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Abstra
t
Wireless Sensor Networks (WSNs) are 
ommonly re
ognized as one of the te
hnolog-i
al 
ornerstones for Wireless Ambient Networks. Low-
ost, low-power networks ofsensors 
an 
olle
t a huge amount of information from the environment. This the-sis investigates di�erent aspe
ts of these networks, for providing some design guide-lines, with parti
ular attention to: 
onne
tivity, topology design and medium a

ess
ontrol (MAC) proto
ols. The starting point is represented by a mathemati
al frame-work for studying mono-sink WSNs, enabling environmental monitoring through theestimate of a s
alar �eld. Signal pro
essing, 
onne
tivity, 
hannel randomness andMAC are jointly 
onsidered, but the s
enario and the 
ommuni
ation proto
ols ap-plied are quite simple. To a

ount for more useful s
enarios and proto
ols, the follow-ing models have been provided: a 
onne
tivity model for multi-sink multi-hop WSNsand an analyti
al model for the IEEE 802.15.4 MAC proto
ol. The latter modeldi�ers from the ones present in the literature, sin
e it pre
isely 
aptures the essen
eof the proto
ol, in a typi
al WSN appli
ation s
enario. Finally, these two modelshave been integrated to realise a framework able to study multi-sink 802.15.4 WSNs,under di�erent perspe
tives. The model provides some guidelines for designing thenetwork, that is, for example, for setting MAC parameters, nodes density or transmitpower, to a
hieve target performan
e.





Introdu
tion
Wireless Ambient Networks (WANs) represent a novel resear
h �eld. Over re
entyears the 
on
ept of Ambient Intelligen
e has emerged to des
ribe intera
tions be-tween a multitude of network-enabled devi
es and servi
es [1℄, [2℄. In this ambientintelligen
e world te
hnology will be almost invisible, embedded in all kinds of ob-je
ts and everyday environments, su
h as the home, oÆ
e, 
ar and train. The termAmbient Intelligen
e has been de�ned by the ISTAG (Advisory Group to the EU In-formation So
iety Te
hnology Program) as the 
onvergen
e of three major key te
h-nologies: ubiquitous 
omputing, ubiquitous 
ommuni
ation, and interfa
es adaptingto the user. WSNs are 
ommonly re
ognized as one of the te
hnologi
al 
ornerstonesof WANs. Agile, low-
ost, ultra-low power networks of sensors 
an 
olle
t a hugeamount of 
riti
al information from the environment. Using a biologi
al analogy, asensor network 
an be seen as the sensory system of the intelligent environment organ-ism [3℄. Sensor networks are irregular aggregations of 
ommuni
ating sensor nodes,whi
h 
olle
t and pro
ess information 
oming from on-board sensors, and they ex-
hange part of this information with neighboring nodes or with nearby 
olle
tionstations.Design, implementation, and deployment of a WSN involves a wide range of dis-
iplines and 
onsiderations for numerous appli
ation-spe
i�
 
onstraints. In the last



2�ve years, signi�
ant progress has been made in the development of WSNs, and someWSN-based 
ommer
ial produ
ts have already appeared on the market.In this thesis this kind of networks are investigated under di�erent perspe
tive,with the purpose of providing guidelines for network design. The mainly investigatedaspe
ts are: 
onne
tivity problems, topology design and MAC proto
ols.The referen
e air interfa
e 
onsidered in almost all the work, is the IEEE 802.15.4,that is one of the most suitable standard for WSNs, thanks to its 
hara
teristi
s of low-
ost, low-
omplexity, low-power 
onsumption and low-rate. In parti
ular, the MACproto
ol de�ned by the 802.15.4 Task Group and the tree-based topology de�ned bythe Zigbee Allian
e are largely used and investigated.Finally, note that most of the results a
hieved have been obtained through math-emati
al analysis, sin
e this methodology allows rapid investigation of the sensitivityof performan
e to the di�erent s
enario, network and system parameters.The work performed has been developed in three di�erent phases, shown in Figure1. Some previous papers have been published before the beginning of the PhD. Theseworks were devoted to the study of energy-eÆ
ient 
arrier sensing multiple a

ess(CSMA)-based MAC proto
ols for 
lustered WSNs [4℄, and to the appli
ation ofsome 
ross layer approa
hes to this kind of networks [5℄. Also a paper related tomodelling in WSNs has been published [6℄.The �rst phase was related to the study of a self-organising single-sink WSN,



3

Figure 1: The di�erent phases of the work.enabling environmental monitoring through the estimate of a s
alar �eld over a bi-dimensional s
enario. Conne
tivity issues, randomness of the 
hannel, MAC issuesand the role of distributed digital signal pro
essing (DDSP) te
hniques, are jointlya

ounted for, in the mathemati
al framework developed. This work has led upto the publi
ation of a Journal paper [7℄ and of a Conferen
e paper [8℄. Despiteits 
ompleteness this framework has some limits: (i) a single-sink s
enario and notthe more general multi-sink s
enario, is a

ounted for; (ii) border e�e
ts are not
onsidered and nodes are assumed to be deployed over an in�nite plane; (iii) themodel is valid only for 
luster-based topologies, therefore nodes have to rea
h thesink through a two-hop 
ommuni
ation, whereas the more general 
ase of multi-hopis not treated; (iv) the MAC proto
ol is very simple, and no referen
e to any spe
i�
standard air interfa
e, is provided.The following phases of the thesis were mainly devoted to over
ome these limits.In parti
ular, the se
ond phase has seen the development of two separate models:



4one related to 
onne
tivity studies and topology design of multi-sink WSNs organisedin trees, and another one devoted to the analyti
al modeling of the IEEE 802.15.4MAC proto
ol. These studies were published in the following Conferen
e papers:[9℄, [10℄, [11℄, [12℄, [13℄. Moreover, to analyti
ally evaluate performan
e of a realair interfa
e suitable for WSNs, the non bea
on- and bea
on-enabled modes of theIEEE 802.15.4 standard, have been modelled. The non bea
on-enabled model hasbeen published in a Journal and a Conferen
e papers [14℄, [15℄. Two papers devotedto the bea
on-enabled mode, instead, have been submitted to a Journal and to aConferen
e [16℄, [17℄ (this work, in fa
t, has been performed in the last year).In 
on
lusion, multi-sink s
enarios, multiple hops 
ommuni
ation, border e�e
tsand the MAC proto
ol of a real air interfa
e, have been envisaged in this phase.The two separate works have been integrated in the third phase of the thesis. Inthis phase, in fa
t, a mathemati
al framework for the evaluation of the throughput(namely, the area throughput, de�ned in the following) of a multi-sink two-hop WSN,has been developed. In this model 
onne
tivity, 
hannel randomness, MAC issues,di�erent distributions of nodes and sinks in the area, and also, border e�e
ts, area

ounted for. This work has led up to the publi
ation of the following Conferen
epapers: [18℄, [19℄, [20℄, [21℄. Note that in this �nal work almost all the limits ofthe model developed in the �rst phase have been over
ome. However, here signalpro
essing issues, are not a

ounted for. The appli
ation of these issues to the newmathemati
al framework is an open issue, and is left for possible future works.In parallel to this last work in the third phase of the thesis, a study related toa new resear
h topi
, has also started. This study is devoted to the appli
ation ofMultiple Input Multiple Output (MIMO) systems to WSNs. Being sensor devi
es



5very tiny, they 
annot be equipped with multiple antenna elements, therefore, the
on
ept of Virtual MIMO (V-MIMO) must be applied. V-MIMO systems, in fa
t,exploit MIMO 
apability, by using devi
es having a single antenna element, thanks to
ooperation between nodes. Conne
tivity issues in Poisson �elds of nodes are appliedto the study of the 
apa
ity of a two-hop V-MIMO system [22℄. Sin
e this workstarted in the last year of the PhD, the results shown here are very preliminary.It is, �nally, important to underline that, as it will be 
lear in the following,the energy 
onsumption issue has been addressed in the thesis, being one of thefundamental issues of WSNs. This performan
e metri
 is, in fa
t, evaluated in almostall mathemati
al models developed in the thesis.I would like, also, to pre
ise that the models for the bea
on- and non bea
on-enabled 802.15.4 networks, des
ribed in Chapter 4, have been 
ompletely developedby myself, under the supervision of Prof. Verdone. Instead, the models des
ribed inChapters 2, 3 and 5 derive from the 
ollaboration with other resear
hers and PhDstudents, therefore, my own 
ontribution was mainly fo
used on parts, and not onthe whole, models themselves.This thesis has been performed mainly in four frameworks: the three Networksof Ex
ellen
e (NoE) funded by the European Commission (EC) through the Sixthand the Seventh Framework Programmes, NEWCOM (2005-2007), CRUISE (2006-2007) and NEWCOM++ (2008-2010), and a 
ollaboration with an Italian SME,Sadel. In the framework of NEWCOM two 
ollaborations with resear
hers at Bilkentand Man
hester Universities have been 
arried out. These 
ollaborations have pro-du
ed the following publi
ations to European Conferen
es: [23℄, [9℄, [10℄, and the



6results of these works are reported in Chapter 3. CRUISE (CReating UbiquitousIntelligent Sensing Environments) is a NoE mainly devoted to the planning and 
o-ordination of resear
h on 
ommuni
ation and appli
ation aspe
ts of wireless sensornetworking in Europe. In this framework a 
ollaboration with University of Roma"La Sapienza" has been established. Thanks to this 
ollaboration the paper [24℄, hasbeen published. The referen
e s
enario sele
ted by this proje
t 
onsists of a WirelessHybrid Network (WHN), namely the Hybrid Hierar
hi
al Ar
hite
ture (HHA), whi
hputs together the two paradigm of the infrastru
ture-based (e.g., Universal MobileTele
ommuni
ations System (UMTS)) and infrastru
ture-less networks (e.g., IEEE802.15.4). In this framework a study related to the 
hara
terisation of the statisti
sof the traÆ
 generated by a 802.15.4 network transmitting data to a sink, a
ting asgateway toward the UMTS network, has been 
arried out [25℄, [26℄. Sin
e this workis related to the topi
 of this thesis, being fo
used on IEEE 802.15.4 traÆ
 statisti
s
hara
terisation, it is reported in the Appendix. However, being this part a minor
ontribution with respe
t to the rest of the thesis, in the Appendix the paper a
-
epted for publi
ation at the European Wireless Conferen
e [26℄ is dire
tly reported,sin
e its integration with the rest of the 
ontents of this thesis is out of the s
ope. Inthe framework of NEWCOM++, the follow up of NEWCOM, a 
ollaboration withAa
hen University has led up to the following publi
ations: [21℄, [20℄, and these re-sults are reported in Chapter 5. Finally, for what 
on
erns the 
ollaboration withSadel, the supervision of some experimental measurements performed with 802.15.4standard-
ompliant devi
es, produ
ed by Frees
ale, has been done.A

ording to the di�erent phases of the work, the thesis is outlined as follows.Chapter 1 provides an overview of the main issues related to WSNs, like appli
ations,



7te
hnologies, et
.., and then introdu
es all the basi
 
on
epts needed to understandthe rest of the thesis, that are mainly, the IEEE 802.15.4 MAC proto
ol, the Zigbee-
ompliant tree-based topology, the link and 
hannel models used here. Chapter 2des
ribes the mathemati
al model developed in the �rst phase. Chapter 3 and 4 aredevoted to the se
ond phase, dealing with 
onne
tivity issues in multi-sink WSNsorganised in trees, and to the modeling of the 802.15.4 MAC proto
ol, respe
tively.Chapter 5 deals with the model for deriving the area throughput, a performan
emetri
 a

ounting for 
onne
tivity and MAC issues. In Chapter 6 the studies of V-MIMO systems are introdu
ed and then 
on
lusions and open issues are dis
ussed.Finally, in the Appendix the paper [26℄ is reported.All the work des
ribed above has led up to the following publi
ations (in one 
aseit is only submitted) to Journals:� C. Buratti, A. Giorgetti and R. Verdone. Cross Layer Design of an EnergyEÆ
ient Cluster Formation Algorithm with Carrier Sensing Multiple A

ess forWireless Sensor Networks. EURASIP Journal, vol. 5, pp. 672-685, De
. 2005;� D. Dardari, A.Conti, C. Buratti and R. Verdone. Mathemati
al evaluationof environmental monitoring estimation error through energy-eÆ
ient WirelessSensor Networks. IEEE Trans. on Mobile Computing, vol. 6, n. 7, pp. 790-803,July 2007;� C. Buratti and R. Verdone. Performan
e Analysis of IEEE 802.15.4 Non-Bea
onEnabled Mode. To appear in IEEE Trans. on Vehi
ular Te
hnologies, 2009;� C. Buratti. Performan
e Analysis of IEEE 802.15.4 Bea
on-Enabled Mode.



8 Submitted to IEEE Transa
tion on Vehi
ular Te
hnologies;
and to the following publi
ations (in one 
ase it is only submitted) to InternationalConferen
es:� C. Buratti, A. Giorgetti and R. Verdone. Simulations of Energy EÆ
ient CarrierSensing Multiple A

ess Proto
ol for Clustered Wireless Sensor Network. Pro
.of IEEE IWWAN 2004, June 2004, Oulu;� A. Conti, D. Dardari, C. Buratti, D. Sangiorgi and R. Verdone. Simulation ofEnergy EÆ
ient Carrier Sensing Multiple A

ess Proto
ol for Clustered WirelessSensor Network. Pro
. of European Conferen
e on Wireless Sensor Networks,EWSN 2005, Jan. 2005, Instanbul, Tur
hy;� R. Verdone and C. Buratti. Modelling for Wireless Sensor Network Proto
olDesign. Pro
. of IEEE IWWAN 2005, May 2005, London, England;� R. Verdone, C. Buratti and J. Orriss. On the Design of Tree-Based Topologiesfor Wireless Sensor Networks. Pro
. IEEE MedHo
Net 2006, June 2006, LipariIsland, Italy;� C. Buratti, J. Orriss and R. Verdone. On the design of tree-based topologiesfor multi-sink wireless sensor networks. Pro
. of IEEE NEWCOM/ACORNWorkshop 2006, Sept. 2006, Vienna, Austria;� C. Buratti and R. Verdone. On the Number of Cluster Heads Minimizing theError Rate for a Wireless Sensor Network using a Hierar
hi
al Topology Over
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Chapter 1Wireless Sensor Networks
This Chapter introdu
es the topi
 of WSNs, providing a de�nition and the main
hara
teristi
s and issues of this kind of networks. A brief overview of the state of theart of the resear
h in this �eld, with parti
ular attention toward the main Europeanproje
ts, is also provided. The main te
hnologies available for the realisation of su
hnetworks (e.g., IEEE 802.15.4, UltraWideBand and Bluetooth) are brie
y des
ribed,with parti
ular emphasis to the IEEE 802.15.4 standard, that will be the referen
ete
hnology in this thesis. Finally, the 
hannel and link models used are introdu
ed,in
luding some 
onne
tivity proprieties for Poisson Point Pro
ess (PPP) �elds ofnodes, useful for the 
onne
tivity models developed in this thesis.1.1 What is a Wireless Sensor Network?A Wireless Sensor Network (WSN) [27{34℄, 
an be de�ned as a network of devi
es,denoted as nodes, whi
h 
an sense the environment and 
ommuni
ate the informationgathered from the monitored �eld (e.g., an area or volume) through wireless links [35℄.The data is forwarded, possibly via multiple hops, to a sink (sometimes denoted as
ontroller or monitor) that 
an use it lo
ally or is 
onne
ted to other networks (e.g.,
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Figure 1.1: Traditional single-sink WSN.the Internet) through a gateway. The nodes 
an be stationary or moving. They 
anbe aware of their lo
ation or not. They 
an be homogeneous or not.This is a traditional single-sink WSN (see Fig. 1.1). Almost all s
ienti�
 papersin the literature deal with su
h a de�nition. This single-sink s
enario su�ers from thela
k of s
alability: by in
reasing the number of nodes, the amount of data gatheredby the sink in
reases and on
e its 
apa
ity is rea
hed, the network size 
an not beaugmented. Moreover, for reasons related to MAC and routing aspe
ts, networkperforman
e 
annot be 
onsidered independent from the network size.A more general s
enario in
ludes multiple sinks in the network (see Fig. 1.2) [36℄.Given a level of node density, a larger number of sinks will de
rease the probability ofisolated 
lusters of nodes that 
annot deliver their data owing to unfortunate signalpropagation 
onditions. In prin
iple, a multiple-sink WSN 
an be s
alable (i.e., thesame performan
e 
an be a
hieved even by in
reasing the number of nodes), while
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Figure 1.2: Multi-sink WSN.this is 
learly not true for a single-sink network. However, a multi-sink WSN doesnot represent a trivial extension of a single-sink 
ase for the network engineer. Theremight be mainly two di�erent 
ases: i) all sinks are 
onne
ted through a separatenetwork (either wired or wireless), or ii) the sinks are dis
onne
ted. In the former
ase, a node needs to forward the data 
olle
ted to any element in the set of sinks.From the proto
ol viewpoint, this means that a sele
tion 
an be done, based on asuitable 
riterium (e.g., minimum delay, maximum throughput, minimum numberof hops, et
). The presen
e of multiple sinks in this 
ase ensures better networkperforman
e with respe
t to the single-sink 
ase (assuming the same number of nodesis deployed over the same area), but the 
ommuni
ation proto
ols must be more
omplex and should be designed a

ording to suitable 
riteria. In the se
ond 
ase,when the sinks are not 
onne
ted, the presen
e of multiple sinks tends to partitionthe monitored �eld into smaller areas; however from the 
ommuni
ation proto
ols



16viewpoint no signi�
ant 
hanges must be in
luded, apart from simple sink dis
overyme
hanisms. Clearly, the most general and interesting 
ase (be
ause of the betterpotential performan
e) is the �rst one, with the sinks 
onne
ted through any type ofmesh network, or via dire
t links with a 
ommon gateway.1.1.1 The nodes' ar
hite
tureThe basi
 elements of a WSN are the nodes (i.e., the sensors), the sinks and thegateways. Sinks and gateways, are usually more 
omplex devi
es than the sensornodes, be
ause of the fun
tionalities they need to provide. The sensor node is thesimplest devi
e in the network, and in most appli
ations the number of sensor nodes ismu
h larger than the number of sinks. Therefore, their 
ost and size must be kept aslow as possible. Also, in most appli
ations the use of battery-powered devi
es is very
onvenient, to make the deployment of su
h nodes easier. To let the network workunder spe
i�ed performan
e requirements for a suÆ
ient time, denoted as networklifetime, the nodes must be 
apable of playing their role for a suÆ
iently long period,using the energy provided by their battery, whi
h in many appli
ations should be notrenewed for years. Thus, energy eÆ
ien
y of all tasks performed by a node is a mustfor the WSN design [37, 38℄.The traditional ar
hite
ture of a sensor node is reported in Fig. 1.3 [27℄. Ami
ropro
essor manages all tasks; one or more sensors are used to take data from theenvironment; a memory is in
luded over the board whi
h is used to store temporarydata, or during its pro
essing; a radio trans
eiver (with the antenna) is also present.All these devi
es are powered by a battery. Traditional batteries 
an provide initial
harges in the order of 10,000 Joules and they should be parsimoniously used for the
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Figure 1.3: Ar
hite
ture of a sensor node.whole duration of the network lifetime by all these devi
es. In some 
ases, energys
avenging te
hniques 
an be introdu
ed to enlarge lifetime of nodes, but in fewappli
ations this 
an be really 
onsidered as a viable te
hnique.As a result of this need to have energy eÆ
ient te
hniques implemented over theboard, all data pro
essing tasks are normally distributed over the network; therefore,the nodes 
ooperate to provide the data to the sinks. This is also be
ause of the low
omplexity that is a

epted for the ar
hite
ture of su
h nodes.In 
on
lusion, a WSN 
an be generally des
ribed as a network of nodes that
ooperatively sense the environment and may 
ontrol it, enabling intera
tion betweenpeople or 
omputers and the surrounding environment.The density of nodes and sinks is a very relevant parameter for WSNs: the densityof sensor nodes de�nes the level of 
overage of the monitored spa
e (i.e., what per-
entage is su
h that if an event happens inside, it is dete
ted by at least one node);however, it also de�nes the degree of 
onne
tivity, or rea
hability, that is a relevant



18issue des
ribed as in Chapter 3. On the other hand the density of sinks plays a sig-ni�
ant role in de�ning the performan
e of the network in terms of su

ess rate ofdata transmissions, et
.. (see Chapter 4).
1.1.2 Main Features of WSNsThe main features of WSNs, as 
ould be dedu
ed by the general des
ription givenin the previous se
tions, are: s
alability with respe
t to the number of nodes inthe network, self-organisation, self-healing, energy eÆ
ien
y, a suÆ
ient degree of
onne
tivity among nodes, low-
omplexity, low 
ost and size of nodes. Those proto
olar
hite
tures and te
hni
al solutions providing su
h features 
an be 
onsidered asa potential framework for the 
reation of these networks, but, unfortunately, thede�nition of su
h a proto
ol ar
hite
ture and te
hni
al solution is not simple, and theresear
h still needs to work on it [31℄.The massive resear
h on WSNs started after the year 2000. However, it tookadvantage of the out
ome of the resear
h on wireless networks performed sin
e these
ond half of the previous 
entury. In parti
ular, the study of ad ho
 networksattra
ted a lot of attention for several de
ades, and some resear
hers tried to reporttheir skills a
quired in the �eld of ad ho
 networks, to the study of WSNs.A

ording to some general de�nitions, wireless ad ho
 networks are formed dy-nami
ally by an autonomous system of nodes 
onne
ted via wireless links withoutusing an existing network infrastru
ture or 
entralised administration. Nodes are
onne
ted through "ad ho
" topologies, set up and 
leared a

ording to user needsand temporary 
onditions. Apparently, this de�nition 
an in
lude WSNs. However,



19this is not true. This is the list of main features for wireless ad ho
 networks: un-planned and highly dynami
al; nodes are "smart" terminals (laptops, et
); typi
alappli
ations in
lude real-time or non real-time data, multimedia, voi
e; every node
an be either sour
e or destination of information; every node 
an be a router towardother nodes; energy is not the most relevant matter; 
apa
ity is the most relevantmatter.Apart from the very �rst item, whi
h is 
ommon to WSNs, in all other 
ases thereis a 
lear distin
tion between WSNs and wireless ad ho
 networks. In WSNs, nodesare simple and low-
omplexity devi
es; the typi
al appli
ations require few bytes sentperiodi
ally or upon request or a

ording to some external event; every node 
an beeither sour
e or destination of information, not both; some nodes do not play the roleof routers; energy eÆ
ien
y is a very relevant matter, while 
apa
ity is not for mostappli
ations. Therefore, WSNs are not a spe
ial 
ase of wireless ad ho
 networks.Thus, a lot of 
are must be used when taking proto
ols and algorithms whi
h aregood for ad ho
 networks, and using them in the 
ontext of WSNs.1.1.3 Issues Related to Energy ManagementAs stated above, energy eÆ
ien
y is a key issue for most WSN appli
ations. Networklifetime must be kept as long as possible. Clearly, it depends on how long 
an bethe period of time starting with network deployment, and ending when the batteryof sensor nodes is no more able to provide the energy needed for 
ommuni
ation,sensing or pro
essing. The energy 
onsumption issue is taken into a

ount in all thisthesis. However, here a brief dis
ussion about some important aspe
ts of the energymanagement, is introdu
ed.



20 As shown in Fig. 1.3, a node is basi
ally 
omposed of a battery, a mi
ropro
essor,a memory, the sensors and the trans
eiver. Normally, when in transmit mode, thetrans
eiver drains mu
h more 
urrent from the battery than the mi
ropro
essor ina
tive state, or the sensors and the memory 
hip. As a 
on
lusion, the trans
eiveris the part responsible for the 
onsumption of most energy. This justi�es the energy
onsumption model adopted in almost all the thesis. Moreover, the ratio betweenthe energy needed for transmitting and for pro
essing a bit of information is usuallyassumed to be mu
h larger than one, and this is the reason why the 
ommuni
ationproto
ols need to be designed a

ording to energy eÆ
ient paradigms, while pro
ess-ing tasks are not, usually. On the other hand, sometimes data pro
essing te
hniquesimplemented in WSNs require long pro
essing tasks to be performed at the mi
ro-pro
essor. This 
an 
ause signi�
ant energy 
onsumption by the mi
ropro
essor,even 
omparable to the energy 
onsumed during transmission, or re
eption, by thetrans
eiver. This is the reason why in Chapter 2 the energy 
onsumed for perform-ing signal pro
essing is a

ounted for. Thus, the general rule that 
ommuni
ationproto
ol design is mu
h more important than a 
areful design of the pro
essing tasks
heduling, 
an not be 
onsidered always true.Intuitively, the trans
eiver state is the state that requires more 
urrent drainfrom the battery is the transmit state, as both the baseband and radio frequen
y(RF) part of the trans
eiver are a
tive. However, the same is true for the re
eivestate. Therefore, the re
eive state 
an 
onsume as mu
h energy as the transmitdoes. Owing to the hardware design prin
iples, sometimes in the re
eive state thetrans
eiver 
an 
onsume even more energy than in the transmit state. For this reasonthe energy 
onsumed for re
eiving pa
kets and for doing 
arrier sensing is a

ounted



21for in almost all the thesis. Therefore, re
eive and transmit states are both very energy
onsuming, and the trans
eiver must be kept in those two states for the shortestpossible per
entage of time.Clearly, permanen
e in the transmit state is needed only when a data burst needsto be transmitted. The lesser are the data burst to be transmitted, the longer isnode life. This suggests to avoid using proto
ols based on 
omplex handshakes.As an example, in some 
ases it 
ould be better to avoid a
knowledge me
hanisms.However, a trans
eiver might need to stay in re
eive mode for longer periods of time,if proper s
heduling of transmit times is not performed. Proto
ols should avoid aphenomenon, 
alled overhearing, su
h that nodes need to stay in re
eive time for longperiods waiting for a pa
ket while listening to many data bursts sent to other nodes.However, this is not enough. In fa
t, many MAC proto
ols 
onsider 
hannel sensingme
hanisms: the trans
eiver senses the wireless 
hannel for some periods of time inorder to determine whether it is busy or free. Depending on the spe
i�
 hardwareplatform, 
hannel sensing 
an be very energy 
onsuming, almost as the transmit andre
eive states. Thus, proto
ols must not abuse of the 
hannel sensing me
hanism andwhen using a CSMA proto
ol, long (in the order of 95%-99% of time) intervals of timewith the trans
eiver in sleep state, are required. During su
h periods, a data burstsent to the node 
an not be dete
ted. Therefore, the management of sleep mode is avery relevant issue for WSNs.A �nal 
onsideration regards the use of power 
ontrol. This te
hnique, settingthe transmit power at the minimum level needed to allow signal 
orre
t dete
tionat the re
eiver, is often used in wireless networks to redu
e the interferen
e impa
tof transmissions, and the useless emission of radiowaves with large power. However,



22setting a proper power level requires information on the 
hannel gain, whi
h mightbe diÆ
ult to a
hieve in appli
ations with very bursty data transmissions. Thereforeit is worthwhile wandering whether power 
ontrol is a useful te
hnique for WSNs.Moreover, looking at the data reported on the datasheet of a sample trans
eiver usedin many 
ommer
ial platforms, su
h as CHIPCON CC2420 [39℄, one 
an derive aninteresting 
on
lusion. When transmitting at the largest power level (0 [dBm℄), about17 [mA℄ are drained from the battery. At minimum transmit power (-25 [dBm℄), the
urrent drained is 8.5 [mA℄. Therefore there is no relevant energy saving, when de-
reasing the power level of transmission by 25 [dB℄. Even if this example is given withreferen
e to a spe
i�
 
hip, there are reasons to state that the 
on
lusion is general.The energy 
onsumed in transmission state is not proportional to the transmit powerlevel used, and therefore power 
ontrol is not an eÆ
ient te
hnique to redu
e energy
onsumption. For this reason power 
ontrol is not used in this thesis.1.2 Current and Future Resear
h on WSNsMany te
hni
al topi
s of WSNs are still 
onsidered by resear
h, as the 
urrent solu-tions are known to be non optimised, or too mu
h 
onstrained.From the physi
al layer viewpoint, standardisation is a key issue for su

ess ofWSN markets. Currently the basi
 options for building HW/SW platforms for WSNsare Bluetooth, IEEE 802.15.4 and 802.15.4a (all these te
hnologies are brie
y treatedin se
tions 1.4 and 1.5). At least, most 
ommer
ially available platforms use thesethree standards for the air interfa
e. For low data rate appli
ations (250 [kbit/s℄ onthe air), IEEE 802.15.4 seems to be the most 
exible te
hnology 
urrently available.Clearly, the need to have low-
omplexity and low-
ost devi
es does not push resear
h



23in the dire
tion of advan
ed transmission te
hniques.MAC and network layer have attra
ted a lot of attention in the past years andstill deserve investigation. In parti
ular, 
ombined approa
hes that jointly 
onsiderMAC and routing seem to be very su

essful.Topology 
reation, 
ontrol and maintenan
e are very hot topi
s. Espe
ially withIEEE 802.15.4, whi
h allows 
reation of several types of topologies (stars, mesh, trees,
luster-trees), these issues play a very signi�
ant role.Being WSNs a very hot topi
 in the re
ent years many works dealing with MACand routing proto
ols [34, 40, 41℄ have been published. For the sake of 
on
iseness,an overview of the literature related to these topi
s is not reported in this thesis.Examples of overviews for these proto
ols 
ould be found in [27, 29{31,42℄.Basi
ally, the resear
h in the �eld of WSNs started very re
ently with respe
t toother areas of the wireless 
ommuni
ation so
iety, as examples like broad
asting or
ellular networks. The �rst IEEE papers on WSNs were published after the turn ofthe Millennium.The �rst European proje
ts on WSNs were �nan
ed after year 2001. In the US theresear
h on WSNs was boosted few years before. Many theoreti
al issues still needa lot of investments. Europe will �nan
e proje
ts having WSNs as 
ore te
hnologiesfor at least the next seven years, within the Seventh Framework Programme.In Europe, during the sixth and seventh Framework Programmes, four Proje
tswere �nan
ed by the EC, with expli
it a
tivities dedi
ated to 
ommuni
ation proto-
ols, ar
hite
tural and te
hnologi
al solutions for embedded systems: WISENTS [43℄,



24e-SENSE [44℄, CRUISE [45℄ and CONET [46℄. Embedded WISENTS was a Coordi-nated A
tion funded by the EC, aiming at in
reasing the awareness and to �nd outa vision as well as a roadmap towards wireless sensor networks and 
ooperating em-bedded systems within the a
ademi
 
ommunity and, most importantly, within themanufa
turers of proper te
hnologies as well as potential users 
ommunity. e-SENSEproje
t, was fo
used on 
apturing ambient intelligen
e for beyond 3G mobile 
ommu-ni
ation systems through wireless sensor networks. e-SENSE has proposed a 
ontext
apturing framework that enabled the 
onvergen
e of many input modalities, mainlyfo
using on energy eÆ
ient wireless sensor networks that are multi-sensory in their
omposition, heterogeneous in their networking, and either mobile or integrated inthe environment. CRUISE (CReating Ubiquitous Intelligent Sensing Environments)was a Network of Ex
ellen
e mainly devoted to the planning and 
oordination ofresear
h on 
ommuni
ation and appli
ation aspe
ts of wireless sensor networking inEurope. The referen
e s
enario of this proje
t 
onsists of a WHNs, namely the HHA(des
ribed and studied in the Appendix of this thesis) whi
h puts together the twoparadigms of the infrastru
ture based and infrastru
ture less networks. In this ar-
hite
ture wireless sensor, a
tuators and very tiny devi
es, like smart tags, have totransmit their data to the infrastru
ture, through mobile gateways, 
arried usuallyby people. Finally, CONET (Cooperating Objet
s NETwork on Ex
ellen
e) aims at
reating a visible 
ommunity of resear
hers in the area of 
ooperating obje
ts 
apa-ble of driving the domain in the 
oming years. Cooperation is de�ned as the abilityof individual entities or obje
ts (that 
ould be sensors, 
ontrollers or a
tuators) touse 
ommuni
ation as well as dynami
 and loose federation to jointly strive to rea
h
ommon goal while taking 
are not to overtax their available resour
es.



25Then, it is also relevant to mention that there exist two European Te
hnology Plat-forms, gathering all stakeholders in the �eld, related to the area of WSNs: e-Mobilityand ARTEMIS. They have drawn resear
h agendas that will drive the sele
tion oflarge 
ooperative proje
ts in the next years in Europe.1.3 Appli
ationsThis se
tion provides an overview of the major appli
ations for WSNs. The appli
a-tion areas 
onsidered are the following [35℄:� Environmental monitoring� Health Care� Mood based servi
es� Positioning and tra
king� Tourism� Logisti
s� Transportation� Home and oÆ
eA brief des
ription of those appli
ations whi
h are stri
tly related to WANs, isprovided: environmental monitoring, health 
are, positioning and tra
king and homeand oÆ
e.



26 Finally, another 
lassi�
ation for WSN appli
ations, is introdu
ed. This 
lassi�-
ation divides appli
ations between: Event Dete
tion and Spatial and Time RandomPro
ess.Environmental MonitoringThese appli
ations may monitor indoor or outdoor environments, where the super-vised area may be thousands of square kilometers and the duration of the supervisionmay last years. One of the main issue 
ould be to determine the lo
ation of theevents. Su
h systems are to be infrastru
ture-less and very robust, be
ause of theinevitable 
hallenges in the nature, like living things or atmospheri
 events. Naturaldisasters su
h as 
oods, forest �re, earthquakes may be per
eived earlier by installingnetworked embedded systems 
loser to pla
es where these phenomena may o

ur.The system should respond to the 
hanges of the environment as qui
k as possible.The environment to be observed will mostly be ina

essible by the human all thetime. Hen
e, robustness plays an important role. Also se
urity and surveillan
e ap-pli
ations have the most number of 
hallenging requirements: real-time monitoringte
hnologies with high se
urity requirements, are required.Health CareAppli
ations in this 
ategory in
lude telemonitoring of human physiologi
al data,tra
king and monitoring of do
tors and patients inside a hospital, drug administratorin hospitals et
. Merging wireless sensor te
hnology into health and medi
ine appli-
ations will make life mu
h easier for do
tors, disables people and patients. They



27will also make diagnosis and 
onsultan
y pro
esses regardless of lo
ation and tran-sition automati
ally from one network in a 
lini
 to the other installed in patient'shome. As a result, high quality health
are servi
es will get 
loser to the patients.Health appli
ations are 
riti
al, sin
e vital events of humans will be monitored andautomati
ally interfered. The main issues are reliability and limited delays.Positioning and animals tra
kingAlso the lo
alisation of people, obje
ts and animals are important appli
ations ofWSNs. Te
hnologies using global positioning systems have emerged from some timenow but most of the solutions only work in outdoor s
enarios. Lo
alization indoorsinvolves mu
h more diÆ
ulties and represents an unsolved problem in many 
ases,espe
ially when relative positioning to others and to obje
ts is required, while inmovement.Homes and OÆ
eIt is a wonderful idea for home automation using the ability to turn lights on ando� remotely, monitor a sleeping baby without being in the room and having a freshhot 
o�ee 
up in the kit
hen for breakfast. Smart homes have the ability to a
quireand apply knowledge about human surroundings and also adapt in order to improvehuman experien
e. It is saturated with 
omputing and 
ommuni
ation 
apabilities tomake intelligent de
isions in an automated manner. Its intelligent assistants provideintera
tion with the information web. Its advan
e ele
troni
s is also used to enableearly dete
tion of possible problems and emergen
y situations. Also the develop-ment of smart oÆ
es, 
ould provide employers s
anning the environment to get the



28information on the lo
alisation of movable obje
ts in the oÆ
e.1.3.1 Event Dete
tion and Spatial and Time Random Pro-
ess EstimationA

ording to the type of data that must be gathered in the network, the di�erentappli
ations 
ould be 
lassi�ed into two 
ategories: Event Dete
tion and Spatial andTime Random Pro
ess Estimation.In the �rst 
ase sensors must dete
t an event, for example a �re in a forest, aquake, et
.., therefore, sensors simply aim at 
omparing the s
alar �eld with giventhresholds [47, 48℄. The signal pro
essing within devi
es is very simple, owing to thefa
t that ea
h devi
e has to 
ompare measurement results to a given threshold andsend the binary information to the �nal sink(s). The density of nodes must ensurethat the event is dete
ted with given probability and that the report 
an be re
eivedby the sink(s) with given probability. The sampling frequen
y, that is the frequen
ywith whi
h nodes take samples from the environment must ensure that the event isdete
ted with given probability and that the report timely rea
hes the sink(s).In the spatial and time random pro
ess estimation appli
ation the WSN aims atestimating a given physi
al phenomenon (e.g., the atmospheri
 pressure in a wide area,or the ground temperature variations in a small vol
ani
 site), whi
h 
an be modelledas a bi-dimensional random pro
ess (generally non stationary). Therefore, in this 
asethe estimation of the entire behavior of the s
alar �eld is needed [49,50℄. Consideringa typi
al appli
ation related to data gathering from an area and forwarding data to�nal sink(s), when sensors re
eive a servi
e request, 
oming from the sink(s), theytake a sample from the environment and transmit it, by following an appropriate
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ommuni
ation proto
ol, to it, whi
h is in 
harge of 
olle
ting all information dete
tedby nodes and estimating the pro
ess realisation. The sampling frequen
y must ensurethat the pro
ess evolution is tra
ked.1.4 IEEE 802.15.4 Te
hnologyIEEE 802.15.4 wireless te
hnology is a short-range 
ommuni
ation system intendedto provide appli
ations with relaxed throughput and laten
y requirements in wirelesspersonal area networks (WPANs). The key features of 802.15.4 wireless te
hnologyare low 
omplexity, low 
ost, low power 
onsumption, low data rate transmissions, tobe supported by 
heap either �xed or moving devi
es. The main �eld of appli
ationof this te
hnology is the implementation of WSNs.The IEEE 802.15.4 Working Group1 fo
uses on the standardization of the bottomtwo layers of ISO/OSI proto
ol sta
k. The other layers are normally spe
i�ed byindustrial 
onsortia su
h as the ZigBee Allian
e2.In the following some te
hni
al details related to the physi
al layer and the MACsublayer as de�ned in the standard, are reported. Moreover, some 
hara
teristi
srelated to higher layers will be presented, with parti
ular attention to Zigbee tree-based topology, largely used in this thesis.1.4.1 IEEE 802.15.4 Physi
al LayerThe 802.15.4 
ore system 
onsists of an RF trans
eiver and the proto
ol sta
k, de-pi
ted in Fig. 1.4. The system o�ers low rate servi
es that enable the 
onne
tion of1See also the IEEE 802.15.4 web site: http://www.ieee802.org/15/pub/TG4.html2See also the ZigBee Allian
e web site: http://www.zigbee.org/en/index.asp
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Figure 1.4: ZigBee proto
ol sta
k.
possibly mobile low-
omplexity devi
es based on the 
arrier sensing multiple a

esswith 
ollision avoidan
e (CSMA/CA) 
hannel a

ess te
hnique.The 802.15.4 physi
al layer operates in three di�erent unli
ensed bands (and withdi�erent modalities) a

ording to the geographi
al area where the system is deployed.However, dire
t sequen
e spread spe
trum (DS-SS) is wherever mandatory to redu
ethe interferen
e level in shared unli
ensed bands.The physi
al (PHY) provides the interfa
e with the physi
al medium. It is in
harge of radio trans
eiver a
tivation and dea
tivation, energy dete
tion, link qual-ity, 
lear 
hannel assessment, 
hannel sele
tion, and transmission and re
eption ofthe message pa
kets. Moreover, it is responsible for establishment of the RF link



31between two devi
es, bit modulation and demodulation, syn
hronization between thetransmitter and the re
eiver, and, �nally, for pa
ket level syn
hronization.IEEE 802.15.4 spe
i�es a total of 27 half-duplex 
hannels a
ross the three fre-quen
y bands, whose 
hannelization is depi
ted in Fig. 1.5 and is organized as fol-lows:� the 868 [MHz℄ band, ranging from 868.0 and 868.6 [MHz℄ and used in theEuropean area, implements a -
osine-shaped binary phase shift keying (BPSK)modulation format, with DS-SS at 
hip-rate 300 [k
hip/s℄ (a pseudo-randomsequen
e of 15 
hips transmitted in a 25 [�s℄ symbol period). Only a single
hannel with data rate 20 [kbps℄ is available and, with a required minimum-92 [dBm℄ RF sensitivity, the ideal transmission range (i.e., without 
onsideringwave re
e
tion, di�ra
tion and s
attering) is approximatively 1 [km℄;� the 915 [MHz℄ band, ranging between 902 and 928 [MHz℄ and used in theNorth Ameri
an and Pa
i�
 area, implements a raised-
osine-shaped BPSKmodulation format, with DS-SS at 
hip-rate 600 [k
hip/s℄ (a pseudo-randomsequen
e of 15 
hips is transmitted in a 50 [�s℄ symbol period). Ten 
hannelswith rate 40 [kbps℄ are available and, with a required minimum -92 [dBm℄ RFsensitivity, the ideal transmission range is approximatively 1 [km℄;� the 2.4 [GHz℄ industrial s
ienti�
 medi
al (ISM) band, whi
h extends from2400 to 2483.5 [MHz℄ and is used worldwide, implements a half-sine-shapedO�set Quadrature Shift Keying (O-QPSK) modulation format, with DS-SS at2 [M
hip/s℄ (a pseudo-random sequen
e of 32 
hips is transmitted in a 16 [�s℄symbol period). Sixteen 
hannels with data rate 250 [kbps℄ are available and,
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Figure 1.5: Channelization at the 868/915 [MHz℄ bands and at the 2.4 [GHz℄ band.with minimum -85 [dBm℄ RF sensitivity required, the ideal transmission rangeis approximatively 220 [m℄.The ideal transmission range is 
omputed 
onsidering that, although any legallya

eptable power is permitted, IEEE 802.15.4-
ompliant devi
es should be 
apable oftransmitting at -3 [dBm℄.Sin
e the 2.4 [GHz℄ band is shared with many other servi
es, the other two avail-able bands 
an be used as an alternative.Power 
onsumption is a primary 
on
ern, so, to a
hieve long battery life the energymust be taken 
ontinuously at an extremely low rate, or in small amounts at a lowpower duty 
y
le: this means that IEEE 802.15.4-
ompliant devi
es are a
tive only



33during a short time. The standard allows some devi
es to operate with both thetransmitter and the re
eiver ina
tive for over 99% of time. So, the instantaneous linkdata rates supported (i.e., 20 [kbps℄, 40 [kbps℄, and 250 [kbps℄) are high with respe
tto the data throughput in order to minimize devi
e duty 
y
le.A

ording to the IEEE 802.15.4 standard, transmission is organized in frames,whi
h 
an di�er a

ording to the relevant purpose. In parti
ular, there are four framestru
tures, ea
h designated as a Physi
al Proto
ol Data Unit (PPDU): a bea
onframe, a data frame, an a
knowledgement frame and a MAC 
ommand frame. Theyare all stru
tured with a Syn
hronization Header (SHR), a Physi
al Header (PHR),and a Physi
al Servi
e Data Unit (PSDU), whi
h is 
omposed of a MAC PayloadData Unit (MPDU), whi
h in turn is 
onstru
ted with a MAC Header (MHR), aMAC Footer (MFR), and a MAC Servi
e Data Unit (MSDU), ex
epting the a
-knowledgement frame, whi
h does not 
ontain an MSDU. The stru
ture of ea
hpossible frame is depi
ted in Fig. 1.6-1.9. To dete
t that a message has been re
eived
orre
tly, a 
y
li
 redundan
y 
he
k (CRC) is used. The meaning of the four possibleframe stru
tures will be 
lear in the following, after introdu
ing the possible networktopologies and the possible MAC 
hannel a

ess strategies.1.4.2 IEEE 802.15.4 Network Topologies and OperationalModesTo over
ome the limited transmission range, multihop self-organizing network topolo-gies are required. These 
an be realized taking into a

ount that IEEE 802.15.4 de-�nes two type of devi
es: the full fun
tion devi
e (FFD) and the redu
ed fun
tion
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Figure 1.6: Bea
on frame stru
ture.
devi
e (RFD). The FFD 
ontains the 
omplete set of MAC servi
es and 
an operateas either a network 
oordinator (from this point in time also denoted as WPAN 
o-ordinator) or as a simple network devi
e. The RFD 
ontains a redu
ed set of MACservi
es and 
an operate only as a network devi
e.Two basi
 topologies are allowed, but not 
ompletely des
ribed by the standardsin
e de�nition of higher layers fun
tionalities are out of the s
ope of 802.15.4: thestar topology, formed around an FFD a
ting as a WPAN 
oordinator, whi
h is theonly node allowed to form links with more than one devi
e, and the peer-to-peertopology, where ea
h devi
e is able to form multiple dire
t links to other devi
es sothat redundant paths are available. An example of both the IEEE 802.15.4-
ompliantnetwork topologies is shown in Fig. 1.10.Star topology is preferable in 
ase 
overage area is small and low laten
y is required
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Figure 1.7: Data frame stru
ture.
by the appli
ation. In this topology, 
ommuni
ation is 
ontrolled by the WPAN 
oor-dinator that a
ts as network master, sending pa
kets, named bea
ons for syn
hroniza-tion and managing devi
e asso
iation. Network devi
es are allowed to 
ommuni
ateonly with the WPAN 
oordinator and any FFD may establish its own network bybe
oming a WPAN 
oordinator a

ording to a prede�ned poli
y. A network devi
ewishing to join a star network listen for a bea
on message and, after re
eiving it,the network devi
e 
an send an asso
iation request ba
k to the WPAN 
oordinator,whi
h allows the asso
iation or not. Star networks support also a non bea
on-enabledmode. In this 
ase, bea
ons are used for asso
iation purpose only, whereas syn
hro-nization is a
hieved by polling the WPAN 
oordinator for data on a periodi
 basis.Star networks operate independently from their neighboring networks.Peer-to-peer topology is preferable in 
ase a large area should be 
overed andlaten
y is not a 
riti
al issue. This topology allows the formation of more 
omplexnetworks and permits any FFD to 
ommuni
ate with any other FFD behind its
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Figure 1.8: A
knowledgement frame stru
ture.
transmission range via multi-hop. Ea
h devi
e in a peer-to-peer stru
ture needs toproa
tively sear
h for other network devi
es. On
e a devi
e is found, the two devi
es
an ex
hange parameters to re
ognize the type of servi
es and features ea
h supports.However, the introdu
tion of multihop requires additional devi
e memory for routingtables.IEEE 802.15.4 
an also support other network topologies, su
h as 
luster, mesh,and tree. These last network topology options are not part of the IEEE 802.15.4standard, but the tree topology is des
ribed in the ZigBee Allian
e spe
i�
ations [51℄.This topology, whi
h is depi
ted in Fig. 1.11 as an example, 
an be interpretedas a hierar
hi
al tree of network devi
es where all the devi
es in the network mustbe FFDs with the ex
eption of the leaves whi
h, sin
e they must do no messagerelaying, may be either FFDs or RFDs. Exa
tly one devi
e in the network assumes thespe
ial role of the WPAN 
oordinator. Surrounding ea
h 
oordinator, a hierar
hi
altree may be formed in a typi
al parent-
hild relationship, but only one single devi
e
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Figure 1.9: MAC 
ommand frame stru
ture.
in the entire network fun
tions as the WPAN 
oordinator. In 
ase more WPAN
oordinators are present, a forest of disjoint trees, rooted at the WPAN 
oordinatorsis established. In this 
ase the 
oordinators and the nodes belonging to the di�erentWPANs will use di�erent 
hannel frequen
ies (that is the 
hannel sele
ted by theWPAN 
oordinator during the topology formation phase, see se
tion 1.4.5) and nodesbelonging to di�erent WPANs do not interfere.All devi
es, regardless of the type of topology, belonging to a parti
ular networkuse their unique IEEE 64-bit addresses and a short 16-bit address is allo
ated by theWPAN 
oordinator to uniquely identify the network.Finally, the WPAN 
oordinator ele
tion 
an be performed in di�erent ways a
-
ording to the appli
ation. In parti
ular, for the appli
ations in whi
h only one devi
e
an be the 
oordinator (e.g., a gateway) it is preferable to have a dedi
ated WPAN
oordinator, or in other appli
ations it 
ould be signi�
ant several eligible FFDs andto have an event-determined WPAN 
oordinator, or �nally there 
an be appli
ations
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Figure 1.10: The two IEEE 802.15.4-
ompliant network topologies: star and peer-to-peer topology.
where it is not relevant whi
h parti
ular devi
e is the WPAN 
oordinator, in this
ase it 
an be self-determined. Moreover, the WPAN 
oordinator may be sele
tedbe
ause it has spe
ial 
omputation 
apability, a bridging 
apability to other networkproto
ols, or simply be
ause it was among the �rst parti
ipants in the formation ofthe network.1.4.3 IEEE 802.15.4 MAC SublayerThe MAC sublayer, together with the Logi
al Link Control (LLC) sublayer, 
omprisesthe data link layer in the ISO/OSI model. The MAC layer provides a

ess 
ontrol to
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Figure 1.11: ZigBee-
ompliant tree network topology.
a shared 
hannel and reliable data delivery.IEEE 802.15.4 uses a proto
ol based on the CSMA/CA algorithm, whi
h requireslistening to the 
hannel before transmitting to redu
e the probability of 
ollisions withother ongoing transmissions. The main fun
tions performed by the MAC sublayer are:asso
iation and disasso
iation, se
urity 
ontrol, optional star network topology fun
-tions (su
h as bea
on generation and Guaranteed Time Slots (GTSs) management),generation of a
knowledge (ACK) frames (if used), and �nally to provide appli
ationsupport for the two possible network topologies des
ribed in the standard.IEEE 802.15.4 de�nes two di�erent operational modes, namely the bea
on-enabled



