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Introduction 
 

 

The rapid industrial and urban development occurred in recent decades has influenced the 

regional air quality by increasing the emission in the atmosphere of gaseous pollutants and 

aerosols from combustion processes. It is now well known that air pollution has impact not 

only on the human health but also accelerates the deterioration of building’s façade, 

monuments and outdoor statues located in urban areas. The dry and wet deposition of air 

pollutants is demonstrated to be the most important damage factor in building material 

deterioration; in particular, aggressive airborne particulate matter has been proved to have 

a driving role in soiling of monument surfaces. The phenomenon of air multi-pollutants 

deposition has been extensively studied focusing on natural stones, especially marble and 

limestone, considering their wide use in the construction of many famous European 

monuments. The research performed on the deterioration of the built cultural heritage due 

to atmospheric pollutants indicates that SO2 and particulate matter, primarily from the 

combustion of fossil fuels, are the most dangerous agents in case of marbles, limestone and 

dolostones. However, the decrease of SO2 emission from industry and domestic fuel 

burning in recent years in many parts of Europe and the increase in traffic (raising the 

atmospheric concentration of nitrogen compounds, ozone and particles) have created a new 

multi-pollutant situation. Only recently, a special attention has been given to the dark 

component of aerosols, referred to black carbon (soot), which causes aesthetic impairment 

(blackening) of the building façade in areas protected from rain run-off. The formation of 

the so called black crusts effects in increase of material roughness and retention of 

particulate matter by building surfaces. 

Despite many studies dedicated to the environmental damage of cultural heritage, in case 

of cement mortars, commonly used in the 20th century architecture, the deterioration due to 

air multi-pollutants impact is still not well explored and requires deeper investigation. 

The present work centers on cement material-environment interaction, focusing on the 

investigation of the damage of the 20th century architecture induced by air multi-pollutants.  

For this purpose three European sites, exposed in different urban areas, have been selected 

for sampling and analysis of damage layers: Centennial Hall, Wroclaw (Poland), Chiesa 

dell'Autostrada del Sole, Florence (Italy), Casa Galleria Vichi, Florence (Italy).  
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Through the analytical studies of the samples collected at the buildings under 

consideration, the complete characterization of damage layer formed on cementitious 

monuments was achieved for the first time. The results from experimental work allowed 

the identification and prioritization of the air pollutants responsible for the surface 

deterioration considering the location of the buildings under study. The comprehensive 

diagnosis of damage layer and identification of the anthropogenic pollutants influencing its 

formation, represents a prerequisite for the sustainable protection and conservation of the 

modern built cultural heritage. The knowledge achieved during this research will be also 

useful in the construction sector for investigating the durability of modern building 

materials. 
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1. Impact of multi-pollutants on modern cement built heritage 
 

 

The 20th century architecture, characterized by concrete constructions such as high 

buildings and gigantic bridges, seems to be indestructible. However, it has now been 

recognized that many modern buildings undergo rapid deterioration, especially in areas 

with high concentrations of air pollutants. It is demonstrated that the deposition of gaseous 

multi-pollutants and aerosols plays a major role in causing the deterioration of monuments 

and built cultural heritage in European cities.  

The deposition of air pollutants (SO2, NOx, O3, aerosols, etc.) on building materials can be 

divided into two sub-processes: dry and wet deposition: (1) dry deposition by the transport 

of particulate and gaseous contaminants from the atmosphere onto surfaces in the absence 

of precipitation (Davidson and Wu, 1989) (2) wet deposition by transfer of trace gases and 

particles occurring in an aqueous form (rain, fog, snow). Dry deposition is slow and 

continuous, whereas wet deposition delivers sudden and infrequent pollutants in dilute 

solution (Morselli et al., 2003). The most studied process, in case of building material 

deterioration especially marble, limestone, sandstone, is  dry- and wet- deposition of SO2, 

which cause growth of gypsum crystals. The major pathways of acid deposition, for 

example of SO2, can be summarized as follow: SO2 oxidized mainly by reaction with OH 

radicals leading to the formation of sulphuric acid (H2SO4), which rapidly nucleate to form 

aqueous H2SO4 droplets, acting themselves as condensation nuclei as cloud droplets. The 

aqueous phase formation of H2SO4 proceeds via absorption of SO2 in cloud droplets or 

moist particles and subsequent oxidation reaction. Finally, the aerosol sulphate and 

gaseous SO2 are subjected to below cloud scavenging by rainfall, removing a large fraction 

of atmospheric SO2 by acid precipitation (Steiger, 2003). The dry deposit of atmospheric 

sulphur components involves the gaseous SO2 and particulate sulphate. The overall rate of 

dry deposition depends on the material properties such as chemical composition and 

surface wetness, and the reactivity of the atmospheric trace gas of interest (Steiger, 2003).  

In order to determine and compare the effects of atmospheric deposition on different 

building materials (stones and mortars) and the mechanism of degradation that occurs on 

construction materials, exposure tests were performed by Zappia et al., (1998). For the 

exposure tests, samples of different stones (Carrara marble, Travertine, Trani and Portland 
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limestone) and mortars (lime, pozzolan and cement mortars) were exposed for 6, 12 and 24 

months in two sites: Milan (as an example of urban site) and Ancona (as an example of 

maritime site).  

The results obtained can be summarized as follows:  

1. Sulphation is the main process of degradation that occurs on both stones and mortars 

specimens.  

2. The exposed materials showed different degrees of sulphation (Figure 1.1), highlighted 

the reactivity to SO2 of stones and mortars exposed. Considering the total sulphur detected 

on the samples, mortars have been demonstrated to be more reactive than stones. This is 

mainly due to the micro-structural properties such a porosity, in fact mortars have a higher 

porosity than stones, and therefore higher potential of interaction with pollutants. 

3. Taking into account the exposition to the rain run-off, the highest amount of airborne ion 

concentrations (sulphate, sulphite, nitrate, nitrite, chloride, fluoride, oxalate) respect to the 

bulk material, was observed in the areas completely protected. 

 
Figure 1.1. Total sulphur (µg cm-2) measured on stones and mortars exposed for 12 months in Ancona and 

Milan (Zappia et al., 1998). 

 

The literature contains numerous studies on the environmental degradation of building 

materials, such as natural stone and brick (Sabbioni, 1995; Riontino, et al., 1998), but very 

few data are available on the impact of air pollutants on mortars, in particularly cement 

mortar, which is the sign of the modern architecture. Only in recent years have been 

published a series of works, which have filled in part this gap. 
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1.1. Cement mortars 
 

 
Cement mortars belongs to hydraulic mortars group, characterized by the capacity to set 

and harden under water.  

The first evidence of humans using a form of “hydraulic” mortars, was discovered during 

the excavation of the underground aqueduct of Megara (500 B.C.), where a reservoir was 

coated with a pozzolanic mortar. This was a lime based mortar, made with an additive of 

volcanic ash, which gave to it hydraulic properties. The development of hydraulic mortars 

and theirs application was observed in ancient Greece; the Greek employed pozzolanic 

mortar obtained by adding volcanic ash from the Thira or Nisiros islands in Greece or from 

Dikearchia (Pozzuoli) in the Greek colony in Italy. However, it was the Romans, who 

improved the use and methods of this type of mortars; they substitute the ordinary sand in 

lime mortar into sand of volcanic origin from the village Pozzuoli close to Vesuvius. This 

village gave the name to mortars known as pozzolanic mortar and cement (van Balen et al., 

2003, Werynski, 2006). The hydraulic properties of this mortars are principally due to 

presence in pozzolan of aluminium oxide (alumina) and silicon oxide (silica), that thanks 

to their amorphous, vitreous state and high specific surface area react with lime and water 

to form calcium silicates and aluminates hydrates (van Balen et al., 2003). The same effect 

was achieved by later Romans, using rich in silica and alumina ground fired clay 

(chamotte) or “cocciopesto” (finely ground bricks or tiles) instead of pozzolana. One of the 

first important works of Romans is the ancient theatre of Pompeii accommodating 20000 

spectators (in 75 BC). Numerous works, which are admirable from both technical and 

architectural perspective follow, such as Coliseum (82 BC), Pantheon (123 BC) and 

several water reservoirs, like the one in the city of Nimes in France (150 AD). Worth 

mentioning is the written text “De architectura Libri Decem” by Marcus Vitruvius Polioin 

(13 B.C.), giving directions to architects for the preparation of a mortar which sets both in 

air and in water. 

In medieval times there was no development of the art of making hydraulic mortar. In the 

middle of 1700 's AD, an English engineer John Smeaton discovered the hydraulic reaction 

during observation that lime mortars with lime, which were produced from the burning of 
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limestone containing clay (silica and alumina), could set both in the air as well as – more 

importantly - in water. This observation is considered to be the first essential step for the 

production of cement in the form in which it is produced today. Similar developments of 

that period were achieved by L. J. Vicat and Lesage in France. 

The fundamental step for the creation of cement in the form it is used today, is attributed to 

the English engineer Joseph Aspdin, who took out a patent in 1824 for “Portland Cement”, 

which mixed with water and sand gives Portland cement mortar (often known simply as 

cement or OPC mortar). This name was given because the colour of hardened cement was 

very similar to the colour of rocks in Portland.  

The Portland cement is one of the most common sorts of cement used to produce mortars 

and concrete since 20th century. First step in Portland cement production is preparation of 

clinker, through the heating of blended limestone, clay and marlstone. Clinker (95 %), 

mainly composed of CaO, SiO2, Al2O3 and Fe2O3, is mixed with calcium sulphate 

(anhydrite, hemihydrate, dihydrate (2-5 %)) and ground to form the cement powder - 

Portland cement (Czarnecki et al., 1996, Werynski, 2006). The chemical and mineralogical 

composition of it is presented in Table 1.1 and Table 1.2. 

 

 
Table 1.1. Chemical composition of Portland cement (Czarnecki et al., 1996). 
 

Chemical formula Notation Chemical name Mass (%) 
CaO C Calcium oxide 62-68 
SiO2 S Silicon oxide 18-25 
Al2O3 A Aluminium oxide 4-8 
Fe2O3 F Ferric oxide 3-4 
MgO M Magnesium oxide 0.5-2.5 
Na2O+K2O N+K Alkali 0.4-3 
SO3  Sulfur trioxide 0.8-3 

 

 
Table 2.2. Mineralogical composition of Portland cement (Czarnecki et al., 1996). 
 

Mineral Chemical formula Notation Chemical name Mass (%) 
Alite 3CaO·SiO2 C3S Tricalcium silicate 30-65
Belite 2CaO·SiO2 C2S Dicalcium silicate 15-45
Celite 3CaO·Al2O3 C3A Tricalcium aluminate 5-15
Ferrite 4CaO·Al2O3·Fe2O3 C4AF Tetracalcium aluminoferrite 5-15
Gypsum CaSO4·2H2O  Calcium sulfate dihydrate 2-5
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The addition of water to the clinker causes the process called cement hydratation, during 

which in the same time undergo two types of reactions: hydration and hydrolysis. 

Hydration reactions of typical constitutes of Portland cement (alite, belite, celite, ferrite) 

are presented in Table 1.3. The most abundant hydration products are calcium silicon 

hydrate (C-S-H) around 70 % and calcium hydroxide Ca(OH)2 around 20 %. The amount 

of calcium hydroxide results in highly alkaline (pH between 12.5 and 13) and is 

responsible for material durability.  

 

 
Table 1.3. Hydratation reactions of typical constitutes of Portland cement (Werynski, 2006). 

Mineral: Hydratation reactions: Comments: 

Alite 2(3CaO·SiO2) + 6H2O →  3CaO·2SiO2·3H2O + 
3Ca(OH)2 + Q* 

really fast, cause setting and strength 
development in the first few weeks 

Belite 2(2CaO·SiO2) + 5H2O →  3CaO·2SiO2·4H2O + 
Ca(OH)2 + Q 

slower than of alite, this reaction is 
responsible for strength growth. 

Celite 2(3CaO·Al2O3) + 21H2O →  4CaO·Al2O3·13H2O 
+ 2CaO·Al2O3·8H2O + Q the fastest among all hydration reactions 

Ferrite 4CaO·Al2O3·Fe2O3 + CaSO4 + 16H2O →  
Ca4·(AlO3·)2SO4·12H2O + Ca(OH)2 + 2Fe(OH)3 

starts quickly as water is added, but then 
slows down 

*  heat 

 

 

All hydration reactions are exothermal, the biggest amount of heat (Q) is produced in 

hydration of 3CaO·Al2O3 and the smallest of 3CaO·SiO2 (Werynski, 2006).  

The hydration of cement is a complicated process taking into account all reactions between 

water, different phases of clinker and gypsum, which is added to regulate time of setting. 

At the beginning of this process, when water is put into cement, big amount of alkalis, 

calcium ions, sulphates, and smaller amount of silica, iron and aluminium ions go into 

solution. Gypsum starts to react with 3CaO·Al2O3 in the following reaction: 

 
3CaO·Al2O3 + 3CaSO4·2H2O + 26H2O →3CaO·Al2O3·3CaSO4·32H2O, 

 

causing formation of hexacalcium aluminate trisulfate hydrate called ettringite, which 

belongs to the minerals group known as AFt phases. Gypsum undergoes to a total 
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transformation into ettringite in first 24 hours of reaction. Alite begins fast reaction with 

water producing calcium hydroxide. Ettringite and calcium hydroxide are the first products 

of cement hydratation. In the first 24 hours basic microstructure form appears, consisting 

of C-S-H needles and C-S-H leafs playing role of connection among separate cement 

particles. During further hydratation the density of microstructure rises, hardening 

increases with decreasing speed (Werynski, 2006).  

When the source of sulphate (gypsum) is finished the ettringite subsequently starts to react 

with 3CaO·Al2O3 in reaction: 

 

3CaO·Al2O3·3CaSO4·32H2O + 3CaO·Al2O3 + 4H2O →3Ca4·(AlO3·)2SO4·12H2O, 

 

producing monosulfate from minerals group called “AFm phases”. 

Duration and progress of hydratation process depends on different factors. The most 

important are chemical and mineralogical composition of cement, water/cement ratio, 

temperature of hydratation, different supplements adding during or in the beginning of 

hydratation. It is assumed that 70 % of cement paste volume is composed of hyratation 

products and around 30 % of pores (Werynski, 2006). 
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1.2. Impact of air pollutants on cement mortars 
 

 
The studies dedicated to the concrete construction corrosion are mainly focused on the 

interaction of the cement components with chlorides and sulphates from ground waters 

(Petri and Kawalec, 1998), while few works have been performed towards the 

understanding of the interaction of cement matrix with atmospheric multi-pollutants.  

Buildings, especially in urban areas, exposed to acid rain precipitation undergo faster 

deterioration, which in case of cement materials can be observed by white or yellow 

efflorescence, micro cracks, surface swelling (Petri and Kawalec, 1998). Deterioration of 

Portland cement mortar, caused by acid deposition, was investigated by several laboratory 

and field tests performed in different conditions, summarized in Table 1.4 and 1.5. 

Laboratory and exposure experiments showed that acid rain dissolves calcium hydroxide, 

the dissolved amount increase with the increase in the acidity of simulated acid rain 

solution and the decrease in the flow rate (Okochi et al., 2000). A field exposure 

experiment, carried out for two years indicated that the carbonation of calcium hydroxide 

and the formation of other corrosion products, such as chloride, nitrate, and sulphate were 

limited to the surface of mortar specimens. The neutralization progressed more deeply in 

mortar specimens sheltered from rainwater than in those washed by rainwater (Okochi et 

al., 2000; Derry et al., 2001). 

Rainwater with high concentration of ions such as SO4
2-, NO3

-, Cl-, dissolves easily 

calcium hydroxide Ca(OH)2, which is responsible for durability of cement. The typical 

neutralization reaction of Ca(OH)2 can be presented as following: 

 

2HCl + Ca(OH)2 →  2H2O + CaCl, 
2H+ + Cl- + Ca(OH)2 →  2H2O + Ca2+ + 2Cl-. 

 

Salts, which are formed during this process, can be dissolved and washed out by rain 

water, or penetrate with water to inner part of surface. During this process, pH of concrete 

decreases and deterioration rises, in case of reinforced concrete, corrosion of the 

reinforcing steel additionally occurs.  
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The literature dedicated to modern hydraulic mortars deterioration due to the atmospheric 

multi-pollutants deposition has indicated the following points as requiring further 

investigation: CO2/H2CO3 (carbonation), SO2/H2SO4 (sulphation), NOx/HNO3-cement 

components interaction (Marinoni et al., 2003; van Balen et al., 2003). It is known that the 

deposition of air pollutants and aerosols on carbonate stone materials, in areas sheltered 

from rain run-off, causes formation of black damage layer (Bonazza et al., 2005); this 

phenomenon in case of cementitious material is still not investigated. 

 
1.2.1. The carbonation process 

 

Carbonation process is defined as interaction between CO2 and concrete components. This 

mechanism is based on absorption of carbon dioxide, which converts calcium hydroxide 

and also hydrated calcium silicates and aluminates into calcium carbonate, that process is 

restricted by presence of water and relative humidity 40-70 % (Yates, 2003; Alexander et 

al., 2007; Pede and Guimareas, 2007). Calcium carbonate appears as white efflorescence 

on concrete surface and it is easily washed out by rain water. Process of carbonation can be 

presented in reactions: 

 

Ca(OH)2 + H2O + CO2 →  CaCO3 + 2H2O; 

10 (C-S-H) + 17CO2 →  17CaCO3 + 10SiO2 + 40 H2O. 

 

The process of carbonation can cause also decomposition of ettringite, which acts as binder 

in cement paste, into gypsum, calcium carbonate and alumina gel in the following reaction 

(Nishikawa et al., 1992; Grounds et al., 1988): 

 

3CaO·Al2O3·3CaSO4·32H2O + 3CO2 →  3CaCO3 + 3CaSO4·2H2O + Al2O3·xH2O +  

(26-x)H2O. 

