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Overview 

 

During this work, done mainly in the laboratories of the department of Industrial 

Chemistry and Materials of the University of Bologna but also in the laboratories of the 

Carnegie Mellon University in collaboration with prof. K. Matyjaszewski and at the 

university of Zaragoza in collaboration with prof. J. Barberá, was focused mainly on the 

synthesis and characterization of new functional polymeric materials. 

In the past years our group gained a deep knowledge about the photomodulation of 

azobenzene containing polymers. The aim of this thesis is to push forward the performances 

of these materials by the synthesis of well defined materials, in which, by a precise control 

over the macromolecular structures, better or even new functionality can be delivered to the 

synthesized material. 

For this purpose, besides the rich photochemistry of azoaromatic polymers that brings 

to the application, the control offered from the recent techniques of controlled radical 

polymerization, ATRP over all, gives an enormous range of opportunity for the developing of 

a new generation of functional materials whose properties are determinate not only by the 

chemical nature of the functional center (e.g. azoaromatic chromophore) but are tuned and 

even amplified by a synergy with the whole macromolecular structure. Old materials in new 

structures. 

In this contest the work of this thesis was focused mainly on the synthesis and 

characterization of well defined azoaromatic polymers in order to establish, for the first time, 

precise structure-properties correlation. In fact a series of well defined different azopolymers, 

chiral and achiral, with different molecular weight and highly monodisperse were synthesized 

and their properties were studied, in terms of photoexpansion and photomodulation of 

chirality. We were then able to study the influence of the macromolecular structure in terms 

of molecular weight and ramification on the studied properties. 

The huge amount of possibility offered by the tailoring of the macromolecular 

structure were exploited for the synthesis of new cholesteric photochromic polymers that can 

be used as a smart label for the certification of the thermal history of any thermosensitive 

product. 
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Finally the ATRP synthesis allowed us to synthesize a total new class of material, 

named molecular brushes: a flat surface covered with an ultra thin layer of polymeric chain 

covalently bond onto the surface from one end. This new class of materials is of extreme 

interest as they offer the possibility to tune and manage the interaction of the surface with the 

environment. In this contest we synthesized both azoaromatic surfaces, growing directly the 

polymer from the surface, and mixed brushes: surfaces covered with incompatible 

macromolecules. Both type of surfaces acts as “smart” surfaces: the first it is able to move the 

orientation of a LC cell by simply photomodulation and, thanks to the robustness of the 

covalent bond, can be used as a command surface overcoming all the limitation due to the 

dewetting of the active layer. The second type of surface, functionalized by a grafting-to 

method, can self assemble the topmost layer responding to changed environmental conditions, 

exposing different functionality according to different environment.  
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Chapter 1 

Introduction 

 

Atom Transfer Radical Polymerization – ATRP 
 

Radical polymerization is industrially the most widespread method to produce 

polymeric materials such as plastics, rubbers and fibers [1]. The advantages of radical 

polymerizations over ionic or coordination polymerizations are numerous: a large variety of 

vinyl monomers have been polymerized or copolymerized and the reaction conditions require 

only the absence of oxygen. Water, as in suspension or emulsion polymerization, or other 

impurities are well tolerated and the reactions occur at a convenient temperature range, 

typically from 0 to 100°C. The major drawbacks of conventional radical polymerizations are 

related to the lack of control over the polymer structure. Due to the slow initiation, fast 

propagation and subsequent transfer or termination, polymers with high molecular weights 

and high polydispersities are generally produced. These features are reflected in the physical 

and mechanical properties of the produced polymers and to alter and improve these 

properties, random copolymerizations have been traditionally used. 

The development of ionic polymerization methods allowed for the preparation of well-

defined polymers with controlled chain end functionalities and the synthesis of well-defined 

block and graft copolymers [2]. However, these polymerizations have to be carried out with 

nearly complete exclusion of moisture and often at very low temperatures. Moreover, only a 

limited number of monomers can be used, and the presence of functionalities in the monomers 

can cause undesirable side reactions. 

A relatively new method to synthesize well-defined polymers and copolymers is 

controlled radical polymerization [3-5]. In this field, several systems have been applied to 

control molecular weights and end functionalities: iniferters [6], nitroxides [7-9], Co-based 

systems[10, 11], degenerative transfer with alkyl iodides [12-14], most recently the RAFT-

process[15], and Ru- [16] and Ni-mediated [17] polymerizations. One of the most successful 

methods, however, is atom transfer radical polymerization (ATRP), based on a copper 
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halide/nitrogen based ligand catalyst[18, 19]. This controlled radical polymerization allows for 

the polymerization of a wide range of monomers such as styrenes[20, 21], acrylates [22] and 

methacrylates [23] including a variety of functional monomers (vide infra). Since ATRP is a 

controlled/‘living’ radical polymerization, well-defined polymers with molecular weights 

determined by the ratio of consumed monomer to introduced initiator are obtained, 

DPn=∆[M]/[I] 0, the polydispersities are generally low (Mw/Mn<1.3). Because of its 

mechanism, ATRP allows for the preparation of more precisely controlled polymers and 

many new materials have been synthesized [24]. New materials are made by varying the 

topology of the polymer (linear, branched, hyperbranched, stars, etc.) and/or the composition 

of the polymeric chains (statistical/gradient copolymers, block copolymers, grafts, etc.). 

Moreover, with this process, the end groups of the polymers are well-defined as they derive 

from the initiator used. As a variety of initiators can be used, including initiators containing 

functional groups, end functionalities can easily be incorporated [25]. 
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Mechanism 

ATRP reactions require the addition, or in situ formation, of four essential components 

for an ATRP reaction: 

• a molecule, which we have called a (macro)initiator, with at least one transferable 

atom or group, frequently a halogen, R-X, where X = Cl of Br;  

• a transition metal (compound),  

• a ligand that forms a complex with the transition metal (compound) to modify 

solubility and catalyst activity,  

• one or more radically (co)polymerizable monomers. 

One or more of these functions can be combined in a single molecule, e.g. an initiator 

and monomer, which directly forms a (hyper)branched structure when (co)polymerized. 

The general mechanism of ATRP is shown below. 

 

Scheme 1: General mechanism of an ATRP polymerization 

Mechanistically, ATRP is based on an inner sphere electron transfer process [26], which 

involves a reversible homolytic (pseudo)halogen transfer between a dormant species, an 

added initiator or the dormant propagating chain end, (Pn-X) and a transition metal complex in 

the lower oxidation state (Mtm/Ln) resulting in the formation of propagating radicals (R*) [27] 

and the metal complex in the higher oxidation state with a coordinated halide ligand (e.g. X-

Mtm+1/Ln).  

The active radicals form at a rate constant of activation (kact), subsequently propagate 

with a rate constant (kp) and reversibly deactivate (kdeact), but also terminate (kt). As the 

reaction progresses, radical termination is diminished as a result of the persistent radical 

effect, (PRE) [28],  and the equilibrium is strongly shifted towards the dormant species (kact << 

kdeact).  
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Addition of the persistent radical, (X-Mtm+1/Ln), to the initial reaction medium 

increases the efficiency of initiation by avoiding the need to form the persistent radical by 

early stage termination reactions. This results in better polymerization control and higher 

initiation efficiency. 

The equilibrium can be approached from both sides:  

• a standard or "normal" ATRP starting with RX/Mtn (an ATRP initiator and a catalyst 

in a lower oxidation state) [18] and,  

• a "reverse" ATRP which starts with radicals generated from a standard free radical 

initiator and the added X-Mtn+1 species. Successful polymerizations have been carried 

out starting with conventional free radical initiators, such as AIBN [29] and BPO [30] 

and higher oxidation state transition metal complexes. The higher oxidation state 

catalyst complex for an ATRP can also be activated by adding Mt0, or many other 

reducing agents, which then reduces the higher oxidation state transition metal 

complex, X-Mtm+1/Ln to form the X-Mtm/Ln activator in situ [31]. 

In order to have a well controlled polymerization the rate of activation and 

deactivation should be faster (at least for one magnitude order) than the propagation rate, 

otherwise the addition kinetics would follow a pathway similar to a conventional free radical 

polymerization, with loss of control. 

If the above conditions are met and the radical concentration is keep low to minimize 

the rate of termination reactions (bimolecular reactions) at each cycle just a few monomers 

are added to the growing chain and the polymerization can run in a controlled fashion. 

The total equilibrium described above can be idealized as the sum of other four 

elementary reactions: 



Introduction     7 

 

 

 

 
Scheme 2: ATRP equilibrium and elementar reactions 

1. Oxidation of the catalytic process, ruled by a electronic transfer constant (KET) 

2. Reduction of an halogen atom to an anion, ruled by an electronic affinity constant 

(KEA) 

3. Homolitic dissociation of the C-X bond of the (macro)initiator or growing chain (KBD) 

4. Association of the halogen to the catalytic complex (Kx) 

The ATRP constant therefore can be express as the combination of these equilibriums: 

XBDEAET
a

d
ATRP KKKK

k

k
K ==

 

In fact it was found a linear correlation between log(KATRP) and the redox potential of 

different catalytic systems with the same halogenophilicity (same KD) with the same KBD and 

KEA (same initiator and monomer). 

It is widely accepted that a controlled polymerization process should display the 

following features[5] :  

 

1. First-order Kinetics Behavior  

2. Pre-determinable Degree of Polymerization  

3. Narrow Molecular Weight Distribution  

4. Long-lived Polymer Chains  
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ATRP kinetics 

In agreement with the mechanism described above, neglecting the contribution of the 

chain termination, and considering a rapid equilibrium the reaction kinetic can be described 

as: 

[ ][ ] [ ][ ] [ ]
[ ]II

I

eqppp
Cu

Cu
IMKkPMkR ⋅=•= 0

 

The reaction rate is first order kinetic respect to the monomer and the number of 

growing chains, which depends only on the initiator concentration and on the ratio between 

activator and deactivator (CuI and CuII).  

The polymerization rate (Rp) with respect to the monomer concentration ([M]) is a 

linear function of time. This is due to the lack of termination, so that the concentration of the 

active propagating species ([P*]) is constant.  
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The consequence of the above equations and the effect of changes in P* are illustrated 

in Figure 1 

 

Figure 1 Illustration of the dependence of ln([M]0/[M]) on time 
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This semilogarithmic plot is very sensitive to any change of the concentration of the 

active propagating species. A constant [P*] is revealed by a straight line. An upward 

curvature indicates an increase in [P*], which occurs in case of slow initiation. On the other 

hand, a downward curvature suggests a decrease in [P*], which may result from termination 

reactions increasing the concentration of the persistent radical, or some other side reactions 

such as the catalytic system being poisoned or redox processes on the radical. 

It should also be noted that the semilogarithmic plot is not sensitive to chain transfer 

processes or slow exchange between different active species, since they do not affect the 

number of the active propagating species. 

Predeterminable degree of polymerization (Xn),  

The number average molecular weight (���) is a linear function of monomer 

conversion. 

 

 

This result comes from a constant number of chains throughout the polymerization, 

which requires the following two conditions: 

1. that initiation should be sufficiently fast so that nearly all chains start to grow 

simultaneously;  

2. no chain transfer occurs that increases the total number of chains  

Figure 2 shows that the ideal growth of molecular weights with conversion, as well as 

the effects of slow initiation and chain transfer on the molecular weight evolution. 
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Figure 2: The dependency of molecular weight on conversion 

It is important to recognize that the evolution of molecular weight is not very sensitive 

to chain termination, since the number of chains remains unchanged. The effect of termination 

is only observable on the plot when coupling reactions for polymers with very high molecular 

weights start to play a significant role. 

Narrow molecular weight distribution 

Although this feature is very desirable, it is not necessarily the result of a controlled 

polymerization, which only requires the absence of chain transfer and termination, but ignores 

the effect of rate of initiation, exchange and depropagation. Substantial studies [32-34] indicate 

that in order to obtain a polymer with a narrow molecular weight distribution, each of the 

following five requirements should be fulfilled. 

1. The rate of initiation is competitive with the rate of propagation. This condition 

allows the simultaneous growth of all the polymer chain.  

2. The exchange between species of different reactivity is faster than propagation. This 

condition ensures that all the active chain termini are equally susceptible to reaction 

with monomer for a uniform growth.  

3. There must be negligible chain transfer or termination.  

4. The rate of depropagation is substantially lower than propagation. This guarantees 

that the polymerization is irreversible.  

5. The system is homogenous and mixing is sufficiently fast. Therefore all active 

centers are introduced at the onset of the polymerization.  

This should yield a Poison distribution, as quantified in equation. 
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According to equation Eq 1.6, polydispersity (���/���) decreases with increasing 

molecular weight.  

Systems with slow exchange do not follow this perfect distribution but PDI's are 

defined by the following equation[35].  

 

��� �  ���� � � �  � �� ���	��� �!
�"#$$%��	& ' (
!)�* � �+ 

 

A polymerization that satisfies all five prerequisites listed above is expected to form a 

final polymer with a polydispersity less than 1.1 for Xn greater than 10. 

Long-lived polymer chains.  

This is a consequence of negligible chain transfer and termination. Hence, all the 

chains retain their active centers after the full consumption of the monomer. Propagation 

resumes upon introduction of additional monomer. This unique feature enables the 

preparation of block copolymers by sequential monomer addition. 

The significance of controlled polymerization as a synthetic tool is widely recognized 

and polymers having uniform predictable chain length are readily available. Controlled 

polymerization provides the best opportunity to control the bulk properties of a target material 

through control of the multitude of possible variations in composition, functionality and 

topology now attainable at a molecular level.  

Through appropriate selection of the functional (macro)initiator, copolymers formed in 

a "living"/controlled polymerization process can have any desired topology. Further, as noted 

at the foot of the figure showing what CRP can do, we highlight that mechanistic 
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transformations permit the use of macroinitiators or macromonomers prepared by other 

polymerization procedures in any CRP process which allows incorporation of a spectrum of 

functionalities and polymer segments prepared by any other controlled polymerization 

process into segments of copolymers prepared by CRP. 

Indeed a plethora of previously unattainable polymeric materials have been prepared. 

Numerous examples of gradient[36],  block[37] and graft [38] copolymers have been reported, as 

well as polymers with complex architectures, including comb shaped polymer brushes[39], 

stars[40], and hyperbranched [41] copolymers. 
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Component of the reaction mixture 

Initiator 

The role of the initiator is to start the polymerization reaction and to determinate the 

number of growing chain. In a well controlled ATRP reaction, as mentioned above, the 

medium degree of polymerization is related to the ratio between monomer and initiator and 

the conversion. 

The initiator is a molecule containing a group that can undergoes to hemolytic 

cleavage of the C-X bond and can be reversibly added to the catalytic systems. Usually this 

group is an halogen atom (Cl or, mainly, Br). In this way at the end of the reaction one end of 

the polymer is the initiator itself, and on the other end there will still be a reactive halogen 

atom. 

In this way, with an opportune design of the initiator molecule, is pretty easy to 

synthesize macromolecules bearing a functional end group (e.a.: a fluorescent marker) using a 

functional initiator.  

On the other hand the presence of a reactive halogen end group (in this case mainly 

bromine end group) can be exploited for the synthesis of block copolymer (see after) or for 

further post functionalization via substitution reaction. As an example the bromine atom can 

be substituted by an azide group and therefore the macromolecule can be functionalized via 

1,3 dipolar Huigens cycloadditon (click reaction). This approach demonstrate to be successful 

for the synthesis of a wide range of hybrid or functional material. 

Another important feature of the initiator molecules is to estabilish the ATRP 

equilibrium in a very short time, shorter than the time needed for the addition of monomers. 

This feature is of crucial importance for obtaining a monodisperse polymeric material.  

Several functional group can be used as initiator, α-halogen hesters are the most used 

initiator group, also for the possibility of an easy functionalization of the initiator molecule 

with a suitable moiety.  



14     Introduction 

 
For the synthesis of highly complex architectures (e.a. star polymers, hyperbranched 

or bottle-brush polymer) suitable initiator should be used. In Figure 3 are depicted a 

multifunctional initiator for the synthesis of star polymers, reactive polymers for brush bottle 

macromolecules and monomers bearing an initiating group for the synthesis of hyperbranched 

polymers. Moreover the choice of a engeneered initiator can be a simple and smart choice to 

introduce at one end of the polymeric chain a tailored functionality as a florescent marker 

(e.g. rhodamine B, Figure 3) 

 

 

 

 

Figure 3: various initiator for an ATRP polymerization 

 

Catalyst 

The instaurance of the ATRP equilibrium, between the capped and the radical form of 

the growing chains is determined by the catalyst. In order to have a controlled polymerization, 

as mentioned above, a low concentration of radical should be present (to minimize the 

termination) and the rate of activation and deactivation should be as fast as possible (to enable 

all the chains to grow simultaneously).  

In order to use a metal as the catalyst center some requirement should be met: 

• the metal should have two stable oxidation state with only one electron of difference 

• the metal center should have an high halogenophilicity (high KD) and the coordination 

number should increase of one in the high oxidation state 

• should be highly selective for the desired process avoiding side reaction 

• should form a stable complex with the used ligand 

Therefore are used catalyst based on transition metals, in which the ligand plays an 

important role to tailor the activity and selectivity of the catalyst. 

R
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A wide number of metals can be used, mainly from 6 to 11 group, but the most used is 

copper, for its low cost and versatility. The copper has two different stable oxidation state CuI 

and CuII separated by only one electron and possess all the characteristics mentioned above. 

Anyway other metals are studied, in particular ruthenium and iron, which are of great 

interest for the polymerization of acidic monomers, as acrylic acid, which can poison the 

copper catalyst and up to now cannot be polymerized via ATRP. 

As said above the catalytic system is composed by the transition metal and the ligand. 

Of course different metals are associated with different ligand; we are going to examine the 

ligands used for copper. 

The main role of the ligand in an ATRP reaction is to increase the solubility of the 

metal and to tailor its redox potential in order to model its activity. It was shown that activity 

increase using aliphatic amines instead of aromatic, and that the use of multidentated ligand 

and a C-2 bridge between nitrogen atoms increase activity. 

 

Figure 4: Typical ligand for ATRP Cu based catalyst 
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Conditions for an ATRP 

ATRP reaction are highly versatile, are quite robust towards impurity and therefore 

can be carried out in several ways, both in solution, bulk or in heterogenous system as 

emulsion, microemulsion or suspension. Several solvent can be used, apolar as toluene or 

benzene or polar as DMF or THF, or even protic solvent as water or ethanol. 

Normal ATRP 

Usually to carry out an ATRP the only precaution that should be taken is to 

deoxygenate the system prior to add the Cu(I) which is highly sensitive to air and rapidly 

oxidate to Cu(II). No further precaution should be taken.  

In this way the equilibrium is reached as described before and the reaction goes trough 

the pathway mentioned above. 

Reverse ATRP 

In this procedure a complex of the metal in the higher oxidation state is added to the 

solution of monomer and initiator. The catalyst is generated in situ by decomposition of a 

conventional thermal initiator such as AIBN. The advantage is that the components are 

insensitive to air and can handled easier, making this process more attractive for industrial 

process. 

The disadvantage is that the terminations are not anymore uniforms, being generated 

by the thermal initiator and the early growing chains. 

 
Scheme 3 RARTP mechanism 



 

 

Activator Generated by Electron Transfer, AGET ATRP

This procedure is similar to reverse ATRP, in fact in the systems only monomer, 

ATRP initiator, and the catalyst in the high oxidation state are present. The acti

generated in situ by the action of a reducing agent (e.g.: ascorbic acid or 

ethylhexanoate) which is able to reduce the metal catalyst but cannot generate radicals and 

therefore cannot start polymerization. This procedure has the advanta

Reverse ATRP, to produce polymers with well defined end group.

 

Scheme 4: AGET ATRP mechanism

 

ARGET ATRP 

Catalysts have been developed that show a broad range of activity. It is possible, 

therefore, to select an active catalyst an

Indeed with an extension of the concept of AGET ATRP

regeneration of the transition metal complex throughout the reaction, ARGET ATRP

is possible to reduce the level of catalyst below that of natural termination reactions and 

ATRP can be conducted with ppm levels of catalyst. ARGET ATRP arose when we 

considered the implications of the convenient procedure for initiating an ATRP syst

described in AGET ATRP, where the activators are generated by electron transfer (AGET) 

ATRP. It should be possible to use the reducing agents to constantly regenerate the ATRP 

activator, the Cu(I) species, from the Cu(II) species, formed during terminat

without directly or indirectly producing initiating spec

examination of the ATRP rate law shows that the polymerization rate depends only on the 

ratio of the concentration of Cu(I) to X

concentration of the copper complexes, therefore in principle, one could reduce the absolute 

amount of copper complex to ppm levels without affecting the polymerization rate.

Activator Generated by Electron Transfer, AGET ATRP 

This procedure is similar to reverse ATRP, in fact in the systems only monomer, 

ATRP initiator, and the catalyst in the high oxidation state are present. The acti

generated in situ by the action of a reducing agent (e.g.: ascorbic acid or 

) which is able to reduce the metal catalyst but cannot generate radicals and 

therefore cannot start polymerization. This procedure has the advantage, in comparison with 

Reverse ATRP, to produce polymers with well defined end group. 

 
Scheme 4: AGET ATRP mechanism 

atalysts have been developed that show a broad range of activity. It is possible, 

therefore, to select an active catalyst and run the reaction with lower levels of catalyst

Indeed with an extension of the concept of AGET ATRP[44] to include continuous 

regeneration of the transition metal complex throughout the reaction, ARGET ATRP

is possible to reduce the level of catalyst below that of natural termination reactions and 

ATRP can be conducted with ppm levels of catalyst. ARGET ATRP arose when we 

considered the implications of the convenient procedure for initiating an ATRP syst

described in AGET ATRP, where the activators are generated by electron transfer (AGET) 

t should be possible to use the reducing agents to constantly regenerate the ATRP 

activator, the Cu(I) species, from the Cu(II) species, formed during terminat

without directly or indirectly producing initiating species that generate new chains. 

examination of the ATRP rate law shows that the polymerization rate depends only on the 

ratio of the concentration of Cu(I) to X-Cu(II), and does not depend on the absolute 

concentration of the copper complexes, therefore in principle, one could reduce the absolute 

amount of copper complex to ppm levels without affecting the polymerization rate.
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This procedure is similar to reverse ATRP, in fact in the systems only monomer, 

ATRP initiator, and the catalyst in the high oxidation state are present. The activator is 

generated in situ by the action of a reducing agent (e.g.: ascorbic acid or tin(II) 2-

) which is able to reduce the metal catalyst but cannot generate radicals and 

ge, in comparison with 

atalysts have been developed that show a broad range of activity. It is possible, 

d run the reaction with lower levels of catalyst[42, 43]. 

to include continuous 

regeneration of the transition metal complex throughout the reaction, ARGET ATRP[43-46], it 

is possible to reduce the level of catalyst below that of natural termination reactions and 

ATRP can be conducted with ppm levels of catalyst. ARGET ATRP arose when we 

considered the implications of the convenient procedure for initiating an ATRP system 

described in AGET ATRP, where the activators are generated by electron transfer (AGET) 

t should be possible to use the reducing agents to constantly regenerate the ATRP 

activator, the Cu(I) species, from the Cu(II) species, formed during termination process, 

ies that generate new chains. A detailed 

examination of the ATRP rate law shows that the polymerization rate depends only on the 

depend on the absolute 

concentration of the copper complexes, therefore in principle, one could reduce the absolute 

amount of copper complex to ppm levels without affecting the polymerization rate. 
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However, a residual amount of deactivating species (i.e. X-Cu(II)) is required for a 

well-controlled polymerization since both, molecular weight distribution and initial molecular 

weight, depend on the ratio of the propagation and deactivation rate constants and the 

concentration of deactivator.  
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This means that in order to obtain polystyrene with Mw/Mn~1.2, when targeting a 

DP~200 and 90% conversion at ~100 0C, the actual amount of X-Cu(II) species required to 

conduct a controlled reaction is ~2 ppm, meaning that it could be reduced over 1,000 times 

from the level typically used in the initial ATRP of styrene. Unfortunately, if the amount of 

Cu(I) is reduced 1,000 fold, unavoidable radical-radical termination reactions irreversibly 

consume all of the activators present in the reaction media and the reactions stops; i.e. if the 

amount of Cu(I) initially added to the system was below 10 mole% of the initiator (i.e., all 

Cu(I) would be consumed if  10% of chains terminate). However, this situation could be 

overcome if there was constant regeneration of the Cu(I) activator species by environmentally 

acceptable reducing agents to compensate for any loss of Cu(I) by termination. 

 

Scheme 5: ARGET ATRP mechanism 
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Generally, it is desirable to add an excess of the ligands compared to the transition 

metal complex, in order to compensate for competitive complexation by 

monomer/solvent/reducing agent all present in excess compared to the transition metal[44, 47, 

48].  For example, styrene was polymerized by the addition of 5 ppm of CuCl2/Me6TREN and 

500 ppm of Sn(EH)2 to the reaction resulting in a polystyrene with Mn=12,500 (Mn,th = 

12,600) and Mw/Mn = 1.28. 

An added advantage of using low levels of catalyst is that catalyst induced side 

reactions are reduced and it is possible to prepare high molecular weight copolymers[48] and 

conduct the reaction in the presence of limited amounts of oxygen[49]. However ARGET is not 

the answer to all problems since the impact of the by products of the reduction reaction have 

to be considered. 

 

Surface Initiated ATRP. 

The functionalization of organic and inorganic surfaces with polymeric chains is a 

topic of extreme scientific interest for the numerous applications in the field of material 

science, biomedicine and for the fabrication of electronic devices. 

This kind of functionalization can be made in two ways: starting the polymerization 

from functional groups anchored on the surface (grafting from) or by a functionalization of 

the surface with telechelic polymeric chains (grafting from). 

With both approach is possible to obtain a coverage of the surface with polymeric 

chains, but with the former is possible to have higher grafting densities and smoother 

surfaces. If the lateral separation between adjacent chains is smaller than the gyration radius 

the chains are forced to adopt an extended conformation (brush) and not the usual random 

coil. This organization led to new properties of the polymeric layer such as extra low friction, 

higher glass transition and different supramolecular organization. 

Grafting onto 

The functionalization of surface is made by anchoring a telechelic polymer to the 

surface. ATRP is very functional for this approach because the functionality can be easily 

incorporate in the initiator (e.g.: a propargyl containing initiator) or can be introduced in the 
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polymeric chain by post functionalization (e.g.: substitution of the terminal bromine atom 

with an azide group). The polymeric chain is then reacted with functional group on the 

surface. In fact this scheme is very reproducible and has the great advantage of a extreme 

control over the polymers composition. 

As an example we can report the grafting of polystyrene (PS) chains onto silica 

nanoparticles. In the first case an alkine terminated PS synthesized by ATRP is grafted via 

click chemistry onto silica nanoparticles previously modified with an azide containing silane 
[50].  

In a second example silica nanoparticles were modified with a layer of a silane bearing 

a benzophenone residue. PS chains were then attached by fotoreaction. In this case, anyway, it 

was not possible to obtain a well defined monolayer of PS[51]. 

Anyway with this approach is quite difficult to obtain a dense layer of polymer chains. 

In fact there is a high entropic barrier to overcome for the polymeric chains to adopt an 

extended conformation loosing the random coil. Moreover, if the grafting is made in solution, 

also the solvatation energy plays an important role, because before the grafting (that is 

thermodymically favorite) the chain should be desolvatated and adsorbed on the surface. As a 

consequence grafting densities higher than 0.15 chains nm-2 are quite impossible to obtain 

with this method. 

Grafting from 

The grafting from method is very useful for obtaining a very dense polymeric layer. 

With this approach the surface is functionalized with an ATRP initiating group using a 

suitable chemistry to graft it onto the surface (e.g.: silane for the functionalization of silicon or 

metal oxides, thiol for gold) and then the polymerization is started on the surface. In this way 

no entropic barrier have to be overcome and thus the synthesis of layer with a grafting 

densities up to 1 chain nm-2 is possible. 

Modification of flat surfaces. 

The first step is the formation of a monolayer of initiator. This can be done using a 

proper initiator with an anchoring site as ethoxy or chloro silane for silica or thiol or disulfide 

for gold. 

The amount of initiator anchored on the surface is, anyway, extremely small 

(calculated to be 10-7 mol/L), in comparison with the amount of initiator usually used in a 
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conventional polymerization. As a consequence no control over the polymerization in a 

surface initiated ATRP (SI-ATRP) can be achieved: due to the persistent radical effect in fact 

the ATRP equilibrium cannot be reached and so the polymerization will not be a controlled 

process but will be a conventional free radical polymerization with a redox initiator.  

In order to have a good control over the polymerization we should permit the 

formation of the persistent radical. This can be made in two ways: 

- by addition of free initiator: some termination will occur in the bulk of the reaction 

leading to the formation of the necessary Cu(II) and then a control over the 

polymerization will be possible. 

- by the addition of the Cu(II) ligand complex (persistent radical). In this way the 

ATRP equilibrium will be present from the beginning of the reaction. 

These two different method have both some advantages and drawbacks. In the first 

case the formation of polymer in solution is helpful for the characterization of the chains 

grown on the surface, as is usually accepted that the polymer grown in solution and on the 

surface are identical. In the latter case the advantage is that no polymer will be formed in 

solution, making not necessary the purification of the surfaces from the adsorbed polymer. 

Moreover in the case of expensive functional monomer none will be lost and the unreacted 

monomer can be reused after purification from the catalyst. 

Modification of nanoparticles 

By the grafting from method also nanoparticles have been functionalized. The reaction 

procedure is quite similar to the functionalization of flat surfaces, but some slight difference 

can be found. 

First of all for this kind of polymerization the choice between the addition of free 

initiator and deactivator should be taken first considering the purification of the modified 

particles. In fact if the size of the nanoparticles is too small the purification from the free 

polymer can be quite difficult and then the addition of deactivator will be preferred. On the 

other side it was observed that for particles too big [52] the use of deactivator is not efficient as 

the ratio initiator/monomer is too low. In this case the addition of free initiator should be 

preferred, as the purification of big particles is quite easy. 
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Figure 5: Modification of nanoparticles by SI-ATRP 

Is also possible to use the polymer modified nanoparticles as macroinitiator for a 

second polymerization, synthesizing a block copolymer bound to the surface of the 

nanoparticles. In this way colloids consisting of an inorganic core and a shell made of 

polymethyl methacrylate, polystyrene or polybutylacrylate were synthesized[53]. 
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Liquid Crystals 
 

The discovery of liquid crystals is thought to have occurred nearly 150 years ago 

although its significance was not fully understood until over a hundred years later. Around the 

middle of the last century Virchow, Mettenheimer and Valentin found that the nerve fiber 

they were studying formed a fluid substance when left in water, which exhibited a strange 

behavior when viewed using polarized light. They did not realize this was a different phase 

but they are attributed with the first observation of liquid crystals. 

Later, in 1877, Otto Lehmann used a polarizing microscope with a heated stage to 

investigate the phase transitions of various substances. He found that one substance would 

change from a clear liquid to a cloudy liquid before crystallizing but he thought that this was 

simply an imperfect phase transition from liquid to crystalline. In 1888 Reinitzer [54]
 observed 

that a material known as cholesteryl benzoate had two distinct melting points. In his 

experiments, Reinitzer increased the temperature of a solid sample and watched the crystal 

change into a hazy liquid. As he increased the temperature further, the material changed again 

into a clear, transparent liquid. Because of this early work, Reinitzer is often credited with 

discovering a new phase of matter. He has consequently been given the credit for the 

discovery of the liquid crystalline phase. Up till 1890 all the liquid crystalline substances that 

had been investigated, had been naturally occurring and it was then that the first synthetic 

liquid crystal, p- azoxyanisole, was produced by Gatterman and Ritschke. Subsequently more 

liquid crystals were synthesized and it is now possible to produce liquid crystals with specific 

predetermined material properties. 

In the beginning of this century George Freidel conducted many experiments on liquid 

crystals and he explained the orienting effect of electric fields and the presence of defects in 

liquid crystals. In 1922 he proposed a classification of liquid crystals based upon the different 

molecular orderings of each substance. It was between 1922 and the World War Il that Oseen 

and Zocher developed a mathematical basis for the study of liquid crystals [55, 56]. 

After the start of the war many scientists believed that the important features of liquid 

crystals had been already discovered and it was not until the 1950's that work by Brown in 

America, Chistiakoff in the Soviet Union and Gray and Frank in England led to a revival of 

interest in liquid crystals. Maier and Saupe [57]
 formulated a microscopic theory of liquid 

crystals; Frank  [58] and later Leslie [59]
 and Ericksen [60]

 developed continuum theories for 
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static and dynamic systems and in 1968 scientists from RCA first demonstrated a liquid 

crystal display. The interest in the study of liquid crystals has grown ever since, partly due to 

the great variety of phenomena exhibited by liquid crystals and partly because of the 

enormous commercial interest and importance of liquid crystal displays. As research on this 

field continues and as new applications are developed, the role of liquid crystals in modern 

technology will continue to grow. 

 

Liquid crystals as fourth state of matter 

The three common states of the matter: solid, liquid and gas, are different because the 

molecules in each state have a different degree of order. In the solid state there exists a rigid 

arrangement of molecules, which stay in fixed positions and orientations with a small amount 

of variation due to molecular vibrations. To maintain this arrangement, large attractive forces 

are required to hold the molecules in piece and therefore a solid is difficult to deform. 

In the liquid phase the molecules have no fixed positions or orientations and are free to 

move in a random fashion; consequently, the liquid state has less order than the solid state. 

The random motions of the molecules mean that the intermolecular attractive forces are not 

strong as in solids but are only strong enough to keep the liquid molecules fairly close 

together. A liquid can therefore be easily deformed. 

In the gas state the random motion of the molecules overcomes the intermolecular 

forces, and the molecules spread out to fill any container that holds them. The order in a 

liquid, which derives from the closeness of the molecules, is lost in a gas. The probability of 

molecules in a certain region being in a rigid arrangement, and having the same orientation 

can be used to define a positional and orientational order. These parameters have the greatest 

value in the solid state and the least one in the gaseous state. 

A liquid crystalline phase occurs in some substances in a temperature region between 

the solid and liquid states. In this state the substance possesses properties of both liquids and 

solids. A liquid crystal is a fluid like a liquid but it is anisotropic, in its optical and electro-

magnetic characteristics, like a solid. When the liquid crystal is formed from the isotropic 

state, some amount of positional or orientational order is gained. It is this order that accounts 

for the anisotropies of the substance. The distinguishing characteristic of the liquid crystalline 

state is the tendency of the molecules (mesogens) to point along a common axis, called the 

director. This is in contrast to molecules in the liquid phase, which have no intrinsic order. In 
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the solid state, molecules are highly ordered and have little translational freedom. The 

characteristic orientational order of the liquid crystal state is between the traditional solid and 

liquid phases and this is the origin of the term mesogenic state, used synonymously with 

liquid crystal state. Note the average alignment of the molecules for each phase (Figure 5): 

Figure 6 Average alignment of the molecules: a) solid phase, b) liquid crystal phase, c) liquid phase. 

It is sometimes difficult to determine whether a material is in a crystal or liquid crystal 

state. Crystalline materials demonstrate long range periodic order in three dimensions [61]
. By 

definition, an isotropic liquid has no orientational order. 

Substances that are not as ordered as a solid, yet have some degree of alignment, are 

thus properly called liquid crystals. Liquid crystals can be classified into two main categories: 

 

• thermotropic liquid crystals; 

• lyotropic liquid crystals. 

 

While these two types of liquid crystals are distinguished by the mechanisms that 

drive their self-organization, they are similar in many ways. Thermotropic transitions occur in 

most liquid crystals, and they are defined by the fact that the transitions to the liquid 

crystalline state are thermally induced. That is, one can arrive at the liquid crystalline state by 

raising the temperature of a solid and/or lowering the temperature of a liquid. Thermotropic 

liquid crystals can be classified into two types: enantiotropic liquid crystals, which can be 

changed into the liquid crystal state from either lowering the temperature of a liquid or raising 

of the temperature of a solid, and monotropic liquid crystals, which can only be changed into 

the liquid crystal state from either an increase in the temperature of a solid or a decrease in the 
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temperature of a liquid, but not both. In general, thermotropic mesophases occur because of 

anisotropic dispersion forces between the molecules and because of packing interactions [62, 

63]. 

There are mainly two types of mesogenic molecules which can originate thermotropic 

liquid crystals: discotics and rod-shaped molecules. 

Discotics are flat disc-like molecules consisting of a core of adjacent aromatic rings. 

This allows for two-dimensional columnar ordering. Rod-shaped molecules have an 

elongated, anisotropic geometry, which allows for preferential alignment along one spatial 

direction. 

As showed in Figure 7, rod-like molecules (a) organize themselves into layers, 

whereas disc-like molecules (b) form columns that can be arranged parallel to each other in a 

two-dimensional lattice. 

A bend introduced in the rigid core leads to 'banana-shaped' molecules (c). The 

rotation of these molecules around their long axis is restricted and they adopt a directed order 

within the layers. Depending on the bending direction in adjacent layers, either 

antiferroelectric or ferroelectric smectic phases may result. 

Molecules with a conical shape (d) can lead to a polar order within columns. 

The polar direction of neighbouring columns may be parallel or anti-parallel. 

Sawamura  [64] have made a 'shuttlecock-shaped' molecule (e) based on the C60 

molecule, whose distinctive shape leads to directed organization in columns [65]. 
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Figure 7 Shape-depending organization of Liquid crystal molecules 

 

In contrast to thermotropic mesophases, lyotropic liquid crystal transitions occur both 

by the influence of solvents, and by change in temperature (Figure 8). 

Lyotropic mesophases occur as a result of solvent-induced aggregation of the 

constituent mesogens into anisotropic micellar structures. Lyotropic mesogens are typically 

amphiphilic, meaning that they are composed of both lyophilic (solventattracting) and 

lyophobic (solvent-repelling) parts. This causes them to form micellar structures in the 

presence of a solvent, since the lyophobic ends will collect together, out of the solvent 

environment. As the concentration of the solution is increased and the solution is cooled, the 

micelles increase in size and eventually coalesce. This process separates the newly formed 

liquid crystalline state from the solvent. A very large number of chemical compounds are 

known to exhibit one or several liquid crystalline phases. Despite significant differences in 

chemical composition, these molecules have some common features such as anisotropy of 

molecular shape and physical properties[66]
. 
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Figure 8: Lyotropic mesophases depending on the Temperature and amphiphile concentration 

 

  



 

 

Liquid crystal phases

Most liquid crystal compounds exhibit polymorphism, or a condition where

one phase is observed in the 

the "subphases" of liquid crystal materials.

Mesophases are formed by changing the amount of order in the sample, either by

imposing order in only one or two dimensions, or by allowing the 

of translational motion [68]. 

 

Figure 9: Schematic representation of the liquid crystal phases for rod

 

Nematic liquid crystal phase

It is characterized by molecules that have no positional order but tend to poin

same direction (Figure 9). This reordering is thought to be due to the

the molecules. This claim is supported by the fact that most

be long thin molecules with a rigid central region.

 

Figure 10: Schematic representation of the nematic mesophase(left) and typical
by Polarized Optical Microscopy(right)

Liquid crystal phases [67]
 

Most liquid crystal compounds exhibit polymorphism, or a condition where

one phase is observed in the liquid crystalline state. The term mesophase is used to describe 

the "subphases" of liquid crystal materials. 

Mesophases are formed by changing the amount of order in the sample, either by

imposing order in only one or two dimensions, or by allowing the molecules to

 

Schematic representation of the liquid crystal phases for rod-like molecules 

Nematic liquid crystal phase 

It is characterized by molecules that have no positional order but tend to poin

). This reordering is thought to be due to the 

the molecules. This claim is supported by the fact that most liquid crystal molecules tend to 

be long thin molecules with a rigid central region. 

Schematic representation of the nematic mesophase(left) and typical texture corresponding, showed 
by Polarized Optical Microscopy(right) 
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Most liquid crystal compounds exhibit polymorphism, or a condition where more than 

mesophase is used to describe 

Mesophases are formed by changing the amount of order in the sample, either by 

molecules to have a degree 

 

It is characterized by molecules that have no positional order but tend to point in the 

 packing constraints of 

liquid crystal molecules tend to 

 

texture corresponding, showed 
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Molecules in this phase possess three degree of translational freedom, and they can 

move in all the directions. The viscosity of the nematic liquid crystals is similar to that of the 

isotropic liquid. 

 

Smectic liquid crystal phase 

The smectic state is another distinct mesophase present in some liquid crystal 

substances. Molecules in this phase show a degree of translational state not present in the 

nematic. In the smectic state, the molecules maintain the general orientational order of 

nematics, but in addition tend to align themselves in layers or planes. Motion is restricted to 

within these planes, and separate planes are observed to flow past each other. Within each 

layer the liquid crystal is essentially a two dimensional nematic liquid crystal. The increased 

order means that the smectic state is more "solid-like" than the nematic. This positional 

ordering may be described in terms of the density of the mass centers of the molecules: 
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where z is the coordinate parallel to the layer normal; the average density of the fluid 

is Po, d is the distance between layers and ψ is the order parameter. When |ψ|=0 there is no 

layering and the material is nematic, but if |ψ|>0 then some amount of sinusoidal layering 

exists and the material is smectic. There are many types of smectic materials [69]. In particular, 

in the smectic-A mesophase, the director is perpendicular to the smectic piane, and there is no 

particular positional order in the layer (Figure 11a). 

In the smectic-C mesophase (Figure 11b), molecules are arranged as in the smectic-A 

mesophase, but the director is at a constant tilt angle measured normally to the smectic plane. 

In some smectic materials, called Sm-CA (Figure 10c) or Anti-Ferroelectric Liquid Crystal 

(AFLC), the direction of this tilt may alternate to form a so called "herringbone structure". 

Smectic materials have potential advantages over nematics when used in liquid crystal 

displays. They exhibit better viewing angle characteristics, contrast ratio and can operate at 

high speed. 

Similarly, the smectic-B mesophase (Figure 10d) orients with the director 

perpendicular to the smectic plane, but the molecules are arranged into a network of hexagons 

within the layer. 
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Figure 11: Smectic A (a), Smectic C(b), Smectic CA (c) and (Hexatic) Smectic B phases (d) 
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Chiral nematic liquid crystal phase

This phase is typically composed of nematic mesogenic molecules containing a

center which produces intermolecular forces that favor alignment between

slight angle to one another. This leads to the formation of a

as a stack of very thin 2-D nematic

respect to those above and below. 

This induces a helical director configuration in which the director rotates through the

material (Figure 12). The molecules shown are merely

nematic mesogens lying in the slabs of infinitesimal thickness with a

orientation around the director. This is not to be confused with the

in smectic mesophases. 

 

 

Figure 12: Schematic view of the helical director configuration
crossed polarized. 

