
 

 

Alma Mater Studiorum – Università di Bologna 

Ph.D. program in Cellular, Molecular and Industrial Biology 

XXII cycle 

Scientific discipline: BIO/11 

 

Evaluation of glycoconjugate antigens as vaccine 

candidates against group A Streptococcus and human 

immunodeficiency virus infections 

 

Tutor:        PhD student: 

Chiar.mo Prof.      ANNA KABANOVA 

VINCENZO SCARLATO 

PhD coordinator:  

Chiar.mo Prof. 

VINCENZO SCARLATO 

 

2010



 i

Index 

A. Abbreviations        1 

B. Acknowledgements        2 

C. Introduction         3 

Carbohydrate-based vaccines      3 

Isolated bacterial carbohydrates for conventional vaccines 5 

Synthetic oligosaccharides as new tools for vaccine 

development        6 

Focus of the doctorate study      7 

D. Chapter 1         9 

Preparation, characterization and immunogenicity of HIV-1 related 

high-mannose oligosaccharides-CRM197 glycoconjugates 

Introduction        9 

Results         13 

 Oligomannose cluster synthesis and characterization  13 

 Immunochemical characterization of oligomannose antigens 17 

 Synthesis of CRM197 glycoconjugates    19 

 Glycoconjugates immunogenicity in rabbits and mice  22 

Anti-carrier antibody response     25 

Discussion        26 

E. Chapter 2         31 

Rational design and evaluation of a synthetic carbohydrate-based 

Group A Streptococcus vaccine candidate 

Introduction        31 



 ii

Results         34 

 GAS-PS isolation and purification     34 

 Generation and characterization of glycoconjugates   35 

 Anti-GAS-PS serum response induced by glycoconjugates  41 

 Specificity of anti-GAS-PS polyclonal antibodies   44 

 Protection against i.p. challenge with GAS    45 

Discussion        46 

F. Conclusion         52 

G. Materials and Methods       56 

Chapter 1         56 

 Materials        56 

 Analytical methods       56 

 ESI Q-TOF MS analyses      57 

 PAMAM cluster synthesis and purification    58 

 Competitive Surface Plasmon resonance    60 

  Conjugation of oligomannose and oligomannose 

glycodendrimers to CRM197      61 

 Conjugation of Man9 to HSA via diethyl squarate chemistry  62 

 Animal immunizations       62 

 ELISA         63 

Chapter 2         64 

 Materials        64 

 Bacterial strains and culture conditions    64 

 Analytical methods       64 

 Spectroscopy and chromatography     65 



 iii 

Isolation of native GAS-PS      67 

 Preparation and characterization of glycoconjugates  67 

 Active immunizations       68 

 Serum ELISA        68 

 Immunoadsorption of anti-hexasaccharide antibodies from 

mice sera        69 

 In vivo protection assays      70 

 Statistics        71 

H. References         72 

 

 

 

 

 

 

 

 

 

 

 

 



 1

Abbreviations 

CHO, carbohydrate 

ConA, Concanavalin A 

EU, ELISA units 

GAS, group A streptococcus 

GAS-PS, GAS polysaccharide 

GNL, Galantus Nivalis Lectin 

HA, hemagglutinin 

HSA, human serum albumin. 

i.m., intramuscular 

i.p., intraperitoneal 

Man, mannose 

RT, room temperature 

sc., subcutaneous 

vol, volume 

wt, weight 
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Introduction 

Carbohydrate-based vaccines 

Glycoconjugate vaccines, in which a cell surface carbohydrate from a micro-

organism is covalently attached to an appropriate carrier protein, have been 

proved to be one of the most effective means to generate protective immune 

responses to prevent a wide range of diseases. The technology appears to be 

generic and applicable to many pathogen agents, as long as antibodies against 

surface carbohydrates help protect against infection. 

The cell surfaces of bacteria, parasites and viruses exhibit oligosaccharides that 

are often distinct from those of their hosts. Carbohydrates are virulence factors 

commonly used by pathogens to establish an infection and escape the host 

immune response. The polysaccharide capsules of bacteria prevent 

complement activation (Roitt 1997) and inhibit phagocytosis. Carbohydrates 

form protective shields over conserved viral protein epitopes (Baghian et al. 

2000; Scanlan et al. 2002; Sanders et al. 2002; Mori et al. 2003; Han et al. 2004; 

Barrientos, Gronenborn 2005; Goffard et al. 2005; Helle et al. 2006), serve for 

interaction with host cell surface receptors leading to enhancement of viral 

spread (Pohlmann et al. 2001; Alvarez et al. 2002; Halary et al. 2002; Klimstra et 

al. 2003; Lozach et al. 2005; Davis et al. 2006) or induction of 

immunosuppressive response (Shan et al. 2007). Thus, carbohydrate antigens 

represent an attractive target for vaccine development. 

Pneumococcal capsular polysaccharide appeared the first carbohydrate antigen 

of a pathogen to be investigated for vaccine application. Immunogenic and 
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protective properties of pneumoccocal polysaccharide had been investigated 

starting from as early as 1920s. In 1980s two formulations of anti-pneumococcal 

vaccine have been introduced containing capsular polysaccharide derived from 

14 and 23 pneumonia serotypes, respectively. However, the vaccine was poorly 

immunogenic in infants under the ages of two, elderly and immunocompromised 

persons (Vliegenthart 2006). The same limitation was revealed for 

meningococcal polysaccharide vaccines (Broker et al. 2009).  

Carbohydrates themselves do not represent ideal vaccines due to the fact that, 

with a fewer exceptions, they cannot not be presented in the context of MHC-

antigen complex to the T-helper cells and therefore are poor immunogens (Avci, 

Kasper 2009). However, carbohydrate conjugation to carrier proteins results in 

the induction of T-cell-dependent arm of the adaptive immunity. The age of 

glycoconjugate vaccines started in 1931, when Avery and Goedel discovered 

that covalent attachment of carbohydrates to a suitable protein induced an 

enhanced immunogenicity compared to the polysaccharides as such (Avery, 

Goedel 1931). Carbohydrate-protein conjugates therefore are capable of 

eliciting a long-lasting response to vaccination and are effective in adults and 

young children. 

Polysaccharides have been successfully conjugated to a variety of proteins, 

such as tetanus toxoid, diphtheria toxoid and its non-toxic mutant CRM197, the 

outer membrane complex from Neisseria meningitidis (Giannini et al. 1984; 

Verez-Bencomo et al. 2004; Jones 2005; Pace 2009). Using these protein 

carriers effective conjugate vaccines against Haemophilus influenza type b, 

meningococcus of the serogroups A, C, W, Y, and pneumococcus (13-valent 
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formulation) have been developed (Jones 2005; Lucas et al. 2005). Novel 

findings proposed short peptides and proteins containing specific CD4+ T cell 

epitopes as potential candidates with improved carrier properties for the future 

applications (Falugi et al. 2001; Liakatos, Kunz 2007). 

Isolated bacterial carbohydrates for conventional vaccines 

Vaccines prepared with bacterial polysaccharides have been widely used 

against a host of diseases for several decades (Goldblatt 1998). The 

carbohydrate antigens for those vaccines were traditionally isolated from 

biological sources. A potent set of analytical tools as NMR, mass spectrometry 

and others have helped to investigate the structure of bacterial carbohydrate 

antigens. Native polysaccharides are either homopolymers or made up of 

between two and six repeating sugar units, the chemical nature of which defines 

the serotype of the organism. For example, there are 91 different types of 

polysaccharides associated with pneumococci, 13 polysaccharides of 

meningococci, and 9 polysaccharides of group B streptococci (Paoletti and 

Madoff 2002; Sabharwal et al. 2006; Pollard et al. 2009). 

Protective immunity against encapsulated bacteria has been correlated with 

anti-polysaccharide antibodies. Usually immune response is serotype-specific, 

and multivalent formulations containing several types of polysaccharides are 

preferred for vaccination e.g. 14- and 23-valent pneumococcus vaccine 

(Vliegenthart 2006), unless the only type of polysaccharide is ascribed for the 

circulating virulent strains as in case of group A Streptococcus (Cunningham 

2000). Commercially available vaccines based on purified capsular 

polysaccharides or glycoconjugates include those against Neisseria 
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meningitidis, Streptococcus pneumoniae, Haemophilus influenza type b and 

Salmonella typhi (Ada, Isaacs 2003). 

Synthetic oligosaccharides as new targets for vaccine development 

In contrast to conventional polysaccharide isolation, chemical synthesis provides 

access to pure, homogeneous oligosaccharides of well-defined structure that 

contain single reactive groups for covalent conjugation. Additionally, in some 

cases synthetic oligosaccharides were found to have better immunogenic 

properties than native polysaccharides (Pozsgay et al. 1999). Design of 

synthetic oligosaccharides is usually based on the core antigenic determinants 

of long polysaccharide chains and may help to evaluate how particular structural 

features e.g. length, conformation, or non-reducing end residue, influence 

carbohydrate immunogenicity. Conjugate vaccines containing synthetic 

oligosaccharides have generated a protective immune response for a growing 

number of infectious diseases including Streptococcus pneumonia type 3, 6A, 

6B and 14, Shigella dysenteriae type 1 and Haemophilus influenzae type b 

(Chong et al. 1997; Benaissa-Trouw et al. 2001; Jansen et al. 2001; Verez-

Bencomo et al. 2004; Pozsgay et al. 2007; Safari et al. 2008). Until recently, the 

major obstacle to the development of synthetic carbohydrate vaccines were the 

challenges associated with the chemical synthesis of oligosaccharides. 

Automated oligosaccharide synthesis promises now ready access to synthetic 

antigens and tools such as glycan microarrays to assess an immune response 

and to map antibody epitopes. Synthetic antigens formed the basis for tumor 

vaccines candidates as well as Bacillus anthracis, Plasmodium falciparum and 

Leishmania conjugate vaccines (Schofield et al. 2002; Liu et al. 2006; Ragupathi 
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et al. 2006; Liakatos, Kunz 2007; Galonic, Gin 2007; Kamena et al. 2008; 

Robbins et al. 2009). 

Focus of the doctorate study 

This PhD thesis discusses the rationale for design and use of synthetic 

oligosaccharides for the development of glycoconjugate vaccines and the role of 

physicochemical methods in the characterization of these vaccines. The study 

concerns two infectious diseases that represent a serious problem for the 

national healthcare programs: human immunodeficiency virus (HIV) and Group 

A Streptococcus (GAS) infections. Both pathogens possess distinctive 

carbohydrate structures that have been described as suitable targets for the 

vaccine design. 

