurements
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Figure 4.10: Timing chart of the synchronization system, operated by means of
the X-ray chopper, between 794 kHz X-rays and 945 Hz laser pulse in 1:1 ratio.
The figure is taken from reference [135].

4.3.2 Results

Three series of spectra were collected, corresponding to the delay times of 10 µs,

200 µs and 500 µs; the 10 µs time scale was never explored before for RCs, while

the other two time scales have been investigated: evidences exist in literature

of a voltage change across the protein happening 200 µs after the main charge

separation event [136]; this voltage change could be ascribed to the formation of

a transient state involving the quinone QA and, if so, it would have an influence

on the Fe coordination shell. It is interesting to notice that the voltage change

was observed also in RC samples where the quinone QB was removed, that is in

our experimental conditions. The 500 µs time scale, instead, has been studied

with XAFS [125], bringing no evidence of a change in the Fe2+ oxidation state.

Raw spectra were averaged and the S/N ratio was evaluated: the signal is

given by the difference between the white line maximum and the pre-edge ab-

sorption intensity, while the noise is evaluated as the standard deviation of the

last 30 points from a polynomial curve. In table 4.3 the calculated S/N are

reported.

The S/N ratio is proportional to the square root of the number of spectra,

in agreement with the Poissonian statistics. In order to compare the spectra

collected before and after the laser pulse for each delay time, we chose a common

normalization procedure aimed to rescale the data with the smallest possible

manipulation: the average of the first 10 points was subtracted as a constant to
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Delay N. of averaged S/N
(µs) spectra
10 89 48
200 139 56
500 175 62

Table 4.3: Signal to noise ratios for the 3 series of spectra characterized by a
different delay between laser and X-ray pulses.

the whole spectrum, then the average of the last 5 points was set to 1. With this

normalization, we do not consider that the background due to scattering from

the disk increases with energy (we subtract a constant value instead of a line

with non-zero slope); nevertheless, the energy dependence of the background is

reasonably the same before and after the laser and this normalization allows a

more reliable comparison than after an arbitrary background subtraction. When

the delay time is 10 µs or 200 µs, spectra before and after the laser pulse do not

seem to show differences within the noise, as shown in figure 4.11.

Figure 4.11: Final spectra for the delay times of 200 and 10 µs resulting from
the average of 139 and 89 spectra respectively. The normalization procedure is
described in the text. The red spectrum is collected before the laser pulse, while
the black spectrum after it.

The spectral features that are expected to change as a consequence of confor-

mational changes in the Fe cluster or Fe oxidation are:

• The pre-peak centered at about 7114 eV. The pre-peak is known to be deter-
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mined by 1s → 3d transitions [39], forbidden in the dipole approximation,

therefore its intensity increases when the Fe shell gets further from spherical

geometry and the dipole approximation fails. This feature is visible also in

the XANES spectrum shown by Hermes et al. [125] and in the static spec-

tra that we previously measured at ESRF, shown in figure 4.4 (continuous

line). Some small changes are detected in Fe pre-peak of metalloproteins

upon Fe oxidation, for an example see Figure 2 of the paper from Rich et

al. [37] where Fe-XANES of reduced and oxidized forms of Myoglobin and

Hemoglobin are compared. We notice that in these proteins Fe oxidation

causes a small decrease in the pre-peak intensity and only in the case of

Hemoglobin a displacement to higher energies (of about 2 eV).

• The edge position at 7124 eV (chosen as the central value of the main peak

of the derivative). The edge is expected to shift of 2-3 eV upon Fe oxidation,

while a smaller shift could be ascribed to conformational changes [37].

• Post edge features. Conformational changes like ligands displacement or

rotation cause a change in the relative intensity of post-edge features, as

can be demonstrated for example by means of XANES simulations.

For the 500 µs delay spectra shown in figure 4.12, a difference between dark

and photoexcited structures is just visible in the pre-peak region. In particular

it is noticeable that the spectrum measured 500 µs after the laser pulse (black

curve in figure 4.12) has a less evident pre-peak feature if compared with the dark

structures and with photoexcited structures measured at a different delay (red

curves in figure 4.11). Nevertheless, a more detailed data analysis is needed to

make clear whether it is a spectral change or an artifact.

Data filtering. In order to detect whether the spectral change at 500 µs delay

is real, we eliminated the high frequency noise components from the spectrum.

Filtering was performed by a Fourier low-pass filter, choosing as a cutoff frequency

0.2 eV−1. It means that we consider as noise, and therefore neglect, oscillations

whose period is less than 5 eV. Since filters often introduce distortions in the

data, we must first of all control if the trend of experimental XANES spectra

are conserved after filtration. In figure 4.13 the experimental XANES are re-

ported, together with the corresponding filtered signals. We see that the filtered

spectra overlap very well to the experimental ones, especially in the region 7110-

7130 eV where eventual changes due to photoexcitation should be present. We

can therefore focus on the comparison between filtered data.
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Figure 4.12: Fe-XANES spectra of RC collected before (red line) and 500 µs after
(black line) illumination with laser pulse.