40and the non bea
on-enabled, whi
h 
orrespond to two di�erent 
hannel a

ess me
h-anisms.In the non bea
on-enabled mode nodes use an unslotted CSMA/CA proto
ol toa

ess the 
hannel and transmit their pa
kets [52℄. The algorithm is implementedusing units of time 
alled ba
ko� periods.Ea
h node maintains two variables for ea
h transmission attempt: NB and BE.NB is the number of times the CSMA/CA algorithm was required to ba
ko� whileattempting the 
urrent transmission; this value will be initialized to 0 before ea
hnew transmission attempt and 
annot assume values larger than NBmax, equal to4. BE is the ba
ko� exponent related to the maximum number of ba
ko� periods anode will wait before attempting to assess the 
hannel. BE will be initialized to thevalue of BEmin, equal to 3, and 
annot assume values larger than BEmax, equal to5. Figure 1.12 illustrates the steps of the CSMA/CA algorithm, starting from whenthe node has data to be transmitted. First, NB and BE are initialized and then theMAC layer will delay any a
tivities for a random number of ba
ko� periods in therange (0, 2BE-1) [step (1)℄. After this delay, 
hannel sensing is performed for one unitof time [step (2)℄. If the 
hannel is assessed to be busy [step (3)℄, the MAC sublayerwill in
rease both NB and BE by one, ensuring that BE is not larger than BEmax. Ifthe value of NB is less than or equal to NBmax, the CSMA/CA algorithm will returnto step (1). If the value of NB is larger than NBmax, the CSMA/CA algorithm willterminate with a \Failure," meaning that the node does not su

eed in a

essing the
hannel. If the 
hannel is assessed to be idle [step (4)℄, the MAC layer will begintransmission of data immediately (\Su

ess" in a

essing the 
hannel).
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Figure 1.12: The IEEE 802.15.4 CSMA/CA algorithm in the non bea
on-enabled
ase.
In the bea
on-enabled mode [52℄, instead, the a

ess to the 
hannel is managedthrough a superframe, starting with a pa
ket, 
alled bea
on, transmitted by WPAN
oordinator. The superframe may 
ontain an ina
tive part, allowing nodes to go insleeping mode, whereas the a
tive part is divided into two parts: the ContentionA

ess Period (CAP) and the Contention Free Period (CFP), 
omposed by GTSs,that 
an be allo
ated by the sink to spe
i�
 nodes (see Figure 1.14). The use of GTSsis optional.The duration of the a
tive part and of the whole superframe, depend on the valueof two integer parameters ranging from 0 to 14, that are, respe
tively, the superframeorder (SO), and the bea
on order (BO), with BO � SO. BO de�nes the interval oftime between two su

essive bea
ons, namely the bea
on interval, BI, is equal to
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Figure 1.13: The IEEE 802.15.4 CSMA/CA algorithm in the bea
on-enabled 
ase.
BI = 16 � 60 � 2BO � Ts ; (1.4.1)where Ts = 16 [�s℄ is the symbol time.The duration of the a
tive part of the superframe, 
ontaining CAP and CFP,namely the superframe duration, SD, is equal toSD = 16 � 60 � 2SO � Ts : (1.4.2)A

ording to the standard ea
h GTS must have a duration multiple of 60 � 2SO �Ts and must 
ontain the pa
ket to be transmitted by the node to whi
h the GTSis allo
ated to and also an inter-frame spa
e, equal to 40Ts. This is, in fa
t, theminimum interval of time that must be guaranteed between the re
eption of twosubsequent pa
kets. The WPAN 
oordinator may allo
ate up to seven GTSs, but a
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Figure 1.14: Superframe Stru
ture.
suÆ
ient portion of the CAP must remain for 
ontention-based a

ess. The minimumCAP duration is equal to 440 Ts.For what 
on
erns the CSMA/CA algorithm used in the CAP portion of thesuperframe the only di�eren
e with the non bea
on-enabled mode is that nodes haveto �nd the 
hannel free for two subsequent ba
ko� periods before transmitting thepa
ket (see Figure 1.13). To this aim, ea
h node maintains another variable, 
alledCW , denoting the number of ba
ko� periods that need to be 
lear of 
hannel a
tivitybefore the transmission 
an start. First, CW is initialized to 2. When 
hannelsensing is performed for one ba
ko� period [step (2)℄, if the 
hannel is assessed tobe busy, CW is set to 2 and if NB < NBmax the algorithm returns to step (1);



44otherwise the algorithm will unsu

essfully terminate, meaning that the node doesnot su

eed in a

essing the 
hannel. If the 
hannel is assessed to be idle, instead,CW is de
remented by 1 and 
ompared with 0. If CW > 0, the algorithm returns tostep (2); otherwise a transmission may start.The other di�eren
e with the non bea
on-enabled 
ase is that ba
ko� periodboundaries of every node in the WPAN must be aligned with the superframe slotboundaries of the 
oordinator, therefore, the beginning of the �rst ba
ko� period ofea
h node is aligned with the beginning of the bea
on transmission. Moreover, alltransmissions may start on the boundary of a ba
ko� period.1.4.4 Data transfer Proto
ol and MAC FramesAs a 
onsequen
e of the di�erent type of topologies and the possibility of implementingthe bea
on-enable mode, three di�erent MAC data transfer proto
ols are de�ned byIEEE 802.15.4:� in 
ase of bea
on-enabled star topology, a network devi
e wishing to send datato the WPAN 
oordinator needs to listen for a bea
on. If it does not havea GTS assigned, the devi
e transmits its data frame in the 
ontention a

essperiod with CSMA/CA. If the devi
e has a GTS assigned, it waits for theappropriate one to transmit its data frame. Afterwards, the WPAN 
oordinatorsends ba
k an a
knowledgement to the network devi
e, as shown in Fig. 1.15.When the WPAN 
oordinator has data for a network devi
e, it sets a spe
ial
ag in its bea
on. On
e the appropriate network devi
e dete
ts that the WPAN
oordinator has pending data for it, it sends ba
k a \Data Request" message.The WPAN 
oordinator responds with an a
knowledgment followed by the data



45frame, and, �nally, an a
knowledgement is sent from the network devi
e, asdepi
ted in Fig. 1.16;� in 
ase of non-bea
on-enabled star topology, a network devi
e wishing to trans-fer data sends a data frame to the WPAN 
oordinator using CSMA/CA. TheWPAN 
oordinator responds to the network devi
e, sending an a
knowledge-ment message, as shown in Fig. 1.17. When a WPAN 
oordinator requiresmaking a data transfer to a network devi
e, it shall keep the data until the net-work devi
e sends a data request message. The a
knowledgement message fromthe WPAN 
oordinator will 
ontain information indi
ating the network devi
eif there are data pending, in whi
h 
ase, the data will be sent immediately afterthe a
knowledgement. Finally, the network devi
e a
knowledges re
eption ofthe data frame, as depi
ted in Fig. 1.18;� in 
ase of peer-to-peer topology, the strategy is governed by the spe
i�
 net-work layer managing the wireless network. A given network devi
e may stay inre
eption mode s
anning the radio 
hannel for on-going 
ommuni
ations or 
ansend periodi
 \hello" messages to a
hieve syn
hronization with other potentiallistening devi
es.The 
ase of tree topology, spe
i�ed by the ZigBee Allian
e [51℄ is des
ribed indetails in the following se
tions, sin
e this topology is largely used in the rest of thethesis.Finally, as far as the MAC frame stru
ture is 
on
erned, a MAC frame 
onsists ofthree parts: header, variable length payload, and footer. The MAC header 
ontains
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Figure 1.15: Communi
ation from a network devi
e to the PAN in a bea
on-enablednetwork.
a frame 
ontrol �eld and an addressing �eld. The MAC payload 
ontains informationspe
i�
 to the type of transa
tion being handled by the MAC. The MAC footer
onsists of a 16-bit CRC algorithm. When the three 
omponents of the MAC frameare assembled into the PHY pa
ket, it is 
alled the MPDU. Four types of MACframes are de�ned: bea
on, data, a
knowledgment, and MAC 
ommand.1.4.5 The IEEE 802.15.4 Topology Formation Pro
edureThe IEEE 802.15.4 Group de�ned a me
hanism to support a WPAN 
oordinator in
hannel sele
tion when starting a new WPAN, and a pro
edure, 
alled asso
iationpro
edure, whi
h allows other devi
es to join the WPAN. A WPAN 
oordinator wish-ing to establish a new WPAN needs to �nd a 
hannel whi
h is free from interferen
e
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Figure 1.16: Communi
ation from the PAN to a network devi
e in a bea
on-enablednetwork.
that would render the 
hannel unsuitable (e.g., in a multi-sink network, a 
hannelmay be already o

upied by other WPANs). The 
hannel sele
tion is performed bythe WPAN 
oordinator through the energy dete
tion (ED) s
an whi
h returns themeasure of the peak energy in ea
h 
hannel. It must be noti
ed that the standardonly provides the ED me
hanism but it does not spe
ify the 
hannel-sele
tion logi
.The operations a

omplished by a devi
e to dis
over an existing WPAN and to joinit 
an be summarised as follows: i) sear
h for available WPANs; ii) sele
t the WPANto join; iii) start the asso
iation pro
edure with the WPAN 
oordinator or with an-other FFD devi
e, whi
h has already joined the WPAN. The dis
overy of availableWPANs is performed by s
anning bea
on frames broad
asted by the 
oordinators.Two di�erent types of s
an that 
an be used in the asso
iation phase are proposed:
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Figure 1.17: Communi
ation from a network devi
e to the PAN in a non-bea
on-enabled network.1. passive s
an: in bea
on-enabled networks the asso
iated devi
es periodi
allytransmit bea
on frames hen
e the information on the available WPAN 
an bederived by eavesdropping the wireless 
hannels;2. a
tive s
an: in non-bea
on-enabled networks the bea
on frames are not period-i
ally transmitted but shall be expli
itly requested by the devi
e by means ofbea
on request 
ommand frame.After the s
an of the 
hannels, a list of available WPANs is used by the devi
eto 
hoose the network to try to 
onne
t with. In the standard, no spe
i�
 pro
edureto sele
t a WPAN is provided and so, this sele
tion among potential parents is openfor di�erent implementations. Hen
e, the devi
e sends an asso
iation request frameto the 
oordinator devi
e by means of whi
h the sele
ted network was dis
overed.



49

Figure 1.18: Communi
ation from the PAN to a network devi
e in a non-bea
on-enabled network.
The asso
iation phase ends with a su

essful asso
iation response 
ommand frame tothe requesting devi
e. This pro
edure basi
ally results in a set of MAC asso
iationrelationships between devi
es, named in the following parent-
hild relationship.1.4.6 The Zigbee Tree-Based TopologyThe Zigbee spe
i�
ations [51℄ de�ne a bea
on-enabled tree-based topology, as a par-ti
ular 
ase of the IEEE 802.15.4 peer-to-peer networks (shown in Figure 1.11). Atree, rooted at the WPAN 
oordinator, is formed, and nodes at a given level trans-mit data to nodes at a lower level, to rea
h the WPAN 
oordinator, whi
h is a levelzero, in the example shown in the Figure. Two di�erent types of nodes are presentin the tree: the routers, that must be FFDs, whi
h re
eive data from their 
hildren,



50aggregate them, and transmit the pa
ket obtained to their parents; and the leafs,that 
ould be FFDs or RFD, whi
h have no routing fun
tionalities and have only totransmit their pa
kets to the parent.The topology formation pro
edure is started by the WPAN 
oordinator, whi
hbroad
asts bea
on pa
kets to neighbour nodes. A 
andidate node re
eiving the bea
onmay request to join the network at the WPAN 
oordinator. If the WPAN 
oordinatorallows the node to join, it will begin transmitting periodi
 bea
ons so that other
andidate nodes may join the network.As stated above, nodes must be in bea
on-enabled mode: ea
h 
hild node tra
ksthe bea
on of its parent (see Figure 1.19, where the tra
king period is outlined as adashed re
tangle). A 
ore 
on
ept of this tree topology is that the 
hild node maytransmit its own bea
on at a prede�ned o�set with respe
t to the beginning of itsparent bea
on: the o�set must always be larger than the parent superframe durationand smaller than bea
on interval (see Figure 1.19). This implies that the bea
onand the a
tive part of 
hild superframe reside in the ina
tive period of the parentsuperframe; therefore, there is no overlap at all between the a
tive portions of thesuperframes of 
hild and parent. This 
on
ept 
an be expanded to 
over more thantwo nodes: the sele
ted o�set must not result in bea
on 
ollisions with neighbouringnodes. This implies that the node must re
ord the time stamp of all neighbouringnodes and sele
ts a free time slot for its own bea
on. Obviously a 
hild will transmita bea
on pa
ket only in 
ase it is a router in the tree; if the 
hild is a leaf it has onlyto transmit the pa
ket to its parent. Ea
h 
hild will transmit its pa
ket to the parentin the a
tive part (CAP or CFP) of the parent superframe.Therefore, ea
h router in the tree, after the re
eption of the bea
on 
oming from



51the parent, will sele
t the instant in whi
h transmits its bea
on (see Figure 1.20). Bea-
on s
heduling is ne
essary to prevent the bea
on frames of one devi
e from 
ollidingwith either the bea
on frames or data transmissions of its neighboring devi
es.

Figure 1.19: The tra
king of the bea
on's parent, performed by a generi
 
hild.
ZigBee Higher Levels OverviewThe purpose of the ZigBee Allian
e is to univo
ally des
ribe the ZigBee proto
ol stan-dard in su
h a way that interoperability is guaranteed also among devi
es produ
edby di�erent 
ompanies, provided that ea
h devi
e implements the ZigBee proto
olsta
k.The ZigBee sta
k ar
hite
ture is 
omposed of a set of blo
ks 
alled layers. Ea
hlayer performs a spe
i�
 set of servi
es for the layer above.The ZigBee sta
k ar
hite
ture is depi
ted in detail in Fig. 1.21. Given the IEEE
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Figure 1.20: The superframe stru
ture used in the tree-based topology.
802.15.4 spe
i�
ations on PHY and MAC layer, the ZigBee Allian
e provides thenetwork layer and the framework for the appli
ation layer.The responsibilities of the ZigBee network layer in
lude: me
hanisms to join andleave a network, frame se
urity, routing, path dis
overy, one-hop neighbours dis
overy,neighbour information storage.The ZigBee appli
ation layer 
onsists of the appli
ation support sublayer, theappli
ation framework, the ZigBee devi
e obje
ts and the manufa
turer-de�ned ap-pli
ation obje
ts. The responsibilities of the appli
ation support sublayer in
lude:maintaining tables for binding (de�ned as the ability to mat
h two devi
es togetherbased on their servi
es and their needs), and forwarding messages between bounddevi
es. The responsibilities of the ZigBee devi
e obje
ts in
lude: de�ning the roleof the devi
e within the network (e.g., WPAN 
oordinator or end devi
e), initiating
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Figure 1.21: A detailed overview of ZigBee sta
k ar
hite
ture.
and/or responding to binding requests, establishing se
ure relationships between net-work devi
es, dis
overing devi
es in the network, and determining whi
h appli
ationservi
es they provide.
1.5 Other Te
hnologies1.5.1 Ultrawide Bandwidth Te
hnologyUltrawide bandwidth radio is a fast emerging te
hnology with uniquely attra
tivefeatures that has attra
ted a great deal of interest from a
ademia, industry, andglobal standardization bodies. The ultrawide bandwidth (UWB) te
hnology has



54been around sin
e 1960, when it was mainly used for radar and military appli
a-tions, whereas nowadays it is a very promising te
hnology for advan
es in wireless
ommuni
ations, networking, radar, imaging, positioning systems and, in parti
ular,WSNs.The most widely a

epted de�nition of a UWB signal is a signal with instantaneousspe
tral o

upan
y in ex
ess of 500 MHz or a fra
tional bandwidth of more than 20%.One of the most promising UWB te
hnique, espe
ially for WSN appli
ations,is named impulse radio UWB (IR-UWB) [53℄. The IR-UWB te
hnique relies onultra-short (nanose
ond s
ale) waveforms that 
an be free of sine-wave 
arriers anddo not require intermediated frequen
y (IF) pro
essing be
ause they 
an operateat baseband. The IR-UWB te
hnique has been sele
ted as the PHY layer of theIEEE 802.15.4a Task Group for WPAN Low Rate Alternative PHY layer [54℄. Thebaseline of 802.15.4a is based on two optional PHYs 
onsisting of a UWB impulseradio (operating in unli
ensed UWB spe
trum) and a 
hirp spread spe
trum (CSS)(operating in unli
ensed 2.4 GHz spe
trum), where the former will be able to deliver
ommuni
ations and high pre
ision ranging. In parti
ular the UWB PHY supportsan over-the-air mandatory data rate of 851 [Kbit/s℄, with optional data rates of 110[Kbit/s℄, 6.81 [Mbit/s℄, and 27.24 [Mbit/s℄. The 
hoi
e of the PHY depends on thelo
al regulations, appli
ation and user preferen
es. Table 1.1 reports the frequen
ybands foreseen by the standard (some of them are optional). The modulation used
ombines both BPSK and pulse position modulation (PPM) signaling so that both
oherent and low 
omplexity non
oherent re
eivers 
an be used to demodulate thesignal.



55PHY mode Frequen
y band [MHz℄UWB Sub-GHz 250-7502450 CSS 2400-2483.5UWB low-band 3244-4742UWB high-band 5944-10234Table 1.1: IEEE 802.15.4a PHY layer frequen
y bands1.5.2 Bluetooth Te
hnologyBluetooth wireless te
hnology is a short-range 
ommuni
ation system intended torepla
e the 
ables in WPANs.3 The key features of Bluetooth wireless te
hnology arerobustness, low power, and low 
ost and many features of the 
ore spe
i�
ation areoptional, allowing produ
t di�erentiation.The IEEE Proje
t 802.15.1 [55℄ has derived a WPAN standard based on theBluetooth v1.1 Foundation Spe
i�
ations.4The Bluetooth RF (physi
al layer) operates in the unli
ensed ISM band, for themajority of 
ountries around 2:4 [GHz℄ in (2400; 2483:5) [MHz℄. The system employsa frequen
y hop trans
eiver (the nominal hop rate is 1600 [hops/s℄) to 
ombat inter-feren
e and fading, and provides many FHSS 
arriers. RF operation uses a Gaussianshaped, binary frequen
y shift keying (GFSK) modulation to minimize trans
eiver
omplexity, and a forward error 
orre
tion (FEC) 
oding te
hnique. The bit rate isof 1 [Mbps℄ or, with Enhan
ed Data Rate, a gross air bit rate of 2 or 3 [Mbps℄. Thesemodes are known as Basi
 Rate and Enhan
ed Data Rate, respe
tively.The equipment is 
lassi�ed into three power 
lasses (given as power levels at theantenna 
onne
tor of the equipment, if the equipment does not have a 
onne
tor, areferen
e antenna with 0 [dBm℄ gain is assumed): (
lass 1) with maximum output3Several information on Bluetooth 
an be found on the web site: http://www.bluetooth.
om4See also IEEE 802.15.1 web site: http://www.ieee802.org/15/pub/TG1.html



56power of 20 [dBm℄, (
lass 2) with maximum output power of 4 [dBm℄, and (
lass 3)with maximum output power of 0 [dBm℄.During typi
al operation, a physi
al radio 
hannel is shared by a group of devi
esthat are syn
hronized to a 
ommon 
lo
k and frequen
y hopping pattern. One devi
eprovides the syn
hronization referen
e and is known as the master. All other devi
esare known as slaves. A group of devi
es syn
hronized in this fashion form a pi
onet.This is the fundamental form of 
ommuni
ation for Bluetooth wireless te
hnology.Devi
es in a pi
onet use a spe
i�
 frequen
y hopping pattern whi
h is algorith-mi
ally determined by 
ertain �elds in the Bluetooth spe
i�
ation address and 
lo
kof the master. The basi
 hopping pattern is a pseudo-random ordering of the 79frequen
ies5 with 
hannel spa
ing of 1 [MHz℄ in the ISM band (e.g., f = 2402 + k[MHz℄, with k = 0; : : : ; 78). To 
omply with out-of-band regulations in ea
h 
ountry,a guard band is used at the lower and upper band edge, respe
tively of 2 [MHz℄ and3:5 [MHz℄. The hopping pattern may be adapted to ex
lude a portion of the frequen-
ies that are used by interfering devi
es. The adaptive hopping te
hnique improvesBluetooth te
hnology 
o-existen
e with stati
 (non-hopping) ISM systems when theseare 
o-lo
ated.The physi
al 
hannel is sub-divided into time units known as slots with duration625 [�s℄. Data is transmitted between Bluetooth enabled devi
es in pa
kets that arepositioned in these slots. When 
ir
umstan
es permit, a number of 
onse
utive slotsmay be allo
ated to a single pa
ket. Frequen
y hopping takes pla
e between thetransmission or re
eption of pa
kets. Bluetooth te
hnology provides the e�e
t of fullduplex transmission through the use of a time-division duplex (TDD) s
heme.5In some 
ountries, like Fran
e the number of frequen
ies is 23.



571.6 Channel and Link ModelsIn this se
tion we introdu
e the 
hannel and link models used hereafter.Many works in the WSNs s
ienti�
 literature assume deterministi
 distan
e- de-pendent and threshold-based pa
ket 
apture models. In other words, all nodes withina 
ir
le 
entered at the transmitter, with given radius, 
an re
eive a pa
ket sent bythe transmitting one; if a re
eiver is outside the 
ir
le, re
eption is impossible [56{58℄.While the threshold-based 
apture model, whi
h assumes that a pa
ket is 
apturedif the signal-to-noise ratio (in the absen
e of interferen
e) is above a given threshold,is a good approximation of real 
apture e�e
ts, the deterministi
 
hannel model doesnot represent realisti
 situations in most 
ases. The use of realisti
 
hannel models istherefore of paramount importan
e in wireless systems. In this thesis, a narrow-band
hannel, a

ounting for the power loss due to propagation e�e
ts in
luding a distan
e-dependent path loss, the slow and the fast 
hannel 
u
tuations, is 
onsidered.In [35℄ results of experiments made with nodes using the IEEE 802.15.4 standarddevi
es at 2.4 [GHz℄ ISM band, deployed in di�erent environments (grass, asphalt,indoor, et
), are reported. The measurements provide inputs for understanding thebasi
 aspe
ts of narrow-band propagation in typi
al WSNs s
enarios at 2.4 [GHz℄. Inparti
ular, suitable 
omparison between the measurements performed and some sim-ple analyti
al expressions has been 
ondu
ted for di�erent environments [35℄. It wasfound for the re
eived power in logarithmi
 s
ale that in general a Gaussian model
an approximate the measurements fairly well, with di�erent values of the standarddeviation. Also some papers in the literature report results a
hieved in similar en-vironments, and the Gaussian model seem to be a

redited. Note that, sin
e thes
enario is stationary, the assumption of a (slow-varying) shadowing environment is
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eptable, as the log-normal distributed variable models the randomness of the ge-ometry (presen
e of obsta
les, et
). This is also done in other papers in the literatureon WSNs (see, e.g., [59℄). Channel re
ipro
ity is also assumed.It is assumed that the ratio between the transmit power, PT and the re
eivedpower, PR, is given by k �d� �S, where k is the propagation 
oeÆ
ient, d is the distan
efrom the transmitter and the re
eiver, � is the attenuation 
oeÆ
ient whi
h 
ommonlyranges from 2 to 5, �nally, S is the long-term (shadowing) fading 
omponent. Wede�ne L = k �d� �S as the averaged (with respe
t to fast fading) loss (in linear s
ale).By introdu
ing the logarithmi
 s
ale, we obtainL[dB℄ = k0 + k1 ln d+ s[dB℄; (1.6.1)where k0 = 10 log10 k, k1 = � 10ln 10 , and s [dB℄ is a Gaussian random variable, with zeromean and varian
e �2s . Note that in (1.6.1) the dependen
e on distan
e is through anatural logarithmi
 fun
tion, instead of a more typi
al base 10 log fun
tion; however,the transformation is quite simple, and this notation is the same used in works takenfrom the literature whose results are used as starting point in this se
tion [60℄. This
hannel model was also adopted by Orriss and Barton [61℄ and other Authors [62,63℄.By suitably setting k1, it is possible to a

ommodate an inverse square law relationshipbetween power and distan
e (k1 = 8:69), or an inverse fourth-power law (k1 = 17:37),as examples.For what 
on
erns the link model, a radio link between two nodes is said to exist,whi
h means that the two nodes are 
onne
ted or audible one ea
h other 6, if L < Lth,where Lth represents the maximum loss tolerable by the 
ommuni
ation system. The6links re
ipro
ity is assumed.



59threshold Lth depends on the transmit power and the re
eiver sensitivity. By solving(1.6.1) for the distan
e d with L = Lth, we 
an de�ne the transmission rangeTR = eLth�k0�sk1 ; (1.6.2)as the maximum distan
e between two nodes at whi
h 
ommuni
ation 
an still takepla
e. Su
h range de�nes the 
onne
tivity region of the sensor. Note that by adoptingindependent random variable (r.v.)'s, s, for separate links, we have di�erent values ofTR for every nodes pair. This means that any sensor observes a di�erent realizationof the r.v. TR depending on the dire
tion of the potential interlo
utor, thus a
quiringa jaggy wireless footprint. In other words, 
ir
les to predi
t sensor 
onne
tivity, arenot used here. However, by setting �s = 0, we negle
t the 
hannel 
u
tuations andmay still de�ne an ideal transmission range, as a referen
e, asTRi = eLth�k0k1 ; (1.6.3)whi
h is the radius of the 
ir
ular deterministi
 footprint.A

ording to this 
hannel model, we 
an also de�ne the probability that two nodesare audible, C(d), as the probability that L < Lth, given byC(d) = PfL < Lthg = 1� 0:5 erf
�Lth � k0 � k1ln(d)p2�s � (1.6.4)where PfEg denotes the probability of the event E and erf
() is the 
omplementaryerror fun
tion. The disk model is obtained by 
onsidering �s ! 0, that is, s = 0, thusleading C(d) = ( 1 for d � TR0 for d > TR : (1.6.5)
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Figure 1.22: Link 
onne
tivity with and without shadowing e�e
ts.As we 
an see in Fig. 1.22, taking into a

ount a spe
i�
 transmitting node, thee�e
t of the shadowing is to make audible some nodes that are not rea
hable whenadopting the disk model (�s = 0) be
ause outside the 
ir
umferen
e having radiusTR; but, on the other side, also making non audible some nodes whi
h are inside the
ir
umferen
e.1.6.1 Conne
tivity TheoryThe 
onne
tivity theory studies networks formed by large numbers of nodes dis-tributed a

ording to some statisti
s over a limited or unlimited region of Rd , withd=1,2,3, and aims at des
ribing the potential set of links that 
an 
onne
t nodes to
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h other, subje
t to some 
onstraints from the physi
al viewpoint (power budget,or radio resour
e limitations).Conne
tivity depends on the number of nodes for unit area (nodes' density), andon the transmission power. The 
hoi
e of an appropriate transmit power level is animportant aspe
t of network design as it a�e
ts network 
onne
tivity. In fa
t, with ahigh transmit power a large number of nodes are expe
ted to be rea
hed via a dire
tlink. On the 
ontrary, a low transmit power would in
rease the possibility that agiven node 
annot rea
h any other node, that is, it is isolated.In ad-ho
 networks the best performan
e is a
hieved when data generated by anode 
an 
ow along the network and rea
h any possible endpoint. Thus the goal of
onne
tivity is to make it possible for any node to rea
h any di�erent node, perhapsin a multi-hop fashion. Although WSN are sometimes thought of as a spe
ial 
ase ofad-ho
 networks, they present a substantial di�eren
e, that is, nodes are at least oftwo di�erent types: sensor and sink nodes. The purpose of this kind of networks isto pro
ess data originated by sensors, and sinks are in 
harge of 
olle
ting su
h data.Thus, the goal of 
onne
tivity is somewhat di�erent here be
ause it is suÆ
ient forany sensor node to be able to rea
h at least one sink node, either dire
tly or throughother sensor nodes. That provided, the network is said to be fully-
onne
ted.This topi
 is largely studied in Chapter 3.
Conne
tivity properties in PPP �eldsLet us 
onsider a number of nodes randomly distributed over a �eld. It is worth notingthat, due to the random position of nodes and 
hannel 
u
tuation e�e
ts, the number



62of nodes whi
h are 
onne
ted 7 to whatever a node in the �eld, is not deterministi
.This is true regardless the 
onne
tivity model we are 
onsidering. Therefore, thenumber of nodes 
onne
ted to a give node, n, is a r.v. whose statisti
al propertiesdepend on the 
onne
tivity models we are using and on the spatial distribution ofnodes. In parti
ular, when the position of nodes is distributed a

ording to a PPP,we 
an apply the following theoremTheorem 1.6.1. Assume a Poisson distribution of nodes in a m�dimensional spa
eand 
onsider a referen
e node, denoted by RN, lo
ated somewhere in the s
enario. Letd, C(d) and n be the eu
lidean distan
e between a generi
 node and RN, the probabilitythat a generi
 node is 
onne
ted with RN and the number of nodes whi
h are 
onne
tedwith RN, respe
tively. Then, n is a Poisson r.v..Proof. The proof is a 
onsequen
e of the Marking Theorem for Poisson pro
esses[35℄.As a result of the previous property, the probability distribution of n isPfn = n1g , P(n; �) = �n1n1! e��; (1.6.6)where � = E fng, being E f�g the expe
tation. � depends on the 
onne
tivity model
hosen, and on the area in whi
h nodes are distributed.In parti
ular, when the 
hannel model of eq. (1.6.1) is used, the mean numberof nodes audible within a range of distan
es r1 and r, to a generi
 node (r � r1), isdenoted as �r1;r and 
an be written as [60, 61℄�r1;r = ��[	(a1; b1; r)� 	(a1; b1; r1)℄; (1.6.7)7Meaning that the two nodes 
an reliably 
ommuni
ates one ea
h other.



63where � is the initial nodes' density and	(a1; b1; r) = r2�(a1 � b1 ln r)� e 2a1b1 + 2b21�(a1 � b1 ln r + 2=b1); (1.6.8)and a1 = (Lth � k0)=�s, b1 = k1=�s and �(x) = R x�1(1=p2�)e�u2=2du.By letting r1 = 0 and r ! 1 (whi
h mean in�nite area where nodes are dis-tributed), 	(a1; b1; r) vanishes and we 
an write�0;1 = ���	(a1; b1; r1)= �� exp[(2a1=b1) + (2=b21)℄= �� exp[(2(Lth � k0)=k1) + (2�2s=k21)℄: (1.6.9)Note that the mean value of n, E fng, is equal to �0;1 also in 
ase nodes are distributedover a �nite plane, but border e�e
ts are negligible (see Chapter 3), whi
h means thatthe exponential 	(a1; b1; r) is 
lose to zero.





Chapter 2Environmental MonitoringEstimation Error ThroughEnergy-EÆ
ient WSN
In this Chapter a self-organising single-sink WSN, aiming at estimating a s
alar �eldover a bi-dimensional s
enario (e.g., the atmospheri
 pressure in a wide area), isinvestigated. We assume that sensor devi
es (denoted as nodes, in the following) arerandomly distributed, a

ording to a PPP over the area, are organised in a 
lusteredtopology and a

ess the 
hannel through a 
ontention-based MAC proto
ol. The
hannel and link models are those des
ribed in Chapter 1.This Chapter provides a mathemati
al framework to analyse the interdependentaspe
ts of WSN 
ommuni
ation proto
ol and signal pro
essing design. In parti
u-lar, 
onne
tivity and MAC issues, randomness of the 
hannel and the role of DDSPte
hniques, are a

ounted for. The possibility that nodes perform DDSP is stud-ied through a distributed 
ompression te
hnique based on signal re-sampling. TheDDSP impa
t on network energy eÆ
ien
y is 
ompared through a novel mathemati
alapproa
h to the 
ase where the pro
essing is performed entirely by the sink.The network is analysed from two di�erent viewpoints: the estimation of the
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ess and the energy 
onsumption. The trade-o� between energy 
onservationand estimation error is dis
ussed and a design 
riterion proposed. Comparison tosimulation out
omes validates the model.As an example result, the required node density is found as a trade-o� betweenestimation quality and network lifetime for di�erent system parameters and s
alar�eld 
hara
teristi
s. It is shown that both the DDSP te
hnique and the MAC proto
ol
hoi
e has a relevant impa
t on the performan
e of a WSN.The Chapter is organized as follows: the following se
tion deals with the aim ofthe model and related works, se
tion 2.2 provides the sensing and estimation pro
essformalization; the novel model proposed to evaluate the estimation error, is des
ribedin se
tion 2.3 whi
h also 
onsiders the DDSP option. Se
tion 2.4 des
ribes the self-organizing distributed routing and MAC algorithm used as a referen
e in the numer-i
al evaluations. In se
tion 2.5 the formulation of the energy budget is given. Finally,se
tion 2.6 reports numeri
al results a
hieved through the mathemati
al framework,and 
ompare them to simulation out
omes to validate the former.2.1 Aims of the Framework and Related WorksThe goal of the single-sink WSN 
onsidered here, is to sense a s
alar �eld, su
h as,the atmospheri
 pressure in a wide area. To this aim nodes deployed over the areasense the physi
al world and transmit the measurement results to a sink, 
olle
tingdata and forwarding them toward the �nal user. Sin
e node battery is normally notrepla
ed during network lifetime, the 
ommuni
ation proto
ols energy eÆ
ien
y is akey aspe
t.The s
alar �eld is modeled as a realization of a bi-dimensional spatial random
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ess. The measurements will then be subje
t to proper pro
essing whi
h mightbe performed either in a distributed manner by the nodes, or 
entrally at the sink.The spe
i�
 
ase of random WSNs, where nodes are deployed randomly and uni-formly with given density, is addressed here. In the re
ent literature, di�erent worksaddressed the estimation of a s
alar �eld using random WSNs. As an example, [49℄presents a distributed algorithm able to estimate the gradient of a generi
 smoothphysi
al pro
ess (energy 
onstraints and nodes failure are not 
onsidered there); in [50℄the relationship between the random topology of a sensor network and the qualityof the re
onstru
ted �eld is investigated and some guidelines on how nodes shouldbe deployed over a spatial area for eÆ
ient data a
quisition and re
onstru
tion arederived.Owing to the requirement for low devi
e 
omplexity together with low energy
onsumption (i.e., long network lifetime), a proper balan
e between 
ommuni
ationand signal pro
essing 
apabilities must be found. The adoption of DDSP te
hniquesaims at redu
ing the amount of transmitted data over the wireless medium; on theother hand, the 
omplexity of the signal pro
essing performed at a single node has tobe kept under 
ontrol [64{66℄. As an example, in [65℄ the DDSP approa
h has beenapplied to the Fast Fourier Transform algorithm showing the tradeo� between energy
onsumption, data laten
y and the number of nodes employed.In the literature, many papers have been devoted to the subje
t of WSNs, withreferen
e to DDSP, energy-eÆ
ient information routing, MAC strategies or self-organizing algorithms (see e.g., [27, 28, 32, 33℄). Although these works provide in-sightful interesting results, the di�erent aspe
ts mentioned are usually a

ounted



68separately, and in most 
ases performan
e is evaluated through simulation. Unfor-tunately, these aspe
ts often drive the design of a WSN in opposite dire
tions. Infa
t, as will be 
lear in the following, s
alar �eld estimation errors 
an be redu
ed byin
reasing the 
onne
tivity between nodes at the expense of an in
reased energy 
on-sumption. Furthermore, the use of self-organizing 
ommuni
ation proto
ols is needed,but their distributed nature determines measurement losses a�e
ting the s
alar �eldestimation pro
ess. Therefore, the design of an energy-eÆ
ient WSN for environ-mental monitoring requires a general framework able to 
hara
terize the performan
ejointly 
onsidering the above mentioned aspe
ts; a mathemati
al approa
h is neededto formalize the interdependent aspe
ts, though the random and time-varying lossesin the wireless 
hannel make 
onne
tivity between nodes 
omplex to investigate (seee.g., [60, 61, 67℄).The main goal of this Chapter is neither to design spe
i�
 
ommuni
ation proto-
ols, nor DDSP te
hniques; rather, the joint 
onsideration of all aspe
ts mentioned,under realisti
 but simple working 
onditions, aims at stressing their interdependen-
ies in a formalized framework. On the other hand, a novel analyti
al approa
h toassess the s
alar �eld estimation error, evaluated as a fun
tion of the bandwidth ofthe target pro
ess, B, the nodes density, and the sample loss probability (
aused bymultiple a

ess and routing), by means of the theory of random sampling [68, 69℄, isalso provided. In the literature, random sampling has been mainly addressed to �ndalias-free sampling s
hemes and for spe
tral analysis of randomly sampled stationaryrandom pro
esses in the mono-dimensional 
ase [69{71℄. Here this theory is revisedand applied to WSN s
enarios 
onsidering non stationary pro
esses and the moregeneral l-dimensional spatial 
ase. In addition, a DDSP te
hnique to in
rease the



69network energy eÆ
ien
y based on re-sampling is investigated and its performan
e
ompared with the 
ase where all samples are pro
essed by the sink.2.2 Distributed S
alar Field Estimation2.2.1 Sampling the Target Pro
essA s
enario where nodes are randomly and uniformly pla
ed with spatial density �, is
onsidered. As will be 
lear later, only a subset of nodes, with density �s, parti
ipateto the sampling pro
ess with known positions.1 To save energy, nodes are normallyin sleeping mode and periodi
ally 
ommute in re
eiving mode.The sink wakes up a 
ertain number of nodes by transmitting a sequen
e of pa
kets(triggering pa
kets, that are queries) long enough to 
over the a
tivity period of ea
hnode. Only woken nodes will parti
ipate to su

essive 
ommuni
ation phases. Weassume energy eÆ
ien
y is not an issue for the sink, whi
h is equipped with more
omplex 
apabilities both in terms of signal pro
essing and transmission power, withrespe
t to nodes.The interval of time needed for the entire sequen
e of operations that start withthe sink-generated triggering event and brings to the determination of the estimate atthe sink, is denote as round. Typi
al environmental phenomena (e.g., temperature orpressure measurements) are slow time-varying if 
ompared with the pa
ket deliverytime in WSNs. For this reason, we 
onsider a quasi-stati
 s
enario, whi
h meansthat the round is 
onsidered to be mu
h smaller than the 
hange rate of the observed�eld. In this s
enario no stringent time syn
hronization 
onstraints among nodes are1Dis
ussion on lo
alization te
hniques is beyond the s
ope of this thesis.



70present. The signal to be sampled is des
ribed here through the (target) l-dimensionalspatial random pro
ess Z(s) (s being the spatial variable) with realizations z(s). Thesample spa
e is a �nite region A where the pro
ess is observed, 
entered in the sink.Without loss of generality, we 
onsider A a 
ir
ular area with radius R. Hen
e, thea
tual (trun
ated) signal of interest is x(s) = z(s) � rA(s), whererA(s) = 8><>: 1 s 2 A0 otherwise : (2.2.1)The signal x(s) has �nite energy E0 and belongs to the random pro
ess X(s).The goal is to 
reate an estimate of x(s), denoted as X̂(s), that will be built in thefollowing se
tion. In Figure 2.1 a s
heme of the whole estimation pro
ess is shown.The Fourier transform, SX(�), the auto
orrelation fun
tion, RX(�), and the en-ergy spe
tral density, EX(�), of x(s), are de�ned as followsSX(�) = =(l)[x(s)℄ (2.2.2)RX(�) = ZRl x(s)x(s � �)ds (2.2.3)EX(�) = =(l)[RX(�)℄ ; (2.2.4)where � = (�1; �2; :::::�l) and � = (�1; �2; :::�l) is a spatial frequen
y. The operator=(l)[:℄ represents the l-dimensional Fourier transform. In the following we will indi
atethe statisti
al expe
tation with E f:g.By assuming that z(s) is bandlimited, SZ(�) = =(l)[z(s)℄ does not 
ontain signif-i
ant spe
tral 
omponents outside S0, where S0 = f� s.t. (�B0 < �1 < B0;�B0 <�2 < B0; ::::;�B0 < �l < B0)g and B0 represents the bandwidth per dimension ofz(s). The Fourier transform of x(s) is thenSX(�) = SZ(�)
 RA(�) ; (2.2.5)
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Figure 2.1: S
enario 
onsidered and main quantities involved in the pro
ess estima-tion.where RA(�) = =(l)[rA(s)℄ and 
 is the 
onvolution operator. In the pra
ti
al bi-dimensional 
ase, it is l = 2 andRA(�) = Rk�kJ1 (2� R k�k) ; (2.2.6)where J1(:) is the Bessel Fun
tion of the �rst kind of order one and k:k is the normoperator. Note that, due to the spatial trun
ation of the original signal, x(s) is notbandlimited. However, it 
an be easily veri�ed that RA(�) � 0 when k�k > 1�R . Ingeneral, SX(�) and, therefore, EX(�) � 0 outside S, where S = f� s.t. (�B < �1 <B;�B < �2 < B; ::::;�B < �l < B)g and, in the two-dimensional 
ase, B = 1�R +B0.The dimension of S is dim(S) = �, where � = (2B)l represents the minimum Nyquist



72sampling rate in the 
ase of uniform sampling [68, 69℄. In pra
ti
al appli
ations wehave 1�R � B0, that is the area of observation is 
hosen larger than the typi
al pro
ess
orrelation distan
e whi
h is proportional to 1=B0: the worst 
ase 
orresponding tothe largest bandwidth expansion is obtained when 1�R = B0.The n-th node is lo
ated in the spatial point sn and takes the sample x(sn).2Considering the nodes randomly pla
ed with a spatial density �s in the monitoredenvironment, we 
an statisti
ally des
ribe the sequen
e fsng of spatial samples as ahomogeneous PPP [68℄. The derivative of the 
orresponding 
ounting pro
ess is thestationary random pro
ess H(s) =Pn Æ(s� sn), having mean �H = E fH(s)g = �s,and whose statisti
al auto
orrelation fun
tion and power spe
tral density are givenby [68, 71℄ RH(�) = �s � Æ(�) + �2s ; (2.2.7)SH(�) = �s + �2s � Æ(�) ; (2.2.8)respe
tively, where Æ(:) is the Dira
 pseudo fun
tion, H(s) represents the samplingpro
ess.2.2.2 Building the EstimateStarting from the 
olle
ted samples, an estimate of the target signal 
an be determinedthrough either a 
entralized or a distributed pro
edure: in the former 
ase, nodes, viaa self-organizing 
ommuni
ation proto
ol, transmit their samples to the sink, whi
his in 
harge of the signal pro
essing and the estimation (no DDSP option); in thelatter, they send the samples to some ele
ted nodes (
luster heads, CH) in a 
lusteredar
hite
ture, that perform suitable distributed signal pro
essing and transmit the2We negle
t quantization errors.



73estimate to the sink whi
h, by 
olle
ting di�erent estimates, provides the �nal resultas explained in the following (DDSP option).In both 
ases, owing to 
ommuni
ation failure, there exists a probability p thata node is unable to send its information to the entity performing signal pro
essing.In this 
ase, the 
orresponding sample does not 
ontribute to the signal estimation(sample loss). The probability of 
orre
t sample re
eption is denoted as h = 1� p.The set of samples re
eived by the entity performing signal pro
essing forms anew stationary sampling pro
ess, P (s). Using the result derived in the Appendixof this Chapter (with P1(s) = H(s)), and expressions (2.2.7), (2.2.8), the statisti-
al auto
orrelation fun
tion and mean of P (s) are RP (�) = Æ(�) �s h + h2�2s and�P = E fP (s)g = h � �s, respe
tively. As expe
ted the new pro
ess has the same
hara
teristi
s of the original one with density h � �s and power spe
tral densitySP (�) = h�s + h2�2s � Æ(�): (2.2.9)The sampled version, Y (s), of the target signal 
onditioned to the realization x(s),
an be expressed as Y (s) = x(s) � P (s), representing a �nite energy non stationaryrandom pro
ess. The auto
orrelation fun
tion of the pro
ess realization y(s) isRy(�) = ZRl x(s)x(s� �)p(s)p(s� �) ds ; (2.2.10)where signal p(s) is a realization of the random pro
ess P (s).The average statisti
al auto
orrelation fun
tion of Y (s), is de�ned asRY (�) = E �ZRl x(s)x(s� �)P (s)P (s� �) ds� = ZRl x(s)x(s� �)RP (�) ds= RP (�) �RX(�) ; (2.2.11)



74and the average energy spe
tral densityEY (�) = =(l)[RY (�)℄ = EX(�)
 SP (�) : (2.2.12)From (2.2.9), (2.2.11) and (2.2.12) it followsEY (�) = h2�2sEX(�) + E0 � �s � h : (2.2.13)We 
onsider that the estimated signal is obtained through linear interpolation ofthe re
eived set of samples Y (s). The estimate X̂(s) 
an then be expressed asX̂(s) = �(s)
 Y (s) ; (2.2.14)where �(s) is the impulse response of the linear interpolator, whose transfer fun
tionis �(�) = =(l)[�(s)℄.In the following, let us 
onsider the 
ase of an ideal low-pass interpolator withtransfer fun
tion �(�) = 8><>: 1=�� � 2 S�0 otherwise : (2.2.15)with �� and S � S� des
ribed later.2.3 Mathemati
al Derivation of the Estimation Er-rorA good indi
ator of the estimate quality is the average normalized estimation errorde�ned as the normalized mean square error (MSE)" = 1E0 E �ZRl �X̂(s)� x(s)�2 ds� : (2.3.1)



75In the Appendix of this Chapter the expression for (2.3.1) is derived as a fun
tionof the spe
tral densities EY (�) and EX(�). When the ideal low-pass interpolator(2.2.15) is adopted, the expression (2.7.9) in the Appendix 
an be further simpli�edto " = 1� 2�P�� + 1E0�2� ZS� EY (�)d� : (2.3.2)By substituting (2.2.13) in (2.3.2) and 
onsidering that ZS�EX(�)d� = E0, we 
anwrite " = 1� 2h�s�� + h�s�2� hh�s + dim(S�)i: (2.3.3)It is worthwhile noting that, due to the 
hara
teristi
s of Poisson sampling, no aliasinge�e
ts arise whatever re
onstru
tion bandwidth S� is 
hosen, unlike in the 
lassi
aluniform sampling 
ase. The only e�e
t is an in
rease of the MSE. Hen
e, S� 
an bedi�erent from S depending on the appli
ation (see later when DDSP is adopted).Now the optimum value of ��, minimising the estimation error ", 
ould be found, by
onstraining to zero the derivative in (2.3.3), thus3d"d�� = 0() �� = h�s + dim(S�) : (2.3.4)Now the value of the MSE is given by" = 1� h�sh�s + dim(S�) = dim(S�)h�s + dim(S�) = ��h�s + �� ; (2.3.5)where � = dim(S�)=dim(S).Hen
e, proper dis
ussion about the meaning of this solution must be given:� when nodes are deployed, �s is known; however, during network life �s de
reasesowing to the fa
t that some nodes expire, then an estimation of �s is needed;3With the se
ond derivative it is possible to 
he
k that this value for �� represents a minimum.