The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an 

attractive vaccine antigen candidate based on its conserved, constant 

expression pattern and the ability to confer immunoprotection in a relevant 

mouse model. Analysis of the immunogenic response within at-risk populations 

suggests an inverse correlation between high anti-GAS-PS antibody titres and 

GAS infection cases. Recent studies show that a chemically synthesized core 

polysaccharide-based antigen may represent an antigenic structural determinant 

of the large polysaccharide. Based on GAS-PS structural analysis, the study 

evaluates the potential to exploit a synthetic design approach to GAS vaccine 

development and compares the efficiency of synthetic antigens with the long 

isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were 

specifically designed and generated to explore the impact of antigen length and 

terminal residue composition. 
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For the HIV-1 glycoantigens, the dense glycan shield on the surface of the 

envelope protein gp120 was chosen as a target. This shield masks conserved 

protein epitopes and facilitates virus spread via binding to glycan receptors on 

susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds 

a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env 

protein. This oligomannose epitope has been a subject to the synthetic vaccine 

development. The cluster nature of the 2G12 epitope suggested that multivalent 

antigen presentation was important to develop a carbohydrate based vaccine 

candidate. Hereafter I will describe the development of neoglycoconjugates 

displaying clustered HIV-1 related oligomannose carbohydrates and their 

immunogenic properties. 
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Chapter 1 

Preparation, characterization and immunogenicity of HIV-1 

related high-mannose oligosaccharides-CRM197 

glycoconjugates 

Introduction 

Worldwide human immunodeficiency virus (HIV) pandemic involves 

approximately 33 millions of people with 2.7 millions of new infections and 2 

millions of deaths each year (WHO, 2007). It is generally believed that an 

effective prophylactic weapon against HIV-1 could be a vaccine capable of 

eliciting both neutralizing antibodies and T-cell responses. However, numerous 

defense mechanisms help HIV-1 to evade host immune attacks directed against 

HIV envelope (Env) neutralization epitopes by means of frequent mutations, 

structural occlusions achieved by protein complex formation and heavy 

glycosylation (Kwong et al. 2002; Pantophlet, Burton 2006; Wei et al. 2003). The 

latter leads to formation of so-called “glycan shield” that masks conserved 

protein epitopes (Burton et al.  2005; Calarese et al. 2003). This shield provides 

to the virus an additional source of antigen heterogeneity due to the numerous 

glycoforms in which proteins can exist and, being produced by the host 

glycosylation machinery, is expected to induce immune tolerance. Nevertheless, 

a unique carbohydrate epitope mapped by the human broadly neutralizing 

monoclonal antibody 2G12 was discovered on the surface of Env gp120 giving 

to HIV glycans potential to be considered as candidates for an anti HIV-1 

vaccine (Burton et al. 2004). 
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The neutralizing carbohydrate epitope of gp120 consists of a cluster of terminal 

α-D-Man-(1,2)-α-D-Man residues (Manα1,2-Man) on the D1 and D3 arms of 

Man9GlcNAc2 residues (Calarese  et al. 2005; Scanlan  et al. 2002). An 

extended antibody binding surface is formed by a unique heavy chain variable 

domain-swapped configuration which favors the possibility of multiple 

interactions with mannose surface (Calarese et al. 2003). Man4, Man6 and Man9 

derivatives of natural Man9GlcNAc2 oligosaccharide (Fig. 1) were proposed as 

possible “building blocks” of a future glycoconjugate vaccine because they 

possess Manα1,2-Man units essential for 2G12 recognition and have been 

proved to interact with 2G12 in binding and inhibition assays (Adams et al. 2004; 

Calarese et al. 2005; Lee et al. 2004; Wang et al. 2004). 

 

Figure 1. Structures of oligomannoses. 

 

The cluster nature of the 2G12 epitope suggests the importance of multivalent 

presentation of oligomannoses in developing glycoconjugate molecules as 

possible candidate vaccines. Synthetic high-mannose clusters of 2-, 4- and 

higher valence, compared to monovalent sugars, showed enhanced binding to 

2G12 and up to 110 times lower IC50 when used as inhibitors of the interaction 
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between antibody and gp120 (Krauss et al. 2007; Wang J. et al. 2007; Wang et 

al. 2008). Two types of clustering scaffold have been investigated so far: in one 

case high mannoses were randomly oriented by a flexible linker around a 

galactose core (Wang et al. 2004; Ni et al. 2006); in a different study a semirigid 

cyclic peptide scaffold served to position the carbohydrate moieties at the 

correct distance as defined by the crystal structure of gp120 (Krauss et al. 2007; 

Wang J. et al. 2007). The latter strategy seemed to provide a better mimic of the 

native epitope, but the sterical constraints of the model led to incorporation of a 

lower number of carbohydrate chains (Joyce et al. 2008). In summary, up to now 

three HIV-related glycoconjugates have been used for in vivo studies: the 

monovalent Man4 conjugated to BSA (Astronomo et al. 2008), the bivalent 

Man9GlcNAc2 on the cyclic peptide scaffold conjugated to Neisseria 

meningitides outer membrane protein complex (OMPC) (Joyce et al. 2008), and 

the galactose-based tetravalent Man9GlcNAc2-cluster conjugated to Tetanus 

toxoid T-helper peptide (Ni et al. 2006). None of them elicited “2G12-like” 

response that cross-reacted with HIV Env proteins. 

During my thesis I have investigated polyamidoamine (PAMAM) dendrons as 

possible scaffolds to make clusters with HIV-1 related high-mannose 

oligosaccharides (Fig. 2). PAMAM dendrons appeared attractive due to their 

potential low immunogenicity (Chabre, Roy 2008; Boas et al. 2006) and built-in 

surface functionalities which provide multiple sites for sugar incorporation. The 

high-mannose oligosaccharide clusters have been coupled to CRM197, a non-

toxic mutant of diphtheria toxin already extensively used as carrier for 

glycoconjugate vaccines in humans (Broker et al. 2009; Giannini et al. 1984; 
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Jackson et al. 2009). Formulated with the human acceptable adjuvant MF59 

(Burke et al. 2009; Galli et al. 2009; Seubert et al. 2008), the glycoconjugates 

were tested in rabbits and mice. I report here preparation, structural 

characterization, antigenic and immunogenic properties of these oligomannose-

PAMAM-CRM197 conjugates. 

 

Figure 2. Synthesis of PAMAM-oligosaccharide clusters. 
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Results 

Oligomannose cluster synthesis and characterization 

High-mannose oligosaccharides equipped with a six-carbon amino linker at the 

reducing end were first converted into the corresponding succinimidyl adipate 

esters and then reacted with PAMAM4 or PAMAM8 (Fig. 2). The glycodendrons 

were purified by C4 hydrophobic interaction cartridge where the excess of 

unreacted oligosaccharides eluted in the flow through. Fractions containing the 

fully derivatized PAMAM were identified by ESI Q-TOF MS. 

Glyco-PAMAM4 dendrons were analyzed by direct infusion of the sample into Q-

TOF system, glyco-PAMAM8 dendrons were analyzed by UPLC paired 

(coupled) to Q-TOF. The general pattern of the ESI-MS spectra showed 

molecular ion peaks related to the fully derivatized PAMAMs as major species 

and a slight fragmentation of molecules due to the loss of Man units starting 

from the molecular ion peak, as better evidenced in the deconvoluted spectra. 

The ESI-MS analysis of the Man4PAMAM8 UPLC peak (Fig. 3) showed multiple 

molecular ions corresponding to the Man4PAMAM8 molecule (8760.14 Da) 

bearing different charges, the most abundant of which was the 5+ molecular ion, 

although 3+, 4+ and 6+ ions were present as well. 
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Figure 3. LC-MS profile of Man4PAMAM8. 

 

Man4PAMAM4 (4346.05 Da) was characterized by the presence of the 3+ and 

the 4+ molecular ions as most intense peaks (Fig. 4). 
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Figure 4. LC-MS profile of Man4PAMAM4. 

 

Prominent ions in the spectrum of Man9PAMAM4 (7587.11 Da) were the 4+ 

charged (Fig. 5). The presence of a molecular ion with a mass of 4157.13 Da 

was attributed to the reaction of activated Man9 with a PAMAM4 minor 

contamination, where an ethylenediamine unit (60 Da) had been lost. This 

contamination is most likely a side product from incomplete reaction during the 

synthesis of PAMAM dendrimer as reported by others (Schwartz et al. 1995). 
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Figure 5. LC-MS profile of Man9PAMAM4. 

 

The ESI spectrum of Man9PAMAM8 (15242.25 Da) (Fig. 6) presented the 6+ ion 

as prominent peaks and two minor contaminations. The first was attributed to 

the PAMAM8 derivatized with solely 2 Man9 units. The second corresponded to 

the PAMAM8 conjugated to 6 Man9 moieties and presenting a bridging between 

two ethylendiamines through an adipate molecule, very likely due to a 

contamination of activated Man9. However, we deemed the desired 

Man9PAMAM8 cluster the most abundant product 
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Figure 6. LC-MS profile of Man9PAMAM8. 

 

Immunochemical characterization of oligomannose antigens 

In order to determine the relative ability of the different oligomannose systems to 

bind 2G12, I performed competitive experiments using surface plasmon 

resonance (SPR). HIV protein gp140 UG37 was immobilized on a Biacore CM5 

chip, and 2G12 with and without inhibitors was injected over it. Initial screening 

of monovalent oligomannoses showed inferior inhibitory capacity of Man6 as 

compared to Man4 and Man9. In fact, 1.2 mM Man4 and 0.54 mM Man9 inhibited 

gp140-2G12 interaction by 84.0% and 68.8%, respectively, while 0.81 mM Man6 

showed only 12.4%. I therefore concentrated attention on Man4 and Man9 

antigens and explored if clustering influences the binding ability to 2G12. 
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SPR inhibition assay evidenced lower IC50 values for PAMAM4 and PAMAM8 

clusters, as compared to their respective monovalent oligosaccharides (Fig. 7). 

An example of the inhibition assay sensorgrams is presented on Figure 8. 

IC50 of Man4PAMAM4 and Man9PAMAM4 clusters were 13 and 11 times lower 

than IC50 of Man4 and Man9, respectively; moreover IC50 of Man4PAMAM8 and 

Man9PAMAM8 clusters were 2 and 2.6 times lower than IC50 of Man4PAMAM4 

and Man9PAMAM4, respectively. The absolute IC50 values were comparable for 

both Man4 and Man9 clusters. Thus multivalent presentation of oligomannose 

increased their avidity to 2G12, and the smaller D1-armed Man4 competed for 

2G12 at the same level as D1D3-armed Man9. 

 

 

Figure 7. Biacore inhibition of 2G12-gp140 interaction by monovalent and clustered 

oligomannoses. Inhibition was calculated as difference in maximal binding. 
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Figure 8. Sensorgrams of the surface plasmon resonance inhibition assay on the example of 

Man9PAMAM4. Legend of each figure indicates inhibitor concentrations. 

 

Synthesis of CRM197 glycoconjugates 

A well-established way to improve poor immunogenicity of carbohydrate 

antigens is the conjugation to a protein carrier which provides T cell epitopes. 

Therefore, high-mannose oligosaccharides have been coupled, plain or 

PAMAM-clustered, to the lysine residues of CRM197.  Using disuccinimidyl 

adipate linker chemistry (Fig. 2) I have synthesized a panel of glycoconjugates 

that have been characterized by carbohydrate/protein ratio (wt/wt) and SDS-

PAGE. The glycosylation degree ranged from 39.0 to 58.4% (Table I). 
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Gel line 

(Fig. 8) 
Antigen 

Mw of the 

hapten 

portion (Da) 

Average molar ratio 

of CHO unitsa or 

clustersb to protein 

CHO/Protein 

% wt/wt 

Expected 

glycoconjugate 

average Mw 

(Da) 

1 Man9-CRM197 1659 16a 43.8 84544 

2 Man4PAMAM4-CRM197 4356 10b 43.6 101560 

3 Man9PAMAM4-CRM197 7600 6b 58.4 103600 

4 Man4PAMAM8-CRM197 8770 4b 39.0 93080 

5 Man9PAMAM8-CRM197 15258 2b 44.1 88516 

Table I. Chemical characteristics of high-mannose glycoconjugates. 

 

In SDS-Page (Fig. 9) the glycoconjugates migrated with diffuse bands which 

cover a region consistent with the expected increase of Mw as compared to 

CRM197 and suggesting certain heterogeneity of the glycoconjugate molecules 

due to the multiple conjugation sites on CRM197 represented by 39 lysine 

residues in its structure (Bardotti et al. 2008). 