 

The carbonation reactions result in lowering of the pH and destabilizing all the cement 

hydration products. The decrease of the pH causes the decrease of the Ca/Si ratio of 

hydrated calcium silicate. It is assumed that 50 % of the CaO present in C-S-H of non-

carbonated paste with pH ranging from 13 to 14, will transform into CaCO3 in carbonated 

concrete reducing pH to 9 (Chang and Chen, 2006). The lower pH has also impact on 
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stabilities of ettringite and monosulphate: ettringite become unstable below pH of 10.7, 

while monosulphate below 11.6 (Gabrisova et al., 1991; Zivica and Bajza, 2001).  

The carbonation of concrete depends mainly on environment condition, such as CO2 

concentration, relative humidity (RH), ambient temperature and pressure, as well as 

properties of cement: porosity and permeability, water/cement ratio, hydratation condition, 

age and moisture content (Zivica and Bajza, 2001). 

 

1.2.2. The sulphation process  

 

Interaction between buildings materials and SO2 is assumed to be one of most important 

factor in buildings materials deterioration. The investigation by laboratory and field 

exposure test (Table 1.4 and 1.5), and historical buildings built in OPC, show that 

sulphation is the most common deterioration process on the cement mortars. According to 

the studies presented in Tables 1.4 and 1.5, in general, the process of SO2 on cement 

mortars produces effect similar to the effect of CO2: sulphur dioxide converts components 

of cement paste into soluble salts, which are subsequently leached away eroding the 

surface and increasing porosity. The diffusion of SO2 through the exterior layer into the 

interior of the concrete and subsequently dissolution of SO2 in the pore liquid leads to 

formation of sulphite acid; than to the formation of calcium sulphurous, and its oxidation 

under the formation of calcium sulphate or gypsum. Products of this reaction (such as 

gypsum) have significantly higher volume than the starting calcium compounds, therefore 

within the pores it causes enormous stresses and then swelling and cracking (Sabbioni et 

al., 2001; Zivica and Bajza, 2001; Sabbioni et al., 2002).  

The interaction between atmospheric SO2 and materials of the buildings is via the well-

known processes of dry and wet deposition (acid deposition). The studies performed using 

micro-chambers to study the effect of dry and wet deposition on the cement mortars 

(Martinez-Ramirez, 1998), reports that sulphur dioxide in dry forms has little impact on 

Portland cement mortars. It has been shown that in case of dry deposition SO2, the 

chemical reaction between the mortar components and the gases increases attending the 

following order: 

 

SO2 < SO2 + O3 < SO2 + H2O< SO2 + O3 + H2O. 
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The author also shows that the conversion of SO2 to SO4
= increases, when the cement/H2O 

ratio decreases. 

The investigation by laboratory and field exposure tests, reported in Tables 1.4 and 1.5, 

show that sulphation process is restricted by the concentration of SO2, relative humidity 

and the properties of material, such as Al2O3 content and total porosity (Martinez-Ramirez, 

1999; Martinez-Ramirez et al., 2002; van Balen et al., 2003).  

The products of sulphation process on the cement mortars due to the atmospheric sulphur 

components or to the sulphate from the ground waters are gypsum (CaSO4·2H2O), 

ettringite (3CaO·Al2O3·3CaSO4·32H2O) and thaumasite (CaSiO3·CaSO4·CaCO3·15H2O).  

Gypsum (CaSO4·2H2O) is the first product formed during the hydraulic mortar–SO2 

interaction, it is formed during reaction of SO2 with calcium hydroxide in the following 

reaction:  

 

Ca(OH)2 +SO2 + 
2
1  O2 + H2O →  CaSO4·2H2O. 

 
Gypsum is characterized by higher solubility and volume than Ca(OH)2, and its formation 

effects in loss of strength and durability of cement paste. The problems generated by the 

formation of gypsum depends on different situations: first, after its formation on the 

surface, it can be easily washed away from the areas exposed to precipitation, eroding the 

surface and increased porosity due to its high solubility compared to the compounds of the 

original materials. On the other hand, the sulphation leads to the formation of black crusts 

on the surface of low porosity materials (marble and compact limestone) or occurs inside 

the pores in materials with high porosity, such as mortars and sandstones (Riontino et al., 

1998; Sabbioni et al., 1998; Marinoni et al., 2003).  

Ettringite is a mineral formed due to the reaction between sulfates, calcium aluminates and 

water. It can be found in cement materials in three forms: primary ettringite, delayed 

ettringite formation (DEF) and secondary ettringite. Primary ettringite is a product of 

hydratation and it is not hazardous (described in Chapter 1.1).  
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Table 1.4. a Laboratory chamber tests on cement mortars. 
 

Cement 
characteristic 

Water/ 
cement 
ratio 

Water/ 
sand 
ratio 

Type of chamber RH (%) T Exposure 
time 

SO2 
(ppm) O3 (ppm) others References 

0.4 1:3 Atmospheric flow 
chambers 84 ± 2 292 ± 2 (K) 4 weeks 2.5 2.5 Flux of water 

10.6×10-7l/(m·s) 
Martinez-Ramirez et al. 

(2002) 

  Atmospheric flow 
chambers 95 25 °C 6 months 

12 months 0.3   Van Balen et al. (2003) 

1st Flow chamber 50  36 days   CO2  enviroment  Van Balen et al. (2003) 

0.5 1:3 

2nd Flow chamber 95 5 °C 6 months 
12 months    Van Balen et al. (2003) 

1st Flow chamber 95 25 °C 2 days 300   Blanco-Varela et al. 
(2003) 

0.5 1:3 

2nd Flow chamber 95 5 °C 6 months 
12 months    Blanco-Varela et al. 

(2003) 

1st Spray chamber 
rain, pH=4.7  Room temp. 2 h    Okochi et al. (2000) 

0.65 1:2 
2nd Spray chamber 

rain, pH=3  

3 groups1 

1) room temp. 
2) heated (70 °C) 

3) cold    (2 °C) 

2 h    Okochi et al. (2000) 
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Table 1.4. b Laboratory chamber tests on cement mortars. 
Cement 

characteristic 
Water/ce

ment 
ratio 

Water/sa
nd ratio 

Type of chamber RH (%) T Exposure 
Time 

SO2 
(ppm) O3 (ppm) others References 

0.4 3:1 Spray chamber 
rain, pH = 4  35 °C2 90 days    Martinez-Ramirez and 

Thompson (1999) 

100 Room temp. 
1cycle: (24h 
in solution 

/24h drying) 
   Sersale et al. (1998) 

 

  Spray chamber 

  
1cycle: (120h 
spraying / 48h 

drying) 
   Sersale et al. (1998) 

 

 
1 1st group at room temperature until next exposure 
  2nd group for 4 hours at room temperature, then heated at 70 °C 4 hours, and again at room temperature until next exposure 
  3rd cooled about –2 °C for 4 hours and then at room temperature until next exposure 
2 dry and wet cycling with spraying of the acid rain fine mist for 2 hours followed by drying at 35 °C for 2 hours 
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Table 1.5. Field exposure experiments of cement mortars. 

 

 

Exposure side to rain water: 
Material Water/cement 

ratio 
Water/sand 

ratio Site Time of exposure 
not sheltered partly 

sheltered 
completely 
sheltered 

References 

Portland cement 0.65 1:2 
Kanagawa University 

in Yokohama City, 
urban area in Japan. 

2 years yes no yes Okochi et al. 
(2000) 

City centre site: 
Southwark, London. 

Portland Cement 0.8 1:4 

Suburban site: 
Horsted, Chatham, Kent 

April – November 
in one year yes no yes Derry et al. 

(2001) 

Modern hydraulic 
mortars  1:3 

City centre, large 
industrial area:  
Milan, Ancona 

6 months 
12 months 
24 months 

yes yes yes Zappia et al. 
(1998) 
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There has been many studies dedicated to delayed ettringite formation which is associated 

with damaging sulphate attack. Its formation occurs when primary ettringite it is subjected 

to temperatures between 70 °C and 90 °C and undergoes decomposition into 

monosulphate, then, during the temperature drop, monosulphate reacts with water 

(moisture) and sulphate, and ettringite (DEF) is formed again. This reformation of 

ettringite causes the new crystal growth inducing stresses in materials and subsequently 

cracking. The process is limited by moisture conditions and internal sulphate sources 

(Stark and Bollmann, 2002; Collepardi, 2003; Ekolu et al., 2006 ). The secondary ettringite 

is formed due to external sulphate sources. However, whilst the formation of secondary 

ettringite due to sulphate from ground water is well understood, the process due to 

atmospheric sulphur component is not well investigated. This type of ettringite is produced 

in reaction between gypsum and calcium aluminates hydrate (van Balen et al., 2003): 

 

3 CaSO4·2H2O + 3CaO·Al2O3· 6H2O + 20 H2O →  3CaO·Al2O3·3CaSO4·32H2O. 
 

This reaction is regulated by access to water (relative humidity), temperature, 

concentration of SO2 and materials properties such as Al2O3 content and porosity. The 

crystal growth in the voids of cement matrix results in expansion effect (Collepardi, 2003).  

Thaumasite (calcium silicate carbonate sulphate hydrate) is a third mineral after gypsum 

and ettringite found as product of sulphate attack in cement modern construction. 

Naturally, thaumasite occurs mainly in metamorphic rocks, having crystallizes in the 

hexagonal system and needle-shaped, that is similar to ettringite structure. The formation 

of thaumasite in cement-based materials depends on the presence of ions, such as 

carbonate, sulphate and silicate, associated with calcium cations, and is limited by access 

to water (Crammond, 2002; Romer, 2003; van Balen et al., 2003; Collett et al., 2004; Ma et 

al., 2006; Bellman and Stark, 2007). The process of its formation can be presented in 

formula: 

 

CaSO4·2H2O + CaCO3 + CaSiO3·H2O + 12 H2O →  CaSiO3·CaSO4·CaCO3·15H2O. 

 

The destructive effect of thaumasite formation consists of the decomposition of C-S-H 

compounds, which creates “mushy concrete” and decreases the strength of the material.  
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However, while there has been performed a lot of studies mainly linked to formation of 

this mineral due to groundwater, this process is still not well understood. The research on 

the thaumasite form of sulphate attack (TSA) has been carried out by “Thaumasite Expert 

Group” (TEG) (1999). Through the investigation, the risk factors responsible for 

thaumasite formation were defined as presence of sulphates ions, ground water, carbonate 

(in coarse and fine aggregates) and low temperature (<15 ºC). Anyhow, further researches 

lifted up this theory, showing that among this four factors, sulphate source must be always 

present (external or internal) and in conditions to penetrate into the cement matrix from 

outside (i.e. high concentration of SO2 in atmosphere). In fact, the presence of ground or 

mobile water is not required, the low temperature accelerate thaumasite formation, but it 

can be also found in warm climate, carbonate can come from external sources not just from 

aggregates (Sims et al., 2004). It has been also revealed that thaumasite can be formed also 

during transformation of ettringite (van Balen et al., 2003; Köhler et al., 2006). 

 

1.2.3. The cement - NOx interaction 

 

It is known that in urban areas sulphur dioxide and nitrogen oxides are the most important 

gases associated with acidity precipitation (Morselli et al., 2008). The effect of NOx on 

Portland cement is practically not documented. Nitrogen oxides present in atmosphere 

under suitable conditions can deposit on concrete surface. NO2 or nitric acid are relatively 

unstable and can easily undergo oxidation. Reaction of NO3 with cement matrix 

component is analogical with the one of CO2 and SO2. The  salts (called calcium nitrate) 

formed during the reaction: 

 

Ca(OH)2 + 2HNO3 + H2O →  Ca(NO3)2·4H2O 

 

are very soluble, therefore no expansive phenomena occurs. Instead, the leaching appears 

on the attacked layer when NO2 comes in the contact with concrete (Zivica and Bajza, 

2001). However, it is very difficult to determine the effect of NOx, which plays also roles 

as oxidant (for example in sulphation process) and oxidation catalysts (Massey, 1999). 

There has been performed some tests of cement paste corrosion in acid solution, which has 

shown the magnitude of the aggressive effect of three acids solution in following order 



 

 18

HNO3 > HCl > H2SO4, anyhow this result are difficult to evaluate in historical building 

effected by rainwater and acid deposition (Pavlik, 1994; Okochi et al., 2000). 

 

1.2.4. Formation of black crust  

 

The deposition and accumulation of multi-pollutants and products of chemical reactions 

occurring in material surfaces, in areas protected from rain run-off, leads to formation of 

the so-called black crust. The formation of the black damage layer results not only in 

aesthetic impairment (blackening) of the building façade but also causes material loss 

(Ghedini et al., 2006). The characterization of the black crusts on natural stone has 

indicated gypsum as main component followed by calcite with embedded airborne 

particulate matter, including carbonaceous and aluminosilicate particles and also metal 

particles mainly composed of iron (Del Monte et al., 1981; Sabbioni and Zappia, 1991; 

Zappia et al., 1993; Ghedini et al., 2000; Bonazza et al., 2005). The carbonaceous particles 

are responsible for darkening of the surface and, due to heavy metal content, act as 

catalytic support for the heterogeneous oxidation of SO2 (Benner et al., 1982; Hutchinson 

et al., 1992; Sabbioni, 1992).  

The black damage layer on cement-based mortars is modestly known in monuments and 

construction sector. The analyses of black crusts from the indoor walls of a concrete tunnel 

indicated gypsum as the main components with embedded particulate matter produced by 

fuel combustion. In particular, embedded in the gypsum matrix were found aluminosilacate 

particles from coal combustion and carbonaceous particles with oil-derived fuels origin 

(Marinoni et al., 2003). 

The studies performed on black crust on the stone monument indicate that sulphur and 

carbon are the most important elements of anthropogenic origin present in the damage 

layers on monuments located in urban areas (Sabbioni and Zappia, 1992; Sabbioni et al., 

1998; Ghedini et al., 2000).  

Carbon in damage layers of monuments in marble and limestone can have different 

origins: (1) calcium carbonate deriving from underlying material; (2) deposition of 

atmospheric particles from combustion sources; (3) biological weathering; (4) decay of 

organic treatment applied in the past ( Zappia et al., 1993). Due to the presence of calcium 

carbonate in damage layers, the measurement of the total carbon is not sufficient to 
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quantify the carbon of atmospheric origin, therefore the total carbon (TC) is considered to 

be composed of two fractions: 

 

TC = CC + NCC, 

 

where CC is the carbonate carbon (originating from the building materials), and NCC is 

the non carbonate carbon, which in turn is composed of elemental carbon (EC) and organic 

carbon (OC): 

 

NCC =  EC + OC, 

 

both EC and OC are closely related to atmospheric pollutants. The EC is a certain tracer 

for combustion, being entirely due to particles emitted by combustion processes into 

atmosphere; in monuments deterioration it causes blackening of the surface (Bonazza et 

al., 2007). The organic carbon (OC) is linked to a number of different and often 

simultaneous origins, including the atmospheric deposition of primary and secondary 

pollutants (Saiz-Jimenez, 1993; Turpin and Huntzicker, 1995; Cachier, 1998), biological 

weathering (Saiz-Jimenez, 1995); and the decay of protective organic treatments (Rossi 

Manaresi, 1996). 

Few works reported the quantitative measurements of the carbon content in the damage 

layers formed on the stone monuments (Zappia et al., 1993; Ghedini et al., 2000; Bonazza 

et al., 2005; Ghedini et al., 2006); in case of cementitious materials used in 20th century 

architecture, this subject is not been explored. 

The first data set on carbon fractions in surface damage layers on European stone 

monuments has been published by Bonazza et al. (2005). During this research, 

methodology combining thermal and chemical treatments was applied to quantify OC and 

EC fractions in damage layers on European monuments. This, in order to determine the 

role of carbonaceous aerosols in surface blackening, in terms of the amount of 

anthropogenic carbon in black crust composition. The results obtained demonstrate that 

OC and EC fractions are always present in the damage layers on monuments. In general 

the OC fraction predominates over the EC one, which was particularly evident in the 

damage layers collected from the monument sides exposed directly to air pollution due to 
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traffic. This work demonstrated also that damage layers are a record of the environmental 

changes occurring over time at each specific site, with their chemical composition 

reflecting that of the atmospheric combustion sources. In particular, they act as cumulative 

markers of the historical sequence of sources producing the atmospheric pollution 

responsible for their formation (Bonazza et al., 2005). 
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2. Presentation of the selected sites 
 

 

The aim of this work is to evaluate the impact of air multi-pollutants on modern built 

heritage; for this purpose three buildings from 20th century architecture exposed in 

different urban atmospheres were selected: Centennial Hall (Wroclaw, Poland), Chiesa 

dell'Autostrada del Sole (Florence, Italy) and Casa Galleria Vichi (Florence, Italy). 

 

2.1. Centennial Hall, Wroclaw (Poland) 
 

 

The Centennial Hall (Figures 2.1, 2.2, 2.3) is located in the urban area of Wroclaw, 

situated in one of the most industrialized and polluted regions of Poland, called Silesian 

Coal Basin. In this area in 1992 was produced 23 % of Poland’s total SO2 emission, though 

it occupies only 2 % of the country’s area. In the past, Poland was a country having large 

heavy and power industry based on coal as a primary energy source. Since 1990, due to the 

Government’s effort through legislative, regulatory and economic means, considerable 

improvements have been achieved in reducing air pollution in the country’s industrial areas 

(Nagy et al, 2006). The Centennial Hall is located in close neighbourhood of coal power 

stations; the closest one is just 5 km away from the monument. 

