
ALMA MATER STUDIORUM - Università di Bologna
DEIS - Dipartimento di Elettronica, Informatica e Sistemistica, sede di Cesena

Dottorato di Ricerca in Ingegneria Elettronica, Informatica e delle Telecomunicazioni

Ciclo XXII

Settore Scientifico Disciplinare: ING-INF/05

Costrutti ed Applicazioni di Programmazione
Generica in Linguaggi Object-Oriented

Autore

Ing. Maurizio Cimadamore

Coordinatore

Prof. Ing. Paola Mello

Relatore

Prof. Ing. Antonio Natali

Correlatori

Prof. Ing. Andrea Omicini
Dott. Ing. Mirko Viroli

Esame Finale - anno 2010

.

To my wife

Constructs and Applications of
Generic Programming in

Object-Oriented Languages

Contents

1 Introduction 7

1 Overview . 7

2 Contributions . 11

3 Structure of the Thesis . 12

2 Generic Programming in Object-Oriented Languages 15

1 Polymorphism in Object-Oriented Languages 15

1.1 A Formal Calculus: Tiny 17

1.2 Case Study: a Monomorphic Container Class 19

1.3 Subtype Polymorphism . 21

1.4 Parametric Polymorphism 24

1.5 Bounded Polymorphism . 26

2 Generic Programming . 28

2.1 Concepts . 29

2.2 Concept Support in Mainstream Object-Oriented Languages 31

2.2.1 Generic Programming in C++ 31

2.2.2 Generic Programming in Java 33

2.2.3 Generic Programming in Scala 35

3 Design and Implementation of Java Generics 37

1 Overview of Java Generics . 39

4 Contents

1.1 Generics Classes . 40

1.2 Generic Methods . 42

1.3 Wildcards . 43

2 Design of Java Generics . 45

2.1 Method Type Inference . 46

2.2 Capture Conversion . 48

2.3 Subtyping and Decidability 50

2.4 Raw Types . 54

3 Implementation of Java Generics 55

3.1 Type-erasure . 55

3.2 Consequences of Type-erasure 57

3.2.1 Unchecked Cast . 57

3.2.2 Generic Arrays . 59

4 Alternatives to Type-erasure 60

4.1 The NextGen Translator 61

4.2 The EGO Compiler . 63

4.2.1 Type Descriptors in EGO 64

4.2.2 Type-passing Technique in EGO 68

4 Reified Generics in the Java Virtual Machine 71

1 Architecture Overview . 72

2 The Generified Classfile Format 75

2.1 The DescriptorTable Attribute 76

2.1.1 Class Descriptors . 76

2.1.2 Method Descriptors . 78

2.1.3 Array Descriptors . 79

2.1.4 Type-variable Descriptors 79

2.2 The DescriptorMap Attribute 81

2.3 The SuperDescriptor Attribute 83

3 The gCVM Runtime . 85

3.1 Runtime Overview . 86

3.2 Descriptor Table . 89

3.2.1 Class Entries . 90

Contents 5

3.2.2 Method Entries . 91

3.3 Runtime Descriptors . 93

3.3.1 Class Descriptors . 94

3.3.2 Method Descriptors . 95

3.4 The Descriptor Registry . 96

3.5 Resolution of Descriptor Table Entries 99

3.6 The Object Layout . 102

3.7 The gCVM Interpreter . 103

3.7.1 Instance Creation Expressions 105

3.7.2 Method Calls . 106

4 Advanced Features . 107

4.1 Open Descriptor Entries 109

4.1.1 CVMTypeVarEntry and CVMTypeVarBlock 111

4.1.2 Resolution of Type-variable Entries 113

4.1.3 Open Descriptors and Caching 115

4.1.4 Open Descriptors and Subtyping 117

4.2 Dynamic Dispatching and Generic Methods 120

4.2.1 Virtual Parametric Method Tables 121

4.2.2 Consistency of VPMTs and Caching 124

4.3 Capture Conversion . 125

4.3.1 Subtyping . 127

4.3.2 Captured Calls . 128

5 Benchmarks . 131

5.1 Microbenchmarks . 132

5.2 Real World Benchmark: GJ 134

5 Multi-paradigm Integration with Generics, Wildcards and

Annotations 137

1 Object-Oriented vs. Logic Programming: a Comparative Study 138

1.1 Object-Oriented Programming in Java 140

1.1.1 Builtin Types and Classes 140

1.1.2 Defining Custom Classes 141

1.2 Logic Programming in Prolog 143

6 Contents

1.2.1 Terms . 144

1.2.2 Facts and Rules . 145

1.3 Prolog Predicates vs. Java Methods 147

1.4 Prolog in Java: Library-based Integration 149

2 Prolog from Java: Basic PatJ 153

2.1 Modelling Prolog Terms in PatJ 154

2.2 Prolog Classes and Methods 157

2.2.1 Benefits of Generics and Type Inference 162

3 Java from Prolog: the PatJ Library 164

3.1 Creating Objects . 165

3.2 Calling Methods . 166

4 Advanced Features . 168

4.1 Checking Prolog Methods 169

4.2 Coding State: Prolog Fields and Instance Theories 173

4.2.1 Prolog Fields . 173

4.2.2 Instance Theories . 175

4.3 Support for Custom Data-types 177

4.3.1 Call-by-reference . 178

4.3.2 Call-by-value . 179

5 An Example: Parsing and Interpretation 182

5.1 Visitor Pattern Revisited 184

5.2 A Java Parse Tree . 186

5.3 A Prolog Evaluator . 188

6 Conclusions 191

Bibliography 195

Chapter 1

Introduction

“In spite of its name, today’s software is usually not soft enough: adapting it to

new use turns out in most ease, to be a harder endeavour than should be.”

- Bertrand Meyer -

1 Overview

As complexity in modern software systems grows, it is essential to find ways

of satisfying such software requirements as extendibility (the ease with which

a software system may be adapted to take into account modifications in its

requirements), reusability (how well a system might be reused, either as a

whole or in parts, for the construction of new systems) and compatibility (the

ease of interconnecting a system with existing ones) [Kru92, Mey86, SDNB02].

Tackling these issues is not just matter of pure programming language design

as it must include concerns such as specification and design techniques. It

would be wrong, however, to underestimate the technical aspects, by not

taking into account the role played by proper programming language features:

in the end, any acceptable solution must be expressible in terms of programs

written in some programming language. It has been said [Mey86] that

“programming languages fundamentally shape the software designers’ way of

thinking”, meaning that the constructs available in a programming language

dramatically characterise not only the conciseness and the elegance of the

solution of a given problem, but also the ease with which that solution can

be adapted in order to satisfy changing requirements, or to solve new and

unforeseen problems.

8 Introduction

Object-Oriented programming is often associated with the concept of

reusability [GHJV95, Mey89]; Object-Oriented languages provides constructs

that allow the developer to focus on the classes of objects the system ma-

nipulates rather than on the functions the system performs. This is crucial,

as the set of functions performed by a system often varies across different,

while, on the other hand, the category of objects on which the system acts is

likely to be more stable. Consequently, it is often wiser — in the long term —

to decompose a system in terms of the categories of object it manipulates,

provided that such categories feature a sufficient degree of abstraction.

Abstraction in Object-Oriented languages is typically achieved through

polymorphism, that is the ability to define program entities that may take

more than one form. Object-Oriented languages feature two powerful and

orthogonal kinds of polymorphism: subtype and parametric polymorphism.

The former makes it possible to define elements as extensions or restrictions of

previously defined ones while the latter (commonly referred to as genericity)

is a technique for defining elements that abstract from one or more param-

eters representing types. Of the two techniques, subtyping is probably the

most commonly known, to the point that in the context of Object-Oriented

languages it is often used as a synonym for polymorphism.

Subtype polymorphism is the ability of one type A to appear as and be

used like another type B. The power of subtype polymorphism lies in the

ability to provide more specific parameters to operations that have been

defined in terms of more abstract data types - e.g. an operation manipulating

an element whose type is A can be safely passed a parameter whose concrete

type is B, as the set of functionalities provided by B is a strict superset of the

set of functionalities provided by A.

Parametric polymorphism is the ability to define generic data-types and

operations that abstract from one or more so-called type parameters — such

parameters must be supplied (or instantiated) to the generic data-type or

function before it can be used. For example, a function can be defined to

work with lists of any kind, regardless of the concrete element type of the list

— which thus becomes a type parameter of the generic function.

Generic programming [MS88] is a technique for developing maximally

Overview 9

reusable data-structures and algorithms. As first described by David Musser,

Alexander Stepanov, Deepak Kapur and collaborators generic programming

can be thought of as a discipline of “gradual lifting of concrete algorithm” that

starts with a practical, useful algorithm and repeatedly abstract over details.

Thus, a key idea of generic programming consists in finding the minimal set

of abstract properties of the types manipulated by a given generic algorithm.

The term concept is often used to denote an abstract, language-independent

formalisation of such constraints. In the context of Object-Oriented languages,

concepts are naturally expressed [SL05] imposing subtyping constraints on

type-variables; this requires a powerful mixture of subtype and parametric

polymorphism, called bounded polymorphism1.

Curiously, while generic programming denotes a methodology whose un-

derlying model is mostly language-independent, it is often equated with the

language features providing support for such paradigm [DJ05]. As a result,

definitions of “generic programming” are more or less crafted to mean what

the specific programming language features under consideration support —

i.e. in the context of C++, the boundaries between generic programming

and template programming are often blurred, to the point that C++ has be-

come the reference platform for discussions involving Object-Oriented generic

programming.

Java has been recently updated (J2SE 5.0) to include features such

as generics and wildcards that provide support for generic programming

[BOSW98, THE+04]. The addition of genericity to the Java programming

language has been particularly problematic as it posed serious compatibility

issues which have been addressed by choosing a conservative implementation

that ensures migration compatibility [Gaf04] — the exploitation of generic

libraries by non-generic clients. In addition to generics, Java supports use-site

variance [IV06] through wildcards, which allows for a smoother integration

between subtype and parametric polymorphism; when used effectively, gener-

1Generic programming can still be successfully exploited in languages that do not
provide support for bounded polymorphism (e.g. C++). The lack of ability of expressing
constraints on type-variables can be workarounded, as described in [Str]; however this often
lead to poor programming practices and makes the code less reusable [RS06].

10 Introduction

ics and wildcards dramatically improve both the reusability and the ease

of use of a Java library, as demonstrated by the generified Java Collection

Framework [Mica].

Java generics appear to be exploited mainly as a basis for extending

the Java language with new and powerful features such as closures [Lov07],

immutable references [ZPA+07], Haskell type-classes [WLT07], ownership

types [PNCB06], API versioning [HLS09], local variable type inference [Plu07],

integration with domain specific languages (DSLs) [KR08], mixins [ABC03].

Despite frameworks such as [KETF07, DKTE04, vDD04] have been de-

veloped in order to facilitate generification of non-generic libraries and pro-

grams, Java generics still don’t seem to permeate mainstream Java pro-

gramming. This can be viewed as the result of many contributing factors.

First, backward compatibility constraints when generics were first consid-

ered led to a translation technique called type-erasure [BOSW98], which

resulted in several limitations, most noticeably the lack of reification of

generic types. Type-erasure is a lossy translation scheme which turns a

Java generic source into a behaviourally equivalent Java program without

generics/wildcards (hence the term type-erasure, as generic types are erased

during compilation). This results in a lack of support for type-dependent

operations (such as type conversions, instance tests, etc.) involving generic

types [Nin07, AR08, CAF04] which has been the subject of several studies

[SA98, AFM97, SC06, MBL97, Vir05, CV08b]. Moreover, the late introduc-

tion of wildcards2 to the Java language contributed to the overall impression

that the Java type-system with generics/wildcards is both too complex and

subtle for the average programmer [SC08, KP06, WT09, VR05].

In this scenario, where generic programming is likely to become a new

challenge for a critical mass of developers, it is crucial to refine the support

for generic programming in mainstream Object-Oriented languages — both at

the design and at the implementation level — as well as to suggest novel ways

to exploit the additional degree of expressiveness made available by genericity.

2Wildcards were not considered during the first draft of the specification for adding
generics to the Java platform; they have been added relatively late in the process in order
to enhance expressiveness and reusability of Java libraries.

Contributions 11

This study is meant to provide a contribution towards bringing Java genericity

to a more mature stage with respect to mainstream programming practice,

by increasing the effectiveness of its implementation, and by revealing its full

expressive power in real world scenario.

2 Contributions

With respect to the current research setting, the main contribution of the thesis

is twofold. First, we propose a revised implementation for Java generics that

greatly increases the expressiveness of the Java platform by adding reification

support for generic types. Secondly, we show how Java genericity can be

leveraged in a real world case-study in the context of the multi-paradigm

language integration.

Reification of generic types Several approaches [SA98, AFM97, SC06,

MBL97, Vir05, CV08b] have been proposed in order to overcome the

lack of reification of generic types in the Java programming language.

Existing approaches tackle the problem of reification of generic types

by defining new translation techniques which would allow for a run-

time representation of generics and wildcards. Unfortunately most

approaches suffer from several problems: heterogeneous translations,

such as the one defined in [SC06, AFM97], are known to be problematic

when considering reification of generic methods and wildcards [CV08b].

On the other hand, more sophisticated techniques requiring changes in

the Java runtime, as in [MBL97], supports reified generics through a

true language extension (where clauses) so that backward compatibility

is compromised.

In this thesis we develop a sophisticated type-passing technique for

addressing the problem of reification of generic types in the Java pro-

gramming language; this approach — first pioneered by the so called

EGO translator [Vir05] — is here turned into a full-blown solution

which reifies generic types inside the Java Virtual Machine (JVM) itself,

thus overcoming both performance penalties and compatibility issues of

the original EGO translator.

12 Introduction

Java-Prolog integration Integrating Object-Oriented and declarative pro-

gramming has been the subject of several researches and corresponding

technologies. Such proposals come in two flavours, either attempt-

ing at joining the two paradigms as in [Esp06, ON94], or simply pro-

viding an interface library for accessing Prolog declarative features

from a mainstream Object-Oriented languages such as Java as in

[tuP02, swi, Min, k-p, JLo02]. Both solutions have however draw-

backs: in the case of hybrid languages featuring both Object-Oriented

and logic traits, such resulting language is typically too complex, thus

making mainstream application development an harder task; in the

case of library-based integration approaches there is no true language

integration, and some “boilerplate code” has to be implemented to fix

the paradigm mismatch.

In this thesis we develop a framework called PatJ [CV07, CV08a]

which promotes seamless exploitation of Prolog programming in Java.

A sophisticated usage of generics/wildcards allows to define a precise

mapping between Object-Oriented and declarative features. PatJ

defines a hierarchy of classes where the bidirectional semantics of Prolog

terms is modelled directly at the level of the Java generic type-system.

3 Structure of the Thesis

We now provide an overview of the thesis structure and summaries for each

chapter. The original contributions of this thesis — reification of Java

generics and multi-paradigm intergration — are discussed in Chapters 4 and

5, respectively.

Chapter 1 - Introduction We provide an overview of the thesis, set the

research context, describe the motivations and the actual contributions.

Chapter 2 - Generic Programming in Object-Oriented languages

We provide some necessary background information that will be

used throughout the rest of this thesis: in particular, we discuss how

abstraction is achieved in mainstream Object-Oriented programming

languages; finally, we discuss the key assets of generic programming, by

Structure of the Thesis 13

showing how this programming paradigm is leveraged in mainstream

programming languages such as C++, Java and Scala.

Chapter 3 - Design and Implementation of Java Generics In this

chapter we provide an overview of the features that enable generic

programming in the context of the Java programming language, namely

generics and wildcards. In particular, we focus on the main design

issues posed by generics and wildcards such as subtyping, method

type-inference and capture conversion. We then conclude this chapter

by discussing the current implementation scheme, called type-erasure,

and we provide a brief survey of the approaches that have been

proposed so far in order to overcome its main limitations.

Chapter 4 - Reification of Generic Types in the JVM In this chap-

ter we present a novel approach that reifies generic types inside the JVM.

More specifically, we describe the results of a research project funded

by Sun Microsystems which led to a prototype of a JVM called gCVM,

featuring builtin support for generic types. First, we propose an exten-

sion to the current classfile format so that full generic type signatures

are preserved via custom bytecode attributes; we then show how to

extend the implementation of a JVM so that exact type-information for

generic types is first reconstructed and then exploited during execution.

Chapter 5 - A Prolog-oriented extension of Java programming In

this chapter we present PatJ, a framework that enables seamless

cross-language integration between Java and Prolog. We start this

chapter by illustrating the main limitations of existing Java vs. Prolog

integration approaches and we then show how such problems are

addressed in PatJ by introducing a sophisticated mapping between

Object-Oriented and logic programming features that heavily relies on

generic types, methods and annotations.

Chapter 6 - Conclusions We conclude summarising the thesis, highlight-

ing the contributions and the limitations, and providing a detailed list

of works related to the topics addressed in this thesis.

Chapter 2

Generic Programming in
Object-Oriented Languages

In this chapter, we introduce some fundamental concepts and definitions that

will be used throughout the thesis. First, we show how polymorphism, that

is the ability to define program entities that may take more than one form,

can be exploited in order to enhance the expressiveness in Object-Oriented

programming languages. In this section we focus on two main kinds of

polymorphism commonly known as subtyping and genericity; the generic

programming paradigm, which allows to define flexible and maximally reusable

data-structures, is typically enabled by a powerful variety of polymorphism

called bounded polymorphism [CW85, CCH+89] — the result of the combined

exploitation of subtyping and genericity. Finally, we show the language

features and idioms enabling generic programming with respect to three

mainstream Object-Oriented languages such as C++, Java and Scala.

1 Polymorphism in Object-Oriented Lan-

guages

Polymorphism (from greek poly = many + morph = form) is a common trait

of all expressive and powerful type-systems in which a single piece of code

can be reused with multiple types. Several varieties of polymorphism can be

found in modern programming languages (see [CW85]) — in the context of

Object-Oriented programming the most common forms are:

Subtype polymorphism This kind of polymorphism gives a single object

many types. We say that a type S is a subtype of T (written S <: T,

16 Generic Programming in Object-Oriented Languages

if an object of type S can be used in any context in which a value of

type T is expected. In nominal, class-based Object-Oriented languages

subtype polymorphism has a stronger meaning, and it is often referred

to as subclassing (equivalent definitions are inheritance or inclusive

polymorphism). In such languages classes are used not only as a tem-

plate for the creation of new objects, but also as a tool that enables

code reuse, allowing new classes to be derived from existing ones by

adding implementations of new methods or overriding (i.e. replacing)

implementations of old methods. Moreover, in such languages, the

hierarchy induced by subclassing coincides with the hierarchy induced

by subtyping, as each new class defines a new type.

Parametric Polymorphism Parametric polymorphism allows a simple

piece of code to be typed “generically”, using type-variables in place

of actual types. Each such type-variable can thus be instantiated with

several concrete types. In Object-Oriented languages subtyping and

parametric polymorphism are typically bundled together into a powerful

and expressive construct, namely bounded polymorphism, which allows

restriction on type-variables by specifying upper and/or lower bounds.

Ad-hoc Polymorphism This kind of polymorphism allows a symbol (typi-

cally a function) to expose different behaviours when viewed at different

types which may — or may not not — exhibit a common structure, hence

the term ad-hoc. The most common form of ad-hoc polymorphism in

Object-Oriented languages, namely overloading, allows a single function

symbol to be associated with several implementations. The compiler

(or the runtime system, if overload resolution is dynamic) chooses an

appropriate implementation for each application of such function, based

on the type of the arguments. An important generalisation, known as

multi-method dispatch, also takes into account the type of the object

upon which the method is dispatched [Cha92]. Another form of ad-hoc

polymorphism is type-coercition, that is, the ability of converting a value

of a given type into a value of a different type. Type-coercitions are

either implicitly performed by the compiler, or explicitly defined within

A Formal Calculus: Tiny 17

Syntax:

T := Nat | C types

L := class C { f:T } class definitions

e := new C(e) object instantiation
| e.f field access
| n, n ∈ N numbers

Expression Typing:

n ∈ N
n:Nat

T-Nat

class C { f:T } e:T

new C(e):C
T-New

class C { f:T } e:C

e.fi:Ti
T-Fld

Reduction Rules:

class C { f:T }

new C(e).fi → ei
R-Fld

Figure 2.1: Syntax, typing and inference rules of Tiny

a program — e.g. by means of a type-conversion operator.

It is worth noting that the unqualified term “polymorphism” is, in itself,

rather ambiguous, as it can be used to mean different concrete kinds of

polymorphism, depending on the particular language community in which it

is used. For object-oriented programmers it almost always means inclusion

polymorphism, while for functional programmers it usually means parametric

polymorphism.

In the remainder of this section we focus primarily on subtype and paramet-

ric polymorphism, as their combined exploitation — bounded polymorphism

— is the most common technique by which generic programming is enabled in

Object-Oriented languages [SL05].

1.1 A Formal Calculus: Tiny

In this section we introduce Tiny, a minimal Object-Oriented core language

that will help us to develop some of the concepts presented throughout this

18 Generic Programming in Object-Oriented Languages

chapter in a simple, yet elegant way. Our aim is to capture the essence of

subtype and parametric polymorphism in Object-Oriented programming while

abstracting away from other less relevant and language-dependent details,

which would just make the formalisation more verbose without adding any

relevant description. Here we are not interested in a full soundness result —

this is typically accomplished by proving that well-typed programs never lead

to run-time errors, as in [WF94]; a more formal tractation of the concepts

presented throughout the following sections — including full soundness proof

— can be found in [Car84, CW85, ACC93, CCH+89, IPW99].

The syntax and the typing rules of Tiny are given in Figure 2.1. In

the following, the metavariables C, D range over class names; S, T range over

types; L over class declarations; f and g over field names; and e and d range

over expressions. Symbol f is written as shorthand for a possibly empty

sequence f1, f2, ... fn (and similarly for C, e, etc.) and pairs of sequences are

also abbreviated in the obvious way, writing e:T as shorthand for e1 : T1, e2 :

T2, ... en : Tn — where the notation e:T is used to indicate that an expression

e has type T. The empty sequence is denoted by •, and concatenation of

sequences by a comma.

The syntax of Tiny is reminiscent of some mainstream programming lan-

guages such as Java and C#. Class are declared using the class keyword. A

class definition can optionally include a list of fields f : T; Tiny supports two

kinds of types: class types — each class declaration implicitly defines a new

type — and the builtin Nat type used to encode natural numbers. The follow-

ing Tiny program contains two class declarations modelling two-dimensional

shapes: Rectangle has two fields — width and height, respectively — of

type Nat; Circle has one field, namely radius, whose type is, again, Nat.

class Rectangle {
width:Nat;
height:Nat;

}

class Circle {
radius:Nat;

}

Case Study: a Monomorphic Container Class 19

Tiny supports two kinds of expressions: instance creation and field access.

An instance creation expression of the kind new C(e) must provide the initial

values e : T for all the declared fields of C; moreover, the typing rule T-New

states that the type of the value ei must match the declared type of the field

fi in class C. The following program illustrates some examples of instance

creation expressions.

new Rectangle(10, 20)
new Circle(6)
new Rectangle(42) //error - not enough values
new Circle(new Rectangle(10, 20)) // error - type mismatch

A field access of the kind e.fi takes an expression e of type C (where C is a

classtype) and retrieves the value of the field fi; consequently, it is required

(see the T-Fld rule) that the name of the field fi must match the name

of one of the fields declared by C. The following program illustrates some

examples of field access expressions:

new Rectangle(10, 20).width
new Circle(6).radius
new Rectangle(10, 20).radius //error - no such field
1.height // error - selector must be a class

Tiny defines just one basic computation rule for field access, namely R-Fld;

this rule assumes the object operated upon is first simplified to a value —

either a numeric value, or an expression of the kind new C(e)1. A well-typed

field access expression of the kind e.fi, where e is an expression of the kind

new C(e), simply evaluates to ei, as shown in the following examples:

new Rectangle(10, 20).width → 20
new Circle(6).radius → 6

1.2 Case Study: a Monomorphic Container Class

We have seen how, given a class declaration of the kind class C { f:T }, the

set of values e in an instance creation expression of the kind new C(e) must

match exactly the types of the declared fields f so that e : T. This can be seen

1This is somewhat similar to the beta-reduction rule of lambda-calculus, where it is
assumed that the function is first simplified to a lambda abstraction.

20 Generic Programming in Object-Oriented Languages

(a) Monomorphic

class Rectangle { ... }
class Circle { ... }

class PairRect {
fst:Rectangle
snd:Rectangle

}

class PairCircle {
fst:Circle
snd:Circle

}

(b) Subtype Polymorphism

class Shape / Object { }
class Rectangle / Shape { ... }
class Circle / Shape { ... }

class Pair {
fst:Shape
snd:Shape

}

(c) Parametric Polymorphism

class Rectangle { ... }
class Circle { ... }

class Pair<U,V> {
fst:U
snd:V

}

(d) Bounded Polymorphism
class Shape / Object { }
class Rectangle / Shape { ... }
class Circle / Shape { ... }

class Pair<U / Shape,V / Shape> {
fst:U
snd:V

}

Figure 2.2: Different kinds of polymorphism at a glance

as annoyingly rigid: suppose that we want to define a pair-like data-structure

for storing Rectangle and Circle objects; unfortunately, there’s no way to

define such a data-structure, no matter what type we choose for fst and

snd. If we choose such type to be Rectangle, any attempt of creating a Pair

from two objects of type Circle would fail, as an expression of type Circle

cannot be used to initialise a field of type Rectangle — this would violate

the typing rule T-New in Figure 2.1. A similar argument applies if fst and

snd are given the type Circle instead.

The only way to solve this problem is to define many clones of the

Pair class, PairRect for storing Rectangle objects, PairCircle for storing

Circle objects, and so on — as shown in Figure 2.1a. These declarations

are indeed very similar — the only difference being the declared type of the

Subtype Polymorphism 21

fields fst and snd. This approach is, however, less than satisfactory: first, it

leads to a significant duplication of code — as a new Pair clone is required

each time we define a new shape class; secondly, it only partially addresses

the original problem, as it is still not possible to create a Pair object storing

e.g. a Rectangle and a Circle:

PairRect(Rectangle(10,20), Rectangle(20,10))
PairCircle(Circle(10), Circle(20))
PairRect(Circle(10), Rectangle(20,10)) //type-error
PairCircle(Circle(10), Rectangle(20,10)) //type-error

Classes like PairRect and PairCircle are said to be monomorphic — that

is, their code is specific to the type of the elements stored in the pair; in the

following section we discuss several extensions to the basic typing rules given

in Figure 2.1 that would allow us to define a more abstract, polymorphic

implementation for Pair.

1.3 Subtype Polymorphism

Subtype polymorphism (see Figure 2.3) greatly enriches the expressiveness of

a programming language, by defining a reflexive, transitive relation ’<:’ on

types; we say that S is a subtype of T, written S <: T, meaning that any term

of type S can safely be used in a context where a term of type T is expected

(see rule T-Sub) — this is also called Liskov substitution principle [Lis87].

Subtyping can be intuitively be understood in terms of specialisation: given

two types S and T where S <: T, we say that S is a specialises (or refines) T —

that is the set of features provided by S is a strict superset of the features

provided by T.

There is an important distinction between nominal subtyping, in which

only types declared in a certain way may be subtypes of each other, and

structural subtyping, in which the structure of two types determines whether

or not one is a subtype of the other. Tiny features nominal subtyping, where

each class declaration corresponds to a new type; at the level of user-defined

classes, subtyping is expressed through the / relation; we say that C is a

subclass of N if C / N — where N can be either a user-defined class or the special

class Object (which is assumed to be the root of the subclassing hierarchy).

22 Generic Programming in Object-Oriented Languages

Syntax:

T := Nat | N types

N := Object | C class types

L := class C / N { f:T } class definitions

e ::= new N(e) object instantiation
| e.f field access
| n, n ∈ N numbers

Expression Typing:

n ∈ N
n:Nat

T-Nat
S <: T e:S

e:T
T-Sub

fields(N) = f : T e : T
new N(e):T

T-New
fields(N) = f : T e:N

e.fi:Ti
T-Fld

Subtyping Rules:

T <: T S-Ref
S <: U U <: T

S <: T
S-Tra

class C / N { f:T }

C <: N
S-Cls

Field Lookup:

fields(Object) = • F-Obj

class C / N { f:T }
fields(N) = g : S

fields(C) = f : T ; g : S
F-Cls

Reduction Rules:

fields(N) = f : T
new N(e).fi → ei

R-Fld

Figure 2.3: Syntax, typing and inference rules of Tiny<:

Note that, in general, subtyping and subclassing define two distinct relations

on classes. This is not true in Tiny, where subclassing implies subtyping —

that is, whenever C / N we also have that C <: N (see rule S-Cls).

In this new enhanced variant of Tiny, an object creation expression of the

kind new N(e) is well-typed if the values e have types S with S <: T, where

T are the declared types of the fields of N (see rule T-New in Figure 2.3).

Subtype Polymorphism 23

Subclassing can be successfully exploited in order to overcome the limitations

described in Section 1.2, by observing that the Rectangle (resp. Circle)

class can be viewed as a specialisation of a more abstract class Shape — that

is, Rectangle / Shape and Circle / Shape. We can now define a general

purpose pair-like data-structure that works uniformly on every user-defined

shape class: this is accomplished by defining a class Pair containing two fields,

fst and snd, whose type is Shape, as shown in Figure 2.1b. An instance of

Pair can be created from any two given values e1:S1, e2:S2, provided that

S1 <: Shape and S2 <: Shape — that is, whenever e1, e2 are instances of a

user-defined shape class (thanks to the S-S-Cls rule). Conversely, it is not

possible to create a Pair object from e.g. two numeric values, as Nat is not a

subtype of Shape:

Pair(Rectangle(10, 5), Rectangle(20, 30))
Pair(Rectangle(10, 5), Circle(20))
Pair(1, 2) //type-error

The interaction between subtyping and other language features can be very

subtle. Consider a field access expression of the kind e.fi, where e:C. Thanks

to subtyping/subclassing, fi can now be a field declared in any superclass N

of C; this is accomplished by introducing the lookup operator fields, which

yields all the accessible fields in a given class C — note that the set of

fields of the special class Object is empty (see rules F-Obj and F-Cls in

Figure2.3). However, this extra flexibility comes at a cost: as subtyping

allows to selectively forget about type information — this happens each time

a more specific type S is turned into a more general type T via the T-Sub rule

— there are situations in which an apparently harmless expression cannot be

type-checked, as shown below:

Pair(Rectangle(10, 5), Circle(20)).fst.width //type-error
Pair(Rectangle(10, 5), Circle(20)).snd.radius //type-error

The type of a field access expression of the kind new Pair(e).fst is Shape;

consequently, any subsequent field access expression would fail to type-check.

In fact, the field lookup on the base class Shape yields the empty set • — as

stated in the F-Cls rule, as (i) Shape declares no fields, (ii) Shape / Object

24 Generic Programming in Object-Oriented Languages

Syntax:

T := Nat | C<T> | X types

L := class C<X> { f:T } class definitions

e := new C<T>(e) object instantiation
| e.f field access
| n, n ∈ N numbers

Expression Typing:

n ∈ N
∆ ` n:Nat

T-Nat
class C<X> { f:T } ∆ ` e:[S/X]T

∆ ` new C<S>(e):C<S>
T-New

class C<X> { f:T } ∆ ` e:C<S>
∆ ` e.fi:[S/X]Ti

T-Fld

Reduction Rules:

class C<X> { f:T }

new C<S>(e).fi → ei
R-Fld

Figure 2.4: Syntax, typing and inference rules of Tiny∀

and (iii) fields(Object) = •. In other words, there’s no way to statically

recover the types of the values e once T-Sub is first applied — in the above

case, this is required in order to check that a value of type Rectangle (resp.

Circle) can be used to initialise a field, namely fst (resp snd), whose declared

type is Shape. In mainstream Object-Oriented programming language, this

problem is typically addressed by adding some form of explicit type conversion,

which would allow to turn a more general type T into a more specific type S,

provided that S <: T.

1.4 Parametric Polymorphism

It is sometimes possible that two or more classes have identical structure

except for the type annotations being used in their declarations. For instance,

the monomorphic classes PairRect and PairCircle shown in Figure 2.1a

are structurally similar, as they both declare two fields, namely fst and snd,

Parametric Polymorphism 25

but with different types: in PairRect both fields have type Rectangle, while

in PairCircle they both have type Circle.

Parametric polymorhism takes a different approach to the problem of code

reuse, by allowing a piece of code to abstract from one or more types; that

is, a class declaration might optionally introduce one or more type-variables

that can be used throughout the class declaration in place of concrete types.

Figure 2.4 shows an extension of Tiny featuring parametric polymorphism.

The new typing rules gives us the ability to view PairRect and PairCircle

as concrete instantiations of a more abstract class declaration in which two

type-variables, namely U and V, are used to model the (abstract) types of the

fields fst and snd, respectively — as shown in Figure 2.1c.

Note that the typing relation is now a ternary relation between a typing

environment ∆, used to keep track of the type-variables declared in a given

scope, an expression e and a type T — namely, the expression e has type

T under the typing environment ∆, written ∆ ` e:T. An instance creation

is now an expression of the kind new C<S>(e) where the types S provide

an instantiation for all the abstract types X defined by C, where C is a class

declaration of the kind class C<X> { f:T }. Note that the typing rule

which describes instance creation (T-New) is more convoluted, as the field

types T might contain one or more type-variables in X. Consequently, the

types of the values e must match the types in T, where all the occurrences

of the type-variables in X are replaced with the actual types in S — written

[S/X]T:

Pair<Number,Number>(1,2)
Pair<Rectangle,Circle>(Rectangle(10, 5), Circle(20))
Pair<Rectangle,Circle>(1, Circle(20)) //type-error

The new Pair definition works uniformly with every type T, regardless of

whether T is a classtype or the builtin Nat type: consequently, it is not possible

to define a pair class that only works on custom-defined shape classes, as any

pair of types S, T is a valid instantiation for Pair’s type-variables U and V.

The typing rule which describes field access (T-Fld) is also more convo-

luted: given a class declaration of the kind class C<X> { f:T }, the type of

a field access expression of the kind e.fi, where e has type C<S>, is obtained

26 Generic Programming in Object-Oriented Languages

by replacing every occurrences of the type-variables X in Ti with the actual

types in S — analogously to the case of instance creation expressions. Below

are reported some examples of field access expressions:

new Pair<Rectangle,Nat>(Rectangle(10,5),2).fst.width
new Pair<Nat,Circle>(2,Circle(20)).fst.radius //type-error

The reader might appreciate that no explicit type conversion is needed here; in

fact, given an instance creation expression of the kind new C<S>(e), the rule

T-New preserves the types of the values e, so that the resulting expression

has now type C<S>. Since no type information is lost here, a subsequent field

access expression of the kind e.fi, where e is the result of the above instance

creation expression, is now well-typed.

1.5 Bounded Polymorphism

Bounded polymorphism is one of the most powerful varieties of polymorphism

which combines the expressive power of subtype and parametric polymorphism.

A key feature of bounded polymorphism is the ability to associate constraints

— commonly referred to as bounds — with type-variables. A bound is used

to rigorously define the set of types S which can be considered as valid

replacements for a given type-variable X. For example, a type-variable X,

whose (upper) bound is U, can be instantiated with any type S, provided that

S <: [S/X]U; the type substition is necessary as the bound type U might refer

to the variable X itself — this feature is known as f-bounded polymorphism

[CCH+89].

An extension of Tiny featuring bounded polymorphism is shown in Figure

2.5. The typing environment ∆ is used to keep track of the bounds associated

with type-variables defined in the current scope; if X is a type-variable defined

in the current scope — written X ∈ dom(∆) — its bound is denoted by ∆(X).

Again, subclassing can be successfully leveraged, in order to define a

hierarchy of shape classes similar to the one discussed in Section 1.3, where

Rectangle / Shape and Circle / Shape, respectively. We can thus define a

new variant of the Pair class that works uniformly over all pair of types S1,

S2, where S1 <: Shape and S2 <: Shape; this is accomplished by modelling

Bounded Polymorphism 27

Syntax:

T := Nat | N | X types

N := Object | C<T> class types

L := class C<X / U> / N { f:T } class definitions

e := new N(e) object instantiation
| e.f field access
| n, n ∈ N numbers

Expression Typing:

n ∈ N
∆ ` n:Nat

T-Nat
∆ ` N ok fields(N) = f : T ∆ ` e:T

∆ ` new N(e):N
T-New

S <: T ∆ ` e:S
∆ ` e:T

T-Sub
∆ ` N ok fields(N) = f : T ∆ ` e:N

e.fi:Ti
T-Fld

Subtyping Rules:

∆ ` T <: T S-Ref
∆ ` S <: U ∆ ` U <: T

∆ ` S <: T
S-Tra

class C<X / U> / N { f:T }

∆ ` C<T> <: [T/X]N
S-Cls ∆ ` X <: ∆(X) S-Var

Well-formed types:

∆ ` Object ok W-Obj class C<X / U> / N { f:T } ∆ ` S ok
∆ ` S <: [S/X]U

∆ ` C<S> ok
W-Cls

X ∈ dom(∆)
∆ ` X ok

W-Var

Field Lookup:

fields(Object) = • F-Obj

class C<X / U> / N { f:T }
fields([S/X]N) = g : V

fields(C<S>) = f: [S/X]T ; g : V
F-Cls

Reduction rules:

fields(N) = f : T
new N(e).fi → ei

R-Fld

Figure 2.5: Syntax, typing and inference rules of Tiny∀<:

28 Generic Programming in Object-Oriented Languages

the (abstract) types of the fields fst and snd using two type-variables U and

V, whose declared bound is Shape — as shown in Figure 2.1d

An instance creation expression of the kind new C<S>(e), where e : T,

must provide a valid instantiation for all the abstract types X defined by C,

where C is a class declaration of the kind class C<X/U> / N { f:V }. More

specifically, the type C<S> must be well-formed — written ∆ ` C<S> ok —

that is, the types S must be compatible with the declared bounds U of the

type-variables X declared in C (see rule W-Cls in Figure 2.5). Examples of

instance creation expressions in this new augmented system are:

Pair<Rectangle,Circle>(Rectangle(10, 5), Circle(20))
Pair<Rectangle(10, 5),Circle>(1, Circle(20)) //type-error
Pair<Nat,Nat>(1,2) //type-error

Since both type-variables U and V of class Pair have bound Shape, a pair

of types S, T is a valid instantiation for U, V if S <: Shape and T <: Shape.

Consequently, Rectangle and Circle are both valid choices, as Rectangle /

Shape and Circle / Shape. On the other hand, Nat is not a valid replacement

for neither U nor V, as Nat <:/ Shape.

Field access rules are similar to the ones discussed in the previous section.

The only difference is that now, thanks to subtyping/subclassing, fi can

be a field declared in any superclass N of C; again, this is accomplished by

introducing a lookup operator fields, which yields all the accessible fields in

a given class C. More specifically, given a class declaration of the kind class

C<X/U> / N { f:T }, a field access expression of the kind e.fi, where e has

type C<S>, yields a type V, where V is obtained by replacing all occurrences

of X in the declared type of fi (see rule T-Fld):

Pair<Rectangle,Nat>(Rectangle(10,5),1).fst.width //type-error
Pair<Circle,Circle>(Circle(10),Circle(20)).snd.radius //ok

Analogously to the case of parametric polymorphism, no explicit type conver-

sion is needed.

2 Generic Programming

Generic programming [MS88] is an effective, language-independent method-

ology for developing reusable software libraries that focusses on the process

Concepts 29

of lifting a concrete algorithm to a more abstract representation so as to

maximise reusability without introducing any performance loss. This process

leads to the definition of a so-called generic algorithm: an abstract, highly

parameterised specification of an algorithm which makes only minimal as-

sumptions about the data abstractions the algorithm manipulates — thus

leading to maximally reusable and interoperable code.

Generic programming has been pioneered by Musser and Stepanov in the

late 1980’s who successfully applied it to the construction of sequence and

graph algorithms in Scheme, Ada and C. In the early 1990’s they shifted

focus to C++ and took advantage of templates to construct the Standard

Template Library [SL94] (STL). The STL became part of the C++ Standard,

which brought generic programming into the mainstream. Since then, generic

programming has been successfully applied in the creation of generic libraries

for numerous problem domains[BCD+99, JWL03, LSL99, BGL02].