76 � knowledge of h requires knowledge of the sample loss probability, whi
h 
hangesduring network life, and has to be estimated;� knowledge of dim(S�) requires knowledge of the dimension of the sampling spa
eand this requires information about the pro
ess to be estimated.For the sake of 
omparison, two other sub-optimal 
ases, whi
h are less 
omplex, interms of a priori knowledge about h and dim(S) required, are 
onsidered:�� = h�s =) " = ��h�s (2.3.6)�� = �s =) " = (1� h)2 + h���s (2.3.7)It 
an be easily proven that results obtained through (2.3.6) are better than (2.3.7).But even if solution given by (2.3.5) and (2.3.6) are better than (2.3.7), in some 
asesthey 
ould not be 
onveniently realized, due to the need for an estimation of h anddim(S�).
2.3.1 Absen
e of DDSPWhen DDSP is not adopted, all samples su

essfully re
eived are pro
essed by thesink, in order to determine the estimate X̂(s). Ea
h sample has a probability equalto p to be missing be
ause of an un
onne
ted node, or owing to MAC failures.It 
an be shown that without DDSP the best performan
e is obtained by �xingS� = S, hen
e � = 1.The ratio � , �s=� represents the over-sampling fa
tor with respe
t to the min-imum Nyquist uniform sampling rate �. In general, we have � � 1. Expressions



77(2.3.5)-(2.3.7) give the estimation error as a fun
tion of the sample loss probabilityand �. As 
an be noted, the impa
t of node 
ommuni
ation failure, through theprobability p, be
omes more relevant as � in
reases, the latter being stri
tly relatedto node density. Apart from the value of dim(S), this result does not depend on theparti
ular realization z(s) of the random pro
ess Z(s). Hen
e, it 
an be extended tothe whole random pro
ess. Expressions (2.3.5)-(2.3.7) 
an be used to measure thequality of the estimation of the random pro
ess, under observation performed at thesink, when no DDSP is implemented.2.3.2 Presen
e of DDSPIn order to redu
e the overall energy 
onsumption due to the transmission of samples,it would be useful to partially de
entralize the signal pro
essing task ne
essary tohave an estimate of the target pro
ess. In parti
ular, 
onsidering a 
lustered networkar
hite
ture, samples 
oming from nodes are not dire
tly 
olle
ted by the sink butthey rea
h the �nal destination through intermediate nodes (the CHs), whi
h performpartial signal pro
essing. At ea
h CH, loss-less data 
ompression te
hniques 
anbe adopted thus redu
ing the amount of data transmitted. Typi
al 
ompressionte
hniques take advantage of the 
orrelation among adja
ent samples. In general,the 
ompression rate depends on the pro
ess statisti
s, spatial 
orrelation and thenumber of samples pro
essed. A general 
hara
terization is prohibitive and out of thes
ope of this thesis. An interesting survey about distributed 
ompression in sensornetworks is presented in [72℄.Here the attention is fo
used, instead, on the possibility to 
ompress data 
onsid-ering the fa
t that samples 
ome from a random sampling pro
ess and making use of



78a uniform re-sampling pro
essing at the Nyquist frequen
y.Let us assume that a 
luster of area A
h 
ontaining np nodes (np has mean Np)is managed by a CH whi
h is responsible to 
olle
t samples and to re-transmit themto the sink. It is assumed that CHs 
an estimate a portion x
h(s) = z(s) � rA
h(s)of the target signal in the area A
h based on the np samples re
eived. The fun
tionrA
h(s) is de�ned similarly to (2.2.1) 
onsidering the area A
h, with radius R
h, in-stead of A. The trun
ated signal x
h(s), managed by the CH, is 
hara
terized by anin
reased bandwidth with respe
t to the original signal x(s). A

ording to (2.2.5)and (2.2.6), having substituted R with R
h, the bandwidth per dimension of x
h(s)is now Bddsp = B0 + 1�R
h . Indeed, to keep negligible the aliasing error due to trun-
ation, the re
onstru
tion �lter bandwidth and the re-sampling frequen
y must besuitably in
reased, i.e., dim(S�) = (2Bddsp)l. Considering that A=A
h � N
h, l = 2and R
h � pN
hR, we have� = dim(S�)dim(S) = �1 +pN
h�2 � N
h ; (2.3.8)where N
h is the average number of CHs in the sampling area A and is 
onsideredto be mu
h larger than one. In deriving (2.3.8) the worst 
ase where 1�R = B0, is
onsidered. The CH then makes a re-sampling of the estimated signal at the Nyquistfrequen
y, now � � �, and transmits the new set of Nyquist samples to the sink whi
h
olle
ts all the estimated portions of the original signal. Considering that the originalset of samples 
omes from a node density �s, the average number M of samples
omposing the new set to be transmitted isM = [Np � PMAC + 1℄� ��s = [Np � PMAC + 1℄=Æ ; (2.3.9)where [Np � PMAC + 1℄ is the average number of samples re
eived by the CH plus



79the one generated by itself, taking the possibility that a pa
ket is lost owing to theMAC proto
ol into 
onsideration, through the su

ess probability PMAC (derived inse
tion 2.4), that is the probability that a node su

eeds in a

essing the 
hannel andin transmitting its pa
ket (i.e., without 
ollisions). The ratio Æ = �=� represents thesignal 
ompression fa
tor due to re-sampling of the estimated signal at the Nyquistfrequen
y. When Æ � 1 then M � Np thus a drasti
 redu
tion of the transmissionthroughput (and energy 
ost) is expe
ted. The augmented energy 
onsumption dueto signal pro
essing at the CH in DDSP mode will be also taken into a

ount.No transmission errors between the CHs and the sink are assumed, be
ause, asstated in the following se
tion, it is assumed that during a single round the wireless
hannel is time-invariant and thus all CHs self-ele
ted in a spe
i�
 round 
an hearthe sink, otherwise they would not have been triggered. Moreover, it is assumedthat 
ollisions between CHs pa
kets are negligible (see se
tion 2.4.2); hen
e, the totalestimation error at the sink 
an be still evaluated through (2.3.5)-(2.3.7) by putting� = N
h a

ording to (2.3.8). As a 
onsequen
e, with respe
t to the no DDSP 
ase,larger values of estimation error are expe
ted, but, as will be shown in the numeri
alresults, a longer network lifetime, due to redu
ed amount of transmitted data.2.4 The self-organizing distributed WSNIn the previous se
tion, it has been shown that the evaluation of the MSE requires theknowledge of some network parameters su
h as p, and N
h, that are stri
tly relatedto the way the information is delivered. In this se
tion a typi
al WSN 
lusteredar
hite
ture is analyti
ally investigated to derive these parameters, without any aim at
onsidering 
omplex proto
ol strategies. Notre that those parameters also depend on
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Figure 2.2: Transmission 
ow in the 
lustered topology. Re
tangle: sink; �lled 
ir
le:CHs; 
ir
le: non CH nodes.the propagation 
hara
teristi
s of the environment, modelled as des
ribed in Chapter1, through eq. (1.6.1).2.4.1 Information Routing Through a Clustered Ar
hite
-tureA 
lustered ar
hite
ture seems parti
ulary suitable for DDSP [66℄. Typi
ally, mostof 
luster based algorithms 
onsider a distributed 
luster head (CH) self ele
tionalgorithm, su
h as LEACH-based algorithms investigated in [73, 74℄. Also note thatthis ar
hite
ture 
orresponds to a three-level tree-based topology, having the sink at



81the lowest level, CHs at level 1 and non CH nodes at level 2 (see Figure 1.11).In a 
lustered ar
hite
ture, the nodes triggered by the sink organise themselvesinto 
lusters, with one node per 
luster a
ting as CH. Non CH nodes transmit pa
ketsto their CHs and then CH nodes transmit the pa
kets re
eived plus the one generatedby themselves to the sink via a dire
t link (see Fig. 2.2). Therefore, being a CH ismu
h more energy intensive than being a non CH node. If the CHs were 
hosen apriori and �xed throughout the network lifetime, these nodes would qui
kly use uptheir limited energy: on
e the CH runs out of energy, it is no longer operational. Thus,it is assumed that the algorithm in
orporates a randomized rotation of the CH roleamong the nodes in the network: at ea
h round a node autonomously de
ides to ele
titself CH with probability x. De
isions taken in di�erent rounds are un
orrelated. Inthis way, the energy load of being a CH is evenly distributed among nodes duringnetwork lifetime.2.4.2 Communi
ation Proto
olThe simple 
ommuni
ation proto
ol 
onsidered is based on the following steps, per-formed at ea
h round. As far as MAC is 
on
erned (des
ribed in se
tion 2.4.3), sin
eit is assumed that the shadowing sample varies in di�erent rounds, the natural 
hoi
ebrings to a 
ontention-based proto
ol whi
h minimizes 
ontrol overhead with respe
tto a 
entralized algorithm [5℄.The 
ommuni
ation proto
ol steps are:- Trigger and Wake upThe sink transmits the triggering sequen
e with power PT = Psu; a random num-ber, nt, of nodes is triggered: those for whi
h Lth � Lsu, with Lsu depending on Psu



82and the re
eiver sensitivity. Being nodes Poisson distributed, from Theorem 1.6.1 wederive that nt is a Poisson r.v., with a mean value, Nt, whi
h depends on the 
hannelmodel. By using the 
hannel model of eq. (1.6.1) we 
an writeNt = E fntg = �� �e2(�2s=k21�k0=k1+Lsu=k1) + 	�Lsu � k0�s ; k1�s ; R�� ; (2.4.1)where 	(a1; b1; r) is given by eq. (1.6.8). The se
ond exponential takes border e�e
tsdue to area limitation into a

ount. When these border e�e
ts are negligible (theexponential is 
lose to one), the following simpli�ed expression, related to an in�nitearea, holds Nt = E fntg = � � e2(�2s=k21�k0=k1+Lsu=k1) : (2.4.2)It must be noted that the probability that a node situated at distan
e d from thesink is triggered, equals the probabilityC(d) given by eq. (1.6.4), with Lth = Lsu. Thisprobability is a de
reasing fun
tion of distan
e; that produ
es two side e�e
ts. First,the woken node density, �w(d) = �C(d), is distan
e-dependent, so the pro
ess is notuniformly sampled. Se
ond, nodes 
loser to the sink parti
ipate more frequently to thetransmission than far nodes and they tend to dis
harge their batteries prematurely.To over
ome this situation, the proto
ol requires that woken nodes randomlyde
ide whether to parti
ipate to the following phases: we assume they will, withprobability w(d) = w0=C(d), otherwise they swit
h to sleeping mode. The 
onstantw0 de�nes the sampling spa
e A that will provide 
ontributions to the target pro
essestimation, as the maximum distan
e R will be obtained by resolving w0=C(R) = 1.Moreover, it is assumed that all nodes are aware of their own position and thatthe sink, when triggers nodes, informs them about its position and the propagation



83parameters 
hara
terizing the environment, that 
ould be estimated, for example,from the Re
eived Signal Strength Indi
ation (RSSI) measurements, so that ea
hnode 
an 
ompute C(d).The density of parti
ipating nodes results in�(d) = �w(d)w(d) = �w0 = �s (2.4.3)whi
h is 
onstant for d < R, as desired.- Self-Ele
tionThe parti
ipating nodes initiate the self-ele
tion phase: ea
h of them ele
ts itselfCH with probability equal to x, where x is a system parameter to be optimized. Thenumber of CHs is n
h, with mean N
h = x � Nt � w0. The 
orrespondent CH andnon CH densities are given by �
h = �s � x, and �n
h = �s � (1 � x), respe
tively. Tonotify its ele
tion both to sink and surrounding nodes, ea
h CH transmits a broad
astpa
ket with power PT = Psu. CHs will a

ess the 
hannel through a 
ontention-basedme
hanism, but the number of CHs is in general not very large (x is usually mu
hless than one) and 
ollisions 
an be easily avoided through standard te
hniques. It isalso assumed that the sink sends a
knowledgments to the CHs, indi
ating the radio
hannel to be used in the following phases. We will 
onsider negligible the pa
ket lossin this phase.- Cluster Sele
tionEa
h node re
eiving the pa
ket(s) sent by the CHs de
ides whi
h CH to refer to(i.e., whi
h 
luster to subs
ribe to), based on the pa
ket re
eived with largest power.We assume that non CH nodes transmit with power PT = Psu � �; where � � 1 isa system parameter to be optimized. In this 
ase the maximum tolerable path-loss



84be
omes Lp = Lsu + 10 log10 �. Hen
e, the number of CHs rea
hable by a generi
node and the number of nodes forming a given 
luster are random variables denotedas nr
h and np, respe
tively; their means are Nr
h and Np.From [60, 61℄ and by assuming that the CHs are uniformly and randomly dis-tributed over the in�nite plane, with density �
h, the number nr
h of CHs rea
hableby a generi
 node is also Poisson distributed, with meanNr
h = E fna
hg = � �
h e2(�2s=k21�k0=k1+Lp=k1) : (2.4.4)Though the CHs 
an be assumed to be uniformly lo
ated owing to the distributedself-ele
tion strategy, they are not distributed over the in�nite plane, as they belongto the �nite set of nodes that have been triggered by the sink. Therefore, the aboveexpression represents an approximation whose validity de
reases for nodes fartherfrom the sink. However, the approximation seems reasonable as it will be shown bysimulation in the numeri
al results.The number np of nodes that subs
ribe to a spe
i�
 CH (i.e., the number of nodes
omposing a 
luster), 
an be 
onsidered as Poisson distributed with mean [75, 76℄Np = E fnpg = � �n
h e2(�2s=k21�k0=k1+Lp=k1) � 1� e�Nr
hNr
h ; (2.4.5)where Nr
h is given by (2.4.4).- Sample TransmissionNodes generate the pa
ket 
ontaining the samples and transmit it; having assumedthat all nodes (both CHs and non CHs) have the same re
eiver sensitivity, and thatpower loss is 
onstant during one round, this pa
ket will be 
orre
tly re
eived bythe relevant CH due to 
hannel re
ipro
ity, unless interferen
e between pa
kets takespla
e. The 
ontention between nodes must be managed by the MAC proto
ol (see



85below). Inter-
luster 
ollisions are avoided as the CHs use separate radio 
hannelsassigned by the sink during the self-ele
tion notify phase.- Transmission to the sink without DDSPIf DDSP is not implemented, then the CHs transmit the sequen
e of np samplesre
eived plus the one generated by itself; under the assumptions of this thesis, thispa
ket will be 
orre
tly re
eived by the sink, whi
h will re
eive on average Ns =(Np + 1) � N
h samples, if no pa
ket 
ollisions o

ur; they 
an be avoided if the sinkrequires pa
kets transmission through a polling s
heme. In fa
t, the sink knows theidentity of the parti
ipating CHs from the previous self-ele
tion notify phase.- Transmission to the sink with DDSPIf DDSP is implemented, then the CHs perform suitable signal pro
essing andtransmit the new m samples (with mean M) of an estimated version of the targetpro
ess; under the same assumptions as for no DDSP (see subse
tion above), thispa
ket will be 
orre
tly re
eived by the sink.The probability that a node, triggered by the sink, is able to 
onne
t to at leastone CH, is denoted as PCON, that is the probability that a non CH node is not isolated.If a node is isolated it will not belong to any 
luster, and will never send its sample.The probability of non isolated node 
an be evaluated re
alling the Poisson nature ofna
h and (2.4.4): PCON = 1� Pfnr
h = 0g = 1� e�Nr
h ; (2.4.6)where PfEg denotes the probability of the event E . We will 
onsider the network tobe dense if PCON assumes large values, that is, the network is essentially 
onne
ted,whi
h 
orresponds to high values of �.



862.4.3 Medium A

ess ControlIn general, having �xed a 
ertain MAC proto
ol, the information needed to evaluatethe impa
t of su
h proto
ol on system performan
e, in terms of energy eÆ
ien
yand sample loss probability, is the probability PMAC that a pa
ket is not lost dueto interferen
e problems, or more generally MAC failures; it is a fun
tion of theaverage number of transmissions per pa
ket, R(N), whi
h depends on the spe
i�
MAC proto
ol adopted, of proto
ol parameters/
ontraints and of the average numberof nodes N 
ompeting for transmission. An evaluation of this fun
tion for di�erentproto
ols is out of the s
ope of this thesis: in the following an example will be givenfor a simple 
ase.On
e PMAC is known, it is possible to derive the probability p, that a sample inthe sample spa
e is lost due to 
ommuni
ation. In fa
t, the latter event o

urs if thenon CH node is isolated or the pa
ket is lost due to MAC; the probability of sampleloss is thus p = (1� x) [(1� PCON) + PCON � (1� PMAC(Np)℄ ; (2.4.7)where the se
ond fa
tor a

ounts for MAC losses during sample transmission (re
allthat Np is the average number of nodes aggregated to ea
h CH).An example of the evaluation of PMAC(N) for a simple slotted random 
hannela

ess proto
ol without retransmissions, i.e., with R(N) = 1, is provided here.The time is divided in frames and ea
h frame is further subdivided in Z slots. Wehave n nodes, where n is Poisson distributed with mean N = E fng. Ea
h nodetransmits a pa
ket randomly 
hoosing one of the Z available slots in the frame. To



87redu
e 
ollisions, we 
hoose a value for Z high enough with respe
t to N ; moreover,sin
e N is not 
onstant, but depends on �, x and �, it 
ould be reasonable to set Zto be dependent on �. In fa
t, if Z is 
onstant it might o

ur that for high values of�, Z is too low with respe
t to N and so there are too many 
ollisions. To avoid thisproblem, we �x Z = 
 �N where 
 is a parameter that must be suitably set.The probability of pa
ket loss is the probability that two or more nodes sele
tthe same slot and 
ollide. This probability, re
alling that the number of nodes, n, isPoisson distributed with mean N , is given by1� PMAC(N) = 1Xn=2 "1� �1� 1Z�n�1#Pfng= 1 + e�N � Ze�N=ZZ � 1 � 1� e�N=Z = 1� e� 1
 : (2.4.8)The upper-bound reported in the right hand in (2.4.8) is tight for N > 10 and showsthat (1 � PMAC(N)) mainly depends on the ratio 
 = Z=N . For example, 
ollisionprobabilities below 10% require 
 = 10, whi
h is a reasonable value adopted in se
tion2.6.Other MAC proto
ols used in WSNs [31, 77{79℄ 
an be 
onsidered by properlymodifying (2.4.8) and R(N). In parti
ular, in Chapter 4 the probability PMAC forthe IEEE 802.15.4 MAC proto
ols, is derived. The appli
ation of the 802.15.4 to thisframework is straightforward.2.5 Energy BudgetNow, let us derive the mean energy 
onsumption of ea
h node during one round. Thisis a fo
al point in the WSN design be
ause dire
tly 
onne
ted to node lifetime. By



88means of the previously de�ned probability of CH ele
tion x, we obtain the meanenergy 
onsumption per round with and without DDSP. In parti
ular, we haveEround = w0 � [Enon CH (1� x)PCON + x ECH℄ ; (2.5.1)where the �rst term represents the 
onsumption if the node is non CH(multiplied bythe 
orrespondent probability) and the se
ond term the 
onsumption for a CH. Thefa
tor w0 a

ounts for the nodes that do not parti
ipate. By 
onsidering that ea
hnon CH 
onsumes energy when transmitting the data pa
ket to its CH on
e or moretimes depending on the 
ollisions, we haveEnonCH = ELR(Np) �d : (2.5.2)where� EL = EH � � and EH is the energy spent to transmit a bit at power Psu;� �d is the size (in bits) of the data pa
ket.The total average energy spent per round by a CH is given byECH = EH � �
 + (Np PMAC(Np) + 1)EH � �d + f(R(Np)) ; (2.5.3)for the no DDSP 
ase andE(ddsp)CH = EH � �
 +M EH �d + Eddsp + f(R(Np)); (2.5.4)when DDSP is adopted.The �rst term of (2.5.3) and (2.5.4) refers to the energy spent by a CH to transmit thebroad
ast pa
ket to inform all other nodes and the sink of its role; �
 is the size (in



89bits) of the broad
ast pa
ket. The se
ond term is related to the energy 
onsumed forthe data transmission to the sink: in the no DDSP 
ase the average number of pa
ketssent by a CH is the average number of pa
kets 
orre
tly re
eived by its non CHs, thatis Np PMAC(Np), plus the one generated by the CH itself; whereas in DDSP 
aseea
h CH has to transmit M data pa
kets on average (see se
tion 2.3.2). The generi
fun
tion f(r) represents the energy spent by CHs to transmit r average retransmissionrequests. Finally Eddsp quanti�es the energy spent by the CH to re
onstru
t and re-sample the portion of pro
ess sensed by nodes within the 
luster if DDSP is adopted.We assume this portion of energy is proportional to the number of samples pro
essedand is given by Eddsp = EH � �d 
 (Np � PMAC(Np) + 1) ; (2.5.5)where 
 is a parameter to be de�ned a

ording to the 
ir
uital 
hara
teristi
s ofthe node; it represents the ratio between the average energy needed to pro
ess onesample and the energy required for the sample transmission. The smaller 
, the moreadvantageous the DDSP strategy. A

ording to the literature (see, e.g., [64℄), theratio of energy 
onsumption for pro
essing and 
ommuni
ation of one bit is in therange of 0.001-0.0001. In the 
ase of adoption of other 
ompression te
hniques, eq.(2.5.5) has to be modi�ed.Now, for a given initial battery 
harge, E
harge, the mean number of rounds a
hiev-able during the life of ea
h node is given byNround = E
hargeEround : (2.5.6)Note that the energy spent to re
eive pa
kets is not taken into 
onsideration, assumingthat it is negligible with respe
t to the one used for the pa
ket transmission; this
ondition o

urs in some 
ases [64℄.



90Table 2.1: Values adopted for propagation, pro
ess, system and proje
t parametersif not otherwise spe
i�ed. k0 [dB℄ 25.1k1 13.03�s [dB℄ 4� [m�2℄ 4 10�6Lsu [dB℄ 120E
harge [J℄ 1EH [�J ℄ 3; 9�
 [bit℄ 48�d [bit℄ 1024
 0:001w0 0:462R [m℄ 1500
 102.6 Numeri
al ResultsIn this se
tion, numeri
al results related to the mathemati
al framework, proposedhere, will be provided to highlight the interdependen
y of several network designissues when the performan
e is investigated, both in terms of pro
ess estimationquality and network life-time. In parti
ular, the performan
e is a�e
ted by a largeset of parameters related to di�erent aspe
ts su
h as� propagation (k0 and k1 for the path-loss model, �s for shadowing);� the spatial 
hara
teristi
s of the target pro
ess (�);� system 
hoi
es (the density of nodes �, the maximum loss Lsu for high powertransmitting nodes, the initial battery energy E
harge for ea
h node, the energyEH 
onsumed to transmit a bit in high power transmission mode, the ratio 
des
ribing energy 
onsumption for single sample elaboration in DDSP mode,
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Figure 2.3: Mean 
luster size as a fun
tion of density for di�erent values of parametersx and �.
the parameter � 
hara
terizing energy 
onsumption in low power transmissionmode);� the transmission proto
ol (the probability x to be
ome a CH).In the following, results are given as a fun
tion of �, x and �; the other parametersettings, if not otherwise spe
i�ed, are reported in Table 2.1.In parti
ular, the 
onstant w0 = �(R) is 
hosen to be � 0:5 whi
h 
orresponds toa radius R = 1500 [m℄. Within this 
ir
ular area, nodes parti
ipating to the followingphases result to be uniformly distributed.
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.
Mathemati
al results on Np, p, Nround, and ", whi
h are based on some approx-imations negle
ting border e�e
ts, have also been validated through Monte Carlosimulations. The di�eren
e between simulations and the mathemati
al model is thatin the �rst 
ase the referen
e s
enario is 
onstituted by a 
ir
ular area, having rayR = 1500 [m℄, whereas the se
ond refers to an in�nite plane; in both 
ases nodesare uniformly distributed over the area. However in the latter 
ase the real s
enario
onsidered is limited by the transmission range of the sink; therefore, simulations areused to validate su
h approximate approa
h.Due to the 
lustered ar
hite
ture of the WSN, the mean 
luster size, Np, and thesample loss probability, p, play an important role on the overall network performan
e.



93For this reason, both Np and p, evaluated through eqs. (2.4.5)-(2.4.8), are reportedas a fun
tion of node density � for di�erent values of x and � in Figs. 2.3 and 2.4,respe
tively. It is interesting to observe that, as the node density in
reases, the 
lustersize tends to saturate to an asymptoti
 value whi
h is a fun
tion of parameters x and�. In Fig. 2.4, it is also possible to analyze the MAC impa
t on the probability ofsample loss p for di�erent values of the MAC parameter 
, when 
 = 10 and 
 = 100.A

ording to (2.4.7), for low values of � the sample loss probability is dominated bythe probability (1 � PCON) that a node is isolated (
onne
tivity), whereas, for largevalues of �, it is lower bounded by the pa
ket loss probability (1 � PMAC) (MACe�e
t).For � approa
hing to in�nite, we 
an obtain the 
oor value, p
oor, that is given by:p
oor = (1� x) � 1 + e� 1�xx � 
 � 1�xx e� 1

 � 1�xx � 1 ! : (2.6.1)This bound is absent if the e�e
t of MAC is negle
ted (ideal MAC, PMAC = 1,that is 
 ! 1, thus p
oor = 0) and the performan
e depends only on the network
onne
tivity whi
h always in
reases with �. Note that for both the mean 
lustersize and the probability of samples loss, a very good agreement with simulations isveri�ed.In Fig. 2.5, the MSE as a fun
tion of �, for � = 0:1 and x = 0:001, is reported inthe absen
e and in the presen
e of DDSP, for di�erent 
hoi
es of ��. In parti
ular,
ase 1 
orresponds to (2.3.7), 
ase 2 refers to (2.3.6) and 
ase 3 is the optimum onegiven by (2.3.5). Note that the 
oor on the MSE is due to the 
oor on p (see Fig. 2.4).Hen
e, we obtain the 
oors on the MSE, 
alled "
oor. In parti
ular, in the absen
e of



94DDSP only in 
ase 1 exists a 
oor, given by:"
oor = p2
oor; (2.6.2)where p
oor, is given by (2.6.1).When DDSP is adopted, all three 
ases provide 
oors, given by:� 
ase 1: "
oor = p2
oor + (1� p
oor) � �x ~K (2.6.3)where ~K = �e2(�2s=k21�k0=k1+Lsu=k1)� 
ase 2: "
oor = �x ~K1� p
oor (2.6.4)� 
ase 3: "
oor = �x ~K�x ~K + 1� p
oor (2.6.5)With the parameters in Table 2.1, the 
oors values obtained through (2.6.2),(2.6.3), (2.6.4) and (2.6.5) are, respe
tively, 0.009, 0.038, 0.036 and 0.034, whi
h areperfe
tly veri�ed by Figure 2.5. Again, simulation results show very good agreementwith mathemati
al models.In all 
ases the introdu
tion of DDSP leads to a signi�
ant degradation on theMSE. However, as will be 
lear in the following, there are relevant bene�ts of DDSP onWSN lifetime, and the trade-o� between performan
e and lifetime will be dis
ussed.
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The e�e
t of parameters x and � is shown in Fig. 2.6 where the MSE is plottedwith and without DDSP and in the presen
e or not of the des
ribed MAC proto
ol(
on
erning ��, the 
ase 2 is 
onsidered). Analyti
al and simulative results are inagreement also in this 
ase. Note that, when ideal MAC and no DDSP are 
onsidered,the MSE, a

ording to (2.3.7), 
an be made arbitrary small by in
reasing the density�. However, this situation (ideal MAC) should be regarded as a performan
e boundsin
e 
onstraints due to MAC are normally present. In the following Figures, theMAC proto
ol des
ribed is 
onsidered.As already mentioned, the quality of pro
ess estimation is not the only fo
alpoint that drives the 
hoi
e of the node density. In fa
t, the mean nodes lifetime,



96

10
−4

10
−3

10
−2

10
−1

10
0

10
1

ρ [m
−2

]

10
−4

10
−3

10
−2

10
−1

10
0

ε

x=1E−3, α=0.1
x=5E−4, α=0.1
x=1E−3, α=0.01
Sim.: x=1E−3, α=0.1

ideal MAC, no DDSP

MAC and DDSP

 

Figure 2.6: MSE with and without DDSP, as a fun
tion of density for di�erent valuesof � and x.
measured in terms of the mean number of rounds a
hieved before they expire, is alsoimportant. It depends on a large set of parameters, su
h as node density and the
luster size, the energy 
onsumed for transmitting a pa
ket in high power mode (whenthe node is CH) with respe
t to that 
onsumed in low power mode, the parameter�, and the operational pro
essing mode (DDSP or not). With DDSP it also dependson the pro
essing 
onsumption through the parameter 
 and the spatial 
orrelationproperties of the pro
ess under analysis, that is �. The mean nodes lifetime is de�nedin terms of the a
hievable average number of rounds, Nround through (2.5.6).In Figs. 2.7 and 2.8, the mean number of rounds Nround (referred to a battery
harge of E
harge = 1 Joule) is reported as a fun
tion of node density for di�erent



97values of x and � in the absen
e (Fig. 2.7) and in the presen
e (Fig. 2.8) of DDSP. By�xing a minimum number of rounds that has to be guaranteed it is possible to obtaina 
onstraint on the maximum tolerable node density �. Note that for dense WSNs(high values of �), the life-time tends to an asymptoti
al value as a 
onsequen
e of theasymptoti
al behavior of p. It is also possible to note that DDSP strongly in
reasesthe mean lifetime of nodes.Also for the network lifetime we evaluate the 
oor, Nroundfloor , for � approa
hingto in�nite. The asymptoti
 values for Nround in the no DDSP and in the DDSP 
asesfollow:� 
ase no DDSP:Nroundfloor = E
hargew0 �(1� x)EL�d + x �EH�
 + EH�d(1�p
oorx )�	 (2.6.6)� 
ase DDSP:Nroundfloor = E
hargew0 n(1� x)EL�d + xEH�
 + xEH�d � (�x ~K + 
) � (1�p
oorx )o :(2.6.7)For example, in the no DDSP 
ase with � = 0:1, we obtain a 
oor Nroundfloorequal to 539, whereas in the DDSP 
ase, for x = 10�4 and � = 0:01, we obtainNroundfloor = 38224 whi
h are the same values shown in Figures 2.7 and 2.8.The three key parameters on whi
h the trade-o� design of WSN is played are �,x and �, and the two performan
e metri
s 
onsidered are " and Nround. A possibledesign 
riterion is the following: given a 
ertain requirement, "req, on the MSE,�nd the values of �, x and � su
h that the network lifetime, Nround, is maximized.
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Figure 2.7: Mean node life duration (in terms of number of rounds as a fun
tion ofdensity for di�erent values of parameters x and � without DDSP.A

ording to this 
riterion, the algorithm whi
h allows the evaluation of the threeparameters 
an take advantage of 
oor expressions we derived, as in the following:With requirement " = "req and given 
,�s,k0,k1,Lsu,�,w0,
,�d,�
find xreq s.t. "floor(xreq) � (1 + y%) = "req; (e.g., y=10)find ~�(�) s.t. "(�; xreq; ~�) = "reqfind �req = argmax� Nround(�; xreq; ~�(�))�req = ~�(�req)giving Nround(�req; xreq; ~�req)As an example design we 
onsider the re
onstru
tion 
ase 1 with DDSP: by �xing"req = 4 � 10�2, from the above des
ribed proje
t 
riterion, we obtain xreq = 10�3,
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tion ofdensity for di�erent values of parameters x and � with DDSP.�req = 2:5 � 10�3 and �req = 3:5 � 10�2 [m�2℄. These parameters' values bring to amean number of round Nround per Joule of 
harge of about 18000.2.7 Con
lusionsIn 
on
lusion, results show that:� the DDSP te
hnique proposed provides relevant advantages in terms of energyeÆ
ien
y (see Figs. 2.7 and 2.8) at the expense of an in
reased estimation error;� the role of MAC proto
ol 
an be very signi�
ant and its 
hoi
e a�e
ts overallperforman
e (see Fig. 2.4);



100� a saturation e�e
t on the performan
e when node density is in
reased is presentdue to the 
lustering ar
hite
ture and MAC (see Figs. 2.5- 2.8).
The main advantage of this mathemati
al framework is to rapidly investigate thesensitivity, of both pro
ess estimation and WSN lifetime, to di�erent parameter set-tings. An a

urate evaluation through mathemati
al handling of all issues a

ountedfor in this Chapter. However, the framework developed here has the limits explainedin the Introdu
tion of this thesis: (i) a single-sink s
enario and not the more generalmulti-sink s
enario, is a

ounted for; (ii) border e�e
ts are not taken into 
onsider-ation; (iii) the model is valid only for 
luster-based topology, therefore node haveto rea
h the sink through a two-hop 
ommuni
ation and the more general 
ase ofmultiple hops is not treated; (iv) the MAC proto
ol is very simple, and we do notrefer to any spe
i�
 standard air interfa
e; (v) the model assumes no interferen
ebetween CHs in the transmissions toward the sink. In the rest of the thesis othermathemati
al models aiming at over
oming these limits, are proposed. In parti
ular,Chapter 3 deals with 
onne
tivity models for multi-sink s
enarios, whereas Chap-ter 4 introdu
es a model for the 802-15.4 MAC proto
ol. These two models are,then, integrated in Chapter 5 for the realisation of a mathemati
al framework forstudying 805.15.4 multi-sink WSNs under 
onne
tivity, MAC and energy 
onsump-tion viewpoints. However, the model des
ribed in Chapter 5, does not 
onsider signalpro
essing issues. The appli
ation of the signal pro
essing issues introdu
ed in thisChapter, to the model developed in Chapter 5, 
ould be applied for future works.



101AppendixPoint Pro
ess with lossesIf the stationary random pro
ess P1(s) =Pn Æ(s� sn), with mean �P1, is relatedto the point pro
ess fsng and p is the probability to lose a sample, the resultingthinned random pro
ess 
an be des
ribed as followsP2(s) =Xn anÆ(s� sn) ; (2.7.1)where fang is an independent and identi
al distributed random sequen
e with an 2f0; 1g and p is the probability to have an = 0 (sample loss) and h = 1 � p theprobability to have an = 1. The 
orresponding statisti
al auto
orrelation fun
tionRP2(�) 
an be expressed as a fun
tion of the original auto
orrelation RP1(�) as followsRP2(�) = h2RP1(�) + �P1 p h Æ(�) : (2.7.2)Proof.Re
alling the de�nition of the statisti
al auto
orrelation fun
tion of a stationary ran-dom pro
ess we 
an write RP2(�) = E fP2(s)P2(s� �)g == E (Xn Xi anaiÆ(s� sn)Æ(s� � � si)) ==Xn Xk Ra(k)E fÆ(s� sn) � Æ(s� � � sn�k)g ; (2.7.3)with
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Ra(k) = E fanan�kg = 8><>: h k = 0h2 k 6= 0 : (2.7.4)By substituting (2.7.4) in (2.7.3) we getRP2(�) = h2 � E (Xk Xn Æ(s� sn)Æ(s� � � sn�k))+(h� h2)Xn E fÆ(s� sn)Æ(s� � � sn)g == h2RP1(�) + p � h � Æ(�)E (Xn Æ(s� sn)) ; (2.7.5)that leads to the result in (2.7.2).Estimation errorBy expanding the de�nition (2.3.1) we 
an write

" = 1E0 �E �Z<l X̂2(s) ds�+ Z<l x2(s) ds� 2E �Z<l ^X(s) � x(s) ds�� : (2.7.6)Using the Parseval's relationship we have" = 1E0 Z<l j�(�)j2EY (�)d� + 1� 2E0 Z<l �(�)E fSY (�)gS�X(�) d� : (2.7.7)where SY (�) = =(l)[Y (s)℄.Due to the stationarity of the random pro
ess P (s) it isE fSY (�)g = E �=(l)[x(s) � P (s)℄	 = �P � SX(�) : (2.7.8)By substituting (2.7.8) in (2.7.7) we obtain the �nal relationship
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" = 1 + 1E0 Z<l j�(�)j2EY (�)d� � 2�PE0 Z<l �(�)EX(�) d� : (2.7.9)This expression gives the normalised estimation error as a fun
tion of EY (�), de�nedin (2.2.12), and EX(�).





Chapter 3Tree-Based Topologies forMulti-Sink Networks
This Chapter deals with some statisti
al models to 
hara
terize network 
onne
tivitywhi
h provide useful general insights on network parameters design rules, su
h asnode density and transmission power, in WSNs.In parti
ular, we 
onsider a multi-sink WSN where sensors transmit data to onesink sele
ted among many through multi-hop 
ommuni
ation; nodes are organised intrees rooted at the sinks.The optimal design of these trees, assuming that sensors and sinks are uniformlyand randomly distributed over an in�nite plane, is treated �rst. In parti
ular, on
ethe trees height is �xed, the optimum number of 
hildren per parent, maximisingnetwork 
onne
tivity, is derived. This analysis is performed through mathemati
alapproa
hes and by means of simulations.Then, a mathemati
al framework to derive some metri
s providing the network
onne
tivity level, is developed. Bounded and unbounded regions are 
onsidered inthis 
ase.The Chapter is organised as follows. The following se
tion introdu
es the aim of



106the work. Se
tion 3.2 deals with the related works in the literature. Then the design ofthe optimum tree-based topology, showing both mathemati
al and simulation results,is dealt with. Finally, the multi-sink multi-hop 
onne
tivity model for bounded andunbounded regions, is des
ribed.3.1 Aims of the StudyA multi-sink WSN, 
olle
ting data from the environment through the sampling ofsome physi
al entities and sending them to a user, through multiple sinks, is 
on-sidered. Nodes transmit samples taken from the environment to one sink, sele
tedamong many. The user, by 
olle
ting samples taken from di�erent lo
ations, andobserving their temporal variations, 
an estimate the realisation of the observed pro-
ess, as shown in Chapter 2. Good estimates require suÆ
ient data taken from theenvironment.The data taken from the area where sensors are distributed, are transmitted to a
entralised unit by means of wireless links 
onne
ting sensors to sinks, whi
h 
olle
tthe samples and forward them to the unit through a proper network. If few sensornodes are deployed and the target area is small, a single sink 
an be used. When thenumber of sensors or the target area is large, nodes are often organised in 
lusters;one sink per 
luster forwards the queries to sensors, and 
olle
ts the responses.Sinks are sometimes spe
i�
ally deployed in optimised and planned lo
ations withrespe
t to sensors. However, opportunisti
 exploitation of the presen
e of sinks, 
on-ne
ted to the 
entralised unit through a mobile radio interfa
e, is an option in some
ases (see the Appendix of this thesis). Under these 
ir
umstan
es, many sinks 
anbe present in the monitored spa
e, but their positions are unknown and unplanned;



107therefore, a
hievement of a suÆ
ient amount of samples is not guaranteed, be
ausesensor nodes might not rea
h any sink (and thus be isolated) due to the limitedtransmission range.A

ording to the type of enabling te
hnology used (e.g., Bluetooth or IEEE802.15.4), di�erent network topologies might be 
onveniently 
reated su
h as, forinstan
e, trees, or rings, or 
luster-based topologies [80, 81℄. For WSNs, where theset of destination nodes, that are the sinks, is separated by those of sour
es, namelysensor nodes, tree-based topologies seem to be more eÆ
ient than the others: in fa
t,routing is mu
h simpler, and also distributed data aggregation me
hanisms are moreeÆ
ient. Moreover, as stated in Chapter 1, this topology is one of the topologiesde�ned by the Zigbee Allian
e [51, 82℄, therefore suitable for 802.15.4 networks. Asdealing with a multiple sink s
enario, formally a forest of (disjoint) trees is formed.In su
h s
enario, being an un
oordinated environment, network 
onne
tivity is arelevant issue, and it is basi
ally dominated by the randomness of radio 
hannel andthe density of sinks.In this Chapter 
onne
tivity issues in tree-based multi-sink WSNs, by 
onsideringtwo separate studies, having di�erent aims, are dealt with.The �rst study fo
uses on properly designing the tree-based topology on the basisof 
onne
tivity requirements. The obje
tive of the work is to maximise the numberof samples reported to the sink(s), that is, network 
overage, whereas the tree heightshould be set keeping energy 
onsumption under 
ontrol. The study has been 
arriedout through simulations and mathemati
al analysis. In parti
ular, we study: (i)



108a multiple level tree topology using a deterministi
 MAC, based on Bluetooth orthe CFP of the IEEE 802.15.4 superframe (allo
ation of GTSs to nodes) and (ii) athree-level topology using both the CAP and CFP of the 802.15.4 superframe. Thelatter 
ase is studied through simulation [9℄, while the former 
an be mathemati
allyhandled through a statisti
al approa
h. The mathemati
al analysis to derive thestatisti
s of the number of samples re
eived at ea
h sink is reported in [83,84℄ and isbased on the basi
 
on
epts of 
onne
tivity in PPP �elds, reported in Chapter 1. Themathemati
al model is derived, assuming that both, sensors and sinks, are uniformlydistributed over an in�nite area. It is shown that in both 
ases (i) and (ii), on
etree height is �xed, network is maximised by a proper 
hoi
e of the average numberof nodes at ea
h level (and therefore of the average number of 
hildren per parent).However, the 
hoi
e of the tree height has a relevant impa
t on su
h optimisation.In the se
ond study, instead, a bounded s
enario where, on
e again, sinks andsensors are uniformly and randomly distributed, is a

ounted for. In this work, theprobability that sensor nodes are 
onne
ted to at least one sink, is mathemati
allyderived. Starting from su
h a result, the probability that all nodes, or a subset ofthem, are 
onne
ted, is 
omputed. The work is based on previous papers published inthe literature that provided results in the 
ase of an in�nite plane [61,85℄. This workdi�ers from the previous ones, sin
e it takes into 
onsideration bounded s
enarios, asituation whi
h of 
ourse is way more realisti
 and requires suitable 
onsideration ofthe border e�e
ts. The analysis is �rst performed in the 
ase of single-hop 
ommu-ni
ation (i.e., every sensor transmits the sensed data dire
tly to a sink). Then, themulti-hop 
ase (i.e., sensors may also a
t as routers) is 
onsidered.In both the above works the link power loss introdu
ed in Chapter 1 (see eq.



109(1.6.1)), whi
h takes dependan
e on distan
e and 
hannel randomness into a

ount,is used.
3.2 Related WorksMany papers in the literature based on random graph theory, 
ontinuum per
olationand geometri
 probability [86{90℄ devoted their attention to 
onne
tivity issues ofnetworks. In parti
ular, wireless ad ho
 and sensor networks have re
ently attra
teda growing attention [56{58, 63, 91, 92℄. A great insight on 
onne
tivity of ad ho
wireless networks is provided in [56{58℄. Nonetheless, the authors do not a

ountfor random 
hannel 
u
tuations and do not expli
itly dis
uss the presen
e of one ormore fusion 
enters (sinks) in the given region. Conne
tivity-related issues of WSNsare addressed in [63, 91℄. In [63℄, while 
onsidering 
hannel randomness, the authorsrestri
t the analysis to a single-sink s
enario. Single-sink s
enarios have attra
tedmore attention so far. Although su
h s
enarios have been more examined, multi-sink s
enarios, have been in
reasingly 
onsidered. Furthermore, the models based onbounded domains turn out to be of more pra
ti
al use. As an example, [91℄ addressesthe problem of deploying multiple sinks in a multi-hop limited WSN. However, thework presents a deterministi
 approa
h to distribute the sinks on a given region,rather than 
onsidering a more general uniform random deployment.To the best of our knowledge, no one has so far introdu
ed any 
onne
tivity modelfor WSNs while jointly 
onsidering the following aspe
ts: presen
e of both sensorsand multiple sinks, random deployment of nodes, multi-hop 
ommuni
ation, boundeds
enarios and 
hannel 
u
tuations.
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Figure 3.1: ZigBee-
ompliant tree network topology.
3.3 Referen
e S
enarioWe assume that sensors and sinks are uniformly and randomly distributed over the bi-dimensional plane with densities �s and �0, respe
tively, with the latter mu
h smallerthan the former. We denote as � the ratio between these two densities, therefore� = �s=�0.The sensor nodes deployed in the monitored area (that 
ould be bounded or un-bounded) need to 
ommuni
ate the sensed data to one sink, responsible for 
olle
tionof information from the area.Communi
ation 
an take pla
e through multi-hop paths. Sensors are assumed



111to be split into T groups (that we 
all levels) obtained through a random pro
e-dure whi
h lets nodes belonging to ea
h level be all uniformly distributed in the area(bounded or unbounded); the nodes are then 
onne
ted through a hierar
hi
al ar-
hite
ture, where nodes at a given level need to 
onne
t to nodes at a lower level torea
h a sink (sinks belonging to the lowest level, in our formalism, see Figure 3.1).As an example, it takes 3 hops to a node belonging to level 3 to rea
h the sink:two nodes (one belonging to level 2 and the other belonging to level 1) will a
t asrelays. This assumption, that we denote as a-priori level partitioning, a

ounts fornetworks where a node belongs to one out of T 
ategories of devi
es, ea
h one hav-ing di�erent physi
al features. The expression a-priori stems from the fa
t that thepartitioning pro
edure o

urs independently from the nodes positions. Just to givea pra
ti
al example, in 802.15.4 [52℄ networks, devi
es (su
h as the 13192 EvaluationBoards by Frees
ale [93℄) operating on a peer-to-peer topology, 
an be either FFD orRFD: hen
e, sin
e RFD devi
es may only talk to FFD ones, if the latter belongs tolevel i, the former will ne
essarily belong to level i-1. We emphasize that the nodesare then grouped with �xed densities a-priori: in fa
t, regardless of whether we aredealing with two diverse boards or with the same board running two di�erent pie
esof software, both the hardware (in the �rst 
ase) and the software (in the se
ond)remain the same for the entire operational time of the network (e.g., the softwaremay not be re-
ompiled on-the-
y). Hen
e, although it is not the optimal situationfrom a 
onne
tivity perspe
tive (not all possible paths to the sinks are exploitable),the a-priori partitioning assumption is noteworthy be
ause it is widely adopted inpra
ti
e. Moreover, 
onne
tivity models for two-dimensional T -hop networks undermore general 
onditions are still being studied [94℄.