Additional characterization verified neoglycoconjugate recognition by 2G12 in 

ELISA assay (Fig. 10), in which equivalent amounts of glycoproteins were 

captured to microplate wells and then detected with 2G12 and GNL. The latter 

has specificity for α1-3/α1-6 mannoses and served as a positive control (Hester, 

Wright 1996; Krishnamoorthy et al. 2009). No 2G12 recognition was observed 

for Man6PAMAM4-CRM197 neither in ELISA, nor in western-blot. 
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Figure 9. CRM197 glycoconjugates with synthetic oligosaccharides and clusters analyzed by 

coomassie-stained SDS-PAGE in 4-12% Bis-Tris gel. Line numbers indicate Man9-CRM197 (1), 

Man4PAMAM4-CRM197 (2), Man9PAMAM4-CRM197 (3), Man4PAMAM8-CRM197 (4) and 

Man9PAMAM8-CRM197 (5). 
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Figure 10. Binding of oligomannose glycoconjugates to 2G12 and GNL lectin. Oligomannose 

glycoconjugates were coated on ELISA microplates at 100 ng/well. CRM197 was used as 

negative control. Each value is the mean±SD of four replicates. 

 

Glycoconjugates immunogenicity in rabbits and mice 

Initially we tested the immunogenicity of Man4- and Man9-PAMAM 

glycoconjugates compared to Man9-CRM197. Man4/Man9-PAMAM4 and 

Man4/Man9-PAMAM8 glycoconjugates were tested at 20 and 5 µg carbohydrate 

dose, respectively, in group of 2-4 rabbits. In all cases the antigens were 
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formulated with MF59, an oil-in-water buffered emulsion of 5% squalene, 0.5% 

Tween 80 and 0.5% Span 85 (Seubert et al. 2008). 

First, the antibody response was assessed by means of ELISA with Man9 

conjugated to HSA via squarate linker as coating reagent. Since different carrier 

and coupling chemistry was used, this ELISA revealed only oligomannose-

specific antibodies. As seen in Fig. 11 a,b,c all glycoconjugate antigens induced 

Man9-specific IgG titer, and in particular it was manifested that Man9-

glycoantigens, clustered or plain, elicited a stronger antibody response in 

comparison to Man4 antigens. No significant carbohydrate-specific IgM titers 

were detected (data not shown). 
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Figure 11. Detection of anti-Man9 antibodies for single rabbit (a, b, c) and pooled mice (b) 

antisera. Sera are matched with corresponding immunization antigens. Coating antigen has 

been synthesized with different conjugation chemistry in order to detect antibodies specific only 

for synthetic oligomannose part. 

 

Following the main goal of this study, the cross-reactivity of the rabbit sera 

against HIV-1 gp120 proteins was examined then. Several clade B gp120 

proteins were coated onto ELISA microplates and tested against pools of rabbit 

post immunization sera. None of the gp120 proteins showed cross-reactivity with 

antiserum panel, meanwhile as expected 2G12 and GNL did recognize 
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everyone (Fig. 12). 

 

Figure 12. Binding of pooled animal antisera to HIV-1 gp120 glycoproteins. Rabbit antisera: 

PBS-MF59 (+), Man9-CRM197 (□), Man4PAMAM4-CRM197 (<), Man9PAMAM4-CRM197 (>), 

Man4PAMAM8-CRM197 (◊) and Man9PAMAM8-CRM197 (*); mice antisera: preimmune (■), 

Man4PAMAM4-CRM197 (▲), Man9PAMAM4-CRM197 (●); GNL (○) and 2G12 (▼). GNL and 2G12 

have 2 and 10 µg/mL at first graph point, respectively; two-fold dilution scheme was applied. 

 

In order to collect data with a different animal model Man4PAMAM4-CRM197 and 

Man9PAMAM4-CRM197 were additionally tested in mice. Anti-Man9 antibodies 

were clearly elicited by the Man9 conjugate, while the response of 

Man4PAMAM4-CRM197 was weak (Fig. 11 d). Also in this case, when the 

antisera were tested against HIV-1 gp120, no cross reaction was observed (Fig. 

12). 

Anti-carrier antibody response 

The presence of anti-CRM197 antibodies in antiserum pools of rabbit and mice 

immunized with the different conjugates was examined, and it turned out that in 

all cases anti-carrier antibodies have been induced. Interestingly, in rabbit 

PAMAM-based conjugates seemed to induce a lower anti-carrier response as 
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compared to Man9-CRM197 which could be explained considering a certain 

shielding of relevant T- or B-cell epitopes of CRM197 by the glycodendron 

haptens (Fig. 13). 

 

Figure 13. Binding of pooled rabbit antisera to CRM197 glycoproteins. 

 

Discussion 

HIV is characterized by a densely glycosylated surface, which enhances the 

effectiveness of immune escape and is implicated in viral dissemination 

(Pohlmann et al. 2001; Shan et al. 2007). Human broadly neutralizing antibody 

2G12 and mannose-binding lectin cyanovirin-N were found to recognize high-

mannose oligosaccharides on the surface of HIV-1 gp120, and both 

demonstrated anti-HIV activity at nanomolar level (Bewley et al. 2001; Binley et 

al. 2004). Moreover, both 2G12 or cyanovirin-N have shown so far no 

autoimmune property, probably due to their strict specificity to dense 

oligomannose surfaces that have not been observed among human 

glycoproteins (Scanlan et al. 2002; Scanlan et al. 2007). This suggested that 
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high-mannose oligosaccharides are feasible targets for a vaccine aiming at 

eliciting “2G12”-like antibodies. Up to now various synthetic approaches have 

been applied to prepare clusters with the aim of mimicking the 2G12 epitope 

(Astronomo et al. 2008; Joyce et al. 2008; Ni et al. 2006), however, none of the 

obtained molecules reported gp120 cross-reactive immune response virtually 

due to initial low antigen affinity to 2G12. The affinity increase that can be 

achieved by multivalent presentation of carbohydrate ligands prompted us to 

explore PAMAM dendrons that offer high coupling valence and are low-

immunogenic per se (Chabre, Roy 2008; Boas et al. 2006). Utilization of such 

scaffolds could provide more control in spatial presentation of sugars than 

conjugation to Lys residues of carrier protein does, allowing a better emulation 

of the dense arrangement of oligomannoses on the gp120 glycan. In a recent 

study nine- and 27-valent oligomannose dendrons showed similar affinity and 

inhibition capacity in binding 2G12 to gp120 (Wang  et al. 2008), suggesting that 

rising cluster valence above nine moieties would not necessarily lead to further 

increase in the 2G12 affinity. 

In my thesis I report the first in vivo study with glycoconjugates containing four- 

and eight-valent high-mannose oligosaccharide dendrons. Obtained 

glycoconjugates consisted of the HIV-1 related carbohydrate antigens clustered 

onto the PAMAM dendrons and subsequently conjugated to CRM197, which is 

well known for its excellent properties as carrier for bacterial oligo- and 

polysaccharides and is widely used in licensed glycoconjugate vaccines 

(Bardotti et al. 2008; Broker et al. 2009; Mawas et al. 2004; Safari et al. 2008; 

Torosantucci et al. 2005). The antigens were formulated with the potent MF59 
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adjuvant which was shown to be effective in boosting both cellular and humoral 

immune response and being of common use for seasonal flu vaccination (Burke 

et al. 2009; Galli et al. 2009; Seubert et al. 2008). The combination of mentioned 

above factors was designed to confer to the glycoantigens improved 

immunogenic features. 

Oligomannoses for the development of our glycoantigens were chosen on the 

basis of biochemical, biophysical and crystallographic evidences available in the 

literature (Adams et al. 2004; Calarese et al. 2005; Calarese et al. 2003; Pashov 

et al. 2005; Sanders et al. 2002; Wang et al. 2008). Man4, Man6 and Man9 

candidates possessed terminal Manα1,2-Man units that were shown to be 

essential for 2G12 recognition being involved into binding in the antibody 

combining site (Calarese et al. 2005; Scanlan et al. 2002). Although it was 

expected that all three oligosaccharide candidates would demonstrate 2G12 

reactivity, Man6 antigen showed low potency as inhibitor compared to Man4 and 

Man9 oligosaccharides in SPR studies; moreover Man6PAMAM4-CRM197 did not 

demonstrate 2G12 binding in ELISA assay (Fig. 10). This may indicate that 

trisaccharide α-D-Man-(1,2)-α-D-Man-(1,2)-α-D-Man, present in both Man4 and 

Man9, is required for the affinity interaction. This observation is in line with the 

structural requirements of ligand binding for high-mannose-specific lectin 

cyanovirin-N (Bewley et al. 2001). 2G12 recognition of Man6 observed in the 

glycoarray studies indicates that this oligosaccharide benefits from dense 

multivalent display on the surface of microarray slide (Adams et al. 2004). 

Nevertheless, its structural features might be not sufficient to provide enough 

2G12 affinity in case of a lower density carbohydrate presentation. 
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Having this information at disposal, I focused only on Man4 and Man9 antigens. 

The preparation of high-mannose glycodendrons was based on the activation of 

the amino groups present in the oligosaccharide linkers with an excess of 

disuccinimidyl adipate, followed by the reaction of activated oligosaccharides 

with t-Boc-protected PAMAM (Yi et al. 1998). The effect of oligosaccharide 

multivalent presentation was evidenced by the enhancement of glycodendron 

capacity to inhibit 2G12-gp140 interaction (Fig. 7). After hydrolysis of the t-Boc 

group and activation of the amino function again with disuccinimidyl adipate, the 

clusters with four and eight oligomannose antennae were conjugated to CRM197. 

As a result I was able to synthesize glycoconjugates with 39-58% carbohydrate 

content, which is significantly higher than previous studies reporting a 15-19% 

range (elaborated from Astronomo et al. 2008; Joyce et al. 2008; Ni et al. 2006). 

Glycodendron conjugation to CRM197 did not seem to effect their conformation 

that was evidenced by maintenance of 2G12 recognition (Fig. 10). 

Immunization of rabbits and mice with MF59-formulated CRM197 

glycoconjugates of Man4 and Man9 antigens induced specific anti-Man9 

antibodies (Fig. 11). In all cases Man9-conjugates induced stronger response as 

compared to the Man4-conjugates, which can be easily explained considering 

the structural differences between Man4 and Man9  However, neither the four- 

nor the eight-valent flexible PAMAM dendron antigens induced gp120 cross-

reactive antibodies (Fig. 12), indicating that the presentation of oligomannose 

sugars was not sufficient to mimic the native carbohydrate epitopes. Previous 

studies conducted with glycoconjugates prepared from high-mannose 

oligosaccharides clustered onto scaffolds and then linked to diverse carriers, 
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such as BSA, OMPC or Tetanus toxoid T-helper peptide, have also failed to 

induce antibodies cross reactive with HIV-1 gp120 (Astronomo et al. 2008; 

Joyce et al. 2008; Ni et al. 2006). 

In the present work the different model based on the use of PAMAM dendrons 

as a way to display the HIV-1 related oligomannoses in a clustered form on the 

surface of CRM197 confirms the significant difficulties in the identification of a 

suitable carbohydrate-based anti-HIV vaccine candidate. The failure of high-

mannose-PAMAM-CRM197 conjugates to provide antibodies with affinity for 

gp120 could be explained with inappropriate spacing of oligomannose antennae 

in the synthesized clusters, too much flexibility introduced by the presence of 

two subsequent six-carbon spacer chains between the oligomannoses and the 

PAMAM core, or too wide separation among the cluster molecules on the carrier 

protein surface. Those issues should be definitively addressed in the future work 

for a synthetic anti-HIV vaccine. 