Even though C++ remains the most commonly used language for im-

plementing generic libraries, there is an increasing number of mainstream

Object-Oriented languages supporting generic programming features, such

as Java, C#, Scala. The goal of this section is twofold: first we try to

characterise the minimal set of idioms that enable generic programming

in modern Object-Oriented languages; secondly we provide a comparative

study of generic programming support in three mainstream Object-Oriented

languages such as C++, Java and Scala.

2.1 Concepts

Generic algorithms are specified in terms of abstract properties of types.

Such properties are typically expressed by formulating an abstract set of

requirements on types called concepts. Examples of concepts are e.g. an

integer data type with an addition operation satisfying the usual axioms; or

a list of data objects with a first element, an iterator for traversing the list,

and a test for identifying the end of the list.

Types that meet the requirements of a concept are said to model the

concept. Concepts support the notion of refinement; thus, a concept C1 might

incorporate the requirements of another concept C2 — in which case C2 is

30 Generic Programming in Object-Oriented Languages

said to refine C1. There are three main kinds of constraints defined by a

concept [DRS06]:

Syntactic Constraints A syntactic constraint describes the minimal set of

features that must be provided by any type modelling a given concept

C. There are two kinds of syntactic requirements: use patterns and

associated types. The former is used to denote a set of operations that

must be provided by a modelling type — e.g. the availability of a

next() operation on iterators. The latter is used to express the set of

types that must be defined by a modelling type — e.g. the existence of

the associated types Arc and Node in a type modelling a graph. In the

context of Object-Oriented languages, syntactic constraints are typically

expressed as a set of methods, fields and member types that must be

available in a given type T modelling a concept C.

Semantic Constraints A semantic constraint is used to describe certain

run-time properties that must be uniformly exposed by all the instances

of a given modelling type T. Such constraints are typically expressed

as a set of pre-conditions and post-conditions that instances of the

modelling type must preserve. An example of semantic requirement is

e.g. that the size of an empty list is always 0.

Performance Constraints A performance constraint is used to express non

functional requirements on operations provided by a given modelling

type T — usually by specifying maximum limits on how long the

execution of a given operation will take, or how much of various resources

its computation will use. An example of performance constraint is e.g.

the requirement that element access on hash maps must execute in

constant time.

Concepts play an important role in specifying generic algorithms. Since

a concept may be modeled by any concrete type meeting its requirements,

algorithms specified in terms of concepts must be able to be used with multiple

types — thus, generic algorithms are naturally polymorphic. In the context

of Object-Oriented languages featuring bounded polymorphism, concepts

Concept Support in Mainstream Object-Oriented Languages 31

are naturally expressed as a set of bounds that are used to constrain the

instantiation of type parameters in a generic function definition (see [SL05]).

The purpose of such restrictions is to guarantee that a generic function

can only be instantiated with some concrete types T that provide all the

functionalities required by the function implementation. In other words, such

constraints can be seen as a set of requirements that must be met, so as not

to produce a compile-time error (in the case of a syntactic requirement) or a

run-time error (in the case of a semantic requirement) in the function body.

2.2 Concept Support in Mainstream Object-Oriented
Languages

The main features of generic programming, i.e., generic algorithms, con-

cepts, refinement, modelling, and constraints, are realised in different ways

in different programming languages. In this section we show how generic

programming is supported in three mainstream Object-Oriented languages

such as C++, Java and Scala. Our case study consists in defining a concept

hierarchy modelling two-dimensional moveable shapes. Each shape has a

position that is described in terms two-dimensional coordinates x and y ; this

basic concept is then refined by another concept representing shapes that

can be moved in a two-dimensional space — such shapes must additionally

provide an operation for updating their position. We then show a generic

algorithm for translating a moveable two-dimensional shape of a given offset.

We also define a type representing two dimensional circles, that is meant to

be a modelling type for the concepts described above.

2.2.1 Generic Programming in C++

Generic programming in C++ is typically enabled through an extensive use

of C++’s templates feature. Templates allow the programmer to define types

and function that abstracts over one or more template variables — hence,

templates are a form of parametric polymorphism. The example in Figure 2.6,

defines a template function, namely translate(), which embodies our generic

algorithm; this function defines a template variable called MoveableShape,

which is used inside the function body to abstract over the concrete type

32 Generic Programming in Object-Oriented Languages

// concept Comparable:

// bool better(const T&, const T&)

template <class MoveableShape>

const MoveableShape&

translate(MoveableShape& ms, const int xDelta, const int yDelta) {

ms.moveTo(xDelta + ms.x, yDelta + ms.y);

return ms;

}

class Circle {

public:

int x, y, radius;

Circle(int x, int y, int radius) {

this->x = x;

this->y = y;

this->radius = radius;

}

void moveTo(int x, int y) {

this->x = x; this->y = y;

}

};

int main(int, char*[]) {

Circle c(5, 5, 3);

c = translate(c, 10, 20);

printf("%d, %d, %d", c.x, c.y, c.radius);

}

Figure 2.6: A taste of generic programming in C++

of a moveable two-dimensional shape. Inside the function body, the shape

position is retrieved and then updated — both coordinates are incremented by

corresponding offsets that are passed as argument to the template function.

Note that C++ does not provide explicit supports for concepts2:

in C++ concept constraints are typically expressed in the form of

documentation[JWL03, SL05] — it is customary to identify concepts by

naming template variables appropriately.

Worse, concepts cannot be translated in terms of C++ templates, as

templates do not feature bounded quantification. Hence, it is not possible to

associate constraints with template variables — in the case of MoveableShape,

possible requirements are (i) the existence of a pair of coordinates x and y,

that can be (ii) updated using the moveTo() operation. If the modelling type

2Several attempts have been made in order to add concepts to the C++ language
[RS06]; however, as of today it remains unclear as to whether concepts will ever be part of
the C++ standard.

Concept Support in Mainstream Object-Oriented Languages 33

interface Shape2D<X extends Shape2D<X>> {

int getX();

int getY();

}

interface MoveableShape2D<X extends MoveableShape2D<X>> extends Shape2D<X> {

X moveTo(int x, int y);

}

class Circle implements MoveableShape2D<Circle> {

int centerX, centerY, radius;

Circle(int x, int y, int radius) {

centerX = x; centerY = y;

this.radius = radius;

}

public Circle moveTo(int x, int y) {

centerX = x; centerY = y;

return this;

}

public int getX() { return centerX; }

public int getY() { return centerY; }

}

class Animator {

<S extends MoveableShape2D<S>> S translate(S s, int xDelta, int yDelta) {

s.moveTo(xDelta + s.getX(), yDelta + s.getY());

return s;

}

}

class Test {

public static void main(String[] args) {

Circle c = new Animator().translate(new Circle(5, 5, 3), 10, 20);

System.out.println(c.getX());

System.out.println(c.getY());

System.out.println(c.radius);

}

}

Figure 2.7: A taste of generic programming in Java

fails to meet such requirements, the template function translate() will fail

to type-check — unfortunately this can only be discovered when the template

function is instantiated. Consequently, C++ does not support key principles

of generic programming such as concept definition, refinement and modelling.

2.2.2 Generic Programming in Java

In the Java programming language, generic algorithms are usually realised

leveraging generics [JGSB05]; Java generics allow the programmer to define

parameterised classes and methods, whose body abstracts over one or more

34 Generic Programming in Object-Oriented Languages

type-variables (see Section 1.1). Each type-variable can (optionally) be given

an upper bound — hence, generics are a form of bounded polymorphism.

Despite there is no direct language support for concepts, the reader might

appreciate how the combined exploitation of generics and inheritance lead

to a concise and elegant specification of the concept constraints. The exam-

ple in Figure 2.7 defines a hierarchy of generic interfaces, namely Shape2D

and MoveableShape2D modelling two-dimensional shapes and moveable two-

dimensional shapes, respectively. Concept refinement is accomplished through

ordinary Java inheritance (as MoveableShape2D subclasses from Shape2D).

Consequently, concept modelling is obtained through Java interface imple-

mentation — that is, any type modelling MoveableShape2D will be required

to implement the methods defined in both Shape2D and MoveableShape2D.

Both interfaces abstract over a type-variable S whose upper bound is

recursively defined: for instance, the type-variable S defined in Shape2D must

be instantiated with a subtype of Shape2D<S>. This recursive definition allows

to express the constraint that a modelling type C is required to implement

Shape2D<C> (a similar conclusion holds for MoveableShape2D). Note that,

as we are using Java interfaces for representing concepts, all the syntactic

requirements must be expressed in terms of methods that a modelling type

must implement — as Java interfaces cannot declare non-constant fields.

Thus, our modelling type Circle is required to implement both

Shape2D<Circle> and MoveableShape2D<Circle> — thanks to subtyping

the latter subsumes the former. Note that the type Circle is a valid in-

stantiation for the type-variables defined in Shape2D and MoveableShape2D

— as Circle <: MoveableShape2D<Circle> (follows from the class dec-

laration) and Circle <: Shape2D<Circle> (follows from subtyping, as

MoveableShape2D<S> <: Shape2D<S> for any S).

Our generic algorithm is implemented in terms of the generic method

translate(); this method defines a type-variable, namely S, whose declared

bound is MoveableShape<S>. This method type-variable is used to abstract

over the concrete type of the moveable two-dimensional shape that is supplied

to the generic method translate(). Again, a recursive bound definition is

used in order to express the constraint that the concrete type instantiating

Concept Support in Mainstream Object-Oriented Languages 35

trait Shape2D[X <: Shape2D[X]] {

var x:Int;

var y:Int;

}

trait MoveableShape2D[X <: MoveableShape2D[X]] extends Shape2D[X] {

def moveTo(x:Int, y:Int):X;

}

case class Circle(override var x:Int,

override var y:Int,

radius:Int) extends MoveableShape2D[Circle] {

override def moveTo(x:Int, y:Int):Circle = {

this.x = x;

this.y = y;

this;

}

}

object animator {

def translate[S <: MoveableShape2D[S]](s:S, xDelta:Int, yDelta:Int) : S = {

s.moveTo(xDelta + s.x, yDelta + s.y);

}

}

object test extends Application {

var c = animator.translate(Circle(5, 5, 3), 10, 20);

println(c.x);

println(c.y);

println(c.radius);

}

Figure 2.8: A taste of generic programming in Scala

the method type-variable S must implement the MoveableShape2D interface.

Hence, concepts can easily be expressed in Java using interfaces; refine-

ment is accomplished through standard interface inheritance, while concept

constraints can be expressed as type-variable bounds. Not only the resulting

code is more expressive than its equivalent in C++; the Java compiler will also

enforce that concept requirements are met by modelling types (e.g. Circle

must implement methods defined by its superinterfaces) and also that the

generic method translate() is only applied to a suitable modelling type T,

where T <: MoveableShape<T>).

2.2.3 Generic Programming in Scala

Scala is a powerful Object-Oriented language supporting many features

borrowed from functional programming, such as first-class function types,

36 Generic Programming in Object-Oriented Languages

actor-based concurrency, algebraic types, etc. Generic programming is accom-

plished in Scala through an effective mixture of trait-based composition and

genericity. On the one hand traits [SDNB02] enables all the type-checking

features we have discussed in the previous section — a subclass of a trait must

provide a definition for all the abstract members in the trait. On the other

hand trait-based composition allows for great flexibility, espcially if compared

with Java interface inheritance, as a trait can define variables, method bodies,

etc.

The example in Figure 2.8 defines two traits, Shape2D and

MoveableShape2D. Concept refinement is expressed in terms of trait inher-

itance (as MoveableShape2D specialises Shape2D). Consequently, concept

modelling is obtained through trait implementation — that is, any type mod-

elling MoveableShape2D will be required to implement the method moveTo()

declared in MoveableShape2D. Note that, since traits can include variable

definition, there is no getter method in the Shape2D trait; this trait defines

two variables, namely x and y that will be implicitly inherited by all classes

implementing the trait.

Concept constraints, as in Java, are expressed as type-variable bounds, as

Scala genericity supports bounded polymorphism. This leads to patterns that

are indeed identical — except from some minor syntax differences — to those

described in the previous section. Hence, concepts can easily be represented

using Scala traits; refinement is accomplished through traits inheritance, while

concept constraints can be expressed (as in Java) by means of type-variable

bounds. As in Java, the static type-checking carried out by the Scala compiler

enforces that concept requirements are met by modelling types (e.g. Circle

must define the moveTo() method) and also that the generic method can only

be applied to a modelling type (the actual argument passed to translate()

is a type T, where T <: MoveableShape<T>). Finally, it has been shown

[N’g06, OG08] how Scala provides a more natural mapping for expressing

different kinds of syntactic constraints such as access to associated types (not

discussed here), thanks to the type-definition and type-aliasing features. As

we speak, Scala is probably the Object-Oriented language featuring the most

complete support for generic programming.

Chapter 3

Design and Implementation of
Java Generics

The long awaited extension of Java with generics has been shipped since J2SE

5.0 after several years of research and development, and currently represents

the most substantial Java extension so far. Java generics allow the programmer

to define parameterised classes and methods, whose body abstracts over one

or more types variables. Each type-variable can (optionally) be given an upper

bound — hence, generics are a form of bounded polymorphism. Examples of

generic types are List<String>, Map<String, List<Integer>>. In addition

to generics, JDK 5.0 is equipped with a brand new mechanism called wildcards

— this is the result of applying the construct known as use-site variance to

the Java programming language [IV06, THE+04]. Wildcard types are types

of the kind List<? extends T>, List<? super T>, List<?> — where T can

be any valid reference type. Hence, wildcards can be considered as a notation

to abstract over a number of different instantiations of the same generic class,

e.g. any List<T> where T is subtype of Number can be passed to where a

List<? extends Number> is expected.

On the one hand, the degree of expressiveness provided by the combined

exploitation of generics and wildcards finds many suitable applications, e.g.,

in the Java Collections Framework (JCF) and the the Java Reflection API;

in general, wildcards provide a means by which subtyping (inclusive poly-

morphism) can better integrate with generics (parametric polymorphism).

On the other hand, the late introduction of wildcards to the Java language

38 Design and Implementation of Java Generics

contributed to the overall impression that the Java type-system with gener-

ics/wildcards is both too complex and subtle for the average programmer

[SC08, KP06, WT09, VR05] — wildcards essentially feature a multi-variant

subtyping structure that (partially) hides a type-system based on existential

types, as described in [TEPH05, CDE08, CD09, WT09].

Generics are implemented using a lossy translation scheme named type-

erasure that literally erases generic types and wildcards during the com-

pilation process; hence, they never enter the runtime domain of the Java

Virtual Machine (JVM) — namely, there is no reification of them during

execution; in fact, generic types and wildcards are mainly introduced as

compile-time abstractions to enforce type-safety. As described in detail in

[Nin07, AR08, CAF04], this makes generics hardly integrate with important

Java frameworks such as Serialization and Reflection; moreover, generics differ

from standard Java types as far as type-dependent operations are concerned

(cast conversions, type tests through instanceof operator, array operations).

But most importantly, the lack of reification causes the so-called heap pollution

problem: certain cast operations are statically accepted (with a warning) and

succeed at runtime, but later can cause any field access or method invocation

to fail with an unexpected runtime error.

Several solutions have been studied to address this problem — a rather

complete list of references is [SA98, AFM97, SC06, MBL97, Vir05, CV08b].

Existing approaches tackle the problem of reification of generic types by

defining new translation techniques which would allow for a runtime repre-

sentation of generics and wildcards. Unfortunately most approaches suffer

from several problems: heterogeneous translations such as the one defined

in [SC06, AFM97] are known to be problematic when considering reification

of generic methods and wildcards [CV08b]. On the other hand, more so-

phisticated techniques requiring changes in the Java runtime, as in [MBL97],

support reified generics through a true language extension (where clauses) so

that backward compatibility is compromised.

In this chapter, we illustrate how generics and wildcards can be leveraged

in Java programs; more specifically we discuss the main features such as

generic classes, generic methods and wildcards. We then provide an in depth

Overview of Java Generics 39

analysis of the technical details involved in the design of Java generics, such as

method type-inference, capture-conversion and support for raw types. Finally

we focus on how generic are effectively deployed in the Java platform; we

discuss the type-erasure technique and its main limitations — most noticeably

the lack of reification of generic types. We then conclude, by providing a

brief survey of the solutions that have been proposed so far in order to add

runtime support for generic types and wildcards.

1 Overview of Java Generics

Generics were not considered in the first releases of the Java language, as a

sufficient degree of genericity could be achieved by mixing other language

features — most noticeably, inclusive polymorphism provided by Java inheri-

tance. In fact, since Object is the common supertype for all Java classes, it

is possible to define flexible and reusable data-structures that work uniformly

on any custom-defined class — it only suffices to use Object in place of

the concrete element type of the container class. This programming idiom,

called the homogeneous generic idiom [BOSW98, OW97], was widely used in

the pre-generics implementation of the Java Collections Framework (classes

Vector, Hashtable, etc.). The example in Figure 3.1a defines a linked-list

class exploiting the generic idiom. As it can be seen, the list can be used to

store any kind of Java object; subtyping and inheritance essentially guarantee

that e.g. a String object can be passed to a method where an object of type

Object is expected.

The main downside of this approach (as discussed in Section 1.3) is that

it causes a loss of type information whenever an element is added to the list;

for example, in order to retrieve a string element from the list, an explicit

type-conversion is required, as the static type of the head field is Object —

consequently it is not possible to directly access e.g. a member of the type

String on the element returned by the list. As more complex elements are

being added to the list (e.g. list of list of strings), the code used for retrieving

and using the list elements becomes increasingly cumbersome and error-prone:

List ls = new List(new List("One", null), null);
String one = (String)((List)ls.head).head;

40 Design and Implementation of Java Generics

class List {
Object head;
List tail;
List(Object head,

List tail) {
this.head = head;
this.tail = tail;

}
}

(a) Homogeneous idiom

class List<X> {
X head;
List<X> tail;
List(X head,

List<X> tail) {
this.head = head;
this.tail = tail;

}
}

(b) Generified

Figure 3.1: Two implementations of the List class

Another problem with this approach is the lack of expressiveness: while this

approach can be successfully exploited for coding heterogeneous collection

classes, it is not possible to express constraints on the element type of a given

list — so that e.g. a compile-time error is issued when an element of the

wrong type is added to the list. This lack of expressiveness typically leads to

runtime errors (typically ClassCastException) when the actual type of the

element retrieved from the collection does not match the expected type, as

shown below:

List ls = new List("One", new List(2, null));
String one = (String)ls.head;
String two = (String)ls.tail.head; //CCE

1.1 Generics Classes

Java generics offer a natural solution to the problems posed by the generic

idiom, as they allow a class (resp. method) declaration to abstract from one

ore more types — this is accomplished by using type-variables in place of

concrete Java types. The code in Figure 3.1b shows a possible way to generify

our list class; List is parameterised on the type-variable X; this type-variable

is used as a placeholder for the list element type throughout the whole class

declaration. In order to create an instance of a generic class, one must provide

an instantiation for each type-variable occurring in the class declaration. In

this case, as List declares just one type-variable, only one concrete type must

be supplied.

Generics Classes 41

The following code is used to create a list of strings:

List<String> ls = new List<String>("One", null);

The reader might appreciate that, thanks to Java generics, it is now possible

to express the constraint that a given list holds elements of type T. This

constraint can be successfully exploited during compilation, in order e.g. to

check that the elements being added to the list match the expected type T.

List<String> ls = new List<String>("One", null);
ls.head = new Integer(1); //error
String s = ls.head; //no cast

Consequently, no explicit type-conversion is required when an element is to

be retrieved from the list, as the type-system now guarantees that a container

object of type List<String> holds elements of type String.

Generic classes, as any other Java class, support inheritance — that is,

a generic class can extend (resp. implement) another generic class (resp.

interface). This comes handy when it is needed to e.g. define a specialised,

non-parameterised version of a given collection class:

class NumList extends List<Number> ...
...
NumList = new NumList(new Integer(1), null);
NumList = new NumList(new Float(1.0f), null);
NumList = new NumList(new String("One"), null); //error

Here, NumList is a non-generic class subclassing from List<Number>. This

means that NumList inherits all members from List<Number> — a field

head of type Number and a field tail of type List<Number>, respectively.

Consequently, it is possible to create a NumList from either an Integer or

a Float, as Integer <: Number and Float <: Number. On the other hand,

an object of type String cannot be passed to the NumList constructor, as

String <:/ Number.

Type-variables can optionally declare one or more upper bounds; a bound

can be used to restrict the set of types which can be considered as valid

substitutions for a given type-variable — for example, a type-variable X whose

(upper) bound is String, can be instantiated to any type S, provided that

S <: String:

42 Design and Implementation of Java Generics

class CList<X extends Comparable<X>> extends List<X> ...
...
CList<String> = new CList("One", null);
CList<Integer> = new CList(new Integer(1), null);
CList<Object> = new CList(new Object(), null); //error

In the above code, a specialised implementation of the List container is shown,

where the type-variable X is given an upper bound, namely Comaparable<X>.

Note that X occurs in the declaration of its own bound — this feature

is called f-bounded polymorphism [CCH+89]. Hence, CList<String> and

CList<Integer> are well-formed types, as String <: Comparable<String>

and Integer <: Comparable<Integer>; on the other hand CList<Object>

is not well-formed, as Object <:/ Comparable<Object>.

The ability of expressing recursive bounds on type-variables is a key feature

for enabling generic programming in the Java programming language (see

section 2.2.2).

1.2 Generic Methods

A generic method is a method abstracting from some types by declaring one

or more method type-variables ; analogously to the case of generic classes, these

variables can be used either in the method signature or in the method body

— e.g. to declare local variables and to perform type-dependent operations.

When a generic method is invoked, the programmer generally has to provide

an instantiation of its type parameters, analogously to the case of type-

variables instantiation when allocating generic classes. In Java this can be

done either explicitly, by specifying which concrete types should be replaced

for the method type-variables, or implicitly, by having the compiler to infer

such types from e.g. the type of the actual arguments supplied in a generic

method invocation.

In the example in Figure 3.2, the standard list constructors nil() and

cons() are added to the definition of our class List<X>. Such constructors

are added as static generic methods parameterised in a type-variable Y, which

is used to represent the element type of the newly created list. In the first

call to nil(), Y is inferred to have type Integer, as the method call occur in

an assignment context where the type List<Integer> is expected. Calling

Wildcards 43

class List<X> {
...
static <Y> List<Y> nil() {

return new List<Y>(null, null);
}
static <Y> List<Y> cons(Y h, List<Y> t) {

return new List<Y>(h, t);
}

}
...
List<Integer> li = nil();
List<String> ls = cons("1", List.<String>nil());

Figure 3.2: Method type inference in action

cons() turns out to be more problematic: the type of Y is inferred to have

type Integer, as we are passing an argument of type String where an

Y is expected. Since type-inference in argument position is not supported

[JGSB05, SC08], the nested call to nil() would yield the type List<Object>,

as no assignment context is given here — which would result in a type-error

since a List<Object> cannot be passed where a List<String> is expected.

This problem can be solved by explicitly providing the actual type to be

replaced for Y in the nested call to nil().

1.3 Wildcards

There are some situations in which only partial knowledge about the instan-

tiation of a type-variable is required, hence no instantiation of it is a good

choice. Suppose that a method appendList(List<X> l) is to be added to

class List<X>, which takes another list l and adds its element to the receiver.

class List<X> {
...
List<X> appendList(List<X> l) { ... }

}

When this method is invoked on a receiver with type List<Number>, only

another list of type List<Number> can be passed as argument, though it is

easy to recognise that also instances of List<Integer> and List<Float>

44 Design and Implementation of Java Generics

could in principle be passed — as both Integer and Float are subtypes of

Number. Generalising, any list whose type is List<T> can accept lists of type

List<Z>, where Z is a subtype of T, but this is not possible using standard

generics for they are invariant — e.g. List<Integer> is not a subtype of

List<Number>:

List<Number> ln = ...
List<Integer> li = ...
ln.appendList(ln); //ok
ln.appendList(li); //error

This problem is addressed by integrating parametric polymorphism (generics)

and inclusive polymorphism (subtyping) [IV06], as developed in the wildcards

mechanism introduced in J2SE 5.0 [THE+04]. After a generic class of the kind

List<X> has been defined, one can use a type of the kind List<? extends

X>, called a bounded wildcard (parameterised) type. The type List<? extends

E> can be use in place of any type of the kind List<T>, where T <: E. Hence,

the method appendList() can be redefined as follows:

List<X> appendList(List<? extends X> l) { ... }

Thanks to covariant subtyping, appendList() in List<Number> can now be

applied to arguments of the kind List<Integer>, List<Float>, and so on.

The following example, shows another kind of wildcard:

class List<X> {
...
void addTo(List<? super X> l) { ... }
}
...
List<Integer> li=...;
List<Number> ln=...;
li.addTo(ln); //ok
ln.addTo(li); //error

Here, the addTo() method adds all the elements in the receiver list to the list

l passed as argument. Instead of declaring the type of l as being List<X>, it

is more useful to use a wildcard type of the kind List<? super T>: in fact,

any instance of a type List<S>, where T <: S, can be safely passed to the

Design of Java Generics 45

method — dually to the case ’? extends T’ — e.g. a list of Number accepts

elements from a list of Integer. The last example of wildcard type is the

unbounded version List<?>, literally meaning any List<T>, which is used

when the actual type of the list element is either unknown or not relevant, as

in a method of the kind:

class List<X> {
...
static int size(List<?> c) { ... }

}
...
List<Integer> li=...;
List<String> ls=...;
int s1 = size(li); //ok
int s2 = size(ls); //ok

All such new types find an extensive use in the Java Collection Framework

(see [Mica]) to flexibly define constraints on the parameterisation of collections.

Wildcards cannot be used to create objects in new expressions — an

instance creation expression of the kind new List<?>(..) is disallowed;

rather, they can be thought of as sort of interfaces over standard generic

types. Wildcards can in fact be understood as a generalisation of standard

generic types, where the type parameter is not a concrete type, but rather a

set of types, similar to a sort of interval ; subtyping between wildcards can be

intuitively expressed in terms of inclusion of such intervals — a more formal

characterisation of subtyping between generic types is given in Section 2.3.

2 Design of Java Generics

In this section we provide an in depth analysis of the technical details involved

in the design of Java generics; our goal is to give the reader an idea of the

complexity of the underlying type-system by which genericity is enabled in the

Java programming language; more specifically we discuss advanced features

such as type-inference in method calls, capture conversion and subtyping

between generic types. Finally, we show how Java generics allows for a smooth

transition from non-generified to generified libraries, thanks to raw types.

46 Design and Implementation of Java Generics

interface I1 { }
interface I2 { }
class A implements I1, I2 { }
class B implements I1, I2 { }
public class C {

static <Z> Z choose(Z th, Z that) { return th; }
void main() {

A z = choose(new A(), new B());
}

}

(a) Method type inference and intersection types

class A<X> { }
class B extends A { }
class C extends A<C> { }
class D {

static <Z> Z choose(Z th, Z that) { return th; }
void main() {

choose(new List(), new List<C>());
}

}

(b) Method type inference and infinite types

Figure 3.3: Method type inference: two corner cases

2.1 Method Type Inference

In Java, method type parameters might be left unspecified at the call site; in

fact, the Java compiler can statically infer the actual types to be replaced for

method type-variables following a variant of the Hindley-Milner algorithm

for local type inference [Mil78, PT98]. Java method type-inference is a two

step process that can be described as follows:

Inference from actual arguments During this phase, the compiler col-

lects a set of constraints of the kind T <: X, where the types in T are

derived from the types of the actual arguments supplied in the generic

method call; this is done for each type-variable X of the generic method

being called. The type of X is then assumed to be the least upper bound

Method Type Inference 47

of the types in T — this ensures that the inferred type is the least type

that makes each formal argument be greater than the corresponding

actual argument type.

Inference from declared bounds/assignment context In the case one

or more variables have been left uninferred during the previous step,

another round of type-inference is applied. This time the compiler

collects a set of constraints of the kind X <: B, where the types in B

are derived from the types of the declared bounds of the variables X

of the generic method being called. Additional constraints of the kind

X <: T are added, where the types in T are derived from the type of

the assignment context in which the method call occurs (if any). Once

all such constraints have been collected, each previously uninferred

type-variable is inferred to be the greatest lower bound of the types in

B and T — this ensures that (i) the inferred type is the greatest type

that makes the method return type be smaller than the expected type

and that (ii) the inferred type for X is compatible with the declared

bounds of X.

This apparently simple inference scheme is able to infer correct and sound

answers in most practical cases. Unfortunately, such flexibility comes at a

price, as the definition of the least upper bound function is perhaps one of

the most complex part of the Java Language Specification [JGSB05]; for

instance, there are situations in which the compiler can infer types that are

not expressible in Java — types that a programmer cannot write down for

they are not part of the actual Java language. In Figure 3.3a, the method

choose() is called by passing as arguments an object of type A and an object

of type B, respectively. In this situation the inference process leads to an

intersection type (see [JGSB05]), namely Object&I1&I2 — that is, the least

upper bound between A and B is the greatest subtype of all the common

supertypes between A and B, namely Object, I1 and I2.

Additional problems might arise when the types supplied to the least

upper bound function are generic types; despite, in most cases, wildcards

can be fruitfully exploited for improving the quality of the output of the

48 Design and Implementation of Java Generics

class ListUtils {

public static List<?> clone(List<?> l) {
return doClone(l);

}

private static <T> List<T> doClone(List<T> l) {
List<T> newList=new List<T>();
newList.head=l.head;
newList.tail=l.tail;
return newList;

}
...

}
...
List<?> l = new List<String>();
List<?> l2 = ListUtils.clone(l);

Figure 3.4: Capture conversion in method calls

type-inference scheme — this can be regarded as one of the most remarkable

properties of Java wildcards [THE+04] — the interaction between wildcards

and method type inference can lead to very subtle issues. In Figure 3.3b, the

method choose() is supplied two arguments, of type List and List<C>,

respectively. Under such circumstances, the inference process yields an in-

finite type, namely List<? extends A<? extends A<? extends A<...>>>>

— that is, the common supertype between B and C is some instantiation of the

generic class A, namely A<X>, where X <: A<X>1.

2.2 Capture Conversion

Java wildcards provide a means by which subtyping (inclusive polymorphism)

can better integrate with generics (parametric polymorphism). This mecha-

nism, known in literature as use-site variance (as opposed to declaration-site

variance), has been first introduced by Igarashi and Viroli in [IV06]. This

proposal, based on a type-system featuring existential types, turned out to

1Since the most widely used Java compilers such as javac and ejc do not support
infinite types yet [Sun], an approximation is used in which the infinite recursion is truncated
by an unbounded wildcard as in List<? extends A<? extends A<?>>>.

Capture Conversion 49

be too constraining in practice — in particular with respect to the problem

of the “generification” of the core Java libraries. Hence, Java features a

slightly different flavour of use-site variance, where the explicit open and close

operations on existential types have been replaced by the so called capture

conversion [TEPH05].

Capture conversion essentially amounts at introducing symbolic repre-

sentatives of the unknown types hidden behind wildcards, in the form of

fresh type-variables generated under the hood by the compiler. Given a class

declaration of the kind class C<X extends B>, capture conversion turns a

generic type of the kind C<W> into a new type C<V>, where each type in V is

obtained by substituting each wildcard type argument W in W with a fresh

type-variable Z with certain lower bounds and upper bounds (denoted as

∆−(Z) and ∆+(Z), respectively). The types in V are computed using the

interval metaphor as follows:

• if W is of the kind ? (i.e. an unbounded wildcard) then V is a fresh

type-variable Z such that ∆+(Z) is [V/X]B and ∆−(Z) is <null>;

• if W is of the kind ? extends T then V is a fresh type-variable Z such

that ∆+(Z) is the smallest type between T and [V/X]B and ∆−(Z) is

<null>;

• if W is of the kind ? super T then V is a fresh type-variable Z such that

∆+(Z) is [V/X]B and ∆−(Z) is T;

• if Wi is not a wildcard then V is W.

For instance, we have that capture conversion of Pair<? extends String,

Integer> yields Pair<Z,Integer> where Z is a fresh type-variable such

that ∆+(Z) = String and ∆−(Z) = <null> — note that the second argument

Integer is not affected by capture conversion, for it is not a wildcard. Capture

conversion comes into play under the following circumstances:

Membership check When the members of a given type of the kind C<W>

need to be accessed, a capture conversion is first applied; this conversion

yields a new type C<V>, where all toplevel wildcards have been replaced

by fresh type-variables — standard membership resolution can thus be

50 Design and Implementation of Java Generics

applied. For instance the type of the field head in an object of type

List<? extends Number> is discovered by applying capture conversion

— this yields the type List<Z>, where ∆+(Z) = Number; since the declared

type of the head in List<X> is X, it follows that the type of head viewed

as a member of the generic type List<? extends Number> is simply

[Z/X]X = Z.

Direct supertype The direct supertype of a type C<W> containing one or

more wildcards type arguments, is defined [JGSB05] as the direct su-

pertype of the type C<V>, where C<V> is obtained by capturing C<W>.

Consider a class definition of the kind class D<X> extends C<C<?

extends X>>. The direct supertype of D<? super String> is obtained

by capturing D<? super String> — this yields a type D<Z> where

∆−(Z) = String. From the above definition, we have that the direct su-

pertype of D<? super String> is the direct supertype of D<Z>, namely

[Z/X]C<C<? extends X>> = C<C<? extends Z>>.

Method calls In a method call of the kind o.m(x) where X are the types

of the actual arguments supplied to the method, capture conversion is

first applied to the types X. Consequently, the method call (and method

type-inference, if necessary) is handled the usual way — regardless of

whether some types in X are wildcard types. As shown in the example in

Figure 3.4, the type List<? extends X> is first captured, yielding the

type List<Z>, where ∆+(Z) = X; then method-type inference proceed

as usual, and the method type-variable X is instantiated to the type Z.

2.3 Subtyping and Decidability

The subtyping algorithm is obtained by a combination of three main ingredi-

ents: capture conversion, standard inheritance, and type-argument contain-

ment as shown in [TEPH05, CD09]. Let S and T be two correctly formed class

types of the kind class C<U> and class D<V>, respectively; the algorithm

decides whether S <: T in the two steps (subtyping rules are discussed in

greater details in Figure 3.5).

First, the direct supertype of S is accessed until C6=D. This ensures that S is

lifted to a type of the kind D<U’>. Consequently, S <: T if the intervals induced

Subtyping and Decidability 51

Syntax:

S, T ::= class C<A> class types
| X type-variables
| <null> bottom type

A ::= ? extends T type arguments
| ? super T
| ?
| T

Subtyping:

T <: Object S-Top <null> <: T S-Bot
T ≤ A

C<T> <: C<A>
S-Cla

class C<X> extends D<Y> K = capture(X)
C<S> <: [K/X]D<Y>

S-Sub

∆+(X) = T

X <: T
S-Upp

∆−(X) = T

T <: X
S-Low

Type-containment:

T ≤ T C-Ref
S <: T

S ≤ ? extends T
C-Ext

T <: S

S ≤ ? super T
C-Sup

Figure 3.5: Subtyping rules in Java

by type-arguments in U’ are smaller than the ones induced by type-arguments

in V, written U ≤ V.

As discussed in Section 1.3, wildcard types are hence handled as “intervals”

between the lower bound and upper bound, while non-wildcard types are

singletons: the three type-containment rules in Figure 3.5 basically amounts

at checking interval containment. Wildcard types of the kind ? super feature

contravariant subtyping, as the type-containment relation swaps the two

terms in the subtyping test. For instance, the type List<? super Number>

is a subtype of List<? super Integer> since the type-argument ? extends

Number is contained by the type argument ? super Integer, as Integer <:

Number.

52 Design and Implementation of Java Generics

class A<X> { }
class B extends A<A<? super B>> {

public A<? super B> cast(B b) {
return b;

}
}

(a) Java code

B <: A<? super B>

A<A<? super B>> <: A<? super B>

A<A<? super B>> <: A<X> B <: X
B <: A<? super B>

(b) Subtyping derivation

Figure 3.6: A simple example of non-termination

Decidability of the Java subtyping algorithm — that is, whether subtyping

terminates in a finite number of steps for any two given types S and T — has

been the subject of several studies [KP06, KREY06, CD09, MZ06, WT09]. In

[KP06] the problem of subtyping decidability is formally characterised with re-

spect to the so called declaration-site variance setting, that is, where variance

annotations associated with type-variables are given in a generic class/method

declaration, like in C# and Scala — rather than at use-site, as with wild-

cards. Under this assumption subtyping decidability can be viewed as the

result of the interplay between (i) contravariance, (ii) non-finitary inheritance

— extends/implements clauses possibly leading to non-finite sets of direct

supertypes — and (iii) multiple instantiation inheritance — implementing sev-

eral instantiations of the same generic interface (e.g. Comparable<Integer>

and Comparable<String>).

The program in Figure 3.6a shows a basic example of non-termination

of the subtyping algorithm; the code essentially triggers a subtyping test of

the kind B <: A<? super B> — this test should be performed in order to

check conformance with respect to the declared return type of the enclosing

method m(). This recursively leads to the same subtyping test after few

algorithmic steps, as shown in Figure 3.6b. This non-termination problem

Subtyping and Decidability 53

class A<X> { }
class B<X> extends A<A<? super B<B<X>>>> {

public A<? super B<Object>> m(B<Object> b) {
return b;

}
}

(a) Java code

B<Object> <: A<? super B<Object>>

A<A<? super B<B<Object>>>> <: A<? super B<Object>>

A<A<? super B<B<Object>>>> <: A<X> B<Object> <: X
B<Object> <: A<? super B<B<Object>>>

A<A<? super B<B<Object>>>> <: A<? super B<B<Object>>>

A<A<? super B<B<Object>>>> <: A<Y> B<B<Object>> <: Y
B<B<Object>> <: A<? super B<B<Object>>>

B<B<B<Object>>> <: A<? super B<B<B<Object>>>>

(b) Subtyping derivation

Figure 3.7: A more convoluted example of not termination

can actually be easily prevented by detecting loops when performing the

subtyping test, e.g. by exploiting a subtyping cache that keeps track of all

the pending subtyping tests. However, in the general case the subtyping

cache cannot prevent non-termination; for instance, the code in Figure 3.7a

triggers a more convoluted subtyping test of the kind B<Object> <: A<?

super B<Object>>. Note that caching is, per se, not sufficient to detect this

kind of non-termination since this subtyping test recursively leads to the more

complicated expression Si<:Ti where both types B<Object> and A<? super

B<Object>> are nested in S and T, respectively (i is the nesting level), as

shown in Figure 3.7b.

In conclusion, decidability of Java subtyping is still an open debate. On

the one hand, Java forbids multiple instantiation inheritance which, according

to the study in [KP06], would allow for decidable subtyping. On the other

hand, as wildcards relies on use-site variance, which is known to be more

expressive and powerful with respect to declaration-site variance, there could

54 Design and Implementation of Java Generics

exist forms of non-termination that have not been characterised yet — this

problem is discussed in [WT09].

2.4 Raw Types

The design of Java generics aimed at achieving the so called migration compat-

ibility [Gaf04, BOSW98] — that is the ability of leveraging generic libraries

from non-generic (pre JDK 5.0) clients. Such interoperability is ensured by

raw-types — a generic type without any type arguments, like e.g. List. A

raw type C is assignment compatible with all the generic instantiations of

the kind C<T>; hence, raw types greatly simplify the task of interfacing with

non-generic code. On the other hand, it is possible to exploit raw types in a

potentially unsound way, as shown below:

List l = new List<Integer>(new Integer(1), null);
l.tail = new List(new String("two"), null);
List<String> ls = l;
String s = l.head; //CCE

The code above creates an object of type List<Integer> and then assigns it to

a variable of type List; since the actual type parameter for the type-variable

X is statically unknown (List is a raw type), it is possible, for instance, to

end up with an heterogeneous list containing two elements of type Integer

and String, respectively. Worse, it is possible to assign an object of type

List<Integer> to a variable — namely ls — of a different generic type,

namely List<String>. This phenomenon, called heap pollution [JGSB05],

causes the code to unpredictably fail during execution — in this case, the

explicit type-conversion added by the compiler (see Section 3.1) fails, as an

element of type Integer is retrieved when one of type String is expected.