Filtered spectra exhibit exactly the same trend on the whole energy range,

except for the region 7110-7120 eV, where the pre-peak is present (figure 4.14).

A comparison between the derivatives of the two signals makes clear that only

in the 7110-7120 eV region the XANES spectra are different both in the features

position and in their relative amplitudes (see inset of figure 4.14), while for the

rest of the energy range the derivatives nearly overlap. The features appearing

in the post edge region are indeed centered at the same energy values and they

only slightly differ in their relative amplitude.

If the same filtering operation is performed on the 10 µs and 200 µs data set,

the spectra collected before and after photoexcitation do not show any difference

in the 7110-7130 eV energy region. In this case the filter brings to the uniformity

of the spectra, confirming that if any difference was present it was due to the high

frequency noise, to the contrary of what we saw in the 500 µs data set where the

differences were evidenced after filtration.

Simulations. In order to understand what conformational changes could be

associated to changes in the pre-peak region, this region was simulated making

use of the finite difference method provided by FDMNES [5]. The elements of the

transition matrix are calculated by the program in the dipole approximation. As

an example, two structures were taken into account, differing only in the position

of the Glu-M234 residue with respect to Fe. The starting model for the Fe

cluster with Glu in bidentate arrangement (see figure 4.5) is the one determined

in our previous work [109] described in Paragraph 4.2, where the Fe-O first shell
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Figure 4.13: Normalized experimental signals collected before (red dots) and
500 µs after (black dots) the laser pulse. On each experimental signal the cor-
responding filtered spectrum is reported (red line before laser, black line after
laser).

distances are Fe− Oε1 = 2.09 Å and Fe− Oε2 = 2.41 Å; the deformation taken

into account is a rotation of the Glu residue in such a way that Fe−Oε1 does not

change and Fe − Oε2 = 3 Å, according to monodentate configurations reported

by Harding [53].

Since in monodentate configuration one of the first shell ligands is put further

from Fe than in bidentate, this conformational change corresponds to a deviation

from spherical symmetry. The choice of this conformational change is also due to

the findings of Hermes et al. [125], that hypothesize a change in Glu configuration

from bi- to mono-dentate upon laser excitation in QB reconstituted Reaction

Centers. Simulations are shown in figure 4.15. The simulations show that a

conformational change bringing the system to a less symmetric configuration (Glu

passing from bi- to mono-dentate, respectively red and black curves in figure 4.15)

causes an increase in the prepeak amplitude. A subtle shift of the edge to lower

energies is also present, as we can appreciate considering the position of the

peaks in the derivative spectra (see inset of figure 4.15). This shift is estimated

by the simulations to be about 0.3 eV, therefore undetectable with our energy

resolution (1 eV). These considerations on simulated spectra are in line with what

was experimentally found by Hermes et al [125]. It is important to notice that a

change in the Fe oxidation state would cause a shift of the edge to higher energies
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Figure 4.14: Comparison between RC Fe-XANES collected before (red curve)
and 500 µs after (black curve) excitation with laser pulse, and their derivatives
(inset, same color code). Signals were filtered using a low-pass Fourier filter to
eliminate high frequency (≥ 0.2 eV−1) noise contributions.

of about 2-3 eV and would be clearly detectable in this experiment.

The change of XANES spectra encountered in this experiment at the time

scale of 500 µs after photoexcitation consists in the lowering of the pre-edge

feature and is not accompanied by a shift in the edge position (that means that if

a shift is present, it must be smaller than 1 eV, therefore we can take into account

conformational changes and exclude Fe oxidation). This trend in the spectra can

be related to conformational changes following from the presence of the electron

at the QA site that lead to a transitory more symmetric Fe cluster configuration.

4.3.3 Conclusions and future developments

In the 500 µs data set the pre-peak feature centered at 7114 eV encountered in

the dark structure becomes indistinguishable from the noise after photoexcita-

tion. To check if this difference in spectra before and after illumination is real

and to put it in evidence with respect to the noise background, a Fourier low-pass

filter was applied to the data, in such a way to eliminate high-frequency oscilla-

tions due only to noise. The same filter was applied to all of the collected data

sets, revealing that the pre-peak feature is evident in all of them except for the

spectrum collected 500 µs after laser excitation. Moreover, considering dark and
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Figure 4.15: Pre-peak region of simulated Fe cluster of RC where the Glu residue
is in bidentate (red line) or monodentate (black line) configuration.