Recently reported data on the rabbit “2G12”-like serum response to 

immunization with Man8-reach mutant yeast cells gives a hint that the 

oligomannose density exposure is likely to be one of the dominating factors for 

designing HIV glycoantigens (Luallen et al. 2008; Luallen et al. 2009; Luallen et 

al. 2009 a). This outcome, which might be due to the abundant high-mannose 

glycosylation of yeast proteins comprising approximately 100% of protein weight 

(elaborated from ref. Luallen et al. 2009 and Luallen et al. 2009 a), suggests that  

finding the right density and exhibition of oligomannose surface could be the key 

for the search of best mimics of the native 2G12 epitope. 
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Chapter 2 

Rational design and evaluation of a synthetic carbohydrate-

based Group A Streptococcus vaccine candidate 

Introduction 

Group A Streptococcus (GAS) infections represent a significant healthcare 

concern throughout the world. GAS is responsible for a broad spectrum of 

diseases ranging from asymptomatic colonization, uncomplicated pharyngeal 

and skin infections to life-threatening invasive illnesses including sepsis, 

necrotizing fasciitis and toxic shock syndrome (Mitchell 2003). Epidemiology 

reveals correlations between bacterial strains responsible for GAS pharyngitis, a 

frequent childhood illness, and invasive streptococcal disease in adults 

(Haukness et al. 2002; Linder et al. 2005). Pharyngitis may lead to delayed 

sequela as rheumatic fever. In developing countries rheumatic fever remains 

endemic and causes hundreds of thousands of deaths every year (WHO 1992). 

Currently, no vaccine to prevent GAS infections exists although GAS has been 

on the WHO priority prevention list for decades. 

The diversity of GAS strains is the major challenge for the development of an 

anti-GAS vaccine. GAS bacteria contain a surface polysaccharide consisting of 

repeating [→3)α-L-Rhap(1→2)[β-D-GlcpNAc(1→3)]α-L-Rhap(1-]n units (Fig. 1). 

These long polysaccharide chains adopt a helical conformation where the 

rhamnoses form the helix core and the immunodominant N-acetylglucosamine 

residues are exposed on the periphery (Pitner et al. 2000; Johnson et al. 2002). 

The GAS polysaccharide (GAS-PS) is conserved and constantly expressed in 
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the vast majority of M+ GAS strain serotypes (Cunningham et al. 2000; 

Lancefield et al. 1933; Mc, Lancefield et al. 1955). The conserved nature of 

GAS-PS renders a potentially attractive conjugate vaccine. Purified GAS-

polysaccharide has been conjugated to tetanus toxoid carrier and elicited a 

protective immune response in a challenge model in mice (Sabharwal et al. 

2006). Serum anti-GAS-PS antibodies confer protection against GAS throat 

colonization and promote bacterial phagocytosis (Sabharwal et al. 2006; 

Salvadori et al. 1995). 

 

Figure 1. Structures of the repeating unit of the cell-wall polysaccharide of GAS. 

 

Efforts to determine the antibody-binding epitope of GAS-PS revealed a core 

antigenic determinant – a hexamer structure of two repeating units (Michon et al. 

2005). The human anti-GAS humoral is believed to recognize hexasaccharide 

(Michon et al. 2005). To date no evidence that a minimal GAS-PS core antigen 

determinant can elicit an immunoprotective response has been obtained. 

Up to now synthetic approaches applied to the development of carbohydrate 

vaccines has been evaluated in a very limited set of infection disease areas but, 

nevertheless, has shown its efficacy in the generation of a protective response 
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(Benaissa-Trouw et al. 2001; Chong et al. 1997; Jansen et al. 2001; Pozsgay et 

al. 2007; Robbins et al. 2009; Safari et al. 2008; Verez-Bencomo et al. 2004). 

Compared to the conventional polysaccharide isolation, the synthetic approach 

has an advantage of generating pure, homogeneous oligosaccharides of well-

defined structure, rationally planned to contain immunodominant saccharide 

composition and single-site reactive groups for covalent conjugation. Present 

study directly compares in vivo efficacy of CRM197 glycoconjugate of the native 

GAS-PS material versus that of the synthetic oligosaccharides designed to 

evaluate optimal oligosaccharide length and terminal molecule residues, as both 

parameters may influence carbohydrate immunogenicity (Benaissa-Trouw et al. 

2001; Jansen et al. 2001; Michon et al. 2005; Ragupathi et al. 2006; Safari et al. 

2008). Purified, native GAS-PS antigen (Fig. 1) and synthetic oligosaccharide 

structures 1-4 (Fig. 2) were coupled to CRM197 and tested in a relevant mouse 

model. 
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Figure 2. Structures of the synthetic oligosaccharides 1-4 designed for present work. 

 

Results 

GAS-PS isolation and purification 

Native GAS-PS was extracted from GAS SF370 M1 strain. Final GAS-PS 

preparation was characterized with <0.3% of DNA and <0.005% hyaluronic acid. 

MicroBCA assay detected 2-3% protein contamination; however, this value was 

confirmed neither by Bradford method, nor silver stain SDS-PAGE. This 

suggests that the MicroBCA detection was likely influenced by reducing groups 

of GAS-PS (Waffenschmidt, Jaenicke 1987; Franco-Fraguas et al. 2003). As 
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determined by multiple laser light scattering (MALLS), the average molecular 

weight of GAS-PS was 8.9 ± 1.0 kDa which corresponded to 18 repeating units; 

dn/dc value was 0.168 mL/g. 

Purified GAS-PS was additionally characterized by 1H NMR analysis. The 1H 

NMR spectrum was consistent with the published structure (Johnson, Pinto 

2002) (Fig. 3). It was possible to detect the so-called variant GAS 

polysaccharide, representing a polyrhamnose [→3)α-L-Rhap(1→2)α-L-Rhap(1-

]n without branching GlcNAc residues. In certain cases this variant carbohydrate 

substitutes typical GAS-PS in the bacteria cell wall after passage in mice (Mc, 

Lancefield 1955; Michon et al. 2005). In the 1H-NMR spectrum the signal of 

poly-rhamnose H1
RhaB was shifted in comparison to conventional GAS CHO 

H1
RhaB, while both variant and conventional H1

RhaA signals were merged (Fig. 3). 

Integration of the variant H1
RhaB and the merged H1

RhaA peaks allowed us to 

calculate a molar ratio between poly-rhamnose and GlcNAc-containing species 

of GAS-PS: % polyrhamnose = [H1RhaB
VAR/(H1RhaA+ H1RhaA

VAR)] x 100. 

Polyrhamnose content for purified GAS-PS lots was <10% for typical 

polysaccharide preparations. 
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Figure 3. Expansion of the region of the 1H NMR spectrum of purified GAS cell wall 

polysaccharide. Assigned are the peaks crucial for the determination of residual polyrhamnose 

content. 

 

Generation and characterization of glycoconjugates 

A well-established way to improve poor immunogenicity of carbohydrate 

antigens is through conjugation to a protein carrier which provides T-cell 

epitopes. Therefore, the carbohydrate structures were coupled to lysine residues 

of CRM197, a non-toxic mutant of diphtheria toxin already extensively used as a 

carrier for glycoconjugate vaccines in humans (Broker et al. 2009; Giannini et al. 

1984; Jackson et al. 2009). Depending on whether the native or the synthetic 

saccharide was used, the conjugation of carbohydrate haptens to the lysines of 

the carrier protein was accomplished by two approaches (Fig. 4). In the case of 

synthetic oligosaccharides the amino groups on the linker were derivatized with 

disuccinimidyl adipate and subsequently coupled to CRM197. Native GAS-PS 

was instead conjugated to CRM197 via direct reductive amination. 
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Figure 4. Conjugation of GAS carbohydrates to CRM197. 

 

The conjugates were characterized by SDS/PAGE, carbohydrate/protein ratio, 

free saccharide, size exclusion HPLC, and MALDI-TOF mass spectrometry. In 

Fig. 5 the SDS-PAGE profile of different GAS conjugates provides evidence that 

glycosylation with the synthetic oligosaccharides produced conjugates with a 

more homogeneous pattern as compared to CRM197-GAS-PS, which had a 

significant polydispertion in the molecular size due to the larger carbohydrate 

hapten. 
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Figure 5. CRM197 glycoconjugates analyzed by coomassie-stained SDS-PAGE in 7% Tris-

Acetate gel. The glycoconjugates migrate with diffuse bands which cover a region consistent 

with the expected increase of Mw as compared to CRM197. Line numbers indicate CRM197 (1), 

CRM197-1/1 (2), CRM197-1/2 (3), CRM197-2/1 (4), CRM197-2/2 (5), CRM197-3/1 (6), CRM197-3/2 (7), 

CRM197-3/3 (8), CRM197-4/1 (9), CRM197-4/2 (10), CRM197-GAS-PS (11). The numbers on the 

right indicate the numbers of GAS-PS chains attached to CRM197. 

 

The carbohydrate/protein ratio of the conjugates made with native GAS-PS 

ranged from 40 to 50% (wt/wt) corresponding to 2-3 on molar basis; the molar 

carbohydrate/protein ratio of conjugates made with synthetic GAS 

oligosaccharides ranged from 3 to 12 as determined by chemical methods 

(Table I). 
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Conjugate 

code 

Average CHO/Protein Mol/mol Total IgG 

GMT 

AIa, 

M NaSCN 
Chemical 

assays 

MALDI-TOF 

CRM197-1/1 3,4 nd 2911 1,29 

CRM197-1/2 11,6 14,2 5980 0,87 

CRM197-2/1 5,1 nd 1895 1,08 

CRM197-2/2 7,6 7,5 2465 0,64 

CRM197-3/1 5,8 nd 10262 0,81 

CRM197-3/2 7,5 8,8 17780 1,24 

CRM197-3/3 12,2 13,6 639 0,68 

CRM197-4/1 7,6 nd 4063 0,92 

CRM197-4/2 9,2 11,5 2108 0,85 

GAS-PS 2-3 3-4 12086 0,86 

Table I. Glycoconjugate composition and geometric mean titers (GMT) of serum anti-GAS-PS 

antibodies induced after mice immunization. The number of carbohydrate chains per protein was 

calculated from CHO/protein content ratio derived from chemical characterization (HPAEC-PAD, 

MicroBCA) and MALDI-TOF. The avidity index (AI) is expressed as the concentration of NaSCN 

needed to reduce the OD450 by 50%. a Pooled sera was analyzed. 

 

Both synthetic and native glycoconjugates were analyzed by MALDI-TOF. As an 

example, a representative mass spectrum of the glycoconjugate CRM197-3/2 and 

CRM197-GAS-PS is shown in Fig. 6. The profile of CRM197-3/2 is composed of a 

polydispersion of Mw centered at 77922.9 corresponding to nine oligosaccharide 

chains per CRM197 molecule; the profile of CRM197-GAS-PS is composed of a 

polydispersion of Mw centered at 87356.4 and 96778.3 corresponding to three 
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and four GAS-PS chains per CRM197 molecule, respectively. A comparison 

between the average glycosylation degree obtained by chemical methods and 

MALDI-TOF is reported in Table I. 

 

Figure 6. MS spectra of the glycoconjugate CRM197-3/2 and CRM197-GAS-PS. 

 

Size-exclusion HPLC analysis of the different conjugates confirmed the SDS-

PAGE results evidencing higher Mw dispersion of CRM197-GAS-PS as 

compared to the synthetic GAS oligosaccharide glycoconjugates (Fig. 7). The 
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glycoconjugates were purified by ultrafiltration, and amounts of unconjugated 

sugar was <10%. 