 

Mesophases having this type of structure are called cholesteric mesophases. An

important characteristic of the cholesteric mesophase is the pitch

distance the director to rotates one full turn in the helix (

helical structure of the chiral nematic phase is its ability

wavelengths equal to the pitch length, so 

to the corresponding wavelength of light

cholesterics change color when

temperature dependence of the 

layers, which modifies the pitch length resulting in an alteration of the wavelength of reflected 

light according to the temperature. The angle at which the director changes, can be

Chiral nematic liquid crystal phase 

composed of nematic mesogenic molecules containing a

center which produces intermolecular forces that favor alignment between

slight angle to one another. This leads to the formation of a structure which can be visualized 

D nematic-like layers with the director in each layer twisted with 

respect to those above and below.  

induces a helical director configuration in which the director rotates through the

). The molecules shown are merely representations of the many

nematic mesogens lying in the slabs of infinitesimal thickness with a 

orientation around the director. This is not to be confused with the planar arrangement found 

Schematic view of the helical director configuration and mesophase microphotograph between 

Mesophases having this type of structure are called cholesteric mesophases. An

important characteristic of the cholesteric mesophase is the pitch, p, which is

distance the director to rotates one full turn in the helix (Figure 12) A by

helical structure of the chiral nematic phase is its ability to selectively reflect light of 

wavelengths equal to the pitch length, so that a color will be reflected when the pitch is equal 

to the corresponding wavelength of light in the visible spectrum. Due to this phenomena, 

cholesterics change color when the temperature changes. The effect is based on the 

 gradual change in director orientation between successive 

the pitch length resulting in an alteration of the wavelength of reflected 

according to the temperature. The angle at which the director changes, can be

composed of nematic mesogenic molecules containing a chiral 

center which produces intermolecular forces that favor alignment between molecules at a 

structure which can be visualized 

with the director in each layer twisted with 

induces a helical director configuration in which the director rotates through the 

representations of the many chiral 

 distribution of 

planar arrangement found 

 

and mesophase microphotograph between 

Mesophases having this type of structure are called cholesteric mesophases. An 

which is defined as the 

) A by-product of the 

to selectively reflect light of 

will be reflected when the pitch is equal 

in the visible spectrum. Due to this phenomena, 

the temperature changes. The effect is based on the 

gradual change in director orientation between successive 

the pitch length resulting in an alteration of the wavelength of reflected 

according to the temperature. The angle at which the director changes, can be made 



Introduction     33 

 

 

 

larger, and thus tighten the pitch, by increasing the temperature of the molecules, hence giving 

them more thermal energy. 

Similarly, decreasing the temperature of the molecules increases the pitch length of the 

chiral nematic liquid crystal. This makes it possible to build a liquid crystal thermometer that 

displays the temperature of its environment by the reflected color. Mixtures of various types 

of these liquid crystals are often used to create sensors with a wide variety of responses to 

temperature change. 

Such sensors are used for thermometers often in the form of heat sensitive films. In the 

fabrication of films, since putting chiral nematic liquid crystals directly on a black 

background would lead to degradation and perhaps contamination, the crystals are micro-

encapsulated into particles of very small dimensions. The particles are then treated with a 

binding material that will shrink upon curing so as to flatten the microcapsules and produce 

the best alignment for brighter colors. Adjusting the chemical composition can also control 

the wavelength of the reflected light, since cholesterics can either consist of exclusively chiral 

molecules or of nematic molecules with a chiral dopant dispersed throughout. In this case, the 

dopant concentration is used to adjust the chirality and thus the pitch. 

 

Chiral smectics liquid crystal phase 

In a similar way to chiral nematics there are chiral forms of smectic phases. 

Figure 13 shows schematically a chiral smectic C material, denoted by smectic-C*. 

Consistent with the smectic-C, the director makes a tilt angle with respect to the smectic layer. 

The difference is that this angle rotates from layer to layer forming a helical structure. In other 

words, the director of the smectic-C* mesophase is not parallel or perpendicular to the layers, 

and it rotates from one layer to the next (Figure 14). 

This helix may be suppressed by placing the liquid crystal in a cell where the material 

is sandwiched between two glass plates. Such systems are said to be surface stabilized. Once 

the helix is suppressed and the directors in each layer are forced to lie in the plane of the glass 

plates the chiral nature of the molecules creates a spontaneous polarization within each layer. 
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Figure 13: Director tilt in smectic-C* phase

 

In some smectic mesophases, the molecules are affected by the various layers

and below them. Therefore , a small amount of three

Smectic-G phase is an example demonstrating this type of

 

Figure 14: Smectic C* structure and texture

C* phase 

ic mesophases, the molecules are affected by the various layers

and below them. Therefore , a small amount of three-dimensional order is

G phase is an example demonstrating this type of arrangement (Figure 

tic C* structure and texture 

 

ic mesophases, the molecules are affected by the various layers above 

dimensional order is observed. The 

Figure 15) 

 



 

 

Figure 15: Crystal G phase structure and texture

 

Columnar liquid crystals phases

These phases are different from the previous types because they are shaped like

instead of long rods. This mesophase is characterized by 

(Figure 16). The columns are packed together to form a two

The arrangement of the molecules within the columns and the

themselves leads to new mesophases.

Figure 17: Columnar liquid crystal phase.

 

 

 

: Crystal G phase structure and texture 

Columnar liquid crystals phases 

These phases are different from the previous types because they are shaped like

instead of long rods. This mesophase is characterized by stacked columns of

). The columns are packed together to form a two-dimensional

The arrangement of the molecules within the columns and the arrangement of the columns 

themselves leads to new mesophases.  

Columnar liquid crystal phase. 
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These phases are different from the previous types because they are shaped like disks 

stacked columns of molecules 

dimensional crystalline array. 

arrangement of the columns 
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Physical properties of liquid crystals 

 

The physical behavior of liquid crystals can be divided into scalar and non scalar 

properties. A typical scalar property is the orientational order parameter S. 

Important non scalar properties are the dielectric, diamagnetic, optical, and elastic 

coefficients. 

Orientational order parameter 

To quantify just how much order is present in a liquid crystal material, an order 

parameter (S) is defined. Traditionally, the order parameter is given as follows: 

 

N �  �
( OP!)Q(R � �S 

In this equation e is the angle between the axis of an individual molecule and the 

director of the liquid crystal. The brackets denote an average over all of the molecules in the 

sample (Figure 17). 

 

 
Figure 17:Tilt angle between the molecular axis and the director n. 

In an isotropic liquid, where all the orientations are possible, the average of the cosine 

terms is zero, and therefore the order parameter is equal to zero. For a perfect crystal, the 

order parameter evaluates to one. Typical values for the order parameter of a liquid crystal 

range between 0.3 and 0.9, with the exact value a function of temperature, as a result of 

kinetic molecular motion. 

When the molecular symmetry is not perfectly cylindrical, as in a real nematic liquid 

crystal, the order parameter becomes a matrix whose generic element is [70]: 
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where ij and αβ are respectively the coordinates of the fixed and molecular system; θjβ 

is the angle between the j axis and the β axis; δij and δαβ are Kroenecker's delta functions. 

Dielectric anisotropy 

The response of liquid crystal molecules to an electric field is the major characteristic 

utilized in industrial applications. The ability of the director to align along an external field is 

caused by the electric nature of the molecules. 

Permanent electric dipoles result when one end of a molecule has a net positive charge 

while the other end has a net negative charge, giving an unbalanced distribution of charge. A 

liquid crystal molecule containing a permanent dipole might or might not be polar, depending 

on the symmetry of the dipoles within or attached to the main molecular body. When an 

external electric field is applied to the liquid crystal, the dipole molecules tend to orient 

themselves along the direction of the field. In the Figure 19, the black arrows represent the 

electric field vector and the red arrows show the electric force on the molecule. 

 

 
Figure 19: Effect of the applied electric field on the dipole molecules 

Even if a molecule does not form a permanent dipole, it can still be influenced by an 

electric field. In some cases, the field produces slight rearrangement of electrons and protons 

in molecules such that an induced electric dipole results. 

While not as strong as permanent dipoles, orientation with the external field still 

occurs. By applying an electric field along the long axis of the liquid crystal, the permittivity 

(i.e. parallel to the director) is observed. However, the application of an electric field 

perpendicular to this axis results in a permittivity . The anisotropy of the dielectric 

permittivity is given by 
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∆Z �  Z||  � Z\ 

the dielectric anisotropy can be positive or negative depending by the orientation 

(respectively parallel or perpendicular) of the molecular dipole respect to the molecular axis. 

The electric energy density for volume unit depends on the electrical displacement according 

to the following equation: 

 

] ^ !
_ �  � �
` a b�] �  � c ZdeLf ] � '∆Z

eL+ D�]F( 

when is positive there is a minimum in the energy if n and E are parallel, while when 

is negative the energy reaches a minimum if n is perpendicular to E. Values for of technically 

useful material range from between -6 to +50. The mean dielectric permittivity for a nematic 

liquid crystal can be described by [71]: 

 

Zg � Z|| � (ZdP  

 

Diamagnetic anisotropy 

The effects of magnetic fields on liquid crystal molecules are analogous to electric 

fields. Because magnetic fields are generated by moving electric charges, permanent magnetic 

dipoles are produced by electrons moving about atoms. 

When a magnetic field is applied, the molecules will tend to align along or opposite 

the field. The macroscopic magnetization M is given by: 

 

� �  hVWiW 

where ε and β are the axis of the molecular reference system; χ is the magnetic 

susceptibility. The diamagnetic properties of nematogenic liquid crystal can be described by 

two susceptibilities and The diamagnetic anisotropy is defined as 

 

∆j � j|| �  jd   
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using the above equation, the magnetization can be written as follows: 

 

� � jdi �  kj|| �  jdlDm �F�  
and the corresponding density of magnetic energy far volume unit is then given 

by [72]: 

 

]n�o� � � a ��ii
�

� � �
( jdm( � � �

( ∆jD� mF(   
Usually for this reason the minimum of the energy is reached when n has the same 

orientation of the field. The director orientation also depends on surface interactions: for a 

nematic liquid crystal tangentially oriented respect to the surface and subjected to a strong 

surface interaction, the director reorientation increases with the distance from the surface, 

until it become parallel to the field direction. It has been calculated that the angle between the 

director and the magnetic field is described by the following expression [73]: 

 

p � �
_  qr _sDiFt

 

S is the length of magnetic coherence, and assuming K=K 11=K 22=K 33 it is expressed by 

the following equation: 

 

s � ' u
v�∆h+

�( �
i 

A magnetic field H is able to induce an elastic deformation over a length scale ; over a 

nematic liquid crystal with diamagnetic anisotropy and elastic constant K (µ0 is the magnetic 

permeability constant). This equation provides an order of magnitude estimate for the field 

required to reorient the liquid crystal director. Intuitively ; can be defined as the thickness of 

the nematic liquid crystal layer where the orientation depends more on the surface interaction 

than on the field action. 

The diamagnetic anisotropy is linked to the order parameter S by [70]: 



40     Introduction 

 
 

N � j|| � jd  
j� � jw  

where and are the susceptibilities of the nematic liquid crystal parallel and 

perpendicular to the magnetic field and are the susceptibilities of the liquid crystal molecule 

parallel and perpendicular to the molecular longitudinal axis. 

 

Optical anisotropy 

Liquid crystals are found to be birefringent, due to their anisotropic nature: they 

exhibit double refraction (having two indices of refraction). Light polarized parallel to the 

director has a different index of refraction (that is to say it travels at a different velocity) than 

light polarized perpendicular to the director. 

Thus, when light enters a birefringent material, such as a nematic liquid crystal 

sample, the process is modeled in terms of the light being broken up into the fast (called the 

ordinary ray) and slow (called the extraordinary ray) components (Figure 19). 

Because the two components travel at different velocities, the waves get out of phase. 

When the light rays are recombined as they exit the birefringent material, the polarization 

state has changed because of this phase difference [74]. 

 

 

 

Figure 19:Light traveling through a birefringent medium. 

The birefringence of a material is characterized by the difference, ∆n, in the indices of 

refraction for the ordinary and extraordinary rays. 

Quantitatively, since the index of refraction of a material is defined as the ratio of the 

speed of light in vacuum to that in the material, we have for this case: 
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for the velocities of a wave traveling perpendicular to the director. The maximum 

value for the birefringence is given by: 

 

∆n = ne-no = n||-n\ 

where and are the refraction index of the light polarized having the electrical vector 

respectively parallel and perpendicular to the director. ∆n varies from zero to the maximum 

value, depending on the travel direction. In the general case of a wave traveling in an arbitrary 

direction relative to the director in a liquid crystal sample, no is coincident with and is given 

by [75]: 

 

∆� � �||�d
x�||(!)Q(p � �d( !)Q(p

 

where θ is the angle between the incident ray and the director. 

The condition ne>no describes a positive uniaxial material, so that nematic liquid 

crystals are in this category. For typical nematic liquid crystals, no is approximately 1.5 and 

the maximum difference, ∆n, may range between 0.05 and 0.5. The ∆n value depends on the 

wavelength of the light and the temperature. 
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Elastic constants 

Liquid crystals respond to an external stimulus with an elastic reaction, varying only 

the molecules orientation. The elastic reaction for volume unit in apolar, achiral, nematic 

liquid crystal with cylindrical symmetry depends on three elastic constant K11, K22 and K33 as 

follow [76]: 

 

y �  �
( �u�Dz�F( � u(D�z { �F( � uPD�z�F(	 

Each term in this equation is related to a particular deformation: splay (K11), twist 

(K22) and bend (K33) (Figure 20). 

The elastic constants are strongly temperature dependent. 

 

 

 

Bend  Twist  Splay 

Figure 21:Elastic deformations of a liquid crystal 
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Anchoring energy 

The director orientation in a nematic liquid crystal at the interface with a solid surface 

can be defined by two angles: the polar angle α, and the azimuthal angle φ. The orientation is 

homeotropic when θ=0, while gives a planar or homogenous orientation. 

The surface energy FS it is composed by two terms: the isotropic superficial energy Fi S 

, and the anchoring energy. The latter is expressed by the following equation [77]: 

 

y�Q � �
( |QT�(Xp 

Where W is the angular anchoring and Fa S is the necessary energy to turn the director 

by an angle δθ from the equilibrium direction. 

The alignment of liquid crystal molecules, was from the beginning a problem of main 

importance, in order to obtain macroscopically mono-oriented liquid crystal films to be 

employed in the display technology. Thus many devices, as command surfaces fot the 

alignment of liquid crystals, are of main interest for the fabrication of optical devices. 
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Chapter 2 

Photoexpansion 

 

Introduction and Scope 
 

Recently, intensive activity has been directed towards the development of materials for 

recording, transfer and processing of data. In this context photochromic liquid crystalline 

polymeric (LCP) systems have become of great interest, because they combine the physico–

chemical properties of macromolecular compounds, the mesomorphic properties of liquid 

crystals and the photosensitivity of chromophores anchored to the main chain as side groups 
[1]. 

Among these materials, polymers functionalized with azobenzenes appear to be one of 

the most suitable materials for holographic storage [2, 3], photoorienting layers of liquid 

crystalline displays [4] etc. This feature is associated with a number of advantages offered by 

azoaromatic compounds, such as high quantum yield of forward trans-to-cis and back cis-to-

trans isomerization, relatively high stability and durability of polymer films, as well as the 

possibility of multiple photoirradiation cycles, etc. 

An area of increasing interest includes the use of azobenzenes to generate 

photomechanical effects or even macroscopic motion. In particular, it appears possible that 

azoic materials could act as photo-actuators or artificial muscles [5, 6] in some carefully 

selected applications [7]. For example, single-wavelength ellipsometry measurements on 

amorphous azopolymers show a linear expansion of the material (about 4%) during irradiation 
[8]. The expansion involves both a reversible and an irreversible component, suggesting the 

presence of both elastic expansion and viscoelastic flow. Subsequent, reversible expansions 

and contractions were observed with repeated irradiation cycles, the relative expansion 

resulting 0.6–1.6%. Although the photomechanical effect is relatively small, it can be 

amplified to larger scale motion, as the bending of freestanding liquid-crystalline elastomers 

(LCEs) films demonstrates [5, 6]. 
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Similarly, the photo-induced bending of a microcantilever coated with an azobenzene 

monolayer that expands upon irradiation [9] shows how azobenzene photoexpansion below the 

glass transition temperature (Tg) can be applied to device structures. 

The photoinduced volume variation is a property exhibited by various azobenzene 

containing systems [10], such as gels, elastomers, cross-linked polymers or dendrites, which 

possess as common feature the network structure with different degree of coupling between 

the network elements or branches. Our study aimed to investigate  the influence on the 

photomechanical effects of the network elements length and their coupling. We studied 

therefore linear polymers with different chain lengths and the related star polymers where a 

defined coupling element is introduced by the central core, instead of the statistical links 

present in gel, dendrites or cross-linked polymers. 

For these investigations it appears that polymeric samples with a well-defined 

structure are needed for a better understanding of the structure-properties correlation; hence, 

derivatives with a carefully selected molecular mass and low polydispersity are required. This 

goal can be achieved by using a controlled polymerisation procedure such as atom transfer 

radical polymerisation (ATRP) [11].  

This procedure is in fact very versatile, being suitable to polymerize a wide range of 

monomers, insensitive to many functional groups and tolerant towards impurities present in 

solvent and reactants, including water. Several methacrylic esters have been successfully 

polymerized with this method, for example n-butyl methacrylate [12, 13], fluorinated 

methacrylic esters [14] and 1-phenoxycarbonyl ethyl methacrylate [15], as well as amorphous [16, 

17] and liquid crystalline (LC) [18, 19] polymers containing azoaromatic moieties in the side-

chain. 

Herein, we report a comparison between the different behaviour of linear and star 

shaped liquid crystalline polymers under optical pumping of the azo-benzene 

photoisomerisation, aimed at a better understanding of the role played by the macromolecular 

structure in the photomechanical effects of side-chain LC polymers. 

In particular, we have considered the two series of homopolymers depicted in Scheme 

1: four linear, poly(4-x-methacryloyloxy-hexyloxy-ethoxyazobenzene) [Poly(M6A )-2 

through Poly(M6A )-24] [20, 21], and four related three-arms branched macromolecular 

derivatives with controlled average molecular weight, Star(4-x-methacryloyloxy-hexyloxy-

ethoxyazobenzene) [Star(M6A )-2 through Star(M6A )-24] [22, 23], obtained by ATRP of 

monomer 4-x-methacryloyloxy-hexyloxy-ethoxyazobenzene (M6A ) (Scheme 1) in the 
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presence of allyl 2-bromo-isobutyrate (ABiB ), or 1,3,5-(2’-bromo-2’-

methylpropionato)benzene (BMPB), as the mono- or trifunctional initiator, respectively, 

having variable average chain length with low polydispersity just by varying the process 

duration. 

 
Scheme 1: Synthesis of linear and star-shaped polymeric derivatives 

All the derivatives have been characterized by standard spectroscopic techniques and 

their liquid-crystalline behavior investigated by differential scanning calorimetry (DSC) and 

polarized optical microscopy (POM). The structure–property relationships of these systems 

have been compared with those of the previously reported [24] analogue Poly(M6A ), 

obtained by AIBN free radical polymerization, having ��� = 74,000 and ���/��� = 1.9. 

Finally, the photomechanical effect has been investigated by ellipsometry by 

monitoring the photo-induced volume variation of thin films of the samples in order to 

evaluate the relevance of the polymer molecular weight for future applications of these 

materials. 

  

n
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Synthesis and Spectroscopic Characterization
 

Well-defined LC linear and star shaped homopolymers were obtained by 

polymerization of M6A  in the presence of 

polymers) or BiBP (as trinfunctional for three

HMTETA  as ligand. The occurrence of polymerization involving the methacrylic double 

bond was confirmed by FT-IR, showing the d

the stretching vibration of the double bond in the monomer, and by 

which the resonances at 5.60 and 6.10 ppm related to the vinylidenic protons of monomer 

M6A  are absent. As an example, Figure 1 reports the 

In all the 1H-NMR spectra of synthesized polymers the signals related to the methylic 

protons of the initiator are partially overlapped on those of the repeating units. Wherea

resonances of the methylene and methyl groups bonded to the quaternary carbon atom bearing 

the terminal Br atom at 1.95 and 2.20 ppm, respectively, and the resonance of the CH, CH

and CH2-O allyl protons of ABiB 

visible (Figure 1).  

 

Figure 1: 1H-NMR spectrum of Poly(M6A

On the other hand, the signals related to the aromatic and aliphatic protons of the 

central core in the star shaped polymers Star(

those of the repeating units. The sample ob

Synthesis and Spectroscopic Characterization

defined LC linear and star shaped homopolymers were obtained by 

in the presence of ABiB (as monofunctional initiator for linear 

(as trinfunctional for three-arm shaped star polymers) and Cu(I)Br with 

as ligand. The occurrence of polymerization involving the methacrylic double 

IR, showing the disappearance of the band at 1640 cm

the stretching vibration of the double bond in the monomer, and by 1H-NMR spectra, in 

which the resonances at 5.60 and 6.10 ppm related to the vinylidenic protons of monomer 

are absent. As an example, Figure 1 reports the 1H-NMR spectrum of Poly(

NMR spectra of synthesized polymers the signals related to the methylic 

protons of the initiator are partially overlapped on those of the repeating units. Wherea

resonances of the methylene and methyl groups bonded to the quaternary carbon atom bearing 

the terminal Br atom at 1.95 and 2.20 ppm, respectively, and the resonance of the CH, CH

ABiB residue at 5.85, 5.30 and 4.60 ppm, respectively, are well 

M6A )-2 in CDCl3. Starred signal refers to solvent resonances.

On the other hand, the signals related to the aromatic and aliphatic protons of the 

shaped polymers Star(M6A )-4 to Star(M6A )-24 are overlapped on 

those of the repeating units. The sample obtained at lower reaction times, 

Synthesis and Spectroscopic Characterization 

defined LC linear and star shaped homopolymers were obtained by 

(as monofunctional initiator for linear 

and Cu(I)Br with 

as ligand. The occurrence of polymerization involving the methacrylic double 

isappearance of the band at 1640 cm-1 related to 

NMR spectra, in 

which the resonances at 5.60 and 6.10 ppm related to the vinylidenic protons of monomer 

NMR spectrum of Poly(M6A )-2. 

NMR spectra of synthesized polymers the signals related to the methylic 

protons of the initiator are partially overlapped on those of the repeating units. Whereas the 

resonances of the methylene and methyl groups bonded to the quaternary carbon atom bearing 

the terminal Br atom at 1.95 and 2.20 ppm, respectively, and the resonance of the CH, CH2  

respectively, are well 

 
. Starred signal refers to solvent resonances. 

On the other hand, the signals related to the aromatic and aliphatic protons of the 

24 are overlapped on 

tained at lower reaction times, Star(M6A )-2, 
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displays the resonances of the methylene and methyl groups bonded to the quaternary carbon 

atom bearing the terminal Br atom at 1.9 and 2.3 ppm, respectively. Their intensity decreases 

by increasing the reaction time and becomes progressively obscured by the more intense 

resonances related to the aliphatic protons of the main chain, thus preventing assessment of 

the number average molecular weight of each sample directly by integration of the NMR 

signals. 

The living character of the polymerization is confirmed by 13C-NMR spectra, which 

display signals related to the quaternary carbon atom bonded to Br at 58.0 ppm and to the 

methyl and methylene carbon atoms of the growing chain end-group at 27.5 and 38.9 ppm, 

respectively.  

The average molecular weight can be calculated by 1H-NMR spectroscopy for the 

linear derivatives by the ratio of the integral of the protons of the initiator residue and of the 

aromatic and CH2-O protons of the photochromic repeating unit. Molecular weights 

calculated in this manner are in good agreement with the ones determinated by SEC (Table 1). 

This operation is not possible for the star shaped polymers, as mentioned above, 

becouse of the overlapping of the aromatic signals of the core and of the azoaromatic 

moieties, therefore their molecular weight can be determinated only by SEC analisys (Table 

1). 

Yields and number average molecular weight values of the obtained polymers (Table 

1) show a strong dependence on the reaction duration: by varying this last parameter only, we 

have obtained several samples of various average chain length.  

Figure 2 shows an approximately linear relationship between ln([M]0/[M] t) (where 

[M] 0 and [M]t are the initial and at t time monomer concentrations, respectively) and the 

reaction time, thus indicating a first-order kinetics of the polymerization rate with respect to 

the monomer concentration and a relatively constant concentration of the growing species 

throughout the process, apart a negative deviation at higher conversion as observed elsewhere 

for ATRP polymerisations [14]. 
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Figure 2: Time dependence of Ln([M]0/[M] t) [•] and of the average molecular weight ���, ~q��� �  [▲] in the 
ATRP of M6A  in THF. 

Table 1: synthetic data for the polymeric derivatives 

Sample Time (h) ���,��� ���, ~q��� �  ���,9� ln([M] 0/[M] t) 

Poly(M6A )-2 2 4600 3300 4400 c 0.17 

Poly(M6A )-4 4 6000 5900 5800 c 0.33 

Poly(M6A )-8 8 9700 9600 10000 c 0.62 

Poly(M6A )-24 24 14800 14000 15300 c 1.24 

Star(M6A)-2 2 5900 - 5600 c 0.12 

Star(M6A)-4 4 7800 - 8600 c 0.23 

Star(M6A)-8 8 17400 - 19000 c 0.38 

Star(M6A)-24 24 29400 - 43700 c 1.25 
a Determinated by SEC in THF at 25°C 
b Calculated by 1H-NMR spectroscopy integrating the peak of methylenic allyl protons (at 5.30 ppm) and 
averaging on the values of the integrals of aromatic protons (at 7.90 and 6.80 ppm) and CH2-O protons (around 4 
ppm) 

c Calculated by equation:  
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There is also a relationship between the reaction time and the number average 

molecular weight. In fact just varying the time of polymerisation is possible to modulate the 

molecular weight of the polymer, obtaining always a monodispersed system with a typical 

ATRP lower polydispersity index, in the range 1.12-1.17 as shown in Figure 3 by the 

superimposition of the SEC traces at different convesrions for the series of the star derviatives 

Star(M6A )-2 to Star(M6A )-24 (Figure 3 and Table 2). 

 
Figure 3: Normalized molecular weight distributions of star polymers as determined by SEC in THF at 25°C. 

The plot of the number average molecular weight of the resulting star-shaped 

polymers as determined by SEC ���,��� against monomer conversion (calculated by unreacted 

monomer collection from polymerization mixture) is shown in Figure 4. The theoretical 

values of ����, (���,9�), that are valid only in the absence of chain termination and transfer 

reactions, may be calculated by the following equation [19]: 

 

���,9�= Conversion * (MM6A / MBIBP) * Mw,M6A + Mw,BMPB 

where MM6A and MBMPB are the initial amounts in moles of monomer and trifunctional 

initiator, respectively, and MW,M6A and MW,BMPB their respective molecular weights. As 

reported in Figure 4, calculated and SEC values are coincident only at low values of monomer 

conversion but, as the conversion increases, they diverge to an increasing extent. Such a 

behavior, previously reported for star-shaped chiral photochromic polymethacrylates [16], 

cannot be ascribed to termination reactions taking place under the real polymerization 

conditions, as proved by the low and almost constant values of ���/��� (in the range 1.08–

1.21), reported in Table 2, but to the particular molecular structure of multiarms polymers. It 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
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is well known, in fact, that star polymers have a smaller hydrodynamic volume with respect to 

that of linear polystyrenes having the same molecular weight. As a consequence SEC analysis 

gives underestimated molecular weight values for star-shaped polymers when measured with 

reference to the usually adopted linear polystyrene standards [25, 26]. 

Anyway, the approximately linear correlation between ���,��� and monomer 

conversion is indicative of the living character of the ATRP process and SEC analysis proves 

to be useful to confirm that a steady increment of the average molecular weight with 

conversion has taken place. 

Table 2: Structural and Thermal Characteristics of the Polymeric Materials 
 Structural properties  Thermal transitions c 

Sample Mn 
a PDI a Xn

b  Tg (°C) TS
�

N (°C) Ti (°C) 

Poly(M6A )-2 4600 1.13 11.2  57 66 116 

Poly(M6A )-4 6000 1.12 14.6  63 76 129 

Poly(M6A )-8 9700 1.13 23.6  69 79 129 

Poly(M6A )-24 14800 1.17 36.0  76 92 148 

Star(M6A)-2 5600d 1.21 4.5  57 78 124 

Star(M6A)-4 8600d 1.12 7.0  57 80 127 

Star(M6A)-8 19000d 1.08 15.4  71 87 142 

Star(M6A)-24  43700d 1.14 35.5  85 94 150 
a Determined by SEC in THF at 25°C. 
b Average polymerisation degree (Xn) for linear macromolecules and for each branch of the star shaped 
derivatives calculated by Mn values. 
c Obtained from the second DSC heating cycle under nitrogen at 10*C min-1 heating rate. g (glass), S (smectic 
A1), N (nematic), I (isotropic) phases. 
d Calculated by ���,9�= Conversion * (MM6A / MBIBP) * Mw,M6A + Mw,BMPB, where MM6A and MBMPB are the initial 
amounts in moles of monomer and trifunctional initiator and MW,M6A and MW,BMPB are their molecular weights, 
respectively. 
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Figure 4: Evolution of the number average molecular weight determined by SEC in THF at 25°C (o) and 
calculated values (●) versus conversion in the ATRP of M6A . 

In conclusion, all the instrumental characterization techniques confirm that living 

linear and star shaped polymers with varying molecular size have been successfully obtained. 

Each chain contains a bromine atom as end group that could be replaced through a variety of 

reactions leading either to end-functionalized polymers or used as the initiating site for the 

polymerization of a different monomer to obtain novel block copolymers. 

The UV-Vis absorption spectra in CHCl3 solution of all the investigated polymers, as 

well as the monomer M6A , exhibit, in the 250–650 nm spectral region, two bands related to 

the n–π* and π–π* electronic transitions of the azobenzene chromophore in trans-

configuration with maxima centered at about 360 nm (ε ≈ 28000 L mol-1 cm-1) and 440nm (ε 

≈ 1500 L mol-1 cm-1), respectively [27] and within the limits of experimental error they appear 

qualitatively and quantitatively independent of polymerization degree. 
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Figure 5: UV-Vis spectra of Poly(M6A )

 

The polymer were therefore irradiated with UV light at 390 nm in order to performo 

trans to cis isomerization until the photostationary equilibrium is reached. The 

isomerization is induced by illumination with blue light at 470 nm (Figure 5).

 

  

 
)-8 and irradiation light 
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isomerization until the photostationary equilibrium is reached. The 

induced by illumination with blue light at 470 nm (Figure 5). 

The polymer were therefore irradiated with UV light at 390 nm in order to performo 

isomerization until the photostationary equilibrium is reached. The cis to trans 
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Thermal Properties, Polarized Optical Microscopy and XRD 
Characterization  

 

With the aim to study their LC properties, all the polymeric derivatives have been 

characterized by differential scanning calorimetry (DSC) and polarized optical microscopy 

(POM). Phase transition temperatures determined by DSC are summarized in Table 1: all the 

macromolecules display on heating a glass transition temperature (Tg), a smectic liquid-

crystal phase melting endotherm (TSM) with a consequent nematic liquid-crystal phase 

melting endotherm and finally an isotropization temperature (Ti). In all cases, on cooling, the 

latter transitions show a modest degree of supercooling (4–7 °C), whereas this effect is much 

pronounced for smectic-nematic transition and a stable frozen nematic mesophase is obtained 

and maintained at room temperature. In Figure 6 we report, as an example, the first cooling 

and the second cycle heating curves for the sample Poly(M6A )-8. 

Figure 6: DSC cooling (first scan) and heating curves (second scan) for Poly(M6A )-8 

 

The smectic (SA1) and nematic (N) liquid-crystalline phases have been identified by 

comparison of their DSC traces with that one of Poly(M6A )-AIBN, obtained by AIBN-

initiated free radical polymerization, extensively studied by DSC, POM, and X-ray diffraction 
[24]; the nematic phase has been observed also by POM (Figure 7) while, due to the closeness 
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of Tg and TSM, the smectic phase can not be observed. Indeed, the LC texture and the thermal 

properties of Poly(M6A ) homopolymers obtained by ATRP are in agreement with those of 

Poly(M6A )-AIBN with the expected differences in the transition temperatures values (Table 

2).  

 

 
Figure 7. Polarizing optical micrographs of a typical schlieren texture of Poly(M6A )-8 in nematic phase after 
isotropisation and annealing at 100°C.  

The transition temperatures appear strongly dependent on the polymerization degree, 

the glass (Tg), the smectic-nematic (TSM) and the nematic–isotropic transition temperatures 

(Ti) of the series diminishing with the decrease of chain length (Figure 7 and Table 2). 

In particular, the Ti and TSM values of Poly(M6A )-2 to Poly(M6A )-24 increase from 

116 to 148 °C and from 66 to 92°C (Table 2) approaching the maximum values of 152° and 

97°C, respectively, found for Poly(M6A )-AIBN with Mw = 74;000, obtained by AIBN-

initiated free radical polymerization [24]. The polymeric samples characterized by lower 

average molecular weight show wider smectic phase (SA1) ranges and, similarly to the other 

polymeric samples, a liquid crystalline nematic phase stable for approximately 50 degrees. 
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Figure 8: DSC heating curves (second scan) of the linear polymers investigated 

Also the macromolecular structure plays an important role on the thermal 

characteristic: we observed how the presence of a branching in the central part of the 

polymers induce higher transition temperatures for derivatives with the same average 

molecular weight and similar polydispersities (Table 2). This behaviour can be explained by 

the higher stiffness of the central core and thus the reduced mobility of these branched system 

that will form more entaglments compared to the linear ones. 

With the aim of verifying the type of mesophase and confirming that the LC structures 

are the same for the linear and the star polymers, the two derivatives have been analysed by 

X-ray diffraction (XRD) and compared with the similar Poly(M6A )-AIBN [24]. The samples 

have been investigated in the glassy smectic phase in order to observe any difference in the 

layer spacing. To develop a smectic mesophase, the samples were submitted to a thermal 

treatment consisting of a heating cycle above the Ti, followed by cooling at 10 °C/min to a 

temperature between the TS→N and the Tg and a final annealing for one hour. The XRD 

diffraction patterns of the annealed samples are characteristic of a smectic phase (Figure 8).  
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Figure 9: XRD diffraction pattern of Poly(M6A) -24 in the glassy smectic phase.  

They contain two scattering maxima: the first, at low angles, is sharp and related to the layer 

spacing of the smectic phase; the second, at high angles, is broad and diffuse, and corresponds 

roughly to a distance of 4.4-4.5 Å, related to the liquid-like lateral interaction between the 

azoaromatic chromophores. In the absence of annealing at the smectic temperature the 

mesogens cannot organize themselves in the layer structure and the XRD diffraction pattern 

shows only the presence of a glassy nematic phase. The measured layer spacings in the 

smectic mesophase are gathered in Table 3 

 

Table 3. Structural data by XRD 

Sample Phase Measured layer spacing in Å Predicted length in Å a) 

Poly[M6A ]-24 SA1 28,5 ±0,5 30 

 Star[M6A ]-24 SA1 26,4 ±0,5 

Poly[M6A ]-AIBN b) SA1 26,2 ±0,5 

a) Monomer length assessed by Dreiding stereomodels for a fully extended conformation; 
b)  ref. [24] 

 

Comparing the measured layer spacings in the smectic mesophase, 28,5±0,5 and 

26,4±0,5 Å for Poly(M6A )-24 and Star(M6A )-24, respectively, with the predicted monomer 

length of 30 Å, as assessed from Dreiding stereomodels for a fully extended conformation, it 

is evident that the experimental measurements are consistent with a single-layer smectic A 

(SA1) mesophase, without significant differences in layer periodicity between Poly(M6A )-24 
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and Star(M6A )-24. Therefore the liquid crystal phase structure appears unaffected by the 

presence of branching in the macromolecules.  
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Photoexpansion and photomechanical effects 
 

The photomechanical effects (i.e. the dependence of volume and density under 

illumination) have been studied by ellipsometry as a function of molecular weight on the 

synthesized compounds, with a particular attention to the parameters important for the 

potential applications such: total percentage volume variation, response time, stability and 

reproducibility. Ellipsometry, by a simultaneous and independent determination of film 

thickness and refractive index, allows an estimation of volume and density vari

moreover when applied to thin samples, it allows a uniform optical pumping with rather low 

optical power densities (10-1000 

A study of the photo-expansion and contraction mechanisms as a function of the 

polymeric chain length with a narrow 

phenomena (as well in the photoinduced molecular reorientation) a key role is played by the 

free volume distribution (Figure 10

 

 
Figure 10: Idealization of several cycles of photoexpansion and photoc
and polydisperse ones (B) 

Beyond the direct influence of excluded volume on the mechanical response of the 

material, it may have effects even the photoisomerization process: both optical and thermally 

induced isomerization rates are sensitive to the molecular environment, as has been 

characterized in various azobenzene systems by absorption spectroscopy both in solid sta

and solutions [28]. In particular in polymers, especially below the glass transition temperature 

as a consequence of the interaction with the surrounding matrix, the isomerization processes 

deviate from the first order kinetic typical of solution in good solvents, and the rates vary one 
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polymeric chain length with a narrow polydispersity is an important issue, since in such 
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Figure 10: Idealization of several cycles of photoexpansion and photocontraction in monodisperse systems (A) 
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material, it may have effects even the photoisomerization process: both optical and thermally 

ation rates are sensitive to the molecular environment, as has been 
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The photomechanical effects (i.e. the dependence of volume and density under 

illumination) have been studied by ellipsometry as a function of molecular weight on the 

synthesized compounds, with a particular attention to the parameters important for the 

ential applications such: total percentage volume variation, response time, stability and 

reproducibility. Ellipsometry, by a simultaneous and independent determination of film 

thickness and refractive index, allows an estimation of volume and density variation, 

moreover when applied to thin samples, it allows a uniform optical pumping with rather low 

expansion and contraction mechanisms as a function of the 

polydispersity is an important issue, since in such 

phenomena (as well in the photoinduced molecular reorientation) a key role is played by the 

ontraction in monodisperse systems (A) 

Beyond the direct influence of excluded volume on the mechanical response of the 

material, it may have effects even the photoisomerization process: both optical and thermally 

ation rates are sensitive to the molecular environment, as has been 

characterized in various azobenzene systems by absorption spectroscopy both in solid state 

. In particular in polymers, especially below the glass transition temperature 

as a consequence of the interaction with the surrounding matrix, the isomerization processes 

deviate from the first order kinetic typical of solution in good solvents, and the rates vary one 
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order of magnitude. The study of the dependence of photoinduced processes in azo polymers 

on the molecular weight has been carried out with  photoinduced birefringence [29] which 

shows the how an increasing material viscosity slow down the dynamics and stabilize the 

effect. Less attention has been paid on the effect of polidispersity, such parameter becomes 

fundamental in the phenomenology of photoinduced macroscopic volume variation, since a 

broadening in the distribution of the polymeric chain lengths strongly influences the 

microscopic excluded volume as evidenced by positron lifetime spectroscopy studies [30]. 

Figure 11: Typical thickness (a) and refractive index (b) variations of Poly(M6A)-24 during two optical cycles of 
photoisomerization at 30°C with both UV (385 nm) and vis (470 nm) light power set at 200 µW/cm2. Dashed 

vertical lines indicate the UV and vis illumination switched alternatively on and off during the first cycle. 

We studied therefore the photomechanical effect on these highly monodisperse 

polymers with different molecular weight; experimentally we observed several contraction 

and expansion cycles of the samples, induced respectively trough an UV (385 nm) and Vis 

(470 nm) illumination. A typical measurement is shown in Figure 11: illumination in UV 

region compacts the film down to a thickness that we found to be independent on the starting 

values. The photoinduced trans to cis conversion clears the thermal history of sample and 

brings it to the highest density state. The fluidification [31-33] effect due to the high 

concentration of cis isomers allows the system to relax toward the same equilibrium state 
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even at temperatures below the glass transition, clearing all memory effects. Such contraction 

has been found to be stable: no variation was found even after the trans recovery taking place 

in several hours with the thermal activated isomerization, as can be monitored by the 

measurement of the refractive index, which is different in the two isomers. When the UV 

induced contraction is followed by a visible illumination, the sample expands and the 

achieved volume remains as well stable with no dependence on temperature below Tg. The 

refractive index, increases at higher cis-isomer concentration or density; a simultaneous 

variation of those parameters in opposite direction determines a change of sign of the 

refractive index trend as shown in the lower panel of Figure 11. 

Several optical cycles were performed and evidencing a complete reproducibility of 

both volume variation and response time, the stability was checked by detecting no variation 

on the measured parameters on the days time scale.  
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Effects of molecular weight [21] 
 

We focused our attention on the volume variation and response time of the sample as a 

function of molecular weight, obtainig the result summarized in Figure 11. 

The volume variations of the material under study, as reported for a similar compound 
[34], show a higher value compared to other reported in literature [8], the difference is due in 

our opinion to the type of azobenzene dye employed. In the present study, we used 

azobenzene chromophore of the first class (azobenzene-type), according to the Rau 

classification scheme [35], which are characterized spectroscopically by a low intensity cis 

band in the visible region well separated from a high intensity trans band in the UV and with 

a slow thermal cis-to-trans back-isomerization. The other two classes: the amino and pseudo-

stilbene types are characterized on the contrary by overlapping bands, which allow only a 

resonant photoisomerization, and a shorter cis isomer lifetime. Both effects don’t allow an 

efficient trans to cis isomerization while in azobenzene of the first class an almost complete 

conversion is possible. The possibility of moving the relative isomer population in a wider 

range allows obtaining a higher macroscopic volume variation.  

We measured the variation on the different compounds at room temperature (25 °C) as 

shown in the first panel in Figure 12 while response time of photo-expansion is reported in the 

second panel. A longer polymeric chain was found to allow a higher volume variation through 

the photoinduced effect while on other hand it slows down the dynamics as observed in the 

measured relaxation times.  

The dependence of photoinduced volume variation reflects the behavior of the 

microscopic free volume as a function of the polymeric chain length reported in literature [30]. 

Materials with higher molecular weight seem therefore more suitable for applications 

requiring volume variation since they can store more free volume, while the slow dynamic 

response may be improved by acting both on temperature or optical pump power. 
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Figure 12: Photoinduced volume expansion (a) and relaxation times (b) versus the increment of sample average 
molecular weight after irradiation with 200 µW/cm2  UV light (385 nm) at room temperature. 
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Comparative study between linear and star shaped polymers [36] 
 

The thickness and refractive index variations of samples during irradiation have been 

monitored in real time using an ellipsometer by measuring the ellipsometric angles ∆ and Ψ 

with 5 second time resolution. 

An example of photoexpansion at room temperature of samples previously compacted 

with UV illumination is reported in Figure 13; where the dynamics of thickness of a linear 

[Poly(M6A )-4] and a star polymer [Star(M6A )-4] are reported for comparison. 

 
Figure 13: Examples of expansion dynamics Poly(M6A )-4 and Star(M6A)-4. 

 

Generally the photoinduced dynamics in azo-PLC depends on the system viscosity, 

resulting on slower relaxation times with increasing molecular weight as reported in the case 

of photoinduced birefringence [29]. Here we observe, as a first remarkable difference between 

the two macromolecule types, that the branched polymer with a comparable Tg (even lower 

see Table 2) and molecular weight displays a higher relaxation time. Such result suggests that 

the star macromolecular geometry inhibits the photoinduced softening/fluidification effect [33] 

which allows the molecular reorientation in azo-PLC polymers even well below the Tg. The 

coupling introduced by the star geometry influences not only the dynamics but also the 
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overall effect, namely the final volume variation, as it can be deducted from Figure 13. The 

data obtained for the eight investigated polymers are gathered in Figure 14. 

 
Figure 14: Percentage volume variation as a function of the molecular weight of the linear polymers (squares), 
Star Polymers (Stars) and of each branch (Nf=3) of the Star polymers (Circles). 

 

The measurements were performed below the Tg of each compound at 55°C; this 

higher temperature was chosen in order to gain a faster dynamics. The final film percentage 

expansion (∆V/V) of the compounds, plotted as a function of their molecular weight (Figure 

12), clearly indicates a frustration introduced by the branched geometry in the photo-

expansion. The percentage volume expansion increases with the molecular weight in both 

cases, either for linear and star polymers, due to the ability of longer chain to store more free 

volume. However the effect of central core coupling present in the star polymers, could 

suggest that for an efficient photoexpansion also independent chains are required. As a matter 

of fact, also plotting the expansion as a function of the single arm length of the star polymers, 

obtained by molecular weight (Table 1) divided by the number of arms (functional number Nf 

= 3), the trend of expansivity remains still lower than that of the related linear polymers 

(Figure 12). Such phenomenon can be ascribed to the reduction of possible chain 

conformations introduced by the constrain represented by the aromatic central core. 

