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Abstract

While imperfect information games are an excellent model of real-world prob-
lems and tasks, they are often difficult for computer programs to play at a
high level of proficiency, especially if they involve major uncertainty and a
very large state space. Kriegspiel, a variant of chess making it similar to
a wargame, is a perfect example: while the game was studied for decades
from a game-theoretical viewpoint, it was only very recently that the first
practical algorithms for playing it began to appear. This thesis presents,
documents and tests a multi-sided effort towards making a strong Kriegspiel
player, using heuristic searching, retrograde analysis and Monte Carlo tree
search algorithms to achieve increasingly higher levels of play. The resulting
program is currently the strongest computer player in the world and plays
at an above-average human level.
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Chapter 1

Introduction

If you know the enemy and know yourself,

you need not fear the result of a hundred battles.

Sun Tzu

Ever since their inception in the animal kingdom, games have been a metaphor

of life, and often one of conflict. Pups engage in playful behavior to learn

the tactics on which their survival will depend later in life. They hone the

motions and teamwork they will need when they move on to hunting real

preys. Over the millennia, humans have invested games with a multitude of

meanings, ritualizing their conflicts from military, social and religious stand-

points. Without a doubt, games have always been serious business. The

game of Senet, depicted in several Egyptian tombs and considered the most

ancient example uncovered by archaeologists, probably held deep religious

significance [Parlett, 1999]. Its reliance on luck, according to some, would in-

dicate that the winner was believed to be favored by the gods. Pre-Columbian

civilizations probably came to a similar conclusion, if it is indeed true that

they played ball games to determine who would be sacrificed atop a pyramid.

The game of Go may find its roots in divination practices related to flood

prediction and control.

Wargames – games which attempt to simulate or capture the essence of

war under a strict ruleset – make a very convenient replacement for actual

war. People are by their very nature drawn to compete and measure them-

selves against their peers; it is what [Callois, 1961] would call “agon” or

playing out of desire to prevail. Moreover, these games can be used as a

9



10 CHAPTER 1. INTRODUCTION

training tool for war. Ancient games most likely did not have the presump-

tion to teach much in the way of practical military tactics, though they could

certainly train the general’s mental acuity and discipline.

The first board game to sport a consistent military background is arguably

the Indian game of Chaturanga, even though there is no physical historical

evidence about it. Considered to be the ancestor of chess and other chess-

like games, including Jangki (Korean chess), Makruk (Thai chess), Shogi

(Japanese chess), and Xiangqi (Chinese chess) it was allegedly played in

the seventh century AD and its pieces were modeled after the actual Indian

military, with the general and his advisor, slowly-advancing infantry, knights

for flanking enemy lines, fast but difficult to maneuver chariots (rooks), and

devastating war elephants (bishops). Its rules were very similar to those of

chess, except that, instead of checkmating the enemy king, one simply had

to capture it. The Romans had their own chess-like game, called Ludus

Latrunculorum, or simply Latrunculi.

However, it was not until much later that games went full circle, coming

back to a functional simulation of what they had come to symbolize. With

the invention of Kriegspiel, men re-discovered the hunting games of tiger pups

on a much grander scale [Perla, 1990]. It was the highly advanced Prussian

military that first understood the potential of a realistic war simulation in the

training of their officers and tacticians, but in order to provide such benefits,

the game would have to evolve beyond the simplicity of a chess-like game,

most importantly abandoning the realm of perfect information.

Kriegspiel was a serious game played on three identical boards represent-

ing actual territory. Two generals faced off with an umpire in the middle, the

only one knowing the full state of the game. The players would issue orders

to their units, and the umpire would carry them out, revealing to each player

what their units could see, and no more. He would also resolve combat based

on tables, rules and personal experience. Kriegspiel is thought to have been

an important instrument for the armies that used it until the XX century.

The Japanese navy used Kriegspiel in the Russo-Japanese war (1905), which

resulted in the Rising Sun’s unexpected major victory.

The modern descendants of Kriegspiel are computer games, especially the

real-time and turn-based strategy genres, which owe everything to this orig-

inal idea. So-called “tabletop wargames” are still widespread, mostly fought
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with toy soldiers and miniatures, though they eschew imperfect information

due to practical difficulties in maintaining three boards. Instead, uncertainty

derives from a random factor (dice) and estimating distances between units

without using tools.

This thesis is about Kriegspiel, though not the Kriegspiel that the Prus-

sians made. It is about a chess variant of the same name, designed around

the same spirit, in hopes of making chess closer to a modern wargame. It

is blind or invisible chess, with players only seeing their own pieces and sub-

mitting move attempts to a neutral umpire who can accept or reject them.

Kriegspiel is like chess in that it follows the same rules, yet it is very different.

For one, computers have a lot of trouble “getting” Kriegspiel compared to

regular chess, whereas human players can adapt fairly quickly. Information

is scarce, changes all the time and can be misleading, but every little bit of

it can decide the outcome of the game. In a way, many Kriegspiel tactics

could be likened to the ever elusive common sense that remains one of the

most difficult things for computers to grasp.

We study Kriegspiel because it is a complex game that does not seem

to fall completely into any one category, which makes it very much like a

real-world conflict simulation. Playing a game of Kriegspiel forces you to

reason about the past, present and future, to reason about yourself and your

opponent, to decide what you know and what you choose to believe. Except

in limited endgame scenarios, there is no ultimate perfection that a computer

can discover by trying a number of combinations. Poker is a complex game

that fits most of these criteria; even so, Texas Hold’em “merely” requires the

player to select one of three strategies (check, fold or raise) through a handful

of betting rounds. Imagine a game of poker with 40 options to choose from

through 50 betting rounds in which your opponent may keep his strategy

secret 75% of the time. Yet, maybe surprisingly, the best human players win

consistently and computers are starting to make progress, as well. Within the

context of this work, much of this progress will be discussed and analyzed.

This thesis is structured as follows. In chapter 2, we give a bird’s eye

view on the state of the art in game research. As the field is very vast, we

will focus primarily on areas that are of particular interest to the present

research, either because they introduce concepts and techniques that will

be useful to our own Kriegspiel research, or because they offer interesting
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parallels and contrasts worth discussing.

In chapter 3, we introduce the chess variant of Kriegspiel. We provide

the various rulesets adopted at one time or another throughout the 120 years

of its history, then we focus on questions such as its complexity, the need

for a special format to record Kriegspiel games without loss of information,

and finally previous literature on the subject; this includes algorithms for the

endgame, methods for solving Kriegspiel problems and game-playing agents.

Historically, this is the order in which researchers have tackled the challenge

of Kriegspiel.

Chapter 4 is about our first Kriegspiel engine, Darkboard 1.0, an artificial

player based on the concept of metapositions. This chapter mostly refers to

research contained in [Ciancarini and Favini, 2007a,b]. The main contribu-

tion consists of achieving a slightly above average level of play (by human

standards) by using a minimax-like method that works despite the lack of

perfect information. The method gives the game an illusion of complete

knowledge by shifting focus from actual positions to metapositions contain-

ing a huge number of possible states, which are evaluated as a whole with a

custom Kriegspiel function.

Chapter 5 is concerned with the same problem, but from a radically

different viewpoint. Moving away from the limitations of the first approach

– namely, the fact that the evaluation function is so inherently specific to

Kriegspiel and requires much domain knowledge – we investigate the usage

of Monte Carlo Tree Search to create a new Kriegspiel player, Darkboard

2.0. We compare Kriegspiel with other games in which this Monte Carlo

method has been used successfully, especially Phantom Go, and we highlight

how our algorithms differ from previous Monte Carlo Kriegspiel research.

We modify the simulation step of traditional MCTS in order to improve its

performance above the level of Darkboard 1.0. This new program works with

little domain knowledge, attempts some measure of opponent modeling and

could be adapted to any scenario in which one can model future sensory input

(the referee, in this case). The chapter is based on research in [Ciancarini

and Favini, 2009a,d].

Starting with chapter 6, we specifically deal with the problem of Kriegspiel

endgames. These scenarios offer a considerably different challenge, since the

amount of possible game states at any given time is small enough for all of
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them to be considered. As such, we have higher expectations for a computer

player to be able to perform well in the endgame, though the task is far from

simple. This chapter shows how a specific metaposition-based player can be

built to play some Kriegspiel ending effectively. Initial research in this area

is due to [Bolognesi and Ciancarini, 2004], and later inspired the minimax-

like player described in chapter 4. The chapter is especially interesting as it

provides an introduction and a paragon to the next two.

In chapter 7, based on [Ciancarini and Favini, 2009b,c] we describe a new

algorithm for playing some Kriegspiel endgames perfectly. Perfection here

means that if the starting position and belief set are such that we can win

with probability 1, then we will do so in the shortest number of moves in

the worst case, and without making any assumptions on the nature of the

opponent. He may very well be omniscient, predict our own future moves or

even have bribed the referee to let him move his pieces on the fly to other legal

states in our belief set; he will still lose. We accomplish this result with a well-

known tool in chess literature: retrograde analysis. We build a brute-force

algorithm that analyzes Kriegspiel metapositions starting from checkmates

and moving back in time, building a tablebase of won metapositions. We

show that the tablebases need only be much smaller than the exponential

number of theoretical belief sets.

Chapter 8 is the natural follow-up to the previous chapter. We dis-

cuss practical findings from the tablebases we have built for some Kriegspiel

endgames, namely KRK, KQK, KBBK and KBNK, giving statistics, show-

ing sample positions and finding answers to long-standing questions. Some

of these problems, such as whether it is always possible to win the bishop

and knight endgame even against the best defense, had been open for almost

a century.

Finally, chapter 9 contains our conclusions and future developments in

Kriegspiel research as part of the broader field of imperfect information

games. Appendix A lists the full Kriegspiel ruleset as enforced on the Inter-

net Chess Club, as this ruleset has been imposing itself as the official one in

international competitions. Appendix B contains a Kriegspiel extension of

the popular PGN file format for representing chess games.
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1.1 Overview of the results

What follows is a short overview of the original research results obtained and

documented in this thesis, together with the relevant papers. Our results are

given in loosely logical order, starting from more specific achievements and

moving to encompass broader problems and in more general terms.

• Writing search algorithms for the Kriegspiel ending. We create

and define a lightweight, high-performance search algorithm for playing

several Kriegspiel endgames convincingly well in most situations. Based

on the concept of metapositions, this algorithm is minimax-like, though

it does not evaluate single game states but entire information sets.

[Bolognesi, Ciancarini, and Favini, 2009]

• Extending the search algorithm to the entire Kriegspiel game.

We refine and generalize the endgame search algorithm so that a single

evaluation function can play a full game of Kriegspiel. This requires a

series of approximations to accommodate the much greater uncertainty,

but leads to a good level of play. The resulting program will be referred

to as Darkboard 1.0. [Ciancarini and Favini, 2007a,b]

• Adapting Monte Carlo Tree Search to Kriegspiel. We ap-

proach the same problem from a completely different angle, writing a

Monte Carlo Tree Search (MCTS) algorithm for Kriegspiel. Unlike the

metaposition-based method, this algorithm (called Darkboard 2.0) only

requires minimal domain knowledge and it is consistently stronger than

Darkboard 1.0; it is also naturally built for opponent modeling. While

MCTS has been used in imperfect information games before, this is

the first time it proves so successful in games with such highly dynamic

and non-monotonic uncertainty. [Ciancarini and Favini, 2009a,d]

• Creating endgame tablebases for perfect Kriegspiel play. We

apply retrograde analysis to metapositions in order to compute endgame

tablebases for several frequent Kriegspiel endgames. The resulting

strategies are optimal in the worst case, minimizing the maximum

amount of moves it takes to achieve mate against an omniscient op-

ponent. The algorithm can be applied to any game or subgame of
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imperfect information in which one side can push victory with proba-

bility 1; it is only limited by time and resource constraints. [Ciancarini

and Favini, 2009b,c]
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Chapter 2

State of the art in game
research

In this chapter, we discuss the state of the art in game research. As such

an analysis would necessarily deserve an entire book of its own, we limit our

effort to select topics that will be particularly useful in the context of the

next chapters. After an introduction explaining why games are important in

computer science, we devote the rest of the chapter to advances in perfect

and imperfect information games, respectively.

2.1 The importance of games

Artificial Intelligence and games have always mixed well, even before the

birth of modern computer science, and even when it was a scam, such as

“the Turk”, a chess-playing automaton (conveniently large enough to hold a

person inside) built in Napoleonic times. Games make an excellent simpli-

fication of reality, a sandbox in which rules are easily enforced, moves have

easily computable consequences, and success or failure are generally unques-

tionable. Researchers have studied games either for their own sake or in

hopes of finding new results to be applied to real-world problems. On this

note, articles such as [Bowling et al., 2006], appeared as the introduction to

an issue of Machine Learning, show that there is an acute interest in game re-

search on the part of the general Artificial Intelligence community. Machine

learning is the branch of Artificial Intelligence aimed at making sure that an

17
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agent involved in a task of any kind can improve the quality of its decisional

outputs by using existing data or previous experience, making them able to

adapt to their environment and its dynamic nature. With respect to machine

learning alone, the cited article defines a number of areas of interest in view

of their applicability to different fields and problems.

• Learning to play the game. This is obviously the most explored area;

games provide the perfect environment for testing learning procedures,

methods and algorithms that will help them to learn more about the

world and how to become more competitive players. The environment

itself may vary greatly, ranging from classic board games to partial

information games and even continuous, real time games.

• Learning about players. Opponent modeling (as well as the modeling of

non-opponent agents, such as partner and team modeling) is a growing

trend in game-related research. This topic is concerned with finding

out the thought processes, plans, biases, strengths and weaknesses of

other entities involved in the game.

• Behavior capture of players. Being able to reproduce the behavior of

an existing players realistically and convincingly is becoming a new

horizon in game research. The ability to simulate a player’s actions

is, surprisingly enough, being especially pioneered by commercial real

time video games of various genres.

• Model selection and stability. This is the area of constructing and se-

lecting learning specific models for a given game, adapting more general

models to a particular environment in efficient ways to improve perfor-

mance without sacrificing accuracy or predictive power.

• Optimizing for adaptivity. This task, again stemming from the enter-

tainment needs of commercial video games, is interesting nevertheless

since it revolves around the creation of opponents that are interesting

to play: that is, able to adjust their level to the player’s own and change

their style to provide variety to human players.
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• Model interpretation. An artificial playing agent should not only be

able to provide its next move, but also to provide other answers reflect-

ing a higher and more human-like awareness of the game model. In

other words, the agent should appear to be using a reasoning process

that can be followed and traced from the outside, beyond the simple

production of raw numbers listing its reward expectations.

• Performance. As many machine learning tasks are extremely resource-

intensive, performance is an area in constant need of attention, even

in games where the artificial intelligence component does not have to

compete with graphics and gameplay for resources.

It seems that every game has an interesting challenge to offer, be it a tra-

ditional board game or a modern, commercial console title. In the rest of

this work we will mostly focus on the former category. Our main interest

lies with well-known board and card games, and especially zero-sum games

of imperfect information.

2.2 Perfect information games

In perfect information games, all players have full access to the current state

of the game. This definition can accommodate games with a random com-

ponent, such as Backgammon, as the environment can be thought of as an

additional player making independent moves. These games have received the

largest amount of attention in research, and in some cases have been solved

or can be played by computers at levels that no human can approach. How-

ever, the actual level reached by computers and the difficulty in developing

better engines depend on many variables, including branching factor, game

duration, regularity properties in game states, existence of easily categoriz-

able patterns, convergence to a small number of final states (or, conversely,

divergence to a huge number of final states), and more. For all games, the

dichotomy is between search-based methods and knowledge-based methods;

the former aim at exploring many states, whereas the latter try to find an

accurate evaluation of a small number of states. Many programs use a mix

of both.
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2.2.1 Solving the game

Zermelo’s theorem [Zermelo, 1913] proves that any zero-sum game of perfect

information can be solved, that is, there exists a perfect strategy for both

players yielding a guaranteed minimum result. In the absence of mistakes

by either player, the starting position in chess is a win, draw or loss. Simple

games such as tic-tac-toe can be strongly solved by brute force methods,

which means the perfect strategy is available for each position. [van den

Herik et al., 2002] is a general survey on the state of the art in solved games,

both at the time of writing and in the near future. Examples of strongly

solved games include Awari, a popular African game [Romein and Bal, 2003],

Connect Four [Allis, 1988], and Nine Men’s Morris [Gasser, 1996].

Solving a game does not necessarily entail finding an optimal strategy for

every position – it is possible to discard (sometimes major) portions of the

game tree if it can be proved that they are never traversed in an optimal

game. For example, if the first player has 1000 moves to chose from but can

be shown to force a win with one of them, it is not necessary to explore the

remaining 999 when considering his optimal strategies.

An interesting consequence of this fact is that while the size of the game

tree is the major factor behind a game’s complexity, a game can be smaller

than another and still turn out to be more complex to solve. A weak solution

to a game leverages this principle, only finding a perfect solution to certain

positions that can force a win against any defense. A weak solution may

not be able to suggest a strategy for a position outside of such a set, even

though forcing a win may still be possible. A solved game may still be in-

teresting to humans, such as in the case of checkers, weakly solved thanks to

eighteen years of parallel computation [Schaeffer et al., 2007]. Other weakly

solved games include 6x6 Othello [Feinstein, 1993] (a second-player win, al-

though 8x8 Othello is still unsolved and generally believed to be a draw) and

Fanorona [Schadd et al., 2008].

An even weaker form of solution is the so-called ultra-weak solution, in

which only the game-theoretical value of the starting position is determined

– in other words, who would win the game if both players used their best

strategies – but no strategy is provided. The value can be derived through

general reasoning, most notably the strategy-stealing argument first formu-
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lated by Nash [Berlekamp et al., 2003]: if the game rules admit the possibility

of skipping a move, or a player can always make a harmless move, the second

player does not have a winning strategy. If he had one, the first player could

simply skip his first move and effectively become the second player himself.

This, for example, allows one to deduce that Hex is a first-player win (the

game can be strongly solved, but only on very small boards) and so would

Go, if not for komi, the bonus points awarded to the second player for fair-

ness. The argument does not apply to chess as player cannot skip a move

and a move can be detrimental to the player making it. In fact, there are

situations, called zugzwang, in which the player wishes he could just skip the

move since every option damages him.

There are other ways to provide this kind of ultra-weak solution, and they

generally involve heuristic search through a set of significant states. One such

method is proof-number search [Allis et al., 1994]; given a predicate (such

as a position being a victory or a draw), this algorithm will try to prove its

truth by exploring the game tree based on the number of nodes required to

prove the predicate, and choosing the direction that seems to yield the most

convenient proof.

It should be noted that, while giving a strong solution is usually not

feasible for most games, certain interesting subsets of a game can be strongly

solved. The typical example is endgame tablebases in chess; this topic is

covered in much greater detail in chapter 7, but here we will just recall that

[Bellman, 1965] first interpreted the KPK endgame in chess as a dynamic

programming problem, thus laying the foundation for retrograde analysis

methods such as [Thompson, 1986]. Endgame tablebases are usually only

possible for games that converge to a small number of states near the end:

games in which the amount of pieces on the board decreases over time are

ideal. Midgame tablebases are also possible in games such as checkers.

2.2.2 Minimax search

The idea of search in perfect information games is a direct consequence of

the minimax theorem [von Neumann, 1928], which is in turn a consequence

of Zermelo’s theorem. Programs that focus on search over a large number

of states were called in “type A” in the seminal paper [Shannon, 1950], and
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they have become the norm in fields such as competitive chess, relegating

“type B” knowledge-based programs to academic research, at least as far as

chess is concerned.

A full analysis of all minimax-based search techniques and heuristics

would be beyond the scope of this work. It suffices to remember that all

serious chess programs have sophisticated pruning algorithms, quiescence

detection, and a robust move ordering policy, as well as an evaluation func-

tion that is as smooth as possible. It can be said this field has seen constant

evolution, but not so much revolution. The original alpha-beta pruning [Ed-

wards and Hart, 1963] has since been outperformed and, to a large extent,

replaced by newer methods such as principal variation search (or negascout)

[Reinefeld, 1989]. See, for example, [Plaat et al., 1996] for a review of sev-

eral minimax search techniques and [Plaat et al., 1994] for a description of

another advanced minimax algorithm, MTD(f).

In actual play, minimax is often applied in tandem with iterative deep-

ening [Korf, 1987], which gradually increases search depth in order to obtain

better and better approximations of the best strategy (whereas standard

minimax is by its own nature depth-first and might not yield a decent re-

sult if the search was aborted before its natural end). Considering the best

moves first is of crucial importance in minimax methods; this has led to such

improvements as the killer heuristic [Akl and Newborn, 1977], then gener-

alized to the history heuristic [Schaeffer, 1989]. Quiescent moves [Kaindl,

1983] extend search depth when large variations in the evaluation function

are likely, for example after a capture. This optimization can be seen as a

form of domain knowledge hard-coded into the search algorithm.

2.2.3 Monte Carlo search

The aforementioned methods make the assumption that either games can be

explored to the end during the search, so as to discover the game-theoretical

value of a given branch, or (much more likely) an evaluation function is

available for the given domain. This is a reasonable assumption in chess and

other games, but might not be as immediate in other fields. The evaluation

may either not exist under realistic constraints or the domain may be obscure

enough that humans have not mastered its traits. Therefore, there are search-
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focused methods that approximate a position’s value in different ways from

minimax. These methods are typically younger than traditional minimax as

they usually require greater computational resources.

Monte Carlo searches, first introduced in [Metropolis and Ulam, 1949], are

essentially random walks in the problem space; see, for example, [Kalos and

Whitlock, 2008], for a more recent introduction. A very practical method, it

was born from the intuition that the probability of winning a round of card

solitaire Canfield could be approximated by playing it one hundred times

and counting the number of victories. By playing enough rounds, one could

reach any level of accuracy while avoiding difficult combinatorial reasoning.

Each sample obtained in this way provides statistical information on the

various possible moves and their expected rewards. [Tesauro and Galperin,

1996] shows an early example of Monte Carlo optimization by searching

through Backgammon positions. The main problem with the Monte Carlo

method lies in the speed (or lack thereof) with which it converges to a reliable

solution. Monte Carlo Tree Search (MCTS), an adaptive method that seeks

to improve convergence speed of the Monte Carlo method, will be the focus

of chapter 5. So far, it has seen the most success in the game of Go, whose

strategic nature makes evaluation functions difficult to write, and whose size

makes brute force approaches pointless.

A comprehensive definition of MCTS is found in [Chaslot et al., 2008]. Its

main peculiarity lies in the fact that, while sampling is indeed random from a

certain point in the simulated game, the initial moves are tested according to

a deterministic selection algorithm that resembles quite closely reinforcement

learning (see the next section); typically, this is the UCT algorithm [Kocsis

and Szepesvari, 2006] or some ad hoc version of it tailored to the specific

game. This ensures that more promising moves are allotted more simulation

time, resulting in faster convergence to a reliable value for the best move.

2.2.4 High-level knowledge and planning

A knowledge-based method can be defined as any approach that attempts to

estimate the value of a position without devoting most of its time to visiting

other positions. Shannon’s original chess player was a simple example of case-

based reasoning that could be run manually, even without a computer. These
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“type B” programs are therefore much closer to the way humans play games.

They attempt to understand the game before they act; they try to find

patterns in the game structure, using correlations between the structure of a

game position and expectation of its game-theoretical value. While a search-

based method will almost always be an online one (the program determines

the best move on the fly), knowledge-based methods often improve their

quality offline, training themselves and their knowledge base before the game

starts.

Planning is the problem of searching through a (smaller) set of states in

order to find some state satisfying a given goal. Since planning in general is

NP-complete or worse [Pollack, 1992], it has long been known that efficient

planning involves constraining one’s search to subspaces of the problem that

are known, from reasoning or experience, to achieve a given goal. Compared

to minimax methods, planning is obviously more dangerous, as there is no

such thing as a depth cutoff - if the algorithm stops before a plan is found,

nothing is returned. Moreover, planning requires a higher level of expressive-

ness and strategic awareness.

Planning methods never led to particularly strong chess players, though

there are instances of attempts at doing so. We recall, for example, Wilkins

[Wilkins, 1980] and his Paradise position solver. This kind of method is

remarkable because the agent actually understands the position it is exam-

ining, finding high-level patterns influencing the decision-making process, as

opposed to simply outputting a number, and provides reasoning and ratio-

nale behind its decisions. The weak points are that the knowledge base needs

to be inserted manually and there are positions that the player simply cannot

play because it lacks deep enough knowledge to do so. Moreover, Paradise

was firmly centered on chess and had hard-coded primitives that could not be

applied to any other game. Still, it has been shown that chess plans can be

learned from databases and even humans can improve their play with these

plans [Sadikov and Bratko, 2006].

There are other methods that attempt to provide a computer with intel-

ligence by mimicking the way humans approach a game. Perhaps the most

popular among these is chunking, which is based on a known psychological

mechanism [Gobet et al., 2001]. Much research has been devoted to the

way expert chess players see and reason about the board – see, for exam-
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ple, [Chase and Simon, 1973]. Human players form a repertoire of chunks,

or patterns, whose properties they can quick recall and apply. In chess, for

example, chunks are specific piece arrangements, whereas in Go they can

be certain stone patterns. Programs have been written that could acquire

predictive information and usage information from chess chunks [Walczak

and II, 1993, Walczak, 2003]. Research in Go patterns has been even more

widespread (probably because Go was not killed by minimax), and these pat-

terns are often included in search-based programs. See [Stern et al., 2006]

for a recent algorithm, and [Bouzy and Cazenave, 2001] for a more general

survey of computer Go techniques.

Finally, we note that research exists in the field of transfer learning, or

the ability for an agent to learn across different games, taking features from

a better-understood domain and exploiting them in novel games. See, for ex-

ample, [Banerjee and Stone, 2007] for an example using tic-tac-toe knowledge

to improve its play quality in simpler variants of Connect Four and Othello.

2.2.5 Neural networks

No review of computational intelligence methods could do without a mention

of TD-Gammon [Tesauro, 1992, 1994], a major success story in game research.

This program reached a world-class level of play in Backgammon by using

a neural network trained with the method of temporal differences [Sutton,

1988]. This method provides the so-called reinforcement learning, that is,

the agent has an expectation concerning the value of an action, tests the

action, observes the result, and adjusts the expectation accordingly. Most

of the time, the agent will play the move with the highest expected return

(exploitation), but occasionally it will chance another move to check for even

more profitable options (exploration). In more ways than one, this resembles

the Monte Carlo method described above, however this form of reinforcement

learning does not play random games; instead, it updates its beliefs on the

best policy at the end of each game.

As mentioned, this method proved wildly successful in Backgammon; TD-

Gammon acquired grandmaster-class play through self-play alone, and later

world champion level with the addition of hard-wired domain knowledge.

This is a rarity, as programs that develop their ability by only playing against
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themselves usually tend to learn quirky tactics that only work against specific

players. In fact, even though it was used elsewhere such as in Go [Schraudolf

et al., 1994] and chess [Baxter et al., 2000], the success of temporal differ-

ence learning was not replicated in most other games; Tesauro attributed

it, among other things, to the random factor in Backgammon and certain

games being non-Markovian (i.e. the best strategy depending on previous

states other than the current one).

Trained neural networks have been a popular alternative to minimax.

In addition to Backgammon, they have been applied to chess [Fogel et al.,

2004], checkers [Chellapilla and Fogel, 1999] and Othello [Moriarty and Mi-

ikkulainen, 1995]. The last contribution was especially successful as the agent

learned unexpectedly complex strategies.

2.2.6 Genetic programming

Yet another approach to function optimization – which is what game playing

boils down to – is through evolutionary genetic methods. This branch of

Artificial Intelligence could be considered an extension of an iterative opti-

mization algorithm called simulated annealing [Kirkpatrick et al., 1983]. In

simulated annealing, a function is minimized through iterative adjustment of

its parameters. A probabilistic gradient search, simulated annealing would

move from a point to one of its better neighbors according to a probability

distribution. It was noted that losing track of previous best points could be

detrimental to the overall quality of the result, as progress could easily be

blocked by a local minimum in the function, and the algorithm would need

to backtrack and retry. Genetic programming [Koza, 1992] is an answer to

this problem that replaces the single point with a population of candidate

best points and applies natural selection dynamics to this population.

Application of genetic methods to games is almost as old as genetic pro-

gramming itself; [Ferrer and Martin, 1995] is an early example for chess.

This is a very powerful method, but one that is generally regarded as rather

empirical in many ways, as many results that are observed in practice are

extremely difficult to prove in theory. Genetic algorithms typically require

fine-tuning and a very careful choice of the selection model to be used, or

they can easily yield no result at all.
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Genetic algorithms are very general and can be applied to a variety of

artificial players; basically, any function that accepts parameters or weights

can be evolved with this method. In [Fogel et al., 2004], the authors develop

an evaluation function based on classical features as well as neural networks

whose inputs are opportunely chosen configurations of chessboard squares.

Individual agents differ in the weights assigned to the function as well as

those associated with the nodes of the neural network.

The work in [Lassabe et al., 2006] deserves a mention as a genetic method

for teaching a computer player how to play, among others, the famous KRK

endgame. While the building blocks of the algorithm are elementary patterns

and strategies defined by a chess expert, how these blocks are combined and

used in response to the situation on the chessboard is decided by a genetically

programmed algorithm. This is only one of the most recent results in a

series of papers dedicated to the relationship between chess and evolutionary

learning.

2.3 Imperfect information games

Imperfect information games are those games in which players are not fully

aware of the current state of the game. The term covers a wide range of

games that are vastly different from one another: examples include Battle-

ship, Bridge, Kriegspiel, Poker, Risk, Scrabble. Much like the case of perfect

information, these games differ in the size of the problem space and the type

and number of actions that players can perform. Likewise, we do not ex-

pect a single algorithm or method to be effective in solving every imperfect

information game.

From a game-theoretical standpoint, imperfect information games are

characterized by the fact that players do not know, in general, which state

they are in. At any time, there is an information set containing all plausible

states, but a player cannot distinguish among these individual states. The

cardinality of information sets can range from one to infinity. Kuhn trees

[Kuhn, 1953] are the imperfect information equivalent of extensive form in

perfect information games. Figure 2.1 shows the difference between perfect

and imperfect information, with a 1 marking a choice node for the first player,

a 2 for the second player, and leaves containing payoffs for both players (the
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Figure 2.1: Extensive form with perfect or imperfect information.

game in the example is not zero-sum). In the imperfect information case on

the right, the second player does not know the first player’s move; in other

words, his information set is comprised of the two states connected with a

dashed line. If he plays L’, payoff will be (1,1) or (1,0) depending on whether

the first player chose L or R.

Zermelo’s theorem does not hold in general for these games. In fact, the

optimal strategy in a generic imperfect information game is a mixed strategy

that plays different actions according to a probability distribution. In spite of

this, the methods used to play such games, while custom, are often variations

of perfect information approaches.