In order to prevent unexpected runtime failures, the compiler generates

an unchecked warning whenever an object of a raw type C is converted into a

generic type of the kind C<X>. In the above example, a warning is emitted

when l, whose type is List, is assigned to a variable of type List<String>;

this assignment is said to be unchecked, as the correctness of this conversion

cannot be guaranteed statically.

Implementation of Java Generics 55

3 Implementation of Java Generics

Generics are implemented using a lossy translation scheme named type-

erasure [JGSB05, BOSW98] that literally erases generic types and wildcards

during the compilation process; hence, generic types and wildcards are mainly

introduced as compile-time abstractions to enforce type-safety. There are,

however, some instructions — such as instance test (instanceof operator) or

type-conversions — whose semantics depends on the runtime type of an object

— we call such operations type-dependent operations. Because of type-erasure,

generic types and wildcards never enter the runtime domain of the Java Virtual

Machine (JVM); as a result, type-dependent operations involving generic

types are subject to some unavoidable restrictions — this problem is known in

literature as lack of reification of generic types [Nin07, AR08, CAF04]. The

aim of this section is to illustrate how type-erasure works, and to discuss the

main restrictons imposed by this implementation technique.

3.1 Type-erasure

Java implements generics through an homogeneous translation scheme called

type-erasure, which has been first described by Bracha et al. in [BOSW98].

The core idea of type-erasure is to provide an automatic translation from Java

code using generics and wildcards into its morally equivalent, non-generic

counterpart exploiting the homogeneous generic idiom (see Section 1). The

details of this translation process are reported below:

• A generic class of the kind class C<X extends B> (resp. a generic

method of the kind <X>m(T)) is translated into its monomorphic —

i.e., non-generic — version C, where all the occurrences of the type

parameters X are replaced with their declared bounds B (or Object, if

no bound is provided).

• When a member m of a generic type of the kind C<T> is accessed, the

compiler automatically adds an explicit type-conversion — provided

that the type of m has changed under erasure. This cast is required in

order to enforce correctness of the generated code, by preventing e.g.

56 Design and Implementation of Java Generics

that an element retrieved from a list of type List<Integer> is assigned

to a variable of type List<String> (see Section 2.4).

• When the type of a class member changes under erasure, the compiler

emits a special classfile attribute called Signature [Micb]. This at-

tribute contains the full generic signature of the erased member and is

used by the compiler to reconstruct exact type-information when e.g. a

class is accessed from a library.

• It is possible that the erased signature of the overriding method is not

override-equivalent [JGSB05] with respect to the erased signature of the

overridden method; under such circumstances, the compiler generates a

special method, called bridge method [BOSW98], in order to preserve

the semantics of overriding.

For instance, the generic class List<X> is translated into a non generic class

List, where all the occurrences of the type-variable X have been replaced by

Object — this lead to a code which is indeed very similar to the one shown

in Figure 3.1a.

The only computational overhead added by type-erasure is due to the

insertion of down-casts; for instance the following statements:

List<List<String>> lls = new List<List<String>>(...);
String s = lls.tail.head.head;

are translated as follows:

List lls = new List(...);
String s = (String)((List)((List)lls.tail).head).head;

On the other hand, such casts are unavoidable also when using the homo-

geneous generic idiom, so it can be safely assumed that type-erasure does

not significantly alter the application performance. Moreover, since generic

code is translated into non-generic code before code-generation, type-erasure

ensures that generic code can be understood and executed by a legacy JVM

— that is, no runtime extension is required in order to support Java generics.

Consequences of Type-erasure 57

A := T | ? extends T | ? super T | ? Argument types

T := X | C | C<A> | T[] Reference types

R := C | C<?> | R[] Reifiable types

K := C | C<T> | R[] Types of objects

Figure 3.8: Syntax of reference types in Java

3.2 Consequences of Type-erasure

In Java there is a subtle distinction between reifiable and non-reifiable types

[JGSB05]. Consider the syntax of Java reference types, reported in Figure 3.8;

reference types include generic classes of the kind C<T>, non generic classes

of the kind C (either unparameterised types or raw types), arrays of the kind

T[] and type-variables of the kind X. As it can be seen, not all such types can

be used to create objects — only types in K can occur in an instance creation

expression; in fact, as already mentioned, a generic type of the kind C<T> can

be used in an instance creation expression, provided that none of its type

parameters T is a wildcard.

Additional restrictions apply to arrays (the problem of generic arrays is

discussed in greater detail in Section 3.2.2): only arrays whose element type

is reifiable — either a class (or interface) type with zero type arguments or

with the unbounded wildcards everywhere — can be instantiated.

Reifiable types R are the only types which can be used as the target type

of a type tests using the instanceof operator; in other words, such types are

the only types the runtime system can “see” when inspecting an object. This

is a crucial point: in Java there is a mismatch between those types K that are

available at compile-time to create objects and types R that are available at

runtime for inspection.

3.2.1 Unchecked Cast

Despite Java generics virtually eliminate the need of using down-cast, there are

situations in which explicit type-conversions are still useful. For instance, the

programmer may still need to manage a heterogeneous collection of elements,

58 Design and Implementation of Java Generics

List<Integer> li = new List<Integer>(new Integer(1), null);
List<String> ls = new List<String>("two", null);
List<List<?>> ll = new List<List<?>>(li,new List<List<?>>(ls,null));
...
List<String> ls2 = (List<String>)ll.tail.head;
List<Integer> li2 = (List<Integer>)ll.tail.head; //?
...
Integer i = li2.head; //CCE

(a) Generic code

List li = new List(new Integer(1), null);
List ls = new List("two", null);
List ll = new List(li, new List(ls, null));
...
List ls2 = (List)ll.tail.head;
List li2 = (List)ll.tail.head; //ok
...
Integer i = (Integer)li2.head; //CCE

(b) Erased code

Figure 3.9: An example of unsound cast conversion

and to retrieve elements from such a collection with their exact type — this

can be safely done only by exploiting some form of explicit type-conversion,

as shown in Figure 3.9a. First, we create a list of heterogeneous lists (of

type List<List<?>>. We then add two lists of type List<Integer> and

List<String> respectively. At some later stage, we want to retrieve an

element of type String from the second list stored in ll; this is accomplished

by inserting an explicit type-conversion (to List<String>), as the original

type of the list is hidden behind the wildcard type List<?>.

Note that a wildcard type of the kind List<?> is a common supertype

of all possible generic instantiations of List<X>, such as List<Integer>,

List<String> and so on; consequently, the semantics of a cast conversion

from List<?> to List<Integer> can only be enforced during execution,

when the exact type of the object being converted is known. Unfortunately,

type-erasure maps all generic instantiations of a given generic class — as

List<String>, List<Integer> — into the same erased runtime type List

(see Figure 3.9b). Consequently, the runtime support cannot assert the

validity of this cast — which is in fact translated as a simple cast to the

Consequences of Type-erasure 59

List<Integer>[] li_arr = new List<Integer>[]{ ... };
Object[] o_arr = li_arr;
List<String> ls = new List<String>(...);
...
o_arr[0] = ls; //?
List<Integer> li = li_arr[0];
Integer i = li.head; //CCE

(a) Generic code

List[] li_arr = new List[]{ ... };
Object[] o_arr = li_arr;
List ls = new List(...);
...
o_arr[0] = ls; //ok
List li = li_arr[0];
Integer i = (Integer)li.head; //CCE

(b) Erased code

Figure 3.10: An example of unsound usage of generic arrays

erased type List.

Allowing potentially unsafe type-conversions leads, again, to heap pollution

problems; in this case, we assign an object of type List<String> to a variable

of a different generic type — namely List<Integer>; this is accomplished

by using an unsafe type-conversion to the type List<Integer>. Such a cast

is said to be unchecked (and will result in a compile-time warning), as its

semantic cannot be enforced, neither statically — as usual, since it is a

down-cast — nor dynamically — because of type-erasure.

3.2.2 Generic Arrays

Java arrays feature covariant subtyping — that is, Integer[] <: Object[].

While covariant subtyping rules lead to a relatively intuitive and predictable

behaviour, they also introduce an hole in the type-system, as semantics of

assignments involving arrays must be enforced during execution:

Integer[] iarr = new Integer[]{1, 2, 3};
Object[] oarr = iarr;
oarr[2] = "Three"; //ASE
Integer i = iarr[2];

60 Design and Implementation of Java Generics

Here, we create an array of type Integer[] and we assign it to a variable of

type Object[]. This is allowed, as Integer <:Object. We then are free to

overwrite an array element with i.e. an element of type String, as String <:

Object. This would be problematic, as we subsequently retrieve an element

of type String where an Integer is expected. The JVM provides a routine

that enforces the correctness of array store operations during execution. In

the above example, such routine promptly issues a runtime error — namely

ArrayStoreException — as it detects an attempt to store an object of type

String into an array of type Integer[].

Unfortunately, the array store check routine cannot be leveraged to prevent

bad assignments involving generic arrays. Consider the code in Figure 3.10a;

first we assign an array of type List<Integer>[] to an array of type Object[]

— this is correct, since List<Integer> <: Object. We then insert an object of

the wrong type — namely List<String> — into the original array, exploiting

the aliased reference o arr; this eventually leads to a runtime error when

we retrieve an element from a list in the original array, as an object of type

String is found, where one of type Integer is expected. Note that there

is no way to detect the bad array store, as the runtime type of the array

li arr is simply List[] (see Figure 3.10b). Worse, no unchecked warning

can be issued here, as the code above does not rely — neither explicitly nor

implicitly — upon any unchecked conversion. Hence, in order to preserve

soundness, the creation of generic arrays is forbidden in Java.

4 Alternatives to Type-erasure

Several solutions have been studied to address the lack of reification of generic

types [SA98, AFM97, SC06, MBL97, Vir05, CV08b]. Existing approaches

address this problem by defining new translation techniques which allow for

a runtime representation of generics and wildcards. Such approaches can be

classified into two main categories:

Compile-time Compile-time approaches tackle the problem of reification

by introducing an alternate, more sophisticated translation scheme

that allows exact type-information to be dynamically reconstructed

The NextGen Translator 61

and used when executing type-dependent operation involving generic

types. Following a classification introduced in [OW97], we distinguish

between homogeneous translations [Vir05, CV08b] — where all generic

instantiations of a given type C<T> are mapped into a single Java

class — and heterogeneous translations [SC06] — where each generic

instantiation of the kind C<T> translates into a different specialised

class. Compile-time approaches do not require changes to the runtime

environment, as reification is typically achieved by introducing ad-hoc

compile-time artifacts.

Runtime Runtime solutions achieve reification by extending the runtime

environment; this is done by defining a custom class loader, as in

[AFM97], or by redesigning the JVM to directly represent generic types

[MBL97]. Note that, though JVM-based approaches typically leads to a

better-engineered solution (with greatest performance and coherence) —

as developed e.g for the .NET framework [SK01] — they inevitably pose

additional problems, as in [MBL97] where reified generics are supported

through a true language extension (where clauses) so that backward

compatibility is compromised.

In this section we focus on two compile-time approaches that have been the

subject of several studies, namely NextGen [SC06] and EGO [Vir05, CV08b].

More specifically, we provide an in depth analysis of the latter approach, as

it paves the way to the runtime approach that will be discussed in Chapter 4

— one of the main contributions of this work.

4.1 The NextGen Translator

The NextGen compiler addresses the problems introduced by type-erasure by

defining an heterogeneous translation scheme where the relationships between

generic classes and their instantiations are encoded in a non-generic class

hierarchy. For each parametric class, the NextGen translator creates an

homogeneous abstract class; this class is indeed very similar to its untranslated

counterpart — the only difference being that the class is now marked as

abstract.

62 Design and Implementation of Java Generics

abstract class List<X> {
Object head;
List<X> tail;
List(Object head, List<X> tail){
this.head=head;
this.tail=tail;

}
}

interface $List$_String_${}

class $$List$_String_$ extends List<String>
implements $List$_String_$ {

$$List$_String_$(Object head, List<String> tail) {
super(head,tail);

}
}

Figure 3.11: Translation with NextGen of code in Figure 3.1b

Each time a client class uses a new instantiation of a generic type — say

List<String> — the translator creates a small wrapper subclass extending

the abstract class List<X>, and a marker interface implemented by this

subclass — e.g. $List$ String $ (see Figure 3.11). Hence, type-dependent

operations such as cast and instanceof are expressed in terms of operations

involving a more specialised, type-dependent subclass representing a given

instantiation C<T> of a generic class of the kind C<X>.

For example, an instance creation expression is translated as follows:

new List<String>("1", null) → new $$List$ String $("1",null);

An instance test involving e.g. the type List<String> can be translated as

an instance test whose target type is $List$ String $:

obj instanceof List<String> → obj instanceof $List$ String $

NextGen heterogeneous translation scheme does not significantly affect per-

formance: it has been shown in [SC06] that the code generated by NextGen

is almost as fast as the one obtained through type-erasure, as most type-

dependent operations are simply translated in terms of method calls involving

The EGO Compiler 63

specialised subclasses — such calls are handled effectively by the HotSpot

JVM through method inlining [KWM+08]. On the other hand, NextGen

requires a new class for each new instantiation of a generic class type of the

kind C<X>. Even though these classes are in general small, their number can

increase as the library of generic classes is used by different applications, so

that the global size of the library can grow without bounds. It has been

shown in [SC06] how this problem can be tackled effectively, by introducing

a modified class loader that creates wrapper classes on the fly.

Moreover, heterogeneous translations such as the one proposed by

NextGen doesn’t scale particularly well to wildcards: in fact, types of

the kind List<? super T> are contravariant, hence, the set of their super-

types is not closed: for any newly defined class C such that C<:T, type List<?

super C> should be a supertype of List<? super T>. Therefore, whether

such an approach would ever be able to support subtyping is still an open

issue.

4.2 The EGO Compiler

The EGO compiler (Exact Generics on-Demand) is the result of a project

developed in collaboration with Sun Microsystems with the goal of evaluating

a compile-time reifying support to Java generics, which would not require

changes to the JVM or to any other component of the Java platform. The

solution conceived and developed is a sophisticated translation technique based

on the type-passing style [VN00, Vir03b], where runtime type information is

automatically created on a by-need basis, and cached for future utilisation.

In EGO’s translation scheme, the generic type used to create an object

is reified to an actual further argument (called descriptor) that is passed

to the generic class constructor. Each generic class is augmented with an

additional field in which this descriptor gets automatically stored for later

accesses: each instance of a generic class points to its exact generic type.

Such an information then accessed when necessary, e.g. when a cast operation

occurs, when executing a type test, or when serialising the object.

Several critical issues had to be tackled in order to make this general idea

a fully-fledged solution, including performance, compatibility, and so on. In

64 Design and Implementation of Java Generics

particular, EGO compiler has been developed with the following features:

Laziness Descriptors are created only the first time they are required, pre-

venting any interference with usual Java class loading dynamics, and

avoiding the problem of infinite polymorphic recursion [VN00];

Completeness The type-passing translation scheme is applied not only to

generic classes, but also generic methods, generic inner classes, interfaces,

and arrays; moreover in [CV08b] it has been shown how this scheme

can be extended in order to support reification of wildcards;

Effectiveness A number of bridging techniques were introduced to deal with

effectiveness issues such as interoperability between legacy and generic

Java code and support to separate compilation — this is a crucial aspect

of translation as the code generated by the EGO compiler might be

executed by legacy clients;

Efficiency The need to obtain good performance results of the translated

code pervasively affected all the aspects of the EGO translation scheme;

this led to a sophisticated double-caching mechanism in which descrip-

tors are stored in a global dictionary, called descriptor registry, but

also cached into static fields of generic client classes for ensuring fast

retrieval when performing type-dependent operations.

Performance measures executed over large-size benchmarks, like the javac

compiler itself, have demonstrated the effectiveness of the EGO approach;

such benchmarks report a general execution speed overhead within 10%,

memory overhead within 5% and a class-size overhead within 15% [Vir05]. In

the remainder of this section we provide a brief overview of the translation

scheme exploited by the EGO compiler.

4.2.1 Type Descriptors in EGO

The EGO compiler represents the runtime type associated with a generic

type of the kind C<T> by means of a specialised data-structure called class

descriptor. A class descriptor is implemented in the EGO runtime in terms of

a class called Cla, whose definition is reported in Figure 3.12. More specifically,

the class Cla is used for representing the runtime type-information associated

The EGO Compiler 65

class Cla extends Desc {
Class<?> theClass;
Desc[] params;
int[] annotations;
Cla[] bounds;
Cla super;

}

Figure 3.12: Class descriptor in EGO

with a generic type of the kind C<T>, where C is a class declaration of the

kind class C<X / B> / D<V>. A class descriptor is structured in five main

parts: (i) a Class object which stands for the “erased” class type C; (ii) an

array of descriptors, used to keep track of the type parameters, containing

descriptors for the types in T; (iii) an array of integer values encoding the

variance annotations associated with each type in T — as one or more types

in T could be a wildcard argument; (iv) an array of descriptors representing

the actual bound types [T/X]B; and (v) a reference to the descriptor for

[T/X]D<V> — the direct supertype of C<T>.

For instance, EGO represents the type List<? extends String> by the

class descriptor where: (i) the base type is the Class object respresenting the

class type List; (ii) the type parameters array contains one element, namely,

the type descriptor for String; (iii) the variance annotations array contains

one integer element whose value is 1 (as 1 means ’? extends’); the bounds

array contains one descriptor for the type-variable bound, namely Object;

(v) the super descriptor points to the top descriptor Object.

Other abstractions like raw types, generic inner classes, generic interfaces,

generic methods and generic arrays are implemented through proper kinds of

descriptors, which here are not discussed in detail for the sake of simplicity

— e.g. the raw type for List is represented by a type descriptor of the kind

List<Any>, where Any is a special descriptor used to represent an unknown

type.

EGO provides a hash-consing mechanism to quickly store and retrieve

descriptors [SK01]. When a descriptor is required, it is first searched in a

66 Design and Implementation of Java Generics

class List<X> {

X head;
List<X> tail;

List(X head, List<X> tail){
this.head = head;
this.tail = tail;

}

static <Z> List<Z> nil() {
return new List<Z>(null, null);

}

static <Z> List<Z> cons(Z head, List<Z> tail) {
return new List<Z>(head, tail);

}

public static void main(String[] args) {
Object o = List.cons(1, List.<Integer>nil());
boolean res = o instanceof List<String>;

}
}

Figure 3.13: A simple list class

global descriptor registry (an hashtable-like data structure): if such descriptor

is not found in the registry, meaning that it is the first time that such

descriptor is used in a type-dependent operation, a new descriptor will be

allocated and registered there. Moreover, the reference to a descriptor is also

stored locally to where it has been used, e.g. in a static field of the client class,

leading to a particularly space- and time-efficient double-caching mechanism.

The details of this kind of management are encapsulated into the $crCLA()

method — this method is automatically added by the EGO compiler to a

generic class of the kind C<X>. This method is supplied a set of descriptors

corresponding to the actual type parameters T of the generic type of the kind

C<T> for which a descriptor has to be retrieved; the method automatically

handles all the tasks related to the creation of a new class descriptor of the

kind C<T>, such as creating and setting the parent descriptor, computing the

descriptors for the actual bound types, and registering the descriptor.

The EGO Compiler 67

class List<X> implements EGO.Parametric {

protected Desc.Cla $d; // Instance descriptor

static Desc[] $descs = new Desc[6]; //Local descriptor cache

X head;

List<X> tail;

// Constructor (for backward compatibility)

List(Object head, List tail) {

this((Desc.Cla)$C(0), head, tail);

}

List(Desc.Cla $d, Object head, List<X> tail) {

this.$d = $d;

this.head = head;

this.tail = tail;

}

static <Z> List<Z> nil(Desc.Meth $md) {

return new List<Z>(BD($md,0), null, null);

}

static <Z> List<Z> cons(Desc.Meth $md, Z head, List<Z> tail) {

return new List<Z>(BD($md,1), head, tail);

}

public static void main(String[] args) {

Object o = List.cons($C(5), 1, List.<Integer>nil($C(4)));

boolean res = $C(2).isInstance(o);

}

// Facility method to register descriptors

public static Cla $crCLA(Cla[] params, int[] annotations) {

Cla $v = Cla.reg(List.class, new Cla[]{params[0]});

$v.setTypeVarBounds(new Cla[]{Desc._Object});

Cla $cap = $v.capture();

$v.setFath(Desc._Object);

return $v;

}

// Facility method for retrieving closed descriptors

private static Desc $C(int id) {

if ($descs[id] != null) return $descs[id];

switch (id) {

case 0: return $descs[id] = $crCLA(new Cla[]{Desc._Any}, new int[]{0});

case 1: return $descs[id] = Cla.reg(String.class);

case 2: return $descs[id] = $crCLA(new Cla[]{$C(1)}, new int[]{0});

case 3: return $descs[id] = Cla.reg(Integer.class);

case 4: return $descs[id] = Meth.reg("nil",new Cla[]{$C(3});

case 5: return $descs[id] = Meth.reg("cons",new Cla[]{$C(3});

}

return null;

}

// Facility method for retrieving open descriptors

private static Desc BD(Desc d, int id) { ... }

}

Figure 3.14: Translation with EGO of code in Figure 3.13

68 Design and Implementation of Java Generics

4.2.2 Type-passing Technique in EGO

Figure 3.13 reports an example of generic class List<X> with standard nil()

and cons() constructors, and Figure 3.14 its corresponding translation in

EGO. An argument of type Cla is added to the constructor of List<X>,

representing the generic type under instantiation. Its content will be stored

in the EGO-generated field called $d: this is meant to contain information

about the runtime type of the current instance, passed from the client that

invokes the constructor. Note that the legacy constructor is kept to support

compatibility with legacy code: there, the new constructor is called by passing

a special descriptor for the raw type of List, namely, List<Any>.

The reification scheme exploited in an instance creation expression is of

the general kind:

new List<T>(<args>) → new List<X>(/*Desc for List<T>*/,<args>)

namely, an appropriate expression — which is in charge of efficiently creat-

ing/retrieving the descriptor — is added as first argument of a generic class’

constructor.

Descriptors can be of two different kinds: they can be independent of

the current generic instantiation, such as e.g. type List<String>, which

we call closed descriptors, or they may include type-variables defined in the

enclosing scope, such as List<Z> in method List.<Z>nil(), which we call

open descriptors. These two kinds of descriptor require different management

[Vir05], delegated respectively to methods $C() and BD(), as shown in

Figure 3.14: independently of their details, these methods are in charge of

implementing the first caching level. For instance, method $C() looks first for

the required descriptor in the static field $descs — otherwise a new descriptor

is created and registered through method $crCLA(). Generic methods are

handled similarly as shown for <Z>cons(): a method descriptor (instance

of class Desc.Meth) is passed as first argument in the invocation, carrying

information about the instantiation of the method type parameters.

A type-dependent operation involving a generic type exploits the runtime

type information stored in the $d field. For instance, let v stand for the

The EGO Compiler 69

expression used to access the descriptor for List<String> — e.g. $C(2) as

in method main() — we have the following translations:

o instanceof List<String> → v.isInstance(o)
(List<String>)o → (List<String>)v.cast(o)

Methods isInstance() and cast() (of class Cla) simply try to access o’s

descriptor: if this is possible it means the objects has been created from a

generic class, hence they simply check whether such a descriptor corresponds

to a descriptor for any supertype of List<String> — this is accomplished by

performing a dynamic subtyping test. Other kinds of runtime introspection,

such as e.g. those required to support persistence, are implemented in a

similar fashion.

Chapter 4

Reified Generics in the Java
Virtual Machine

The J2SE 5.0 platform lacks a true runtime support for both generic types

and wildcards; those types are in fact translated into legacy Java types

during compilation by a process called type-erasure. This leads to problems

with many existing Java technologies such as Reflection, Serialization, Java

Beans and RMI. In this thesis we develop1 a sophisticated type-passing

technique for addressing the problem of reification of generic types in the

Java programming language; this approach — first pioneered by the so called

EGO translator [Vir05] (see Section 4.2) — is here turned into a full-blown

solution which reifies generic types inside the Java Virtual Machine (JVM)

itself, thus overcoming both the performance penalties and the compatibility

issues of the original EGO translator. The JVM used for building our

prototype is the CVM (version 1.0.2), which is part of the CDC (Connected

Device Configuration) configuration of the J2ME platform2 — hence the

name gCVM (Generic CVM).

Our goal is to provide a full-blown reification support for generics and

wildcards which allows for a more coherent and safe version of the Java

programming language. Most noticeably, in the gCVM there is no distinction

1This research project has been funded by Sun Microsystems.
2The reference implementation discussed throughout this chapter is the CVM version

1.0.2. Our aim was to use a CVM implementation without Just-In-Time compilation
support (JIT), which would make the development of the reified CVM prototype an harder
task.

72 Reified Generics in the Java Virtual Machine

beetwen reifiable and non-reifiable types (see Section 3.2): all types (but

type-variables) are reifiable — consequently, the gCVM must provide runtime

support for execution of type-dependent operations involving generic types,

such as generic cast, generic instanceof, generic array creation, and so forth.

Object cs = new Cell<String>("One");
Cell<Integer> ci = (Cell<Integer>)cs; //CCE
boolean res = cs instanceof Cell<String>;
Object[] oarr = new Cell<? super Integer>[5];
oarr[2] = new Cell<String>("Two") //ASE

Note that the the semantics of type-dependent operations involving generic

types is here enforced during execution: the gCVM issues a runtime error

whenever e.g. an erroneous type-conversion — as in (Cell<Integer>)cs —

or a bad array store — as in oarr[2] = "Hello!" — is detected; hence, the

language deployed by the gCVM does not suffer from the heap pollution

problem.

1 Architecture Overview

Java generics are implemented through type-erasure (see Section 3.1), which

literally erases all generic types signatures from a generic Java program

during compilation. As an example, generic class declarations are translated

to monomorphic class declarations (e.g. List<E> is turned into List), and

every type-dependent operation involving generic types is translated, too

(e.g. new List<Integer>(...) becomes new List(...)). Consequently,

generic types and wildcards never enter the runtime domain of the JVM, so

that type-dependent operations involving generic types are subject to some

unavoidable restrictions.

The first problem we have to face is to define an extension to the current

classfile format [LY99, Micb], so that exact type information required by type-

dependent operations can be stored in the classfile; this can be accomplished

in two ways, either by extending the JVM instruction set, or by exploiting

some form of bytecode instrumentation. The former technique, which has

been successfully exploited in runtime approaches as in [MBL97], inevitably

poses serious compatibility issues, as it typically introduces new bytecode

Architecture Overview 73

Figure 4.1: Bytecode Instrumentation

instructions that would not be understood by legacy JVMs. Our goal is

to encode full generic type signatures in a backward compatible fashion —

this can be accomplished by making generic type signatures available via

custom classfile attributes. In fact, as stated in [LY99], non-custom bytecode

attributes are simply skipped by a legacy JVM; consequently, legacy JVMs

would still be able to execute generified bytecode — this is also the way in

which generic type signatures for class/method/member declarations were

added in J2SE 5.0 (see Section 3.1).

Requirement 1. The reification support must be able to recover the

type information that has been lost during type-erasure. Such information

must be made available via custom bytecode attributes, so that the generified

classfiles might still be executed by legacy (i.e. non-generic) JVMs.

Our compilation strategy is described in Figure 4.1. This process involves

the following steps: first, generic types’ signatures are collected before the

erasure process takes place; a plain Java classfile is thus generated as usual —

this classfile contains no generic type signatures (expect for the ones in the

Signature attributes [Micb]); finally, the previously collected generic types’

signatures are merged into the erased classfile as custom attributes, thus

obtaining a generified classfile. Recalling from Section 3.2, a type-dependent

operation involving a generic type of the kind C<T> is translated into a type-

dependent operation involving an erased type C. The reification support must

be able to reconstruct the original type information associated with a type-

74 Reified Generics in the Java Virtual Machine

dependent operation, as this information might be required during execution

— examples are the type of an instance creation expression of the kind new

List<String>(), or the target type of an instance test of the kind (List<?

super Integer>)obj, etc. In our approach, a type-dependent instruction

involving a generic type of the kind C<T> is decorated with a pointer to a

type descriptor — used to represent the unerased signature of C<T>. As an

example, consider the following piece of code:

List<String> ls = new List<String>();

Which, after erasure, translates to:

List ls = new List();

Assuming that the type descriptor for List<String> is available in the

generified classfile, the above code could be rewritten as follows:

List ls = new List(); → List<String>’s type descriptor

Where the arrow denotes a dependency between the new instruction and

the type descriptor representing the (generic) type of the instance creation

expression.

Requirement 2. The reification support must associate each type-

dependent opcodes involving a generic type of the kind C<T> with a corre-

sponding type descriptor for C<T> — such descriptor must be made available

in the generified classfile. The type-dependent opcodes are:

• new — object allocation;

• anewarray, multianewarray — (multi)array allocation;

• aastore — array store;

• instanceof — dynamic instance test;

• checkcast — dynamic type-conversion;

• invokevirtual, invokespecial, invokestatic — method calls.

Note that this is essentially the same type-passing strategy implemented in

the EGO translator (see Section 4.2). In EGO, type information is encoded

in terms of a descriptor object — an instance of the Cla class. The descriptor

The Generified Classfile Format 75

object is supplied to the constructor of a generic class by the client class,

and then stored in a synthetic field of the generic class being instantiated —

type-dependent operations are simply implemented in terms of operations

provided by the descriptor class.

Conversely, no Java artifact is required here — the additional type infor-

mation is directly encoded inside custom classfile attributes; such information

is then reconstructed inside the gCVM when the generified classfile is first

loaded. In particular, the gCVM must be able to recover the exact type

information stored in the custom classfile attributes so that such information

can be used when executing type-dependent opcodes involving generic types.

For instance, when a new generic object is allocated, the gCVM must be

able to recover the unerased generic type of the instance creation expression

— this is accomplished by accessing the custom classfile attributes stored in

the generified classfile. A runtime representation of such (possibly generic)

type is then attached to the newly created instance; this information might

be needed at a later stage — e.g. when executing a type-dependent operation

(such as a type-conversion or an instance test) on that generic instance.

Requirement 3. The reification support must be able to reconstruct the

additional type information stored in a generified classfile. Moreover, each

type-dependent operation for which a type-descriptor is available, must be

tagged explicitly during class loading.

Requirement 4. The reification support should (i) attach to each generic

object a type representation of the kind C<T> where the types in T correspond

to the actual type parameters associated with the object’s generic type, and

(ii) provide a means to retrieve the exact type of a generic object e.g. during

type-dependent operations.

2 The Generified Classfile Format

In this section we discuss how type descriptors are stored into a classfile and

how such descriptors can be linked to type-dependent instructions. In the

following, the structure of classfile attributes is given in term of C-like struct

data-structures (the same notation is used in [LY99]), where the type tags

u1, u2 and u4 denotes 1, 2 and 4 bytes-wide values, respectively.

76 Reified Generics in the Java Virtual Machine

struct DescriptorTable {
u2 attribute_name_idx;
u4 attribute_length;
u2 descriptors_count;
{ u1 tag;

u2 descriptor_length;
u1 info[descriptor_length];

} descriptor_info[descriptors_count];
}

Figure 4.2: The DescriptorTable class attribute

2.1 The DescriptorTable Attribute

All type descriptors used by a given class are stored as entries in a class

attribute, called DescriptorTable. The DescriptorTable attribute (see Fig-

ure 4.2) acts as an extended constant pool [LY99], used to store all descriptors

entries referred to by type-dependent operations in a given class. The amount

of descriptor entries stored in the descriptor table is descriptors count

— consequently, a descriptor entry can be stored at a position i, where

0 ≤ i ≤ descriptors count. As shown in Figure 4.2, all descriptor en-

tries share the same header. This common header provides hints on the

kind (tag) and the length in bytes (descriptor length) of the descriptor

entry being encoded. There are several kinds of descriptor entries — one for

each kind of Java type, such as class, array, methods, type-variables; in the

remainder of this section we provide a brief overview of the main kinds of

descriptor entries encoded in a generified classfile.

2.1.1 Class Descriptors

A generic class type of the kind C<T> is represented by a ClassDescriptor

entry; class descriptors can be used to encode the type of an instance cre-

ation expression, the target type of an instance test/type-conversion, the

parameter type of a generic type, the element type of an array and so

on. Class descriptors can be used to encode either generic types, such as

List<String>, Pair<Z,Integer>, wildcard types such as List<? extends

The DescriptorTable Attribute 77

struct ClassDescriptor {
u1 tag;
u2 descriptor_length;
u2 enclosing_idx;
u2 name;
u2 params_length;
u2 params[params_length];
u1 annotations[params_length];

}

Figure 4.3: Structure of a ClassDescriptor

Integer>, Pair<?,?>, or non-generic types such as Object, String, etc.

A class descriptor entry is made up of the following fields:

enclosing idx points to a class descriptor entry. This field is used when

the class descriptor being encoded is an inner class; in that case

enclosing idx points to the descriptor entry for the innermost en-

closing class/method. If the class type being encoded is a toplevel class,

this field is set to -1;

name points to a CONSTANT Class info constant pool entry defining the

name of the class type being encoded;

params type parameter descriptors list (whose size is params length). The i-

th element points to a descriptor entry for the i-th actual type parameter

of the generic class type being encoded. Valid entries are either of kind

ClassDescriptor or TypeVarDescriptor;

annotations the variance annotation array (whose size is params length).

The i-th element points to an integer constant, where the values 0, 1, 2

and 3 are used to tag an invariant parameter (e.g. Number), a covariant

parameter (e.g. ? extends Number), a contravariant parameter (e.g. ?

super Number) and a bivariant parameter (of the kind ?), respectively.

For example, the wildcard type List<? super Integer> is represented by

a ClassDescriptor entry whose (i) enclosing idx is -1 (since List is a

toplevel class), (ii) name idx points to a constant pool entry for List, (iii)

params length is 1, (iv) params contains an index pointing to the class

78 Reified Generics in the Java Virtual Machine

struct MethodDescriptor {
u1 tag;
u2 descriptor_length;
u1 flags;
u2 name;
u2 receiver_idx;
u2 params_length;
u2 params[params_length];

}

Figure 4.4: Structure of a MethodDescriptor

descriptor entry for String and (v) annotations contains the annotation

value 2 (as List<? super Integer> has a contravariant parameter type).

2.1.2 Method Descriptors

A generic method type of the kind C<S>.<X>m() is represented by a

MethodDescriptor entry. Method descriptors are mainly used to encode

the type of a method in a generic method call, as List.<String>cons(), etc.

A MethodDescriptor entry is made up of the following fields:

flags a general-purpose 8-bits mask, used to record various details about a

generic method call. These flags can be used e.g. to encode specific

Java modifiers such as static or final, or to explicitly mark inter-

face or captured calls — which need special treatment by the runtime

environment, as we shall see in Section 4.3.2;

name idx points to a constant pool entry defining the name of the

method being encoded. Valid constant pool entries are either of kind

CONSTANT MethodRef info or CONSTANT InterfaceMethodRef info;

receiver idx points to a class descriptor entry representing the type of the

receiver in a given generic method call;

params type parameter descriptors list (whose size is params length). The i-

th element points to a descriptor entry for the i-th actual type parameter

of the generic method type being encoded. Valid entries are either of

kind ClassDescriptor, or TypeVarDescriptor.

The DescriptorTable Attribute 79

struct ArrayDescriptor {
u1 tag;
u2 descriptor_length;
u2 element_idx;
u2 depth;

}

Figure 4.5: Structure of a ArrayDescriptor

For example, the generic method List.<Integer>cons() is represented by a

MethodDescriptor entry whose (i) receiver idx is -1 (as the method being

called is static), (ii) name idx points to a constant pool entry for List.cons,

(iii) params length is 1 and (iv) params contains an index pointing to the

ClassDescriptor entry for Integer.

2.1.3 Array Descriptors

A generic array type of the kind class C<T>[] is represented by an

ArrayDescriptor entry; array descriptors can be used to encode the type

of an array creation expression, the target type of an instance test/type-

conversion, the parameter type of a generic type, and so on. Array descriptors

can be used to encode either generic array types, such as Pair<Z,? super

Integer>[][] or non-generic array types such as Object[], Integer[][],

etc. An ArrayDescriptor entry is made up of the following fields:

element idx an index pointing to a ClassDescriptor entry. This field is

used to represent the element type of the array;

depth the array’s depth (must be less than 216 − 1).

For instance, a generic array of the kind List<Float>[][] is represented by

an array descriptor entry whose (i) element idx points to the class descriptor

entry for List<Float> and (ii) depth is set to the value 2.

2.1.4 Type-variable Descriptors

A type-variable of the kind X is represented by a TypeVarDescriptor entry;

type-variable descriptors are used to encode the type parameters of a generic

type in several contexts, such as instance creation expressions, generic method

80 Reified Generics in the Java Virtual Machine

struct TypeVarDescriptor {
u1 tag;
u2 descriptor_length;
u2 owner;
u2 slot;
u2 class_bound_idx;
u2 interface_bounds_length;
u2 interface_bounds[interfaces_bounds_length];

}

Figure 4.6: Structure of a TypeVarDescriptor

calls, array creation expressions, and so on. A type-variable descriptor can

also be used to encode the target type of an instance test/type-conversion

or the element type of a generic array. Example of usages of type-variable

descriptors are List<X>, Pair<? super Z,Integer>[], Z[][].

A TypeVarDescriptor entry is made up of the following fields:

slot the position in which the type-variable appears in a generic class/method

declaration;

owner points to a constant pool entry representing the owner of the

type-variable whose descriptor is being encoded. Valid entries

are either of kind CONSTANT ClassRef, CONSTANT MethodRef or

CONSTANT InterfaceMethodRef;

class bound idx points to a ClassDescriptor entry for the class bound

associated with a given type-variable;

interface bounds a list (whose size is interfaces bounds length) of de-

scriptors for all the interface bounds associated with a given type-

variable. The i-th element points to a ClassDescriptor entry defining

the i-th interface bound of the type-variable being encoded3.

Given the generic class List<E extends Number & Comparable<E>>, the

type-variable E of List — written List#E — is represented by a type-

3Both class bound idx, interface bounds length and interface bounds are redun-
dant; in principle, they could be parsed from the Signature attribute of the class/method
declaration where a type-variable is defined [Micb].

The DescriptorMap Attribute 81

struct DescriptorMap {
u4 attribute_name_index;
u4 attribute_length;
u2 maps_count;
{ u2 PC;
u2 desc_index;

} map_info[maps_count];
}

Figure 4.7: The DescriptorMap method attribute

variable descriptor entry where: (i) owner points to a constant pool en-

try for List, (ii) slot is 1 (E is the first type-variable of List), (iii)

class bound idx is an index pointing to the class descriptor entry for Number,

(iv) interface bounds length is 1 and (v) interface bounds contains an

index to the class descriptor entry for Comparable<E>.

2.2 The DescriptorMap Attribute

In the previous section we discussed how type descriptors can be encoded into

a plain Java classfile, as entries of the DescriptorTable attribute. In this

section we focus our attention on how such descriptors can be linked to type-

dependent instructions. This task is accomplished by introducing another

custom bytecode attribute called DescriptorMap, which is attached to each

Java method containing one or more type-dependent operations involving

generic types.

The structure of a DescriptorMap attribute is quite simple (see Figure 4.7);

a DescriptorMap attribute is essentially a table, used to store entries of the

kind (PC, descIndex). Such entries are used to link a type-dependent opcode,

whose index inside the method’s code attribute [LY99] — or program counter

— is PC, to a type descriptor — whose index inside the DescriptorTable

attribute is descIndex.