Moreover an other possible cause of this effect may lay in the initial structure of the 

star polymers which is generally characterised by an higher density at given molecular 

weight, as it can be measured by the refractive index values. In Figure 13 we report the 

photoinduced expansivity for films of different composition (star and linear geometry, with 
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different chain lengths) as a function of the refractive index, which in turn, at a given molar 

refractivity, is related to the sample density via the Lorentz–Lorenz equation. Data were taken 

at RT and at 55°C. The major finding observing Figure 13 is that there is an overall 

correlation between the density and the photoinduced expansivity: the samples with higher 

refractive index and hence higher density exhibit a smaller expansivity, which is a clear 

indication of the importance of the free volume in determining not only the time scale on 

which the expansion occurs, but also its overall extension. Interestingly enough, focusing on 

the linear polymers only, as the polymeric length is increased, a larger photoinduced 

expansion is found, while the refractive index stays roughly constant. This suggests that the 

amount of the photoinduced expansion can be reduced by the rearrangement that can occur 

with a high density of free polymer ends, as it happens for the shorter polymers. Comparing 

star and linear geometry, it seems that, at a given chain length, the presence of the three arms 

originating at the same central rigid core induces a larger refractive index, which is 

reasonable, being the star polymer a more dense material, while at the same time the star 

geometry reduces the expansion. 

 
Figure 15: Correlation between expansion and refractive index (density), data acquired at 55°C (circles) and at 
room temperature (squares). 
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Conclusions 
 

Atom Transfer Radical Polymerization has been successfully applied to the 

preparation of a series of linear liquid crystalline polymers with different average molecular 

weights and low polydispersity. The living character of the ATRP process is confirmed by the 

first-order kinetics, a linear molecular weight-conversion profile and narrow molecular weight 

distribution. Therefore the obtained photochromic LC polymers with well defined living end-

groups could be employed to prepare novel block copolymers with interesting properties and 

potential applications in advanced technologies. 

The liquid-crystalline behaviour of the macromolecular samples has been confirmed 

by DSC measurements and POM characterization pointing out the presence of smectic and 

nematic phases. The transition temperatures are in agreement with those of analogous linear 

derivatives obtained by AIBN initiated free radical polymerization and result strongly 

dependent on polymerization degree and polydispersity index. 

Investigation of the photomechanical effects induced by light irradiation indicates that 

the ability of azobenzene polymeric materials of storing free volume is of fundamental 

relevance, since allows to achieve a higher photo-induced expansion with increased molecular 

mass. Such property, depending by polydispersity index, strictly suggests the need and 

convenience of employing highly monodisperse material for the study and applications of 

polymers containing azoaromatic moieties. 

In particular, a comparative study of star polymers with the related linear ones. The 

synthesized highly monodispersed compounds with a fixed number of arms allowed us to 

investigate a well defined coupling element. Such a coupling is required and generally 

introduced statistically in other azo systems [7] in order to transfer the transduction from a 

molecular to a macroscopic level. We observed however that such desirable inter-chain 

interactions, in the case of star polymer correspond to a slowdown of dynamics and a 

reduction in photoexpansion. Our results indicate that trade off between an efficient 

macroscopic transduction and overall extension should be sought. 
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Experimental 
 

Physico-chemical measurements 

1H- and 13C-NMR spectra were obtained at room temperature, from 5–10% CDCl3 

solutions, using a Varian NMR Gemini 300 spectrometer. Chemical shifts are given in ppm 

from tetramethylsilane (TMS) as the internal reference. 1H-NMR spectra were run at 300MHz 

by using the following experimental conditions: 24,000 data points, 4.5-kHz spectral width, 

2.6-s acquisition time, 128 transients. 13C-NMR spectra were recorded at 75.5 MHz, under 

full proton decoupling, by using the following experimental conditions: 24,000 data points, 

20-kHz spectral width, 0.6-s acquisition time, 64,000 transients. FT-IR spectra were obtained 

by a Perkin-Elmer 1750 spectrophotometer, equipped with an Epson Endeavour II data 

station, on samples prepared as KBr pellets. UV-Vis absorption spectra of the samples in 

solution were recorded at 25 °C in CHCl3 on a Perkin-Elmer Lambda 19 spectrophotometer. 

The spectral region 650–250 nm was investigated by using cells path length of 1 and 0.1 cm. 

Concentrations of azobenzene chromophore of about 3.0 ×10-4 mol L-1 were used. 

Number average molecular weights of the polymers ( ) and their polydispersity 

indexes  were determined in THF solution by SEC using HPLC Lab Flow 2000 

apparatus, equipped with an injector Rheodyne 7725i, a Phenomenex Phenogel 5-micron 

MXL column and a UV-VIS detector Linear Instrument model UVIS-200, working at 254 

nm. Calibration curve was obtained by using monodisperse polystyrene standards in the range 

800–35,000. The phase transition temperatures values were determined by differential 

scanning calorimetry (DSC) on a TA Instrument DSC 2920 Modulated apparatus at a 

heating/cooling rate of 10 K/min under nitrogen atmosphere on samples weighing 5–9mgr. 

Optical microscopy observations were performed on polymer films obtained by casting on 

glass slides with a Zeiss Axioscope2 polarizing microscope through crossed polarizers fitted 

with a Linkam THMS 600 hot stage.  

The samples of the eight synthesised polymers for the ellipsometric study have been 

prepared on silicon substrates by spin coating technique. 

The compounds have been dissolved in chloroform at 5 mg/ml concentration and cast 

on the substrates spinning at 2000 rpm, yielding film thicknesses in the range of 35–60 nm. 

The thickness has been adjusted in such range in order to study thin samples required for a 

nM

)( nw MM
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uniform optical pumping without self screening effects due to the high optical extinction 

coefficient of the azobenzene chromophore and at the same time sufficiently thick to neglect 

surface effects. As a matter of facts, such surface interactions, due to the change of 

hydrophilicity between trans to cis isomers, become dominant for ultrathin or single 

molecular layer [37]. Both refractive index and thickness of samples, thermostated on a Peltier 

plate, were measured by high resolution null ellipsometry using a single wavelength 

ellipsometer (Multiskop, Optrel Gmbh), set up in a pump probe configuration. The instrument 

is equipped with a He-Ne laser impinging on the sample with an angle of incidence of 70° 

operating at 632.8 nm, which probes the materials outside the azobenzene absorption region, 

while the optical pumping has been obtained by means of two Light Emitting Diodes LEDs, 

positioned above the sample. Two LEDs with emission peaks centered at 390nm and 470nm 

were necessary in order to induce respectively trans to cis and the reverse isomerizations of 

the azobenzene chromophore which in turn result in a contraction and expansion of film [21, 

38]. The samples of each compound, before the experiments, have been annealed some hours 

at 5°C above their glass transition temperature (Tg) (see Table 1), in order to remove solvent 

residues and to obtain a stabilization of the film. The annealing process was monitored by 

ellipsometry and continued until the achievement of a stable film thickness. The samples 

cooled to room temperature exhibit an isotropic phase as after their preparation by the spin 

coating technique as characterised by polarizing optical microscopy. Particular attention has 

been paid to avoid a smectic crystallization which inhibits the photomechanical effects and 

can be induced by the annealing process above Tg therefore before the ellipsometric 

measurement the isotropic structure of samples or the absence of birefringent islands has been 

checked through the polarising microscope. 
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Materials 

The monomer 4-ω-methacryloyloxy-hexyloxy-4’-ethoxyazobenzene (M6A ) was 

synthesized as previously reported [24]. THF was purified and dried according to the reported 

procedures [39] and stored under nitrogen. Allyl 2-bromoisobutyrate (ABIB ), 1,1,4,7,10,10-

hexamethyltriethylenetetramine (HMTETA ), copper bromide and all the other reagents and 

solvents were purchased from Aldrich and used as received. 

The trifunctional initiator 1,3,5-(2’-bromo-2’-methylpropionate)benzene (BMPB) was 

prepared as previously described [40, 41] 

 

Synthesis of polymeric derivatives by ATRP 

A typical ATRP experimental procedure carried out in glass vials for 

homopolymerization of M6A  using ABIB  as monofunctional initiator (or BMPB as 

trifunctional initiator), HMTETA  as the ligand, Cu(I)Br as catalyst in dry THF [M6A /THF 

1/20 g/ml] is described as follows: every mixture [M6A /ABIB /HMTETA /CuBr = 50/1/1/1 or  

M6A /BMPB/HMTETA /CuBr = 150/1/1/1by mol] was introduced into several vials under 

nitrogen atmosphere, submitted to several freeze-thaw cycles, and heated at 60°C. To 

terminate the polymerization reaction, the vials were frozen in liquid nitrogen after known 

reaction times, ranging from 2 to 24 h. The obtained product was purified by precipitation in a 

large excess of cold methanol and the coagulated polymer [Poly(M6A )-2 through 

Poly(M6A )-24] filtered off, redissolved in CHCl3, precipitated again with cold methanol and 

finally dried at 50°C under vacuum for one day to constant weight. Relevant data for the 

synthesized derivatives are reported in Table 1. All the products were characterized by FT-IR, 
1H- and 13C-NMR. As an example, the spectroscopic data for Poly(M6A )-24, obtained after 

24 h of reaction, are here reported. 

 

1H-NMR (CDCl3): 7.80 (m, 4H, 2- and 2’-H), 6.90 (m, 4H, 3- and 3’-H), 5,85 (m, 1H, 

CH2=CH-CH2-O) 5,30 (m, 2H, CH2=CH-CH2), 4,60 (m, 2H, CH2=CH-CH2), 4.10–3.80 (m, 

6H, CH2-O), 2.20 (s, 2H CH2-C-Br terminal units), 1.95 (m, 3H, CH3-C-Br), 1.90–0.80 (m, 

8H, aliph spacer CH2, 5H, main chain CH3 and CH2 and 6H, -C(CH3)2-COO-) ppm. 
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13C-NMR (CDCl3): 178.2 and 177.3 (CO repeating unit), 161.7 and 161.6 (arom 4-C 

and 4’-C), 147.6 (arom 1-C and 1’-C), 132.8 (CH2=CH-CH2-), 125.0 (arom 2-C and 2’-C), 

118,8 (CH2=CH-CH2-), 115.3 (arom 3-C and 3’-C), 68.4 (CH2-CH2-O-), 66.0 (CH2=CH-CH2-

), 65.3 (CH3-CH2-O), 64.1 (COO-CH2-), 58.5 (C(CH3)-Br), 55.0 (main chain C-CH2), 45.8 

and 45.5 (main chain CH2-C), 42.2 (C(CH3)2-CH2), 35.7 (CH2-C(CH3)-Br), 27.5 (C(CH3)-Br), 

29.8, 28.8, 26.6, 26.4 (aliph spacer CH2), 23.0 (C(CH3)2-CH2), 19.3 and 17.0 (main chain 

CH3), 15.4 (CH3-CH2) ppm. 

 

FT-IR (KBr): 3068 (νCH arom), 2977 and 2866 (νCH aliph), 1724 (νCO ester), 1598 

(νC=C arom), 1392 (νCH CH3), 1145, 1113 (νC-O ether), 839 (δCH 1,4-disubst. arom ring) cm-1. 
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Chapter 3 

Chirality in Azopolymers 

 

Introduction 
 

Azobenzene containing polymeric systems are well known for their photochromic 

properties related to the trans–cis–trans photoisomerization of the azo–chromophore, and 

have been proposed for reversible data storage, signal modulation and switching [1].  The 

induction of helical polymers has been the subject of intensive research not only because of its 

potential applications in chiroptical switching, reversible optical storage [2-6], chiral 

amplification [7] and chiral discrimination [8], but also its possible occurrence at the early 

stages of life [9]. Optically active polymers containing a chiral group and an azobenzene 

chromophore show a well-pronounced circular dichroism (CD) signal in the absorption region 

of azobenzene, demonstrating that the chiral center induces a predominant helical screw sense 

in the polymer both as film and in solution [10-12]. Recently, the fascinating possibility of 

inducing circular birefringence (optical activity) in nonchiral azobenzene-containing polymers 

by using circularly polarised light (CPL) has also been reported. The phenomenon was 

observed for the first time by Nikolova and co-workers in switches obtained by direct 

irradiation of films of liquid-crystalline (LC) cyanoazobenzene polyesters [13, 14]. Upon 

illumination with CPL at 488 nm, the films are provided with an unusually strong optical 

activity: right circularly polarised (r-CPL) radiation induces right-hand rotation of the probe 

beam polarisation, the reverse being observed with left circularly polarised (l-CPL) pump 

light. In a first report [13], the authors suggested that the observed effect may be initiated by a 

transfer of angular momentum from the CPL to the azobenzene chromophores and that the 

observed phenomena are related to the presence of  LC ordering (smectic-A phase) in the 

polymer films prior to irradiation. Analogous results have been found for an amorphous 

cyanoazobenzene methylmethacrylate copolymer previously ordered by illumination with 

linearly polarised light (LP) [15]. In a further work, Nikolova et al. discovered a self-induced 

rotation of the azimuth of elliptically polarised light (EPL) on passing through films of 

photobirefringent azopolymers [16]. The EPL propagating through the sample was found to 
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induce an optical axis that gradually rotates along the propagation direction, thus inducing a 

chiral orientation of the azobenzene chromophores with the same sense of rotation as that of 

the input light electric vector. The whole film assumes a chiral structure similar to that found 

in cholesteric liquid crystals with large pitch. The control of chirality with CPL on films of a 

smectic-A liquid-crystalline nitroazobenzene polymethacrylate has also been achieved by 

Natansohn and coworkers [17]. The authors found that, by irradiation with CPL at 514 nm, the 

initially achiral films became chiral and showed strong CD signals. The CD spectra of two 

different films, one irradiated with r-CPL and the other with l-CPL, exhibited opposite signs 

and were virtually mirror images of each other. In contrast, the amorphous films (not 

annealed) did not show any induced circular anisotropy, thus pointing out the essential role of 

the LC arrangement and suggesting that the original circular polarisation of the incoming light 

is made elliptical by the first layers of the smectic domains of the film. In this way, on the 

basis of the model proposed by Nikolova et al. [16], the EPL radiation that propagates into the 

film produces a progressive rotation of the optical axis of each LC domain, resulting in a 

supramolecular helical arrangement of the smectic domains to form an organization similar to 

a twisted grain boundary (TGB) phase. 

According to Kim [18], chirality can be induced also in amorphous epoxy-based side-

chain azopolymers by illumination with one handed EPL. In this context, Giorgini reported 

the first example of chiroptical switching only with r- or l-CPL of amorphous thin films of 

chiral polymethacrylates containing azoaromatic moieties in the side-chain, in the absence of 

preliminar alignment with LP light [19-21]. Hore et al. reported the observation of a selective 

circular Bragg reflection in CD spectra of a nematic glassy thin film (100 nm thick) of a side-

chain LC azopolymer irradiated with CPL, which was assigned to the structure produced by 

superposition of the forward-propagating wave and the back-reflected wave [22]. More 

recently, Tejedor et al. discussed the influence of LC structures and detected a circular Bragg 

reflection in thin films (200 nm) of achiral glassy nematic azopolymers [23, 24], but not in a 

homologous smectic one [23] irradiated with CPL of opposite sign. Although several 

mechanisms of photoinduced chirality process in side chain azobenzene containing polymers 

have been proposed, the model based on a helical arrangement of aggregated chromophores in 

the side-chain [22], appears more realistic.  

To induce chirality in soft matters, two different structural levels must be mainly 

considered: at molecular and supramolecular level. The first one is provided by the chirality 

of molecules, which is of configurational and conformational origin. The second level of 
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chirality arises from the organization of molecules with formation of a chiral superstructure 

by means of long-range positional and orientational orders of molecules [25]. As above 

described, several research groups have contributed to the experimental findings on chirality 

induced by CPL (or EPL) stimuli in achiral polymer systems with azobenzene side chains, but 

studies of liquid-crystalline polymers containing a chiral group of one absolute configuration 

and an azobenzene chromophore in the side-chain suitable to demonstrate CPL-induced 

chirality have not been reported. Furthermore, from all these investigations it appears that 

polymeric samples with a well-defined structure are needed for a better understanding of the 

structure-properties correlation; hence, derivates with a carefully selected molecular mass and 

low polydispersity are required. 

This goal can easily be achieved by use of a controlled polymerisation procedure such 

as atom transfer radical polymerization (ATRP) [26] which gives the possibility also to obtain 

polymeric derivatives with structure of the star branched type.  

Herein, we report a comparison between the different behaviour of several linear and 

star shaped liquid crystalline polymers under irradiation with CPL aimed at a better 

understanding of the role played by the macromolecular structure in the photoinduction of 

chiral supramolecular arrangement. 

In particular three groups of LC polymers, chiral and achiral, have been synthesized 

and investigated: 

1) a linear one, poly[(S)-4-[6-(2-methacryloyloxypropanoyloxy) hexyloxy)]-4’-

ethoxyazobenzene] Poly[(S)-ML6A ]-14, and four related three-arms branched 

macromolecular derivatives with controlled average molecular weight, star[(S)-4-[6-

(2-methacryloyloxypropanoyloxy)hexyloxy)]-4’-ethoxyazobenzene] Star[(S)-ML6A ]-

2 through Star[(S)-ML6A ]-24, obtained by ATRP of the novel chiral monomer (S)-4-

[6-(2-methacryloyloxypropanoyloxy)hexyloxy)]-4’-ethoxyazobenzene [(S)-ML6A ], 

containing the intrinsically chiral L-lactic acid residue suitable to affect the 

supramolecular organization of the liquid crystal phase. With the aim to investigate the 

structure-property relationships of these systems, they have been compared with the 

analogue polydisperse linear derivative Poly[(S)-ML6A ]-AIBN (Scheme 1) obtained 

by AIBN free radical polymerization 

2) two homopolymers, a linear one, poly(4-ω-methacryloyloxy-hexyloxy-4’-

ethoxyazobenzene) {Poly[M6A ]-24} [27] and a related three-arms branched 
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macromolecular derivative, star(4-ω-methacryloyloxy-hexyloxy-4’-

ethoxyazobenzene) {Star[M6A ]-24} [28], obtained by ATRP of monomer 4-ω-

methacryloyloxy-hexyloxy-4’-ethoxyazobenzene (M6A ) in the presence of allyl 2-

bromoisobutyrate, or 1,3,5-(2’-bromo-2’-methylpropionato)benzene, as the mono- or 

trifunctional initiator, respectively. These polymeric materials display LC behaviour 

and give glassy nematic thin films. 

3) linear and star shaped polymeric derivatives of several methacrylic monomers [(S)-

ML6A-C , (S,S)-MLL6A-C  (S,S,S)-MLLL6A-C , (S)-ML2A-C , (S,S)-MLL2A-C ] 

bearing in the side chains the 4-cyano-4’oxy azobenzene chromophore, with different 

alikylic spacer between the polymerizable group and the azoaromatic chromophore 

containing one, two or three residues of L-lactic acid as chiral centers.  

The structures of the investigated polymeric derivatives are reported in Figure 1. 
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Figure 1: Structures of the investigated polymeric derivatives  
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Synthesis of monomer and polymers  
 

Synthesis of (S)-4-[6-(2-Methacryloyloxypropanoyloxy)hexyloxy)]-4’-

ethoxyazobenzene [(S)-ML6A] and its polymeric derivatives 

 

This monomer and its polymeric derivatives were synthesized for the first time 

following the synthetic route described below [29]. 

The key intermediate 4-(6-hydroxyhexyloxy)-4’-ethoxyazobenzene (H6A) was 

prepared under milder conditions and in higher yields than those reported in the literature [30, 

31] (see Experimental Section). The direct esterification of methacryloyl-L-lactic acid (ML ) 

with H6A in the presence of N,N-diisopropyl-carbodiimide (DIPC) and 4-

(diphenylamino)piridinium 4-toluensulfonate (DPTS) as coupling agent and condensation 

activator, respectively [32], gave (S)-ML6A with a total yield of 28% (Scheme 1).  

Scheme 1: Synthetic procedure for (S)-ML6A . 

 

(S)-ML6A  was then homopolymerised in three different ways, i.e. by free radical 

polymerisation using AIBN as thermal initiator, and by ATRP polymerisation using allyl 2-

bromo 2-methylpropionate (ABiB)  as monofunctional initiator or 1,3,5-(2’-bromo-2’-

methylpropionato)benzene (BMPB) as trifunctional initiator, thus affording linear and three-

arms star shaped polymers, respectively. The most relevant data of the synthesis are reported 

in Table 1. 
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Scheme 2: Synthetic procedures and chemical structures of the (S)-ML6A  polymers  

 

Poly[(S)-ML6A ]-AIBN, prepared by AIBN free radical polymerization under long 

polymerization time, was obtained in a quite high yield (85 %), with average molecular 

weight appreciably high and molecular weight distribution typical of a free radical 

polymerization process (Table 1). The polymers synthesised by ATRP show low values of 

polydispersity index ( ) in accordance to this polymerisation method (Table 1). In the 

1H-NMR spectra of the samples obtained by ATRP the signals related to the aliphatic and 

aromatic protons of the initiators are overlapped to those of the repeating units in the case of 

the star derivatives (see Experimental). For example, the star shaped sample obtained at 

shorter reaction times {Star[(S)-ML6A ]-2} displays the resonances of the methylene and 

nw MM
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methyl groups bonded to the quaternary carbon atom bearing the terminal Br atom at 1.9 and 

2.3 ppm, respectively.  

Table 1. Relevant synthetic data and characterization 

Samples Reaction 

time (h) 

Yield[a] 

(%) 

Mn,th
[b] Mn,SEC

[c] Mw/Mn [α]D
25 [Φ]D

25 [d] 

(S)-ML6A - - - - - -4.0 -17.1 

Poly[(S)-ML6A ]-AIBN 72 85 - 15400 1.54 -26.9 -115.3 

Poly[(S)-ML6A ]-14 14 37 26700 13900 1.19 -27.6 -118.3 

Star[(S)-ML6A ]-2 2 10 7800 8000 1.22 -26.8 -114.8 

Star[(S)-ML6A ]-4 4 14 10900 11400 1.20 -27.0 -115.7 

Star[(S)-ML6A ]-8 8 35 18700 19000 1.16 -27.8 -119.1 

Star[(S)-ML6A ]-24 24 48 35600 27600 1.15 -28.5 -122.1 

[a] Calculated as (g of polymer / g of monomer) ·100. [b] Mn,th  calculated by equation 1. [c] Determined by 
SEC in THF at 25°C. [d] Molar optical rotation, calculated as ([α]D

25·M/100), where M represents the molecular 
weight of one repeating unit of Poly[(S)-ML6A ] or of Star[(S)-ML6A ]. 

The living character of the polymerization is confirmed by 13C-NMR spectra, which 

display signals related to the quaternary carbon atom bonded to Br at 58.0 ppm and to the 

methyl and methylene carbon atoms of the growing chain end-group at 27.5 and 38.9 ppm, 

respectively.  

Figure 2. Evolution of Ln([M]0/[M] t) (■) and of the number average molecular weight determined by SEC in 
THF at 25°C (▲) and calculated values (●) versus time in the ATRP of (S)-ML6A in THF for Star[(S)-ML6A] 
series. 
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An analysis of the yields and of the molecular weights of the star polymers obtained 

with different polymerisation times shows that the polymerisation rates followed an effective 

first-order kinetics. Figure 1 shows a linear relationship between ln([M]0/[M] t) (where [M]0 

and [M]t are the initial and at t time monomer concentrations, respectively) and the reaction 

time, indicating a clear first-order kinetics of the polymerization rate with respect to the 

monomer concentration, a relatively constant concentration of the growing species throughout 

the process, also at relatively high conversion, thus proving the living character of the process. 

The plot of the number average molecular weight of the resulting star-shaped 

polymers as determined by SEC (Mn,SEC) against monomer conversion (determined by 

collecting the unreacted monomer from the polymerization mixture) is also shown in Figure 

1. The theoretical values of Mn (Mn,th), that are valid only in the absence of chain 

termination and transfer reactions, may be calculated by the following equation [33]:  

 

Mn,th  = Conversion · (M(S)-ML6A  / MBMPB) · MW(S)-ML6A  + MWBMPB 

where M(S)-ML6A  and MBMPB are the initial amounts in moles of monomer and 

trifunctional initiator, respectively, and MW(S)-ML6A  and MWBMPB their respective molecular 

weights. As reported in Figure 1, calculated and experimental (by SEC) values are coincident 

only at low values of monomer conversion but, as the conversion increases, they diverge to an 

increasing extent. Such a behaviour, previously reported for star-shaped chiral photochromic 

polymethacrylates [34], cannot be ascribed to termination reactions taking place under the real 

polymerisation conditions, as proved by the low and almost constant values ofMw/Mn (in 

the range 1.15-1.22), reported in Table 1, but to the particular molecular structure of 

multiarms polymers. It is well known, in fact, that star polymers have a smaller hydrodynamic 

volume with respect to that of linear polystyrenes having the same polymerization degree. As 

a consequence, SEC analysis gives underestimated molecular weight values for star-shaped 

polymers when measured with reference to the usually adopted linear polystyrene standards 
[35, 36]. Anyway, the approximately linear correlation between Mn,SEC and time is indicative of 

the living character of the ATRP process and SEC analysis proves to be useful to confirm that 

a steady increment of the average molecular weight with conversion has taken place, as 

shown by the chromatograms reported in Figure 2. In conclusion, all the instrumental 

characterization techniques confirm that three-arms star polymers with C3 symmetry and 

varying molecular size have been successfully obtained. Each chain contains a bromine atom 
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as end group which could be replaced through a variety of reactions leading either to end-

functionalized polymers or used as the initiating site for the polymerization of a different 

monomer to obtain novel interesting star-shaped block copolymers as well as linear block 

copolymers starting, e.g., from Poly[(S)-ML6A ]-14. 

 

 

Figure 3. Normalized molecular weight distributions of Star[(S)-ML6A ] polymers as determined by SEC in THF 
at 25°C. 
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Synthesis of 4-ω-methacryloyloxy-hexyloxy-4’-ethoxyazobenzene (M6A) 

and its polymeric derivatives 

The syntehsis of M6A  and its polymeric derivatives is reported in Chapeter 2 

 

Synthesis of monomers and polymeric derivatives bearing the 

chromophore 4’-cyano-4-oxy-azobenzene 

These monomers and their polymeric derivatives were synthesized following the same 

synthetic pathway as for (S)-ML6A  starting with the azoic alcohol 4’-cyano-4-hydroxy 

azobenzene. The structural formula of the monomers and their polymeric derivatives are 

reported in Figure 3.  

The azoic alcohols 4-(6-hydroxyhexyloxy)-4’-cyano-azobenzene (H6A-C) and 4-(2-

hydroxyethoxy)-4’-cyano-azobenzene (H2A-C) were prepared by etherification under basic 

condition of with respectrively 6-chlorohexanol and 2-bromoethanol with 4-hydroxy-4’-

cyanoazobenzene. 

During the esterification of these alcohol with (S)-ML some transestherification 

reactions can occur. In this way it has been possible to synthesize in one pot three different 

monomers bearing one, two or three acid lactic residues between the azoaromatic moieties 

and the methacrylic polymerizable group. These compounds were then separated by 

chromatography on silica gel, using dichloromethane as eluent with a yield from 34% to 20%. 

In fact during this synthesis of the monomer 4-{6-[(S)-

methacryloyloxypropanoyloxy]hexyloxy})-4’cyanoazobenzene [(S)-ML6A-C ] also the two 

different optically active and the achiral monomer 4-(6-{(S)-2-[(S)-

methacryloyloxypropanoyloxy]propanoyloxy}hexyloxy)-4’cyanoazobenzene [(S,S)-MLL6A-

C], 4-(6-[(S)-2-{(S)-2-[(S)-2-methacryloyloxypropanoyloxy]propanoyloxy}-

propanoyloxy]hexyloxy)-4’cyanoazobenzene [(S,S,S)-MLLL6A-C ] and the achiral one 4-ω-

methacryloyloxy-hexyloxy-4’-cyanoazobenzene M6A-C . were synthesized and then isolated 

(Scheme 3) 
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Scheme 3: Synthesis of (S)-ML6A-C  and related monomeric derivatives 

The new monomer 4-{2-[(S)-methacryloyloxypropanoyloxy]ethyloxy})-

4’cyanoazobenzene (ML2A -C) also the monomer was synthesized in the same way using 2-

bromo ethanol. Also 4-(2-{(S)-2-[(S)-

methacryloyloxypropanoyloxy]propanoyloxy}ethyloxy)-4’cyanoazobenzene (MLL2A -C) 

and the achiral monomer 4-ω-methacryloyloxy-ethoxy-4’-cyanoazobenzene  (M2A-C ) were 

synthesized and isolated. (Scheme 4). 

 
Scheme 4: of (S)-ML2A-C  and related monomeric derivatives 
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The FT-IR, 1H- and 13C-NMR characterizations are in agreement with the expected 

structures.  

 
Figure 4: 1H-NMR of ML6A-C (a), Poly(ML6A-C) (b) and Star(ML6A-C) (c). Starred signals are due to solvent 
resonance. The signal relative to the resonance of the terminal allylic CH2-O at 4.6 ppm in Poly(ML6A-C) are 
marked with #. 

As an example in Figure 4 are reported the 1H-NMR spectra of linear Poly[(S)-ML6A-

C], of the three arm star polymer Star[(S)-ML6A-C ] and the monomer (S)-ML6A-C . In the 
1H-NMR spectra of (S)-ML6A-C  (Figure 4a) at 7.9 ppm the signal of the two aromatic 

protons in 2- and 2’- can be observed, while the 3’- and 3- protons resonate at 7.8 and 7.0 
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ppm respectively. At 6.2 and 5.6 are present the signals of the diasterotopic protons of the 

methacrylic methylene. The quarted of the CH of the acid lactic residue can be observed at 

5.1 ppm and the two CH2-O groups show two triplet at 4.3 and 4.1 ppm. At 2.0 ppm is present 

the singlet of the methacylic CH3 and the aliphatic protons of the CH2 of the alkyl chain 

resonate between 1.8 and 1.4 ppm. The singlet of the metyl of the lactic acid residue resonates 

at 1.65 ppm. 

 
Figure 5: 13C-NMR of ML6A-C (high panel). In the lower section are reported magnifications of the signal of 
CH (69 ppm, left panel) and CH3 (17 ppm, right panel) of the residues of L-lactic acid for ML6A-C (a), MLL6A-
C (b), MLLL6A-C (c). 

In Figure 5 is reported the 13C-NMR spectrum of (S)-ML6A-C : at 171.3 ppm is 

observed the signal of the carbonyl of the L-lactic residue, well separated from the 

methacrylic carbonyl at 163 ppm. Between 155 and 113 ppm are the aromatic carbons, the -

CN and the two vinylic carbons, at 135.7 and 126.8 respectively. At 69.2 and 17.7 ppm are 

respectively the signals of the CH and CH3 of the lactic residue. At 68.6 and 65.6 ppm are the 

two methylenic carbons in α to the ether and ester oxygen respectively. Between 30 and 20 
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ppm are present the signal of the other CH2 of the aliphatic chain and finally at 18.9 ppm is 

the signal of the methacrylic methyl.  

The monomers with different numbers of L-lactic units were easily characterized by 
13C-NMR spectroscopy. In Figure 5 magnification of the spectral zones of the 13C-NMR 

spectra of (S)-ML6A-C , (S,S)-MLL6A-C  and (S,S,S)-MLLL6A-C  between 70-60 and 20-10 

ppm are shown. 

In the spectra of (S)-ML6A-C  only one signal at 69.2 ppm due to the CH of the acid 

lactic residue is visible while in the spectra of (S,S)-MLL6A-C  and (S,S,S)-MLLL6A-C  two 

and three signal can be observed respectively. The signal of the CH3 of the lactic acid residue 

has the same behavior: from (S)-ML6A-C  to (S,S,S)-MLLL6A-C  the number of signal at 17 

ppm passes from one to three.  

These monomers have been homopolymerized using ABiB  as monofunctional initiator 

and BMPB as a trifunctional one using the same procedure reported for (S)-ML6A .  

The relevant data about the structural characterization of these polymeric derivatives 

are reported in Table 2. 

Table 2: Structural characterization of the polymeric derivatives 

Sample  a)  b) a) c) 

Poly[ML2A -C] 9700 10700 1,21 23,8 

Poly[MLL2A -C] 20700 ------- 1,18 43,1 

Poly[ML6A -C] 18100 15600 1,18 39,0 

Star[ML6A -C] 31400 ------- 1,15 22,6 

Poly[MLL6A -C] 17000 16400 1,19 31,8 

Star[MLL6A -C] 27000 ------- 1,14 13,1 

Poly[MLLL6A -C] 22300 23000 1,22 35,9 

a) Determinated by GPC in THF at 25°C with a column Phenogel MXM 
b) Determinated by 1H-NMR spectroscopy by integration of the terninal units signals 
c) Average polymerisation degree (Xn) for linear macromolecules and for each branch of the star shaped 
derivatives calculated by Mn values. 

Due to the presence of several chiral centers on one single absolute conformation in 

the synthesized systems, polarimetric measurements were done, in order to verify the optical 

activity and the influence of the molecular structure on the chirality of the synthesized 

derivatives Table 3. 

GPCnM , NMRHnM −1, nw MM GPCnX ,
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From these datas it can be easily observed how the number of the L-lactic residues has 

an high influence on their optical activity: from one to two L-lactic units the value of the 

molar rotation ([Φ]D
25) is seven time greater in the case of monomers with a short alkylic 

spacer and twenty times in the case of a six carbon atoms chain. When the number of L-lactic 

unit pass to three the value of [α]D
25 increase of only a 25% Table 3. 

Table 3: specific and molar rotation of the sinthesized derivatives 

Campione [α]D
25 [Φ]D

25 a)  

(S)-ML2A -C -7,10 -28,9 

(S,S)-MLL2A -C -44,3 -211,0 

(S)-ML6A -C -2,32 -10,7 

(S,S)-MLL6A -C -37,3 -200,0 

(S,S,S)-MLLL6A -C -43,5 -264,0 

Poly[(S)-ML2A -C] -29,0 -118,0 

Poly[(S,S)-MLL2A -C] -52,8 -253,2 

Poly[(S)-ML6A -C] -23,4 -108,3 

Star[(S)-ML6A -C] -24,5 -113,4 

Poly[(S,S)-MLL6A -C] -43,3 -232,1 

Star[(S,S)-MLL6A -C] -47,0 -252,0 

Poly[(S,S,S)-MLLL6A -C] -61,2 -371,5 

Molar rotation, calculated as ([α]D
25 • M/100), where M is the molecular weight of the repeting units in the 

polymeric derivatives 

A comparison between the monomeric and polymeric systems with the same number 

of chiral residues shows that the systems with a short aliphatic spacer displays higher 

rotations. This behave can be attributed to the higher stiffness of the lateral chain that impart 

higher conformational rigidity. 

All the polymeric derivatives displays an higher rotation than their correspondent 

monomeric derivatives due to the presence of ordered macromolecular conformation that 

increase the conformational chirality.Finally no significant differences between linear and star 

polymers are observed.The optical purity of the synthesized derivatives was not measured 

because previous studies [37-39] on similar compounds had demonstrate that the enantiomeric 

excess of the synthesized monomers was greater than 90%. Because of our compounds are 

synthesized from enantiomeric pure L-lactic acid with analogous reactions, we can reasonably 

deduce that these monomers and polymers have the same optical purity.  
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Characterization and photoinduction of chirality 
 

Polymeric derivatives of (S)-ML6A 

POM, DSC and XRD characterization.  

 

With the aim to study their LC properties, all the polymeric derivatives have been 

characterized by differential scanning calorimetry (DSC), polarized optical microscopy 

(POM) and X-ray diffraction (XRD). Phase-transition temperatures determined by DSC are 

summarized in Table 4: all the samples display on heating a glass-transition temperature (Tg) 

and a liquid-crystal-phase with a consequent isotropization temperature (Ti). The high 

enthalpy of isotropization, about 9,6 J g-1, is related to the presence of a typical smectic phase.  

In all cases, on cooling, the latter transitions show a modest degree of supercooling (4-

5°C) and a stable frozen liquid-crystal mesophase is achieved and maintained at room 

temperature. 

Table 4: Thermal transitions[a] and mesomorphism determined by DSC, POM and XRD of the polymeric 
derivatives of (S)-ML6A  

Samples Thermal transition °C 

Poly[(S)-ML6A ]-AIBN G 53 SmA1/2 129 I 

Poly[(S)-ML6A ]-14 G 56 SmA1/2 129 I 

Star[(S)-ML6A ]-2 G 48 SmA1/2 114 I 

Star[(S)-ML6A ]-4 G 49 SmA1/2 117 I 

Star[(S)-ML6A ]-8 G 59 SmA1/2 132 I 

Star[(S)-ML6A ]-24 G 61 SmA1/2 133 I 

[a] Obtained from the second heating DSC thermal cycle in nitrogen atmosphere (10°C/min). 
 

XRD studies were carried out at variable temperature on some representative 

compounds such as Poly[(S)-ML6A ]-14, Star[(S)-ML6A ]-2 and Star[(S)-ML6A ]-24. Firstly, 

X-ray patterns were recorded at room temperature on the above samples annealed for two 

hours 40ºC above the Tg, in order to develop the mesophase. Patterns were also taken at 

variable temperatures on virgin and unannealed samples. Finally, these compounds were 

mechanically aligned with the aim to obtain oriented patterns. The diffractograms of Poly[(S)-
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ML6A ]-14 under these several physical conditions are reported in Figure 7. In all cases the 

diffractograms are qualitatively very similar: all of them display a sharp Bragg reflection in 

the low-angle region and a diffuse, broad maximum in the high-angle region. This kind of 

pattern is characteristic of a liquid crystal phase with a layered structure and confirms that the 

mesophase order exists at room temperature and is stable at high temperatures. The high-

angle diffuse halo corresponds roughly to a mean distance of 4.4 Å and is associated to the 

liquid-like lateral interactions of the azoaromatic mesogenic groups. The measured spacing, 

deduced by applying Bragg’s law to the low-angle reflection, is very close to 16 Å in all 

cases, regardless the compound examined, the conditions of temperature and the thermal 

treatment. The predicted length of the mesogenic moiety calculated from Dreiding 

stereomodels, assuming a fully-extended conformation of the hydrocarbon chains, is 31 Å (33 

Å including the methacrylate group). Therefore, it appears that the observed low-angle 

maximum corresponds to the second order (d002) reflection and the actual layer spacing is 

close to 32 Å, which is comparable to the value expected for a SmA arrangement of the 

mesogenic monomers. The fact that the first order (d001) reflection is not visible must arise 

from the presence of a period d/2 in the projection of the electron density profile along the 

normal to the layers. This phenomenon has been described for other side-chain LC polymers 

and is accounted for by the confinement of the polymeric backbones in a thin sublayer layer 

perpendicular to the director, so that the polymeric backbones produce an electron density 

maximum comparable to that of the mesogenic cores [40]. These features are consistent with a 

fully-interdigitated smectic A (SmA1/2) mesophase (Figure 8). The absence of significant 

differences in layer periodicity by changing the macromolecular shape or the average 

molecular weight indicates that the same structural model is valid for all the samples, both 

with a linear polymeric backbone and a star-like arrangement. 

 



 

 

Figure 6: X-ray diffraction pattern of the SmA mesophase of Poly[(
after heating at 135ºC (a) and oriented X
recorded at room temperature (b). The sample was mechanically aligned in the direction of thick arrow.

 

Table 5 Spacing, determined by applying Bragg’s law to the small
the smectic A mesophase of Poly[
at variable temperatures. 

Sample 

Poly[(S)-ML6A ]-14 

Star[(S)-ML6A ]-2 

Star[(S)-ML6A ]-24 

[a] The spacing was measured with an estimated 

 

Finally, mechanically

were obtained by shearing the samples on the capillary wall with a metal rod at a temperature 

at which the mesophase is fluid. Oriented patterns were obtai

ray diffraction pattern of the SmA mesophase of Poly[(S)-ML6A]- 14 recorded at room temperature 
after heating at 135ºC (a) and oriented X-ray diffraction pattern of the SmA mesophase of Poly[(
recorded at room temperature (b). The sample was mechanically aligned in the direction of thick arrow.

, determined by applying Bragg’s law to the small-angle reflection observed in the patterns,
the smectic A mesophase of Poly[(S)-ML6A ]-14, Star[(S)-ML6A ]-2 and Star[(S)-ML6A

Conditions Measured d002 

spacing (Å)[a] 

25ºC, Virgin 

25ºC, Annealed 

25ºC, Aligned 

75ºC 

15.5 

16.5 

16.3 

15.8 

25ºC, Annealed 16.5 

25ºC, Virgin 

25ºC, Annealed 

25ºC, Aligned 

75ºC 

15.8 

16.5 

16.1 

15.7 

[a] The spacing was measured with an estimated accuracy of ± 0.5Å 

Finally, mechanically-aligned samples of Poly[(S)-ML6A ]-14 and Star[

were obtained by shearing the samples on the capillary wall with a metal rod at a temperature 

at which the mesophase is fluid. Oriented patterns were obtained when the samples submitted 
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14 recorded at room temperature 
rn of the SmA mesophase of Poly[(S)-ML6A ]-14 

recorded at room temperature (b). The sample was mechanically aligned in the direction of thick arrow. 

angle reflection observed in the patterns, in 
ML6A ]-24 measured by XRD 

Layer spacing (Å)[a] 

31.0 

33.0 

32.6 

31.6 

33.0 

31.6 

33.0 

32.2 

31.4 

14 and Star[(S)-ML6A ]-24 

were obtained by shearing the samples on the capillary wall with a metal rod at a temperature 

ned when the samples submitted 
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to this treatment were irradiated at room temperature (Table 5). In the resulting patterns the 

low-angle reflection appears as a pair of sharp spots aligned along the direction perpendicular 

to the shearing, whereas the high-angle halo becomes a pair of diffuse crescents centred in the 

shearing direction. 

These features indicate that the smectic planes are oriented along the stretching 

direction with the mesogenic units oriented perpendicular to that direction. This behaviour is 

common for side-chain LC polymers. An accurate analysis of the nature of this mesophase 

was achieved by the observation of their typical optical texture by POM in analogy with 

previous studies on similar azo-polymers[41]. All the samples, during the heating-cooling 

process, show textures that indicate the presence of macrodomains with a SmA phase, as 

shown for example for poly[(S)-ML6A ]-14 in Figure 8. In particular, the thin film slowly 

cooled from the isotropic melt at 128°C shows small drops of birefringent mesophases 

separating from the melt  that develop after shearing and annealing at 110°C for 48 hours into 

cylindrical LC domains on an homeotropic background (Figure 8a and b). A polymeric film 

after isotropization and annealing at 120°C develops a typical cylindrical conicofocal texture 

like as a SmA phase (Figure 8 c, d, e). 

Figure 7. Smectic layer spacings of a fully interdigitated side-chain chromophoric configuration determined by 
XRD (R = chromophoric moieties located in the side chain outside the layer). 
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a) b) 

 

c) d) 

 

e) f) 

Figure 8: POM microphotographs of Poly[(S)-ML6A ]-14 (sample prepared between two glasses) (a) at 128 °C 
upon cooling from the isotropic liquid, (b) thin film annealed for 48h at 110°C after isotropization and shear and 
(c) thin film annealed for 24h at 120°C after isotropization (d, e) thin film annealed for 24h at 90°C after 
isotropization, (e) thin film after pressure: homeotropic aligment is induced. 

  



98     Chirality 

 
UV-Vis Spectra and chiroptical properties in solution. 