2.3.1 Minimax search

Minimax cannot usually be applied without modifications, as there is no sin-

gle entity to maximize and minimize. Moreover, [Blair et al., 1993] notes that

exploring these trees is NP-hard and requires custom algorithms depending

on the domain. This is not to say it has not been done; depending on the

domain, minimax-like methods can be the most suitable for solving a certain

game. If a two-player game of imperfect information can be suitably rep-

resented, for example as a one-player game against nature, in which nature

plays moves according to some distribution, then there are feasible minimax

approaches.

Expectiminimax [Michie, 1966] (often referred to as Expectimax) is mini-

max with chance nodes. Instead of returning a minimum or maximum value,

chance nodes return a weighed average of their children. For example, if a
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move had three possible outcomes, it could be represented as a chance node;

each child would be explored separately and then averaged. While the ap-

proach is sound, it is quite inefficient as it implies all children need to be

explored: minimax should follow the opposite strategy of pruning as much

as possible.

An algorithm known as *-minimax [Ballard, 1983] was invented to serve

as the imperfect information equivalent of alpha-beta pruning with chance

nodes. While it was not immediately recognized, it was later rediscovered

[Hauk et al., 2006] and updated to be the equivalent of newer search algo-

rithms such as negascout. Research on pruning in trees with chance nodes is

still ongoing; see, for example, [Schadd et al., 2009] for a recently developed

forward pruning algorithm.

2.3.2 Monte Carlo search

Monte Carlo methods are often one of the least expensive choices for games

of imperfect information, as they do not necessarily need any domain knowl-

edge. There are, however, some special considerations to be made when using

such methods in imperfect information domains, not least of which the choice

of which opponent model to use. It is noted in [Frank and Basin, 1998, 2001]

that if a Monte Carlo sampling method works by picking possible states at

random and reasoning as if each was a game of perfect information (e.g. with

a minimax-like algorithm), then there are theoretical limits on the accuracy

of the result due to strategy fusion and non-locality. Evidently, a best defense

model – assuming the opponent will always act in the best way as if he had

perfect information – may not be a realistic assumption or even a useful one

[Jamroga, 2001].

This has not prevented some Monte Carlo methods from being popular

in Scrabble [Sheppard, 2002], Bridge [Ginsberg, 1999], Poker [Billings et al.,

2002], Kriegspiel [Parker et al., 2005, 2006] and more recently Phantom Go

[Cazenave, 2005, Borsboom et al., 2007]. It should be noted that while all

these programs can be gathered under the generic Monte Carlo umbrella

term, they are vastly different from one another and only share the common

trait of running many simulations to converge to the result. For example,

in Scrabble simulations are concerned with letter assignments, and they are
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skewed to represent the opponent’s tendency to keep good letter sets for later

turns, whereas the quoted Phantom Go papers deal with more-or-less text-

book Monte Carlo Tree Search, but starting from random plausible layouts

for the opponent’s stones.

2.3.3 Planning

There is no doubt that planning methods are common in videogame AI. Cap-

turing complex behavior such as troops management in a real-time strategy

game or a bot’s chasing patterns in a first-person shooter would be difficult

without an abstraction layer. Still, in most cases these are hard-wired plans

scripted by the developers and usually unchanging [Hoekstra, 2006]. What

we are interested in is the dynamic ability to plan in the absence of perfect

information.

The first planners were entirely deterministic and assumed perfect knowl-

edge of the domain. This was one of the basic premises of the famous STRIPS

language and later methods using it as their foundation [Fikes and Nilsson,

1971]. This is not to say that they could not work in a environment with

imperfect information at all. They simply could not understand the changing

world; if the agent left a block in a given position and found it in a different

one, it would need to recalculate its plan to adapt it to the changing circum-

stances. It would view the moving block as no more than the effect of some

’poltergeist’ that invalidated its reasoning; it would never account for it, or

try to predict it.

It was not until much later that languages and agents were expanded

to include the handling of imperfect information, or reasoning under un-

certainty. Seeing as STRIPS were introduced in the early ’70s and these

developments did not become popular until the ’90s, it took the scientific

community two decades to start addressing the problem of an agent that

was not omniscient. The theory behind some of this research is that of

partially observable Markov decision processes, an extension of the classical

theory in which not every transition may be known. This purely stochastic

approach was followed, for example, in [Kaebling et al., 1998]. Other systems

were developed that inherited more from classical planning algorithms, such

as the early C-Buridan, as described in [Draper et al., 1994]. Later, Mahinur
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[Onder and Pollack, 1999], introduced the first optimization techniques by

using heuristics to drive its search. These were both regressive planners,

starting from a desired end goal and moving back to the starting state.

An interesting new take on conditional planners is PTLplan [Karlsson,

2001]. PTLplan is a progressive planner, meaning that it starts reasoning

from an initial state (which can be probabilistic) and applies rules until it

finds a plan satisfying a goal, or realizes that no such plan exists. Aside from

the usual fluents and constructs from temporal logic, it uses a series of con-

trol formulas modeling strategic knowledge of the domain; these formulas are

used as invariants, and dramatically prune the search tree, greatly improv-

ing performance. This approach definitely shows potential in a game-based

scenario.

Other, newer approaches to planning involve studying the problem as

a particular application of a different theory. We recall, for example, the

research done in the last decade on planning as model checking (see, for

example, [Giunchiglia and Traverso, 1999] for an exhaustive introduction to

the subject). Model checking deals with the satisfiability of a set of formulas

expressed in a given language; therefore, planning problems can be viewed

as a model whose satisfiability equates to the plan being applicable.

As far as games go, planning methods have been successful in bridge,

though the general framework is not game-dependent [Smith and Nau, 1993].

The authors build minimax-like trees, but instead of containing states, each

node contains a plan: basic formalized strategies that are common in ex-

pert human play and bridge manuals. [Smith et al., 1998] is based on

a methodology called Hierarchical Task Network planning (see [Sacerdoti,

1977]). Within this paradigm, plans are subdivided into a hierarchy of tasks

to be completed, with constraints and conditions depending on the actual

situation that the agent encounters.

We also cite [Chung et al., 2005], a cross-over of planning and Monte

Carlo in a real-time strategy game. Just like the bridge program replaces

states with strategies in a minimax context, it is possible to do the same in

a Monte Carlo environment, using a simulator to approximate the outcomes

of a given plan. For games set in a continuous domain in both space and

time this seems like one of the most promising avenues.
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2.3.4 Opponent modeling

The importance of opponent (or adversarial) modeling was understated for

a long time, mostly because it is not generally considered a foremost concern

in practical chess. While there is research on opponent modeling in chess,

it is often the case with chess program that any time spent doing opponent

modeling would yield higher returns if spent examining more nodes.

Still, [Jansen et al., 2000] offers a statistical approach to the problem of

predicting the opponent’s move in chess. The authors make use of probability

distributions with data from a database of grandmaster games in order to

assign appropriate weights for select ’features’ in a given evaluation function,

so that the function will try to conform to the playing style of the human

being studied. On the other hand, [Willmott et al., 1998] is about opponent

modeling in the context of the aforementioned Hierarchical Task Network

planning, with applications to chess and Go. The main goal of opponent

modeling in [Willmott et al., 2001] is to reduce Go’s huge branching factor.

In quite a few imperfect information games, opponent modeling is the

only way to achieve expert play. Poker is entirely dependent on the player’s

ability to classify the opponent as playing tight or loose, and gauge how

likely he is to respond to bets by folding, calling or raising. In Poker alone,

which has been a true trend-setter in this field, many opponent modeling

techniques have been implemented, including neural networks [Billings et al.,

2002], Bayesian methods [Southey et al., 2005, Ponsen et al., 2008] and game

tree search [Billings et al., 2006].

Bayesian probabilities were also used to model the opponent in a simpli-

fied variant of Kriegspiel played on a 4x4 board [Del Giudice et al., 2009], as

well as in Stratego [Stankiewicz, 2009]. In other cases, opponent modeling

does not target a specific opponent, but captures the features of a generic,

average opponent. This is used, for example, to skew the otherwise uniform

probabilities in a Monte Carlo approach (selective sampling), as has been

done in Scrabble [Sheppard, 2002] and Bridge [Ginsberg, 1999].



Chapter 3

Kriegspiel

In this chapter, we introduce the game of Kriegspiel, which is the focus of

this thesis. We first discuss the history, spirit and rules of the game (a

slightly less obvious task than one would expect, given that there are several

rulesets), then we list the available literature dealing with the game. The

topics concerning computer agents for playing Kriegspiel will be touched in

much greater depth in the next chapters.

3.1 Overview

Kriegspiel is a chess variant in which the players cannot see their opponent’s

pieces and moves. The game is played on three chessboards, one for each

player and one for the referee (umpire), the only one possessing complete

information on the state of the game. The players are given a full set of

pieces of their opponent’s color, and are free to place them anywhere on their

chessboards to aid their memory or visualize their guesses on the opponent’s

deployment, but this has no effect on the game itself.

When a player is requested to move, he or she will announce the move

to the umpire (and only the umpire; there should be no direct interaction

between the players in Kriegspiel). The umpire will then check on his chess-

board whether the attempt is legal.

• If the move is illegal, he will say “illegal” and ask the player to choose

another move instead.

33
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• The referee should say “nonsense” if the move was trivially illegal even

on the player’s board, for instance if he were to try to move a knight

like a rook; this to prevent one player to trick the other with a large

number of illegal moves in order to mislead the opponent about his

actual resources.

• If the move is legal, the umpire will be silent, or say something along

the lines of “Black moved” or “White to move”.

In addition, the umpire will notify both players in the following cases.

• If a piece is captured (specifying where, and possibly some information

on the captured piece depending on the rule variant, but never will he

say anything on the nature of the offending piece).

• If a player’s King is in check, he will specify the direction (or directions,

if it is a double check) from which the check is being given.

– Rank check.

– File check.

– Long diagonal check (from the king’s point of view).

– Short diagonal check (from the king’s point of view).

– Knight check.

The umpire’s messages are therefore laconic, and as a rule, everything

he says can be heard by both players, even though they will draw different

information out of them. In Kriegspiel, you know what you know, but you

do not know what your opponent knows.

Unfortunately, Kriegspiel is hardly a standardized game, which is both a

cause and a consequence of its scarce popularity throughout the XX century,

at least until more recent years. This variant has, itself, several variants

that, while keeping the original spirit of the game intact, differ slightly in the

way the umpire communicates his messages, and the amount of information

contained therein.
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3.2 Rule variants

Chess Kriegspiel was born in England, and the oldest ruleset is referred to

as ’English rules’. The rules enforced at The Gambit (a famous chess club

in London), an example of English rules, are listed in Appendix A. It can be

said that the spirit of the English ruleset is the most akin to that of the old

Kriegspiel used to simulate war. It makes for slower, but subtler gameplay in

which every action is to be carefully considered, and information is expensive

to acquire. In fact, the rules are designed to force the player to pay a price

for each piece of information he gets.

The most notable rule here is called ’Are there any?’, a sentence which

has become quite famous (Kriegspiel is known as ’Any?’ in the Netherlands).

It is also the name of a collection of Kriegspiel problems by G.F. Anderson;

a problem from that book will be examined in the next section. This rule

allows the player to ask the umpire, before his move, whether he has any

possible pawn tries, that is, legal capturing moves with his pawns. If there

is none, the umpire will say ’No’; otherwise he will say ’Try’. In the latter

case, the player must try at least one capture with his pawns. If the try is

unsuccessful, he is not forced to try another pawn capture. In this way, the

player pays for the information he has been given, possibly losing his freedom

to choose. Also, the English rules do not specify whether a captured piece is

a pawn or not.

The second important ruleset is due to J.K. Wilkins, an American math-

ematician (Kriegspiel has always been most popular in Anglo-Saxon coun-

tries). He directed the RAND Institute after the Second World War and

introduced Kriegspiel into the Institute as a means of training in the analysis

of war scenarios (RAND being a large think tank with the goal of provid-

ing advice to the government on many topics, including the new cold war).

This ruleset is known as RAND rules and is listed as Appendix B. RAND

games are usually faster than games played under the English rules. It was

thanks to this connection with the RAND Institute that several world-famous

game theorists such as John Nash and Lloyd Shapley became interested in

Kriegspiel.

There is an additional American ruleset that lies halfway between the

English and RAND rules, and it is called ’Cincinnati style’, listed in Appendix
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C. This ruleset forms the basis for variant wild 16 (Kriegspiel) on the Internet

Chess Club, whose actual rules are described in Appendix D. In these rulesets,

pawn tries are automatically announced before every move, with no try being

forced upon the player. Since most Kriegspiel games are now played on the

ICC, Cincinnati style rules are the obvious candidate for standardization in

the event of official competitions. Indeed, the Computer Olympiads have

already adopted the ICC rules as the only legal variant, and the programs

described in this thesis all support this ruleset.

It should be noted that, in many situations and most scientific literature

on Kriegspiel (such as optimal endgame strategies and algorithms), the rule-

set of choice is irrelevant. Many Kriegspiel problems can also be solved under

more than one ruleset.

There are also a few Kriegspiel-like chess variants, typically with more

information disclosed to the players. For example, in dark chess, a player

can see the squares threatened by his pieces, whereas in invisible chess only

some pieces are hidden from view. Stealth chess (not to be confused with the

fictional chess variant from the Discworld novels) is a cross-over of chess and

Stratego, in which the nature of a piece is only revealed when attempting a

capture.

3.3 Game complexity

The two most important measures of game complexity are state-space size

and game-tree size. The former refers to the number of legal distinct states

allowed by the game’s rules; the latter to the number of distinct games that

can be played. For chess, the first estimate was given in the seminal paper

[Shannon, 1950], with a lower bound of 1043 for state-space size and 10120 for

game-tree size. This was a conservative estimate and [Allis, 1994] provided

a larger one: 1050 and 10123, respectively.

If we consider Kriegspiel to be just a game of chess, then we need not

go further than this: the estimates also apply to Kriegspiel. However, these

numbers refer to the umpire’s perspective of what is going on, but they make

no sense to the players because they cannot perceive the state of the game to

begin with. Rather, the players will define the “state” of the game as either

the disposition of their own pieces, or the disposition with its associated belief
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state – that is, the set of all dispositions of enemy pieces compatible with

the history of the game so far. The former definition makes the game look

simpler, with just about 1025 states corresponding to the possible layouts of

the player’s own pieces, but this is merely an illusion as it completely ignores

all the information the player could have collected so far. In other words,

the smaller state space is just a reflection of a myopic player’s inability to

distinguish between states.

Belief states introduce a much higher level of complexity. If we imagine

the 1050 positions of chess to be 1025 dispositions of white pieces, each of

which has on average 1025 dispositions of black pieces, and each may or may

not be included in the current belief state, the number of unique belief states

explodes like a power set: 1025 · 21025 . Clearly, this astronomical number is

nowhere near the actual complexity of the game, because the umpire is not

informative enough to allow a player to distinguish among all possible belief

states. Indeed, the number of umpire messages and combinations thereof

is the real limit to the combinatorial explosion, and this number is just as

important, if not more, than the actual branching factor. Such a consid-

eration is especially interesting in the endgame, as we will see in chapter

8: it is the reason why we can build a database of Kriegspiel belief states

(metapositions) with a 1010 : 1 compression factor.

We gathered data from about 12,000 Kriegspiel games played on the

Internet Chess Club. According to this collection, the average duration of

a Kriegspiel game is 52 moves (104 plies), making it somewhat longer than

a chess game, and the perceived branching factor is 40. Of these, about 10

would be illegal if tried. Let us give an estimate on the number of imperfect

information states, then. We know that there are about 10123 chess games,

and if we exclude illegal moves for a moment, we have that each node in

each one of those games will correspond to a belief state determined by the

previous moves. Make the extreme assumption that all belief states generated

by distinct sequences of moves are distinct, and 50 moves on average yield

∼ 10125 distinct belief states.

Illegal moves complicate matters, but this fact is mitigated by their short

horizon: usually, they become uninformative after the opponent’s next move,

that is, we cannot rule out any states based on the memory of the illegal move.

For this reason, we may be able to represent illegal moves as a multiplica-
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tive constant for the number of game states instead of a contributor to its

combinatorial explosion. If there were 10 illegal moves on average and one

tried all their possible subsets, of which there are 210 (the order is irrelevant

as one illegal move does not affect the others), the multiplicative constant

would not exceed 103. Then, we can give an upper bound to the number

of belief states at 10130. This is a loose upper bound, and the actual num-

ber is probably quite a bit less. It still shows that the number or perceived

states is clearly much larger than the number of legal chessboards (though

not as large as the number of Go states, which is around 10170 [Tromp and

Farneback, 2007]). The number of Kriegspiel games is enormous if one takes

illegal moves into account, though: between any two chess moves there can

be any sequence of illegal moves. Even ignoring the order, that means on

average 1000 combinations of illegal moves in between any moves of any chess

games.

3.4 Literature

Although it is a fascinating game, played by hundreds of people every day on

the Internet Chess Club, only a small number of papers have studied some

aspects of Kriegspiel or Kriegspiel-like games. In this section we provide a

summary of Kriegspiel literature.

Kriegspiel was often featured in specialized chess variation journals and

magazines such as The chess amateur as early as the 1920’s. For example,

[Isham, 1926] contains the earliest claim of the existence of a forced mate for

the bishop and knight endgame in Kriegspiel. The game was mentioned in the

seminal book Theory of Games and Economic Behavior [von Neumann and

Morgenstern, 1944] as “blind chess”. Actual scientific research on Kriegspiel

did not start until much later, though. The first research papers on Kriegspiel

tackled the problem of building an automatic referee [Burger, 1967, Wetherell

et al., 1972, 1975]. We believe that the best-known automatic referee for

Kriegspiel is currently offered by the Internet Chess Club, although it has a

few shortcomings due to its chess-like nature. For example, while it allows

players to save the transcripts of finished games, it will not record illegal

moves, which would be extremely insightful for users to know.
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3.4.1 Kriegspiel endings

The next step was the construction of algorithms for playing certain Kriegspiel

endings. Players and researchers quickly realized that Kriegspiel endgames

were harder than their chess counterparts, but could, in some cases, be won

with probability 1 or approaching 1. Thirty years ago, Donald Knuth gave the

KRK endgame in Kriegspiel as an assignment to a Stanford class [Van Wyk

and Knuth, 1979]. Boyce, a student in Knuth’s class, later published a

study on KRK, proposing a natural-language procedure to solve it in [Boyce,

1981]. Another algorithm for the same endgame was found independently by

[Leoncini and Magari, 1980]. This endgame is well-known in orthodox chess,

having been studied since the XIX century; Torres y Quevedo built the first

mechanical player for KRK in the last decade of 1800.

Both Boyce and Magari’s algorithms are based on a series of informal

directives that allow White to achieve checkmate in a bounded number of

moves regardless of Black’s defense, but it is not proved that this is always

the case, or that the strategy leads to mate in the shortest number of moves.

In particular, Boyce’s algorithm seeks to trap the black king in a single

quadrant of the board, pushing it back towards the corner with the white

king. Magari’s algorithm sweeps the board rank by rank with the rook until

a check message is announced, at which point it infers on which side of the

board the opponent is and works towards limiting its space not unlike Boyce’s

algorithm.

Lloyd Shapley found a solution to the KRK endgame even in the case of

an infinite chessboard quadrant (see Figure 3.1), showing how checkmate is

inevitable in a bounded number of moves. He included this peculiar problem

as number 12, “The infinite power of the rook”, in his unpublished work

The Invisible Chessboard [Shapley, 1987]. Later in this thesis we will show

another problem from the same book regarding a mate with bishop and

knight. The solution to the KRK puzzle has recently been documented in

[Ferguson, 2009].

The KPK ending with king and pawn versus king was the first to actually

be implemented on a computer system in the Prolog language [Ciancarini

et al., 1997]. This paper also provides an example of a Kriegspiel scenario

in which the stronger side cannot checkmate with probability 1 but can get
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Figure 3.1: KRK on an infinite chessboard.

as close to 1 as desired. This is demonstrated by showing that a particular

position is equivalent to a recursive game called Blotto’s problem, in which

the stronger player needs to take an arbitrarily small risk and is unable to

take the full reward of 1. The Prolog player acts under the principle of bound

rationality and makes reasonable choices based on the time and resources at

its disposal.

The KBNK and KBBK endgames were investigated in [Ferguson, 1992,

1995], respectively. While these problems had been discussed by amateurs

for decades, these papers actually show a complete strategy for winning these

endgames from the most generic starting positions whenever possible. Again,

sometimes the stronger side needs to take a small risk of drawing the game

in order to achieve victory; in particular, in KBBK one does not seem to be

able to win with certainty if both the king and the bishops start in the 16

central squares.

The first computer player for the KRK, KQK, KBBK and KBNK endgames

was described in [Bolognesi and Ciancarini, 2003, 2004]. It is based on the

concept of metapositions, a tool for merging game states into a single en-
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tity for the purpose of evaluation. See chapter 6 for an in-depth discussion

of this method. The Kriegspiel player in [Ciancarini and Favini, 2007a,b],

described in chapter 4 extends the method to all lone king endgames by

basically extrapolating a generic evaluation function that is helpful in most

cases.

3.4.2 Problem solving

Much like chess, Kriegspiel problems can be invented and solved. Usually,

these problems require the reader to make good use of whatever information

is provided to rule out impossible cases. In some cases, both players know

the starting positions of all pieces; in others, only their type and amount are

known, and sometimes not even those. Certain problems include a sequence

of moves played before reaching the current state of the games. What all

problems have in common is that one side needs to win or draw within a

certain number of moves, much like any chess problem. [Anderson, 1959], [Li,

1995], as well as the unpublished [Shapley, 1987], [Ciancarini, 2004] contain

collections of such problems.

From a scientific point of view, solving Kriegspiel problem is a state re-

construction task. One wants to reconstruct a state, either in the future

(checkmate) or in the present and even in the past. [Russell and Wolfe,

2005] is an attempt at finding future checkmates through a search in large

AND-OR trees, whereas [Nance et al., 2006] uses Kriegspiel as a test bed

to infer data about the opponent’s pieces as clauses within the context of

a logic framework. There is not much more research specifically devoted to

this aspect of Kriegspiel, mostly because practical game-playing programs

have usually not focused on the task of reverse engineering the exact state

of the game (which is a hopeless task except in the very beginning and the

very end).

3.4.3 Player agents

We assume our player does not cheat by accessing the umpire’s board. This

may seem needless to say, but there used to be a program called Fark on

the Internet Chess Club that included, among its modes of play, a perfect
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information one for unrated games. It is difficult to quantify the value of per-

fect information, but there exists a very obscure Kriegspiel variant in which

one player gains perfect information but must forfeit his queen and rooks

to compensate for it. There are also the aforementioned partial-information

variants: dark chess, invisible chess and stealth chess. Information has a

different value in each of those.

The simplest player agent is, obviously, a random player. The rationale

behind the random player is that the opponent cannot see it is moving at

random; given that checkmate is harder in Kriegspiel than it is in chess, a

random player may have comparatively better luck than in chess. Taking a

step forward, most early Kriegspiel bots were semi-random, possessing a set

of case-based rules (when captured, capture back; exploit your pawn tries;

always promote when possible; etc.) but reverting to random moves when

no such condition matched.

For a long time, there were no agents capable of playing a full game of

Kriegspiel better than a semi-random player. The first algorithm to do so,

aside from the aforementioned [Ciancarini and Favini, 2007a], was [Parker

et al., 2005]. This was a Monte Carlo method based on the generation of

random boards compatible with the umpire messages so far, evaluated with

a chess engine; it would play the move with the best average value. This

approach is discussed at length, and compared with our own Monte Carlo

algorithm, in chapter 5.

A different method, used in [Del Giudice et al., 2009], consists of repre-

senting the Kriegspiel game as a stochastic process, with possible positions

being nodes on a random walk. Then, probability theory and past history

can model the transitions between one position and the next. While this

method was only experimented on a smaller board and with just a subset of

the full arsenal of pieces, it was the first serious attempt at modelling the

opponent in Kriegspiel.

Very recently, [Bryan et al., 2009] implemented a Kriegspiel player for

the full game with a method reminiscent of [Parker et al., 2005], but with

a more sophisticated board generation algorithm based on particle filtering

techniques.



Chapter 4

Playing Kriegspiel with
metapositions

In this chapter, we describe a Kriegspiel-playing program based on the con-

cept of metaposition, that is, the merging of a very large set of possible game

states into a single entity. This merging operation allows us to exploit tradi-

tional perfect information game theory tools such as the Minimax theorem.

We provide a general representation of Kriegspiel states through metaposi-

tions and describe an algorithm for building and exploring a game tree of

metapositions. Our method does not assume that the opponent will react

with a best defense model. We evaluated our approach by competing against

both human and computer players. We found that this method led to a good

quality of play, which outperformed every other available computer agent

until we developed the Monte Carlo player described in the next chapter.

The structure of the chapter is as follows: in Section 4.1 we model the no-

tion of Metaposition for Kriegspiel, adapting a concept introduced by Sakuta

and Iida for Shogi; in Section 4.2 we describe the basic design of Darkboard

1.0, our program able to play a whole game of Kriegspiel, with a special

emphasis on the representation of metapositions, whereas in Section 4.3 we

describe how a tree of metapositions is generated and updated; in Section 4.4

we show how a move is selected, exploiting the evaluation function described

in Sect. 4.5. Finally, in Section 4.6 we present the results of a number of

playing experiments, and draw our conclusions.

43
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4.1 Metapositions

In the context of imperfect information games, if S is the set containing ev-

ery possible game state (for example, every possible chessboard configuration

in the game of chess, or all card distributions in a hand of poker), we can

define the information set I ⊆ S as the set of possible game states at any

given point during a game, from a player’s point of view. The player has no

way to distinguish these states from one another, and in the tree represen-

tation of imperfect information games (Kuhn trees), these indistinguishable

states may be linked with dashed lines meaning that the opponent does not

know in what state they are after the move. For example, in Kriegspiel the

black player’s information set would contain twenty game states after White’s

opening move, corresponding to the twenty moves a chess player may choose

from on their first ply.

The information set for a simple game can be computed and maintained

explicitly throughout a game; this is, for example, the case in imperfect in-

formation tic-tac-toe (where the opponent’s marks are invisible and a referee

rejects attempts at placing a mark on an already marked square). However,

for complex games like Kriegspiel the storage capacity and processing power

required for building and using an information set far exceeds the capabilities

of current and foreseeable technology, given that the typical information set

for an average middle game position in Kriegspiel may contain about 1027

states, and it is certainly possible to envision games with even larger problem

spaces.

Clearly, a program that aims at mastering an imperfect information game

must capture the nature of the information set and work on it somehow,

finding reasonable ways to drastically reduce the size of the problem. For

example, the Monte Carlo approach focuses on a small subset of game states

on which it then performs its analysis. The approach described in this pa-

per provides a different approximation of the information set based on the

concept of metaposition as a tool for merging an immense amount of game

states into a single, small and manageable data structure.

The word metaposition was first introduced by Sakuta [Sakuta, 2001],

where it was applied to endgame scenarios for the Shogi equivalent of Kriegspiel.

The primary goal of representing an extensive form game through metapo-
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Figure 4.1: Metapositions and uncertainty in Kriegspiel: before and after
Black’s move.

sitions is to transform an imperfect information game into one of perfect

information, which offers several important advantages and simplifications,

including the applicability of the Minimax theorem. A metaposition, as de-

scribed in the quoted work, merges different, but equally likely moves, into

one state (but it can be extended to treat moves with different priorities).

Let us introduce the concept through a Kriegspiel example based on Fig-

ure 4.1. Suppose that Black is now to move. His King has three possible

choices: a7, b7 and b8. White’s possible moves on the next ply depend on

which one Black chooses; in particular, if Black plays Ka7 or Kb8, White

has the same 7 king moves plus a pawn move. However, if Black selects b7,

White will not be able to play Kc6, and will only have 6 king moves and 1

pawn move to choose from. In other words, a7 and b8, while different moves,

do not differ in the strategy space available to White on his next move. They

are excellent candidates for merging into a single metaposition.

The result of the merging is described by a Kuhn tree [Kuhn, 1953] (a

game tree wherein the player with the right to move cannot distinguish be-

tween states linked with a dotted line), shown in Figure 4.2. Uncertainty

has disappeared, at least officially; White knows where he is from his current

strategy space, as no two child nodes can share the same move set (or they

would be merged). Also, since the game is now one of perfect information, it

makes sense to generate an evaluation function and start assigning each node

a minimax value. The value of a metaposition node could be, for example,

the minimum value across all the positions that make up the metaposition.
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However, this definition is ill-suited to a generic game of Kriegspiel, as

the player does not know their strategy space beforehand. The very essence

of this game is that you do not know whether a move is legal until you try it.

Even if this were not the case, the typical Kriegspiel midgame has a branch-

ing factor of 60-70 moves for each player, and many White moves will have

a Black move that makes them impossible (or conversely, make new moves

possible), thus generating a large number of strategy spaces and metaposi-

tions; hence, relatively few positions could be merged together. Therefore,

we move from this definition of metaposition to a more generic one.

Definition. If S is the set of all possible game states and I ⊆ S is the

information set comprising all game states compatible with a given sequence

of observations (referee’s messages), a metaposition M is any opportunely

coded subset of S such that I ⊆ M ⊆ S. The strategy space for M is the

set of moves that are legal in at least one of the game states contained in

the metaposition. We then speak of pseudolegal moves, assumed to be legal

from the player’s standpoint but not necessarily so from the referee’s. A

metaposition is endowed with the following functions:

• a pseudomove function pseudo that updates a metaposition given a

move try and an observation of the referee’s response to it;

• a metamove function meta that updates a metaposition after the un-

known move of the opponent, given the associated referee’s response;

• an evaluation function eval that outputs the desirability of a given

metaposition.

From this definition it follows that a metaposition is any superset of the

game’s information set (though clearly the performance of any algorithm will

improve as M tends to I). Every plausible game state is contained in it, but

a metaposition can contain other states which are not compatible with the

history. The reason for this is two-fold: on one hand, being able to insert

(opportune) impossible states enables the agent to represent a metaposition

in a very compact form, as opposed to the immense amount of memory

and computation time required if each state were to be listed explicitly;
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on the other hand, a compact notation for a metaposition makes it easy to

develop an evaluation function that will evaluate whole metapositions instead

of single game states. This is the very crux of the approach: metapositions

give the player an illusion of perfect information, but they mainly do so in

order to enable the player to use a Minimax-like method where metapositions

are evaluated instead of single states. For this reason, it is important that

metapositions be described in a concise way so that a suitable evaluation

function can be applied.

It is interesting to note that metapositions move in the opposite direc-

tion from such approaches as Monte Carlo sampling, which aim to evaluate

a situation from a significant subset of plausible game states. This is per-

haps one of the more interesting aspects of the present research, which moves

from the theoretical limits of several Monte Carlo approaches as stated, for

example, in [Frank and Basin, 1998], and tries to overcome them. In fact,

a metaposition-based approach does not assume that the opponent will re-

act with a best defense model, nor is it subject to strategy fusion because

uncertainty is artificially removed. 1

The opportune coding must be one that will allow the algorithm to ex-

amine a metaposition as a single entity, without worrying about the single

states contained in it. Any other way would be computationally intractable.