The code in Figure 4.8a defines a simple generic class, namely Pair,

where the two type-variables X and Y are used to abstract over the concrete

types of the fields x and y, respectively. Pair defines a generic method,

namely chgSecond(), that accepts a value of type Z (where Z is a method

82 Reified Generics in the Java Virtual Machine

class Pair<X,Y>{
X x; Y y;

Pair(X x, Y y) {
this.x = x;
this.y = y;

}
Pair<Y,X> swap(){

return new Pair<Y,X>(y,x);
}
<Z> Pair<Z,Y> chgFirst(Z z){

return new Pair<Z,Y>(z,y);
}
final <Z> Pair<X,Z> chgSecond(Z z){

return swap().<Z>chgFirst(z).swap();
}

}
(a) The generic class Pair

class TestPair{
public static void main(String[] args){

String one="one";
Integer two=new Integer(2);
String three="three";
Pair<String,Integer> pair1=new Pair<String,Integer>(one,2);
Pair<String,String> pair2=pair1.<String>chgSecond(three);

}
}

(b) The client class TestPair

Figure 4.8: A simple generic class and its client: Pair and TestPair

type-variable) and returns a new object of type Pair<X,Z> — that is, a new

pair where the second element has been replaced. The code in Figure 4.8b

defines a client class, namely TestPair, that performs some type-dependent

operations involving the generic type Pair<X,Y>: first, a new object of type

Pair<String,Integer> is created; secondly, this newly created object is used

as a receiver in the generic method call to chgSecond() — this yields a new

pair object of type Pair<String,String>.

Therefore, the DescriptorMap attribute associated with the method

The SuperDescriptor Attribute 83

Figure 4.9: DescriptorMap in action

main() must defines the following two entries (see Figure 4.9):

1. the entry {15, 2} is used to associate the new opcode (whose

program counter value is 15) with the class descriptor entry for

Pair<String,Integer>, stored in the second slot of TestPair’s de-

scriptor table.

2. the entry {32, 3} is used to associate the invokevirtual opcode (whose

program counter value is 32) with the method descriptor entry for

Pair<String,Integer>.<String>chgSecond(), stored in the third

slot of TestPair’s descriptor table.

2.3 The SuperDescriptor Attribute

A generic class of the kind C<X> might have one or more generic supertypes

of the kind D<Y>. It is crucial that the type information associated with the

84 Reified Generics in the Java Virtual Machine

struct SuperDescriptor {
u4 attribute_name_index;
u4 attribute_length;
u2 super_idx;
u2 interfaces_count;
u2 interfaces[interfaces_count];

}

Figure 4.10: The SuperDescriptor class attribute

generic supertypes of a generic class is preserved under type-erasure — that

is, given a type-descriptor of the kind C<T>, the reification support must be

able to reconstruct some descriptors of the kind [T/X]D<Y> — we call such

descriptors the parent descriptors.

The type information stored in the parent descriptors must be accessed

when performing type-dependent operations such as type-conversion or

instanceof, that are typically implemented in terms of a dynamic sub-

typing test. As an example consider the class java.util.Vector, which

is part of the Java Collection Framework. This class is declared as follows

[Mica]:

public class Vector<E> extends AbstractList<E> implements
List<E>, RandomAccess, Cloneable, Serializable{...}

A generic type of the kind Vector<Integer> has two generic supertypes

— AbstractList<Integer> and List<Integer>, respectively; those types

are obtained from the types in the extends/implements clauses, where all

occurrences of the type-variable E have been replaced with the type Integer.

For instance, consider the following code:

Object o = new Vector<Integer>();
if (o instanceof List<Integer>) { ... }

In order to execute the instance test, the runtime environment must check

that Vector<Integer> <: List<Integer> — this intuitively amounts at

recursively scanning all the parent descriptors of Vector<Integer> until the

descriptor for List<Integer> (or Object if the test fails) is found.

The gCVM Runtime 85

An additional custom attribute, namely SuperDescriptor, is available

in the generified classfile; this attribute is used to keep track of the parent

descriptors associated with a generic class of the kind C<X>4.

A SuperDescriptor attribute is made up of the following fields (see Figure

4.10):

super idx points to a class descriptor entry representing the (possibly generic)

supertype of the class being encoded. If the class being encoded has

either an empty or a non-generic extends clause, this field is set to -1;

interfaces an array of descriptor entries, of size is interfaces length,

where the i-th element points to a class descriptor entry for the i-th

generic superinterface of the class being encoded.

As an example, the SuperDescriptor attribute of the generic class Vector<E>

has the following layout: (i) super idx is the index of the class descriptor

for AbstractList<E> and (ii) interfaces is an array containing an index

that points to the class descriptor entry for List<E> (as Vector<E> has only

one generic superinterface in its implements clause).

3 The gCVM Runtime

In this section we develop an extension to the CVM runtime that provides

runtime support for generic types/wildcards. This section is structured into

three main parts, discussing the following topics:

Classloading We show how the custom classfile attributes described in

Chapter 2 are represented in terms of internal structures of the gCVM;

more specifically, we focus on the bytecode instrumentation carried out

during class loading that ensures an efficient retrieval of type descriptors

associated with type dependent opcodes, without requiring a global

lookup into the method’s DescriptorMap attribute.

4Such information could in principle be reconstructed from the Signature attribute
included in JDK5.0 classfiles [Micb]. This is, however, rather expensive, as the signature
attribute is essentially a string — which the gCVM would need to parse during class
loading.

86 Reified Generics in the Java Virtual Machine

Representation of generic instances We show how generic types are rep-

resented by the gCVM runtime and how the support for generic types

affects the object layout in the Java heap.

Interpreter We analyse how type-dependent opcodes are executed by the

gCVM interpreter; first we discuss how descriptor entries are resolved

and linked to runtime descriptors; then we show how the interpreter

executes the generic counterparts of some remarkable type-dependent

opcodes such as new, invokevirtual, etc.

3.1 Runtime Overview

Figure 4.11 shows a snapshot of the gCVM while running the TestPair class,

whose code is shown in Figure 4.8b. Recalling from section 2.2, TestPair

defines a main() method leveraging two type-dependent operations, namely a

generic instance creation and a generic method call; the opcodes corresponding

to such type-dependent operations are linked — via the DescriptorMap at-

tribute of main() — to entries in TestPair’s descriptor table: first the

opc new opcode corresponding to the instance creation expression (new

Pair<String,Integer>()) points to a descriptor table entry representing the

generic type Pair<String,Integer>; secondly, the opc invoke virtual op-

code corresponding to the generic method call pair1.<String>chgSecond()

points to a descriptor table entry representing the generic method type

Pair<String,Integer>.chgSecond<String>().

When TestPair is first loaded, the gCVM creates an internal represen-

tation for TestPair’s classfile which is then stored in the gCVM class table;

this data-structure, called CVMClassBlock, is used to collect information

that must be available when executing a method in TestPair, such as the

virtual method table, the parent class loader, the constant pool, and so forth.

The CVMClassBlock of TestPair points to another internal data-structure,

namely CVMDescriptorTable, used to map the contents of TestPair’s de-

scriptor table attribute — execution of type-dependent opcodes might need

to dynamically access the contents of the descriptor table of a given class.

During class loading, all opcodes linked to a a type descriptor via the

DescriptorMap attribute are rewritten, so that a synthetic opcode called

Runtime Overview 87

Figure 4.11: The gCVM in action

opc load desc #idx is prepended, where #idx is an index to a descriptor

table entry; this special instruction is used to inform the gCVM inter-

preter that the next opcode to be executed is a type-dependent opcode

exploiting the type descriptor stored at position desc idx in the current

class’ descriptor table. For example, a generic instance creation expres-

sion of the kind new Pair<String,Integer>() is rewritten into two byte-

codes, namely an opc load desc — which points to the descriptor table

entry for the generic type Pair<String,Integer> — followed by the original

opc new. Consequently, the exact type of the instance creation expression is

Pair<String,Integer>, rather than the erased type Pair.

When a load desc opcode is first executed, the descriptor table entry it

88 Reified Generics in the Java Virtual Machine

refers to must be resolved ; this resolution process is quite similar to the one

involving constant pool entries for non-generic type-dependent instructions

— in fact, a descriptor table can be viewed as an extension to the class’

constant pool. The resolution process typically leads to the creation of a

runtime descriptor, which can thus be used to perform exact subtyping

tests (e.g. when executing opc instanceof or opc checkcast opcodes) or to

represent the runtime type of a given generic instance. The gCVM exploits

a double-caching mechanism similar to the one discussed in Section 4.2: type-

descriptors are cached in a shared table called descriptor registry. When

a descriptor is needed by an application, the registry is first searched for

an existing matching descriptor; if none is found, the descriptor is created

and added to the registry. The gCVM exploits two different layouts for

encoding generic and non-generic instances: the header of a legacy (i.e.

non-generic) object points to a CVMClassBlock in the gCVM class table;

dually, the header of a generic object points to a runtime descriptor in the

gCVM descriptor registry, which, in turn, points back to a CVMClassBlock.

Therefore, class-related information, which might be required when executing

a type-dependent operations on generic objects, is still available at the cost

of an extra-level of indirection.

In the following sections, the terms “descriptor entry” and “descriptor”

are used to mean rather different concepts: by descriptor entry we always

mean a compact and static symbolic representation of some generic type

that can be used as template to generate many different runtime types — we

call such representations runtime descriptors. It is possible for two distinct

classfiles to contain the same descriptor entry; this can happen if two client

classes exploit the same generic type e.g. List<Integer>. However, during

execution, there will be only one (shared) copy of the runtime descriptor for

List<Integer>. In other words, a descriptor entry is nothing more than a

symbolic representation of a type — either a generic type, a wildcard type

or a type-variable; as such, it cannot be used as it is by the interpreter in

order to execute type-dependent opcodes — as a constant pool entry cannot

be used to represent the runtime type of a non-generic object.

Descriptor Table 89

struct CVMDescriptorTable {
CVMUint16 nentries;
struct {
CVMUint8 tag;

} CVMDescriptorTableEntryHeader* entries[nentries];
};

Figure 4.12: The CVMDescriptorTable data structure

3.2 Descriptor Table

The gCVM collects class-related information such as constant pool,

fields, methods, etc. inside an optimised in-memory data-structure called

CVMClassBlock — therefore, a CVMClassBlock can be thought of as an inter-

nal representation of a Java classfile. This process of turning classfile chunks

into internal data-structures can be viewed as a necessary optimisation step:

the classfile of a given class C is accessed and parsed only once, namely when

C is first loaded; after class loading, the information stored in C’s classfile is

efficiently retrieved via the CVMClassBlock associated with C.

Note that the class loading process must handle the custom classfile

attributes described in section 2; more specifically, the CVMClassBlock of a

given class must be associated with an internal data-structure, representing

the class’ descriptor table — we call this structure CVMDescriptorTable. A

CVMDescriptorTable (see Figure 4.12) is essentially an array of descriptor

table entries; all descriptor entries share a common header, defining an 8-bit

mask which is used to distinguish between different kinds of entries, as well

as to encode the entry state — a descriptor entry can be either resolved or

unresolved, as we shall see in Section 3.5. In the remainder of this section we

focus on class and method descriptor entries — though the gCVM provides

an internalised representation for all the kinds of descriptor entries specified

by the DescriptorTable attribute (see Section 2).

Descriptor entries can assume different layouts depending on whether

they are closed or open; a closed descriptor entry is used to represent

a type that does not contain type-variables, such as List<Integer> or

90 Reified Generics in the Java Virtual Machine

struct CVMClassEntry{
CVMDescriptorTableEntryHeader header;
union {
CVMClassDescriptor* desc;
CVMClassBlock* cb;
CVMUint16 clazz_cpindex;

} class;
CVMUint16 enclosingIdx;
CVMUint16 nparams;
CVMUint16 params[nparams];
CVMUint16 annotations[nparams];

};

Figure 4.13: The CVMClassEntry structure

Pair<String,Integer>.<String>chgSecond(). Dually, an open descrip-

tor entry is used to represent a type containing one or more type-variables,

such as List<Y>, Pair<String,Z>.<Y>chgSecond(). There is a fundamental

difference between closed and open entries: the runtime type associated with

a closed entry does not depend on the runtime type of the class/method

in which the entry is used — this allows for a more compact and efficient

implementation. On the other hand, a single open descriptor entry might

be associated with several runtime types, one for each possible instantiation

of the type-variables the entry refers to. As such, open descriptor entries

cannot be used to form runtime types: they must first undergo a heavy-weight

resolution process where each type-variable in the entry is replaced for an

actual type — this is accomplished by looking at the runtime descriptor of

the enclosing class/method (see Section 4.1).

3.2.1 Class Entries

A class descriptor entry for a generic type of the kind C<T> is parsed into

a data-structure called CVMClassEntry. Intuitively, a class entry contains a

pointer to the erased-type C, as well as an array of descriptor entries for the

types in T. The CVMClassEntry structure is made up of the following fields:

class a generic class type of the kind C<T> — when the entry is unresolved,

this field is simply an index to a constant pool entry. When the class

Descriptor Table 91

entry becomes resolved, this field stores a pointer to either the runtime

descriptor for C<T>, or, alternatively, to the CVMClassBlock for C —

depending on whether this descriptor entry is closed or open;

enclosingIdx the index of the enclosing descriptor inside the class’ descriptor

table. If the type to be represented is a toplevel type, this field is set to

-1. Valid entries are either of kind CVMClassEntry (for member classes)

or CVMMethodEntry (for local or anonymous classes);

params an array of size is nparams, where the i-th element is the in-

dex to a descriptor entry for the i-th actual type parameter of the

generic type C<T>. Valid entries are either of kind CVMClassEntry or

CVMTypeVarEntry;

annotations an array of size is nparams, where the i-th element is the

annotation value associated with the i-th actual type parameter of the

generic type C<T>; the encoding for the annotation values is identical

to the one discussed in Section 2.1.1.

For instance, a closed, unresolved descriptor entry for the generic

type Pair<String,Integer> is a CVMClassEntry structure where:

enclosing idx is set to -1 (Pair is a toplevel class); class points to a

constant pool entry for Pair; nparams is 2 (as Pair has two type-variables);

params contains two indices pointing to the descriptor entries for String and

Integer, respectively; and annotations is a two-element array containing

two 0 — as both type parameters String and Integer are invariant. When

this entry becomes resolved, the constant pool pointer in class is replaced

with a pointer to the runtime descriptor for Pair<String,Integer>.

3.2.2 Method Entries

A method descriptor entry for a generic method call of the kind C<S>.<T>m()

is parsed into a data-structure called CVMMethodEntry. Intuitively, this entry

contains a pointer to the erased method type C.m, an array of descriptor

entries for the types in T, and an index to a descriptor entry for the receiver

type C<S>. The CVMClassEntry structure is made up of the following fields:

92 Reified Generics in the Java Virtual Machine

struct CVMMethodEntry{
CVMDescriptorTableEntryHeader header;
union {
CVMMethodDescriptor* desc;
CVMMethodBlock* mb;
CVMMethodTypeID method_index;

} method;
CVMUint8 flags;
CVMUint16 pos;
CVMUint16 receiver;
CVMUint16 nparams;
CVMUint16 params[nparams];

};

Figure 4.14: The CVMMethodEntry structure

flags a 8-bits mask which reflects the contents of the bit mask in the method

descriptor entry stored in the generified classfile (see Section 2);

class the type of a generic method call of the kind C<S>.<T>m() — when

the entry is unresolved, this field is simply an index to a constant pool

method entry. When the descriptor method entry becomes resolved, this

field stores a pointer to either the runtime descriptor for C<S>.<T>m()

or, alternatively, to the CVMMethodBlock for C.m() — depending on

whether this descriptor entry is open or closed;

receiver the index of the class descriptor entry for the receiver type C<S>

associated with a generic method call of the kind C<S>.<T>m();

pos an index used to handle virtual generic method calls in an efficient

fashion (see Section 4.2 for further details);

params an array of size nparams, where the i-th element is an index to a

descriptor entry for the i-th actual type parameter of the generic method

type C<S>.<T>m(). Valid entries are either of kind CVMClassEntry or

CVMTypeVarEntry.

For instance, a closed, unresolved descriptor entry for a generic

method call of the kind Pair<String,Integer>.<String>chgSecond() is a

Runtime Descriptors 93

struct CVMTypeDescriptor{
CVMUint32 size;
CVMUint8 kind;
CVMUint32 hash;

};

Figure 4.15: The CVMTypeDescriptor data structure

CVMMethodEntry structure where: receiver is an index to the descriptor en-

try for Pair<String,Integer>; method points to the constant pool method

entry for Pair.chgSecond(); nparams is 1 (as the chgSecond() defines one

type-variable); and params contains an index pointing to the class descriptor

entry for String. When this entry becomes resolved, the constant pool

pointer in method is replaced with a pointer to the runtime descriptor for

Pair<String,Integer>.<String>chgSecond().

3.3 Runtime Descriptors

The runtime type information associated with generic objects and methods is

encoded in specialised data-structures, called runtime descriptors. A runtime

descriptor is used in several ways: to represent the exact, non-erased runtime

type of a generic object; to perform type-dependent operations such as

instance-tests and type-conversions; and, finally, to represent the exact type

of a method in a generic method call.

All runtime descriptors have a common header (see Figure 4.15) that

provides hints on the size (in bytes), the kind (e.g. class, method, array,

etc.) and the hashcode of a given runtime descriptor. This information is

used to efficiently store and retrieve runtime descriptors to and from the so

called descriptor registry (see Section 3.4). In the remainder of this section

we discuss two kinds of runtime descriptors, namely CVMClassDescriptor

and CVMMethodDescriptor — though, for completeness, the gCVM must

also support array descriptors and captured type-variable descriptors (see

Section 4.3).

94 Reified Generics in the Java Virtual Machine

struct CVMClassDescriptor {
CVMTypeDescriptor header;
CVMClassBlock* class;
CVMClassDescriptor* super;
CVMUint16 ninterfaces;
CVMClassDescriptor* interfaces[ninterfaces];
CVMTypeDescriptor* outer;
CVMUint16 nparams;
CVMTypeDescriptor* params[nparams];
CVMUint8 annotations[nparams];

};

Figure 4.16: The CVMClassDescriptor structure

3.3.1 Class Descriptors

Class descriptors are used to represent both generic types and wildcards of the

kind C<T>, such as Pair<String,Integer> and Pair<?,? super Integer>.

The information associated with a runtime class descriptor for C<T> — the

erased type C, the descriptors for the type-parameters in T, etc. — is stored

in a structure called CVMClassDescriptor, made up of following fields (see

Figure 4.16):

class the CVMClassBlock representing the erased type C;

super the class descriptor representing the generic supertype of C<T>;

interfaces a descriptor array, containing the class descriptors for the generic

interface types implemented by C<T>;

outer the runtime descriptor representing the (possibly generic) enclosing

type of C<T>. Valid descriptors are either of kind CVMClassDescriptor

or CVMMethodDescriptor;

params a descriptor array, containing the runtime descriptors for the type pa-

rameters in T. Valid descriptors are either of kind CVMClassDescriptor

or CVMArrayDescriptor;

annotations an array of integer values containing the variance annotations

associated with the parameter types in T; the encoding for the annotation

values is identical to the one discussed in Section 2.1.1.

Runtime Descriptors 95

struct CVMMethodDescriptor {
CVMTypeDescriptor header;
CVMMethodBlock* method;
CVMClassDescriptor* receiver;
CVMUint16 nparams;
CVMTypeDescriptor* params[nparams];

};

Figure 4.17: The CVMMethodDescriptor structure

For instance, the runtime type of the object pair1 in Figure 4.11

(Pair<String,Integer>) is represented by a class descriptor where: class

is the CVMClassBlock of Pair; super is the class descriptor for Object; the

interfaces array is null — as Pair does not implement any generic inter-

face; outer is also null — as Pair has no generic enclosing type; params is

a two-element array containing the class descriptors for String and Integer,

respectively; and annotations is a two-element array containing two 0 — as

both type parameters String and Integer are invariant.

3.3.2 Method Descriptors

Method descriptors are used to represent the runtime type associ-

ated with a generic method call of the kind C<S>.<T>m(), such as

Pair<String,Integer>.<String>chgSecond(). The information associated

with a runtime method descriptor for C<S>.<T>m() — the erased type of

m(), the descriptors for the type-parameters in T, the receiver type C<S> — is

stored in a structure called CVMMethodDescriptor, made up of the following

fields (see Figure 4.17):

method the CVMMethodBlock representing the erased type of C<S>.<T>m();

receiver a pointer to the class descriptor for the (possibly generic) receiver

type C<S>;

params a descriptor array, containing the runtime descriptors for the type pa-

rameters in T. Valid descriptors are either of kind CVMClassDescriptor

or CVMArrayDescriptor.

96 Reified Generics in the Java Virtual Machine

struct CVMDescriptorRegistryEntry {
CVMTypeDescriptor * value;
struct CVMDescriptorRegistryEntry * nextEntry;

};

struct CVMDescriptorRegistry {
CVMUint32 nbuckets;
CVMUint32 nentries;
CVMUint32 lowerRehashBound;
CVMUint32 upperRehashBound;
CVMfloat32 ratio;
struct CVMDescriptorRegistryEntry** buckets;

};

Figure 4.18: The CVMMethodDescriptor structure

For instance, the runtime type associated with the generic method call

pair1.<String>chgSecond(three) in Figure 4.9 is represented by a method

descriptor where: method is the CVMMethodBlock for Pair.chgSecond();

receiver is the class descriptor for Pair<String,Integer>; and params

contains the class descriptor for String.

3.4 The Descriptor Registry

There are several situations in which the same runtime descriptor is used

more than once: the same generic opcode can be executed several times;

different opcodes in the same class might refer to the same descriptor entry;

again different opcodes in different classes might refer to equivalent descriptor

table entries (though such entries are in different descriptor tables). The

gCVM exploits an advanced caching technique in order to prevent unnecessary

creation of runtime descriptors: when a runtime descriptor is first created, it is

stored inside a specialised data-structure called descriptor registry ; subsequent

accesses to the same descriptor will simply fetch the existing descriptor from

the registry — thus no time (and space) is wasted to create the same runtime

descriptor multiple times. This approach has been introduced in the design of

the EGO compiler [Vir05]. The descriptor registry is essentially an hashset-

like data-structure (see Figure 4.18); each registry entry contains a runtime

The Descriptor Registry 97

descriptor and a pointer to the sibling entry. Descriptor registry entries

are grouped in buckets; the descriptor hashcode is used to disperse entries

uniformly among the buckets — this ensures constant-time lookups. The

registry is also self-resizing: when a bucket contains too many (or too few)

entries (this depends on ratio, lowerRehashBound and upperRehashBound

fields), the bucket array is resized (and all the entries are reallocated). The

process of creating a runtime descriptor consists in the following steps:

1. A dummy descriptor is created; such descriptor is only used to compute

the hashcode of the registry entry that has to be searched;

2. The registry is searched for an entry whose content is similar to the

entry computed at step 1;

3. If such an entry is found, the existing entry is returned — the creation

of a new runtime descriptor is thus not required;

4. If no matching entry is found, a new runtime descriptor is created and

then stored inside the registry. The creation of a new runtime descriptor

may, in turn, trigger additional lookups: for instance, when a class

descriptor has to be created, its parent descriptor — the descriptor for

its supertype — has to be registered first.

The registry provides all the necessary operations for creating and registering

all the kinds of runtime descriptors supported by the gCVM. For instance,

runtime class descriptors of the kind C<S>.D<T> are created through the

CVMregistryAddClass routine shown in Figure 4.19; this routine accepts

the enclosing descriptor for C<S>, the CVMClassBlock for D, an array of

descriptors for all the type-parameters in T and returns the runtime descriptor

associated with the generic runtime type C<S>.D<T>. For instance, in order

to create the runtime class descriptor of the kind Pair<String,Integer>,

the CVMregistryAddClass routine must be supplied the following arguments:

a null value, as Pair is a toplevel class, the CVMClassBlock for Pair, and an

array containing two class descriptors for String and Integer, respectively.

98 Reified Generics in the Java Virtual Machine

CVMTypeDescriptor* registry add class
outer : CVMTypeDescriptor,
cb : CVMClassBlock
nparams : CVMUint16
params : CVMTypeDescriptor*[nparams]

begin
fake class desc := a fake class descriptor
fake class desc.outer := outer
fake class desc.cb := cb
fake class desc.nparams := nparams
fake class desc.params := params
cached desc := lookup(fake class desc)
if cahed desc is null
begin
cahed desc := create class desc(outer,cb,nparams,params)
super index := super index in descriptor table(cb)
cahed desc.super := resolve entry(cb,super index)
for i := 0 to cb.ninterfaces
begin
interface index := interface index in descriptor table(cb,i)
cached desc.interfaces[i] := resolve entry(cb,interface index)
end

end
return cahed desc
end

Figure 4.19: Registering a class descriptor

The descriptor is then created following the procedure described below:

1. A dummy descriptor for Pair<String,Integer> is created; the only

initialised fields of the dummy descriptors are the CVMClassBlock and

the type-parameters array, as those fields are used to compute the

descriptor’s hashcode;

2. The registry is searched for an entry containing the descriptor for

Pair<String,Integer>;

3. If a match is found, the previously stored descriptor is returned — this

means that a class descriptor for Pair<String,Integer> has already

been registered;

Resolution of Descriptor Table Entries 99

CVMTypeDescriptor* resolve entry
cb : CVMClassBlock,
index : CVMUint16

begin
desc table entry := get desc table entry(index)
if desc table entry.kind is CVMClassEntry
begin
class entry := desc table entry
if class entry.state is resolved
return class entry.desc

outer := resolve entry(cb,class entry.outer)
class cb := class entry.cb)
if class entry.nparams is not 0
begin
params := new CVMTypeDescriptor*[class entry.nparams]
for i := 0 to class entry.nparams

params[i] := resolve entry(cb,class entry.params[i])
end

result := registry add class(outer, class cb,class entry.nparams,params)
class entry.desc := result
return class entry.desc
end

...
end

Figure 4.20: Resolution of a CVMClassEntry

4. If no suitable registry entry is found, a new runtime descriptor for

Pair<String,Integer> is created; then the registry performs a recur-

sive lookup in order to retrieve the parent descriptor, namely the class

descriptor for Object. Once the parent descriptor has been retrieved,

the descriptor for Pair<String,Integer> is finally stored inside the

registry.

3.5 Resolution of Descriptor Table Entries

When the gCVM executes an opcode that refers to a constant pool entry,

such an entry must be resolved. The resolution of a constant pool entry

consists in replacing the symbol stored in that entry with a pointer to some

internal representation that is more suitable for execution. For instance, a

100 Reified Generics in the Java Virtual Machine

class constant pool entry is typically initialised with a class name; when

the entry is resolved, the class name is replaced with the corresponding

CVMClassBlock — this operation could involve class loading, in case the

CVMClassBlock to be fetched is not available in the gCVM class table. Once

a constant pool entry has been resolved, an opcode referring to that entry

can be executed atomically with respect to class loading — the information

needed during the execution is available in the resolved constant pool entry.

Analogously, when the gCVM executes an opcode that refers to a descrip-

tor table entry, a similar resolution process must take place. The resolution of

a descriptor table entry consists in creating (or fetching it from the registry,

if one is already available) a runtime descriptor. The resolution process must

take place before actual execution; in fact, the resolution of a descriptor table

entry might trigger class loading (e.g. if a parameter type refers to a class

that has not been loaded yet); or it can involve subtle operations, such as

looking up the actual runtime types to be replaced for the type-variables in an

open descriptor table entry (see Section 4.1.2); finally the resolution process

might result in the allocation of a new data-structure, e.g. if no matching

descriptor is found inside the descriptor registry — this can, in turn, trigger

the resolution of other descriptor table entries.

A descriptor table entry starts off in the unresolved state; this means

that no type-dependent instructions referring to that descriptor entry has

been executed yet. An unresolved descriptor entry cannot be used as it is

by the gCVM interpreter: in fact, it might contain — directly or indirectly

— references to unresolved constant pool entries. When a type-dependent

operation involving an unresolved descriptor entry is first executed, the

resolution process ensures that all constant pool entries the entry refers to

are resolved — this might involve class loading; then, a descriptor entry can

be marked as resolved. Moreover, if the class descriptor entry to be resolved

is closed, a runtime descriptor is retrieved and cached for later use.

The code in Figure 4.11 contains a generic instance creation expression

that points to the third slot of Pair’s descriptor table — this is the descriptor

table entry for the generic type Pair<String,Integer>. This entry must be

resolved, so that the runtime descriptor for Pair<String,Integer> is avail-

Resolution of Descriptor Table Entries 101

able when executing the subsequent opc new instruction — such descriptor

represents the runtime type of the generic object that is to be allocated. To

resolve the above descriptor entry, the following conditions must be satisfied:

• each constant pool entry referred (either directly or indirectly) by a

descriptor table entry must be resolved — in this case, the constant

pool entries for Pair, String and Integer and the corresponding

CVMClassBlock are retrieved;

• each descriptor table entry referred (either directly or indirectly) by a

descriptor table entry must also be resolved — in this case the descriptor

table entries for String and Integer are resolved and the corresponding

runtime descriptors are retrieved;

• the runtime descriptor for Pair<String,Integer> is created and then

cached inside a field of the class descriptor entry. The following two

cases are given:

– The runtime descriptor for Pair<String,Integer> has not been

registered yet; in this case a new runtime descriptor is created and

then cached inside the descriptor entry to be resolved;

– A runtime descriptor for Pair<String,Integer> is available in

the registry, but such descriptor is not available in the descriptor

entry cache (the class field, see Section 3.2.1) — this can happen

if e.g. another class performed some type-dependent instruction

involving the same generic type Pair<String,Integer>. In this

case the runtime descriptor is fetched from the registry and then

cached inside the descriptor entry to be resolved;

– A runtime descriptor for Pair<String,Integer> is directly avail-

able in the descriptor entry cache — this can happen if e.g. the

same opcode is being executed several times, or if another instruc-

tion involving the generic type Pair<String,Integer> has been

executed in the same class. In this case the resolution process is

simply skipped, as the entry is already in the resolved state.

102 Reified Generics in the Java Virtual Machine

struct CVMObject {
volatile CVMObjectHeader hdr;
volatile CVMUint32 fields[];

};

struct CVMObjectHeader {
union {
CVMClassBlock *clas;
CVMTypeDescriptor *desc;

} type;
transient CVMUint32 various32;

};

Figure 4.21: The CVMObject data structure

3.6 The Object Layout

Any object in the gCVM has an header (hdr), which points to the object’s

runtime type, and a 32-bit values array, that is used to store the values for

all the fields defined in the object’s class (see Figure 4.21). An object header

is a 64-bit data-structure called CVMObjectHeader that contains a pointer to

the data-structure representing the runtime type of the object, as well as a

32-bit mask that is used for various purposes — e.g. to tag objects during

garbage collection (GC), to lock objects awaiting for a monitor, etc.

The gCVM exploits two different layouts for encoding generic and non-

generic instances. The header of a legacy, non-generic object always points

to the object’s class — there is a one-to-one correspondence between classes

and non-generic types; as an example, the header of the object one in Figure

4.11 points to the CVMClassBlock for the class String. Dually, the header of

a generic object always points to a runtime descriptor which, in turn, points

back to the object’s class; as an example, the header of the object p1 in Figure

4.11 points to the runtime descriptor for the type Pair<String,Integer>

which points back to the CVMClassBlock for the class Pair. This extra-level

of indirection is crucial, as it ensures that all the class-related information,

which might be required during execution, can be accessed uniformly on both

The gCVM Interpreter 103

Figure 4.22: The CVMObjectHeader’s type bits

non-generic and generic instances. In order to implement transparent access

to the CVMClassBlock of a given object, generic instances must be marked

with a special generic flag. When such a flag is set, an additional step of

indirection is required in order to retrieve the CVMClassBlock associated with

the object’s class. This flag could, in principle, be stored in one of the unused

bits of the various32 word. Unfortunately this technique is problematic, as

the contents of this bit mask are flushed each time an object is moved across

the heap during a GC round. Instead, we have chosen to store the generic

flag directly inside the third lowest bit of the type pointer (see Figure 4.22).

This is safe, as gCVM data-structures (including both CVMClassBlocks and

runtime descriptors) are byte aligned — the 3 lowest bits are always set to 0.

Moreover, this technique ensures that the generic flag is not touched during a

GC round.

3.7 The gCVM Interpreter

Type-dependent opcodes can reference a descriptor table entry via the

DescriptorMap attribute (see Section 2.2). However, the process of dis-

tinguishing between generic and non-generic opcodes by looking up into

a method’s DescriptorMap could be very inefficient — in most cases this

lookup is likely to fail without retrieving any suitable entry — and lead to

severe performance problems, especially if the code being executed contains

several type-dependent opcodes. This problem could be partially addressed

by resorting to a more efficient data-structure for storing descriptor map

entries — so that a constant-time lookup is guaranteed; or we could cache

the most frequently accessed DescriptorMap entries.

A more tempting alternative is to perform the lookup once and then

explicitly mark an opcode with a flag indicating whether the opcode has

an associated descriptor map entry, as shown in Figure 4.23b. Since the

104 Reified Generics in the Java Virtual Machine

public static void main(java.lang.String[]) {
...
15: opc_new → Pair
...

}
(a) A fragment of Pair’s bytecode

public static void main(java.lang.String[]) {
...
15: opc_new_generic → Pair<String,Integer>
...

}
(b) Full rewriting

public static void main(java.lang.String[]) {
...
15: opc_load_desc → Pair<String,Integer>
17: opc_new → Pair
...

}
(c) Partial rewriting

Figure 4.23: Bytecode rewriting

opc new opcode has been replaced with the opc new generic opcode, no

further lookup is required during execution. The drawback of this rewriting

scheme is that it requires too many additional opcodes — one for each type-

dependent opcode. In particular, we would need at least nine new opcodes

(see section 1), but this is not possible, as there are only five unused slots5.

Instead, we have chosen a different rewriting scheme, which consists in

prepending an additional synthetic instruction, called opc load desc, to the

original type-dependent opcode, as shown in Figure 4.23c. This approach

requires just one additional opcode for all type-instructions opcodes that

could refer to descriptor table entries. The opc load desc instruction has

one operand, a 16-bit index pointing to the descriptor table entry that needs

to be accessed during the execution of the subsequent type-dependent opcode.

Note that the bytecode in Figure 4.23c cannot be generated during com-

5In the gCVM opcodes are encoded using 8-bit strings.

The gCVM Interpreter 105

curr cb := current CVMClassBlock
curr desc := current runtime descriptor
desc idx := operand of the load desc
switch curr pc
...
case opc load desc
begin desc table entry := get desc table entry(desc idx)
if desc table entry is not resolved

desc table entry.desc := resolve entry(curr cb,desc idx)
curr desc := desc table entry.desc
end
...

Figure 4.24: Executing the opc load desc opcode

pilation, as this would lead to backward compatibility issues; thus, the only

possibility is to generate opc load desc instructions during class loading:

first the contents of a DescriptorMap attribute is parsed in order to determine

the set of type-dependent opcodes requiring instrumentation; such opcodes

are then decorated with a corresponding opc load desc instruction.

A complete implementation of the bytecode rewriting strategy discussed

in this section must address some subtle issues, such as e.g. to dynamically

adjust the offset of a branch-like instructions. For the sake of brevity we do

not discuss such details here — even though they are fully implemented in

the gCVM.

The execution of a load desc opcode triggers the resolution of the de-

scriptor entry in the current class’ descriptor table; the runtime descriptor

retrieved during the resolution step is thus stored in a shared variable of the

interpreter, namely curr desc, as shown in Figure 4.24. In the remainder of

this section we discuss two opcodes, namely opc new and opc invokevirtual;

our aim is to show how type-dependent opcodes are executed by the gCVM

interpreter.

3.7.1 Instance Creation Expressions

The interpreter routine for executing the opc new opcode is reported in Figure

4.25; each time a new object has to be created, the interpreter must check

106 Reified Generics in the Java Virtual Machine

curr desc := current runtime descriptor
curr pc := current program counter value
cp idx := operand of the opc new
switch curr pc
...
case opc new
begin
cp entry := get cp entry(cp idx)
class block := get class block(cp entry)
new object := allocate new object(class block)
if curr desc is not null
begin
new object.header := curr desc
curr desc := null
end

end
...

Figure 4.25: Executing the opc new opcode

whether some descriptor has been set in the curr desc state variable. If no

descriptor is found, the instance creation expression is executed the usual

way — a new instance of type C is allocated, whose header points directly to

the CVMClassBlock for C.

Conversely, if the curr desc state variable contains a runtime class de-

scriptor of the kind C<T>, a new generic instance must be created. This is

accomplished in three steps: first, a new non-generic instance is allocated;

the header of the newly created instance is then set to the runtime descrip-

tor in curr desc — the class descriptor for C<T>; finally, the state variable

curr desc is unset — this resets the state of the gCVM interpreter.

3.7.2 Method Calls

The interpreter routine for executing the opc invokevirtual opcode is re-

ported in Figure 4.25; again, the interpreter must check whether some descrip-

tor has been set in the curr desc state variable. If no descriptor is found,

the method call is executed the usual way — a new method frame [LY99]

is allocated on top of the interpreter stack and the program counter value

is updated so that the interpreter will jump at the first instruction of the

Advanced Features 107

curr desc := current runtime descriptor
curr pc := current program counter value
curr frame := current frame being executed
curr frame.desc := current method descriptor
curr frame.method := current CVMMethodBlock
curr frame.class := current CVMClassBlock
receiver obj := the receiver of this method call
meth name idx := operand of the opc invokevirtual
switch curr pc
...
case opc invokevirtual
begin
meth name entry := get cp entry(meth name idx)
method block := get method block(meth name entry)
curr frame.class := obj get class(receiver obj)
curr frame.method := method block
if curr desc is not null
begin
curr frame.desc := curr desc
curr desc := null
end

end
...

Figure 4.26: Executing the opc invokevirtual opcode

method being called.

Conversely, if the curr desc state variable contains a runtime method

descriptor of the kind C<S>.<T>m(), a generic method call must be executed.

This is accomplished in three steps: first, a new method frame is allocated

on top of the interpreter stack; the value of the curr desc state variable is

then saved in the desc field of the new method frame — this is required

in order to keep track of the instantiation environment associated with the

generic method call; finally, the state variable curr desc is unset and normal

execution is resumed.

4 Advanced Features

A complete reification approach should take into account subtle issues, such

as efficient management of open descriptors, dynamic dispatching of generic

108 Reified Generics in the Java Virtual Machine

method calls and runtime support for wildcard types. First, suppose we want

to add a method in Pair that returns a new pair where the original elements

are reversed:

class Pair<X,Y> {
...
Pair<Y,X> swap() new Pair<Y,X>(x, y);
...

}

The method swap() contains a type-dependent operation, namely an in-

stance creation expression of the kind new Pair<Y,X>(). Note that the

type of the instance creation expression is expressed in terms of the type-

variables defined in Pair. Consequently, the runtime type of the object

to be created depends on the actual instantiation of the type-variables X

and Y, respectively — this is different from e.g. an instance creation ex-

pression of the kind new Pair<String,Integer>, where the runtime type

of the object can always be resolved statically. For instance, a method

call of the kind Pair<Double,Integer>.swap() yields a result of type

Pair<Double,Integer>.

The reification support must also provide support for dynamic method

dispatching; we discussed how the interpreter handles non-virtual generic

method calls — for the sake of simplicity, the method chgSecond() in Figure

4.8a has been deliberately marked as final. In such cases the receiver is

said to be monomorphic, that is, its type is always determined statically; this

is possible since a final method defined in C<X> cannot be overridden by

subclasses of C<X>.

Conversely, when a generic method call involves a non-final method, such

as chgFirst() in Figure 4.8a, the receiver type is not known until execution

— that is, the call-site is said to be polymorphic:

Pair<String,Integer> psi = ...
psi.<Float>chgFirst(1.0f);

Here, the runtime type of psi could be any subtype of

Pair<String,Integer>. Thus, the execution of a virtual generic

method call is inherently more complex, as the actual receiver type must

Open Descriptor Entries 109

be resolved during execution; the gCVM greatly reduces the overhead

associated with this dynamic resolution process, by leveraging a specialised

data-structure called Virtual Parametric Method Table (VPMT). This

structure is used to minimise the amount of runtime descriptors that need

to be registered in order to handle virtual generic method calls — this is

accomplished by introducing an highly sophisticated caching technique.

Wildcards introduces many subtleties in the Java programming language

(see Section 2), such as capture conversion, type-containment and captured

calls — these issues must addressed in order to provide a full-fledged reification

support. For instance, the gCVM interpreter must be able to capture a

runtime descriptor of the kind C<W>, where one or more type parameters in W

is a wildcard — this is required e.g. for executing subtyping tests between

wildcard types, or for computing the parent descriptor for C<W>. The gCVM

also supports captured calls — a generic method call where one ore more

method type-variables are replaced with captured type-variables; during the

execution of a captured call, the interpreter must be able to dynamically

introspect the runtime types of the actual arguments supplied to a generic

method, in order to discover the “real” runtime types associated with the

method type-variables.