 

The UV-Vis absorption spectra (Figure 10 and Table 6) in CHCl3 solution of all the 

investigated linear and star polymers, as well as the monomer (S)-ML6A , exhibit, in the 250–

550 nm spectral region, two bands related to the n→π* and π→π* electronic transitions of the 

trans-azobenzene chromophore with maxima centered at about 440 nm (ε ≅ 1500 L⋅mol-1⋅cm-

1) and 360 nm (ε ≅ 28000 L⋅mol-1⋅cm-1), respectively [42], appearing, within the limits of 

experimental error, qualitatively and quantitatively independent from molecular structure and 

polymerization degree.  

Figure 9. CD (up) and. UV-vis (bottom) spectra of (S)-ML6A  () and Poly[(S)-ML6A ]-14 (---) in CHCl3. 

The UV spectra do not exhibit any variation on passing from the monomer to the 

polymer, indicating the substantial absence of electrostatic dipole-dipole interactions between 

neighbouring aromatic moieties, the symmetry of the absorption band at 360 nm providing 

evidence that the azoaromatic chromophores are essentially isolated in solution. The 

monomer and all high molecular weight samples in the trans configuration are optically active 

in chloroform solution at the sodium D-line (Table 6). Indeed, the macromolecules 

investigated display molar optical rotatory powers [α]D
25 for repeating unit constantly around 

−28, seven times larger than that of (S)-ML6A  ([α]D
25 = −4.0), thus suggesting that the 

macromolecules are characterized by a appreciable conformational chirality 

The CD spectrum of (S)-ML6A  in chloroform solution (Figure 9) displays one weak 

positive dichroic absorption with maximum at 360 nm (∆ε  ≈ +0,35 L mol -1 cm-1), strictly 
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related to the UV-Vis absorption maximum connected with the π→π* electronic transition. 

Similarly, the CD spectra of the polymeric samples in solution exhibit in the spectral region 

related to the π→π* electronic transition only one positive dichroic band centred at about 

350-360 nm (∆ε  ≈ +0,2 L mol -1 cm-1), in close correspondence with the UV absorption 

(Figure 10), and related to isolated chromophores, in a similar manner as the monomeric 

compound, with no influence by the average molecular weight value and macromolecular 

shape, in agreement with the specific optical rotatory powers (Table 1). 

These behaviours are different from what reported in the literature for chiral rigid 

methacrylic amorphous polymers that exhibit an increase of optical activity on increasing the 

molecular weight[43] or passing from linear to star-shaped structures [34]. The contribution to 

the overall optical activity in solution by the conformational dissymmetry of liquid crystal 

polymeric derivatives, characterized by longer and flexible aliphatic spacer between the main 

chain and the azoaromatic chromophore, appears therefore of limited extent, as suggested also 

by the specific optical rotatory power at the sodium D line. 
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UV-Vis spectra and chiroptical properties in thin film.  

 

The UV-Vis spectra and chiroptical properties of the synthesized polymers have been 

investigated also in the solid state, as thin films prepared by casting from dichloromethane 

solution over clean slides of fused silica. By inspection with POM, the virgin films at room 

temperature appear optically isotropic: neither any birefringence nor scattering being 

observed. 

The main UV-Vis data of relevant polymeric samples are collected in Table 6 and the 

absorption spectra of Poly[(S)-ML6A ]-14 in the solid state are reported as an example in 

Figure 10a: in addition to the typical π→π* and n→π* electronic transitions of the 

azoaromatic chromophore centered at around 357 and 440 nm, respectively, an additional 

band at around 248 nm, associated with the π→π* transition of the single aromatic ring, is 

present. 

The absorption band of the π→π* transition in the virgin films appears broader with 

respect to the spectra in solution, with two additional shoulders at 340 and 380 nm, related 

respectively to the formation of H- (blue shift) and J-like (red shift) aggregates [44] imposed by 

the structural constraints of the macromolecules in the solid state. The relatively high 

absorbance of the transition at 340 nm indicates high concentration of H aggregates in the 

amorphous solid state. 

In order to develop the mesophase, a thermal treatment consisting of a heating above 

the clearing point temperature (Ti) for 5 minutes followed by annealing for 15 minutes at a 

temperature reduced by a factor of about 0.7 (Tanneal/Ti) has been carried out.  

The annealed film of Poly[(S)-ML6A ]-14 displays broader, less intense absorption 

bands (Figure 11a and Table 6) and produces LC domains as observed by POM. The main 

absorption band is characterized by a small bathochromic shift of the π→π* azoaromatic 

absorption maximum to 362 nm. In addition, the shoulders related to the H- and J-aggregates 

located around 340 and 380 nm, increase relatively in importance. 

This can be related to development of aggregates and thus to more ordered dipolar 

intra- and inter-chain interactions that the chromophores experience in the SmA1/2 phase 

(Figure 8) compared to the solution and the amorphous solid state. 
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Table 6: UV-Vis data of the investigated compounds in CHCl3 solution and as thin films after different 
treatments. 
Samples  λ

φ→φ*[a]  
λ

π→π*[a]  
λ

H-agg.[a,b] 
λ

J-agg.[a,b] 
λ

n→π*[a,b] 

(S)-ML6A  solution -[c] 360 - - 440 

Poly[(S)-ML6A ]-14 solution -[c] 360 - - 440 

Star[(S)-ML6A ]-24 solution -[c] 360 - - 440 

Poly[(S)-ML6A ]-14 virgin film 248 357 340 380 440 

Poly[(S)-ML6A ]-14 annealed film 248 362 340 385 440 

Poly[(S)-ML6A ]-14 irradiated film 248 360 345 385 440 

Star[(S)-ML6A ]-24 virgin film 248 360 340 378 440 

Star[(S)-ML6A ]-24 annealed film 248 360 340 380 440 

Star[(S)-ML6A ]-24 irradiated film 248 360 344 385 440 

[a] Wavelenght of maximum absorbance in nm. [b] Shoulder. [c] Not observed due to solvent cut-off. 

In particular, the decrease in absorbance of the π→π* transition can be attributed to 

the aggregation of the azobenzene fragments possessing elevated anisotropy[45, 46], while the 

π→π* band at 248 nm of the single aromatic ring, not influenced by orientation, remains 

substantially unaffected. Finally, the increase of absorbance at wavelengths over 400 nm can 

be mainly associated with the light scattering due to the formation of the birefringent domains 

of liquid-crystal phase after annealing.  

By comparing several CD spectra recorded at different film positions and rotated 

around the light beam direction it was also confirmed that the contribution of linear dichroism 

and linear birefringence to the CD spectra of the polymeric films is negligible. 

The CD spectrum of a fresh film of Poly[(S)-ML6A ]-14 (a) exhibits two relatively 

intense dichroic signals of opposite sign and similar intensity, connected to the π→π* 

electronic transitions of the azoaromatic chromophores, with a crossover point around 335 

nm, close to the UV maximum absorption. This behaviour is typical of exciton splitting 

determined by cooperative dipole-dipole interactions between neighbouring side chain 

azobenzene chromophores arranged in a mutual chiral geometry of one prevailing 

handedness[2, 43, 47, 48]. Significantly, the CD spectrum of the same sample in dilute solution 

(Figure 9) displays only one weak positive dichroic signal at 360 nm, indicative of the 

absence in solution of chiral chromophore aggregates. 
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The thermal annealing strongly affects the chiroptical properties of the film (a). Upon 

prolonged heating a strong enhancement of CD signals takes place, and the ellipticity values 

become much more intense than those observed before annealing. 

The crossover point of the couplets in the solid state appears blue-shifted with respect 

to the UV maximum absorbance (ellipticity = 0 at around 335 nm against UV λmax at 360 nm). 

As the negative band appears of higher intensity, and close to the electronic transition 

wavelength associated to chiral H-aggregates (340 nm), the CD spectrum can be interpreted 

as originated from the overlapping of a exciton splitted CD band given by the H-aggregates 

with a negative CD band having its maximum at 385 nm, corresponding to the maximum 

absorbance of J-aggregated chromophores, differently sensitive to the chiral geometry of the 

material [23] 

The UV-Vis and CD spectra of star polymers of comparable thickness appear 

essentially similar to those of Poly[(S)-ML6A ]-14, as shown for example in Figure 10b for 

Star[(S)-ML6A ]-24. The star shaped polymers as native films, as well as in the LC state, 

exhibit CD couplets with crossover points centered at 340 and 332 nm, respectively, of the 

same sign and shape as the related linear derivatives, but always less intense at equal film 

thickness. 

Figure 10. CD (up) and UV-Vis (bottom) spectra of a thin film of Poly[(S)-ML6A ]-14 (a) and Star[(S)-ML6A ]-
24 (b) in the virgin state (__) and after isotropisation and annealing at 90°C for 15 minutes (- - -). 

From the CD spectra it can be clearly seen how branching  affects the chirality of the 

system: the films of Star[(S)-ML6A ]-24 always exhibit a lower optical rotation power than 

those of Poly[(S)-ML6A ]-14, thus suggesting that chirality is related to a certain way to the 
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main chain conformational order and/or to supramolecular liquid crystalline organization. A 

less ordered LC phase in the star-shaped derivatives could be supposed as originated by the 

stiffness of the rigid central unit that creates defects in the LC supramolecular conformation. 

In any case, the above findings suggest that similar conformational arrangements with a 

prevailing chirality are assumed both in the amorphous and particularly in the LC phase, 

regardless the molecular structure. 

It is generally accepted that chirality is induced in these materials as a consequence of 

chiral interchromophoric interactions, however short-range chromophoric aggregates in liquid 

crystal arrangements could not be the only responsible of the remarkable amplification of 

chirality that is observed. Examples of amorphous azopolymeric systems, in which the 

chirality is related to the presence of chromophores aggregated in a mutual chiral arrangement 

are reported in the literature, but these systems display lower optical rotation values [34, 43, 48].  

In the present case, the presence of exciton couplets and surprisingly high ellipticity 

(up to 9000 mdeg/µm at 361 nm, Figure 10a) are quite noticeable for a normal smectic A 

phase with uniaxial symmetry and hence lacking of any kind of supramolecular chirality. 

Consequently, the high chiroptical properties observed could suggest the presence of a chiral 

liquid crystal phase similar to a planar twist-grain-boundary (TGB) phase or Sm-A* phases, 

reported only when chiral mesogens with high helical twisting power are present,[49, 50] but 

POM observation of thick films, as mentioned above, clearly suggests the presence of a 

normal smectic A phase. In the SmA phase, where the chromophoric molecules are arranged 

perpendicular to the layer planes, the mesogenic moieties cannot adopt a supramolecular helix 

structure perpendicular to the layers. It can only occur parallel to the layers and only for 

systems with a strong twisting power. Therefore, a helical superstructure is only possible if 

screw dislocations punctuate the layers, giving rise to the so-called twisted grain boundary A 

phase (TGBA)[51, 52]. In the present case the formation of this particular mesophase appears 

highly improbable. Moreover, thin films of chiral smectic A liquid crystals possessing high 

chirality due to the Surface Electroclinic Effect (SEC) that induce in the film a chiral smectic 

C phase are reported in literature: the polar interaction between the glass wall and the LC 

material induces a polarization resulting in a chiral reorientation of the LC director near the 

surface.[53, 54] Further information regarding the molecular arrangement in these thin film 

(100-200 nm) by XRD and polarized optical microscopy (texture analysis) could not be 

obtained so far, as thicker film samples are required and the behavior could be different when 

compared to the thin films here investigated.  
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Photoinduced switching of supramolecular chirality. 

 

Annealed thin films of Poly[(S)-ML6A ]-14 and Star[(S)-ML6A ]-24 of thickness 

about 140 nm in the glassy liquid crystal state were irradiated with r-CPL and l-CPL, 

respectively, with an Ar+ laser (power = 20 mW/cm2) at 488 nm for 30 min. The UV-Vis 

spectra of irradiated polymers result similar to those of annealed corresponding films (Table 6 

and Figure 11). These results suggest that the dipolar azoaromatic aggregations (H- and J-

aggregates) in the liquid crystalline phase remain substantially unaffected by CPL irradiation. 

Upon irradiation of Poly[(S)-ML6A ]-14 with r-CPL, the CD spectrum displays a net 

inversion of sign as well as a relevant amplification of chirality, particularly evident for the 

dichroic bands associated with the π→π* azoaromatic electronic transition (see e.g.Figure 

11).  

According to the chiral exciton coupling rules,[55] this behaviour suggests that r-CPL 

induces a right-handed screw sense of coupled neighbouring azobenzene chromophores. The 

CD spectra of this polymer after a cycle of illumination with r-CPL and l-CPL are presented 

in Figure 12. In all cases, no linear dichroism was observed before and after irradiation by 

comparing several CD spectra recorded at different angles around the incident light beam. 

Similar results, but with lower ellipticity values, were also obtained from Star[(S)-

ML6A ]-24 (Figure 12). One negative Cotton effect, with the same crossover wavelength (333 

nm) as the non-irradiated film (334 nm) which changes alternatively sign in the 250-600 nm 

spectral region was obtained with both the investigated polymers. The observed effects are 

reversible: when the handedness of the pump beam was switched from right to left and the 

irradiation performed on the same illuminated region for 30 min, similar and opposite CD 

spectra of Poly[(S)-ML6A ]-14 and Star[(S)-ML6A ]-24 were obtained (Figure 12).  

The resulting spectra actually appear as mirror images of each other both for linear and 

star-shaped samples. Again, the CD spectra of the linear polymer display higher ellipticity 

values than the CD spectra of the star one. 
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Figure 11: CD (up) and UV-Vis (bottom) spectra of a thin film of Poly[(S)-ML6A ]-14 in the virgin state (___), in 
smectic phase (---) and after irradiation with r-CPL at 488 nm for 30 minutes (……). 

The irradiation with l-CPL of another annealed film of poly[(S)-ML6A ]-14 afforded 

also an induced optical activity of similar magnitude to that observed after the irradiation with 

r-CPL, but of opposite sign. 

Figure 12: CD spectra of films of Poly[(S)-ML6A ]-14 irradiated with r-CPL (___) or l-CPL (---) and Star[(S)-
ML6A ]-24 irradiated with r-CPL (·····) or l-CPL (- . - ) for 30 minutes after isotropization and annealing at 90°C 
for 15 minutes. 

As a first conclusion, the photoinduced experiments suggest that r-CPL induces right-

handed supramolecular chirality of the materials which can be erased and reinscribed with l-

CPL, as reported elsewhere for other smectic, achiral azopolymers.[17, 24] However, the 
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induced circular anisotropy has to be erased in the latter case by heating the irradiated samples 

to the isotropization temperature. 

The observed phenomena appear to be related to the induction of chirality by 

irradiation with CPL of achiral azobenzene-containing polymers reported by Nikolova,[13, 15] 

Natansohn,[17] Sourisseau [56], and Tejedor [23, 24], even though the measured absolute ellipticity 

of our samples, normalised to film thickness, is of considerably higher magnitude. Indeed, in 

our case, an intrinsic chirality of the samples related to optical activity of the L-lactic acid 

residue interposed between the azo chromophores and the polymer backbone is present, and 

the chiral geometry of the mesogenic aggregates in the annealed films gives rise to 

thermodynamically stable and unusual chiral LC phases with a predominant helical 

conformation, as previously reported when chiral mesogens are present.[49, 50]  These 

observations reveal that the photoinduced chirality in liquid-crystal polymers is more 

efficiently achieved when dissymmetric groups and chiral LC phases are present. 

The mechanism of reversible chiroptical inversion induced by CPL radiation is not 

well understood. In any case, for the investigated polymers, it appears related to a preliminary 

chiral supramolecular ordering of the azobenzene moieties, as demonstrated in our 

experiments. In fact, no reproducible circular anisotropies can be photoinduced in the native 

films (not annealed), pointing out the essential role of the liquid crystalline arrangement. This 

also indicates that orientational preorganization is required to obtain a controlled 

photomodulation of chirality.[15] 

Moreover, the photoinduced change of chiroptical properties does not perturb the 

texture of the investigated polymeric films as shown by POM analysis of the irradiated area, 

before and after application of CPL (see Supporting Information). 

Natansohn reported the photoinduction of a similar chiral supramolecular structure by 

illumination of a achiral azopolymer with CPL.[17]  The results were attributed to ability of the 

chiral CPL propagating through the film to produce a progressive rotation of the optical axis 

of each LC domain, resulting finally in a supramolecular helical arrangement of the smectic 

domains to form an organization similar to a TGB phase. 

In the case of the investigated polymers, it is reasonable to hypothize that the LC 

phase in the annealed films assumes a helical supramolecular structure with a prevailing twist 

sense due to the thermodynamically favoured chiral interaction between neighbouring L-

lactic-azoaromatic moieties, thus conferring a prevailing chirality to the material. Thus, the 

CPL should be able to alter this interaction between the chromophores and consequently the 



 

 

chiral supramolecular structure, so as to reverse the macroscopic chirality of the material 

without modifying the observable LC texture (Figure 13). 

resemble the enantioselective CPL photochemical formation of optically active compounds 

from prochiral starting materials

interconvertible enantiomers.

Figure 13 Optical microscopy images of a smectic thin film of 
irradiation with l-CPL for 30 minutes (b).

In fact, it is known that chiral CP electromagnetic radiation is able to induce 

enantioselective conversion

close to the light propagation.

CPL to the medium, as occurs when a CP photon is absorbed, induces a precession of the 

chromophores with a sense of rotation congruent with the sense of the CPL. 

that l-CPL induces a left-handed organisation of the azobenzene molecules, whereas 

induces a right-handed one. 

conformational aggregation of neighbouring chromophores can be inverted, as we have 

recently observed on the dimeric model derivative 2,4

nitro-4-azobenzene)pyrrolidine ester, corresponding to the smallest section of the p

chain where side-chain interchromophore interactions are relevant.

an exciton couplet of strong amplitude which suggests that the chiral interactions between a 

couple of chromophores in solution are already important and that the optical activity of these 

materials should be substantially related to

aggregates having conformational dissymmetry of one prevailing screw sense.

These observations are also supported by recent studies of photoinduced chirality onto 

a Bx liquid crystalline phase of bent

chiral supramolecular structure, so as to reverse the macroscopic chirality of the material 

without modifying the observable LC texture (Figure 13). This phenomenon would therefore 

resemble the enantioselective CPL photochemical formation of optically active compounds 

from prochiral starting materials[57, 58] and the CPL photoresolution of photochemically 

interconvertible enantiomers.[59, 60] 

Optical microscopy images of a smectic thin film of Poly[(S)-ML6A
CPL for 30 minutes (b).  

In fact, it is known that chiral CP electromagnetic radiation is able to induce 

enantioselective conversion[61] and tends to align the azobenzene side groups along directions 

close to the light propagation.[14, 62] It is possible that transfer of angular momentum from the 

, as occurs when a CP photon is absorbed, induces a precession of the 

a sense of rotation congruent with the sense of the CPL. 

handed organisation of the azobenzene molecules, whereas 

handed one. In this way, the sign of the CD signals associated with the 

rmational aggregation of neighbouring chromophores can be inverted, as we have 

recently observed on the dimeric model derivative 2,4-dimethylglutaric acid bis (

azobenzene)pyrrolidine ester, corresponding to the smallest section of the p

chain interchromophore interactions are relevant.[48] Its CD spectrum shows 

an exciton couplet of strong amplitude which suggests that the chiral interactions between a 

couple of chromophores in solution are already important and that the optical activity of these 

materials should be substantially related to relatively short chain sections with chromophoric 

aggregates having conformational dissymmetry of one prevailing screw sense.

These observations are also supported by recent studies of photoinduced chirality onto 

a Bx liquid crystalline phase of bent-shaped twin dimeric compound, where two 
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resemble the enantioselective CPL photochemical formation of optically active compounds 

and the CPL photoresolution of photochemically 

 

ML6A ]-14 before (a) and after 

In fact, it is known that chiral CP electromagnetic radiation is able to induce 

side groups along directions 

It is possible that transfer of angular momentum from the 

, as occurs when a CP photon is absorbed, induces a precession of the 

a sense of rotation congruent with the sense of the CPL. This would mean 

handed organisation of the azobenzene molecules, whereas r-CPL 

the sign of the CD signals associated with the 

rmational aggregation of neighbouring chromophores can be inverted, as we have 

dimethylglutaric acid bis (S)-3-[1-(4’-

azobenzene)pyrrolidine ester, corresponding to the smallest section of the polymeric 

Its CD spectrum shows 

an exciton couplet of strong amplitude which suggests that the chiral interactions between a 

couple of chromophores in solution are already important and that the optical activity of these 

relatively short chain sections with chromophoric 

aggregates having conformational dissymmetry of one prevailing screw sense. 

These observations are also supported by recent studies of photoinduced chirality onto 

ed twin dimeric compound, where two 
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alkoxyazobenzene groups are linked together by a polymethylene spacer, which 

spontaneously segregate in chiral domains of the two possible dimeric conformers (racemic 

form).[63] Selective r- or l-CPL irradiation, as a method of photoresolution of enantiomers, 

interconverts the two native domains producing an enantiomeric excess of one of them and as 

a result a macroscopically measurable CD chirality related to the preferential screw sense of 

the irradiating CPL. 

All the aforementioned CD effects persist for at least one month at room temperature 

and are well reproducible. Clearly, for technological applications, the switching time would 

also be important. 
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Polymeric derivatives of M6A: photoinduction of chirality in 
achiral azopolymer and photo transition 

 

The formula of the investigated are reported in Figure 14. The detailed synthesis of 

these polymeric systems and their spectroscopic, thermal and liquid crystalline 

characterization are described in detail in Chapter 2. 

The chiroptical properties of the films after irradiation with r-CPL and/or l-CPL were 

investigated in detail by CD spectroscopy and their dependence on the macromolecular 

structure discussed. 

 
Figure 14. Structural formulas of the investigated polymeric samples   
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UV-Vis properties  

The UV-Vis absorption spectra in CHCl3 solution (Figure 15) of all the investigated 

polymers, as well as the monomer M6A , exhibit, in the 250–650 nm spectral region, two 

bands related to the n→π*  and π→π* electronic transitions of the azobenzene chromophore in 

trans-configuration with maxima centered at about 360 nm (ε ≈ 28000 L mol-1 cm-1) and 440 

nm (ε ≈ 1500 L mol-1 cm-1), respectively [42], qualitatively and quantitatively independent by 

branching within the limits of the experimental error. The symmetry of the absorption band at 

360 nm provides evidence that the azoaromatic chromophores in solution are essentially 

isolated. 

 

 
Figure 15: UV-Vis spectra of Poly[M6A ]-24 in solution (___), and in the solid state as casted (___), annealed (___), 
and finally irradiated with l-CPL (___) thin films. The UV-Vis spectra of Star[M6A]-24 under the above 
conditions are superimposable. 

The UV-Vis spectra of thin films of the synthesized polymers prepared by casting 

from dichloromethane solution over clean slides of fused silica have also been investigated in 

the 200-600 nm spectral range (Figure 15): they display the typical π→π* and n→π* 

electronic transitions of the azoaromatic isolated chromophore centered at around 360 nm and 

440 nm, respectively, and an additional band centered at 248, nm associated with the π→π* 

transition of the single aromatic ring. 

The absorption band of the π→π* azoaromatic transition becomes broader in the films, 

with two additional shoulders at 340 and 380 nm, related respectively to the formation of H-
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aggregates (blue shift) and J-like (red shift) aggregates [42] imposed by the structural 

constraints of the macromolecules in the solid state. 

By inspection with POM, the virgin films at room temperature appear optically 

isotropic, without any birefringence and scattering. In order to develop the mesophase, a 

thermal treatment has been made consisting of heating above the clearing point temperature 

(Ti) for 5 minutes followed by annealing for 15 minutes at lower temperature (Tannealing/Ti of 

about 0.7). This treatment allows to obtain the presence of a glassy nematic liquid crystalline 

phase, as confirmed by POM. 

The UV-Vis spectra of annealed films result similar to the spectra of the 

corresponding as prepared casted films (Figure 15), with a broadening of the long-wavelength 

side and a minor presence of H-aggregates (band at 340 nm). This can be related to more 

ordered dipolar intra- and inter-chain interactions that the chromophores experience in the 

nematic phase compared to those in solution and in the amorphous solid state. In particular, 

the decrease in the π→π* band can be interpreted as being due to aggregation of the 

azobenzene fragment, which possesses elevated anisotropy [45, 46], while the π→π* band at 

248 nm of the single aromatic ring, not influenced by orientation, remains unchanged. The 

absorbance at longer wavelengths never reaches zero, this behaviour being associated with 

light scattering due to the formation of the birefringent domains of liquid-crystal phase upon 

annealing. 

The UV-Vis spectrum of Poly[M6A ]-24 in thin film after annealing and illumination 

with l-CPL with an Ar+ laser (power = 20 mW cm-2) at 488 nm for 30 min is presented in 

Figure 15. The irradiation does not change the shape of the spectrum of the annealed sample, 

similar UV spectra being obtained by irradiation with r-CPL as well as from Star[M6A ]-24 

samples. These results suggest that the dipolar azoaromatic aggregations (H- and J-

aggregation) in the nematic liquid crystalline phase remain substantially unaffected by CPL 

irradiation.  
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Chiroptical properties and photoinduced switching of supramolecular 

chirality 

 

Whereas the UV-Vis spectra of irradiated polymers result similar to the spectra of 

corresponding annealed films (Figure 15), the related CD spectra, silent before irradiation, 

now show the presence of high chirality. No linear dichroism was observed before and after 

irradiation by comparing several CD spectra recorded at different angles around the light 

beam. 

The CD spectra of Poly[M6A ]-24 in the glassy nematic phase irradiated with r-CPL 

with an Ar+ laser (power = 20 mW/cm2) at 488 nm for 30 min, exhibit an high, asymmetric, 

exciton couplet centred around 335 nm which does not strictly coincide with the maxima of 

the UV-Vis absorption bands (Figure 16). The positive band appears of higher intensity and 

displays a shoulder around 366 nm associated with the electronic transitions of the isolated 

azobenzene moieties. The crossover point of this couplet is close to the electronic transition 

associated to chiral H-aggregates (340 nm) and is interpreted as originating from the 

overlapping of the exciton splitting CD band (H-aggregates) with a positive CD band having 

its maximum at 380 nm, corresponding to the maximum absorbance of the J-aggregated 

chromophores [23]. 

Moreover, the CD spectrum of the irradiated films show a sharp negative band at 492 

nm due to a Bragg selective reflection of a helical organization [22-24]. This behaviour is 

similar to the selective reflection of a chiral nematic mesophase with a helix pitch due to 

induced cholesteric mesophase [32, 33]. Recent calculations by Takezoe et al. [61] of the shape of 

a Bragg reflection of a helix pitch larger than the film thickness, reported that a reflection at 

492 nm means an helix pitch of 312 nm, much larger than the film thickness of our samples, 

which is around 200 nm. Under this condition, only a broad reflection should be seen. 

However, Tejedor et al. [24] observed a photoinduced iridescent green reflection of a glassy 

nematic azopolymer filmed over a planar wedge cell. 
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Figure 16: UV-Vis spectra (bottom) and CD (up) of irradiated films of Poly[M6A ]-24 (___), and Star[M6A ]-24 
(___) irradiated with r-CPL (straight line) or l-CPL (dashed line).  

 

In order to confirm this result and investigate the change in the macroscopic optical 

properties and optical textures of Poly[M6A ]-24 irradiated with CPL, a 4 µm cell with an 

aligning layer for planar orientation was filled with the polymer. A portion of the cell was 

irradiated and the other part masked in order to avoid photoisomerization. 

After irradiation the initial orientation of the mesogenic units is vanished and, aligning 

the polarizer along the alignment direction, a bright selective reflection, related to the sharp 

signal at 492 nm, can clearly be seen (Figure 17). This is a further confirmation of induced 

helical organization of the chromophore [24].  

Therefore, the presence of high ellipticity values and of selective Bragg reflections 

demonstrate the presence of a supramolecular chirality with a prevalent handedness similar to 

a chiral nematic phase. 

                                        

                                        

                                        

                                        

                                        

                                        

200 300 400 500 600
0,0

0,5

1,0

1,5

                                        

                                        

                                        

                                        

                                        

                                        

-1500

-1000

-500

0

500

1000

1500

A
bs

nm

 

m
de

g



114     Chirality 

 
 

 

 

 

 

 

 

A B 

Figure 17: POM textures of a planar-cell filled with Poly[M6A ]-24. The right part has been irradiated with r-
CPL for 30 minutes. (A) Crossed polarizers parallel and perpendicular to the alignment director: the irradiated 
zone exhibits a colour while the non irradiated zone is dark. (B) Crossed polarizers rotated of 45° with respect to 
the mesogen director: two different colours are still visible. 

According to the chiral exciton coupling rules [22, 55], the CD spectrum of Poly[M6A ]-

24 suggests that l-CPL induces left-handed screw sense of the supramolecular azobenzenic 

structure. When the handedness of the pump beam was switched from left to right and the 

irradiation was maintained for 30 min, a similar but opposite CD spectrum was obtained 

(Figure 16). The resulting CD spectra are the mirror images of each other. Also, the sign of 

the selective reflection, in accordance with the optical behaviour of ideal helices, changes sign 

switching between a positive reflection after irradiation with l-CPL and a negative value for 

irradiation with r-CPL. This suggests that the interconversion of two enantiomeric 

supramolecular structures can be easily obtained by changing the CPL handedness. 

The CD spectra of the irradiated nematic Star[M6A ]-24 display similar behaviour, but 

lower ellipticity values than the CD spectra of irradiated Poly[M6A ]-24 of same thickness 

(Figure 16). In fact, the integrated area values of the CD spectra indicate that the exciton 

couplet of the star polymer is about the 2/3 of that one of the linear polymer. 

The above observed difference appears to be due to the different structure of the 

polymeric samples and not to differences in the starting LC phase as demonstrated by XRD. It 

thus appears that the branching of the macromolecular chain acts as a defect in the liquid 

crystalline phases, leading to a less ordered chiral supramolecular structure with lower 

chirality. Anyway, the position of the exciton couplets and the position and intensities of the 

reflection at 492 nm are unaffected by the molecular structures of both the star and the linear 

polymer.  
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4-oxy-4’cyano-azobenzene containing polymers 
 

UV-Vis analysis in solution: 

Absorption spectra of the monomers and polymers bearing the 4-cyano-4’oxy-

azobenzene chromophore (Figure 18) are all similar among them, and, within the 

experimental error, no significant differences can be found between monomeric and 

polymeric derivatives.  

Anyway due to the different dipolar moment and conjugation of the chromophore the 

UV-Vis spectra is slightly different from the systems containing the 4-ethoxy-4’oxy 

azobenzene chromophore. 

In fact the UV-Vis spectra of all the synthesized compounds display in the spectral 

region between 240-550 nm three different absorption band centred at 250, 365 and 440 nm 

due respectively to the π  → π* transition of the single aromatic rings (ε = 16000), to the π → 

π* (ε = 32700, λ = 365nm) and  n → π* transition of the trans-azoaromatic chromophore .  

According to Rau’s classification of azoaromatic systems [64] the chromophore 4-oxy-

4’cyano-azobenzene and the 4-ethoxy-4’-oxy azobenzene belong both to the azobenzene-type 

class, in fact they have similar UV-Vis spectra. We can observe only a small redshift of the π 

→ π* electronic transition of the azoaromatic chromophore (from 360 to 365 nm in the 4-

cyano-4’-oxy azobenzene) and a substantial increase of molar absorbance for all transitions of 

the azoaromatic chromophore (the value of ε for π → π* transition increases from 27000 to 

32700 L mol-1 cm-1 and the n → π* from 1500 to 2000 L mol-1 cm-1). 

 
Figure 18: UV-Vis spectra of (S)-ML6A -C (___) and Poly[(S)-ML6A -C] (____).  
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Thermal and liquid crystalline characterization 

 

All the polymeric derivatives were investigated through DSC, POM and XRD 

spectroscopy in order to estabilish their LC properties. 

 
Figure 19: Thermogram of Poly[(S)-ML6A -C] under nitrogen atmosphere, at a heating and cooling rate of 
10°C/min. G = glassy state, SA = Smectic A phase, I = isotropic phase. 

In Figure 19 is shown as an example the first cooling and the second heating of 

Poly[(S)-ML6A-C ]: a glass transition at 39ºC, a smectic A phase (identified by POM and 

XRD analysis) and an isotropization temperature at 108°C are present. 

In Table 7 are reported the transition temperature and the enthalpies (∆Hi) of the liquid 

crystalline – isotropic transitions. 

All the polymeric systems display on heating a glass transition and a isotropization 

temperature, except for Poly[(S,S)-MLL2A-C ] which seems to be totally amorphous (Figure 

20). 
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Table 7: Thermal transition a) of the polymeric derivatives 
Sample Tg (°C) Phase Ti (°C) ∆Hi (J g-1) 

Poly[M2A-C ] b) 105 N 158 - 

Poly[M6A -C] b) 56 SmA 163 - 

Poly[(S)-ML2A-C ] 69  87 0,8 

Poly[(S,S)-MLL2A-C ] 82  - - 

Poly[(S)-ML6A-C ] 39 SmA 108 5,2 

Star[(S)-ML6A-C ] 40 SmA 118 4,9 

Poly[(S,S)-MLL6A-C ] 40  71 3,0 

Star[(S,S)-MLL6A-C ] 44  82 2,7 

Poly[(S,S,S)-MLLL6A-C ] 51  76 2,8 

a) Obtained from the secon heating DSC thermal cycle in nitrogen atmosphere (10°C/min) 

b) Ref: [23] 

 

 

 

Figure 20: DSC traces of the second heating of the polymeric derivatives 
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The nature of the mesophase of Poly and Star[ML6A-C ] was determinate by POM 

analysis (Figure 21) and XRD measurement and was identified as a normal smectic A (SmA) 

phase with no interdigitation. 

 

  

A B 

  

C D 

Figure 21: POM microphotograph (sample prepared between two glasses, 100x) of Poly[(S)-ML6A -C] (A and 
C) and Star[(S)-ML6A-C ] (B and D) upon cooling from the isotropic liquid (A and B) and after annealing at 
90°C for four hours (C and D). 

It was not possible to determinate the nature of the mesophase of the other polymers: 

the existence of a mesophase is proved by thermal analysis but these systems seemed to be 

amorphous both at POM and for XRD analysis. Thus the only systems studied in depth up to 

now are the polymers of ML6A-C . 

Moreover it is possible to find some trends in the stability of the different mesophases 

in relation with the number of chiral center present in the chain and the lengh of the alkyl 

spacer. 



 

 

Short alkyl spacer and high number of chiral centers leads to less stable mesophases 

(lower Ti and ∆Hi), while longer spacer and less chiral centers lead to more 

crystalline phases [65]. 

In literature are reported the transition temperature of similar achiral polymers with 

high Ti: Poly[M2A-C ] (nematic), and Poly[

even if has a longer alkylic spacer and thus 

derivatives has a lower isotropization temperature and a very low 

Poly[(S,S)-MLL2A-C ] with two L

Ti is lowered under the Tg. 

The same trend can be observed for the polymers with six

increasing the number of L

MLLL6A-C ]the stability of the LC phases ant the isotropization temperature is dramaticaly 

lowered of about 100°C. 

The loss of stability with an increase of the number of chiral center can be explained in 

terms of elastic energy associates to the changes of the alignment director among the single 

liquid crystalline grain as reported in literature by Coll

non-chiral systems is a uniform director in the whole domain: every deviation from this 

condition lead to the deviaton from the equilibrium state of a spring.

Because of the anisotropy of the systems the free energy o

expressed as the sum of several terms, with each of these associated with a different 

deformation of the lattice. The most important terms are three: splay, twist and bending 

(Figure 22). 

Figure 22: elastic deformation of a LC la

 

Short alkyl spacer and high number of chiral centers leads to less stable mesophases 

), while longer spacer and less chiral centers lead to more 

are reported the transition temperature of similar achiral polymers with 

] (nematic), and Poly[M6A-C ] (smectic A) [23]

even if has a longer alkylic spacer and thus should have a Ti between the two former achiral 

derivatives has a lower isotropization temperature and a very low 

] with two L-lactic acid residues in the lateral chain is amorphous: the 

 

me trend can be observed for the polymers with six

increasing the number of L-lactic residues passing from Poly[M6A

]the stability of the LC phases ant the isotropization temperature is dramaticaly 

The loss of stability with an increase of the number of chiral center can be explained in 

terms of elastic energy associates to the changes of the alignment director among the single 

liquid crystalline grain as reported in literature by Colling [65]. The equilibrium state in the 

chiral systems is a uniform director in the whole domain: every deviation from this 

condition lead to the deviaton from the equilibrium state of a spring. 

Because of the anisotropy of the systems the free energy of the free crystal can be 

expressed as the sum of several terms, with each of these associated with a different 

deformation of the lattice. The most important terms are three: splay, twist and bending 

: elastic deformation of a LC lattice a) splay, b) twist, c) bending) 
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Short alkyl spacer and high number of chiral centers leads to less stable mesophases 

), while longer spacer and less chiral centers lead to more stable liquid 

are reported the transition temperature of similar achiral polymers with 
[23]. Poly[(S)-ML2A-C ], 

between the two former achiral 

derivatives has a lower isotropization temperature and a very low ∆Hi. Furthermore 

lactic acid residues in the lateral chain is amorphous: the 

me trend can be observed for the polymers with six-carbon alkyl spacer: 

M6A-C] to Poly [(S,S,S)-

]the stability of the LC phases ant the isotropization temperature is dramaticaly 

The loss of stability with an increase of the number of chiral center can be explained in 

terms of elastic energy associates to the changes of the alignment director among the single 

. The equilibrium state in the 

chiral systems is a uniform director in the whole domain: every deviation from this 

f the free crystal can be 

expressed as the sum of several terms, with each of these associated with a different 

deformation of the lattice. The most important terms are three: splay, twist and bending 
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If there is a rotation of the director in the LC domain, the free energy for volume unit 

will be higher respect to the case of non distorted one, due to the twisting term, implying that 

a LC spontaneously relax to a non-twisted state if possible. 

If the chiral centers are present a spyralization of the lattice is introduced and thus the 

twisting deformation cannot be avoided and the free energy of the lattice is higher respect to 

the analogue anchiral phase, while the isotropic phase result unaffected. In this contest the 

introduction of several chiral center leads to a loss of stability both in terms of temperature 

and enthalpies of isotropization. 

Finally it can be observed how the macromolecular geometry plays an important role 

on the thermal characteristic of the polymers: branched polymer displays always higher 

transition temperatures but lower enthalpies, this is due to a higher stiffness and a lower order 

respect to the linear derivatives. 
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Chirooptical properties in solution 

 

The chiroptical properties have been studied for the polymers of (S)-ML6A-C , in 

order to make a comparison between these and the similar polymer of (S)-ML6A . 

Anyway the CD spectra of both the monomer and the polymeric derivatives (Figure 

23) in chloroformic solution are mostly silent, whit a small positive dichoric band centred on 

the absorption maxima of the π→π* electronic transition of the azoaromatic chromophore, 

suggesting that the conformational chirality observed by polarimetric measurement (Table 3) 

of the macromolecular derivatives is not related to a chiral mutual organisation of the 

chromophoric units. 

 

Figure 23. CD (up) and UV-Vis (bottom) spectra of (S)-ML6A-C (___) and of Poly[(S)-ML6A-C] (___) in 
chloroformic solution 
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Photomodulation of chiroptical properties in thin films 

 

Thin films of Poly[(S)-ML6A-C ] have been spin coated from chloroformic solution of 

the polymer onto clean slides of fused silica in order to study their chiroptical properties in the 

solid state. By inspection with POM, the virgin films at room temperature appear optically 

isotropic: no birefringence neither scattering are observed. 

The main UV-Vis data of the polymeric materials are collected in Table 8 and the 

absorption spectra of Poly[(S)-ML6A-C ] in the solid state are reported as an example in 

Figure 24 in addition to the typical π→π* and n→π* electronic transitions of the azoaromatic 

chromophore centered at around 357 and 440 nm, respectively, an additional band at around 

248 nm, associated with the π→π* transition of the single aromatic ring, is present. 

The absorption band of the π→π* transition of the azoaromatic chromophore in the virgin 

films appears broader with respect to the spectra in solution, with an additional shoulders at 

380 nm, related to the formation of J-like (red shift) aggregates [44] imposed by the structural 

constraints of the macromolecules in the solid state, while the presence of H-like aggregates 

in the virgin film should be quite irrelevant (no shoulder around 320-330 nm). 

In order to develop the mesophase, a thermal treatment consisting of a heating above 

the clearing point temperature (Ti) for 5 minutes followed by annealing for 15 minutes at a 

temperature reduced by a factor of about 0.7 (Tanneal/Ti) has been carried out.  

The annealed film of Poly[(S)-ML6A-C ] displays broader, less intense absorption 

bands (Figure 24 and Table 8) and produces LC domains as observed by POM. The main 

absorption band is characterized by a bathochromic shift of the π→π* azoaromatic absorption 

maximum to 372 nm. In addition, the shoulder related to the J-aggregates, around 390 nm, 

increases and another additional shoulder related to the presence of H-aggregate appears at 

326 nm. 

This can be related to development of aggregates and thus to more ordered 

chromophoric dipolar intra- and inter-chain interactions in the SmA phase compared to the 

solution and the amorphous solid state. 

As observed previously for the similar derivatives of (S)-ML6A  [29] an homeotropic 

alignment of the azoaromatic moieties can be observed: in fact while the π→π* transition of 
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the azoaromatic chromophores, which is highly anisotropic, decrease in intensities the 

transition of the single aromatic ring at 254 nm remains unvaried by the relative orientation.  

Also the chiroptical proprieties change with thermal treatments. While the as-casted 

film display only a small positive CD band at 374 nm, the annealed film display an 

asymmetric CD couplet with a crossover point centered at 335 nm, related to the presence of 

chiral H-like aggregates. The asymmetry of the CD band could be explained as the 

superimposition of a positive CD band related to the presence of  J-aggregates centred at 400 

nm. 

It is possible to photomodulate the chiroptical properties of this polymer by irradiation 

with circularly polarised light (CP) (Table 8, Figure 24 and Figure 25). 

 

Figure 24 CD (up) and UV-Vis (bottom) spectra of thin film of Poly[(S)-ML6A-C] in the virgin state (___), after 
annealing (…..) and after irradiation with l-CP (_  _  _) 

In the UV-Vis spectra after irradiation with CP the amount of H-aggregates decrease 

in importance, while the shoulder of J-aggregates remains still visible. 
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The positive CD couplet associated to the π→π* transition of the azoaromatic 

chromophores is enhanced in intensities: the maximum intensities of the CD band from the 

pristine 37 mDeg rise to 300 mDeg. Moreover a noticeable blushift can be observed both in 

CD an UV spectra. After irradiation the shoulder at 390 nm is almost disappeared and the 

band is more symmetrical, also the maximum of the CD band is blueshifted of 10 nm from 

393 to 383 nm. 

 

Table 8. UV-Vis data of the investigated compounds in CHCl3 solution and as thin films after different 
treatments. 
Samples  λ

φ→φ*[a]  
λ

π→π*[a]  
λ

H-agg.[a,b] 
λ

J-agg.[a,b] 
λ

n→π*[a,b] 

(S)-ML6A -C solution -[c] 366 - - 440 

Poly[(S)-ML6A ] solution -[c] 364 - - 440 

Poly[(S)-ML6A -C] virgin film 255 354 - 390 440 

Poly[(S)-ML6A -C] annealed film 255 372 326 490 440 

Poly[(S)-ML6A -C] irradiated film 

(l-CP) 

254 359 - 390 440 

Poly[(S)-ML6A -C] irradiated film 

(r-CP) 

254 359 - 390 440 

Poly[(S)-ML6A -C] irradiated film 

(r+l-CP) 

254 359 - 390 440 

[a] Wavelenght of maximum absorbance in nm. [b] Shoulder. [c] Not observed due to solvent cut-off. 

With the increase of the CD band related to the π→π* transition also a sharp band at 

494 nm appears. This band is similar to the one abserved in the irradiated polymers of M6A. 