In other words, this coding is a single game state of a different game than

Kriegspiel, a game with perfect information. As shown in Section 4.2, Dark-

board’s metapositions make use of pseudopieces to this purpose, representing

a metaposition as a single chessboard where allied pieces coexist with ghostly

enemy pieces following their own rules for movement.

The definitions of the functions pseudo and meta are purposely vague

except for their output having to satisfy the basic metaposition constraint I ⊆
M, that is having to contain every possible state in the updated information

set.

We also make use of a simulated referee that generates virtual messages

trying to predict the response of the actual referee. Together with meta-

positions and the functions that operate on them, we are able to construct

a game tree and then evaluate it with a weighed Maximax algorithm that

1On the other hand, our newer Monte Carlo Tree Search player, described in the next
chapter, also avoids the assumption of a best defense model.
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Figure 4.2: Partial Kuhn tree (left), with state merging and basic metapo-
sitions (right).

produces a good level of play.

4.2 Darkboard and metapositions

Darkboard is a game engine for playing Kriegspiel under the ICC ruleset

(Cincinnati style). It is written in the Java programming language and runs

on any computer with the Java Runtime Environment version 1.3.1 or later.

The focus of its design is on the concepts of Player and Umpire as the main

actors of a Kriegspiel game. By subclassing the former, one can represent

both human and computer players, whereas by subclassing the latter one

can add support for additional modes of play, such as LAN or Internet Chess

Club matches, or different rulesets.

A simple view on the most important classes is given in Figure 4.3.

Three artificial players have been implemented, one trying random pseudole-

gal moves, a slightly less random one doing the same but always capturing

enemy pieces when given the chance (for example, when retaliating on cap-

tures or when pawn tries are announced), and finally the Darkboard class

implementing the metaposition-based player. The first two players serve as

benchmarking tools for gauging the effectiveness of Darkboard, especially its

ability to checkmate during the endgame.

Currently, two subclasses of Umpire are available, LocalUmpire which

allows for local play against humans or other artificial players, and Remo-

teUmpire which is used when the other player is not managed by the program
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Figure 4.3: Simplified structure of the Darkboard engine.

itself, its only subclass being ICCUmpire for play on the Internet Chess Club.

These remote umpires make use of a Communicator interface to separate

low-level network management tasks from the higher-level rule enforcement

routines. Umpire and its subclasses are endowed with a set of facilities for

generating extended PGN games (a backward-compatible derivative of the

PGN standard for representing games of Kriegspiel including details on re-

jected moves and the referee’s messages). Local games may be started from

any nonstandard chess position by using FEN strings, in which case the initial

position of all pieces is assumed to be known by both players.

4.2.1 Representing metapositions

The Metaposition class represents a single metaposition, which is then

used as building blocks for all of Darkboard’s move selection and evaluation
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routines. Any subclass of Player can make use of metapositions, including

HumanPlayer (which is a programming hook for graphical user interfaces

accepting human input); for example, the list of current pseudolegal moves

can be calculated with a metaposition so that obviously illegal moves are not

forwarded to the server during ICC matches.

The program represents metapositions using pseudopieces, phantom pieces

which act like regular chessmen but can spawn copies of themselves and step

over fellow pseudopieces. Pseudopieces have been likened to concepts from

quantum mechanics; they can be imagined as an enemy piece being in several

locations at the same time. Each pseudopiece moves independently of the

others, and all of them move on the opponent’s turn. As they move, they

spawn new pseudopieces of the same type on their path, and uncertainty in-

creases; as friendly pieces move, they sweep any pseudopieces on their path,

and uncertainty decreases. This approach allows to keep the data used to

represent a metaposition down to a minimum while at the same time sat-

isfying the definition in Sect. 4.1; in fact, because pseudopieces move just

like real pieces, it is possible to obtain any possible state by simply replacing

opportune pseudopieces with their real counterparts.

4.2.2 The main array

In Darkboard, a metaposition is represented by a 64-element one-dimensional

byte array, where each byte represents one square of the chessboard. It could

have been a two-dimensional 8x8 matrix, but performance dictated the use

of a single array, especially because evolving a metaposition into another

involves duplicating its data structure, and this happens very frequently.

Each byte in the array is actually a bitmask containing information about

a single piece. Throughout Darkboard, each piece has a code number associ-

ated to it. Our metapositions limit themselves to recording whether at least

one of the possible game states has an enemy queen in d4, for example. In

fact, the lower 7 bits in each byte of the main array form a bitfield represent-

ing the presence of seven different pieces (the six piece types in chess plus

the special piece ’empty’). It may appear strange to consider ’empty’ as a

piece, but metapositions in Darkboard are merely concerned with what is

impossible or possible on a given square at a given point; and this includes
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whether a square being empty is possible or impossible. Bit 0 is set to 1

if there is a possibility for an enemy pawn to be in that square, and so on.

The bitmask’s eighth and uppermost bit is used to signal the presence of an

allied piece on the square. When that bit is set, the other bits no longer

represent a possible enemy piece; instead, by performing a simple bitwise

AND operation to remove the first bit, we quickly obtain the piece code for

the friendly piece; this is simpler than marking the corresponding piece bit

and then using a lookup table.

It should be noted that the array bits are set to 1 if a piece of that

type may occupy a given square, not if and only if. Just like metapositions

themselves, the process of evolving a metaposition is an approximation of

the real process, with trade-offs to allow the program to compute something

useful within acceptable time limits. Darkboard’s computations maintain the

following invariant: if the piece bit is set to 0, then that piece is guaranteed

not to be there. The reverse is not true, and Darkboard will sometimes

mark enemy pieces as possible in places where, strictly speaking, they could

not be; this is our implementation of the metaposition constraints in Sect.

4.1, as the resulting metaposition will contain every state compatible with

the observations, and also states that are not, but are “close enough” to

compatible states.

It is theoretically possible to split a metaposition into individual game

states; in fact, it is strongly advised to do so when the information set is

small enough to be treated explicitly. However, this is only really feasible

in very limited scenarios, typically when the opponent only has one or two

pieces left on the chessboard or when solving Kriegspiel problems in which the

starting position is known beforehand. Moreover, the algorithm for dividing

a metaposition is complicated by a series of technical difficulties such as the

lack of information on pawn promotions, making it difficult to establish how

many pieces and how many pawns are left.

4.2.3 The age array

The age array is another 64-element array, though its elements are of type

char. Its main function is to keep information about the metaposition’s his-

tory because, due to strategy fusion, the best move does not only depend on
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the current position, but also on what came before it. In practice, Darkboard

needs more subtle information than the binary nature of the main array pro-

vides. Knowing that a piece may or may not be in a given square is obviously

important, but not so much in the middle game as in the endgame. Mid-

dlegame metapositions contain so many positions that in many situations

pretty much anything is possible, anywhere; the chessboard is a series of

small, safe havens surrounded by a sea of uncertainty.

Every square has an associated age value, which generally represents the

number of moves since Darkboard collected information about that square.

This has a broader meaning than just “since the player last visited the

square”, because physically reaching a square or traveling over it is not al-

ways necessary to infer what it contains. For example, the absence of pawn

tries (and checks), if the pawn and king are placed in such a way that the

former cannot be protecting the latter, may indicate empty squares just as

effectively, and their ages would be cleared back to zero.

The age array is involved in several calculations, two of which are espe-

cially important to the program: first, squares with high age values are seen

as undesirable by the evaluation function, thus encouraging the player to

visit them, and secondly, high age is associated with danger when estimating

the safety level of a friendly piece. For this reason, when Darkboard finds

that a path is obstructed, determining that a piece must be somewhere, it

may artificially raise a square’s age level to represent increased danger.

4.2.4 Other information

A metaposition also includes several more fields, some of which are typical

of a normal chess game (such as castling information), whereas others are

unique to Kriegspiel (like the amount of captured material). These data are

stored in arrays for faster copying, and include the following:

• Color information (are we White or Black?)

• Castling information (kingside, queenside, both, neither).

• Captured pieces and pawns.
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• Minimum and maximum pawn number on each file, inferred through

captures and pawn tries. Aside from providing a positive bonus when

a file is pawn-free, this is especially important when considering pawn

control (see next section).

• Last pawn try count for both players.

• Total age count. This is the sum of the age values for each square on

the chessboard, stored in a convenient field for performance reasons as

it is often needed.

• Depth information. When a metaposition is evolved with a player’s

pseudomove, the depth is copied over; when it is evolved with the

opponent’s metamove, depth is increased by one. When building a

pseudo-game tree, this field allows the evaluation function to know

how deep the search is.

4.3 Working with metapositions

As metapositions are collections of game states, we define several useful op-

erations on metapositions to obtain information on those states, or change

them. These operations include:

• Editing the metaposition (i.e. amending the information it contains,

thus extending or narrowing the information set).

• Updating the metaposition after a successful player move.

• Updating the metaposition after an unsuccessful player move (illegal

move).

• Updating the metaposition after the opponent’s metamove and its as-

sociated messages.

• Generating the possible pseudomoves for the player to choose from.

• Calculating useful facts about the metaposition, including a protection

matrix, and various estimates about the safety of each piece.
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• Evaluating a metaposition.

All these operations would be trivially executed if the metaposition were a

set of explicitly listed states; for example, listing all pseudolegal moves would

translate to checking for moves that are legal for at least one game state in

the set. Updating the set with a new message from the referee would be

equally simple, merely requiring the algorithm to discard all states that were

incompatible with the message and generating every possible move satisfying

the condition from the remaining states.

Unfortunately, as a metaposition represents a compact grouping of a very

large number of positions which cannot be told apart from one another, it is

clear that updating such a data structure is no trivial task; in truth, despite

being a simplification of the real information set, this process does account for

the better part of Darkboard’s computation time, more than the evaluation

function itself. Clearly, the specific mechanics of such operations depend on

how metapositions are being represented.

4.3.1 Move generation

Generally speaking, the move generation function is of the type

(Metaposition × B) → Move[ ],

as it accepts a metaposition and a boolean and returns an array of Move

objects containing the possible pseudolegal moves for the artificial player.

The boolean parameter specifies whether the move is top-level or not; that is,

whether the input metaposition represents the current state of the chessboard

or a possible future evolution of it. When the top-level parameter is false,

any matching move is included within the output Vector; but if the move

is top-level, banned moves (pseudomoves tried and found to be illegal in the

current turn) will not be included. Darkboard is actually a little smarter

than that, and whenever a move fails, it will not only mark the latest move

as banned, but also any moves that are trivially illegal, as well (i.e. if Ra1-a5

fails, there is no point in trying Ra1-a8 except when responding to a check).

The move generation algorithm reasons like a traditional chess algorithm

with the same purpose. Each piece travels as far as it can, stopping only
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when it meets an edge, a friendly piece, or a square whose bitfield has the

Empty bit not set. If there are any pawn tries, the algorithm will generate

the corresponding moves except for those where the target square does not

have any piece bit set.

There are further checks that may be performed to increase the accuracy

of a metaposition. For example, Darkboard performs pawn control, an oper-

ation which makes sure that no pieces of either side can move through a file

where an enemy pawn is known to exist.

4.3.2 Updating after a legal move

Darkboard is provided with three different update algorithms, one for ma-

nipulating a metaposition after a legal move, one for illegal moves, and one

for the opponent’s metamoves. All of the above accept a metaposition and

the appropriate umpire messages as their inputs, and return a new, updated

metaposition. It may appear strange that the heart of the program’s reason-

ing does not lie in the evaluation function but in these algorithms: after all,

their equivalent in a chess-playing software would trivially update a position

by clearing a bit and setting another. However, the evaluation function’s

task is to evaluate the current knowledge. The updating algorithms compute

the knowledge itself, and given Kriegspiel’s strongly imperfect information,

it is imperative to infer as much information as possible in the process.

The first algorithm updates a metaposition after a legal move by the

player: it accepts a starting metaposition as its input, a move which is

assumed to be legal, and the following information: capture type (which

can take one of the following values: noCapture, capturePawn, capture-

Piece), check1/check2 (as there can be up to two simultaneous checks; ac-

cepted values are noCheck, knightCheck, rankCheck, fileCheck, shortDiago-

nalCheck, longDiagonalCheck), pawn tries (for the opponent, after this move;

the player’s pawn tries are handled as part of the opponent’s move evolution).

The function performs a few simple operations first, such as setting the

visited squares to empty status and clearing their age values. Then, if the

player captured something, it updates the count of captured material. If a

pawn is captured, and the maximum pawn count for its file was 1, all pawns

are removed from that file. In particular, if the amount of captured pawns
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reaches 8, pawns are removed from the chessboard altogether. Unfortunately,

the same cannot be done with pieces when their capture count reaches 7, as

pawns may have since attained promotion. However, if the player manages

to capture 15 times, everything is cleared off the main array but king bits.

In this case, obviously, the metaposition’s accuracy increases drastically.

This being said, dealing with checks is the only non-trivial task here. The

previous king’s locations are scanned one by one, and only those compatible

with the latest move and check type are allowed to remain. Actually, reality is

a little more complicated than this, and the process does not always prove to

be straightforward, due to captures and discovery checks, wherein the piece

that moves is not the one threatening the king. Therefore, the algorithm

proceeds in this way:

• In the event of a double check, there is no ambiguity whatsoever; the

piece responsible for the discovery check is also uniquely determined.

The intersection of the two sets of squares for the two checks provides

the king’s exact location.

• If the check type is compatible with the piece being moved, and that

piece is not a pawn, it cannot be a discovery check. Simply remove the

king’s current locations that do not match the check type. The king

can never be found in the opposite direction of the piece’s movement

(or it would have been in check even before the move); and it can

only be found “at 12 o’ clock” if a capture also took place (i.e. the

piece that protected it was just captured). This is especially important

with diagonal checks, as ’long’ or ’short’ diagonal refers to the king’s

perspective, not the attacking piece’s.

• If the check type is not compatible with the piece being moved, such

as a file check when a knight was moved, look for discovery check

candidates. Fire ’beams’ from the piece’s starting square along every

direction that is compatible with the check type. If the beam reaches

an allied piece that is compatible with the check type, we have found

a candidate. At least one candidate is guaranteed to be found, but in

rare cases, depending on the placement of the opponent’s pieces, there

could be two or more candidates.
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For each candidate, there exists a set of target squares for the king to be

in. The set is a segment that extends from the moved piece’s starting

square in the opposite direction than the candidate. We therefore rule

out any current location that does not belong to any of the candidates’

sets.

• The worst case scenario happens when the player has moved a pawn

and the umpire announces a diagonal check. Because pawns do not

capture the same way in which they move, it could be either a genuine

pawn check, or a discovery check from a bishop or queen behind the

pawn. As a consequence, the algorithm will try both schemes and rule

out any square that matches neither.

• In order to narrow the choices down even more, pawn control could

and should be taken into account with file checks.

4.3.3 Updating after an illegal move

Extracting information from illegal moves is extremely important because,

unlike most other umpire messages, such information is asymmetric; there

is no way for the opponent to know what move was rejected (and on the

ICC, there is no way to know that an opponent’s move was rejected to begin

with). If we were dealing with a theoretical metaposition, an information

set, we would simply drop any position that considered the move as legal.

Unfortunately, such a subset consists of highly diverse positions, which are

impossible to fully describe with Darkboard’s data structures. The following

actions can, however, be taken with relative ease.

• If the king is the only enemy piece left, a failed king move will narrow

its possible locations to five squares at most. A failed pawn push can

pinpoint the king’s location.

• If the tentatively moved piece is not protecting its king (that is, the

king cannot be found along any of the eight compass directions from its

starting square, except the very direction it was trying to take) and the

path was two squares long (or one for pawn moves), then the middle
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square obviously contains something. Its Empty bit is cleared and its

age increased.

• If the move spanned across more squares, Darkboard will then create

and register a power move. A power move is a new pseudomove, whose

piece and starting square is the same as the last failed move, but has a

shorter scope, usually one square shorter than the original move unless

the new destination square is certainly empty, in which case it is further

shortened until a possible target square is found. For example, if Ra1-

a8 fails and enemy pieces are possible in a7, the power move Ra1-a7 is

generated.

Power moves play an important role. When Darkboard builds a pseudo-

game tree, interpreting metapositions as positions of a perfect informa-

tion game, it will try to evolve the current metapositions by predicting

the future umpire’s messages. When evolving a metaposition through

a move that is a power move, Darkboard will assume it is a capturing

move. This reflects the common tactic for a player to try long moves,

and upon hearing the umpire reject them, shorten them one square at

a time until they end up capturing something.

4.3.4 Updating after the opponent’s move

To evolve an information set along an opponent’s unknown move means to

generate every possible evolution (compatible with the umpire’s next mes-

sage) for every position in the set; the union of the resulting sets, barring

duplicates, represents the new information set. Again, Darkboard employs an

approximation of the real thing that makes the opponent more mobile than

it really is. However, it guarantees that every position in the information set

is still part of Darkboard’s representation.

For each square, we treat each possible piece as a real, existing piece

(pseudopiece) and move it according to its rules, just like we generate pseu-

dolegal moves for Darkboard. To this end, a support chessboard is employed,

which starts out without any enemy pieces on it. For each possible move, the

corresponding piece bit is set on the destination square of the support chess-

board. When this phase is over, a bitwise OR operation between the source
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metaposition and the support chessboard returns the intended evolution.

This is arguably Darkboard’s most processor-intensive task, as the num-

ber of potential opponent-controlled squares normally outnumbers the num-

ber of friendly pieces. In fact, it can be easily seen that on a chessboard of

size k and k2 squares, and assuming that the number of potential opponent

squares is, most of the time, O(k2), with pieces able to move O(k) squares

in one or more directions, the resulting complexity is O(k3).

The algorithm performs a few additional refining steps in the process,

among which are the following.

• If the opponent captured a piece, every bit for that square is cleared,

including the Empty one, before doing anything else. Also, the pseudo-

pieces are only permitted to move to the targeted square, meaning that

after the algorithm has run, the square will contain exclusively the piece

types that could be responsible for the capture. This can prove useful

if the attacking piece is immediately captured back (though, currently,

Darkboard does not try to guess which pieces it captures).

• As a corollary of the above point, if a capture takes place but the

umpire had mentioned no pawn tries for the opponent, pawns are not

considered.

• If a pawn is a potential capturing piece, the minimum pawn count for

the adjacent files is decreased by one and the maximum pawn count

for the target file is increased by one.

• If a square has the Empty bit not set, meaning that it certainly contains

an enemy piece, but at least one move (for any of the possible pseudo-

pieces on that square) can move it away from there, the Empty bit is

set, otherwise it stays unchanged.

• A pseudo-king will never move to squares that are certainly threatened.

• If the move causes a knight check, only knights are moved.

• If the move does not cause a check, the squares around the friendly

king are cleared off the appropriate piece bits (queens and bishops on

its diagonals, etc.)



60 CHAPTER 4. PLAYING KRIEGSPIEL WITH METAPOSITIONS

• Pawn control applies normally to pseudo-pieces to at least limit their

tendency to behave like “ghosts” that other pseudo-pieces can move

through.

• After the algorithm has run, each square is checked. If it is certainly

empty, its age is set to 0; else, if it is assuredly non-empty, its age is

set to a high, hard-coded constant value; else, its age is increased by

one. Also, the total age field is recomputed and updated.

As mentioned, enemy pseudopieces are only blocked by friendly pieces,

squares with the Empty bit not set and pawn control. This approximation

leads to a weak interpretation of the first two or three moves, wherein pieces

are assumed to be able to develop faster than they actually can. However, by

the time the first umpire message arrives, the situation will have sufficiently

stabilized, and no special treatment seems to be necessary for the very first

few moves.

4.4 The move selection routines

Darkboard’s core is the move selection algorithm. The main purpose of

information sets, and by extension metapositions as well, is to make the con-

struction of a game tree possible even in the context of imperfect information

games. In the previous sections several functions have been described that

model the possible transitions between metapositions and their evolutions.

Such functions can be used to generate child nodes from root nodes, repre-

senting both the player and the opponent’s moves. The selection algorithm

will therefore construct a (pseudo-)game tree and use it to determine its next

move.

When dealing with Chess, the selection algorithm is some approximation

of a minimax. The reasons why minimax does not apply to Kriegspiel have

been discussed, and need not be repeated in full. What matters here is how

to proceed in evaluating a metaposition tree to obtain a move that is not

necessarily the best (which is an empty word in this game as a whole), but a

reasonable one.

The first fact to consider is that metapositions nodes inside a game tree

will be evaluated by an evaluation function. Thus, it appears there will be
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some function

f : (Metaposition× B)→ R

that evaluates metapositions, also accepting a boolean representing whose

turn it is to move. But, on closer inspection, the above definition, taken

straight from Chess, is not adequate for the task at hand.

Chess evaluation functions are built to judge on a given position, which

is a snapshot of the game in progress; past events are meaningless in that

context. On the other hand, it has been shown that the optimal strategy for

an imperfect information game does not only depend on the current situation,

but also on the events that led to it, that is the full history of the game.

Currently, Darkboard takes into account the state of the chessboard before

and after the move to be evaluated, so that, for example, the piece which

was just moved is evaluated as more endangered than the others. Therefore,

its evaluation function is of the type

f : (Metaposition×Move×Metaposition)→ R.

4.4.1 Game tree structure

Since a metaposition’s evolution depends exclusively on the umpire’s mes-

sages, clearly it becomes necessary to anticipate the umpire’s next messages

if a game tree is to be constructed. Ideally, the game tree would have to

include every possible umpire message for every available pseudomove. Un-

fortunately, a quick estimate of the number of nodes involved rules out such

an option. It is readily seen that:

• All pseudomoves may be legal (or they would not have been generated

by the previous algorithms).

• All pseudomoves that move to non-empty squares can capture (except

for pawn moves), and under ICC rules, we would need to distinguish

between pawn and piece captures.

• Most pseudomoves may lead to checks.

• Some pieces may lead to multiple check types.

• The enemy may or may not have pawn tries following this move.
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m1 m2 m3
mn

M M M M

...

Figure 4.4: Two-ply game tree, m1, . . . ,mn are pseudomoves, M ’s represent
metamoves; also denoted with different arrow heads.

A simple multiplication of these factors may yield several dozens potential

umpire messages for any single move. But worst of all, such an estimate does

not even take into account the possibility of illegal moves. An illegal move

forces the player to try another move, which can, in turn, yield more umpire

messages and illegal moves, so that the number of cases rises exponentially.

Furthermore, the opponent’s metamoves pose the same problem as they can

lead to a large number of different messages.

• On the opponent’s turn, most pieces can be captured (all but those

marked with a safety rating of 1).

• The king may typically end up threatened from all directions through

all of the 5 possible check types.

• Again, pawn tries may or may not occur, and can be one or more.

For these reasons, any metaposition will be only updated in exactly one

way, and according to one among many umpire messages. This applies to

both the player’s pseudomoves and the opponent’s hidden metamoves, so

that the tree can be summarized as in Figure 4.4.

As a consequence, the tree’s branching factor for the player’s turns is equal

to the number of potential moves, but it is equal to 1 for the opponent’s own
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Figure 4.5: Compact form for the game tree; each node but the root con-
tains two metapositions.

moves. This is equivalent to saying that Darkboard does not really see an

opponent, but acts like an agent in a hostile environment. It also means that

the opponent’s metamove can be merged with the move that generated it, so

that each level in the game tree no longer represents a ply, but a full move

(see Figure 4.5).

Interestingly, the branching factor for this Kriegspiel model is significantly

smaller than the average branching factor for the typical chess game, seeing

as in chess either player has a set of about 30 potential moves at any given

time, and Kriegspiel is estimated to stand at approximately twice that value.

Therefore, a two-ply game tree of chess will feature about 302 = 900 leaves,

whereas Darkboard’s tree will only have 60. However, the computational

overhead associated with calculating 60 metapositions is far greater than

that for simply generating 900 chessboards, and as such some kind of pruning

algorithm will be needed.

4.4.2 Umpire prediction heuristics

Darkboard generates the umpire messages that follow its own moves in the

following way.
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• Every move is always assumed to be legal. Most of the time, an illegal

move just provides information for free, so a legal move is usually the

less desirable alternative.

• The player’s moves do not generally capture anything, with the follow-

ing exceptions:

– Pawn tries. These are always capturing moves by their own na-

ture.

– Non-pawn moves where the destination square’s Empty bit is not

set, since the place is necessarily non-empty.

– Power moves obtained from previous illegal moves (see 4.3.3). This

applies to the root metaposition only, as hypothetical illegal moves

cannot be generated.

• If any of the above apply, the captured entity is always assumed to be

a pawn, unless pawns should be impossible on that square, in which

case it is a piece.

• Pawn tries for the opponent are generated if the piece that just moved

is the potential target of a pawn capture.

On the other hand, the following rules determine the umpire messages

that follow a metamove.

• The opponent never captures any pieces, either. The constant risk that

allied pieces run is represented by danger ratings instead, which affect

the evaluation function by changing the value of a piece.

• The opponent never threatens the allied king. Danger ratings encour-

age the king’s protection.

• Pawn tries for the player are never generated.

The above assumptions are overall ’reasonable’, in that they try to avoid

sudden or unjustified peaks in the evaluation function. Captures are only

considered when they are certain, and no move receives unfair advantages
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over the others. There is no concept of a ’lucky’ move that reveals the

opponent’s king by pure coincidence, though if that happens, Darkboard

will update its knowledge accordingly.

Even so, the accuracy of the prediction drops rather quickly. In the

average middle game, the umpire answers with a non-silent message about

20-30% of the time. Clearly, the reliability of this method degrades quickly

as the tree gets deeper, and the exploration itself becomes pointless past a

certain limit. At the very least, this shows that any selection algorithm based

on this method will have to weigh evaluations differently depending on where

they are in the tree; with shallow nodes weighing more than deeper ones.

4.4.3 The basic decision algorithm

Now that the primitives have been discussed in detail, it is possible to de-

scribe the selection algorithm for the Darkboard player. We shall first discuss

the generic version, and then introduce the pruning algorithm that makes the

player efficient enough to handle fast online play on the ICC. Such separa-

tion is not only for the sake of clarity; in fact, both algorithms have their

place in Darkboard, and either one is used depending on the situation. The

generic algorithm makes for shallow, but exhaustive searches in the game

tree, whereas the pruning-enhanced one allows deeper, but approximated

exploration.

The whole stratagem of metapositions was aimed at making traditional

minimax techniques work with Kriegspiel. Actually, since MIN’s moves do

not really exist (MIN always has only one choice) if we use the compact

form for the tree, as described in the last section, the algorithm becomes a

weighed maximax. Maximax is a well-known criterion for decision-making

under uncertainty. This variant is weighed, meaning that it accepts an ad-

ditional parameter α ∈ ]0, 1[, called the risk coefficient. The algorithm also

specifies a maximum depth level k for the search. Furthermore, we define

two special values, ±∞, as possible output to the evaluation function eval.

They represent situations so desirable or undesirable that they often coincide

with victory or defeat, and should not be expanded further.

The selection algorithm makes use of the following functions:

• pseudo: (Metaposition ×Move) → Metaposition, which gener-
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function value (metaposition met, move mov, int depth) : real
begin

metaposition met2 := pseudo(met, mov);
real staticvalue := eval(met, mov, met2);
if (depth ≤ 0) or (staticvalue = ±∞)

return staticvalue
else
begin

//simulate opponent, recursively find MAX.

metaposition met3 := meta(met2);
vector movevec := generate(met3);
real bestchildvalue := maxx∈movevec value(met3, x, depth-1);
//weighed average with parent’s static value.

return (staticvalue*α)+bestchildvalue*(1− α)
end

end.

Figure 4.6: Pseudocode listing for value function.

ates a new metaposition from an existing one and a tentative move,

simulating the umpire’s responses as described in the last section.

• meta: Metaposition → Metaposition, which generates a new

metaposition simulating the opponent’s move and, again, virtual um-

pire messages.

• generate: Metaposition→ Vector, the move generation function.

• eval: (Metaposition ×Move ×Metaposition) → R, the evalua-

tion function, accepting a source metaposition, an evolved metaposition

(obtained by means of pseudo), and the move in between.

The algorithm defines a value function for a metaposition and a move,

whose pseudocode is listed in Figure 4.6. The actual implementation is some-

what more complex due to optimizations that minimize the calls to pseudo.

It is easily seen that such a function satisfies the property that a node’s

weight decreases exponentially with its depth. Given the best maximax se-

quence of depth d from root to leaf m1, . . . ,md, where each node is provided
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with static value s1, . . . , sd, the actual value of m1 will depend on the static

values of each node mk with relative weight αk. Thus, as the accuracy of

Darkboard’s foresight decreases, so do the weights associated with it, and

the engine will tend to favor good positions in the short run.

Parameter α is meant to be variable, as it can be used to adjust the

algorithm’s willingness to take risks. Higher values of α lead to more conser-

vative play, whereas lower values will tend to accept more risk in exchange for

possibly higher returns. Generally, the player who is having the upper hand

will favor open play whereas the losing player tends to play conservatively to

reduce the chance of further increasing the material gap. Material balance

and other factors can therefore be used to dynamically adjust the value of α

during the game, though this feature is largely untested in Darkboard as of

yet.

4.4.4 The enhanced decision algorithm

The previous algorithm suffers from serious performance issues if forced to

push its search 3 or more levels down the game tree. For this reason, it is

used with a default depth level of 2, and is called upon when any of the

following apply:

• The umpire announced captures, checks or pawn tries. Statistics show

that all of the above tend to happen in clusters, so that the likelihood of

a capture following another capture is much higher than normal. Since

our usual assumptions about future umpire messages may not prove

reasonable anymore under such circumstances, a deep analysis appears

fruitless here, and a shallow, but complete and fast search seems more

convenient.

• Under tight time control. Darkboard has a built-in time control man-

ager, and will try to avoid running out of time any way it can. There

are several precautions the engine takes under different stress levels,

such as reducing the number of metapositions it searches through, but

as a last resort, when time is running very short, Darkboard will switch

to the shallow but faster search and use it until time climbs back to a

safe level.
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The enhanced algorithm must necessarily discard some branches of the

tree and concentrate on the most promising ones in order to delve deeper into

the tree. As a consequence, simple depth-limited recursion does not suffice

here, and instead the number of evaluated metapositions is used to estimate

how far to push the search.

The concept of killer moves is well-known in the literature of artificial

chess players [Akl and Newborn, 1977]. A move that has been found to be

advantageous somewhere in the game tree is likely to be a strong move even

in a different context. Chess programs combine killer heuristics with alpha-

beta pruning to largely reduce the number of positions that need evaluat-

ing. Unfortunately, pure alpha-beta pruning is not applicable to a maximax

Kriegspiel tree; however, something resembling killer moves seems to be more

feasible. The fact itself that Kriegspiel’s branching factor is quite large also

means that most metapositions belonging to the same tree will share many

common moves. The algorithm should evaluate each move the first time it

occurs, and remember good moves when they occur again.