4.1 Open Descriptor Entries

An open descriptor entry is used to represent a type containing one or more

type-variables, such as List<Y>, Pair<String,Z>.<Y>chgSecond(). There

is a fundamental difference between open and closed entries: the runtime

type associated with a closed entry does not depend on the runtime type of

the class/method in which the entry is used. This allows for a compact and

efficient implementation, as the runtime descriptor associated with a closed

entry can be cached inside the descriptor table, so that subsequent access

are immediate (see Section 3.5). Conversely, open descriptor entries must

undergo a heavy-weight resolution process, where each type-variable X in the

entry is replaced with an actual type T obtained from the runtime descriptor

of the enclosing class/method.

The diagram in Figure 4.27 illustrates how open descriptor entries are

110 Reified Generics in the Java Virtual Machine

Figure 4.27: gCVM and open descriptors. Dotted arrows express dependen-
cies between runtime descriptors

handled by the gCVM; the swap() method in Pair refers to the open de-

scriptor entry for the generic type Pair<Y,X>, where each type-variable type

is represented by a special descriptor table entry — a type-variable entry. In

order to resolve a type-variable entry, the gCVM interpreter must gather

the actual types U and V associated with the type-variables X and Y, respec-

tively; such types are then used to form a new runtime descriptor of the

kind [U/X,V/Y]Pair<Y,X>. For instance, given a method call of the kind

Pair<String,Long>.swap(), the resolution process yields a runtime descrip-

tor of the kind [String/X,Long/Y]Pair<Y,X>, namely Pair<Long,String>;

Open Descriptor Entries 111

similarly, given a method call of the kind Pair<Float,Float>.swap(),

the resolution process yields a different runtime descriptor of the kind

[Float/X,Float/Y]Pair<Y,X>, namely Pair<Float,Float>. In principle,

each call to swap() could lead to a new runtime descriptor, as the number of

instantiation of a generic type of the kind C<X> is not bounded.

It is clear that a caching technique such as the one discussed for closed

entries cannot be applied here, as it would fail to provide the correct result

if e.g. the same open descriptor entry is resolved twice with two different

instantiations for X and Y. Instead, access to open descriptor entries can be

optimised by exploiting the runtime dependencies between runtime descriptors:

the key idea is that a descriptor of the kind Pair<S,T>, for any S and T, has

a sibling descriptor of the kind Pair<T,S> where the type-parameters are

reversed — we call such a descriptor a friend descriptor.

In Figure 4.27, friend descriptors are linked together by dotted arrows;

for instance, the runtime descriptor for Pair<String,Integer> (the runtime

type of p1) has two friend descriptors — namely a method descriptor of the

kind Pair<String,Integer>.<String>chgSecond() and a class descriptor

of the kind Pair<Integer,String>, respectively. In the following we discuss

how these runtime dependencies can be leveraged in order to provide a

sophisticated and efficient caching scheme.

4.1.1 CVMTypeVarEntry and CVMTypeVarBlock

An additional kind of entry, namely CVMTypeVarEntry, is used to represent

both class and method type-variables. For instance, the open descriptor

entry for Pair<X,Y> has a type-parameters array containing two indices,

pointing to the type-variable entries for Pair#X and Pair#Y, respectively. A

type-variable entry always points to a CVMTypeVarBlock, a data-structure

used to represent type-variable declarations of the kind T#X; hence, type-

variable entries are not resolved in a standard fashion. The CVMTypeVarBlock

for a type-variable of the kind C#X is created when C<X> is first loaded; at

this stage, the CVMClassBlock of C<X> is also augmented with an array of

CVMTypeVarBlock (one for each type-variable in C<X>).

112 Reified Generics in the Java Virtual Machine

struct CVMTypeVarEntry{
CVMDescriptorTableEntryHeader header;
CVMTypeVarBlock* tb;

};

struct CVMTypeVarBlock{
CVMUint8* slot;
union {

CVMClassBlock class_owner;
CVMMethodBlock method_owner;

} owner;
CVMUint16 class_bound_idx;
CVMUint16 ninterface_bounds;
CVMUint16* interface_bounds[ninterface_bounds];

};

Figure 4.28: The CVMTypeVarEntry and CVMTypeVarBlock structures

The CVMTypeVarBlock structure is made up of the following fields:

slot a numeric value encoding the position in which the type-variable occurs

in a generic class/method declaration;

owner the internal data-structure representing the type-variable’s owner,

either a CVMClassBlock — for class type-variables of the kind C#X —

or a CVMMethodBlock — for method type-variables of the kind m()#X;

class bound idx an index to the class descriptor entry for the type-variable’s

class bound;

interface bounds an array of size is ninterface bounds, where the i-th

element is an index to the class descriptor entry for the i-th interface

bound associated with the type-variable (if any).

For example, a type-variable of the kind Pair#Y is represented by a

CVMTypeVarBlock where: slot is set to 1, since Pair#Y is the second type-

variable declared by Pair; owner is a pointer to Pair’s CVMClassBlock;

class bound idx is set to -1, as Pair#Y has no class bound; analogously,

interface bounds is an empty array, given that Pair#Y has no interface

bounds.

Open Descriptor Entries 113

CVMTypeDescriptor* resolve entry
cb : CVMClassBlock,
index : CVMUint16,
bounding desc : CVMTypeDescriptor

begin
desc table entry := get desc table entry(cb,index)
if desc table entry.kind is CVMTypeVarEntry and

bounding desc.tag is CVMClassDescriptor
begin
tvar entry := desc table entry
tb to find := tvar entry.tb
bounding cb := bounding desc.class
if bounding cb == tb to find.owner
return bounding desc.params[tb to find.slot]

else
return resolve entry(cb,index,bounding desc.outer)

end
...
end

Figure 4.29: Resolution of a CVMTypeVarEntry

4.1.2 Resolution of Type-variable Entries

The resolution process of a type-variable entry (shown in Figure 4.29) typically

consists in finding the actual runtime descriptor associated with a given type-

variable of the kind T#X. This is accomplished by looking at the so called

bounding descriptor — the runtime descriptor used to keep track of the current

instantiation context. A bounding descriptor can be either a class descriptor

(if the interpreter is executing a non-generic method) or a method descriptor

(if the interpreter is executing a generic method call). In the general case,

the instantiation context can be nested, as both class and method descriptors

might optionally define an enclosing descriptor. The resolution of a type-

variable entry of the kind C#X consists in the following steps (in the remainder

of this section we discuss the case where the bounding descriptor is class

descriptor):

1. First, the CVMClassBlock of the bounding descriptor is retrieved — the

bounding descriptor is stored in a state variable of the interpreter;

114 Reified Generics in the Java Virtual Machine

2. If the retrieved CVMClassBlock is the owner of the type-variable entry

to be resolved, the resolution process yields the runtime descriptor

associated with the actual type of C#X in the bounding descriptor’s type

parameters array;

3. Otherwise, the type-variable owner is some enclosing descriptor of the

current bounding descriptor; in this case, another resolution process is

triggered recursively, where the bounding descriptor is replaced by its

enclosing descriptor.

Consider the open descriptor entry for Pair<Y,X> referred to by the

Pair.swap() method; this entry refers to two type-variable entries, for Pair#Y

and Pair#X, respectively. Such entries must be resolved — that is, the actual

types for for Pair#Y and Pair#X must be determined — so that a runtime

descriptor for Pair<Y,X> can be registered. In order to resolve the above

type-variable entries, the resolution process must be supplied a valid bounding

descriptor; since the interpreter is executing a non-static, non-generic method

of the kind C<S>.m(), the runtime descriptor for the actual receiver type

C<S> is assumed to be the current bounding descriptor. For instance, given

a method call of the kind if Pair<String,Integer>.swap(), the bounding

descriptor is the runtime descriptor for Pair<String,Integer>.

The bounding descriptor supplied to the resolution routine is thus used for

retrieving the runtime descriptors corresponding to the actual types associated

with Pair#Y and Pair#X, respectively; in the former case, we have that the

owner of Pair#Y is the CVMClassBlock for Pair — the erased type of the

current bounding descriptor Pair<String,Integer>. Therefore, the actual

runtime descriptor for Pair#Y is retrieved by accessing the second slot of

the bounding descriptor’s type parameters array — this yields the runtime

descriptor for Integer. The remaining type-variable entry for Pair#X is

resolved in a similar way — this time the resolution process yields the runtime

descriptor for String. Once both type-variable entries have been resolved, the

open descriptor entry for Pair<Y,X> can be resolved following the standard

procedure described in Section 3.5; this yields a new runtime descriptor for

Pair<Integer,String>.

Open Descriptor Entries 115

4.1.3 Open Descriptors and Caching

The resolution process of open descriptor entries poses several performance

issues: the type-variable entries associated with a given open descriptor entry

must undergo an heavy-weight discovery process that amounts at inferring

one or more runtime descriptors from a given instantiation context — the

bounding descriptor supplied to the resolution routine. Worse, the same open

descriptor entry could be resolved several times against different bounding

descriptors, so that each time a new runtime descriptor is returned; therefore,

a caching technique similar to the one exploited for closed descriptors (see

Section 3.5) would fail to provide the correct result.

Note that if an open descriptor entry is resolved several times against the

same bounding descriptor, the resolution routine described in Figure 4.29

always yields the same runtime descriptor. This suggests the idea that a

runtime descriptor associated with an open descriptor entry can be cached in

the bounding descriptor used during the resolution process.

Each runtime descriptor is equipped with an array of friend descriptors,

used to cache the dependant runtime descriptors. For instance, the size of the

friends array of a class descriptor of the kind C<T>, where C is a generic class

of the kind C<X>, is given by the number of the open descriptor entries in C’s

descriptor table referring to type-variable entries of the kind C#X. Similarly,

the size of the friend array of a method descriptor of the kind C<S>.<T>m(),

where m() is a generic method of the kind <X>m(), is given by the number of

the open descriptor entries in C’s descriptor table referring to type-variable

entries of the kind m()#X. Each open descriptor entry is given a unique index,

used to determine the position of a resolved runtime descriptor inside the

bounding descriptor’s friends array.

The complete resolution routine for open class descriptor entries is shown

in Figure 4.30; when an open descriptor entry of the kind C<T> must be

resolved, the friends array of the bounding descriptor is first accessed; if a

cached runtime descriptor is found, that descriptor is immediately returned

and the resolution process terminates. If no such descriptor is found, the

resolution process takes the slow route — in this case a new descriptor is

116 Reified Generics in the Java Virtual Machine

CVMTypeDescriptor* resolve entry
cb : CVMClassBlock,
index : CVMUint16
bounding desc : CVMTypeDescriptor

begin
desc table entry := get desc table entry(cb,index)
if desc table entry.kind is CVMClassEntry
begin
class entry := desc table entry
if class entry.state is resolved
if class entry is open

cached desc := bounding desc.friends[class entry.index]
else

cached desc := class entry.desc
if cached desc is not null
return class entry.desc

outer := resolve entry(cb,class entry.outer)
class cb := class entry.cb
if class entry.nparams is not 0
begin
params := new CVMTypeDescriptor*[class entry.nparams]
for i := 0 to class entry.nparams

params[i] := resolve entry(cb,class entry.params[i])
end

result := registry add class(outer, class cb,class entry.nparams,params)
if class entry is open

bounding desc.friends[class entry.index] := result
else

class entry.desc := result
return result
end

...
end

Figure 4.30: Resolution of a CVMClassEntry revised

Open Descriptor Entries 117

class Triple<X,Y,Z> extends Pair<Y,Z> {
X x;

}
...
Pair<String,Integer> tsif = new Triple<Float,String,Integer>
Pair<Integer,String> tsfi = tsif.swap();

Figure 4.31: Open descriptor and subtyping

retrieved and then stored in the idxth slot of the friends array of the bounding

descriptor, where idx is the unique index associated with the open descriptor

entry to be resolved.

For instance, the descriptor table of the generic class Pair (see Figure

4.27) has four open descriptor entries in position 2, 3, 5 and 7, respec-

tively. The entries stored at position 2 and 3 are bounded by the generic

class type Pair<X,Y>; consequently, the friends array of a class descrip-

tor of the kind Pair<S,T> contains 2 elements. When an open descriptor

entry of the kind Pair<Y,X> is first resolved, a new descriptor must be re-

trieved — this is accomplished by following the steps reported in Figure

4.29; assuming that the bounding descriptor is a class descriptor of the kind

Pair<String,Integer>, the resolution process yields a new descriptor of

the kind Pair<Integer,String>. This descriptor is stored in in the second

slot of the bounding descriptor’s friends array — the open descriptor entry

for Pair<Y,X> is given the unique index 2. Hence, assuming that the open

descriptor entry for Pair<Y,X> is resolved multiple times against the same

bounding descriptor, namely Pair<String,Integer>, the resolution process

simply yields the previously cached descriptor.

4.1.4 Open Descriptors and Subtyping

Subtle issues arise when open descriptors are used in conjunction with subtyp-

ing; suppose we define a subclass of Pair, namely Triple<X,Y,Z>, as shown

in Figure 4.31. The generic class Triple<X,Y,Z> has a generic supertype,

namely Pair<Y,Z>; hence, the extends clause implicitly defines a mapping

between the type-variables in Triple — Triple#Y and Triple#Z — and the

118 Reified Generics in the Java Virtual Machine

type-variables in Pair — Pair#X and Pair#Y, respectively. For instance, the

supertype of Triple<Float,String,Integer> is Pair<String,Integer>;

such type is obtained by replacing the actual types of Triple#Y and Triple#Z

for the type-variables Pair#X and Pair#Y in the generic type Pair<X,Y>.

In a method call of the kind Triple<Float,String,Integer>.swap(),

an open descriptor entry of the kind Pair<Y,X> must be re-

solved, where the bounding descriptor is the runtime descriptor for

Triple<Float,String,Integer>. In other words, we are trying to resolve

an open descriptor entry of the kind C<T> against a bounding descriptor of the

kind D<S>, where D <: C. It is thus necessary to apply an additional resolution

step, that essentially amounts at lifting the bounding descriptor to the same

depth of the descriptor entry to be resolved. That is, the resolution process

must recursively access the bounding descriptor’s parent in order to retrieve

a runtime descriptor whose base class is C — where C is also the owner of the

the descriptor table defining the open descriptor entry to be resolved. In our

example, the bounding descriptor Triple<Float,String,Integer> is lifted

to the runtime descriptor for Pair<String,Integer>, as we are resolving an

open descriptor entry in Pair’s descriptor table; the resolution process goes

as usual, where the lifted descriptor is used as the new bounding descriptor.

The process of lifting a runtime descriptor can involve multiple steps; in

order to address this problem efficiently, the CVMClassBlock for a generic

class of the kind C<X> is decorated with a depth field; this field univocally

determines the the position of C<X> in the inheritance hierarchy. For instance,

the depth of Pair<X,Y> is simply 0, as Pair<X,Y> has no generic supertype;

on the other hand, the depth of Triple<X,Y,Z> is 1, as Triple<X,Y,Z> has

a generic supertype, namely Pair<Y,Z>.

Moreover, a runtime class descriptor of the kind C<T> must provide an

array in which all supertype descriptors are stored, ordered by ascending

depth values; the first element of the supertypes array is always the root

of a given generic hierarchy, while the last element of the supertypes ar-

ray is the bottom of the subtyping hierarchy — i.e. the current descrip-

tor. For example, the supertypes array of a runtime descriptor of the kind

Triple<Float,String,Integer> stores three elements: (i) the top descriptor

Dynamic Dispatching and Generic Methods 119

CVMTypeDescriptor* check bounding desc
cb : CVMClassBlock,
bounding desc : CVMTypeDescriptor

begin
expected depth := cb.depth
actual depth := bounding desc.class.depth
if actual depth is greater than expected depth
return bounding desc.supertypes[expected depth]

else
return bounding desc

end

Figure 4.32: Choosing the right bounding desc

for Object, (ii) the runtime descriptor for Pair<String,Integer>, and (iii)

the runtime descriptor for Triple<Float,String,Integer> itself, orderly.

Hence, the problem of choosing the right bounding descriptor is effi-

ciently addressed by checking the depth of the actual bounding descriptor

supplied to the resolution routine against the expected depth — the depth

of descriptor table defining the open descriptor entry to be resolved. If a

mismatch is found, the bounding descriptor is lifted to a parent descriptor

that matches the expected depth. For example, when the open descriptor

entry for Pair<Y,X> is resolved against a bounding descriptor of the kind

Triple<Float,String,Integer> the resolution process needs to adjust the

bounding descriptor, as we are attempting to resolve an entry in a descriptor

table whose depth is 1 (Pair) against a bounding descriptor with depth 2

(Triple). More specifically, the bounding descriptor must be replaced by its

parent descriptor, as shown in Figure 4.32; this yields a new bounding descrip-

tor with the correct depth, namely Pair<String,Integer>. The resolution

process is then resumed, and the class descriptor for Pair<Integer,String>

is retrieved the usual way — either by creating a new descriptor, or by re-

turning a previously cached descriptor in the bounding descriptor’s friends

array.

120 Reified Generics in the Java Virtual Machine

class Pair<X,Y> {
void <Z> chgFirst(Z z){ ... }
...

}
class Triple<X,Y,Z> extends Pair<Y,Z> {

void <V> chgFirst(V v){ ... }
...

}
...
boolean b = ...
Pair<String,Integer> psi = b ?

new Pair<String,Integer>(...) :
new Triple<Float,String,Integer>(...);

psi.<String>chgFirst("1");

Figure 4.33: The problem of dynamic dispatching in generic method calls

4.2 Dynamic Dispatching and Generic Methods

The Java programming language, as most Object-Oriented languages, supports

dynamic method dispatching, that is, the ability of dynamically binding a

method call to the most specific implementation available for that method,

based on the runtime type of the receiver. Dynamic dispatching is typically

handled efficiently by exploiting a specialised a data-structure called Virtual

Method Table (VMT). A VMT is a list of pointers to the methods defined in

a given class hierarchy. The key property of VMT is that objects belonging to

the same inheritance hierarchy have VMTs with a similar layout: the pointer

to a method defined in a class A is stored in the same VMT slot across all

subclasses of A. VMTs are typically stored inside class-related data-structures

(as CVMClassBlock, in the case of the gCVM), so that each object implicitly

keeps a reference to the VMT associated with its runtime type. When the

interpreter executes a virtual method call, the receiver’s VMT is accessed

using the static index of the method being called; this automatically yields

the most specific implementation available for that method.

Combining together dynamic dispatching and generic method calls can

be quite problematic performance-wise: this leads to pathological cases in

Dynamic Dispatching and Generic Methods 121

struct CVMVpmtEntry{
CVMUint16 max_capacity;
CVMUint16 size;
CVMMethodDescriptor* descs[size];

} CVMVpmt[];

Figure 4.34: The CVMVpmt data structure

which the runtime descriptor associated with a given method call cannot be

determined until execution [Vir05]. In the example in Figure 4.33 the subclass

Triple<X,Y,Z> redefines a method in the superclass, namely chgFirst().

Note that the runtime type of psi is either Pair<String,Integer> or

Triple<String,Integer,Float>, depending on the value assumed by b.

Consequently, the method descriptor exploited in the generic method call

to chgFirst() is either Pair<String,Integer>.<String>chgFirst() or

Triple<String,Integer,Float>.<String>chgFirst().

4.2.1 Virtual Parametric Method Tables

The problem of dynamic dispatching in generic method calls can be addressed

by means of a specialised data-structure called Virtual Parametric Methods

Table (VPMT)[Vir03a]. This structure is similar to a VMT, but instead

of retrieving method implementions, VPMTs are used to retrieve runtime

method descriptors. The VPMT features a correspondence property similar

to the one discussed for VMT: the position of a method descriptor of the kind

C<S>.<T>m() in a given VPMT is independent from the runtime descriptor

associated with the receiver type C<S>. Therefore, this positional information

can be used by the interpreter in order to efficiently retrieve the runtime

descriptor associated with a virtual generic method call.

A VPMT is essentially an array of entries used to store runtime method

descriptors (see Figure 4.34). The width of the VPMT is fixed : each generic

method in a given class is assigned a different VPMT entry; the height of

a VPMT entry can vary: each time a generic method is called with a new

instantiation context, a new method descriptor is added to the corresponding

VPMT entry. More specifically, the VPMT entry for a generic method of the

122 Reified Generics in the Java Virtual Machine

C<S>.m1<I>

C<S>.m1<S>

C<S>.m1<N>

D<S,I>.m1<I>

D<S,I>.m1<S>

D<S,I>.m1<N>

C<S>.m2<N,I>

C<S>.m2<S,S>

D<S,I>.m5<S>

D<S,I>.m4<S>

D<S,I>.m4<List<S>>

D<S,I>.m4<I>

#1: #2: #3:

#1: #2: #3: #4: #5:

C’s VPMT

D’s VPMT

new C<S>()

C<S>

new D<S,I>()

D<S,I>

class C<X>{

public <Z> void m1(){..}

public <Z,W> void m2(){..}

protected <Z> void m3(){..}

private <Z> void m4(){..}

}

...

class D<X,Y> extends C<X>{

public <Z> void m1(){..}

protected <Z> void m3(){..}

public <Z,W> void m4(){..}

public <Z> void m5(){..}

}

...

Object o1=new C<String>();

o1.<Integer>m1();

o1.<String>m1();

...

Object o2=

new D<String,Integer>();

o2.<Integer>m1();

o2.<String>m5();

...

Figure 4.35: VPMTs in action

kind C<S>.<X>m() stores method descriptors of the kind C<S>.<T>m(), where

each method descriptor corresponds to a new instantiation of the generic

method C<S>.<X>m().

Different overriding versions of the same generic method are associated

with the same VPMT slot (see Figure 4.35). For instance, the class descriptors

for both C<String> and D<String,Integer> points to a VPMT whose first

entry stores method descriptors of the kind <X>m1(). Such entries are said to

be correspondent. A crucial property of correspondent VPMT entries is that

they share the same height : method descriptors of the same kind are stored

at the same height across all correspondent VPMT entries. For instance, the

second slot of the VPMT entry associated with m1() in C<String> is a method

descriptor of the kind C<String>.<String>m1; similarly, the second slot of

the VPMT entry associated with m1() in D<String> is a method descriptor of

the kind D<String>.<String>m1 — hence, the height of a method descriptor

in a given VPMT entry is independent from the actual receiver type.

Dynamic Dispatching and Generic Methods 123

CVMMethodDescriptor* get virtual method desc
mb: CVMMethodBlock
params: CVMTypeDescriptor[]
top desc: CVMClassDescriptor
curr rec: CVMClassDescriptor
vpmt idx : CVMUint16
top vpmt : CVMVpmt
curr vpmt : CVMVpmt

begin
height := lookup(top vpmt[vpmt idx],params)
if height is valid

desc := top vpmt[vpmt idx][height]
else

desc := registry add method(mb, top desc, params)
height := append(top vpmt[vpmt idx], desc)
if mb is not overriden

curr vpmt[vpmt idx][height] := desc
else
begin
ov rec := find overriding desc(mb, curr rec)
ov vpmt := ov rec.vpmt
desc := r vpmt[vpmt idx][height]
if desc is not found
begin
desc := registry add method(mb, ov rec, params)
r vpmt[vpmt idx][height] := desc
end

if ov rec is not curr rec
curr vpmt[vpmt idx][height] := desc

end
return desc
end

Figure 4.36: Preserving VPMT’s consistency

124 Reified Generics in the Java Virtual Machine

4.2.2 Consistency of VPMTs and Caching

The correspondence property of VPMTs must be satisfied through incoming

registrations of new class descriptors and method descriptors. Suppose that

we want to register a runtime method descriptor of the kind C<S>.<T>m(); we

call top receiver the runtime descriptor associated with the supertype of C<S>

in which the generic method is first defined. First, the VPMT entry associated

with the generic method <X>m() in the top descriptor’s VPMT is accessed; the

resolution routine then iteratively scans this VPMT entry to find a suitable

method descriptor of the kind <T>m(). If a matching descriptor is found, its

height is cached inside the descriptor method entry (see the pos field discussed

in Section 3.2.2), so that it can be re-used during subsequent generic method

calls; if no match is found, a new method descriptor is registered and stored

inside the top descriptor’s VPMT entry. Note that the receiver’s VPMT

must be updated accordingly: if the class associated with the runtime type of

the receiver does not override <X>m(), the entry in the receiver descriptor’s

VPMT is filled with a pointer to a method descriptor in the top descriptor’s

VPMT. Conversely, if the receiver class overrides <X>m(), a new method

descriptor with a different receiver type must be registered and then stored

in the receiver descriptor’s VPMT entry.

Hence, in order to efficiently retrieve the runtime descriptor associated

with a virtual generic method call of the kind C<S>.<T>m(), the VPMT of the

receiver descriptor — a class descriptor of the kind C<S> — must be accessed

with an index to the VPMT entry associated with the generic method <X>m();

such entry must then be accessed at the correct height, so that a method

descriptor of the kind <T>m() is retrieved — this descriptor corresponds to a

suitable instantiation of the generic method <X>m().

If both the index and the height are available during execution, the runtime

method descriptor associated with a virtual generic method call is retrieved

as follows:

rec_desc.vpmt[vpmt_index].descs[height]

Therefore, it is crucial that both the index and the height associated with a

given virtual generic method call are made available as soon as possible: this

Capture Conversion 125

ensures that the resolution routine for retrieving a suitable method descriptor

is executed only once — namely, the first time a generic method of the kind

<T>m() is called on a top receiver of the kind C<S>. Note that, in the general

case where the method descriptor entry associated with a virtual generic

method call is open, the height value cannot be cached inside the descriptor

entry; instead, such value is cached into a slot of the bounding descriptor’s

friends array (see Section 4.1.2).

Finally, there are cases in which virtual generic method calls cannot be

optimised using the technique discussed in this section: for instance, no

caching is possible when the receiver is either an interface type or a wildcard

type. In such cases, the top descriptor associated with a virtual generic

method call cannot be safely determined — e.g. because interfaces support

multiple inheritance — and, consequently, the correspondence property of

VPMT cannot be guaranteed; this leads to severe performance issues, as

discussed in Section 5.

4.3 Capture Conversion

Capture conversion (see Section 2.2), is a process that takes a generic type of

the kind C<S> — possibly containing one or more wildcard type-arguments

— and turns it into a generic type C<T>, where all occurrences of wildcard

type-arguments have been replaced by fresh type-variables. Despite capture

conversion is mainly a static mechanism that extends the applicability of

e.g. membership checks ad method type-inference to wildcard types, the

reification support must be equipped with a routine for capturing class

descriptors; such a routine must be exploited when registering a runtime

class descriptor of the kind C<S>, where one or more variance annotations

associated with the descriptors in S denote a wildcard type-argument. In such

case, the registration routine must apply capture conversion to the descriptor

for C<S> — this yields another descriptor of the kind C<T>, where the variance

annotations associated to the descriptors in T are all set to 0 — recalling

from Section 2.1.1, the variance annotation 0 is used to denote invariant

type-arguments. Moreover all descriptors in S associated with a variance

annotation other than 0 are replaced by fresh type-variable descriptors. Since

126 Reified Generics in the Java Virtual Machine

CVMClassDescriptor* kap desc
desc : CVMClassDescriptor*

begin
cb := desc.class
n params := desc.nparams
new params = new CVMTypeDescriptor[n params]
for i := 0 to n params
begin
tb := cb.tvars[i]
bound := resolve entry(tb.class bound idx,desc,cb)
switch desc.annotations[i]
begin
case 0: new params[i] := desc.params[i]
case 1: new params[i] := registry add ftvar(desc.params[i],null)
case 2: new params[i] := registry add ftvar(bound,desc.params[i])
case 3: new params[i] := registry add ftvar(null,null)
end

end
return registry add class(desc.outer,cb,n params,new params)
end

Figure 4.37: The kap desc routine

the captured descriptor is invariant, the registration process is then executed

the usual way (see Section 3.4).

The internal representation of a fresh type-variable descriptor is given in

Figure 4.38; a fresh type-variable descriptor contains two descriptors, namely

low bound and upp bound, associated with the type-variable lower and upper

bound, respectively. Such bounds are computed by the capture conversion

routine described in Figure 4.37. For example, when a class descriptor of

the kind Pair<? extends String, Integer> is captured, a new descriptor

of the kind Pair<Z,Integer> is retrieved, where Z is a fresh type-variable

descriptor whose upper bound is the class descriptor for String and whose

lower bound is the special bottom descriptor <nulltype> — note that the

second type-argument Integer is not affected by capture conversion, as its

variance annotation is 0.

Capture Conversion 127

struct CVMFreshTVarDescriptor{
CVMTypeDescriptor header;
CVMClassDescriptor* low_bound;
CVMClassDescriptor* upp_bound;

};

Figure 4.38: The CVMFreshTVarDescriptor structure

4.3.1 Subtyping

The subtyping algorithm is obtained by a combination of standard inheritance

and type argument containment (see Figure 4.39). In order to determine

whether a class descriptor of the kind D<T> is a subtype of another class

descriptor of the kind C<V>, the reification support must first lift the the

descriptor for D<T> to a parent descriptor of the kind C<U> — this is ac-

complished by iteratively accessing the parent descriptor for D<T> until a

suitable class descriptor is found. If no such descriptor is found, the test

fails immediately — the two class descriptors belong to unrelated inheritance

hierarchies.

Once the descriptor has been lifted to the desired depth, a type-argument

containment test is executed; this test consists in checking the intervals associ-

ated with the descriptors for the types in U and V, respectively. In particular,

for any given pair of descriptors of the kind U, V, the type-containment test

ensures that U ≤ V. This is accomplished by recursively triggering a subtyp-

ing test on the upper/lower bounds of U and V, depending on the variance

annotation associated with V. If V is invariant, the test checks that U == V; if

V is covariant, the test checks that ∆+(U) <: ∆+(V); dually, if V is contravari-

ant, the routine checks that ∆−(V) <: ∆−(U); finally, if V is bivariant, the

type-containment test succeeds for any U. If the type-containment test finds

a pair of type-arguments Ui, Vi such that Ui ≤/ Vi, the subtyping test fails. If

no such pair is found, the subtyping test succeeds.

For instance, the descriptor for Triple<Integer,Number,String> is a

subtype of the descriptor for Pair<? super Integer,?>. In fact, the descrip-

tor for Triple<Integer,Number,String> can be lifted to a parent descriptor

128 Reified Generics in the Java Virtual Machine

bool* is subtype
c1 : CVMClassDescriptor*
c2 : CVMClassDescriptor*

begin
sup desc := c1
while sup desc.cb not equal to c2.cb sup desc := sup desc.parent if sup desc is
null
return false
if sup desc is equal to c2
return true
for i := 0 to sup desc.params.length
begin
ui := sup desc.params[i]
vi := c2.params[i]
is contained := false
switch c2.annotations[i]
begin
case 0: is contained := ui is equal to vi
case 1: is contained := is subtype(upper(ui), upper(vi))
case 2: is contained := is subtype(lower(vi), lower(ui))
case 3: is contained := true;
end

if not is contained
return false

end
return true
end

Figure 4.39: The is subtype routine

of the kind Pair<Number,String>; moreover we have that Number ≤ ? super

Integer — as Integer <: Number — and also that Integer ≤ ?.

4.3.2 Captured Calls

In order to improve interoperability between wildcards and generic methods,

Java allows to invoke a generic method passing as argument a wildcard type.

Under such circumstances, one or more type-variables of the generic method

are inferred with fresh type-variables — recalling from Section 2.2, the types

of the actual arguments in a method call are subject to capture conversion.

The gCVM must handle captured calls, so that, given a generic method

Capture Conversion 129

struct CVMKapVarEntry{
CVMDescriptorTableEntryHeader header;
CVMMethodBlock* mb;
CVMUint16 pos;
CVMUint16 arg_idx;

};

Figure 4.40: The CVMKapVarEntry structure

call of the kind <T>m(), a dynamic inference process is applied in order to

retrieve the actual types associated with the method type-variables can be

retrieved — this inference step is unavoidable, as one or more types in T

might be “hidden” behind wildcard types. The gCVM defines a special kind

of descriptor entry, namely CVMKapVarEntry, used to represent the hidden

parameter types in a generic method call. A CVMKapVarEntry is made up of

the following fields (see Figure 4.40):

mb points to the CVMMethodBlock associated with the generic method being

called;

pos the position of the actual argument to be used during the dynamic

inference process;

arg idx a class descriptor entry for the formal argument type to be used

during the dynamic inference process.

The code in Figure 4.41 shows a generic method copyFst() that accepts

an argument of type Pair<U,V> and returns a new pair (an object of type

Pair<U,Y>), where the first value of the pair is copied from the pair passed as

argument; this method is then supplied an argument of type Pair<?,String>.

Note that the actual instantiation context for the generic method’s type-

variable U cannot be known until execution; in fact, such type is hidden

behind the wildcard type Pair<?,String>. The method descriptor entry

for the above captured call refers to a captured descriptor entry where: mb

points to the CVMMethodBlock for Pair.copyFst(); pos is set to 1, as the

the actual argument — namely, p — to be exploited during the runtime

130 Reified Generics in the Java Virtual Machine

class Pair<X,Y> {
...
<U,V> Pair<U,Y> copyFst(Pair<U,V> p) {

return new Pair<U,Y>(p.x, y);
}
...

}
...
Pair<String, Double> psd = ...
...
Pair<?,String> parg = new Pair<Integer,String>(1,"two");
psd.copyFst(parg);

Figure 4.41: A captured call

inference process is also the first argument in the generic method signature;

arg idx is an index to an open descriptor entry of the kind Pair<U,V>.

Given a captured call involving a generic method of the kind <X>m(), the

captured call inference process can be seen as a function that takes as input the

runtime descriptors associated with the types of the actual arguments supplied

to m() and yields the inferred runtime descriptors for the type-variables in

X (see Figure 4.42). Let i be the position stored in the captured descriptor

entry, and E be the descriptor entry associated with the ith formal argument

type of <X>m(); the inference routine amounts at recursively scanning the

descriptor table entry E until a suitable type-variable entry of the kind m()#X

is found. If such a descriptor entry is found, the runtime descriptor for X can

be accessed from the runtime descriptor associated with the type of the ith

actual argument, following the path discovered during the previous inference

process.

In the example above, infer kap desc takes as input the runtime de-

scriptor for Pair<Integer,String> (the runtime type of the p argument)

and matches it against the formal argument type in the method signa-

ture <U,V>copyFst(Pair<U,V>); consequently, the captured descriptor en-

try for Pair.copyFst()#U is resolved to the class descriptor for Integer,

and the captured call is associated with a method descriptor of the kind

Pair<String,Double>.<Integer>copyFst().

Benchmarks 131

CVMClassDescriptor* infer kap desc
tb to infer : CVMTypeVarBlock*
desc : CVMClassDescriptor*
formal desc idx : CVMUint16

begin
entry := get desc table entry(formal desc idx)
if entry.tag is CVMTypeVarEntry
begin
if entry.tb is tb to infer
return desc

else
return null

end
if entry.tag is CVMClassEntry
begin
for i := 0 to entry.nparams
begin
result := infer kap desc(tb,desc.params[i],entry.params[i])
if result is not null
return result

end
end

end

Figure 4.42: The infer kap desc routine

A full-blown support for captured calls must take into account null values

passed as arguments, actual argument types that are subtypes of the formal

types in the generic method signature, and the interplay between captured

calls and open descriptors. For the sake of brevity, we do not cover such

subtle issues here — though they are fully implemented in the gCVM.

5 Benchmarks

The gCVM introduces three kinds of overhead in the execution of generic

code: execution speed overhead, memory overhead and classfile size overhead.

Execution speed overhead is mainly due to the need to manage runtime

descriptors when executing type-dependent operations involving generic types.

Memory overhead is caused by the descriptor registry, used to keep track of all

the runtime descriptors used by an application. Finally, classfile size overhead

132 Reified Generics in the Java Virtual Machine

is due to the additional bytecode attributes available in the generified classfiles.

Note that a reification support is essentially a runtime infrastructure for a new

language, namely, a slight extension of Java where generics and wildcards are

treated as first-class types — seamlessly usable in type-dependent operations.

Such a language is currently not deployed, hence it is very difficult to gather

large-size source code upon which performing correctness/performance tests.

In the remainder of this section we discuss the performance of the gCVM

with respect to small-size synthetic programs specifically designed to measure

the execution speed overhead associated with type-dependent operations

involving generic types, such as generic instance creation expressions and

generic method calls — our analysis takes into account both monomorphic

and polymorphic call-sites. We then conclude this section by illustrating a

real world benchmark: the GJ compiler [Mic01].

5.1 Microbenchmarks

Our first set of benchmarks consist of “microbenchmarks” designed to measure

the performance of code involving generic instance creation expressions and

generic method calls (see Figure 4.1). Each microbenchmark consists in

repeatedly executing the same generic operation several times; we dropped

the first iteration of each benchmark from the computed average because it

deviated significantly from the remaining 20 iterations. We presume that the

source of this deviation is the overhead associated with the gCVM startup,

possibly affected by other operating-system dependent factors such as caching,

etc. — which we don’t want to discuss here. After dropping the first run, the

variance among iterations for each benchmark was less than 1%.

Our goal was to measure the overhead associated with the handling of type

descriptors — e.g. resolution of descriptor table entries, descriptor registry

lookup, virtual method table management, and so forth; recalling from Section

4.1, there is a fundamental difference between open and closed entries: the

runtime type associated with a closed entry does not depend on the runtime

type of the class/method in which the entry is used. This allows for a compact

and efficient implementation, as the runtime descriptor corresponding to a

closed entry can be cached (see Section 3.5) inside the descriptor table, so that

Microbenchmarks 133

NC NO MC MO PC PO

CVM 1104 ms 1095 ms 383 ms 384 ms 435 ms 435 ms

gCVM 1234 ms 1272 ms 466 ms 530 ms 709 ms 713 ms

Overhead 11.74% 16.25% 21.66% 38.10% 63.02% 63.70%

(a) Benchmark results: (NC) new closed, (NO) new open, (MC) closed generic method
call with monomorphic call-site, (MO) open generic method call with monomorphic
call-site, (PC) closed generic method call with polymorphic call-site, (PO) open generic
method call with polymorphic call-site

IMC IMO

CVM 446 ms 437 ms

gCVM 2203 ms 2825

Overhead 394% 547%

(b) Benchmark results: (IMC) closed virtual method call involving interface or
wildcards, (IMO) open virtual method call involving interface or wildcards

Table 4.1: Microbenchmark results

subsequent accesses are immediate. On the other hand open descriptor entries

must undergo a heavy-weight resolution process (see Section 4.1.2), where

each type-variable X in the descriptor entry is replaced for an actual type T

by looking at the so called bounding descriptor. This distinction is reflected

in the results in Figure 4.1a, as type-dependent operations involving closed

descriptor entries are significantly faster than their counterparts involving

open descriptor entries.

Another important distinction is between monomorphic and polymorphic

call sites; recalling from Section 4.2, generic method calls featuring dynamic

dispatching pose severe performance issues, as the runtime descriptor associ-

ated with a given virtual method call cannot be determined until execution.

In order to overcome this problem, the gCVM supports a sophisticated

caching technique (see Section 4.2.1) that significantly reduces the overhead

associated with the handling of runtime method descriptors; however, as

134 Reified Generics in the Java Virtual Machine

Execution time Memory (peak) Classfile size

CVM 4523 ms 14216 KByte 340.7 KByte

gCVM 4594 ms 14586 KByte 353.4 KByte

Overhead 1.57% 2.48% 3.7%

(a) Overall

Kind Amount

Class 77

Method 11

Array 6

(b) Runtime descriptors

Opcode Amount

new 260048

new array 1483

new multiarray 0

invoke xxx 11573

instanceof 30729

checkcast 19742

(c) Rewritten opcodes

Table 4.2: The GJ benchmark

shown in Figure 4.1a, execution of virtual method calls is still significantly

slower compared to the execution of non-virtual method calls — we believe

this difference is mainly related to the routines required to maintain the con-

sistency of the VPMT (see Section 4.2.2). However it is important to notice

that in cases where the VPMT cannot be leveraged — e.g. in virtual method

calls involving interface/wildcard types — the execution is even slower (see

Figure 4.1b); this corresponds to the case limit where no caching is possible,

so that the runtime descriptor associated with the virtual method call must

be dynamically resolved upon each new call.