illuminated structures at 500 µs delay, we notice that the derivatives of filtered

spectra are nearly identical, except for the region 7110-7120 eV, where minima

and maxima appear at different positions, indicating a different distribution of

pre-edge features. We are therefore allowed to assert that a difference in the Fe

coordination shell exists between dark and photoexcited structure 500 µs after

light absorption. Since no energy shift is visible we can assume that the Fe2+

does not change its oxidation state. As widely discussed in literature and con-

firmed in this specific case by FDM simulations, the closer the coordination shell

of the irradiated metal ion is to spherical symmetry the lower is the amplitude of

its XANES pre-peak. Therefore we can infer that 500 µs upon light absorption,

the presence of the ejected electron in the surroundings of the Fe atom causes

a transitory change in the local symmetry in the direction of a more spherical

structure. These conformational changes could bring for example to a temporary

higher uniformity of first shell distances. It is noticeable that Hermes et al. [125]

revealed a conformational change in the Fe cluster at the same time scale, but

this change could be explained assuming a distortion in the direction of a less

spherical structure, to the contrary of what we found. The two findings are not

contradictory, since the RCs they studied were reconstituted in QB, while our

sample does not contain the second quinone. It is therefore likely to find different

conformations of the Fe coordination shell, depending on the different reactions

taking place around the Fe site (Q−A → QB electron transfer in the reconstituted

sample, recombination of the photoexcited electron to the bacteriochlorophyll

dimer in our sample).
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To ascertain these results, however, it is necessary to record spectra with a

S/N ratio high enough to appreciate changes in the spectral features without ap-

plication of a filter. We propose therefore to improve the experimental setup by

introducing a 2-dimensional Soller slit between the sample and the photomulti-

plier, in order to reduce the background due to scattering from the quartz disk.

Moreover the X-ray flux can be enhanced by removing the 1 kHz chopper and

employing only a heat-load chopper: in this configuration, the sample would be

irradiated with pulse trains of 10 µs duration, made of 10 single X-ray pulses each

and delivered every 1 ms. The combination of these improvements is expected to

increase the S/N of a factor ∼20 and to allow the spectral changes to emerge by

reducing the magnitude of the noise.
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Chapter 5

Matching DFT calculations and

XAFS experiments: the

application to MbCO

The analysis procedure introduced in Chapter 2 and applied throughout this

work, relies on the existence of a parameterization for the DWs that helps disen-

tangling the structural parameters from the dynamical ones, in the case where the

metal binding site is completely unknown and the simultaneous determination of

the two sets of parameters would lead to multiple solutions. However, the DWs

parametrization is provided by Dimakis and Bunker only for Zn sites [17, 18] and,

in a simplified version, for the Fe-porphyrine complex [20], while it is desirable to

get calculated DWs for all metal-amino acid bonds, in order to extend our anal-

ysis method. When the parametrization is not available, indeed, it is a common

practice to assign reasonable starting values to the DWs and fix such values to

allow the determination of structural parameters alone. This could bring a bias

in the fitting procedure, as a consequence of the correlation between parameters.

The problem of static an dynamical disorder is an open issue in EXAFS analy-

sis, since the approaches implemented in data analysis codes are often unsuitable

to account for Multiple Scattering (MS) contributions and non-thermal compo-

nents; for example FEFF8 employs the Debye Model, which provides exact values

only for Single Scattering DWs in homogeneous systems. Therefore, the need of

matching computational techniques with MS XAFS analysis for the determina-

tion of disorder parameters arose, and was handled either with Density Functional

Theory (DFT) methods or with Molecular Dynamics (MD). The former approach

was practiced by Dimakis and Bunker and provided the parameterizations used in

this work; the latter avoids explicit determination of DWs by generating different
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5.1. Structure and function of Mb

sets of atomic configurations with MD and calculating then the averaged EXAFS

spectrum over the different configurations [137, 138, 139]. However, the quan-

titative determination of the DWs is highly desirable, since it carries important

information about the dynamical properties of the system. The existing studies

that match ab initio calculations with XAFS on biological systems are revised

in [28]: they treat the determination of geometric end electronic properties of the

investigated system, but they do not address to the protein dynamics.

The problem of multiple solutions in EXAFS analysis is particularly evident

in a system like the Fe site of MbCO, where the MS contributions due to the

heme plane overwhelm the weaker contributions due to axial ligands; moreover,

the strong correlation between structural and dynamical parameters requires the

a priori knowledge of one set in order to determine the other. It all makes the

heme an ideal test for the realization of techniques aimed to improve the capabil-

ities of XAFS analysis. For such reasons we tested an original approach for the

calculation of DW factors in protein metal sites, in collaboration with the research

group led by J.J. Rehr, which provided us with a program able to extract the

DWs from the dynamical matrix for a given structure [19]. The DFT optimized

structure of MbCO and the corresponding dynamical matrix were therefore cal-

culated by means of Quantum Espresso (QE), the DWs were extracted, and the

EXAFS spectrum generated by setting the calculated parameters was compared

with the experimental one. This study allowed to extend the validity of the ap-

proach proposed by Vila et al [19] also to metalloproteins and to put emphasis

on the role of Multiple Scattering contributions.