Other than the familiar α, we introduce two further integer coefficients:

newMoves and oldMoves. These coefficients represent the number of branches

that will be expanded. At most newMoves branches will be explored whose

associated moves do not yet appear in the table; and at most oldMoves will

be explored among those that already do. The algorithm also accepts a

maxPositions argument that specifies how many metapositions should be, at

most, evaluated, though this is just an estimate and the program’s execution

will not stop once that number is met.

A simplified listing is given in Figure 4.7; the real version is both longer

and more complicated, accepting more parameters to allow major perfor-

mance gains due to repeated eval and pseudo calls.

This function can typically reach between four and seven levels deep into

the game tree with maxPositions set to 5000, newMoves set to 5 and oldMoves

set to 3, bringing good results in practice.

4.5 The evaluation function

Generally speaking, the evaluation function for a chess program includes

three main components: material, mobility, and positional issues.
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function value2 (metaposition met, move mov, int maxPositions) : real
begin

metaposition met2 := pseudo(met, mov);
real staticvalue := eval(met, mov, met2);
if (maxPositions ≤ 1) or (staticvalue = ±∞)

return staticvalue
else
begin

//simulate opponent, recursively find MAX.

metaposition met3 := meta(met2);
vector movevec := generate(met3);
vector old, new, selected;
//separate old and new moves.

foreach x ∈ movevec do
if hasEntry(x) then add(x, old) else add(x, new);

//add entries to the table for the new moves.

//their scores are the difference with their parent’s eval.

foreach x ∈ new do
putEntry(x,eval(met3, x, pseudo(met3, x)) - staticvalue);

//sort the two move vectors with their values in the table.

sortx∈new with getEntry(x);
sortx∈old with getEntry(x);
maxPositions -= vectorSize(new); //update position count.

//put the best from either vector into selected, and expand.

putIntoVector(new, selected, newMoves); //up to newMoves elements.

putIntoVector(old, selected, oldMoves); //up to oldMoves elements.

maxPositions /= vectorSize(selected); //split maxPositions equally.

//now proceed just like the simpler algorithm.

real bestvalue := maxx∈selected value(met3, x, maxPositions);
//weighed average with parent’s static value.

return (staticvalue*α)+bestvalue*(1− α)
end

end.

Figure 4.7: Pseudocode listing for the pruning-enhanced function.

Darkboard’s evaluation function also has three main components that it

will try to maximize throughout the game: material safety, position, and

information.
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4.5.1 Material safety

Material safety is a function of type (Metaposition × Square × B) →
[0, 1]. It accepts a metaposition, a square and a boolean and returns a safety

coefficient for the friendly piece on the given square. The boolean parameter

tells whether the piece has just been moved (as it is clear that a value of

true decreases the piece’s safety). A value of 1 means it is impossible for the

piece to be captured on the next move, whereas a value of 0 indicates a very

high-risk situation with an unprotected piece.

It should be noted, however, that material safety does not represent a

probability of the piece being captured, or even an estimate of such an event;

its result simply provides a reasonable measure of the urgency with which

the piece should be protected or moved away from danger.

Material safety is obtained by means of a support function, material dan-

ger. It is a function with the same contract as material safety, but with

inverted meaning, wherein 0 means no danger and 1 indicates the highest

danger level. Material danger is rather easy to calculate, and is based off of

the age matrix values for the squares surrounding a given piece, as well as

the protection level of that piece.

4.5.2 Position

Darkboard includes the following factors into its evaluation function, some

of which are regularly featured in traditional chess-playing software:

• A pawn advancement bonus. In addition, there is a further bonus for

the presence of multiple queens on the chessboard.

• A bonus for files without pawns, and friendly pawns on such files.

• A bonus for the number of controlled squares, as computed with the

protection matrix. This factor is akin to mobility in traditional chess-

playing software, but its usage in Darkboard is still rather unrefined; in

particular, setting this weight too high will cause the pieces to scatter

excessively all over the chessboard, weakening the defensive structure.

Practical results show that this factor should vary over time and de-

pending on who is winning.
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In addition, the current position also affects material rating, as certain

situations may change the values of the player’s pieces. For example, the

value of pawns is increased if the player lacks sufficient mating material.

An additional component is evaluated when Darkboard is considering

checkmating the opponent. A special function represents perceived progress

towards winning the game, partly borrowed from [Bolognesi and Ciancarini,

2004], together with a matrix associating squares to values encouraging the

player to push the king towards locations where mating is easier.

4.5.3 Information

Darkboard will attempt to gather information about the state of the chess-

board, as the evaluation function is designed to make information desirable

(precisely, it is designed to make the lack of information undesirable). Dark-

board’s notion of information gathering coincides with reducing a computable

function, which the program calls chessboard entropy (E). This definition is

not directly related to those used in physics or Information Theory, but its

behavior resembles that of an entropy function in that:

• The function’s value increases after every metamove from the opponent,

that is (m2 = meta(m1))⇒ E(m2) ≥ E(m1).

• The function’s value decreases after each pseudomove from the player,

that is (m2 = pseudo(m1, x ∈Move))⇒ E(m2) ≤ E(m1).

Therefore, the chessboard entropy is constantly affected by two opposing

forces, acting on alternate plies. We can define ∆E(m,x),m ∈Metaposition, x ∈
Move as E(pseudo(meta(m,x)))−E(m), the net result from two plies. Dark-

board will attempt to minimize ∆E in the evaluation function. In the be-

ginning, entropy increases steeply no matter what is done; however, in the

endgame, the winner is usually the player whose chessboard has less entropy.

Entropy is computed as follows, using a set of constant values as well as

the age matrix. For each piece and each square, a negative constant is given

representing how undesirable would be to have that piece on that square.

These values are generally small, with the exception of enemy pawns on the

player’s second or third ranks, close to promoting (a highly undesirable sit-

uation). In this way, to each square is associated an undesirability value,
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defined as the sum of the negative constants for any enemy piece whose exis-

tence is possible on that square. Actually, Darkboard speeds up the process

by precalculating those sums for each and every combination of enemy pieces

to be found on a square.

It is then given a function fE : N→ [0, 1], monotone and non-decreasing,

with the constraint fE(0) = 0. The parameter in fE is the age matrix’s value

for a given square, and the function itself models the increase in uncertainty

over time. The entropy for a metaposition is then computed as the sum, for

each square, of that square’s undesirability value multiplied by fE(x), where

x is the square’s age value. It is easily seen that any function matching the

mentioned constraints satisfies the two properties given in the beginning. As

pseudo increases age values, entropy will increase; and as meta clears squares,

entropy decreases.

4.5.4 Stalemate detection

Stalemate is an additional challenge in Kriegspiel, unlike regular chess where

it can be predicted with ease. As it is impossible to generate the oppo-

nent’s move, it is also difficult to estimate when the opponent has run out of

moves; it is even more unfortunate that stalemate occurrences are directly

proportional to the amount of friendly material on the board, meaning that

it is easy to turn a major victory into a draw (possibly, also a reason why

it could be more convenient, at times, to promote pawns to something other

than queens in the endgame). Human players face this problem as well, even

though the statistics on the ICC do not show it fully because most humans

tend to resign when they are left with the king alone. If a Kriegspiel world

championship existed, we would probably see much more stubborn defense

and many more stalemates.

The program described in [Bolognesi and Ciancarini, 2004] deals with the

stalemate issue when using metapositions to solve the KQK endgame (king

and queen versus king), as stalemate may occur frequently in this endgame.

Darkboard’s algorithm is similar in nature; it looks for ’singleton’ kings with-

out neighbors. However, the computational cost for this algorithm is not

negligible, since it needs to be repeated for every single metaposition. For

this reason, the program only performs the test when two or fewer opposing
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pieces are left, other than the king. It would not make much sense, either,

to check for stalemate when the opponent clearly has plenty of movement

options left. Mistakes still happen when the king is not alone, though they

are not always easy to predict, even for humans.

4.6 Experimental results and conclusions

We remark that the ruleset used for our program is the one enforced on the

Internet Chess Club, which currently hosts the largest Kriegspiel community

of human players. Our metaposition-based Kriegspiel player was the first ar-

tificial player capable of facing human players over the Internet on reasonable

time control settings (three-minute games) and achieve above average rank-

ings, with a best Elo rating of 1814 which placed it at the time among the

top 20 players on the Internet Chess Club. Darkboard played 5724 games in

2006, winning 2958 (52%), drawing 997 (17%), and losing 1769 (31%) games

over a period of four months. We note that Darkboard plays an average

of only 1.415 tries per move, and therefore it does not use the advantage

of physical speed to try large amounts of moves at the expense of human

players.

Darkboard defeats a random-moving opponent approximately 94.8% of

the time. The random player maintains and updates a metaposition in order

to have access to a list of pseudolegal moves to choose from, but the actual

choice is random among the possible moves.

We also define a second benchmark player called the semi-random player

as a stronger test case for Darkboard. This player employs basic heuristics

in order to select a move under certain conditions. Whenever a capture is

announced, the player will first try all pseudolegal moves which allow the

player to retaliate on the capture (that is, all capturing moves that have

the location of the last capture as their destination square). If several moves

match this condition, they are attempted in random order. Secondly, if pawn

tries are announced, the player will randomly try every capturing move using

its pawns instead of considering the other moves. Darkboard defeats the

semi-random player approximately 79.3% of the time.

Against both test players, the games which are not won by Darkboard

are draws by either stalemate or repetition.
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Darkboard won the Gold medal at the Eleventh Computer Olympiad

which took place from May 24 to June 1, 2006 in Turin. The player defeated

an improved version of the Monte Carlo player described in [Parker et al.,

2005] with a score of 6-2.

This Darkboard is referred to as version 1.0; its chief limit is the large

amount of domain knowledge required to code the program. The next

chapter describes the Monte Carlo Tree Search techniques behind Dark-

board 2.0, currently the only program that has proven stronger than this

metaposition-based player. While Darkboard 2.0 does not use metapositions

in the midgame, the concept will be again essential in chapters 6 and 7, when

dealing with the endgame.



Chapter 5

A Monte Carlo Tree Search
approach

In this chapter, we describe a different approach, based on Monte Carlo

Tree Search (MCTS). This method has brought significant improvements to

the level of computer players in games such as Go, and it has been used

to play imperfect information games as well, but there are certain games

with particularly large trees and reduced information in which this class

of algorithms can fail, especially in the presence of long matches, dynamic

information and complex victory conditions. In this paper we explore the

application of MCTS to Kriegspiel and compare it to the minimax-based

player described in the previous chapter. We provide three Monte Carlo

methods, starting from a naive textbook transposition and moving to more

experimental versions of increasing strength for playing the game with little

specific knowledge. We obtain significantly better results with a considerably

simpler logic and less domain-specific knowledge.

5.1 Introduction

Imperfect information games provide a good model and test bed for many

real-world problems and situations involving decision making under uncer-

tainty. They typically involve a combination of complex tasks such as heuris-

tic search, belief state reconstruction and opponent modeling, and they can

be very difficult for a computer agent to play well. Some games are particu-

75
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larly challenging because at any time, the number of possible, indistinguish-

able states far exceeds the storage and computational abilities of present-day

computers. Kriegspiel has several features that make it interesting: firstly, its

rules are identical to those of a very well-known game and only the players’

perception of the board is different, only being able to see their own pieces;

secondly, it is a game with a huge number of states and limited means of

acquiring information; and finally, the nature of uncertainty is entirely dy-

namic. This differs from other games such as Phantom Go or Stratego,

wherein a newly discovered piece of information remains valid for the rest of

the game. Information in Kriegspiel is scarce, precious and ages fast.

In this chapter we present the first full application of Monte Carlo tree

search to the game of Kriegspiel. Monte Carlo tree search has been imposing

itself over the past years as a major tool for games in which traditional

minimax techniques do not yield good results due to the size of the state

space and the difficulty of crafting an adequate evaluation function. The

game of Go is the primary example, albeit not the only one, of a tough

environment for minimax where Monte Carlo tree search was able to improve

the level of computer players considerably. Since Kriegspiel shares the two

traits of being a large game and a difficult one to express with an evaluation

function (unlike its perfect information counterpart), it is only natural to

test a similar approach. This would also allow to reduce the amount of

game-specific knowledge used by current programs by a large amount.

The chapter is organized as follows. Section 5.2 contains a high-level

introduction to Monte Carlo Tree Search. We then describe our MCTS ap-

proaches in Section 5.5, showing how we built three Monte Carlo Kriegspiel

players of increasing strength. These players are then described in greater

detail in Sections 5.6, 5.7 and 5.8. Section 5.9 contains experimental tests

comparing strength and performance of the various programs. Finally, we

give our conclusions and future research directions in Section 5.10.

5.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an evolution of simpler and older Monte

Carlo methods. While the core concept is still the same – a program plays

a large number of random simulated games and picks the move that seems
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4

(a) (b) (c) (d)

Figure 5.1: The four phases of Monte Carlo Tree Search: selection, expansion,
simulation and backpropagation.

to yield the highest victory ratio – the purpose of MCTS is to make the

computation converge to stable, reliable values much more quickly than pure

Monte Carlo. This is accomplished by guiding the simulations with a game

tree that grows to accommodate new nodes over time; more promising nodes

are, in theory, reached first and visited more often than nodes that are likely

to be unattractive.

MCTS is an iterative method that performs the same four steps until its

available time runs out. These steps are summarized in Figure 5.1.

• Selection. The algorithm selects a leaf node from the tree based on

the number of visits and their average value.

• Expansion. The algorithm optionally adds new nodes to the tree.

• Simulation. The algorithm somehow simulates the rest of the game

one or more times, and returns the value of the final state (or their

average, if simulated multiple times).

• Backpropagation. The value is propagated to the node’s ancestors

up to the root, and new average values are computed for these nodes.

After performing these phases as many times as time allows, the program

simply chooses the root’s child that has received the most visits and plays
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the corresponding move. This may not necessarily coincide with the node

with the highest mean value. A discussion about why the mean operator

alone does not make a good choice is contained in [Coulom, 2007].

MCTS should be thought of as a method rather than a specific algorithm,

in that it does not dictate hard policies for any of the four phases. It does

not truly specify how a leaf should be selected, when a node should be ex-

panded, how simulations should be conducted or how their values should be

propagated upwards. In practice, however, game-playing programs tend to

use variations of the same algorithms for several of the above steps.

Selection as a task is similar in spirit to the n-bandit problem since the

player needs to strike a balance between exploration (devoting some time to

new nodes) and exploitation (directing the simulations towards node that

have shown promise so far). Most programs make use of the standard UCT

algorithm (Upper Confidence bound applied to Trees) first given in [Kocsis

and Szepesvari, 2006]. This algorithm chooses at each step the child node

maximizing the quantity

Ui = vi + c

√
lnN

ni

,

where vi is the value of node i, N is the number of times the parent node

was visited, ni is the number of times node i was visited, and c is a constant

that favors exploitation if low, and exploration if high.

Expansion varies dramatically depending on the game being considered,

its size and branching factor. In general, most programs will expand a node

after it has been visited a certain number of times. Simulation also depends

wildly on the type of game. There is a large literature dealing with MCTS

simulation strategies for the game of Go alone. Backpropagation offers the

problem of which backup operator to use when calculating the value of a

node.

5.2.1 MCTS and imperfect information: Phantom Go

Monte Carlo Tree Search has been used successfully in large, complex im-

perfect information games, most notably Phantom Go. This game is the

imperfect information version of the classic game of Go: the player has no

direct knowledge of his opponent’s stones, but can infer their existence if he
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tries to put his own stone on an intersection and discovers he is unable to,

in which case he can try another move instead. [Cazenave, 2005] describes a

MCTS algorithm for playing the game, obtaining a good playing strength on

a 9x9 board, and a thorough comparison of several Monte Carlo approaches

to Phantom Go, with or without tree search, has recently been given in [Bors-

boom et al., 2007]. We are especially interested in Phantom Go because its

problem space and branching factor are much larger than most other (already

complex) imperfect information games such as poker, for which good Monte

Carlo strategies exist; see, for example, [Billings et al., 2002].

MCTS algorithms for Phantom Go are relatively straightforward in that

they mostly reuse knowledge and methods from their Go counterparts: in

fact, they mostly differ from Go programs because in the simulation phase

the starting board is generated with a new random setup for the opponent’s

stones every time instead of always being the same. It is legitimate to wonder

whether this approach can be easily converted to other games with an equally

huge problem space, or Phantom Go is a special case, descending from a game

that is particularly suited to MCTS. In the next section we discuss Kriegspiel,

which is to chess what Phantom Go is to Go, and compare the two games

for similarities and differences.

5.3 Kriegspiel vs. Phantom Go

On a superficial level, Kriegspiel and Phantom Go are quite similar. Both

maintain the identical rules of their perfect information versions, only adding

a layer of uncertainty in the form of a referee. The transcript of a Kriegspiel

game is a legal chess game, just like the transcript of a Phantom Go game is

a legal Go game. Both involve move attempts as their core mechanics; illegal

attempts provide information on the state of the game. In both games, a

player can purposely try a move just for the purpose of information gathering.

On the other hand, there are several differences worth mentioning between

the two games.

• The nature of Kriegspiel uncertainty is completely dynamic: while Go

stones are, if not immutable, at least largely static and once discov-

ered permanently decrease uncertainty by a large factor, information
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in Kriegspiel ages and quickly becomes old. One needs to consider

whether uncertainty means the same thing in the two games, and

whether Kriegspiel is a harsher battlefield in this respect.

• There are several dozen combinations of messages that the Kriegspiel

umpire can return, compared to just two in Phantom Go. This makes

their full representation in the game tree very difficult.

• In Phantom Go there always exists a sequence of illegal moves that will

reveal the full state of the game and remove uncertainty altogether; no

such thing exists in Kriegspiel, where no sequence of moves can ever

reveal the umpire’s chessboard except near the end of the game.

• Uncertainty grows faster in Phantom Go, but also decreases automat-

ically in the endgame. By contrast, Kriegspiel uncertainty only de-

creases permanently when a piece is captured, which is rarely guaran-

teed to happen.

• In Phantom Go, the player’s ability to reduce uncertainty increases as

the game progresses since there are more enemy stones, but the utility

of this additional information often decreases because less and less can

be done about it. It is exactly the opposite in Kriegspiel: much like in

Battleship, since there are fewer enemies on the board and fewer allies

to hit them with, the player has a harder time making progress, but

any information can give him a major advantage.

• Finally, there are differences carried over from their perfect information

counterparts, most notably the victory conditions. Kriegspiel is about

causing an event that can happen suddenly and at almost any time,

whereas Go games are concerned with the accumulation of score. From

the point of view of Monte Carlo methods, score-based games tend

to be more favorable than condition-based games, if the condition is

difficult to observe in a random game. Even with considerable material

advantage, it is relatively rare to force a checkmate with random moves.

Hence, there are mixed results from comparing the two games; at the

very least, they represent two different kinds of uncertainty, that could be
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best described as static vs. dynamic uncertainty. We wish to investigate the

effectiveness of Monte Carlo methods - and especially MCTS - in the context

of dynamic uncertainty.

5.4 Monte Carlo Kriegspiel

Computer programs capable of playing a full Kriegspiel game have only

emerged in recent years due to the complexity of the domain. The first

Monte Carlo approach to Kriegspiel is due to [Parker et al., 2005]. This

program plays by using and maintaining a state pool that is sampled and

evaluated with a chess function. The authors call the information set associ-

ated with a given situation a belief state, the set containing all the possible

game states compatible with the information the player has gathered so far.

They apply a statistical sampling technique, which has proven successful in

several imperfect information games such as bridge and poker, and adapt it

to Kriegspiel. The technique consists of generating a set of sample states (i.e.

chessboards, a subset of the information set/belief state), compatible with

the umpire’s messages, analyze them with well-known perfect information

algorithms and evaluation functions, such as the popular and open source

GNUChess engine, choosing the move that obtains the highest average score

in each sample. The choice of using a chess function is both the method’s

greatest strength, as it saves the trouble of defining Kriegspiel domain knowl-

edge, and its most important flaw, as positions are evaluated according to

chess standards, with the assumption that each player can see the whole

board.

Obviously, in the case of Kriegspiel, generating good samples is far harder

than anything in bridge of poker. Not only is the problem space immensely

larger, but also the duration of the game is longer, with many more choices

to be taken and branches to be explored. For the same reasons, evaluating

a chess move is computationally more expensive than a position in bridge,

and a full minimax has to be performed on each sample; as a consequence,

fewer samples can be analyzed even though the size of the state space would

command many more.

The authors describe four sampling algorithms, three of which they have

implemented (the fourth, AOS, generating samples compatible with all ob-
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servations, would equate to generating the whole information set, and is

therefore intractable).

• LOS (Last Observation Sampling). Generates up to a certain quantity

of samples compatible with the last observation only (it has no memory

of what happened before the last move).

• AOSP (All Observation Sampling with Pool). The algorithm updates

and maintains a pool of samples (chessboards), numbering about a few

tens of thousands, all of which are guaranteed to be compatible with

all the observations so far.

• HS (Hybrid Sampling). This works much like AOSP, except that it

may also introduce last-observation samples under certain conditions.

The authors have conducted experiments with timed versions of the three

algorithms, basically generating samples and evaluating them until a timer

runs out, for instance after 30 seconds. They conclude that LOS behaves

better than random play, AOSP is better than LOS, and HS is better than

AOSP.

It may surprise that HS, introducing a component of the less refined LOS,

behaves better than pure AOSP, but it is in fact to be expected. The size

of the AOSP pool is minuscule compared with the information set for the

largest part of the game. No matter how smart the generation algorithm may

be or how much it strives to maintain diversity, it is impossible to convey

the full possibilities of a midgame information set (a fact we also confirm

with the present research). so the individual samples will begin to acquire

too much weight, and the algorithm will begin to evaluate a component of

noise. The situation worsens as the pool, which is already biased, is used to

evolve the pool itself. Invariably, many possible states will be forgotten. In

this context, LOS actually helps because it introduces fresh states, some of

which may not in fact be possible, but prevents the pool from stagnating.

More recently, there have been separate attempts at modeling the oppo-

nent in Kriegspiel with Markov decision processes in the limited case of a 4x4

chessboard in [Del Giudice et al., 2009], which then evolved into a full Monte

Carlo approach with particle filtering techniques in [Bryan et al., 2009]. The
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Figure 5.2: Comparison of three simulation methods. Approach A is stan-
dard Monte Carlo tree search, approach B simulates umpire messages only
and for k-move runs, approach C immediately computes the value of a node
in approach B for k = 1.

latter work has some similarities, at least in spirit, with the modeling tech-

niques presented in this paper, though it is still similar to [Parker et al., 2005]

in that it generates plausible Kriegspiel states which are evaluated by a chess

engine.

5.5 Three approaches

In this chapter, we provide three Monte Carlo Tree Search methods for play-

ing Kriegspiel, which we label A, B and C. These approaches are quickly

summarized in Figure 5.2 and can be briefly described as follows. Approach

A is a MCTS algorithm that stays as faithful as possible to previous liter-

ature, in particular to existing Phantom Go methods. In this algorithm, a

possible game state is generated randomly with each simulation, moves are

random as well and games are simulated to their natural end. Approach

B is an evolution of MCTS in which the program does not try to generate

the opponent’s board; instead, only the referee’s messages are simulated. In

other words, games are simulated from a player’s partial point of view in-

stead of the referee’s omniscient one. Approach C is a further extremization
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Program moves

Outcomes of program moves

Outcomes of opponent moves

Figure 5.3: Three-tiered game tree representation in our algorithms.

of approach B in which the algorithm can explore more nodes by cutting the

simulation after just one move. These three programs share major portions

of code and implementation, in particular making use of the same represen-

tation for the game tree, shown in Figure 5.3. As there are thousands of

possible opponent moves depending on the unknown layout of the board, we

resort to a three-level game tree for each two plies of the game, two of which

represent referee messages rather than moves. The first two layers could be

merged together (program moves and their outcomes), but remain separate

for computational ease in move selection.

Initially, we investigated an approach that was as close as possible to

the Monte Carlo techniques developed for Go and its partial information

variant, taking into account the important differences between these games

and Kriegspiel.; the first version of our program, approach A, was a more or

less verbatim translation of established Monte Carlo tree search for Go. We

developed the other two methods after performing severely unsuccessful tests

– in which approach A could not be distinguished from the random player.

The three approaches all use profiling data taken from a database of about

12,000 human games played on the Internet Chess Club. Because informa-

tion is scarce, opponent modeling is an important component of a Kriegspiel

player. Our programs make use of information from game databases in or-

der to build an opponent’s model, either for a specific opponent or for an

unknown adversary that is considered to be an averaged version of all the

players in the database. We will therefore suppose that we have access to two

8x8 matrices Dw(p, t) and Db(p, t) estimating the probability distribution for

piece p at time t when our opponent is playing as White and Black, respec-
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Figure 5.4: Database data for handle “paoloc” playing as White, t = 10,
p =knight, both as absolute probabilities and delta values from move 9.

tively. These matrices are available for all t up to a certain time when they

are deemed too noisy to be of any practical value. Of course, their values can

be smoothed by averaging them over several moves or even over neighboring

squares, especially later in the game.

These matrices can contain truly vital information, as shown in Figure 5.4.

Ten moves (twenty plies) into the game, the locations of this player’s knights

can be inferred with high probability. This is no coincidence, as in the almost

total absence of information most players will use the same tested strategies

over and over again, making them easier to predict. These matrices are used

in different ways by our algorithms: approach A uses absolute probabilities

(the unmodified values of Dw and Db) in order to reconstruct realistic boards

for Monte Carlo sampling purposes, whereas approaches B and C exploit

gradient values, that is, the values of D(p, t+ 1)−D(p, t) in order to evolve

their abstract model from one move to the next.

5.6 Approach A

Pseudocode for approach A is shown in Figure 5.5. Our approach A imple-

ments the four steps of Monte Carlo tree search as follows.

Selection is implemented with UCT for the program’s own moves, as seen
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function approach A(Node root) {
while (availableTime) {

Board b = generateRandomBoard(root);
Node n = root;
Move move;
while (!isLeaf(n)) {

if (programTurn(n)) {
n = uctSelection(n,legalMoves(b),refereeMessage(b,move));
move = n.move;

}
else {

move = getPseudoRandomMove(b);
n = getChild(n,refereeMessage(b,move));

}
playMove(b,move);

}
n = expand(n);
double outcome = simulation(b);
backpropagate(outcome,n);

}
return mostVisitedChild(root);

}

Figure 5.5: Pseudocode for approach A.

in the pseudocode: the opponent plays the same pseudorandom moves as in

the Simulation step. Choosing different values for the exploration constant

c did not seem to have any impact on performance. It is seen in Borsboom

et al. [2007] that there are two main methods for guessing the opponent’s

unknown stones in Phantom Go: late random opponent-move guessing and

early probabilistic opponent-move guessing. In the former, some stones are

added as the opponent plays them and the rest are filled just before the

simulation step; in the latter, stones are added after the first move based on

their frequency of play during the first move. It is noted that early guessing

outperforms late guessing. The concept of move is very different in Kriegspiel,

so we would not be able to easily build and use frequency statistics in the

same way.

Nevertheless, recognizing the power of early guessing, we fill the entire

board before we even start Selection (note, however, that the tree does not

contain boards, but only referee’s messages which are used to traverse it; the

tree never deals with specific boards). We used the probability distributions

Dw and Db discussed in the previous section and collected from a database

of online games to estimate density for each piece type at any given point in

time. The matrices, being completely a priori knowledge, are not the only
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information used by the algorithm: several heuristics helped to construct

the random boards, such as remembering how many pieces are left in play,

and how many pawn can be on each file. The generator also strived to

make positions that did not contradict the last referee’s message, as Last

Observation Sampling was reported to yield the best results in Parker et al.

[2005] when applied to the same task.

For Expansion, our implementation expands a new node chosen randomly

with each iteration. We considered this random choice to be a reasonable

solution; the alternative would be to have a heuristic, that for a game like

Kriegspiel is very difficult to define. Choosing a new node for each simulation

also allows to easily compare this approach to an evaluation function-based

one exploring the same amount of nodes.

We implemented standard Backpropagation, using the average node value

as backup operator.

Simulation raises a number of questions in a game of partial information,

such as whether and how to generate the missing information, and how to

handle subsequent moves. Existing research is of limited help, since to the

best of our knowledge this is the first time MCTS is applied to a game with

such high uncertainty - a game in which knowledge barely survives the next

move or two. We can, however, compare this task to other games of partial

information in which Monte Carlo (not necessarily MCTS) has been suc-

cessful. In bridge, possibly the most similar domain among the card games,

simulation can take on the forms of single- and double-dummy play, such as

in GIB Ginsberg [1999]. This kind of simulation is easily carried out, and

generating realistic deals, for example with the help of bayesian inferences, is

actually the more challenging part. While bridge is half about the cards and

half about the betting, poker (in the Texas Hold’em variant that has grown

to be the most popular) is more about the betting; opponent modeling is

usually tightly integrated with Monte Carlo simulation, as in Billings et al.

[2002]. As in bridge, a large part of the task is performing selective sampling,

that is, skewing the probabilities for each simulated deal according to the op-

ponent’s decisions and known history. These card games have the advantage

that the player only has a limited amount of choices (poker moreso than

bridge). In Kriegspiel, our ability to generate realistic ’hands’ is much more

limited than in either game, except near the start and the end of the game;
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nor can we acquire much knowledge from playing ’dummy’. Even among

board games, Go is relatively straightforward in that one can play a random

move anywhere except in one’s own eyes. It is also easier to estimate the

length of a simulated Go game, which is generally related to the number of

intersections left on the board. Kriegspiel simulations are necessarily heavier

to compute due to the rules of the game. Even generating the list of moves

is a nontrivial task that requires high optimization in chess programs.

In approach A, both players play pseudorandom moves until they draw

by the fifty move rule or they reach a standard endgame position with a clear

winner (such as king and rook versus king), in which case the game is adjudi-

cated. Trying to achieve direct checkmate with random games immediately

appeared to be almost hopeless. In order to make simulation more accurate,

both players almost always try to capture back or exploit a pawn try when

possible - this is basic and almost universal human behavior when playing

the game, and is also shared by all our programs. In this sense the simulated

moves are not random, but only pseudorandom.

As mentioned, approach A failed, performing little better than the ran-

dom player and losing badly and on every time setting to a more traditional

player based on minimax search. Program A’s victory ratio was below 2%,

and its victories were essentially random and unintentional mid-game check-

mates. Investigating the reasons of the failure showed three main ones in

addition to the obvious slowness of the search. First, the positions for the

opponent’s pieces as generated by the program were not realistic. The gen-

eration algorithm used probability distributions for pieces, pawns and king

that were updated after each umpire message. While the probabilities were

quite accurate, this did not account for the high correlation between differ-

ent pieces, that is, pieces protecting other pieces. Kriegspiel players gener-

ally protect their pieces quite heavily, in order to maximize their chances

of successfully repelling an attack. As a result, the program tended to un-

derestimate the protection level of the opponent’s pieces. Secondly, because

moves were chosen randomly, it also underestimated the opponent’s ability

to coordinate an attack and hardly paid attention to its own defense.