112We denote as �i nodes density at level i, with i 2 [1; ::; T ℄ and we assume thata node belongs to level i with a probability pi (equal for all nodes), �xed a-priori asstated above; therefore �i = pi�s. Whatever the strategy used, the density of nodesat all levels must satisfy the 
onstraintTXi=1 �i = �s : (3.3.1)3.4 On the Design of Optimum Tree-Based Topolo-giesThe aim of this part of the Chapter is to optimally design the tree topology, a

ountingfor 
onne
tivity issues.We assume that the air interfa
e imposes a maximum number of nodes that 
an be
onne
ted to a given node. As an example, in 
ase Bluetooth is used [55℄, a maximumnumber of seven slaves 
an be 
onne
ted to the master of the pi
onet (see Chapter1). Also, the Zigbee Allian
e is providing pro�les where the maximum number of
hildren per parents is �xed a priori, to avoid the risk of many 
ontentions during theCAP and addressing problems [82℄. In parti
ular, we will denote as 
i, the 
apa
ityof level i-1 nodes, that is the maximum number of i level nodes that 
an be servi
edby an i-1 level node. When it does not depend on i, we denote it as 
 and also referto the maximum number of 
hildren per parent in the tree.Two di�erent s
enarios are addressed here: (i) a multiple level tree topologyusing a deterministi
 MAC, that 
ould be based on Bluetooth or 802.15.4 in 
asea maximum number of seven 
hildren per parent is imposed, therefore, 
 � 7 (inthis 
ase, in fa
t, all nodes 
an use GTSs) and (ii) a three-level tree topology using



113both CAP and CFP of 802.15.4, where the 
apa
ity 
onstraint 
ould be imposed ornot, and the 
ontention-based MAC proto
ol is a

ounted for. The �rst s
enariois studied through mathemati
al analysis; whereas the se
ond one is implementedthrough simulations.The rest of this se
tion is devoted to the des
ription of these two s
enarios andapproa
hes and shows numeri
al results obtained.3.4.1 The multi-level tree: mathemati
al analysisBeing sensors and sinks Poisson distributed over the in�nite bi-dimensional plane, thenumber of samples reported to a generi
 sink through the tree is, on
e again, a r.v.,denoted as n, having a probability distribution, denoted as f(n). When a 
apa
ity
onstraint is imposed, n is upper-bounded by nmax =PTi=1 
i, whereas more generallyit is unlimited.The probability that the number of samples re
eived by a given sink is above (orequal to) a �xed fra
tion x of the mean, �, is given by:R = Pfn � x�g = 1Xx� f(n); (3.4.1)assuming x� is an integer. If x� is not an integer, extension is straightforward.On
e f(n) is known (this distribution is derived in the following), the only degreeof freedom, in order to properly design the trees, is the set of values �i (i = 1; � � � ; T ),that need to be designed a

ording to the 
onstraint (3.3.1).For the sake of simpli
ity here it is assumed that the ratio between the nodedensity at a given level and the one at the next higher level is set to a 
ommon value



114�, ex
ept for the T -th level that will in
lude the remaining nodes. Formally,�i=�i�1 = � i = 1; � � � ; T � 1 and �T=�T�1 � �: (3.4.2)Thus � is the mean number of 
hildren per parent, and the probability of blo
king (i.e.the transmission of the samples 
olle
ted to the higher level is not possible be
ause of
apa
ity limits, or 
ollisions) will be the same at all levels from T -1 to 1. It is worthnoting that this 
hoi
e is not ne
essarily optimized, as the optimum 
hoi
e shouldre
e
t a 
ompromise between the 
ost of blo
king the transmission at higher levels(where a node needs to report the many samples 
olle
ted by its 
hildren) and theoverall network energy eÆ
ien
y. This will be matter for future work.As a result, T and � should be �xed a

ording to the 
onstraint (3.3.1) andexpressions given in (3.4.2).Clearly, when � in
reases, the minimumvalue T needed to satisfy 
onstraint (3.3.1)will de
rease. In parti
ular, using equations (3.4.2) and (3.3.1) the minimum valueof T is found using the following formula:T�1Xi=1 �i + �T�1 � �T=�T�1 = �: (3.4.3)On the other hand, if � signi�
antly ex
eeds the air interfa
e 
apa
ity, the probabilityof blo
king will in
rease.Thus, the obje
tive of our analysis is to derive the value of � su
h that R isoptimised.A

ording to the 
hannel model des
ribed in Chapter 1, a node 
an hear a trans-mitting one in 
ase L � Lth; thus, the number of level i sensors audible at a randompoint on the plane has a Poisson distribution with mean
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�i = ��ie 2(Lth�k0)k1 + 2�2sk21 ; (3.4.4)whi
h 
orresponds to eq. (1.6.9) by repla
ing � with �i. As all sensors at all levels arerandomly distributed, this applies to the number of level i sensors audible to everyother sensor. This result is derived, in a di�erent 
ontext, in [61℄.Assuming that every sensor will seek servi
e at the loudest sensor at the nextlevel, it is shown in [83℄ that the number of level i sensors seeking servi
e at a givenlevel i� 1 one has a Poisson distribution with a given mean. In our 
ase, the meannumber of level 1 sensors seeking servi
e at a given sink is [1� e�0 ℄�1�0 . The ratio �1�0 isthe mean number of level 1 sensors per level 0 one, and the fa
tor [1� e�0 ℄ eliminatesthose whi
h 
annot hear at least one level 0 one.To deal with the hierar
hi
al 
ase we de�ne a probability generating fun
tion �i(s)for the number of level i sensors being servi
ed by a given level i�1 sensor. Then theprobability generating fun
tion for the number of level i + 1 sensors being servi
edby a given level i� 1 sensor through level i sensors (a three-level hierar
hy) is�i(s�i+1(s)): (3.4.5)Here, within the bra
ket, the term �i+1(s) \
ounts" the level i+ 1 sensors reportingto a given level i one, and the additional s adds the latter before the report is sentup to the next level.The extension to higher level hierar
hies is immediate. Thus the probability gen-erating fun
tion for the number of level i + 2 sensors being servi
ed by a given leveli� 1 sensor through level i and level i + 1 sensors (a four-level hierar
hy) is�i(s�i+1(s�i+2(s))); (3.4.6)



116and similarly for yet higher levels.In these 
ir
umstan
es, denoting as �(i) the mean number of level i sensors beingservi
ed by a given level i� 1 sensor, it follows that the mean number of level i + 1sensors being servi
ed by a given level i� 1 sensor through level i sensors is�(i)(�(i+1) + 1); (3.4.7)while for the four-level hierar
hy this be
omes �(i)�(i+1)�(i+2) + �(i)�(i+1) + �(i).With no 
apa
ity limitation this generating fun
tion is that of the Poisson dis-tribution of the number of sensors seeking servi
e des
ribed above. With 
apa
itylimitation, we start with that Poisson distribution (whose mean we take as �), but
umulate all probabilities from the term in s
i onwards. The probability generatingfun
tion therefore be
omes�i(s) = 
i�1Xu=0 �usuu! e�� + s
i 1Xu=
i �uu! e��: (3.4.8)The number of levels in the hierar
hy depends on � and �. At one extreme, if� � �, then all sensors are at level 1, and we have a 2-level hierar
hy. If � < �,then the density of level 1 sensors is �0�, leaving a density of �0(�� �) of sensors toallo
ate to lower levels: these will all remain at level 2 if �2 � �� �. Otherwise thedensity of level 2 sensors will be �0�2, leaving a density of �0(�� � � �2) for level 3or lower. Repeating as often as ne
essary, we �nd that in general the hierar
hy willbe of level T + 1 if 0 < �� � � �2 � � � � � �T�1 � �T .3.4.2 Mathemati
al Analysis ResultsThe following parameters are set: k0 = 40 [dB℄, k1 = 15, �s = 4 [dB℄, Lth = 110 [dB℄,�0 = 10�4 [m�2℄ and � = 100. The default requirement is to have at least 90 samples



117re
eived at ea
h sink (therefore, x = 0:9). Capa
ity limit is 
 = 7.
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Figure 3.2: The probability distribution of number of nodes servi
ed, f(n), for di�er-ent values of �, T = 3.Let us 
onsider T = 3. A

ording to the 
onstraints (3.3.1) and (3.4.2), the valuesof � that should be 
onsidered approximately range from 4.3 to 9.5. Fig. 3.2 showsthe probability f(n) as a fun
tion of n for � = 5; 6; 7. As expe
ted, the means tend to
onverge to � when � in
reases, as all trees will �nd a suÆ
ient number of nodes to�ll all levels. Is it worth noting that as � gets larger, the varian
e of these statisti
sde
reases.Figure 3.3 shows the e�e
t of x on the probability R, plotted on the verti
alaxis as a fun
tion of �, for T = 3, again. A

ording to the relevant variations onthe standard deviation of f(n), the 
urves vary signi�
antly depending on x. In all
ases, an optimum value of � 
an be determined by these 
urves, depending on therequirement set. Note that the optimum value is 
lose to seven (i.e. the 
apa
itylimit), or a bit larger. The sudden de
rease of R after the maximum is determined
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Figure 3.3: R as a fun
tion of �, by varying x, having �xed T = 3.by the in
rease in the blo
king probability. Also note that, as expe
ted, when x islarger, the probability R gets smaller.Figure 3.4 shows R as a fun
tion of � for � = 50, 
 = 7, having set k0 = 40 [dB℄,k1 = 13:03, �s = 3:5 [dB℄, Lth = 95 [dB℄, and �0 = 4 � 10�4 [m�2℄. Here we 
onsiderthe options T = 4, 3 and 2: � 
an approximately range from 2.4 to 3.2, from 3.2 to6.5 and from 6.5 to 10, respe
tively. Note that the 
ases with T = 2 and 3 should
onverge for � = 6:5, where we have a four-level tree with the lowest level empty, or athree-level tree with the lowest level having node density whi
h is � times larger thanthat at the higher level; in fa
t, this happens. The same holds for T = 4 and 3 at� = 3:2. Note that the larger x (i.e. a more stringent requirement is set), the smallerthe probability R, as expe
ted. However, the most important aspe
t stands in themaximum value of R; depending on x, optimum performan
e is a
hieved for T = 2or 3. In other words, the optimum tree height depends on the 
overage requirement.
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Figure 3.4: R as a fun
tion of �. � = 50, 
 = 7.From Fig. 3.4 it 
an be seen that for x = 0:7 the optimum topology requires T = 2,� � 7:7, while for x = 0:9 it is given by the pair T = 3, � � 4:5. In [9℄ this e�e
tis more thoroughly dis
ussed and it is shown that this depends on the shape of thenumber of nodes reporting to a given sink distribution.In Figure 3.5, instead, we set � = 200 and we left the other parameters at thesame values used in Figure 3.4. Here the two 
ases T = 4 (� ranging in this 
ase from3.5 to 5.5) and 3 (from 5.5 to 9.5) are 
onsidered. Similar 
onsiderations to the 
aseof Fig. 3.4 
an be done. However, given the larger average number of nodes per treewith respe
t to Fig. 3.4, the optimum topology requires T = 3 or 4.Finally, in Figure 3.6 we show the behavior of R, for di�erent 
apa
ities, having�xed � = 50, T = 2 and x = 0:7. In parti
ular, the 
apa
ity limit for sinks is 
1 = 13while 
2 ranges from 3 to 13. The graph shows that redu
ing 
2 a�e
ts only the leftpart of the 
urves, at least if the value is not too low. This 
an be motivated by
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Figure 3.5: R as a fun
tion of �. � = 200, 
 = 7.the fa
t that for lower values of �, the lowest level in the tree is the one hosting themajority of nodes, and a 
apa
ity limitation at the penultimate level strongly a�e
tsthe possibility to 
olle
t information from the �eld; on the opposite, for large valuesof �, the lowest level tends to be
ome empty, and su
h 
apa
ity limitation does nota�e
t signi�
antly the probability R.By 
omparing the 
urve for x = 0:7 in Fig. 3.4 to those of Fig. 3.6, it 
an be seenthat the 
apa
ity in
rease from 7 to 13 
learly shows an improvement on network
overage. However, R does not rea
h unity. Indeed, it was found that with 
 tendingto in�nity, R monotoni
ally in
reases with �, and the maximum is rea
hed for � = 50where R be
omes approximately 0.98. The di�eren
e between this value and unityis due to the statisti
al behaviour of the number of nodes per tree: even if there areno 
apa
ity limitations and network 
onne
tivity is assured, the probability of anygiven numbers of nodes being 
onne
ted to a sink does not rea
h unity be
ause there
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Figure 3.6: R as a fun
tion of �. � = 50, 
1 = 13, T = 2, x = 0:7.is non-zero probability of trees with very few nodes (even zero, with low probability).
Finally, results having �xed �0 = 5 � 10�4 [m�2℄, � = 10, k0 = 40 [dB℄, k1 = 13:03,�s = 3:5 [dB℄ and Lth = 95:6 [dB℄, are shown.Figure 3.7 shows R as a fun
tion of � for x = 0:7, 0.8 and 0.9. As we 
an see,by in
reasing x, R de
reases, as expe
ted. A

ording to the 
onstraints (3.3.1) and(3.4.2), the values of � that should be 
onsidered depend on T . Here we 
onsiderT = 2, 3 and 4, whi
h 
orresponds to � ranging in [2.71, 10℄, [1.74, 2.71℄ and [1.4,1.74℄, respe
tively. Note that the 
ases with T = 2 and 3 
onverge for � = 2:71,be
ause in this point we have a four-level tree with the lowest level empty, or a three-level tree with the lowest level having nodes density whi
h is � times larger than thatat the higher level. The same holds for T = 3 and 4, at � = 1:74. In all 
ases the
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Figure 3.7: R as a fun
tion of � for �0 = 5 � 10�5 [m�2℄ and x = 0:7, 0.8 and 0.9.
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Figure 3.8: R as a fun
tion of � for �0 = 5 � 10�4 [m�2℄ and x = 0:7, 0.8 and 0.9.



123maximum value of R is rea
hed for T = 2, whereas the optimum value of � de
reasesby in
reasing x. As we 
an see, even in the 
ase x = 0:7, R assumes a maximumvalue of 0.4, that is quite low: the reason is that performan
e has been evaluated fora network with low density, whi
h has 
onne
tivity problems. Thus, in Figure 3.8, weshow R as a fun
tion of � for a network having �0 = 5 � 10�4 [m�2℄ and � = 10, forT=2, 3 and 4 and x = 0:7, 0.8 and 0.9. As we 
an see, this network is more 
onne
tedthan the one 
onsidered in Fig. 3.7; in fa
t R rea
hes the values of 0.85 for x = 0:7.The optimum value of R is rea
hed for T = 2 and for � = 10, 7 and 6.3 in the three
ases x = 0:7, 0.8 and 0.9, respe
tively. Moreover, we 
an note that for x = 0:8 and0.9, when � assumes value larger than 7, R de
reases; this is due to the 
apa
ity limitimposed (
 = 7) whi
h a�e
ts R, for large values of �.3.4.3 The Three-Level Tree: Simulation EnvironmentSimulation results have been a
hieved through a C language simulation tool spe
i�-
ally developed to model the environment and proto
ols des
ribed in the following.The referen
e s
enario 
onsidered 
onsists of a number of nodes randomly anduniformly distributed over a square area (having side L meters, so that �s = 1=L2),whi
h is Poisson distributed with given mean, Ns.Both single-sink and multi-sink s
enarios are simulated. In the �rst 
ase only onesink is lo
ated in a given position of the area and we �x Ns su
h that � = Ns. In themulti-sink s
enario, instead, a number of sinks are Poisson distributed in the square,with given mean, M .As stated above, in the simulation environment, 802.15.4 devi
es are 
onsidered.Therefore, the sinks are the Personal Area Network (PAN) 
oordinators, managing a



124PAN, 
omposed of a given number of sensors and formed a

ording to a pro
eduredes
ribed in the following. Nodes work in bea
on-enabled mode, therefore sinksperiodi
ally send bea
on pa
kets.The network must be able to provide the information dete
ted by nodes to thesinks within the superframe starting with the transmission of the bea
on from sinks.We denote as round the period of time between two su

essive bea
on pa
kets sentby the sinks (i.e., the bea
on interval). It is also assumed that all sinks are timesyn
hronised, thus they transmit the bea
on pa
kets at the same time.Note that here, we do not 
onsider the Zigbee tree-based topology: tree formationand the a

ess to the 
hannel is managed through a di�erent 
ommuni
ation proto
ol,des
ribed in the following.The 
hannel model is the one des
ribed in Chapter 1. Finally, we impose a 
apa
ity
onstraints, thus we �x a maximum number of 
hildren per parent.The tree topologyThe network is organised in a three-level hierar
hi
al topology: the sink is at levelzero, level one is 
onstituted by nodes denoted as CHs and level two is 
onstituted bynon CH nodes. Nodes ele
t themselves CHs with probability p1. Therefore, we have�1 = p1 � �s and 
onsequently p1 = �=� = �=M . Re
all that � is the mean numberof 
hildren per parent. Having �xed M , and by varying p1, this observation allows todraw 
urves of R, that 
an be easily derived through simulation, as a fun
tion of �.The tree is formed a

ording to the following steps:1. PANs formation - ea
h sink transmits a bea
on pa
ket and nodes sele
t thePAN to belong to on the basis of the re
eived power: ea
h node sele
ts the sink



125from whi
h it re
eives the largest power.2. Clusters formation - in ea
h PAN a 
ertain number of nodes ele
t themselvesCHs, with probability p1. Ea
h CH broad
asts a pa
ket informing of its role andthose nodes that did not ele
ted themselves as CHs (non-CHs) sele
t their CHsto transmit to, on the basis of the power re
eived by ea
h CH. In parti
ular,on
e again, ea
h node sele
ts the loudest CH.3. Transmissions - ea
h non-CH node, transmits its pa
ket to the respe
tive CH,whi
h, on its turn, sends all pa
kets re
eived, plus the one it generated, tothe sele
ted remote sink via a dire
t link. If a non-CH node does not re
eive
orre
tly any broad
ast pa
kets 
oming from CHs, or there are not ele
ted CHsin a PAN, its pa
ket is lost (transmissions from level two to level zero are notallowed).As will be 
lari�ed in the following, two supeframes are needed for exploiting theproto
ol: a superframe is used for PANs and 
lusters formation and another oneis devoted to transmissions. In parti
ular, a superframe for the tree formation, isfollowed by Ntr superframes where sample transmissions take pla
e. Therefore, treeare formed every Ntr round (see Figure 3.9). It is reasonable, if we assume that the
hannel has a 
oheren
e time equal to Ntr round.MAC layer proto
olThe bea
on-enabled mode, with a
knowledge transmission, is 
onsidered.Three kinds of pa
kets 
an be transmitted in the network: the bea
on, having asize of 62 bytes (i.e., it is transmitted in 124Ts, sin
e a bit rate of 250 [kbit/se
℄ is
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Figure 3.9: The 802.15.4 superframe used in the 
ommuni
ation proto
ol.
used); the ACK pa
ket sent to notify the 
orre
t re
eption of a data pa
ket, havinga size of 5 bytes, and data pa
kets, 
ontaining the measurement result and having asize of 25 bytes (with a payload of 10 bytes).At the end of the topology formation phase, it is assumed that the sinks are awareof the topology. This is possible be
ause of CH broad
asts and the ACK pa
ketssent by non CHs to notify the broad
ast re
eption are re
eived by the �nal sink too(assuming re
ipro
al links, if a node 
orre
tly re
eives the bea
on, it 
an rea
h thesink). Sin
e CHs have to transmit to the �nal sink all pa
kets re
eived inside their
lusters plus the one generated by themselves, the loss of a CH pa
ket implies the lossof a large number of samples. For this reason we de
ide to assign GTSs to CHs. Then,when the sink transmits the bea
on whi
h starts the sample transmission phase, it



127assigns the GTSs to the CHs whose 
lusters are larger: in other words we introdu
e apriority for those CHs whi
h have the largest 
luster sizes. Moreover the sink assignsa spe
i�
 
hannel to ea
h 
luster, that is ea
h non CH belonging to a given 
lusteruses the same 
hannel: in this way, 
ollisions between 
lusters are avoided, while nonCHs 
ompete during the CAP on a given 
hannel (in 
ase of more than 16 
lustersa spatial frequen
y reuse is performed). Thus, both CAP and CFP are present: theCAP duration ranges from TCAPmax = 960 � 2SO � Ts � 124Ts, when there are no CHs,and GTSs are not allo
ated, to TCAPmin = 60 � 2SO � Ts � (16� 7)� 124Ts, when thereare seven or more than seven CHs and all GTSs are allo
ated (see Figure 3.9). Alarge value of SO is set su
h that the pa
kets (and the inter-frame spa
e) 
ould be
ontained in the minimum duration of a GTS (60 � 2SO Ts) and seven GTSs 
ouldbe allo
ated (see Chapter 1). When the number of CHs is lower than seven, all theCAP is used by non CHs that have to transmit to their CHs, through CSMA/CA: nome
hanism to handle hidden terminals is performed, therefore, 
ollisions o

ur andsome pa
kets are lost. When, instead, the number of CHs is larger then seven, theCFP is used and the CAP duration is TCAPmin . In this 
ase the CAP is subdividedinto two parts: the �rst part, TCAPnonCH , set to the C % of TCAPmin , is devoted to nonCHs transmissions, whereas the se
ond part, TCAPCH , set to (100�C)% of TCAPmin isdevoted to transmissions of the CHs that do not have a GTS assigned. These nodesuse the default frequen
y to transmit to the �nal sink, thus they 
ould 
ollide. Weshow in the following 
urves for di�erent values of C.
To realisti
ally a

ount for 
ollisions, 
apture e�e
t is taken into 
onsideration:we assume a pa
ket is 
aptured by the re
eiver, even in 
ase of pa
ket 
ollisions (i.e.



128simultaneous transmission of pa
kets by separate nodes), ifPR0PN
i=1 PRi > � (3.4.9)where� PR0 is the power re
eived from the useful signal;� PRi is the i-th interferen
e power;� N
 is the number of 
olliding pa
kets;� � is the 
apture threshold, set to 4 [dB℄.When 
ondition (3.4.9) is not ful�lled, the pa
ket is lost and the re
eiving node doesnot transmit the a
knowledge pa
ket.3.4.4 Simulation ResultsIn this se
tion we report the numeri
al results obtained through simulations, in themono- and multi-sink s
enarios.1000 rounds are simulated and then, 10 di�erent and un
orrelated realisations ofnode lo
ations are 
onsidered. At ea
h round the pa
ket error rate, obtained dividingthe number of samples lost by the number of nodes in the network, is 
omputed and,at the end, R is evaluated.The pa
ket losses are 
aused by the following events:� a node is isolated: it does not re
eive the bea
on pa
ket or it does not re
eiveany CH broad
ast pa
kets and it 
annot rea
h dire
tly the �nal sink; this eventhas very low probability with the system parameters 
onsidered in this paper;



129� a node tries to a

ess the 
hannel for more than NBmax 
onse
utive timeswithout su

ess (see Chapter 1);� a node does not su

eed in 
orre
tly transmitting its pa
ket by the end of thesuperframe portion devoted to it;� when a 
apa
ity 
onstraint is imposed it may happen that some nodes (CHs ornon CHs) 
annot transmit their pa
kets to their parent (the sele
ted sink, orCH).As in the mathemati
al analysis, the obje
tive is to maximise the probability, R,that the number of samples re
eived by the �nal sink is above (or equal to) a �xedfra
tion, x, of the mean �. To do this we have studied the behaviour of R by varying� (and thus p1): results show that there exists an optimum value of �, maximising R.This optimum number 
an be easily motivated by the need to 
ompromise betweenthe load within 
lusters, whi
h depends on their size and is 
ontrolled by in
reasingthe number of CHs, and the probability of 
ollisions among CH pa
kets, that 
an beminimised by de
reasing the number of CHs.The �rst results are obtained in the single-sink s
enario, by setting Ns = � = 100,L = 100 [m℄ (i.e., �0 = 10�4 [m�2℄), SO = 10, k0 = 40 [dB℄, k1 = 15, �s = 4 [dB℄ andLth = 110 [dB℄.In Figure 3.10 R as a fun
tion of �, by varying the threshold x, is shown for theper
entage C set to 70. No 
apa
ity 
onstraints are imposed here. By in
reasing x,R de
reases, as expe
ted. As we 
an see, the 
urves show a maximum, that is thereexists an optimum value of �, �opt, for whi
h R assumes a maximum value. In fa
t,
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Figure 3.10: R as a fun
tion of �, in the 
ase C=70.
when � is too low, GTSs are not exploited and the number of non CHs whi
h 
ompetefor the 
hannel is large and 
ollisions inside 
lusters have larger probabilities. On theother hand, when � in
reases, the number of CHs using the CAP be
omes large andthe 
ollision probability in
reases in the superframe portion devoted to CHs. We notethat by varying x the value of �opt is approximately the same.In Figure 3.11, instead, the 
ase C = 100 is shown. In this 
ase the maximumnumber of CHs that 
an be 
onne
ted to the �nal sink is seven; therefore, it isequivalent to impose the 
onstraint 
1 = 7, whereas no 
onstraint is imposed on 
2.In this way if the number of CHs is larger than seven the samples gathered by thosehaving smaller 
lusters are lost. As we 
an see in the Figure, the 
urves present amaximum value in 
orresponden
e of an optimum value, �opt; on
e again by in
reasingx, R de
reases and �opt is approximately the same for the di�erent values of x.
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Figure 3.11: R as a fun
tion of �, in the 
ase C=100.
If we 
ompare Figures 3.10 and 3.11, we 
an observe that when TCAPCH is set tozero, performan
e worsens, be
ause when the number of CHs is larger than seven alltheir pa
kets are lost; 
onsequently the �opt values in this 
ase are lower than the oneobtained with TCAPCH set to 70% of TCAPmin , be
ause the network works better whenthe number of CHs is lower.In the following Figures a 
omparison between the results obtained through sim-ulations and the mathemati
al results for the single-sink s
enario while setting T = 2(three-level tree), is provided. Owing to the di�erent strategies to a

ess the 
hannel,
ontention-based in simulations and 
ontention-free in mathemati
al model, the 
om-parison has not the aim to validate the model, but to show how the use of di�erentMAC proto
ols impa
t performan
e.



132The following values for the parameters are set: Ns = � = 50, L = 50 [m℄ (i.e.,�0 = 4 � 10�4 [m�2℄), SO = 10, k0 = 40 [dB℄, k1 = 13:03, �s = 3:5 [dB℄ and Lth = 92[dB℄.
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Figure 3.12: R as a fun
tion of �. � = 50, 
 = 13. Mathemati
al and simulationresults are reported.Figure 3.12 shows R as a fun
tion of � for � = 50, 
 = 13, with x taking values 0.7,0.8, 0.9. Simulation and mathemati
al results are reported. With su
h large valueof node 
apa
ity, for large � the number of 
ollisions during the CAP 
an be high.In fa
t, this s
enario is 
hara
terised by soft 
apa
ity 
onstraints. As a result, theoptimum value of � is smaller than in the 
ase of deterministi
 a

ess, a

ounted forby the mathemati
al model. Simulations report better performan
e for the optimumvalues of �, be
ause of the border e�e
ts introdu
ed by the limited area 
onsideredin the simulated s
enario.With smaller 
apa
ity values (see Fig. 3.13 with 
 set to 7), leading to situations
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Figure 3.13: R as a fun
tion of �. � = 50, 
 = 7. Mathemati
al and simulationresults are reported.
where 
overage is limited by hard 
apa
ity 
onstraints, we found that simulationresults give smaller values of R than the mathemati
al analysis; however, in this
ase (where 
ollisions play a minor role) the optimum value of � found with themathemati
al and simulation approa
hes 
oin
ide, 
on�rming the motivation givenabove to the di�erent optimum values of �.Finally, Fig. 3.14 reports simulation out
omes a
hieved for the same set of pa-rameters as in Fig. 3.12. The trends for the various values of 
2 are very similar, andthe di�eren
es are motivated by the e�e
ts mentioned in the previous paragraphs.In Figure 3.15 we 
ompare results obtained in the single-sink and in the multi-sink s
enarios. For a fair 
omparison, we set a 
ommon value for the sink density,
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Figure 3.14: R as a fun
tion of �. � = 50, 
1 = 13, x = 0:7. Simulation results.
�0 = 4 � 10�4, [m�2℄ and � = 50. As a 
onsequen
e, the square side varies with thenumber of sinks: if the latter is equal to one, L = 50 [m℄, in 
ase M = 9 L = 150[m℄, and so on. The other parameters are set as follows: SO = 10, k0 = 40 [dB℄,k1 = 13:03, �s = 3:5 [dB℄ and Lth = 92 [dB℄. The Figure reports R as a fun
tion of �(equal to p1 ��) in three di�erent situations: i) the single-sink deterministi
 s
enario(with sink lo
ated in the 
entre of the area); (ii) the single-sink random s
enario(where the sink is lo
ated in a random position); and (iii) the multi-sink 
ase. Weset SO = 10, x = 0:7 and 
1 = 
2 = 13. This makes R de
rease rapidly when �takes values larger than 13 (many nodes belong to level 1 but they are blo
ked, andfew level two nodes atta
h to the level one nodes that are a

epted by the sink).In the deterministi
 single-sink 
ase, a

ording to the propagation parameters used,and the side of the area, the majority of nodes 
an hear the sink and there are no
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Figure 3.15: R as a fun
tion of � in the single-sink and multi-sink s
enarios, withdi�erent values of M , having �xed � = 50 and 
 = 13.
isolated nodes; thus losses are due to MAC failures and 
apa
ity 
onstraints. In themulti-sink 
ase, instead, R assumes smaller values, be
ause of a larger probabilityto have isolated nodes that 
an hear no sinks. As M in
reases the dispersion in thenumber of nodes that join a sink de
reases, and the distribution of the PAN sizes hassmaller varian
e. As a result, R in
reases.The distributions of the PAN sizes are reported in Fig. 3.16 for M = 100 and200. They are 
ompared to a Poisson distribution having proper mean: a

ordingto [10℄, in an in�nite plane the PAN sizes should be Poisson distributed with meanthat 
an be 
al
ulated starting from node and sink densities, and propagation andphysi
al layer parameters. The Figure shows that the limited area brings to largervarian
es in su
h distributions with respe
t to the in�nite plane 
ase. As a result of
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Figure 3.16: Statisti
al distribution of the number of nodes per PAN in the 100 sinksand 200 sinks s
enarios.su
h dis
ussion, one 
an 
on
lude that the multi-sink s
enario gives smaller values ofR when � is given, owing to the larger varian
es of the PAN size distributions.In Figure 3.17 we show R as a fun
tion of � for a network having side L = 150[m℄ (thus M = 9), having �xed x = 0:7 and 
1 = 13, for 
2 ranging from 3 to13. The 
urves behaviour is the same observed in Figure 3.6, obtained through themathemati
al model. The values of R, obtained through simulations are lower tothe 
orrespondent values obtained through the mathemati
al model. This is due toMAC failures and to the fa
t that we 
onsider a network with M = 9, whi
h isa�e
ted by border e�e
ts (here, in fa
t, di�erent pa
kets are lost for 
onne
tivityissues), whereas by in
reasing M (as shown in Figure 3.15), R in
reases (losses dueto 
onne
tivity issues de
rease) and for high values of M we 
ould rea
h the valueobtained in the mathemati
al model (we 
annot show here results obtained for larger
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Figure 3.17: Multi-sink s
enario (M = 9). R as a fun
tion of � for di�erent values of
2, having �xed 
1 = 13.
values of M , owing to too long simulation time needed). The other di�eren
e isthat the maximum of R is obtained for di�erent values of �; this is 
aused by thefa
t that the mathemati
al model requires an a priori de�nition of whi
h level ea
hnode belongs to, whereas in the simulation environment a real topology formationalgorithm is 
onsidered.Finally, in Figure 3.18 two new performan
e metri
s, W and K, are introdu
ed.W is de�ned as the probability that the number of pa
kets 
orre
tly re
eived in thenetwork, 
onsidering all sinks, is larger than a per
entage, x, of the real number ofnodes in the network. Whereas K is de�ned as the probability that the numberof pa
kets 
orre
tly re
eived in the network, 
onsidering all sinks, is larger than aper
entage, x, of the mean number of nodes in the network. Thus, in the Figure we
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Figure 3.18: Multi-sink s
enario (M=9). R, W and K as a fun
tion of � for x=0.7and x=0.8, having �xed 
1 = 
2 = 13.
show R, W and K as a fun
tion of � for x = 0:7 and x = 0:8 for a network havingside L = 250 [m℄ (M = 100), �s = 0:2 [m�2℄, �0 = 0:002 [m�2℄ and 
 = 13. As we 
ansee, the W and K 
urves are overlapped; on the other hand, W and K show di�erentvalues with respe
t to R. When � is smaller than the 
apa
ity limit, W and K tendto one be
ause the distribution of the total number of nodes atta
hed to any sinkshows a smaller varian
e with respe
t to the distribution of the number n of nodesatta
hed to a generi
 sink; when 
apa
ity limits be
ome signi�
ant (for larger �), thedi�erent 
lusters tend to be equally limited in size and this redu
es the probabilityof large values of the sum of all 
luster sizes, thus redu
ing W and K.



1393.5 Conne
tivity of Multi-Sink Multi-Hop WSNsin Bounded RegionsIn this se
tion we mathemati
ally derive the probability that sensor nodes uniformlydistributed in the monitored area are 
onne
ted to at least one sink, where multiplesinks are also uniformly distributed over the same region. Starting from su
h a result,we also derive the probability that all nodes, or a subset of them, are 
onne
ted. Su
hderivation is performed assuming a link power loss whi
h takes both dependan
e ondistan
e and random 
hannel 
u
tuations into a

ount (the 
hannel model of eq.(1.6.1)) and 
onsidering border e�e
ts due to �niteness of the deployment region.The latter is assumed to be a square as it often happens (see, e.g., [95℄), be
auseof its simpli
ity. Nonetheless, re
tangular networks exhibit very similar 
onne
tivityproperties unless one side is mu
h greater than the other [96℄.The work is based on previous papers [61, 96℄ devoted to single hop networks.Here, bounded s
enarios are a

ounted for, and this requires suitable 
onsiderationof the border e�e
ts. It is also shown that this model 
onverges to the ones appliedin the 
ase of in�nite plane, when the bounded region has area whi
h is suÆ
ientlylarge.The analysis is �rst 
arried out in the 
ase of single-hop 
ommuni
ation (i.e.,every sensor transmits the sensed data dire
tly to a sink). Then, the multi-hop 
ase(i.e., sensors may also a
t as routers) is 
onsidered assuming tree-based topologies ofvarious heights and widths.Finally, the mean energy 
onsumed by the network is evaluated, and the tradeo�between 
onne
tivity and energy 
onsumption is shown.



140In the following, the 
onne
tivity model for in�nite networks, whi
h representsthe starting point of the analysis, is introdu
ed. Then, in se
tion 3.5.2 the boundedregion is introdu
ed and the full and partial 
onne
tivity probabilities are derived forthe single-hop 
ase. In se
tion 3.5.3 the multi-hop 
ase is 
onsidered. In se
tion 3.5.4the mean energy 
onsumption is examined and numeri
al results are shown in se
tion3.5.5.
3.5.1 Conne
tivity in Unbounded Single-hop NetworksThe �rst s
enario 
onsists of an in�nite bi-dimensional plane with sensors and sinksdistributed a

ording to a homogeneous PPP, with densities �s and �0, respe
tively.Sin
e the 
hannel model des
ried by eq. (1.6.1) is used, the number of audible sinkswithin a range of distan
es r1 and r from a generi
 sensor node (r � r1), nr1;r, isPoisson distributed with mean �r1;r, given by eq. (1.6.7) by simply substituting �with �0. Then by letting r1 = 0 and r!1, we obtain�0;1 = ��0 exp[(2(Lth � k0)=k1) + (2�2s=k21)℄ : (3.5.1)Equation (3.5.1) represents the mean value of the total number, n0;1, of audible sinksfor a generi
 sensor, obtained 
onsidering an in�nite plane [61℄.Its non-isolation probability is simply the probability that the number of audiblesinks is greater than zero

q1 = 1� e��0;1 : (3.5.2)



1413.5.2 Conne
tivity in Bounded Single-hop NetworksWhen moving to networks of nodes lo
ated in bounded domains, two important
hanges happen. First, even with �0 un
hanged, the number of sinks that are au-dible from a generi
 sensor will be lower due to geometri
 
onstraints (a �nite area
ontains (on average) a lower number of audible sinks than an in�nite plane). Se
ond,the mean number of audible sinks will depend on the position (x; y) in whi
h the sen-sor node is lo
ated in the region that we 
onsider. The reason for this is that sensorswhi
h are at a distan
e d from the border, with d � TRi, have smaller 
onne
tivityregions and thus the average number of audible sinks is smaller. These e�e
ts, knownin literature as border e�e
ts [57℄, are a

ounted for in our model.The result (1.6.7) 
an be easily adjusted to show that the number of audible sinkswithin a se
tor of an annulus having radii r1 and r and subtending an angle 2�, ison
e again Poisson distributed with mean�r1;r;� = ��0[	(a1; b1; r)� 	(a1; b1; r1)℄; (3.5.3)0 � � � �. If the annulus extends from r to r + Ær, and � = �(r), this mean valuebe
omes �r;r+Ær;� = �(r)�0 Æ	(a1; b1; r)Ær Ær; 0 � � � �: (3.5.4)Consider now a polar 
oordinate system whose origin 
oin
ides with a sensor node.As a 
onsequen
e of (3.5.4), if a region is lo
ated within the two radii r1 and r2 andits points at a distan
e r from the origin are de�ned by a �(r) law (see [96℄, Fig. 1),then the number of audible sinks in su
h a region is again Poisson distributed withmean �r1;r2;�(r) = R r2r1 �(r)�0 d	(a1;b1;r)dr dr, that is, from (1.6.8) and after some algebra,�r1;r2;�(r) = Z r2r1 2�(r)�0r�(a1 � b1 ln r)dr: (3.5.5)



142Now 
onsider a square SA of side L meters and area A = L2, sensors and sinksuniformly distributed on it with densities �s and �0, respe
tively. Equation (3.5.5)is suitable for expressing the mean number of audible sinks from an arbitrary point(x; y) of SA, provided that su
h point is 
onsidered as a new origin and that theboundary of SA is expressed with respe
t to the new origin as a fun
tion of r1, r2and �(r). In order to apply equation (3.5.5) to this s
enario and obtain the meannumber, �(x; y), of audible sinks from the point (x; y), it is needed to set the origin ofa referen
e system in (x; y), partition SA in eight subregions (Sr;1 : : : Sr;8) by meansof 
ir
les whose 
enters lie in (x; y) (see [96℄, Fig. 2). Thank to the properties ofPoisson r.v.'s, the 
ontribution of ea
h region 
an be summed and we obtain an exa
texpression for �(x; y) = 8Xi=1 Z r2;ir1;i 2�i(r) � �0 � r � �(a1 � b1 ln r)dr; (3.5.6)whi
h is the mean number of sinks in SA that are audible from (x; y), where r1;i, r2;i,�i(r) are reported in [96℄, Tables 1-2.If we assume a single-hop network, a sensor potentially lo
ated in (x; y) is isolated(i.e., there are no audible sinks from its position) with probability p(x; y) = e��(x;y)and it is non isolated with probabilityq(x; y) = 1� e��(x;y) : (3.5.7)Having assumed that sensor nodes are uniformly and randomly distributed in SA, ifwe now want to predi
t the probability that a randomly 
hosen sensor node is notisolated, we need to average q(x; y) on SA. In fa
t, the probability that a randomly
hosen sensor node is not isolated (whi
h is an ensemble measure) and the average



143non-isolation probability over a single realization 
oin
ides due to the ergodi
ity ofstationary Poisson pro
esses (see [97℄, page 104). This was also veri�ed by simulation.Re
alling that we have 
onsidered the lower half of the �rst quadrant, whi
h isone eighth of the totality, we haveq = 8A Z L=20 Z x0 q(x; y)dydx: (3.5.8)For the sake of simpli
ity, we de�ne the fun
tion F
on(�; �) to be equal to the right sideof (3.5.8), so that q = F
on(�0; L): (3.5.9)Several results may be derived from (3.5.9). First, we 
ompute the probability,R, that the network is fully 
onne
ted (i.e. every sensor 
an dire
tly rea
h at least onesink). Assume that we have k sensors in SA with positions (x1; y1); (x2; y2); : : : ; (xk; yk).By indi
ating with F the event of full 
onne
tivity and with ns the number of sensorsin a s
enario, we havePfF jns = k; (x1; y1); : : : ; (xk; yk)g = kYi=1 q(xi; yi); (3.5.10)where we assumed that sensors 
onne
t to the sink independently from ea
h oth-ers, whi
h is a realisti
 assumption in networks that are not 
apa
ity-limited. PfEgdenotes the probability of the event E .Now, by de
onditioning with respe
t to the nodes positions, we havePfF jns = kg = Z : : : Z| {z }2k kYi=1 q(xi; yi)fX1;Y1(x1; y1) : : :: : : fXk;Yk(xk; yk)dx1dy1 : : : dxkdyk= �Z Z q(x1; y1)fX1;Y1(x1; y1)dx1dy1� � : : :: : : � �Z Z q(xk; yk)fXk;Yk(xk; yk)dxkdyk� ;
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fXi;Yi(xi; yi) = 8><>: 1=A; (xi; yi) 2 SA0; otherwiseis the p.d.f. of the position of the ith node.Note now that the same assumption (i.e., uniform distribution) holds for all nodes,thus we have PfF jns = kg = �Z Z q(x; y)fX;Y (x; y)dxdy�k (3.5.11)= " 1A Z L=2�L=2 Z L=2�L=2 q(x; y)dxdy#k (3.5.12)= " 8A Z L=20 Z x0 q(x; y)dydx#k = qk: (3.5.13)Sin
e ns is Poisson distributed with mean �sA, we 
an de
ondition (3.5.13) withrespe
t to ns and obtainZ = PfFg = +1Xk=1 PfF jns = kg � Pfns = kg= +1Xk=1 �qk � e��sAk! (�sA)k: (3.5.14)Equation (3.5.14) represents the probability that a sensor network performs at best(full 
onne
tivity), but the event F turns out to be a stri
t requirement for mostof them. In other words, for many appli
ations it is suÆ
ient to guarantee that a
ertain amount of sensors 
an transmit their data to the sinks. For this reason, it isof interest to 
ompute the probability of the event, Cj, of having at least a number,j, of 
onne
ted sensor (partial 
onne
tivity). We �rst 
onsider the event C�j of havingexa
tly j 
onne
ted sensors. When ns = k, the probability of having j 
onne
tedsensors is PfC�j jkg = �kj� �qj(1� �q)k�j; (3.5.15)



145j � k, where the binomial 
oeÆ
ient �kj� = k!j!(k�j)! a

ounts for all the possible waysto group j sensors out of k. Note that for the events Cj and C�j the following holds:Cj = fC�j [ C�j+1 [ : : : [ C�kg: (3.5.16)Thus, if we 
onsider the event Cj we need to add 
ontributions similar to (3.5.15) forall j, j � k, to obtain PfCj jns = kg = kXl=j �kl� �ql(1� �q)k�l; (3.5.17)j � k. On
e again, by de
onditioning (3.5.17) with respe
t to ns we havePfCjg= +1Xk=j PfCj jkg � Pfkg= +1Xk=j kXl=j �kl� �ql(1� �q)k�l � e��sAk! (�sA)k: (3.5.18)Note that the outer sum in (3.5.18) starts at j instead of 1, be
ause when k < j itgives no 
ontribution (i.e., the probability of having j 
onne
ted sensors in a networkwith less than j sensors is zero). For this reason, we want to highlight the fa
t thatPfCjg of (3.5.18) depends also on �s: in fa
t, the probability of having at least j
onne
ted sensors is a�e
ted, besides �q, also by how many sensors we have at all inthe network (i.e., either 
onne
ted or not). In order to emphasize this, a new notation,Z �m(j), is introdu
ed and, after some simple algebra, we haveZ �m(j)= PfCjg= e� �m � +1Xk=j kXl=j �kl� �mk�ql(1� �q)k�lk! ; (3.5.19)with �m = �sA being the average number of sensors in SA. Thus, Z �m(j) of (3.5.19)has the meaning of probability of having at least j 
onne
ted sensors in a networkwith (on average) �m sensors.



1463.5.3 Conne
tivity in Bounded Multi-hop NetworksNow we wish to extend our analysis to the 
ase of multi-hop wireless sensor networks.Ea
h sensor is allowed to forward its data to another sensor instead of trying to
ommuni
ate dire
tly with the sinks, with the 
onstraint of a �xed maximum numberof hops.The a-priori partitioning of nodes des
ribed in se
tion 3.3 is 
onsidered also here.Ea
h node belongs to one out of T levels, meaning that an i-th level node 
an sendits data only to an (i � 1)-th level node, hen
e, it will take i hops to su
h a nodeto 
ommuni
ate with a sink (whi
h is 
onsidered a zero level node a

ording to thisformalism). This approa
h is justi�ed by the fa
t that in some 
lasses of sensornetworks ea
h node has a 
ertain probability pi to be a level i node, with i 2 [0; T ℄(p0 is the probability of being a sink). Thus the parental relations between nodes arein some sense pre-assigned. If �tot is the overall nodes density (i.e., �tot = �0 + �s)and �s is the overall sensor nodes density, we have for the generi
 i-th level density�i = �tot � pi; 0 � i � T , with PTi=0 �i = �tot and PTi=1 �i = �s. We also assume thatnodes at ea
h level are uniformly distributed in SA.We now want to �nd the probability �q1 that a randomly 
hosen sensor is 
onne
tedand that it is one hop away from the sink. In terms of the F
on fun
tion introdu
edin (3.5.9), we 
an write �q1 = p1 � F
on(�0; S); (3.5.20)where the two fa
tors a

ount for the events of belonging to the 1st level and beinga
tually 
onne
ted to a sink, respe
tively. Note that �q1 of (3.5.20) has the samemeaning of �q in (3.5.8) when T = 1. If we 
onsider multi-hop paths, we 
an de�nethe probability �qi that a randomly 
hosen sensor has a 
onne
tion to the sink through



147a path 
ontaining at most i hops. In other words, it must be a 
onne
ted 1st levelsensor, or a 
onne
ted 2nd level sensor, . . . , or a 
onne
ted i-th level sensor. As anexample, the probability �q2 may be written as�q2 = p1 � F
on(�0; L) + p2 � F
on(�tot � �q1; L)= �q1 + p2 � F
on(�tot � �q1; L); (3.5.21)where p2 �F
on(�tot � �q1; L) is the probability that the sensor belongs to level 2 and hasa 
onne
tion to any 1st level sensor whi
h is, in turn, 
onne
ted to a sink. As for �q3,the 
hain is one hop longer, thus we need to write�q3 = �q2 + p3 � F
on(�tot � p2 � F
on(�tot � �q1; L); L): (3.5.22)In general, for an T -level network we have the re
ursive expression�qT = �qT�1 + pT � F
on(�tot � pT�1� F
on(: : : �tot � p2 � F
on(�tot � �q1; L) : : : ; L); L); (3.5.23)with (3.5.20) providing expression for �q1.We 
an now introdu
e the probability, Z(T ), of having all sensors 
onne
ted in anT -level network by following the same reasoning as in the 1-hop 
ase (see equations(3.5.13-3.5.14)). We re
ognize that, on
e the parameters of the network A and �s are�xed, the only di�eren
e between the 1-hop and the multi-hop 
ase resides in howthe non-isolation probability is 
omputed, i.e., we have �q for the 1-hop 
ase and �qTfor the multi-hop 
ase. In virtue of this, we 
an generalize (3.5.14) asZ(x) = +1Xk=1 xk � e��sAk! (�sA)k; (3.5.24)



148where we preserved the stru
ture and set the non-isolation probability as variable.Re
alling (3.5.15-3.5.19), we �nd that the same holds for (3.5.19), whi
h yieldsZ �m(j; x) = e� �m � +1Xk=j kXl=j �kl� �mkxl(1� x)k�lk! ; (3.5.25)where we set, on
e again, the non-isolation probability as variable. Thus, for Z(T ) we
an simply use (3.5.24) with x = �qT , gettingZ(T ) = Z(�qT ) = +1Xk=1 �qkT � e��sAk! (�sA)k: (3.5.26)Similarly, we also 
ompute the probability, Z(T )�m (j), of having at least j 
onne
tedsensors in an T -level network with (on average) m sensors by using (3.5.25) withx = �qT and obtain Z(T )�m (j) = Z �m(j; �qT )= e� �m � +1Xk=j kXl=j �kl� �mk�qlT (1� �qT )k�lk! : (3.5.27)The way in whi
h the densities �i (i � 1) are de�ned 
an follow, as an example andwithout loss of generality, the simple partitioning 
riterion�i+1=�i = �; 0 � i < T; (3.5.28)where � is a 
onstant (i.e., level densities follow an exponential growth, whi
h is kindof a 'natural' law in hierar
hi
al networks). Note that (3.5.28) holds only for i < T :in fa
t, if we �x �0 and �s, the T -th level nodes must have density �T = �s�PT�1j=1 �jin order for the sensor densities to sum up to �s. Moreover, by �xing �0, �s and �(or equivalently �0, � = �s=�0 and �), there are no longer degrees of freedom and thenumber R of levels in the network is also 
onsequently assigned.