 

Figure 7. Size-exclusion HPLC profile of the glycoconjugates. 

 

Anti-GAS-PS serum response induced by glycoconjugates 

CD-1 mice received one prime and two boosting doses of the carbohydrate 

antigens protein conjugates (10 µg each). Control groups were immunized either 

with alum only or unconjugated GAS-PS. Sera were collected on day 49, two 

weeks after the third immunization to assess antibody response by ELISA, using 

GAS-PS coupled to HAS as coating reagent. 

All synthetic conjugates regardless saccharide chain length, carbohydrate 

loading and nature of the terminal sugar, were able to induce GAS-PS specific 

IgG in mice (Fig. 8). In general, the antibody response was statistically-lower 

than the one elicited by the CRM197-GAS-PS (P<0.05). A notable exception was 

represented by the conjugates CRM197-3/1 and CRM197-3/2 with a carbohydrate 

loading of 5.8 and 7.5 respectively (Table I), which induced a level of anti-GAS-

PS IgG comparable to that obtained with the native GAS-PS glycoconjugate. On 
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the other hand, CRM197-3/3 with a carbohydrate loading of 12 induced 

significantly lower titres (P<0.05). This observation seems to indicate that for a 

given chain length differences in the glycosylation degree are crucial for the 

induction of an optimal antibody response. 

 

Figure 8. Total IgG antibody titres against GAS-PS. Mice were immunized with unconjugated 

GAS-PS, CRM197-GAS-PS and CRM197-glycoconjugates of synthetic oligosaccharides. The 

graph shows the measurements for one-three groups of 8-16 mice immunized independently; 

conjugates have been injected in seven experiments. Each dot represents single mice sera. 

Horizontal bars indicate GMT meaning of group with 95% confidence interval statistical bars. 

GMT values are shown in Table I. 
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Concerning the influence of the terminal non-reducing sugar on the ability to 

induce a specific antibody response against the native GAS-PS, a direct 

comparison between CRM197-1/1 and CRM197-2/1 (same length, similar loading, 

but different terminal non-reducing sugar) did not reveal a significant difference, 

although GMT induced by the conjugates which contain the oligosaccharides 

terminating with GlcNAc appeared higher (2911 EU/mL vs 1895 EU/mL). Similar 

observation could be made for the pair of the dodecasaccharide 

glycoconjugates CRM197-3/2 and CRM197-4/1 (GMT 17780 EU/mL vs 4063 

EU/mL, respectively). 

Analysis of IgG subclasses revealed that both synthetic oligosaccharides and 

GAS-PS glycoconjugates primarily induced IgG1 (Fig. 9), showing a bias toward 

a Th2 response that could have been an influence of Alum chosen as an 

adjuvant [41, 42]. Avidity of specific IgG detected with tiocyanate elution ELISA 

was not significantly different between the immunization groups (Table I). 
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Figure 9. Distribution of the anti-GAS-PS IgG subclasses on the example of one immunization 

group. 

 

Specificity of anti-GAS-PS polyclonal antibodies 

In order to determine whether carbohydrate chains longer than hexasaccharides 

represent any additional epitopes for antibody recognition, sera from a group of 

mice immunized with CRM197-3 were pooled and depleted for anti-1 antibodies 

by affinity chromatography. Loss of serum reactivity against 1 in ELISA assay 

verified the effectiveness of affinity resin. The depleted serum pool was tested 

further against an HSA conjugate of 3. No response was observed against 3, or 

it was less than 1% of primary anti-3 specific IgG and was not detected due to 

limited sensitivity of the ELISA test. This suggests that although 3 represents an 

elongated structure and contains more repeating units than the hexasaccharide 

1, it did not elicit any antibodies specific for larger epitopes. The same procedure 

was repeated for the serum pool from a group of mice immunized with GAS-PS 
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glycoconjugate. No serum anti-GAS-PS reactivity was observed after depletion 

of antibodies specific for the hexasaccharide 1 indicating equal IgG specificity. 

Protection against i.p. challenge with GAS 

Mice immunized with the three doses of Alum-formulated glycoconjugates (10 

µg) or strain-corresponding M protein (5 µg) were challenged three weeks after 

the last immunization with an appropriate LD90 dose of GAS strain. Mice 

survival was monitored up to 14 days after challenge, but a six day observation 

was optimal to obtain statistically significant protection data. Additionally, with 

the same purpose of the optimization of statistical comparison, protection data 

for different glycoconjugate lots were merged, so that the protection level was 

attributed to the type of carbohydrate antigen but not to the particular loading 

(Table II). 

Immunization with strain-relevant M protein conferred over 80% protection. Mice 

immunized with conjugated carbohydrate antigens had significantly lower 

mortality than control mice immunized with unconjugated GAS-PS (P<0.001). 

CRM197 glycoconjugates conferred similar protection level against M1 strain 

challenge, ranging from 33% to 53% survival. Proof-of-concept of cross-

protection properties was verified for the hexasaccharide 1. CRM197-1 conferred 

56% of protection against the M23 strain challenge, whereas CMR197-GAS-PS 

rescued 34% of animals. 
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Formulated antigen Mice number % of survivals P value 

M1 serotype challenge 

Adjuvant alone 64 15  

GAS-PS 40 13 0,7784 

M1 protein 64 91 <0,0001 

CRM197-GAS-PS 64 47 0,0002 

CRM197-1 40 53 0,0001 

CRM197-2 48 42 0.0026 

CRM197-3 64 33 0.0381 

CRM197-4 40 53 0,0001 

M23 serotype challenge 

PBS 64 11  

M23 protein 32 84 <0.001 

CRM197-GAS-PS 64 34 0,0027 

CRM197-1 16 56 0.0233 

 

Table II. Active immunization studies in mice after i.p. challenge with different M1 and M23 GAS 

serotypes. Three weeks after the final antigen dose, mice were infected with inoculum dose of 

50 cfu/mouse for M23 strain and 2.5x106 cfu/mouse for M1 strain. Survival level indicated 

corresponds to day 6 after the challenge. 

 

Discussion 

The presence of anti GAS-PS antibodies in human sera has been evidenced 

since 1965 (Schmidt, Moore 1965; Karakawa et al. 1965). Subsequently it was 

demonstrated that the level of human GAS-PS-specific antibodies peaks at the 

age of 17 in correspondence to the reduced incidence of GAS infection 

(Zimmerman et al. 1971; Paul 1957), and that these antibodies might play a 
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significant role in the protection from GAS infection (Salvadori et al. 1995). 

Sabharwal et al. (2005) showed that colonization of GAS in the human throats 

inversely correlated with the levels of anti-GAS-PS antibodies, and that mice 

immunized with a GAS-PS-TT conjugate were protected against GAS challenge. 

The above findings in conjunction with the high diversity of M+ GAS serotypes 

encountered in the endemic regions of developing countries, makes GAS-PS, 

which is conserved in most, if not all, strains of this pathogenic bacterium, an 

attractive molecule for the development of a vaccine against Group A 

Streptococcus infections. Some concerns about GlcNAc-containing vaccines 

have been voiced due to a possible role of anti-GAS-PS antibodies in the 

development of GAS infection sequela, like acute rheumatic fever or 

Sydenham’s chorea (Malkiel et al. 2000; Kirvan et al. 2006; Shikhman et al. 

1993). However the antibodies induced in mice by GAS-PS-TT conjugates did 

not react with several types of human tissues (Sabharwal et al. 2006). 

In the present thesis I have described the synthesis, conjugation, antigenic and 

immunogenic properties of synthetic GAS core oligosaccharides. The study was 

designed to address several fundamental questions: i) can minimal GAS-PS 

core antigen determinants to elicit a protective antibody response? ii) what 

structural features influence the immunogenicity of synthetic antigens? iii) how 

do oligosaccharide-protein conjugates compare to isolated GAS-PS conjugates 

as far as immunogenicity and immunoprotection in vivo are concerned? 

Synthetic carbohydrate-based anti-GAS vaccine candidate was directly 

compared to the immunogenic and protective properties of a conjugate made 

with the native GAS-PS. 
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The synthetic approach for the production of carbohydrate antigens provided 

pure material of well-defined structure in contrast to isolated GAS-PS that varies 

in molecular weight and is contaminated with the poly-rhamnoses. Conjugation 

of the carbohydrates with a single reactive group per molecule allowed for 

efficient preparation of the glycoconjugates with one configuration and did not 

lead to the formation of high molecular weight aggregates with intermolecular 

linkages (Fig. 4-7). The composition of these glycoconjugates was detected by 

physico-chemical methods, and facilitated the development of standardized 

criteria for reliable prediction of their immunogenic properties. 

CRM197 conjugates with the native GAS-PS and with four different synthetic 

GAS oligosaccharides varying in length and composition of the reducing end 

were prepared and characterized by physico-chemical methods (Fig. 4-7, Table 

I). CRM197 conjugates of both synthetic oligosaccharides and native GAS-PS 

elicited high levels of serum GAS-PS-specific IgG with a bias towards IgG1 

production (Fig. 8, 9). Carbohydrate antigen formulation with Alum was suitable, 

as it favored a Th2 response that is preferred for a vaccination against 

extracellular pathogens (Bloom, Lambert 2003; Kalinski, Moser 2005; Shikhman 

et al. 1993). The synthetic oligosaccharides and GAS-PS were the same 

antigenically and induced antibodies with hexasaccharide paratope. 

Subsequently, presence of these antibodies were found to be a correlate of the 

protective immunity against GAS M1 serotype, one of the common agents of 

invasive and toxic streptococcal diseases (Courtney et al. 2009; Cunningham 

2000; Klenk et al. 2007; Stanley et al. 1995). The conjugates made with 

synthetic GAS oligosaccharides were able to induce in mice a significant level of 
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protection against M1 strain challenge ranging from 33 to 53% which is 

comparable to the protection of 47% obtained by the conjugate with the native 

polysaccharide (Table II). Cross-protection paradigm was revealed with GAS 

M23 serotype challenge which resulted in significant protection level of 56% 

induced by the synthetic conjugate CRM197-1 as compared to the 34% induced 

by CRM197-GAS-PS. 

Trying to establish a few variables related to the immunogenicity of the synthetic 

GAS oligosaccharides conjugates, the attention was focused onto the 

saccharide chain length, the glycosylation degree and the non-reducing sugar. 

Our results show that a saccharide chain length of six, corresponding to the 

minimal size of the epitope, is sufficient to elicit a protective response 

characterized by antibodies which recognize the native polysaccharide. 

Concerning the glycosylation degree, a loading between 6 and 8 carbohydrate 

chains has been found optimal for the glycoconjugates with dodecasaccharide 

3, while higher loading of 12 chains led to a decrease in the immunogenicity 

(Table I). Pozsgay et al. (Pozsgay et al. 1999), studying the immunogenicity of 

glycoconjugates containing synthetic Shigella dysenteriae type 1 

oligosaccharides of different length and at various loading, concluded  that the 

saccharide length and the glycosylation degree do not play independent roles 

and that, for each chain length, the maximum antibody response is obtained with 

a given combination of the two variables. Accordingly, it may be supposed that 

the carbohydrate should not be overloaded onto the protein, because it can 

“shield” T/B-cells epitopes essential for efficient immunogenicity of the carrier, 

but still should be present in a sufficient amount to promote B-cell receptor 
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clustering. It is likely that the above observation is valid also in the case of the 

GAS synthetic conjugates presented in this study, and it might be a general rule. 

Therefore, in order to compare the immunogenicity of conjugates with different 

chain lengths it seems appropriate determining for each of them the best 

combination “chain length/loading”. 