Lastly, but perhaps most importantly, there is the subtler issue of progress.

Games where Monte Carlo approaches have been tested most thoroughly have

a built-in notion of progress. In Go, adding a stone changes the board per-
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function approach B(Node root, int k) {
while (availableTime) {

Node n = root;
Move move;
while (!isLeaf(n)) {

if (programTurn(n)) {
n = uctSelection(n);
Message msg = probabilisticMessage(n);
n = getChild(n,msg);

}
else {

Message msg = probabilisticMessage(n);
n = getChild(n,msg);

}
}
n = expand(n);
double outcome = simulation(n,k);
backpropagate(outcome,n);

}
return mostVisitedChild(root);

}

Figure 5.6: Pseudocode for approach B.

manently. The same happens in Scrabble. A game of poker consists of just

a few betting rounds that require no notion of progress. Kriegspiel, on the

other hand, like real-time strategy games has no such notion; if the players

do nothing significant, nothing happens. In fact, it can be argued that many

states have similar values and a program failing to find a good long-term plan

will either rush a very dangerous plan or just choose to minimize the risk by

moving the same piece back and forth. When a Monte Carlo method does

not perform enough simulations to find a stable maximum, it can do either.

In view of these results, we claim that it is unlikely for a mere transposi-

tion of MCTS techniques as seen in Go or Phantom Go to work effectively

in Kriegspiel, at least under the resource constraints of current computer

systems. In order for it to work, the game would have to be considerably

simplified, or the players would need to receive more information on the state

of the board.

5.7 Approach B

A more serious Monte Carlo tree search Kriegspiel program needs to converge

much faster than the naive implementation presented in approach A. Reduc-

ing the major amount of noise in the simulation step is also of paramount
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importance. As seen, performing Monte Carlo search on individual states,

as standard MCTS would dictate, leads to highly unstable results - hence,

a possible solution could lay in running simulations but not on individual

game states – rather, on their perception from the player’s point of view.

This would save us the trouble, both computational and algorithmic, of gen-

erating plausible game states that reward intelligent play in simulations.

The core spirit of Monte Carlo methods is preserved by running the sim-

ulations as usual, but instead of running them as chess games with perfect

information, they would be run as Kriegspiel games with imperfect informa-

tion. As an aside, simulating an abstract model of the game instead of the

game itself has already been done in the context of Monte Carlo; for exam-

ple, [Chung et al., 2005] does so with a real-time strategy game, for which

a detailed simulation over continuous time would be impossible. What the

authors do instead is simulate high-level system responses to high-level deci-

sions and strategies, and this is conceptually close to our own goal.

We therefore define our program B, with pseudocode listed in Figure 5.6.

This approach removes the randomness involved in generating single states

and instead only simulates referee messages, without worrying about the en-

emy layout that generated them. A reduced version of the abstract model

used in approach A estimates the likelyhood of a given referee message in

response to a certain move. Our model is very utilitarian. For example,

there is a chance of the enemy retaliating on a capture one or more times

and a chance of a move being illegal. At core, this is based on three 8x8 piece

probability matrices Pk (king), Pw (pawn) and Pc (other chessman). Pij

contains the probability of a piece of the given type being on square (i, j),

with rank 0 being White’s first rank and the opponent being Black. We do

not distinguish between different pieces such as queens and rooks as most

Kriegspiel rulesets do not give a player enough information to do so. In ap-

proach A, the same matrices are used to generate random chessboards, but

here they serve their purpose directly in probabilisticMessage: they de-

termine the probabilities with which referee’s messages are picked in response

to a move (UCT still selects the move).

We make two sets of assumptions. The first set models the rules of chess

to predict the outcomes of the program’s own moves from the probability

matrices for the opponent’s pieces. It also updates the probabilities with the
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knowledge gained from the referee’s responses to the program’s moves. The

second set provides our opponent model, updating the opponent’s probabil-

ities when it is his turn to move and deciding the outcomes of his moves. In

other words, the first set of assumptions is nothing more than probability

theory applied to chess; the second set is, in fact, an opponent model. The

first set is as follows:

• The probability for the opponent to control a square (i, j) is equal to

a sum of components

Probcontrol(i, j) =
∑

dist(x,y,i,j)=1

Pkxy+Pwi−1,j+1+Pwi+1,j+1+c1
∑
x,y

c2Pcxy,

meaning the sum of probabilities for the king in the surrounding squares,

a pawn in the compatible diagonal squares, and all squares on the

same rank, file and diagonals multiplied by suitable coefficients. Here,

c1 = 3/7 since at most three out of seven pieces in the starting set other

than the king and pawns are able to attack along any given direction:

queen and rooks for ranks and files, and queen and bishops for the di-

agonals. The only exception is the knight check, which only two pieces

can perform. c2 is calculated dynamically so that enemy pieces cover-

ing each other are accounted for; basically, c2 decreases as the distance

to (i, j) increases. Probcontrol can be greater than 1; in fact, it should

be read as the expectation for the number of enemy pieces controlling

the square.

• The probability for a move to be legal is equal to the probability of

all squares on the piece’s path Pt from (i1, j1) to (i2, j2) (except the

destination square itself unless it is a straight pawn move) being empty,

minus a pin probability. We recall that a piece is pinned if moving it

would leave the king in check. That is,

Problegal(Pt) =
∏

(i,j)∈Pt

(1− Pkij − Pwij − Pcij)− Probpin,

where

Probpin =


0 if the piece is not protecting the king,
Probcontrol(i1j1) if the piece is protecting the king,
P robcontrol(i2j2) if the piece is the king.
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This, while approximated, accounts for a number of cases, including

pieces being pinned by unknown enemy pieces and the king being un-

able to move to a threatened square.

• The probabilities of capturing a piece or pawn on (i2, j2) are equal to

Pci2j2 and Pwi2j2 , respectively.

• The probability of the program causing a check is equal to a sum of

Pkij over the squares threatened by the move, again with a damping

coefficient c2 designed to reduce the impact of far away squares.

• When a square is found to be empty by moving through it or due to

a lack of pawn tries, the probabilities for the enemy pieces on that

square are set to 0. Conversely, when a square is known to be occupied

(usually because of a capture), the sum of the probability matrices for

that squares is brought to 1. In both cases, the matrices are normalized

afterwards so their total sum over the board does not change.

The second set contains the following assumptions we deem reasonable

for a Kriegspiel opponent, in view of human play observed on the Internet

Chess Club:

• When the program captures something, there is a 99% chance of the

capturing piece being, in turn, captured by the opponent. This reflects

the fact that most pieces are always protected. Long chains of blind

sacrifices are common in Kriegspiel: for the second and subsequent

captures, the program uses Probcontrol to determine whether there is

retaliation.

• There is a chance, assumed to be constant in our model, of the player’s

piece being captured when a check message is heard. Human players

often try to capture the offending piece as their first reaction to a

check. In particular, a player has nothing to lose from probing the

check’s direction with his king.

• When the opponent moves, there is a fixed chance of the player suffering

a capture. The victim is chosen at random, with the probability of



5.7. APPROACH B 93

capture being directly proportional to Probcontrol so that more exposed

pieces are captured with higher probability.

• All pieces stand a more or less equal chance of being moved by the

opponent; if the program knows that the opponent has k1 pawns and

k2 pieces left, the probabilities of the king, a pawn, or a piece being

moved are, respectively,

Pking =
1

k1 + k2 + 1
, Ppawn =

k1
k1 + k2 + 1

, Ppiece =
k2

k1 + k2 + 1
.

• The enemy king’s movement is modeled as a random walk over a graph

corresponding to the set of permissible squares.

Pkij(t+1) = (1−Pking)Pkij(t)+Pking

∑
i−1≤x≤i+1

∑
j−1≤y≤j+1

fking(x, y, t)Pkxy(t),

where f is a suitable function that scales and centers the probability

delta values gathered from the game database discussed in Section 5.5,

so that their sum is 1. This function makes use of Dw or Db, depending

on whether the opponent is White or Black. The rationale behind using

delta values from the previous move instead of directly comparing the

values of D is that delta values represent trends rather than snapshots,

and seem to be more likely to carry over even during atypical games.

• Pawns are modeled separately as one-way Markov chains.

• A generic piece other than a pawn or king is the most complex to

model. The computational burden of calculating a custom transition

matrix for each chessboard (as its values would change depending on

board layout) and discovering which squares can affect which would

be too high for a method relying on speed and number of simulations.

Instead, the board is scanned along several directions, as shown in

Figure 5.7. Whenever a group of two or more empty squares is found,

the program runs a fast random walk update over those squares, still

using function f and the database data as long as it is available. If the

database is not active or the game has reached a point where it is no

longer useful, all squares become equally attractive.

Pcij(t+ 1) = (1− Ppiece)Pcij(t) + c1Ppiece

∑
c2Pij(t),
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Figure 1: Comparison of three simulation methods. Approach A is standard Monte Carlo tree search, approach B simulates
umpire messages only and for k-move runs, approach C immediately computes the value of a node in approach B for k = 1.

maximum, it can do either.
Hence, performing Monte Carlo on single states proved far

too unstable for a generic program, though the approach may
work in specific situations with a small information set. In or-
der to overcome this problem, we define a second approach,
called B. Approach B removes the randomness involved in
generating single states and instead only simulates umpire
messages, without worrying about the enemy layout that gen-
erated them. The same abstract model used to create states in
approach A is now used to estimate the likelyhood of a given
umpire message in response to a certain move. For example,
there is a chance of the enemy retaliating on a capture one or
more times and a chance of a move being illegal. These are
all approximated with probability distributions on the vari-
ous squares, just like in approach A. In particular, the model
makes the following assumptions:

• The probability for a move to be illegal is equal to the
sum of the probabilities of each square on the piece’s
path being occupied; for pawns, this includes the desti-
nation square unless the move is a capture.

• When a capture takes place, there is a 99% chance of the
capturing piece being, in turn, captured by the opponent.
If the player can immediately retaliate once more, this
chance halves with each iteration.

• There is a 30% chance of the player’s piece being cap-
tured when a check message is heard.

• The probability distribution for enemy pieces is updated
with a simple algorithm after each move, which basi-
cally brings all values closer to the average and normal-
izes them. There is a 10% chance of the player suffering

a capture, with more exposed pieces being more likely
targets.

The second point of interest about method B is that it does not
play full games as that proved to be too detrimental to perfor-
mance. Instead, it simulates a portion of the game that is at
most k moves long. The algorithm also accounts for quies-
cence, and allows simulations to run past the limit of k moves
after its starting point in the event of a string of captures. The
first move is considered to be the one leading to the tree node
where simulation begins; as such, when k = 1, there is ba-
sically no exploration past the current node except for quies-
cence. Intuitively, a low value of k gives the program less
foresight but increases the number of simulations and as such
its short term accuracy; a high value of k should do the oppo-
site. At the end of the simulated snippet, the resulting chess-
board is evaluated using the only real notion of Kriegspiel
theory in this method; that basically reduces to counting how
many pieces the player has left, minus the number of enemy
pieces left.

The third and final approach, called C, is approach B taken
to the extreme for k = 1; it was developed after noticing the
success of that value of k in the first tests. Since the percent-
ages for each umpire message are known in the model, it is
easy to calculate the results for each and average them. This
operation, which builds implicit chance nodes (whose num-
ber would be enormous if actually created), makes it so each
node needs only be evaluated once. Because simulations are
assumed to instantly converge in this fashion, the backup op-
erator is also changed from the average to the maximum node
value. Of course, this is the fastest simulation strategy, blur-
ring the line between simulation and a UCT-driven evaluation
function (or, more accurately, a cost function in a pathfinding
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maximum, it can do either.
Hence, performing Monte Carlo on single states proved far

too unstable for a generic program, though the approach may
work in specific situations with a small information set. In or-
der to overcome this problem, we define a second approach,
called B. Approach B removes the randomness involved in
generating single states and instead only simulates umpire
messages, without worrying about the enemy layout that gen-
erated them. The same abstract model used to create states in
approach A is now used to estimate the likelyhood of a given
umpire message in response to a certain move. For example,
there is a chance of the enemy retaliating on a capture one or
more times and a chance of a move being illegal. These are
all approximated with probability distributions on the vari-
ous squares, just like in approach A. In particular, the model
makes the following assumptions:

• The probability for a move to be illegal is equal to the
sum of the probabilities of each square on the piece’s
path being occupied; for pawns, this includes the desti-
nation square unless the move is a capture.

• When a capture takes place, there is a 99% chance of the
capturing piece being, in turn, captured by the opponent.
If the player can immediately retaliate once more, this
chance halves with each iteration.

• There is a 30% chance of the player’s piece being cap-
tured when a check message is heard.

• The probability distribution for enemy pieces is updated
with a simple algorithm after each move, which basi-
cally brings all values closer to the average and normal-
izes them. There is a 10% chance of the player suffering

a capture, with more exposed pieces being more likely
targets.

The second point of interest about method B is that it does not
play full games as that proved to be too detrimental to perfor-
mance. Instead, it simulates a portion of the game that is at
most k moves long. The algorithm also accounts for quies-
cence, and allows simulations to run past the limit of k moves
after its starting point in the event of a string of captures. The
first move is considered to be the one leading to the tree node
where simulation begins; as such, when k = 1, there is ba-
sically no exploration past the current node except for quies-
cence. Intuitively, a low value of k gives the program less
foresight but increases the number of simulations and as such
its short term accuracy; a high value of k should do the oppo-
site. At the end of the simulated snippet, the resulting chess-
board is evaluated using the only real notion of Kriegspiel
theory in this method; that basically reduces to counting how
many pieces the player has left, minus the number of enemy
pieces left.

The third and final approach, called C, is approach B taken
to the extreme for k = 1; it was developed after noticing the
success of that value of k in the first tests. Since the percent-
ages for each umpire message are known in the model, it is
easy to calculate the results for each and average them. This
operation, which builds implicit chance nodes (whose num-
ber would be enormous if actually created), makes it so each
node needs only be evaluated once. Because simulations are
assumed to instantly converge in this fashion, the backup op-
erator is also changed from the average to the maximum node
value. Of course, this is the fastest simulation strategy, blur-
ring the line between simulation and a UCT-driven evaluation
function (or, more accurately, a cost function in a pathfinding
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maximum, it can do either.
Hence, performing Monte Carlo on single states proved far

too unstable for a generic program, though the approach may
work in specific situations with a small information set. In or-
der to overcome this problem, we define a second approach,
called B. Approach B removes the randomness involved in
generating single states and instead only simulates umpire
messages, without worrying about the enemy layout that gen-
erated them. The same abstract model used to create states in
approach A is now used to estimate the likelyhood of a given
umpire message in response to a certain move. For example,
there is a chance of the enemy retaliating on a capture one or
more times and a chance of a move being illegal. These are
all approximated with probability distributions on the vari-
ous squares, just like in approach A. In particular, the model
makes the following assumptions:

• The probability for a move to be illegal is equal to the
sum of the probabilities of each square on the piece’s
path being occupied; for pawns, this includes the desti-
nation square unless the move is a capture.

• When a capture takes place, there is a 99% chance of the
capturing piece being, in turn, captured by the opponent.
If the player can immediately retaliate once more, this
chance halves with each iteration.

• There is a 30% chance of the player’s piece being cap-
tured when a check message is heard.

• The probability distribution for enemy pieces is updated
with a simple algorithm after each move, which basi-
cally brings all values closer to the average and normal-
izes them. There is a 10% chance of the player suffering

a capture, with more exposed pieces being more likely
targets.

The second point of interest about method B is that it does not
play full games as that proved to be too detrimental to perfor-
mance. Instead, it simulates a portion of the game that is at
most k moves long. The algorithm also accounts for quies-
cence, and allows simulations to run past the limit of k moves
after its starting point in the event of a string of captures. The
first move is considered to be the one leading to the tree node
where simulation begins; as such, when k = 1, there is ba-
sically no exploration past the current node except for quies-
cence. Intuitively, a low value of k gives the program less
foresight but increases the number of simulations and as such
its short term accuracy; a high value of k should do the oppo-
site. At the end of the simulated snippet, the resulting chess-
board is evaluated using the only real notion of Kriegspiel
theory in this method; that basically reduces to counting how
many pieces the player has left, minus the number of enemy
pieces left.

The third and final approach, called C, is approach B taken
to the extreme for k = 1; it was developed after noticing the
success of that value of k in the first tests. Since the percent-
ages for each umpire message are known in the model, it is
easy to calculate the results for each and average them. This
operation, which builds implicit chance nodes (whose num-
ber would be enormous if actually created), makes it so each
node needs only be evaluated once. Because simulations are
assumed to instantly converge in this fashion, the backup op-
erator is also changed from the average to the maximum node
value. Of course, this is the fastest simulation strategy, blur-
ring the line between simulation and a UCT-driven evaluation
function (or, more accurately, a cost function in a pathfinding

Figure 5.7: Density spreading routine in approaches B and C (second diag-
onal sweep not shown).

with c1 and c2 indicated as different constants for exposition’s sake. c1
is again a piece probability factor, as not all pieces can move along a

given direction, as well as a generic adjustment factor; it indicates the

probability of finding a piece that can move as desired and is willing

to. In the current implementation, c2 = 1
k−1 , where k is the number of

squares in the sequence.

While this algorithm can help to improve the program’s performance and

run more simulations than approach A can in the same amount of time,

the real advantage is that the opponent no longer plays randomly in the

simulations; instead, the opponent’s perceived strategy follows some aver-

age, realistic expectations while his actual moves are never disclosed or even

generated.

5.7.1 Partial simulations

A second point of interest about method B is that it does not play full

games as that proved to be too detrimental to performance in approach A.

Instead, it simulates a portion of the game that is at most k moves long (k

is passed as a parameter). The algorithm also accounts for quiescence, and

allows simulations to run past the limit of k moves after its starting point

in the event of a string of captures. The first move is considered to be the

one leading to the tree node where simulation begins; as such, when k = 1,

there is basically no exploration past the current node except for quiescence.
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function approach C(Node root) {
while (availableTime) {

Node n = root;
Move move;
while (!isLeaf(n)) {

if (programTurn(n)) {
n = uctSelection(n);
Message msg = probabilisticMessage(n);
n = getChild(n,msg);

}
else {

Message msg = probabilisticMessage(n);
n = getChild(n,msg);

}
}
if (n.explored) n = expand(n);
double outcomeValues[ ], probabilities[ ], value;
getOutcomeProbabilities(n,outcomeValues,probabilities);
for (int a=0; a<outcomeValues.length; a++)

value += outcomes[a] * probabilities[a];
n.explored = true;
backpropagate(outcome,n);

}
return mostVisitedChild(root);

}

Figure 5.8: Pseudocode for approach C.

Intuitively, a low value of k gives the program less foresight but increases the

number of simulations and as such its short term accuracy; a high value of

k should do the opposite. At the end of the simulated snippet, the resulting

chessboard is evaluated using the only real notion of Kriegspiel theory in this

method; that basically reduces to counting how many pieces the player has

left, minus the number of enemy pieces left.

5.8 Approach C

The third and final approach, called C and shown in Figure 5.8, is approach

B taken to the extreme for k = 1; it was developed after noticing the success

of that value of k in the first tests. Also, there is a common tendency seen

in Kriegspiel literature, first in Parker et al. [2005] and then in Bryan et al.

[2009], for myopic searches to outperform their far-sighted counterparts. If

anything, using k = 1 offers a tremendous performance boost, as each node

needs only be sampled once. Since the percentages for each referee message

are known in the model, it is easy to calculate the results for each and obtain
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a weighed average value. As seen in the pseudocode, the function getOut-

comeProbabilities interrogates the referee simulator on the probabilities of a

given outcome taking place from the penultimate to the latest explored node.

Each outcome has a progress value identical to approach B’s and equal to

the number of allied pieces on the board.

Approach C makes the bold assumption that the value estimated with

approach B’s abstract model for k = 1 is the truth, or at least as close

to the truth as one can get. Because simulations are assumed to instantly

converge through the weighed average, the backup operator is also changed

from the average to the maximum node value. Of course, this is the fastest

simulation strategy, blurring the line between simulation and a UCT-driven

evaluation function (or, more accurately, a cost function in a pathfinding

algorithm), and it can be very discontinuous from one node to the next. If

approach C is successful, it means that information in Kriegspiel is so scarce

and of such a transient nature, as outlined in the previous section, that the

benefits of global exploration by simulating longer games are quite limited

compared to the loss of accuracy in the short run, thus emphasizing selection

strategies over simulation strategies. Another way to think of approach C is

as if simulations happened entirely on the tree itself rather than in separate

trials, at the rate of one simulation per node. This is based on the assumption

that good nodes are more likely to have good children, and the best node

usually lies at the end of a series of good or decent nodes.

5.9 Tests

We test our approaches, with the exception of A which is not strong enough

to be interesting, against an improved version (about 100 Elo points stronger)

of the one described in the previous chapter (Darkboard 1.0). As we have

seen, the main feature of that Kriegspiel player is the use of metapositions as

representations of the game’s belief state that can be evaluated in a minimax-

like fashion. Tests against humans on the Internet Chess Club showed that

the minimax program’s playing strength is reasonable by human standards,

ranking above average at around 1700 Elo points; specifically, it possesses

good defense but is often unable to find a good attack strategy unless the

opponent is in a weaker position, which limits its strength as Kriegspiel
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Figure 5.9: Comparison of MCTS approaches B and C with a fixed-depth
minimax program at different time settings and simulation depths, with error
intervals.

favors a wise attacker. The program used as an opponent for Monte Carlo

Tree Search in our tests is probably slightly stronger than the aforementioned

one, since it performs a series of hard-coded checks that prevent the agent

from making obvious blunders. It should be noted that our Monte Carlo

players do not include these checks. The evaluation function of the minimax

player is rather complex, consisting of several components including material,

positional and information bonuses. By contrast, our Monte Carlo programs

know very little about Kriegspiel: approaches B and C only know that the

more pieces they have, the better. They know nothing about protection,

promoting pawns, securing the center or gathering information.

The results of the tests are summarized in Figure 5.9. Programs are

evaluated by tournaments against the minimax program, with the value of k

on the x axis and the difference in Elo points on the y axis. Thus, programs

that perform worse than the minimax program are below 0 in the graph

whereas the better programs are above 0. We recall that in the Elo rating

system a difference of 200 points corresponds to an expected result of about

0.75 (with 1 being a win and 0.5 being a draw), and a difference of 400 points

has an expected result of about 0.9. The minimax program itself always runs

at the same, optimal setting for its evaluation function, requiring between
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1 and 2 seconds to run. The program hits a performance plateau after this

point, preventing it from further increases in performance.

After witnessing the failure of approach A, we limit our tests to ap-

proaches B and C. These MCTS programs do not have particular optimiza-

tions and their parameters have not been thoroughly fine-tuned. The pro-

grams are all identical outside the simulation task, with the single exception

of the UCT exploration parameter c. Approach C uses a lower value of c

leaning towards exploitation more on the basis that each node is only evalu-

ated once. However, this different value of c has only a small beneficial value

on the program: most of the advantage of the weighed average method lies in

its speed, which allows it to visit many more nodes than the corresponding

B program for k = 1 - the speedup factor ranges from 10 to 20 on average,

everything else being equal. In fact, approach C lacks randomness altogether

and could be considered a degeneration of a Monte Carlo technique.

Experimental findings more or less confirm our expectation, that is, lower

values of k should be more effective under faster time settings, and higher val-

ues of k should eventually gain the upper hand as the program is given more

time to reason. When k is low, the program can execute more simulations

which make it more accurate in the short term, thus reducing the number of

tactical blunders. On the other hand, given enough time the broader hori-

zon of a higher k finds more strategic possibilities and longer plans through

simulation that the lower k cannot see until they are encountered through

selection.

At 1 second per move, k = 1 has a large advantage over the other B pro-

grams. Doubling the time reduces the gap among all programs, and at 4 and

8 seconds per move the longer simulations have a small but significant edge,

actually outperforming the minimax program by a slight margin. The only

disappointment came from the k = 3 programs, which did not really shine

under any time setting. It is possible that three moves is just not enough to

consistently generate good plans out of random tries. Since Kriegspiel plans

can be interleaved with basically useless moves that more or less maintain the

status quo on the board, a ten-move sequence can contain a good three-move

sequence with higher likelyhood.

Given the simplicity of the approach and the lack of specialized knowl-

edge compared to the minimax program’s trained parameters and pruning
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Darkboard 1.0 Darkboard 2.0
Games played 2442 7121
Unique opponents 384 (6.36 games each) 589 (12.09 each)
Avg. Opponent Elo 1534 1646
Avg. Score 0.512 0.470
Avg. Elo 1543 1626
% of games vs higher Elo 47.0% 60.3%
Games vs Top 20 players 792 (32%) 2777 (39%)
Avg. Score vs Top 20 players 0.171 0.26

Table 5.1: Comparison of Darkboard 1.0 and 2.0 (approach C) on the
Internet Chess Club.

techniques, B programs are quite remarkable, though not as much as the

performance of C type programs. These can defeat the benchmark program

consistently, ranking over 100 Elo points above it and winning about three

times more games than they lose to it. Since approach C has basically no

lookahead past the node being explored, we can infer that UCT selection is

the major responsible for its performance, favoring the paths of least danger

and highest reward under similar time settings to the minimax program’s.

The UCT exploration-exploitation method beats the hard pruning algorithms

used by the minimax program, showing that in such a game as Kriegspiel

totally pruning a node can often remove an interesting, underestimated line

of play: there are relatively few bad nodes that can be safely ignored. It

appears more profitable to allocate different amounts of time and resources

to different moves, like in Monte Carlo tree search and the related n-armed

bandit problem.

We collected more experimental evidence that approach C is effective

letting it to play against humans over the ICC. The comparison with the

heuristic search program, Darkboard 1.0, is shown in Table 5.1. It should

be noted that this scoring system is conservative by about 70-90 Elo for all

players due to ICC mechanics. Moreover, the top 20 players considered were

the same for both programs, so the confrontation is direct.

Last but not least, approach C confirmed its playing strength by winning

the gold medal with a perfect score in the Kriegspiel tournament held at the

14th Computer Olympiads in Pamplona, Spain, in May 2009.
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5.10 Conclusions and future work

There are several conclusions to be drawn from these experiments. First,

they show that a Monte Carlo tree search algorithm can converge to good

results in a reasonable amount of time even in a very difficult environment like

Kriegspiel, whose lengthy simulations might at first appear to be a significant

disadvantage of the method. However, precautions need to be taken so that

the program does not end up sampling data that is too noisy to be useful; in

this case, such a requirement is met by abstracting the game with a model

in which single states are not important, and only their perception matters.

Secondly, we can explain the success of approach C, which is basically

UCT with a node evaluation function, with its accuracy in simulating the

very next move. Also, it can be argued that variable-depth UCT selection can

outperform fixed-depth minimax in high-uncertainty situations even under

these unorthodox premises. Still, approach B - the more traditional Monte

Carlo method - seems to have the largest room for improvement. While

experimental data indicates that stable evaluation of the first move is the

largest factor towards improving performance and avoiding tactical blunders

when time is short, a longer simulation with higher values of k provides

better strategic returns under higher time settings. In particular, k = 10

shows great improvement at 4 seconds per move. It is possible that, with

more effective simulation strategies and more processing power, approach B

will be able to outperform approach C. It is too early to reach a conclusion

on this point. A hybrid approach, treating the first move like C and the

following moves like B, is also worth investigating.

The program as a whole can still be improved by a large factor. In the

game of Go, Monte Carlo tree search is more and more often combined with

game-specific heuristics that help the program in the Selection and Simula-

tion tasks. Since Monte Carlo methods are relatively weaker when they are

short on time, these algorithms drive exploration through young nodes when

there is little sampling data available on them. Examples of such algorithms

are the two progressive strategies described in Chaslot et al. [2008]. Since

Kriegspiel is often objective-driven when played by humans, objective-based

heuristics are the most likely candidates to make good progressive strategies,

and research is already underway in that direction.



Chapter 6

The quest for progress in the
endgame

This chapter is the first of three devoted to the Kriegspiel endgame, which

offers considerably different challenges with respect to the midgame. The

results contained in this chapter, largely due to Bolognesi and Ciancarini,

serve to illustrate the state of the art in the endgame as far as online search

algorithms are concerned; that is, search algorithms that operate at runtime

to find the solution to a Kriegspiel endgame problem. While these heuristic-

driven algorithms are not optimal, they can find a good solution to most

problems in a reasonable time unless the opponent has access to perfect in-

formation on the state of the game. By contrast, the new results contained in

the next two chapters solve the same Kriegspiel endgames through retrograde

analysis and the construction of a tablebase, achieving perfect play wherever

victory can be obtained with probability 1. Even so, this method remains

useful because of its simplicity and applicability to situations in which White

cannot push victory with probability 1.

In the remainder of this chapter we consider an algorithm that builds

and searches a Kriegspiel game tree made of nodes called metapositions, and

uses an evaluation function in order to judge each node and implement a

progress heuristic. In order to evaluate this approach, we deal with some

basic endgames of Kriegspiel, i.e. those where a player (we assume Black)

has only the king left. Thus, in the next sections we will consider White

having a king and a rook (in the KRK ending), a king and a queen (KQK),

a king and two bishops (KBBK), a king, a bishop, and a knight (KBNK).

101
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These are the same endgames that will be considered in the next chapters

and used as a test bed for retrograde analysis.

This chapter has the following structure. In Section 6.1 we describe a

way to represent uncertainty using metapositions and show how it is possible

to find an optimal strategy that checkmates the opponent in the shortest

amount of moves. In Section 6.2 we show how to reduce the game tree in

order to simplify the search with the help of an evaluation function and a

pruning strategy.

In Section 6.3 we propose such an evaluation function for “progressing

in the dark” in the case of the main and most common Kriegspiel endings.

Finally, in Section 6.4 we evaluate this approach, especially comparing it

with a previous algorithm proposed by [Boyce, 1981].

6.1 Metapositions in the endgame

In this section we re-introduce the concept of metaposition, which was first

encountered in chapter 4 and will be further expanded and formalized in

the next chapter. As previously seen, A metaposition is a position able

to denote a set of normal Chess positions. For example, in the leftmost

diagram depicted in Figure 6.1, White is not sure where the Black King

could be: multiple Black Kings represent equally possible positions of the

King. Metapositions are useful because a Kriegspiel position can be described

by a pair of metapositions, one for each player; each metaposition represents

the knowledge inferred by a player.

We will also use the term reference board, which is a chessboard diagram

annotated with all the possible positions of the opponent’s pieces (usually

the King alone). Thus White’s reference board represents the (uncertain)

knowledge about the position of the black king.