1493.5.4 Energy ConsumptionWe assume that ea
h node 
onsumes energy when transmits and re
eives pa
kets,whereas we negle
t the energy spent by the node to stay in idle or sleeping states.We also assume that the sinks do not have energy 
onsumption problems, thus we donot 
onsider the energy spent by them. The mean energy spent in the network forea
h transmission towards the sink is given byE = TXi=1 [Erx + Etx � i + Erx � (i� 1)℄ � (qi � qi�1); (3.5.29)where Erx is the energy spent to re
eive a pa
ket, Etx is the energy spent to transmita pa
ket, and �qi is given by (3.5.20), (3.5.21), (3.5.22) and (3.5.23). (qi � qi�1) is theprobability that a generi
 node belongs to level i of a 
onne
ted tree. The energyspent in the network to deliver a pa
ket from a sour
e node to the �nal sink, instead,depends on the level at whi
h the sour
e node is lo
ated. In parti
ular, if the sour
enode is at level one, the pa
ket 
an rea
h the sink through a single transmission; if,instead, the node is at level two its pa
ket must be (i) transmitted by the sour
e node,(ii) re
eived by the level one node and (iii) transmitted by the latter node to the �nalsink, therefore two transmissions and one re
eption are needed. We also 
onsider theenergy spent by ea
h node to re
eive the triggering pa
ket 
oming from its parentin the tree (tree formation). A

ording to the Frees
ale devi
es data sheets [93℄, weset the energy spent to transmit a bit equal to 0.3 [�J=bit℄ and the energy spent tore
eive a bit equal to 0.33 [�J=bit℄. Moreover, we set the pa
ket size equal to 20 bytes,therefore Etx = 48 [�J ℄ and Erx = 52:8 [�J ℄.
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Figure 3.19: q as a fun
tion of Lth for di�erent values of �0, with L = 1000 [m℄,k0 = 40 [dB℄, k1 = 13:03, �s = 3:5 [dB℄.3.5.5 Numeri
al ResultsFig. 3.19 shows q for di�erent sink densities as a fun
tion of Lth, proportional tothe transmit power if the re
eiver sensitivity is �xed: 
learly, as su
h density grows,for a �xed transmit power it is more likely for a sensor to rea
h at least a sink andthus q also grows. For example, if we want a randomly 
hosen sensor to be 
onne
tedwith 90% probability, we need Lth � 95 [dB℄ when �0 A = 150, Lth � 98 [dB℄ when�0A = 100, Lth � 103 [dB℄ when �0 A = 50 and Lth � 115 [dB℄ when �0 A = 10. Alsonote the 
omparison to the 
urve for q1 obtained with no 
onsideration of bordere�e
ts: the error be
omes non negligible for transmission ranges whi
h are of thesame size as the side L of the domain (e.g., TRi(Lth = 115[dB℄) � 316 [m℄), a typi
al
ase for WSNs.In Figs. 3.20 and 3.21 
onne
tivity results related to multi-hopWSNs are reported.The 
riterion of a-priori partitioning is used in a

ordan
e with (3.5.28). Observe thatfor T = 5 � ranges from 1.9 to 2.3. This means that when � = 2:3 the network has 4
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Figure 3.20: �qT as a fun
tion of � with �0 = 50=L2, �s = 2500=L2 (� = 50), L = 1000[m℄, k0 = 40 [dB℄, k1 = 13:03, �s = 3:5 [dB℄.levels or, equivalently, 5 levels with the 5th being empty. �qR and Z(T )�m (j) are plottedas fun
tions of �, respe
tively. They show ar
hes and lo
al optima whi
h depend onthe loss threshold Lth, � and T . In parti
ular, from Fig. 3.20, we 
on
lude that alarge value of T is opportune only if Lth (and, 
onsequently, the transmit power) islarge enough: in fa
t, when T = 5 (� ranging from 1.9 to 2.3) we have global optimafor Lth = 95 [dB℄ and Lth = 100 [dB℄ but only lo
al optima for Lth = 85 [dB℄ andLth = 90 [dB℄.Finally, in Figure 3.22 we show the mean energy spent, E, as a fun
tion of � andT for di�erent values of Lth. As we 
an see E in
reases by in
reasing T , sin
e (onaverage) more transmissions and re
eptions are needed to rea
h the sink. Therefore,for large values of Lth a tradeo� between 
onne
tivity and energy 
onsumption shouldbe found: in fa
t, large T improves 
onne
tivity but also in
reases energy 
onsump-tion. Moreover, the evaluation of the energy 
onsumption behavior is useful to sele
tthe optimum values of � and T , for a desired degree of 
onne
tivity. As an example,
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Figure 3.21: Z(T )2500(2200), Z(T )2500(2250) and Z(T )2500(2300) as fun
tions of � with Lth = 95[dB℄, �0 = 50=L2, �s = 2500=L2 (� = 50), L = 1000 [m℄, k0 = 40 [dB℄, k1 = 13:03,�s = 3:5 [dB℄.when we set Lth = 90 [dB℄, we obtain approximatively the same maximum of �qT forT = 4 and T = 3; however, the 
onsumed energy is notably larger for T = 4.
3.6 Con
lusionsA novel mathemati
al model for studying the 
onne
tivity of multi-sink WSNs overunbounded and bounded regions, has been proposed. The pra
ti
al out
ome of thisapproa
h is the possibility: i) to set the proper power level of nodes and their density,given a requirement in terms of 
onne
tivity; ii) to sele
t the optimum height andaverage number of 
hildren per parent in the tree; iii) to evaluate the trade-o� between
onne
tivity and energy 
onsumption. As an example, results of Fig. 3.19 
ouldbe useful to �x the sinks density, on
e the transmit power (i.e., Lth), is set: theappli
ation requires a minimum average non isolated probability, �q, that must besatis�ed and, on
e Lth is �xed (being de�ned the te
hnology used), we 
an obtain the
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Figure 3.22: Average energy 
onsumption E [J℄ as a fun
tion of � with �0 = 50=L2,�s = 2500=L2 (� = 50), L = 1000 [m℄, k0 = 40 [dB℄, k1 = 13:03, �s = 3:5 [dB℄.average number of sinks that must be distributed in the network. Similarly, on
e thesink density is �xed we 
an obtain the power that must be used for transmissions.Similarly, from Fig. 3.20, as an example, if the appli
ation requires �qT � 0:6 andLthis set to 90 [dB℄, T = 4 or 3 and � ' 4 should be set. But being the 
ase T = 3less energy expensive, it will be the best 
hoi
e, satisfying the requirement.The main limit of the mathemati
al models developed in this Chapter is thatno MAC issues are a

ounted for. In fa
t, in se
tion 3.4 a 
apa
ity 
onstrained airinterfa
e is assumed, so that resour
es 
an be allo
ated to nodes and no 
ontentionsare present. However 
ontention-based proto
ols are more suitable for WSNs. In this
ase, an hard 
apa
ity 
onstraint, as that introdu
ed here, does not exist, even if asort of soft 
onstraint 
ould be de�ned. This 
onstraint is due to the fa
t that, aswill be 
lear in the following, the in
reasing of the number of nodes 
ompeting forthe 
hannel signi�
antly de
reases the su

ess probability, therefore not too manynodes should be allowed to try to a

ess the 
hannel simultaneously. To a

ount for
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ontention-based proto
ol, in the following Chapter the MAC proto
ol de�ned bythe 802.15.4 is modeled and in Chapter 5 the model des
ribed in se
tion 3.5 of thisChapter is integrated with the one presented in Chapter 4, to study WSNs under anew perspe
tive.



Chapter 4Performan
e Analysis of the IEEE802.15.4 MAC proto
ol
As stated in Chapter 1, the IEEE 802.15.4 MAC proto
ol allows two types of 
hannela

ess me
hanisms: bea
on- or non bea
on-enabled. The latter 
ase uses unslottedCSMA/CA 
hannel a

ess me
hanism, whereas ba
on-enabled networks use both
ontention-based (a slotted CSMA/CA) and 
ontention-less me
hanisms to a

essthe 
hannel. In this Chapter an analyti
al model for both the modalities, is provided.We 
onsider a WSN 
omposed of a number of sensor devi
es (hereafter denotedas nodes); ea
h node upon re
eption of a query from the PAN 
oordinator (denotedas sink in the following) takes one sample of a given phenomenon (e.g., atmospheri
pressure or temperature) and forwards it through a dire
t link, or possibly throughmultiple hops, to the sink. The nodes 
ompete to a

ess the 
hannel, to transmit thedata required. On
e transmission is performed, they move to an idle state, till thenext query is re
eived. The interval of time between two su

essive queries is denotedas round, and its duration is denoted as Tq. Note that in the bea
on-enabled 
ase,the query 
oin
ides with the bea
on pa
ket and the round is the bea
on interval,therefore Tq = BI (see eq. (1.4.1)), whi
h means that Tq may assume only a �nite



156set of values. Whereas in the non bea
on-enabled 
ase, Tq may assume whatever avalue.Con
erning network topology, both stars and tree-based topologies are a

ountedfor, in this Chapter. Star topologies are preferable when the PAN area is small; thenumber of nodes that 
ould be asso
iated to the sink, in fa
t, should range from threeto seven, as it is widely a

epted that 802.15.4 does not support larger network sizesin this 
ase [82℄. Nevertheless, for the sake of 
ompleteness and validation of themodel, also results for networks 
omposed of a number of nodes larger than seven,are shown. Trees, instead, are used in 
ase of large networks. Sin
e trees 
an beformed only when nodes operate in the bea
on-enabled mode [51℄, this topology isimplemented only in this modality.Given this s
enario, the aim of the model is to provide an analyti
al des
ription ofthe transitions between node states (ba
ko�, sensing, transmit, idle) of the CSMA/CAalgorithm.The mathemati
al model developed, allows the evaluation of the statisti
al distri-bution of the traÆ
 generated by the nodes. In parti
ular, the statisti
s of the delayswith whi
h the nodes a

ess to the 
hannel, and with whi
h their pa
kets are re
eivedby the sink, are provided. The knowledge of the statisti
s of the traÆ
 generated bythe PAN, is useful, for example in those appli
ations in whi
h the sink a
ts as gatewaytoward an infrastru
ture-based wireless network (e.g., UMTS). Su
h knowledge is, infa
t, useful to s
hedule radio resour
es for the gateway (see the Appendix).The model is then �nalized to derive the probability that a node su

eeds whena

essing the 
hannel, and in transmitting its pa
ket, the overall throughput generatedby the network and the energy 
onsumption.



157To validate the mathemati
al model, 
omparison to simulations is performed.The model di�ers from those previously published by other authors in the litera-ture as it pre
isely follows the MAC pro
edure de�ned by the standard, in the 
ontextof the WSN s
enario des
ribed.In the Chapter, after an overview of the literature, the two models related to thetwo modalities with the results are given. Finally, a 
omparison between the twomodalities is provided.4.1 Related WorksIn the literature, performan
e evaluation of the 802.15.4 MAC proto
ol has been 
ar-ried out by means of simulation for small and low-load networks in [98℄ and for densenetworks in [99℄. In [100℄ the performan
e of the bea
on-enabled slotted CSMA/CAis evaluated through ns-2 simulator for di�erent network settings to understand theimpa
t of the proto
ol attributes (superframe order, bea
on order and ba
ko� expo-nent) on network performan
e. Also, some studies have tried to des
ribe analyti
allythe behavior of the 802.15.4 MAC proto
ol. Few works devoted their attention tonon bea
on-enabled mode [101℄; most of the analyti
al models are related to bea
on-enabled networks [102{106℄.In [101℄, the authors try to model the unslotted CSMA/CA proto
ol for nonbea
on-enabled networks, but they do not 
apture 
orre
tly the proto
ol, be
ausethey in
lude in the Markov 
hain two subsequent sensing phases, and not one, as�xed in the standard (see se
tion 4.2).The analyti
al models for the slotted CSMA/CA 802.15.4 proto
ol developed in[102℄, [103℄, [104℄ fail to mat
h simulation results (see [105℄), as the authors use the



158same Markov formulation and assumptions made by Bian
hi in [107℄, where the 802.11MAC proto
ol is 
onsidered. This proto
ol, in fa
t, is signi�
antly di�erent from theone de�ned by the 802.15.4 standard (see se
tion 4.2). A better, even if similar, modelis proposed in [106℄ and [108℄, where, however, the sensing states are not 
orre
tly
aptured by the Markov 
hain. In [105℄ the main gaps of the previous models areover
ome. However, in all the previous works, [101℄, [105℄, and [106℄, the probabilityto �nd the 
hannel busy is evaluated regardless of the ba
ko� stage in whi
h the nodeis. This model, instead, 
aptures the di�erent probabilities (i.e., the probability ofbeing in sensing, of �nding the 
hannel busy, et
.) at the di�erent ba
ko� stages.In 
ontrast with these works, this thesis provides a new analyti
al model, whi
hpredi
ts the statisti
al distribution of the traÆ
 generated by an 802.15.4 WSN, byusing a two-dimensional 
hain analysis. The form of the analysis is similar in someaspe
ts to the one used by Bian
hi [107℄, but, owing to the di�eren
es between the twoCSMA/CA algorithms de�ned in the standards, Bian
hi's model 
annot be appliedto the 802.15.4 MAC proto
ol, and a new model is needed.Furthermore, all the works 
ited here studied the asymptoti
 behavior of thenetwork, i.e., the behavior of the system at the equilibrium 
onditions, evaluatingthe stationary probabilities, obtained when time, t, tends to in�nite (t ! 1). Thisanalysis, instead, evaluates the statisti
al distribution of some metri
s (the probabilitythat a node su

eeds when a

essing the 
hannel, that a node transmits its pa
ket
orre
tly, and that the sink re
eives a pa
ket) over time, starting from the re
eptionof the query sent by the sink.Another important di�eren
e between this model and the aforementioned modelsis that those studies assume that nodes have always [105{107℄, or with a 
ertain



159probability [101{104℄ a pa
ket to be transmitted. In this 
ase, when a node su

eedsin transmitting its pa
ket, it will start again the ba
ko� algorithm, possibly with a
ertain probability: this assumption makes the Markov 
hain 
lose and simpli�es theanalysis. Therefore, the number of nodes that have to 
ompete for the 
hannel isknown (or is de�ned with a simple statisti
al distribution). In the model proposedhere, instead, we assume that nodes are triggered by the sink, whi
h then waits for thereplies; ea
h node has only one pa
ket per round to be transmitted, as usual in WSNs
enarios. Therefore, the number of nodes 
ompeting for 
hannel a

ess de
reaseswith time. The probability of being in a 
ertain state (sensing, transmission, orba
ko�) thus depends on time.
4.2 The Non Bea
on- and Bea
on-Enabled MACproto
olsThe details of the non bea
on- and bea
on-enabled MAC proto
ols are reported hereeven if they have been introdu
ed in Chapter 1, to fa
ilitate the reading of thisChapter.As stated in Chapter 1, in the non bea
on-enabled mode nodes use an unslottedCSMA/CA proto
ol, implemented using units of time 
alled ba
ko� periods, havinga duration denoted as dbo, equal to 20Ts, where Ts = 16 [�se
℄ is the symbol time [52℄.Ea
h node maintains two variables for ea
h transmission attempt: NB and BE.NB is the number of times the CSMA/CA algorithm was required to ba
ko� whileattempting the 
urrent transmission; this value will be initialized to 0 before ea
hnew transmission attempt and 
annot assume values larger than NBmax, equal to



1604. BE is the ba
ko� exponent related to the maximum number of ba
ko� periods anode will wait before attempting to assess the 
hannel. BE will be initialized to thevalue of BEmin, equal to 3, and 
annot assume values larger than BEmax, equal to5. Figure 4.1 illustrates the steps of the CSMA/CA algorithm, starting from whenthe node has data to be transmitted. First, NB and BE are initialized and then theMAC layer will delay any a
tivities for a random number of ba
ko� periods in therange (0, 2BE-1) [step (1)℄. After this delay, 
hannel sensing is performed for one unitof time [step (2)℄. If the 
hannel is assessed to be busy [step (3)℄, the MAC sublayerwill in
rease both NB and BE by one, ensuring that BE is not larger than BEmax. Ifthe value of NB is less than or equal to NBmax, the CSMA/CA algorithm will returnto step (1). If the value of NB is larger than NBmax, the CSMA/CA algorithm willterminate with a \Failure," meaning that the node does not su

eed in a

essing the
hannel. If the 
hannel is assessed to be idle [step (4)℄, the MAC layer will begintransmission of data immediately (\Su

ess" in a

essing the 
hannel).In the bea
on-enabled mode [52℄, a superframe, starting with the bea
on pa
ket(
orresponding to the query in the s
enario 
onsidered here), transmitted by the sink,is established.As stated above the duration of the whole superframe (in
luding a
tive and in-a
tive parts) is BI, given by eq. (1.4.1), whereas the duration of the a
tive partof the superframe, 
ontaining CAP and CFP, namely the superframe duration, isSD = 16 � 60 � 2SO � Ts.In the star topology 
ase, we set SO = BO, therefore BI = SD = Tq (hereafterdenoted as Tq for the star topology 
ase) and no ina
tive part is present, whereas the
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Figure 4.1: The IEEE 802.15.4 CSMA/CA algorithm in the non bea
on-enabled 
ase.

ases SO � BO are 
onsidered in the tree topology 
ase. A

ording to the standard,ea
h GTS must have a duration multiple of 60 � 2SO � Ts; we denote this duration asdGTS, equal to DGTS � 60 � 2SO � Ts, with DGTS integer (see Figure 4.2, above part).Sin
e an inter-frame spa
e, equal to 40 Ts, between two su

essive pa
kets re
eivedby the sink must be guaranteed [52℄, DGTS is 
hosen su
h that the GTS may 
ontainthe pa
ket and the inter-frame spa
e. The sink may allo
ate up to seven GTSs, buta minimum CAP duration of 440 Ts, must be guaranteed.For what 
on
erns the CSMA/CA algorithm used in the CAP portion of thesuperframe the only di�eren
e with the non bea
on-enabled 
ase is that nodes haveto �nd the 
hannel free for two subsequent ba
ko� periods before transmitting thepa
ket (see Figure 1.13). To this aim, ea
h node maintains another variable, 
alledCW , denoting the number of ba
ko� periods that need to be 
lear of 
hannel a
tivity



162before the transmission 
an start. First, CW is initialized to 2. When 
hannelsensing is performed for one ba
ko� period [step (2)℄, if the 
hannel is assessed tobe busy, CW is set to 2 and if NB < NBmax the algorithm returns to step (1);otherwise the algorithm will unsu

essfully terminate, meaning that the node doesnot su

eed in a

essing the 
hannel. If the 
hannel is assessed to be idle, instead,CW is de
remented by 1 and 
ompared with 0. If CW > 0, the algorithm returns tostep (2); otherwise a transmission may start.
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1634.3 Referen
e S
enario and Model AssumptionsWe 
onsider N nodes in the network. We assume that ea
h node transmits a pa
ket,having size, z, equal to D �10 bytes, being D an integer. The time needed to transmita pa
ket will be equal to D � dbo, as a bit rate of 250 [kbit/se
℄ is used; therefore,ea
h pa
ket o

upies D ba
ko� periods. We also set the query (i.e., the bea
on inthe bea
on-enabled 
ase) size equal to 60 bytes, and denoting the time needed totransmit this pa
ket as dB, we have dB = 120 Ts.Finally, in the bea
on-enabled 
ase, we set the GTSs duration equal to the mini-mum possible duration whi
h allows to 
ontain the pa
ket and the inter-frame spa
e,o

upying 2 ba
ko� periods. Therefore, DGTS = d(D+2)=(3 � 2SO)e, and the numberof ba
ko� periods o

upied by ea
h GTS is equal to DGTS � 3 � 2SO.Ideal 
hannel 
onditions are assumed: all nodes 
an \hear" ea
h other, and, there-fore, no hidden terminal problem is a

ounted for. Similar s
enarios and assumptionsare 
onsidered in many studies in the literature [98{107℄. Collisions between nodesmay o

ur in 
ase two or more nodes perform 
hannel sensing at the same time, �ndthe 
hannel free and transmit simultaneously their pa
kets. For the sake of energyeÆ
ien
y, no a
knowledge and retransmission me
hanism is implemented; therefore,when a pa
ket 
ollides it is de�nitely lost in that round.In the model, the resolution time (hereafter denoted as slot) is set equal to theba
ko� period, dbo, whi
h 
orresponds also to the duration of the single sensing phaseand to the pa
ket transmission time when D = 1.In the non bea
on-enabled mode, it is assumed that all nodes start the ba
ko�algorithm at the same time, when the query transmitted by the sink is re
eived (nopropagation delay is present due to short distan
es), and we �x the origin of the time



164axis (t = 0) at the instant in whi
h all nodes re
eive the query. Then, the behavior ofthe network from t = 0 to the instant in whi
h all possible transmissions have takenpla
e (as will be 
lari�ed in the following, in fa
t, there exists a maximum delaya�e
ting pa
kets transmissions), is modeled.In the bea
on-enabled 
ase, instead, the origin of time axis is �xed at the beginningof the superframe (t = 0), therefore nodes will re
eive the bea
on and they will startthe CSMA/CA algorithm at t = dB (see Figure 4.2 above part). Therefore, thealignment between the �rst ba
ko� period of ea
h node and the beginning of thebea
on transmission, is ensured. In 
ase a node does not su

eed in a

essing the
hannel or in transmitting the pa
ket 
orre
tly (i.e., without 
ollisions), by the end ofthe superframe, the pa
ket will be lost. Sin
e one of the aims of the model is to derivethe statisti
 of the traÆ
 generated by nodes in the whole superframe, the behaviorof the network in ea
h slot, will be studied. In the following we denote as s, the s-thslot in the supeframe, being s 2 [0; Tq=dbo � 1℄ (see Figure 4.2, below part).
4.4 The Non Bea
on-Enabled ModelIn this part of the Chapter the non bea
on-enabled model is presented, startingfrom the modelling of node states, passing through the des
ription of the �nite-statetransition diagram developed to model all the possible states in whi
h a node 
ouldbe and the transitions between the states, ending with the derivation of performan
emetri
s. Finally, numeri
al results are shown. Have in mind that in this modalityonly the star topology 
ase is a

ounted for, sin
e a

ording to Zigbee spe
i�
ationstrees 
ould be formed only when nodes work in the bea
on-enabled mode.



1654.4.1 Node StatesGenerally speaking, a node a

essing the 
hannel during a round 
an be in one of fourstates: ba
ko�, sensing, transmission, or idle. However, if after sensing the 
hannelis free, transmission immediately o

urs, followed by a sequen
e of idle states till theend of the round. Thus, given the obje
tives of this work, only the ba
ko� and sensingstates, must be modeled.The node state is modelled as a bidimensional pro
ess Q(t̂) = fBO
(t̂); BOs(t̂)g,where t̂ is an integer, representing the time slot and, more pre
isely, the j-th slot(from j � dbo to (j + 1) � dbo) is denoted by t̂ = j. BO
(t̂) and BOs(t̂) represent theba
ko� time 
ounter and the ba
ko� stage at time t̂, respe
tively. Both are time-dis
rete sto
hasti
 pro
esses assuming dis
rete values. Therefore, the pro
ess is a
hain; however, it is not a Markovian 
hain [109℄ be
ause BO
(t̂) is not a memorylesspro
ess as its value depends on its history (i.e., its value depends on how many timesthe node has tried to a

ess the 
hannel without su

ess).The initial value of ba
ko� time 
ounter, BO
(0), is uniformly distributed in therange [0, WNB�1℄, where WNB = 2BE is the dimension of the 
ontention window andNB 2 [0; NBmax℄. The value of BE depends on the se
ond pro
ess 
hara
terizingthe state: BOs(t̂). We 
an identify NBmax + 1 di�erent ba
ko� stages obtained by
onsidering the di�erent possible 
ombinations of the pair (NB;BE). In Table 4.1,the di�erent ba
ko� stages with the 
orrespondent WNB values (denoted as W0 ,..,WNBmax) are shown.The 802.15.4 MAC proto
ol states that at the beginning of the ba
ko� algorithm,ea
h node sets NB = 0 and BE = 3 (
orresponding to W0 = 8). Then, ea
h timethe 
hannel is sensed busy, NB and BE are in
reased by 1 (
ases BOs = 1 and 2).



166When BE rea
hes its maximum value, there is no more in
rease. The 
ase BOs = 4is the last 
ase, be
ause here NB rea
hes its maximum value, and it 
annot be furtherin
reased.Be
ause there exists a maximum value for NB, there will be also a maximumdelay a�e
ting the transmission of a pa
ket. This maximum is rea
hed in 
ase a nodeextra
ts at every ba
ko� stage the higher ba
ko� time 
ounter and at the end of ea
hba
ko� stage it always �nds the 
hannel busy. In this 
ase, the node is in ba
ko�state for PNBmaxk=0 (Wk � 1) slots and in sensing for NBmax + 1 slots. Therefore, thelast slot in whi
h a transmission 
an start ist̂max = NBmaxXk=0 Wk = 120 ; (4.4.1)and the last slot in whi
h a transmission 
an �nish is (t̂max+D�1). Sensing, instead,is possible only for t̂ 2 [0; t̂max � 1℄.In the following, the generi
 state will be denoted as Q(t̂) = fBO
; BOs; t̂g andthe probability of being in a generi
 state will be denoted as PfBO
 = 
; BOs = i; t̂ =jg = Pf
; i; jg. Table 4.1: The ba
ko� stages.BOs NB BE WNB = 2BE0 0 3 W0 = 81 1 4 W1 = 162 2 5 W2 = 323 3 5 W3 =W2 = 324 4 5 W4 =W2 = 32



1674.4.2 Formulation of the Mathemati
al ModelSteps Followed by the ModelLet us denote as bj the probability that in the j-th slot the 
hannel is found to be busyafter sensing. This probability will be initially left as parameter, and its 
omputationwill be provided at the end of se
tion 4.4.3.The model provides the following metri
s:1. the probability that a node ends the transmission of its pa
ket in a given slot,j, denoted as PfT jg, with j 2 [0; t̂max +D � 1℄;2. the probability that the sink re
eives the end of a pa
ket, 
oming whatever anode, in a given slot j, denoted as PfRjg, with j 2 [0; t̂max +D � 1℄;3. the su

ess probability for a transmission, i.e., the probability that a node su
-
eeds in transmitting its pa
ket in a round whatever the slot, denoted as ps.The probability PfT jg depends on the probability of being in sensing state inthe slot j � D. Be
ause a pa
ket o

upies D slots, a node sensing the 
hannel inslot j � D and �nding it free, will end its transmission in slot j. To determine thesensing probabilities, we model the behavior of a single node, using a state-transitiondiagram [109℄, des
ribing the relation between all possible states in whi
h a node 
anbe (Figures 4.3, 4.4, 4.5, 4.6 and 4.7). From this diagram, we obtain the probabilityof being in sensing state at the j-th slot and at the i-th ba
ko� stage (BOs = i),denoted as PfSji g = Pf0; i; jg, whatever j and i. This is made in the remainderof this se
tion. From these probabilities, we 
an derive the probability of being insensing state at the j-th slot, denoted as PfCjg with j 2 [0; t̂max � 1℄, and therefore



168PfT jg. PfT jg, PfRjg, ps, Emean and bj are derived in se
tion 4.4.3. In this se
tionis also provided the algorithm used to 
ompute all the target performan
e metri
s.Sensing ProbabilitiesThe state-transition diagram of the bidimensional pro
ess Q(t̂) is presented through�ve di�erent Figures (4.3, 4.4, 4.5, 4.6 and 4.7), ea
h one related to a spe
i�
 ba
ko�stage. In parti
ular, Figure 4.3 addresses the 
ase BOs = 0, Figure 4.4 BOs = 1,Figure 4.5 BOs = 2, Figure 4.6 BOs = 3, and Figure 4.7 BOs = 4. As will be
lari�ed in the following, they are linked together through transitions that originatefrom some states of a Figure and terminate in the states of the subsequent Figure.Be
ause ea
h Figure is related to a spe
i�
 value of BOs, for the sake of simpli
ityin the drawings, the generi
 ba
ko� state (ovals in the Figures) is simply denoted asf
; jg, omitting the value of BOs; the sensing states (squares) are denoted as Sj withno pedex i.In the following the di�erent parts of the state-transition diagram will be de-s
ribed. For ea
h 
ase, the probabilities of being in the di�erent states of the 
hainand the transition probabilities between the states will be provided.First Ba
ko� Stage (BOs = 0)At the beginning of the ba
ko� algorithm, ea
h node extra
ts an integer, uniformlydistributed between 0 andW0�1 = 7. At t = 0 a node enters, with probability 1=W0,one of the states f
; 0; 0g with 
 2 [0; 7℄. If the extra
ted value is 0, the node in slot 0will sense the 
hannel and in slot 1 it will transmit its pa
ket, be
ause no transmissionmay o

ur in the �rst slot (PfT 0 = 0g) and, therefore, the 
hannel will be 
ertainly



169found free (b0 = 0). In 
ase a value larger than 0 is extra
ted, the node will de
reaseits ba
ko� 
ounter at ea
h slot until the 
ounter will rea
h the zero value, whenthe node will sense the 
hannel. After the sensing phase the node will transmit thepa
ket, in 
ase the 
hannel is found free; otherwise it will pass to the following ba
ko�stage and another value, uniformly distributed between 0 and W1 � 1 = 15, will beextra
ted. In Figure 4.3, the transitions that originated from the sensing states enterin the states of Figure 4.4. For example, if a node is in the state S10 and it �nds the
hannel busy, it will enter the state S21 , or one of the states f
; 1; 2g, with 
 2 [0; 15℄,with the same probability b1=W1. The state of arrival depends on the new ba
ko�
ounter value extra
ted.Denoting as PfBO
 = 
1; BOs = i1; t = j1jBO
 = 
0; BOs = i0; t̂ = j0g=Pf
1; i1; j1j
0; i0; j0g, the transition probability from the state f
0; i0; j0g to the statef
1; i1; j1g, the transition probabilities between the ba
ko� states are given by:Pf
; 0; j + 1j
+ 1; 0; jg = 1 ; (4.4.2)for 
 2 [0;W0 � 2℄ and j 2 [0;W0 � 2℄.This equation a

ounts for the fa
t that, at the beginning of ea
h time slot, theba
ko� time 
ounter is de
reased by 1 until it rea
hes the zero value, with probability1. The probabilities of being in a sensing state are given by:PfSj0g = 8><>: 1W0 for j 2 [0;W0 � 1℄0 for j > W0 � 1 : (4.4.3)
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ko� stage.Se
ond Ba
ko� Stage (BOs = 1)As a node 
an arrive in this ba
ko� stage only after it has �nished the �rst ba
ko�stage, it 
annot rea
h this stage before j = 2; therefore, S01 and S11 (and so T 11 andT 21 ) do not appear in the diagram.As in the previous 
ase, the transition probabilities between ba
ko� states are givenby: Pf
; 1; j + 1j
+ 1; 1; jg = 1 ; (4.4.4)for 
 2 [0;W1 � 2℄ and j 2 [2;W0;1 � 2℄, where W0;1 =W0 +W1. In the following, wewill denote as Wx;y;z, the sum Wx +Wy +Wz.



171The transition probabilities between the states of the �rst ba
ko� stage (BOs = 0)and the ones of the se
ond ba
ko� stage (BOs = 1) are given by:Pf
; 1; j + 1j0; 0; jg = bjW1 ; (4.4.5)for 
 2 [0;W1 � 1℄ and j 2 [1;W0 � 1℄. This equation a

ounts for the fa
t that in
ase the 
hannel at the j-th slot is found busy, the node will go to one of the statesf
; 1; j + 1g, with 
 2 [0;W1 � 1℄, with the same probability 1=W1.The probabilities of being in sensing are given by:
PfS1jg =

8>>>>>>>>>>><>>>>>>>>>>>:
0 for j < 2Pj�1v=1 PfS0vg � bvW1 for j 2 [2;W0℄PfSW01 g for j 2 [W0 + 1;W1 + 1℄PfSW01 g �Pj�W1�1v=1 PfSv0g � bvW1 for j 2 [W1 + 2;W0;1 � 1℄0 for j > W0;1 � 1 : (4.4.6)

The se
ond equation derives from the fa
t that until j � W0, the probability of beingin sensing in the se
ond ba
ko� stage depends on the probabilities of being in sensingin the �rst ba
ko� stage and to �nd the 
hannel busy. As an example, a node 
anarrive in S31 if it is in S10 , �nds the 
hannel busy, and extra
ts the value 1 for these
ond ba
ko� stage; or it is in S20 , �nds the 
hannel busy, and extra
ts the value 0for the se
ond ba
ko� stage (see Figures 4.3 and 4.4).The third equation a

ounts for the fa
t that for j > W0, there are no moretransitions between the states of BOs = 0 and the ones of BOs = 1, be
ause the lastslot in whi
h a node 
an sense the 
hannel in the �rst ba
ko� stage is j =W0�1 = 7.Finally, when j rea
hes W1 + 2 = 18, PfS118g is obtained by subtra
ting theprobability PfS10g b1W1 from PfSW01 g. Therefore, PfS118g = PW0�1v=2 PfS0vg � bvW1 . In



172fa
t, if a node is in S10 it moves (in 
ase of 
hannel busy) to states f
; 1; 2g with
 2 [0; 15℄; therefore the state f16; 1; 2g does not exist (see the Figure).The last sensing state we 
an have in this part of the 
hain is S231 , whi
h meansthat the se
ond ba
ko� stage will be 
ompleted by a node at maximum in the 24-thslot.
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ond ba
ko� stage.
Third Ba
ko� Stage (BOs = 2)Following similar 
onsiderations made, and observing the part of the state-transitiondiagram depi
ted in Figure 4.5, we 
an derive the following probabilities.



173The transition probabilities between the ba
ko� states are given by:Pf
; 2; j + 1j
+ 1; 2; jg = 1 ; (4.4.7)for 
 2 [0;W2 � 2℄ and j 2 [3;W0;1;2 � 2℄.The transition probabilities between the states of the se
ond ba
ko� stage (BOs =1) and the ones of the third ba
ko� stage (BOs = 2) are given by:Pf
; 2; j + 1j0; 1; jg = bjW2 ; (4.4.8)for 
 2 [0;W2 � 1℄ and j 2 [2;W0;1 � 1℄.The probabilities of being in sensing state are given by:
PfS2jg =

8>>>>>>>>>>><>>>>>>>>>>>:
0 for j < 3Pj�1v=2 PfS1vg � bvW2 for j 2 [3;W0;1℄PfSW0;12 g for j 2 [W0;1 + 1;W2 + 2℄PfSW0;12 g �Pj�W2�1v=2 PfSv1g � bvW2 for j 2 [W2 + 3;W0;1;2 � 1℄0 for j > W0;1;2 � 1 : (4.4.9)

Fourth Ba
ko� Stage (BOs = 3)Similarly, and observing the part of the state-transition diagram depi
ted in Figure4.6, we 
an derive the following probabilities.The transition probabilities between the ba
ko� states are given by:Pf
; 3; j + 1j
+ 1; 3; jg = 1 ; (4.4.10)for 
 2 [0;W2 � 2℄ and j 2 [4;W0;1;2;3 � 2℄.
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Figure 4.5: The state-transition diagram related to the third ba
ko� stage.
Moreover, we have to evaluate the transition probabilities between the states ofthe third ba
ko� stage (BOs = 2) and the ones of the fourth ba
ko� stage (BOs = 3);these probabilities are given by:

Pf
; 3; j + 1j0; 2; jg = bjW2 ; (4.4.11)
for 
 2 [0;W2 � 1℄ and j 2 [3;W0;1;2 � 1℄.The probabilities of being in sensing state are given by:
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PfS3jg =

8>>>>>>>>>>><>>>>>>>>>>>:
0 for j < 4Pj�1v=3 PfS2vg � bvW2 for j 2 [4;W2 + 3℄Pj�1v=3 PfS2vg � bvW2 �Pj�W2�1v=3 PfS2vg � bvW2 for j 2 [W2 + 4;W0;1;2℄PfS3W0;1;2g �Pj�W2�1v=W0;1 PfS2vg � bvW2 for j 2 [W0;1;2 + 1;W0;1;2;3 � 1℄0 for j > W0;1;2;3 � 1 : (4.4.12)

pb
3/W2

S4T4+D

..

1-pb
4

pb
4/W2

S35 2,331,34 3,32
1111-pb

35

pb
35/W2

..

pb
34/W2

…1 31,4
1

pb
3/W2

pb
31/W2pb

33/W2 pb
32/W2

S36 1,35 2,34 3,33
1 11 11-pb

36

pb
36/W2

..

… 30,6
1

pb
5/W2

31,5
1

pb
4/W2pb

32/W2pb
33/W2pb

34/W2

..

S57 28,2927,302,551,56 29,28
1 1 11 11-pb

57

pb
57/W2

… 31,26

pb
28/W2 pb

27/W2

11 1

pb
25/W2

……………………………...

S87 29,5828,592,851,86 30,57
11 11-pb

87

pb
87/W2

..

… 31,56
1

pb
55/W2

111
27,60

1

……………………………...

……………………………...

pb
35/W2

..

S56 28,2827,292,541,55 29,27
1 1 11 11-pb

56

pb
56/W2

… 31,25

pb
27/W2 pb

26/W2

11 1

pb
24/W2pb

55/W2 pb
54/W2 pb

53/W2
pb
28/W2

30,26

pb
25/W2

30,27

pb
26/W2pb

29/W2pb
54/W2pb

55/W2

T35+D

T36+D

T56+D

T57+D

T87+DFigure 4.6: The state-transition diagram related to the fourth ba
ko� stage.
Fifth Ba
ko� Stage (BOs = 4)Similarly, and observing the part of the state-transition diagram depi
ted in Figure



1764.7, we 
an derive the following probabilities.The transition probabilities between the ba
ko� states are given by:Pf
; 4; j + 1j
+ 1; 4; jg = 1 ; (4.4.13)for 
 2 [0;W2 � 2℄ and j 2 [5;W0;1;2;3;4 � 2℄.Moreover, we have to evaluate the transition probabilities between the states ofthe fourth ba
ko� stage (BOs = 3) and the ones of the �fth ba
ko� stage (BOs = 4);these probabilities are given by:Pf
; 4; j + 1j0; 3; jg = bjW2 ; (4.4.14)for 
 2 [0;W2 � 1℄ and j 2 [4;W0;1;2;3 � 1℄.The probabilities of being in sensing state are given by:
PfS4jg =

8>>>>>>>>>>><>>>>>>>>>>>:
0 for j < 5Pj�1v=4 PfS3vg � bvW2 for j 2 [5;W2 + 4℄Pj�1v=4 PfS3vg � bvW2 �Pj�W2�1v=4 PfS3vg � bvW2 for j 2 [W2 + 5;W0;1;2;3℄PfS4W0;1;2;3g �Pj�W2�1v=W0;1;2 PfS3vg � bvW2 for j 2 [W0;1;2;3 + 1;W0;1;2;3;4 � 1℄0 for j > W0;1;2;3;4 � 1 :(4.4.15)4.4.3 Performan
e Metri
s Derived from the ModelTransmission ProbabilitiesAs stated, the aim of the model is to evaluate the probability that a generi
 nodeends its pa
ket transmission in slot j, PfT jg, with j 2 [0; t̂max +D � 1℄.
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FAILUREFigure 4.7: The state-transition diagram related to the �fth ba
ko� stage.A node �nishes its transmission in slot j, if in slot j � D, it senses the 
hannel�nding it free; therefore, this probability is given by:PfT jg = PfCj�Dg � (1� bj�D) : (4.4.16)Be
ause a node transmits a pa
ket o

upying D slots, we asso
iate PfT jg to theslot in whi
h the transmission terminates; therefore, for j < D, PfT jg = 0.The 
umulative fun
tion, FT (j), de�ned as the probability that a pa
ket 
omingfrom whatever a node, is transmitted in the 
hannel within slot j, is given by:FT (j) = jXv=0 PfT vg : (4.4.17)The probability of being in sensing state at the di�erent instants j is given by:
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PfCjg = NBmaxXi=0 PfSji g : (4.4.18)Re
eption and Su

ess ProbabilityTo evaluate the other target probabilities, we have to model how the number ofnodes that 
ompete for a

essing to the 
hannel varies with time. We denote as N j
the number of nodes whi
h have not transmitted yet at the end of slot (j-1) and thatwill 
ompete for slot j. In parti
ular, in slot 0, the number of nodes whi
h 
ompetefor the 
hannel is equal to N and as none 
an transmit in slot 0 (PfT 0g = 0) N1
is equal to N too (see Figure 4.8). Whereas if we set D = 1, in slot 1 some nodesmay terminate the transmission, ea
h with probability PfT 1g, and at the end of thisslot the number of nodes that still have to transmit their pa
kets, N2
 , will depend onPfT 1g and 
ould be lower than N . In Figure 4.8 is shown an example (
onsideringthe 
ase D = 1), in whi
h one of the �ve 
ompeting nodes transmits in slot 1, andtherefore in the se
ond slot we have four nodes 
ompeting for the 
hannel (N2
 = 4).Therefore, N j
 is a random variable, binomially distributed. In the 
ase D = 1,the probability that k over N̂ nodes at slot j have not transmitted yet the pa
ket,
onditioned on the fa
t that at slot j � 1 N̂ nodes are 
ompeting for the 
hannel(N j�1
 = N̂), is given by:

PfN j
 = kjN j�1
 = N̂g = Bj(k; N̂) == �N̂k��1� bj�2� �PfCj�2g�N̂�k � NBmaxYi=0 �1� PfSj�2i g�k ; (4.4.19)



179where (1� bj�2)(PfCj�2g)N̂�k is the probability that N̂ � k nodes transmit in j andQNBmaxi=0 (1�PfSj�2i g)k is the probability that the remaining k nodes do not transmit,as they do not sense the 
hannel in slot j � 2.In eq. (4.4.19), N j�1
 is, in its turn, a random variable, binomially distributed,having a probability distribution that depends on the probabilities PfT lg with l 2(1; ::; j � 2). Therefore, to �nd the statisti
s of N j
 , eq. (4.4.19) should be averagedover the statisti
s of N j�1
 , whose determination would depend on the statisti
s ofN j�2
 and so on. By in
reasing the initial number of nodes in the network, N0
 , andthe time slot 
onsidered (i.e., the value of j), the 
omplexity of the evaluation of thestatisti
s of N j�1
 in
reases exponentially, be
ause of the need to follow all possible
ombinations of values of N2
 , N3
 , et
. To redu
e su
h 
omplexity we have introdu
edan approximation: we do not model N j�1
 as a random variable, but we set its valueat the value of k that 
orresponds to a maximum value of the probability Bj�1(k; N̂).Therefore N j�1
 is given by: N j�1
 = argmaxk Bj�1(k; N̂): (4.4.20)Moreover, we have also evaluated performan
e by simply setting N j
 = N , what-ever be j. In se
tion 4.4.4, simulation results are 
ompared with the mathemati
alanalysis results 
onsidering both the models of N j
 . Results show that the two modelsbring approximatively to the same results and that a good agreement with simula-tions is obtained in both 
ases. Therefore, the approximation introdu
ed does nota�e
t performan
e too mu
h.The modelling of N j
 in the 
ase D > 1 is even more 
omplex than the 
ase D = 1,be
ause N j
 will depend on the number of nodes starting their transmission in the last



180D slots. But as by in
reasing D ea
h node o

upies the 
hannel for a longer time, N j
will de
rease more slowly with time; therefore it is reasonable to set N j
 = N whateverbe j. If, in fa
t, this approximation is good for D = 1, it will be �ne for D > 1 all themore. Therefore, only the 
ase N j
 = N whatever be j has been 
onsidered in se
tion4.4.4 for D > 1.