The hall was built in 1913 according to the plans of Max Berg, to commemorate the 100th 

anniversary of victory over Napoleon in the Liberation Wars of 1813-15. In 2006 it was 

added to UNESCO’s prestigious list of World Heritage Sites, as one of the most important 

achievements of 20th century architecture. 

 
Figure 2.1. Centennial Hall, Wroclaw (Poland). 



 

 22

Centennial Hall is a landmark in the history of reinforced concrete architecture; it was one 

of the world's biggest dome-like structure. This is a pioneering construction of modern 

architecture, which shows an important interchange of influences in the early 20th century, 

becoming a key reference in the later development of reinforced concrete structures. The 

building has the form of a symmetrical quatrefoil (Figure 2.3), with an inner diameter of 69 

m and a height of 42 m, creating a vast circular central space, with seating for up to 6000 

people. 

 
Figure 2.2. Centennial Hall, Wroclaw (Poland). 

 

 
Figure 2.3. Centennial Hall, Wroclaw (Poland) source: 

http://foto.poland.gov.pl/cache/imgs/_w800/gallery/image/1_HalaLudowa_S.Klimek_010.jpg 
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2.2. Chiesa dell'Autostrada del Sole, Florence (Italy) 
 

 

Chiesa dell'Autostrada del Sole (Church of the Highway of the Sun) is situated West of 

Florence (Italy), between Autostrada del Sole (Highway of the Sun) and the A11 Firenze-

Mare highway. The Autostrada del Sole or Autostrada A1 is the longest Italian motorway 

which connects Milan with Naples through Bologna, Florence and Rome, and it is 

considered the “spinal cord” of the country’s road network. 

The Chiesa dell'Autostrada del Sole was built between 1960 and 1963 according to plan of 

architect Giovanni Michelucci with intention to honor the workers who had died 

constructing Italy's highways, and was also intended for use by people traveling those 

highways. 

The project of the church reflects both modern and traditional church design. The "cross" 

floor plan and stone facing are meant to induce a traditional sense while the tent-like 

vertical elements and copper roofing reflect modern design tastes. The church stands 27.5 

m high.  

Building maintenance is performed in regular cleaning program; last restoration work was 

performed two years before sampling. 

 

 
Figure 2.4. Chiesa dell'Autostrada del Sole, Florence (Italy). 
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Figure 2.5. Chiesa dell'Autostrada del Sole, Florence (Italy). 
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2.3. Casa Galleria Vichi, Florence (Italy) 
 

 

Casa Galleria Vichi (Figures 2.6 and 2.7) is located in the historic centre of Florence 

(Italy), where traffic is the most significant source of air pollution. The palace is directly 

exposed to vehicle traffic pollutants emitted from road adjacent.  

The Casa Galleria Vichi was designed by architect Giovanni Michelazzi in 1911, 

commissioned by Argia Marinai Vichi as home and gallery and it still serves this purpose 

today. The concrete palace was built in the style of art nouveau and is the unique example 

of liberty style in the centre of Florence. The eccentric narrow façade encloses structural 

and sculptural fantasy motif composed by a mix of artificial stone, steel and glass. Every 

floor is characterized by a central stained glass window designed following the typical line 

curve "a colpo di frusta" cut in horizontal elements. The ground and first floor (Figure 2.6) 

are utilized for commercial use and are more fanciful ornamented with sculptures and 

reliefs, for example with the eagle holding the lamp, while upper floors to residential use, 

are less decorated with pilasters around the central windows. The crown of the façade is 

decorated with two dragons (Figure 2.8). 

 

 
Figure 2.6. Casa Galleria Vichi, Florence (Italy). 
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Figure 2.7. Casa Galleria Vichi, Florence (Italy). 

 
Figure 2.8. Dragon on the crown of the façade, Casa Galleria Vichi (Florence). 
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3. Experimental work 
 

 

3.1. Sampling 
 

 

The investigation of the impact of air multipollutants on the 20th century architecture was 

performed through the laboratory analyses on samples collected from three buildings 

described in Chapter 2. The sampling sessions were performed taking into account the 

different levels of the buildings and the protection from rain: sheltered, partly sheltered and 

exposed areas. Following the analysis criteria, the damage layer was sampled in the form 

of incoherent deposit for chemical analyses, and in fragments for morphological 

observation and mineralogical characterization. The samples of damage layer were 

collected using a brush. In case of coherent crust, strongly attached to the surface, was 

applied a scalpel to scrape it away, limiting removal of the undamaged material. The 

fragments were collected using scalpel and hummer taking into account the minimum 

invasiveness of the operations.  

 

3.1.1. The Centennial Hall – sampling  
 

The samples, in form of damage layer and fragments, were collected taking into account 

the height from ground level and the protection from rain run-off, on different sides of the 

Centennial Hall. The plan of the building with sampling points is shown in Figure 3.1. 

During sampling the dark damage layer appeared in areas protected from rain wash out 

(Figures 3.2 and 3.3), with maximum thickness in the highest part of the building (Figure 

3.4). In some cases the crust was strongly attached to the surface (coherent crust), making 

it difficult to scrape away. The samples collected with a brief description are listed in 

Tables 3.1. a and b. 
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Table 3.1.a. List of samples collected on Centennial Hall, Wroclaw (Poland). 
 

Sample Height 
(m) 

Side/ 
sampling area 

Protection 
from rain Description 

CH1 1.5 North partly sheltered fragment (substrate + damage layer) 

CH2 1.5 North sheltered grey coherent crust 

CH3 1.5 North partly sheltered grey coherent crust 

CH4 1.5 South partly sheltered fragment (substrate + damage layer) 

CH5 1.5 South sheltered grey crust 

CH6 1.5 North-East sheltered grey coherent crust 

CH7 12 East sheltered fragment (substrate + damage layer) 

CH8 12 East partly sheltered fragment (substrate + grey damage layer) 

CH9 12 East partly sheltered grey coherent crust 

CH10 12 East sheltered fragment (substrate + grey damage layer) 

CH11 12 East sheltered fragment (substrate + damage layer) 

CH12 12 South-East partly sheltered crust from yellow area 

CH13 14 South-East partly sheltered grey crust 

CH14 14 South partly sheltered grey coherent crust 

CH15 14 East partly sheltered dark crust 

CH16 14 North unsheltered coherent crust from yellow area 

CH17 14 South-East partly sheltered dark coherent crust 

CH18 14 North sheltered dark crust 

CH19 14 South sheltered fragment (substrate + damage layer) 

CH20 14 South-East sheltered fragment (substrate + damage layer) 

CH21 14 East partly sheltered fragment (substrate + damage layer)  
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Table 3.1.b. List of samples collected on Centennial Hall, Wroclaw (Poland). 

Sample Height 
(m) 

Side/ 
sampling area 

Protection 
from rain Description 

CH22 12 South sheltered fragment (substrate + damage layer) from 
the building on the second floor 

CH23 12 South sheltered fragment (substrate + damage layer) from 
the building on the second floor 

CH24 12 South partly sheltered grey coherent crust from the wall of the 
building on the second floor 

CH25 27 East  fragment found on the floor 

CH26 27   substrate 

CH27 27   substrate 

CH28 27 West partly sheltered fragment (substrate + damage layer) 

CH29 27 West partly sheltered fragment (substrate + damage layer) 

CH30 27 West partly sheltered grey crust 

CH31 27 North partly sheltered crust from yellow area 

CH32 27 South-East partly sheltered crust from yellow area 

CH33 27 South-East sheltered fragment (substrate + damage layer) 

CH34 40 North-East sheltered dark coherent crust 

CH35 40 North-East partly sheltered coherent crust from yellow area 

CH36 40 North-East sheltered fragment (substrate + dark damage layer) 

CH37 40 North sheltered fragment (substrate + dark damage layer) 

CH38 40 North-West sheltered thick dark crust with rough surface 

CH39 40 East sheltered fragment (substrate + damage layer) 

CH40 40 East sheltered fragment (substrate + damage layer) 

CH41 40 North-East sheltered fragment (substrate + damage layer) 

CH42 12 North West sheltered grey coherent crust 

CH43 12 North-West sheltered fragment (substrate + damage layer) 
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Figure 3.1. Plan of the Centennial Hall (North-West), sampled areas within the red, yellow, green circles. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 3.2. Centennial Hall (Wroclaw), there are observable areas with black crust. 

sheltered area,       partly sheltered,      unsheltered
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Figure 3.3. Centennial Hall, sampled areas with black crust. 
 
 
 
 
 
 

 
 

Figure 3.4. Centennial Hall, black thick crust in area protected from rain run-off. 
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3.1.2. Chiesa dell'Autostrada del Sole - sampling  
 

 

Samples were collected from the concrete wall on the northern part of Chiesa 

dell'Autostrada del Sole as it is shown in Figures 3.5, 3.6 and 3.7. This part as well as the 

whole Church, was restored (cleaned) two years before sampling. Under visual assessment, 

the damage layer was not observed on the jointing mortars and on the concrete parts of the 

church. The  samples collected in form of fragments for subsequent analysis are listed with 

short description in Table 3.2. 

 

Table 3.2. Samples collected on the Chiesa dell'Autostrada del Sole (Florence). 
 

 

 
Figure 3.5. The concrete wall* in the northern part of the Chiesa dell'Autostrada del Sole (Florence). 
*The concrete wall appears black because the picture was taken in a rainy day and the wall was wet. 

Sample Height 
(m) 

Side/sampling area Protection 
from rain 

Description 

FIC_sub  North, concrete wall unsheltered substrate 

FIC1 0.5 North, concrete wall unsheltered fragment (substrate + damage layer)

FIC2 1.70 North concrete wall unsheltered fragment (substrate + damage layer)

FIC3 1.50 North concrete wall unsheltered fragment (substrate + damage layer)
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Figure 3.6. Chiesa dell'Autostrada del Sole (Florence), sampled area. 
 
 

 
 

Figure 3.7. Sampling on Chiesa dell'Autostrada del Sole (Florence). 
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3.1.3. Casa Galleria Vichi - sampling 
 

 

The samples were collected on the facade (South-West) of Casa Galleria Vichi (Florence, 

Italy) by scalpel or brush, moving on a platform lift as it is shown in Figure 3.8. Sampling 

was started from above, at a height of 19 m on the left side, then moved to the centre and 

went to the right side. The same pattern, with horizontal bands, was repeated at other levels 

as it is presented in Figure 3.9. 

Under visual assessment, the damage layer appeared in areas protected from rain run-off. 

There were distinguished two types of damage layers; dark coherent crust strongly attached 

to the surface (Figure 3.10), and incoherent grey deposit with powder consistency (Figure 

3.11). In addition fragments with black crust and substrate were collected. The list of the 

collected samples with their position and brief description is reported in Table 3.3.  

 
Table 3.3. List of samples collected at Casa Galleria Vichi (Florence). 
 
Sample Height 

(m) 
Side/ 
sampling area 

Protection from 
rain Description 

BOS1 19 dragon of the left sheltered dark coherent crust, rough surface 

BOS2 19 central part  sheltered fragment (substrate + damage layer) 

BOS3 19 dragon on the right partly sheltered dark coherent crust, probably biological

BOS4(2) 19 dragon on the right  substrate 

BOS5 19 central part sheltered grey incoherent deposit 

BOS6 15 shell on the left sheltered dark coherent material, smooth surface 

BOS7 15 mask on the left  substrate 

BOS8 15 mask on the left sheltered dark grey incoherent deposit 

BOS9 15 frame  partly sheltered grey incoherent deposit  

BOS10 15 mask on the right sheltered dark coherent crust, smooth surface 

BOS11 15 frame on the right partly sheltered grey incoherent deposit 

BOS12 11 frame  sheltered grey incoherent deposit 

BOS13 7 mask on the right sheltered dark incoherent  crust  

BOS14 5 sculpture on the right partly sheltered dark coherent crust, rough surface 

BOS1516 5 sculpture on the left partly sheltered dark coherent crust, rough surface 
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Figure. 3.8. Plan of façade of the Casa Galleria Vichi, sampled area within the red circles. 
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3.2. Analytical techniques 
 

 

3.2.1. Optical Microscopy 

 

The textural and petrographical features of the samples collected from Centennial Hall, 

Wroclaw (Poland), Chiesa dell'Autostrada del Sole, Florence (Italy) and Casa Galleria 

Vichi, Florence (Italy) were observed in transversal thin section using an Olympus BX51 

microscopy, equipped with a scanner and the MICROMAX software “Primoplus_32” 

vers.8.11.02. The aim is the characterisation of the damage layers sampled and of the 

underlying building material by the mineralogical and petrographical point of view. 

 

3.2.2. Scanning Electron Microscopy  

 

Scanning electron microscopy (SEM) with energy dispersive X-ray analyser (EDX) is a 

method generally employed for high-resolution imaging of surfaces of the sample and 

identification of its elemental chemical composition. The SEM scans the sample surface 

with a high-energy beam of electrons in a raster scan pattern. The advantages of SEM over 

optical microscopy include higher magnification (over 100000 times) and greater depth of 

field up to 100 times that of optical microscopy. The EDX method allows a fast and non-

destructive chemical analysis with a spatial resolution in the micrometer regime. It is based 

on the spectral analysis of the characteristic X-ray radiation emitted from the sample atom 

upon irradiation by the focussed electron beam of SEM. 

The SEM instrument has many application across different industrial sectors; taking into 

account the high magnification together with localised chemical information, it becomes an 

useful tool for solving a great deal of common conservation issues, such as soot particle 

analysis and identification of material defects. 

The morphological and elemental characterization of surface damage layers collected from 

the buildings under study were performed by scanning electron microscope equipped with 

an energy-dispersive analyser - SEM-EDX Philips XL 20. Samples were mounted on 

aluminium stubs and coated with a thin layer of graphite to allow surface conductivity. The 
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application of graphite films is necessary for the correct identification of the emission 

spectrum of sulphur. 

 

3.2.3. X-ray Diffractometry 

 

X-ray diffractometry (XRD) is a widely used technique to identify crystalline phases, 

based on their crystal structure. Working principle of XRD is based on the detection of the 

scattered intensity of a X-ray beam diffracted at angles determined by the spacing of the 

planes in the crystals and the type and arrangement of the atoms.  

XRD is applied in conservation sciences in determining the nature of pigments, 

deterioration and alteration products both for buildings materials and metal objects. 

The X-ray diffractometery in this case was used to identify the main crystalline phases of 

the damage layers and underlying material collected from the selected buildings. The 

powdered samples (minimum 3 g) distributed on a Plexiglas stub were analysed by Philips 

PW 1730 diffractometer equipped with a copper anticathode and a nickel filter. The 

measurement conditions have a diffraction interval of 2 θ, between 5 ° and 50 °, and a 2 

°/minute step at 40 kV voltage and 30 mA current intensity. 

This analytical methodology permits the acquisition of qualitative and semiquantitative 

data on the crystalline phases present in a concentration of at least 3-4 %. 

 

3.2.4. Differential and Gravimetric Thermal Analysis  

 

Thermal analysis techniques determine changes on physical properties and reaction 

products when a substance is heated under controlled condition. Differential thermal 

analysis (DTA) monitors changes in thermal properties, either exothermic or endothermic, 

by detecting the differences in temperature between the sample and inert reference 

standard. The DTA curve provides data on the transformations that have occurred, such as 

phase transitions, crystallization, melting and sublimation. Peaks produced during heating 

are characteristic for specific materials, while the area under the peaks is a measure of the 

quantity of active material (material, which gives exothermal or endothermal changes in 

the sample). Thermal gravimetric analysis (TGA) measures the weight loss of material as 
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function of temperature. The two techniques, DTA and TGA, complement each other to 

record weight changes and differential thermal analysis curves.  

DTA-TGA has long been applied mainly at the study of minerals and polymers and also is 

commonly used in environmental research.  

In this case the DTA-TGA analyses were performed in order to quantify gypsum, 

carbonates and portlandite in the collected samples by the instrument METTLER 

TOLEDO TGA/SDTA 851, equipped with a TSO 800GC1 programmable gas switch. The 

25-80 mg of powdered sample, placed in 150 microlitre capacity aluminium crucibles, was 

analysed at constant oxygen flow, temperature ranging between 25-1100 °C and thermal 

gradient equal to 10 °/min. 

 

3.2.5. Ion Chromatography  

 

Ion chromatography (IC) is a form of liquid chromatography that uses ion-exchange resins 

to separate atomic or molecular ions based on their interaction with the chromatographic 

system. Its greatest utility is for analysis of anions, cations and biochemical species such as 

amino acids and proteins. Most ion-exchange separations are done with pumps and metal 

columns. Ion chromatography has been widely used to analyse the anionic and cationic 

components in waters related to acid rain. It is also the most popular and powerful tool for 

analysis of environmental samples, because of its high accuracy and reliability.  

The ion chromatographic analyses are carried out using the Dionex Chromatograph (4500i 

model), equipped with: conductivity detector (Dionex CD II), injection loop from 5 to 500 

µl (inc. 0.010 ID Peek mode), variable wavelength spectrophotometric reader (VDN 2), 

gradient pump module (GPM-2), micromembrane anion suppressor (Dionex AMMSI), and 

data acquisition and instrument control (Dionex AL-450 II). As far as sensivity is 

concerned, the low concentration limit is 0.01 ppm, while for Cl−, NO3
− the limit is 0.001 

ppm. The instrument is also equipped with an AS14 Ionpac 4mm column for the 

discrimination and measurement of anions. An Ag 4A-SC Ionpac 4x50mm pre-column and 

an AS 4A- SC Ionpac 4x250 mm column are required for the measurement of sulphates.  