A metamove is the aggregate of all possible moves Black can make from

any state contained in the metaposition. Information about a metamove

can be inferred from the referee’s messages. In other words, after a Black

metamove White should update his reference board taking into account all

the new possibilities that are compatible with the latest message.

We will also use the term pseudomoves to indicate moves tried by White

on a metaposition.
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Figure 6.1: Three metapositions resulting after three different referee’s an-
swers. to two different White pseudomoves.

We can easily show that White’s knowledge increases after a pseudomove

and decreases after a metamove. The leftmost diagram in figure 6.1 shows an

initial position where White can try, for example, the pseudomoves Re3 and

Kd5. The initial metaposition has the greatest uncertainty, as each square

not controlled by White can contain a Black King.

If White tries to move his rook to e3 and the referee answers “Check”, he

will update his reference board and assume that the Black King’s location is

on the same rank or file occupied by the White Rook, as shown in the second

diagram of figure 6.1. If White tries Re3, but the referee remains silent, he

will update his reference board clearing the squares around the King and

along the Rook’s rank and file. This is depicted on the third diagram of

figure 6.1. Finally, an attempt may be illegal because White tries to move

his King to a square controlled by the Black King. In this case, White will

realize that the Black King must be somewhere around e5. The rightmost

miniature in figure 6.1 shows White’s reference board updated after he tried

Kd5 and received the ‘illegal’ warning from the referee.

6.1.1 Number of metapositions

In order to highlight the numerical complexity of dealing with uncertainty

by means of metapositions, we calculate the number of metapositions for

the Rook ending. It takes about 28,000 positions to solve the same ending

exhaustively in Chess, as shown in Clarke [1977]. In Kriegspiel, we can

simply iterate over the positions of the White pieces and count the number

of distinct combinations of Black Kings. If we assume, as a worst case for

White, the Rook on a1 and the King on b1, there are 52 possible squares not

controlled by White and the total number of metapositions is



104 CHAPTER 6. THE QUEST FOR PROGRESS IN THE ENDGAME

∑
1≤n≤52

(
52

n

)
= 252 − 1. (6.1)

Thus, the number of metapositions is extremely large. Reflecting a meta-

position along the axes and main diagonal does not decrease the numerical

magnitude of the problem. In the next chapter we show how only a small

subset of these metapositions is really significant, however we are clearly

unable to evaluate each single metaposition separately.

6.1.2 Optimal search

It follows from the previous section that a Kriegspiel ending played with

metapositions can be viewed as a perfect information game. While we have

not removed imperfect information, we have changed our representation to

account for it, and we can apply the minimax theorem to this scenario.

MAX’s moves are White’s pseudomoves; MIN’s moves are the referee’s mes-

sages. Suppose Black can choose the referee’s answer to White’s move among

those compatible with the current metaposition: the new reference board con-

tains uncertainty, but its computation is entirely deterministic. Even illegal

moves fit the model nicely, as an illegal move is still a referee’s message and

only differs from the others in that the White pieces stand still.

Such a model assumes that Black is not only omniscient, but able to

relocate his King at will and as the need arises (Magari was the first to liken

the Black King’s behavior to quantum mechanics). Under this model, we

can build a normal minimax tree. Zermelo’s theorem guarantees there are

optimal strategies for either player to achieve a minimum payoff.

Clearly, it is pointless to try this opponent model in a full game of

Kriegspiel, as White is simply hopeless against a 16-piece board-altering or-

acle. In the endgame, however, it makes perfect sense to do so, in view of

the fact that we already know White can win even against such a gifted

opponent. We can therefore use minimax to find the optimal mate, that is,

the shortest forced mate. All the program needs is the ability to recognize

game-ending metapositions and assign their payoffs. The definitions are a

simple consequence of Black’s powers:
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• A metaposition is a checkmate is every Black King on the reference

board is checkmated.

• A metaposition is a stalemate if at least one Black King is stalemated.

• A metaposition is an insufficient material draw if the referee can say

“capture”.

The pseudocode for this algorithm is in Figure 6.2. It is readily seen that

this is a very simple minimax.

Figure 6.3 shows an example of optimal search. Without any evaluation

besides verifying these final states, searching the game tree leads the program

to the best move, Ra1. No other strategy can checkmate Black in two moves.

Just like with normal minimax, problems arise when the final state is

distant and deep into the game tree. In this case, the number of positions

we need to visit is greater than any feasible search depth. The solution we

investigate in this paper is, once again, adapted from Chess minimax: we

define evaluation functions for these endgames. The goal is to maximize a

function measuring our progress towards checkmate; we are prepared to lose

optimality in exchange for being able to play well under any circumstances.

6.2 Game tree reduction

Just like in the perfect information case, it is not feasible to explore a full

metaposition tree. It is known from practical findings that a general KRK

instance can last 30 or more moves, depending on the opponent’s strategy.

Seeing as White has, on average, about 15 pseudomoves to choose from and

it is not possible to trivially prune the tree except when a move can lead to

an instant draw, some level of approximation is necessary even with three-

piece endings. We also wish to play positions that are not certain wins, for

example because White’s Rook is threatened after the first move, with a good

strategy maximizing our chance to win.

Our approach is as follows. First, we create an evaluation function

(EVAL) that outputs a score for a given metaposition. Then, we also define a

pruning strategy for the metaposition tree. The resulting algorithm is still a

minimax, with MAX’s moves (White) being pseudomoves (moves which are



106 CHAPTER 6. THE QUEST FOR PROGRESS IN THE ENDGAME

function evalOpt(Metaposition mp, int depth)
{

if (isCheckmate(mp)) return 1.0;
if (isStalemate(mp)) return -1.0;
if (insufficientMaterial(mp)) return -1.0;
if (fiftyMoveDraw(mp)) return -1.0;
if (depth==1) return 0.0;
double max = -INFINITY;
Move best move = NULL;
foreach (mv in getPseudomoves(mp)) do
{

double min = INFINITY;
foreach (msg in getPossibleMessages(mp,mv)) do
{

double val = evalOpt(updateMp(mp,mv,msg),depth-1);
if (val < min)

min = val;
}
if (min > max)
{

max = min;
best move = mv;

}
}
return max;

}
function optimalIterativeDeepening(Metaposition mp)
{

for (int k=1; true; k++)
{

double val = evalOpt(mp,k);
if (val==1.0 || val==-1.0) return val;

}
}

Figure 6.2: Pseudocode for full Kriegspiel minimax.

legal for at least one possible configuration of the Black pieces), and MIN’s

moves being metamoves corresponding to a referee’s message, which can be

silent (S), check (C) or illegal (I).
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Figure 6.3: Example of optimal search.

The algorithm therefore proceeds as follows. Suppose that White’s ref-

erence board is the one depicted in Figure 6.5 and that it is White’s turn

to move. The search algorithm generates all the pseudomoves and creates

three new metapositions according to the three (or fewer) possible answers

from the referee. Then, it chooses the one with the lowest evaluation. In

the example we have 21 pseudomoves. All 21 are compatible with a silent

referee, 2 King moves can be illegal and 3 Rook moves can cause a check. In

this example we only prune 5 nodes, though we will prune many more when

there are many Black Kings on the board.

If the search algorithm has reached the desired search depth it simply re-
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function evaluate(Metaposition mp, int depth)
{

if (depth == 0) return EVAL(mp);
double max = -INFINITY;
Move best move = NULL;
foreach (mv in getPseudomoves(mp)) do
{

double min = INFINITY;
Message worst message = NULL;
foreach (message in getPossibleMessages(mp,mv)) do
{

Metaposition update = updateMp(mp,mv,message);
if (EVAL(update) < min)
{

min = EVAL(update);
worst message = message;

}
}
Metaposition selected = updateMp(mp,mv,worst message);
double childEval =evaluate(selected,depth-1);
if (childEval > max)
{

max = childEval;
best move = mv;

}
}
return max + EVAL(mp);

}

Figure 6.4: Pseudocode for our approximated metaposition search algorithm.

turns the best node, that is the the node with the maximum value, otherwise

it applies Black’s metamove on each node, decrements the search depth and

recursively calls itself on a subtree. Finally, it retracts the pseudomove played

and adds to the metaposition’s value the score returned by the recursive call,

updating the max on that particular search depth.

When the algorithm is done visiting the tree, it returns the best pseudo-

move to play. As we mention later when dealing with omniscient opponents,

we have implemented a loop-breaking mechanism that avoids playing the

same move from the same position twice.
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Pseudocode for our algorithm is given in Figure 6.4. The pruning heuristic

is quite radical, in that we only consider the referee’s message with the lowest

evaluated score according to EVAL. While this reduces the search space by a

large factor, it also implies a high degree of trust in the evaluation function,

as we assume that the worst message (basically, the one leading to the longest

forced mate) is always the one returned by EVAL.

One reason for choosing this strategy is that there is a very high corre-

lation between the distance to mate and the amount of Black Kings near

the middle of the board. It is a notion we can simply derive from endgame

databases in Chess: it takes much longer to checkmate the King when it is in

the middle. There is a very high probability that the metaposition with the

most central Kings will be the longest to solve, and the evaluation function

takes that into account. This makes us confident in EVAL whenever this

holds true in Chess. The second reason is more practical: metapositions are

much slower to work with than Chess positions, and updating Black’s meta-

moves is especially slow. Therefore, we can benefit from aggressive pruning

much more than a Chess function would.

6.3 The evaluation function

The evaluation function tries to capture the notion of progress leading a

player towards victory. It is a linear, weighted sum of features expressed as

EVAL(m) = w1f1(m) + w2f2(m) + ...+ wnfn(m) (6.2)

where, for a given metaposition m, wn indicates the weight assigned to

a particular subfunction fn. For example, a weight might be w1 = −1 and

f1(s) may indicate the number of Black Kings.

The EVAL function is different for each ending, but it has some invariant

properties: it avoids playing moves that could lead to a stalemate and it

immediately returns a checkmating move, if one exists.

In the following subsections we briefly describe the evaluation functions

we use for some Kriegspiel endings.
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Figure 6.5: Pruning a metaposition tree.

6.3.1 The Rook ending (KRK)

The evaluation function for this ending considers n = 6 different features.

1. it keeps the Rook safe: w1 = −1000 and f1 is a boolean function which

is true if the White Rook is under attack;

2. it brings the two Kings closer: w2 = −1 and f2 returns the distance

(number of squares) between the two Kings;

3. it reduces the number of quadrants (as seen from the Rook) with Black

Kings in them, as well as the total number of Kings: w3 = −1 and

f3 = c
∑4

i=1 qi, where c ∈ {1, 2, 3, 4} is the number of quadrants with

Black Kings and qi is the number of Black Kings in ith quadrant;

4. it keeps the Black King from interposing between the White Rook and

the White King: w5 = −500 and f5 returns 1 if the Black King is inside

the rectangle formed by the White pieces, or 0 otherwise;
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

1 1 0 0 0 0 1 1
1 0 0 0 0 0 0 1
0 0 −2 −4 −4 −2 0 0
0 0 −4 −4 −4 −4 0 0
0 0 −4 −4 −4 −4 0 0
0 0 −2 −4 −4 −2 0 0
1 0 0 0 0 0 0 1
1 1 0 0 0 0 1 1


Figure 6.6: The numerical matrix v[]

5. it keeps the White pieces close to each other: w5 = +1 and f5 returns

1 if the Rook is adjacent to the King, 0 otherwise;

6. it pushes the Black King towards the corner of the board: w6 = +1 and

f6 =
∑64

i=0K(i) · v[i], where v is a numerical 64-element vector, shown

in Figure 6.6, that contains higher values for corner and edge squares,

and K(i) returns 1 if there is a Black King on square i, 0 otherwise.

6.3.2 The Queen ending (KQK)

The evaluation function is similar to the one described in Section 6.3.1, except

we consider the Queen instead of the Rook and we add two features. Thus,

n = 8 and in the first six are the same as in KRK, with the addition of:

7. it penalizes a large number of Black Kings: w7 = −1 and f7 is equal to

the number of Black Kings on White’s reference board;

8. it performs the same checks as feature 3 in KRK, but with the Queen’s

diagonals used in place of the quadrants: c ∈ {1, 2, 3, 4} is the number

of areas with Black Kings in them, and ai is the number of Kings in

the ith area.

6.3.3 The ending with two Bishops (KBBK)

In this ending we have to deal with two White pieces other than the King.

The evaluation function uses the same subfunctions considered in the pre-

vious endings, but with different weights. In the subfunctions that only

mention one Bishop, the values are calculated and summed separately for

the two Bishops.
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

0 −10 −50 −100 −100 −50 −10 0
−10 −10 −40 −40 −40 −40 −10 −10
−50 −40 −40 −40 −40 −40 −40 −50
−100 −40 −40 −50 −50 −40 −40 −100
−100 −40 −40 −50 −50 −40 −40 −100
−50 −40 −40 −40 −40 −40 −40 −50
−10 −10 −40 −40 −40 −40 −10 −10

0 −10 −50 −100 −100 −50 −10 0


Figure 6.7: The numerical matrix b[]

1. it keeps the Bishops safe: w1 = −1000 and f1 returns 1 if at least one

of the Bishops is under attack;

2. it brings the two Kings closer: w2 = −1 and f2 returns the distance

(number of squares) between the two Kings;

3. it keeps the Black King from interposing between the White rook and

the White Bishops: w3 = −500 and f3 returns 1 if a Black King is in

the rectangle formed by the White King with at least one Bishop;

4. it keeps the White Bishops closer: w4 = +2 and f4 returns 1 if the

Bishops are adjacent to each other, 0 otherwise;

5. it pushes the Black King toward a corner of the board: w5 = +1 and

f5 =
∑63

i=0K(i) · b[i], where b is a numerical 64-element vector, shown

in figure 6.7, and K(i) returns 1 if there is a Black King on square i.

6. it keeps the White King on the Bishop’s rank or file: w6 = +1and f6
returns 1 if the King and the Bishop are on the same rank or file;

7. it reduces the number of Black Kings on the areas traced by the

Bishop’s diagonals: f7 = c
∑4

i=1 ai where c ∈ {1, 2, 3, 4} is the num-

ber of areas that contain at least one Black King, ai is the number of

possible Black kings on ith area, and

if f5(m) ≤ −600 (very low information on the Black King) then w7 =

−4;

else w7 = 1
6
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Figure 6.8: Key Bishop positions.

8. it prefers some particular positions (we will refer to them with the term

key Bishop positions) for the White King and Bishops, highlighted in

figure 6.8; for example Kc7, Bc4 and Bc5. Therefore, w8 = +30 and f8
returns 1 if the Bishops and the King are arranged in one of the key

positions.

6.3.4 The ending with Bishop and Knight (KBNK)

The evaluation function for the White Bishop is the same as in Section 6.3.3.

For the Knight we cannot consider any division of the board, so the evaluation

for this chessman consists of reducing the number of Black Kings on White’s

reference board and of supporting the Bishop.

We also used a large set of key metapositions similar to those for the

Bishops ending shown in figure 6.8. Unfortunately, this was not enough to

obtain a good evaluation function for the KBNK endgame, as we will explain

in the next section.

6.4 Tests and comparisons

In order to evaluate our algorithm, we have written a rule-based program

that implements the procedure proposed in Boyce [1981] for the Rook ending.

Boyce showed a way to force checkmate by considering positions where both

Kings are in the same quadrant of the board as seen from the Rook, or where

the Black King is restricted to one or two quadrants of the board. Thus, our

rule-based program uses a search algorithm and a small evaluation function

to obtain an initial position (with White’s pieces near a corner) from which

it can start following the directives in Boyce [1981]. This component brings

White to a valid starting position as quickly as possible, and if a position

is encountered that Boyce can solve, the algorithm immediately switches to
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Figure 6.9: Rook endgame: Comparing our function with Boyce’s algorithm.

Boyce; this usually happens as a response to an illegal move. The Black King

is not omniscient in this test. Instead, it does what any rational Kriegspiel

player would do: it tries to move towards the center. The algorithm and will

always pick its moves in decreasing order of distance from the nearest corner.

6.4.1 Rook endgame: comparing our function with Boyce’s
algorithm

We played about 28,000 matches, one for each possible starting position

in KRK. White always starts out with the highest amount of uncertainty:

every square not controlled by White contains a Black King. The results

are summarized in Figure 6.9. The number of matches won (normalized to

1000) is on the ordinate and the number of moves needed to win each match

is on the abscissa.

The rule based program spends the first 25 moves looking for one of

the initial positions; when it reaches one of these positions the checkmate

procedure is used and the program wins very quickly. However, the average

of moves needed is around 35. Our tree-searching program is faster, winning

after 25 moves on average.

The main advantage is that the program tries to make progress towards

checkmate from the very first move. On the other hand, the rule-based

program is faster than the tree-searching program in deciding the move to

play. The rule-based program has a constant execution time, whereas the

second one is exponential in the search depth.
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Figure 6.10: Comparison of basic endings.

6.4.2 Evaluating the search algorithm

Figure 6.10 compares game durations for the four tested endings. We simply

chose random starting positions for KRK, KQK, KBBK, and KBNK; we

gave White the highest uncertainty as in the previous test, and measured

the length of each game.

We see that the program wins the KQK ending faster than KRK. This

result was expected, because the Queen is more powerful than the Rook: the

Queen controls more space so metapositions have a lesser degree of uncer-

tainty.

On the other hand, KBBK is more difficult than KRK. In fact, the Bishop

ending almost always requires many more moves: sometimes our program

needs more than 100 moves.

Finally, we see that the behavior of our program in the KBNK ending is

quite bad. The program often requires more than 100 moves to win and the

distribution of victories does not converge: we conclude that our program is

not really able to make progress in this ending.

6.4.3 Progress through Uncertainty

An effective way to analyze the progress toward victory consists of consid-

ering how the value of White’s reference board changes after playing each

pseudomove.

Figure 6.11 shows the trend of evaluations assigned to each reference
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Figure 6.11: Trend of evaluations assigned to metapositions crossed. during
the KQK ending.

board reached during a whole match for the KQK ending. The number

of moves into the game is shown on the abscissa, while the average scores

assigned by the evaluation function are on the ordinate.

We see that, at each step, the value of metapositions increases. From

White’s point of view, this means that the state of the game is improving

and this is actually a good approximation of the real situation.

We have performed the same test for the KBNK ending; the result is

shown in Figure 6.12. Here the progress is not controlled by White. In fact,

the state of the game does not improve at each step. The graph shows how the

evaluations of the reference board change during a match won by White: the

value of metapositions does not increase at each pseudomove, but at some

unplanned stroke of luck for White. Thus, the program basically wins by

chance, that is by exploiting lucky metapositions or its opponent’s mistakes.

We conclude that our program is able to progress to victory when we deal

with pieces able to divide the board into separate areas, which can then be

reduced to trap the Black King; whereas, when we use a piece without this

power, like the Knight, the behavior of the program is not fully satisfactory.

6.4.4 Tests against humans

Practical findings reveal that it is very important for a Kriegspiel player to

know how to play the endgame correctly. As the opponent is not aware of

what pieces one has, they may not be as inclined to resign as they would in



6.4. TESTS AND COMPARISONS 117

-2300

-1800

-1300

-800

-300

200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
pseudomoves

values

Figure 6.12: Trend of evaluations assigned to metapositions crossed during
KBNK.

Chess, even in the presence of overwhelming material. Moreover, all mates

are considerably more complex in Kriegspiel than their Chess equivalents and

players tend to make many mistakes. We base our claim on a database of

about 12,000 Kriegspiel games played on the Internet Chess Club. The most

frequent endgames and their outcomes are shown in Table 6.1. As it can be

seen, complex endgames such as one with the bishop and knight is in the list

of the top 15 drawn endgames, and is almost never won in practice. Even

situations that should always be won, such as KQK and KRK, turn out to

be draws with surprising frequency. For this reason, even human play can

draw considerable benefit from computer analysis.

We have developed a software player, called Darkboard, that can play a

full game of Kriegspiel over the Internet Chess Club. We have played about

6,000 games since 2007, using the algorithms presented in this paper for

the four endings KRK, KQK, KBBK and KBNK. The outcomes for these

endings are summarized in Table 6.2. As it can be seen, our program still

does not win every time, though its performance is much better than the

average human’s. The draws in KRK are due to the 50-move rule, losing

the Rook on the first move and timeouts. The few draws in KQK are due

to timeouts. Not much can be said about KBBK and KBNK because of

their very low frequency, though the program never managed to checkmate

a human player with a Bishop and a Knight. We note that, on average,

endings against human players last longer than against the King’s algorithm

used in the previous tests. Humans put up a better defense, which results
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Wins Mates Draws
KQK 347 KQK 184 KK 273
KQQK 180 KQQK 144 KBK 121
KQRK 162 KQRK 118 KQK 121
KRK 138 KRK 54 KNK 103
KQRPK 92 KQRPK 54 KPK 44
KQBK 88 KQQBK 47 KRK 41
KQPK 87 KQBK 45 KQBK 27
KPK 65 KQRBK 41 KQNK 21
KQNK 62 KQQPK 37 KQQK 20
KQRBK 60 KQRNK 37 KQBNK 19
KQQBK 57 KQNK 33 KBKB 16
KRPK 56 KQQRK 30 KNKN 16
KQQPK 49 KQRBPK 29 KQRK 15
KQRNK 49 KQQNK 27 KBNK 12
KQRBPK 43 KQQQK 25 KQBPK 10

Table 6.1: Most frequent endgames in a database of Kriegspiel games.

Ending Wins Mates Draws
KRK 81 32 15
KQK 154 73 3
KBBK 7 2 5
KBNK 7 0 7

Table 6.2: Performance of our program against humans.

in a higher ratio of games over the 50-move limit. A human expert will try

to move back and forth between two squares and ask for a draw by threefold

repetition on every move. Also, the starting distribution in real games is not

uniform, and the Black King will often be in the middle of the board, where

mates take the longest time.



Chapter 7

Perfect play with retrograde
analysis

Retrograde analysis is a tool for reconstructing a game tree starting from

its leaves; with these techniques one can solve specific subsets of a com-

plex game, achieving optimal play in these situations, for example a chess

endgame. Position values can then be stored in “tablebases” for instant

access, as is the norm in professional chess programs. This chapter and

the next show that a very similar approach can be used to solve subsets

of certain imperfect information games such as Kriegspiel endgames. Using

a brute force retrograde analysis algorithm, a suitable data representation

and a special lookup algorithm, one can achieve perfect play, with perfec-

tion meaning fastest checkmate in the worst case and without making any

assumptions on the opponent. We investigate several Kriegspiel endgames

(KRK, KQK, KBBK and KBNK), building tablebases and casting light on

some long standing problems.

7.1 Overview

In a zero-sum game of perfect information, Zermelo’s theorem [Zermelo, 1913]

ensures that there is a perfect strategy allowing either player to obtain a guar-

anteed minimum reward. In many games, discovering the perfect strategy

seems to be synonymous with exploring a major portion of the game tree,

which is unfeasible under current and foreseeable computer technology. On

119
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the other hand, it is possible to explore significant subsets of the game tree in

such a way that, if a particular position is encountered during gameplay, its

value has already been computed and the best strategy is immediately avail-

able. Most serious programs for playing chess include a so-called “endgame

tablebase”. Unlike opening books, the same tablebase can freely be used by

any number of programs even under tournament conditions, on the basis that

it contains no creative work but simply large amounts of processor time.

Currently, tablebases exist for all six-piece chess endings, with seven-piece

positions in the process of being computed for the next few years. In many

cases, the perfection of tablebase-powered play is unapproachable by even the

strongest evaluation function, or indeed the strongest human player. Posi-

tions that most experts would have considered draws turn out to be mates in

300 or 500 moves, and seemingly hopeless games can be drawn by repetition.

Tablebases are usually obtained through retrograde analysis. Analysis starts

from final nodes, the leaves in the game tree corresponding to checkmates

and stalemates, and then moves backwards in time to find out predecessors

to those positions, until all possible layouts of the desired type have been

explored. The concept has been widely studied since the ’60s, so there is

a large bibliography devoted to chess tablebases and their creation. Bell-

man’s seminal paper [Bellman, 1965] first showed that playing the King and

Pawn vs. King (KPK) endgame in chess was a dynamic programming prob-

lem in which values for earlier positions could be recursively computed from

later positions. At the time of writing, computers were not powerful enough

to tackle any other chess ending, but the author suggested that common

endgames would be solved within ten years.

The prophecy turned out to be correct, and five years later [Ströhlein,

1970] solved some simple endings with three or four pieces on the board, in-

cluding KRK, KQK and KQKR. The method was a more elaborate version

of Bellman’s original algorithm; to find all mates in 1, then find all prede-

cessors of those positions, which would become mates in 2, and so on. At

the end of the computation, all positions not in the database are necessarily

draws. This thesis marked the start of an arms race towards larger and more

comprehensive databases for playing chess endings; in the present day, 45

years since the first paper, retrograde analysis is still being conducted for the

game of chess. We cite, among many others, [Stiller, 1991] as one of the best
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known examples of massively parallel retrograde analysis.

Today, the so-called Nalimov tables or EGT [Nalimov et al., 2000] have

become the de facto standard for chess tablebases and are used by most

serious programs as well as in human analysis. These tables and the code

for accessing them are freely available and all programs can use them in

computer tournaments; there are also online interfaces for querying them

manually. The indexing scheme of the EGTs is highly optimized, exploiting

all possible symmetries and rules of chess in order to exclude redundant or

impossible positions. The number of entries in the five-piece table is in the

order of the tens of billions.

Being able to play the endgame perfectly has had important repercussions

on chess theory itself. Through retrograde analysis it is possible to solve

problems that are far beyond the ability of humans and computer programs

alike to analyze. Some positions that were widely believed to be draws turned

out to be mates in hundreds of moves, and conversely positions that were

considered won actually had a successful defense leading to a draw. The

“Kasparov vs. the World” game, played on the Internet, has probably become

the most famous instance of a game whose outcome could have been different

with larger endgame tablebases.

We also recall that retrograde analysis has since been employed in several

games other than chess. Checkers pushed it so far that the whole game is now

solved [Schaeffer et al., 2007], proving that it is a draw just like tic-tac-toe;

its exploration required a cluster of supercomputers running for about 18

years. Some other games, like Nine Men’s Morris [Gasser, 1996] and Awari

[Romein and Bal, 2003] have been solved, whereas others have made about

as much progress as their chess counterparts, like Shogi; see, for example,

[Iida et al., 1998] for a classical Shogi endgame analyzed in such a fashion.

The aim of this chapter is to show that the same concept can be success-

fully applied to a game of imperfect information, as well. Specifically, it can

be applied to games which can be somehow transformed into perfect infor-

mation games in a meaningful way. Unlike other game-theoretical methods,

this is only limited to finding positions where a player can force victory with

probability 1, but these positions, once found, can be played optimally. In

particular, we give an algorithm for solving Kriegspiel endings that have so

far only been approached with approximated or heuristic methods, and use
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it to build Kriegspiel tablebases for several endings, including KRK, KQK,

KBBK and KBNK.

7.2 Retrograde analysis under imperfect in-

formation

Retrograde analysis works for perfect information games, in which Zermelo’s

theorem and the Minimax theorem [von Neumann, 1928] hold. Intuitively,

for it to work in an imperfect information scenario, we must reduce it to

the perfect information case. We do so essentially by abstracting the black

king’s moves so that multiple “virtual” black kings may exist on the board

at the same time. What we get is the merging of several hypothetical states

which evolve depending on observations, that is, referee’s messages. While

the actual message we hear upon trying a move is usually unpredictable,

the possible locations of the black king following that message are entirely

computable. At this point, it suffices to imagine that the black player de-

cides which message is returned by the referee among the legal ones, and

the whole game becomes one of perfect information, albeit one played with

different states than chess. If we can always mate even with Black deciding

the outcome of our moves (i.e. we can beat an omniscient oracle) then there

exists a pure winning strategy that can be stored in a tablebase. The max-

imum number of moves it takes to mate is also fixed and corresponding to

the oracle’s best defense.

Throughout our analysis, we will always suppose that the black king not

to have any allies on the board. Although considering the king alone makes

several tasks easier, this does not stem from any particular limitation in

the algorithm; simply, under standard Kriegspiel rules, victory can almost

never be guaranteed if there are more black pieces on the board, and as such

building a tablebase would be quite meaningless. If the referee were modified

to provide more information to the players, then more scenarios would likely

become worth investigating. The same theory applies to any subset of an

imperfect information game in which one player can achieve certain victory.

The aim of this section is to prove that we can create an algorithm for

playing Kriegspiel endings optimally through a tablebase. We will be working
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Figure 7.1: Minimum and maximum number of possible kings on a maximal
board in KRK.

with diagrams containing actual white chessmen and “virtual” black kings

representing possible game states. These diagrams have been called in various

ways by different authors. We will continue to use the term ’metaposition’

introduced in chapter 6, though we will provide a more accurate formalization

of their structure here in order to prove the correctness and completeness of

our method. However, we will occasionally refer to these diagrams simply as

’positions’ or ’situations’ for brevity, when the distinction is obvious from its

context. Figure 7.1 shows two examples of maximal metapositions for the

KRK endgame (they are maximal because nothing is known about the black

king).

Let us begin by defining the sets and functions on which we are operating.

Let Sq = {a1, . . . , h8} be the set of squares on the chessboard. A disposition

is a way of arranging the existing, visible white pieces, and we can represent

it as unordered piece sequences of the form [Ka1, Rb1], meaning the white

king in a1 and a white rook in b1. The disposition set D is then the set of all

possible dispositions for a given piece set. Calculating the cardinality of D is

a simple combinatorial exercise; for example, |DKRK | = 64× 63 = 4032. For

the purpose of our algorithm, however, we can make use of mirroring just

like we would in chess. All dispositions can be obtained by mirroring another

along the x or y axes, the right diagonal, or combination thereof. Obviously,

this would not hold true in endings with pawns, but for the purpose of our

scenarios this will always be the case. Mirroring reduces the cardinality of D

by a large factor; with only ten king positions to keep track of, we can define
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a mirrored disposition set Dm that contains fewer redundant dispositions.

In this way, |Dm
KRK | = 10 × 63 = 630. There is still some redundancy:

dispositions in which the king lies on the main diagonal could be halved in

size by checking the positions of the other pieces. However, we will be using

this incomplete mirroring scheme for the sake of simplicity.

It is easy now to define a metaposition in this context as a pair (d, S), d ∈
D,S ⊆ Sq. The rules of chess define a legality function lgl : D → P (Sq)

that accepts a disposition as its input and returns a set of legal squares (a

member of the power set of Sq). This function represents the legal locations

for the black king, assuming it is white’s turn. This is an assumption that

we are going to make throughout the chapter - all diagrams show situations

in which the white player is to move. This means the black king cannot be

in check as we start. This allows us to define the set of legal metapositions

L = {(d, S) : d ∈ D,S ⊆ lgl(d), S 6= ∅} .