Anyway this is the first time that this kind of band is observed in a smectic LC polymer. 

As expected by changing the sign of the CP light also the sign of the band is switched 

(Figure 25). 

 



Chirality     125 

 

125 

 

 

Figure 25. CD (up) and UV-Vis (bottom) spectra of thin film of Poly[(S)-ML6A-C] after irradiation with l-CP 
(___), r-CP (- - -) and r-CP after a previous irradiation with l-CP (. . .) 
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Conclusion 
 

We sinthesized seval similar polymeric derivatives, all monodisperse, with similar 

average molecular weight and all bearing an azoaromatic chromophore of the azobenzene 

type in Rau’s classification [64] and the same two alkylic spacer. Despite the similar molecular 

structure these polymers exhibit different chiroptical properties both in terms of magnitude of 

the signal o the CD band and in terms of photoinduced chiroptical properties. As a matter of 

fact no simple correlation can be found between molecular structure, LC phase and 

photoinduced chiroptical properties. As an example, in some spectra a sharp CD artifact 

appears at 494 nm after irradiation with CPL. Among the studied polymers, it appeared two 

times in a nematic and in a smectic A polymers (Poly(M6A ) and Poly[(S)-ML6A -C], while 

did not occur in an another similar smectic A polymer (Poly[(S)-ML6A ].  

But besides this not yet understood behavior other trends have been clearly identified 

by using  monodisperse and well defined polymers: it was highlighted how that the 

macromolecular chain plays an important role on the chirooptical and photoinduced 

chiroptical properties. 

This work thus has to be considered as a new starting point for the study of chirality in 

polymeric systems, as for the first time strong structure properties correlation has been 

showed and understood.  
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Experimental Section 
 

Physico-chemical measurements: 

1H- and 13C-NMR spectra were obtained at room temperature, on 5-10% CDCl3 

solutions, using a Varian NMR Gemini 300 spectrometer. Chemical shifts are given in ppm 

from tetramethylsilane (TMS) as the internal reference. 1H-NMR spectra were run at 300 

MHz by using the following experimental conditions: 24,000 data points, 4.5-kHz spectral 

width, 2.6-s acquisition time, 128 transients. 13C-NMR spectra were recorded at 75.5 MHz, 

under full proton decoupling, by using the following experimental conditions: 24,000 data 

points, 20-kHz spectral width, 0.6-s acquisition time, 64,000 transients. FT-IR spectra were 

carried out on a Perkin-Elmer 1750 spectrophotometer, equipped with an Epson Endeavour II 

data station, on sample prepared as KBr pellets. UV-Vis absorption spectra were recorded at 

25°C in the 700-250 nm spectral region with a Perkin-Elmer Lambda 19 spectrophotometer 

on CHCl3 solutions by using cell path lengths of 0.1 cm. Concentrations in azobenzene 

chromophore of about 3·10-4 mol·L-1 were used. Optical activity measurements were 

accomplished at 25°C on CHCl3 solutions (c ≈ 0.250 g dL-1) with a Perkin Elmer 341 digital 

polarimeter, equipped with a Toshiba sodium bulb, using a cell path length of 1 dm. Specific 

{[ α]D
25} and molar {[Φ]D

25} rotation values at the sodium D line are expressed as deg·dm-1·g-

1·cm3 and deg·dm-1·mol-1·dL, respectively. Circular dichroism (CD) spectra were carried out at 

25°C on CHCl3 solutions on a Jasco 810 A dichrograph, using the same path lengths and 

solution concentrations as for the UV-Vis measurements. ∆ε values, expressed as L·mol-1·cm-1 

were calculated from the following expression: ∆ε = [Θ]/3300, where the molar ellipticity [Θ] 

in deg·cm2·dmol-1 refers to one azobenzene chromophore. Number average molecular weights 

of the polymers (Mn ) and their polydispersity indexes (Mw/Mn ) were determined in THF 

solution by SEC using HPLC Lab Flow 2000 apparatus, equipped with an injector Rheodyne 

7725i, a Phenomenex Phenogel 5-micron MXL column and a UV-VIS detector Linear 

Instrument model UVIS-200, working at 254 nm. Calibration curve for MXL column was 

obtained by using monodisperse polystyrene standards in the range 800-35000. Phase-

transition temperatures values were determined by differential scanning calorimetry (DSC) on 

a TA Instrument DSC 2920 Modulated apparatus at a heating/cooling rate of 10°K/min under 

nitrogen atmosphere on samples weighing 5-9 mgr. Tg values were measured as the midpoint 

in the heat capacity increase and the other thermal transitions were taken as the maximum of 
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the transition peak. Texture observation of the liquid crystalline behaviour was carried out 

with an Zeiss Axioscope2 polarising microscope equipped with a Nikon Coolpix E995 digital 

camera through crossed polarisers fitted with a Linkam THMS 600 hot stage. X-ray 

diffraction (XRD) studies were carried out using a Pinhole camera (Anton-Paar) operating 

with a point focused Ni-filtered Cu Kα beam. The samples were held in Lindemann glass 

capillaries (1 mm diameter) and heated, when necessary, with a variable-temperature 

attachment. The diffraction patterns were collected on a flat photographic film perpendicular 

to the x-ray beam. 

 

Polymer film preparation, characterization and irradiation with circularly polarized 

light:  

Thin films were prepared by casting solutions of the LC polymers in dichloromethane 

(0.4 mg into 200µl of solvent) onto clean fused silica slides and subsequently dried at 30 ºC 

under vacuum during 24 h. The film thickness, measured by a Tencor P-10 profilometer, was 

in the range 150-300 nm, so as to give UV-Vis spectra with maximum absorbance values 

between 0.7 and 1.5, depending on the procedure conditions. The obtained films were then 

heated above the clearing temperature (Ti) for 5 min and annealed for 15 min at lower 

temperature (Tannealing/Ti around 0.7). Then, the samples were placed on a metal block at 25ºC 

for 30 min in order to get a glassy liquid crystalline phase. Annealed films were irradiated for 

30 min with l-CPL or r-CPL, respectively,  by 488 nm light of an Ar+ laser (power 20 

mW/cm2). The UV-vis and CD spectra of the native and of the illuminated films were carried 

out under the same instrumental conditions as the related solutions after having left the 

samples in the dark at room temperature for 30 min. In order to exclude any optical effect 

(linear dichroism and linear birefringence) due to anisotropy of orientation in the ordered 

systems, the polymeric films of both native and irradiated samples were placed in a rotating 

holder around the probe beam and UV-Vis and CD spectra recorded every 60 degrees without 

observing any difference in the spectra. 

Materials: 

(S)-(−)-Methacryloyl-L-lactic (ML ) acid {[α]D
25 = -28.0 (c = 1, EtOH)} was 

synthesized as previously reported.[66] Methacryloyl chloride (Aldrich) was distilled under 

inert atmosphere, in the presence of traces of 2,6-di-tert-butyl-p-cresol as polymerization 

inhibitor just before use. 4-Dimethylaminopyridinium 4-toluenesulphonate (DPTS) was 
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prepared from 4-dimethylaminopyridine and 4-toluensulphonic acid as described [32]. 4-

Hydroxy-4'-(ethoxy)-azobenzene was synthesised as previously described [30, 31]. 2-2’-

azobisisobutyronitrile (AIBN ) was crystallised by methanol before use. THF and CH2Cl2 

were purified and dried according to the reported procedures [67] and stored under nitrogen. 

The trifunctional initiator 1,3,5-(2’-bromo-2’-methylpropionato)benzene (BMPB) was 

prepared as previously described[68, 69]. (+)-L-Lactic acid (Aldrich), 1,3-

diisopropylcarbodiimide (DIPC, Aldrich), 4-dimethylaminopyridine (Aldrich), the 

monofunctional initiator allyl 2-bromine 2-methylpropionate (ABIB ) (Aldrich), 1,1,4,7,10,10-

hexamethyltriethylenetetramine (HMTETA ), copper bromide and all the other reagents and 

solvents (Aldrich) were used as received. 

 

Synthesis of 4-(6-hydroxyhexyloxy)-4’-ethoxyazobenzene [H6A]: 

This intermediate was prepared by following a different method than that reported [30, 

31]. 6-Chlorine hexanol (6,9 ml, 0,0496 mol) was added dropwise under vigorous stirring to a 

solution of 4-hydroxy-4'-(ethoxy)-azobenzene (6 g, 0,0248 mol), KOH (0,6 g, 0,011 mol) and 

KI (1,64 g, 0,0099 mol) in 96% ethanol (80 ml) at reflux. The reaction was followed by TLC 

(eluent CH2Cl2:EtOAc= 4:1 v/v) until the total conversion of 4-hydroxy-4'-(ethoxy)-

azobenzene (48h) was observed. The precipitated material was filtered off, the solvent volume 

reduced to 15 ml under vacuum, then aq 1% NaOH was added under vigorous stirring. The 

solid formed was filtered and crystallized twice with absolute ethanol to give a orange 

crystalline material (77% yield).  

FT-IR: 3308 (νOH), 3069 (νCH, arom.), 2978 and 2864 (νCH, aliph.), 1600 and 1517 

(νC=C, arom.), 1150 and 1111 (νC-O ether), 845 and 815 (δCH 1,4 disubst. arom. ring) cm-1.  

1H-NMR (CDCl3): 7.90 (d, 4H, arom. 2-H and 2’-H), 6.90 (d, 4H, arom. 3-H and 3’-

H), 4.15 (m, 4H, CH3-CH2-O and CH2-CH2-O), 3.65 (t, 2H, CH2-OH), 1.85-1.40 (m, 12H, 

CH2-CH2-CH2-CH2, CH3-CH2-O and OH) ppm. 
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Synthesis of (S)-4-[6-(2-methacryloyloxypropanoyloxy)hexyloxy)]-4’-

ethoxyazobenzene [(S)-ML6A] 

The monomer (S)-ML6A  was prepared by esterification of methacryloyl-L-lactic acid 

(ML ) with H6A in the presence of N,N-diisopropylcarbodiimide (DIPC) and DPTS, as 

coupling agent and condensation activator, respectively[32], the reaction being described in 

detail as follows: a solution of ML (2,0 g, 0,0126 mol), 2,6-di-tert-butyl-p-cresol (0.05 g) as 

polymerisation inhibitor and H6A (4,34 g, 0,0126 mol) in 50 ml of anhydrous CH2Cl2, was 

placed in a 100 mL three necked round-bottomed vessel, kept under dry nitrogen atmosphere, 

then DPTS (3,64 g, 0,0126 mol) and DIPC (2,60 ml, 0,0168 mol) were successively added 

under magnetic stirring.. The reaction mixture was left at room temperature for 72 h, the solid 

N,N-diisopropylurea, thus formed, filtered off and the liquid phase washed with several 

portions of aq 1M HCl, aq 5% Na2CO3 and water, in that order. After drying the organic layer 

on anhydrous Na2SO4 and evaporation of the solvent under vacuum, the crude product was 

purified by column chromatography on silica gel (70-230 mesh) by using CH2Cl2 as eluent 

and finally crystallized from methanol to give pure (S)-ML6A as a red-orange crystalline 

material in 41% yield.  

FT-IR: 3067 (νCH, arom.), 2993 and 2864 (νCH, aliph.), 1738 (νC=O lactic ester), 1720 

(νC=O methacrylic ester), 1638 (νC=C methacrylic), 1600 and 1517 (νC=C, arom.), 1150 and 

1112 (νC-O ether), 845 and 815 (δCH 1,4 disubst. arom. ring) cm-1.  

1H-NMR (CDCl3): 7.90 (d, 4H, arom. 2-H and 2’-H), 6.90 (d, 4H, arom. 3-H and 3’-

H), 6.20 and 5.60 (dd, 2H, CH2=), 5.1 (m, 1H, CH-CH3), 4.10 (m, 2H, CH3-CH2-O and 4H, 

CH2-CH2-O), 2.05 (s, 3H, CH3-C=), 1.85-1.40 (m, 14H, CH2-CH2-CH2-CH2, CH3-CH2-O and 

CH-CH3) ppm.  

13C-NMR (CDCl3): 176,9 (CO methacrylic), 171.1 (CO lactic ester), 161.7 and 161.6 

(arom 4-C and 4’-C), 147.7 (arom 1-C and 1’-C), 136.1 (C=CH2), 127.0 (CH2=C), 125.0 

(arom 2-C and 2’-C), 115.3 (arom 3-C and 3’-C), 69.6 (CH-CH3), 68.7 (CH2-CH2-O-), 65.9 

(CH3-CH2-O-), 64.4 (COO-CH2-), 29.8, 29.1, 26.4 and 26.3 (aliph spacer CH2), 18.9 (C-CH3), 

17.7 (CH3-CH), 15.4 (CH3-CH2) ppm.  
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Polymerization of monomer (S)-ML6A: 

Several homopolymeric samples with different average molecular weights, 

polydispersity values and molecular structure were obtained from (S)-ML6A  through three 

different synthetic methods as described below. All the products were characterized by FT-IR, 
1H and 13C NMR. 

Synthesis of linear Poly[(S)-ML6A]-AIBN: The reaction mixture [0.2 g of (S)-

ML6A , 2 % wt. of 2,2’-azoisobutyronitrile (AIBN ) as free radical initiator in 3 mL of dry 

THF] was introduced into a glass vial under nitrogen atmosphere, submitted to several freeze–

thaw cycles and heated at 60 °C for 72 h. The polymerization was then stopped by pouring the 

mixture into a large excess (100 mL) of methanol, and the coagulated polymer filtered off. 

The solid product was redissolved in CH2Cl2, precipitated again into methanol and finally 

dried at 50 °C under vacuum for several days to constant weight. 

Synthesis of linear Poly[(S)-ML6A]-14 by ATRP: The homopolymerization of (S)-

ML6A  was carried out in glass vials using ABIB  as the linear monofunctional initiator, 

HMTETA  as the ligand, Cu(I)Br as catalyst and dry THF as solvent [(S)-ML6A /THF 1/15 

g/ml]. The reaction mixture [(S)-ML6A /ABIB /HMTETA /CuBr = 50:1:1:1 by mol] was 

introduced into a glass vial under nitrogen atmosphere, submitted to several freeze-thaw 

cycles and heated at 60°C. To stop the polymerization reaction, the vial was frozen after 14 

hours reaction times with liquid nitrogen and the obtained linear polymer purified by 

precipitation in a large excess of methanol (100 mL). The final purification of the product was 

made in the same way as above. 

Synthesis of Star[(S)-ML6A]s by ATRP: All homopolymerizations of (S)-ML6A  

were carried out in several glass vials using BMPB as the three arm star-shaped trifunctional 

initiator, HMTETA  as the ligand, and Cu(I)Br as catalyst in dry THF [(S)-ML6A /THF 1/15 

g/mL]. The mixture [(S)-ML6A /BMPB/HMTETA /CuBr = 150:1:3:3 by mol] was introduced 

into each vial under nitrogen atmosphere, submitted to several freeze-thaw cycles and heated 

at 60 °C. To stop the polymerization reaction, each vial was frozen in liquid nitrogen after 

known reaction times, ranging from 2 to 24 h, and the obtained polymeric products (Star[(S)-

ML6A ]-2 through Star[(S)-ML6A ]-24) were purified in the same way as above.  
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As an example, the spectroscopic data for Star[(S)-ML6A ]-8, obtained after 8 h of 

reaction, are here reported:  

FT-IR: 3069 (νCH, arom.), 2980 and 2865 (νCH, aliph.), 1733 (νC=O lactic ester and νC=O 

main chain methacrylic ester), 1598 and 1517 (νC=C, arom.), 1150 and 1111 (νC-O ether), 844 

and 815 (δCH 1,4 disubst. arom. ring) cm-1.  

1H-NMR (CDCl3): 7.90 (d, 4H, arom. 2-H and 2’-H), 6.90 (m, 3H, arom core and 4H, 

3- and 3’-H), 5.10-4.90 (m, 1H, CH-CH3), 4.10-3.80 (m, 2H, CH3-CH2-O and 4H, CH2-CH2-

O), 2.20 (CH2-C-Br), 1.95 (m, 3H, CH3-C-Br), 1.85-0.90 (m, 19H, aliph spacer CH2, CH3-

CH2-O, CH-CH3, backbone CH3 and CH2 and 18H, C(CH3)2-COO) ppm.  

13C-NMR (CDCl3): 176,9 (CO methacrylic repeating unit), 171.1 (CO lactic ester), 

167.8 (CO core), 161.7 and 161.6 (arom 4-C and 4’-C), 153.1 (C-O arom core), 147.6 (arom 

1-C and 1’-C), 125.0 (arom 2-C and 2’-C), 115.3 (arom 3-C and 3’-C), 113.1 (arom C-H 

core), 70,0 (CH-CH3), 68.7 (CH2-CH2-O-), 65.7 (CH3-CH2-O-), 64.4 (COO-CH2-), 58.0 

(C(CH3)-Br), 54.2 (main chain C-CH2), 46.2 and 45.9 (main chain CH2-C), 42.2 (C(CH3)2-

CH2), 38.9 (CH2-C(CH3)-Br), 27.5 (C(CH3)-Br), 29.8, 29.1, 26.5 and 26.4 (aliph spacer CH2), 

23.2 (C(CH3)2-CH2), 19.9 and 17.7 (main chain CH3), 17.7 (CH3-CH), 15.4 (CH3-CH2) ppm. 
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Synthesis of monomers and polymeric derivatives bearing the 

chromophore 4’-cyano-4-oxy-azobenzene 

 

Synthesis of 4-(2-hydroxyethyl)-4’-cyanoazobenzene [H2A-C]:  

 

This intermediate was prepared by following the same method used for similar H6A. 

2-Bromo ethanol (3,6 ml, 0,0496 mol) was added dropwise under vigorous stirring to a 

solution of 4-hydroxy-4'-(ciano)-azobenzene (4 g, 0,01792 mol), KOH (0,6 g, 0,011 mol) and 

KI (1,64 g, 0,0099 mol) in 96% ethanol (80 ml) at reflux. The reaction was followed by TLC 

(eluent CH2Cl2:EtOAc= 4:1 v/v) until the total conversion of 4-hydroxy-4'-(ciano)-

azobenzene (48h) was observed. The precipitated material was filtered off, the solvent volume 

reduced to 15 ml under vacuum, then aq 1% NaOH was added under vigorous stirring. The 

solid formed was filtered and crystallized twice with absolute ethanol to give a orange 

crystalline material (65% yield).  

FT-IR: 3300 (νOH), 3093 (νCH, arom.), 2959 and 2881 (νCH, aliph.), 2226 (νCN nitrile) 

1600 and 1500 (νC=C, arom.), 1150 and 1111 (νC-O ether), 842 and 811 (δCH 1,4 disubst. arom. 

ring) cm-1.  

1H-NMR (CDCl3): 7,9 (d, 4H, 2-H e 2’-H), 7,8 (d, 2H, 3’-H), 7,1 (d, 2H, 3-H), 4,6 (m, 

1H, OH), 4,1 (t, 2H, CH2CH2-O), 3,9 (m, 2H, CH2 -OH) ppm.  
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Synyhesis of  4- {{{{2-[(S)-2-methcryloyloxyipropanoyloxy]ethyloxy}}}}-4’-

cyanoazobenzene [(S)-ML2A-C] and 4-(2-{{{{(S)-2-[(S)-2-methacryloyloxypropanoyloxy] 

propanoilooxy}}}}ethyloxy)-4’-cyanoazobenzene  [(S,S)-MLL2A-C] 

 

 

 

In a 150 ml three neck flask with magnetic stirrer, under nitrogen flow, 0,96 g of 

H2A-C (0,00362 mol), 0,57 g. of L-methacryloyl lactic ascid [(S)-ML ] (0,00362 mol), 1,05 g 

of  DPTS (0,00362 mol) e 0.2 g di 2,6-di-ter-buthyl-paracresole (polimerization inhibitor) and 

11 ml of anhydrous CH2Cl2 are introduced. To this solution under vigorous stirring 0,73 ml of 

N,N-di-isopropyl carbodimmide (DIPC) (0,00471 mol) are added. 

The clear solution is left at room temperature under stirring and nitrogen atmosphere 

for 72 hours, then the formed urea is filtred off. The liquid phase is washed with HCl 0,1 M, 

Na2CO3 5% and distilled water, then anidrified with Na2SO4 and the solvent evaporated under 

vacuum. 

(S)-ML2A-C  is therefore purified by chromatogrphy on silica gel (20-230 mesh) using 

CH2Cl2 as eluent and finally crystallized from methanol (yeald 28%). From these reaction also 

M2A-C  (yeald 8%) and (S,S)-MLL2A-C (yeald 14%) are obtained. 
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(S)-ML2A-C 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

hester of lactic acid residue), 1724 (νC=O hester of methacrylic residue), 1635 (νC=C vinylic), 

1600 and 1500 (νC=C arom.), 1404 (νCH CH3), 1151 and 1110 (νC-O ethere), 850, 842 and 811 

(δCH 1,4 disubst. Arom. ring) cm-1. 

1H-NMR (CDCl3): 7,9 (d, 4H, 2-H and 2’-H), 7,8 (d, 2H, 3’-H), 7,0 (d, 2H, 3-H), 6,2 

and 5,6 (dd, 2H, CH2=C), 5,1 (q, 1H, CH), 4,5 (m, 2H, CH2-O-Azo), 4,3 (t, 2H, CH2-O-CO-), 

2,0 (s, 3H, CH3 methacrylic), 1,6 (m, 6H, CH3) ppm. 

13C-NMR (CDCl3) (ppm): 171,0 (CH-CO-O), 162,1 (C-CO-O), 155,0, 147,4, 133,5, 

125,8, 123,4, 118,8, 115,2 113,5 (arom. and –CN), 136,1 (CH2=C), 126,9 (CH2=C), 69,2 

(CH-CH3), 68,6 (CH2-CH2-O-), 63,4 (COO-CH2-), 18,4 (C-CH3), 17,2 (CH3-CH) ppm. 

 

(S,S)-MLL2A-C 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

hester of lactic acid residue), 1726 (νC=O hester of methacrylic residue), 1635 (νC=C vinylic), 

1600 and 1500 (νC=C arom.), 1404 (νCH CH3), 1151 and 1110 (νC-O ether), 851, 844 and 810 

(δCH 1,4 disubst. Arom. ring) cm-1. 

1H-NMR (CDCl3): 7,9 (d, 4H, 2-H and 2’-H), 7,8 (d, 2H, 3’-H), 7,0 (d, 2H, 3-H), 6,2 

and 5,6 (dd, 2H, CH2=C), 5,1 (m, 2H, CH), 4,5 (m, 2H, CH2-O-Azo), 4,3 (t, 2H, CH2-O-CO-), 

2,0 (s, 3H, CH3 methacrylic), 1,6 (m, 6H, CH3)
 ppm 

13C-NMR (CDCl3): 170,6 and 170,5 (CH-CO-O), 162,0 (C-CO-O), 155,0, 147,4, 

133,5, 125,8, 123,4, 118,8, 115,2 113,5 (arom. and –CN), 135,7 (CH2=C), 126,9 (CH2=C), 

69,3 and 68,8 (CH-CH3), 68,6 (CH2-CH2-O-), 63,4 (COO-CH2-), 18,4 (C-CH3), 17,1 and 17,0 

(CH3-CH) ppm. 
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Synthesis of 4-(6-hydroxyhexyloxy)-4’-cyanoazobenzene [H6A-C]: 

 

This intermediate was prepared by following the same method used for similar H6A. 

6-Chlorine hexanol (6,9 ml, 0,0496 mol) was added dropwise under vigorous stirring to a 

solution of 4-hydroxy-4'-(cyano)-azobenzene (5,5 g, 0,0248 mol), KOH (0,6 g, 0,011 mol) 

and KI (1,64 g, 0,0099 mol) in 96% ethanol (80 ml) at reflux. The reaction was followed by 

TLC (eluent CH2Cl2:EtOAc= 4:1 v/v) until the total conversion of 4-hydroxy-4'-(cyano)-

azobenzene (48h) was observed. The precipitated material was filtered off, the solvent volume 

reduced to 15 ml under vacuum, then aq 1% NaOH was added under vigorous stirring. The 

solid formed was filtered and crystallized twice with absolute ethanol to give a orange 

crystalline material (87% yield).  

FT-IR: 3300 (νOH), 3093 (νCH, arom.), 2959 and 2881 (νCH, aliph.), 2226 (νCN) 1600 

and 1500 (νC=C, arom.), 1150 and 1111 (νC-O ether), 842 and 811 (δCH 1,4 disubst. arom. ring) 

cm-1.  

1H-NMR (CDCl3): 7.90 (d, 4H, arom. 2-H and 2’-H), 7.80 (d, 2H, arom. 3’-H), 7.10 

(d, 2H, 3-H) 4.15 (t, 2H, CH2-O-C), 3.65 (t, 2H, CH2-OH), 1.85-1.40 (m, 8H, CH2-CH2-CH2-

CH2) ppm. 
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Syntesis of 4-{6-[(S)-methacryloyloxypropanoyloxy]hexyloxy})-4’cyanoazobenzene 

[(S)-ML6A-C,] 4-(6-{(S)-2-[(S)-methacryloyloxy propanoyloxy]propanoyloxy}hexyloxy)-

4’cyanoazobenzene [(S,S)-MLL6A-C] 4-(6-[(S)-2-{(S)-2-[(S)-2-methacryloyloxy 

propanoyloxy]propanoyloxy}-propanoyloxy]hexyloxy)-4’cyanoazobenzene [(S,S,S)-

MLLL6A-C] 

 

The new monomer (S)-ML6A-C  has been synthesized as (S)-ML2A-C  using the 

intermediate H6A-C instead of H2A-C. 

3,40 g of H6A-C (0,0107 mol), 1,69 g of ML  (0,0107 mol), 3,12 g of  DPTS (0,0107 

mol), 0.2 g of 2,6-di-ter-butyl-paracresol (polymerization inhibitor), 95 ml of dry CH2Cl2 and 

2,15 ml of DIPC (0,014 mol) were used. 

After chromatographic separation and crystallization from methanol 0,7 g of (S)-

ML6A-C  (yeald 14%) 0,2 g of M6A-C  (5%), 0,5 g of MLL6A-C  (9%), 0,3 g of MLLL6A-

C (5%) have been obtained. 
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(S)-ML6A-C  

FT-IR (ATR): 3090 (νCH arom.), 2960 and 2880 (νCH aliph.), 2226 (νCN), 1743 (νC=O 

lactic ester), 1722 (νC=O methacrylic ester), 1635 (νC=C vinylic), 1600 and 1500 (νC=C arom.), 

1404 (νCH CH3), 1151 e 1110 (νC-O ether), 850, 842 and 811 (δCH 1,4 disubst. arom. ring) cm-

1. 

1H-NMR (CDCl3): 7,9 (d, 4H, 2-H and 2’-H), 7,8 (d, 2H, 3’-H), 7,0 (d, 2H, 3-H), 6,2 

and 5,6 (dd, 2H, CH2 vinilico), 5,1 (q, 1H, CH), 4,3 (t, 2H, CH2-O-AZO), 4,1 (t, 2H, CH2-O-

CO) 2,0 (s, 3H, CH3 metacrilico), 1,4-1,8 (m, 8H, CH2 aliph. and 3H, CH3) ppm 

13C-NMR (CDCl3): 171,3 (CH-CO-O), 163,0 (C-CO-O), 155,1, 147,1, 133,5, 125,8, 

123,4, 119,0, 115,2 113,5 (arom. and –CN), 135,7 (CH2=C), 126,8 (CH2=C), 69,2 (CH-CH3), 

68,6 (CH2-CH2-O-), 65,5 (COO-CH2-), 29,3, 28,8, 25,9 e 25,8 (CH2 aliph. spacer), 18,9 (C-

CH3), 17,7 (CH3-CH) ppm 

 

(S,S)-MLL6A-C  

FT-IR (ATR): 3090 (νCH arom.), 2960 and 2880 (νCH aliph.), 2226 (νCN), 1743 (νC=O  

lactic ester), 1722 (νC=O methacrylic ester), 1635 (νC=C vinylic), 1600 and 1500 (νC=C arom.), 

1404 (νCH CH3), 1151 e 1110 (νC-O ether), 850, 842 and 811 (δCH 1,4 disubst. arom. ring) cm-

1. 

1H-NMR (CDCl3): 7,9 (d, 4H, 2-H and 2’-H), 7,8 (d, 2H, 3’-H), 7,0 (d, 2H, 3-H), 6,2 

and 5,6 (dd, 2H, CH2 vinylic), 5,1 (m, 2H, CH), 4,3 (t, 2H, CH2-O-AZO), 4,1 (t, 2H, CH2-O-

CO), 2,0 (s, 3H, CH3 methacrylic), 1,4-1,8 (m, 8H, CH2 aliph. and 6H, CH3) ppm. 

 13C-NMR (CDCl3): 170,7 and 170,6 (CH-CO-O), 163,0 (C-CO-O), 155,1, 147,1, 

133,5, 125,8, 123,4, 119,0, 115,2 113,5 (arom. and –CN), 135,8 (CH2=C), 127,0 (CH2=C), 

69,6 and 69,4 (CH-CH3), 68,6 (CH2-CH2-O-), 65,5 (COO-CH2-), 29,3, 28,8, 25,9 and 25,8 

(CH2 alkylic spacer), 18,9 (C-CH3), 17,2 and 17,1 (CH3-CH) ppm. 
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(S,S,S)-MLLL6A-C  

FT-IR (ATR): 3090 (νCH arom.), 2960 and 2880 (νCH aliph.), 2226 (νCN), 1743 (νC=O  

lactic ester), 1722 (νC=O methacrylic ester), 1635 (νC=C vinylic), 1600 and 1500 (νC=C arom.), 

1404 (νCH CH3), 1151 and 1110 (νC-O etereo), 850, 842 and 811 (δCH 1,4 disubst. arom. ring) 

cm-1. 

1H-NMR (CDCl3): 7,9 (d, 4H, 2-H and 2’-H), 7,8 (d, 2H, 3’-H), 7,0 (d, 2H, 3-H), 6,2 

and 5,6 (dd, 2H, CH2 vinylic), 5,1 (m, 3H, CH), 4,3 (t, 2H, CH2-O-AZO), 4,1 (t, 2H, CH2-O-

CO), 2,0 (s, 3H, CH3 methacrylic), 1,4-1,8 (m, 8H, CH2 aliph. and 9H, CH3) ppm. 

13C-NMR (CDCl3): 170,6, 170,3 and 170,0  (CH-CO-O), 163,0 (C-CO-O), 155,1, 

147,1, 133,5, 125,8, 123,4, 119,0, 115,2 113,5 (arom. and –CN), 135,7 (CH2=C), 127,0 

(CH2=C) , 69,5, 69,1 and 68,8 (CH-CH3), 68,4 (CH2-CH2-O-), 65,6 (COO-CH2-), 29,3, 28,8, 

25,9 and 25,8 (CH2 aliph. spacer), 18,4 (C-CH3), 17,1, 17,0 and 16,9 (CH3-CH) ppm 
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Synthesys of polymeric derivatives of (S)-ML2A-C, (S,S)-MLL2A-C, (S)-ML6A-C, 

(S,S)-MLL6A-C and (S,S,S)-MLLL6A-C 

 

Linear and star shaped polymers have been synthesized as previously described for the 

polymeric derivatives of (S)-ML6A . 

The catalytic system used was CuBr/HMTETA  and the initiator used were ABiB  for 

linear derivatives and BMPB for star shaped polymers, using a molar ratio 

Monomer/ABiB /CuBr/HMTETA  = 50/1/1/1 or Monomer/BMPB/CuBr/HMTETA  = 

150/1/1/1, dry THF as solvent and a monomer concentration of 0.2 M. 

The quantities used are reported in Table 9. 

Table 9. synthesis of the polymeric derivatives 
Sample Monomer 

[g (mol)] 

Initiator  

[mg, (mol)] 

CuBr 

[mg (mol)] 

HMTETA 

[µl (mol)] 

THF 

(ml) 

Poly[(S)-ML2A -C] 0,150 

(3,68 10-4) 

ABiB 1,5 

(7,36 10-6) 

0,91 

(7,36 10-6) 

2,0 

(7,36 10-6) 
1,84 

Poly[(S,S)-MLL2A -C] 0,200 

(4,17 10-4) 

ABiB 1,7 

(8,34 10-6) 

1,2 

(8,34 10-6) 

2,27 

(8,34 10-6) 
2,0 

Poly[(S)-ML6A -C] 0,300 

(6,47 10-4) 

ABiB 2,7 

(1,29 10-5) 

1,85 

(1,29 10-5) 

3,52 

(1,29 10-5) 
3,23 

Poly[(S,S)-MLL6A -C] 0,250 

(4,67 10-4) 

ABiB 1,9 

(9,34 10-6) 

1,15 

(9,34 10-6) 

2,54 

(9,34 10-6) 
2,33 

Poly[(S,S,S)-MLLL6A -

C] 

0,150 

(2,47 10-4) 

ABiB 1,0 

(4,94 10-6) 

0,61 

(4,94 10-6) 

1,34 

(4,94 10-6) 
1,24 

Star[(S)-ML6A -C] 0,200 

(4,91 10-4) 

BMPB 2,2 

(3,27 10-6) 

1,21 

(9,82 10-6) 

2,67 

(9,82 10-6) 
2,45 

Star[(S,S)-MLL6A -C] 0,250 

(4,67 10-4) 

BMPB 1,8 

(3,11 10-6) 

1,15 

(9,34 10-6) 

2,54 

(9,34 10-6) 
2,33 

 

The polymeric derivatives were characterized by FT-IR, 1H- and 13C-NMR, UV-Vis 

spectroscopy, GPC and DSC. 
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Poly[(S)-ML2A-C ] 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

lactic ester), 1732 (νC=O methacrylic ester), 1598 and 1499 (νC=C arom.), 1403 (νCH CH3), 

1151 and 1110 (νC-O ether), 845 and 811 (δCH 1,4 disubst. arom. ring) cm-1. 

1H-NMR (CDCl3): 7,9 (m, 4H, 2-H and 2’-H), 7,8 (m, 2H, 3’-H), 6,9 (m, 2H, 3-H), 

5,9 (m, 1H, CH2=CH-CH2-O), 5,3 (m, 2H, CH2=CH-CH2), 5,1-4,9 (m, 1H, CH), 4,6-4,4 (m, 

2H, CH2-O-AZO and m, 2H, CH2=CH-CH2), 4,4-4,2 (m, 2H, CH2-O-CO), 2,2-1,8 (m, 2H, 

CH2 main chain),  1,6-0,9 (m, 6H, CH-CH3 and CH3) ppm,. 

13C-NMR (CDCl3): 170,5 (CH-CO-O), 161,9 (C-CO-O), 154,7, 147,43, 133,5, 125,7, 

123,4, 118,8, 115,2 and 113,9 (arom. and –CN), 69,6 (CH-CH3), 66,2 (CH2-CH2-O-), 63,2 

(COO-CH2-), 54,5 (C-CH2 main chain), 45,9 and 45,5 (CH2-C main chain), 42,2 (C(CH3)2-

CH2), 34,5 (CH2C(CH3)Br), 28,3 (C(CH3)Br), 20,0 (C-CH3), 17,2 (CH3-CH) ppm. 

 

Poly[(S,S)-MLL2A-C ] 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

lactic ester), 1732 (νC=O methacrylic ester), 1598 and 1499 (νC=C arom.), 1403 (νCH CH3), 

1151 and 1110 (νC-O ether), 845 and 811 (δCH 1,4 disubst. arom. ring) cm-1. 

1H-NMR (CDCl3): 8,0-7,8 (m, 4H, 2-H and 2’-H), 7,8-7,6 (m, 2H, 3’-H), 7,0-6,9 (m, 

2H, 3-H), 5,9 (m, 1H, CH2=CH-CH2-O), 5,2-5,0 (m, 2H, CH), 5,0-4,8 (m, 1H, CH and m, 2H, 

CH2=CH-CH2), 4,6-4,3 (m, 2H, CH2-O-AZO and m, 2H, CH2=CH-CH2), 4,2-4,1 (m, 2H, 

CH2-O-CO), 2,2-1,8 (m, 2H CH2 main chain), 1,6-0,9 (m, 9H, CH-CH3, CH3 main chain) 

ppm. 

13C-NMR (CDCl3): 170,5 and 170,3 (CH-CO-O), 161,9 (C-CO-O), 154,7, 147,43, 

133,5, 125,7, 123,4, 118,8, 115,2 113,9 (arom. and –CN), 69,6 and 69,5 (CH-CH3), 66,2 

(CH2-CH2-O-), 63,2 (COO-CH2-), 54,5 (C-CH2 main chain), 45,9 and 45,5 (CH2-C main 

chian), 42,2 (C(CH3)2-CH2), 34,5 (CH2C(CH3)Br), 28,3 (C(CH3)Br), 20,0 (C-CH3), 17,3 e 

17,2 (CH3-CH) ppm. 
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Poly[(S)-ML6A-C ] 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

lactic ester), 1732 (νC=O methacrylic ester), 1598 and 1499 (νC=C arom.), 1403 (νCH CH3), 

1151 and 1110 (νC-O ether), 845 and 811 (δCH 1,4 disubst. arom. ring) cm-1. 

1H-NMR (CDCl3): 8,0-7.8 (m, 4H, 2-H and 2’-H), 7,8-7,7 (m, 2H, 3’-H), 7,0-6,9 (m, 

2H, 3-H), 5,9 (m, 1H, CH2=CH-CH2-O), 5,3 (m, 2H, CH2=CH-CH2), 5,0-4,8 (m, 1H, CH), 

4,5 (m, 2H, CH2=CH-CH2), 4,2-4,0 (m, 2H, CH2-O-AZO), 4,0-3,8 (m, 2H, CH2-O-CO), 2,2-

0,9 (m, 16H, CH2 aliph. spacer, CH-CH3, CH3 and CH2 main chain) ppm. 

13C-NMR (CDCl3): 170,1 (CH-CO-O), 162,8 (C-CO-O), 154,9, 146,9, 133,4, 125,7, 

123,2, 118,8, 115,1 and 113,9 (arom. and –CN), 69,3 (CH-CH3), 68,4 (CH2-CH2-O-), 65,6 

(COO-CH2-), 54,5 (C-CH2 main chain), 45,9 and 45,5 (CH2-C main chian), 42,2 (C(CH3)2-

CH2), 34,5 (CH2C(CH3)Br), 30,5, 28,2, 28,6 and 25,9 (CH2 aliph. spacer), 28,3 (C(CH3)Br), 

20,0 (C-CH3), 17,1 (CH3-CH) ppm. 

 

Star[(S)-ML6A-C ] 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

lactic ester), 1732 (νC=O methacrylic ester), 1598 and 1499 (νC=C arom.), 1403 (νCH CH3), 

1151 and 1110 (νC-O ether), 845 and 811 (δCH 1,4 disubst. arom. ring) cm-1. 

1H-NMR (CDCl3): 7,9 (m, 4H, 2-H and 2’-H), 7,7 (m, 2H, 3’-H), 6,9 (m, 2H, 3-H and 

arom. initiator ring), 5,0 (m, 1H, CH), 4,1 (m, 2H, CH2-O-AZO), 3,9 (m, 2H, CH2-O-CO), 

2,2-0,9 (m, 16H, CH2 aliph. spacer, CH-CH3, CH3 and CH2 main chain, and 18H, C(CH3)2-

COO from initiator residue) ppm. 

13C-NMR (CDCl3): 171,3 (CH-CO-O), 162,8 (C-CO-O), 154,9, 147,0, 133,5, 125,8, 

123,4, 119,0, 115,2 113,5 (arom. and –CN), 69.2 (CH-CH3), 68.6 (CH2-CH2-O-), 65.5 (COO-

CH2-), 57,5 (C(CH3)-Br), 54.2 (C-CH2 mian chain), 46.2 and 45.9 (CH2-C main chain), 42,6 

(C(CH3)2-CH2), 34,5 (CH2C(CH3)Br), 29,3, 28,8, 25,9 e 25,8 (CH2 aliph. spacer), 28,4 

(C(CH3)Br), 19,7 (C-CH3), 18.9 (C-CH3), 17.7 (CH3-CH) ppm. 
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Poly[(S,S)-MLL6A-C ] 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

lactic ester), 1732 (νC=O methacrylic ester), 1598 and 1499 (νC=C arom.), 1403 (νCH CH3), 

1151 and 1110 (νC-O ether), 845 and 811 (δCH 1,4 disubst. arom. ring) cm-1. 

1H-NMR (CDCl3): 8,0-7.8 (m, 4H, 2-H and 2’-H), 7,8-7,7  (m, 2H, 3’-H), 7,0-6,9 (m, 

2H, 3-H), 5,9 (m, 1H, CH2=CH-CH2-O), 5,2-5,0 (m, 1H, CH and m, 2H, CH2=CH-CH2), 5,0-

4,9 (m, 1H, CH), 4,5 (m, 2H, CH2=CH-CH2), 4,2-3,9 (m, 2H, CH2-O-AZO and m, 2H, CH2-

O-CO), 2,2-0,9 (m, 19H, CH2 aliph. spacer, CH-CH3, CH3 and CH2 main chain) ppm. 

13C-NMR (CDCl3): 170,2 and 170,1 (CH-CO-O), 162,8 (C-CO-O), 154,9, 146,9, 

133,4, 125,7, 123,2, 118,8, 115,1, 113,9 (arom. and –CN), 69,5 and 69,1 (CH-CH3), 68,4 

(CH2-CH2-O-), 65,6 (COO-CH2-), 54,5 (C-CH2 main chain), 45,9 and 45,5 (CH2-C main 

chain), 42,2 (C(CH3)2-CH2), 34,5 (CH2C(CH3)Br), 30,5, 28,2, 28,6 e 25,9 (CH2 aliph. spacer), 

28,3 (C(CH3)Br), 20,0 (C-CH3), 17,1 and 16,9 (CH3-CH) ppm. 

 

Star[(S,S)-MLL6A-C ] 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

lactic ester), 1732 (νC=O methacrylic ester), 1598 and 1499 (νC=C arom.), 1403 (νCH CH3), 

1151 and 1110 (νC-O ether), 845 and 811 (δCH 1,4 disubst. arom. ring) cm-1. 

1H-NMR (CDCl3): 8,0-7.8 (m, 4H, 2-H and 2’-H), 7,8-7,7  (m, 2H, 3’-H), 7,0-6,9 (m, 

2H, 3-H), 5,2-5,1 (m, 1H, CH), 5,1-4,9 (m, 1H, CH), 4,2-3,9 (m, 2H, CH2-O-AZO and m, 2H, 

CH2-O-CO), 2,2-0,9 (m, 19H, CH2 aliph. spacer, CH-CH3, CH3 e CH2 main chain). 

13C-NMR (CDCl3): 171,4 and 171,3 (CH-CO-O), 162,8 (C-CO-O), 154,9, 147,0, 

133,5, , 125,8, 123,4, 119,0, 115,2 and 113,5 (arom. and –CN), 69,5 and 69,3 (CH-CH3), 68.6 

(CH2-CH2-O-), 65.5 (COO-CH2-), 57,5 (C(CH3)-Br), 54.2 (C-CH2 main chain), 46.2 and 45.9 

(CH2-C main chain), 42,6 (C(CH3)2-CH2), 34,5 (CH2C(CH3)Br), 29,3, 28,8, 25,9 and 25,8 

(CH2 aliph. spacer), 28,4 (C(CH3)Br), 19,7 (C-CH3), 18.9 (C-CH3), 17,8 and 17,7 (CH3-CH) 

ppm. 
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Poly[(S,S,S)-MLLL6A-C ] 

FT-IR (ATR): 3093 (νCH arom.), 2959 and 2881 (νCH aliph.), 2226 (νCN), 1745 (νC=O 

lactic ester), 1732 (νC=O methacrylic ester), 1598 and 1499 (νC=C arom.), 1403 (νCH CH3), 

1151 and 1110 (νC-O ether), 845 and 811 (δCH 1,4 disubst. arom. ring) cm-1. 