The analysis is suitable for measuring the soluble anions. In this case we focused on the 

following anions: SO4
═, NO3

–, NO2
–, Cl–, Br–, CHO2

–, C2H5O2
═, C2O4

═, in order to 

understand the acidic deposition on the buildings. 
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The preparation of the sample and the subsequent analyses includes: 

• Prior to analysis, the samples, in form of powder were weighed; the average 

amount of sample required was ≈ 100 mg. It was put into a glass container, where 

50.00 ml of ultra pure (reagent grade) water were added. The container was sealed 

and put into an ultra sound bath for 30 minutes at a controlled temperature of less 

than 30 °C.  

• The solution obtained was then utilised for the IC anion determination. The amount 

of ion solution required was 1 ml, which is injected into the instrument by means of 

a filter of 0.2 µ of porosity.  

• A buffer solution Na2CO3/ NaHCO3 (1.8 mM : 1.7 mM) in ultrapure water (reagent 

grade) employed as eluent. 

The amount of every ion must be correlated with the quantity of sample weighed, and 

expressed as a percentage or in ppm. 

 

3.2.6. Carbon Compound Discrimination and Measurements 

 

The carbon fractions present in the damage layers, collected at the selected sites, were 

discriminated and measured by flash combustion/gas chromatographic analysis using a 

conductibility detector (CHNSO EA 1108 FISONS Instruments), according to the 

methodology published by Ghedini et al. (2006).  

The procedure is based on the three distinct stages, each performed on a different part of 

the same damage layer specimen: 1) total carbon is quantified by burning one part of the 

bulk sample; 2) non carbonate carbon is obtained by the combustion of a second part of the 

sample after carbonate decomposition and the complete removal of carbon dioxide; 3) 

elemental carbon is measured by oxidation of the residue obtained after eliminating the 

inorganic matrix and organic species by means of a chemical treatment.  

The quantity of powdered black crust required for the overall procedure is about 1 g.  

The procedure is summarized in the following steps:  

Step I. Total carbon (TC) 

About 10 mg of bulk ground sample, precisely weighed is directly placed into a silver 

capsule, where it is fully oxidized and quantified by flash combustion/gas chromatographic 

analysis.  
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Step II. Non carbonate carbon (NCC) 

About 10 mg, exactly weighed, of ground sample is placed in a silver capsule, where it 

undergoes acidification to remove carbonates by means of maintenance in an atmosphere 

of HCl concentrate solution until microeffervescence stops. It is then preserved for 12 h in 

a KOH drier to eliminate CO2, HCl, and H2O before being analyzed by the instrument for 

non carbonate carbon quantification.  

Step III. Carbonate carbon (CC) 

Carbonate carbon is calculated as the difference between TC and NCC.  

Step IV. Elemental Carbon (EC) 

The procedure established for elemental carbon quantification can be presented in the 

following six stages.  

1. An exactly weighed quantity of ground black crust, ranging between 200 mg and 1 g, 

depending on its EC content and the type of preparation equipment, is placed in an airtight 

tube, and 2 ml of Na2CO3 saturated solution is added. The tube is then hermetically sealed 

and heated at 120 °C for 2 h. The cooled sample is centrifuged at 5.000 revs/min for about 

10 min and, after liquid-phase removal, is washed with 2 ml of tepid distilled water and is 

recentrifuged.  

2. Subsequently, the residue is treated, under agitation in an open tube, in steps of 20 ml, 

with a concentrated solution of HCl (37 %), until the effervescence stops; the complete 

decomposition of carbonates and the removal of CO2 are then obtained by heating the 

suspension to 40−50 °C. After cooling, the residual sample is centrifuged and rinsed as 

described above.  

The treatment with the Na2CO3 saturated solution (1) leads to the solubilisation of lowest 

soluble salts (e.g., CaHPO4, SrSO4, CaC2O4) because of the formation of carbonates, which 

are then removed, together with the carbonates present as mineralogical components of the 

original sample, using the HCl treatment (2).  

3. The residual sample undergoes five alternate digestion steps at 120 °C for 1 h performed 

with 2 ml HCl 37 % and at 120 °C for 30 min with 2 ml KOH 30 %. Each digestion step is 

followed by centrifugation and washing with 2 ml of distilled water after the acid digestion 

and with 2 ml of distilled water, acidified with HCl solution, after the basic one.  

The HCl treatments allow the dissolution of basic materials and the decomposition of 

silicates, while the repeated KOH attacks produce the complete dissolution of the acid 
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substances, the quartz, and the amorphous silica derived from the HCl action on silicates. 

The five alternate attacks with HCl and KOH concentrated solutions are indispensable for 

isolating elemental carbon from particularly complex matrixes.  

4. If, after the above steps, the residual sample still reveals the presence of silicates, their 

complete removal can be obtained by means of a final treatment with NH4F·HF, at 120 °C, 

until the dissolution of salts, followed by centrifugation and washing with distilled water.  

5. For each sample, the liquid phases derived from all treatments, including washing, are 

collected, mixed, pH adjusted to about 10, added to 25−30 mg of Zn2+ (as ZnCl2), and 

stirred. The soft jellylike mass resulting from the formation of zinc hydroxide, which 

contains EC, is isolated by centrifugation, is washed, and is added to the residue of the 

previous treatment.  

6. The sample is finally dried at 180 °C until reaching constant weight, after which it is 

analyzed by combustion (CHNSO) to evaluate the elemental carbon content.  

Step V. Organic carbon (OC) 

Organic carbon is then calculated as the difference between NCC and EC.  

 

3.2.7. Induce Coupled Plasma-Optical Emission Spectroscopy 

 

Induced coupled plasma-optical emission spectroscopy is an analytical technique used for 

elemental chemical analyses. The sample to be analysed must be in liquid form, if solid 

normally is first dissolved or digested before being fed into the plasma. 

The procedure is based on conversion of the molecules of the liquid sample to individual 

atoms and ions using high temperature ratio frequency induced argon plasma. The sample 

is introduced into plasma as solution. The analyzed sample is pumped to a nebulizer by 

peristaltic pump. The purpose of nebulizer is to convert the sample to the fine spray and 

mix with argon in the spray chamber, where only droplets in a narrow size range are 

carried into the plasma and instantly excited by the high temperature. 

A number of atoms pass into the excited state and, when relax to the ground state, emit 

radiations characteristic for each element. The emitted radiations are easily detected and 

the elements identified through an optical spectrometer (in general in the UV, Vis or NIR 

region). The intensity of the radiation is proportional to the concentration of that element 

within the solution and so can be used for quantitative purposes.  
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The concentration of elements in damage layer and underlying material collected on the 

buildings under study was determined using inductively coupled plasma - optical emission 

spectrometer (ICP-OES), Circular Optical System CIR.O.S.CCD. 

Preparation of the sample for ICP-OES analyses: 

• Powdered samples were weighed; the average mass of sample required was ≈ 0.1 g. 

• The weighted sample was treated with acids mixture: HF (2 ml) + HCl (6 ml) + 

HNO3 (2 ml), then the solution was put into the microwave oven in the following 

conditions: t = 25 min; T = 200 °C; p = 10-15 bar; P = 400 W. 

• After heating, to the dissolved samples was added a solution of H2BO3 (22 ml) 4 % 

and filled with H2O double-distilled till volume of 50 ml. 

In order to identify the origin of the elements, the data obtained during ICP-OES analysis 

were processed with two statistical techniques i.e. student’s t-test and principle 

components analyses, and the enrichment factors were calculated. 

 

• Student’s t - test 

Student’s t-test is a one of the most commonly technique used for testing the hypothesis on 

the basis of the difference between sample means (William at al., 1992). In this case one 

tailed t-test was applied to the mean concentrations and the corresponding standard 

deviations of the elements in substrate and damage layer, to find the elements with a 

significant positive difference in concentration between damage layer and substrate. The 

following equation was used: 

 

 

, 

 

where 1X and 2X are the mean concentrations of element X in damage layers and substrate 

respectively, 
1xS and 

2xS are standard deviations of the two means: damage layers and 

substrate, n is number of measured values (n1 in damage layer, n2 in substrate).  

Considering the positive differences (X1-X2), if the │tcalculated│> ttable,where ttable is critical 

values of t, at level of significance α=0.05 and the degree of freedom N= (n1+n2−2), we 

can say that the concentration of the element X in the damage layer is significantly 

(statistically) higher than in the substrate.  
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In this case, the element of interest (X) can be ascribed to the atmospheric deposition. 

 

• Principal components analysis (PCA)  

Principal components analysis (PCA) is an useful statistical technique to uncover unknown 

trends in data (Gorban et al., 2007). Principal component analysis involves a mathematical 

procedure (eigenvalue decomposition of a data, covariance matrix of the data) in order to 

transform a number of possibly correlated variables into a smaller number of uncorrelated 

variables called principal components. The main aim of PCA is to reduce the 

dimensionality (number of variables) of the dataset but retain most of the original 

variability in the data. The first principal component accounts for as much of the variability 

in the data as possible, and each succeeding component accounts for as much of the 

remaining variability as possible. The mean elements concentrations of samples under 

study were subjected to a PCA. Three principal components were extracted, by assigning 

one principal component (PC) to the x-axis and another PC to the y-axis; maps were 

generated to visualize the similarity/dissimilarity relationships between the plotted points. 

 

• Enrichment factor 

The elaboration of obtained data from ICP-OES allows for the first time to evaluate 

enrichment factor (EF) for cementitious materials. The enrichment factor indicates the 

association of the elements to the substrate or to the atmospheric deposition. The (EF) was 

evaluated using the following formula:  

 

, 

 

 

where [X] and [Al] represent respectively the concentration of element X and Al in the 

black crusts and substrate. We use aluminum as reference element based on the chemical 

composition of the Portland cement mortar, assuming minor contribution of the pollutant 

Al. There was adopted that if the value of EF (X) > 5, the element X is in the crust due to 

atmospheric deposition, and not belonging to original building material (Geo et al., 2002; 

Arditsoglou and Samara, 2005). 
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4. Results and discussion 
 

 

4.1. Experimental data of Centennial Hall 
 

 

4.1.1. Optical Microscope Observations  
 

The optical microscope (OM) observations performed on transversal thin section of 

specimens CH19, CH21, CH29, CH37, CH39 indicated that external surface of samples 

was covered by no homogenous damage layer, as it is shown in Figures 4.1 and 4.2.  

 

     
Figure 4.1. Optical micrographs (a) planed-polarised light, (b) cross-polarised light of damage layer in 

sheltered area (CH37). 
 

     
Figure 4.2. Optical micrographs (a) planed-polarised light, (b) cross-polarised light of damage layer in 
sheltered area (CH19). Black carbonaceous particles are clearly identifiable embedded in the gypsum 

matrix. 

a) b)

a) b)
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Figure 4.3. Optical micrographs (a) planed-polarised light (b) cross-polarised light of damage layer in partly 

sheltered area (CH29). Gypsum matrix clearly identifiable. 
 

 

   

Figure 4.4. Optical micrographs (a) cross-polarised light (b) planed-polarised light of damage layer in 
sheltered area (CH19), black carbonaceous particles, yellow transparent aluminosilicate particles and orange 

iron oxides are observable. 
 

b)a) 

a) a) 

b) 



 

 47

The crust appeared in different thickness. In samples from sheltered areas (CH19, CH37, 

CH39) the thickness of the damage layer was ranging from 200 µm to 850 µm (Figures 4.1 

and 4.2), with higher dimension in samples from upper part of the building (CH37, CH39). 

In case of samples from partly sheltered parts (CH21, CH29) the crust was thinner ranging 

from 100 µm to 300 µm as it is presented in Figure 4.3. 

The damage layer in all samples is composed mainly of gypsum, quartz and iron oxides, 

presented in Figure 4.4. Along with gypsum matrix, two typologies of particles have been 

frequently observed: black carbonaceous particles with diameter from 13 µm to 30 µm, 

and yellow or white transparent aluminosilicate particles, generally 5-7 µm in diameter, 

presented in Figure 4.4. 

The observations performed on the substrate indicated that the material is a cement mortar 

with a coarse texture and binder presenting the typical mineralogical and morphological 

features of hydraulic components. The mineralogical composition of the aggregate has 

been identified as follows: mainly monocrystalline and polycrystalline quartz, fragments of 

silicatic stones and sporadic feldspar crystals. 
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4.1.2. Scanning Electron Microscope Observations  

 

The SEM-EDX analysis performed on the sample surfaces CH6, CH8, CH21, CH29, 

CH37 and CH39 confirmed the presence of gypsum with laminar structure, as it is shown 

in Figure 4.5. Two typologies of particles were also identified in gypsum matrix: (1) 

spherical shape particles with smooth surface (Figure 4.6), were characterized by the 

presence of silicon and aluminium as the main elements, with smaller amounts of Ca, S, K, 

Mg, Fe, and Ti, typical of aluminosilicate particles from coal combustion (Jabłońska et al., 

2003); (2) particles with spongy structure (Figure 4.7) characterized by S as a main 

element followed by Ca, Si, Al, Fe, K, Cl, Mg, which represented carbonaceous particles 

from oil combustion (Bacci et al., 1983).  

 

 

 

 

 
Figure 4.5. Scanning electron micrograph showing surface of damage layer on the left, and relative EDX 

spectrum on the right from (a) partly sheltered area (CH29) and (b) sheltered are (CH6). 
 

 

a) 

b) 
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The black carbonaceous particles are responsible for blackening of the surface and can 

play a catalytic role in sulphation process (Benner et al., 1982; Del Monte et al., 1984). 

 

 

 

 

 

 
 

Figure 4.6. Scanning electron micrograph of aluminosilicate particles (a) in sample CH6, (b) in 
sample CH29, (c) in sample CH37 embedded in laminar gypsum with the EDX spectrum on the 

right. 
 

a) 

b) 

c) 



 

 50

 
Figure 4.7. Scanning electron micrograph showing the carbonaceous particle embedded in lamellar 

gypsum with the EDX spectrum on the right. 
 

 

The results obtained by SEM-EDX confirmed the results from optical microscope 

observations, highlighting that surface of the damage layer on the Centennial Hall were 

mainly composed of gypsum and fly ash from coal and oil combustion.  
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4.1.3. X-Ray Diffraction Analysis  

 

The crystalline phases of damage layers and underlying material were revealed during X-

ray diffraction analyses, the results are presented in Table 4.1. 

Sample CH27, characteristic of undamaged concrete, was composed of minerals such as 

quartz with tracers of calcite, portlandite and feldspar (Figure 4.8), which were ascribable 

to the binder and aggregates of the concrete. 

 

 
Table 4.1. Main crystalline phases revealed by X-ray diffraction in the analysed crusts and substrate 
collected on Centennial Hall (Wroclaw).  

Sample Gypsum Quartz Calcite Portlandite Feldspars Magnetite Hematite Ilmenite Rutile 

CH271  + + + + + tr tr tr     

CH11  + + + + + tr       

CH17 ++ + + + + + tr    + tr tr 

CH38 + + + + + +     + + +  

CH41 tr + + + + + + +   tr  tr + 
              a +++++ main mineral present; ++++, +++  very abundant; ++ abundant; + present, tr tracers 
               1substrate 
 

 

The samples of fragments (containing both damage layer and substrate (CH11, CH41)) 

show as main crystalline phases quartz and calcite, and traces of gypsum, ilmenite and 

rutile.  

The two specimens of black damage layer, CH38 and CH17 respectively on a sheltered 

and partly sheltered surface, show gypsum and quartz as the main components followed by 

hematite, ilmenite, rutile and calcite. In Figure 4.9 is presented the diffractogram of 

damage layer (CH38). 

The presence of quartz and calcite, identified in samples of fragments (CH11, CH41) and 

of damage layers (CH17, CH38), can be linked to both aggregates of underlying material 

or atmospheric deposition (solid dust, fly ash). The crystal phases occurring only in 

damage layers such as gypsum, hematite, ilmenite, magnetite and rutile are related to 

atmospheric deposition.  
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Figure 4.8. X- ray diffractogram of  substrate (CH27) sample collected from Centennial Hall, Wroclaw 

(Poland). 
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Figure 4.9. X- ray diffractogram of damage layer from sheltered are (CH38), Centennial Hall, Wroclaw 
(Poland). 

 

 

Gypsum is formed due to the deposition of atmospheric SO2/H2SO4 and subsequently 

interaction with cement components (Martínez-Ramírez et al., 1998; Pavlik et al., 2007).  

The most important man–made sources of sulphur dioxide are fossil fuel combustion, 

especially coal burning. Taking into account the location of Centennial Hall, the coal 

power station is the main source of SO2, and also of tracers of fly ash such as hematite, 

ilmenite and rutile found in damage layers (Querol et al., 1996).  
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4.1.4. Differential and Gravimetric Thermal Analysis  

 
The quantitative analysis of gypsum and carbonates were performed by means differential 

and gravimetric thermal analysis (DTA-TGA). 

The results for samples representing the substrate (CH27) show significant mass loss of 

water up to 230 °C (Figure 4.10). This effect can be ascribe to surface water desorption as 

well as water loss from C-S-H gel (Gabrovsek et al., 2006). Then the alumino and silicate 

phases of cement underwent decomposition till temperature 429 ºC. The further thermal 

reaction was the dehydroxylation of smaller portlandite till 520 ºC, followed by 

decarbonation of carbonates up to 776 ºC. The percentages of portlandite and carbonates in 

the sample are presented in Table 4.2. 

 

 
Table 4.2. Concentrations (%) of gypsum, carbonates and portlandite in samples from Centennial Hall. 

 

 

 

 

 

 

 

* substrate 
1 calculated as Ca(OH)2, 2 calculated as CaSO4·2H2O,3 calculated as CaCO3 

 

 
Figure 4.10. DTA-TGA graphs of sample representative substrate (CH27) from Centennial Hall. 