5.1 Structure and function of Mb

Myoglobin is a single-chain globular protein, expressed in cardiac myocites and

oxidative skeletal muscle fibers, that reversibly binds O2 or other small ligands

by its heme residue. Its main function is to store oxygen in muscles, nevertheless

it also serves as buffer for the intracellular concentration of O2 and facilitates O2

diffusion; for a complete review of Mb functions see reference [140]. Mb is made

up of 153 amino acids arranged in 8 α-helices, that fold around a central core

where the heme prosthetic group is embedded, as shown in Figure 5.1; two His

residues are in contact with the heme site: His93, called the proximal His, that

is a direct donor for the Fe atom, and His64, called the distal His, the position

of which is responsible for the binding/release mechanism of small molecules at

the Fe site [141]. The small molecule bound to the heme Fe2+ can be O2, when
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Figure 5.1: Backbone and prosthetic group of Mb. The backbone consists of 8
α-helices that fold around a central pocket containing the heme group.

the protein performs its standard physiological role, but also CO (Carboxymyo-

globin), NO, water or hydroxyde. The choice of the molecule that binds to the Fe

site is driven both by metal-ligand affinity and by the conformation of the ligand

binding pocket delimited by His64.

Since its first crystal structure was solved, which was achieved by John Kendrew

in 1958 as the first structure of a macromolecule, several XRD structures have

become available, with increasing resolution up to 1.1 Å (see as examples the

PDB entries 1MBO [142], 1BZR [143] and 1A6G [144]).

5.2 Heme as a model system

Heme is the functional site of Mb, since the binding and release of molecules takes

place at its Fe2+ site. The iron atom binds permanently 4 N from the pyrrolic rings

and a fifth N belonging to His93, while the sixth bond is available for external

molecules (see figure 5.2). When the Fe coordination is complete, the atom lies

on the heme plane, while if the sixth ligand is missing (deoxy-Mb) it undergoes a

displacement from the plane of ∼0.3-0.4 Å [144]. The ligand-binding mechanism

of Mb has been studied in detail, in particular by following the photolysis of

MbCO, the most stable and most easily photolyzed adduct [145]; a 150 ps time-

resolved XRD study brought insight into photodissociation, by correlating the
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5.2. Heme as a model system

binding/release mechanism to a set of molecular motions that take place within

the protein [146]. Although the structure-to-function relationship is in this case

Figure 5.2: Graphical representation of the heme plane. For the atoms of the
heme fundamental unit, the chosen nomenclature is reported on the picture. Np
indicates the pyrrolic nitrogens (first shell), while to each carbon atom a number
is associated to indicate the shell it belongs to (2-3-4).

much clearer than for the great majority of proteins, Mb and its Fe2+ site are

still intensively studied with a wide variety of techniques, either to clarify the

debated points (related for example to Mb dynamics [147, 148, 149]) or as a

model system, for example to investigate protein-matrix interactions (reviewed

in [133]) or to test original experimental setups or data analysis softwares [6] on

macromolecules.

The series of XAFS studies on the Fe2+ site of Mb started in the early 80s with

the pioneering works by Chance, Powers et al. [150, 151, 152], centered on the

investigation of MbCO, its photoproduct Mb*CO and deoxy-Mb, and provided

high resolution structures for the Fe coordination shell geometry in the three

systems. Afterwards, many studies confirmed these early findings, except for the

CO geometry, that was found to be closer to perpendicularity to the heme plane

than suggested by Chance et al., both by XAFS [153] and by diffraction studies

at atomic resolution [144].

XAFS was also applied to the refinement [154] of the heme structure in met-

Mb (where the iron atom is oxidized to Fe3+) and deoxy-Mb using XRD structures

as starting point; based on constrained and restrained multiple scattering anal-

ysis, this study brought to the determination of the heme internal bond lengths
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with an error of 0.02-0.03 Å, and served as a case study for the applicability of

XAFS to the refinement of protein metal sites. Concerning MbCO, such a refine-

ment of the heme internal bond length was never reported, however some XAFS

studies dealt with the determination of Fe- first ligands bond lengths [155, 153].

One noteworthy result is that a limitation of EXAFS analysis was found, con-

sisting in the impossibility to uniquely position the CO molecule on the basis

of EXAFS data alone, because of the presence of a consistent number of local

minima [155].

In the next sections, we will test the applicability of ab initio Density Func-

tional Theory simulations to the determination of geometry and dynamical pa-

rameters in the Fe-heme of MbCO; the atoms of the heme plane will be referred

to by using the labels depicted in Figure 5.2, where the numbers associated to C

atoms refer to the shell they occupy with respect to the central Fe atom. Atoms

belonging to the axial ligand, instead, will be indicated with the subscripts His

and CO respectively.

5.3 Comparison between DFT calculations and

experimental EXAFS spectra

As reported in previous paragraphs, the Fe-heme of MbCO appears as a widely

studied but nevertheless challenging system; we decided to refer to it in order to

test the efficacy of DFT calculations of statical and dynamical parameters relative

to protein metal sites.

5.3.1 Materials and methods

Experimental. Horse-heart Mb was purchased by Sigma (Sigma, St.Louis,

MO) and used without further purification. It has been dissolved (∼10 mM)

in a solution containing trehalose 200 mM (Hayashibara Shoij, Okayama, Japan)

and a phosphate buffer 20 mM (pH 7 in H2O). The solution has been equilibrated

with CO and reduced by anaerobic addition of sodium-dithionite.