1H-NMR (CDCl3): 8,0-7.8 (m, 4H, 2-H and 2’-H), 7,8-7,7  (m, 2H, 3’-H), 7,0-6,9 (m, 

2H, 3-H), 5,9 (m, 1H, CH2=CH-CH2-O), 5,3-5,1 (m, 1H, CH, m 1H, CH and m, 2H, 

CH2=CH-CH2), 5,1-4,9 (m, 1H, CH), 4,5 (m, 2H, CH2=CH-CH2), 4,2-4,1 (m, 2H, CH2-O-

AZO), 4,1-3,9 (m, 2H, CH2-O-CO), 2,2-0,9 (m, 22H, CH2 aliph. spacer, CH-CH3, CH3 and 

CH2 main chain) ppm. 

13C-NMR (CDCl3): 170,5, 170,2 and 170,1 (CH-CO-O), 162,8 (C-CO-O), 154,9, 

146,9, 133,4, 125,7, 123,2, 118,8, 115,1, 113,9 (arom. and –CN), 69,6, 69,5 and 69,1 (CH-

CH3), 68,4 (CH2-CH2-O-), 65,6 (COO-CH2-), 54,5 (C-CH2 main chain), 45,9 and 45,5 (CH2-

C mian chian), 42,2 (C(CH3)2-CH2), 34,5 (CH2C(CH3)Br), 30,5, 28,2, 28,6 and 25,9 (CH2 

aliph. spacer), 28,3 (C(CH3)Br), 20,0 (C-CH3), 17,2, 17,1 and 16,9 (CH3-CH) ppm. 

 

 

 

 

 

  



Chirality     145 

 

145 

 

References 
 

[1] M. Irie, Chem. Rev. (Washington, D. C.) 2000, 100, 1683. 
[2] L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, Polymer 2005, 46, 2424. 
[3] E. Gomar-Nadal, J. Veciana, C. Rovira, D. B. Amabilino, Advanced Materials 2005, 

17, 2095. 
[4] Y. Agata, M. Kobayashi, H. Kimura, M. Takeishi, Polym. Int. 2005, 54, 260. 
[5] B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, Chem. Rev. 

(Washington, D. C.) 2000, 100, 1789. 
[6] T. Kaneko, Y. Umeda, T. Yamamoto, M. Teraguchi, T. Aoki, Macromolecules 2005, 

38, 9420. 
[7] Y. Oaki, H. Imai, J. Am. Chem. Soc. 2004, 126, 9271. 
[8] T. J. Wigglesworth, D. Sud, T. B. Norsten, V. S. Lekhi, N. R. Branda, J. Am. Chem. 

Soc. 2005, 127, 7272. 
[9] T. Kajitani, H. Masu, S. Kohmoto, M. Yamamoto, K. Yamaguchi, K. Kishikawa, J. 

Am. Chem. Soc. 2005, 127, 1124. 
[10] L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, R. Bozio, A. Dauru, D. Pedron, Eur. 

Polym. J. 2005, 41, 2045. 
[11] L. Angiolini, D. Caretti, L. Giorgini, E. Salatelli, Macromol. Chem. Phys. 2000, 201, 

533. 
[12] G. D. Jaycox, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 566. 
[13] L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, P. S. Ramanujam, Opt. 

Mater. (Amsterdam) 1997, 8, 255. 
[14] I. Nayadenova, L. Nikolova, P. S. Ramanujam, S. Hvilsted, J. Opt. A: Pure Appl. Opt 

1999, 1, 438  
[15] M. Ivanov, I. Naydenova, T. Todorov, L. Nikolova, T. Petrova, N. Tomova, V. 

Dragostinova, J. Mod. Opt. 2000, 47, 861. 
[16] L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. 

S. Ramanujam, S. Hvilsted, Appl. Phys. Lett. 2000, 77, 657. 
[17] G. Iftime, F. L. Labarthet, A. Natansohn, P. Rochon, J. Am. Chem. Soc. 2000, 122, 

12646. 
[18] M.-J. Kim, B.-G. Shin, J.-J. Kim, D.-Y. Kim, J. Am. Chem. Soc. 2002, 124, 3504. 
[19] L. Angiolini, R. Bozio, L. Giorgini, D. Pedron, G. Turco, A. Dauru, Chem.--Eur. J. 

2002, 8, 4241. 
[20] L. Angiolini, T. Benelli, R. Bozio, A. Dauru, L. Giorgini, D. Pedron, Synth. Met. 

2003, 139, 743. 
[21] L. Angiolini, L. Giorgini, R. Bozio, D. Pedron, Synth. Met. 2003, 138, 375. 
[22] D. Hore, Y. Wu, A. Natansohn, P. Rochon, J. Appl. Phys. 2003, 94, 2162. 
[23] R. M. Tejedor, M. Millaruelo, L. Oriol, J. L. Serrano, R. Alcala, F. J. Rodriguez, B. 

Villacampa, J. Mater. Chem. 2006, 16, 1674. 
[24] R. M. Tejedor, L. Oriol, J. L. Serrano, F. P. Urena, J. J. L. Gonzalez, Adv. Funct. 

Mater. 2007, 17, 3486. 
[25] E. L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds, 

Wiley-VCH, New York, 1994. 
[26] K. Matyjaszewski, J. Xia, Chemical Reviews 2001, 101, 2921. 
[27] L. Angiolini, T. Benelli, L. Giorgini, F. Paris, E. Salatelli, M. P. Fontana, P. 

Camorani, Eur. Polym. J. 2008, 44, 3231. 



146     Chirality 

 
[28] L. Angiolini, T. Benelli, L. Giorgini, F. Paris, E. Salatelli, T. Zuccheri, Int. J. Polym. 

Mater. 2007, 56, 789. 
[29] J. Barberá, L. Giorgini, F. Paris, E. Salatelli, Rosa M. Tejedor, L. Angiolini, 

Chemistry - A European Journal 2008, 14, 11209. 
[30] D. Wolff, H. Cackovic, H. Krueger, J. Ruebner, J. Springer, Liq. Cryst. 1993, 14, 917. 
[31] A. S. Angeloni, D. Caretti, C. Carlini, E. Chiellini, G. Galli, A. Altomare, R. Solaro, 

M. Laus, Liq. Cryst. 1989, 4, 513. 
[32] J. S. Moore, S. I. Stupp, Macromolecules 1990, 23, 65. 
[33] X.-Z. Wang, H.-L. Zhang, D.-C. Shi, J.-F. Chen, X.-Y. Wang, Q.-F. Zhou, Eur. 

Polym. J. 2005, 41, 933. 
[34] L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, Macromolecules 2006, 39, 3731. 
[35] K. Matyjaszewski, P. J. Miller, J. Pyun, G. Kickelbick, S. Diamanti, Macromolecules 

1999, 32, 6526. 
[36] S. Angot, K. S. Murthy, D. Taton, Y. Gnanou, Macromolecules 1998, 31, 7218. 
[37] L. Angiolini, C. Carlini, D. Caretti, E. Salatelli, Macromol. Chem. Phys 1995, 196, 

2737  
[38] L. Angiolini, D. Caretti, L. Giorgini, E. Salatelli, A. Altomare, C. Carlini, R. Solaro, 

Polymer 1998, 39, 6621  
[39] L. Angiolini, D. Caretti, L. Giorgini, E. Salatelli, A. Altomare, C. Carlini, R. Solaro, 

Polymer 2000, 41, 4767  
[40] P. Davidson, A. M. Levelut, M. F. Achard, F. Hardouin, Liq. Cryst. 1989, 4, 561. 
[41] M. Kozlovsky, B.-J. Jungnickel, H. Ehrenberg, Macromolecules 2005, 38, 2729. 
[42] H. H. Jaffé, M. Orchin, Theory and application of ultraviolet spectroscopy, Wiley, 

New York, 1962. 
[43] L. Angiolini, T. Benelli, L. Giorgini, E. Salatelli, Polymer 2006, 47, 1875. 
[44] M. Shimomura, T. Kunitake, J. Am. Chem. Soc. 1987, 109, 5175. 
[45] J. G. Meier, R. Ruhmann, J. Stumpe, Macromolecules 2000, 33, 843. 
[46] I. Zebger, M. Rutloh, U. Hoffmann, J. Stumpe, H. W. Siesler, S. Hvilsted, 

Macromolecules 2003, 36, 9373. 
[47] F. Ciardelli, C. Carlini, R. Solaro, A. Altomare, O. Pieroni, J. L. Houben, A. Fissi, 

Pure Appl. Chem. 1984, 56, 329. 
[48] A. Painelli, F. Terenziani, L. Angiolini, T. Benelli, L. Giorgini, Chem.--Eur. J. 2005, 

11, 6053. 
[49] L. M. Blinov, M. V. Kozlovsky, G. Cipparrone, Chem. Phys. 1999, 245, 473. 
[50] G. Srajer, R. Pindak, M. A. Waugh, J. W. Goodby, J. S. Patel, Phys. Rev. Lett. 1990, 

64, 1545. 
[51] J. W. Goodby, Struct. Bonding (Berlin) 1999, 95, 83. 
[52] A. C. Ribeiro, H. T. Nguyen, Y. Galerne, D. Guillon, Liq. Cryst. 2000, 27, 27. 
[53] M. S. Spector, S. K. Prasad, B. T. Weslowski, R. D. Kamien, J. V. Selinger, B. R. 

Ratna, R. Shashidhar, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. 
Top. 2000, 61, 3977. 

[54] J. Xue, N. A. Clark, Phys. Rev. E 1990, 64, 307. 
[55] N. Berova, K. Nakanishi, R. W. Woody, Circular Dichroism Principles and 

Applications, Wiley-VCH Inc, New York, 2000. 
[56] S. Pages, F. Lagugne-Labarthet, T. Buffeteau, C. Sourisseau, Appl. Phys. B: Lasers 

Opt. 2002, 75, 541. 
[57] T. Fujiwara, N. Nanba, K. Hamada, F. Toda, K. Tanaka, J. Org. Chem. 1990, 55, 

4532. 
[58] A. Moradpour, J. F. Nicoud, G. Balavoine, H. Kagan, G. Tsoucaris, J. Am. Chem. 

Soc. 1971, 93, 2353. 
[59] K. S. Burnham, G. B. Schuster, J. Am. Chem. Soc. 1999, 121, 10245. 



Chirality     147 

 

147 

 

[60] N. P. M. Huck, W. F. Jager, B. de Lang, B. L. Feringa, Science (Washington, D. C.) 
1996, 273, 1686. 

[61] S.-W. Choi, S. Kawauchi, N. Y. Ha, H. Takezoe, Phys. Chem. Chem. Phys. 2007, 9, 
3671. 

[62] S. Sajti, A. Kerekes, M. Barabas, E. Lorincz, S. Hvilsted, P. S. Ramanujam, Opt. 
Commun. 2001, 194, 435. 

[63] S.-W. Choi, T. Izumi, Y. Hoshino, Y. Takanishi, K. Ishikawa, J. Watanabe, H. 
Takezoe, Angew. Chem., Int. Ed. 2006, 45, 1382. 

[64] H. Rau, Photochemistry and photophysics, CRC, USA, 1990. 
[65] P. J. Collings, M. Hird, Introductions to liquid crystal, Taylor & Francis, London 

1997. 
[66] V. A. Miller, R. R. Brown, E. B. Gienger, Jr., (International Latex Corp.). Application: 

US 
US, 1962, p. 7 pp. 
[67] D. D. Perrin, W. L. F. Amarego, D. R. Perrin, Purification of Laboratory Chemicals, 

Pergamon Press, Oxford, 1996. 
[68] D. M. Haddleton, C. Waterson, Macromolecules 1999, 32, 8732. 
[69] A. Carlmark, R. Vestberg, E. M. Jonsson, Polymer 2002, 43, 4237. 

 

 

 





Chiolesteric Polymers     149 

 

149 

 

Chapter 4 

Cholesteric polymers 

 

Introduction 
 

The Bragg reflection of cholesteric liquid crystals has been object of an enormous 

number of studies and thus this kind of systems found applications in several devices: from 

photonic systems to laser to thermometers. The cholesteric or chiral nematic (N*) phase can 

be induced in nematic liquid crystal by doping with a small amount of chiral molecules that 

can force a twisting of the nematic director and thus induce the phase transition. The 

efficiency of the chiral doping is express by the rotation power (β), a parameter typical of 

each substance that is influenced by several factor like the matrix interaction, temperature, 

and the structure of the chiral residue.  

In literature is reported a plethora of these compounds, the more efficient are based on 

chiral spyro compound and asymmetrical bisnaphtalene but their use, despite their efficiency, 

is limited by their complex synthesis and purification. Natural chiral compounds, due to their 

relative low cost and optical purity are therefore more applicable if real applications are seek. 

When the axes of the induced helix are normal to the surface (planar alignment) these 

systems are able to reflect a specific wavelength (Bragg reflection): 

� � Ag � ��A � 

where Ag is the average refractive index, P the helix pass and θ the light tilt angle. If the 

helix pass is of the magnitude of visible light these phases will result highly colored (Figure 

1).  

 
Figure 1: planar alignment and selective reflection 
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The helix pass is inverse proportion to the concentration (c), twisting power (β) and 

the enantiomeric excess (ee) of the chiral moiety: 

� � 1
� · �� · ? 

Is therefore possible to modulate the helix pass by acting on these parameters [1]. 

In the case of liquid crystals polymers a chiral nematic phase can be obtained in two 

ways [2]:  

1) By adding to a nematic polymer a small amount of low molecular weight chiral 

doping 

2) By copolymerization of mesogenic and chiral monomers (Figure 2) 

 
Figure 2 Structures of chiral nematic copolymers 

The presence in the same structure of photochromic groups, as the azoaromatic 

mesogen, and chiral centers allows the photomodulation of the Bragg reflection [3].  

In literature are reported also photochromic cholesteric copolymers containing 

nematogenic monomers and comonomer that bring on the same lateral chain chiral and 

photochromic groups. The mesogen monomer induce the nematic phase that is doped by the 

chiral co-unit and the photochromic group (e.g. azoaromatic group) if opportunely irradiated 

can modify its geometry and thus can modify the twisting power of the chiral center. 

With irradiation with UV light trans-cis isomerization in azoaromatic units can be 

induced with the consequent change of shape from a mesogenic rod-shaped trans isomer to 

bended non planar cis form and thus destabilization of the supramolecular order. (Figure 3). 
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Figure 3: isomerization of an azoaromatic moiety into a LC matrix 

Thus a progressive untwisting of the helix can be performed with consequent shift of 

the Bragg reflection. 

This phenomenon is totally reversible and in the dark the back isomerization will bring 

the system to the initial thermodynamic stable conformation. Photoinduced untwisting of the 

helix and thermally induced twisting to the pristine condition is thus possible [4] 

 
Figure 4. Shift of the Bragg reflection in the thermodynamically stable state (1), after 10 minutes of irradiation 
with UV light(2) and after 30 minutes (3). 

 

Anyway, even if the photochromic groups can undergoes backisomerization for 

allowing the system to relax to the twisted conformation is necessary that the temperature is 

above the glass transition, otherwise the system is frozen into a metastable state. 
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The aim of this work is to synthesize a material able to change reversibly its color by 

irradiation and to store the information until the temperature reaches a threshold value, then 

the information is erased and the pristine configuration restored. 

The use of photochromic cholesteric polymer is therefore favorable: by irradiation a 

photoinduced phase transition between the highly colored LC phase (N*) and amorphous 

phase can be achieved with a huge change in the UV-Vis spectra of the material that is 

conserved until the temperature is below the glass transition of the polymer. By tailoring the 

glass transition we can tune the trigger temperature at which the system will relax to the 

thermodynamically stable LC state (N*) with re-establishment of the previous UV-Vis 

characteristic. 

This kind of materials could be used for the fabrication of “smart” label for the 

certification of the thermal history of a product: in fact the possibility of such a certification is 

highly desirable as a quality warren for several products in which this certification can be an 

additional value: from drugs to high quality food. 

Nowadays some products of this kind are already used, but they are based on thermal 

sensitive dyes that undergo chemical transformations above a certain temperature. These 

materials are themselves sensitive to the temperature and the trigger temperature cannot be 

tailored easily. Thus their applicability is widely limited in a small range of temperature. 

For the synthesis of this new material we choose the azoaromatic moiety as the 

photochromic unit, as is enough robust against photodegradation and its photochemistry can 

be exploited for passing from the mesogenic trans isomer to the non mesogenic cis isomer 

with a huge impact on the stability of the LC phase. 

We used a cholesterol residue as chiral unit as is itself mesogenic, readily available an 

quite cheap, thus could be potentially used also in commercial application. 

Finally we choose to synthesize these polymers by ATRP, as this techniques allows us 

to tailor easily the molecular weight, the polydispersity and the geometry of the 

macromolecules and thus allow us to tune precisely the glass transition temperature, 

overcoming the limitation of a non tunable trigger temperature as in the case of dyes. 

The structure of the synthesized monomers and polymers are reported below in 

Scheme 3. 
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R=H n=1 m=0 Poly(A6MA )-7 
n=0,96 m=0,04 Poly(A6MA -co-CAE)-7-(96:4) 
n=0,83 m=0,17 Poly(A6MA -co-CAE)-7-(83:17) 
n=0,68 m=0,32 Poly(A6MA -co-CAE)-7-(68:32) 

 n=0 m=1 Poly(CAE)-7  

 

 

 

Scheme 1: synthesis of the polymeric derivatives 

  

  

O

O

OO

O

N
N

O

Br

OO

O
O

H
H

H

*

*

*
*

* *

*

n mO

O

N
N

O

O

O

O
O

H
H

H

*

*

*
*

* *

*

O

O
Br

O

CuBr

ABIB
+

N

NN
N

Me6TREN

O

O

OO

O

N
N

O

Br

OO

O
O

H
H

H

*

*

*
*

* *

*

n m

R R

OO

O

N
N

O

OO

O
O

H
H

H

*

*

*
*

* *

*

n m

O
Br

O

CuBr
ABIB HMTETA

N N

NN AIBN

*

*
*

*

R=H n=1 m=0 Poly(A6MA )-AIBN-3 
n=0,98 m=0,02 Poly(A6MA -co-CAE)-AIBN-3-(98:2) 
n=0,90 m=0,10 Poly(A6MA -co-CAE)-AIBN-3-(90:10) 

 

R=CH3 n=1 m=0 Poly(M6MA )-1 
n=0,95 m=0,05 Poly(M6MA -co-CME )-1-(95:5) 
n=0,81 m=0,19 Poly(M6MA -co-CME )-1-(81:19) 
n=0,52 m=0,48 Poly(M6MA -co-CME )-1-(52:48) 
n=0   m=100 poli(CME )-1 
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Monomers synthesis 

The photochromic azoaromatic monomers 3-methyl-4-(6-acryloyloxyhexyloxy)-4’-

(ethoxy)-azobenzene (A6MA ) and 3-methyl-4-(6-methacryloyloxyhexyloxy)-4’-(ethoxy)-

azobenzene (M6MA ) were synthesized following the three steps procedure reported in 

literature [5] (Scheme 1).  

 
Scheme 1: synthesis of the photochromic monomers 

 

The first step is the azocoupling reaction of the diazonium salt of 4-ethoxy aniline with 

o-cresol obtaining the azoic alcohol 3-methyl-4-hydroxy-4’-(ethoxy)-azobenzene (MA ) that is 

etherificated with 6-chlorohexanol to give the key intermediate 3-methyl-4-(6-

hydroxyhexyloxy)-4’-(ethoxy)-azobenzene with a total yield of 40%. This compound is 

esterificated with acryloyl or methacryloyl chloride to give the desired monomers A6MA  or 

M6MA  respectively with a yield of 85-90% in both cases. 

The monomers 6-acryloyl-oxyhexanoyl-1-cholesterol (CAE) and 6-methacryloyl-

hexanoyl-1-cholesterol (CME ) were synthesized following the two steps procedure reported 

in literature [6] Scheme 2. 
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Scheme 2: Synthesis of the cholesterol containing monomers CAE and CME. 

 

The first step is the esterification of commercially available cholesterol with 6-bromo-

hexanoyl chloride in presence of TEA and DMAP to give the intermediate 6-bromo-

hexanoyl-1-cholesterol (CBrE ) that is esterificated with acryl or methacrylic acid in basic 

condition in presence of tetrabutylammoniumsulfate as phase transfer catalyst to give 

respectively CAE or CME with a yield of 68% and 88%. 

1H-NMR and FT-IR characterizations of the monomers and intermediates are in 

agreement with the expected structures and literature data [6].  
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Synthesis of the polymeric derivatives 

In order to have a good correlation structure-properties and a fine tuning of the glass 

transition several homopolymers and copolymers of the four prepared monomers (CAE, 

CME , A6MA  and M6MA ) were synthesized by ATRP with different molecular weight and 

composition (Scheme 1). 

Due to the different reactivity of the acrylic and methacrylic monomers in an ATRP 

polymerization different catalysts are needed. In the case of methacrylic monomers, due to the 

high reactivity of the methacrylic residue, a medium active catalyst can be used, as 

CuBr/PMDETA to achieve both a good control over the polymerization and short times. The 

polymerization of the acrylic monomers instead in diluted condition is more complicated: the 

low activity[7, 8] and low concentration make the choice of a highly active ligand necessary to 

have reasonable polymerization times with a small loss over the polymerization control. 

In this contest the polymerizations of the acrylic monomers were carried out using two 

differents molar ratio monomer: initiator: CuBr: ligand = 50: 1: 1: 1 and 100: 1: 1: 1 varying 

the concentration of monomer in solution and the activity of the catalyst and the 

polymerization time (Table 1). This enabled to define the right conditions for the 

polymerization of all the macromoleculars derivatives of interst using ABiB  as initiator, 

Me6TREN as ligand and a monomer: ABiB : CuBr: Me6TREN= 50: 1: 1: 1 molar ratio at 

80°C in dry anisole for seven days. 

In order to have a full view over some acrylic polymeric derivatives were synthesized 

by free radical polymerization with AIBN as initiator carrying on the polymerization for 72 

hours at 60°C in dry THF as solvent (Table 1 and Scheme 1). 

In order to investigate the correlation between the transition temperatures and the 

structure and composition of the macromolecules a series of analogous methacrylic homo and 

copolymers was synthesized using the more active methacrylic monomers M6AM  and CME . 

Due to their higher activity the ATRP polymerizations were carried in shorter times (24 

hours), lower temperature using ABiB as initiator, CuBr as catalyst and HMTETA as ligand 

with a ratio 50: 1: 1: 1 [9].  

The relevant synthetic data for the polymeric derivatives are gathered in Table 1. 
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Table 1: synthesis of the polymeric derivatives 

Sample 
%A6MA 

(feed) 
1H-NMRa) 

%CAE 
(feed) 

1H-NMRa) 

b) 

���,��� 

c) 

3g�,���  

b) 

���/��� 

Poly(A6MA )- AIBN- 3 e) 
(100) 
100 

(0) 
0 

2900 7,1 1,46 

PolyA6MA -co-CAE)-AIBN-3-(98:2) e) 
(95) 
98 

(5) 
2 

2900 7,0 1,44 

Poly(A6MA -co-CAE)-AIBN-3-(90:10) 
e) 

(80) 
90 

(20) 
10 

4400 10,4 1,36 

 

 %A6MA 
(feed) 

1H-NMRa) 

 %CAE 
(feed) 

1H-NMRa) 

d) 

���,�~q��� 

c) 

3g�,�~q��� 

b) 

���/��� 

Poly(A6MA )-3-(50:1:1:1) f) 
(100) 
100 

(0) 
0 

5700 13,3 1,25 

Poly(A6MA )-3-(100:1:1:1) g) 
(100) 
100 

(0) 
0 

9300 22,2 1,20 

Poly(A6MA )-7 h) 
(100) 
100 

(0) 
0 

23600 57,1 1,53 

Poly(A6MA -co-CAE)-7-(96:4) h) 
(95) 
96 

(5) 
4 

34800 83,2 1,41 

Poly(A6MA -co-CAE)-7-(83:17) h) 
(80) 
83 

(20) 
17 

11800 26,7 1,48 

Poly(A6MA -co-CAE)-7-(68:32) h) 
(50) 
68 

(50) 
32 

18200 39,5 1,24 

Poly(CAE)-7 h) 
(0) 
0 

(100) 
100 

17300 30,8 1,21 

 

%M6MA 
(feed) 

1H-NMRa) 

%CME 
(feed) 

1H-NMRa) 

d) 

���,�~q��� 

c) 

3g�,�~q��� 

b) 

���/��� 

Poly(M6MA )-1 i) 
(100) 
100 

(0) 
0 

14300 33,3 1,25 

Poly(M6MA -co-CME )-1-(95:5) i) 
(95) 
95 

(5) 
5 

45300 105 1,26 

Poly(M6MA -co-CME )-1-(81:19) i) 
(80) 
81 

(20) 
19 

32000 70,3 1,18 

Poly(M6MA -co-CME )-1-(58:42) i) 
(50) 
58 

(50) 
42 

37300 76,9 1,14 

Poly(CME )-1 i) 
(0) 
0 

(100) 
100 

13600 24,0 1,20 

a) Determinated by 1H-NMR spectroscopy by integration of the signal at 5.30 ppm of the vinylic proton of 
the cholesterol derivatives and the aromatic proton 3’ at 6.90 ppm of the azoaromatic residue. 

b) Determinated by GPC in THF at 25°C on a MXL column 
c) Average polymerization degree calculated as (���D�~q��� �� ���F � ��<F/��� 
d) Determinated by 1H-NMR spectroscopy by integration by integration of the terminal units 
e) 2% w/w of AIBN respect to the monomer, [A6MA ]=0,24 M, 72 h, 60°C 
f) [A6MA ]:[ABIB]:[CuBr]:[Me 6TREN]=50:1:1:1, [A6MA ]=0,24M, 72 h, 70°C 
g) [A6MA ]:[ABIB]:[CuBr]:[Me 6TREN]=100:1:1:1, [A6MA ]=0,48M, 72 h, 70°C 
h) [mon]:[ABIB]:[CuBr]:[Me 6TREN]=50:1:1:1, [mon]=0,24M, 7 days, 80°C 
i) [mon]:[ABIB]:[CuBr]:[HMTETA]=50:1:1:1, [mon]=0,18M, 24 h, 60°C 

 



158     Cholesteric Polymers 

 
The polymerization is confirmed by 1H-NMR spectroscopy by the broadening of the 

signals and the disappearance of the signals relative to the double bond of the monomers and 

by FT-IR spectroscopy by the disappearance of the vibration of the vinyl bond and by the 

shift of the carbonyl signal around 1740 cm-1. The living character of the polymerization is 

confirmed by the presence in the 1H-NMR spectra of the signals of the terminal units (initiator 

and methylenic protons bound to the terminal bromine atom at 2.3ppm).  

Also 13C-NMR spectra shows in the methacrylic polymers the signal of the quaternary 

carbon bond to the terminal bromine atom at 54.5 ppm and in the acrylic derivatives at 42.0 

ppm the signal of the analogue tertiary carbon. Moreover by 1H-NMR spectroscopy it is 

possible to calculate the molar composition of counits in the macromolecular chain by relative 

integration of the 3’- proton of the azoaromatic residue at 6.90 ppm and the vinylic proton at 

5.30 ppm of the cholesterol residue. The data collected in Table 1 show how the composition 

is in good agreement with the feed composition for the methacrylic copolymers while in the 

acrylic copolymers there is an enrichment of the azoaromatic comonomer (A6MA ). 

1H-NMR spectroscopy, by integration of the signals of the terminal units (allylic 

protons of the initiator) compared to the one of the repeating units D���,�~q���), can also give 

information on the average molecular weight of the macromolecules. The average 

macromolecular weight values obtained by GPC chromatography using polystyrene standard 

resulted to be lower than the ones obtained by 1H-NMR. This apparent discrepance can be 

explained with the lower hydrodynamic volume of polymers with big side chains moieties as 

already observed for similar derivatives [9]. 

The average molecular weights of the polymers obtained by classical FRP cannot be 

calculated by H-NMR spectroscopy and in Table 1 are reported only the values determinate 

by GPC.  

However, the thermal characteristics of these polymers (Table 2) suggest that their 

molecular weights are similar or even higher than those of the polymers obtained by ATRP.  

The analysis of the polydispersities (Table 1) reveal that the methacrylic polymers are 

monodisperse (���/��� < 1,26) while the acrylic polymers have a boarder distribution with a 

���/��� in the range 1,21 - 1,53, similar to the ones obtained by FRP. This behavior could be 

related to the loss of control during the polymerization because of the use of active ligand and 

too long polymerization times [8]. 
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Thermal analysis and optical characterization 

In order to investigate the thermal characteristics of the synthesized polymers and to 

establish direct correlation between structure, composition and the thermal properties, the 

polymeric derivatives have been studied by differential scanning calorimetry (DSC) and 

polarized optical microscopy (POM). The principal results are gathered in Table 2. 

Table 2: thermal characteristic of the polymeric derivatives 

Sample LC transition 

Poly(A6MA ) a) G 25 N 102 I 

Poly(A6MA )-AIBN-3 G 11 S 64 N 81 I 

Poly(A6MA -co-CAE)-AIBN-3-(98:2) G 17 S 59 N* 81 I 

Poly(A6MA -co-CAE)-AIBN-3-(90:10) G 2 S 56 N* 73 I 

Poly(A6MA )-3-(50:1:1:1) G 3 S 66 N 81 I 

Poly(A6MA )-3-(100:1:1:1) G 9 S 69 N 81 I 

Poly(A6MA )-7 G 3 S 66 N 85 I 

Poly(A6MA -co-CAE)-7-(96:4) G 3 S 62 N* 83 I 

Poly(A6MA -co-CAE)-7-(83:17) G 6 S 59 N* 82 I 

Poly(A6MA -co-CAE)-7-(68:32) G 4 N* 71 I 

Poly(CAE)  b) G 28 N* 180 I 

Poly(CAE)-7 G 27 N* 157 I 

Poly(M6MA )-1 G 44 N 88 I 

Poly(M6MA -co-CME )-1-(95:5) G 50 N* 90 I 

Poly(M6MA -co-CME )-1-(81:19) G 41 N* 89 I 

Poly(M6MA -co-CME )-1-(58:42) G 48 N* 121 I 

Poly(CME ) b) G 39 N* 168 I 

Poly(CME )-1 G 48 N* 144 I 

a) Rif.  [10] ���= 48000, ���/���= 2,7 
b) Rif . [11] ���= 150000 

 

An analysis of the data collected in Table 2 shows a similar behavior between the 

acrylic polymers synthesized by FRP and ATRP.  

In literature [12] is reported that the azoic homopolymer Poly(A6MA ) (��� = 48000 

g/mol) synthesized  by FRP exhibit only a nematic (N) phase. Considering that our polymers 
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have lower molecular weights and they have two different LC phase is reasonable to think 

that these polymers are able to self organize in more ordered phases such as smectic ones (S) 

at lower temperature than the nematic phase. 

These behavior is confirmed by POM analysis on cells of Poly(A6MA )-7 after 

annealing for 2 hours at 40 and 75°C in order to develop the LC phase (Figure 5).  

a) b) 

Figure 5. POM microphotograph, 32x magnification, of Poly(A6MA )-7 at 40°C (a) and at 75°C (b) after 
isotropization 

The acrylic copolymers at different molar content of chiral comonomers (CAE) show 

similar thermal properties, one Tg and two different phase transitions: a chiral nematic phase 

(N*) can be easily identified by the iridescent green reflection. The nature of the phase at 

lower temperature require a more detailed XRD analysis but POM observations suggest the 

presence of a smectic A phase. The thermal stability of the N* phase is increased with the 

increase of the chiral comonomer until up to 70°C in Poly(A6MA -co-CAE)-7-(68:32) where 

it is the only stable phase as in the homopolymer Poly(CAE)-7 (Table 2). 

It should be underlined that only a 2% amount of chiral counit is enough to induce the 

N* phase. 

As expected the glass transition temperature (Tg) in the methacrylic polymers are 

higher than those of the acrylic derivatives. As an example we can compare Poly(A6MA -co-

CAE)-7-(83:17) and Poly(M6MA -co-CME )-1-(81:19), and notice that the latter has an 

higher Tg of 35°C at similar molecular weights. 

The homopolymer Poly(CAE)-7 has only a N* phase as well as Poly(CME )-1 (Figure 

6). 
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Figure 6:  POM microphotograph, 32x magnification, of Poly(CME )-1 at 90°C  after isotropization 

Also the methacrylic comonomer CME  can induce chiral nematic phases (N*) in its 

copolymers, without affecting the glass transition. In order to have a big difference in the 

transition temperatures the molar fraction of chiral counits should be as high as 50%. In fact 

Poly(M6MA -co-CME )-1-(58:42) has a Ti 40°C higher than the other polymeric derivatives 

of the same series.  However, Poly(CME )-1 has a Ti only 20°C lower than that reported in 

literature for the same derivatives with 10 times higher molecular weight [11]. 

The observed N* phase (Figure 7) is characterized by a typical Bragg reflection at the 

same wavelength (477nm) of similar acrylic and methacylic derivatives reported in literature 
[11] that have a λmax at 475 and 482 nm respectively.  

 
Figure 7. POM microphotograph, 32x magnification, of Poly(M6MA -co-CME )-1 at 80°C  after isotropization 

As an example in Figure 8 is reported the UV-Vis spectra in transmission of a 8,8 µm 

thick film of Poly(M6MA -co-CME )-1-(58:42) after an annealing of one hour at 100°C to 

develop the N* phase. The spectra of the homopolymer Poly(M6MA )-1 has been subctrated 
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to highlight the position of the Bragg reflection. In this way a reflection band at 477, partially 

overlapping the π→π* transition of the azoaromatic units can be clearly seen. 

 
Figure 8. UV-Vis spectra of a 8,8 µm thick film of Poly(M6MA -co-CME )-1-(58:42) in N* phase without the 
contribution of the azoaromatic counits 

As explained above the wavelength of the Bragg reflection depends on the 

composition of the polymers and if is of the same wavelength of the visible light highly 

colored materials are produced. 

 

a) b) 

Figure 9. 8,8 µm film of Poli(M6MA -co-CME )-1-(58:42) in N* mesophase (a) isotropic phase (b) 

It is useful to show the visual difference of the aspect (from bright green to dull 

yellow) of the material due to isotropization (Figure 9 a and b). The isotropic state can be 

frozen by a rapid cooling of the system below the Tg.  

The presence of the Bragg reflection gives a bright appearance to the material (Figure 

9a) useful for the fabrication of a device able to evidence macroscopically the thermal history 

of the material itself.  

An example of a smart label is depicted below: a 8,8 µm cell filled with Poly(M6MA -

co-CME )-1-(58:42) is annealed to develop the N* green phase (Figure 10a). The cell is then 
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heated above the clearing point and the Bragg reflection is lost (Figure 10b). The cell is then 

quenched below the Tg and the amorphous state is frozen (Figure 10c) and cannot relax in the 

thermodynamic favorite LC state until the temperature arise over the glass transition. (Figure 

10d) 

 

>Ti <Tg >Tg 

a) b) c) d) 

Figure 10. Smart label 
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UV-Vis analysis and photochromic properties 

The UV-Vis spectra in chloroform solution of the monomers A6MA  and M6MA  and 

of their polymeric derivatives (Figure 11 and Table 3) exhibit in the region 250-600 nm two 

absorption bands. The first one, centered at 363 nm is related to the π→π* transition of the 

azoaromatic chromophore, the second one, centered around 450 nm and partially overlapped 

to the former one, is related to the n→π* transition of the azoaromatic chromophore [13].  

As an example in Figure 11 is reported the UV-Vis spectra of Poly(A6MA )-7. 

 

 
Figure 11. UV-Vis spectra of Poly(A6MA )-7 in CHCl3: () all trans isomers of the azoaromatic units, (---) after 
irradiation at 366 nm in order to reach a promote the trans-cis isomerization of azoaromatic chromophores, (⋅⋅⋅⋅) 
after seven days in the dark at room temperature.. 

The values of the molar absorbance, collected in Table 1, does not evidence any 

hypochromic effect by passing from the monomers to the polymeric derivatives and 

suggesting that the chromophoric units in solution are essentially isolated and no dipolar 

interactions are present. No differences are observed either in the copolymers varying the 

molar fraction of CME . 
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Table 3. UV-Vis spectra in CHCl3 solution  

Sample λmax
a) ε

b) 

A6MA  363 31700 
 

Poly(A6MA )-7 362 31200 
 

M6MA  362 29400 
 

Poly(M6MA )-1 362 31200 
 

Poly(M6MA -co-CME )-1-(95:5) 362 31000 
 

Poly(M6MA -co-CME )-1-(81:19) 362 28600 
 

Poly(M6MA -co-CME )-1-(58:42) 363 29300 
 

a) wavelenght of the maximum absorbance. 
b) Molar absorbitivity express in L·mol-1·cm1 and calculated for azoaromatic repeating units. 

 

The photochromic behavior of the synthesized compounds have been studied by 

irradiation in solution of Poly(A6MA )-7 and Poly(M6MA )-1 with UV light (366 nm) at 25°C 

for six hours to promote the trans-cis photoisomerization (Figure 11).  

In particular a strong decrease and blueshift of the π→π* band and an increase of the 

n→π* band are observed (typical of the cis isomer). The backisomerization id achieved by 

leaving the samples for seven days in the dark, the cis-trans isomerization takes place and 

UV-Vis spectra of the trans isomer is restored (Figure 11). 

The photochromic behave has been tested also in the solid state, by irradiation of 

several 8,8 µm cells filled with the polymeric derivatives. 

In these cases the macroscopic differences are not due to the different absorption 

spectra of the trans and cis azoaromatic isomers but are due to the photoinduced phase 

transition between LC and isotropic phases. 

 

 

 

 

 

 

a)  b)  c) 

Figure 12. Smart label for the certification of thermal history 

 

Irr. 366 T > Tg 
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In Figure 12 is shown a LC cell in the N* green phase (a), the LC order and thus also 

the relative Bragg reflection can be suppressed by irradiation with UV light (366nm) below 

the Tg: as the population of cis isomers increase the LC phase is destroyed. When the UV 

irradiation is stopped the chromophores thermally back isomerize to the more stable trans 

isomer but the system is frozen in an amorphous methastable state and cannot relax to the 

chiral nematic phase until the temperature arise over the Tg. 

When the temperature arises above the Tg the system is able to restore the pristine 

configuration and the information photoinscribed is lost. 

In particular the same behavior observed thermally (Figure 10) can be easily induced 

only by irradiation with UV light at room temperature. 

These materials therefore act as the desired smart label: they could be printed and 

photomodulated over the packaging of the product certifying that until this labels are yellow 

the temperature has always been below the threshold. Only when the temperature rises above 

the glass transition (that can be tuned precisely by design of the macromolecular structure) the 

system relax to the stable LC state with a big change in the visual aspect. 
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Chiroptical properties 

Also a CD characterization of these materials has been done. In chloroform solution 

all the polymeric derivatives are CD silent and thus no chiral conformations are present. 

The solid state is more interesting for a CD characterization. Thin films of 150-200 nm 

spin coated on quartz slide shows a particular CD behavior dependent on the thermal history 

of the samples. 

In Figure 13 are reported the CD and UV-Vis spectra of a thin film of Poly(M6MA -

co-CME ). The CD spectra of the native film is CD silent but after a thermal annealing above 

the Tg strong CD bands arise. The former ones can be erased by irradiation with UV light 

(366 nm) in a fully reversible way by a subsequent heating above the Tg. 

 
Figure 13. CD (up) and UV-Vis  (down) spectra of a 200 nm thick film of Poly(M6A -co-CME )-1-(58:42) as 
casted film(___), after annealing at 100°C for 2 hours (___) and after irradiation at 366 nm for 4 hours (___) 
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In particulary, in correspondence of the π→π* electronic transition of the azoaromatic 

chromophore the presence of a positive CD band centered at 414 nm, a negative one at 364 

nm (with a shoulder at 383nm), a positive band at 319 nm and a negative band at 200 nm are 

observed. 

It is well known that chromophoric aggregation influence the absorption of 

azoaromatic chromophores [14], in this case (Figure 13) the chromophores can aggregate in the 

following modes: 

- H aggregate with λmax around 300 nm 

- Face-face dimers with λmax= 340-350 nm 

- Isolated chromophores with λmax= 363 nm 

- J aggregates with λmax= 370-390 nm 

It is clear that a substantial variation in the aggregation in the LC and native and 

isotropic state occurs and are observed both in the CD and UV-Vis spectra. 

This suggest that the chiral co-units can induce the aggregation of the azoaromatic 

units in ordinate chiral superstructure even in thin film, but this chiral induction observed in 

the annealed films is not due to a circular Bragg reflection, typical of chiral nematic phases, 

because of the small thickness of the film that is even thinner than the helix itself (around 

480-500 nm).  

In fact a strong circular reflection is observed only in the CD spectra of a thick films 

(Figure 14). 

 
Figure 14. CD spectra of Poly(M6MA -co-CME )-1-(58:42) after annealing at 100°C of a film of  200 nm (___) 
and 8,8 micron (___). 
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In particular, a huge reflection band is present in the CD spectra of a thick film (8,8 

µm) in correspondence of the selective reflection observed in the UV-Vis spectra due to the 

circular Bragg reflection of a chiral nematic phase, not present in the CD spectra of the 200 

nm thin film (Figure 14). 

These phenomena has been observed in literature [15-19] and described theoretically in 

cholesteric systems doped with different chiral units but in this case the optical activity is at 

least one order of magnitude higher. This suggests the presence of dichroic effects due to the 

formation of partial helix highly ordered even in thin film, with the axes perpendicular to the 

support. Anyway the presence of other chiral LC phases stabilized by the surface effect as a 

blue phases or similar cannot be excluded [20-24] 

Anyway, for our knowledge, this is the first observation of strong CD effects in a 

chiral nematic polymeric system with a thinkness lower than the helix pitch. 

Finally, by irradiation at 366 nm the trans-cis isomerization is induced and the CD 

spectra become silent due to the destruction of the chiral aggregation as observed above. 
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Conclusion 
 

A series of new polymers has been synthesized copolymerizing by ATRP mesogenic 

counits bringing an azoaromatic residue and a cholesteric chiral one. 

These materials exhibit a chiral nematic phase and thus an intense Bragg reflection 

gives an iridescent and bright appearance to thick films of these derivatives. The 

photochromic properties of the azoaromatic resiude can then be exploited to photoinduce 

belowe the glass transition an adiabatic isotropization of the material. The Bragg reflection is 

therefore erased and the new metastable isotropic state cannot relax to the chiral nemati phase 

until the temperature reaches a trigger value. Then the chiral nematic phase and thus the 

Bragg reflection are restored. 

These material therefore act as smart label, that can certify that the temperature did not 

reach the trigger value after the irradiation with UV light. 

Moreover due to the high control allowed by ATRP polymerization, these polymeric 

derivatives have tunable thermal characteristic that allows the fabrication of tailor made label 

for a huge variety of products. 
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Experimental part: 
 

Synthesis of acrylic polymers 

Homopolymeric and copolymeric derivatives of A6MA  and CAE were synthesized by 

ATRP using as initiator allyl 2-bromo-2-methylpropionate (ABiB ), CuBr as catalyst and 

tris[2-(dimethylamino)-ethyl]amine (Me6TREN) as ligand. In all the polymerization molar 

ratio [monomer]: [initiator]: [CuBr]: [ligand] = 50: 1: 1: 1, dry anisole as solvent and a total 

monomer concentration of 0,24M have been used. 