 

 

 

Sample Portlandite1 Gypsum2 Carbonates3 
CH27* 2.45  7.47 
CH38  87.35  
CH42  31.75  

portlandite 

loss of water 

carbonates 



 

 

Figure 4.11. DTA
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-TGA graphs of sample representative of black crust (CH38) from Centennial Hall. 

 

 

amage layer show dehydratation of gypsum between 90 ºC and 220 ºC, 

 reaction, as it is presented in Figure 4.11. The quantification of gypsum 

) reveals the highest amount of 87 % in sample of thick black crust from 

38). The results confirmed the previous analysis that gypsum is a major 

rust. 
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4.1.5. Ion Chromatography data  
 

The results obtained by ion chromatography technique on samples collected from 

Centennial Hall are presented in Table 4.3. 

The results show that sulphate (SO4
=) was the most abundant anion, observed in the 

highest values in samples of black damage layer from sheltered areas e.g. samples CH18 

(50 %), and CH38 (41 %). Lower concentrations are observed in samples from partly 

protected parts, with the minimum of 0,8 % in sample CH15. These results are compatible 

with optical microscope observation, during which was also revealed thicker damage layer 

in samples from areas completely sheltered from rain run-off. This fact is connected to the 

solubility of gypsum, which is removed by rain water in areas partly sheltered. 

 

 
Table 4.3. Anion concentration (ppm) measured by ion chromatography in damage layer and substrate 
collected from Centennial Hall.  
 
Sample SO4

= NO3
- NO2

- Br- Cl- CHO2
- C2H3O2

- C2O4
= 

CH271 2779 321 169 n.d 237 226 7684 461
CH2 110685 921 338 673 486 1229 6370 1052
CH3 84269 1004 201 398 673 811 4507 1005
CH4 70903 400 291 333 520 989 3953 457
CH5 27104 174 86 183 171 272 n.d. n.d.
CH9 39172 700 839 n.d. 137 4799 1659 367
CH14 99623 808 300 808 322 1375 5553 1353
CH15 8228 144 n.d. n.d. 93 135 n.d. 173
CH18 502320 1751 n.d. 2503 794 5851 n.d. n.d.
CH38 410361 550 569 2015 664 9020 32948 95
CH42 135684 659 332 394 561 4729 6082 n.d.
1 substrate 
 n.d. = not detected. 
 

Small (C1-C2) organic anions such as, acetate (C2H3O2
-), formate (CHO2

-) and oxalate 

(C2O4
=), were detected in considerable amount listed in order of abundance. Acetate and 

formate have the maximum concentration in sample from sheltered area at the highest 

point of the building, 32948 ppm and 9020 ppm respectively. Oxalate is the less abundant 

among organic soluble anion with maximum concentration of 1353 ppm.  

The role of organic anions in deterioration of cement materials and also in natural stones is 

still not well understood. The studies dedicated to presence of organic anions on stones, 
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such as limestone, sandstones, indicate three origins from three different sources: (1) 

deposition of primary and secondary atmospheric pollutants, (2) biological weathering and 

(3) restoration treatments (Sabbioni et al., 2003). The special attention has been given to 

the oxalate patina, which has been found on cultural heritage related to a variety of historic 

periods and on different materials (Del Monte et al., 1987). The studies are mainly focused 

on the oxalate patina formed on natural stones and it is mainly ascribed to biological origin 

(Del Monte and Sabbioni, 1987; Sabbioni and Zappia, 1991). The chemical-physical 

interaction between colonizing micro-organism secreting oxalic acid and the limestone 

substrate bring the dissolution of carbonates; calcium cations freed from this process lead 

to formation of calcium oxalate (Del Monte and Sabbioni, 1983). According to De Santis 

Allegrini (1989) and Saiz-Jimenez (1989) the presence of oxalic acid can be associated 

with air pollution deposition. Saiz-Jimenez (1989) hypothesized airborne oxalic acid 

originated by combustion of fossil fuel. The third hypothesis indicates that organic anions 

originate from decomposition of organic treatments applied on surface during restorations 

work (Rampazzi et al., 2004), however, in the case of Centennial Hall there are not 

information about restoration treatments.  

Smaller quantities were detected of NO3
-, ranging between 144 ppm and 1751 ppm, and 

NO2
-
, with maximum value of 839 ppm. Nitrates (NO3

-) and nitrites (NO2
-), which presence 

is mainly linked to industrial activity and car emission, however because of the high 

solubility of nitrogen salts, formed due to the deposition of NOx/HNO3, the detected 

amounts of NO3
- and NO2

- cannot be consider as real tracers of the factors causing damage 

(Derry et al., 2001). 

During IC analyses there were also detected significant amounts of Br- and Cl-, which 

presence in this case could be probably ascribed to fossil fuel combustions (Arditsoglou 

and Samara, 2005). 
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4.1.6. Carbon Compound Discrimination and Measurement 
 

The carbon fraction present in black crusts are presented in Table 4.4, where is observed 

that total carbon (TC) ranges from a minimum of 1 % to a maximum of 3 % of the total 

mass of sample. 

In Figure 4.12 are presented the percentage fractions of total carbon: the non carbonate 

carbon (NCC) and carbonate carbon (CC). The NCC is an important fraction of TC, 

ranging from 68 % to 96 % of TC, and predominates in all samples over CC. Indeed CC 

fraction appears with values below 35 % of TC. 

 

 
Table 4.4. The TC, NCC, CC, EC and OC concentrations in percentage and OC/EC ratio measured in crusts 
collected on Centennial Hall.  
 
 
 
 
 
 
 

 

1 measured on substrate, 2 measured on treated samples, 3 calculated 
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Figure 4.12. The non carbonate carbon (NCC) and carbonate carbon (CC) percentage fraction of total carbon 

in samples of damage layers collected from Centennial Hall (Poland). 

Sample TC1 CC3 NCC2 EC2 OC3 OC/EC 

CH9 1.01 0.20 0.81 0.00 0.81  

CH15 1.57 0.31 1.26 0.00 1.26  

CH18 3.12 0.99 2.14 1.26 0.88 0.69 

CH38 2.79 0.27 2.52 2.29 0.23 0.10 

CH42 0.26 0.01 0.25 0.03 0.22 8.02 
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Figure 4.13. The organic carbon (OC) and elemental carbon (EC) percentage fraction of NCC. 

 

 

Elemental carbon (EC) and organic carbon (OC) percentages with respect to NCC are 

reported in Figure 4.13, which show very clearly that EC fraction has higher contribution 

than OC in samples of black crust (CH18 and CH38). This fact is linked to the nature of 

EC, which constitutes a quantitative index of the black carbonaceous particles embedded in 

crusts (Lanting, 1986). The elemental carbon comes from combustion–generated aerosols 

(Kupiainen and Klimont, 2007), which presence in case of Centennial Hall is an effect of 

fix combustion sources such as coal power station in neighbourhood of the building and 

coal burning in domestic heating. 

Organic carbon predominates over elemental carbon (Figure 4.13) in samples of grey crust 

(CH9, CH15, CH42), achieving 100 % of NCC in samples CH9 and CH15. Bearing in 

mind that organic anions (formate, acetate and oxalate) constitute a significant fraction of 

OC (Sabbioni et al., 2003), this results can be comparable with the one from IC analyses. 

In fact in case of sample CH9 and CH42 organic anions were detected in significant 

amounts. The organic carbon (as it was in case of organic anions) can have different origin: 

primary air pollutants from incomplete combustion of fossil fuels, secondary air pollutants, 

biological weathering and restoration treatment. For this specific case, it has to be 

underlined that there are not information available on the restoration works done.   
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4.1.7. Induce Coupled Plasma-Optical Emission Spectroscopy  
 

The results of elements concentration and corresponding standard deviation from ICP-OES, 

performed on the samples from Centennial Hall are listed in Table 4.5. The elements with the 

high concentration were Si, Al, Ca, S, Fe and Na. Sulphur had the highest concentration in 

sample of black crust (CH38), that reflects results from DTA-TGA, where in this sample was 

detected the highest amounts of gypsum, and results from IC with high concentration of SO4
=. 

In Table 4.6 are presented, for each element, the significant positive differences between the 

concentrations in samples from damage layers and substrate, obtained by one tailed t-test 

(significant level α=0.05, degree of freedom N=4 for all sample, except sample CH38, where 

N=3). The critical values of ttable are: t(N=4, α=0.05)=2.78, and t(N=3, α=0.05)=3.18 (Mankiewicz, 

2001). The elements with positive significant difference between damage layer and substrate, 

and therefore with possible origin from atmospheric deposition, were S, Zn, Cu, Pb, Ca, As 

(in case of As only in sample of thick black crust). The exception in investigation were 

samples CH22 and CH23, which were collected from wall of small construction on the 

Centennial Hall, probably built in recent years, but there is lack of information about it. The 

PCA analyses allowed to extract three principal components accounting for 87 % of the total 

variance, the 1st principal component explains 44 % of variation, 2nd PC 22 % of variation and 

3rd PC 21 %. By assigning one principal component (PC) to the x-axis and another PC to the 

y-axis, we generated maps to visualize the similarity/dissimilarity relationships between the 

plotted points, the maps are presented in Figure 4.14. The most important dynamics of the 

system observed in Figure 4.14 a and 4.14 b was association of As, Ca, Cu, Pb, S, Sn, Zn with 

samples of damage layers (CH19, CH21, CH29, CH38, CH40) therefore with atmospheric 

deposition. The elements ascribed to the substrate (sample CH27) were Mg, Na, Al, Mn, Mo, 

and Fe which are typical for Portland cement. There was also clearly visualized the separation 

of the two samples CH22 and CH23, that was in agreement with results from t-test and 

hypothesis that about the different age of those samples.  

The values of elaborated enrichment factors are presented in Table 4.7. The elements with EF 

> 5 and therefore atmospheric origin are As, Cu, Pb, S, Sn, Zn, with exception of sample 

CH22 and CH23. 
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Table 4.5. Elemental concentrations (ppm – µg metal/g crust) and corresponding standard deviation, ICP-OES analyses of samples from Centennial Hall (Wroclaw). 
 

Sample Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V Zn Zr 

CH271  23795 1 345 13 912 90200 5 118 925 34 31653 8252 8399 15039 602 22 9288 516 1560 10 9 1522 5 259 200236 2 474 3718 - 81 92 83 

CH19 14324 4 454 2 210 104629 5 31 198 52 9617 5600 11868 1572 397 - 2568 108 251 206 6 55117 21 58 173547 15 390 581 - 22 1066 25 

CH21 12734 21 234 - 730 174142 2 32 731 175 11214 5434 9990 1914 154 - 2390 409 - 128 - 123520 4 136 76646 32 474 684 - 22 174 25 

CH22 10434 - 151 - 28 31925 4 4 18 23 4881 4744 8338 710 153 - 1503 10 - 54 4 12082 31 21 240798 6 94 389 - 9 111 36 

CH23 10647 - 182 - 260 39825 3 5 256 57 4446 4538 9924 710 77 - 2351 135 - 56 3 16211 33 83 238846 11 122 291 - 10 65 21 

CH29 11277 11 207 1 1953 151897 4 55 1996 355 14763 3675 7031 1427 188 9 2694 1078 - 32 - 94796 10 486 139199 - 526 502 - 17 141 20 

CH38 5174 16 210 1 32 130204 2 24 27 73 6999 2238 9435 1049 55 - 1056 23 320 225 - 154121 1 - 34748 9 462 537 - 22 140 14 

CH40 8938 8 186 - 53 139351 3 16 45 74 6377 4347 11180 1460 169 - 1792 30 136 111 2 83261 15 - 140779 10 498 420 - 20 225 19 

Standard deviation 

Sample Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V Zn Zr 

CH271 1466 2 8 1 40 1 1 2 40 2 621 826 1 467 25 3 632 22 82 9 1 689 1 10 7933 3 20 83 - 3 1 2 

CH19 118 6 6 1 1 2 1 2 1 1 244 25 1 14 1 - 16 2 3 6 1 406 2 9 2843 2 2 1 - 1 6 1 

CH21 92 23 2 - 4 2 1 2 7 1 37 31 1 9 3 - 31 4 - 18 - 874 7 35 2092 7 3 3 - 1 1 1 

CH22 49 - 1 - 1 1 1 1 1 1 26 30 1 4 1 - 6 1 - 6 1 36 2 9 1013 2 1 1 - 1 1 1 

CH23 83 - 2 - 1 1 1 1 1 1 21 23 1 3 1 - 10 1 - 6 1 43 2 8 1367 3 1 1 - 1 1 1 

CH29 57 20 1 1 8 1 1 2 15 2 90 13 1 78 2 1 19 10 - 16 - 399 4 26 1721 - 5 9 - 1 1 1 

CH38 683 3 6 1 1 1 1 1 1 1 156 242 1 26 1 - 64 2 38 9 - 11084 1 - 7429 3 16 6 - 1 4 2 

CH40 53 7 2 - 1 1 1 1 1 1 42 43 1 11 1 - 22 1 6 7 1 622 2 - 2686 3 8 3 - 1 2 1 

1 substrate 
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Table 4.6. Differences between the mean concentrations of the elements in damage layer and substrate, and corresponding tcalculated  values calculated for samples from Centennial 
Hall; in bold are the positive significant differences found by one tailed t-test, α=0.05, N=4 for all samples (ttable = 2.78), except for sample CH38, where N=3 (ttable=3.18). 
 
Sample Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V Zn Zr

CH19 -9472 3 109 -11 -703 14429 -1 -87 -727 18 -22036 -2652 3 -13466 -205 -22 -6721 -409 -1309 196 -3 53595 16 -201 -26689 14 -84 -3136 - -59 974 -59

CH21 -11061 19 -111 -13 -182 83942 -4 -87 -194 141 -20439 -2818 2 -13125 -449 -22 -6898 -108 -1560 118 -9 121998 -1 -123 -123590 30 0 -3033 - -59 82 -58

CH22 -13362 -1 -194 -13 -885 -58275 -1 -114 -907 -11 -26772 -3508 -1 -14328 -449 -22 -7785 -506 -1560 44 -4 10560 26 -238 40562 4 -380 -3329 - -72 19 -48

CH23 -13148 -1 -163 -13 -652 -50375 -2 -113 -669 23 -27207 -3714 2 -14329 -525 -22 -6937 -382 -1560 46 -6 14689 28 -176 38610 9 -352 -3427 - -71 -27 -62

CH29 -12519 10 -138 -12 1041 61697 -1 -63 1070 321 -16890 -4577 -1 -13612 -414 -14 -6594 562 -1560 23 -9 93274 4 227 -61037 -2 52 -3215 - -64 49 -63

CH38 -18622 15 -135 -12 -880 40004 -4 -95 -898 39 -24654 -6015 1 -13990 -547 -22 -8232 -493 -1240 215 -9 152599 -4 -259 -165489 7 -12 -3181 - -59 49 -70

CH40 -14858 7 -159 -13 -859 49151 -2 -102 -880 40 -25275 -3906 3 -13578 -433 -22 -7496 -487 -1424 102 -6 81739 10 -259 -59457 8 24 -3298 - -61 134 -64

tcalculated  
Sample Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V Zn Zr

CH19 -11.15 1.04 18.33 -55.57 -30.61 8.80 -3.97 -52.44 -31.76 17.10 -57.19 -5.56 20.33 -49.89 -14.31 -14.45 -18.42 -32.23 -27.63 30.22 -5.92 116.04 15.61 -27 -5.49 6.34 -7.02 -65.33 - -38.03 282.54 -47.58

CH21 -13.04 1.44 -23.27 -51.52 -7.90 67.05 -5.63 -48.13 -8.35 114.55 -56.89 -5.91 9.25 -48.63 -31.21 -12.68 -18.89 -8.35 -32.59 10.16 -6.50 189.81 -0.28 -6 -26.09 6.76 -0.01 -63.15 - -33.70 113.05 -47.51

CH22 -15.78 -0.25 -41.71 -62.46 -38.55 -65.96 -10.04 -80.45 -39.63 -10.44 -74.58 -7.35 -0.36 -53.10 -31.38 -14.50 -21.35 -40.02 -32.93 7.02 -19.22 26.50 25.20 -32 8.78 1.86 -32.02 -69.34 - -47.53 23.80 -38.65

CH23 -15.51 -0.28 -34.32 -65.35 -28.41 -56.10 -12.40 -82.61 -29.22 20.85 -75.81 -7.79 8.97 -53.10 -36.76 -14.20 -19.02 -30.13 -32.86 7.41 -11.79 36.84 22.87 -24 8.31 3.85 -29.66 -71.37 - -46.69 -34.58 -50.68

CH29 -14.78 0.82 -29.57 -55.82 44.50 53.81 -2.20 -33.97 43.76 205.26 -46.60 -9.60 -8.01 -49.77 -28.89 -8.60 -18.08 40.57 -32.79 2.07 -11.10 202.78 1.94 14 -13.02 -0.39 4.29 -66.60 - -39.16 59.09 -51.45

CH38 -19.11 6.13 -20.64 -60.00 -38.34 38.89 -12.94 -68.32 -39.24 26.60 -65.69 -11.87 3.86 -51.73 -38.29 -15.08 -22.40 -38.79 -22.77 25.30 -102.55 19.45 -4.53 -47 -23.74 2.60 -0.77 -65.95 - -37.65 17.79 -54.17

CH40 -17.54 1.56 -32.76 -64.81 -37.42 45.71 -11.42 -75.64 -38.42 35.17 -70.31 -8.18 14.30 -50.31 -30.25 -14.46 -20.55 -38.46 -30.00 15.31 -15.23 152.53 7.46 -32 -12.30 3.36 1.89 -68.65 - -38.90 100.50 -52.31
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Table 4.7. Enrichment factor (EF) (with respect to Al) of samples collected from Centennial Hall (Wroclaw); in bold values of EF > 5. 
 