5.2 Real World Benchmark: GJ

The overhead introduced by our approach highly depends on the relative

amount of generic features used by an application; therefore, the only sig-

nificant measurement results can be obtained over real world application of

Real World Benchmark: GJ 135

medium/large size. In our benchmarks we considered the GJ compiler, which

largely relies on generics and performs several type-dependent operations

involving generic types and wildcards, such as allocation of generic objects,

generic virtual method calls and legacy-style type conversions to unbounded

generics such as C<?>. Our benchmark consisted in running the GJ compiler

in order to compile a fixed set of classes; the results of the GJ benchmark are

summarised in Figure 4.2.

Note that the execution-time overhead introduced by the gCVM when

executing the GJ benchmark is not significant (∼1.5%) (see Figure 4.2a; this

result has been obtained in spite some operations involving wildcards, such

as virtual generic method calls, captured calls and subtyping, are intrinsically

more complex than their non reified counterparts. An important point is

that, however, such type-dependent operations are likely to be infrequent and

they do not affect real world benchmarks — indeed, in currently deployed

applications, generics and wildcards remain a mainly static mechanism for

type-safety.

Moreover, as shown in Figure 4.2b, the descriptor registry plays a crucial

role in minimising the number of runtime descriptors that need to be created

during execution — and, consequently, to reduce dynamic memory footprint.

The number of runtime descriptors created while executing the GJ benchmark

is relatively low compared to the overall number of type-dependent opcodes

that have been instrumented with the special opc load desc instruction,

shown in Figure 4.2c.

Chapter 5

Multi-paradigm Integration
with Generics, Wildcards and

Annotations

In this chapter we discuss a framework called PatJ [CV07, CV08a] which

promotes seamless exploitation of Prolog programming in Java1. Integrating

Object-Oriented and logic programming has been the subject of several

researches and corresponding technologies; such proposals come in two flavours,

either attempting at joining the two paradigms as in [Esp06, ON94], or

simply providing an interface library for accessing Prolog declarative features

from a mainstream Object-Oriented languages such as Java as in [tuP02,

swi, Min, k-p, JLo02]. Both solutions have however drawbacks: in the

case of hybrid languages featuring both Object-Oriented and logic traits,

such resulting language is typically too complex, thus making mainstream

application development an harder task; in the case of library-based integration

approaches there is no true language integration, and some “boilerplate code”

has to be implemented each time to fix the paradigm mismatch.

Our aim is to introduce a novel approach that combines the expressive

power of Java generics and the flexibility of Java annotations, in order to

define a precise mapping between Object-Oriented and logic programming

features. PatJ defines a hierarchy of classes where the bidirectional semantics

of Prolog terms is modeled directly at the level of the Java generic type-

1PatJ is available for download at the URL http://trac.alice.unibo.it/trac/pj/.

138 Multi-paradigm Integration with Generics, Wildcards and Annotations

system — this API is a noticeably sophisticated application of Java generics

and wildcards. On top of this generic API, PatJ provides custom Java

annotations [JGSB05, Mica] to be used for embedding Prolog theories within

Java classes, so as to specify Prolog code as a possible implementation of

given Java methods or fields.

The idea of using annotations for extending the Java language is not

new: for instance, AspectJ /AspectWerkz [BKG+06, Bon04], which are very

popular aspect-oriented extensions of the Java programming language, use

Java annotations for declaring aspects, pointcuts, and advices. Similarly, in

[ANMM06], a framework is described that supports pluggable type systems

in the Java programming language. Other remarkable applications of Java

annotations include: simplifying code of enterprise Java applications [Sun09],

associating rich semantic assertions to Java code [LBR06], building frameworks

for detecting anomalies (e.g. deadlocks) in concurrent Java programs [GHS05],

and enforcing the static type-checking of the Java language for e.g. detecting

nullability constraint violations [PAC+08] or detecting immutable references

[ZPA+07].

Other than Java-Prolog integration, we believe the work discussed in this

Chapter provides general hints on how generic programming can successfully

turn libraries into smooth language extensions, making Java a flexible platform

for customising the programming model according to the application needs.

1 Object-Oriented vs. Logic Programming: a

Comparative Study

Object-Oriented programming and logic programming are two very compli-

mentary programming paradigms. On the one hand, in the Object-Oriented

paradigm, computation can be viewed in terms of messages that are ex-

changed between entities, called objects. Operations performed by objects are

typically expressed in an imperative style, as a sequential flow of instructions

that change the state of a program.

By contrast, in logic programming, a program is structured as a set of

axioms and inference rules (a theory), that are used in order to assert the

Object-Oriented vs. Logic Programming: a Comparative Study 139

validity of a given logic predicate, called goal. Consequently, logic program-

ming is intrinsically declarative, as it gives the programmer the ability to

express the logic of a computation without expressing its control flow — this

is accomplished by focussing on which goals the program should accomplish,

rather than how to accomplish them.

An Object-oriented programming language allows the programmer to

define software entities — namely objects — which closely model real world

artifacts, so that the complexity of the solution is typically reduced [GHJV95,

Mey89]. A key concept of Object-Oriented programming is that there exists

a clear distinction between the set of operations defined by an object (its

interface) and the object’s internal representation (its implementation). This

simplifies the task of making minor changes e.g. in the data representation or

the procedures of an object — in class-based Object-Oriented languages, this

is typically accomplished by changing the code of the object’s class — without

affecting other parts of a program: inter-class consistency is guaranteed, as

long as the object’s public interface remains the same. The availability of

reusability mechanisms such as subtype and parametric polymorphism (see

Section 1) makes it easy to add new features on top of existing ones so that

the same software entities can be used in several contexts.

On the other hand, logic programming languages are considered to be

well-suited for expressing complex problems because most of the low-level

machinery (memory management, pointers, etc.) are hidden to the program-

mer — they are left to the computational engine. Logic programming allows

for a more natural representation of the problem’s domain [Kow74, VEK76],

usually offering the opportunity to represent data both extensionally — as

explicit facts of the kind “Nodes A and B are connected” — and intensionally

— as inference rules which implicitly describes how to obtain valid assertions

from existing ones, such as “if, given pair of connected nodes X and Y, Y is

connected to a third node Z, then X and Z are also connected”.

A multi-paradigm integration allowing interoperability between Object-

Oriented and logic programming would allow applications to take advantage

of all the features discussed above: such a framework would allow for strong

object-based encapsulation, thus maximising the opportunity for code-reuse;

140 Multi-paradigm Integration with Generics, Wildcards and Annotations

at the same time it would allow applications to take advantage of key assets

of logic programming, such as adaptiveness and non-determinism.

In the remainder of this section, we discuss some of the key differences

between Object-oriented and logic programming; we grouped these differences

into two main categories: data-binding and execution semantics. The former

focusses on the data-types available in a given programming paradigm and on

how custom data-types can be defined; the latter focusses on how computation

is expressed in a given programming paradigm. Our discussion focusses on

two programming languages such as Java and Prolog — these are perhaps the

most popular choices in the Object-Oriented and logic programming domains,

respectively.

1.1 Object-Oriented Programming in Java

In this section we provide a brief overview of how computation is expressed

in the Java Programming language. More specifically, we discuss the builtin

data-types available in Java, and, most importantly, the powerful class

keyword, that allows programmers to define custom abstract data-types — a

Java class is used as a template for building objects. A class defines a set of

variables, or fields, that are used to model the state of an instance of that

class; moreover a class provides a set of operations, or methods, that can be

used by clients in order to manipulate the state of an object of that class.

Computation in Java is thus accomplished through message passing — that

is, by calling methods on objects.

1.1.1 Builtin Types and Classes

The syntax of Java values is reported in Figure 5.1a; a value in Java is

either a primitive, such as a numerical value (either integral, as 25, 0x1f or

floating-point, as 14.2, or 1.234e2), a boolean (constant values true false)

and a character literal, enclosed in single quotes (e.g. ’$’, ’\u0220’) or,

alternatively, a reference to a Java object. Java objects are allocated using

the new operator (e.g. new Foo() where Foo denotes a Java class).

Java is equipped with two kinds of builtin classes: arrays and strings.

Arrays are instances of the class java.lang.Array; they can be initialised

Object-Oriented Programming in Java 141

v ::= p primitive values
| new C(v) objects
| new C[] { v } arrays

(a) Syntax of Java values

t ::= a atoms
| n numbers
| V variables
| f(t) compound

(b) Syntax of Prolog terms

Figure 5.1: Builtin data-types in Java and Prolog

using braces (e.g. {1,2,3} denotes an array of int) and array elements can

be accessed using the ’[]’ operator (e.g. a[2] retrieves the third element

of the array a). Strings are instances of the class java.lang.String; as for

arrays, Java provides special syntax shortcuts for creating strings - the string

literal "Hello!" can be regarded as a syntactic sugar for the expression new

java.lang.String("Hello").

Java defines an extensive set of class libraries [Mica], that can be regarded

as additional builtin types; for instance, the Java Collection Framework defines

general purpose containers like lists (e.g. java.util.ArrayList<E>), stack

(e.g. java.util.Stack<E>), dictionaries (e.g. java.util.Map<K,V>). Class

libraries typically lacks the syntactic sugar available for builtins Java classes

such as arrays or strings. For instance, a collection object is created using the

new operator — as for any other user-defined class —, while e.g. retrieving an

element from a collection object is accomplished by calling specific a method

on that object (e.g. get()).

1.1.2 Defining Custom Classes

The class keyword is used to define custom abstract data-types. Java classes

can define one ore more fields ; a field is an object variable that can be used

to represent the internal state of the abstract-data type. The code in Figure

5.2a shows a simple Java class representing binary trees. This class defines

three fields, namely value — an integer value attached to each tree node —

142 Multi-paradigm Integration with Generics, Wildcards and Annotations

class BinaryTree {
BinaryTree left, right;
Integer value;

BinaryTree(Integer value) {
this.value = value;

}
BinaryTree(Integer value, BinaryTree left, BinaryTree right) {

this(value);
this.left = left;
this.right = right;

}
}

(a) A Java class for encoding binary trees

tree(H,X,Y) :- number(H), valid(X), valid(Y).
valid(tree(H,X,Y)) :- number(H), valid(X), valid(Y).
valid(nil).

(b) A Prolog definition of a binary tree

Figure 5.2: Binary trees in Java and Prolog

left and right — the subtrees of a given node. Objects are created using

the keyword new, followed by the name of the class to be used as template,

optionally followed by an argument list (the actual values to be supplied to

the class constructor):

BinaryTree bt = new BinaryTree(1,
new BinaryTree(2),
new BinaryTree(3));

System.out.println(bt.left.head); //prints 2

The above code creates a binary tree where: value is the integer value 1; the

left subtree is a binary tree object of the kind new BinaryTree(2); the right

subtree is a binary tree object of the kind new BinaryTree(3). Fields can be

accessed using the ’.’ operator; for instance, the expression bt.left.head is

used to select the value of the first subtree of the binary tree object bt.

In addition to fields, Java classes can define methods. A Java method

is a piece of code that can manipulate one or more class fields in order to

Logic Programming in Prolog 143

perform some computation; for example, the code in Figure 5.3a shows a

method, namely count(), that computes all the occurrences of a given value

in a binary tree object. This method accepts one argument of type Integer,

namely elem; the method body recursively calls count() on both subtrees

(if they are non-null values) so that elem is recursively found in the graph

induced by a binary tree object. Let countleft and countright be the number

of occurrences of elem in the left and right subtrees, respectively, and let i

be an integer value that is set to 1 if the head of the binary tree is equal

to elem, and 0 otherwise; at each recursion step the method yields the sum

between countright, countright and i:

bt.count(1); → 1
bt.count(3); → 1
bt.left.count(3) → 0

We conclude this brief overview by noting that Java is a strongly typed

language; as such, the compiler statically checks that method/constructor

calls are well-formed — that is a method/constructor must be supplied the

correct number of actual arguments, where the type of each argument must

be convertible [JGSB05] to the expected one. Any failure to do so will result

in a compile-time failure:

BinaryTree bt2 = new BinaryTree(""); //type-mismatch
bt.count(1,2); //too many parameters

1.2 Logic Programming in Prolog

In this section we discuss how computation is expressed in the Prolog program-

ming language. More specifically, we show the builtin data-types available

in Prolog and we show how such data can be manipulated by Prolog facts

and rules. The main goal of this section is to illustrate the key differences

between Java programming and Prolog programming; such analysis will come

handy at a later point when we will discuss the requirements that must be

matched in order to bridge the semantic gap between Object-Oriented and

logic programming.

144 Multi-paradigm Integration with Generics, Wildcards and Annotations

class BinaryTree {
...
int count(Integer elem) {

return value == elem ? 1 : 0 +
left != null ? left.count(elem) : 0 +
right != null ? right.count(elem) : 0;

}
}

(a) A Java method

count(nil, E, 0).
count(tree(H, X, Y), H, R) :- count(X, H, R1),

count(Y, H, R2),
R is 1 + R1 + R2.

count(tree(H, X, Y), E, R) :- E =\= H,
count(X, E, R1),
count(Y, E, R2),
R is R1 + R2.

(b) A Prolog predicate

Figure 5.3: Manipulating binary trees in Java and Prolog

1.2.1 Terms

Every data value in Prolog is a term expressed by the syntax shown in the

lower part of Figure 5.1; a term t is either an atom a (an unstructured literal,

optionally enclosed in single quotes, as car, ’Bob’, etc.), a number n (either

an integer as 42, or a floating point 15.2), a logic variable V (a variable that

can be bound to a value during computation, expressed as a literal starting

with a capital letter), or a compound term of the kind f(t), where f is the

functor name and each t denotes a list of terms.

A Prolog list is a term of the kind [t1, . . . , tn] (or [th|tt] where th is the

head and tt is the tail), which Prolog implementations handle as special

cases of compound terms. In fact, all Prolog lists are represented as binary

compound terms, whose functor is ’.’ and whose first and second arguments

are the list’s head and tail respectively (e.g. the Prolog list [1,2,3] is

represented by the compound term ’.’(1,’.’(2,’.’(3, []))) where the

special atom [] denotes the empty list.

Logic Programming in Prolog 145

1.2.2 Facts and Rules

Prolog has no builtin mechanism to define custom data-types. Instead, special

compound terms called clauses can be fruitfully exploited to define structured

data. A clause is term of the kind ’H :- B’, where H denotes the head of the

clause, and B denotes the clause body. In the following, the term “fact” is

used to denote a Prolog clause with an empty body; dually the term “rule” is

used to denote a Prolog clause with a non-empty body. Prolog clauses are

internally represented as binary compound terms, whose functor is ’:-’ and

whose first and second arguments are the clause head and body, respectively.

A possible Prolog implementation of a binary tree is shown in Figure

5.2b; the Prolog code actually goes far beyond the mere definition of a

data-structure - it actually defines a ternary relation between a value, and

two subtrees, called fact ; the distinction between structure and behaviour is

here completely blurred, as a Prolog fact is also a full-fledged computational

artifact. Note that, in order to preserve the semantics of the Java binary

tree representation, the code needs to perform some checks on the kinds

of subterms associated with a given fact of the kind tree(X,Y,Z) — these

checks are required as Prolog is not a strongly typed language. For instance,

we need to ensure that e.g. the value of a binary tree is a number, and that

the subtrees are either the special atom nil (used to encode the empty binary

tree) or compound terms of the kind tree(X,Y,Z):

tree(1,tree(2,nil,nil),tree(3,nil,nil)). //ok
tree(a,nil,nil). //no - number(a) is not true

In order to understand the semantic differences between Java and Prolog,

consider the simple Prolog predicate count(T,E,R), which holds when R is

the number of all occurrences of a given value E inside a binary tree T (the

behaviour of this Prolog predicate is equivalent to the Java method count()

shown in Figure 5.3a). A possible implementation for the count predicate is

given in Figure 5.3b.

In Prolog, computation is expressed in a declarative fashion, by specifying

a set of rules. For instance, the first rule of the count predicate states that the

count relation is defined whenever T is the empty tree — namely an atom of

146 Multi-paradigm Integration with Generics, Wildcards and Annotations

?-count(tree(1,tree(2,nil,nil),nil),4,1). → no
?-count(tree(1,tree(2,nil,nil),nil),2,X). → yes, X/1
?-count(tree(1,tree(2,nil,nil),tree(2,nil,nil)),E,1). → yes, E/1
?-count(T,2,R). → yes, T/nil;R/0,

T/tree(2,nil,nil);R/1,
T/tree(2,nil,tree(2,nil,nil));R/2,
T/tree(2,nil,tree(2,nil,tree(2,nil,nil)));R/3,
...

Figure 5.4: Different ways of exploiting the count/2 predicate

the kind nil — and R is 0, regardless of E (that is, the number of occurrences

of any value in an empty tree is 0). The second and the third rules are

more complex; they state that, if R1 and R2 are the number of occurrences of

the value E in the subtrees X and Y, respectively, then the number of all the

occurrences of E in a a tree of the kind tree(H,X,Y) is either 1 + R1 + R2 —

if H = E — or simply R1 + R2 — (if H 6= E). Therefore, Prolog predicates do

not correspond to a concrete execution flow — rather, they are full-fledged

declarative entities upon which the Prolog engine can reason, make assertions,

etc.

For instance, the above count predicate can be exploited in sev-

eral different ways, as shown in Figure 5.4. More specifically, the user

can ask (i) whether the number of occurrences of the value 4 in a

binary of the kind tree(1,tree(2,nil,nil),nil) is 1 (Prolog replies

no), (ii) what is the number of occurrences of the value 2 in a binary

tree of the same kind (Prolog replies with primitive value 2), (iv) what

are the elements that have no duplicates in a binary tree of the kind

tree(1,tree(2,nil,nil),tree(2,nil,nil)) (Prolog replies with the value

1), and finally (iv) for a binary tree containing the value 2 an unspecified

number of times (Prolog iteratively provides all the binary trees of depth n

containing the value 2, for increasing values of n).

Hence, the arguments of the count predicate are truly bidirectional : they

can act either as inputs or outputs, depending on whether a variable term

or a ground term is supplied. The ability of supporting this peculiar feature

is not a mere programming mechanism of Prolog, but it is a core difference

Prolog Predicates vs. Java Methods 147

between Object-Oriented and logic programming models.

1.3 Prolog Predicates vs. Java Methods

Prolog terms are easily mapped into an Object-Oriented hierarchy of classes

whose root is the abstract class/interface Term — this stems from the fact

that every value in Prolog is implicitly a term. Subclasses are then defined for

each concrete Prolog term, such as Atom, Int, Struct (for compound terms),

Var (for logic variables) and so on — this approach is successfully exploited

in almost all library-based integration approaches.

In such a setting, one might be tempted to leverage the Java term hierarchy

to e.g. define a Java method modelling a Prolog predicate; suppose we want

to define a Java method mapping the following Prolog predicate lenght:

length([], 0).
length([_|T], S):- length(T, S2), S is S2 + 1.

The predicate length(L,S) holds whenever L is a list containing exactly S

elements. At first, such a predicate can be viewed as a Java method that,

given a list (of type Struct — as Prolog lists are a special case of compound

terms) simply returns its size (a term of type Int):

Int length(Struct s)

The signature above, however, does not fully capture the semantics of the

original Prolog predicate; more specifically, bidirectionality is lost, since an

input/output role is implicitly assigned to each variable in the corresponding

Prolog predicate length(L,S). In other words, the above method can be un-

derstood as a specific instance of a Prolog predicate of the kind length(L,S),

where L acts as an input — it appears in the method argument list — while

S acts as an output — the return value of the method.

There are two possible mappings that preserve the bidirectional semantics

of the original predicate: an heterogeneous mapping, which requires several

method signatures — one for each distinct configuration of the predicate

variables — and an homogeneous mapping, where the type Term is used to

abstract over the concrete types of the terms in the method signature.

A possible heterogeneous translation of the Prolog predicate length is

reported below:

148 Multi-paradigm Integration with Generics, Wildcards and Annotations

boolean length(Struct l, Int s) //L input, S input
boolean length(Var l, Int s) //L output, S input
boolean length(Struct l, Var s) //L input, S output
boolean length(Var l, Var s) //L output, S output

Each overloaded version of length() corresponds to a different configu-

ration of the variables L and S, respectively; for instance, the method

length(Struct,Var) can be used to retrieve the size of a given list; similarly,

the method length(Struct,Int) can be used to check as to whether a list

has a given size, and so forth. This solution does not scale particularly well:

in the general case, given a predicate of the kind p(t) of arity n, the mapping

defined by such heterogeneous translation scheme requires 2n different Java

signatures — one for each possible input/output configuration of the subterms

in t.

By contrast, the homogeneous translation scheme unifies all possible usages

of the subterms L and S into a single method signature accepting two objects

of type Term — this is possible since every concrete Prolog term is an instance

of some subclass of Term:

boolean length(Term l, Term s)

This signature preserves the bidirectionality of the original Prolog predicate:

since both Struct, Int and Var are subclasses of Term, it is possible to call

length() with e.g. a ground list (of type Struct) and a variable (of type Var),

or with two variables (of type Var), and so forth. This is however problematic:

the above signature turns out to be applicable even in cases where the binary

relation expressed by the original Prolog predicate is undefined — again, this

is possible because the type of the formal arguments is simply Term, the root

of our term class hierarchy.

Requirement 1. The integration support should map execution of Prolog

queries on Java method calls, in order to greatly reduce the semantic gap

between logic and Object-Oriented programming. An interesting case is

when the Prolog goal term G is a predicate of the kind p(t) with arity

n, where the subterms in T contain only one logic variable. In this case,

a straightforward mapping is given so that G can be modeled as a Java

Prolog in Java: Library-based Integration 149

class Permutation {
List<Integer> nextPerm(List<Integer> arr) {

List<Integer> a = new ArrayList<Integer>(arr);
int n = a.size() - 1;
int j = n - 1;
while (a.get(j) > a.get(j+1)) {

if (j==0) {
return null; //last permutation

}
j--;

}
int k = n;
while (a.get(j) > a.get(k)) k--;
int tmp = a.get(j); a.set(j, a.get(k)); a.set(k, tmp);
int r = n;
int s = j + 1;
while (r > s) {

tmp = a.get(r); a.set(r, a.get(s)); a.set(s, tmp);
r--; s++;

}
return a;

}
List<List<Integer>> permutation(List<Integer> l) {

List<List<Integer>> perms = new ArrayList<List<Integer>>();
while (l != null) {

perms.add(l);
l = nextPerm(l);

}
return perms;

} }

Figure 5.5: Permutations in Java

method g() accepting n − 1 arguments so that a method call of the kind

g(a) effectively corresponds to a Prolog query of the kind G(a). Moreover, a

Java method defined by this mapping should preserve (as much as possible)

the semantics of the corresponding Prolog predicate — concepts such as

bidirectionality of predicate variables should be supported.

1.4 Prolog in Java: Library-based Integration

In this section we discuss the most common problems that developers have to

face when bridging the gap between Object-Oriented and logic programming.

Integration is usually accomplished by means of a library that allows e.g. a

150 Multi-paradigm Integration with Generics, Wildcards and Annotations

Term[] termArray = new Term[3];
for (int i = 0;i<list.size();i++) {

term_array[i]=new Int(list.get(i));
}
Struct pl_list = new Struct(term_array);
Var x = new Var("X");
Struct goal = new Struct("permutation",pl_list,x);

(a) Creating the goal term

String theory = ... //contains the Prolog theory for permutation/2
Theory t = new Theory(theory);
Prolog engine = new Prolog();
engine.setTheory(t);

(b) Setting up the Prolog engine

SolveInfo solution = engine.solve(goal);
if (solution.isSuccess()) {

Struct s = solution.getTerm("X");
... //do something with list s

}
solution = engine.solveNext();
while (engine.hasOpenAlternatives()) {

...
}

(c) Browsing solutions

Figure 5.6: Permutations in tuProlog

Java program to define Prolog terms, and predicates that can be queried upon.

As a concrete use case we refer to the tuProlog engine [DOR05, tuP02],

a lightweight, full-fledged Prolog engine entirely written in Java — however

similar conclusions hold for other library-based integration approaches.

Assume we want to exploit the following Prolog theory for generating all

permutations of a list:

remove([X|Xs],X,Xs).
remove([X|Xs],E,[X|Ys]):-remove(Xs,E,Ys).
permutation([],[]).
permutation(Xs,[X|Ys]):-remove(Xs,X,Zs),permutation(Zs,Ys).

Predicate remove takes a list, an element, and the list after removing the

Prolog in Java: Library-based Integration 151

element, while predicate permutation takes a list and a permuted version of

it — syntax [X|Xs] stands for a list with head X and tail Xs as usual. Though

this is just an explanatory example, a Java programmer might enjoy how the

permutation algorithm is easily resolved in Prolog — especially if compared

with its Java equivalent (see Figure 5.5) — and accordingly be willing to use

it in a Java application to compute permutations of Java collections.

As we have seen, Java and Prolog have two fundamentally different ways

to represent data; consequently, the first problem a programmer needs to face

consists in manually mapping Java values into Prolog terms. This step is a

common trait of all library-based integration approaches: executing a Prolog

query amounts at building a Prolog term (usually a predicate) containing

some variables — the placeholders that will be filled once the query has

been solved. Such conversion is typically done by building object-based

representations of Prolog terms — in the case of the tuProlog engine, such

objects are instances of the Term class. Assuming that list is an object of type

LinkedList<Integer> containing the values 1, 2, and 3, the code snippet in

Figure 5.6a is used to create a goal of the kind permutation([1,2,3],X),

asking for any list X which is a valid permutation of [1,2,3].

This conversion code has a repetitive structure — we call such code

“boilerplate”: Java values (either objects or primitives) are to be converted

into a suitable Prolog representation, so that they can be understood by the

Prolog engine. This approach does not scale well, as the amount of code that

needs to be written in order to build a goal term of the kind p(s) grows

linearly in the depth of the subterms in s.

Requirement 2. The integration support should allow for an easy,

straightforward mapping between Java values (either primitive or reference)

and Prolog terms and vice-versa. More formally, an integration framework

should supply a marshalling function m := J→ P that, given a Java value

v ∈ J returns its corresponding representation as a Prolog term v′ ∈ P.

Conversely, the framework should also supply an unmarshalling function

u := P → J that, given a Java representation of a prolog term p ∈ P
returns its corresponding representation as a plain Java value p′ ∈ J, so that

u(m(v)) = v.

152 Multi-paradigm Integration with Generics, Wildcards and Annotations

Library-based integration approaches typically provide a Java class mod-

elling a Prolog engine; this class provides the necessary methods for executing

Prolog queries. The tuProlog engine provides a class — namely Prolog

— that can be instantiated (as any other Java class) and initialised with a

Theory object containing a snippet of Prolog code (usually a Java string

where predicates are separated by newline characters). Assuming that the

Prolog code for computing permutations is fitted into a Java string, the code

in Figure 5.6b is required in order to create and initialise the tuProlog

engine class.

Since typically (as in this case) more than one solution is supplied, the

Prolog engine class provides some basic support for browsing the solution

space associated with a given Prolog query. Note that simply returning an

array containing all the solutions is not an option, since, in general, execution

of a Prolog query is not guaranteed to terminate (e.g. it is possible for

the Prolog engine to return some solutions, and then to hang). In order to

overcome this problem, the tuProlog engine allows the programmer to

iteratively retrieve all the n solutions of a given query — this is accomplished

by making n calls to the Prolog engine class, as shown in Figure 5.6c.

For each solution we must determine e.g. whether the solution is valid and

whether other solutions are available; such boilerplate code has the rather

unpleasant effect of hiding the user code effectively processing the solutions

retrieved by the Prolog engine. Note also that solutions are Prolog terms; as

such, an additional conversion might be required should a more suitable Java

representation be needed by the user code. In this case, since it is known that

permutations are indeed Prolog lists, the user code might be interested in

converting those lists back to plain Java Collection objects — thus requiring

further bridge code.

Requirement 3. The integration support must provide better support

for performing common tasks such as iteratively browsing the solution space

associated with a given Prolog query; if a prolog predicate is known to yields

multiple results, a mapping should be defined so that such results can be

easily accessed from Java code e.g. using a for-each loop.

Prolog from Java: Basic PatJ 153

2 Prolog from Java: Basic PatJ

PatJ is a framework that greatly enhances interoperability between Java

and Prolog; the key idea of the PatJ framework is to provide a way so that

Java methods can be implemented declaratively — that is, in terms of Prolog

rules and facts. Among the various mechanisms we provide, a Java abstract

method can be decorated with a custom Java annotation [JGSB05] that is

used to define a Prolog-based implementation — we call such a method Prolog

method. Thanks to reflection and Java Dynamic Proxy classes [Mica] (proxies

in the following), PatJ is able to synthesise a concrete implementation of a

Prolog method; consequently, from the user perspective, the computation of

a given Prolog query is triggered by a simple method call — no boilerplate

code is required for interfacing with the underlying tuProlog engine.

Java generics and wildcards plays a crucial rule in the PatJ framework;

first, PatJ defines a hierarchy of generic Java classes modelling first-order

logic terms that features automated marshaling/unmarshaling from Java to

Prolog, and viceversa; the bidirectional semantics of Prolog terms is hence

modeled directly at the level of the Java generic type-system — this API is a

noticeably sophisticated application of Java generics and wildcards. Secondly,

generics are used in order to define how Prolog method arguments should

be rearranged in the corresponding Prolog query — this is accomplished by

introducing a mapping between the type-variables of a generic Prolog method

and the logic variables in the Prolog predicate modeled by that method.

Any declarative feature provided by PatJ (e.g. Prolog method call) is

implemented in terms of requests to an underlying tuProlog engine — in

fact, the core of the PatJ framework can be seen as a tiny wrapper around

the tuProlog engine providing just basic capabilities such the ability of

retrieving Prolog solutions using a Java iterator. On top of this layer lies

the PatJ runtime, the most important part of the PatJ framework; the

PatJ runtime handles the creation of dynamic proxy classes that allow the

framework to intercept Prolog method calls and to dispatch them — after an

appropriate transformation — to the underlying tuProlog engine.

154 Multi-paradigm Integration with Generics, Wildcards and Annotations

abstract class Term<X extends Term<?>> { ... }
class Atom extends Term<Atom> { ... }
class Int extends Term<Int> { ... }
class Double extends Term<Double> { ... }
class List<X extends Term<?>> extends Term<List<X>> { ... }
class Var<X extends Term<?>> extends Term<X> { ... }
abstract class Comp<X extends Comp<?>> extends Term<Comp<X>> { ... }

Figure 5.7: The PatJ generic term hierarchy

2.1 Modelling Prolog Terms in PatJ

PatJ introduces a strongly-typed hierarchy of generic classes, which enhances

the static type checking carried out by the Java compiler, and flexibly expresses

the bidirectionality of Prolog terms: this allows to define a complete mapping

from Java method signatures to Prolog predicates.

The root of the PatJ term hierarchy is the generic class Term<X> (see

Figure 5.7); using a recursive pattern exploiting wildcard types [JGSB05,

IV06], type-variable X is used to abstract over the type of the actual content of

the term. Hence, a Term<Int> will be a term keeping an Int, Term<Double>

a Double, Term<List<Int>> a List<Int>, and so on. On the other hand,

variables are handled differently: the generic class Var<X> is a wrapper for a

term with type X and is defined as a straight subtype of Term<X> (rather than

Term<Var<X>>, as in the above cases). As a result of this careful design choice,

the type Term<Atom> is a common supertype of both Atom and Var<Atom>;

in other words, the type Term<T> can be used to abstract over the role of a

Prolog term. For example, when an argument to a method needs to be either

a logical input or output, it can be given the type Term<T>, so that one can

pass either an actual term T (input), or a variable Var<T> (output) which

will hold the result term (of type T) after computation is over.

The PatJ term hierarchy overcome the limitations of both translation

schemes discussed in Section 1.3; a general solution for the signature of

method length() is the following:

boolean length(Term<? extends List<?>> list, Term<Int> size)

Modelling Prolog Terms in PatJ 155

abstract class Comp<X extends Comp<?>> extends Term<Comp<X>> { ... }
class CmpNil extends Comp<CmpNil> { ... }
class CmpCons<H extends Term<?>,R extends Comp<?>>

extends Comp<CmpCons<H,R>> { ... }
class Comp1<X0 extends Term<?>>

extends CmpCons<X0,CmpNil> { ... }
class Comp2<X0 extends Term<?>, X1 extends Term<?>>

extends CmpCons<X0,CmpCons<X1,CmpNil>> { ... }

Figure 5.8: Compound terms in PatJ

This signatures expresses that list is actually a term containing any list,

while size is an integer term; moreover both terms can can be either inputs or

outputs — a wildcard of the kind ’? extends’ is used for it allows covariance

of the argument type, so that e.g. a Term<List<Int>> could be passed

[JGSB05, VR05, IV06].

The hierarchy of terms is completed by dealing with compound terms

through classes Comp<X>, CmpNil and CmpCons<H,R> as shown in Figure 5.8;

a compound term is basically a tuple of terms of any length, e.g., it can have

arity two and orderly contain a List<Int> and an Atom as in a compound

term of the kind p([1,2],’a’). Hence, PatJ provides a list-like construction

mechanism for the type parameter X, through classes CmpCons and CmpNil,

as in the following case:

CmpCons<List<Int>,CmpCons<Atom,CmpNil>> c= ... ;
List<Int> first = c.head; //OK!!
Number second = c.rest.head; //ASSIGNMENT ERROR!!

Variable c is declared to be a compound term with two arguments of

type List<Int> and Atom, hence assignment to second can be stati-

cally rejected. Classes Comp1, Comp2 (and so on) are introduced as

a syntactic facility for expressing compound types with 1 and 2 ar-

guments. For instance, type Comp2<List<Int>,Atom> is a subtype of

CmpCons<List<Int>,CmpCons<Atom,CmpNil>>, and can therefore be used

in place of it.

As the hierarchy of terms is defined, PatJ defines two methods —

fromJava() and toJava(), respectively — for translating term represen-

156 Multi-paradigm Integration with Generics, Wildcards and Annotations

<Z> Collection<Z> toJava() {
ArrayList<Z> javaList = new ArrayList<Z>(items.size());
for (Term<?> t : items) {

javaList.add((Z)t.toJava());
}
return javaList;

}
(a) From PatJ list to Java collection: List.toJava()

static <X extends Term<?>, Z> List<Z> fromJava(Collection<Z> c) {
ArrayList<X> items = new ArrayList<X>(c.size());
for (Z elem : c) {

items.add(Term.<X>fromJava(elem));
}
return new List<X>(items);

}
(b) From Java collection to PatJ list: List.fromJava()

Figure 5.9: From PatJ list to Java collections and back

tation (they roughly correspond to the abstract marshalling/unmarshalling

functions m and u defined in Section 1.4). The former method is used to

translate a plain Java object (see Figure 5.9b) — mainly Java collections and

primitive Java types — into terms of the PatJ hierarchy, the latter converts

a term back to a standard Java representation (see Figure 5.9a).

Both such methods make use of type inference, avoiding the redundant

specification of type Z — an actual instantiation for type parameter Z might

be avoided, as it is typically inferred from the enclosing assignment context

[JGSB05] — that is, by looking to the type of the variable to which the

returned object is assigned (see Section 2.1). For instance, PatJ terms are

simply turned into a suitable Java representation as follows2:

ArrayList<Integer> a = Arrays.toList(new Integer[]{1,2,3});
List<Int> term = Term.fromJava(a);
...
Collection<Integer> c = term.toJava();

2Note that, since runtime generic types are not currently supported in Java (see Section
3.2), we cannot intercept the case where the variable storing the return value has an
incompatible type: this error would possibly lead to a later ClassCastException due to
the so-called “heap pollution” problem [JGSB05].

Prolog Classes and Methods 157

tuprolog.Struct marshal() {
tuprolog.Term[] termArray = tuprolog.Term[items.size()];
int i=0;
for (Term<?> t : items) {

termArray[i++] = t.marshal();
}
return new tuprolog.Struct(termArray);

}
(a) From PatJ list to tuProlog Struct: List.marshal()

static <Z extends Term<?>> List<Z> unmarshal(tuprolog.Struct s) {
Iterator<tuprolog.Term> list_it = s.listIterator();
ArrayList<Term<?>> items = new ArrayList<Term<?>>();
while (list_it.hasNext()) {

termList.add(Term.unmarshal(listIt.next()));
}
return new List<Z>(items);

}
(b) From tuProlog Struct to PatJ list: List.unmarshal()

Figure 5.10: From PatJ list to tuProlog Struct and back

Finally, PatJ term classes define two methods — marshal() and

unmarshal(), respectively — which are the key mechanism for switching

from PatJ terms to tuProlog terms and vice-versa. The former method

is used to convert a PatJ term into a tuProlog term (see Figure 5.10a);

dually, the latter method converts back a tuProlog term into a suitable

PatJ representation (see Figure 5.10b). These methods play a crucial role

in the PatJ framework: in fact, any declarative feature provided by PatJ —

such as Prolog methods (see Section 2.2) and the PatJ library (see Section 3)

— is implemented in term of requests to an underlying tuProlog engine.

2.2 Prolog Classes and Methods

PatJ defines some custom Java annotations [JGSB05, Mica] for explicitly

marking classes and methods as being associated to some Prolog code. A

Prolog class is an abstract class/interface annotated with the @PrologClass

annotation. Prolog classes are never instantiated directly (e.g. using the Java

new operator); rather they are instantiated using the PatJ factory method

158 Multi-paradigm Integration with Generics, Wildcards and Annotations

@PrologClass (
clauses = {"remove([X|Xs],X,Xs).",

"remove([X|Xs],E,[X|Ys]):-remove(Xs,E,Ys)."})
public abstract class PermutationUtility {

@PrologMethod (
clauses={"permutation([],[]).",

"permutation(Xs,[X|Ys]):-remove(Xs,X,Zs), permutation(Zs,Ys)."})
public abstract <$X extends List<Int>,

$Y extends List<Int>>
Iterable<$Y> permutations($X list);

public static void main(String[] args) {
PermutationUtility pu = PJ.newInstance(PermutationUtility.class);
java.util.Collection<Integer> l =

java.util.Arrays.<Integer>asList(new Integer[]{1,2,3});
for (List<Int> p : pu.permutations(Term.fromJava(l))) {
System.out.println(p.toJava());

} } }

Figure 5.11: Permutations in PatJ

newInstance(). More importantly, Prolog classes can define one or more

Prolog methods. A Prolog method is an abstract Java method annotated with

the @PrologMethod annotation, that can be used to specify some Prolog code

for the method implementation.

A mapping between a Prolog method m() and a predicate of the kind

p(t) is fully specified when the following elements are identified: the name

of the predicate p to be associated with the method call; the arity of p —

namely, the number of terms in t; the input/output role of each term in t;

how each term in t is mapped into the signature of m() (e.g. a term could

be mapped into one of the arguments of m()); finally, the set of Java types T

associated with each term in t.

PatJ recovers all such information from the signature of a Prolog method.

More formally the signature of a Prolog method can be described as follows:

<X extends B> TrX m(Ta
X
)

where overlines are used to express lists of elements as in [IPW99]. Hence X

Prolog Classes and Methods 159

are the method type-variables, B their bounds (which should be PatJ term

types), TrX is the return type (a PatJ term type possibly constructed from

type-variables in X), Ta
X

are the formal argument types — each type in Ta
X

is a PatJ term type possibly constructed from type-variables in X. More

precisely, each type-variable in X can occur either as one of the argument

types of m() (input type-variable), as component of the return type of m()

(output type-variable), or in both places (input/output type-variable).

For a method of this kind, the following Java-Prolog mapping is defined:

• The name of the method m() should coincide with the predicate name

p to be used;

• Each type-variable in X whose name starts with the special character

$, corresponds to a logic argument of the template predicate p; conse-

quently, the arity of p is equal to the number of such type-variables;

• The role associated with a type-variable of the kind $X can be either

input or output, depending on whether $X occurs in argument position

or in the return type of m(). Moreover, such return type is a subtype

of Iterable, then m() is implicitly assumed to yield multiple results;

• Each Prolog term in t is associated with a Java type — namely one of

the bound types B in the generic method declaration.