Fe K-edge XAFS spectra of MbCO have been collected on the beamline

GILDA-BM08 of ESRF, employing a Si(111) monochromator; the temperature

was set to 80 K and maintained by N flow. The flux on the sample was of the

order of 1011 ph/s. Five spectra were collected in fluorescence mode, each one

with an integration time of 10 s/point, changing the irradiatiated spot after two

spectra. All of the spectra showed the same XANES, independently on the point
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of the sample and of the order in which they were recorded; it suggests that no

radiation damage occurred.

Ab initio Simulations. The structural relaxation towards the equilibrium

structure was performed through a DFT approach (for a complete review see [156])

in the Born-Oppenheimer approximation, by means of the QuantumESPRESSO

(QE) code. The code works within the plane wave approach, therefore the sys-

tem had to be included in a super-cell of an hypothetic super-lattice, in order to

simulate periodicity. At the same time, interaction between neighboring copies

of the system must be avoided, therefore we chose a super-cell of 20×20×15 Å3.

In the whole we took into account 48 atoms, consisting in the 25 atoms of the

heme plane, the 7 atoms belonging to the axial ligands (depicted in Figure 5.2),

and 16 H atoms necessary to saturate the bonds of the heme outer C shell and

of the His residue. Ultrasoft pseudopotential with a Perdew-Burke-Ernzerhof

exchange-correlation term were used.

Once the equilibrium structure was reached, the dynamical matrix matrix was

calculated within the perturbation theory. The elements Dβj
αi of the dynamical

matrix represent the coupling force between the displacement of atom α in di-

rection i and atom β in direction j. For our purposes the elements Dβj
αi were

calculated at the Gamma point, i.e. where the wavevector ~q=0. The consistent

part of the job described so far has been developed by Cristian degli Esposti

Boschi; calculations were performed on the computing resources supplied by the

Consortium of Universities CINECA.

Once the eigenvalues and eigenfunctions of the normal modes had been ex-

tracted, DW factors for the paths of interest were calculated by making use of a

program [19] developed by H.J.Krappe (Hahn-Meitner-Institut, Berlin) and the

research group led by J.J. Rehr (University of Washington, Seattle).

EXAFS analysis. Theoretical amplitudes and phase shifts for XAFS analysis

were calculated with feff8.2, the self-consistent mode was chosen to compute the

potential and all paths with a maximum of 4 legs were taken into account. More

than 200 scattering paths were generated, therefore a step-by-step procedure was

necessary to identify the contributions to the final spectrum due to positions and

DWs of the different shells of atoms; the overall analysis strategy, carried out

with Artemis, follows these steps:

1. From a first shell fit in the R region 1-2 Å the amplitude reduction factor

S2
0 is extracted. The best fit value is then kept fixed during the following
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steps.

2. The overall comparison in k space is performed, including all shells, initially

setting only the Single Scattering (SS) DWs to the calculated values and

fitting a common value σ2
MS for all of the Multiple Scattering (MS) paths.

3. The MS paths with greatest amplitude are identified, their DW factors are

calculated and fixed in the k space comparison; a common DW factor for

the remaining MS paths is fitted.

In the steps above, a shift in the energy origin is always allowed (∆E0), while

neither the interatomic distances nor the calculated DWs are allowed to vary.

5.3.2 Results

The analysis procedure outlined in the previous section is aimed to check the

applicability of our DFT-based technique to the determination of both structural

and dynamical parameters in MbCO; this step-by-step approach was adopted in

order to disentangle the contributions to the final spectrum due to structural

parameters, single scattering DWs and multiple scattering DWs. In step 1, the

first shell fit, first shell distances and DWs were set to the calculated values re-

ported in Table 5.1. In the table we report also the DWs extracted from Dimakis

and Bunker’s parametrization for Fe2+-porphyrine complexes at the same tem-

perature (80 K); we notice that the values calculated by us are systematically

lower of about 10%. The resulting fit is reported in Figure 5.3 (red trace), the

corresponding best fit values for the two free parameters are S2
0=0.75±0.16 and

∆E0=-6.8±2.4 eV; the other fit in the figure is obtained by allowing the Fe-C

distance to vary, starting from a different position than the QE-calculated one

(the reason for this test will be explained below).

The best fit value for S2
0 was then fixed and the fit described in step 2 was

performed, yielding the value of σ2
MS=0.0034±0.0007 Å2 for the DW factor com-

mon to all MS paths, and ∆E0=-8.9±0.9. The main oscillation frequency of the

spectrum is very well reproduced by the fit, which suggests that the calculated

structural parameters are consistent with the data. On the other hand, the am-

plitudes of higher frequency oscillations (around 7 Å−1 for example) are not well

reproduced: one might ascribe this discrepancy to the strong approximation as-

sumed in step 2, that is, assigning a common DW factor to all of the MS paths.