Sample  Al As Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V Zn Zr

CH19 1.0 7.4 2.2 0.3 0.4 1.9 1.4 0.4 0.4 2.6 0.5 1.1 2.3 0.2 1.1 - 0.5 0.3 0.3 34.8 1.1 60.2 6.9 0.4 1.4 15.1 1.4 0.3 - 0.5 19.3 0.5

CH21 1.0 37.8 1.3 - 1.5 3.6 0.6 0.5 1.5 9.6 0.7 1.2 2.2 0.2 0.5 - 0.5 1.5 - 24.3 - 151.7 1.5 1.0 0.7 34.7 1.9 0.3 - 0.5 3.5 0.6

CH22 1.0 - 1.0 - 0.1 0.8 1.6 0.1 - 1.5 0.4 1.3 2.3 0.1 0.6 - 0.4 - 12.5 1.1 18.1 13.9 0.2 2.7 7.7 0.5 0.2 - 0.2 2.8 1.0

CH23 1.0 - 1.2 - 0.6 1.0 1.3 0.1 0.6 3.8 0.3 1.2 2.6 0.1 0.3 - 0.6 0.6 - 12.8 0.8 23.8 14.4 0.7 2.7 13.9 0.6 0.2 - 0.3 1.6 0.6

CH29 1.0 22.3 1.3 0.2 4.5 3.6 1.6 1.0 4.6 22.0 1.0 0.9 1.8 0.2 0.7 0.8 0.6 4.4 - 7.0 - 131.4 3.9 4.0 1.5 - 2.3 0.3 - 0.4 3.2 0.5

CH38 1.0 71.9 2.8 0.5 0.2 6.6 1.4 0.9 0.1 9.8 1.0 1.2 5.2 0.3 0.4 - 0.5 0.2 0.9 105.4 - 465.7 0.8 0.0 0.8 23.1 4.5 0.7 - 1.2 7.0 0.8

CH40 1.0 20.4 1.4 - 0.2 4.1 1.5 0.4 0.1 5.8 0.5 1.4 3.5 0.3 0.7 - 0.5 0.2 0.2 30.2 0.7 145.7 7.8 0.0 1.9 15.2 2.8 0.3 - 0.7 6.5 0.6
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Figure 4.14. Principal Components Analyses, maps generated for results of ICP-OES, Centennial Hall 
(Wroclaw), a) PC1 verso PC2, b) PC1 verso PC3. 

 
 
 

a 

b 
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Table 4.8. The results from t-test, PCA and EF presenting elements coming from atmospheric deposition. 

 

Method  Elements with atmospheric deposition: 

t-test As, Ca, Cu, Pb, S, Sn, Zn 

PCA As, Cu, Pb, S, Sb, Sn, Zn 

EF As, Cu, Pb, S, Sn, Zn 

 

The results from t-test, PCA and EF are summarized in Table 4.8. An agreement between 

the results from the PCA and EF methods is observed: the elements linked to the 

atmospheric deposition and contribution of a variety pollution emissions are As, Cu, Pb, S, 

Sn, Zn. Considering the location of the Centennial Hall building, sulphur, arsenic and tin 

can be ascribed to fix combustion sources such as coal power generation, industry and 

domestic combustion of fossil fuels (Bityukova, 2006; Querol et al., 1995). The finding of 

Cu, Pb and Zn in damage layer from Centennial Hall can be also attributed to motor 

exhaust (Caselles et al., 2002).  
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4.1.8. Concluding remarks 
 

The complete characterization of damage layers formed on cement monument such as 

Centennial Hall, show that gypsum, due to dry and wet SO2 deposition, is the main damage 

product, whose effects lead to the loss of strength and durability of the cement matrix. The 

highest amounts of gypsum were found in sheltered areas. Such surfaces are not exposed to 

rain run-off and are therefore the accumulation ground for products of interaction between 

atmospheric deposition and building material constituents. The lower amount found in the 

partially sheltered area is connected to the solubility of this mineral. The main sources of 

atmospheric SO2, taking into account the location of Centennial Hall, are power 

generation, industry and domestic combustion of fossil fuels. Moreover, numerous 

carbonaceous and aluminosilicate particles were found embedded in gypsum matrix. The 

carbonaceous particles are responsible for the blackening of the surface in areas protected 

from rain wash out and additionally play a catalytic role in the sulphation process. The 

quantification of carbon fractions of anthropogenic origin underlines the role of 

carbonaceous particulate matter in causing an aesthetic damage of the surface (i.e. 

darkening). The aluminosilicate particles have origin from coal combustion, this underlines 

the impact of coal power station and coal use in domestic heating on the black crust 

formation on the Centennial Hall. Additionally, the elaboration of EF showed the 

atmospheric origin of trace elements accumulated in the black crust, confirming that 

Centennial Hall deterioration is mainly caused by multi-pollutants emitted by coal 

combustion.  

The results obtained show that the surface deterioration of the Centennial Hall is mainly 

caused by dry and wet deposition of SO2 and fly ash from coal combustion, and subsequent 

interaction with the cement components. These results for the first time demonstrate the 

impact of coal power stations on black crust formation on cementitious materials.  

 



 

 66  

 4.2. Experimental data of Chiesa dell’Autostrada del Sole 
 

 

4.2.1. Optical Microscope Observations  

 

The optical microscope observations of thin section of sample FIC2 collected from Chiesa 

dell'Autostrada del Sole indicated the absence of gypsum layer on the surface (Figure 

4.15). There were recognizable on the material surface yellow and orange transparent iron 

oxides, as it is shown in Figure 4.16. This result shows that surface is not affected by 

sulphation process, this fact is closely connected to the frequent restoration works 

performed at the building (every 2-3 years).  

 

 
 

Figure 4.15. Optical micrographs (a) planed-polarised light, (b) cross-polarised light of sample (FIC2) 
collected from Chiesa dell'Autostrada del Sole. The external surface of sample is not affected by sulphation 

process. 
 

 
Figure 4.16. Optical micrograph, planed-polarised light of sample (FIC2) collected from Chiesa 

dell'Autostrada del Sole; yellow-orange iron oxides are observable on the external surface. 
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The substrate identifiable as cement mortar with binder presenting the typical 

mineralogical and morphological features of hydraulic components. The aggregate is 

heterogeneous and poorly sorted. By the mineralogical point of view the aggregate is in 

order of abundance composed of monocrystalline and polycrystalline quartz, fragments of 

carbonate stones, calcite, fragments of silicatic rocks and amorphous silica.  
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4.2.2. Scanning Electron Microscope Observations  

 

The scanning electron micrograph of a sample from Chiesa dell'Autostrada del Sole 

presented in Figure 4.17, shows that surface is not covered by lamellar gypsum. The EDX 

analyses indicate that the main elements are Si, Ca, Al and K, typical for Portland cement: 

this additionally confirms the lack of sulfation process on the surface, that was also 

revealed during the optical microscope observations. 

 

 

 
Figure 4.17. Scanning electron micrograph showing the surface of sample from Chiesa dell’Autostrada del 

Sole, with relative EDX. 
 

Sporadically, on the surface were observed smooth aluminosilicate particles, presented in 

Figure 4.18. The nature of particles is confirmed by EDX showing Si as major element and 

Al, Ca, S, K and Ti as minor. Those particles are delivered from combustion processes 

(Jabłońska et al., 2003).  

 

            
Figure 4.18. Scanning electron micrograph of damage layer surface showing aluminosilicate with the EDX 

spectrum on the right. 
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4.2.3. Induce Coupled Plasma-Optical Emission Spectroscopy  

 

The mean concentration of the elements and corresponding standard deviation are reported 

in Table 4.9. The detected values were very variable, the most abundant elements were Si, 

Ca, K, Al, Mg, Na, Fe and S. This is also visible on Figure 4.19, presenting the 

concentration of the elements in substrate (FICsub) and damage layer (samples FIC1+2 (it 

consist FIC2+FIC2), and FIC3).  

Sulphur in this case had higher concentration in underlying material than in damage layers, 

this fact confirmed the lack of sulphation process and therefore gypsum formation on the 

building surface, as it was revealed during the optical and scanning electron microscope 

observations. 
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Figure 4.19. Mean element contents in substrate and damage layer taken from Chiesa dell'Autostrada del 

Sole.  
 
The elaboration of one tailed t-test, at level α=0.05, suggests the origin of the elements, 

from the substrate or from atmospheric deposition 

.
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Table 4.9. Elemental concentrations (ppm– µg metal/g crust) and corresponding standard deviation, ICP-OES analyses of samples from Chiesa dell'Autostrada del Sole. 
 

Sample Al  As  Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V  Zn  Zr 

FICsub 15000 - 232 - 18 182412 2 - 11 4 2633 90756 8 6006 31 - 5880 7 - 10 2 2779 19 - 144243 - 126 277 - 9 26 15 

FIC1+2 17588 - 205 - 178 123169 3 9 173 37 5262 95415 22 4719 71 - 6738 91 48962 29 3 1683 25 50 183860 - 88 358 - 13 69 16 

FIC3 16766 - 156 - 198 130726 4 8 188 17 6379 65377 6 6210 80 - 5630 112 - - - 573 29 - 225265 - 103 284 - 4 72 31 

Standard deviation  

Sample Al  As  Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V  Zn  Zr 

FICsub 83 - 2 - 1 1297 1 - 1 1 10 50 1 65 1 - 27 1 - 6 1 42 2 - 665 - 1 2 - 1 1 1 

FIC1+2 4 - 1 - 1 1277 1 1 2 1 7 36 1 23 1 - 48 1 2990 6 1 43 2 9 535 - 1 2 - 1 1 2 

FIC3 48 - 1 - 3 1165 1 4 3 1 22 24 1 18 1 - 48 2 - - - 42 4 - 3080 - 9 1 - 1 1 2 

 
 
Table 4.10. Differences between the mean concentrations of the elements in damage layer and substrate, and corresponding tcalculated  values calculated for samples from Chiesa 
dell'Autostrada del Sole; in bold are the positive significant differences found by one tailed t-test, α=0.05, N=4 for all samples ( ttable = 2.78), except for sample FIC4, where 
N=2, ttable=4.3. 
 

Sample Al  As  Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V  Zn  Zr 

FIC1+2 2588 - -27 - 160 -59243 1 9 162 33 2629 4659 5 -1287 40 - 858 84 48962 19 1 -1096 6 50 39617 - -38 81 - 4 43 1 

FIC3 1766 - -76 - 180 -51686 2 8 177 13 3746 -25379 -25 204 49 - -250 105 - -10 -2 -2206 10 - 81022 - -23 7 - -5 46 16 

t calculated 

Sample Al  As  Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V  Zn  Zr 

FIC1+2 54.16 - -26.11 - 327.55 -56.39 4,57 9,31 154.41 180.08 378.48 13.03 151,51 -32.12 60.92 - 26.94 90.78 12,80 4.06 3,42 -31.53 4,44 6,88 80.35 - -62,83 47.69 - 10.03 85.31 - 

FIC3 31.91 - -82.41 - 94.60 -51.35 2,82 3,34 101.56 42.19 272.07 -79.09 -35,12 5.21 79.25 - -7.87 86.21 - -0.55 -2,68 -64.58 4,35 - 44.54 - -117,77 5.25 - -8.17 72.08 - 

 
 
Table 4.11. Enrichment factor (EF) for samples collected from Chiesa dell'Autostrada del Sole; in bold values of EF > 5. 
 

Sample Al  As  Ba Be Bi Ca Cd Co Cr Cu Fe K Li Mg Mn Mo Na Ni P Pb Pt S Sb Se Si Sn Sr Ti Tl V  Zn  Zr 

FIC1+2 1 - 0.8 - 8.6 0.6 1,2 - 13.3 7.7 1.7 0.9 2 0.7 1.9 - 1.0 11.5 - 2.6 1,4 0.5 1 - 1.1 - 1 1.1 - 1.2 2.28 1 

FIC3 1 - 0.6 - 10.1 0.6 1,5 - 15.1 3.7 2.2 0.6 1 0.9 2.3 - 0.9 14.7 - - 0,0 0.2 1 - 1.4 - - 0.9 - 0.4 2.48 1 
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The results of student’s t-test presented in Table 4.10, shows that Al, Bi, Cd, Co, Cr, Cu, 

Fe, Mn, Ni, Si, Ti, Zn have higher contribution in crusts than in substrate and theirs 

presence is probably connected to atmospheric deposition. This was verified by elaboration 

of enrichment factor EF, where Al was selected as a reference. There was accepted that if 

the value of EF is higher than 5, we can consider the element X in the crust due to external 

sources, in particular atmospheric deposition, and not to the original building material. The 

results of elaborated EF presented in Table 4.11, indicate that Bi, Cr, Cu, Ni origin from 

atmospheric deposition. 

 
Table 4.12. The results from t-test and EF presenting elements coming from atmospheric deposition. 

Method                Elements with atmospheric origin 

t-test Al, Bi, Cd, Co, Cr, Cu, Fe, Mn, Ni, Si, Ti, Zn 

EF Bi, Cr, Cu, Ni 

 
 

Table 4.12 sums up the results from t-test and EF: in case of elements such as Bi, Cr, Cu, 

Ni, we can consider a sure atmospheric origin. The presence of Bi in this case is unclear. 

The elements Cr, Cu, Ni can be associated to vehicular emissions (Ondov et al., 1982; 

Monaci, et al., 2000; Caselles et al., 2002), that is closely linked to the motorway in 

neighbourhood of the building; and also to different anthropogenic activities (i.e. foundry). 

However, the presence of Cu can be also linked to the erosion of the roof.  
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4.2.4. Concluding remarks 
 

The analyses of samples from Chiesa dell’Autostrada del Sole indicate the presence of 

aluminosilicate particles originating from combustion processes and trace elements of 

vehicular exhaust. Gypsum has not been identified in the samples collected from this 

building, this is due to the restorations work, regularly performed for the maintenance of 

the building, particularly surface cleaning. Due to this fact there were not performed 

further analyses such as XRD, DTA-TGA, IC, and CHNSO in order to qualify and 

quantify the composition of the damage layer.  

 



 

 

4.3. Experimental data of Casa Galleria Vichi 
 

 

4.3.1. Optical Microscope Observations  

 

Optical microscope observation of transversal thin section of samples from sheltered areas 

(BOS2 and BOS10), indicated the presence of dark damage layers as it is shown in Figure 

4.20 and 4.21. The black crusts appeared in an irregular shape with maximum thickness of 

400 µm. It is composed of gypsum with frequently embedded black carbonaceous particles 

and iron oxides, presented in Figure 4.22. There were two sizes of carbonaceous particles 

small with diameter ranging from 15 µm to 25 µm and bigger with maximum diameter of 

45 µm.  

 

 

 

 
a)
 

Figure 4.20. Optical micrographs (a) planed-polarised light, (b) cross-polarised light of damage layer in 
sheltered area of sample (BOS10), Casa Galleria Vichi (Florence). 
a)
 
Figure 4.21. Optical micrographs (a) planed-polarised light
sheltered area of sample (BOS2), collected from Casa Galle

identifiable embedded in the g
b)
b)
73

, (b) cross-polarised light of damage layer in 
ria Vichi. Several black particles are clearly 
ypsum matrix. 



 

 74

 

 
 

Figure 4.22. Optical micrograph (planed-polarised light) of damage layer in sheltered area (BOS10); black 
carbonaceous particles and yellow-orange iron oxides are observable. 

 

 

Sporadically, there were identified transparent aluminosilicate particles of dimension 5-7 

µm.  

The mineralogical characterisation of the substrate showed that the material is a cement 

mortar. As for the other sites investigated, the aggregate is heterogeneous and poorly 

sorted. It is composed of monocrystalline and polycrystalline quartz, fragments of silicatic 

and carbonate stones, calcite, amorphous silica and crystals of feldspar.  

 

 
 



 

 

4.3.2. Scanning Electron Microscope Observations  

 

The SEM-EDX analysis performed on samples BOS2 and BOS7 presented in Figure 4.23, 

confirmed the optical microscope observations, indicating that gypsum, in both laminar and 

globular form, covered the external surface (Figure 4.23 a). The airborne particulate matter 

was observed embedded in gypsum matrix.  
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canning electron micrographs (on the left) with relative EDX (on the right) of sample BOS7, 
surface covered by lamellar and globular gypsum, (b) carbonaceous and (c) aluminosilicate 

particles. 



 

 

Spherical particles with spongy structure (Figure 4.23 b) and S as significant element are 

typical carbonaceous particles emitted by oil combustion (Bacci et al., 1983; Del Monte and 

Sabbioni, 1984).  

There were also found spherical smooth particles (Figure 4.23 c), characterized by the 

presence of silicon and aluminium as the main elements with smaller amounts of Ca, S, K, 

Mg, Fe and Ti, representing aluminosilicate particles from combustion processes (Jabłońska 

et al., 2003).  
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 4.24. Scanning electron micrographs (a), (b), (c), (d) 

BOS2. 

of sample from the top of the building (BO

 as it is shown in Figure 4.24. 

 

b

c

d
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of biological particles on surface of the sample 

S2), frequently were observed biological 
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4.3.3. X-Ray Diffraction Analysis  

 

The crystal phases of powdered sample were identified by X-ray diffraction analyses, the 

results are listed in Table 4.13. Sample BOS4(2) which is representative for the underlying 

material show that quartz and calcite are main mineral phases followed by feldspar and tracers 

of rutile (Figure 4.25).  

 

 
Table 4.13. Main crystal phases revealed by X-ray diffraction in the analysed crusts and substrate collected on 
Casa Galleria Vichi (Florence). 
 