In Figure 5.11 the code of PermutationUtility is shown;

PermutationUtility is a utility class for retrieving all permutations

of a given Java list that leverages some of the features of the PatJ framework.

The @PrologClass annotation might provide additional Prolog clauses to be

used in Prolog class body: in this case we included the rules for predicate

remove/3 as it might be seen as a library predicate. Optionally, one can

specify an external document as containing the theory to be used.

In this class an abstract method, namely permutation(), is defined with

the signature one would use in an object-oriented context to get all the

permutations of a given list. Its @PrologMethod annotation is used to specify

the intended behaviour in terms of Prolog code — its clauses attribute

defines the Prolog implementation of the permutation/2 predicate. Thanks

160 Multi-paradigm Integration with Generics, Wildcards and Annotations

to the mapping discussed above, PatJ assumes that the name of the template

predicate p is permutation, the arity of p is equal to 2 and two type-variables,

namely $X and $Y, are used to represent the first and second arguments of p,

respectively; $X is an input type-variable while $Y is an output type-variable

(and all its results will be considered by iteration); finally, the type List<Int>

is associated with both terms in permutation/2.

Hence, a method call of the kind permutation(l), where l is a PatJ

term representing a Prolog list, can be mapped to a goal term of the kind

permutation(m(l),Y).

Inside the method main(), an instance of the Prolog class is created exploit-

ing the newInstance() factory method provided by the PatJ framework (see

Figure 5.12b). Exploiting the proxy technique, this method dynamically wraps

the Prolog class passed as argument and returns the proxy object pu to the

user. The code for the proxy class — namely, PermutationUtility$Proxy —

is shown in Figure 5.12a; the proxy class defines some synthetic fields for (i)

the Prolog theory associated with the underlying Prolog class, (ii) the Prolog

theory associated with the Prolog method permutation(), (iii) a reflective

object (of type java.lang.reflect.Method) representing the corresponding

Prolog method and (iv) a proxy handler class (of type MethodHandler) — the

entry point of the PatJ framework. When the Prolog method permutation()

is invoked, a suitable Theory object is first retrieved — in this case, the result-

ing Theory object is the theory obtained by merging the class and method

theories, orderly. Assuming that the method parameter list is a Prolog list

of the kind [1,2,3], a goal term of the kind permutation([1,2,3],Y) is

then constructed. The Prolog method call is then dispatched to the PatJ

framework which, in turn, triggers the resolution of a Prolog query to an

underlying tuProlog engine and yields an iterator over all instances of Y —

which are valid permutations of list. The logic of the iterator object, shown

in Figure 5.12b, is similar to the one discussed in Section 1.4.

In general, the Java programmer may appreciate the high-level of specifi-

cation for the method behaviour, and the simplicity in coding the client code.

Moreover thanks to type inference, method invocations are properly checked

— the Java compiler can properly select the correct method implementation,

Prolog Classes and Methods 161

class PermutationUtility$Proxy extends PermutationUtility implements PrologObject {

InvocationHandler _pj;

tuprolog.Theory _theory$class =

new tuprolog.Theory("remove([X|Xs],X,Xs).\n" +

"remove([X|Xs],E,[X|Ys]):- remove(Xs,E,Ys).\n");

tuprolog.Theory _theory$permutation =

new tuprolog.Theory("permutation([],[]).\n" +

"permutation(Xs,[X|Ys]):- any(Xs,X,Zs)," +

"permutation(Zs,Ys).\n"});

java.lang.reflect.Method _method$permutation = ...

<$X extends List<Int>,$Y extends List<Int>> Iterable<$Y> permutation($X l) {

Theory _theory = _theory$class.append(_theory$permutation);

Comp2<List<Int>,Var<List<Int>>> _goal = new Comp2("permutation",

l

new Var<List<Int>>("Y"));

return (Iterable<$Y>)_pj.invoke(this,

_method$permutation,

new Object[] {_theory, _goal});

} }

(a) The PatJ proxy class

class PJ implements InvocationHandler {

...

PrologObject newInstance(Class<?> _class) {

(PrologObject)Proxy.newProxyInstance(PJ.class.getClassLoader(),

new Class[] { PrologObject.class, _class },

this);

}

public Object invoke(Object proxy, Method method, Object[] args) {

tuprolog.Theory _theory = (Theory)args[0];

final Term<?> _goal = (Term<?>)args[1];

final Prolog _engine = getEngine();

SolveInfo _firstSolution = _engine.solve(_goal.marshal());

if (!_engine.hasOpenAlternatives()) {

return PJ.unmarshal(_firstSolution.getTerm());

}

else {

return new Iterator<Term<?>>() {

boolean _backtrack = false;

public boolean hasNext() {

_engine.hasOpenAlternatives();

}

public Term<?> next() {

SolveInfo _next = null;

if (!_backtrack) {

_backtrack = true;

_next = _firstSolution;

}

else {

_next = _engine.solveNext(_goal.marshal());

}

return PJ.unmarshal(_next.getTerm());

}

...

};

} } }

(b) The PJ class

Figure 5.12: Permutations in PatJ: dynamic proxy class and Prolog method
handler

162 Multi-paradigm Integration with Generics, Wildcards and Annotations

and then establish whether a Prolog method invocation is correct. Recalling

the example above, permutation() should be supplied an argument that is a

subtype of List<Int>, while the return type of permutation can be assigned

to a variable whose type is compatible with Iterable<List<Int>>, or it can

be used directly into a for-each loop to iteratively get lists of integers.

2.2.1 Benefits of Generics and Type Inference

As generics were introduced in J2SE 5.0, the gap between required skills of

API developers and API users seriously increased. The design of the Java

Collections Framework, for instance, heavily relies on generics, wildcards, and

type inference; on the other hand, users of this API may know very little

about such concepts — typically they just create generic collections and then

call methods defined by the API: the Java compiler is in charge of checking for

an incorrect usages of generic types. For instance, the declaration of method

Collections.sort() might appear overly complex at first:

static <T extends Comparable<? super T>>
void sort(List<T> list)

On the other hand sort() can be simply used as follows:

ArrayList<Number> l=new ArrayList<Number>();
l.add(3); l.add(2); l.add(1);
Collections.sort(l);

Type inference in method calls takes care of finding a proper instantiation

of the method type parameters, and accordingly checks the validity of the

invocation — it infers e.g. Number for T, and it checks that Number is a

subtype of Comparable<? super Number> (see Section 2.1).

By relying on the expressiveness of the generic type-system, PatJ follows

a similar approach. Representing Prolog predicates in terms of Java generic

methods provides two significant advantages: first, it makes it possible to

define expressive constraints on the types of Prolog terms in a given predicate;

secondly, it allows for concise syntax at the call-site, by leveraging Java

support for generic method type inference.

Suppose that we want to define a variant of the above Prolog method

permutation(), where the new method — namely permutation2() — should

Prolog Classes and Methods 163

accept a list of some unknown type E and returning lists of the same unknown

type E that are also permutations of the input list. In other words we are

seeking for a way to express a type-constraint — the type of the elements in

the input list and the type of the elements of the lists returned by the Prolog

method permutation2 must match. In PatJ, such constraints are easily

expressed through additional type-variables attached to the signature of a

Prolog method; such type-variables can be used to abstract over a concrete

PatJ term type, as shown below:

@PrologMethod (clauses= ...)
<E extends Term<?>,
$X extends List<E>,
$Y extends List<E>> Iterable<$Y> permutation2($X l);

Here, the type-variable E is not treated as a logical argument of predicate

permutation/2 — its name does not contain the special ’$’ character. On

the other hand, the compiler can use this variable for checking any further

constraint by method type inference: in this case, the compiler checks that

both X and Y are indeed Prolog list of the kind List<E> — where the E

is some concrete PatJ term type, such as Int, Atom, etc. The combined

exploitation of additional method type-variables and bounded polymorphism

greatly enriches the expressiveness of the PatJ framework — the reader

might appreciate how the conciseness of this approach is comparable e.g. to

the one in [Esp06], where a true extension of the Java programming language

enabling declarative features is exploited.

Moreover, it can be noticed that, although the above Prolog method

declaration involves some tricky aspect of generics, its exploitation is instead

rather simple:

List<Atom> la = ... ;
for (List<Atom> p : permutation2(la)) ...
for (List<Int> p : permutation2(la)) ... //error!

In the first case, the compiler infers that the type-variable E of

permutation2() should have type Atom. Consequently, the two remain-

ing type-variables X and Y should both have type [E/Atom]List<E> =

List<Atom>. Similarly, in the second case the compiler infers that E has

164 Multi-paradigm Integration with Generics, Wildcards and Annotations

new_object(ClassName,Args,Id):-prolog_class(ClassName),
pj_proxy_object(ClassName,Args,Id).

new_object(ClassName,Args,Id):- !, java_object(ClassName,Args,Id).

Obj <- What :- java_call1(Obj,What,Res),
Res \== false.

Obj <- What returns Res :- java_call1(Obj,What,Res).

java_call1(Obj,What,Res):-unmarshal_method(What, M2),
lookup_method(Obj, M2, Meth),
prolog_method(Meth),!,
pj_call_rest(Obj, Meth, M2, Res).

java_call1(Obj,What,Res):-lookup_method(Obj,What,Meth),
java_method_call(Obj,Meth,What,Res).

pj_call_rest(Obj,Meth,What,Res):-is_iterable(Meth), !,unmarshal
java_method_call(Obj,Meth,What,R2),
R2 <- iterator returns I,
next(I, E), marshal(E, Res).

pj_call_rest(Obj,Meth,What,Res):-!,java_method_call(Obj,Meth,What,R2),
marshal(R2, Res).

unmarshal(L1, L2):-’Term’ <- marshal(L1) returns L2.

marshal(L1, L2):-L1 <- marshal() returns L2.

Figure 5.13: The PatJ library

type Atom — this is done by looking at the type of the actual argument

supplied to permutation2(); after type-variable substitution we have that

the method return type is thus inferred as List<Atom>, which is incompatible

with the type of the variable p in the for loop. Hence, in PatJ, library

developers can either partially or fully rely on the power of method type

inference: a careful design fully adopting type-inference enhances type-safety

in clients of a PatJ library and frees them from most of the burden associated

with static typing.

3 Java from Prolog: the PatJ Library

PatJ supports another form of interoperability that has not been discussed

so far: the ability of calling Java code from Prolog methods; suppose that

a Prolog method needs to perform a complex operation requiring one ore

more Java libraries, such as interacting with a Java GUI, or accessing a

Creating Objects 165

public boolean pj_proxy_object_3(Term className, Term args, Term id) {
if (!className.isAtom() && !args.isEmptyList())

return false;
Class<?> clazz = Class.forName(((Struct)className.getTerm()).getName());
PrologObject po = PJ.newInstance(clazz);
return JavaLibrary.getObjectReference(id, po);

}

Figure 5.14: Implementation pj proxy object

remote object via RMI. In tuProlog, any Java component can be directly

accessed and used from Prolog, in a simple and effective way, by means of the

JavaLibrary library [DOR05, tuP02]: this delivers all the power of existing

Java components and packages to Prolog sources. The PatJ framework

extends the basic functionalities provided by the JavaLibrary, by defining

additional Prolog predicates that can be used to e.g. create an instance of a

Prolog class, or to invoke a Prolog method, directly from Prolog.

3.1 Creating Objects

The PatJ library predicate java object/3 is used to create a new Java

object of the specified class, according to the syntax (see Figure 5.13):

java_object(ClassName, Arguments, ObjectRef)

where ClassName is a Prolog atom bound to the name of the proper

Java class (e.g. ‘java.util.Vector’) — the class denoted by ClassName

could be either a standard Java class (is Prolog class(ClassName)

yields false) or a class annotated with the @PrologClass annotation

(is Prolog class(ClassName) yields true); the parameter Arguments is

a Prolog list used to supply the required arguments to the class constructor —

the empty list denotes the default constructor; finally, the reference to the

newly-created object is bound to ObjectRef: if the term associated with

ObjectRef is a logic variable of the kind X, a new object is allocated and

X is bound to the corresponding object reference — a unique identifier that

is automatically generated by the JavaLibrary. For instance, the following

Prolog code is used to create a new object of type java.util.Vector:

create_vector(X):-java_object(’java.util.Vector’, [10], X).

166 Multi-paradigm Integration with Generics, Wildcards and Annotations

In the case above, since the name of the class (’java.util.Vector’) denotes

a standard Java class, no special treatment is required and the semantics of

the java object predicate falls back to the basic semantics provided by the

tuProlog’s JavaLibrary (java object predicate in Figure 5.13). Conversely,

Prolog classes must be handled differently; Prolog classes are usually abstract

Java classes (or interfaces) that lack a proper constructor; consequently, the

instantiation of Prolog classes should take place by invoking the static fac-

tory method provided by the PatJ framework (see implementation of the

pj proxy object predicate in Figure 5.14), rather than exploiting standard re-

flective features — e.g Class.newInstance(). More specifically, given a goal

of the kind java object(ClassName,Args,Obj), where ClassName denotes

a class annotated with the @PrologClass annotation, the PatJ framework

dynamically creates a new proxy object; such object is then associated with

an object reference and bound to X the usual way. The following code is used

to create a new instance of the Prolog class PermutationUtility:

permutation_utility(P):-new_object(’PermutationUtility’, [], P).

Since PermutationUtility is a class annotated with the @PrologClass

annotation - new object will bind a new dynamic proxy (obtained calling

PJ.newInstance) to the Prolog variable P.

3.2 Calling Methods

An object reference can be used as a receiver in a method call expression; the

PatJ predicate ’<-’ is used to invoke a method on a Java object using the

following syntax (see Figure 5.13):

ObjectRef <- MethodName(Arguments)

where ObjectRef is the receiver object — an atom interpreted as a Java object

reference as explained above; MethodName is the name of the Java method to

be invoked; finally, the parameter Arguments denotes the actual arguments

to be supplied in a given method call. Note that the method name and the

runtime types of the supplied arguments must be used to perform a dynamic

overload resolution process (see predicate lookup method(Obj, M2, Meth)

in Figure 5.13), as the receiver class could define more than one matching

Calling Methods 167

method; this resolution process bounds the logic variable Meth to an object

reference of the kind java.lang.reflect.Method — the reflective object

associated with the method to be invoked; again, the method denoted by Meth

could be either a standard Java method (is Prolog method(MethodName)

yields false) or a method annotated with the @PrologMethod annotation

(is Prolog method(MethodName) yields true). The following example adds

three elements to an object of type java.util.Vector, by repeatedly calling

its add() method:

init_vector(V):-create_vector(V),
add_el(V,1), add_el(V,2), add_el(V,3).

add_el(V, E):-V <- add(E).

In order to model method calls with a return value, the following syntax

is used instead:

ObjectRef <- MethodName (Arguments) returns Term

Here, the returns keyword is used to retrieve the value returned from non-

void Java methods and to bind it to a Prolog term; there are two possible

cases: if the type of the return value can be mapped onto a primitive Prolog

data-type (e.g. a number or a string), Term is unified with the corresponding

Prolog term; conversely, if the return value is a Java object other than the

ones above, Term is bound to a new object reference. The following code is

used to increment the Ith element stored in a collection denoted by V — the

returns predicate provides a way to denote the value returned by get():

inc_vector(V, I):- V <- get(I) returns E1,
E2 is E1 + 1,
V <- set(E2, I).

In the case above, since the method to be invoked (e.g. Vector.add()) is a

standard Java method, no special treatment is required and the semantics

of the ’<-’ predicate falls back to the standard behaviour provided by the

tuProlog’s JavaLibrary (java method call predicate in Figure 5.13).

Conversely, Prolog method calls must be handled differently, as they

typically involves two symmetric conversions: first the method arguments

168 Multi-paradigm Integration with Generics, Wildcards and Annotations

must be converted into a suitable PatJ representation, so that the resolution

process can effectively take place; secondly, the Prolog method return value

must be converted back into a suitable tuProlog representation — such

conversions are performed by the special unmarshal and marshal predicates

given in Figure 5.13. The unmarshal predicate converts a tuProlog term

into a PatJ term by calling the static method unmarshal() defined by the

PatJ class Term; dually, a PatJ term is converted back into a tuProlog

term by calling the method marshal() — each PatJ term class overrides

this method so that the most suitable tuProlog representation is returned

(see Section 2.1).

The PatJ library must also model the behaviour of an Iterable return

type in terms of standard Prolog backtracking; this is accomplished by

leveraging the PatJ predicate pj call rest, which iteratively binds a logic

variable to all the elements associated with a Java iterator. In other words,

all the complexity of interfacing with a Prolog method is hidden by the PatJ

library — for instance the following code is used to invoke the Prolog method

permutation():

call_permutation(L, R):-permutation_utility(P),
P <- permutation(L) returns R.

Note that there is no need to perform explicit marshalling/unmarshalling of

method parameters and to handle the Iterable result returned by the Prolog

method permutation(); all these tasks are performed automatically by the

PatJ library by overriding the semantics of the tuProlog ’<-’ operator.

4 Advanced Features

In this section we discuss some more sophisticated aspects of the PatJ

framework such as static type-checking of PatJ annotations, stateful Prolog

objects embedding an instance theory and Prolog fields, and support for

custom data-types.

First, the contents of PatJ annotations can be checked statically by means

of a custom annotation processor ; this way, the set of static checks carried out

by the Java compiler can be smoothly extended so that the compiler will e.g.

Checking Prolog Methods 169

@Target(ElementType.METHOD)
public @interface PrologMethod {

String[] clauses() default {};
String predicate() default "";
String signature() default "";
String[] types() default {};

}

Figure 5.15: The @PrologMethod annotation

issue error messages if the declaration of a Prolog method does not match its

abstract specification (given in its @PrologMethod annotation).

Secondly, as it is useful to define the implementation of a Java method

in terms of declarative facts and rules, it is also important to be able to

represent the state of an object declaratively; the PatJ framework provides

support for instance theories — Prolog theories attached to Prolog objects

that can be dynamically accessed and/or updated; moreover, PatJ provides

special support for Java fields whose type is a PatJ term — we call such

fields Prolog fields.

Finally, the PatJ framework support ad-hoc marshalling/unmarshalling of

custom data-types; that is, a Prolog method can be supplied a Java object for

which no default mapping exists: in that case the PatJ framework handles the

call either by wrapping the Java object into an object reference (as discussed

in Section 3) or by transforming it into a Prolog compound representation, so

that the contents of the object can be more naturally accessed from Prolog

code.

4.1 Checking Prolog Methods

Recalling from section 2.2, the mapping between a Prolog method m() and a

predicate of the form p(t) is fully specified when the following elements are

provided: (i) the name and the arity of the predicate, (ii) the “logical” role

of each term in t, (iii) how each term in t is mapped into the signature of

m() and (iv) the Java types that can be associated to each term in t.

The @PrologMethod annotation defines some additional attributes that

are used to explicitly define each of the properties above. Altough the use of

170 Multi-paradigm Integration with Generics, Wildcards and Annotations

these attributes is optional — the simplest way to define a mapping between a

Prolog method and its corresponding predicate is to define a generic method,

as described in Section 2.2 — such attributes can be fruitfully exploited in

order to make the mapping between a Prolog method and a Prolog predicate

more explicit; an important consequence (other than improving readability)

is that this additional information can be made available to a type-checker

that can thus verify the well-formedness of a given Prolog method signature.

Here is a complete list of attributes that can be attached to a

@PrologMethod annotation (see Figure 5.15):

predicate denotes the Prolog predicate that should be used for building

the goal term — a term-like notation that is used to keep track of the

name and the arity of the predicate, as well as naming each argument:

a possible value for it is e.g. foo(X,Y,Z). Moreover, each argument

can be attached an ISO Prolog notation, providing constraints on the

roles of the terms to be passed. It can be either ’+’ (input term, i.e.,

not a variable), ’-’ (output term, i.e., a variable), ’?’ (either input or

output), and ’@’ (a ground input term, i.e., a term with no variables

inside); annotations ’-@’ and ’?@’ are added to model ground output

and ground input/output — they are not part of the ISO standard,

but they can be usefully expressed in PatJ. For instance, the template

predicate could be ’foo(@X,+Y,-Z)’.

signature specifies the mapping between the arguments in the predicate

attribute and the position in the signature of the Prolog method, that

is, how they correspond to the Prolog method’s argument or return

type. A possible value for signature is e.g. ’(X,Y)->(Z)’, stating that

the the first argument of the Prolog method should map to the term

X, the second to Y, and that the return type maps to Z, respectively.

A signature of the kind ’(X,Y)->{Z}’ is used when the method should

actually return an iterator over all possible results for Z, while a signature

of the kind ’(X,Y)->(Z,X)’ is used when the return must be a 2-ary

compound term including the result for Z and X, orderly. Figure 5.1a

shows how a Prolog method permutation(), whose types attributes

Checking Prolog Methods 171

signature Prolog method signature
(X)->(X,Y) Comp2<List<Int>,List<Int>> permutation(List<Int> l)
(X)->(Y) List<Int> permutation(List<Int> l)
(X,Y)->() boolean permutation(List<Int> l, Var<List<Int>> x)
(X)->{Y} Iterable<List<Int>> permutation(List<Int> l)

(a) The signature attribute

ith term Type
@X List<Int>
+X List<? extends Term<Int>>
-X Var<? extends List<? extends Term<Int>>>
?X Term<? extends List<? extends Term<Int>>>
-@X Var<List<Int>>
?@X Term<? extends List<Int>>

(b) The types attribute: ’-’ = input, ’+’ = output, ’?’ = input/output, ’@’ ground

Table 5.1: Overview of the attributes of the @PrologMethod annotation

is {List<Int>,List<Int>}, can induce different signatures depending

on the value of the signature attribute.

types specifies a mapping between each of the arguments listed in the

predicate attribute and a Java type in the PatJ term hierarchy.

Such an attribute could e.g. be {Atom,Int,List<Comp2<Atom,Atom>>},
stating that X, Y and Z are associated with the PatJ term types Atom,

Int, and List<Comp2<Atom,Atom>>, respectively. Note that the actual

type reported in the Prolog method signature is a refined version of

the one specified in the types attribute. Hence, a type listed in the

types attribute can be viewed as an abstract specification of the Java

type associated with a given predicate variable; such type must be

instantiated accordingly, depending on the value of the ISO annotation

+-?@ specified in the predicate attribute. Figure 5.1b shows how an

argument of type List<Int> is turned into a Java type depending

on the Prolog annotation expressed in the predicate attribute. For

instance, a Prolog term of the kind ?X is associated with the Java type

Term<? extends List<? extends Term<Int>>>. In fact, X could be

172 Multi-paradigm Integration with Generics, Wildcards and Annotations

@PrologMethod (
predicate="permutation(@X,-@Y)",
signature="(X)->{Y}",
types={"List<Int>","List<Int>"},
clauses={"remove([X|Xs],X,Xs).",

"remove([X|Xs],E,[X|Ys]):-remove(Xs,E,Ys).",
"permutation([],[]).",
"permutation(Xs,[X|Ys]):-remove(Xs,X,Zs),

permutation(Zs,Ys)."})
public abstract Iterable<List<Int>> permutation(List<Int> list);

Figure 5.16: An alternate declaration of permutation()

either an input or output term, so that either a ground term (e.g. of

type List<Int>) or a variable (e.g. of type Var<List<Int>>) could be

supplied; consequently, the type used in the mapping should be of the

kind Term<...> as discussed in Section 2.1. Moreover, the input list

can contain variables as in a Prolog term of the kind [, ,]; hence

any subtype of Term<Int> might be used as parameter of List<...>.

Finally, the outermost wildcard Term<? extends ...> is used to make

the whole type covariant (see the covariance propagation rule in [IV06]),

e.g., to make instances of Term<List<Int>> be compatible with it3.

An alternate declaration for the Prolog method permutation() discussed

in Section 2.2 is reported in Figure 5.16. The predicate attribute is set to

permutation(@X,-@Y): X is the input list and it should be ground, while Y

is an output term — a logic variable eventually bound to a ground term.

The signature attribute is set to (X)->{Y}: X is the only argument of

the method, while Y is the return value of the method, accessed through

an iterator. Finally, the types attribute is set to {List<Int>,List<Int>}:
both X and Y are terms of the kind List<Int>.

PatJ is equipped with a custom annotation processor that can be used to

check the above annotation attributes without the need of building an actual

3Should the programmer be concerned about the complexity of such generic types, we
observe that by our approach the compiler will enforce their correctness and suggest the
correct type in case of mistakes, as discussed in the following.

Coding State: Prolog Fields and Instance Theories 173

compiler extension — causing obvious deployment issues. This feature is built

on top of the JSR 269 support that has been introduced in JSE 6 [Mic05],

allowing subclasses of the javax.annotation.processing.Processor class

[Mica] to define custom annotation processors that can be passed to the Java

compiler4. Assuming that the PatJ jarfile is in the classpath, the PatJ

annotation processor is automatically detected by the Java compiler and used

whenever a source file containing custom PatJ annotations is found.

The PatJ annotation processor verifies that the code of a Prolog

class/method is compliant with the PatJ framework; most importantly,

it checks the well-formedness of a Prolog method signature against the ISO

notations specified by its predicate attribute; the compiler is actually able

to infer (and report to the user) the correct signature to be used in a Prolog

method declaration — this is accomplished by inspecting the attributes of

the @PrologMethod annotation associated with a given Prolog method decla-

ration. As the PatJ term hierarchy and annotation library are rather rich,

the possibility of checking for the well-formedness of a Prolog class definition

turns out to be crucial in making PatJ a usable tool.

4.2 Coding State: Prolog Fields and Instance Theories

Sometimes it is useful to model the state of a Java object in a declarative

way, as a logic theory that can be dynamically be accessed and updated if

needed. The PatJ framework provides two different techniques for encoding

the state of a Prolog class in terms of Prolog clauses; first, a Prolog class can

define one or more Prolog fields that can be accessed and updated either from

Prolog or Java; secondly an instance-specific theory can be passed on to a

Prolog object during its initialisation — all Prolog methods declared in that

class can dynamically update the contents of the instance theory through

standard Prolog assertion/retraction features.

4.2.1 Prolog Fields

A Java field whose type is a PatJ term type can be annotated with

the @PrologField annotation — we call such field a Prolog field. The

4In the javac compiler this is accomplished using the -proc option.

174 Multi-paradigm Integration with Generics, Wildcards and Annotations

@PrologClass
public abstract class Maze {

@PrologField(init="node(start)", predicate="current_site")
public Comp1<Atom> currentSite;

@PrologField(init="node(exit)")
public Comp1<Atom> exit;

@PrologMethod (
clauses = {"path(X,Y):-door(X,Y).",

"path(X,Y):-door(Y,X).",
"reachable_sites(X):-current_site(C),

path(C, X)."}
)
public abstract <$X extends Comp1<Atom>>

Iterable<$X> reachable_sites();
}

Figure 5.17: Maze using Prolog fields

@PrologField annotation may optionally define a Prolog initializer (init

attribute), specifying the initial value for that Prolog field; this annotation

is also used to specify how the Prolog field should be mapped into a Prolog

predicate (predicate attribute). For instance, the following code is used to

declare a Prolog field storing a list of integer values:

@PrologField(init="[1, 2, 3]", predicate="p_list")
public List<Int> p_list;

As it can be seen, the value of the init attribute is a Prolog term of the kind

[1,2,3]; as usual, the @PrologField annotation is checked by the PatJ

annotation processor so that the compiler can check the well-formedness of

the initialisation term against the declared type of the Prolog field.

There are two ways to access or update the contents of a Prolog field.

From Prolog code, a Prolog field f can be accessed by exploiting the clause

implicitly defined by f’s predicate attribute, while a new value is assigned

to f using the ’:=’ operator provided by the PatJ library:

p_list := [42] //updates p_list
p_list(Y). //Y unifies with [42]

Coding State: Prolog Fields and Instance Theories 175

Each Prolog field implicitly defines a pair of getter/setters that can be used

whenever the Prolog field must be accessed from a Prolog method defined in

a different class — this is accomplished with a special usage of the PatJ ’->’

operator (see Section 3.2):

PO.p_list <- set(42) //updates p_list
PO.p_list <- get(Y). //Y unifies with [42]

Finally, since a Prolog field is also a Java field, it can be accessed and

updated as usual from Java code:

Collection<Integer> coll = Arrays.asList(new int[] 42);
p_list = new List(coll);
System.out.println(p_list); //prints ’[42]’

A special read-only Prolog field this is implicitly added to each Prolog

class. This field holds the reference to the Prolog instance being the receiver

of a given Prolog method call.

In Figure 5.17 is shown a simple PatJ class representing a maze. This class

exploits two Prolog fields — currentSite and exit of type Comp1<Atom> —

used to to store the current and the exit node, respectively — compound

terms of the kind ’node(...)’. The Prolog method reachable sites() is

used to retrieve the set of nodes that are reachable from the current node in

currentSite. Note that, apart from the start/exit node — Prolog terms of

the kind node(start) and node(exit), respectively — the topology of the

maze is here left unspecified; in the next section we discuss how an instance

of a Prolog class can be parameterised with its own instance theory.

4.2.2 Instance Theories

The state of a Prolog class can be expressed in a declarative fashion, in

terms of facts and rules; this is accomplished by associating a Prolog object

with a so called instance theory, that must be supplied to the PatJ factory

method. The clauses of this Prolog theory are available in all the Prolog

methods declared in the Prolog object’s class; hence, the instance theory can

be dynamically accessed and/or updated from Prolog code using the PatJ

variants of the standard Prolog assert/retract predicates.

176 Multi-paradigm Integration with Generics, Wildcards and Annotations

@PrologClass

public abstract class PJBot {

public Maze maze;

@PrologMethod (

clauses = {"explore:-this(Z), Z.maze <- get(M),

M.currentSite <- get(N),

explore_1(N, X).",

"explore_1(N, X):-this(Z), Z.maze <- get(M),

M.exit <- get(N), !.

"explore_1(N, X):-!, this(Z), Z.maze <- get(M),

M <- reachable_sites returns D,

not visited(D), M.currentSite <- set(D),

add_rule(visited(D)), explore_1(D,X)."}

)

public abstract void explore();

@PrologMethod (

clauses = {"visited_nodes(X):-visited(X)."}

)

public abstract <$X extends Comp1<Atom>> Iterable<$X> visited_nodes();

public static void main(String[] args) throws Exception {

String topology = "door(node(start),node(a)).\n" +

"door(node(a),node(g)).\n" +

"door(node(b),node(a)).\n"+

"door(node(a),node(d)).\n"+

"door(node(e),node(b)).\n"+

"door(node(g),node(h)).\n"+

"door(node(e),node(f)).\n"+

"door(node(f),node(i)).\n"+

"door(node(i),node(exit)).\n";

Maze m = PJ.newInstance(Maze.class,new Theory(topology));

PJBot b = PJ.newInstance(PJBot.class);

b.maze = m;

b.explore();

for (Comp1<Atom> a : b.visited_nodes()) {

System.out.println("[visited node = " + a.get0().toJava() + "]");

}

}

}

Figure 5.18: Bot using private instance theory

There are three PatJ meta predicates that allows a programmer to ma-

nipulate the content of a given instance theory: add clause, remove clause,

remove clauses, whose semantics closely follows the Prolog standard meta-

predicates assert, retract and retractAll, respectively. The predicate

add clause is used to add the clause passed as argument to the receiver’s

instance theory. Dually, the remove clause predicate is used to remove the

clause passed as argument from the receiver’s instance theory. Finally the

remove clauses predicate is used to remove all clauses matching the clause

Support for Custom Data-types 177

passed as argument from the receiver’s instance theory. When an instance

theory is updated using the above PatJ meta predicates, the changes will

survive across multiple PatJ method calls — that is, the PatJ framework

must intercept the execution of such meta predicates so that the instance

theory associated with a given Prolog object can be updated accordingly.

A PatJ class named PJBot is shown in Figure 5.18; this Prolog class

defines a Prolog method, namely explore(), that is used to traverse a maze

in order to find the exit node (the maze implementation has been shown in

Figure 5.17). The topology of the maze is stored in an instance theory, which

is structured as a set of facts of the kind door(X,Y) where both X and Y are

compound terms of the kind node(...) — meaning that the node X can be

reached from Y, and vice-versa. In order to build an instance of the Maze

class, the user must specify the topology of the maze — this is accomplished

by passing a Prolog theory (a Theory object) to the PatJ factory method

newInstance(), as shown in method main().

The bot is equipped with its own instance theory; this theory (initially

empty) is used to keep track of the previously explored nodes — this is

needed as the maze topology might contain loops. For each new visited

node of the kind node(n), a new Prolog fact of the kind visited(node(n))

is added to the bot instance theory — this is accomplished by leveraging

the add clause meta predicate. As the bot explores new nodes, it updates

the current position in the maze; this is done by setting the value of the

Maze.currentSite Prolog field. The exploration routine ends as soon as the

bot finds the exit node — this is done simply by comparing the current node

with the maze exit node node(exit); at this stage the bot instance theory

will contain several facts of the kind visited(node(n)), one for each node

that has been visited during the exploration process.

4.3 Support for Custom Data-types

The PatJ framework supports two different translation schemes that allow

an object of a custom class to be passed to a Prolog method: in the call-

by-reference scheme, an object is wrapped in a PatJ object reference — an

atom, as discussed in Section 3 — which is then passed to the Prolog method;

178 Multi-paradigm Integration with Generics, Wildcards and Annotations

tuprolog.Struct marshal() {
return JavaLibrary.getObjectReference(_object);

}
(a) From JavaRef to tuProlog Struct

static <Z> JavaObject<Z> Object(tuprolog.Struct s) {
Z obj = (Z)JavaLibrary.dereference(s);
return new JavaObject<Z>(obj);

}
(b) From tuProlog Struct to JavaRef

Figure 5.19: Marshalling/unmarshalling of JavaRef in PatJ

in the call-by-value scheme a Java object is turned into a full-fledged Prolog

representation — typically a compound term — which can thus be accessed

declaratively from Prolog code.

4.3.1 Call-by-reference

In the call-by-value scheme a Java object is turned into an object reference

(see Section 3) that can be accessed from Prolog code by exploiting the PatJ

library. The call by reference scheme is supported by means of a special PatJ

term class — namely JavaRef:

public class JavaRef<O> extends Term<JavaRef<O>> {
O _object
...

}

The type-variable O is used to abstract from the type of the Java object

wrapped by a JavaRef instance — namely object. The JavaRef class

defines specialised marshalling/unmarshalling operations that leverage the

PatJ library: each time a JavaRef term must be passed to a Prolog method,

such term is converted into an object reference — this is accomplished by

registering the object stored wrapped by a JavaRef in the PatJ library (see

Figure 5.19a). Conversely, when a method returns a JavaRef term, the object

associated with a given object reference is retrieved and then wrapped in a

new JavaRef instance (see Figure 5.19b).

Support for Custom Data-types 179

Java reference terms are simply built from the Java object that needs to

be passed to a Prolog method; for instance, the following code creates a new

JavaRef term storing a Java object of type BigInteger:

BigInteger bi = BigInteger.valueOf(100000000000);
JavaRef<BigInteger> rbi = new JavaRef<BigInteger>(bi);

Calling methods on a Java reference terms from the Prolog code is accom-

plished the usual way by means of the PatJ library — this is possible because

a JavaRef term is internally converted into an ordinary object reference

before a Prolog method is executed; for instance, the following Prolog method

computes the amount of bits required in order to encode a BigInteger object:

@PrologMethod(
clauses="bit_length(BI, L) :- BI -> bitLength() returns L.")

public abstract <$X extends JavaRef<BigInteger>,
$Y extends Int> $Y bit_length($X);

4.3.2 Call-by-value

In the call-by-value scheme a Java object is turned into a Prolog representation

that can directly be leveraged from Prolog code, that is without the need of

exploiting the PatJ library; hence, the call-by-value strategy is very useful

when we want to pass a custom Java objects to a Prolog method, without

loosing the ability to access the object contents declaratively. The call-by-

value scheme is supported by means of a special PatJ term class — namely

JavaVal:

public class JavaVal<O> extends Comp<Term<?>> {
O _object
...

}

The type-variable O is used to abstract from the type of the Java object

wrapped by a JavaVal instance — namely object. The JavaRef class

defines specialised marshalling/unmarshalling operations that leverage the

@Termifiable annotation: each time a JavaRef term must be passed to a

Prolog method, such term is converted into a Prolog compound term, as

shown in Figure 5.20a — the details of this conversion are reported below.

180 Multi-paradigm Integration with Generics, Wildcards and Annotations

tuprolog.Struct marshal() {

Vector<Term<?>> termArr = new java.util.Vector<Term<?>>();

BeanInfo binfo = Introspector.getBeanInfo(_object.getClass());

int count = 0;

for (PropertyDescriptor pdesc : binfo.getPropertyDescriptors()) {

//only read-write properties are translated into a compound

if (pdesc.getReadMethod() != null && pdesc.getWriteMethod() != null) {

Object o = pdesc.getReadMethod().invoke(_object);

Term<?> t = o != null ?

Term.fromJava(o) :

new Var("X" + count);

termArr.add(t);

count++;

}

}

String functorName = _object.getClass.getAnnotation(Termifiable.class).predicate();

PJ.termifiableRegistry.put(functorName, _object.getClass());

return new tuprolog.Struct(functorName, termArr);

}

(a) From JavaVal to tuProlog Struct

static <Z> JavaTerm<Z> unmarshal(tuprolog.Struct s) {

Class<?> _class = PJ.termifiableRegistry.get(s.getName());

Z obj = (Z)_class.newInstance();

BeanInfo binfo = Introspector.getBeanInfo(_class);

int count = 0;

for (PropertyDescriptor pdesc : binfo.getPropertyDescriptors()) {

if (pdesc.getReadMethod() != null && pdesc.getWriteMethod() != null) {

pdesc.getWriteMethod().invoke(po, Term.unmarshal(s.getTerm(count++)).toJava());

}

}

return new JavaVal<Z>(obj);

}

(b) From tuProlog Struct to JavaVal

Figure 5.20: Marshalling/unmarshalling of JavaVal in PatJ

Conversely, when a method returns a JavaVal term, such compound term is

converted back into a suitable Java representation that is then wrapped in a

new JavaVal, as shown in Figure 5.20b.

When the PatJ framework needs to convert a Java object into a Prolog

compound term, it does so by inspecting the contents of the @Termifiable

annotation attached to the object’s class; in fact, every object wrapped in a

JavaVal term must be annotated with the @Termifiable annotation. This

annotation specifies how the class should be mapped into a Prolog compound

term; more specifically, its predicate attribute defines the name of the

Prolog compound term that should be used to encode an instance of a given

termifiable class. The PatJ framework keeps track of the functor name

Support for Custom Data-types 181

associated with a given termifiable class by exploiting a shared registry (see

Figure 5.20a) — each time a new termifiable class is marshalled, the registry is

updated with a new entry, which is then used (during unmarshalling) to lookup

the Java Class object associated with a given functor name. Note also that the

arity of the compound term associated with a termifiable class C is given by

the number of the public fields declared in C; moreover,the fields that must be

included in the corresponding Prolog representation should have getter/setter

methods — this is required, since the marshalling/unmarshalling routines

defined by JavaVal rely upon JavaBeans introspection features [Mica].

In the following code, the @Termifiable annotation is used to associate

instances of the Pair class with compound terms of the kind pair(X,Y),

where X and Y are Prolog terms corresponding to the values of x and y,

respectively — the public fields of Pair:

@Termifiable(predicate="pair")
public class Pair {

public Term x;
public Term y;
...

}

A JavaVal term is simply built from the temifiable Java object that needs to

be passed to a Prolog method; for instance, the following code creates a new

JavaVal term storing an instance of the termifiable class Pair:

Pair p = new Pair(new Int(4), new Atom(’Hello!’));
JavaVal<Pair> vp = new JavaVal<Pair>(p);

The above Pair instance is converted by the PatJ framework into a Prolog

compound term of the kind pair(4, ’Hello!’). Hence, the contents of a

termifiable instance are more naturally accessed from Prolog code — without

leveraging the PatJ library. For instance, the following Prolog method is

used to swap the elements of a Pair object:

@PrologMethod(clauses="swap(pair(X,Y), pair(Y,X)).")
public abstract <$X extends JavaVal<Pair>,

$Y extends JavaVal<Pair>> $Y swap($X x);

The reader might appreciate the elegance and the compactness of the resulting

code.