In such case the discrepancy might be reduced when step 3 is performed, since

the calculated DWs are expected to influence in a different way the different MS
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Fe-Np Fe-NHis Fe-CCO Fe-C2 Fe-C3 Fe-C4

Distance (Å) 2.012 (1) 2.1011 1.7345 3.049 (1) 3.428 (1) 4.218 (1)

σ2 (10−3Å2) 2.409 (4) 2.9464 1.9769 2.842 (8) 2.967 (6) 2.88 (1)
σ2
DB(10−3Å2) 2.684 - - 3.150 3.206 3.211

Table 5.1: Fe-atoms distances in MbCO resulting from structural optimization of
the Fe-heme cluster, and DW factors (σ2) at the temperature of 80 K extracted
from the dynamical matrix. Calculations were performed with Quantum Espresso
(QE). For the atoms of the heme plane, the average distances of all atoms be-
longing to the same shell are reported (atoms labels are depicted in Figure 5.2);
values in brackets are the standard deviation relative to the last significant digit.
The DWs are compared with the values resulting from Dimakis and Bunker’s
parametrization [20] for an Fe2+-Porphyrin complex at 80 K (σ2

DB).

contributions. However, once the greatest amplitude MS paths are identified and

their DW factors are fixed to the values extracted from the dynamical matrix (see

Table 5.2), the fit does not improve. The fit resulting from step 3 of the analysis

n Path Amplitude Degeneracy σ2 (10−3Å2)
1 Fe-CCO-OCO-CCO 170 1 1.9654
2 Fe-CCO-OCO 145 2 1.9654
3 Fe-Np-C2 324 16 2.6848
4 Fe-C4-Np 236 16 2.8277
5 Fe-C2-C4-Np 232 16 2.8244
6 Fe-Np-C2-Np 180 8 3.0290
7 Fe-C4-C2-Np 176 16 3.1854
8 Fe-C4-C2 176 16 2.9614
9 Fe-Np-C4-Np 166 8 2.8701
10 Fe-C2-C3 90 16 2.7663

Table 5.2: Most important MS paths generated with feff8.2. Path 1 and 2 refer
to the CO molecule while the following ones to the heme plane. The DWs at the
temperature of 80 K are extracted from the dynamical matrices calculated with
QE and their values are reported in the last column of the table.

procedure, almost indistinguishable from the one resulting from step 2, is shown

in Figure 5.4 (red trace); the corresponding best fit values are ∆E0=-8.9±0.9 and

σ2
MS=0.006±0.004 Å2.

We attribute the origin of the discrepancy at 7 Å−1 to the contribution of

the CO molecule to the overall spectrum: as shown in Figure 5.4, when the CO

paths are generated starting from the QE-calculated structure and DWs, their

sum (indicated with CO-QE) presents high amplitude oscillations that are exactly

in phase with the overall simulated EXAFS in the region 6.5-8 Å−1, and are

therefore likely to be responsible for the too high oscillation amplitude shown by
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Figure 5.3: First shell fits of the XAFS spectra of MbCO measured at 80 K. One
fit (red trace) is based on the first shell distances and DWs calculated with QE,
the only free parameters are S2

0 and ∆E0. The other one (green trace) differs only
in the Fe-C distance, the starting value of which is taken from two early XAFS
works by Chance et al. [150, 151] and which is then allowed to vary during the
fit.

the simulated spectrum with respect to the experimental one. However, besides

this deviation, the overall agreement between fit and experiment is very good, in

particular if we recall that no structural or dynamical degrees of freedom have

been fitted so far, but the only free parameters were a shift in the empirically

determined energy origin and the amplitude reduction factor. We chose therefore

to allow also the CO parameters (see Figure 5.5) to vary, starting from different

initial configurations.

Two hybrid structures were built, where the structural and dynamical param-

eters for the heme plane and for the proximal His (His93) were set to the QE

results, while two different CO structures were adopted: one was taken from the

PDB structure 1A6G [144], the other from two early XAFS work performed by

Chance et al. [150, 151]. The structural parameters for the CO molecule in the

two models are reported in Table 5.3; initial values for the DWs relative to C and

O were set to the reasonable value of 0.003 Å2, while the ones relative to the MS

paths were set to 0.005 Å2.

Figure 5.4 shows that the sum of the CO contributions changes dramatically

depending on the model adopted; therefore we applied a slightly different version

99



5.3. Comparison between DFT calculations and experimental EXAFS spectra

Figure 5.4: Comparison between the spectrum originated by the structure and
DWs calculated with QE (red trace) and eperimental data (open circles). The
three black curves below represent the sum of the paths originated by the CO
atoms, from top to bottom: 1) when CO structure and DWs are calculated
with QE; 2) when CO structure is taken from an XRD structure (PDB code
1A6G [144]); 3) when CO structure is taken from early XAFS works [150, 151].

of the analysis procedure, starting with the two hybrid models in turn. The only

differences with respect to the procedure described in Paragraph 5.3.1 are that

some free parameters are added in the three steps: a shift in the C atom position

in step 1, variations in both Fe-C and Fe-O distances in step 2 and the single

scattering DWs relative to C and O (σ2
C and σ2

O) in step 3. Once the Fe-C and

Fe-O bond length are determined, the angle α can be calculated by means of the

Carnot theorem:

cosα =
(Fe− C)2 + (C −O)2 − (Fe−O)2

2(Fe− C)(Fe−O)
(5.1)

where the C-O bond length is fixed to 1.167 Å, as found by our DFT calcu-

lation in agreement with data reported in literature [157].