The legality function defines the maximum number of black kings that

can appear on the board at any given time. That, of course, depends on

the particular disposition: Figure 7.1 shows the minimum and maximum

sets returned by lgl in the KRK ending: 40 and 52, respectively. These two

numbers alone provide a rough estimate of the cardinality of L. Since S can

be any subset of lgl(d), which ranges between a given x1 and x2, we have

that (2x1−1)|D| ≤ |L| ≤ (2x2−1)|D|. Again, using KRK as an example and

only counting the mirror dispositions in Dm
KRK , we can place the cardinality

of L between 7 · 1014 and 3 · 1018; more accurate estimates would place it

at around 1017. It is certainly a huge number, especially next to the 24324

positions required to solve KRK in chess, but as we will see this number is

not all that significant.

We need two special subsets of L, one representing metapositions that we

can always win, and then a smaller set B of “best”, maximal metapositions

that are our true objective and the only ones required to play the whole

endgame optimally. In order to represent these two, we need to formalize

the white player’s moves and the referee’s role. We can define a move as an

ordered pair of squares, that is, (s1, s2) ∈ Sq2. Chess rules provide us with a

pseudolegal move function lglmv : L → P (Sq2) that returns a set of moves

that have a chance of being legal in the current metaposition.
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6
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Figure 7.2: If white plays Kc3, he can hear “legal”, “rank” or “illegal” from
the referee.

Making a move is formalized as follows. There is a set of messages

Msg, which models the possible answers from the referee in the particu-

lar Kriegspiel version being played. In our case, under ICC rules, Msg =

{legal, illegal, checkmate, draw, rank, file, short diagonal, long diagonal, knight,

double check}. There is one difference between this referee and the one used

in an actual game: this one is a worst-case referee and will output a “draw”

message if there is the slightest chance of the game being a draw. For exam-

ple, in Figure 7.1 above, trying Rh1 in either metaposition will result in a

“draw” message from the referee, as white might indeed lose the rook from

that move. Since we are looking for positions that we can certainly win, we

must always consider the most favorable case for black. This is equivalent

to stating that in the worst case Black can select the referee’s message just

like he would select his move in chess. Under these premises, the game turns

into one of perfect information.

From a metaposition and a referee’s message it is easy to generate a

new metaposition that reflects the consequences of that message. Clearly,
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metapositions will not allow all messages and a majority of them will only

be compatible with a few. For example, only king moves can be illegal, and

only knight moves can give a knight check. Figure 7.2 shows a metaposition

that allows three different outcomes to the same move. It is to be noted that,

while in the first two there has been a black move following Kc3 (as seen,

for example, in the black kings spreading towards the top right corner), in

the event of an illegal move black did not get an opportunity to move. Of

course, as long as it is still white’s turn and the metaposition is legal, our

formalism is satisfied. We can represent this through an evolution function

ev : (L× Sq2 ×Msg)→ (L ∪ ∅),

which accepts a legal metaposition, a move and a message, returning a legal

metaposition or the empty set if the message is impossible in this context. In

the case of a game-ending message such as “checkmate” or “draw”, ev returns

the same metaposition it received as an input if the message is possible.

If “draw” is possible, then no other message is, as explained above. The

definition of ev is trickier than its actual meaning: it works by erasing the

black kings that are incompatible with the message, and if the message is

not “illegal” it moves the black kings to any location a real black king could

visit from the current positions.

A metaposition m ∈ L is won if it satisfies either one of these conditions:

• ∃x ∈ Sq2, y ∈ Msg : ev(m,x, y) 6= ∅ ⇐⇒ y = “checkmate”; that is,

there is a certain checkmating move (mate in 1);

• ∃x ∈ Sq2 : ev(m,x, ”draw”) = ∅,∀y ∈ Msg : ev(m,x, y) 6= ∅ ⇒
ev(m,x, y) is won; that is, there is a move that does not lead to a draw

and whose possible outcomes are all won.

This definition of victory excludes probabilistic wins through mixed strate-

gies: it only includes metapositions that are won against an omniscient ad-

versary starting on his most favorable square and possessing foresight of our

own strategy. At this point, one can define

W = {m ∈ L : m is won},

the set of all won metapositions. This set, while smaller than L, is ostensibly

still very big; it suffices to consider that KQK is virtually always won because
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Figure 7.3: L, W , B and a sample element from all three.

the queen cannot be actively attacked by the black king. Our main interest,

then, is a small subset of W : the set of largest metapositions with the same

optimal strategy. In order to define this, we need to define a function dist :

W → N returning the maximum distance to mate for each won metaposition,

expressed as the number of actual white moves (not tries) required to win.

We can now define the new set

B = {(d, S) ∈ W : ∃(d, S∗) ∈ W,S ⊂ S∗ ⇒ dist((d, S)) < dist((d, S∗))}.

This definition should be read as follows: a won metaposition will be in B

if any larger won metaposition (a superset of it, with all its black kings and

then some) requires more moves in order to achieve victory. In other words,

metapositions in B are optimal in the number of moves to checkmate; if any

black king is added, the metaposition is either not won anymore, or it is won

but it takes more moves to do so. If the metaposition is the largest possible

one for its disposition, it is still included in B because the left-hand side

evaluates to false.

Figure 7.3 illustrates L, W and B, showing an element from all three

sets. The first metaposition is legal, but clearly not won: all moves leave

the rook in danger of being captured. The second position can be won with
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Boyce’s algorithm, but it is possible to win a larger one – the third – with

the same number of moves, and indeed with the same strategy. The reason

is that the information about the black king not being on the eight rank is

useless: the only move that might get a different outcome because of it is Ra8,

which is unsafe and must be discarded. All other moves generate the same

metapositions in the two cases, so the smaller one can be sacrificed without

loss. Thankfully, most elements of W are like this, and we are entitled to

hope that B may contain a small, computationally feasible fraction of the

total. It is readily seen from this example that there are 27 = 128 elements of

W that are like the second metaposition but with any combination of black

kings on the eight rank, and hence are not in in B. A deeper investigation

would reveal that we can take away even more squares with no consequences

after the first move, thus excluding tens of thousands of elements from B.

At this point, one might wonder about the usefulness of B and the reason

for its definition. Why not just define it as the set of all won positions that

are not a strict subset of any other won position? The reason is a practical

one, and it is best demonstrated with a practical example. Figure 7.4 shows

two metapositions, with (a) being a subset of (b), but both their distances

to mate and correct strategies are different. In (a), keeping the king confined

to just one file is the optimal strategy, which is obviously not possible in (b).

If B is to capture all “important” metapositions, it obviously has to contain

both (a) and (b). If both could be solved in the same amount of moves, one

could simply use (b)’s strategy for (a), as well – the additional information

in (a) would be ignored at no cost, and we would not need to have (a) in B.

More specifically, it is our aim to build an algorithm that exhaustively

computes B given a set of white pieces. Also, the algorithm will associate

to every element b of B its corresponding dist(b), as well the optimal move

(or sequence thereof, should the first be illegal) to try from there. This will

be our endgame tablebase and it is enough to play any won metaposition

optimally, as shown in the following

Theorem. Let B be available for a given set of white pieces, and let dist(x)

be known for all x ∈ B. Also, let all x ∈ B have an optimal sequence of moves

mx1, . . . ,mxn ∈ Sq2 such that playing such a sequence will lower the distance

to mate by at least 1. Then, it is possible to:
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Figure 7.4: (a) is a mate in 9, play Rb1; (b) is a mate in 13, play Kb2, or if
illegal Kb1; however, (b)’s strategy can solve (a) as well.

• determine whether any legal position l ∈ L is won (l ∈ W?)

• if it is won, determine dist(l) and the optimal strategy leading to check-

mate.

Proof. We prove this theorem constructively, that is, we provide a strat-

egy for querying B like a tablebase. This is a very simple strategy that can

be used in a real-world program such as Darkboard. In this context, play-

ing “optimally” means that at any given time we can checkmate in dist(x)

moves at most, even against an omniscient opponent. We do not make any

assumptions on the nature or play patterns of the enemy; we simply consider

worst-case performance, much like a chess tablebase.

Suppose we need to solve a legal metaposition l = (d, S) ∈ L. The

querying algorithm is as follows:

• Look for all (d, S∗) ∈ B such that S ⊆ S∗. If none exist, meaning that

the metaposition has no supersets in B, then l is not won.

• On the other hand, if it is won, select the (d, S∗) with the shortest

distance to mate. Play the corresponding sequence of moves.

We need to prove that both steps are correct. The first step requires us to

prove that (d, S) ∈ W ⇐⇒ ∃(d, S∗) ∈ B, S ⊆ S∗.
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• ⇒: obvious by construction. If a metaposition is won, it either is in B

or its superset is.

• ⇐: B ⊆ W , so (d, S∗) is won. Any subset of a won metaposition is also

won – one can simply pretend not to know the additional information.

A strategy that solves (d, S∗) also solves (d, S), hence (d, S) is won.

The second step requires us to prove that the selected strategy is valid and

optimal. Obviously, the strategy is valid because of the same argument as

before: a strategy that solves a metaposition also solves any of its subsets.

This does not guarantee that it will do so optimally, however: as seen in

Figure 7.4, one can solve (a) with (b)’s strategy, but doing so requires 13

moves instead of the optimal 9. On the other hand, suppose that the selected

strategy is indeed sub-optimal, that is, dist(d, S) < dist(d, S∗). But this

means (d, S) should have been an element of B, as well: by construction,

B = {(d, S) ∈ W : ∃(d, S∗) ∈ W,S ⊂ S∗ ⇒ dist((d, S)) < dist((d, S∗))}.
Since dist(d, S∗) > dist(d, S) is the minimum distance for a superset of (d, S),

then (d, S) meets all requirements for being in B, and it should have been

returned by the algorithm. Hence the selected strategy is both valid and

optimal.

The theorem above proves a very important point: that it is possible to play

all won metapositions optimally while only knowing a small subset B ⊂⊂
W . The next sections describe the actual retrograde analysis algorithm that

builds B and computes the data stored with its elements, thus making a

complete endgame tablebase that can play Kriegspiel endings optimally.

7.3 A perfect play algorithm

We need to construct B iteratively. If Bx ⊆ B = {b ∈ B : dist(b) ≤ x}
represents the subset of metapositions in B that can be won in at most x

moves, it is clear that, by increasing x, at some point ∃k ∈ N : Bx = B ∀x ≥
k, because B is not infinite. Thus, a simple inductive reasoning shows that

what is really needed to construct B is:

• an algorithm for building B1;
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• an algorithm for constructing Bx+1 from Bx.

Intuitively, B1 is not hard to construct: it suffices to try every move for each

disposition of white pieces, and see which locations of the black king would

be a mate in 1 on a regular chessboard. The latter algorithm is obviously

much more challenging. The simplest way to think of the solution is: if,

given a metaposition and a move, we can establish that all outcomes of that

move are either in Bx or subsets of elements in Bx, then we know that such

a metaposition can be won in at most x + 1 moves. The actual problem is

making the metaposition maximal, that is, finding a metaposition such that

none of its supersets can be won in x + 1 moves. Still relying on intuition,

rather than building random metapositions and testing them against the

elements in Bx, the solution will be constructed from the elements in Bx

themselves.

The key observation to be made here is that given a metaposition b ∈ B,

a move v ∈ Sq2 and an assignment set associating metapositions to referee’s

messages as in A = {(b1,m1), . . . , (bn,mn)}, bk ∈ B, mk ∈ Msg, m distinct,

it is possible to construct b∗ ∈ L : ∀(bx,mx) ∈ A ev(b, v,mx) ⊆ bx; that is,

b∗ is a legal metaposition whose outcomes will be contained in the metaposi-

tion associated with each message. Moreover, if the assignment is exhaustive,

b∗ ∈ W ; the metaposition is won because there is a move whose outcomes

are all won. If one tries all possible assignments, sooner or later the maxi-

mal elements belonging to B will be generated. The method for doing this

operation is lengthy, but rather trivial. The problem merely becomes one of

exploring millions of assignments and storing the best ones.

Figure 7.5 contains a skeletal version of the algorithm. It accepts two

parameters as its input: entryList, which is basically Bx, and the depth

level x + 1. What it does is create all possible dispositions of white pieces,

and for each of those all pseudolegal moves are considered. All compatible

assignments are tried: this means that the same metaposition in entryList

will be tested for each referee’s messages, and the same metaposition can

appear more than once in the same assignment set for different messages –

even all of them. After all, the meaning of the assignment set is “if message

x happens, the problem reduces to previously solved metaposition y”, so it

is perfectly possible for a single metaposition to cover several messages.
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kriegRetrograde(entryList,depth)

begin

added = false;

for each disposition of white pieces P do

for each pseudolegal move M do

messages = possibleMessages(P,M);

for each assignment A of entries from entryList to messages

do

if (generateAndAdd(entryList,P,A)) added = true;

od

od

od

if (added) kriegRetrograde(entryList,depth);

else if (entriesWithDepth(depth+1)) kriegRetrograde(entryList,depth+1);

return entryList;

end

Figure 7.5: Pseudocode listing for main retrograde function.

The method generateAndAdd creates a metaposition from the assignment

set and checks if it is a subset of something already in B. If it is new, it adds

it to entryList and returns true. If all assignments are tested without

any additions to the database, this depth level is considered exhausted, with

entryList now representing Bx+1: the algorithm now starts over at the next

depth, but if there are no suitable metapositions of the right depth, that is

Bx = Bx+1 it terminates execution, having found B in its entirety. On the

other hand, if it found new metapositions, it starts a new iteration at the

same depth; this is necessary because of illegal moves. Metapositions of depth

x + 1 found during the first iteration can create more metapositions of the

same depth in the second iteration by being associated to the illegal message

in the assignment set, and so on. In most cases, it takes 3-5 iterations to

completely clear a depth level; these correspond to the 2-4 illegal moves the

white king might make, at most, before a legal move is found.

This algorithm requires exponential time in the number of pieces and

possible referee’s messages; KQK takes the longest time to compute because

the queen can check in four different directions. The space required by the

algorithm only depends exponentially on the amount of white pieces, not the
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messages. The size of B is bounded by the size of L, which can be estimated

as shown in the previous section.

7.3.1 Computational complexity

The pseudocode listing can be misleading as to the true complexity of the al-

gorithm, also because it is easy to dismiss several key elements of the problem

as mere constants. In fact, whenever such statements as “try all assignments”

are made, even small constants can turn out to be very troublesome. In this

case, the algorithm runs in exponential time depending on at least two fac-

tors: the number of white pieces on the board and the number of possible

referee’s messages. The former affects the number of dispositions: moving

from two white pieces (as in KRK) to three (as in KBNK) marks a major

increase. The latter affects the number of assignment sets, making it grow

exponentially. For example, a move in KRK can only have three outcomes

at most: legal, illegal and check (rank and file are mutually exclusive). By

contrast, in KQK the queen can generate four different checks with the same

move, plus the legal message. As with all exponential algorithms, two mes-

sages can make the difference between an iteration taking hours or weeks or

even months.

The space required by the algorithm only depends exponentially on the

amount of white pieces, not the messages. The size of B is bounded by the

size of L, which can be estimated as shown in the previous section.

7.3.2 The lookup algorithm

Once the algorithm has finished, it returns a full list of metapositions, each

having a best move and a distance to mate in the worst case. The tablebase

goes through a series of post-processing steps and is finally stored as a text

file in which every line represents a single entry. A sample line from the KRK

tablebase reads as follows:

kkkkkk2/7R/kkk5/8/4k3/2K1k3/4k3/3k4 26 Kc3-d3 Kc3-d4 Rh7-h5

The metaposition itself is represented through standard FEN (Forsythe-

Edwards Notation), with multiple black kings on the board. This board
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representation is followed by the maximum distance to mate and the se-

quence of moves that the white player should try from here, starting from

the first and moving to the next should it be illegal.

This database is used as indicated in the proof to the Theorem. The

player searches it with a metaposition representing the current state of the

game. All entries that are supersets of it are returned, and if none exist, it

means that it is not possible to force a mate from here. Among these entries,

the player selects the one with the shortest distance to mate; in the event of

a tie, he will pick the one with the lowest number of states (black kings). He

will then proceed to play the corresponding move, which is optimal.

7.3.3 Validation

The problem of proving that the final database is correct and complete has

no simple practical solution, just like there is none for the perfect information

case. [Nalimov et al., 2000] provides the following reasoning: one can run a

self-consistency test to make sure the tablebase is correct, i.e. entries do not

contradict each other, but time is as good an optimality test as we get. The

paper goes on to mention that chess programs have used Nalimov tables for

years without reporting any mistakes or non-optimal mate sequences; this

is a reasonable indicator of their correctness. As noted, there have been

cases (albeit rare) of retrograde analysis conflicting with previous retrograde

analysis due to some error or bug in the implementation. These programs are

necessarily full of tricky details and performance optimizations, and there is

always a small risk of making a mistake somewhere.

Since the Kriegspiel tablebase code is too large and complex (about 10,000

lines of Java code in its final version) for formal analysis, we are also limited

to checking the database for internal consistency, and awaiting the ultimate

judgment of time about its optimality. All the endgames studied with this

method have improved existing algorithms and solutions by several moves,

sometimes by a large margin. The impression one gets from looking at the

database entries is that they are highly efficient and further improvement

seems unlikely.

It is, however, quite easy to perform a consistency test to prove that, at

the very least, the database offers consistent solutions. The process is more or
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less identical to how a chess tablebase would be tested. Each metaposition in

the tablebase is examined with each possible pseudolegal move. The following

must hold true:

• there is a move whose outcomes are all contained in the database, unless

it is a trivial mate;

• if the metaposition being tested is a mate in n moves, the worst-case

outcome of this move is a mate in n − 1, or n if the outcome is the

illegal message;

• in the latter case (illegal move), the resulting metaposition satisfies

the same constraints (this prevents a metaposition from self-validating

since the outcome of an illegal move is a subset of the original entry);

• no moves with shorter distance to mate exist.

These steps are taken as part of the post-processing phase that follows the

exploration phase and exports the database into a text file. Actually, it is

at this stage that optimal strategies are reconstructed for each metaposition,

as optimal moves are not stored during the algorithm itself in order to save

memory space.

7.4 Implementation

The retrograde analysis algorithm was implemented in the Java programming

language. The main reason behind this choice was that the code could benefit

from a number of Kriegspiel-related primitives defined elsewhere in the Dark-

board project, which undoubtedly sped up development of this component.

In retrospect, Java might not have been the most suitable programming lan-

guage for such a memory-intensive application, but it managed to run all

test scenarios on a high-end machine.

Simplicity was the primary concern behind all design choices, and straight-

forward classes and data structures were preferred over faster but more com-

plicated entities – for example, simple two-dimensional matrices represent

the board instead of more complex structures such as bitboards. The pro-

gram is comprised of only seven classes, modeled in the UML class diagram

depicted in Figure 7.6. Their purpose is as follows.
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- board: byte[ ][ ]
- bitfield: long

Metaposition

SimpleTable

RecursiveTable

+ add
+ query
+ remove

EndgameTable

EndgameTask

<<use>>

EndgameMonitor

- mp: Metaposition
- move: int
- distanceToMate: int

DatabaseEntry

numThreads

Figure 7.6: UML class diagram for the component that creates Kriegspiel
tablebases.

• Metaposition: the class representing a single metaposition. As seen

in the diagram, the metaposition has two different but equivalent repre-

sentations: an explicit two-dimensional 8x8 array in which each element

is a square of the board, and a long (64-bit) integer bitfield in which

each bit simply indicates whether a square can hold an enemy king or

not. The latter form does not store information about allied pieces,

and therefore is not complete on its own, but it is very useful to per-

form certain computations much faster than we would be able to with

the array form. The most important of these tasks is the comparison

between metapositions. Since a large portion of the algorithm consists

of comparing metapositions to establish if one if a subset of another,

such an operation must be carried out as quickly as possible. With the

8x8 matrix alone, we would only be able to perform a naive square-

by-square test, but with the bitfield only three bitwise operations are

required to compare metapositions: one XOR and two ANDs. Figure

7.7 shows the comparison code used in the program: the XOR high-

lights the differences between the two metapositions, and the ANDs

check which one has the bit set to 1. If Java is running in 64-bit mode,

as it always did in our scenarios, this snippet is particularly fast as the

long integer can be loaded into a register in one go.
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compare(mp1,mp2)

begin

long compField = (mp1.bitfield ^ mp2.bitfield);

if (compField==0) return COMP EQUAL;

long c1 = mp1.bitfield & compField;

long c2 = mp2.bitfield & compField;

if (c1!=0 && c2==0) return COMP BIGGER;

if (c1==0 && c2!=0) return COMP SMALLER;

return COMP NOT COMPARABLE;

end

Figure 7.7: Using bitfields for quickly comparing metapositions.

• DatabaseEntry: the container class forming the building block of the

tablebase. It holds a metaposition, the optimal move and the distance

to mate if the optimal move is played. In later, more optimized versions

of the program the move is not saved in order to save space: when the

database is complete, it is very easy to reconstruct the optimal move

or move sequence by just querying the database in a post-processing

phase.

• EndgameTable: a generic interface for using an endgame tablebase,

it is implemented by two different classes, one of which provides simple

linear access to its contents, whereas the other works in a more complex,

scalable way.

• SimpleTable: the simpler implementation of EndgameTable, this is

basically a wrapper class for a Vector of DatabaseEntry objects. The

basic constraints for this class to work is that all of its contents belong to

the same disposition, that is, the white pieces are on the same squares.

While this is a fast class, it is obviously not very scalable to arrays with

millions of elements, but it is used throughout the program.

• RecursiveTable: this is the class representing a full tablebase. It

recursively contains more RecursiveTable objects in a hierarchical tree

structure. A query is redirected to the correct child depending on the

positions of the white pieces: the top level switches according to the

location of the first piece, and so on; the hierarchy has as many levels
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as there are white pieces. The bottom tier is formed by SimpleTable

objects storing the actual positions.

• EndgameTask: the active class that runs the actual algorithm de-

scribed in the previous sections.

• EndgameMonitor: a monitor class handling synchronization of sev-

eral EndgameTasks running in parallel. This class launches any number

of tasks, each running in a separate thread, and then assigns units of

work to each, collecting the finished results.

7.4.1 Parallelization

Parallelization is illustrated in Figure 7.8. Retrograde analysis lends very well

to parallelization, and this algorithm is no exception: the result is a simple

version of the producers-consumers problem. EndgameMonitor creates a

number of EndgameTask object, each running in its own thread. Tasks

request an assignment from the monitor, which responds by transmitting a

disposition of white pieces as well the current database. The thread will have

to compute all new metapositions of the specified type, and then send the

resulting list back to the monitor before requesting the next assignment. The

new metapositions are not sent directly to the database to avoid read-write

conflicts with other ongoing tasks as well as to keep the computations in each

thread unaffected by the others. Throughout this part of the algorithm, the

database is therefore read-only.

Only after the iteration is complete, does the monitor update the database

with all the new entries that the tasks have computed. Because interaction

between the various tasks is virtually non-existent, it is possible to achieve a

near-linear speedup until this point, though this updating phase is obviously

not as efficient. Thankfully, the update list is not large enough to cause

a major bottleneck in the scenarios tested so far, but a more sophisticated

method may have to be used for larger endings such as the ones with five

pieces on the board.
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EndgameMonitor

EndgameTask

EndgameTask

«create»

«create»

requestTask()

4

computeTask()

EndgameTable

query()

critical

communicateResults()
critical

4

loop (!finished)

update()

Figure 7.8: UML sequence diagram showing parallelization of the main al-
gorithm.

7.4.2 Optimization

The basic version of the algorithm is unable to solve any but the simplest

endgame, KRK, in reasonable times (spanning days rather than weeks and

months). There are several sources of inefficient behavior in the code, but

the single most important reason stems from the database itself and was

unforeseen before the first testing phase. Kriegspiel tablebases do not have
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Figure 7.9: UML activity diagram of the main algorithm with progressive
dumping.

a uniform structure with respect to the white pieces. The opposite is true;

some dispositions of the white pieces have many more metapositions in the

database than others. In particular, the size and complexity of the tablebase

increases greatly as the white king gets closer to the center of the board. In

other words, positions are much more complex and subtle – easily by a factor

of 10 or more – when the king is in the middle.

This is far from a minor detail for a combinatorial algorithm. It means

that computing metapositions in which the king is near the center of the

board takes much longer than if the database was uniformly populated. Sup-

pose the database is uniform and each disposition of the white pieces has 50

metapositions. Let us also assume that each move generates on average 3

referee’s messages; then, given any metaposition and a pseudolegal move, we

expect to examine about 503 = 125000 combinations. Now suppose that the

database contains 10 metapositions with the king in and near the corner, and

100 metapositions with the king near the center. Under these assumptions,

a move near the edge might require us to examine only 103 = 1000 combina-

tions, but a move near the center will generate 1003 = 1000000 combinations.

Since the actual numbers can get even worse than this example, optimization

is necessary for the computation to run at acceptable speed.
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Most optimizations revolve around two simple ideas: caching whenever

possible, and avoiding exploration of useless combinations, that is, assign-

ments that are guaranteed not to yield any new metapositions. If possible,

the two approaches should be enforced simultaneously, so as to narrow down

the number of useful combinations and save this information for later. The

single most significant improvement is progressive dumping. It is a fil-

tering procedure that takes place at the end of each depth level, discarding

a portion of the accumulated database. The process is illustrated in Figure

7.9. Progressive dumping splits the database into two parts after a new depth

has been conquered. Metapositions that are subsets of others are dumped, re-

gardless of their distance to mate. This happens for a simple reason: those

metapositions will not further contribute to the database. Even though their

distance to mate may be shorter than that of their supersets, this is irrele-

vant at the next depth levels to be computed. When computing depth 20,

the algorithm is looking for positions for which at least one outcome yields

a mate in 19 (or 20 if this outcome is the illegal move). Whether the other

outcomes are mates in 2 or 18 does not change the distance to mate, so we

may as well only keep the largest metapositions. The full endgame tablebase

is therefore the union of all dumped tables from each step of the algorithm,

as well as the positions left in the database after the last step, which are no

subsets of any other metapositions in the database.

Progressive dumping is a very effective strategy: depending on depth

and the specific endgame type, it dumps 10-25% of the tablebase after each

new depth. The ratio of dumped positions increases steadily with depth

as metapositions become larger and more inclusive. Since the process is

repeated over dozens of depths, it allows the algorithm to only focus on a

small fraction of the full tablebase.

Component caching is another important optimization: it stems from

the observation that, while we need to examine many combinations, they are

formed by the same components being checked over and over again. Com-

ponent caching saves such metapositions as Figure 8.4, (b) in a separate

table instead of recalculating it each time (a) is being examined. Even more

importantly, this is yet another case in which we can discard components

that are subsets of others (provided their distance to mate is also equal or

higher), which helps the computation immensely as these metapositions are
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more regular-looking than the elements they combine to form, and thus a

high amount of them can be discarded.

Finally, active entry marking allows to save time during the second

and later iterations of a given depth. These iterations collect all the meta-

positions that can be obtained with multiple illegal moves, but clearly the

amount of new entries decreases sharply with each iteration (on average, by

a factor of 10). Entry marking is accomplished by storing the iteration num-

ber in which a new entry was found. It is obvious that metapositions found

on the n-th iteration will have to make use of one or more metapositions

found on the n − 1-th iteration, or else they would have been discovered

earlier. Therefore, combinations without one of these newer metapositions

in their components are not checked and immediately discarded. This makes

iterations progressively faster as fewer entries are marked as new.



Chapter 8

Perfect play results

In this chapter, we list and analyze some noteworthy results obtained through

our retrograde analysis algorithm, with respect to four interesting Kriegspiel

endgames: king and rook, king and queen, king and two bishops, and finally

king, bishop and knight. In theory, it is possible to run and solve any lone-

king scenario with this algorithm; however, the current implementation will

need better memory management before it can run larger endgames such as

KRRK, KQRK and KNNNK. These endings deal with more metapositions

than our algorithm can handle on the current test machine. The first two also

offer the additional problem of rare, but possible instances in which White

might want to sacrifice one of his pieces to achieve checkmate faster.

Before considering each of the four tested endgames in turn, we devote

Section 8.1 to a general analysis of tablebase size and distributions, as well

as giving a rough estimate of its compression power.

8.1 Test cases

The tablebase-building algorithm was implemented in Java, modified for par-

allelization and run on an eight-core machine. Four scenarios have been ex-

ecuted so far: KRK, KQK, KBBK and KBNK. Execution time ranged from

about six hours for KRK to seven days for KQK, with KBBK taking about

three days and KBNK taking five. The dimensions of the resulting databases

are radically different, as seen in Figure 8.1. The figure shows distributions by

distance to mate, and provides visual information as to how large a database

143
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Figure 8.1: Metaposition distributions by distance to mate in the four
tablebases.

is; moreover, checkmates for the general positions usually encountered in

practical gameplay (that is, positions in which White knows nothing about

the black king) are mostly located near the distribution’s peak. Entries to

the right of the peak are riddle-like and require the white player to spend

moves protecting his pieces and reaching a stable configuration. It should be

noted that KBNK is unique among the four in its irregular development. In

particular, very few entries exist before depth 35, after which the database

explodes. The fact it takes so long to find general strategies for KBNK is

probably the main reason why a general pure strategy for this endgame was

never found through manual analysis.

Figure 8.2 represents distributions by the amount of black kings on each

entry. If the database contained every possible legal metaposition, the result-

ing graph would resemble a Gaussian, being the sum of binomial distributions

with similar coefficients (each king either is or is not present on the board).

The actual databases all show a skew towards entries with fewer kings; the

longer the endgame, the larger the skew. This fact does not immediately

prove anything about the database’s compression power, that is, the ratio of

database entries compared to all won metapositions. In this sense, KQK is
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Figure 8.2: Metaposition distributions by number of black kings on the
board.

the easiest case to compute since almost every game can be won with proba-

bility 1, the queen being safe even when the white king is far away. The KQK

database is slightly over two million entries, with about 1016 possible metapo-

sitions. This means that the database contains two in 1010 elements, having

a compression power of approximately 99.99999998%. The other endgames

are less straightforward, since they all contain entire classes of situations that

cannot be won with absolute certainty. If the king starts out separated from

the other white pieces, victory will not be guaranteed in a majority of cases.

For KRK, it can be argued that compression ratio is even higher than KQK,

because it is less than one third the size and roughly half legal metapositions

can be won (if the rook starts on the same or adjacent rank or file to its king,

the game is almost always won).