Figure 4.8: The behavior of the number of nodes that have still to a

ess the 
hannelin the di�erent time slots (example).Now, we 
an evaluate the probability, ps, that a generi
 pa
ket is transmittedsu

essfully on the 
hannel given by:ps = t̂max+D�1Xj=0 PfZjg ; (4.4.21)where PfZjg is the probability that a su

essful transmission ends in slot j, whi
hmeans that one and only one transmission starts in j�D+1. Be
ause we assume thatall nodes 
an hear ea
h other, if in slot j�D+1 only one node starts its transmission,



181the sink will re
eive 
orre
tly (i.e., without 
ollisions) the end of the pa
ket in j. Fromthe law of total probability we obtain:
PfZjg = Pf1 tx in (j �D + 1)j
hannel free in (j �D)g � Pf
hannel free in (j �D)g++ Pf1 tx in (j �D + 1)j
hannel busy in (j �D)g � Pf
hannel busy in (j �D)g;(4.4.22)where Pf1 tx in (j � D + 1)j
hannel free in (j � D)g and Pf1 tx in (j � D + 1)j
hannel busy in (j �D)g, are the probabilities that one and only one transmissionstarts in slot j � D + 1 
onditioned to the fa
t that the 
hannel in j � D is free orbusy, respe
tively. As only one transmission starts in slot j�D+1 if only one node,over N j�D
 , senses the 
hannel in slot j � D and as no transmissions may start inj �D + 1 if the 
hannel in j �D is busy, PfZjg is given by:

PfZjg = (1� bj�D)PfCj�Dg � NBmaxYi=0 �1� PfSj�Di g�Nj�D
 �1 ; (4.4.23)where PfCj�Dg is the probability that one node senses the 
hannel in j � D andQNBmaxi=0 (1� PfSj�Di g)Nj�D
 �1 is the probability that the remaining N j�D
 � 1 nodesdo not sense the 
hannel in slot j �D.Finally, the probability PfRjg that in slot j the sink re
eives the end of a pa
ket,
oming from whatever a node, is given by:
PfRjg = N j
 � PfZjg : (4.4.24)



182The Energy ConsumptionHere, the mean energy 
onsumed by a node during a round, is derived. A node spendsenergy when it re
eives or transmits a pa
ket and also when it is in ba
ko� state. Afterthe transmission of the pa
ket, the node swit
hes o� and does not 
onsume energy.The node will stay in the o� state till the re
eption of the following query.We let Ps = 82:5 [mW℄ be the power spent in re
eiving and sensing states; Pbo = 50[mW℄ the power spent in ba
ko� state and Pt = 75:8 [mW℄ the power spent duringtransmission (see Frees
ale IEEE 802.15.4 devi
es [93℄).The mean energy spent by a node in a round, is given by:Emean = t̂max+D�1Xj=0 Ejt + Ejs + Ejbo; (4.4.25)where Ejt , Ejs , and Ejbo are the di�erent energy 
ontributions spent in transmission,sensing and ba
ko�, respe
tively, for a node ending its transmission in slot j.Sin
e no retransmission is performed, ea
h node will transmit only one pa
ket perround. Therefore, Ejt = Pt � D �NbitRb � PfT jg; (4.4.26)where Nbit = 10 bytes is the number of bits transmitted in one slot (having durationdbo). The energy spent in the sensing state depends on how many slots are used bythe node for sensing the 
hannel. A node transmitting in slot j 
ould have sensedthe 
hannel for one slot, in 
ase it has found the 
hannel free at the end of the �rstba
ko� stage, for two slots in 
ase it has found the 
hannel free at the end of these
ond ba
ko� stage, et
. This energy is given byEjs = Ps � NbitRb � (1� bj�D) NBmaxXk=0 (k + 1) � PfSj�Dk g; (4.4.27)



183where bj is the probability to �nd the 
hannel busy in slot j, and (1�bj�D) �PfSj�Dk gis the probability that a node at the end of the k-th ba
ko� stage, �nds the 
hannelfree and ends transmitting in slot j. Finally, the energy spent in the ba
ko� statedepends on how many slots are o

upied by the node for the ba
ko� pro
edure. Thisnumber depends, in turn, on the number of ba
ko� stages performed. Therefore, wehave Ejbo = Pbo � NbitRb � (1� bj�D) NBmaxXk=0 (j � k �D) � PfSj�Dk g; (4.4.28)where j�k�D is the number of slots during whi
h a node that has �nished the k-thba
ko� stage, has performed ba
ko�. This value is the same no matter what valuesof ba
ko� 
ounter are extra
ted at ea
h ba
ko� stage.Derivation of the probability that the 
hannel is found busyBy denoting as f j the probability that the 
hannel in j is free, the probability to �ndthe 
hannel busy in j is given by: bj = 1� f j : (4.4.29)From the law of total probability we 
an express pjf as:f j = Pfno tx in jj
hannel free in (j � 1)g � Pf
hannel free in (j � 1)g++ Pfno tx in jj
hannel busy in (j � 1)g � Pf
hannel busy in (j � 1)g: (4.4.30)where Pfno tx in jj
hannel free in (j � 1)g and Pfno tx in jj
hannel busy in (j �1)g, are the probabilities that no transmissions o

ur in slot j 
onditioned to the fa
tthat the 
hannel in j � 1 is free or busy, respe
tively.



184When D = 1, Pfno tx in jj
hannel free in (j � 1)g = QNBmaxk=0 (1� Sj�1k )Nj�1
 �1,as if the 
hannel in j � 1 is free, no transmissions o

ur in j if no nodes sense the
hannel in j � 1. When, instead, the 
hannel in j � 1 is busy, no transmissions may
ertainly o

ur in j. Therefore, in this 
ase, pjf is given by:f j = �1� bj�1�NBmaxYi=0 �1� PfSj�1i g�Nj�1
 �1 + bj�1 : (4.4.31)When, instead, D > 1 the se
ond term of eq. (4.4.30) 
oin
ides with the probabil-ity that in slot j� 1 a transmission ends, i.e., the probability that at least one trans-mission starts in slot j�D, given by: (1�bj�D�1) � [1�QNBmaxk=0 (1�Sj�D�1k )Nj�D�1
 �1℄.Therefore, in this 
ase, f j is given by:f j = �1� bj�1�NBmaxYi=0 �1� PfSj�1i g�Nj�1
 �1+ �1� bj�D�1� � "1� NBmaxYk=0 �1� Sj�D�1k �Nj�D�1
 �1# : (4.4.32)Obviously, when j � D the se
ond term of eq. (4.4.32) be
omes null.The AlgorithmThe algorithm that allows the evaluation of all the aformentioned performan
e metri
follows. The simplest 
ase of N j
 = N whatever be j is 
onsidered, but the algorithm
an be used for any modelling of how N j
 evolves with time (i.e., with j), by sim-ply substituting the formula to derive N j
 in the sequen
e of steps below (see �rstinstru
tion of For 
y
le).Initialisation of the parameters for j=0:� set N0
 = N;



185� set b0 = 0;� set PfS00g = 1=W0, PfS0kg = 0 for k 2 [1; NBmax℄;� set PfC0g = PfS00g;� set PfT 0g = 0;� set PfZ0g = 0;� set PfR0g = 0.For (j = 1; j <= t̂max +D � 1; j ++)f � set N j
 = N;� 
ompute bj a

ording to eq. (4.4.29), by using eq. (4.4.31) in the 
aseD = 1 and eq. (4.4.32) in the 
ase D > 1;� 
ompute PfSj0g a

ording to eq. (4.4.3)� 
ompute PfSj1g a

ording to eq. (4.4.6)� 
ompute PfSj2g a

ording to eq. (4.4.9)� 
ompute PfSj3g a

ording to eq. (4.4.12)� 
ompute PfSj4g a

ording to eq. (4.4.15)� 
ompute PfCjg a

ording to eq. (4.4.18)� 
ompute PfT jg a

ording to eq. (4.4.16)� 
ompute PfZjg a

ording to eq. (4.4.23)� 
ompute PfRjg a

ording to eq. (4.4.24)
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ompute ps through eq. (4.4.21) and Emean through eq. (4.4.25).4.4.4 Numeri
al ResultsFor the purpose of numeri
al 
omparison, a dedi
ated simulation tool has been de-veloped. We 
onsider N nodes and a sink, sending queries and waiting for the datafrom nodes. In ea
h round, nodes re
eive the query and transmit dire
tly to the sinkthe data, by using the 802.15.4 CSMA/CA proto
ol des
ribed in se
tion 4.2. Ideal
hannel 
onditions are assumed; therefore, all nodes 
an \hear" ea
h other and 
anre
eive 
orre
tly the query at ea
h round. No 
apture e�e
t is 
onsidered: in 
ase twoor more pa
kets 
ollide, they are all lost. Finally, no a
knowledge and retransmissionme
hanisms are performed. 104 rounds are simulated.Figures 4.9, 4.10 and 4.11 show the probability PfT jg as a fun
tion of time t̂ = j,representing the time slot, for N = 3, 5 and 7, respe
tively, having �xed D = 1. Evenif these probabilities 
ould be larger than zero for j 2 [0; t̂max +D � 1℄, as, in all thethree 
ase, for j > 26 PfT jg tend to zero, the 
urves are shown for j � 26.Both mathemati
al analysis and simulation results are reported, 
onsidering thetwo models: N j
 variable a

ording to eq. (4.4.20), and N j
 = N . As we 
an see,the two mathemati
al models bring approximatively the same results, and both donot present relevant di�eren
es with respe
t to simulations; therefore, the model isvalidated. Owing to its simpli
ity, all the other results shown here have been obtainedby 
onsidering N j
 = N , whatever be j.It 
an be seen in the Figures that, in all 
ases, no traÆ
 is present in the �rstslot, be
ause no transmissions may o

ur: a node that extra
ts the 0 value at the
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Figure 4.9: The probabilities PfT jg obtained through simulation and through themathemati
al model 
onsidering N j
 = N0
 for every j and N j
 variable, in the 
aseN=3 and D = 1.
�rst ba
ko� stage will sense the 
hannel in slot 0 and will transmit in slot 1. Thishappens with probability 1=W0 = 1=8, whatever be N , and this is also the maximumvalue that PfT jg 
an assume. If a node extra
ts the value 0 at the �rst ba
ko� stage,in fa
t, it will 
ertainly transmit in slot 1, whereas if a larger value is extra
ted thereis a 
ertain probability that the 
hannel is found busy. Therefore, PfT jg assumeslower values for j > 1. When a node tries to a

ess the 
hannel for the �rst time,it will delay the transmission for a random number of slots in the range [0; 7℄. Asthe network is 
omposed of few nodes, the probability to �nd the 
hannel busy islow; therefore, PfT jg for j 2 [1; 8℄, whi
h 
orrespond to the 
ases in whi
h the nodeextra
ts the value 0, or 1, .. , or 7 respe
tively, are the largest. Lower probabilitiesare asso
iated to the slots from 9 to 23, in whi
h only nodes that have found the
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Figure 4.10: The probabilities PfT jg obtained through simulation and through themathemati
al model 
onsidering N j
 = N0
 for every j and N j
 variable, in the 
aseN=5 and D = 1.

hannel busy and are performing the se
ond ba
ko� stage (plus some nodes alreadyperforming the third of fourth of �fth ba
ko� stage, whi
h are a minority) transmit.From slot 24, the probabilities show a further de
rease, be
ause in these slots thereare only transmissions of nodes that have ended the se
ond ba
ko� too (as 
an be seenin Figure 4.4 the last slot in whi
h there 
ould be transmissions of the se
ond ba
ko�stage is 23) and are running the third or fourth or �fth ba
ko� stage; on
e again theprobability that the 
hannel is found busy for two or three times is very low, and fewnodes will transmit after slot 24. If we 
ompare Figures 4.9, 4.10 and 4.11 we 
annote that by in
reasing N the probabilities to have transmissions in slots from 2 to8 de
rease and, 
onsequently, the probabilities to have transmissions in slots from 9to 23 in
rease. The reason is that by in
reasing the number of nodes, the probability
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Figure 4.11: The probabilities PfT jg obtained through simulation and through themathemati
al model 
onsidering N j
 = N0
 for every j and N j
 variable, in the 
aseN=7 and D = 1.
to �nd the 
hannel busy at the end of the �rst ba
ko� in
reases. Finally, it 
an benoted that in all 
ases we have two relative minima in slot 2: as the probability totransmit a pa
ket in slot 1 is large, the probability to �nd the 
hannel busy in thisslot is also large; therefore, the probability to transmit in the following slot is quitesmall (see eq. (4.4.16)).In Figures 4.12 and 4.13, the probabilities PfZjg and PfRjg as a fun
tion of j,representing the time slot, are shown for N = 3, 5, and 7. On
e again, the model isvalidated by simulations: the values obtained through the analysis and simulations arevery similar. The di�eren
es are due to the approximation we have made in modeling
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Figure 4.12: The probabilities PfZjg obtained through simulation and through themathemati
al model for N = 3, 5 and 7, having �xed D = 1.N j
 (set equal to N , whatever be j). The trends are very similar to those obtainedfor PfT jg: the largest values of probabilities are for slots 1 to 8; lower probabilitiesare present for slots from 9 to 23 and then the probabilities tend to zero. Moreover,we have a maximum in slot 1 and a relative minimum in slot 2.To validate the model for the 
ases D > 1, in Figure 4.14, FT (j) as a fun
tion ofj, for di�erent values of N and D, is shown. Both mathemati
al analysis (lines) andsimulation results (symbols) are reported to validate the model: a good agreementbetween the two results 
an be found in all 
ases. The non linear behavior of the
urves for small values of the ordinate are due to the sudden 
hanges in values ofPfT jg already 
ommented before. As we 
an see, in all 
ases no traÆ
 is present forj < D, and when j = D PfT jg assumes its maximum value, equal to 1=8, whateverbe N (as in the 
ase D = 1). Moreover, by in
reasing N and D, the delay with whi
h



191

0 2 4 6 8 10 12 14 16 18 20 22 24 26
j

0

0.1

0.2

0.3

0.4

P(R
j
)

Sim: 3 nodes
Model: 3 nodes
Sim: 5 nodes
Model: 5 nodes
Sim: 7 nodes
Model: 7 nodes

Figure 4.13: The probabilities PfRjg obtained through simulation and through themathemati
al model, for N = 3, 5 and 7, having �xed D = 1.
a node a

esses the 
hannel in
reases. Moreover, in the 
ase N = 10 and D = 10, we
an note that FT (j) does not rea
h the value 1, as there is a 
ertain probability thata node 
annot su

eed in a

essing the 
hannel.In Figure 4.15, ps as fun
tion of N for di�erent values of D is shown. Resultsobtained through simulation (symbols) and through the mathemati
al model (lines)are reported. On
e again, simulations validate the model. As we 
an see, ps de
reasesmonotoni
ally by in
reasing N , be
ause the number of nodes 
ompeting for the 
han-nel in
reases. Moreover, we 
an note that there exists an optimum value of D, Dopt,maximizing ps, and this value depends on N . For the sake of legibility of drawings,here only the 
urves obtained for D = 1, 3 and 5, are shown. However, the model hasbeen validated for 1 � D � 10 and 1 � N � 50. From these results, we have foundalso that for 1 < N < 12, Dopt = 7; for 12 < N < 18, Dopt = 5; for N > 68, Dopt = 2.
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Figure 4.14: The 
umulative fun
tion FT (j) as a fun
tion of j, obtained through sim-ulations (symbols) and through the mathemati
al model (lines), for di�erent valuesof N and D.
Therefore, it 
learly appears that Dopt de
reases when in
reasing N .To better understand how the distribution of the traÆ
 varies when low, medium,and high o�ered load are present, in Figure 4.16 the 
umulative fun
tion of PfZjg,FZ(j), as a fun
tion of j, for di�erent values of N and D, is shown (FZ(j) is obtainedby substituting PfT vg with PfZvg in eq. (4.4.17)). Both mathemati
al analysis(lines) and simulation results (symbols) are reported to validate the model: a goodagreement between the two results 
an be found in almost all 
ases. As expe
ted,on
e we �x D, by de
reasing N (therefore the o�ered load), FZ(j) de
reases. On
e we�x N , instead, the value of D maximizing FZ(j) depends on N as stated earlier. Asan example, for N = 10, to obtain the largest value of FZ(j) we have to �x D = 10,whereas for N = 40, the largest value is rea
hed for D = 1. However, if we set
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Figure 4.15: The su

ess probability, ps obtained through simulations (symbols) andthrough the mathemati
al model (lines), as a fun
tion of N , for di�erent values of D.
D = 10, the maximum value of FZ(j) is rea
hed with a higher delay. As it 
an beseen, in fa
t, the 
urves with D = 1 have a larger slope and rea
h the maximum valuewith lower delays.Now, the behavior of ps and Emean, by varying the interval of time between twosu

essive queries, Tq, having �xed D = 5 and 10, is studied.Figure 4.17 reports ps as a fun
tion of N . As expe
ted by in
reasing Tq, ps getslarger, be
ause nodes have more time to a

ess the 
hannel. However note that thein
rease of ps is obtained at the 
ost of larger delays, resulting also in an in
reasingof Emean. In Figure 4.18, Emean as a fun
tion of N is shown, for the same set ofparametersD and Tq 
onsidered in Figure 4.17. As it 
an be noted, here the in
reasing
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Figure 4.16: The 
umulative fun
tion, FZ(j), as a fun
tion of j, obtained through sim-ulations (symbols) and through the mathemati
al model (lines), for di�erent valuesof N and D.
of Tq results in an in
reasing of Emean, sin
e nodes will stay on for more time, andalso have larger probability to transmit their pa
kets. For low N , by in
reasing D,Emean gets larger, be
ause of the greater amount of energy spent for transmittinglarger pa
kets. Conversely, for high N , the larger D, the lower will be the probabilitythat a node su

eeds in a

essing the 
hannel, de
reasing the energy spent by thenode.By 
omparing Figures 4.17 and 4.18 we 
an dedu
e that a tradeo� between energy
onsumption and su

ess probability should be found.Finally, performan
e, in terms of ps and Emean, for di�erent values of parameters
hara
terising the ba
ko� algorithm is evaluated, to 
ompare possible variations of
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Figure 4.17: The su

ess probability, ps as a fun
tion of N , for di�erent values of Dand Tq.
the algorithm with respe
t to the one de�ned by the 802.15.4 standard. All results areobtained, by setting D = 1. The symbols in the Figures (e.g., 
ir
les, squares, stars,et
..) represent simulations, whereas the 
urves are obtained through the mathemat-i
al model. On
e again a good agreement between results has been found.In Figures 4.19 and 4.20 ps and Emean as a fun
tion of N for di�erent values ofWk, with k 2 [0; NBmax℄, having �xed NBmax = 4, are reported, respe
tively. Inparti
ular, we 
onsider the 
ases of absen
e of exponential ba
ko�, that is BEmin =BEmax =2, 3, 4 and 5 (
orresponding toWk =4, 8, 16 and 32), and the 
ases in whi
hthe exponential ba
ko� is implemented, for whi
h we set BEmax = 5 and BEmin =2,3 (the standard 
ase) and 4 (
orresponding to Wk =4, 8 and 16).In Figure 4.19 by in
reasing W0, ps in
reases, as the probability that two or more
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Figure 4.18: The mean energy 
onsumed per round, Emean, as a fun
tion of N , fordi�erent values of D and Tq.
nodes extra
t the same 
ounter de
reases. Having �xedW0, the use of the exponentialba
ko� improves performan
e. This improvement is more signi�
ant the larger is Nand the smaller W0.By observing Figure 4.20, it 
an be seen that the ba
ko� algorithms leading tobetter performan
e in terms of reliability are less energy eÆ
ient. Therefore, forexample, the 
ase Wk = 4 is the best from the energy 
onsumption viewpoint andthe worst from the reliability viewpoint.For low values of N if we pass from the standard values ofWk to the 
aseWk = 32,a 10% improvement for ps is obtained, but also a large worsening in the energy
onsumption (the energy 
onsumed is three times larger). For large values of N ,instead, if we pass from the standard 
ase to Wk = 32, we obtain an improvement of
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Figure 4.19: The probability ps obtained through simulation and through the math-emati
al model for di�erent value of N , by varying the values of Wk, having �xedNBmax = 4.almost 30% for ps while the energy is less than doubled; therefore, in some 
ases it
ould be a 
onvenient option.However, the 
hoi
e of the ba
ko� algorithm to be implemented depends on theappli
ation: in 
ase energy eÆ
ien
y is a more stringent requirement with respe
t toreliability, low values of W0 must be 
onsidered; on the opposite, larger values of W0should be used in 
ase reliability is the main requirement of the appli
ation. As we
an see form the Figures, the proto
ol de�ned by 802.15.4 realizes a good trade-o�between all requirements.Finally, in Figures 4.21 and 4.22 ps and Emean as a fun
tion of N , by varyingNBmax are reported, respe
tively. Here Wk are set to the values de�ned by thestandard and Wk = 4 for every k. As we 
an see, no di�eren
es are present in all
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Figure 4.20: The mean energy spent, Emean [mJ℄ obtained through simulation andthrough the mathemati
al model for di�erent values of N , by varying the values ofWk, having �xed NBmax = 4.performan
e metri
s when the standard values of Wk are �xed. In the 
ase Wk = 4,instead, there is a small di�eren
e for large values of N . Therefore, we 
an dedu
ethat for the number of nodes 
onsidered here, in
reasing NBmax does not a�e
tperforman
e sin
e in most 
ases all nodes su

eed in a

essing the 
hannel beforet̂max.
4.5 The Bea
on-Enabled ModelIn this se
tion the bea
on-enabled model, 
onsidering both star and tree-based topolo-gies, is derived. The se
tion is outlined as follows: se
tion 4.5.1 introdu
es the metri
sderived from the model, whereas in the se
tions 4.5.2 and 4.5.3 the mathemati
al
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Figure 4.21: The probability ps obtained through the mathemati
al model for di�erentvalues of N , by varying NBmax, having �xed the Wk standard values and Wk=4 fork 2 (0; NBmax).model of the CSMA/CA algorithm and the performan
e metri
s related to the CAPportion of the superframe, are derived. All the previous se
tions are related to startopologies, and the related results are dis
ussed in se
tion 4.5.4. In se
tion 4.5.5,�nally, the tree-based topology is dealt with.4.5.1 Performan
e Metri
s Derived from the ModelHave in mind that in 
ase of star topologies, we set BI = SD = Tq and also that wedenote as s, the s-th slot (i.e., ba
ko� period) in the superframe. Note that here weintrodu
e a new variable for denoting the generi
 slot, s, whi
h is di�erent from j,previously de�ned; the relationship between s and j will be explained in the following.The model provides the following metri
s:
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Figure 4.22: The mean energy spent, Emean [mJ℄, obtained through the mathemati
almodel for di�erent values of N , by varying NBmax, having �xed the Wk standardvalues and Wk=4 for k 2 (0; NBmax).� the probability that a node ends the transmission of its pa
ket in a given slots, denoted as PfT sg, with s 2 [0; Tq=dbo � 1℄;� the probability that the sink re
eives the pa
ket tail, 
oming from a node, in agiven slot s, denoted as PfZsg, with s 2 [0; Tq=dbo � 1℄;� the su

ess probability for a transmission, that is the probability that a nodesu

eeds in transmitting its pa
ket in the superframe whatever the slot, denotedas ps.We assume that when NGTS GTSs are used, the sink will assign these slots toNGTSdi�erent nodes randomly sele
ted among the N nodes of the network. Therefore,no resour
e allo
ation strategies are a

ounted for, in the model. For the s
enario
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onsidered, this assumption is reasonable, sin
e we assume that all nodes transmitpa
kets of the same size and no priority poli
y between nodes is needed.In these 
onditions, the probability that a node may use the CPF to a

ess the
hannel is equal to NGTS=N ; whereas the probability that a node has to use the CAPis equal to (N �NGTS)=N .To simplify formulas in the following, we will denote as j the slots in the CAPportion, and as PfT jgCAP and PfZjgCAP , the probabilities that a node su

eeds ina

essing the 
hannel and in transmitting its pa
ket in slot j of the CAP portion,being j 2 [0; TCAP=dbo� 1℄. Therefore, we simply set j = s� 6 (see Figure 4.2, belowpart).The probabilities PfT sg and PfZsg in the CAP portion are given by:
PfT sg = 8>>>><>>>>: 0 for s 2 [0; 5℄PfT jgCAP � N�NGTSN for s 2 [6; (TCAP + dB)=dbo � 1℄and j 2 [0; TCAP=dbo � 1℄ ; (4.5.1)and PfZsg = 8>>>><>>>>: 0 for s 2 [0; 5℄PfZjgCAP � N�NGTSN for s 2 [6; (TCAP + dB)=dbo � 1℄and j 2 [0; TCAP=dbo � 1℄ : (4.5.2)Whereas, in the CFP, we have:

PfT sg = PfZsg = 8>>>><>>>>: 1N for s = (TCAP + dB)=dbo + k �DGTS � 3 � 2SO +D � 1and k 2 [0; NGTS � 1℄0 otherwise : (4.5.3)



202Have in mind that transmissions are referred to the slot in whi
h the transmissionends.The 
umulative fun
tions, FT (s) and FZ(s), de�ned as the probability that anode transmits its pa
ket within slot s, and that a node transmits 
orre
tly its pa
ketwithin s, respe
tively, are given by: FT (s) =Psv=0 PfT vg, and FZ(s) =Psv=0 PfZvg.Finally, the su

ess probability, ps, for a pa
ket transmitted by a node in a network
omposed by N nodes organised in a star topology, ps(N), is:ps(N) = psCAP (N �NGTS) � N �NGTSN + NGTSN ; (4.5.4)where psCAP (N�NGTS) is the su

ess probability for a pa
ket transmitted in the CAPportion, through the CSMA/CA algorithm, when N �NGTS nodes are 
ompeting forthe 
hannel. The su

ess probability for a pa
ket transmitted in the CFP, instead, isequal to one.The probabilities PfT jgCAP , PfZjgCAP and psCAP , related to the CAP portion,are derived in the following se
tions where the mathemati
al model of the CSMA/CAalgorithm is introdu
ed.4.5.2 Formulation of the Mathemati
al Model of the CSMA/CAAlgorithmNode StatesAs in the non bea
on-enabled 
ase, a node a

essing the 
hannel during the CAPportion of the superframe 
an be in one of four states: ba
ko�, sensing, transmission,or idle, and given the obje
tives of this work, we need to model only the ba
ko� and



203sensing states.The node state is modeled as a three-dimensional pro
ess Q(t̂)= fBO
(t̂),BOs(t̂),CW (t̂)g, where t̂ is an integer, representing the time, expressed in number of slots,having set the origin of this time axis (t̂ = 0) at the instant when nodes re
eive thebea
on. Therefore, t̂ = j denotes the j-th slot (from j � dbo to (j + 1) � dbo), afterthe re
eption of the bea
on, that is the interval of time between 120Ts + j � dbo and120Ts + (j + 1) � dbo.BO
(t̂) and BOs(t̂) represent, on
e again, the ba
ko� time 
ounter and the ba
ko�stage at time t̂, respe
tively, and CW (t̂) is the value of CW at time t̂.As in the non bea
on-enabled 
ase, we 
an identify NBmax + 1 di�erent ba
k-o� stages obtained by 
onsidering the di�erent possible 
ombinations of the pair(NB;BE), shown in Table 4.1.Sin
e there exists a maximum value for NB, there will be also a maximum delaya�e
ting the transmission of a pa
ket. This maximum is rea
hed in 
ase a nodeextra
ts at every ba
ko� stage the higher ba
ko� time 
ounter and at the end of ea
hba
ko� stage it always �nds the 
hannel busy. Therefore, the last slot in whi
h atransmission 
an start is t̂max =PNBmaxk=0 Wk + 5 = 125, and the last slot in whi
h atransmission 
an �nish is (t̂max +D � 1).In the following, the generi
 state will be denoted as Q(t̂)=fBO
; BOs; CW; t̂gand the probability of being in a generi
 state will be denoted as PfBO
=
; BOs=i;CW=w; t̂=jg=Pf
; i; w; jg. In parti
ular, the probability of being in a ba
ko� state,will be denoted as Pf
; i; 2; jg, sin
e in these states CW is equal to 2. Whereas theprobability of being in the �rst sensing phase (i.e., when CW=2) and in the se
ondsensing phase (i.e., when CW=1) at the j-th slot and in the i-th ba
ko� stage, will



204be denoted as PfS2jig=Pf0; i; 2; jg and PfS1jig=Pf0; i; 1; jg, respe
tively. Note thatwhen a node is in sensing state, BO
, is equal to zero.Steps Followed by the ModelLet us denote as bjw the probability that in the j-th slot when CW = w the 
hannelis found to be busy after sensing. Sin
e CW is equal to 2 when a node performsthe �rst sensing phase and to 1 when it performs the se
ond sensing phase, we willdenote as bj2 the probability to �nd the 
hannel busy in the �rst phase and as bj1 theprobability to �nd the 
hannel busy in the se
ond phase. Finally, we will denote asf j, the joint probability to �nd the 
hannel free in slot j and in slot j � 1 (i.e., theprobability that a node starting sensing in slot j � 1 �nds the 
hannel free for twosubsequent slots). These probabilities will be initially left as parameters, and their
omputation will be performed in se
tion 4.5.3. The model provides PfT jgCAP andPfZjgCAP , with j 2 [0; TCAP=dbo � 1℄, and psCAP .The probability PfT jgCAP depends on the probability of being in sensing statein the slot j � D � 1 (sin
e a pa
ket o

upies D slots) and to �nd the 
hannel freefor two subsequent slots. To determine the sensing probabilities, the behavior of asingle node is modeled, using a state-transition diagram [109℄, des
ribing the relationbetween all possible states in whi
h a node 
an be (see the following se
tion). Fromthis diagram, we obtain the probabilities PfS1jig and PfS2jig, whatever be j and i.This is made in the remainder of this se
tion. From these probabilities, we 
an derivethe probabilities PfT jgCAP , PfZjgCAP , psCAP are derived in se
tion 4.5.3. At theend of this se
tion are also given bj1, bj2 and f j. The algorithm used to 
ompute allthe target performan
e metri
s is not reported owing to its similarity with the one



205illustrated in se
tion 4.4.3.Sensing ProbabilitiesThe state-transition diagram of the bidimensional pro
ess Q(t̂) is presented through�ve di�erent Figures (4.23, 4.24, 4.25, 4.26 and 4.27), related to the ba
ko� stagesBOs = 0, 1, 2, 3 and 4, respe
tively. Be
ause ea
h Figure is related to a spe
i�
 valueof BOs, for the sake of simpli
ity in the drawings, the generi
 ba
ko� state (ovals inthe Figures) is simply denoted as f
; jg, omitting the value of BOs, and also the valueof CW , equal to 2 for all ba
ko� states. The sensing states (squares) are denoted asS1j and S2j with no pedex i.In the following the probabilities of being in the di�erent states of the 
hainand the transition probabilities between the states will be provided, for the di�erentba
ko� stages. The des
ription of the di�erent �nite state transition diagrams areomitted owing to their similarity with the diagrams of the non bea
on-enabled mode.Therefore, we refer to se
tion 4.4.2 for these des
riptions.First Ba
ko� Stage (BOs = 0)Denoting as PfBO
 = 
1; BOs = i1; CW = w1; t̂ = j1jBO
 = 
0; BOs = i0; CW =w0; t̂ = j0g=Pf
1; i1; w1; j1j
0; i0; w0; j0g, the transition probability from the statef
0; i0; w0; j0g to the state f
1; i1; w1; j1g, the transition probabilities between theba
ko� states are given by:Pf
; 0; 2; j + 1j
+ 1; 0; 2; jg = 1 ; (4.5.5)for 
 2 [0;W0 � 2℄ and j 2 [0;W0 � 2℄. This equation a

ounts for the fa
t that, at
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Figure 4.23: The state-transition diagram of the �rst ba
ko� stage (BOs = 0).the beginning of ea
h time slot, the ba
ko� time 
ounter is de
reased by 1 until itrea
hes the zero value, with probability 1.The probabilities of being in a sensing state when CW = 2 are given by:PfS2j0g = 8><>: 1W0 for j 2 [0;W0 � 1℄0 otherwise : (4.5.6)The probabilities of being in a sensing state when CW = 1 are given by:PfS1j0g = 8><>: PfS2j�10 g � (1� bj�12 ) for j 2 [1;W0℄0 otherwise : (4.5.7)A node, in fa
t, will sense the 
hannel for the se
ond time if and only if it �nds the
hannel free during the �rst sensing phase.



207Se
ond Ba
ko� Stage (BOs = 1)As a node 
an arrive in this ba
ko� stage only after it has �nished the �rst one,it 
annot rea
h this stage before t̂ = 3.As in the previous 
ase, the transition probabilities between ba
ko� states aregiven by: Pf
; 1; 2; j + 1j
+ 1; 1; 2; jg = 1 ; (4.5.8)for 
 2 [0;W1 � 2℄ and j 2 [3;W0;1 � 1℄, where W0;1 =W0 +W1.The transition probabilities between the sensing states at CW = 2 of the �rstba
ko� stage (BOs = 0) and the states of the se
ond ba
ko� stage (BOs = 1) aregiven by: Pf
; 1; 2; j + 1j0; 0; 2; jg = bj2W1 ; (4.5.9)for 
 2 [0;W1 � 1℄ and j 2 [2;W0 � 1℄. This equation a

ounts for the fa
t that in
ase the 
hannel at the j-th slot is found busy, the node will go to one of the statesf
; 1; 2; j + 1g, with 
 2 [0;W1 � 1℄, with the same probability 1=W1.The transition probabilities between the sensing states at CW = 1 of the �rstba
ko� stage (BOs = 0) and the states of the se
ond ba
ko� stage (BOs = 1) aregiven by: Pf
; 1; 2; j + 1j0; 0; 1; jg = bj1W1 ; (4.5.10)for 
 2 [0;W1 � 1℄ and j 2 [2;W0℄.



208The probabilities of being in sensing when CW = 2 are given by:
PfS2j1g = 8>>>>>>><>>>>>>>:

Pj�1v=2(PfS1v0g � bv1W1 + PfS2v0g � bv2W1 ) for j 2 [3;W0 + 1℄PfS2W0+11 g for j 2 [W0 + 2;W1 + 2℄PW0v=j�W1(PfS1v0g � bv1W1 + PfS2v0g � bv2W1 ) for j 2 [W1 + 3;W0;1℄0 otherwise: (4.5.11)The �rst equation derives from the fa
t that until j � W0, the probability of beingin sensing at the se
ond ba
ko� stage depends on the probabilities of being in sensingat the �rst ba
ko� stage and of �nding the 
hannel busy the �rst or the se
ond time.As an example, a node 
an arrive in S231 if it is in S120 or in S220, �nds the 
hannelbusy, and extra
ts the value 0 for the se
ond ba
ko� stage (see Figs. 4.23 and 4.24).The se
ond equation a

ounts for the fa
t that for j > W0 + 1, there are no moretransitions between the states of BOs = 0 and the ones of BOs = 1, be
ause the lastslot in whi
h a node 
an sense the 
hannel in the �rst ba
ko� stage is j = W0 = 8.Finally, when j rea
hes W1 + 3 = 19, the sum starts with v = 3 and not 2, sin
e if anode is in S120 (or in S220) it moves (in 
ase of 
hannel busy) to states f
; 1; 2; 3g with
 2 [0; 15℄; therefore the state f16; 1; 2; 3g does not exist (see the Figure).Finally, the probabilities of being in a sensing state when CW = 1 are given by:PfS1j1g = 8><>: PfS2j�11 g � (1� bj�12 ) for j 2 [4;W0;1℄0 otherwise : (4.5.12)
Third Ba
ko� Stage (BOs = 2)Following similar 
onsiderations as above, and observing the part of the state-transition diagram depi
ted in Figure 4.25, we 
an derive the following probabilities.
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Figure 4.24: The state-transition diagram of the se
ond ba
ko� stage (BOs = 1).The transition probabilities between the ba
ko� states are given by:Pf
; 2; 2; j + 1j
+ 1; 2; 2; jg = 1 ; (4.5.13)for 
 2 [0;W2 � 2℄ and j 2 [4;W0;1;2℄.The transition probabilities between the sensing states at CW = 2 of the se
ondba
ko� stage (BOs = 1) and the states of the third ba
ko� stage (BOs = 2) are givenby: Pf
; 2; 2; j + 1j0; 1; 2; jg = bj2W2 ; (4.5.14)for 
 2 [0;W2 � 1℄ and j 2 [3;W0;1℄.The transition probabilities between the sensing states at CW = 1 of the se
ondba
ko� stage (BOs = 1) and the states of the third ba
ko� stage (BOs = 2) are given



210by: Pf
; 2; 2; j + 1j0; 1; 1; jg = bj1W2 ; (4.5.15)for 
 2 [0;W2 � 1℄ and j 2 [4;W0;1 + 1℄.The probabilities of being in sensing state when CW = 1 are given by:
PfS2j2g = 8>>>>>>><>>>>>>>:

Pj�1v=3(PfS1v1g � bv1W2 + PfS2v1g � bv2W2 ) for j 2 [4;W0;1 + 2℄PfS2W0;1+22 g for j 2 [W0;1 + 3;W2 + 3℄PW0;1+1v=j�W2(PfS1v1g bv1W2 + PfS2v1g bv2W2 ) for j 2 [W2 + 4;W0;1;2 + 1℄0 otherwise: (4.5.16)Finally, the probabilities of being in a sensing state when CW = 1 are given by:PfS1j2g = 8><>: PfS2j�12 g � (1� bj�12 ) for j 2 [5;W0;1;2 + 2℄0 otherwise : (4.5.17)
Fourth Ba
ko� Stage (BOs = 3)Similarly, and observing the part of the state-transition diagram depi
ted in Figure4.26, we 
an derive the following probabilities.The transition probabilities between the ba
ko� states are given by:Pf
; 3; 2; j + 1j
+ 1; 3; 2; jg = 1 ; (4.5.18)for 
 2 [0;W2 � 2℄ and j 2 [5;W0;1;2;3 + 1℄.The transition probabilities between the sensing states at CW = 2 of the thirdba
ko� stage (BOs = 2) and the states of the fourth ba
ko� stage (BOs = 3) aregiven by: Pf
; 3; 2; j + 1j0; 2; 2; jg = bj2W2 ; (4.5.19)
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Figure 4.25: The state-transition diagram of the third ba
ko� stage (BOs = 2).
for 
 2 [0;W2 � 1℄ and j 2 [4;W0;1;2 + 1℄.The transition probabilities between the sensing states at CW = 1 of the thirdba
ko� stage (BOs = 2) and the states of the fourth ba
ko� stage (BOs = 3) aregiven by:

Pf
; 3; 2; j + 1j0; 2; 1; jg = bj1W2 ; (4.5.20)
for 
 2 [0;W2 � 1℄ and j 2 [5;W0;1;2 + 2℄.
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Figure 4.26: The state-transition diagram of the fourth ba
ko� stage (BOs = 3).
The probabilities of being in sensing state when CW = 2 are given by:

PfS2j3g = 8>>>>>>><>>>>>>>:
Pj�1v=4(PfS1v2g � bv1W2 + PfS2v2g � bv2W2 ) for j 2 [5;W2 + 4℄Pj�1v=j�W2(PfS1v2g bv1W2 + PfS2v2g bv2W2 ) for j 2 [W2 + 5;W0;1;2 + 3℄PW0;1;2+2v=j�W2 (PfS1v2g bv1W2 + PfS2v2g bv2W2 ) for j 2 [W0;1;2 + 4;W0;1;2;3 + 2℄0 otherwise: (4.5.21)Finally, the probabilities of being in a sensing state when CW = 1 are given by:PfS1j3g = 8><>: PfS2j�13 g � (1� bj�12 ) for j 2 [6;W0;1;2;3 + 3℄0 otherwise : (4.5.22)



213Fifth Ba
ko� Stage (BOs = 4)Similarly, and observing the part of the state-transition diagram depi
ted in Figure4.27, we 
an derive the following probabilities.The transition probabilities between the ba
ko� states are given by:Pf
; 4; 2; j + 1j
+ 1; 4; 2; jg = 1 ; (4.5.23)for 
 2 [0;W2 � 2℄ and j 2 [6;W0;1;2;3;4 + 2℄.The transition probabilities between the sensing states at CW = 2 of the fourthba
ko� stage (BOs = 3) and the states of the �fth ba
ko� stage (BOs = 4) are givenby: Pf
; 4; 2; j + 1j0; 3; 2; jg = bj2W2 ; (4.5.24)for 
 2 [0;W2 � 1℄ and j 2 [5;W0;1;2;3 + 2℄.The transition probabilities between the sensing states at CW = 1 of the fourthba
ko� stage (BOs = 3) and the states of the �fth ba
ko� stage (BOs = 4) are givenby: Pf
; 4; 2; j + 1j0; 3; 1; jg = bj1W2 ; (4.5.25)for 
 2 [0;W2 � 1℄ and j 2 [6;W0;1;2;3 + 3℄.The probabilities of being in sensing state when CW = 2 are given by:
PfS2j4g = 8>>>>>>><>>>>>>>:

Pj�1v=5(PfS1v3g � bv1W2 + PfS2v3g � bv2W2 ) for j 2 [6;W2 + 5℄Pj�1v=j�W2(PfS1v3g bv1W2 + PfS2v3g bv2W2 ) for j 2 [W2 + 6;W0;1;2;3 + 4℄PW0;1;2;3+3v=j�W2 (PfS1v3g bv1W2 + PfS2v3g bv2W2 ) for j 2 [W0;1;2;3 + 5;W0;1;2;3;4 + 3℄0 otherwise: (4.5.26)
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Figure 4.27: The state-transition diagram of the �fth ba
ko� stage (BOs = 4).Finally, the probabilities of being in a sensing state when CW = 1 are given by:PfS1j4g = 8><>: PfS2j�14 g � (1� bj�12 ) for j 2 [7;W0;1;2;3;4 + 4℄0 otherwise : (4.5.27)4.5.3 Performan
e Metri
s related to the CAP portionTransmission ProbabilitiesAs stated before, the aim of our model is to evaluate the probability that a generi
node ends its pa
ket transmission in slot j, PfT jgCAP , with j 2 [0; TCAP=dbo � 1℄.A node �nishes its transmission in slot j, if in slot j �D� 1, it starts sensing the
hannel �nding it free for two subsequent slots. The probability that a node startssensing in slot j, is the sum of the probabilities of starting sensing in the j-th slot



215and at the i-th ba
ko� stage, 
onsidering all possible ba
ko� stages. Therefore, weobtain:
PfT jgCAP = 8><>: f j�D �PNBmaxk=0 PfS2j�D�1k g for j 2 [D + 1; t̂max +D � 1℄0 otherwise (4.5.28)Be
ause a node transmits a pa
ket o

upying D slots, we asso
iate PfT jgCAP to theslot in whi
h the transmission terminates.The probabilities PfT jgCAP obtained from eq. (4.5.28) are used in eq. (4.5.1) toderive the statisti
s in the whole superframe.

Re
eption and Su

ess ProbabilityTo evaluate the other target probabilities, we have to model how the number of nodesthat 
ompete for the a

ess to the 
hannel varies with time. The number of nodeswhi
h have not transmitted yet at the end of slot j � 1 and that will 
ompete forslot j, is denoted as N j
 . N j
 is a random variable, binomially distributed; howeversin
e a pre
ise modelling of this variable, is very 
omplex [16℄, an approximation inthe model, by simply setting N j
 = N
 = N , whatever be j, has been introdu
ed.In se
tion 4.5.4, simulations are 
ompared with the mathemati
al approa
h. Resultsshow that a very good agreement with simulations is obtained through the model,despite the approximation introdu
ed.The probability, ps, that a generi
 pa
ket is transmitted su

essfully on the 
hannel



216given by:psCAP = 8><>: Pt̂max+D�1j=0 PfZjgCAP if t̂max +D � 1 � TCAP=dbo � 1PTCAP =dbo�1j=0 PfZjgCAP otherwise (4.5.29)where PfZjgCAP is the probability that a su

essful transmission ends in slot j, whi
hmeans that one and only one transmission starts in j �D + 1.As only one transmission starts in slot j�D+1 if only one node, over N
, sensesthe 
hannel in slot j �D and if the 
hannel is free in j �D and j �D� 1, PfZjg isgiven by:
PfZjgCAP = f j�D NBmaxXk=0 PfS2j�Dk g � NBmaxYk=0 (1� PfS2j�Dk g)N
�1 ; (4.5.30)where the se
ond fa
tor gives the probability that one node senses the 
hannel inj �D, whatever the ba
ko� stage, and the third fa
tor gives the probability that theremaining N
 � 1 nodes do not sense the 
hannel in slot j �D.Probability to �nd the 
hannel busyThe 
hannel will be found busy in slot j in 
ase a transmission starts in slot j, orin slot j � 1, up to slot j �D + 1, sin
e ea
h node transmits a pa
ket o

upying Dslots. Therefore, by denoting as PfT j1g the probability that at least one transmissionstarts in slot j, the probability to �nd the 
hannel busy during the �rst sensing phase(CW = 2) is given by: bj2 = jXv=j�D+1PfT v1 g : (4.5.31)



217Whereas, bj1 is the probability to �nd the 
hannel busy 
onditioned to the fa
tthat the 
hannel in j � 1 was free, sin
e a node performs the se
ond sensing phaseonly if it has found the 
hannel free in the �rst slot. Therefore, it is the probabilitythat slot j � 2 is free and that there is at least one node starting sensing in this slot:bj1 = (1� bj�22 ) � "1� NBmaxYk=0 (1� S2j�2k )N
�1# ; (4.5.32)where the se
ond fa
tor (between the bra
kets), is the probability that at least onenode starts sensing in slot j � 2.The 
hannel will be jointly free in slots j and j � 1 if no transmissions start inslot j, j � 1, up to j �D, therefore, the probability f j is given by:f j = 1� jXv=j�DPfT v1 g : (4.5.33)Finally, the probability that at least one transmission starts in slot j is given by:PfT j1g = f j�1 � "1� NBmaxYk=0 (1� S2j�2k )N
�1# : (4.5.34)4.5.4 Numeri
al Results for the Star TopologyFor the purpose of numeri
al 
omparison, the same simulation tool, written in Clanguage, used for validating the non bea
on-enabled mode, has been used. Obviously,in this 
ase the slotted CSMA/CA proto
ol has been implemented and also the CFP ofthe superframe has been simulated. On
e again, ideal 
hannel 
onditions are assumed,no 
apture e�e
t is 
onsidered, and no a
knowledge and retransmission me
hanismsare performed. On
e again 104 superframes are simulated.In Figures 4.28 and 4.29, the 
umulative fun
tion FT (s), as a fun
tion of time, s,for di�erent values of N , having set D = 2 when no GTSs and seven GTSs are
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Figure 4.28: The 
umulative fun
tion, FT (s), when no GTSs are allo
ated, having�xed D = 2.
allo
ated, are shown. Both mathemati
al analysis (lines) and simulation results(symbols) are reported to validate the model: an ex
ellent agreement between re-sults 
an be found in all 
ases. Results are obtained by setting SO = 1, thereforeTq = 1920 Ts = 30:72 [ms℄. No traÆ
 toward the sink is present for s < 6+(D+1) = 9,owing to the transmission of the bea
on and to the sensing phases. As expe
ted, byin
reasing N , the delay with whi
h a node a

esses the 
hannel in
reases. The 
urvesdo not rea
h the value 1, sin
e some nodes do not su

eed in a

essing the 
hannelby the end of the superframe. The step-wise behavior of 
urves is motivated by themove from one ba
ko� stage to the following. PfT jgCAP , in fa
t, present relativemaxima at the beginning of ea
h ba
ko� window (i.e., the interval of time in whi
ho

ur transmissions of nodes performing the �rst, the se
ond, et
.. ba
ko� stage),whereas the probability to a

ess the 
hannel is approximately the same inside ea
h
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Figure 4.29: The 
umulative fun
tion, FT (s), when seven GTSs are allo
ated, having�xed D = 2.ba
ko� window [15, 16℄.In Figure 4.29 we 
an observe the statisti
 of the traÆ
 in the CFP, 
hara
terisedby steps in ea
h GTS.Figure 4.30 reports the 
umulative fun
tion FZ(s), as a fun
tion of s, for di�erentvalues of N , having set D = 2. The behavior of the 
urves is similar to that of Figure4.28 and 4.29, the only di�eren
e is that, owing to 
ollisions, some transmitted pa
ketsare not 
orre
tly re
eived by the sink, therefore the 
urves are down translated. Aswe 
an see, a good agreement between simulation and analyti
al results is obtainedalso for this metri
. A good agreement between simulation results (points) and modelresults (lines) has been found. The 
ase N = 20 is not shown for the sake of legibilityof the Figure, sin
e 
urves are partially overlapped.In Figures 4.31 and 4.32 ps as fun
tions of N , for di�erent values of SO, having
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Figure 4.30: The 
umulative fun
tion, FZ(s), when GTSs are allo
ated and not.�xed D = 5 and D = 10 are shown, respe
tively. The 
ases of no GTSs and NGTSequal to the maximum number of GTSs allo
able, are 
onsidered. As explained above,this maximum number depends on the values ofD and SO. As we 
an see, ps de
reasesmonotoni
ally (for N > 1 when NGTS = 0 and for N > NGTS when NGTS > 0), byin
reasing N , sin
e the number of nodes 
ompeting for the 
hannel in
reases. Asexpe
ted the use of GTSs improves performan
e, sin
e less nodes 
ompete for the
hannel. By in
reasing SO, ps gets larger, sin
e in
reases the CAP duration andnodes have more time to try to a

ess the 
hannel. Results for SO > 2 are the sameobtained in the 
ase SO = 2, this means that when SO = 2 the largest values of psare rea
hed.Now the 
on
epts of throughput, denoted as S, and o�ered load, denoted as G,are introdu
ed. We de�ne the throughput as the number of bytes per unit of timesu

essfully transmitted to the sink, and the o�ered load as the maximum number
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Figure 4.31: The su

ess probability, ps as a fun
tion of N , having �xed D = 5.of bytes the network was deployed to deliver per unit of time, that is, the amount oftraÆ
 that nodes are able to o�er to the sink. G is given by:G = N � zTq [bytes=se
℄ : (4.5.35)S is given by: S = ps �G = z �NTq �psCAP � N �NGTSN + NGTSN � == zTq [psCAP � (N �NGTS) +NGTS℄ [bytes=se
℄ : (4.5.36)Have in mind that z = D � 10 bytes and Tq = BI = SD, in this 
ase.In Figures 4.33 and 4.34, S as a fun
tion of G, when varying SO (i.e., Tq) and D,when no GTSs and when the maximum number of GTSs is allo
ated, respe
tively,are shown. When few nodes are distributed in the network, by in
reasing G, S getslarger. When, instead, many nodes are distributed, an in
reasing of G results in a
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Figure 4.32: The su

ess probability, ps as a fun
tion of N , having �xed D = 10.
de
rease of S, sin
e many nodes are 
ompeting for the 
hannel. This means thatin star topologies it is not 
onvenient to in
rease too mu
h N (i.e., the 
ost of thenetwork), sin
e many pa
kets will be lost. Moreover this results 
on�rm that startopology is not suitable for large N . Moreover, we 
an note that there exists a valueof SO maximising S, whi
h depends on G and D. As an example, for D = 5 when Gis low, an in
rease of SO (i.e., Tq), even though in
reases ps, results in a de
rement ofS, sin
e S depends also on 1=Tq. When, instead, the o�ered load gets larger, 
ollisionsin
rease and larger values of SO are required. On the other hand, when D = 10, theoptimum value of SO is 1, for low G. This is due to the fa
t that, having largepa
kets, when SO = 0 too many pa
kets are lost, owing to the short duration of thesuperframe.When no GTSs are allo
ated (Figure 4.33) S de
reases monotoni
ally sin
e
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D=5Figure 4.33: The throughput S as a fun
tion of G, when no GTSs are allo
ated.limG!1psCAP = 0. When, instead, GTSs are allo
ated (Figure 4.34), there exists anhorizontal asymptote, derived as follows.
limG!1S = limG!1 � zTq � psCAP � (N �NGTS) + z �NGTSTq � = z �NGTSTq : (4.5.37)As an example, when SO = 1 and D = 10, the maximum number of GTSsallo
able is NGTS = 6 and the horizontal asymptote is S = 19531:25 [bytes=se
℄.4.5.5 The Tree-Based TopologyAs stated above when the number of nodes in the PAN in
reases, star topologies arenot suitable, and peer-to-peer or tree-based topologies should be used [51℄. The tree-based topology de�ned by the Zigbee Allian
e [51℄ for 802.15.4 networks, is 
onsideredhere.
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Figure 4.34: The throughput S as a fun
tion of G, when the maximum number ofGTSs is allo
ated.
We 
onsider a (T + 1)-level tree-based topology, where the tree is rooted at thesink (namely, at level zero), and level i nodes re
eive data from level i+ 1 nodes andforward them to level i� 1 nodes, toward the sink (see Figure 1.11).As stated in Chapter 1, the tree formation pro
edure is started by the sink, whi
hbroad
asts bea
ons to nodes. A 
andidate node re
eiving the bea
on may requestto join the network at the sink. If the sink allows the node to join, it will begintransmitting periodi
 bea
ons so that other 
andidate nodes may join the network.In parti
ular, ea
h router in the tree, after the re
eption of the bea
on 
oming fromthe parent, will sele
t the instant when transmitting its bea
on. Ea
h 
hild nodetra
ks the bea
on of its parent and transmits its own bea
on at a prede�ned o�setwith respe
t to the beginning of its parent bea
on. Obviously the bea
on pa
kets aresent only by the routers in the tree.