The aim of this data treatment is to check that the discrepancy encountered

when the QE model is employed is due only to a wrong estimation of CO po-

sition and DWs, and whether a good agreement can be achieved by allowing

the CO parameters to vary keeping all the rest fixed to the calculated values.

The QE+1A6G model led to the same discrepancy encountered for the pure QE
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Figure 5.5: CO molecule geometry and degrees of freedom. The CO molecule, in
the Rigid Body Refinement scheme is described by two degrees of freedom. We
chose to refine independently the Fe-C and Fe-O bond lengths; the C-O bond
length is fixed to the value defined by QE, so the angle α is determined from the
two free variables by means of the Carnot theorem.

Fe-C (Å) α (◦)
1A6G 1.82 (2) 171 (3)
Chance et al. 1.93 (2) 127 (4)
QE 1.734 179.9
This work 1.78 (2) 135.5 (1)

Table 5.3: Values of the structural parameters relative to the CO molecule
in MbCO determined by X-ray crystallography (1A6G [144]), early XAFS
works [150, 151], our DFT calculation performed with QE and the fit of the EX-
AFS spectrum based on the QE+Chance model (see text). α is the Fe− Ĉ −O
angle; the values in bracket are the errors on the last significant digit.

model, while the QE+Chance model nicely fits the experimental data (Figure 5.6,

blue trace). Since the CO position determined by Chance et al. differs from the

other models mainly because of its marked bending, it all suggests that the CO

molecule is actually bent, such that it is impossible to properly fit the spectrum

without taking it into account in the starting model.

The first-shell fit based on the QE+Chance starting model is reported in

Figure 5.3; the Fe-C distance was allowed to vary in this step, starting from the

value of 1.93 Å indicated by Chance et al. [150, 151] and converged to the value

of 1.78 Å, much closer to the one calculated with QE (see Table 5.3). The other

best fit parameters were S2
0=0.82±0.08 and ∆E0=-7±1. The value of S2

0 is now

higher than the one determined before, when the fitting model was based only on

QE calculations: this could be due to a correlation between this parameter and

the DW factor relative to the C atom. The latter was in this case fixed to the
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reasonable value of 0.003 Å2, since we are not allowed to use the value extracted

with QE, considering that we introduced a different CO structure.

The resulting CO geometry, after the whole analysis procedure based on the

QE+Chance model, is reported in table 5.3, and the corresponding fit in Fig-

ure 5.6 (blue trace): it is noteworthy that the Fe-C distance that best fits the

data is much lower that the starting value of 1.93 Å, while the bending angle α is

close to the one determined by Chance et al. [150, 151] than to the QE-calculated

one. The reason is ascribed to the fact that in QE simulations the heme was

treated as an isolated system, while its actual environment is the protein back-

bone; this approximation seems reasonable for the whole heme structure and for

the proximal His, while it does not hold for the CO molecule, which is the most

affected by the surroundings, as a consequence of its interaction with the distal

His (His64) [148]. This interpretation clarifies also the fact that the DWs relative

to the CO seemed underestimated by DFT calculations, if we take into account

that the Fe-C bond is actually much weaker than what one would expect for an

isolated system. The calculated CO position, moreover, gives rise to collinear

MS paths, that are the most effective paths since their backscattering ampli-

tude, present in the EXAFS formula (1.12), is maximized ; this could explain the

considerable influence of the CO paths on the overall spectrum that produced

the discrepancy at 7 Å−1, and the improvement achieved when the QE+Chance

model, with a marked CO bending, is employed.

The third step of the analysis provides best fit values for σ2
C and σ2

O that are

within the interval of reasonable values, but the common σ2
MS that minimizes

the R factor is the unreasonable value of 0.3 Å2; this is clearly due to the low

influence of this parameter on the fit, such that the analysis program tends to

cancel its contribution. Therefore, a fit where only the 8 MS paths relative to

the heme atoms reported in Table 5.2 were included; for the included paths, the

DWs were fixed to the values extracted from the dynamical matrix, except for

the SS paths σ2
C and σ2

O that were allowed to vary, together with ∆E0. Since the

remaining MS paths were ignored, no additional degrees of freedom are needed.

The fit results are reported in Table 5.4, and the graphical output in Figure 5.6

(red trace).

Surprisingly, the resulting fits are almost identical independently on the num-

ber of MS paths taken into account. It is remarkable that the MS paths relative

to CO, that caused the mismatch at 7 Å−1 in the first phase of the analysis, turn

out to be unnecessary to fit the de data; it suggests that their contributions are

negligible with respect to the heme ones, eight of which are enough to describe
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σ2
C σ2

O ∆E0

(10−3Å2) (10−3Å2) (eV)
12 (7) 0 (2) -9.3 (0.6)

Table 5.4: Best fit values obtained by fitting the MbCO EXAFS spectrum with
the model QE+Chance and including only the 8 MS paths involving the heme
atoms and with highest amplitude.

the X-ray absorption spectrum of the system with good approximation.