182 Multi-paradigm Integration with Generics, Wildcards and Annotations

<exp> := <term> | <term> (‘+’|‘-’) <exp>

<term> := <fatt> | <fatt> (‘*’|‘/’) <term>

<fatt> := <num> | ‘(’ <exp> ‘)’

<num> := ‘0’ | ‘1’ | ‘2’ | ...

Figure 5.21: Syntax of arithmetic expressions

5 An Example: Parsing and Interpretation

An interesting area where declarative specifications are fruitfully exploited

is in building parsers and interpreters. As an example, in this section we

discuss how the features of the PatJ framework can be useful to rapidly

prototype new parsers. Consider the definition of a (context-free) grammar

for simple mathematical expressions reported in Figure 5.21. The code of

the class ExprParserEval is reported in Figure 5.22 — an implementation

of a mathematical expression parser built on top of PatJ. ExprParser de-

fines a Prolog method, namely parse expr(), used to build a declarative

representation of a mathematical expression — a compound term — from a

list of input tokens — Prolog atoms. Each non terminal symbols is mapped

onto a different Prolog compound term: for instance, the Prolog predicate

plus(X,Y) is used to encode non-terminal symbols of the kind <plus>.

Internally, the parser is defined in terms of Definite Clause Grammar rules

(DCG henceforth). A DCG rule is defined using the ’-->’ operator, which

replaces the ’:-’ operator used to define standard Prolog clauses. There is a

DCG rule for each non-terminal symbol of the grammar <exp>, <term>, etc.

— for instance, a DCG rule of the kind ’term(T) --> ...’ is associated with

the a non-terminal symbol of the kind <term>. The predicates on the right-

hand-side of the ’-->’ operator corresponds to the conditions that must be

matched in order to parse a given non-terminal symbol — for instance, if both

fact(F) and term2(F,T) yields true, then T is bound to a compound term

corresponding to a parsed sub-expression of the kind<term>. A DCG rule

might optionally specify a list of terminal symbols, enclosed in square brackets,

An Example: Parsing and Interpretation 183

@PrologClass

public abstract class ExprParserVal {

@TRACE

@PrologMethod (clauses={"parse_expr(E,L):-phrase(expr(E),L).",

"expr(E) --> term(T), expr2(T,E).",

"expr2(T,E) --> [’+’],term(T2),

expr2(plus(T,T2),E).",

"expr2(T,E) --> [’-’],term(T2),

expr2(minus(T,T2),E).",

"expr2(T,T) --> [].",

"term(T) --> fact(F), term2(F,T).",

"term2(F,T) --> [’*’],fact(F2),

term2(times(F,F2),T).",

"term2(F,T) --> [’/’],fact(F2),

term2(div(F,F2),T).",

"term2(F,F) --> [].",

"fact(E) --> [’(’],expr(E),[’)’].",

"fact(X) --> [X],{number(X)}."})

public abstract <$L extends Term<?>, $E extends List<?>> $L parse_expr($E expr);

@TRACE

@PrologMethod (clauses={"eval_expr(plus(L,R),X):-eval_expr(L, X1),

val_expr(R, X2), X is X1 + X2.",

"eval_expr(minus(L,R),X):-eval_expr(L, X1),

eval_expr(R, X2), X is X1 - X2.",

"eval_expr(times(L,R),X):-eval_expr(L, X1),

eval_expr(R, X2), X is X1 * X2.",

"eval_expr(div(L,R),X):-eval_expr(L, X1),

eval_expr(R, X2), X is X1 / X2.",

"eval_expr(X,X):-number(X)."})

public abstract <$E extends Term<?>, $X extends Int> $X eval_expr($E expr);

public static void main(String[] args) throws Exception {

ExprParserVal ep = PJ.newInstance(ExprParserVal.class);

java.util.List<Object> s1 = java.util.Arrays.asList(

new Object[] {1,"+",2, "-", 3, "*", 5, "+", "(", 5, "/", 2, ")"});

Term<?> expr = ep.parse_expr(new List(s1));

System.out.println(ep.eval_expr(expr).toJava());

}

}

Figure 5.22: A basic arithmetic expression parser/evaluator in PatJ

associated with a given non-terminal symbol, as in the definition of expr2.

Finally, DCG rules can trigger standard Prolog goals, enclosed in curly braces,

as in the definition of fact. The reader may appreciate how the DCG rules

in the Prolog method parse() strictly adhere to the abstract specification

of the grammar given in Figure 5.21. In method main(), parse expr() is

invoked with a tokenised expression of the kind ’[’12’,’+’,’3’,’*’,’4’]’;

the resulting parse tree — a compound term of the kind plus(12, times(3,

4)) — is then passed to another Prolog method, namely eval expr(), that

is used to evaluate a compound term associated with a parsed mathematical

184 Multi-paradigm Integration with Generics, Wildcards and Annotations

@PrologClass

public abstract class ExprParserVisitor {

@PrologMethod (clauses={"parse_expr(E,L):-phrase(expr(E),L).",

"expr(E) --> term(T), expr2(T,E).",

"expr2(T,E) --> [’+’],term(T2),expr2(plus(T,T2),E).",

"expr2(T,E) --> [’-’],term(T2),expr2(minus(T,T2),E).",

"expr2(T,T) --> [].",

"term(T) --> fact(F), term2(F,T).",

"term2(F,T) --> [’*’],fact(F2),term2(times(F,F2),T).",

"term2(F,T) --> [’/’],fact(F2),term2(div(F,F2),T).",

"term2(F,F) --> [].",

"fact(E) --> [’(’],expr(E),[’)’].",

"fact(X) --> [X],{number(X)}."})

public abstract <$L extends Term<?>, $E extends List<?>> $L parse_expr($E expr);

@PrologMethod (clauses={"eval_expr(E,X, V):-this(Z), V <- visit(E) returns X."})

public abstract <$E extends Term<?>,

$X extends Term<?>,

$V extends JavaRef<? extends EvalVisitor>>

$X eval_expr($E expr, $V visitor);

public static void main(String[] args) throws Exception {

ExprParserVisitor ep = PJ.newInstance(ExprParserVisitor.class);

EvalVisitor v = PJ.newInstance(EvalVisitor.class);

java.util.List<Object> s1 = java.util.Arrays.asList(

new Object[] {1,"+",2, "-", 3, "*", 5, "+", "(", 5, "/", 2, ")"});

Term<?> expr = ep.parse_expr(new List(s1));

System.out.println(ep.eval_expr(expr, new JavaObject<EvalVisitor>(v)));

}

}

Figure 5.23: A mathematical expression evaluator exploiting the visitor
pattern

expression — in this case eval expr() yields the numeric value 24. Again,

the reader might appreciate how the implementation of the Prolog method

eval expr() can concisely be expressed in terms of declarative rules.

5.1 Visitor Pattern Revisited

Figure 5.23 shows a slight variant of the example in Section 5, where the Java

parse tree is evaluated by means of a visitor class whose methods are Prolog

methods. The visitor pattern [GHJV95] is implemented through a PatJ

interface, namely PrologVisitor (see Figure 5.24), which defines a set of

abstract Prolog methods — these methods are overridden in specialised vistor

classes. The Prolog method visit() is the entry point of the visitor pattern:

it accepts a node representing an arithmetic expression — a compound term

similar to the one discussed in Section 5 — and it recursively calls the most

suitable visitor method. The dispatching logic is entirely written in Prolog: for

Visitor Pattern Revisited 185

@PrologClass

interface PrologVisitor {

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_plus($E expr);

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_minus($E expr);

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_times($E expr);

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_div($E expr);

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_number($E expr);

@PrologMethod (

clauses={"visit(plus(L,R),X):-this(Z), Z <- visit_plus(plus(L,R)) returns X.",

"visit(minus(L,R),X):-this(Z), Z <- visit_minus(minus(L,R)) returns X.",

"visit(times(L,R),X):-this(Z), Z <- visit_times(times(L,R)) returns X.",

"visit(div(L,R),X):-this(Z), Z <- visit_div(div(L,R)) returns X.",

"visit(N,X):-number(N), this(Z), Z <- visit_number(N) returns X."})

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit($E expr);

}

@PrologClass

public abstract class EvalVisitor implements PrologVisitor {

@Override

@PrologMethod (clauses={"visit_plus(plus(L,R),X):-this(V),

V <- visit(L) returns X1,

V <- visit(R) returns X2,

X is X1 + X2."})

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_plus($E expr);

@Override

@PrologMethod (clauses={"visit_minus(minus(L,R),X):-this(V),

V <- visit(L) returns X1,

V <- visit(R) returns X2,

X is X1 - X2."})

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_minus($E expr);

@Override

@PrologMethod (clauses={"visit_times(times(L,R),X):-this(V),

V <- visit(L) returns X1,

V <- visit(R) returns X2,

X is X1 * X2."})

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_times($E expr);

@Override

@PrologMethod (clauses={"visit_div(div(L,R),X):-this(V),

V <- visit(L) returns X1,

V <- visit(R) returns X2,

X is X1 / X2."})

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_div($E expr);

@Override

@PrologMethod (clauses={"visit_number(N, N)."})

public abstract <$E extends Term<?>, $X extends Term<?>> $X visit_number($E expr);

}

Figure 5.24: Visitor pattern in PatJ

186 Multi-paradigm Integration with Generics, Wildcards and Annotations

instance, when a term of the kind plus(X,Y) is processed, the PatJ library

is leveraged to recursively call the (abstract) Prolog method visit plus().

The class EvalVisitor defines a Prolog implementation for all the visitor

methods in PrologVisitor; the implementation is, again, given in terms of

Prolog code — the PatJ library is used to perform recursive call to visitor

methods (in order to evaluate the subtrees associated with a given binary

expression). Finally, the Prolog method eval expr() in Figure 5.23 now

accepts an object of type EvalVisitor — this is accomplished by leveraging

the call-by-reference scheme. Note how the double-dispatching technique of

the visitor pattern is easily reproduced in terms of Prolog programming.

5.2 A Java Parse Tree

Another possibility is to define a Prolog method generating a Java parse tree

that can be directly evaluated in terms of Java code. Figure 5.25 shows a

hierarchy of Java classes that can be used to encode parse tree nodes in simple

arithmetic expressions. The root of this hierarchy is the IExpr interface,

which defines an utility method, namely eval(), used to compute the value

associated with a given arithmetic expression. Another abstract class, namely

BinaryExpr, is used to factor over all binary expression classes, such as Plus,

Minus, etc. — this class defines the fields associated with the two operands

of a given binary expression tree. All classes leverage the @Termifiable

annotation — this is discussed in greater details in the next section.

Figure 5.26 shows a revised example of the PatJ parser, where the DCG

rules have been slightly adjusted in order to generate Java parse tree nodes

instead of Prolog compound terms — this is accomplished by leveraging the

PatJ predicate java object discussed in Section 3. The Prolog method

parse() adopts a call-by-reference scheme — its return type is JavaRef<?

extends IExpr>; consequently the user must dereference the JavaRef in-

stance returned by the parse() method in order to access the underlying

Java parse tree — this is accomplished by calling toJava() on the JavaRef

object returned by the Prolog method parse(). The reader may appreciate

the degree of interoperability between Java and Prolog: creating a Java parse

tree from Prolog and the evaluating it in Java just takes a few method calls —

A Java Parse Tree 187

public interface IExpr {

public double eval();

}

public abstract class BinaryExpr implements IExpr {

IExpr left; IExpr right;

public BinaryExpr(Object left, Object right) {

this.left = (left instanceof Integer) ?

new Num((Integer)left) :

(IExpr) left;

this.right = (left instanceof Integer) ?

new Num((Integer)right) :

(IExpr) right;

}

public IExpr getLeft() {return left;}

public IExpr getRight() {return right;}

public void setLeft(IExpr _left) {left = _left;}

public void setRight(IExpr _right) {right = _right;}

}

@Termifiable(predicate="plus")

public class Plus extends BinaryExpr {

public Plus(Object left, Object right) { super(left, right); }

public double eval() { return left.eval() + right.eval(); }

}

@Termifiable(predicate="minus")

public class Minus extends BinaryExpr {

public Minus(Object left, Object right) { super(left, right); }

public double eval() { return left.eval() - right.eval(); }

}

@Termifiable(predicate="multiply")

public class Multiply extends BinaryExpr {

public Multiply(Object left, Object right) { super(left, right); }

public double eval() { return left.eval() * right.eval(); }

}

@Termifiable(predicate="div")

public class Div extends BinaryExpr {

public Div(Object left, Object right) { super(left, right); }

public double eval() { return left.eval() / right.eval(); }

}

@Termifiable(predicate="num")

public class Num implements IExpr {

int num;

Num(int i) { this.num = i; }

public double eval() { return num; }

public int getNum() {return num;}

public void setNum(int num) {this.num = num;}

}

Figure 5.25: Hierarchy of Java classes for representing mathematical expres-
sions

188 Multi-paradigm Integration with Generics, Wildcards and Annotations

@PrologClass

public abstract class MathExprParser {

@PrologMethod (

clauses={"parse_expr(E,L):-phrase(expr(E),L).",

"expr(E) --> term(T), expr2(T,E).",

"expr2(T,E) --> [’+’], term(T2),

{java_object(’Plus’, [T, T2], SUM)},

expr2(SUM, E).",

"expr2(T,E) --> [’-’],term(T2),

{java_object(’Minus’, [T, T2], DIFF)},

expr2(DIFF, E).",

"expr2(T,T) --> [].",

"term(T) --> fact(F), term2(F,T).",

"term2(F,T) --> [’*’],fact(F2),

{java_object(’Multiply’, [F, F2], MUL)},

term2(MUL,T).",

"term2(F,T) --> [’/’],fact(F2),

{java_object(’Div’, [F, F2], DIV)},

term2(DIV,T).",

"term2(F,F) --> [].",

"fact(E) --> [’(’],expr(E),[’)’].",

"fact(X) --> [X],{number(X)}."})

public abstract <$L extends JavaRef<? extends IExpr>,

$E extends List<?>> $L parse_expr($E expr);

public static void main(String[] args) throws Exception {

MathExprParser ep = PJ.newInstance(MathExprParser.class);

java.util.List<Object> s1 = java.util.Arrays.asList(

new Object[] {1,"+",2, "-", 3, "*", 5, "+", "(", 5, "/", 2, ")"});

IExpr expr = ep.parse_expr(new List(s1)).toJava();

System.out.println(expr);

System.out.println(expr.eval());

}

}

Figure 5.26: A mathematical expression parser generating a Java AST

all the complexity is hidden by the PatJ framework.

5.3 A Prolog Evaluator

The code in Figure 5.27 shows another variant of the example given in section

5.2 where evaluation is performed in Prolog rather than in Java. This is

possible thanks to the @Termifiable annotation that allows straightforward

mapping of custom Java objects into Prolog compound terms — an instance of

a termifiable class (e.g. Plus) is turned into a suitable Prolog representation

(the compound term plus(X,Y)). Note that a Prolog class exploiting one

or more termifiable classes must be annotated with a @WithTermifiable

annotation listing the qualified names of such classes — this is required

in order to updated the shared termifiable registry (see Section 4.3.2) and,

A Prolog Evaluator 189

@PrologClass

@WithTermifiable({"alice.tuprologx.pj.test.expr.Plus",

"alice.tuprologx.pj.test.expr.Minus",

"alice.tuprologx.pj.test.expr.Multiply",

"alice.tuprologx.pj.test.expr.Div",

"alice.tuprologx.pj.test.expr.Num"})

public abstract class ExprParserVal {

@PrologMethod (clauses={"parse_expr(E,L):-phrase(expr(E),L).",

"expr(E) --> term(T), expr2(T,E).",

"expr2(T,E) --> [’+’],term(T2),expr2(plus(T,T2),E).",

"expr2(T,E) --> [’-’],term(T2),expr2(minus(T,T2),E).",

"expr2(T,T) --> [].",

"term(T) --> fact(F), term2(F,T).",

"term2(F,T) --> [’*’],fact(F2),term2(times(F,F2),T).",

"term2(F,T) --> [’/’],fact(F2),term2(div(F,F2),T).",

"term2(F,F) --> [].",

"fact(E) --> [’(’],expr(E),[’)’].",

"fact(X) --> [X],{number(X)}."})

public abstract <$L extends JavaVal<?>, $E extends List<?>> $L parse_expr($E expr);

@PrologMethod (clauses={"eval_expr(plus(L,R),X):-eval_expr(L, X1),

eval_expr(R, X2), X is X1 + X2.",

"eval_expr(minus(L,R),X):-eval_expr(L, X1),

eval_expr(R, X2), X is X1 - X2.",

"eval_expr(times(L,R),X):-eval_expr(L, X1),

eval_expr(R, X2), X is X1 * X2.",

"eval_expr(div(L,R),X):-eval_expr(L, X1),

eval_expr(R, X2), X is X1 / X2.",

"eval_expr(X,X):-number(X)."})

public abstract <$E extends JavaVal<?>, $X extends Int> $X eval_expr($E expr);

public static void main(String[] args) throws Exception {

ExprParserVal ep = PJ.newInstance(ExprParserVal.class);

java.util.List<Object> s1 = java.util.Arrays.asList(

new Object[] {1,"+",2, "-", 3, "*", 5, "+", "(", 5, "/", 2, ")"});

JavaVal<?> expr = ep.parse_expr(new List(s1));

System.out.println(ep.eval_expr(expr).toJava());

}

}

Figure 5.27: A mathematical expression parser and evaluator exploiting
termifiable classes

consequently, to disambiguate marshalling/unmarshalling of compound terms

associated with termifiable classes.

The ExprParserVal class defines a Prolog method, namely parse expr(),

which returns a Java parse tree; the Java objects corresponding to the parse

tree nodes are here built implicitly, by leveraging the call-by-value scheme:

each compound term of the kind plus, minus, times, div is converted into

an instance of the corresponding termifiable class Plus, Minus, Multiply and

Div, respectively — there is no need to explicitly create Java objects through

the PatJ library predicates. The parse tree returned by parse expr can thus

190 Multi-paradigm Integration with Generics, Wildcards and Annotations

be passed to another Prolog method, namely eval expr; again, this is done

leveraging the call-by-value scheme — this time, the framework will convert a

Java object (of type IExpr) into a Prolog compound term. Hence, the Prolog

code associated with the Prolog method eval expr() can access the contents

of a binary expression node in a declarative fashion, as for any other Prolog

compound term. This leads to a compact and elegant implementation.

Chapter 6

Conclusions

The contributions of this thesis are twofold: first, we proposed a revised

implementation for Java generics that greatly enhances the expressiveness of

the Java platform by adding reification support for generic types; secondly,

we discussed how Java genericity can be leveraged in a real world case-study

in the context of the multi-paradigm language integration.

In this thesis we discussed all the issues that must be tackled to implement

a full-fledged reification support for generics/wildcards types; this resulted in

a reification scheme — namely, the gCVM — that is both complete, efficient

and fully backward compatible. The effectiveness of our solution has been

validated by real world benchmarks such as the GJ compiler [Mic01] (see

Section 5). To the best of our knowledge, the gCVM is also the only proposal

effectively addressing all the features included in the Java Programming

Language [JGSB05]. On the one hand, existing runtime approaches, as in

[MBL97] support reified generics through a true language extension so that

backward compatibility is typically compromised. On the other hand, certain

subtleties of the Java type-system are not easily mimicked by standard (non-

generic) Java code; consequently, whether smooth extensions of the legacy

Java compiler, such as NextGen [SC06], would ever be able to provide a

complete reification scheme is still an open issue. Concerning subtyping for

instance, types of the kind List<? super T> are contravariant, hence, the set

of their supertypes is not closed: for any newly defined class C such that C<:T,

type List<? super C> should be a supertype of List<? super T>. Since

192 Conclusions

NextGen is conceived around the idea of reusing concrete Java classes to

simulate each different instantiation of a generic type used in an application

— class List$String for type List<String> and so on — supporting open

subtyping hierarchies can lead to serious implementation issues.

We then presented PatJ, a framework that significantly improves the

seamless integration of Prolog code into Java applications, exploiting the

tuProlog technology. PatJ is structured in a compositional way — in fact,

the core of the PatJ framework can be seen as a tiny wrapper around the

tuProlog engine providing just basic capabilities; on top of this layer PatJ

defines a hierarchy of generic Java classes modelling first-order logic terms that

feature automated marshaling/unmarshaling from Java to Prolog, and vice-

versa — this API is arguably one of the most remarkable applications of Java

generics and wildcards so far. This hierarchy is leveraged in order to fill the

gap between method invocation and Prolog goal satisfaction, exploiting Java

type inference in method calls — we believe this plays a crucial role in enabling

those programmers who are familiar with Java mainstream programming to

easily incorporate declarative features into their programs. Moreover, the

possibility of expressing rich (generic) types for Prolog terms, along with the

exploitation of Java type inference for checking consistency and reconstructing

bridging information, allows for seamless integration of Prolog code into Java

classes and methods. As such, PatJ is a concrete attempt to address the

problems affecting existing solutions for integrating Java and Prolog. On the

one hand, when integration is accomplished by merging the two paradigms into

a single hybrid language supporting both Object-Oriented and logic features,

as in [Esp06], the resulting language is typically too complex, thus making

mainstream application development an harder task. On the other hand,

library-based integration approaches [JPL, Kin05, PLB, DOR05] typically

fail to provide true language integration, and some “boilerplate code” has to

be implemented each time to fix the paradigm mismatch.

Conclusions 193

Acknowledgments

I would like to thank Gilad Bracha, for he gave me the opportunity to work

in Sun Labs for four months in 2003. During these months, I had the chance

to meet members of the compiler team, most noticeably Neal Gafter, who

provided me many precious insight on the fundamentals of the javac compiler,

and Mikhail Dmitriev, my tutor — working with them has been an amazing

experience. I would also like to thank Alex Buckley, Peter Ahé and Paul

Hohensee, as they took the time to do a short trip to Cesena in January 2007

in order evaluate the outcome of the gCVM project. Simone Pellegrini has

been a valuable collaborator, who contributed to some of the technical details

and the performance measurments discussed in this thesis. Finally, I would

like to thank professors Antonio Natali and Andrea Omicini, for their many

thoughtful suggestions that contributed to improve the PatJ framework in

many ways, and Giulio Piancastelli, who helped me with many tuProlog

related issues. Special thanks to Mirko Viroli, for the patience and support

he relentlessly showed during the countless technical discussions that shaped

many parts of the work described in this thesis.

Bibliography

[ABC03] Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-

class approach to genericity. SIGPLAN Not., 38(11):96–114,

2003.

[ACC93] Mart́ın Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal

parametric polymorphism. In POPL ’93: Proceedings of the

20th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 157–170, New York, NY, USA, 1993.

ACM.

[AFM97] Ole Agesen, Stephen Freund, and John C. Mitchell. Adding Type

Parameterization to the Java Language. In Conference on Object-

Oriented Programming, Systems, Languages and Applications,

pages 215–230, Atlanta, Georgia, 5–9 October, 1997. ACM, New

York.

[ANMM06] Chris Andreae, James Noble, Shane Markstrum, and Todd Mill-

stein. A framework for implementing pluggable type systems. In

Proceedings of OOPSLA ’06, pages 57–74, New York, NY, USA,

2006. ACM Press.

[AR08] Suad Alagic and Mark Royer. Genericity in Java: persistent and

database systems implications. VLDB J., 17(4):847–878, 2008.

[BCD+99] Jean-Daniel Boissonnat, Frédéric Cazals, Frank Da, Olivier Dev-

illers, Sylvain Pion, François Rebufat, Monique Teillaud, and

Mariette Yvinec. Programming with CGAL: the example of

196 Bibliography

triangulations. In SCG ’99: Proceedings of the fifteenth annual

symposium on Computational geometry, pages 421–422, New

York, NY, USA, 1999. ACM.

[BGL02] The boost graph library: user guide and reference manual.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2002.

[BKG+06] Johan Brichau, Andy Kellens, Kris Gybels, Kim Mens, Robert

Hirschfeld, and Theo D’Hondt. Application-Specific Models and

Pointcuts Using a Logic Meta Language. In ISC, pages 1–22,

2006.

[Bon04] Jonas Bon. Annotation-driven AOP for Java. In Annual European

Conference on Java and Object-Oriented Software Engineering,

2004. http://aspectwerkz.codehaus.org.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip

Wadler. Making the future safe for the past: adding genericity to

the Java programming language. SIGPLAN Not., 33(10):183–200,

1998.

[CAF04] Brian Cabana, Suad Alagić, and Jeff Faulkner. Parametric poly-

morphism for Java: is there any hope in sight? SIGPLAN Not.,

39(12):22–31, 2004.

[Car84] Luca Cardelli. A semantics of multiple inheritance. In Proc. of

the international symposium on Semantics of data types, pages

51–67, New York, NY, USA, 1984. Springer-Verlag New York,

Inc.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and

John C. Mitchell. F-bounded polymorphism for object-oriented

programming. In FPCA ’89: Proceedings of the fourth inter-

national conference on Functional programming languages and

Bibliography 197

computer architecture, pages 273–280, New York, NY, USA, 1989.

ACM.

[CD09] Nicholas Cameron and Sophia Drossopoulou. On subtyping,

wildcards, and existential types. In FTfJP ’09: Proceedings

of the 11th International Workshop on Formal Techniques for

Java-like Programs, pages 1–7, New York, NY, USA, 2009. ACM.

[CDE08] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A

Model for Java Wildcards. In ECOOP 08, Lecture Notes in

Computer Science, June 2008.

[Cha92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. In

ECOOP ’92: Proceedings of the European Conference on Object-

Oriented Programming, pages 33–56, London, UK, 1992. Springer-

Verlag.

[CV07] Maurizio Cimadamore and Mirko Viroli. A Prolog-oriented ex-

tension of Java programming based on generics and annotations.

In PPPJ ’07: Proceedings of the 5th international symposium on

Principles and practice of programming in Java, pages 197–202,

New York, NY, USA, 2007. ACM.

[CV08a] Maurizio Cimadamore and Mirko Viroli. Integrating Java and

Prolog through generic methods and type inference. In SAC ’08:

Proceedings of the 2008 ACM symposium on Applied computing,

pages 198–205, New York, NY, USA, 2008. ACM.

[CV08b] Maurizio Cimadamore and Mirko Viroli. On the reification of

Java wildcards. Sci. Comput. Program., 73(2-3):59–75, 2008.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data

abstraction, and polymorphism. ACM Comput. Surv., 17(4):471–

523, 1985.

198 Bibliography

[DJ05] Gabriel Dos Reis and Jaakko Järvi. What is generic programming?

In Proceedings of the First International Workshop of Library-

Centric Software Design (LCSD ’05). An OOPSLA ’05 workshop,

October 2005.

[DKTE04] Alan Donovan, Adam Kiežun, Matthew S. Tschantz, and

Michael D. Ernst. Converting java programs to use generic

libraries. In OOPSLA ’04: Proceedings of the 19th annual ACM

SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, pages 15–34, New York, NY, USA,

2004. ACM.

[DOR05] Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-

paradigm Java-Prolog integration in tuProlog. Sci. Comput.

Program., 57(2):217–250, 2005.

[DRS06] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ con-

cepts. In POPL ’06: Conference record of the 33rd ACM

SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 295–308, New York, NY, USA, 2006. ACM.

[Esp06] M. Espák. Japlo: Rule-based programming on java. j-jucs,

12(9):1177–1189, 2006.

[Gaf04] Neal Gafter. Puzzling Through Erasure: answer section.

http://gafter.blogspot.com/2004/09/puzzling-through-erasure-

answer.html, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design patterns: elements of reusable object-oriented software.

Addison-Wesley Professional, 1995.

[GHS05] Aaron Greenhouse, T. J. Halloran, and William L. Scherlis. Ob-

servations on the assured evolution of concurrent Java programs.

Sci. Comput. Program., 58(3):384–411, 2005.

Bibliography 199

[HLS09] William Harrison, David Lievens, and Fabio Simeoni. Safer

typing of complex API usage through Java generics. In PPPJ

’09: Proceedings of the 7th International Conference on Principles

and Practice of Programming in Java, pages 67–75, New York,

NY, USA, 2009. ACM.

[IPW99] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Feather-

wieght Java: a minimal core calculus for Java and GJ. SIGPLAN

Not., 34(10):132–146, 1999.

[IV06] Atsushi Igarashi and Mirko Viroli. Variant parametric types: A

flexible subtyping scheme for generics. ACM Trans. Program.

Lang. Syst., 28(5):795–847, 2006.

[JGSB05] Bill Joy, James Gosling, Guy Steele, and Gilad Bracha. The Java

Language Specification (Third Edition). Addison-Wesley, New

York, 2005.

[JLo02] JLog team. JLog – Prolog in Java.

http://jlogic.sourceforge.net/, 2002.

[JPL] JPL: A bidirectional Prolog/Java interface.

http://www.swi-prolog.org/.

[JWL03] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine.

Concept-controlled polymorphism. In GPCE ’03: Proceedings

of the 2nd international conference on Generative programming

and component engineering, pages 228–244, New York, NY, USA,

2003. Springer-Verlag New York, Inc.

[k-p] K-Prolog Official Website.

http://www.kprolog.com/.

[KETF07] Adam Kieżun, Michael D. Ernst, Frank Tip, and Robert M.

Fuhrer. Refactoring for parameterizing Java classes. In ICSE’07,

Proceedings of the 29th International Conference on Software

200 Bibliography

Engineering, pages 437–446, Minneapolis, MN, USA, May 23–25,

2007.

[Kin05] Nobukuni Kino. Jipl: Java interface to prolog.

http://www.kprolog.com/jipl/, 2005.

[Kow74] Robert A. Kowalski. Predicate Logic as Programming Language.

In IFIP Congress, pages 569–574, 1974.

[KP06] Andrew J. Kennedy and Benjamin C. Pierce. On Decidability

of Nominal Subtyping with Variance, September 2006. FOOL-

WOOD ’07.

[KR08] Jevgeni Kabanov and Rein Raudjärv. Embedded typesafe do-

main specific languages for Java. In PPPJ ’08: Proceedings of

the 6th international symposium on Principles and practice of

programming in Java, pages 189–197, New York, NY, USA, 2008.

ACM.

[KREY06] Andrew Kennedy, Claudio Russo, Burak Emir, and Dachuan Yu.

Variance and Generalized Constraints for C# Generics. In Eu-

ropean Conference on Object-Oriented Programming (ECOOP),

2006.

[Kru92] Charles W. Krueger. Software reuse. ACM Comput. Surv.,

24(2):131–183, 1992.

[KWM+08] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,

Thomas Rodriguez, Kenneth Russell, and David Cox. Design

of the Java HotSpotTMclient compiler for Java 6. ACM Trans.

Archit. Code Optim., 5(1):1–32, 2008.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary

design of JML: a behavioral interface specification language for

java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

Bibliography 201

[Lis87] Barbara Liskov. Keynote address - data abstraction and hierarchy.

In OOPSLA ’87: Addendum to the proceedings on Object-oriented

programming systems, languages and applications (Addendum),

pages 17–34, New York, NY, USA, 1987. ACM.

[Lov07] Howard Lovatt. Comparing Inner Class/Closure Proposals.

http://www.artima.com/weblogs/viewpost.jsp?thread=202004,

2007.

[LSL99] Lie-Quan Lee, Jeremy G. Siek, and Andrew Lumsdaine. The

generic graph component library. SIGPLAN Not., 34(10):399–414,

1999.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specifi-

cation. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1999.

[MBL97] Andrew C. Meyers, Joseph A. Bank, and Barbara Liskov. Pa-

rameterized types for Java. In Symposium on Principles of

Programming Languages, pages 132–145, Paris, France, 15-17

January, 1997. ACM, New York.

[Mey86] Bertrand Meyer. Genericity versus inheritance. SIGPLAN Not.,

21(11):391–405, 1986.

[Mey89] B. Meyer. Reusability: the case for object-oriented design. Soft-

ware reusability: vol. 2, applications and experience, pages 1–33,

1989.

[Mica] Sun Microsystems. Java Platform, Standard Edition 6 API

Specification.

http://java.sun.com/javase/6/docs/api/.

[Micb] Sun Microsystems. Proposed extension to the classfile format

(Chapter 4 of the Java Virtual Machine Specification).

http://java.sun.com/docs/books/jvms/second edition/ClassFileFormat-

Java5.pdf.

202 Bibliography

[Mic01] Sun Microsystems. Adding generics to the JavaTM programming

language: Public review. JSR- 000014-PR, Sun Microsystems,

Palo Alto, CA, 2001.

[Mic05] Sun Microsystems. Jsr 269: Pluggable annotation processing api.

JSR- 000269-PR, Sun Microsystems, 2005.

[Mil78] Robin Milner. A theory of type polymorphism in programming.

Journal of Computer and System Sciences, 17:348–375, 1978.

[Min] Minerva Official Website.

http://www.ifcomputer.co.jp/MINERVA/.

[MS88] David Musser and Alexander A. Stepanov. Generic Programming.

In Symbolic and algebraic computation: ISSAC ’88, pages 13–25.

Springer, 1988.

[MZ06] Karl Mazurak and Steve Zdancewic. Type inference for Java 5:

Wildcards, f-bounds, and undecidability.

http://www.cis.upenn.edu/ stevez/note.html, 2006.

[N’g06] Olayinka N’guessan. Generic programming in Scala. Master’s

thesis, Texas A&M University, 2006.

[Nin07] Jaime Nino. The cost of erasure in Java generics type system. J.

Comput. Small Coll., 22(5):2–11, 2007.

[OG08] Bruno C.d.S. Oliveira and Jeremy Gibbons. Scala for generic

programmers. In WGP ’08: Proceedings of the ACM SIGPLAN

workshop on Generic programming, pages 25–36, New York, NY,

USA, 2008. ACM.

[ON94] Andrea Omicini and Antonio Natali. Object-Oriented Compu-

tations in Logic Programming. In ECOOP ’94: Proceedings of

the 8th European Conference on Object-Oriented Programming,

pages 194–212, London, UK, 1994. Springer-Verlag.

Bibliography 203

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating

theory into practice. In Symposium on Principles of Programming

Languages, pages 146–159, Paris, France, 15-17 January, 1997.

ACM, New York.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H.

Perkins, and Michael D. Ernst. Practical pluggable types for Java.

In ISSTA ’08: Proceedings of the 2008 international symposium

on Software testing and analysis, pages 201–212, New York, NY,

USA, 2008. ACM.

[PLB] Documentation for PrologBeans.

http://www.sics.se/isl/sicstuswww/site/index.html.

[Plu07] Martin Plumicke. Typeless programming in Java 5.0 with wild-

cards. In PPPJ ’07: Proceedings of the 5th international sympo-

sium on Principles and practice of programming in Java, pages

73–82, New York, NY, USA, 2007. ACM.

[PNCB06] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle.

Generic ownership for generic Java. In OOPSLA ’06: Proceedings

of the 21st annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, pages 311–324,

New York, NY, USA, 2006. ACM.

[PT98] Benjamin P. Pierce and David N. Turner. Local Type Inference.

In Symposium on Principles of Programming Languages, pages

252–265. ACM, New York, 1998.

[RS06] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ con-

cepts. In POPL, pages 295–308, 2006.

[SA98] Johe H. Solorzano and Suad Alagic. Parametric polymorphism

for Java: A reflective solution. In Conference on Object-Oriented

Programming, Systems, Languages and Applications, pages 216–

204 Bibliography

225, Vancouver, British Columbia, Canada, 18–22 October, 1998.

ACM, New York.

[SC06] James Sasitorn and Robert Cartwright. Efficient first-class gener-

ics on stock Java virtual machines. In Hisham Haddad, editor,

Proceedings of the 2006 ACM Symposium on Applied Computing

(SAC), Dijon, France, April 23-27, 2006, pages 1621–1628. ACM,

2006.

[SC08] Daniel Smith and Robert Cartwright. Java type inference is

broken: can we fix it? In OOPSLA ’08: Proceedings of the

23rd ACM SIGPLAN conference on Object-oriented programming

systems languages and applications, pages 505–524, New York,

NY, USA, 2008. ACM.

[SDNB02] Nathanael Sharli, Stéphane Ducasse, Oscar Nierstrasz, and An-

drew Black. Traits: Composable Units of Behavior. Technical

report, 2002.

[SK01] Don Syme and A. Kennedy. Design and implementation of gener-

ics for the .NET Common Language Runtime. In Programming

Languages Design and Implementation, Snowbird, Utah, 20–22

June, June 2001. ACM, New York.

[SL94] A. A. Stepanov and M. Lee. The Standard Template Library.

Technical report, 1994.

[SL05] Jeremy G. Siek and Andrew Lumsdaine. Essential language

support for generic programming. SIGPLAN Not., 40(6):73–84,

2005.

[Str] Bjarne Stroustrup. C++ Style and Technique FAQ.

http://www2.research.att.com/ bs/bs faq2.html#constraints.

[Sun] Sun Microsystems. Bug 4929881.

http://bugs.sun.com/bugdatabase/view bug.do?bug id=4993221.

Bibliography 205

[Sun09] Sun Microsystems. The Java EE 6 Tutorial.

http://java.sun.com/javaee/6/docs/tutorial/doc/, 2009.

[swi] SWI-Prolog Official Website.

http://www.swi-prolog.org/.

[TEPH05] Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild

FJ. In Phil Wadler, editor, Proceedings of FOOL 12, Long Beach,

California, USA, January 2005. ACM, School of Informatics,

University of Edinburgh. Electronic publication.

[THE+04] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter

von der Ahé, Gilad Bracha, and Neal Gafter. Adding wildcards to

the Java programming language. In SAC ’04: Proceedings of the

2004 ACM symposium on Applied computing, pages 1289–1296,

New York, NY, USA, 2004. ACM.

[tuP02] tuProlog Team. tuProlog at SourceForge.

http://sourceforge.net/projects/tuprolog/, 2002.

[vDD04] Daniel von Dincklage and Amer Diwan. Converting Java classes

to use generics. SIGPLAN Not., 39(10):1–14, 2004.

[VEK76] M. H. Van Emden and R. A. Kowalski. The Semantics of Predi-

cate Logic as a Programming Language. J. ACM, 23(4):733–742,

1976.

[Vir03a] Mirko Viroli. A Type-Passing Approach for the Implementation

of Parametric Methods in Java. Comput. J., 46(3):263–294, 2003.

[Vir03b] Mirko Viroli. A type-passing approach for the implementation

of parametric methods in Java. The Computer Journal, 46(3),

2003.

[Vir05] Mirko Viroli. Effective and Efficient Compilation of Run-Time

Generics in Java. In Viviana Bono, Michele Bugliesi, and Sophia

206 Bibliography

Drossopoulou, editors, 2nd Workshop on Object-Oriented Devel-

opments (WOOD 2004), volume 138(2) of Electronic Notes in

Theoretical Computer Science, pages 95–116. Elsevier Science

B.V., CONCUR 2004, London, UK, 30 August 2005.

[VN00] Mirko Viroli and Antonio Natali. Parametric polymorphism in

Java: an approach to translation based on reflective features.

ACM SIGPLAN, 35(10):146–165, October 2000. Conference on

Object-Oriented Programming Systems, Languages and Applica-

tions (OOPSLA 2000), Minneapolis, MA, USA, 15-19.

[VR05] Mirko Viroli and Giovanni Rimassa. On Access Restriction

with Java Wildcards. Journal of Object Technology, 4(10), 2005.

Special Issue: OOPS Track at ACM SAC 2005.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach

to type soundness. Inf. Comput., 115(1):38–94, 1994.

[WLT07] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. JavaGI: Gener-

alized Interfaces for Java. In ECOOP 2007, Proceedings, LNCS.

Springer-Verlag, July 2007. 25 pages; To appear.

[WT09] Stefan Wehr and Peter Thiemann. On the Decidability of Sub-

typing with Bounded Existential Types. In Proceedings of the

Seventh Asian Symposium on Programming Languages and Sys-

tems, volume 5904 of Lecture Notes in Computer Science, Seoul,

South Korea, 2009. SPRINGER.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam

Kieżun, and Michael D. Ernst. Object and reference immutability

using Java generics. In ESEC/FSE 2007: Proceedings of the

11th European Software Engineering Conference and the 15th

ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pages 75–84, Dubrovnik, Croatia, September 5–7,

2007.