8.2 KRK

KRK is arguably the simplest Kriegspiel endgame in which victory can al-

ways be obtained from a sizeable amount of initial configurations and no

information on the black king. Using mirroring on the x, y and diagonal
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0Z0Z0S0Z
Z0Z0Z0jk
0Z0Z0Zkj
Z0Z0Z0jk
0Z0Z0Zkj
Z0Z0Z0jk
0Z0Z0Z0Z
Z0Z0Z0ZK

0Z0Z0S0Z
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0Z0Z0Zkj
Z0Z0Z0jk
0Z0Z0Zkj
Z0Z0Z0jk
0Z0Z0Z0Z
jkj0Z0ZK

(a) (b)

Figure 8.3: Sample tablebase lookup in KRK: (a) is entered, (b) is found:
mate in 14 with Rf1.

axes, the problem of KRK in Kriegspiel is described with a tablebase of

635,968 metapositions. KRK in chess is fully described with about 23,000

positions, making the equivalent Kriegspiel problem about 30 times as com-

plex. Results may vary to a degree, depending on optimizations and storage

policies for metapositions that are subsets of other entries; for instance, in

our tablebase boards with the white king on the main diagonal are not fur-

ther mirrored with the position of the rook. There are 2207 entries with only

one black king on the board. These metapositions look exactly like chess po-

sitions, and their presence is roughly equivalent to saying that roughly 10%

of the time there is a specific, optimized strategy for checkmating the black

king that can only be applied if its initial position is known with certainty.

The remaining 90% are subsumed inside larger metapositions with two or

more kings.

Figure 8.3 shows an example of a KRK tablebase query. The lookup

algorithm returns the superset of (a) with the shortest distance to mate,

which happens to be (b). It is easy to see that the best move to play here is

Rf1, and it is also clear that such a move works well in the three additional

cases included in (b). In event of a check, Rf3 confines the black king to

two ranks (note this would not be possible with a king originally in d4).

Obviously, if those three kings were the only ones, the tablebase would return

a much faster mate with Rf2.

Figure 8.4 contains three more examples of tablebase entries with wildly
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Mate in 20 (Rh4) Mate in 24 (Re8) Mate in 32 (Kd3)

Figure 8.4: A small selection of metapositions from the KRK database with
king in d4 and rook in e4 (out of 2483).

different depths and complexities but with the white pieces in the same

squares. Since there are 2483 such entries in the tablebase, one currently

to search through them all during the lookup algorithm. While a single
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jkZKS0Z0

(a) (b) (c)

Figure 8.5: (a): mate in 37, longest forced sequence in KRK; (b): Boyce’s
starting position, mate in 26; (c): Magari’s starting position, mate in 30.

lookup will not affect performance much, a better indexing or classification

method might be needed for particularly large endgames.

The longest forced mate sequences in Kriegspiel KRK are 37 moves long,

making the 50-move rule irrelevant in this endgame. There are 50 entries for

this depth in the tablebase. Figure 8.5, (a) is one such entry: White needs to

spend several moves escorting his rook to safety. In the worst case, assuming

the referee is always silent, this task requires eight moves: Rf4 Rf8 Kc2 Kd3

Rg8 Rh8 Rh1 Rd1.

Boards (b) and (c) represent situations that are much more likely to

happen in a real game. In particular, board (b) is the starting position

for Boyce’s algorithm given in [Boyce, 1981], and board (c) is the starting

position for Magari’s algorithm, from [Magari, 1992]. Boyce’s directives are

based on trapping the king in a single quadrant of the board with the rook

and then using the king to push back the opponent. Magari’s method consists

of starting from (c) and isolating the king on one side of the board by playing

Kd2 Re2 Kd3 Re3 and so on, scanning the board until a check reveals the

location of the enemy king. The tablebase shows that Boyce’s method is

a better approximation of the shortest mate. Boyce’s position is a mate

in 26, four moves shorter than Magari’s position. Thus, Boyce has a good

understanding of a convenient starting position: from here, optimal play

is Kc3 (longest mate is 26 regardless of whether this is legal) Ra2 Kd4 Rb2

Rb3. Additionally, optimal play from (c) does not follow Magari’s algorithm;
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Figure 8.6: (a): Mate in 14; (b): longest KQK mate, 18 moves.

instead, it is more convenient to play Ke2 Kf3 Re2, followed by the unusual

Re4 Re2 which can clear the black king at h3 without White having to move

his own king. This allows him to safely play Rh2 and reach a Boyce-like

scenario that is a mate in 24.

8.3 KQK

The king and queen vs. king endgame is certainly the fastest to win, yet one

of the slowest to compute because of the larger number of referee’s messages

that most moves can generate. At 2,150,833 entries, it is over three times as

large as KRK, and can be won roughly twice as fast with similar strategies

and comparatively fewer illegal moves. The equivalent of Boyce’s starting

position, shown in Figure 8.6, (a) is a mate in 14 following an almost identical

strategy: Kc3 Kd4 Qb2 Ke5 Qc3. The main difference from KRK is that

the king pushes for the center more aggressively, and the queen follows from

a distance. The longest forced mate in KQK takes 18 moves in the worst

case; there are 33 such instances in the tablebase, one of which is depicted

in Figure 8.6, (b). Interestingly, one might wonder why this mate requires

18 moves instead of 17, since it appears to be only three moves from the

situation in (a). In fact, the tablebase correctly recognizes that Kb2 Qa3

Qa1 is the wrong strategy, as it leads to stalemate after the first move if the

black king is on a4. The correct strategy is Kb1 Qc2 Qa2 Kc2 Kd3, etc.
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Figure 8.7: (a): Mate in 43, play Bd6; (b): mate in 32 with Ferguson’s
method, actually mate in 27.

8.4 KBBK

The KBBK database contains 7,887,296 entries, with the longest forced mate

spanning 43 moves; there are only 5 entries at this depth, one of which is

shown in Figure 8.7, (a). Obviously, because a game of Kriegspiel is also

a valid game of chess, the tablebase only contains positions with the two

bishops standing on differently colored squares.

This endgame, together with KBNK, is particularly interesting because

there is existing research to compare the tablebase with. KBBK is studied

by Ferguson in [Ferguson, 1995], which correctly points out that it cannot

be won for every starting position, even if the white pieces are initially safe.

This is because the two bishops cannot directly protect each other; they can

only stand side by side and block the enemy king from the front and back, but

not the flanks. When the white king moves to clear one quadrant, it leaves

a bishop unguarded, therefore the game cannot be won with probability 1.

However, if the pieces start out close enough to the edge of the board, the

king needs only protect one flank, and victory is guaranteed. Figure 8.7,

(b) depicts a good starting position for White, and is the top level example

provided by Ferguson. His estimate of 32 moves is cut by five in the tablebase,

setting the distance to mate to 27. Clearly, both sources agree that Kc4 is

the correct move to play in this context as it is basically the only plausible

option.
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Position Ferguson Tablebase
k6B/k1K5/8/8/2B5/8/8/8 4 (Kb6) 4 (Kb6)
k7/k1K5/3B4/8/2B5/8/8/8 5 (Be7) 5 (Be7)
k1B5/k7/8/1K2B3/8/8/8/8 7 (Kc6) 7 (Kc6)
kk6/1k1K4/8/8/2BB4/8/8/8 9 (Kc6) 9 (Kc6)
8/8/k1B5/k1B5/2K5/8/8/8 12 (Bd4) 11 (Kd5)
kkkkk3/8/2K5/2B5/2B5/8/8/8 16 (Be6) 14 (Kd7)
8/8/k7/kk1B4/kk1B4/k2K4/8/8 18 (Kc3) 14 (Kc3)
8/k7/kk1B4/kk1B4/k2K4/8/8/8 14 (Kc4) 13 (Kc4)
kkkk4/1kkk1K2/2kk4/8/2BB4/8/8/8 20 (Ke7) 16 (Ke7)
kk6/kk1K4/kk6/1kk5/8/1BB5/8/1kk5 20 (Kc6) 15 (Kc6)

Table 8.1: Comparison between Ferguson’s KBBK analysis and tablebase
findings for several positions, as well as suggested moves.

Table 8.1 shows a comparison of Ferguson’s analysis and our KBBK table-

base. It can be seen that, for simpler mates, results and strategies are more

or less identical, but manual analysis starts to fall behind retrograde analysis

as positions become larger and more complicated. Interestingly, strategies

do not differ in a majority of cases (though they differ more when it comes

to reacting to illegal moves), but sub-optimal behavior in a small number of

situations seems to be enough to slow down checkmate by as much as 33%.

The positions considered by Ferguson to be impossible to win with certainty

are indeed not found in the tablebase, though the tablebase contains many

slightly more restrictive entries that can always be won. These positions

actually form the bulk of its nearly eight million entries.

8.5 KBNK

KBNK is probably the most interesting among the four endgames we exam-

ined with retrograde analysis. At 17,508,207 entries, it is also the largest

tablebase as well as the one with the longest distances to mate: up to 89. In

order to win a position in this scenario, it may be necessary to disable the 50

move rule. Of further interest is the fact that it is the only instance of three

different pieces collaborating towards checkmate. Moreover, it is the only

endgame for which, prior to the present research, it was unknown whether it
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(a) (b)

Figure 8.8: (a): a position requiring a randomized strategy (Kg2,Kf3)
according to [Ferguson, 1992]; (b): its strategically optimal superset in the
tablebase, which can be won in 21 with a pure strategy Kf3.

could be won with a pure strategy in a fixed number of moves. The first claim

that such a strategy existed was given in [Isham, 1926] over eighty years ago

on a chess variant magazine, The chess amateur, by a group of Kriegspiel

enthusiasts at the Los Angeles Chess Club. However, they never published

the full proof to their statement. Recently, [Beasley, 2005] supported the

original claim, intuitively showing that it is likely for White to be able to

checkmate, but admitting that the problem was too long and tedious to fully

analyze.

On the other hand, Ferguson studied this endgame in [Ferguson, 1992]

and concluded that it could be won 100% of the time starting from stable

positions, but believed that doing so required some sort of randomized strat-

egy at several key points throughout the algorithm. Figure 8.8, (a) depicts

the simplest case, which was thought to require White to play Kg2 with

probability θ and Kf3 with probability 1− θ. The problem would then turn

into a recursive game, which allows one to calculate an upper bound to the

expectation of the distance to mate: 26, in this case.

The tablebase shows that the Los Angeles players were correct in their

claim. As highlighted in diagram (b), retrograde analysis shows that diagram

(a), and even a more general one, can be won in 21 moves with a pure

strategy that always plays Kf3. Unfortunately, the very large number of

cases and subcases makes it impossible to list them all; however, the core
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0Z0Z0ZkZ
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0ZNZ0
0Z0Z0Z0Z
Z0A0J0Z0

0Z0Z0Zkj
Z0Z0Z0Zk
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0ZNZ0
0Z0Z0Z0Z
Z0A0J0Z0

(a) (b)

Figure 8.9: (a): Problem given by Shapley (1973) as a mate in 22; (b) its
tablebase solution, found as a mate in 21.

of the optimal strategy for (a) begins with Kf3 Bf7 Kg2 Bg6 Kf3 Nd4 Kf4

Nf5 Bh5. Of these, only Kg2 can be illegal; in this case one should play Nf4

instead, which actually shortens the mate by one move. Other randomized

positions are likewise shown to be possible to win with pure strategies, so

the whole endgame is. Depending on the starting position, most scenarios

can be won in 70-80 moves in the worst case.

A remarkable (and possibly the most famous) KBNK problem for Kriegspiel

was given by L. Shapley in 1973. It is reproduced in Figure 8.9, (a). Orig-

inally solved in 22 moves, the tablebase contains a strategy for winning its

superset (b) in only 21 moves. That the solution could be expanded to three

enemy kings is obvious even without automatic analysis, since White’s ini-

tial moves trap the black king in the same six-square territory regardless of

whether (a) or (b) is used. The optimal strategy, as found by retrograde

analysis, starts with Ne5 Bg5 Ke2 Ke3 Ke4 Kd5 Kd6, which is almost iden-

tical to the manual solution (Kd6 instead of Ke6, but the two moves are

actually equivalent). The problem is with a single 15-move case considered

by Ferguson from this point, namely after the next move Ke7 is declared

illegal. The stated strategy, a temporary retreat with Kd7, is a wasted move;

the (rather surprising) optimal move is Bf6, which leads to a mate in 12.

From here, Nd3 is the best follow-up. Roughly speaking, White maneuvers

the knight around while trying to push forward the king every other move,

which leads to a faster mate if legal.
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0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0ZBZ
Z0ZNZ0Z0
0Z0Z0J0j
Z0Z0Z0Zk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0ZBZ
Z0ZNZKZ0
0Z0Z0Z0j
Z0Z0Zkjk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0J0Z0
0Z0Z0Zkj
Z0Z0jkjk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0ZKZkj
Z0Z0Z0jk

2A. F: 5, T: 5 2B. F: 7, T: 7 3A. F: 15, T: 14 3B. F: 13, T: 13

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0ZKZ0Z
Z0Z0Z0j0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0ZKZ0
0Z0Z0Z0j
Z0ZNZ0jk
0Z0ZBZkj
Z0Z0Z0jk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0ZKZ
Z0ZNZ0Z0
0Z0ZBZkj
Z0Z0Z0jk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0J0j
Z0ZNZBZk
0Z0Z0Z0j
Z0Z0Zkj0

3C. F: 8, T: 8 3E. F: 15, T: 13 3F. F: 12, T: 11 3I. F: 15, T: 10

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZ0Z
Z0Z0Z0Z0
0Z0Z0Z0j
Z0Z0JBjk
0Z0Z0Z0j
Z0Z0jkj0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZ0j
Z0Z0JBZk
0Z0Z0Z0j
Z0Z0jkj0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0Z0Z0j
Z0Z0Z0Zk
0Z0Z0J0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0ZKZk
0Z0Z0Z0j
Z0Z0Z0Z0

3J. F: 24, T: 23 3K. F: 19, T: 18 4A. F: < 26, T: 21 4B. F: 24, T: 18

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZ0Z
Z0Z0ZBZk
0Z0Z0J0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0J0Z
Z0ZNZBZk
0Z0Z0Z0Z
Z0Z0Z0j0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0Z0Zkj
Z0J0jkjk
0Z0Zkjkj
Z0jkjkjk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0Z0Zkj
Z0Z0jkjk
0ZKZkjkj
Z0Z0jkjk

4C. F: 14, T: 14 4D. F: 10, T: 10 4E. F: < 42, T: 36 4F. F: < 36, T: 33

Table 8.2: Comparison of distances to mate between Ferguson’s KBNK
analysis and tablebase findings using the original diagram identifiers, first
part. Use of < X denotes a probabilistic mixed strategy with an estimated
upper bound.

Once again, even one sub-optimal line of play can raise distances to mate

considerably. The effect in KBNK is more evident than in KBBK because

of the greater complexity of this endgame. A full comparison between the

results in [Ferguson, 1992] and tablebase computations is given in Tables 8.2
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0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0Z0Zkj
Z0Z0Zkjk
0Z0J0jkj
Z0Z0Zkjk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0Z0Z0Zkj
Z0Z0Z0jk
0Z0ZKZkj
Z0Z0Z0jk

0Z0Z0Z0Z
Z0Z0Z0Z0
kZKZNZBZ
j0Z0Z0Z0
kjkZ0Zkj
jkj0jkjk
kj0jkjkj
j0jkjkjk

0Z0Z0Z0Z
Z0Z0Z0Z0
0J0ZNZ0Z
Z0Z0Z0Z0
0j0ZBZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

4G. F: < 31, T: 28 4H. F: < 29, T: 26 5A. F: < 72, T: 52 5B. F: < 70, T: 52

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
ZKZ0Z0Z0
0Z0Z0Zkj
jkj0jkjk
kj0jkjkj
j0jkjkjk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
j0Z0Z0Z0
kZKZ0Z0Z
j0Z0Z0Z0
kj0Z0Z0Z
Z0Z0Z0Z0

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0ZNZBZ
Z0Z0Z0Z0
0J0Z0Zkj
Z0Z0jkjk
kj0jkjkj
j0jkjkjk

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0ZBZ0Z0Z
Z0J0Z0Z0
0ZNZ0Z0Z
ZkjkZ0Z0

5C. F: < 62, T: 47 5D. F: < 60, T: 45 5E. F: < 56, T: 45 5F. F: < 52, T: 42

kjkZ0Z0Z
jkZkZ0Z0
kjkjNJBZ
jkZkZ0Z0
kjkZ0Zkj
jkj0jkjk
kj0jkjkj
j0jkjkjk

0ZkZkZ0Z
Z0ZkjkZ0
0Z0ZNZ0Z
Z0Z0J0Z0
0Z0ZBZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

kjkZ0Z0Z
jkZ0Z0Z0
kj0JNZBZ
jkZ0Z0Z0
kjkZ0Zkj
jkj0jkjk
kj0jkjkj
j0jkjkjk

kjkZ0Z0Z
j0Z0Z0Z0
kZKZNZBZ
j0Z0Z0Z0
kjkZ0Zkj
jkj0jkjk
kj0jkjkj
j0jkjkjk

6A. F: < 86, T: 77 6B. F: < 72, T: 51 6C. F: < 81, T: 75 6D. F: < 80, T: 75

kjkjkZBJ
jkjkj0ZN
kjkj0Zkj
jkj0jkZk
kj0jkjkj
j0jkjkjk
0jkjkjkj
jkjkjkjk

kjkj0Z0Z
jkjkjBJN
kjkj0Z0Z
jkj0jkZ0
kj0jkjkj
j0jkjkjk
0jkjkjkj
jkjkjkjk

7A. F: < 95, T: 79 7B. F: < 91, T: 78

Table 8.3: Comparison of Ferguson’s KBNK analysis and tablebase findings,
continued.

and 8.3. Interestingly, the difference between estimated upper bounds and

actual distance to mate according to the tablebase does not grow uniformly

with the length of the problem. Some of the largest gaps are found in medium

depth entries, whereas there are smaller discrepancies in some later metapo-

sitions. Probabilistic strategies that differ less from the tablebase findings

are more effective than the others and considerably simplify the game, thus
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partly compensating for the computer’s merciless analysis.



Chapter 9

Conclusions and future
developments

9.1 Conclusions

This thesis has approached a single, overarching problem – playing a com-

plex, imperfect information game such as Kriegspiel – from several angles,

including heuristic-driven search, statistical sampling and exhaustive game-

tree exploration. So far, none of these approaches can conquer the whole

game by itself. Indeed, there are situations that all of them fail to address

elegantly in the general case, the opening being the most glaring example.

In a way, the very first conclusion we can draw is that Kriegspiel is indeed a

difficult game for computers to master.

Still, we have reduced the gap between the best computer and the best

human, building software that can consistently rank among the top 20 play-

ers on the Internet Chess Club. This is even more remarkable in that, unlike

some top humans who only play low-risk opponents to protect their rankings,

Darkboard accepts challenges from anyone. Moreover, unlike some ancient

Kriegspiel bots that tended to play on very short time settings to mask their

weakness, Darkboard plays on any time limit except the shortest ones. In

other words, humans can challenge our program on their own terms: obvi-

ously, Darkboard does not mind ignoring Sun Tzu’s millennia-old advice.

All the algorithms described in this work have a practical use within the

program. While Darkboard 2.0 is stronger than its predecessor, it still uses

1.0’s metaposition search to play the endgame as it proved more effective

157



158 CHAPTER 9. CONCLUSIONS AND FUTURE DEVELOPMENTS

than Monte Carlo in handling scenarios with the king alone. The tablebase

is perfect for playing specific endgames, but it only covers a few of the more

frequent ones, and it will not help when victory is not guaranteed.

There are several key points following logically from the present research:

• Information and modeling are an excellent replacement for domain

knowledge in Kriegspiel (and presumably, other games of its kind).

The ability to model the referee (as an easier proxy for the opponent)

with some degree of accuracy makes specific Kriegspiel knowledge not

crucial to the program.

• Except in cases where there is very little uncertainty, reasoning on in-

dividual “chess” states seems to be less effective than reasoning on a

group of states as a whole with some kind of model or approximation.

We do not have the computational power or storage capacity to pro-

duce a truly meaningful sample of mid-game Kriegspiel states with our

current and foreseeable technology.

• Humans are better than computers at Kriegspiel because they can

merge states effortlessly and reason on their abstracted vision of the

game. Their model is sophisticated enough to give them purpose, which

in turn allows them to see ways to make progress through the game.

For a human, Kriegspiel has a faster learning curve than chess because

there are effectively much fewer states. This has an interesting parallel

in the tremendous compression factor of our Kriegspiel tablebases. It

is as if the game were telling us that most of its states are redundant,

if only we could understand how.

• If computers can replicate the same sense of purpose and progress, we

can expect them to outperform humans with their better statistical

analysis.

• Once you assume a best defense model for the opponent, Kriegspiel

looks much more like chess, as shown in the endgame tablebases. Of

course, it is a pointless type of chess if applied to the entire game, as the

omniscient player has an almost guaranteed win, but it can be highly

informative if even the oracle can be beaten.



9.2. FUTURE DEVELOPMENTS 159

9.2 Future developments

Despite the noteworthy improvements, all current programs are still missing

something – a spark of intelligence – before they can challenge a human

champion successfully over a long series of matches. No doubt, Darkboard

2.0 has not reached its full potential yet; it has not undergone extensive

optimization and the referee modeler could be made more accurate, thus

correcting some of its tactical blunders. Observing the program in action

shows that, while it seems to have purpose in attacking the opponent, it is

overly optimistic in its assumptions: often, it thinks it has all the time in

the world to organize an attack, and it does not mind jeopardizing some

pieces in the process. If curbed manually, such overconfidence quickly turns

into fear, which leads the program to maintain position and stop attacking.

In Kriegspiel, defense may win the game against a poor opponent, but will

generally lose to a good one.

The missing spark to create a champion-level program can come from

several places. Better simulations can certainly be of help, as can a series of

Monte Carlo Tree Search optimizations already experimented in other games.

In Go, MCTS is more and more often combined with game-specific heuris-

tics that help the artificial player in the selection and simulation tasks. Since

Monte Carlo methods are weak when they are short on time, these algo-

rithms drive exploration through young nodes when there is little sampling

data available on them. An example of such algorithms is the two progres-

sive strategies described in [Chaslot et al., 2008]. Since Kriegspiel is often

objective-driven when played by humans, objective-based heuristics are the

most likely candidates to make good progressive strategies, and research is

already underway in that direction. There are several other optimizations

borrowed from Go that might be useful under imperfect information, such

as the all-moves-as-first heuristic.

It is, however, entirely possible that such optimizations alone will not be

enough for the computer to achieve champion levels of play (and, given the el-

ement of chance in the game, it remains to be seen whether it is even possible

for a computer to reach overchampion level). Perhaps this will only happen

when planning methods are integrated into a program, adding another layer

of complexity. Human Kriegspiel players make most of their decisions basing
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themselves on a number of plans of varying difficulty and effectiveness.

The main problem here consists of representing these plans, as they are

more than just sequences of repeated moves. Human players adapt their

plans to the specific game; we once tried to copy human “power moves”,

but without more sophisticated knowledge, the move turns out to be weak

more often than not. Preliminary research on very simple plans (basically

targeting a square and attacking it en force), whose output was used to

provide progressive unpruning in Monte Carlo, yielded small but measurable

improvements; however, research in this area is not yet mature enough.

Playing the opening deserves a separate mention. Currently, all versions

of Darkboard make use of an opening book taken from the initial moves of

the top human players. This occasionally becomes predictable by the best

humans, leading to a few very early checkmates. Research is still ongoing

on at least two fronts: first, using Monte Carlo sampling to select the best

opening from the book in the presence of an opponent model, and secondly,

using it to create new openings for Darkboard to use, tailored for the specific

opponent. From a simulation standpoint, the opening is the best time to use

Monte Carlo, as there is no uncertainty and even textbook MCTS (what we

called approach A) may help.

As far as the endgame tablebase is concerned, indexing and compression

seem to be the next main problem to be faced. Currently, there is no indexing

to the tablebase, forcing the algorithm to look up a large number of entries

in response to a query. Also, tablebase are quite large, with only a tiny

fraction of their entries being actually useful in a real game. This leads to the

problem of compressing a tablebase by removing positions that are unlikely

to occur, at the risk of selecting a sub-optimal strategy if those positions

actually occur. A separate problem is that of expanding the tablebases to

find positions that are won with probability arbitrarily close to 1 through

recursive mixed strategies. Such expanded tablebases would no longer be

directed acyclic graphs, however.
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Official Kriegspiel rules

These are the rules for playing on the Internet Chess Club, where this chess

variant has been active since 1996. This ruleset is the closest to becoming a

standard for Kriegspiel, being the one enforced at the Computer Olympiads.

Kriegspiel (wild 16) is a chess variant in which you cannot see your opponent’s

pieces. You can only see your own pieces, and you have to guess where your

opponent’s pieces are. When you try to make a move, ICC may tell you that

your move is illegal, in which case you should make another move instead.

To play Kriegspiel, just match someone for a wild 16 game:

match Fred 2 12 kriegspiel

The referee makes the following announcements where appropriate:

"White’s move"

"Black’s move"

"Pawn at <square> captured"

"Piece at <square> captured"

"Rank check"

"File check"

"Long-diagonal check"

(the longer diagonal from the king’s point of view)

"Short-diagonal check"

(e.g. for a king on e1, the short diagonal is e1 to h4)

"Knight check"

"<number> pawn tries"

161
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(number of legal capturing moves using pawns)

When you try an illegal move, you are simply told “Illegal move”, whether

it is moving into check or moving through an enemy piece. Your opponent

is not told anything when you try an illegal move.

Moves must be entered in dumb-computer format, e.g. “e2e4”. Input

strings such as “nxq” which might be interpreted differently depending on

the enemy position are not allowed, with one exception: “px” is allowed, to

save you the trouble of trying a dozen possible diagonal pawn moves when

you know that precisely one of them is legal. Other acceptable forms include

“e2-e4”, “o-o”, and “f7g8=N”. Moves like “Rd3” are currently not accepted

(because there are a few cases where they could be context-dependent). Most

graphical interfaces generate strings like “e2e4” for you when you make moves

with the mouse. (But see the note below about pawn captures under xboard

and slics).

Opponent’s moves show up in the form “?” or “?xf3”. This might break

some interfaces.

You cannot observe rated Kriegspiel games. This is to prevent people

from logging in with a second account, and seeing all the pieces while they

are playing on another account! You can observe unrated Kriegspiel games,

if you’re registered.

In examine mode you can see all the pieces and moves. E.g. if you have

examine=1, at the end of the game you’ll be able to see your opponents

pieces (you may have to “refresh”), review the move history, etc. The illegal

moves tried are not recorded.

The clients xboard 3.4, slics 22f, and probably some other interfaces will

not allow you to even attempt a diagonal pawn move with the mouse when

they can’t see a piece to take. The move is not even being transmitted to

the server in this case; it’s just being rejected by the client. So with those

interfaces, you should type in pawn capturing moves, e.g. “px” or “d5c4”.

Naturally these problems are not the fault of the interface writers! We sprang

kriegspiel on them with no warning (sorry guys). Ziics happens to work well

as is.

Notes and known problems:

1. Pawn captures must be done by keyboard on some interfaces.
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2. Channel 116 is the Kriegspiel channel.

3. Kriegspiel with lag is painful. Even with timestamp, your clock will

run while you wait to hear that your move is illegal.

4. If you start a game and your opponent complains that he can’t see your

pieces, offer to abort, and suggest that he read this file.

5. If you disconnect or get disconnected during a Kriegspiel game, the

game is a loss. Kriegspiel games are not adjourned.
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Appendix B

A notation for Kriegspiel games

In order to record the transcript of a chess game, there exists a file format

specification called PGN (Portable Game Notation). This well-known for-

mat was designed to be both easily read by a human and easily parsed by a

computer program, and consists of a series of tag-data pairs, some of which

are mandatory, as well as a sequence of moves given in standard Algebraic

Chess Notation. Actually, there are two formats to PGN, one being the rel-

atively more lax “import” format, which can correctly parse human-created

PGN files, and a strict “export” format, which a computer can generate

to best adhere to the standard. A more thorough description is given in

[http://en.wikipedia.org/wiki/PGN] and the full format specification can

be found in [Edwards, 1994].

PGN can be used to record chess variants as it supports the “Variant”

tag (not to be confused with the “Variation” tag, which denotes a peculiar

variation on a given chess opening). While some variants are harder to en-

code into PGN due to radical rule changes with respect to orthodox chess

(because of different piece types, multiple turns, etc.), Kriegspiel is virtually

identical to chess as far as the final product is concerned that is, the re-

sulting game is a full-fledged game of chess that can be exported as PGN

without any modification. However, this solution is lacking in two aspects:

firstly, because we may not have access to the umpire’s information, and

secondly because PGN is not designed to record umpire messages and illegal

move attempts. The latter is the more serious shortcoming, because umpire

messages can be reconstructed at runtime but illegal moves are a priceless

165
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source of information on a player’s style and decision process.

The best solution offered so far is to define an extended PGN notation for

Kriegspiel that includes the missing information as comments in the PGN

file. This idea originates from the Berkeley University Kriegspiel project

[Wolfe]. Surrounded by curly braces, comments are a legal part of the PGN

specification, meaning that a compliant piece of software can make use of

the additional data, otherwise it will be safely ignored. They are found

between two moves in the PGN file, and in the extended notation they contain

information on the move they follow. The format is format

{ umpire-messages : illegal-move-list },

where both umpire-messages and illegal-move-list are comma-separated lists.

Umpire messages are deterministic and could be easily reconstructed, but

their presence is for the convenience of a human reader. Allowed codes in-

clude:

• Px, where x is the number of available pawn tries in the next move (for

the opponent to take advantage of). If the Kriegspiel variant does not

allow pawn tries, this code will simply never appear, or can be replaced

with Ax to mean that a player asked “Are there any?” and the umpire

gave the answer x.

• Cx, where x is an uppercase letter, means that, following this move, the

opponent’s King is in check. Legal character codes are R (rank check),

F (file check), L (long diagonal check), S (short diagonal check) and

N (knight check). In the event of a double check, two check entries

appear in the list rather than two letters following the C code.

• Xa1, where a1 represent any square on the chessboard, means that a

capture took place on the given square. This is, in most cases, the same

square where the current player moved his piece to, the only exception

being en passant captures.

Moreover, extended PGN games can be filtered to only include the moves

of one player, but not both, as if that player was narrating the game from

his point of view. Man-made Kriegspiel problems can include more or less
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information, for the purpose of creating an interesting riddle. The extended

format simply instructs to replace unknown facts such as moves and umpire

messages with the ?? placeholder.

Another technical, but interesting point which needs to be raised con-

cerns notation. Algebraic notation aims to shrink moves down to a more

compact format whenever possible; “Rg4” is used instead of “Rh4-g4” unless

the starting square (or just one coordinate of it) is required to disambiguate

the move, for example if two rooks are on the same rank. When one can

reason with perfect information, disambiguation is a trivial matter; however,

the presence of hidden enemy pieces makes moves that are illegal from the

umpire’s perspective, potentially legal. Therefore, a shortened move tran-

script that is perfectly sound for the umpire, might seem ambiguous to the

player who acts on imperfect information. The rule of thumb is that moves

are interpreted with the knowledge of the party describing the game. For

unfiltered games, this is the referee and disambiguation works as usual, but

for partial information transcripts the point of view is that of the player, and

moves are judged ambiguous depending on his point of view even though the

rest of the information is available elsewhere.
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