The non-reducing terminal sugar may also play a role in the immunogenicity of 

synthetic antigens since recent study on Shigella dysenteriae type 1 O-specific 

oligosaccharide and Streptococcus pneumonia type 14 capsular polysaccharide 

demonstrated that an increase in carbohydrate-specific antibody response was 

associated with the exposure of GlcNAc and galactose, respectively, on the 

nonreducing end of the oligosaccharide antigen (Safari et al. 2008; Pozsgay et 

al. 2007). GlcNAc residue on the non-reducing terminus contributed to the 

immunogenicity of the GAS-PS core epitope as evidenced by the relatively 

higher GMT induced by glycoantigens 1 and 3 (Table I). 

In conclusion, it was possible to establish the conditions in which 

glycoconjugates with synthetic GAS-PS structures have equal or better 

immunogenicity than native GAS-PS. The glycoconjugate CRM197-3/1 and 

CRM197-3/2, exposing optimal number of dodecasaccharides containing GAS-

PS antigenic core and immunodominant GlcNAc sugar on the non-reducing 

terminus, elicited in mice specific IgG titres of 10262 and 17780 EU/mL, 

respectively, as compared to 12082 EU/mL induced by CRM197-GAS-PS, 

demonstrating that by means of rational design it is possible to design an 

optimized glycoantigen. 
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In conclusion this study has enlarged the previous knowledge on the 

immunogenicity and protective properties of GAS carbohydrate antigens 

(Michon et al. 2005; Reimer et al., 1992; Sabharwal et al. 2006) by 

demonstrating that synthetic oligosaccharides conjugated to CRM197 as protein 

carrier could elicit in animal model similar level of antibodies and protection to 

those induced by a conjugate with the purified GAS cell wall polysaccharide. 

The synthetic approach toward the development of a conjugate vaccine against 

Group A Streptococcus infection appears therefore a viable option which 

deserves further studies and optimization. 
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Conclusion 

Vaccination represents an efficient, safe and cost-effective way for prevention 

and prophylaxis of devastating human diseases. Carbohydrate-based conjugate 

vaccines are included into the children immunizations schedule worldwide, and 

due to an active research in the field new vaccine candidates are being 

generated continuously (Hecht et al. 2009). A major contribution to such 

success was made by the detailed investigation of the structure of natural 

carbohydrates of pathogenic agents and progress in the development of 

conjugation methods. During the past decade, advances in the chemical 

synthesis of oligosaccharides have brought synthetic approach applied to the 

carbohydrate-based vaccines to a leading position in the field. The prior-art 

knowledge on the structure of protective carbohydrate epitopes of group A 

Streptococcus and human immunodeficiency virus and accessibility of the 

synthetic oligosaccharides containing the antigenic determinants of those 

epitopes provided basis for the present work. 

Conventionally, carbohydrate antigens for vaccine development have been 

isolated from biological sources. Application of synthetic approach procures 

pure, homogeneous oligosaccharide antigens of homogenous structure, 

rationally planned to contain immunodominant saccharide composition and 

single-site incorporated reactive groups for covalent conjugation. Such 

oligosaccharides represent single molecular species and thereby being good 

starting compounds for the preparation of well-defined vaccines. A large set of 

physicochemical methods served to assess the conjugation outcome and 
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characterize the composition of obtained neoglycoconjugates. This analysis 

facilitated the development of standardized criteria for reliable prediction of their 

immunogenic properties. In the present work mentioned advantages of synthetic 

oligosaccharides and analytical tools have been applied to the research on the 

structural requirements of the protective carbohydrate epitopes of efficient group 

A Streptococcus and HIV glycoconjugate vaccines. The focus of the study was 

on the generation, characterization and immunogenic evaluation of the 

carbohydrate antigens of the mentioned pathogens. 

Flexible polyamidoamine (PAMAM) scaffold have been exploited to generate 

four- and eight-valent sugar clusters of HIV-1-related oligomannose antigens 

Man4, Man6 and Man9. Oligomannoses for the development of our glycoantigens 

were chosen on the basis of biochemical, biophysical and crystallographic 

evidences available in the literature (Calarese et al. 2003; Calarese et al. 2005; 

Pashov et al. 2005; Sanders et al. 2002; Wang et al. 2008). The multivalent 

presentation of oligomannoses aimed to mimic the native epitope of the 

mannose-specific broadly neutralizing antibody 2G12. Clusterization indeed 

increased the avidity of Man4 and Man9 to 2G12. The synthetic glycodendrons 

covalently coupled to the protein carrier CRM197 and formulated with the 

adjuvant MF59 were used to immunize two animal species. Oligomannose-

specific IgG antibodies were generated, however, the antisera failed to 

recognize recombinant HIV-1 gp120 proteins. This study made contribution to 

the global knowledge on carbohydrate-based HIV-related antigens, structural 

requirements of the oligomannoses to be used for their construction and using of 

PAMAM scaffolds as suitable multivalent carriers. The result indicates that 
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further structural vaccinology work is needed to identify an antigen presentation 

that closely matches in vivo the structure of the epitope mapped by 2G12. 

The study on GAS synthetic glycoconjugate vaccine demonstrates the value of 

synthetic oligosaccharides for carbohydrate conjugate vaccine development 

along with other published studies (Benaissa-Trouw et al. 2001; Chong et al. 

1997; Jansen et al. 2001; Liu et al. 2006; Pozsgay et al. 1999; Pozsgay et al. 

2007; Ragupathi et al. 2006; Robbins et al. 2009; Safari et al. 2008; Saksena et 

al. 2007; Schofield et al. 2002; Verez-Bencomo et al. 2004). A series of hexa- 

and dodecasaccharides were designed based on the GAS-PS structure and 

prepared by chemical synthesis. The synthetic oligosaccharide-CRM197 

conjugates served to explore the impact of antigen length and the nature of the 

residue on the non-reducing end on immunogenicity. The synthetic 

oligosaccharides conjugated to CRM197 elicited a similar level of immune 

response when compared to isolated GAS-PS conjugated to CRM197 and 

conferred comparable levels of immunoprotection in an established challenge 

system in mice using two of the main circulating GAS strains. The obtained 

immunoprotection results lay the foundation for the future clinical evaluation of 

oligosaccharide conjugate vaccine candidates. The use of oligosaccharides 

representing the conserved GAS polysaccharide is a promising approach to 

address the highly diverse nature of M+ GAS serotypes encountered in the 

endemic regions of developing countries. 
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This thesis demonstrates that rational design of carbohydrate-conjugate 

vaccines is a potent tool and is beginning to impact vaccine development and 

regulatory processes. 
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Material and Methods 

Chapter 1 

Materials 

Synthetic high-mannose oligosaccharides, equipped with an amino linker, were 

purchased from Ancora Farmaceuticals (MA, USA); their characterization data 

can be found in Online resource 3. PAMAM4 and PAMAM8 were kindly provided 

by professor G. Catelani (University of Pisa, Italy). CRM197 were internally 

produced in Novartis V&D, Siena, Italy. The 2G12 antibody, HIV proteins gp140 

UG37 (clade A strain 92/UG/037, a.a. 32-662, NCBI protein database No. 

AAC97548, catalog no. ENV001) was purchased from Polymun Scientific 

(Vienna, Austria). HIV gp120 Bal (a.a.32-518, GenBank No. M68893, catalog 

no. IT-001-002p), gp120 R2 (a.a.41-520, GenBank No. AF128126, catalog no. 

IT-001-0029p), and gp120 JRFL (a.a.34-518, GenBank No. U63632, catalog no. 

IT-001-0024p) were purchased from Immune Technology Corp. (New York, US). 

Polymun and Immune Technology recombinant proteins are expressed in CHO 

and 293T cells, correspondingly. Biotinylated Galantus Nivalis Lectin (GNL) was 

purchased from Vector Laboratories (CA, US). 

Analytical methods 

Total saccharide concentration was determined by HPAEC-PAD analysis (ICS-

3000 Dionex system). Briefly, oligomannose carbohydrate preparation was 

hydrolyzed in 2 M trifluoracetic acid for 2h at 100°C, dried and then dissolved in 

water. 20 µL of sample were injected into CarboPac PA1 analytical column (250 

mm x 4 mm i.d., Dionex) with CarboPac PA1 guard column (50 mm x 4 mm i.d., 
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Dionex). Isocratic separations were performed using a 30-min 16 mM NaOH 

followed by a 5-min 500 mM NaOH regeneration step and 15-min re-

equilibration, set to a flow rate of 1.0 mL min−1. Monosaccharide peaks were 

detected directly by using quadruple-potential waveform pulsed amperometry on 

a gold working electrode and an Ag/AgCl reference electrode. Raw data were 

elaborated on Chromeleon 6.8 chromatography software (Dionex) with 

application of 0.5-10 µg/mL mannose calibration curve. Rapid hexose 

quantification was performed by Phenol-H2SO4 method (Scott RW et al. 1967).  

Protein concentration was determined by Micro BCA kit (Thermo Fisher 

Scientific). 

ESI Q-TOF MS analyses 

Analyses by direct sample injection were performed  in a Micromass Q-Tof 

Micro system (Waters MS Technologies, UK) diluting the samples 1:200 (v/v) or 

less in 0.1% formic acid, 1:1 (v/v) acetonitrile:water. For LC-Mass analyses  the 

Q-tof Micro system was coupled to an UPLC system (ACQUITY UPLC System, 

Waters, UK). Chromatographic separations of samples diluted in water were 

performed on 2.1 mm i.d. x 50 mm ACQUITY BEH C18 1.7 µm column (Waters 

Corp., USA). Elution was performed with a linear gradient of 2-50% B for 8 min, 

then 50%-100% B for 1.5 min, reconditioned 2% B for 2 min each cycle, where 

A = water with 0.1% formic acid and B = acetonitrile with 0,1% formic acid. Each 

cycle duration was 13 min at a flow rate 0.4 mL/min. 10 µL aliquots of sample 

were loaded. HPLC peak detection was performed by total ion current and best 

peak intensity measurement. 

TOF MS analysis was performed operating in positive ion mode (ESI). The 
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nebulization gas was set to 800 L/h at a temperature of 250°C, the cone gas set 

to 50 L/h and the source temperature set to 100°C. The capillary and cone 

voltages were 3500 V and 30 V, respectively. The Q-Tof Micro was operated 

with collision energy of 5 V. The data acquisition rate was set to 0.1 s with a 0.1 

s inter-scan delay. The raw data were analyzed by the Micromass MassLynx 

applications manager Version 1.0, using Maxent3 for deconvolution (Waters, 

UK). The general strategy for assigning peaks to glycodendrons involved: 1) 

identification of a pair or series of ions in the spectra separated by the mass of a 

mannose saccharide (162 Da); 2) assigning individual peaks of these 

distributions. 

PAMAM cluster synthesis and purification 

In a typical experiment Man4, Man6 or Man9 synthetic oligosaccharide with a six-

carbon amino linker at the reducing end (20 µmol) were treated with 

disuccinimidyl adipate (200 µmol) in 0.3 mL DMSO containing 43 µmol of 

triethylamine. After 2 hours of vigorous stirring the activation of sugar was 

checked by TLC performed on aluminium plates coated with silica gel 60 Å F254 

(Merck) with detection by charring with 10% ethanolic H2SO4. The activated 

oligosaccharide was purified by precipitation in 9 volumes of ethylacetate; the 

pellet obtained by centrifugation was washed two times with 1 mL of 

ethylacetate and vacuum dried. 