 

 

  

 

The polymerization procedure is as follow: the amount of reagent and solvent have 

been introduced under nitrogen flow in a vial and sealed. The oxygen have been removed 

with three freeze pump cycle and then CuBr have been introduced under vigorous nitrogen 

flow in the vial. Another freeze pump cycle had been then performed and the polymerization 

had been carried out at 80°C for 186 hours (7 days). 
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n=1 m=0   Poly(A6MA )-7 
n=0,96 m=0,04  Poly (A6MA -co-CAE)-7-(96:4) 
n=0,83  m=0,17 Poly(A6MA -co-CAE)-7-(83:17) 
n=0,63  m=0,32  Poly(A6MA -co-CAE)-7-(63:32) 
n=0   m=1  Poly(CAE)-7  
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The obtained derivatives were purified from the residual monomer, CuBr and ligand 

by filtration on SiO2 using CH2Cl2 as eluent in order to remove the residual monomer, then 

the product were eluted with a mixture CH2Cl2:CH3OH 9:1 (v:v) to separate the polymeric 

derivatives. Finally the polymers were precipitated in cold hexane, except for Poly(CAE)-7 

precipitated in methanol. 

The final products after being dried under vacuum are characterized by FT-IR, 1H- 
13C-NMR spectroscopy. 

The more relevant data for the synthesis of these systems are collected in Table 4 

 

Table 4. Relevant synthetic data of the acrylic polymers 

Sample A6MA 

mg 

(mmol) 

CAE 

mg 

(mmol) 

ABIB 

µl 

(mmol) 

CuBr 

mg 

(mmol) 

Me6TREN 

µl 

(mmol) 

anisole 

ml 

Yeld a) 

[g (%)] 

Poly(A6MA )-7 

 

500 

(1,22) 

- 

- 

3,9 

(2,44 10-2) 

3,5 

(2,44 10-2) 

6,6 

(2,44 10-2) 

5 20 

Poly(A6MA -co-CAE)-7-

(96:4) 

 

500 

(1,22) 

36 

(6,40 10-2) 

4,1 

(2,57 10-2) 

3,7 

(2,57 10-2) 

6,9 

(2,57 10-2) 

5,3 25 

Poly(A6MA -co-CAE)-7-

(83:17) 

 

400 

(9,75 10-1) 

135 

(2,44 10-1) 

3,9 

(2,44 10-2) 

3,5 

(2,44 10-2) 

6,6, 

(2,44 10-2) 

5 19 

Poly(A6MA -co-CAE)-7-

(63:32) 

 

225 

(5,48 10-1) 

304 

(5,48 10-1) 

3,5 

(2,19 10-2) 

3,1 

(2,19 10-2) 

5,4 

(2,19 10-2) 

4,5 8 

Poly(CAE)-7 

 

- 

- 

500 

(9,01 10-1) 

2,9 

(1,80 10-2) 

2,6 

(1,80 10-2) 

4,9 

(1,80 10-2) 

3,7 11 

Poly(A6MA )-3-50:1:1:1 

 

500 

1,22 

- 

- 

3,9 

2,44 10-2 

3,5 

2,44 10-2 

6,6 

2,44 10-2 

5 22 

Poly(A6MA )-3-100:1:1:1 

 

1000 

2,44 

- 

- 

3,9 

2,44 10-2 

3,5 

2,44 10-2 

6,6 

2,44 10-2 

5 20 

a)  Calculated as (g of polymer/g of monomer) * 100. 
b)  The two homopolymeric derivatives Poly(A6MA )-3-(50:1:1:1) and Poly(A6MA )-3-(100:1:1:1) were 
synthesized in order to define the better polymerization condition 
Poly(A6MA )-3-(50:1:1:1): [A6MA ]=0,24, [A6MA ]:[ABIB]:[CuBr]:[ Me 6TREN]=50:1:1:1, 72 ore a 70°C. 
Poly(A6MA )-3-(100:1:1:1): [A6MA ]=0,48, [A6MA ]:[ABIB]:[CuBr]:[Me 6TREN]=100:1:1:1, 72 ore a 70°C. 
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As an example are reported the characterization of Poly(A6MA )-7, Poly(CAE)-7 and 

Poly(A6MA -co-CAE)-7-(83:17). 

 

Poly(A6MA )-7 

FT-IR (ATR) (cm-1): 3069 (νCH arom.), 2935 e 2860 (νCH aliph.), 1727 (νC=O ester), 

1598 and 1580 (νC=C arom.), 1392 (δCH CH3), 1142 and 1106 (νCO ether), 840 and 829 (δCH 

aroma. 1,4 disubst.), 730 (δCH arom. 1, 3, 4 trisubst.). 

1H-NMR (CDCl3): 7.95-7.75 (2H, arom. 2’-H), 7.75-7.56 (2H, arom. 2-H), 7.06-6.85 

(2H, arom. 3’-H), 6.85-6.68 (1H, arom. 3-H), 5.39-5.12 (2H, CH2=CH ABiB), 4.52 (2H, CH2-

O ABiB), 4.22-3.76 (6H, CH2-O), 2.34-2.13 (3H, CH3 arom.), 1.93-1.01 (8H, CH2 alkyl 

spacer, 3H, CH3-CH2-O, CH2 and CH main chain). 

13C-NMR (CDCl3) (ppm): 175.2 (C=O), 161.2 and 159.7 (arom.  4-C e 4’-C), 147.4 

and 146.8 (arom. 1-C and 1’-C), 127.8 (arom. 3-C(CH3)), 124.6 and 123.8 (arom. 2-C, 2’-C), 

115.0 (arom. 3’-C), 110.9 (arom. 3-C), 68.4 (-CH2-CH2-O), 64.1 (CH3-CH2-O), 63.2 (COO-

CH2-), 42.0 (CH2-CH-Br), 29.6, 26.3, 26.1, 25.9 (CH2 aliph.), 16.7 (CH3 arom.), 15.1 (CH3-

CH2-O). 

 

Poly(CAE)-7 

 

FT-IR (KBr) (cm-1): 2938 e 2867 (νCH aliph.), 1733 (νC=O hester), 1384 (δCH CH3), 

1167 (νCO hester). 

1H-NMR (CDCl3) (δ in ppm dal TMS): 5.36 (1H, CH=), 4.68-4.49 (1H, CH-O and 2H, 

CH2-O ABiB), 4.16-3.88 (2H, CH2-O),  2.38-2.20 (4H, CH2-COO and CH2-CH=), 2.14-1.05 

(32H, CH and CH2 of cholesterol and alkyl spacer), 1.02 (3H, 19-CH3), 0.91 (3H, 21-CH3), 

0.87 (6H, 26 and 27-CH3), 0.68 (s, 3H, 18-CH3). 

13C-NMR (CDCl3) (ppm): 173.0 (C=O), 140.0 (5-C), 123.0 (6-C), 74.1 (3-C), 64.5 

(COO-CH2), 57.1 and 56.5 (12-C and 9-C), 50.4 (16-C), 42.0 (CH2-CH-Br), 42.7 (13-C), 

40.1-12.2 (CH2 and CH alkylic spacer and cholesterol, -CH3 cholesterol). 
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Poly(A6MA -co-CAE)-7-(83:17) 

 

FT-IR (ATR) (cm-1): 3062 (νCH arom.), 2931 and 2863 (νCH aliph.), 1728 (νC=O hester), 

1596 and 1578 (νC=C arom.), 1383 (δCH CH3), 1150 and 1107 (νCO ether) 840 and 829 (δCH 

aroma. 1,4 disubst.), 728 (δCH arom. 1, 3, 4 trisubst.). 

 

1H-NMR (CDCl3): 7.90-7.76 (2H, arom. 2’-H), 7.76-7.58 (2H, arom. 2-H), 7.83-6.69 

(2H, arom. 3’-H, 1H, arom. 3-H), 5.31 (1H, CH= cholesterol), 5.19 (2H, CH2=CH ABiB), 

4.66-4.47 (1H, CH-O, 2H, CH2-O ABiB), 4.25-3.82 (6H, CH2-O), 2.52-2.15 (3H, CH3 arom.), 

2.07-0.49 (32H, CH and CH2 of cholesterol and alkylic spacer CAE; 15H, -CH3 of 

cholesterol; 11H, CH2, CH3-CH2-O of A6MA ). 

 

13C-NMR (CDCl3) (ppm): 175.0 and 173.1 (C=O), 161.2 and 159.8 (arom.  4-C and 

4’-C), 147.4 and 146.8 (arom. 1-C and 1’-C), 139.2 (5-C CAE), 127.8 (arom. 3-C A6MA ), 

124.6 and 123.8 (arom. 2-C, 2’-C), 115.0 (arom. 3’-C), 110.9 (arom 3-C(CH3)), 74.1 (3-C 

CAE), 68.4 (-CH2-CH2-O A6MA ), 64.1 (CH3-CH2-O A6MA ), 63.3 (COO-CH2- A6MA ), 

57.1 and 56.5 (12-C and 9-C CAE), 50.3 (16-C CAE), 42.0 (CH2-CH-Br), 42.6 (13-C CAE), 

42.0 (CH2-CH-Br), 29.6, 26.3, 26.1, 25.9 (CH2 aliph. A6MA ), 16.7 (CH3 arom. A6MA ), 15.1 

(CH3-CH2-O A6MA ), 40.1-12.2 (CH2 and CH cholesterol and alkylic spacer, CH3 

cholesterol). 

 

In order to have more information also linear polymeric derivatives were synthesized 

by free radical polymerization using 2% w/w of AIBN as thermal initiator and dry THF as 

solvent in quantity for obtaining a 0,24 M concentration of monomer. The polymerization 

were carried for 72 hours at 60°C. 

The procedure for the purification is the same as the derivatives synthesized by ATRP. 
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Table 5. Relevant synthetic data of the polymeric derivatives by FRP 

Sample A6MA 

mg 

(mmol) 

CAE 

 mg 

(mmol)   

AIBN 

mg 

(mmol) 

THF 

ml 

Yeld a) 

[g (%)] 

Poly(A6MA )-AIBN-3 

 

500 

(1,22) 

- 

- 

10 

 

5 24 

Poly(A6MA -co-CAE)-AIBN-3-(98:2) 

 

300 

(7,31 10-1)  

20 

(3,66 10-2)  

6,4 3,2 43 

Poly(A6MA -co-CAE)-AIBN-3-(83:17) 

 

300 

(7,31 10-1) 

81 

(1,46 10-2) 

7,6 3,8 24 

a) Calculated as (g of polymer/g of monomer) * 100. 
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Synthesis of the methacrylic polymeric derivatives 

Homopolymeric and copolymeric derivatives of M6MA  and CME  were synthesized 

by ATRP using as initiator allyl 2-bromo 2 methylpropionate (ABiB ), CuBr as catalyst and 

1,1,4,7,10,10-hexamethylen, triethylen, tetramine (HMTETA ) as ligand. In all the 

polymerization the molar ratio [monomer]: [initiator]: [CuBr]: [ligand] = 50: 1: 1: 1, dry THF 

as solvent and a total monomer concentration of 0,18M were used. 

 

 

 

The procedure of the synthesis and purification of these derivatives is the same as the 

acrylic derivatives except that the polymerization were carried for 24 hours at 60°C and the 

polymers were precipitated in cold methanol. 

The final products after being dried under vacuum are characterized by FT-IR, 1H- 
13C-NMR spectroscopy. 
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n=1 m=0  Poly(M6MA )-1 
n=0,95 m=0,05  Poly(M6MA -co-CME )-1-(95:5) 
n=0,81  m=0,19 Poly(M6MA -co-CME )-1-(81:19) 
n=0,52   m=0,48  Poly(M6MA -co-CME )-1-(52:48) 
n=0   m=100 poli(CME )-1 
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Table 6. Relevant synthetic data of methacrylic polymers 
Sample  M6MA 

mg 

(mmol) 

CME 

mg 

(mmol)  

ABiB  

µl  

(mmol) 

CuBr 

mg  

(mmol) 

HMTETA  

µl  

(mmol) 

THF 

 

ml 

Yeld a) 

[g (%)]  

Poly(M6MA )-1 500 

(1,18) 

- 

- 

3,8 

(2,36 10-2) 

3,4 

 (2,36 10-2) 

6,4 

(2,36 10-2) 

6,6 51 

Poly(M6MA -co-CME )-1-(95:5) 500 

(1,18) 

34 

(6,00 10-2) 

4,0 

(2,48 10-2) 

3,6 

(2,48 10-2) 

6,8 

(2,48 10-2) 

6,9 49 

Poly(M6MA -co-CME )-1-(81:19) 400 

(9,42 10-1) 

134 

(2,36 10-1) 

3,8 

(2,36 10-2) 

3,4 

(2,36 10-2) 

5,4 

(2,36 10-2) 

6,4 49 

Poly(M6MA -co-CME )-1-(58:42) 250 

(5,90 10-1) 

336 

(5,90 10-1) 

3,8 

(2,36 10-2) 

3,4 

(2,36 10-2) 

6,4 

(2,36 10-2) 

6,6 36 

Poly(CME )-1 - 

- 

500 

(1,76 10-2) 

2,8 

(1,76 10-2) 

2,5 

(1,76 10-2) 

4,8 

(1,76 10-2) 

4,9 25 

a) Calculated as (g of polymer/g of monomer) * 100. 

As an example are reported the characterization of Poly(M6MA )-1 and Poly(M6MA -

co-CME )-1-(58:42) 

 

Poly(M6MA )-1 

FT-IR (ATR) (cm-1): 3071 (νCH arom.), 2933 and 2858 (νCH aliph.), 1727 (νC=O hester), 

1598 and 1580 (νC=C arom.), 1392 (δCH CH3), 1142 and 1106 (νCO ether) 840 and 829 (δCH 

aroma. 1,4 disubst.), 728 (δCH arom. 1, 3, 4 trisubst.). 

1H-NMR (CDCl3): 7.87-7.75 (2H, arom. 2’-H), 7.71-7.59 (2H, arom. 2-H), 7.03-6.84 

(2H, arom. 3’-H), 6.84-6.66 (1H, arom 3-H), 5.34-5.11 (2H, CH2=CH ABiB), 4.56-4.43 

(CH2-O ABiB), 4.26-3.70 (6H, CH2-O), 2.38-2.15 (3H, CH3 arom.), 2.13-0.70 (8H, CH2 

spacer, 3H, CH3-CH2, CH2 main chain, 3H, CH3 methacrylic). 

13C-NMR (CDCl3) (ppm): 177.8 (C=O), 161.1 and 159.6 (arom  4-C and 4’-C), 147.3 

e 146.7  (arom 1-C and 1’-C), 127.6 (arom 3-C), 124.6 and 123.8 (arom 2-C, 2’-C), 114.9 

(arom 3’-C), 110.8 (arom 3-C(CH3)), 68.3 (-CH2-CH2-O), 65.2 (CH3-CH2-O), 64.0 (COO-

CH2-), 54.5 (54.5 (C(CH3)Br), 45.2 (CH2 main chain), 29.5, 28.4, 26.2, 26.1 (CH2 aliph.), 

19.1 (CH3 main chain), 16.8 (CH3 arom.), 15.1 (CH3-CH2-O). 
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Poly(M6MA -co-CME )-1-(58:42) 

 

FT-IR (ATR) (cm-1): 3060 (νCH arom.), 2928 and 2863 (νCH aliph.), 1728 (νC=O hester), 

1596 and 1578 (νC=C arom.), 1380 (δCH CH3), 1150 and 1107 (νCO ether) 840 and 829 (δCH 

aroma. 1,4 disubst.), 728 (δCH arom. 1, 3, 4 trisubst.). 

1H-NMR (CDCl3): 7.82 (2H, arom. 2’-H), 7.69 (2H, arom. 2-H), 6.94 (2H, arom. 3’-

H), 6.70 (1H, arom. 5-H), 4.55 (1H, CH-O, 2H , CH2-O ABiB), 4.25-3.80 (6H, CH2-O), 2.26 

(3H, CH3 arom.), 2.07-0.49 (32H, CH and CH2 of cholesterol and alkylic spacerof CME ; 6H, 

CH3  methacrylic; 15H, -CH3 of cholesterol; 11H, CH2, CH3-CH2-O of M6MA ). 

13C-NMR (CDCl3) (ppm): 177.8 and 173.0 (C=O), 161.1 and 159.7 (arom.  4-C and 

4’-C), 147.3 and 146.7 (arom. 1-C and 1’-C), 139.9 (5-C CME ), 127.6 (arom. 3-C M6MA ), 

124.6 and 123.8 (arom. 2-C and 2’-C), 114.9 (arom. 3’-C), 110.8 (arom. 3-C(CH3)), 74.1 (3-C 

CME ), 68.4 (-CH2-CH2-O M6MA ), 64.1 (CH3-CH2-O M6MA ),  54.5 (C(CH3)Br), 56.9 and 

56.5 (12-C and 9-C CME ), 50.3 (16-C CME ), 42.6 (13-C CME ), 29.6, 26.3, 26.1, 25.9 (CH2 

aliph. M6MA ), 19.1 CH3 main chain),16.8 (CH3 arom. M6MA ), 15.1 (CH3-CH2-O M6MA ), 

40.1-12.2 (CH2 alkylic spacer, CH2 and CH aliph and CH3 CME ). 
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Chapter 4 

Functionalization of surfaces with polymeric 
chains 

 

Introduction 
 

Beside the bulk properties of materials (e.g. mechanical and electrical properties) the 

properties of the surfaces are of big interest. In fact the possibility of tailoring the surface 

properties of a material leaving untouched the properties of the bulk can give the possibility 

for the development of a new generation of hybrid materials that can push the level a step 

further of the common technology. 

As an example the choice of the material for fabrication of medical prosthesis is 

limited by the biocompatibility of the material itself. In this field a huge effort has been made 

in the past years (and still continues) for the development of biocompatible or biomimetic 

ceramic materials that can combine good mechanical properties, low specific weight and 

avoid rejection when implanted. The biocompatibility of a material is a issue of surface 

properties, as the contact between the body and the prosthesis pass through a surface.  

With a suitable modification it is possible in principle to tailor the surface nature to 

have a biocompatible surface on the topmost of a non biocompatible material that possess the 

desired mechanical properties. No compromise anymore. 

In literature are reported several examples of surface modification for tailoring the 

surface properties, in term of wettability or chemical nature with a huge impact on the 

properties of the material. 

As example Meng Chen and coworkers [1] functionalized a mica surface with poly[2-

(methacryloyloxy) ethyl phosphorylcholine]. When this material is immersed in an acqueous 

ambient, even under high pressure, the strong hydration of the zwitterionic polymeric layer 

can assure an ultra low friction of the surface, with µ values as low as 0.0004 at a pressure 

high as 7.5 Gpa, which is even higher of the pressure of the hips joint. This extreme 
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lubrication is by far the lowest ever reached in a human made object and even lower the 

friction coefficient of synovial joints of the human body at physiological pressure. 

Another interesting example is the protein resistance (nonfouling) properties of a PEG 

coated surface. The use of protein resistant or ‘‘non-fouling’’ surfaces is of great interest for a 

variety of biomedical devices where the prevention of unwanted adsorption of proteins is 

critical to the performance of the device [2]. 

Examples of applications in which reducing protein adsorption can be beneficial range 

from in vitro diagnostics, where adventitious adsorption can compromise the sensitivity of the 

diagnostic, to in vivo applications, such as biomedical implants where protein adsorption can 

lead to an undesirable squeal of events that can include thrombus formation or fibrosis and 

scar tissue formation. Indeed, the importance of protein resistance in medicine and 

biotechnology spans length scales from the macroscopic to the molecular: modification of the 

macroscale surfaces of clinical diagnosticswith protein-resistant polymers can significantly 

increase their analytical sensitivity, while modification of nanoscale drug-delivery vehicles, 

such as polymer micelles and liposomes, and the molecular surfaces of protein pharmaceutics 

with this class of polymers can confer long in vivo circulation times and thereby improve 

their efficacy [3]. 

In this contest Chilkoti and coworkers [4] functionalized silicon oxide or gold surfaces 

with a dense layer poly[oligo(ethylene glycol)methacrylate] (POEGMA), a PEG-like 

monomer that can be polymerized by radical polymerization, in particular by ATRP. It is well 

known that PEG coated surface exhibit a good protein resistance, in particular using self 

assembled monolayers (SAMs). But comparing the performance of non coated, coated with a 

PEG SAM or a brush of POEGMA it can be seen that the protein absorption on the latter is by 

far the lowest. Chilkoti and coworker then made an analytical device using this technology 

pushing the detection limit two order of magnitude lower compared to the ones made with 

PEG coated materials. 

A surface can be functionalized in several ways, by physical or chemical absorption of 

small molecules or polymeric chains.  

There is a plethora of methods suitable for the functionalization of flat surfaces or 

nanoparticles. Among them the functionalization that involve the formation of covalent bonds 

between the surface and the functionalizing moiety are the most important. 
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These methods relays on the chemistry of the surface group of the material to be 

modified. As an example the functionalization of oxides, in particular of silicon oxide, is 

based mainly on the formation of a Si-O bond by the condensation of the surface sylanolic 

group (Si-OH) and a alkoxy or chloro silane. In this way, with mild condition, the formation 

of a well defined SAM can be achieved and new functionality can be addressed on the 

topmost of the surface by using tailor made silanes. For example fluorescent silica 

nanoparticles can be synthesized by condensation of a fluorescent chlorosilane and silica 

nanoparticles [5].  

The functionalization of gold surface instead proceeds via chemisorption of thiols onto 

the gold surface and the formation of relatively stable Au-S bond [6].  

Also polymeric materials can be modified using the chemistry of the surfaces group, 

as an example PVC sheet can be modified [7] by reaction of a chlorine atom with 

aminothiophenol resulting in an  amino functionalized surface. Other reaction on the amino 

group can be used to tailor the surface composition. Zou and coworkers for example 

functionalizated an amino surface with glycidol to have a surface rich in hydroxyl groups for 

a final esterification with an acylic bromide. 

In many cases the effect of modification with a small molecule is not effective due to 

the very small amount of functionality addressed on the surface. In many cases 

functionalization with polymeric chains is therefore preferred. 

The functionalization of surface with polymeric chains can be obtained in two ways by 

condensation of the macromolecules onto the surface (grafting onto) or by the growth from 

suitable groups bounded onto the surface (grafting from). Both ways are suitable for the 

functionalization of a surface and high grafting densities (chains/nm2) can be achieved with 

both approaches, even if high densities can be achieved more easily with the “grafting” from 

method.  

The huge development of controlled radical polymerization (CRP) and atom transfer 

radical polymerization (ATRP) has made possible to synthesize new type of materials, with 

well controlled molecular weight, morphology leading to material exhibiting new interesting 

properties. In fact ATRP has been used for the synthesis of several type of materials once of 

difficult and expensive synthesis as block copolymers, star polymers and macromolecular 

brushes, a new class of materials with polymeric chains threaded by one end to the surface, 

that adopt a stretched conformation instead because of steric overcrowding. 
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The first step for the functionalization with macromolecules is the formation of a 

suitable SAM onto the surface. The nature of the SAM depends on the method to be 

employed.  

Grafting onto 

In this method the surface is modified with a SAM bearing a group that can be 

condensed easily with the terminal group of a telechelic polymer. Well defined end group are 

therefore required and the development of controlled radical polymerization (CRP) in 

particular ATRP and RAFT gave an enormous contribute for the simplicity of synthesis of 

well defined macromolecules [8]. A common example is the functionalization of a silicon 

surface with an azide and then the condensation via Huigens reaction with an alkyne 

terminated polymeric chain. 

With this approach anyway dense polymeric layers cannot be achieved as increasing 

the coverage of the surface the steric hindrance of the macromolecules tethered to the surface 

inhibits the ones in solution to approach the surface. Thus a big kinetic barrier can be found in 

this step. A detailed analysis shows how this barrier is related to the solvatation energy of the 

macromolecules: a solvated polymeric chain in fact can approach easily the surface if this is 

clean. But when certain coverage is reached and the polymeric chains collapse into a 

“mushroom” structure covering the whole surface a macromolecules in solution should be 

desolvated, adsorbed on the surface and should diffuse into the polymeric layer until the 

terminal group can reach the surface, and finally react. This process requires a huge activation 

energy and therefore after a certain coverage the functionalization is hinhibited. This 

limitation can be overcome by functionalization from a melt. In this case in fact no salvation 

energy is involved and the reaction can proceed until very high grafting densities are reached 
[9]. In this case the preferred reaction is a condensation between an hydroxide group and an 

epoxy ring. 

Grafting from 

Surface initiated ATRP in particular is a very promising technique for surface 

modification as provides a good control over the grafting densities, the thickness of the 

polymeric brush and the possibility of functionalization with all polymerizable monomers. 

Thus, synthesizing a tailored monomer bearing the target moieties a robust functional layer 
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can be easily synthesized. Anyway the classical SI ATRP has a drawback for the synthesis of 

brushes of functional and precious monomer in the needs of free initiator, with consequent 

loss of polymerizable monomer and the needs of further purification of the residual monomer 

for further synthesis. As a matter of fact in literature there are only few reports about the 

synthesis and the characterization of functional brushes. In particular almost no study on 

azobenzene containing brushes has been made. 

 

It can be seen how the functionalization of surfaces with polymeric chains can lead to 

new applications. In this contest our attention was focused on systems suitable for the 

manipulation of liquids by external stimuli; in particular the photomanipulation of liquid 

crystals using azoaromatic brushes and the synthesis and characterization of adaptative 

surfaces, in which the wettability can be automatically changed by the different environmental 

conditions.  
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Functionalization with azoaromatic polymers: photocontrol 
and chirality 

 

Introduction 

Since the first report in the far 1988 by Ichimura [10] the photoaligment of liquid 

crystal displays by using a photochromic thin layer has been object of extensive studies.  

This method for the photomanipulation of LC is know as surface-assisted LC 

photoalignment and is performed by fabricating LC cells using substrate plates, the surface of 

which is modified with photochromic molecules. Changes in chemical structures as well as 

orientational directions of photochromic molecules at a surface layer trigger the 

transformation of LC alignment. This sort of photoactive surface has been called command 

surface,[11, 12]
 emphasizing the fact that the alignment of a large number of LC molecules is 

determined by a photochromic monolayer attached to a substrate surface. 

In this kind of devices the orientation direction of the molecular axis (director) of LCs 

relative to a surface plane of a substrate is critically determined by the nature of the 

surface[13]. There are two extremes of LC orientation: homeotropic alignment, where the LC 

director is perpendicular to a substrate surface, and planar one, which displays the LC director 

parallel to a substrate whereas the molecular direction is randomly distributed. 

Homeotropic alignment is readily available by modifying the surface with amphiphilic 

molecules or long-chain alkyl silylating reagents [14]. On the other hand, a typical method to 

yield a homogeneous (unidirectionally parallel) alignment is based on the rubbing treatment 

of a polymer thin film covering a substrate. 

When a substrate surface is modified with photochromic molecules to alter the 

chemical structures and molecular orientation of the uppermost surface (command surface) in 

molecular levels, the alignment of nematic LC is controlled reversibly by alternate 

irradiation[11, 12]. 

There are four modes of the LC alignment controlled by command surfaces, as 

illustrated in Figure 1. The first one called ‘out-of-plane alignment’ photocontrol involves the 

reversible alignment change between homeotropic and planar modes. When UV actinic light 

is linearly polarized to lead to the polarization photochromism of azobenzenes on surfaces, a 

planar alignment becomes uniaxial to give a homogeneous alignment which reverses to the 
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homeotropic alignment due to the backward isomerization. Slantwise exposure with 

nonpolarized UV light also gives rise to a homogeneous alignment[15]. This is the second type. 

The third one is referred to as the ‘in-plane alignment’ photocontrol which has been achieved 

by irradiation with linearly polarized light for photochromic reactions of surface molecules. 

The fourth consists of the control of tilt angles of an LC director by an appropriate choice of 

photoactive molecules at the uppermost surfaces, which is subjected to slantwise 

photoirradiation. 

 
Figure 1: Illustrative representation of surface-assisted photoalignment control of LC molecules triggered by 
photochromic molecules tethered to a substrate surface. (a) Out-of-plane LC photoalignment between 
homeotropic and planar modes triggered by tran-cis photoisomerization of photochromic surface molecules 
upon alternate irradiation with nonpolarized light UV and visible light. (b) Out-of-plane LC photoalignment 
between homeotropic and homogeneous modes triggered by alternate irradiation with linearly polarized UV light 
and nonpolarized light. (c) In-plane photoalignment by irradiation with linearly polarized light. (d) Tilt-angle 
generation with slantwise photoirradiation. 

In this work we are focused our attention on the mechanism c), namely in-plane 

homogeneous to homogeneous photoreorientation. 

The photochromic layer can be of various nature but the most used photochromic 

groups are azobenzenes [11, 12], benzospyropyranes [16], stylbenes [17] and cynnamates [18]. For 

example, the switch between the neutral spyropyrane and the charged merocyanine group 

induce an homeotropic alignment of the nematic director and the possibility of the switch 

between homeotropic and planar alignment of the nematic phase in the illuminated zones of 

the display.  
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Among all of these photochromic units the azobenzene are the most promising ones 

for the realization of such a device because of their good thermal and photochemical stability 

and thus the possibility to perform several cycles of irradiation without too high fatigue. 

Even if the azobenzene moiety is quite stable this technology did not develop due to 

the low stability of the photochromic layer. In fact in literature two major deposition 

techniques are used. The first is the chemisorptions of reactive photochromic molecule for the 

synthesis of a monolayer of azoaromatic molecules. This technique lead to a well defined 

layer but has several drawbacks as the extreme fragility of the monolayer and the high control 

over the reaction condition for obtaining monolayer of the same density. Moreover also the 

photostability of a monolayer is not good enough: in fact after several cycles some 

azobenzene molecules can be degradated leading to a “dead” area. Is possible to fabricate a 

command surface also by spin coating of a thin (few tens of nanometers) film of an 

azobenzene containing polymer [19], in this case the fabrication is extremely simple and cheap, 

the film is less fragile respect to the chemisorbed monolayer and no photo degradation is 

observed even after many cycles of irradiation due to the high content of azobenzene. 

Anyway other problems arise: the presence of topological defect (e.g disclination) in the 

liquid crystal and the dewetting of the casted polymer for partial dissolution of the polymer in 

the nematic media [19].  

As a matter of fact it was observed that the uniaxial orientation of the mesophase fades 

away gradually even in the dark, however. This probably arises from the permeation of low 

molecular weight LC molecules into the polymer film to relax the photoriented state of the 

azobenzene moiety. This suggests that the combination of LCs with azobenzene polymers 

plays an essential role in the persistence of the photoinduced in-plane alignment of LCs.  

In connection with the elucidation of the working mechanism of the in-plane 

photoalignment controlled by linearly polarized light irradiation, the experimental results are 

summarized as follows:  

(1) the in-plane LC photoalignment emerges upon irradiation of photochromic 

residues localized at the uppermost surfaces with linearly polarized light as a result of the 

photoreorientation of the photochromic moieties to give optical anisotropy, which is 

transferred to nematic LC layers. 

(2) photochromic moieties capable of performing the in-plane photoalignment include 

azobenzene, stilbene, cinnamate, and spiropyran.  
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(3) larger exposure doses of linearly polarized light are required for the 

photoreorientation of LC molecules after cell assembly, when compared with those needed for 

the generation of optical anisotropy of films of photochromic polymers in absence of an LC.  

(4) the rate of photoreorientation of an LC assisted by photochromic monolayers 

attached to a silica plate through silylation is markedly enhanced by heating the LC cell at 

temperatures above TNI of the LC.  

(5) photoalignment behavior of an LC brought about by azobenzene polymer films is 

crucially influenced by the chemical structures of azobenzenes. 

It is clear that for making this technology useful a robust photochromic layer should be 

made. 

In a recent work Seki and coworker reported the first synthesis by ATRP of an 

mesogenic azopolymeric brush [20], showing a big difference in the molecular orientation 

between a spin coated film, with homeotropic orientation after annealing, and a polymeric 

brush in which the azobenzene moieties adopt an homogeneous alignment. In a further work 

Seki [21] shows how is possible to induce a high in-plane orientation of the azo groups after 

irradiation with linearly polarized light.  

Here we are describing in detail a synthetic approach of polymeric brush of the 

monomer 4-ω-methacryloyloxy-hexyloxy-4’-ethoxyazobenzene [22] that avoid the use of free 

initiator, making possible an easy recycle of the non reacted monomer for further sysnthesis, 

and the high advantage of the use of these brushes for the fabrication of command surfaces. 

Anyway we belive that this approach to this new class of polymeric derivatives open a new 

way towards the realization of improved and more stable functional materials for all those 

areas where surface effects and thin layer of active materials are involved. In particular using 

tailored methacrylic or acrylic azoaromatic monomers brushes can be used for the 

development of improved optical memories or for the fabrication of plasmonic switches 

devices, just for mentioning a couple of areas, with a procedure that minimize the loss of 

monomer and decrease the number of the needed purifications. 

 

 

 



190       Surfaces 

 

 

Surface Initiated ATRP polymerizations (SI ATRP): 

The SI polymerizations were carried out in absence of sacrificial initiator and adding a 

deactivator [Cu(II)] from the beginning. In this way is possible to perform a SI ATRP without 

using free initiator. This procedure, even if is more complicated, is preferable for avoiding 

loss of monomer. As a matter of fact in a common SI ATRP free initiator is required to reach 

the Cu(I)-Cu(II) equilibrium state, with the Cu(II) coming from some chain termination in the 

early stage of polymerization due to the persistent radical effect[23]. If no free initiator is added 

all the growing chains from the surface will be killed before reaching the equilibrium. 

Therefore some free initiator is always added, with the consequent consumption of monomer 

due to the solution polymerization. If some Cu(II) is added in the proper ratio from the 

beginning this problem is avoided, and a well controlled SI ATRP can be performed with no 

free initiator [24]. 

We have checked different conditions before finding the optimal experimental 

conditions. A first problem is the low solubility of our monomer in common organic solvent, 

and therefore concentration higher that 0.5 M cannot be achieved, this slows the reaction rate 

in comparison to the bulk polymerizations using low molecular weight monomers reported in 

literature [24]. 

The conditions used for the polymerizations of M6A are reported in Table 1, the 

polymerizations have been carried on for different times in order to produce thicker layer of 

polymeric derivatives. 

While the polymerizations in THF and THF/DMF seemed to be not well controlled 

(slow at the earlier stage and then terminated at longer polymerization times) a better control 

can be achieved using DMF as solvent (entry 5), even if the solubility of the monomer is 

lower. The low control over the layer thickness, controlled by ellipsometry and UV-Vis 

spectroscopy respectively on the Si wafer and the glass slide can be attributed to chain 

transfer due to the THF molecules. As a matter of fact the GPC analysis of the reaction 

mixture shows the presence of a highly dispersed polymer in solution (���=13000, ���/
���=1.6, Figure 2). As no free initiator is added and the surfaces are well cleaned from the 

physically adsorbed initiator the presence of such polymeric derivatives is a clear indication 

of a chain transfer to the monomer or solvent. 
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Table 1. Conditions for the graft polymerizations 

Entry Solvent Monomer 

concentration [mol/l] 

M: CuBr: CuBr2:L 

1 THF 0.25 50: 1: 0.1: 2.2   

2 THF 0.25 50: 1: 0.04: 2.2 

3 THF: DMF = 1: 1 0.25 50: 1: 0.1: 2.2   

4 THF: DMF = 1: 1 0.5 50: 1: 0.04: 2.2 

5 DMF 0.5 50: 1: 0.1: 2.2   

 

 
Figure 2: GPC chromatogharph of the polydisperse polymer in solution  

 

As can be seen in Figure 4, a good control over the thickness of the polymeric film can 

be achieved (first order kinetic) and a thicker layer can be obtained even with faster rate (is 

well known that polar systems as DMF can accelerate the rate of an ATRP due to partial 

dissociation of Cu-Br bond). In this way a well controlled polymerization can be obtained. 

The GPC analysis of the liquid phase after polymerization (entry 5) in this condition shows 

the total absence of polymeric derivatives and thus the absence of chain transfers reaction.  

With the aim to study the effect of the grafting density and so the chain conformation 

we have synthesized several brushes with different grafting densities, using surfaces modified 

with mixtures of SBiB and TMCS as dummy initiator. Is well known that not all the active 

sites can start a polymerization because of the overcrowding of the surface, especially when 

bulky monomers are used. Thus we used molar ratio of SBiB and TMCS of 1:0 (full coverage 

with SBiB,), 1:1, 1:50, 1:200 and 1:1000. (Figure 3) 



192       Surfaces 

 

 

 
Figure 3: SI-ATRP of M6A  from functionalized Si surfaces 

 

All the tested conditions are reported in the following tables (Table 2, Table 3). 

The evolution of the layer thickness observed by ellipsometry on the Si wafer and by 

UV-Vis on the glass slide are in perfect agreement as can be seen by the two plot of Figure 4 

and Figure 5. 
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Table 2. Data relative to the synthesis of M6A brushes on Si substrates 

 

 

SBIB : TMCS 

functionalization 
Solvent 

Monomer 

Concentration [M] 

Molar ratios 

[M]:[CuBr]:[CuBr 2]:[L] 

Time 

(h) 

1 : 0 DMF 0,5 M 50 : 1 : 0,1 : 2,2 4 
1 : 0 DMF 0,5 M 50 : 1 : 0,1 : 2,2 17,5 
1 : 0 DMF 0,5 M 50 : 1 : 0,1 : 2,2 24 

1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 23,5 
1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 89 
1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 118 

1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 23,5 
1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 89 
1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 118 

1 : 200 THF 0,25M 50 : 1 : 0,1 : 2,2 23,5 
1 : 200 THF 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 200 THF 0,25M 50 : 1 : 0,1 : 2,2 89 
1 : 200 THF 0,25M 50 : 1 : 0,1 : 2,2 118 

1 : 500 THF 0,25M 50 : 1 : 0,1 : 2,2 23,5 
1 : 500 THF 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 500 THF 0,25M 50 : 1 : 0,1 : 2,2 89 
1 : 500 THF 0,25M 50 : 1 : 0,1 : 2,2 118 

1 : 1000 THF 0,25M 50 : 1 : 0,1 : 2,2 23,5 
1 : 1000 THF 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 1000 THF 0,25M 50 : 1 : 0,1 : 2,2 89 
1 : 1000 THF 0,25M 50 : 1 : 0,1 : 2,2 118 

1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 160 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 160 

1 : 1000 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 1000 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 1000 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 160 

1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 24 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 48 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 160 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 24 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 48 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 160 

1 : 1000 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 24 
1 : 1000 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 48 
1 : 1000 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 160 
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Table 3. Data relative to the synthesis of M6A brushes on glass slides 

SBIB : TMCS 

functionalization 
Solvent 

Monomer 
Concentration [M] 

Molar ratios 

[M]:[CuBr]:[CuBr 2]:[L] 

Time 

(h) 
1 : 0 DMF 0,5M 50 : 1 : 0,1 : 2,2 4 
1 : 0 DMF 0,5 M 50 : 1 : 0,1 : 2,2 17,5 
1 : 0 DMF 0,5 M 50 : 1 : 0,1 : 2,2 24 

1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 23,5 
1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 89 
1 : 0 THF 0,25M 50 : 1 : 0,1 : 2,2 118 

1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 23,5 
1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 89 
1 : 50 THF 0,25M 50 : 1 : 0,1 : 2,2 118 

1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 160 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,1 : 2,2 160 

1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 24 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 48 
1 : 0 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 160 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 24 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 48 
1 : 1 DMF:THF=1:1 0,25M 50 : 1 : 0,04 : 2,2 160 
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   A       B 

Figure 4: kinetic plot obtained by UV-Vis spectroscopy of the SI ATRP of the polymerization in THF (A), molar 
ratio M6A: CuBr: CuBr2: HMTETA = 50:1:0.1:2.2 and in THF/DMF (B), M6A: CuBr: CuBr2: HMTETA = 
50:1:0.1:2.2 (▲), =50:1:0.04:2.2 (●).  

 

 

  A       B 

Figure 5. Kinetic plots of the SI ATRP of M6A in DMF (entry 5 in table 1) studied by ellipsometry on Si 
surfaces (A) and by UV-Vis spectroscopy on glass slide (B) 
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Also water contact angle has been checked after every surface reaction. Data are 

gathered in Table 4. 

Table 4. Significant contact angles  

Surface modification Contact angle 

Bare Si 1 

SBiB  84 

SBiB:TMCS 1:1000 84 

PM6A full 76 

PM6A lower grafting density 81 

 

Even if is known that mixed SAMs tend to segregate leading to the formation of 

islands our idea was to find a good composition to balance the surface overcrowding that lead 

to the formation of surface defects as bump and high roughness and the formation of 

segregated islands of polymers chains. 

The growing of these less dense layers cannot be followed by ellipsometry as the 

produced layer is not flat, neither by UV-Vis spectroscopy, as the absorbance of the 

polymeric layer is getting lower and lower decreasing the concentration of active initiator. 

So the growth of the polymeric layer and its morphology has been checked by AFM 

and SEM. 

The surface with full coverage of SBiB is uniform and smooth as can be seen in Figure 

AFM A, moreover it was possible to find a defect in the functionalization, a small hole with 

no coverage. In this way it was possible to have a measure of the thickness by two 

independent methods and a perfect agreement was found between them, with a thickness by 

ellipsometry of 11.5 nm and by AFM of 11.0 nm.  

The surfaces modified with a 1:1 mixture ratio after the polymerization gave uniform 

and smooth polymeric brushes over several microns, making it suitable for the fabrication of 

command surfaces. 

Increasing the amount of TMCS to a ratio of 1:200 the topography of the surface 

changes (Figure 6) with the transition from a smooth and flat surface to a non uniform 

covered surface with the presence of spherical island of similar size (diameter of ~ 80 nm) 

regularly distributed onto the surface. The size of these islands is too big for an isolated chain, 
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so likely neighboring chains preferably self assemble into bigger domains rather than staying 

isolated on the surface .  

 

 
Figure 6: AFM analysis of a polymeric brush from a 1:200 SBiB: TMCS surface 

Beside the AFM characterization also a SEM investigation was done, in fact due to the 

scale of the observed phenomenon (micrometers scale) only an AFM characterization is not 

totally significative. 

As can be seen from the SEM images reported in Figure 7 the topography of the 

surface changes by changing the concentratio of ATRP initiator (SBiB) on the surface. It can 

be seen how with little amount of ATRP initiator the coverage of the surface is not uniform, 

with island of polymer of dimension of about 80-100 nm of diameter. Increasing the ratio 

SBiB/TMCS to 1:50 result in a smooth surface, with some little hole-like defects. If only 

ATRP initiator is used a total coverage of the surface is obtained, but due to the overcrowding 

of the surface some small bump-like defect are also present (Figure 7). 
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Figure 7: SEM images of M6A brushes on silica surface with different coverage of ATRP initiator after 
polymerization. SBiB: TMCS ratio (from top to down) = 1:1000; 1:50, 1:0 
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This behavior suggest that during the formation of the SAM the ATRP and dummy 

initiator tend to segregate forming islands over the surface due to their chemical 

incompatibility. This led to the formation, after polymerization, of isolated hill in the surfaces 

with lower coverage. On the other side if no dummy initiator is added a rough surfaces is 

obtained due to the overcrowding of the surface due to the high sterical hindrance of M6A 

brushes. So a smooth film can be obtained using a suitable ratio of SBiB and TMCS during 

the formation of the initiator SAM that lead to the formation of a monolayer of randomly 

distributed molecules or at least to enough small island to give a smooth surface after 

polymerization. 
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Photochromic and photomechanic proprerties: comparison between 

spin coated film and brush. 

In order to verify the different photochromic behavior between a polymeric brush and a spin 

coated film of Poly(M6A ) of the same absorbance a comparison of their photoisomerization 

kinetics has been done. Both the brushes and the spin coated film have an absorbance of 0.080 

at their absoption maximum (350 nm). In Figure 8 are reported the kinetics of the 

isomerization under UV irradiation at 366 nm.  