225

B
e
a
c
o

n
 C

o
o

r
d

in
a
to

r

B
e
a
c
o

n
R

o
u

te
r

1
 L

e
v
e
l

1

B
e
a
c
o

n
R

o
u

te
r

2
 L

e
v
e
l

1

B
e
a
c
o

n
 C

o
o

r
d

in
a
to

r

BI=Tq=16*60*2BO Ts

Inactive part of the Coordinator superframe

SD=16*60*2SO Ts

Inactive part of Router 1

Tx of level 1 nodes

toward the

Coordinator

Router 1

children transm

Router 2

children transm

B
e
a
c
o

n
R

o
u

te
r

3
 L

e
v
e
l

1

Router 3

children transm

SD=16*60*2SO Ts SD=16*60*2SO Ts SD=16*60*2SO Ts

Inactive part of Router 2

Figure 4.35: The superframe stru
ture used in the tree-based topology.It is assumed that all the a
tive parts of the superframes generated by the routersand by the sink have the same duration, SD; therefore, we �x a unique value of SO.In this 
onditions, on
e we set the value of BO, the number of routers (in
ludingthe sink) that will have a portion of superframe allo
ated for the re
eption of data
oming from their 
hildren, will be equal to 2BO�SO (see Figure 4.35).We denote as pi the probability that a node is at level i of the hierar
hy and withps(ni), the su

ess probability for a level i node 
ompeting for the 
hannel with theother ni�1 nodes, 
onne
ted to the same parent at level i�1. The su

ess probabilityfor a node a

essing the 
hannel in the tree is:pstree = TXi=1 pi � iYk=1 psk ; (4.5.38)where psk =PNkj=1 ps(nk) � Pfnkg, is the average su

ess probability for a node beingat level k, and Pfnkg is the probability that nk nodes at level k are atta
hed to the



226same parent at level k � 1. A pa
ket 
oming from a level i node will be 
orre
tlyre
eived by the sink, in 
ase it is su

essfully transmitted by the level i node fromwhi
h it is generated, and by all the routers from level i � 1 till level 1, forwardingit toward the sink. A

ording to the 
hannel a

ess strategy de�ned above, only the
hildren of a given parent 
ompete for the 
hannel, therefore the tree 
ould be seenas a set of stars, ea
h formed by a parent and its 
hildren, operating independently(i.e., without 
ollisions). Therefore, ps(nk) is given by eq. (4.5.4), by simply settingN = nk.Note that equation (4.5.38) 
ould be used to evaluate the su

ess probability fora node a

essing the 
hannel when a T + 1-level tree-based topology is established,whatever be the strategy used to realise the tree.Now the su

ess probability pstree is evaluated in the parti
ular 
ase of a three-leveltree. We denote as Ni = pi �N , the number of level i nodes, with i = 1; 2. We assumethat level 2 nodes sele
t randomly the level 1 node parent, and that the a
tive partof the superframe de�ned by the sink is used by level 1 nodes, whereas the remaining2BO�SO � 1 superframe portions are randomly allo
ated to level 1 routers for there
eption of pa
kets 
oming from their 
hildren. Under these assumptions, thereexists a 
ertain probability that a level 1 router has not a portion of the superframeallo
ated, therefore the pa
kets 
oming from its 
hildren will be lost. We denote aspframe the probability that a level 2 node may try to a

ess the 
hannel, sin
e itsparent has a portion of the superframe allo
ated. This probability is given by:pframe = 2BO�SO � 1NR ; (4.5.39)



227where NR is the mean number of level 1 routers, that is the number of level 1 nodesthat have at least one 
hild, given by:NR = N1Xi=0 �N1i � (p
hild)i � (1� p
hild)N1�1 ; (4.5.40)where p
hild = 1� (1� 1N1 )N2 is the probability that a level 1 node has at least a 
hild,and 1=N1 is the probability that a level 2 node is 
onne
ted to a given level 1 node.Being the number of level 2 nodes 
onne
ted to the same level 1 node binomiallydistributed, we 
an evaluate the average su

ess probability for a node being at level2: ps2 = N2Xi=0 ps(i) � �N2i �� 1N1�i � �1� 1N1�N2�1 ; (4.5.41)where ps(i) is the su

ess probability given by eq. (4.5.4) when i nodes at level 2 are
ompeting for transmitting to the same level 1 node. Finally,pstree = p1 � ps1 + p2 � pframe � ps1 � ps2 ; (4.5.42)where pframe is given by eq. (4.5.39), and ps1 = ps(N1).Numeri
al Results for the Tree-Based TopologyNumeri
al results obtained in the three-level tree are dis
ussed here, and 
omparedwith results obtained in the star topology 
ase. Sin
e the su

ess probability pstreedepends on ps obtained in the star topology 
ase, that has been validated in se
tion4.5.4, simulation results are not reported here.In Figure 4.36 pstree as a fun
tion of N1, for di�erent values of N , D and SO,having set BO = 5, is shown. There exists an optimum value of N1 maximising pstree,and this value, obviously in
reases by in
reasing N and is approximatively the same
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Figure 4.36: The su

ess probability, pstree as a fun
tion of N1 for a tree-based topol-ogy.
when varying D and SO. This means that, on
e we �x N there exists an optimumsplit between level 1 and level 2 nodes, maximising the su

ess probability.In Figure 4.37 results related to the two topologies, showing the su

ess probabilityas a fun
tion of N , for di�erent values of SO and BO, are 
ompared. For a fair
omparison, the su

ess probability is 
omputed by �xing the same value of Tq = BI,therefore giving to nodes the same time to try to a

ess the 
hannel. To this aim,we set SO = BO for the star topology, and we 
ompare the 
ase "star" with SO =BO = 1 with the 
ase "tree" with BO = 1 and SO = 0. Whereas the 
ase "star"with SO = BO > 1 (note that the 
ases SO = BO =2,3, et
.. bring to the sameps) are 
ompared with the 
ases "tree" with BO > 1, whatever be SO. In the tree
ase N1 is set to the optimum value maximising pstree obtained from 
urves in theFigure 4.36. As we 
an see, when BO = 1, the star is preferable, sin
e in the tree
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Figure 4.37: The su

ess probability as a fun
tion ofN when a star and tree topologiesare used.only one router has a part of the superframe allo
ated, therefore, many pa
kets oflevel 2 nodes will be lost. For BO > 1, instead, the tree outperforms the star. Thedi�eren
e between the star and the tree, obviously, in
reases by in
reasing BO andSO, resulting in an in
rease of pframe and ps, respe
tively.
4.6 Comparison between the two Bea
on- and NonBea
on-Enabled ModesThe 
omparison is performed in terms of su

ess probability, ps and throughput S(de�ned in se
tion 4.5.4), 
onsidering the star topology (sin
e trees may not be formedin the non bea
on-enabled 
ase [51℄). Have ion mind that Tq is given by eq. (1.4.2) for
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Figure 4.38: The su

ess probability, ps for the bea
on- and non bea
on-enabledmodes, as a fun
tion of N .the bea
on one, and 
an be set whatever a value in the non bea
on-enabled 
ase [16℄.Figure 4.38 
ompares the values of ps obtained in the two modes, when no GTSsare allo
ated. Results are obtained through the mathemati
al models. Here Tq =61:44 [ms℄, whi
h 
orresponds to SO = 2 in the bea
on-enabled 
ase and is largerthan the maximum possible delay in the non bea
on-enabled mode. This means thatthe largest values of ps that 
ould be obtained in both the modalities, are 
onsidered.A logarithmi
 s
ale is used to better visualise the di�eren
es between the 
urves. It
an be seen that there are no relevant di�eren
es between the two modalities, whenno GTSs are allo
ated. When instead GTSs are used, relevant di�eren
es are present.If we 
ompare Figures 4.31 and 4.32, related to the bea
on-enabled mode (withD = 5 and 10, respe
tively) with results of the non bea
on-enabled mode shown inFigure 4.17, we 
an note that in both 
ases, D = 5 and 10, on
e we �x the round or



231superframe duration, results are approximatively the same if no GTSs are allo
ated,whereas, there is a notable in
reasing of ps in the bea
on-enabled 
ase when GTSsare allo
ated. Note that the 
ases Tq = 15:36 [ms℄, Tq = 30:72 [ms℄ and Tq = 61:44[ms℄ 
orrespond to SO = 0, 1 and 2, respe
tively.

2 10
4

4 10
4

6 10
4

8 10
4

10
5

1.2 10
5

1.5 10
5

G [Bytes/sec]

0

2000

4000

6000

8000

10000

S
[B

yt
es

/s
ec

]
BE: Tq=15.36 ms
BE: Tq=30.72 ms
BE: Tq=61.44 ms
non BE: Tq=15.36 ms
non BE: Tq=30.72 ms
non BE: Tq=61.44 ms

Figure 4.39: The throughput, S, as a fun
tion of G for D = 2, for the bea
on- andnon bea
on-enabled modes.
In Figures 4.39 and 4.40, S as a fun
tion of G, when varying Tq, for D = 2 andD = 10, respe
tively, are shown. Both bea
on- and non bea
on-enabled modes are
onsidered. In both Figures, on
e G is �xed there exists a value of SO (i.e., Tq)maximising S. For D = 2 (Figure 4.39) when G is low, an in
rease of Tq results ina de
rement of S sin
e, even though ps gets greater (sin
e nodes have more time totransmit their pa
kets), the query interval is longer and, therefore, the number ofbytes per se
ond re
eived by the sink de
reases. When, instead, the o�ered traÆ
gets larger, 
ollisions in
rease and larger values of Tq are required, to in
rease S. On
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Figure 4.40: The throughput, S, as a fun
tion of G, for D = 10, for the bea
on- andnon bea
on-enabled modes.
the other hand, when D = 10 in the bea
on-enabled 
ase, the optimum value of SOis 1, for low G. This is due to the fa
t that, having large pa
kets, when Tq = 15:36[ms℄ too many pa
kets are lost, owing to the short duration of the superframe. If the
urves obtained in the two modalities are 
ompared, we see that (espe
ially in the 
aseD = 2) the non bea
on-enabled mode outperforms the bea
on-enabled mode. Thedi�eren
es in terms of ps, in fa
t, are few when Tq = 61:44 [ms℄, but in
rease whenTq gets lower, sin
e, on average, the delays in the bea
on-enabled 
ase are larger [16℄.This results in notably larger values of S in the non bea
on-enabled 
ase, for low Tq.Finally, for 
omparison of Figures 4.39 and 4.40, we note that, on
e G is �xed, Sgets notably larger when D in
reases, sin
e more bytes/se
 are 
orre
tly transmittedtoward the sink.In Figures 4.39 and 4.40 simulation results are not reported, sin
e S depends on



233ps, validated in many Figures of this Chapter.4.7 Con
lusionsA novel analyti
al model for the IEEE 802.15.4 MAC proto
ol, 
onsidering both nonbea
on- and bea
on-enabled PANs, where nodes are organised in a star topology(or possibly, a tree, in the bea
on-enabled 
ase), is provided. The model does notsu�er from the limitations shown by related works in the literature; however, moreimportantly, it also introdu
es a very new 
hallenge in the modelling of CSMA-basedMAC proto
ols for WSNs. This 
hallenge regards the appli
ation s
enario 
onsideredhere: the sink periodi
ally triggers nodes and waits for replies. This implies thatea
h node has one and only one pa
ket to be transmitted at ea
h query re
eived,and also that the number of nodes 
ompeting for the 
hannel de
reases by passingtime. Therefore, this s
enario imposes the use of a new approa
h in modeling theMAC proto
ol, di�erent from that developed by Bian
hi [107℄ and followed by almostall the su

essive literature from 2000 till now. As stated above, in fa
t, in [107℄the network is studied in saturated 
onditions, or, anyway, in 
onditions in whi
hthe statisti
s of the traÆ
 generated by node is de�ned a priori. The other relevantissue of this model is that it allows the evaluation of the statisti
al distribution ofthe traÆ
 generated by nodes toward the sink, never investigated before analyti
ally,and signi�
antly useful when WHNs are 
onsidered.





Chapter 5Area Throughput for Multi-SinkWireless Sensor Networks
In this Chapter the models for the evaluation of 
onne
tivity properties in multi-sinkWSNs and of the 802.15.4 MAC proto
ols, des
ribed in Chapters 3 and 4 respe
tively,have been integrated in a unique framework. In parti
ular, here the 
on
ept of areathroughput, that is the amount of data per se
ond su

essfully transmitted to thesinks from a given area, is introdu
ed. This performan
e metri
 is stri
tly relatedto both 
onne
tivity and MAC issues: it depends, in fa
t, on the probability that agiven sensor node is not isolated and that it su

eeds in transmitting its pa
ket (i.e.,the pa
ket does not 
ollide).Two di�erent s
enarios, 
hara
terised by two di�erent sensors and sinks distribu-tions are a

ounted for: PPP distribution for both sensors and sinks, and ThomasPoint Pro
ess (TPP) distribution (des
ribed in the following). In both 
ases, eitherbounded or unbounded regions, are 
onsidered. Note that even if the model is thoughtfor CSMA-based MAC proto
ols, with parti
ular attention toward the 802.15.4 proto-
ol, it 
ould be easily applied to any MAC proto
ol. The link model 
onsidered is theone des
ribed in Chapter 1, taking into 
onsideration random 
hannel 
u
tuations



236(see eq. (1.6.1)).After an introdu
tion of the referen
e s
enario, motivations and aims of the work,the PPP s
enario is dealt with leaving the TPP distributed s
enario for the se
ondpart of the Chapter.5.1 Referen
e S
enario and Aims of the ModelA multi-sink WSN, 
olle
ting data from the environment through the sampling ofsome physi
al entities and sending them to some external user, through multiple sinks,is 
onsidered. The referen
e appli
ation is spatial/temporal pro
ess estimation [35℄and the environment is observed through queries/respond me
hanisms: queries areperiodi
ally generated by the sinks, and sensor nodes respond by sampling and sendingdata. Through a simple polling model, sinks periodi
ally issue queries, 
ausing allsensors perform sensing and 
ommuni
ating their measurement results ba
k to thesinks they are asso
iated with. The user, by 
olle
ting samples taken from di�erentlo
ations, and observing their temporal variations, 
an estimate the realisation of theobserved pro
ess, as shown in Chapter 2. Good estimates require suÆ
ient data takenfrom the environment.Often, the data must be sampled from a spe
i�
 portion of spa
e, even if the sensornodes are distributed over a larger area. Therefore, only a lo
ation-driven subset ofsensor nodes must respond to queries. The aim of the query/response me
hanism isthen to a
quire the largest possible number of samples from the area.As stated in Chapter 1, when the number of sensors or the target area is large,nodes are often organised in 
lusters; one sink per 
luster forwards the queries tosensors, and 
olle
ts the responses.



237Being the a
quisition of samples from the target area the main issue for the ap-pli
ation s
enario 
onsidered, a new metri
 for studying the behavior of the WSN,namely the area throughput, denoting the amount of data per unit of time su

essfullytransmitted to the 
entralised unit originating from the target area, is de�ned.As expe
ted, the area throughput is larger if the density of sensor nodes is larger,but, on the other hand, if a 
ontention-based MAC proto
ol is used, the density ofnodes signi�
antly a�e
ts the ability of the proto
ol to avoid pa
ket 
ollisions (i.e.,simultaneous transmissions from separate sensors toward the same sink). If, in fa
t,the number of sensor nodes per 
luster is very large, 
ollisions and ba
ko� pro
edures
an make data transmission impossible under time-
onstrained 
onditions, and thesamples taken from sensors do not rea
h the sinks and, 
onsequently, the 
entralisedunit. Therefore, the optimisation of the area throughput requires proper dimensioningof the density of sensors, in a framework model where both MAC and 
onne
tivityissues are 
onsidered.Even if the model des
ribed above, 
ould be applied to any MAC proto
ol, weparti
ularly refer to CSMA-based proto
ols, and in parti
ular to the IEEE 802.15.4air interfa
e, being the referen
e interfa
e of this thesis. In this 
ase, sinks will a
t asPAN 
oordinators, periodi
ally transmitting queries to sensors and waiting for replies.A

ording to the standard, the di�erent PAN 
oordinators, and therefore the PANs,use di�erent frequen
y 
hannels (see the s
an fun
tionality performed by the PAN
oordinator for establishing a PAN, des
ribed in Chapter 1). Therefore no 
ollisionsmay o

ur between nodes belonging to di�erent PANs; however, nodes belonging tothe same 
luster, will 
ompete to try to transmit their pa
kets to the sink.An in�nite area where sensors and sinks are uniformly distributed at random, is
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onsidered. Then, a spe
i�
 portion of spa
e, of �nite size and given shape (withoutloss of generality, we 
onsider a square), is 
onsidered as target area (see Figure 5.2),where sensors and sinks are distributed a

ording to the two distributions a

ountedfor.The frequen
y of the queries transmitted by the sinks is denoted as fq = 1=Tq.Ea
h sensor takes, upon re
eption of a query, one sample of a given phenomenonand forwards it through a dire
t link to the sink. On
e transmission is performed,it swit
hes to an idle state until the next query is re
eived. We denote the intervalbetween two su

essive queries as round.The amount of data available from the sensors deployed in the area, per unitof time, is denoted as o�ered load. The basi
 obje
tive of this Chapter is thus todetermine how the area throughput depends on the o�ered load for di�erent s
enariosand system parameters.In general terms, it might be said that the aim is to de�ne a pi
ture showing howthroughput varies with load, as done for many years in the literature for di�erenttypes of MAC proto
ols. However, here 
onne
tivity and the plurality of sinks area

ounted for.In the PPP s
enario 
ase, a 
omparison of performan
e obtained with the bea
on-and non bea
on-enabled modes, is also provided. Whereas in the TPP 
ase we alsoaddress energy 
onsumption issues, by showing the trade-o� between energy 
on-sumption and area throughput.



2395.1.1 Related WorksMany works in the literature devoted their attention to 
onne
tivity in WSNs andto the analyti
al study of CSMA-based MAC proto
ols. Therefore, many workshave dealt with these two issues separately; very few papers jointly 
onsider the twoissues under a mathemati
al approa
h. Some analysis of the two issues are performedthrough simulations: as examples, [110℄ related to ad ho
 networks, and [11℄, toWSNs.An overview of the literature related to 
onne
tivity issues in WSNs is providedin Chapter 3.Con
erning the analyti
al study of CSMA-based MAC proto
ols, in [111℄ thethroughput for a �nite population when a persistent CSMA proto
ol is used, is eval-uated. An analyti
al model of the IEEE 802.11 CSMA based MAC proto
ol, ispresented by Bian
hi in [107℄. In these works no physi
al layer or 
hannel model
hara
teristi
s are a

ounted for. Capture e�e
ts with CSMA in Rayleigh 
hannels,are 
onsidered in [112℄, whereas [113℄ addresses CSMA/CA proto
ols. However, no
onne
tivity issues are 
onsidered in these papers: the transmitting terminals areassumed to be 
onne
ted to the destination node. In [114℄ the per-node saturatedthroughput of an IEEE802.11b multi-hop ad ho
 network with a uniform transmis-sion range, is evaluated under simpli�ed 
onditions from the viewpoint of 
hannel
u
tuations and number of nodes. The works related to the analyti
al modeling ofthe IEEE 802.15.4, instead, have been introdu
ed in Chapter 4.For what 
on
erns nodes spatial distribution, the very typi
al models in stati
wireless networks (i.e., not 
onsidering distributions originated from a parti
ular mo-bility pattern of nodes) are the PPP and Binomial Point Pro
ess (BPP) with very few



240ex
eptions ( [80℄ is one of them). In [115℄ and [116℄ the authors use (among others)a modi�ed Thomas model [117℄ for des
ribing real-world nodes deployments with agood a

ura
y. All the previously 
ited works do not a

ount for MAC issues, withthe one ex
eption known to us in a slightly di�erent 
ontext, namely the work byHoydis et al. [118℄.
5.2 Area Throughput for a Poisson Point Pro
essFieldAs stated above, the in
reasing of sensors density in the area, aiming at in
reasingthe quantity of samples taken from the area (i.e., improving the estimation of thepro
ess), also 
auses many data losses, due to MAC failures. One solution 
an befound in the de
imation of the sensor nodes to respond. Other improvements mightbe introdu
ed by letting the sensor nodes apply a form of aggregation pro
edure,responding only sporadi
ally to queries, with a single data pa
ket 
omposed of allsamples taken sin
e the previous transmission: fewer a

ess attempts are performed,but with longer pa
kets. Su
h de
imation pro
ess, or the aggregation strategy, mustbe driven by an optimisation pro
edure that, by taking into a

ount the density ofsensor nodes and sinks, the frequen
y of queries, and the randomness of node lo
a-tions, the radio 
hannel behaviour, and CSMA me
hanisms, determines the optimumnumber of nodes that should respond to any query, and whether aggregating samplesprovides advantages.This se
tion �rst addresses su
h optimisation problem, by showing the behaviourof the area throughput for di�erent aggregation strategies and 
onsidering the 802.15.4
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Figure 5.1: The referen
e s
enario 
onsidered.MAC proto
ol in the non bea
on-enabled mode. For the sake of 
ompleteness, also anexample of results obtained by applying to the framework a very simple CSMA-basedMAC proto
ol is shown.Finally, performan
e obtained with the bea
on-enabled and the non bea
on-enabledmodes of 802.15.4, are 
ompared.5.2.1 Assumptions and Referen
e S
enarioThe referen
e s
enario 
onsidered 
onsists of an area of �nite size and given shape,where sensors and sinks are both distributed a

ording to an homogeneous PPP. Thesensors and sinks densities, are denotes as �s and �0, respe
tively, whereas A is thearea of the target domain. Denoting by k the number of sensor nodes in A, k is
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Figure 5.2: The aggregation strategy.Poisson distributed with mean �k = �s � A and p.d.f.gk = �kke��kk! : (5.2.1)The average number of sinks in A is denoted as I = �0 �A.The Aggregation StrategySinks periodi
ally send queries to sensors and wait for replies. In 
ase a sensor nodere
eives a query from more than one sink, it sele
ts the one providing the largestre
eived power and responds to it. It is assumed that sensors may perform some dataaggregation before transmitting their pa
kets. For instan
e, they perform samplingfrom the environment upon ea
h query, but transmit data only when a given number



243of samples have been 
olle
ted. By doing so, transmissions do not o

ur at ea
hquery.The time needed to transmit a unit of data, that is one sample, is denoted as T ,whereas TD is the time needed to transmit a pa
ket. The frequen
y of the queriestransmitted by the sinks is denoted as fq = 1=Tq. Tq is the time interval betweentwo 
onse
utive queries. It is assumed that sensors transmit pa
kets 
omposed of Dsamples every D queries. At ea
h query sensors take one sample and when D samplesare taken, data is aggregated and transmitted. We assume that the aggregationpro
ess generates a pa
ket whose transmission requires a time TD = D � T , when Dunits of data are aggregated. In Figure 5.2, the aggregation strategies in the 
asesD = 1; 2 are shown as examples.5.2.2 Evaluation of The Area ThroughputThe area throughput is mathemati
ally derived through an intermediate step: �rstthe probability of su

essful data transmission by an arbitrary sensor node, whenk nodes are present in the monitored area, is 
onsidered. Then, the overall areathroughput is evaluated based on this result.Joint MAC/Conne
tivity Probability of Su

essLet us 
onsider an arbitrary sensor node that is lo
ated in the observed area A ata 
ertain time instant. The aim is 
omputing the probability that it 
an 
onne
t toone of the sinks deployed in A and su

essfully transmit its data sample to the infras-tru
ture. Su
h an event is 
learly related to 
onne
tivity issues (i.e., the sensor mustemploy an adequate transmitting power in order to rea
h the sink and not be isolated)



244and to MAC problems (i.e., the number of sensors whi
h attempt at 
onne
ting to thesame sink strongly a�e
ts the probability of su

essful transmission). For this reason,we de�ne Psjk(x; y) as the probability of su

essful transmission 
onditioned on theoverall number, k, of sensors present in the monitored area, whi
h also depends onthe position (x; y) of the sensor relative to a referen
e system with origin 
entered inA. This dependen
e is due to the well-known border e�e
ts in 
onne
tivity [58℄.In parti
ular, Psjk(x; y) = En[PMAC(n) � PCON(x; y)℄= En[PMAC(n)℄ � PCON(x; y) (5.2.2)where the impa
t of 
onne
tivity and MAC on the transmission of samples are sepa-rated. A pa
ket will be su

essfully re
eived by a sink if the sensor node is 
onne
tedto at least one sink and if no MAC failures o

ur. The two terms that appear in(5.2.2) are now analysed.PCON(x; y) represents the probability that the sensor is not isolated (i.e., it re
eivesa suÆ
iently strong signal from at least one sink). This probability de
reases as thesensor approa
hes the borders (border e�e
ts). PCON for multi-sink single-hop WSNs,in bounded and unbounded regions, has been 
omputed in Chapter 3. In parti
ular,for bounded regions, PCON(x; y) ' PCON , that is equal to q1, given by eq. (3.5.2) inChapter 3. Whereas, when unbounded regions are 
onsidered, PCON(x; y) is equal toq(x; y) given by eq. (3.5.7) of Chapter 3.Spe
i�
ally, sin
e the position of the sensor is in general unknown, Psjk(x; y) of



245(5.2.2) 
an be de
onditioned as follows:Psjk = Ex;y[Psjk(x; y)℄= Ex;y[PCON(x; y)℄ � En[PMAC(n)℄ : (5.2.3)Ex;y[PCON(x; y)℄ is equal to q given by eq. (3.5.8) in Chapter 3, when bounded re-gions are a

ounted for. When, instead border e�e
ts are negligible, Ex;y[PCON(x; y)℄ =Ex;y[PCON ℄ = PCON , given by eq. (3.5.2).Given the 
hannel model des
ribed in Chapter 1 (see eq. (1.6.1)), the average
onne
tivity area of the sensor, that is the average area in whi
h the sinks audible tothe given sensor are 
ontained, 
an be de�ned asA�s = �e 2(Lth�k0)k1 e 2�2sk21 : (5.2.4)In [96℄ it is also shown that border e�e
ts are negligible when A�s < 0:1A. In thefollowing only this 
ase will be a

ounted for. In this 
ase:PCON(x; y) ' PCON = 1� e��0 ; (5.2.5)where �0 = �0A�s = IA�s=A is the mean number of audible sinks on an in�nite planefrom any position [61℄.PMAC(n), n � 1, is the probability of su

essful transmission when n � 1 inter-fering sensors are present. It a

ounts for MAC issues. When the 802.15.4 MACproto
ols are 
onsidered, the models to derive PMAC(n) are given in Chapter 4. Inparti
ular, PMAC(n) is the su

ess probability, ps, derived in Chapter 4, when n nodesare 
ompeting for the 
hannel. In parti
ular, ps is given by eq. (4.4.21), for the nonbea
on-enabled 
ase and by eq. (4.5.4), for the bea
on-enabled 
ase.In general, when CSMA-based MAC proto
ols are 
onsidered, PMAC(n) is a mono-toni
 de
reasing fun
tion of the number, n, of sensors whi
h attempt to 
onne
t to



246the same serving sink. This number is in general a random variable in the range [0; k℄.In fa
t, note that in (5.2.2) there is no expli
it dependen
e on k, ex
ept for the fa
tthat n � k must hold. Moreover in our 
ase we assume 1 � n � k, as there is at leastone sensor 
ompeting for a

ess with probability PCON (5.2.5).In [75℄, Orriss et al. showed that the number of sensors uniformly distributed onan in�nite plane that hear one parti
ular sink as the one with the strongest signalpower (i.e., the number of sensors 
ompeting for a

ess to su
h sink), is Poissondistributed with mean �n = �s1� e��0�0 ; (5.2.6)with �s = �sA�s being the mean number of sensors that are audible by a given sink.Su
h a result is relevant toward our goal even though it was derived on the in�niteplane. In fa
t, when border e�e
ts are negligible (i.e., A�s < 0:1A) and k is large, n
an still be 
onsidered Poisson distributed. The only two things that 
hange are:� n is upper bounded by k (i.e., the pdf is trun
ated)� the density �s is to be 
omputed as the ratio k=A [m�2℄, thus yielding �s = kA�sA .Therefore, we assume n � Poisson(�n), with�n = �n(k) = kA�sA 1� e��sink�sink = k1� e�IA�s=AI : (5.2.7)Finally, by making the average in (5.2.3) expli
it and negle
ting border e�e
ts(see (5.2.5)), we getPsjk = (1� e�IA�s=A) � 1M kXn=1 PMAC(n) �nne��nn! ; (5.2.8)where M = kXn=1 �nne��nn! (5.2.9)



247is a normalizing fa
tor.Area ThroughputThe area throughput has been de�ned as the amount of data, su

essfully transmittedtoward the sinks, per unit of time. The data here is identify with the sample, being asample the unit of data transmitted (pa
ket when D = 1); therefore, the metri
 willbe expressed in [samples/se
℄.A

ording to the aggregation strategy des
ribed in the previous se
tion, the amountof samples generated by the network as response to a given query is equal to thenumber of sensors, k, that are present and a
tive when the query is re
eived. As a
onsequen
e, the average number of data samples-per-query generated by the networkis the mean number of sensors, �k, in the observed area.Now denote by G the average number of data samples generated per unit of time,given by G = �k � fq = �s �A � 1Tq [samples/se
℄: (5.2.10)From (5.2.10) we have �k = GTq.The average amount of data re
eived by the infrastru
ture per unit of time (areathroughput), S, is given by:S = +1Xk=0 S(k) � gk [samples/se
℄; (5.2.11)where S(k) = kTqPsjk; (5.2.12)gk as in (5.2.1) and Psjk as in (5.2.8).



248Finally, by means of (5.2.8), (5.2.9) and (5.2.10), equation (5.2.11) may be rewrit-ten as S = 1� e�IA�s=ATq� +1Xk=1 Pkn=1 PMAC(n) �nne��nn!Pkn=1 �nne��nn! � (GTq)ke�GTq(k � 1)! : (5.2.13)5.2.3 Numeri
al ResultsA square area, having area A = 106 [m2℄, where an average number of 10 sinks aredistributed a

ording to a PPP (I = 10), is 
onsidered. We also set k0 = 40 [dB℄,k1 = 13:03, �s = 4 [dB℄ (the values are taken from experimental measurements madeon the �eld with Frees
ale devi
es [93℄) and Lth = 107 [dB℄.In this se
tion the behavior of the area throughput, S, as a fun
tion of the o�eredload, G, is shown.First, the optimal aggregation strategy is investigated, showing results for a single-sink s
enario with no 
onne
tivity problems, with the purpose of motivating theuse of the aggregation strategy, then the multi-sink s
enario is 
onsidered. Then, a
omparison of the area throughput obtained with the two modalities, bea
on- andnon bea
on-enabled, is provided.Note that the results shown in the following, obtained by applying the aggre-gation strategy des
ribed above, are also valid for a more general s
enario, wherenodes transmit pa
kets of duration TD every query, and no aggregation strategy isperformed. In this 
ase S, expressed in [samples/se
℄ is still given by eq. (5.2.13),but now a sample 
oin
ides with a pa
ket (i.e., it has duration D � T and not T ).If, instead, we are interested in S in [bytes/se
℄, to take into a

ount the quantity



249of information 
ontained in ea
h pa
ket, we have simply to multiply S given by eq.(5.2.13) by D � 10.The optimum aggregation strategyThe single-sink s
enario, without 
onne
tivity problems.Here results obtained through the non bea
on-enabled mode of the 802.15.4, re-lated to a single-sink s
enario with n sensors and no 
onne
tivity problems, are shown.These results are interesting be
ause they motivate the 
hoi
e of the above des
ribedaggregation strategy. It is shown indeed, that given n, there exists an optimum valueof D, Dopt, maximising the throughput, S. Therefore, if sensors are aware of the sizen of the 
luster they belong to, they 
ould sele
t D = Dopt, obtained through ourresults, and transmit the aggregated pa
ket every Dopt queries.The interval of time T needed to transmit a unit of data will be equal to theba
ko� period, dbo = 320 [�se
℄, de�ned in Chapter 4. It is assumed that the sinksallow sensors to try to a

ess the 
hannel for all the time they need. Therefore, bysetting the query size equal to 10 bytes (i.e., the query is transmitted in T ), we �xTq = (t̂max +D + 1)T = (121 +D)T , being (t̂max +D)T the maximum delay withwhi
h a node 
an transmit a pa
ket having size D � 10 [bytes℄ (see eq. (4.4.1)).Sin
e here we have ensured 
onne
tivity, a single sink and a deterministi
ally �xednumber, k = n, of sensors 
ompeting for a

ess, we have PCON = 1 and Psjk = PMAC .Hen
e, the area throughput is simply:S = n(121 +D)T � PMAC(n) : (5.2.14)In Figure 5.3 S as a fun
tion of n, for di�erent values of D, is shown. As we 
an
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Figure 5.3: S (802.15.4 proto
ol) as a fun
tion of n, for di�erent values of D, in asingle sink 
onne
ted 
ase.
see, S presents a maximum. In fa
t, for small n, PMAC approa
hes zero slower then1=n and thus by in
reasing n, S also in
reases. On the 
ontrary, for large n, PMACapproa
hes zero faster then 1=n and thus by in
reasing n, the produ
t n � PMAC(n)de
reases, and so does S. The physi
al interpretation is that too many pa
ket losseso

ur when traÆ
 is too heavy. The maximum values of S depend on D and areobtained for di�erent values of n. As we 
an see, for 1 < n < 12, Dopt = 7; for12 < n < 18, Dopt = 5; for 18 < n < 68, Dopt = 2 and for n > 68 Dopt = 1. Therefore,it 
learly appears that Dopt de
reases when in
reasing n.The aggregation strategy proposed here, is a
hievable only in 
ase sensors know n.This parameter 
ould be estimated by sensors, for example, by 
omputing the number



251of times the 
hannel is found busy in a given interval of time. The probability to �ndthe 
hannel busy, in fa
t, is stri
tly related to n.The multi-sink s
enarioOn
e again the 802.15.4 in non bea
on-enabled mode, is 
onsidered; therefore,T = 320 [�se
℄ and Tq = (121 + D)T . Sin
e a typi
al 802.15.4 air interfa
e is
onsidered, a limit on the number of sensors that 
ould be 
onne
ted to a given sinkshould be imposed [51, 82℄. To this end, we denote as nmax the maximum numberof sensors that 
ould be served by a sink and de�ne a new probability (to repla
ePMAC(n) in (5.2.13)) P 0MAC(n) given by:P 0MAC(n) = 8><>: PMAC(n); n � nmaxPMAC(nmax) � nmax=n; n > nmax (5.2.15)where PMAC(n) is obtained through the model des
ribed in Chapter 4, and 1�nmax=nis the probability that a sensor is not served by the sink it is 
onne
ted to, owingto the 
apa
ity 
onstraint. Performan
e 
urves are obtained by setting nmax = 20.Moreover, the 
ase of negligible border e�e
ts is 
onsidered.In Figures 5.4 and 5.5, S as a fun
tion ofG for di�erent values ofD when PCON = 1and 0.67 respe
tively, is shown. In both Figures there exists a value Dopt whi
hde
reases by in
reasing G. Moreover, from Figure 5.4 we 
an see that for 0 < G <3000 samples/s (when I = 10, G = 3000 
orresponds to n = 12) Dopt = 7; for3000 < G < 4500 samples/s (G = 4500 
orresponds to n = 18) Dopt = 5; and forG > 4500 samples/s Dopt = 2. Therefore, the behavior of Dopt as a fun
tion of G isexa
tly the same shown in Figure 5.3.By 
omparing Figures 5.4 and 5.5, we 
an observe the e�e
ts of 
onne
tivity on



252

0 750 1500 2250 3000 3750 4500 5250 6000 6750
G

0

500

1000

1500

2000

2500

S

D=1
D=2
D=3
D=5
D=10

Figure 5.4: S as a fun
tion ofG, for di�erent values ofD, having �xed PCON(x; y) = 1.S. On
e D is �xed, the values of S rea
hed for large o�ered load are approximativelythe same rea
hed when PCON = 1. The de
rease of PCON , in fa
t, results in a lowermean number of sensors per sink, therefore the de
reasing of PCON is 
ompensatedby an in
reasing of PMAC(n). However, the behavior of the 
urves for low values ofG is di�erent (the 
urves have di�erent slopes). If we �x D = 5 and we want toobtain S = 1500, when PCON = 0:67, we need to deploy on average 158 sensors,whereas, when PCON = 1, 106 sensors on average are suÆ
ient. Therefore, the lossof 
onne
tivity brings to a larger 
ost in terms of number of sensors that must bedeployed to obtain the desired S.To in
rease the values of S, instead, we need to in
rease I. In fa
t, given a value ofG, by in
reasing I the 
onne
tivity improves and also the losses due to MAC de
rease,
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Figure 5.5: S as a fun
tion of G, for di�erent values of D, having �xed PCON(x; y) =0:67.sin
e n de
reases.Finally, an example of results obtained by 
onsidering a simpler MAC proto
olmodel where the probability of su

ess, P 00MAC(n) (to be in
luded in (5.2.13)), is alinear fun
tion of n, is shown. In [119℄ it is show, in fa
t, that in some 
ases thesu

ess probability for a non-persistent CSMA proto
ol, de
reases linearly with thenumber of nodes. Therefore, we model P 00MAC(n) as:P 00MAC(n) = m � n+ 1; (5.2.16)and we denote by n� the value su
h that P 00MAC(n�) = 0.In Figure 5.6 three 
ases are a

ounted for: m = �0:01, 
orresponding to n� = 100;m = �0:02, 
orresponding to n� = 50; and m = �0:04, 
orresponding to n� = 25.
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Figure 5.6: S as a fun
tion of G in the 
ase of a CSMA based proto
ol, having aPMAC(n) de
reasing linearly with n, for di�erent values of n�.By de
reasing n�, the maximum of S is rea
hed for lower values of G. Therefore, fora given value of G, by in
reasing the slope of P 00MAC(n), S in
reases. The maximumvalue of S obtained with n� = 50 is approximately twi
e as large as the one obtainedwith n� = 25, but it is rea
hed for an o�ered load that is twi
e over. Therefore, thisin
rease in the maximum value is rea
hed at the 
ost of deploying more sensors.Comparing bea
on- and non bea
on-enabledIn this se
tion the area throughput obtained with the two modalities bea
on- andnon bea
on-enabled, 
onsidering di�erent values of D, SO, NGTS, Tq and di�erent
onne
tivity levels, is shown.



255The query pa
ket size is set equal to 60 bytes, therefore, it is transmitted in 6 � Tse
onds, and Tq = (126+D)T for the non bea
on-enabled mode, on
e again to allowsensors to a

ess the 
hannel for all the time needed.Here a limit on the number of sensors that 
ould be 
onne
ted to the same sinkis not imposed, therefore, eq. (5.2.15) is not used.
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Figure 5.7: S as a fun
tion of G, for the bea
on- and non bea
on-enabled 
ases, byvarying SO, NGTS and Tq, having �xed D = 2.
In Figures 5.7 and 5.8, S as a fun
tion of G, when varying SO, NGTS and Tq, forD = 2 and D = 10, is shown, respe
tively. The input parameters that we enteredgive a 
onne
tion probability PCON = 0:89. Both bea
on- and non bea
on-enabledmodes are 
onsidered. In both Figures it 
an be noted that, on
e SO is �xed (bea
on-enabled 
ase), an in
rease of NGTS results in an in
rement of S, sin
e PMAC in
reases.Moreover, on
e NGTS is �xed, there exists a value of SO maximising S. When D = 2,
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Figure 5.8: S as a fun
tion of G, for the bea
on- and non bea
on-enabled 
ases, byvarying SO, NGTS and Tq, having �xed D = 10.
an in
rease of SO results in a de
rement of S sin
e, even though PMAC gets greater,the query interval is longer and, therefore, the number of samples per se
ond re
eivedby the sink de
reases. On the other hand, when D = 10 and all possible GTSs areallo
ated, the optimum value of SO is 1. This is due to the fa
t that, having largepa
kets, when SO = 0 too many pa
kets are lost, owing to the short duration of thesuperframe. However, when NGTS = 0 the best 
ase is, on
e again, SO = 0, sin
ein this 
ase MAC losses are approximately the same obtained in the 
ase SO = 1(see Figure 4.32), whi
h, however, brings to a higher query interval. In 
on
lusion,we 
an dedu
e that the use of GTSs is always advantageous, and that there exists anoptimum value of SO maximising S, whi
h depends on D and NGTS.Con
erning the non bea
on-enabled 
ase, in both Figures it 
an be noted that,



257by de
reasing Tq, S gets larger even though PMAC de
reases, sin
e, on
e again, theMAC losses are balan
ed by larger values of fq.By 
omparison of Figures 5.7 and 5.8, we note that, on
e the o�ered load, G, is�xed, S gets notably smaller when D in
reases. S, in fa
t, is expressed in terms ofsamples/se
 re
eived by the sink, and not in bytes/se
. Therefore, on
e Tq is �xed, byin
reasing D, PMAC gets smaller. On the other hand, by in
reasing D, the maximumvalue of S is rea
hed for lower values of G. This means that, when D is small, themaximum value of S is rea
hed at the 
ost of deploying more sensors.
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Figure 5.9: S as a fun
tion of G, in the non bea
on-enabled 
ase, for di�erent valuesof D and PCON , having �xed Tq to the maximum delay.Finally, we show the e�e
ts of 
onne
tivity on the area throughput. When PCONis less than 1, only a fra
tion of the deployed nodes has a sink in its vi
inity. In



258parti
ular, an average number, �k = PCONGTq=I, of sensors 
ompete for a

ess atea
h sink. In Figure 5.9 we 
onsider the non bea
on-enabled 
ase with D = 2,Tq = 128T and D = 10, Tq = 136T . When D = 10, Tq = 136T , for high o�eredloads the area throughput tends to de
ay, sin
e pa
ket 
ollisions dominate. Hen
e,by moving from PCON = 1 to PCON = 0:89, we observe a slight improvement due tothe fa
t that a smaller average number of sensors tries to 
onne
t to the same sink.Conversely, when D = 2, Tq = 128T , S is still in
reasing with G, then by movingfrom PCON = 1 to PCON = 0:89, we just redu
e the useful traÆ
. Furthermore, whenPCON = 0:15, the o�ered load is very light, so that we are working in the region wherePMAC(D = 2; Tq = 128T ) < PMAC(D = 10; Tq = 136T ) (see Fig. 4.17), resulting in aslightly better performan
e of the 
ase with D = 2. Thus we 
on
lude that the e�e
tof lowering PCON results in a stret
h of the 
urves reported in the previous plots.5.3 The Thomas Point Pro
ess S
enarioIn this part of the Chapter a non uniform s
enario, where sensors and sinks are dis-tributed, over bounded or unbounded regions, a

ording to a TPP, is 
onsidered.While uniform distribution of sensors after deployment is often a useful approxima-tion, it is not always a
hievable or not even desirable in pra
ti
e. For many deploy-ment te
hniques, sensors tend to be
ome pla
ed in 
lusters of di�erent sizes. The
lustering of short range radios has been shown to o

ur also in other natural 
on-texts, see, for example, [120℄. We employ a parameterised model for des
ribing these
lusters, 
alled the TPP. The use of TPP allows to 
hara
terise in detail the impa
tof the inhomogeneity and node densities on the metri
s of interest.It is assumed that sensors are deployed in 
lusters ea
h 
ontaining one sink and a



259number of 
luster members. Sinks are deployed uniformly on �nite (square having sideL), or in�nite plane, with overall density �0 and ea
h 
luster asso
iated to a given sinkhas a Poisson distributed number (with mean �) of 
luster members. The lo
ationsof these 
luster members are taken to follow normal distribution with mean at thelo
ation of the sink, and with 
ovarian
e matrix diag(�2x; �2y). This is a small variationof the TPP used as a sensor lo
ation distribution model in, for example, [116℄.Sin
e, as stated in Chapter 1, one of the main issues for WSNs is the energy 
on-sumption, here the behavior of both performan
e metri
s, area throughput and energy
onsumption, by varying the o�ered load, is studied. Both metri
s are analyti
allyderived here.5.3.1 Evaluating Audibility of SensorsNetwork 
onne
tivity is enhan
ed as the number of sensors that 
an gain a

ess toa sink is made as large as possible. As for the PPP s
enario, 
ommuni
ation fromsensor to sink is permitted if the power re
eived by the latter is suÆ
ient (in whi
h
ase the sensor is said to be audible to the sink), and if the number of (tentative)
ommuni
ation attempts taking pla
e simultaneously is not too large (in whi
h 
asewe expe
t the transmission to be su

essful)1. The �rst aspe
t is treated in thisse
tion, 
onsidering both, unbounded and bounded regions.The unbounded s
enarioRe
all that it is assumed that sinks are uniformly distributed on the in�nite planewith density �0 and that ea
h sink gives rise to a 
luster whi
h hen
e 
ontains one1The reverse 
ommuni
ation (sink to sensor(s)) only requires audibility, i.e., no MAC failureso

ur sin
e di�erent sinks use di�erent frequen
ies.