The succinimidyl-activated oligosaccharides were then coupled to PAMAM4 and 

PAMAM8 with stoichiometry of 8:1 and 20:1 mol/mol, respectively. The reaction 

was carried out in 0.1 mL DMSO containing 20 µL/mL triethylamine at RT. 
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Cluster formation was monitored in process by HPLC-ESI MS analysis and in 

some cases a further addition of activated oligosaccharide was performed in 

order to maximize the formation of the desired cluster. The reaction mixture was 

then lyophilized and dissolved in water. The excess of unreacted 

oligosaccharide was removed by hydrophobic interaction on a C4 column (0.5 

mL resin, Bioselect, Grace Vydac) activated with methanol and preconditioned 

with water and eluted with a stepwise gradient of methanol (0-80% in water). 

Fractions of 2 mL were analyzed by TLC and ESI Q-TOF MS; and those 

containing fully-substituted PAMAM were dried to remove methanol. The yields 

for cluster formation and purification varied from 46-77% for PAMAM4-based 

dendrons and 28-30% for PAMAM8-based dendrons 

PAMAM4-Boc ESI MS m/z (C37H76N14O8): found 845.56 ((M+H)+, calc. 845.60), 

423.27 ((M+2H)2+, calc. 423.31). PAMAM8-Boc ESI MS m/z (C37H76N14O8): 

found 879.70 ((M+2H)2+, calc. 879.62), deconv. 1758.37 ((M+H)+, calc. 

1758.24). Man4PAMAM4-Boc ESI MS m/z (C181H320N18O100): found 1450.48 

((M+3H)3+, calc. 1450.54), 1458.80 ((M+3H+Na)3+, calc. 1457.87), 1396.45 

((M+3H-Man)3+,calc. 1396.49), deconv. 4347.36 ((M+H)+, calc. 4347.06), 

4369.24 ((M+Na)+, calc. 4369.04), 4185.32 ((M+H-Man)+, calc. 4185.01). 

Man9PAMAM4-Boc ESI MS m/z (C301H520N18O200): found 1898.62 ((M+4H)4+, 

calc. 1898.87), 1904.21 ((M+3H+Na)4+, calc. 1904.36), 1858.09 ((M+4H-

Man)4+,calc. 1858.33), deconv. 7587.53 ((M+H)+, calc. 7588.12), 7610.38 

((M+Na)+, calc. 7610.10), 7425.80 ((M+H-Man)+, calc. 7426.06). Man4PAMAM8-

Boc HPLC tR=2.728 min; ESI MS m/z (C365H644N38O200): found 1754.03 

((M+5H)5+, calc. 1754.06), 1721.46 ((M+5H-Man)5+, calc. 1721.63), 1689.18 
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((M+5H-2 Man)5+, calc. 1689.20), 2192.33 ((M+4H)4+, calc. 2192.32), 2152.64 

((M+4H-Man)4+, calc. 2151.79), 2111.22 ((M+4H-2Man)4+, calc. 2111.25), 

deconv. 8761.17 ((M+H)+, calc. 8761.15), 8599.08 ((M+H-Man)+, calc. 8599.09), 

8437.02 ((M+H-2 Man)+, calc. 8437.04). Man9PAMAM8-Boc HPLC tR=2.172 min; 

ESI MS m/z (C605H1044N38O400): found 2179.85 ((M+7H)7+, calc. 2179.72), 

2156.65 ((M+7H-Man)7+, calc. 2156.55), 2133.57 ((M+7H-2 Man)7+, calc. 

2133.39), 2542.94 ((M+6H)6+, calc. 2542.83), 2515.60 ((M+6H-Man)6+, calc. 

2515.81), 2488.67 ((M+6H-2Man)6+, calc. 2488.79), deconv. 15240.77 ((M+H)+, 

calc. 15243.26), 15079.57 ((M+H-Man)+, calc. 15081.21), 14918.34 ((M+H-2 

Man)+, calc. 14919.15). 

Competitive Surface Plasmon resonance 

The experiments were carried out with a BiaCore X100 system in a HBS-EP 

buffer (10 mM HEPES, 150 mM NaCl, 0,005% surfactant Tween 20, pH 7.4). 

For coupling two flow cells of a CM5 chip (GE Healthcare) were activated by 

injection of EDC/NHS mixture for 7 min at 10 µL/min, followed by injection of 10 

µg/mL gp140 UG37 in sodium acetate pH 4.5 over the channel two until the 

target level was reached; both were then blocked with 1.0 M ethanolamine pH 

8.5 for 7 min at 10 µL/min. Final immobilization level of gp140 was 6800 RU. 

2G12 solution with and without carbohydrate inhibitors was injected over both 

channels, and the binding profile was obtained by subtraction of the blank signal 

in channel one from the gp140 UG37 signal in channel two. 2 µg/mL 2G12 was 

incubated with 0-1200 µM carbohydrate inhibitor for 15 minutes at 37°C before 

the analysis. Analyte was injected at 10 µL/min for 4 min, followed by 6 min 

dissociation and 30 sec of regeneration with 10 mM glycine, 3M NaCl pH 2.0. 
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Sensorgrams were elaborated on the Biacore X100 software package. Inhibition 

percentage was calculated as (Sno inhibitor – Sinhibitor)*100/Sno inhibitor, where S is the 

stability level with reference subtraction (buffer sample). The stability level 

corresponds to the RU signal at 270 sec and was chosen for the calculation as 

less influenced by the analyte bulk effect in comparison to the binding level 

(measured 240 sec) [46]. Inhibition curve was fitted on the Graphpad Prism 

software using variable slope model (Graphpad Prism Inc.). Two data points, 

(x1, y1) and (x2, y2), adjacent to the 50% inhibition titer were chosen, where x is 

inhibitor concentration and y is corresponding inhibition level. IC50 value was 

calculated according to the equation IC50=

( )
21

2111 )log(50log

10 yy
xxyx

−
−⋅−−

. 

Conjugation of oligomannose and oligomannose glycodendrons to CRM197 

t-Boc protecting groups in glycodendrons were cleaved by reaction in 20% 

trifluoracetic acid (TFA) for two hours at RT. The removal of t-Boc was verified 

by MS analysis, and the samples were extensively dried under vacuum to 

remove TFA. Monovalent oligosaccharides or deprotected glycodendrons were 

then activated with disuccinimidyl adipate and purified according to the 

procedure reported above. The activated oligosaccharides were then conjugated 

in 200 mM sodium phosphate pH 7.2 to CRM197 (10-20 mg/mL) with a 

stoichiometry of 30:1 or 40:1 glycodendron:protein (mol/mol). After overnight 

incubation at 37°C, conjugates were then purified from the excess of 

unconjugated carbohydrate using ultrafiltration spin columns with 30 kDa or 50 

kDa cut-off (Vivaspin, Sartorius). The purified glycoconjugates were analyzed for 

their protein and carbohydrate content and by SDS-PAGE. 
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Conjugation of Man9 to HSA via diethyl squarate chemistry 

The synthetic oligosaccharide (20 mmol) was treated with 3,4-diethoxy-3-

cyclobuten-1,2-dione (150 mmol) in 0.1 mL 1:1 vol ethanol:100 mM sodium 

phosphate pH 7.0. After overnight incubation with vigorous stirring activation of 

sugar was checked by TLC. The excess of linker was removed by hydrophobic 

interaction C18 column (C18-E, Strata, Phenomenex) after 3 CV water and 3 CV 

ethylacetate washing steps with final methanol elution. Target fractions were 

dried to remove methanol. The activated oligosaccharides were conjugated in 

200 mM sodium borate pH 9.2 to CRM197 (10-20 mg/mL) with a stoichiometry of 

30:1 (mol/mol). Purification and characterization was performed as described 

above. This glycoconjugate has been used in ELISA as coating reagent for anti 

Man9 antibodies determination.  

Animal immunizations 

Animal experimental guidelines set forth by the Novartis Animal Care 

Department were followed in the conduct of all animal studies. Groups of 2-4 

female white Zealand rabbits (2 kg weight) were immunized on days 1, 21 and 

35 with 5 or 20 µg of carbohydrate antigens or with PBS both formulated 1:1 

(v/v) with MF59 and delivered in a final volume of 250 µL , intramuscularly into 

both quadriceps. Sera were collected on days 20, 34 and 42. 

Groups of 8 female Balb/c mice were immunized on days 1, 14 and 28 with 1 µg 

of carbohydrate antigens or PBS both formulated with MF59 and delivered in a 

volume of 150 µL by subcutaneous injection. Sera were collected on day 0, 27 

and 42. 

 



 63

ELISA 

a) Determination of anti Man9-specific antibodies. 96-well Maxisorp plates 

(Nunc, Thermo Fisher Scientific) were coated with 100 µL/well of a 1 µg/mL 

solution of Man9-squarate-HSA in PBS. Plates were incubated overnight at 

+4°C, then washed three times with TPBS (PBS with 0,05% Tween 20, pH 7.4) 

and blocked with 100 µL/well of 2% BSA (Sigma-Aldrich) for 1 hour at 37°C. 

Subsequently each incubation step was followed by triple TPBS wash. Sera, 

prediluted 1:25-1:1000 in 2 % BSA-TPBS, were transferred into coated- plates 

(200 µL) and then serially two-fold diluted followed by 2h incubation at 37°C. 

Then 100 µL/well of 1:10000-1:20000 diluted appropriate alkaline phosphatase-

conjugated secondary antibody (Sigma Aldrich) were added and plates 

incubated for 1h at 37°C. Subsequently 100 µL/well of 1 mg/mL pNPP disodium 

hexahydrate (Sigma Aldrich) in 1M diethanolamine (pH 9.8) was distributed onto 

plates. After 30 minutes of development at RT plates were read at 405 nm with a 

microplate spectrophotometer. Antibody titres were defined as the reciprocal of 

those dilutions that gave an optical density (OD) higher than three times the 

average OD of preimmune or mock-immunized sera. 

b) Evaluation of anti HIV-1 gp120 and anti-CRM specific antibodies. 

In order to evaluate the ability of rabbit or mouse immune sera to recognize HIV-

1 gp120 glycoproteins or CRM197, the ELISA protocol described above has been 

repeated but using as coating 100 ng/well of three different HIV-1 clades Bal, 

JRLF and R2, and CRM197. 
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Chapter 2 

Materials 

Synthetic GAS oligosaccharides, equipped with an amino linker, were 

purchased from Ancora Pharmaceuticals (Medford, USA). CRM197 was internally 

produced in Novartis V&D, Siena, Italy. 

Bacterial strains and culture conditions 

Streptococcal strain GAS SF370 M1 was obtained from University of Siena, 

Italy. Streptococcal strain M1 3348 was obtained from Istituto Superiore di 

Sanità, Rome, Italy. GAS M23 2071 was purchased from Deutsche Sammlung 

von Mikroorganismen und Zellkulturen GmbH (German Collection of 

Microorganisms and Cell Cultures). Bacterial strains were stored at −80°C and 

routinely grown in Todd-Hewitt broth (Difco) at 37°C until mid-log phase. 

Analytical methods 

Total saccharide concentration was determined by HPAEC-PAD analyses (ICS-

3000 Dionex system). Briefly, the GAS-PS preparation was hydrolyzed in 4 M 

trifluoracetic acid for 2 h at 100°C, dried and dissolved in water. 20 µL samples 

were injected into CarboPac PA1 analytical column (250 mm x 4 mm i.d., 

Dionex) with CarboPac PA1 guard column (50 mm x 4 mm i.d., Dionex). 