 
Figure 8: UV-Vis Isomerization kinetics of (a) Poly(M6A) brush and (b) spin coated film of Poly(M6A) 

 

As can be seen by the UV-Vis spectra the spin coated film display a normal 

isomerization kinetic with the reaching of the photostationary state after 240 minutes, while 

the polymeric brush of the same thickness cannot isomerizes. This behavior can be explained 

by the high steric hindrance in the molecular brush that prevent the trans-cis isomerization 

while in the spin coated film there is enough free volume to allow the photoisomerization 

process.  

Using more intense light source is possible to induce a trans-cis isomerization. In this 

case we have followed the kinetic of the photoexpansion of a M6A brush on a Si wafer 

compared with a spin coated film of the same thickness by ellipsometry. As previously 

described in chapter 2 [25] the photo expansion of a thin film of monodisperse azoaromatic 

polymer under UV irradiation proceeds relatively fast (few minutes to reach saturation) with a 

compression ratio of 20%. 

Under the same illumination condition the contraction of the brush is one order of 

magnitude slower, taking up to 50 minutes to reach a steady state and show a little hysteresis 
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with no reaching of the pristine volume (Figure 9). Even if a model for this kind of 

phenomena is not yet developed is clear that the photoinduced properties involving the free 

volume and thus affected by the overcrowding of the brush regime are dramatically changed. 

Anyway is worthy to notice that the amount of compression is quite large for such a 

small layer, reaching up to 12%, more that observed for spin coated thin films of polydisperse 

polymers, highlighting again the importance of the molecular distribution and mobility on this 

kind of phenomena. In conclusion the photoexpansion of the polymeric brushes seems to be 

inhibited and retarded by the low aviability of free volume in the polymeric layer and by the 

low mobility of the threaded chains. 

 

  A       B 

Figure 9: changing of thickness (A) and refractive index (B) of a  Poly(M6A) brush under UV illumination (from 
0 to50 mins) and Vis (after 50 mins). 
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Chiroptical properties of brushes of chiral monomers 

 

In order to investigate the different behavior between thin films obtained by spin 

coating (Chapter 3) and analogue polymeric brushes we synthesized brushes of (S)-ML6A  

and (S)-MLL6A  (Figure 10) on glass slide and Si substrate, with the same synthetic 

procedure described above for the brushes of M6A, and their UV-Vis and CD properties were 

studied.  

The experimental data are reported in Table 5 Data relative to the synthesis of (S)-

ML6A and (S)-MLL6A brushes on Si substrates and glass slides 

 

Table 5 Data relative to the synthesis of (S)-ML6A and (S)-MLL6A brushes on Si substrates and glass slides 

SBIB : TMCS 
functionalization 

Solvent Monomer [M] 
Molar ratios 

[M]:[CuBr]:[CuBr2]:[L] 
Time 
(h) 

1 : 0 DMF:THF=1:1 (S)-ML6A - 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 0 DMF:THF=1:1 (S)-ML6A - 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 1 DMF:THF=1:1 (S)-ML6A - 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 1 DMF:THF=1:1 (S)-ML6A - 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 0 DMF:THF=1:1 (S)-MLL6A - 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 0 DMF:THF=1:1 (S)-MLL6A - 0,25M 50 : 1 : 0,1 : 2,2 48 
1 : 1 DMF:THF=1:1 (S)-MLL6A - 0,25M 50 : 1 : 0,1 : 2,2 24 
1 : 1 DMF:THF=1:1 (S)-MLL6A - 0,25M 50 : 1 : 0,1 : 2,2 48 

 

The brushes were grown for 24 (Brush[(S)-ML6A -24 and Brush[(S,S)-MLL6A -24]) 

and 48 hours (Brush[(S)-ML6A -48 and Brush[(S,S)-MLL6A -48]) resulting in different 

thickness of the polymeric layer as can be seen by the UV-Vis spectra in Figure 11 and Figure 

12. 
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Figure 10: Structures of the monomers (S)-ML6A and (S,S)-ML6A 

UV-Vis and CD spectra have been recorded on the virgin samples, after a washing in 

dry and hot THF and after a thermal annealing. The washing in THF is used to erase the 

thermal history of the sample, in this way a solvatation of the bounded chain should occur. 

In order to allow a supramolecular organization of the polymeric chains and the 

chromophore moieties the brushes were heated under vacuum for two hours at 150°C, then 

the temperature was decreased to room temperature at a rate of 5°C/minute. By inspection 

with POM no birefrangence was detected and all the samples seemed to be amorphous.  

The brushes of (S)-ML6A  are silent at CD both in the virgin state and after the thermal 

annealing. In Capter 3 it was shown that thin spin coated film of the Poly[(S)-ML6A ] possess 

a huge chirality. This different behavior between thin films and polymeric brushes emphasizes 

the influence of bounding one end of the polymeric chain to a substrate.  
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 a) b) 

Figure 11. CD (up) and UV-Vis (down) spectra of brushes on glass slide of: a) (S)-ML6A -24 and b) (S)-ML6A -
48 in the virgin state (____) and after a thermal annealing (_____) 

Instead the brushes of (S,S)-MLL6A  have interesting CD properties, depending on the 

thickness of the layer and on their thermal history (Figure 12). 

The CD spectrum of Brush[(S,S)-MLL6A -24] in the virgin state, shows a positive 

dichroic band corresponding to the π→π* transition of the azoaromatic chromophore, centerd 

at 360 nm whose intensities increase after thermal annealing. 

Brush[(S,S)-MLL6A -48] instead shows intense CD bands in the virgin state whose 

intensities increase after thermal annealing, in particular positive CD couplets with crossover 

point at 345 nm, can be observed.  

According to what reported in literature for similar linear derivatives [26] and with the 

exciton rules [27], a positive excitonic couplet is due to a right handed disposition of the 

chromophores. The observed high asymmetry is due to the overlapping of several dichroic 

bands: a positive CD couplet related to H-like aggregates overlapped to one or more positive 

signal associated to the electronic transitions of J aggregates, around 380 nm, and of the non 

aggregates chromophore at 360 nm [28]. 

The shape of this excitonic CD couplet suggests the formation of ordered 

supramolecular aggregates in a mutual chiral geometry of one prevealing screw sense [29]. 
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Figure 12. CD (up) and UV-Vis (down) of brushes of: a) (S)-MLL6A -24 and b) (S,S)-MLL6A -48 in the virgin 
state (____) and after a thermal annealing (_____) 

Is clear that (S,S)-MLL6A  brushes can self assemble into chiral supramolecular 

structure leading to a high population of H aggregates. (Figure 13) 

 
Figure 13. Idealization of chiral brushes 
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Command surfaces 

The prepared polymeric brushes substrates  of M6A have been employed for the 

fabrication of photo-switchable twisted/planar LC cells filled with the low molecular weight 

nematic pentyl-cyanobiphenyl (5CB). The cells have been produced using two different 

boundary glass walls, namely a reference and a command surface. The reference substrate has 

been coated with a polyimide layer, which has been mechanically rubbed in order to induce a 

strong homogeneous planar orientation, while the azo-polymer brush provides the photo-

controllable command surface. The substrates have been assembled with a 10 µm spacer and 

filled with 5CB in its isotropic phase at 45°C. After slow cooling (0.5°C/min) to room 

temperature, the cells display a planar alignment along the direction imposed by the reference 

surface. Twisted or planar structures have been then achieved by aligning the azobenzene 

mesogens on the command surface, respectively perpendicularly or parallel to the rubbing 

direction of the reference substrate, by mean of polarized illumination with the 488nm Ar/Kr+
 

laser line. The images in Figure 14 report an example of micropatterning in a cell prepared in 

the twisted configuration by macroscopic polarized irradiation and then locally (20 µm) 

reverted to planar by focused illumination with perpendicular polarization.  

 

 
Figure 14: Polarizing microscopy images of 20 µm diameter planar structures in a twisted cell. Left and right 
images have been acquired respectively with parallel and crossed polarisers. 

These brushes therefore act as command surfaces, the homogeneous layer of 

azoaromatic polymer can be easily manipulated by illumination with linearly polarized light 

and can induce a reorientation from a homogeneous (Figure 15a) to a twisted nematic 

alignment of a LC cell (Figure 15b). 
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 A B  

Figure 15: idealization of a LC cell driven by a photochromic command surface. A) linear alignment B) 
twisted nematic alignment. 

 

We compared, trough polarizing optical microscopy, the photoinduced structures thus 

obtained with those produced in the same experimental condition in cells where the command 

surface was provided by a spin coated layer of polymers synthesized from the same monomer. 

We assembled the cells employing azo-polymers of different molecular weight and geometry 

(linear and star) [26, 30] and the photo-induced patterning resulted not clearly visible under 

microscope. On the contrary the structures produced on azo polymeric brush cells display a 

high contrast (in the order of 1:100) and appear uniform either on macroscopic or microscopic 

scale, without LC defects like disclination lines. 

We then proceeded with the Raman characterization of the LC order at the polymeric 

brush interface using the same confocal microscope employed for the patterning. The laser 

emission has been set to the 647nm line, outside the azobenzene absorption band, in order to 

avoid further photoinduced effects. The spectra have been collected in the back scattering 

geometry with a Jobin Yvon-Horiba T64000 spectrometer equipped with a liquid N2 cooled 

CCD detector. The polarized micro-Raman study has been carried out measuring the 5CB 

peaks intensities as a function of the incident polarization and the analyzer directions along 

the two orthogonal axis V and H, respectively parallel and perpendicular to the nematic 

director. More specifically, the measurement consists of the acquisition in the peak intensity 

for the four possible geometries IVV, IVH, IHH, and IHV, where the first index refers to the 

incident polarization and the second to the analyzer direction.  
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Figure 16: Raman peak of 5CB corresponding to the symmetric stretching of the benzene rings (1605cm-1) 
measured in the four geometries IVV, IVH, IHH, and IHV. 

In Figure 16 is reported the characteristic Raman peak of 5CB corresponding to the 

symmetric stretching of the benzene rings (1605 cm-1) measured in the four geometries on the 

pristine cell. The selected 1605 cm-1 vibrational mode provides a suitable Raman probe for the 

orientation measurement since the main axis of the vibration is parallel to the central rigid part 

of the molecule, namely along the main axis of the mesogenic group. Such vibration is also 

particular suitable for the order parameters calculation since is uniaxial and strongly polarized 

with a ratio of the diagonal terms of the molecular polarizability tensor close to zero (αH/αV 

=0.045 [31]). The high anisotropy of the selected vibration allows to obtain the order 

parameters P2 on the basis of scattering anisotropies R1 and R2 defined as R1= IHV/IVV  and R2 = 

IHV/IHH, by the calculation of the second average cosine powers of the molecular orientation θ 

trough the approximated formula [32]: 

 

ODcos �F�S �  32� D22� �  1F
82� �  32� � 122�2� 

The scattering anisotropies R1 and R2 have been measured on the pristine surfaces and 

on the illuminated areas as a function of the energy dose of the pump beam. Twisted 

microstructures (20 µm diameter) have been photo-induced on the original planar cell varying 

both pump power (200 µW-20 mW) and exposure time (1–10 sec). The scattering 

anisotropies as a function of power multiplied by exposure are reported in Figure 17. The data 

show a threshold energy about 0.5 mJ where R2 becomes greater than R1 and saturation about 

100mJ where the parameters remain roughly constant. The average order parameter P2 

calculated at the saturation energy dose results 0.53 which is increased respect to the original 
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value P2 = 0.48 and of the same order of that measured on the reference rubbed substrate of 

0.52. 

 
Figure 17: Scattering anisotropies R1 and R2 measured on the illuminated areas as a function of the energy dose 
in Joule of the pump beam. 

 

We can conclude that these systems can be utilized as command surfaces with 

excellent performaces if compared to other silimar systems. Moreover their stability increase 

the usability for this kind of application: after several cycles and more than one year these 

devices are still working, while the ones build up with spin coated films suffered from 

dewetting, being unusable after this period of time. 
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Adaptative surfaces 
 

As mentioned above, in many studies, special attention is devoted to tuning the 

interface for specific applications, and careful design of the topmost surface layer 

incorporating all of the necessary elements controlling a predictable surface response, or a 

variable surface response under different conditions [33-36]. For this reason, the structure and 

characteristics of the phase boundaries are of the utmost importance for an understanding of 

the materials properties in processing and use. Moreover, further advances in materials 

science imposes requirements for dual surface properties that frequently are in conflict: a 

given material, depending on the conditions under which it is utilized, has to be hydrophobic 

and hydrophilic, acidic and basic, conductive or non-conductive, adhesive or repellent, and be 

able to release or adsorb some species. With the increasing demand for more sophisticated 

surfaces, one current approach is to fabricate and understand materials with interfacial 

properties capable of undergoing reversible changes according to outside conditions or 

stimuli. 

Intensive study in the field of the adaptive/responsive surfaces began several decades 

ago in an attempt to understand the relationships between bulk properties/composition of 

pristine polymeric materials and their surface characteristics. With time, the focus of research 

has moved to the design of materials with ‘smart’ or ‘intelligent’ surface behavior. A number 

of approaches have been employed to reach this goal, including, but not limited to (a) 

synthesis of functional polymers with specific composition and architecture; (b) blending of a 

virgin polymer material with small amounts of (macro)molecular additive; (c) surface 

modification by various chemical/physical treatments. 

Significant efforts have also been made to prepare, characterize, and understand the 

structure/properties relationships of adaptive/responsive surface layers attached to or 

deposited on the materials surface. 

The functionalization of the surface with incompatible polymeric functional polymeric 

chains is a promising route for the fabrication of such surfaces: if a flat surface is 

functionalized with incompatible chains bearing different functionality and the polymeric 

brush is not too dense to prevent self assembly the topmost surface composition will be 

determined by the environment. These surfaces, called adaptative surfaces, are therefore able 

to change their functionality to adapt to the changed conditions and offering to the new 

environment engineered properties.  



 

 

Minko and coworkers 

radical polymerization, using a surface bounded thermal azoinitiator. The synthesis of this 

surface followed two step: a pristine decomposition of half of the a

polymerization process from half of the polymerizable sites, rising of the surface and a second 

polymerization with an incompatible monomer from the other half of initiator. By tuning 

accurately the time and the temperature of p

be tuned, decomposing a certain percentage of the initiating site during the first step, but no 

control over the polymeric chain can be achieved with 

In order to develop a general method for t

control on the surface composition and on the polymer characteristic, having well defined 

polymers on the surface, i

RATRP) to grow a well defined mix

in Scheme 1. 

Scheme 1: Synthesis and reorganization of the mixed

The idea is to grow by SI

hydrophobic and soft Poly(

population of Poly(tert-Butylacrylate) (PtBA). Then the PtBA is hydrolyzed to Poly(acrylic 

acid) (PAA) and the topmost surface 

the topmost composition change

 

Minko and coworkers [37] fabricated these kind of surfaces by surface initiated free 

radical polymerization, using a surface bounded thermal azoinitiator. The synthesis of this 

surface followed two step: a pristine decomposition of half of the azo-initiator and subsequent 

from half of the polymerizable sites, rising of the surface and a second 

polymerization with an incompatible monomer from the other half of initiator. By tuning 

accurately the time and the temperature of polymerization the composition of the surface can 

be tuned, decomposing a certain percentage of the initiating site during the first step, but no 

control over the polymeric chain can be achieved with this approach. 

to develop a general method for the fabrication of these surface that allows 

control on the surface composition and on the polymer characteristic, having well defined 

in this work we tried to use surface initiated reverse ATRP (SI

RATRP) to grow a well defined mixed polymeric brush. The outline of the work is depicted 

: Synthesis and reorganization of the mixed polymeric brush 

The idea is to grow by SI-ATRP from a modified Si surface a first population of 

hydrophobic and soft Poly(n-Butylacrylate) (PBA) chains and in a second step another 

Butylacrylate) (PtBA). Then the PtBA is hydrolyzed to Poly(acrylic 

acid) (PAA) and the topmost surface is in contact with different solvents

change. 
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Initiator synthesis and SAM formation

In order to have a well defined surface is very important to synthesize a smooth and 

homogeneous layer of free radical 

We made a fist attempt to functionalize Si surface using 3

to obtain an amino rich surface 

azo initiator. (Scheme 2). 

Scheme 2 functionalization of the surface with 

With this procedure it was not possible to deposit a single monolayer but rather a 

multilayer of the amino silane was attached onto the surface so the thickness of this SAM was 

not reproducible and different from one substrate to the other. In fact, this reaction is very 

sensitive to moisture and a slight difference can lead to the formation of an uncontrolled 

multilayer (Figure 18). Therefore, the functionalization with the azo diacid chloride will result 

in an inhomogeneous multilayer of initiator with some species linked to one or two amino 

group. 

Figure 18: formation of a multilayer on the Si surface

So an asymmetric initiator 

reported in literature [38] and depicted in 

Initiator synthesis and SAM formation 

In order to have a well defined surface is very important to synthesize a smooth and 

free radical initiator.  

We made a fist attempt to functionalize Si surface using 3-aminopropyl triethoxysilane 

that can react with the acylic chloride of an acid symmetric 

functionalization of the surface with triethoxy silane and acylic chroride initiator 

With this procedure it was not possible to deposit a single monolayer but rather a 

multilayer of the amino silane was attached onto the surface so the thickness of this SAM was 

rom one substrate to the other. In fact, this reaction is very 

sensitive to moisture and a slight difference can lead to the formation of an uncontrolled 

). Therefore, the functionalization with the azo diacid chloride will result 

n inhomogeneous multilayer of initiator with some species linked to one or two amino 

 
: formation of a multilayer on the Si surface 

So an asymmetric initiator has been synthesized following a procedure already 

depicted in Scheme 3  

In order to have a well defined surface is very important to synthesize a smooth and 

aminopropyl triethoxysilane 

react with the acylic chloride of an acid symmetric 

 

With this procedure it was not possible to deposit a single monolayer but rather a 

multilayer of the amino silane was attached onto the surface so the thickness of this SAM was 

rom one substrate to the other. In fact, this reaction is very 

sensitive to moisture and a slight difference can lead to the formation of an uncontrolled 

). Therefore, the functionalization with the azo diacid chloride will result 

n inhomogeneous multilayer of initiator with some species linked to one or two amino 

synthesized following a procedure already 
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Scheme 3: synthesis of the asymmetric initiator 

We used leuvonic acid and acetone as oxo compound for the synthesis of asymmetric 

azo acid 1 using a typical Haines and Waters method. Then the acid has been chlorinated with 

oxalyl chloride and immediately reacted with allyl alcohol in presence of a TEA to give the 

compound 2. The target molecule 3 has been obtained by hydrosilanization using Pt catalyst 

and dimethyl chlorosilane (DMCS) in large excess. The excess of DMCS was removed by 

distillation and the product 3 (CSAN) was used with no further purification for substrates 

modification. 

The intermediates and the final compound were characterized by 1H-NMR and FT-IR 

spectroscopy and the spectra are in accordance with the chemical structure and literature 

datas. 

The azo-initiator was immobilized at room temperature on clean Si surface using a 

solution of 1.5g of 3 and 2 ml of dry triethyl amine in 80 ml of dry toluene.  

The use of a monofunctional asymmetric initiator gives a good control over the 

surface modification, as seen by ellipsometric measurement with a reproducible increase of 

the thickness of only 1.5 nm, in good agreement with the calculated length of the initiator 

molecule. 
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RATRP of nBA 

The RATRP polymerization involve the use of Cu(II) catalyst that is reduced in situ to 

Cu(I) by reaction with the radical generated by decomposition of AIBN. In this way the active 

catalyst and initiator are generated in situ and the atom transfer polymerization can start 

(Scheme 4). 

 
Scheme 4: RATRP process 

The SI-RATRP of nBA were carried on the Si modified surfaces. The goal was to 

carry out the RATRP polymerization from a certain percentage of the initiating site and to 

being able to tune the molecular weight of the grafted polymer. 

All the polymerization have been carried out in dry anisole using AIBN as free 

initiator to avoid the termination of surface chain due to the persistent radical effect [39].  

In Figure 19 are shown the kinetics of decomposition of AIBN at different 

temperatures. It can be clearly seen that, while a decomposition at 65 or 70°C is relatively 

fast, at 40°C the decomposition is negligible and thus polymerization can be carried out with 

no more initiation. 

Several condition were tested. In fact in order to polymerize the nBA from only a 

small percentage of the azo-initiator tethered to the surface two opposite condition should be 

met: a short time for a precise decomposition of the desired percentage of azo initiator and 

longer time of polymerization for having a well controlled radical polymerization.  

A compromise was found with a two step polymerization. A first, short, step at higher 

temperature in order to decompose the desired amount of azo-initiator and to form the active 

Cu(I) catalyst, followed by a longer step at 40°C, temperature at which the decomposition of 

initiator is negligible and, using an active catalyst, the RATRP polymerization can be carried 

out if an active ligand is used.  
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Figure 19: decomposition of AIBN at different temperatures (___) 70°C, (___) 65°C,(___) 40°C. 

The polymerization were carried using a ratio of monomer: free initiator: CuBr2: 

TPMA = 1000: 1: 2,2x: 2,2x were x is the target of AIBN decomposition. 

In fact, due to the ATRP equilibrium, if not all the CuBr2 is reduced to Cu(I) the 

polymerization can not continue because of the presence of too much deactivator. On the 

other hand if all the Cu(II) is reduced to Cu(I) no control on the polymerization can be 

achieved because of the persistent radical effect [23]. Thus the ratio 2,1 x: 1 = Cu(II): AIBN it 

is effective to obtain a good control over the polymerization.  

The presence of free AIBN is useful, besides the needs due to the persistent radical 

effect, for controlling the polymerization: it is assumed that the polymer grown on the surface 

is similar to the polymer grown in the bulky phase. In fact, kinetic studies of the bulky phase 

(Figure 20) show that this approach is successful for a RATRP from the desired percentage of 

initiating sites. The good agreement of GPC and theoretical molecular weight and the low 

polydispersities means that the initiator efficiency is close to 1 and, when the polymerization 

starts, no further initiation is present. 
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Figure 20: Kinetics of two step temperature polymerization with 30% of AIBN decomposition, red point on the 
plot are after decrease of temperature at 40°C 

Several surfaces have been modified by grafiting PBA chains in different percentage 

and different molar fraction on the surfaces (Table 6). 

Table 6: PBA brushes characterization 

Entry AIBN 

conversion 

Thickness 

(nm) 

Mn PDI Grafting density 

(σ, chains nm-2) 

1 0.15 7.1 63000 1.10 0.04 
2 0.15 2.0 20000 1.20 0.05 
3 0.30 4.6 30000 1.08 0.08 
4 0.30 8.8 58000 1.17 0.08 

5 0.5 20.0 64000 1.54 0.18 

 

Due to the living RATRP mechanism the chains are terminated with an active Br atom 

that can be useful for the synthesis of block copolymers. For our specific scope the Br atom 

must be deactivated. 

The cleavage of Br atom can be easily achieved by reaction with tributyl tin hydride 

under radical conditions [40] with the mechanism shown in Scheme 5. 

 
Scheme 5 Dehalogenation of living chains  
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Growth of the mixed brush. 

The growth of the second population of PtBA by SI-RATRP needed less attention than 

the previous one as all the remaining reactive site has to be decomposed. 

Thus the polymerization of tBA were carried on at 60°C in anisole with 

CuBr2/PMDETA until the desired conversion is reached. 

While the polymerization in solution continued in a controlled fashion on the surface 

no control is achieved. The second polymerization can be carried out on the surface and 

mixed brushes are obtained but no reproducibility on the polymeric layer thickness is 

achieved (Table 7). 

This can be attribuited to the crowding of the surface and then to the difficulty for the 

second population of the brushes to grow from the surface. Moreover some clustering on the 

surface can occourr as likely the decomposition rate of initiator close to a growing chain 

should be faster than the one of initiator far away from a chain and thus with less steric 

repulsion. 

Table 7 thickness of the mixed brushes 

Entry Thickness (nm) Mn PDI σ (chains nm-2) 

 PBA brush Mixed brush (PtBA) (PtBA) (overall) 

1 7.1 7.6 43000 1.16 0.06 

2 2.0 6.3 25000 1.10 0.08 

3 4.6 4.7 37000 1.14 0.08 

4 8.8 18.0 50000 1.16 0.18 

5  20.0 20.8 48000 1.24 0.19 

 

This approach is, at least in principle, extremely versatile but did not gave the 

expected results, and thus in order to obtain the desired mixed brushes also a “grafting onto” 

method have been successfully tried. 
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Adaptative surfaces by 

The outline of this synthetic pathway is depicted in 

Scheme 6: mixed brushes by “grafting on

The general synthesis of PBA and PtBA 

using a propargyl initiator, protected with a trimethylsyli

are then dehalogenated and the p

ammonium fluoride (TBAF). 

A SAM was deposited onto clean Si wafer using 3

the bromine atom was then substituted with an azide group by reaction of the surface with 

sodium azide in hot DMF using 15

Finally the mixed brushes

catalyzed Huisgen cycloaddition between the alkyne 

azido groups of the surface.  

by “grafting onto” 

synthetic pathway is depicted in Scheme 6. 

onto” method 

of PBA and PtBA consist in the polymerization of 

, protected with a trimethylsylil group. The obtained 

the propargyl group has been deprotected with tetrabutyl 

was deposited onto clean Si wafer using 3-bromopropyl trimethoxy sylane, 

the bromine atom was then substituted with an azide group by reaction of the surface with 

sodium azide in hot DMF using 15-crown-5 as catalyst. 

es have been grafted onto the surfaces by the 2+3 Cu(I) 

catalyzed Huisgen cycloaddition between the alkyne terminated macromolecules 

 

 

onsist in the polymerization of BA and tBA 

obtained living chains 

deprotected with tetrabutyl 

bromopropyl trimethoxy sylane, 

the bromine atom was then substituted with an azide group by reaction of the surface with 

by the 2+3 Cu(I) 

terminated macromolecules and the 
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Surface modification 

The Si wafers are cleaned with piranha solution (20 ml H2O2 30% and 60 ml H2SO4) 

at 80°C for two hours. Then the surfaces are rinsed several time with deionized water and 

dried under air stream. The surfaces after piranha cleaning are highly hydrophilic.  The SiO2 

layer is checked by ellipsometry after cleaning and results of 2 nm. 

Immediately after cleaning and drying the surfaces are modified using a solution of 3-

bromopropyl trimethoxy silane (0.30 ml in 10 ml of dry toluene). The surfaces are putted in a 

large vial taking care that they don’t overlap. The functionalization has been carried out for 30 

minutes at 80°C. 

After this time the surfaces are rinsed with clean toluene, sonicated with pure acetone 

for 30 seconds and rinsed with water. The water is then blown away. The surfaces after this 

step are highly hydrophobic. 

The exchange bromo-azido is performed putting the surfaces in a saturated DMF 

solution of NaN3 (0.15 g in 10 ml of DMF) using 0.1 ml of 5-crown-15 as catalyst at 70°C for 

three days in the dark. The surfaces are then rinsed with DMF, sonicated in acetone for 30 

seconds and rinsed with deionized water. The surfaces then are kept in the dark.  

After azido exchange the surface are less hydrophobic and the thickness of the organic 

layer measured by ellipsometry is about 3.5 nm. 
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Synthesis of alkine terminated polymers 

PBA and PtBA of different molecular weight and narrow PDI have been synthesized 

by normal ATRP using 3-(trimethylsilyl)propargyl 2-bromo-2-methylpropanoate as ATRP 

initiator, CuBr as catalyst and pentamethyldiethyltriamine (PMDETA) as ligand in anisole at 

60°C. In Table 8 are reported the principal characterization data of the four synthesized 

samples. 

Table 8: characterization of the polymers used for the grafting onto reaction 
Sample  Mn  PDI  

PBA30k 
a) 30600  1.10  

PtBA30k 
a) 29700  1.08  

PBA48k 
b) 48000  1.09  

PtBA50k 
b) 50000  1.10  

 

When the desidered molecular weights were obtained (the reaction have been 

monitored by GPC) the monomers were removed under vacuum, avoiding oxygen coming 

into the flask and  deoxygenated anisole (10 ml) with a 10 fold excess of tributhyl tin hydride 

has been added. The dehalogenation reaction was carried out overnight at 60°C. No increase 

of molecular weight is observed by GPC. 

The samples have been purified by filtration on neutral alumina and the solvent and 

the residual monomer have been removed under vacuum.  

 
Figure 21: GPC chromatograms of the deprotected PBA and PtBA synthesized 
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The deprotection of the sylil protected alkyne moiety has been done with tetrabutyl 

ammonium fluoride 1.0 M in THF. The reaction is carried out using a 100 fold excess and 

stirring overnight at room temperature. Water was then added and the organic layer separated 

and washed one more time with water and dried. The solvent was finally evaporated under 

vacuum.  

The 1H- NMR spectra confirms that the deprotection of the terminal group is 

quantitative. 

In Figure 21 are reported the GPC traces of the four polymeric derivatives after 

deprotection and purification. 
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“Grafting onto” and hydrolysis of PtBA chains 

The “grafting onto” has been achieved using a 2+3 Cu(I) catalyzed Huisgen 

cycloaddition. 

The experimental condition used are the following: deoxygenated DMF as solvent, 

0.6% w/w polymers concentration, 0.01 M CuBr/PMDETA as catalyst, ascorbic acid as 

reducing agent (0.002 M), temperature 60°C. 

In order to have different surface modification different relative molar ratio of PBA 

and PtBA as well as different molecular weights have been used. The reactions have been 

carried out into purged flask under nitrogen flow for 0,5, 6 and 48 hours (Table 9). 

Table 9. Characterization data of the double component surfaces. 

Entry  Composition 

[BA:tBA]  

��� Time 

(h)  

Thickness 

(nm)  

Grafting 

densities  

1  50:50  30K  0.5  4.6  0.09 

2  50:50  30K  6  6.8  0.14 

3  50:50  30K  48  8.0  0.16 

4  25:75  30K  0.5  3.6  0.07 

5  25:75  30K  6  5.4  0.11 

6  25:75  30K 48  6.5  0.13 

7  75:25  30K 0.5  3.6  0.07 

8  75:25  30K 6  4.2  0.08  

9  75:25  30K 48  7.0  0.14 

10  50:50  50K  0.5  5.4  0.07 

11  50:50  50K  6  6.5  0.08 

12  50:50  50K  48  8.0  0.10 

14 100:0 30K 48 6.4 0.08 

15 0:100 30K 0.5 3.6 0.07 

16 0:100 30K 48 6.1 0.08 

 

After the desidered time the flasks has been opened and the functionalized surfaces 

cleaned with DMF, CH2Cl2, sonicated in acetone for 30 seconds and finally dried under 

nitrogen flow. 

The thickness has been measured by ellipsometry (Table 9).  
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The PtBA has been hydrolyzed putting the surfaces in a 1% solution of 

methansulfonic acid in dichlorometane for 60 seconds [41]. 

From the data gathered in Table 9 it can be seen how is possible to tune easily the 

grafting densities by changing the reaction time (or the catalyst amount) and the surface 

composition by changing the reaction mixture composition. 
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Surface reorganization 

In order to verify the reorganization of the topmost surface after contact with different 

environment, the mixed PBA: PAA brushes were immersed in different liquids and then 

investigated by AFM microscopy.  

Each surface was thus immersed in water and hexane for two hours in order to let the 

self-assembly of the polymeric layer and then checked. By comparying the phase image of the 

surfaces after immersion in different solvents we can see a reorganization of the surface, with 

soft (dark) PBA rich surfaces after immersion in hexane and hard (bright) PAA rich surface 

after immersion in water (Figure 22). In the following figures are reported the height and 

phase AFM images of the adaptative surfaces after reorganization in polar (water) and non 

polar (hexane) liquids (Figure 23, Figure 24 and Figure 25). 

 
Figure 22: Surface reorganization of the mixed brushes 
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PAA rich surface PBA rich surface
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 PBA: PAA = 50: 50 

Water 

    

 

Hexane 

  

 

Figure 23: AFM images (topography and phase image) of PBA: PAA = 50: 50 after immersion in water and 
hexane. 
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PBA: PAA = 75:25 

 

Water 

     

 

Hexane 

      

 

Figure 24 AFM images (topography and phase image) of PBA: PAA = 75: 25 after immersion in water and 
hexane. 
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PBA: PAA = 25: 75  

 

Water 

  

 

Hexane 

  

 

Figure 25 AFM images (topography and phase image) of PBA: PAA = 25: 75 after immersion in water and 
hexane. 
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The reorganization has also an effect on the roughness of the surfaces: in fact a surface 

richer in PBA is smoother than a surface rich in PAA due the different softness of the two 

polymers (soft PBA, stiff PAA). In fact the analysis of the roughness measured by AFM 

confirms this trend: while the PBA molar fraction increase (because of the different 

composition of the polymeric layer or after hexane contact) the surface is smoother (Table 

10). 

Table 10: Surface roughness of the adaptative surfaces 
Roughness Acetone Water 

PBA:PtBA 25:75 0.64 0.66 

PBA:PtBA 50:50 0.60 0.79 

PBA:PtBA 75:25 0.46 0.46 

 

We can thus conclude that this approach can be successfully used for the fabrication of 

adaptative surfaces by simple grafting of immiscible polymers onto a surface. These surfaces 

are then able to reorganize in answer to changed environmental conditions. In this case the 

surfaces are able to show selectively hydrophilic or hydrophobic chains after specific 

reorganization. 

This kind of study has to be considered preliminary, and this kind of surfaces opens a 

huge number of possibilities for the synthesis of smart materials able to self assemble in 

specific ways reacting to precise environmental conditions exposing different functionality 

tuned for specific conditions. 
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Conclusions  
 

Various surfaces were successfully modified using different methods. These surfaces 

were characterized by ellipsometry, AFM and SEM. In the case of azoaromatic brushes also 

optical (UV-Vis and CD) characterization was performed. 

The growing kinetics were studied for all the method used. 

The optical properties of the azoaromatic brushes were studied and compared to the 

ones of similar thin films deposited by spin coating. Different behaviors in terms of 

photochromic and chirooptical properties were found. 

The optical properties of the azoaromatic brushes have been used for the fabrication of 

LC cell driven by optical command surfaces. Due to the high robustness of the 

macromolecular brush these devices overcomed the problems related to the dewetting of the 

sensitive layers that limited their application in the past. 

Also adaptative surfaces were successfully synthesized via a grafting to method. These 

well defined surfaces are able to reorganize the topmost layer reacting to changed 

environmental condition, by incorporation of functionality in these brushes it is possible, at 

least in principle, to prepare surfaces able to reorganize and to act in different ways to target 

environmental condition. 
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Experimental part 
 

THF, DMF, toluene and CH2Cl2 has been purified and dried according to reported 

procedures [42] and stored under nitrogen. Acetone used for washing the Si wafer was Acetone 

HPLC grade purchased from Aldrich. Ultra pure water used for washing is made with Milli-Q 

plus instrument by Millipore. 

 

Trimethylchlorosilane (TMCS) is freshly distilled prior to use and stored under 

nitrogen. 

The monomer 4-ω-methacryloyloxy-hexyloxy-4’-ethoxyazobenzene (M6A ) has been 

synthesized as previously described [43]. 

The synthesis of the monomers (S)-ML6A [26] and (S,S)-MLL6A is described in 

Chapter 3. 

Polymeric films were spin coated film onto a clean glass slide using a 0.1% solution of 

Poly(M6A ) in CH2Cl2, the thickness of the film, measured by UV-Vis spectroscopy, was 

adjusted changing the spin rate to obtain the desired absorption (A350 = 0.080). 

Polymerization initiator: 

The ATRP initiator 3-(chlorodimethylsylyl)propyl 2 bromo isobutyrrate (SBiB) was 

synthesized as previously described [44] by Pt catalyzed hydrosylation of the commercially 

available allyl 2-bromo isobutyrrate with dimethyl chloro silane. 

The ATRP initiator 3-(trimethylsilyl)propargyl 2-bromo-2-methylpropanoate has been 

synthesized as previously described [45] 

The azo initiator 2’,4-azo-(2’-cyanopropyl)(4-cyanopentanoxy-(3’’-

chlorodimethylsilyl)propylate) (CSAN) has been synthesized as previously described [38]. 

 

Si wafer and glass slide cleaning 

Si wafers cutted in pieces of 1x2 cm and glass slide of 2x3 cm has been cleaned with 

piranha solution (H2SO4: H2O2 (30%) = 7: 3) at 80°C for two hours. The surfaces have been 

then rinsed with abundant Millipore water and dried under nitrogen flow.  
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Si wafer modification with SBiB and TMCS 

Clean Si wafer have been functionalized with the ATRP initiator by immersion of the 

surfaces (paying much attention to avoid contact between the surfaces themselves) in 0.01 M 

solution of SBiB in dry toluene and keeping under dry nitrogen flow overnight at room 

temperature.  

In order to achieve lower grafting densities also surface with a different amount of non 

active dummy initiator have been prepared using the previously described procedure. For the 

synthesis of these surfaces mixtures of SBiB and TMCS have been used in the molar ratio of 

SBiB: TMCS = 1:1, 1:50, 1:200, 1:1000. 

The same procedure, molar quantities, times and temperature were used for the 

modification of Si wafer with the azo initiator CSAN. 

After modification the surfaces have been cleaned with distilled solvents of increasing 

polarity (toluene, dichloromethane, THF, acetone and Millipore water) by sonication for 5 

minutes 

Surface modification for the “grafting onto” reaction 

clean Si surfaces have been modified in a large vial using a solution of 3-bromopropyl 

trimethoxy silane (0.30 ml in 10 ml of dry toluene). The modifications are carried on for 30 

minutes at 80°C, then the surfaces have been rinsed with clean toluene, sonicated with pure 

acetone for 30 seconds and finally with water. The surfaces after this functionalization appear 

highly hydrophobic. 

The exchange bromo-azido has been performed putting the surfaces in a saturated 

solution of NaN3 (0.15 g in 10 ml DMF) using 0.1 ml of 5-crown-15 as catalyst. The 

exchange has been carried out at 70°C for three days in the dark. The surfaces have been 

rinsed with DMF, sonicated in acetone for 30 seconds and finally rinsed with deionized water. 

The surfaces were kept in the dark to avoid the decomposition of the azido groups. 
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Polymerization reaction: 

The linear polymer Poly(M6A ) has been synthesized by ATRP as previously 

described in chapter 2 [25]. 

Polymerization of BA and tBA 

The linear homopolymers PBA and PtBA have been synthesized by ATRP following 

the procedure reported here for example for PBA30k. 

Distilled butyl acrylate (10 ml), anisole (2 ml), PMDETA (41.4 µl) and the propargyl 

initiator (45.6 µl) have been put in a shlenk flask and the oxygen has been evacuated with 

three freeze pump cycles. Then, under vigorous nitrogen flow, CuBr (28.5 mg) has been 

introduced into the vial. The vial was then sealed and other two freeze pump cycles have been 

done. The polymerization has been started by putting the vial in an oil bath for 24h at 60°C. 

The polymerization has been stopped after reaching the desired conversion by 

introduction of a deoxygenated solution of Bu3SnH in anisole (0,560 ml in 4 ml of anisole).  

The solvent and the unreacted monomers have been removed under vacuum until 

constant weight was reached. The polymeric derivatives were dissolved in THF and tin and 

copper have been removed by filtration on neutral alumina.  

The THF have been removed under vacuum and the polymer was deprotected with 1,0 

M TBAF in THF (100 fold excess). The reaction mixture has been filtered on acid alumina 

and the THF was removed under vacuum.  

1H-NMR spectra are in agreement with the expected structure. 

The quantities used for the other polymerization are gathered in Table 11 

Table 11: quantities used for the symthesis of PBA and PtBA. 

Sample  Ratio Monomer 

(ml) 

Initiator 

(µl) 

CuBr 

(mg) 

PMDETA 

(µl) 

Anisole 

(ml) 

PBA30k 350:1:1:1 10 45.6 28.5 41.4 2 

PtBA30k  350:1:1:1 10 45.1 28.0 40.7 2 

PBA48k  600:1:1:1 10 26.7 16.6 24.2 2 

PtBA50k 600:1:1:1 10 26.3 16.3 23.7 2 
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SI ATRP 

A typical ATRP polymerization on SI substrates was carried out in dry solvent (THF 

or THF/DMF 1:1 v/v or DMF) using the following procedure: 2.2 g of M6A  (5.36 mmol), 

15.35 mg of CuBr (0.107 mmol) and 2.39 mg of CuBr2 (0.0107 mmol) were putted in a flask 

and deoxygenated with five freeze-pump cycles. Then 20 ml of deoxygenated dry solvent and 

64 µl of  1, 1, 4, 7, 10, 10-hexamethyltriethylentetraamine (HMTETA ) have been transferred 

via syringe in the vial and the solution was stirred until all the compounds were dissolved. 

Then four samples of 5 ml were withdraw and transferred to other deoxygenated flask 

containing the ATRP initiator modified surfaces. The flasks were then sealed and the 

polymerizations were carried on at 80°C for different times. After polymerization, polymer 

grafted substrates were washed with THF for several times to remove unreacted monomer and 

freelinear soluble polymer, and dried at room temperature.  

 

SI-RATRP of BA 

A typical SI-RATRP polymerization has been carried out in the following procedure: 

modified surfaces in a protection ring were put in a vial with CuBr2 (15.4 mg), BA (15 ml), 

TPMA (21 mg), AIBN (23 mg) and anisole (7,5 ml). The vial has been deoxygenated with 

three freeze pump cycle and put in an oil bath at 65°C for the desired time in order to 

decompose the target amount of azo-initiator. After the desired time (the color of the solution 

turned from dark green to a pale green due to the reduction of the colored Cu(II) species) the 

flask was moved to an oil bath at 40°C and the grown of the molecular weight checked by 

GPC. The polymerization was stopped after reaching the desired molecular weight by 

introduction of a deoxygenated solution of Bu3SnH in anisole (0,560 ml in 4 ml of anisole) 

and let stir overnight. 

The functionalized Si wafer has been recuperated and washed with abundant acetone 

and water. 

SI-RATRP of tBA 

The second SI-RATRP was carried in the same way, except that only the step at 65°C 

was done and PMDETA was used instead of TPMA: a Si wafer with a PBA brush is put in a 

vial in a protection ring with CuBr2 (15.4 mg), BA (15 ml), TPMA (21 mg), AIBN (23 mg) 

and anisole (7,5 ml). The vial was deoxygenated with three freeze pump cycle and put in an 
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oil bath at 65°C and the evolution of molecular weight is checked by GPC. When the desired 

molecular weight is reached the vial is open, the wafer recuperated and washed with abundant 

acetone and water. 

Grafting onto reaction 

here is reported as an example the grafting of PBA30k and PtBA30k in a 1:1 molar ratio. 

Azido modified Si wafer were put in a vial with the desired molar mixture of PBA30k 

(150mg), PtBA30k (150mg), anisole (10 ml), PMDETA (14 µl) and ascorbic acid (50 mg). 

Oxygen was eliminated by three freeze pump cycles and CuBr was introduced in the vial 

under nitrogen flow. The reaction was carried on for 24 hours and the vial was open, the 

wafer recuperated and rinsed with abundant acetone and water. 

The other surfaces were modified following the same procedure, changing the mixture 

of PBA and PtBA and the reaction times. 

Hydrolysis of PtBA brushes 

Mixed brushes of PBA and PtBA were immersed at room temperature in a 1% 

solution of methansulfonic acid in CH2Cl2. The surfaces were then washed with fresh CH2Cl2, 

acetone and water. 

Topmost reorganization of mixed brushes 

Mixed PBA-PAA brushes were immersed in 0,1M K2CO3 aqueous solution, for giving 

a hydrophilic surface or in hexane, for giving a hydrophobic surface, for 4 hours at room 

temperature. The Si wafer was then removed from the vial and the liquid was blown away 

with nitrogen flow. 
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