 

Sample Gypsum Quartz Calcite Feldspars Hematite Ilmenite Rutile 
BOS4(2)*  +++++ ++++ +   tr 
BOS2 + + +++++ +    
BOS5 ++ +++++ + + + +  
BOS6 +++++ +++ +++ +  +  
BOS12  ++ +++++   tr  
BOS14 +  +++++  tr   
BOS1516 +++ + +++++  + tr  

              a +++++ main mineral present; ++++, +++  very abundant; ++ abundant; + present, tr tracers 
              * substrate 
 

 

In general the minerals identified in samples of the damage layer are calcite, quartz and 

gypsum. The gypsum is more abundant in samples with black coherent damage layers (BOS6 

or BOS1516). There was also detected presence of hematite, ilmenite and also feldspar. 

The presence of quartz, calcite and feldspar is ascribable to the binder and aggregates of the 

concrete. The mineral phases such as gypsum, hematite, ilmenite identified in damage layers 

are connected to the atmospheric deposition. Gypsum is formed due to the interaction of 

atmospheric SO2/H2SO4 with cement components (Martínez-Ramírez, et al., 1998). The main 

source of SO2 in case of Casa Galleria Vichi is vehicular exhaust from traffic roads in 

surrounding area of the building, and fossil fuel combustion in domestic heating. The 

presence of hematite and ilmenite in damage layers of Florence site can be connected to oil 

fly ash (Chen, et al., 2004), but also to erosion of metal decorations on the building . 

 



 

 78

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

3500

C
C+QzC

Qz
R

Qz

C

C
ou

nt
s

2θ

Qz-quartz
C-calcite
R-rutile
F-feldspar

Qz

C
R

F

 
Figure 4.25. X- ray diffractogram of substrate, Casa Galleria Vichi (Florence). 
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Figure 4.26. X- ray diffractogram of surface damage layer sample on the concrete façade, Casa Galleria Vichi in 

Florence. 



 

 79

4.3.4. Differential and Gravimetric Thermal Analysis  

 

The differential and gravimetric thermal analyses (DTA-TGA) allowed to quantify gypsum 

and carbonates in collected samples, the results are presented in Table 4.14.  

The results for sample BOS4_2 representing underlying material, show decarbonation of 

carbonates between 600 ºC and 850 ºC , with an amount of 25 %. 

 

 
Table 4.14. Concentrations (%) of gypsum and carbonates in samples from Casa Galleria Vichi (Florence). 
 

Sample Gypsum1 Carbonates2 

BOS4(2)* 25.09 
BOS2 14.54 57.62 
BOS5 32.97    7.43 
BOS6 50.20 18.55 
BOS12   9.06 70.28 
BOS14 41.85 41.99 
BOS1516 66.02 11.36 

* substrate 
                   1 calculated as CaSO4·2H2O,2 calculated as CaCO3 

 

 

Considering samples of damage layer, gypsum (Figure 4.27) had significant amount in 

samples with coherent crust (BOS6, BOS14, BOS1516) ranging from 42 % to 66 %. The 

smaller amounts were in samples with incoherent deposit 9-33 % (BOS2, BOS5, BOS12). 

The higher concentration of gypsum in black coherent crusts was an effect of advance 

sulphation level and complete protection against rain wash out. 
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Figure 4.27. Concentration of gypsum (%) measured by DTA-TGA analyses in samples colleted from Casa 

Galleria Vichi. 
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Carbonates were also presented in variable amounts ranging from 7 % to 58 %, the 

decarbonation of them underwent in temperature between 600-850 °C. 

Additionally in samples of crusts were observed two exothermic peaks within DTA curves 

corresponding to two steps of the loss of weight, an example is presented in Figure 4.28. The 

first peak occurred in the temperature range from 306 ºC to 320 ºC, the second peak was 

located between 431 ºC to 472 ºC. This peaks were correlated with CO2 development due to 

carbon components oxidation (Bonazza et al., 2007), the first peak can be attributed to 

organic carbon coming from organic compounds in atmospheric aerosols. The second peak 

corresponds to elemental carbon which can origin from particles emitted into the atmosphere 

by combustion processes. 

 

 
Figure 4.28. DTA-TGA graphs of black crusts collected on Casa Galleria Vichi. 

 

Organic 
carbon 

Elemetal 
carbon 

Gypsym 



 

 81

4.3.5. Ion Chromatography data  

 

The anion composition and concentrations were measured by ion chromatography, the results 

obtained on samples collected Casa Galleria Vichi are summarized in Table 4.15.  

The mean anion concentrations for coherent and incoherent damage layers and also for 

substrate are presented in Figure 4.29. They show that sulphate (SO4
=) had the highest 

concentration among all anions, with always higher contribution in damage layers. The 

strongest contribution of SO4
=, was observed in samples of black coherent crusts with mean of 

36 %, and lower in incoherent deposit with mean of 14 %. The higher concentration of 

sulphate in specimens of black crust is an effect of higher amounts of gypsum in those 

samples, as it was revealed during DTA-TGA analyses. This presence of SO4
= proves the 

importance of sulphation process, due to dry and wet deposition of SO2 and consequent 

interaction with components of cement matrix. 

 

 
Table 4.15. Anion concentration (ppm) measured by ion chromatography in damage layer and substrate 

collected. 
 

* substrate 
n.d. = not detected. 
 

Sample SO4
= NO3

- NO2
- Br- Cl- CHO2

- C2H3O2
- C2O4

=

BOS4(2)* 7325 166 113 n.d. 363 286 2775 135
BOS1 421846 4823 148 1275 3100 2274 12098 5568
BOS3 98608 4460 363 710 3272 226 5688 2357
BOS5 122651 9950 626 n.d. 11616 168 7878 3102
BOS6 112250 2148 28 n.d. 1890 111 7878 3538
BOS8 206734 8141 28 n.d. 8715 117 7932 1285
BOS9 221166 7439 28 n.d. 7606 158 9490 1743
BOS10 389626 3285 36 n.d. 1835 126 8462 386
BOS12 25676 879 70 n.d. 1557 278 3706 3999
BOS13 202441 19003 70 n.d. 14796 184 11817 1561
BOS14 251455 3020 29 n.d. 1812 128 9791 1068
BOS1516 381331 3989 29 n.d. 2505 2095 9504 n.d
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Figure 4.29. Mean concentration of anions in coherent crust, incoherent deposit and substrate samples collected 

at Casa Galleria Vichi. 
 

 

The IC results indicate also the presence of marked amounts of organic anions such as 

formate (CHO2
-), acetate (C2H3O2

-), oxalate (C2O4
=). The most abundant among them is 

acetate with maximum concentration of 1.2 % in sample of black crust (BOS1) and the a 

minimum of 0.4 % in sample of incoherent material (BOS12). Oxalate appeared in lower 

amounts with mean concentration in damage layer of 0.2 %, followed by formate with mean 

of 0.05 %. The presence of organic anions is attributed to primary and secondary air 

pollutants, biological weathering and restoration treatments (Sabbioni et al., 2003). There is 

not available information about the restoration work performed on the Casa Galleria Vichi. 

NO3
- and NO2

- were also found in considerable and variable amounts, with higher 

concentration of NO3
-. Nitrogen oxides presence in this case could be connected to direct 

exposition of this building to motor exhaust, however due to the high solubility of salts 

formed due deposition of NOx/HNO3, the role of NOx as damage factor is difficult to 

determine (Derry et al., 2001). 

The presence of Cl- (maximum concentration of 1.5 %) could be ascribed to marine aerosol 

deposition and also to fossil fuel combustion (Ondov et al., 1982; Arditsoglou and Samara, 

2005). 



 

 83

4.3.6. Carbon compound Discrimination and Measurements 

 

The carbon fraction measured during CHNSO analyses are presented in Table 4.16. The total 

carbon (TC) concentration in samples from Casa Galleria Vichi was ranging from 4 % to 17 

% of total mass of samples. The mean concentration of TC in all samples was 9 %, which was 

higher then in samples from Centennial Hall, where mean of TC was 2 %. 

The fractions of total carbon presented in Figure 4.30, indicated that non carbonate carbon 

(NCC) appeared in very variable amounts, from minimum of 29 % (BOS8) to maximum of 91 

% of TC in sample of thick black crust (BOS1). The carbonate carbon (CC) predominated 

over NCC in samples BOS8 and BOS1516. This result is in agreement with DTA-TGA 

analyses, where the significant contribution of carbonates in damage layers from this building 

was verified. The presence of carbonate carbon in analysed samples is probably due to the 

nature of the sample, during sampling part of underlying material could have been collected.  

 
Table 4.16. The TC, NCC, CC, EC and OC concentrations (%) and OC/EC ratio measured in damage layers 

collected on Casa Galleria Vichi. 
 

Sample TC1 CC3 NCC2 EC2 OC3 OC/EC 

BOS1 3.68 0.32 3.36 3.01 0.35 0.12 

BOS3 11.23 2.34 8.89 3.13 5.77 1.84 

BOS5 10.03 4.18 5.85 2.64 3.21 1.22 

BOS8 16.73 11.88 4.85 4.52 0.33 0.07 

BOS10 8.82 1.87 6.95 2.04 4.91 2.41 

BOS13 7.30 1.29 6.01 2.80 3.21 1.15 

BOS1516 8.59 4.59 4.00 3.13 0.87 0.28 
1 measured on substrate, 2 measured on treated samples, 3 calculated 

 

 

Elemental carbon (EC) (Table 4.16) was ranging from 2 % to 5 % of total mass of sample, 

this values were much higher and homogenous than in case of sample from Centennial Hall. 

Elemental carbon origins from combustion–generated aerosols, in case of Casa Galleria 

Vichi, surrounding by high car traffic, EC presence can be an effect of fossil fuel (mainly 

diesel) and domestic combustion (Kupiainen and Klimont, 2007). 

Considering the organic carbon (OC), the values were very variable with maximum of 6 % in 

sample BOS3, which was supposed to be affected by biological attack. It is known that OC 

origins from incomplete combustion processes, secondary air pollutants, biological 

weathering and restoration treatment (there are not information about the restoration work 
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done). The contribution of organic carbon in total mass of sample was much higher in 

samples from Casa Galleria Vichi than ones from Centennial Hall. This fact can be connected 

to direct exposition of building to vehicular emission. 

Figure 4.31 presents the EC and OC percentages with respect to NCC. Elemental carbon 

predominates over OC in samples of black crust (BOS1, BOS8, BOS1516), with contribution 

higher than 80 % of NCC. This was also noticed in the samples of black crust from 

Centennial Hall. The EC fraction is a product of combustion processes and it constitutes a 

quantitative index of carbonaceous particles embedded in black crust (Riontino et al., 1998).  

In case of sample of grey crust (BOS5, BOS13) the OC/EC ratio was higher than 1.  

The exception was sample of black damage layer BOS10 with the maximum value of OC/EC 

ratio of 2.41. Considering the concentrations of EC of 2 % and of sulphate of 39 %, indeed 

the sample has a typical composition of the black crust (gypsum and black carbonaceous 

particles). Therefore the high ratio of OC/EC indicates the prevailing contribution of mobile 

combustion sources in damage layer formation in this part of the monument. 
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Figure 4.30. The non carbonate carbon (NCC) and carbonate carbon (CC) percentage fraction of total carbon in 

samples of damage layers collected from Casa Galleria Vichi (Florence). 
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Figure 4.31. The percentage fraction of organic carbon (OC) and elemental carbon (EC) of NCC in sample of 

crusts from Casa Galleria Vichi. 
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4.3.7. Induce Coupled Plasma-Optical Emission Spectroscopy  

 

The results achieved during ICP-OES analyses of damage layer and substrate are presented 

in Table 4.17. The mean concentration of the elements indicates higher contributions of 

almost all elements in damage layers than in substrates, with exception of Ca and Sr. The 

most abundant elements in all analysed samples were Si, Ca, S, Fe, Al, K, Na, and Mg. 

The maximum concentrations of S was observed in samples of black crust e.g. sample 

BOS1, BOS10 and BOS16, that finds great agreement with results from DTA-TGA, where 

in those samples was detected the highest amounts of gypsum, and results from IC with 

high concentration of SO4
=. 

Looking at Table 4.17, the two samples representative of the underlying material BOS4(2) 

(collected from dragon) and BOS7 (from façade) have different elemental concentration, 

this could be linked to the restorations work on the dragons and to the application of 

mortars different from the original material, but there is lack of information about the 

maintenance of the building. Keeping in mind this difference, for further elaboration, 

samples were divided into two groups, samples from dragons (BOS1, BOS3, BOS4(2)) 

and samples from façade BOS5, BOS7, BOS8, BOS9, BOS10, BOS13, BOS16.  

Elaboration of t – test at level α=0.05, gave an indication about origin of elements 

(atmospheric deposition or substrate). The results of t-test presented in Table 4.18, pointed: 

that elements such Cu, Fe (only sample BOS3), Pb, S, Sn, Zn come from atmospheric 

deposit in case of sample from dragons; in sample collected from façade the elements with 

atmospheric origin can be Al, Ba, Cd, Co, Cr, Cu, Fe K, Na, Ni, Pb, S, Sb, Si, Sn, Ti, V 

and Mg, Mn, Zn (except sample of black coherent material, BOS10, BOS1516). In both 

cases, samples from dragons and samples from façade, Cu, Fe, Pb, S, Sn, Zn seem to origin 

from atmospheric deposition. 

Principal components analyses (PCA) were performed for two groups of data: 1st group of 

all analysed samples (dragon and façade) and 2nd group of samples collected only from 

façade.  
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Table 4.17. The elements concentration (ppm– µg metal/g crust) and corresponding standard deviation, results from ICP-OES of samples from Casa Galleria Vichi, Florence. 
 

Sample Al As Ba Be Bi Ca Cd  Co  Cr Cu Fe K Li Mg Mn Mo Na Ni  P Pb Pt S Sb Se Si Sn Sr Ti Tl V  Zn Zr  

BOS4 
(2) 13854 - 777 4 - 160055 4 105 71 62 21141 21865 32 6455 932 - 15608 40 615 59 - - 29 32 261649 - 810 142 17 72 76 225 

BOS1 5539 - 306 - - 149884 1 37 31 138 7569 3698 8 2153 87 - 3601 15 422 336 - 133420 6 15 44310 1 521 53 9 36 318 37 

BOS3 11522 - 324 1 - 169716 3 194 50 139 38249 9332 14 4783 427 - 6635 38 651 161 - 36156 16 16 106000 - 376 77 13 37 184 112 

BOS7 5011 - 130 2 - 368702 - 26 17 114 5174 4162 14 5874 248 - 6150 6 256 207 - 47741 9 28 46188 - 850 24 17 23 296 42735 

BOS5 7592 - 976 3 - 109688 4 209 192 1154 39123 17200 38 9252 624 - 19979 87 1883 635 - 61022 29 31 194711 4 499 253 31 119 568 272591 

BOS8 7312 - 862 3 - 127231 4 167 129 605 31525 15471 30 7951 566 - 21521 63 1328 927 - 79069 24 26 192937 11 594 201 22 86 955 220760 

BOS9 6139 - 1029 3 - 118928 4 215 197 988 40118 16000 33 8047 556 - 19053 84 1711 931 - 96346 30 23 198533 4 541 263 33 116 525 273784 

BOS10 7661 - 658 2 - 232961 2 91 86 209 18749 8728 18 4568 212 - 8114 30 1000 606 - 138614 14 31 104847 1 605 121 21 70 223 118693 

BOS13 7762 - 858 3 - 92439 4 202 173 708 32136 13773 34 8742 502 - 17181 75 1441 838 - 83636 26 37 143457 4 607 203 27 102 571 220120 

BOS16 5150 - 495 2 - 189744 1 61 52 283 12606 6155 13 3267 139 - 6465 21 695 603 - 152938 11 37 68410 1 648 74 24 44 300 46713 

Standard deviation 

Sample Al As Ba Be Bi Ca Cd  Co Cr Cu Fe K Li Mg Mn Mo Na  Ni  P Pb Pt S Sb Se Si Sn Sr Ti Tl  V  Zn Zr  

BOS4 
(2) 4454 - 82 1 - 25484 1 4 7,1 19 919 424 2 833 37 - 632,6 1 9 12 - - 1 6 5177 - 52 12 2 3 30 38 

BOS1 86 - 7 - - 2678 1 1 0,7 4 133 61 1 36 2 - 60,8 1 16 16 - 3639 2 94 1350 1 15 1 4 4 4 2 

BOS3 194 - 2 1 - 1661 1 5 0,7 4 484 58 1 30 5 - 15,2 1 5 3 - 232 1 11 381 - 3 1 4 1 4 1 

BOS7 98 - 3 1 - 6274 - 1 1 1 76 1 1 20 3 - 146 1 5 6 - 339 1 12 797 - 8 1 5 1 4 1887 

BOS5 40 - 1 1 - 1001 1 6 2 8 248 67 1 87 3 - 103 1 15 8 - 825 1 8 629 1 4 1 5 1 2 1299 

BOS8 122 - 10 1 - 1178 1 1 2 8 388 169 1 34 3 - 271 1 9 15 - 580 1 10 4088 1 8 2 4 1 12 2548 

BOS9 13 - 6 1 - 1362 1 3 1 11 29 182 1 82 5 - 44 1 16 6 - 952 1 20 3119 1 5 2 4 1 4 1952 

BOS10 99 - 7 1 - 1358 1 2 1 1 85 98 1 4 1 - 8 1 8 7 - 1461 1 8 767 1 3 1 6 1 2 2938 

BOS13 388 - 185 1 - 16696 1 8 2 5 7820 2883 1 116 3 - 4863 1 2 7 - 845 1 14 39131 1 33 35 1 2 13 8976 

BOS16 103 - 4 1 - 3341 1 2 1 2 72 97 1 15 1 - 77 1 6 8 - 1617 1 10 558 1 4 1 4 1 2 1319 
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Table 4.18. Differences between the mean concentrations of the elements in damage layer and substrate, and corresponding tcalculated  values calculated for samples from Casa Galleria 
Vichi; in bold are the positive significant differences; ttable = 2.78 for all sample, except sample BOS13, where ttable=3.18. 
 