Figure 5.6: Fit to the experimental MbCO spectrum measured at 80 K (empty
circles) with models based on QE calculations for His93 and for the atoms of the
heme plane, and on the works by Chance at al [150, 151] for the CO molecule.
The fit can be performed by taking into account all of the MS paths (bottom,
blue trace), or only the most representative 8 MS paths (top, red trace).

5.3.3 Discussion

The structural and dynamical parameters calculated with QE for the Fe cluster

in MbCO generate an EXAFS spectrum in very good agreement with the data,

except for the CO molecule, whose calculated geometry and DW factors cause

the spectrum to differ from the experimental one. The agreement, that holds

for the great majority of the atoms involved in the cluster, is remarkable, since

our DFT simulation did not take into account the heme environment, i.e. the

protein backbone and the solvent. This means that the heme structural and

dynamical properties are completely determined by its internal bonds, and that

103



5.3. Comparison between DFT calculations and experimental EXAFS spectra

interactions with the surroundings do not play any significant role. Moreover, the

good agreement is achieved also when only almost collinear MS paths relative to

the heme plane are taken into account (we included 8 of them in the fit), because

the contributions due to axial ligands become negligible if compared to them;

this stresses the importance of providing a reliable high-resolution starting model

for the heme plane to be employed in XAFS studies on the Fe-cluster of MbCO,

otherwise the determination of CO and His93 structure and DWs is prevented by

the predominance of the heme MS contributions in the spectrum.

For each atom of the cluster, the determination of DWs is as crucial as the

determination of the equilibrium structure, because of the strong correlation be-

tween the two variables in EXAFS analysis. This study revealed that DFT calcu-

lations are a valuable tool to provide equilibrium structure and DW factors, even

in a system the spectrum of which is dominated by Multiple Scattering, as is the

heme. The method used to calculate the DWs, based on the DFT calculation

of the dynamical matrix from which the projected phonon spectra is extracted,

has never been tested before on a protein system and its effectiveness was fully

demonstrated only for Single Scattering paths [19]; here we have successfully

tested the method for a paradigmatic protein system with major influence of MS.

The only discrepancy between calculations and experiment resides in the de-

termination of structure and DWs relative to the CO molecule. Such discrepancy

might be reasonable, since the CO molecule is the one with the highest mobility

into the protein, and its binding is not so tight as for the heme atoms; more-

over, its interaction with the distal histidine His64, not included in the DFT-

simulated cluster, is ascertained. Considering this, we reckon that the approxi-

mation made when considering the heme as an isolated system is too strong for

the CO molecule, to the contrary of what we found for the rest of the cluster.

Nevertheless, the problem can be unraveled by fitting the CO parameters once

the rest of the structure is fixed.

This combined approach between EXAFS fitting and DFT calculations brings

advantages with respect to the independent use of the two techniques: XAFS

analysis is facilitated because the problems of multiple solutions and correlation

between parameters are partially solved, while DFT calculations do not need to

include a too high number of atoms, because corrections due to interactions with

the surroundings can be introduced by means of the EXAFS fit.
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The work we reported was meant to improve the capabilities of BioXAS anal-

ysis and to employ it as a reliable tool to investigate key topics in structural

biology. Therefore we presented first of all a systematic method of analysis ob-

tained by gathering tools issued by the expertise of several research groups and by

matching them in the light of systematic experimental observations and ab initio

simulations; it all contributed to give the guidelines of an aware XAFS analysis

procedure, that might be useful for non-expert users in alternative to ”black box”

approaches. The procedure was fully developed and tested for mononuclear Zn

sites; in this case, the dynamical parameters relative to Zn-amino acid bonds are

available in literature, while for other metals they are not. Therefore, a possible

step towards the generalization of the analysis procedure consists in the ab ini-

tio calculation of such parameters. In this regard, we adopted a way to extract

them from the dynamical matrix calculated with Density Functional Theory and

successfully tested it on Fe-MbCO.

Thanks to this data analysis procedure, or to adaptations of it to the specific

subject under study, we faced diverse topics of biophysical relevance. One of those

is the competition between metal and proton binding which was proposed as the

basic mechanism for the inhibition of proton-translocation activity by metal ions;

the study reported here, regarding Transhydrogenase, belongs to a wider series

of studies on energy-transducing proteins, that reveal the constant presence of

His residues in the coordination sphere of the inhibitory metal, supporting the

proposed mechanism of inhibition.

A different but as well current topic in biophysics is the effect exerted on pro-

teins by strongly dehydrate sugar matrices. We reported here of a XAFS study

on the Fe2+ site of photosynthetic Reaction Center embedded in different ma-

trices, which, besides allowing to improve structural resolution of the Fe-ligands

distances, demonstrated how XAFS can be employed to study the short-scale

repercussions into the deep interior of the protein of an interaction taking place

at the protein surface. A further step on the study of the Fe2+ site of RC was
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also attempted, consisting in a time-resolved pump-probe experiment; the results

reported in this work argue for the presence of a conformational change in the

Fe2+ coordination sphere in the 500 µs time scale.
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