Isocratic separations were performed using a 15-min 50 mM NaOH followed by 

a 5-min 500 mM NaOH regeneration step and 10-min re-equilibration, set to a 

flow rate of 1.0 mL min−1. Monosaccharide peaks were detected directly by 

using quadruple-potential waveform pulsed amperometry on a gold electrode 

and an Ag/AgCl reference electrode. Raw data were elaborated on a 

Chromeleon 6.8 chromatography software (Dionex) with application of 0.5-10 
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µg/mL GlcNAc calibration curve. Rapid hexose quantification was achieved by 

Phenol-H2SO4 method (Scott RW et al. 1967). Unconjugated saccharide 

concentration was analyzed by passing 1 mL of purified neoglycoconjugate 

preparation at 10 µg/mL saccharide concentration through C4 hydrophobic 

interaction column (0.5 mL resin, Bioselect, Grace Vydac). Unconjugated 

carbohydrate was eluted with 1 mL of 20% acetonitrile in water and 

subsequently estimated by HPAEC-PAD analysis. Protein concentration was 

determined by MicroBCA and Bradford protein assay kit (Thermo Fisher 

Scientific). Hyaluronic acid concentration was determined using test kit 

(Corgenics). DNA concentration was determined by spectrophotometric OD 

method (Haque et al. 2003). Size-exclusion HPLC for glycoconjugate profiling 

was done with TSK Gel G4000SW column on Ultimate-3000 HPLC system 

(Waters). All the samples were eluted at 0.5 mL/min flow with a mobile phase 

buffer containing 0.1 M sodium phosphate, 0.1 M sodium sulfate, 5% 

acetonitrile, pH 7.2. 

Spectroscopy and chromatography  

NMR analyses:  Lyophilized CHO samples were dissolved in deuterium oxide 

(D2O, 99.9% atom D, Aldrich) to produce a uniform solution. 1H NMR 

experiments were recorded at 25°C on a Bruker Avance™ 600 MHz 

spectrometer, using a 5-mm broadband probe (Bruker). The XWINNMR™ 

software package (Bruker) was used for data acquisition and processing.  32k 

data points were collected over a 10 ppm spectral width for the proton spectra. 

The transmitter was set at the HDO frequency, which was also used as 

reference signal (4.79 ppm). 1D proton NMR spectra were collected using a 
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standard one-pulse experiment. Determination of dn/dc and SEC-MALLS 

analysis: SEC-MALLS analysis was performed using a TSK-Gel G2000SWXL 

column (Tosoh Bioscience) coupled with an Alliance 2695 solvent delivery 

module (Waters, Millipore). The polysaccharide sample was injected at the 

concentration of 11.6 mg/mL in 10 mM NaPi pH 7.0 and eluted at the flow rate of 

0.5 mL/min. Scattered light intensities were measured using a Dawn EOS multi-

angle light scattering photometer (Wyatt Technology Corp.). Data were collected 

and processed using the software ASTRATM (Wyatt technology Corp.). The 

absolute molecular mass was determined according to the equation R(θ) = 

K*McP(θ)[1−2A2McP(θ)], where R(θ) is the excess Rayleigh ratio, K* the 

polymer constant for a particular scattering system, M the molecular mass, c the 

solute concentration (g/mL), P(θ) the form factor related to the mean square 

radius rg of the particle and A2 is the second virial coefficient, a measure of 

solute-solvent interaction, which to a first approximation can be taken as zero 

(Tanford 1961). dn/dc value of GAS polysaccharide was measured using an 

interferometric refractometer Optilab DSP (Wyatt Technology Corp.) pre-

calibrated with NaCl samples. A series of six different polysaccharide samples 

with concentration ranging from 0.039 to 1.158 mg/mL in 10 mM NaPi pH 7.0 

was injected through the refractometer, starting with the lowest concentration. 

The dn/dc value was calculated using the software DNDCTM (Wyatt Technology 

Corp.). MALDI-TOF mass spectra of CRM197 and glycoconjugates were 

recorded by an UltraFlex III MALDI-TOF/TOF instrument (Bruker Daltonics) in 

linear mode with positive ion detection. All the samples for analysis were 
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prepared by mixing 1 µL product and 1 µL of sinnapinic acid matrix in 0.1% TFA 

and 30% acetonitrile. 1 µL of each mixture has been deposited on samples 

plate, dried at room temperature for 10 min and subjected to the spectrometer. 

Isolation of native GAS-PS 

GAS-PS was released from bacterial culture by reductive acidic treatment as 

previously described (Sabharwal et al. 2006) and purified by several steps of 

ultrafiltration and chromatography. Briefly, acid-treated cell pellet suspension 

was clarified by orthogonal filtration using 0.65 µm pore glass fiber filter 

(Sartopure GF2 capsule, Sartorius). Then permeate was diafiltrated with 30K 

cut-off membrane (Hydrosart, Sartorius) against 1M NaCl and water. Obtained 

material was additionally purified by anion exchange chromatography (Q-

Sepharose FF resin, AKTA systems, GE Healthcare). PS-containing fractions 

were concentrated by TFF using 5K membrane (Sartorius). 

Preparation and characterization of glycoconjugates 

In a typical experiment synthetic oligosaccharide (1 µmol) was treated with 

disuccinimidyl adipate (10 µmol) in 1.5 mL DMSO containing 0.01 mL 

triethylamine. After 2 h of vigorous stirring, chromatography of the crude mixture 

in silica gel (0.035-0.70 mm, 60 Å, Sigma-Aldrich) in a gradient of 0-70% 

methanol in ethylacetate yielded activated oligosaccharide. Fractions were 

analyzed by TLC (ethylacetate-methanol 1:1) with detection by charring with 

10% ethanolic H2SO4 and ninhydrin (1.5 mg/mL in 38:1.75:0.25 1-

BuOH/H2O/HOAc). Fractions containing pure activated CHO were merged with 

subsequent determination of active ester groups (yield 13-39%) (Pitner et al. 

2000). Alternative method of the activated oligosaccharide purification consisted 
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in precipitation of the reaction mixture in 9 volumes of ethylacetate; the pellet 

obtained by centrifugation was washed two times with 1 mL of ethylacetate and 

vacuum dried (yield 42-51%). A conjugation stoichiometry of 30:1 active ester 

group mol/ protein mol was applied. A solution of CRM197 in 100 mM NaPi buffer 

pH 7.0 (10-20 mg/mL) was added to the dried activated oligosaccharide. The 

mixture was incubated ON at RT, mixing very gently with a magnetic stirrer. 

Native GAS-PS was conjugated to lysine residues of CRM197 by reductive 

amination in the presence of NaBH3CN (Jennings, Lugowski 1981). The reaction 

was carried out in 200 mM NaPi pH 8.0 with stoichiometry 4:2:1 (wt:wt:wt) of 

CHO:NaBCNH3:protein. The solution was 0.22 µm filtered and kept at 37°C for 2 

days. Conjugates were purified from excess of unconjugated carbohydrate using 

ultrafiltration spin columns with 30K or 100K cut-off (Vivaspin, Sartorius). 

Active immunizations 

Animal experimental guidelines set forth by the Novartis Animal Care 

Department were followed in the conduct of all animal studies. Groups of 8-16 

female CD-1 mice (5-6 week old) were immunized on days 1, 21 and 35 with 10 

µg of carbohydrate antigen (100 µL final volume). Adjuvant alone or non 

conjugated polysaccharide (10 µg) were used for negative control groups, while 

strain-specific M protein (10 µg) was used for positive control groups. Antigens 

were formulated with aluminium hydroxide before injection. Sera samples were 

collected before the first immunization and two weeks after the third 

immunization (day 49). 

Serum ELISA 

Titration of carbohydrate-specific antibodies was performed on individual sera 2 
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weeks after the last immunization. For that purpose 96-well Maxisorp plates 

(Nunc, Thermo Fisher Scientific) were coated with 100 µL/well of PBS-diluted 1 

µg/mL HSA conjugates of GAS-PS. Plates were incubated for 3 hours at room 

temperature, then washed three times with TPBS (PBS with 0.05% Tween 20, 

pH 7.4) and blocked with 100 µL/well of 2% BSA (Sigma-Aldrich) for 1 h at 

37°C. Subsequently each incubation step was followed by triple TPBS wash. 

Serum samples were initially diluted 1:500-1:1000 in 2 % BSA in TPBS, 

transferred into coated-blocked plates (200 µL) and serially two-fold diluted 

followed by 2 h incubation at 37°C. Then 100 µL/well of 1:2000-1:5000 diluted 

alkaline phosphatase-conjugated goat anti-mouse IgM (µ-chain specific, Sigma 

Aldrich), IgG or given IgG subclass (whole molecule, Sigma Aldrich) antibody 

were added and left for 2 h at 30°C. 100 µL/well of 3 mg/mL pNPP disodium 

hexahydrate (Sigma Aldrich) in 1M diethanolamine (pH 9.8) was distributed onto 

plates to visualize the amount of bound alkaline phosphatase. After 10 minutes 

of development at RT plates were read with a microplate spectrophotometer at 

405 nm. Antibody titres are those dilutions that gave an optical density (OD) 

higher than the mean plus five times the standard deviation of the average OD 

obtained in the preimmune sera. The titres were normalized with respect to the 

reference serum and expressed in ELISA units (EU) per mL. Reference serum 

was obtained from GAS CHO glycoconjugate immunized mice. The thiocyanate 

elution ELISA for affinity studies is described elsewhere (McCloskey et al. 1997). 

Absorbance value of sera without NaSCN was at least 1.0. 

Immunoadsorption of anti-hexasaccharide antibodies from mice sera 

HSA conjugate (100 µg) of oligosaccharide 1 was coupled to 200 µL NHS-
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activated sepharose resin (GE Healthcare) following the manufacturer 

instructions. Excess of active groups on the resin was blocked with 0.5 M 

ethanolamine, 0.5 M NaCl, pH 8.3. Operations with small amount of resin were 

performed in clarification spin column (Vivapure, Sartorius) with 0.22 µm 

membrane filter. Resin was equilibrated in PBS, incubated with 1:20 PBS-diluted 

mice sera for 10 min and then spun. The flow through was cycled five times 

through the column. Between cycles resin was regenerated by 100 mM glycine, 

pH 2.7 and re-equilibrated with PBS. 1:100 diluted sera from flow-through 

fraction was tested for its reactivity against HSA conjugates of 1, 3 and GAS-PS 

in ELISA assay. Reference anti-CRM197 titration was performed to allow the 

recalculation of antibody titers due to unspecific absorption. 

In vivo protection assays 

Immunized animals were intraperitoneally (i.p.) challenged on day 56, three 

weeks after the last immunization with a bacterial dose ranging from 50 (for M23 

2071 strain) to 2.5x106 (for M1 3348 strain) colony forming units (cfu) per mouse 

(lethal dose 90, LD90). Animals were monitored on a daily basis and euthanized 

when they exhibit defined humane endpoints that were pre-established for the 

study in agreement with Novartis Animal Welfare Policies. Bacterial cultures for 

infection experiments were grown in Todd-Hewitt broth until mid-log phase, 

washed twice, appropriately diluted in fresh medium; and 200 µL were 

administered to each mouse by i.p. injection. Samples of the inoculum were 

plated on Todd-Hewitt broth plates (Difco) supplemented with 0.5% yeast extract 

and 0.5% sheep blood to verify the infectious dose. The plates were incubated 

at 37°C overnight, and the number of colonies was counted next day. 
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Statistics 

Unpaired t-test was applied to natural logarithm values of serum ELISA titres to 

determine the differences between GMT of the immunization groups. Fisher’s 

exact test was used to determine the differences in protection level. Comparison 

was performed between negative control group (adjuvant only) and 

immunization group of interest. 
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