Sample Al As Ba Be Bi Ca Cd  Co  Cr Cu Fe K Li Mg Mn Mo Na Ni  P Pb Pt S Sb Se Si Sn Sr Ti Tl  V  Zn Zr  

BOS1 -8315 - -471 -3 - -10171 -3 -68 -39 76 -13572 -18167 -24 -4302 -845 - -12007 -26 -192 277 - 133420 -23 -17 -217338 1 -289 -89 -9 -36 241 -189 

BOS3 -2332 - -453 -3 - 9661 0 89 -21 77 17108 -12532 -18 -1672 -504 - -8973 -3 36 102 - 36156 -13 -16 -155649 0 -434 -65 -4 -35 108 -113 

BOS5 2581 - 846 1 - -259014 4 183 174 1041 33949 13038 24 3379 376 - 13830 81 1627 428 - 13282 20 3 148524 4 -351 229 14 96 272 229856 

BOS8 2302 - 732 1 - -241471 4 141 112 492 26350 11309 16 2077 318 - 15371 58 1072 720 - 31328 15 -3 146749 11 -257 178 5 63 659 178025 

BOS9 1129 - 900 1 - -249773 4 189 179 874 34943 11839 20 2174 308 - 12903 78 1455 724 - 48605 21 -5 152345 4 -310 239 16 93 229 231049 

BOS10 2650 - 528 0 - -135741 2 65 69 96 13575 4566 5 -1306 -36 - 1964 24 744 399 - 90874 5 3 58660 1 -245 97 4 47 -73 75957 

BOS13  2751 - 728 1 - -276263 4 176 156 595 26962 9611 20 2869 254 - 11031 69 1185 631 - 35895 17 9 97269 4 -243 180 10 79 275 177384 

BOS16 140 - 365 0 - -178957 1 35 35 170 7431 1994 -1 -2607 -109 - 315 15 439 396 - 105198 2 9 22223 1 -202 50 7 21 4 3978 

tcalculated     

Sample Al As Ba Be Bi Ca Cd  Co  Cr Cu Fe K Li Mg Mn Mo Na Ni  P Pb Pt S Sb Se Si Sn Sr Ti Tl  V  Zn Zr  

BOS1 -3,2 - -10,0 -38,4 - 0,0 -5,9 -25,7 -9,6 6,8 -25,3 -73,5 -22,3 -8,9 -39,9 - -32,7 -26,6 -18,2 23,7 - 63,5 -25,0 -2,9 -70,4 9,7 -9,2 -13,1 -3,4 -22,7 13,6 -8,7 

BOS3 -0,9 - -9,6 -41,7 - 0,0 -0,6 23,8 -5,0 7,0 28,5 -50,7 -16,6 -3,5 -23,6 - -24,6 -3,5 5,7 13,9 - 270,0 -38,0 -2,1 -51,9 3,9 -14,3 -9,5 -1,5 -22,8 6,1 -5,2 

BOS5 42,2 - 458,5 23,1 - -70,6 22,6 51,8 148,4 227,2 226,8 337,3 97,5 65,7 162,2 - 133,9 163,5 183,5 74,9 - 25,8 40,9 0,3 253,4 19,7 -66,3 269,6 3,5 186,7 108,0 173,8 

BOS8 25,5 - 121,6 17,8 - -65,5 22,0 190,0 117,1 104,2 115,5 116,2 63,0 91,3 131,6 - 86,5 115,7 187,1 77,6 - 80,7 26,0 -0,3 61,0 56,1 -39,7 160,1 1,4 125,4 90,0 97,3 

BOS9 19,8 - 242,6 21,5 - -67,4 17,0 116,4 362,6 140,4 747,6 112,8 77,0 44,6 98,7 - 146,5 103,4 147,1 150,4 - 83,3 40,8 -0,4 82,0 27,2 -56,2 236,7 4,4 168,9 76,0 147,4 

BOS10 33,0 - 127,1 1,7 - -36,6 9,9 58,6 167,7 117,5 206,6 80,9 39,1 -112,8 -19,3 - 23,3 35,3 141,5 75,1 - 105,0 7,2 0,3 91,8 9,1 -49,0 214,2 0,9 90,6 -30,3 37,7 

BOS13  9,8 - 5,6 16,9 - -22,4 13,3 32,8 90,5 159,5 4,9 4,7 43,1 34,5 99,7 - 3,2 109,3 374,0 100,7 - 57,1 26,4 0,7 3,5 31,7 -10,1 7,3 3,7 68,8 28,5 27,5 

BOS16 1,7 - 120,2 -5,8 - -43,6 6,2 30,2 71,2 110,0 122,8 35,6 -8,2 -181,1 -61,2 - 3,3 27,1 102,0 72,1 - 110,3 2,5 1,0 39,5 4,8 -39,1 125,9 2,0 42,2 1,5 3,0 
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Table 4.19. Enrichment factor (EF) for samples collected from Casa Galleria Vichi (Florence), in bold values of EF > 5. 
 

Sample Al As Ba Be Bi Ca Cd  Co  Cr Cu Fe K Li Mg Mn Mo Na Ni  P Pb Pt S Sb Se Si Sn Sr Ti Tl  V  Zn Zr  

BOS1 1,0 - 1,0 - - 0,7 0,4 0,9 1,1 5,6 0,9 0,4 0,6 0,8 0,2 - 0,6 0,9 1,7 14,3 - - 0,5 1,2 0,4 - 1,6 0,9 1,3 1,3 10,4 0,4 

BOS3 1,0 - 0,5 0,3 - 0,0 1,1 2,2 0,9 2,7 2,2 0,5 0,5 0,9 0,6 - 0,5 1,1 1,3 3,3 - - 0,7 0,6 0,5 - 0,6 0,7 0,9 0,6 2,9 0,6 

BOS5 1,0 - 5,0 1,0 - 0,2 - 5,3 7,3 6,7 5,0 2,7 1,8 1,0 1,7 - 2,1 10,2 4,9 2,0 - 0,8 2,1 0,7 2,8 - 0,4 7,0 1,2 3,4 1,3 4,2 

BOS8 1,0 - 4,5 1,0 - 0,2 - 4,4 5,1 3,6 4,2 2,5 1,5 0,9 1,6 - 2,4 7,7 3,6 3,1 - 1,1 1,8 0,6 2,9 - 0,5 5,8 0,9 2,6 2,2 3,5 

BOS9 1,0 - 6,5 1,2 - 0,3 - 6,8 9,3 7,1 6,3 3,1 2,0 1,1 1,8 - 2,5 12,1 5,5 3,7 - 1,6 2,7 0,7 3,5 - 0,5 9,0 1,6 4,1 1,4 5,2 

BOS10 1,0 - 3,3 0,7 - 0,4 - 2,3 3,3 1,2 2,4 1,4 0,9 0,5 0,6 - 0,9 3,4 2,6 1,9 - 1,9 1,0 0,7 1,5 - 0,5 3,3 0,8 2,0 0,5 1,8 

BOS13 1,0 - 4,3 0,9 - 0,2 - 5,0 6,4 4,0 4,0 2,1 1,6 1,0 1,3 - 1,8 8,6 3,6 2,6 - 1,1 1,9 0,8 2,0 - 0,5 5,5 1,0 2,9 1,2 3,3 

BOS16 1,0 - 3,7 0,9 - 0,5 - 2,3 2,9 2,4 2,4 1,4 0,9 0,5 0,5 - 1,0 3,6 2,6 2,8 - 3,1 1,2 1,3 1,4 - 0,7 3,0 1,4 1,9 1,0 1,1 
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Figure 4.32. Principal components analyses, maps generated for results of ICP-OES, sample collected from 
façade and dragons of Casa Galleria Vichi, BOS7 substrate of façade, BOS4(2) substrate of dragon (a) PC1 

verso PC2, (b) PC1 verso PC3. 
 
 

a) 

b) 
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Figure 4.33. Principal components analyses, maps generated for results of ICP-OES, sample collected from 

façade of Casa Galleria Vichi, BOS7 substrate, (a) PC1 verso PC2, (b) PC1 verso PC3. 
 

a)

b)
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In Figures 4.32 a and 4.32 b are shown generated maps for all samples (from dragon and 

façade), with three rotated components, Figure 4.32 a: PC1 verso PC2; Figure 4.32 b: PC1 

verso PC3, representing together 90 % of the total variance; PC1 of 40 %, PC2 of 36 % 

and PC3 of 14 %.  

The most important dynamic in the system presented in Figure 4.32 is strong division 

between samples of dragons (BOS1, BOS3, BOS4(2)) and samples of façade BOS5, 

BOS7, BOS8, BOS9, BOS10, BOS13, BOS16. There is noticeable group of sample of 

incoherent deposit material (BOS5, BOS8, BOS9, BOS13) under influence of range of 

elements such Ba, Cd, Co, Cr, Cu, Fe, Li, Mg, Na, Ni, Sn, V, Zn, that is probably linked to 

particles and fly ash deposition .  

The maps generated for 2nd group of samples, with three rotated components representing 

93% of the total variance (PC1 of 63%, PC2 of 20%, PC3 of 10%) are presented in Figure 

4.33 a (PC1 verso PC2), Figure 4.33 b (PC1 verso PC3). Considering the maps, there are 

observed three groups of elements with relation to incoherent deposit, coherent crust and 

substrate, especially visualized in Figure 4.33 b (PC1 vs PC3). The elements such as Ba, 

Cd, Co, Cr, Cu, K, Fe, Li, Ni, P, Ti, V are associated with samples of incoherent deposit 

(BOS5, BOS8, BOS9, BOS13), this fact is probably due to deposition of airborne 

particulate matter. Sulphur followed by Ca, Pb, Sn, Zn are observed in strong association 

with samples of black damage layers (BOS10, BOS16), where S and Ca can be related to 

gypsum.  

In order to clarify the nature of the elements, originating from the substrate or atmospheric 

deposition, the enrichment factor (EF) was also elaborated, using Al as reference element.  

The results of enrichment factor elaboration are shown in Table 4.19. There was adopted 

that if EF (X) > 5, the element X origins from atmospheric deposition, and not belonging 

to original building material. The elements with EF >5, in most of the samples, are Ba, Co, 

Cr, Cu, Fe, Ni, and Ti and therefore ascribe to atmospheric origin. The lack of EFs values 

in case of Cd, S, Sn is an effect of not detection those elements in substrate, makings EF 

impossible to calculate, however we can assumed them as elements with atmospheric 

origin.  
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Table 4.20. Results of t-test, PCA and EF of samples collected on Casa Galleria Vichi (Italy). 

 

 

Table 4.20 summarized the results from t-test , PCA and EF. The elements with 

atmospheric deposition and contribution of variety pollution emissions are Ba, Co, Cd, Cr, 

Cu, Fe, Ni, P, Pb, S, Sn, Ti, and V, Zn. 

The elements such as Ba, Co, Cd, Cr, Cu, Fe, Ni, Pb, S, Sn, Ti, V, Zn can be tracers of 

particles from traffic emission, wear of brake lining materials and from combustion of 

fossil fuels in domestic heating (Monaci and Bargagli, 1997; Caselles et al., 2002; Geo et 

al., 2002; Arditsoglou and Samara, 2005). The presence of most of elements is due to 

motor exhaust, that fact underlines the direct impact of the traffic emissions, in roads 

around this building, on formation of damage layer.  

Method: Elements with origin from atmospheric deposition 

t-test Al, Ba, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sn, Ti, V, Zn 

PCA Ba, Cd, Co, Cr, Cu, Fe, Ni, P, Pb, S, Sn, Ti, V Zn 

EF Ba, Cd, Co, Cr, Cu, Fe, Ni, P, Pb, S, Sn, Ti, Zn 
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4.3.8. Concluding remarks 

 

The methodological approach followed for analysing the damage layers indicates that 

gypsum is the main product of deterioration, due to the interaction of the atmospheric 

sulphur compounds and cement matrix constituents. Furthermore, numerous carbonaceous 

and aluminosilicate particles were identified in the gypsum matrix of the damage layers. 

The composition of those black carbonaceous particles reflects theirs role in surface 

deterioration, elemental carbon causes darkening of the surface, and the metal content can 

act as catalytic support for the heterogeneous oxidation of SO2. The effect of air pollutants 

was also reflected in anions and trace elements accumulated in the black crusts. The 

elaboration of the enrichment factor indicates that the main sources of air multi-pollutants 

deposited on the building are traffic emission and oil fossil fuels combustion of domestic 

heating.  
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Conclusion 
 

 

The research activity focused on the impact of the air multi-pollutants on the 20th century 

architecture, through the diagnosis of the damage induced by gaseous air pollutants and 

particles on three European buildings mainly constructed in concrete: Centennial Hall, 

Wroclaw (Poland), Chiesa dell'Autostrada del Sole, Florence (Italy), and Casa Galleria 

Vichi, Florence (Italy).  

The complete characterization of the damage layers present at the cement-based 

monuments selected was obtained for the first time. The results showed that gypsum is the 

main damage product at surfaces sheltered from rain run off at Centennial Hall and Casa 

Galleria Vichi. In addition the mineralogical observations and quantitative results 

highlighted that gypsum was more abundant in case of Centennial Hall (Wroclaw, Poland) 

than in Casa Galleria Vichi (Florence, Italy), being this directly linked to the location of 

the buildings. In fact, the Polish site is placed in one of the most polluted region in Europe 

by SO2 and additionally coal power stations are in the neighborhood of the building. By 

contrast, gypsum has not been identified in the samples collected at Chiesa dell'Autostrada 

del Sole. It has to be underlined that this is connected to the restoration works, particularly 

surface cleaning, regularly performed for the maintenance of the building.  

Furthermore, both carbonaceous and aluminosilicate particles were found embedded in 

gypsum matrix. It is known that carbonaceous particles cause the aesthetic impairment 

(blackening) of the building façade and, because of their heavy metal content, act as 

catalytic support for the heterogeneous oxidation of SO2. The presence of carbonaceous 

particles is related to the combustion of fossil fuels in the power stations and domestic 

heating. The aluminosilicate particles origin from coal combustion, that in case of 

Centennial Hall emphasizes the impact of coal power station and coal use in domestic 

heating.  

The discrimination of carbon fractions showed also a difference in concentration of 

elemental and organic carbon within the damage layer depending on the location. The 

elemental carbon had higher concentration in samples of black crusts from Centennial Hall 

than those collected at Casa Galleria Vichi, proving that fix combustion sources, such as 

electric power plants, predominate in EC emissions over mobile ones. Mobile sources 
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(traffic) are the major emitters of organic carbon in urban atmospheres. The damage layers 

collected at Casa Galleria Vichi had higher organic carbon, that is closely connected to 

traffic emission in front of the building. The quantification of carbon fractions is essential 

to identify the anthropogenic sources causing deterioration of the built heritage, including 

aesthetic damage of the surface (i.e. darkening). 

The effect of air pollutants was also reflected in anion concentrations detected in the black 

crusts. Along sulphates and nitrates, there were detected significant amounts of organic 

anions (acetate, formate, oxalate); their presence, particularly that of the oxalate ion, which 

origin is still an open problem, allowed to exclude the contribution of the past surface 

treatments as possible source. The elaboration of elemental data (t-test, PCA, EF) allowed 

to identify the origin of elements present in the black crust, confirming that Casa Galleria 

Vichi is more affected by pollutants from traffic emission (e.g. Pb, Zn) and oil fly ash from 

domestic heating, while Centennial Hall deterioration is mainly caused by multi-pollutants 

emitted by coal combustion (e.g. As). The enrichment factor elaborations for the samples 

of Chiesa dell'Autostrada del Sole indicated that Bi, Cr, Cu, Ni arrive from atmospheric 

deposition and are probably linked to the traffic emissions from the highway in the 

neighborhood of the building. 

In conclusion, SO2 and particles emitted by combustion sources have been proved to have 

among the multi-pollutants the priority role in damage layer formation on the cement 

buildings investigated. Moreover, the results obtained showed the correlation between 

location of the building and the composition of the damage layer: Centennial Hall is 

mainly undergoing to the impact of pollutants emitted from the coal power station, whilst 

Casa Galleria Vichi is principally affected by pollutants from vehicular exhaust. This 

proves that the major role is played by local sources of pollutants in the damage process 

occurring on the cement surface. The quantification of EC and OC has been a key factor 

for the discrimination between fix and mobile combustion sources of pollutants mainly 

impacting on the buildings investigated. The application on the statistical techniques also 

allowed to identify the elements with atmospheric origin and to indicate the possible 

anthropogenic sources, revealing statistical methods as an useful tool for elemental data 

elaboration in the diagnosis of cultural heritage damage. 

The investigation of the impact of air multi-pollutants on the cementitious materials, 

characterizing modern architecture is fundamental for planning the protection and 
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conservation of the 20th century built heritage. It has to be underlined that the modern 

architecture undergoes deterioration and requires to be restored as well as ancient one. In 

terms of heritage management, frequent surface cleaning should be adopted as building 

maintenance procedure, with complete removal of the black crusts, avoiding as much as 

possible the irreversible damage of the cement substrate. Additionally, air pollution 

monitoring, particularly SO2 and particulate matter, and air quality control are essential for 

the preservation of modern built cultural heritage. In fact, the emission of carbonaceous 

particles has increased in recent years and SO2 still requires to be controlled, even though 

the reduction of sulphur content in fossil fuels and the introduction of abatement systems in 

particular in some European regions. As a final point, the knowledge achieved during this 

research may also find an application in the construction sector, giving indications for 

example on the durability of the cement mortars. 
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