260sink and a number of 
luster members, n, Poisson distributed with mean �. Thep.d.f. of the positions of a sensor in a 
luster is a 2D Gaussian, i.e.fX;Y (x; y) = 12��x�y e� x22�2x e� y22�2y ; (5.3.1)where we assumed that the 
luster 
enter lies at the origin.Now suppose ea
h sensor has to rea
h its sink through dire
t single hop 
ommuni-
ation. If we employ the random 
onne
tion model des
ribed in Chapter 1 and re
allthat C(d) (given by eq. (1.6.4)), is the probability that two sensors at distan
e d areaudible, the probability that an arbitrary sensor in a 
luster is audible to the sink is(after de
onditioning with respe
t to the position)p = 12��x�y Z 1�1 Z 1�1C(px2 + y2)e� x22�2x e� y22�2y dx dy: (5.3.2)Assuming independen
e between two audibility events, we have for a single 
lusterPfk audible sensorsjn sensors in allg = �nk�pk(1� p)n�k; (5.3.3)yielding Pfk audible sensorsg = 1Xn=k �nk�pk(1� p)n�k�nn! e�� ; (5.3.4)where PfEg denotes the probability of the event E .The expe
ted number of sensors per 
luster that are audible to the sink is nowgiven by �k = 1Xk=0 k � 1Xn=k�nk�pk(1� p)n�k�nn! e��: (5.3.5)



261The bounded s
enarioIn this 
ase sinks are uniformly distributed on a square of side L, that is in the region[0; L℄� [0; L℄. The p.d.f. of the positions of a sensor in a 
luster isfX;Y (x; y; x0; y0) = e�� (x�x0)22�2x + (y�y0)22�2y �R L0 e� (x�x0)22�2x dx R L0 e� (y�y0)22�2y dy (5.3.6)when (x; y) 2 [0; L℄� [0; L℄, and 0 otherwise, where (x0; y0) is the (unknown) positionof the sink.In this 
ase the probability that an arbitrary sensor in a 
luster is audible to asink in (x0; y0) is (after de
onditioning with respe
t to the position of the sensor)p(x0; y0) = Z 1�1 Z 1�1C(p(x� x0)2 + (y � y0)2)� fX;Y (x; y; x0; y0) dx dy: (5.3.7)By further de
onditioning with respe
t to sink position, we get the average prob-ability of audibility as p = 1L2 Z L0 Z L0 p(x0; y0) dx0 dy0: (5.3.8)Assuming independen
e between two audibility events, we have for a single 
lusterPfk audible sensorsjn sensors in allg = �nk�pk(1� p)n�k; (5.3.9)yielding Pfk audible sensorsg = 1Xn=k �nk�pk(1� p)n�k�nn! e��: (5.3.10)The expe
ted number of sensors per 
luster that are audible to the sink is nowgiven by �k = 1Xk=0 k � 1Xn=k�nk�pk(1� p)n�k�nn! e��: (5.3.11)



2625.3.2 Area ThroughputThe derivation of the area throughput follows dire
tly from the evaluation of the 
lus-ter throughput, S
, de�ned as the number of samples per se
ond su

essfully trans-mitted to a sink by the sensors belonging to its 
luster.By following the same rationale as in se
tion 5.2.2, we �rst 
onsider the probabilityof su

essful data transmission by an arbitrary sensor to its 
luster head, when nsensors are present in the 
luster and k sensors out of n are audible to the sink(
hannel 
u
tuations are a

ounted for). This probability, Psjn;k, 
an be 
omputed as(from (5.3.8) and (5.3.3))
Psjn;k = p � PMAC(k) � Pfk audible sensorsjn sensors in allg= p � PMAC(k) � �nk�pk(1� p)n�k; (5.3.12)where on
e again the impa
t of audibility and MAC on the transmission of samples(the sensor must be both audible to the sink and able to get its pa
ket through), areseparated. In parti
ular, p is the probability that a randomly sele
ted sensor in a
luster is audible to the sink (5.3.8), while PMAC(k) (with k � 1), is the probabilityof su

essful transmission when k� 1 interfering sensors are present. On
e again the
ase of 802.15.4 MAC proto
ol in the non bea
on-enabled mode is 
onsidered here.Therefore, PMAC(k) 
oin
ides with the su

ess probability ps derived in Chapter 4,given by eq. (4.4.21).Now for a 
luster that has n sensors, and k of them are audible to the 
luster



263head, we have for the 
luster throughputS
jn;k = n � fq � Psjn;k = n � fq � p � PMAC(k)� Pfk audible sensorsjn sensors in allg: (5.3.13)By �rst de
onditioning (5.3.13) with respe
t to k we obtainS
jn = n � fq � p � 1M nXk=1 PMAC(k)� �nk�pk(1� p)n�k [samples/se
℄; (5.3.14)whi
h is the 
luster throughput when n sensors are present in the 
luster, with M =Pnk=1 �nk�pk(1� p)n�k being a normalizing fa
tor. Re
alling that n � Poisson(�), we�nally obtain S
 = fq � p � 1M +1Xn=1 n nXk=1 PMAC(k)� �nk�pk(1� p)n�k�nn! e�� [samples/se
℄: (5.3.15)Now note that in any 
losed domain of area A there are on average �0A 
lusters.For the sake of simpli
ity but without loss of generality a square of side length L, sothat A = L2, is 
onsidered. Thus by assuming independen
e from 
luster to 
lusterand negle
ting border e�e
ts, i.e.,� �x,�y small enough su
h that ea
h 
luster having its 
luster-head in A is entirely
ontained in A with high probability;� L� average transmission range;



264the area throughput S, is simply given byS = �0 � A � S
 = �0 �A � fq � p � 1M +1Xn=1 n nXk=1 PMAC(k)� �nk�pk(1� p)n�k�nn! e�� [samples/se
℄: (5.3.16)Now, being the o�ered load G the average number of data samples per unit oftime the network was deployed to deliver, it is given byG = �N � fq [samples/se
℄; (5.3.17)where �N is the average number of sensors in the sele
ted area. By on
e again negle
t-ing border e�e
ts (i.e. assuming that the border of the area does not 
ut o� part of a
luster), the number of sele
ted sensors is the produ
t of two Poisson r.v.'s, namelythe number of 
lusters times the number of sensors per 
luster. As these numbers areun
orrelated, their expe
tations satisfy �N = �0A � �, from whi
h� = GTq�0A: (5.3.18)Finally, by substitution of (5.3.18) into (5.3.16), we obtainS(G) = �0 �A � fq � p � 1M +1Xn=1 n nXk=1 PMAC(k)� �nk�pk(1� p)n�k�GTq�0A�nn! e�GTq�0A [samples/se
℄. (5.3.19)5.3.3 Energy ConsumptionOn
e a sensor re
eives the query 
oming from the sink, it starts the algorithm to tryto a

ess the 
hannel and, in 
ase of su

ess in a

essing the 
hannel, it transmits the



265pa
ket. At the end of transmission, it swit
hes o� until the re
eption of the next queryand in this state it does not 
onsume energy. Therefore, a sensor 
onsumes energywhen it re
eives the query and when it performs the MAC proto
ol (in
luding statessu
h as ba
ko�, sensing, transmission, et
.). The mean energy spent by a sensor forperforming the MAC proto
ol, is denoted as EMAC(k). This energy depends on themean number, k, of sensors audible to a sink and hen
e 
ompeting for the 
hannel.Re
all that k � n holds, where n is the number of sensors in the 
luster. Obviously,in 
ase a sensor is isolated (not audible by the sink) it will not spend energy for thatround. Therefore, the mean energy spent by a sensor in the network in a round,Eround, is given by Eround = p � (Erx + EMAC) [J/sample℄, (5.3.20)where p is given by (5.3.8), Erx is the energy spent to re
eive the query and EMAC isthe mean energy spent for a

essing the 
hannel and transmitting the pa
ket.By following the same reasoning as before, for a 
luster 
omposed of n sensors wehave EMACjn = 1M nXk=1 EMAC(k)�nk�pk(1� p)n�k; (5.3.21)where we have averaged over the number of audible sensors (whi
h are at most n) andM =Pnk=1 �nk�pk(1� p)n�k. By further de
onditioning with respe
t to n, we obtainEMAC = 1M +1Xn=1 nXk=1 EMAC(k)�nk�pk(1� p)n�k�nn! e��: (5.3.22)EMAC(k) is the mean energy spent by a node a

essing the 
hannel through the IEEE802.15.4 proto
ol. Therefore, its de�nition 
oin
ides with the mean spent buy a nodein a round, Emean, when k nodes are a

essing the 
hannel, given by eq. (4.4.25).



2665.3.4 Numeri
al ResultsIn this se
tion the behavior of the area throughput and of the energy 
onsumptionas fun
tions of the o�ered load, G, for di�erent pa
ket sizes, 
lusters shaping fa
torsand sink densities, are shown.A square area, A, where sinks and sensors are distributed a

ording to the smallvariation of the TPP des
ribed above, is 
onsidered as target area. Two referen
es
enarios are �xed: in the �rst one it is assumed that the deployment region is a largesquare �eld with L = 1000 [m℄. The se
ond s
enario we 
onsider is a deployment ina smaller square region of side length L = 200 [m℄. While in the �rst 
ase we assumeborder e�e
ts do not play a signi�
ant role, in the se
ond we do a

ount for themand show their impa
t. In both 
ases, results are obtained by setting k0 = 40 [dB℄,k1 = 13:03 and �s = 4 [dB℄. Moreover, in the following, we will assume �x = �y = �.In addition to illustrating results from the analyti
al 
al
ulations, in some 
ases we
on�rm these by showing results obtained from a simulator environment.
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Figure 5.10: S as a fun
tion of G for di�erent values of D, �0 and �.



267In Figure 5.10, S as a fun
tion of G for di�erent D, � and sinks density, �0,having set L = 1000 [m℄ and Lth = 95 [dB℄, is given. Both analyti
al results (lines)and simulation results (markers) are shown. In the simulator, 
lusters are formed inthe following way: sensors 
hoose the nearest, measured in Eu
lidean distan
e, sinkto transmit to. Instead, the model for
es a sensor to 
onne
t to the sink with respe
tto whi
h it has been deployed a

ording to the TPP. As we 
an see a good agreementbetween results is obtained. The di�eren
es are due to border e�e
ts and the di�erent
luster heads sele
tion strategies. Of 
ourse, we expe
t that by in
reasing �0 and �,results will di�er owing to the overlapping of 
lusters. On
e �0 and D are �xed, forlow o�ered load, by de
reasing �, S gets larger; 
onversely, for high G, larger shapingfa
tors improve performan
e due to fewer pa
ket 
ollisions. By in
reasing D and �0,the interse
tions between 
urves related to � = 10 [m℄ and � = 40 [m℄ are obtainedfor lower values of G. In fa
t, on
e �0 is �xed, an in
rease of � brings to have a largernumber of isolated nodes, but also to a smaller average number of sensors trying to
onne
t to the same sink (i.e., fewer MAC losses). Therefore, for low G, 
onne
tivityis the main 
ause of losses and small � are advantageous; 
onversely, for high o�eredload, it is better to �x large �, to de
rease MAC losses. Finally, we note that S showsa maximum: S in
reases with G till MAC losses be
ome signi�
ant. The maxima arerea
hed for larger values of G, when de
reasing D and �0.In Figure 5.11 the energy per se
ond per sample 
onsumed (on average) by a singlesensor in the network, E = Eround=Tq [mJ/se
/sample℄ is shown as a fun
tion of Gfor di�erent values of D and �. The Figure is obtained by setting �0 = 10�5 [m�2℄,L = 1000 [m℄ and Lth = 95 [dB℄. As � de
reases, E gets larger sin
e it is more likelythat the sensor is audible to the sink and hen
e that it 
onsumes energy. Moreover,
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D=10, σ=10 [m]Figure 5.11: Eround=Tq as a fun
tion of G, by varying D and �.for low o�ered load, by in
reasing D, E gets larger as well, sin
e a greater amountof energy is spent for transmitting larger pa
kets. Conversely, for high G, the largerD is, the lower will be the probability that a node su

eeds in a

essing the 
hannel,de
reasing the energy spent by the node.By 
omparing Figures 5.10 and 5.11 we 
an dedu
e that a trade-o� between energy
onsumption and area throughput must be found.In Figure 5.12 we show the behavior of � = S=(TqEroundG) [samples/se
/mJ℄,that is the number of samples per se
ond re
eived (on average) by the sinks, permJ of energy spent. The Figure is obtained by setting L = 1000 [m℄ and Lth = 95[dB℄. As expe
ted, � in
reases by in
reasing �0, sin
e a greater number of sinks helpredu
ing the size of 
lusters (thus redu
ing 
ollisions and improving eÆ
ien
y), andby de
reasing D, sin
e, on
e again, MAC losses de
rease.The following Figures are related to the bounded region 
ase. Therefore, areobtained by setting L = 200 [m℄ and also we set Lth = 92 [dB℄. In this 
ase we show
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Figure 5.12: � as a fun
tion of G, by varying D an �0.the behavior of the area throughput, expressed in [bytes/se
℄, therefore, S(G) givenby eq. (5.3.19), multiplied by 10 �D, and of the energy eÆ
ien
y as fun
tions of theo�ered load, G, for di�erent pa
ket sizes, 
lusters shaping fa
tors and sink densities,are shown.In Figure 5.13 we show the impa
t of border e�e
ts on area throughput. Spe
if-i
ally, we show S(G), expressed in [bytes/se
℄, for two di�erent 
luster size param-eters, and both 
onsidering and ignoring border e�e
ts. Taking the border e�e
tsinto a

ount has a small, but noti
eable e�e
t, espe
ially in the 
ase the 
luster sizeis signi�
ant 
ompared to the size of the region under 
onsideration. The in
reasein area throughput indu
ed by the �nite size of the deployment region is also quiteintuitive, sin
e the 
lusters near the boundaries tend to be
ome more dense.Finally, in Figure 5.14 the 
orresponding results for the energy eÆ
ien
y �, isshown. Border e�e
ts are still noti
eable, but smaller than 
ontributions from 
hangesin 
luster size or the parameter D.
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Figure 5.13: S as a fun
tion of G for di�erent values of D, with L = 200 [m℄, Lth = 92[dB℄.Finally, in Figure 5.15 S(G) for di�erent sensors and sinks distributions is shownand demonstrate the impa
t of the 
luster formation me
hanism based on MonteCarlo simulations. An area A = 1 [km2℄ is 
onsidered here. The results 
learly showthe limitations on the area throughput imposed by �xed sink deployments, and therelatively good performan
e obtained by simple randomized 
luster head sele
tion.The feasibility of the latter approa
h is, however, 
learly dependent on the appli
ations
enario 
onsidered.5.4 Con
lusionsA multi-sinkWSN where sensor nodes transmit their pa
kets to a sink sele
ted amongmany, by using a CSMA-based MAC proto
ol, is studied. A new performan
e metri
,a

ounting for 
onne
tivity and MAC issues jointly, namely the area throughput, hasbeen de�ned. This new 
on
ept allows the study of this kind of networks under a
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Figure 5.14: � as a fun
tion of G, with L = 200 [m℄, Lth = 92 [dB℄.new perspe
tive, even if, in general terms, the aim is to de�ne a pi
ture showinghow throughput varies with load, as done for many years in the literature. However,here, 
onne
tivity issues and the presen
e of multiple sinks are a

ounted for. Thisimplies, mainly, that performan
e depends not only on the number of nodes in thenetwork, and on the pa
ket size, but also on sinks density and on transmit power(i.e., Lth). In fa
t, in 
ase the appli
ation �xes the minimum value of S, from theFigures we 
ould obtain not only the number of nodes that must be distributedin the network (i.e., the o�ered load, G), but also (on
e G is �xed), the numberof sinks that must be distributed, or the transmit power (from whi
h depends Lth,and, therefore, PCON). Other minor out
omes 
ould be derived from this Chapter:i) the model developed allows the evaluation of an optimum aggregation strategy,maximising S; ii) a 
omparison in terms of area throughout between the bea
on- andnon bea
on-enabled modes of the 802.15.4, is provided; iii) the energy 
onsumptionand throughput trade-o�, has been evaluated. Finally, note that the model developed
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Figure 5.15: The area throughput for di�erent node lo
ation distributions (indi
atedin the legend) and 
luster formation te
hniques (G(n � m) denotes 
luster headsforming an n � m grid, and Uni(p) denotes unformly random sele
tion of 
lusterheads from the node population with probability p).here has allowed to over
ome most of the limits of the framework of Chapter 2, sin
emultiple sinks, a real air interfa
e, and border e�e
ts, have been a

ounted for.



Chapter 6Capa
ity Analysis of Two-HopVirtual MIMO Systems in aPoisson Field of Nodes
This Chapter is devoted to the appli
ation of MIMO systems to WSNs. Being sensordevi
es very tiny, they 
annot be equipped with multiple antenna elements, there-fore, the 
on
ept of Virtual MIMO (V-MIMO) should be used. V-MIMO systemsexploit MIMO 
apability, by using devi
es having a single antenna element, thanksto 
ooperation between nodes. A two-hop V-MIMO system, where a sour
e node hasto transmit data to a destination node via a relay node. is 
onsidered. A numberof an
illary nodes, distributed a

ording to a PPP, are supposed to be distributedaround the sour
e, relay and destination, with the possibility to 
reate 
lusters of
ooperating nodes. It is assumed that nodes use two di�erent air-interfa
es: a shortrange and low rate air interfa
e, used to ex
hange data for exploiting 
ooperationwithin ea
h 
luster, whereas a long range and high rate air interfa
e 
an be used totransmit data from 
luster to 
luster.The 
hannel model 
onsidered is the one des
ribed in Chapter 1, therefore, on
eagain random 
hannel 
u
tuations are a

ounted for. Owing to the random nature of



274the 
hannel, the number of transmit and re
eive antennas is a random variable and a
ertain outage probability there exists. Performan
e is evaluated in terms of outageprobability, de�ned as the probability that the a
hieved 
apa
ity between sour
e anddestination is smaller than a given threshold. Also energy 
onsumption issues aretaken into 
onsideration, evaluating the total power 
onsumed by the network fordelivering the data.
6.1 Virtual Multiple-Input-Multiple-Output and Re-lated WorksVirtual (also known as distributed) MIMO (V-MIMO) systems appear as one ofthe most interesting paradigms for the deployment of future wireless systems [121,122℄. The key aspe
t of V-MIMO 
ommuni
ation systems is the possibility for thedevi
es, whi
h 
an be equipped with single or multiple antennas, to 
reate 
lusters of
ooperating nodes. The 
lusters of 
ooperating nodes are usually denoted as virtualantenna arrays (VAAs) [121℄. Another interesting 
hara
teristi
 of V-MIMO is thepossibility to use two di�erent air interfa
es for 
ooperation between devi
es and datatransmission (from sour
e to destination). For example, a short range air interfa
e(e.g., the IEEE 802.15.4) is used for ex
hanging data within 
lusters (intra-VAA
ommuni
ation), whereas a high rate air interfa
e is used for 
ommuni
ations from
luster to 
luster (inter-VAAs 
ommuni
ation) [121, 122℄.The 
on
ept of VAAs with appli
ation to 
ellular networks, has been introdu
edin 2000 [123℄ and the generalisation of the 
on
ept to distributed MIMO multi-stage
ommuni
ation networks has been introdu
ed in [124℄. In [121℄ and [122℄ the ergodi
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apa
ity of a V-MIMO system for single and two-hop ad-ho
 network s
enarios, re-spe
tively, is derived. In [125℄ the diversity gain a
hieved by a V-MIMO is investi-gated in realisti
 indoor propagation environments. In more re
ent works the 
on
eptof V-MIMO has been applied to WSNs, where the 
ooperating devi
es are sensors,equipped with a single antenna element [126℄. It is worth noting that the topology ofthe network 
onsidered in the previous works is assumed to be �xed and the issuesrelated to the 
reation of the VAAs are not 
onsidered.Furthermore, there exist few works related to 
onne
tivity aspe
ts in MIMO sys-tems in the 
ontext of ad-ho
 networks (e.g., [127, 128℄). In [127℄ the performan
e ofsome spatial diversity te
hniques in
luding maximal ratio 
ombining are investigated.In [128℄, a multiple a

ess s
heme with frequen
y hopping is 
onsidered. In [127,128℄Poisson �elds of nodes are studied.Bounds on the theoreti
al 
apa
ity a
hievable by wireless ad ho
 networks withdevi
es equipped with single antennas have been re
ently obtained in [129℄ whenthe node lo
ation is known, and in [130℄ when nodes are uniformly distributed ina d-dimensional region. Upper and lower bounds on the 
apa
ity are obtained alsoin [131℄, where the re
eived power (averaged over fast fading 
u
tuations) on theterminals of a MIMO relay network is assumed to be random and i.i.d. The bounds,whi
h be
ome tight when the number of relaying nodes approa
hes in�nity, do not de-pend on the statisti
al distribution of the re
eived signal (only the hypothesis of i.i.d.is requested). The use of MIMO in ad ho
 networks are also investigated in [132℄; inthat paper a novel 
onne
tivity metri
 is proposed and outage 
apa
ity is evaluatedassuming di�erent numbers of antennas. The new 
onne
tivity metri
 
aptures the



276time-varying fading, transmission power, and multiple antenna 
hara
teristi
s of wire-less nodes. However, the propagation model 
onsidered in [132℄ takes only Rayleighfading into a

ount, whereas shadowing e�e
ts are negle
ted.A WSN where nodes, uniformly and randomly distributed in a given area, trans-mit information to a sink equipped with smart antennas, is investigated in [133℄.The framework in [133℄, whi
h 
onsiders a propagation environment 
omposed by adistan
e-dependent loss, shadowing and Rayleigh fading, permits an analyti
al eval-uation of the a
hievable rate.By 
onsidering all the works brie
y introdu
ed above, it 
ould be said that, noarti
le addressing V-MIMO 
onsidering 
onne
tivity problems, whi
h usually arisewith the formation of the VAAs, 
an be found in the literature.
6.2 System Des
ription and s
enarioThroughout the arti
le ve
tors and matri
es are indi
ated by bold, I is the identitymatrix and jAj denotes the determinant of A. fai;jgi;j=1;:::;M is an M �M matrixwith elements ai;j = fAgi;j, y is the operator of 
onjugation and transposition. Also,E f�g denotes expe
tation, and PfEg denotes the probability of the event E .6.2.1 S
enarioThe referen
e s
enario is illustrated in Figure 6.1. In the following, sour
e, relay anddestination nodes will be denoted as main nodes.It is assumed that an
illary nodes are spatially distributed in three areas AS,AR and AD a

ording to a PPP [35℄. For the sake of simpli
ity, the areas AS, AR



277and AD are assumed to be 
ir
ular (with 
enters in the main nodes) with radiusrS, rR and rD, respe
tively. With su
h model the probability of having one node inthe in�nitesimal area ÆA is �ÆA, where � denotes nodes' density [35℄. As a general
ase, nodes' density in the three areas may be di�erent: we denote as �S, �R and �S,the densities of the an
illary nodes distributed around the sour
e, the relay and thedestination, respe
tively. At the beginning of the 
ommuni
ation, three 
lusters (s-VAA, r-VAA and d-VAA) are formed around sour
e, relay and destination. The mainnodes transmit a query to the an
illary nodes, by using the short-range radio interfa
e.Owing to propagation 
onditions, only a subset of the an
illary nodes 
an really
ooperate with the main nodes. The number of nodes whi
h a
tually 
ommuni
atewith sour
e, relay and destination is denoted by nS, nR and nD, respe
tively, and are
alled 
ooperating nodes. We also assume that the distan
es sour
e-relay and relay-destination are mu
h larger then the distan
e between a main node and its 
ooperatingnodes. So that the short-range radio interfa
e 
an be used only to transmit/re
eivedata to/from the main node and its 
ooperating nodes (intra-VAA 
ommuni
ation).It is assumed that nodes work in a half-duplex mode and that a de
ode andforward strategy is implemented at the relay.The 
ommuni
ation in the two-hop 
ase is performed a

ording to the followingsteps: (i) The sour
e transmits data to the nS 
ooperating nodes; (ii) the nS+1 nodesof the s-VAA transmit data toward the relay through the V-MIMO 
hannel, using thehigh rate interfa
e (inter-VAA 
ommuni
ation); (iii) the nR + 1 nodes of the r-VAA
ooperate to de
ode the re
eived data and forward it toward the destination; (iv) thenD + 1 nodes of the d-VAA re
eive data from the r-VAA and 
ooperate to de
ode it.The maximum number of 
ooperating nodes that the main nodes 
an a
tually handle
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Figure 6.1: The Virtual MIMO 
ommuni
ation system.
is obviously limited by their hardware equipment: we denote this number as MS, MRand MD for sour
e, relay and destination, respe
tively. Note that this analysis 
an beapplied regardless the 
riterion for the sele
tion of the 
ooperating nodes whi
h hasbeen 
hosen.The single-hop 
ommuni
ation proto
ol 
an be easily derived from the one de-s
ribed above.
6.2.2 The 
onne
tivity modelIt is worth noting that, due to the random position of an
illary nodes and 
hannel
u
tuation e�e
ts, the number of 
ooperating nodes at the main nodes is not deter-ministi
. This is true regardless the 
onne
tivity model we are 
onsidering. Being



279an
illary nodes Poisson distributed, the number of 
ooperating nodes is a Poisson ran-dom variable, whose mean depends on the 
onne
tivity models sele
ted (see Chapter1). If the 
hannel model des
ribed in Chapter 1 is used (see eq. (1.6.1)), the meanvalue of the number of nodes in AS for whi
h L < Lth, is denoted by NS, and 
an bewritten, a

ording to eqs. (1.6.7) and (1.6.9), asNS = �S� �e2Lth=k1�2k0=k1+2�2s=k21 +	�Lth � k0�s ; k1�s ; rS�� ; (6.2.1)where 	(a1; b1; r) is given by eq. (1.6.8).NR and ND (i.e., the mean number of nodes in AR and AD for whi
h L < Lth)
an be easily obtained from (6.2.1) by using the 
ouple of values (�R, rR) or (�D, rD)instead of (�S, rS). The parameters k0, k1, �s and Lth in (6.2.1) refer to intra-VAAtransmission.Finally, note that for ea
h air interfa
e (intra-VAA and inter-VAA) we 
ouldhave di�erent power transmission (PT), re
eiver sensitivity (whi
h means di�erentthresholds Lth) and propagation parameters (k0, k1, �s).6.3 Ergodi
 Capa
ity expressions for V-MIMOIn this Chapter it is assumed that the re
eiver has perfe
t knowledge of the 
hannelstate, whereas the transmitter knows only the average loss (path-loss and shadowing)[121, 122℄. The re
eived signal at the `th hop 
an be written asy` =pP`H`b` + n` (6.3.1)where y` is a (nR+1) (for ` = 1) or (nD+1)-dimensional (for `=2) ve
tor. P`, H`, b`,n` are the averaged (over fast fading) power re
eived by a given node of r-VAA (or



280d-VAA) when transmitted by a node of s-VAA (or r-VAA), the fast fading 
hannelmatrix, the transmitted symbol ve
tor and the thermal noise ve
tor, respe
tively. Itis assumed E n b`bỳo = I, and E nn` � nỳo = �2NI, where �2N is the thermal noisepower per antenna element. We 
onsider a 
at un
orrelated Rayleigh environmentso that the elements of H`, h(`)i;j , 
an be modelled by a 
olle
tion of i.i.d 
omplex-valued Gaussian r.v.'s having E nh(`)i;jo=0 and unitary mean E njh(`)i;j j2o=1. Sin
ethe distan
es sour
e-relay and relay-destination are mu
h larger then the distan
ebetween a main node and its 
ooperating nodes, the averaged power (P`) re
eived bya node in r-VAA (` = 1) or d-VAA (` = 2) does not depend on the spe
i�
 transmitnode.The mean (with respe
t to fast fading 
u
tuations) 
apa
ity in the two-hop 
ase,�C(2), is the minimum between the mean 
apa
ity of the �rst link (from the sour
e tothe relay) and of the se
ond link (from the relay to the destination) [122℄. Therefore,by assuming nS, nR and nD 
ooperating nodes, the sour
e-destination ergodi
 
apa
ity
an be written as �C(2)nS;nR;nD = 12 min� �C(1)nS;nR(�1); �C(1)nR;nD(�2)	 ; (6.3.2)where the term 1=2 re
e
ts the fa
t that half of the resour
es (in the time or frequen
yaxes) are spent for the transmission from sour
e to relay and half for the transmissionfrom relay to destination. �C(1)n1;n2(�`) is the mean 
apa
ity of a MIMO 
hannel withn1+1 transmit (the main node plus n1 
ooperating nodes) and n2+1 re
eive antennasand �` is the signal-to-noise ratio, de�ned as �` , P`=�2N. In the single-hop 
ase, theexpression for the 
apa
ity 
an be easily written as �C(1)nS;nD(�).The mean 
apa
ity of MIMO in Rayleigh fading 
hannels has been extensivelystudied in the past years, here we use a 
losed form expression whi
h was derived



281in [134℄ �C(1)n1;n2(�) = nminKln 2 nminXn=1 nminXm=1(�1)n+mj
j���nmax+nmin�n�m+1F (n+m� 1 + nmax � nmin; 1=�) ; (6.3.3)where nmin = 1 +minfn1; n2g, nmax = 1 +maxfn1; n2g,K = hQnmini=1 (nmax � i)!Qnminj=1 (nmin � i)!i�1, the (i; j)th element of 
 is!i;j = (�(n)(m)i;j + nmax � nmin)!nmin�1pnmin ; (6.3.4)
�(n)(m)i;j , 8>>>><>>>>:i+ j � 2 if i < n and j < mi+ j if i � n and j � mi+ j � 1 otherwise; (6.3.5)and F (a; d) , (a� 1)!ed aXk=1 �(�a+ k; d)dk ; (6.3.6)where �(�; x) is the in
omplete Gamma fun
tion [135℄.6.4 Outage probability analysisSin
e the number of 
ooperating nodes is a r.v., there exists a 
ertain probabilitythat the sour
e-destination mean 
apa
ity, �C(2), is lower than a given value, C0, whi
hdepends on the spe
i�
 appli
ation 
onsidered. In su
h s
enario, a useful performan
emetri
 is the outage probability, Pout , Pf �C(2) < C0g, whi
h 
an be evaluated asPout = MSXs=0 MRXr=0 MDXd=0 PfnS = s; nR = r; nD = dg� I � �C(2)s;r;d; C0� ; (6.4.1)



282where PfnS = s; nR = r; nD = dg is the probability that there are s, r and d 
ooper-ating nodes at the sour
e, relay, and destination, respe
tively. Finally, the indi
atorfun
tion, I(x; y), is equal to one for x < y and zero otherwise.Owing to the presen
e of the limitation on the number of 
ooperating nodes, nS,nR and nD do not have Poisson distribution. However, their distribution 
an be easilyobtained from (1.6.6) asQ(s;NS) = 8><>: P (s;NS) for s < MS1�PMS�1l=0 P (l; NS) for s = MS ; (6.4.2)equivalent expressions 
an be written for Q(r;NR) and Q(d;ND). Being nS, nR andnD independent r.v.s, (6.4.1) 
an be re-written asPout = MSXs=0 MRXr=0 MDXd=0 Q(s;NS)Q(r;NR)Q(d;ND)� I � �C(2)s;r;d; C0� : (6.4.3)Note that, with the de�nition of the signal-to-noise ratio given in this Chapter,�C(1)n1;n2(�) = �C(1)n2;n1(�). So that, in the 
ase of �1 = �2, expression (6.3.2) 
an besimpli�ed as �C(2) = 12 �C(1)nR;nM(�); where nM = minfnS; nDg. The expression for thePout be
omes Pout = MRXr=0 minfMS;MDgXm=0 Q(r;NR)PfnM = mg� I �12 �C(1)r;m(�); C0� ; (6.4.4)and the distribution of nM 
an be written asPfnM = mg = Q(m;NS)Q(m;ND) +Q(m;NS)� minfMS;MDgX�=m+1 Q(�;ND) +Q(m;ND)minfMS;MDgX�=m+1 Q(�;NS): (6.4.5)



283Starting from (6.4.3), the outage probability for the single-hop 
ase 
an be easilywritten as Pout = MSXs=0 MDXd=0 Q(s;NS)Q(d;ND) I � �C(1)s;d (�); C0� : (6.4.6)
6.5 Considerations on power 
onsumptionThe total power spent by the network to deliver the data from the sour
e to the desti-nation, depends on the power spent by ea
h node parti
ipating in the 
ommuni
ation.In this work, the power spent by the network for performing 
ooperation (i.e., we donot 
onsider the power spent for intra-VAA transmissions) is negle
ted and the fo
usis only on inter-VAA transmissions. To have a unique performan
e metri
, we denoteas E fPtotg the averaged (with respe
t to fast and slow fading, and to the number of
ooperating nodes) power spent by all the a
tive nodes in the network. E fPtotg 
anbe written asE fPtotg = E nP (1)T o (E fnSg+ 1) + E nP (2)T o (E fnRg+ 1);where the two terms of the sum refer to the total averaged power spent by the s-VAAand the r-VAA, respe
tively, being E nP (1)T o the averaged power used by ea
h nodeof the s-VAA, and E nP (2)T o the averaged power used by ea
h node of the r-VAA.P (1)T and P (2)T 
an be 
al
ulated by re
alling that the power 
ontrol at the transmitterexploits the knowledge of path loss and shadowing to obtain a target signal-to-noiseratio at the re
eiver (�1 or �2). For a �xed value of �1 we obtain the transmit powerused by ea
h s-VAA node P (1)T = �1 k d�1 �2N s; (6.5.1)



284where d1 is the sour
e-relay distan
e. P (2)T , the averaged transmit power used by ea
hnode at the r-VAA, is obtained by eq. (6.5.1) by using �2 instead of �1 and d2 (therelay-destination distan
e) instead of d1.Finally, we 
an derive the averaged transmit power used by ea
h s-VAA node, by
al
ulating the expe
tation of P (1)T with respe
t to shadowingE nP (1)T o = �1kd��2N Z +10 s fs(s) ds= �1kd��2Ne (�s ln 10)2200 ; (6.5.2)where fs(s) is the distribution of the shadowing in linear s
ale. Similarly, E nP (2)T o
an be obtained by (6.5.2) by repla
ing �1 with �2. Note that the parameters k, �,�s and �2N in (6.5.2) refer to the inter-VAA transmission.6.6 Numeri
al ResultsIn this se
tion the behavior of the 
omplementary outage probability, Pin , 1� Pout,is shown by varying di�erent s
enarios and system parameters. Results are obtainedby setting, if not otherwise spe
i�ed, the following parameters: rS = rR = rD = 10[m℄, �s = 4 [dB℄; �2N = 8 � 10�15 [W℄ and MS = MR = MD = 10. We 
onsider twodi�erent 
hannel models for intra-VAA and inter-VAAs 
ommuni
ation. In the �rst
ase, we set k0 = 41 [dB℄, k1 = 13:03 (� = 3), and Lth = 92 [dB℄ (that is the IEEE802.15.4-like air interfa
e [35℄); whereas we set k0 = 15 [dB℄ and k1 = 17:37 (� = 4)for the inter-VAAs transmissions (Lth is not �xed in this 
ase, sin
e it is assumed thatthe s-VAA and the r-VAA so that the r-VAA and the d-VAA are always 
onne
ted).In the following, we will 
onsider �1 = �2 = � and we will �x the densities of an
illarynodes at �S = �R = �D = �. Figure 6.2 reports Pin as a fun
tion of C0, for di�erent
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Figure 6.2: The 
omplementary outage probability, Pin, as a fun
tion of C0, fordi�erent values of �.values of �, having set � = 5 10�4 [m�2℄.As expe
ted, Pin de
reases by in
reasing C0 and the 
urves are translated byin
reasing �. Note that the step behavior of the 
urve 
an be explained by observingthat �C(2)nS;nR;nD is a fun
tion of the three dis
rete r.v.s nS, nR and nD. In Figure 6.3Pin as a fun
tion of �s for di�erent values of C0 is shown, other parameters are � = 10[dB℄ and � = 10�5 [m�2℄.The Figure shows that by in
reasing �s, Pin in
reases. The bene�
ial (from thePin point of view) e�e
t of �s 
an be explained by observing that the presen
e of theshadowing leads to an in
rease of the number of 
ooperating nodes [61℄ and therefore,the average number of virtual antennas of V-MIMO gets larger with �s.Figure 6.5 shows the impa
t of the distribution of the an
illary nodes. The Figureplots Pin as a fun
tion of �S = �D, for di�erent values of �R. The Figure has been
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Figure 6.3: The 
omplementary outage probability, Pin, as a fun
tion of �s, for dif-ferent values of C0.obtained by setting C0 = 5 [bit/s/Hz℄ and � = 10 [dB℄. The 
urves saturate ata given value, whi
h in
reases by in
reasing �R. This behavior 
an be explainedby re
alling that when the density of the an
illary nodes at the relay is low, thenumber of re
eive antennas used in the �rst hop (whi
h 
oin
ides with the numberof transmit antennas used in the se
ond hop) is small. This e�e
t on the 
apa
ityis shown in eq. (6.4.4), where the 
apa
ity is written as a fun
tion of nR and onthe minimum between nS and nD. Sin
e the 
apa
ity is limited by the minimumbetween the number of transmit and re
eive antennas, the value of Pin does not rea
h1 even if �S and �D (but not �R) be
ome very large. This latter 
onsideration suggestsus a simple way for the dimensioning of the system: on
e the appli
ation �xes theminimum a

eptable value of Pin, the minimum number of the density of an
illarynodes at the relay 
an be easily obtained from Figure 6.5. The previous �gure 
an be



287

0 2 4 6 8 10 12 14 16 18 20
C0 [bit/s/Hz]

0

2

4

6

8

10

M
S
=

M
R
=

M
D

ρ=5 dB
ρ=10 dB
ρ=15 dB
ρ=20 dB

Figure 6.4: The maximum number of antennas MS = MR = MD as a fun
tion of C0,for di�erent values of �.
also useful to evaluate the minimum value of �S = �D, whi
h leads to the requestedPin. Sin
e he number of 
ooperating nodes has an impa
t on the overall amount fenergy 
onsumed for inter- and intra-VAA transmissions, it is reasonable to introdu
ea limit on the number of 
ooperating nodes. In Figure 6.4 the minimum number ofMS = MR = MD whi
h allows to obtain Pin � 0:9 is shown as a fun
tion of C0 fordi�erent values of �. Here, nodes' density is � = 6:5 10�3[m�2℄. This Figure 
an beuseful, for dimensioning purposes, to obtain the limit on the number of 
ooperatingnodes whi
h should be imposed to satisfy the appli
ation requirement and also tominimize the energy 
onsumption.Finally, in Figure 6.6, Pin as a fun
tion of E fPtotg, for di�erent values of �, isshown for C0 = 5 [bit/s/Hz℄ and d1 = d2 = 300 [m℄. The single and the two-hop
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Figure 6.5: The 
omplementary outage probability, Pin, as a fun
tion of �S = �D, fordi�erent values of �R.


ommuni
ation proto
ols are 
ompared. As expe
ted, the in
rease in the value of Pinis obtained at the 
ost of an in
reasing of the total power spent by the network. On
eagain the 
urves saturate, sin
e, owing to the values 
onsidered for C0 and Lth, Pin
annot rea
h 1 even if nodes' density in
reases. For what 
on
erns the 
omparisonbetween two 
ommuni
ation proto
ols, we 
an dedu
e that for low values of �, thesingle-hop proto
ol allows to obtain larger Pin. When nodes' density in
reases, thetwo-hop proto
ol 
an exploit the additional degrees of freedom given by r-VAA andoutperforms the single-hop 
ase.
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Figure 6.6: The 
omplementary outage probability, Pin, as a fun
tion of E fPtotg fordi�erent values of �, in the one-hop and two-hop 
ases.6.7 Con
lusionIn this Chapter, the performan
e of a two-hop V-MIMO system has been studied inthe presen
e of randomness of nodes' lo
ation. The impa
t of the standard deviationof shadowing and of nodes' density has been investigated. Finally, the 
omparisonbetween single and two-hop 
ommuni
ation proto
ol, in terms of tradeo� betweenoutage probability and total power 
onsumed by the nodes, shows that the two-hopproto
ol outperforms the single-hop 
ase when nodes' density in
reases. As alreadystated this represents a preliminary work on this topi
.





Chapter 7
Con
lusions and Open Issues
In this thesis WSNs are studied under di�erent perspe
tives and some guidelines fornetwork design are provided. Parti
ular attention is devoted to 
onne
tivity issues,topology design and MAC proto
ols, and also some distributed dete
tion te
hniqueshave been investigated. The work has been developed in three phases: i) the re-alisation of a mathemati
al framework a

ounting for signal pro
essing, MAC and
onne
tivity issues; ii) the development of 
onne
tivity models for multi-sink multi-hop networks distributed in bounded and unbounded regions and the developmentof an analyti
al model for the MAC 802.15.4; iii) the integration of the 
onne
tivityand MAC models developed at step two and, in parallel, the appli
ation of MIMOte
hniques to WSNs.Even though signal pro
essing issues are a

ounted for only in Chapter 2, theimportan
e of this part must be underlined, also to justify its in
lusion in the thesis.The framework des
ribed in Chapter 2, in fa
t, puts together many issues of WSNss:from signal pro
essing, through 
onne
tivity and 
hannel randomness, to MAC. Eventhough the model is developed under simpli�ed assumptions and s
enarios (e.g., no291



292border e�e
ts, single-sink s
enario) and by using simple proto
ols, this work has themerit of de�ning a new approa
h for studying WSNss: the development of frameworksable to study these networks under di�erent perspe
tives and evaluating di�erentperforman
e metri
s jointly.As stated in the Introdu
tion the limits of this initial work have been over
omein the next Chapters, up to the development of the model des
ribed in Chapter5, in
luding, on
e again, di�erent topi
s, but in a more 
omplex form. However,this �nal model does not take into 
onsideration distributed dete
tion te
hniques.Therefore, the main and most important open issue of this thesis is the developmentof a mathemati
al framework a

ounting for 
onne
tivity in multi-sink multi-hopnetworks (with nodes distributed in bounded regions), 
hannel randomness, MACissues 
onsidering the 802.15.4 or other CSMA-based proto
ols and, �nally, signalpro
essing te
hniques. This 
ould be a very interesting, new and 
hallenging resear
htopi
, that 
ould be investigated in the next years. By now, in fa
t, no works dealingwith these issues together are present in the open literature (see also the Pro
eeding ofthe most important International Conferen
e dealing with WSNs, EWSN 2009 [136℄).Regarding the 802.15.4 MAC proto
ols work, it is important to remark thatthe model developed here opens the way to a new approa
h to analyti
ally study
ontention-based MAC proto
ols. This novelty derives from the appli
ation s
enario
onsidered, that is a typi
al appli
ation for WSNss: the sink periodi
ally triggersnodes and waits for replies. The resear
h devoted to random MAC modelisationstarted around 1980 (one of the �rst papers is [137℄, related to slotted aloha), andwith the Bian
hi's model has undergone a signi�
ant 
hange, thanks to the develop-ment of a Markov Chain des
ribing the IEEE 802.11 CSMA/CA algorithm. Many



293papers followed the methodology used by Bian
hi. All these papers assume that nodeswork in saturated traÆ
 
onditions, or have a pa
ket to be transmitted in the queue,with a known probability. The model developed here, instead, assume that ea
h nodehas one pa
ket to be transmitted at ea
h query, whi
h implies that the number ofnodes 
ompeting for the 
hannel de
reases by passing time. This 
ompletely 
hangesthe form of the analysis and distinguishes this work from those already present in theliterature. Obviously some open issues 
ould be found also in this work. For example,
apture e�e
ts, a
knowledge transmissions and data pa
kets retransmissions, 
ouldbe introdu
ed in the model. Also the three-level tree topology 
ould be extendedto the general 
ase of T -level hierar
hy, by 
onsidering a more realisti
 strategy for
reating trees.Finally, for what 
on
erns the V-MIMO systems topi
, as stated in Chapter 6, thework presented here is only preliminary and many open issues 
ould be found. Oneof these, for example, 
ould be the appli
ation of MAC issues to multi-hop V-MIMOsystems.





Chapter 8
Appendix - A Hybrid Hierar
hi
alAr
hite
ture: From a WirelessSensor Network to the FixedInfrastru
ture
8.1 Abstra
tThe Hybrid Hierar
hi
al Ar
hite
ture (HHA) represents a parti
ular 
ase of Wire-less Hybrid Network, where sensor nodes transmit their samples to an infrastru
turenetwork through multiple hops. In the HHA, gateway terminals implementing both
ellular and infrastru
ture-less air interfa
es, allow integration of the two separateparadigms 
hara
terising the Wireless Sensor Network (WSN) and the 
ellular net-work. In this paper, in parti
ular we study a hierar
hi
al network where an IEEE



296802.15.4 WSN, organised in a tree-based topology, is 
onne
ted, through a mobilegateway, to an infrastru
ture network using a 
ellular air interfa
e like UMTS.In su
h s
enario, the mobile gateway re
eives data from sensors with an inter-arrival time distribution whi
h depends on the WSN topology, the number of sen-sors distributed, and the parameters whi
h 
hara
terise the 802.15.4 Medium A

essControl proto
ol, su
h as the Superframe Order, the Bea
on Order, the number ofGuaranteed Time Slots, et
. Su
h distribution is analysed in this paper through sim-ulation. The out
ome of this work provides useful hints to the 
hara
terisation ofthe traÆ
 generated by the mobile gateway and provided to the infrastru
ture net-work. The design of the s
heduling te
hniques implemented at the infrastru
ture siderequires suitable knowledge of the 
hara
teristi
s of su
h traÆ
.
8.2 Referen
e Network Ar
hite
tureIn the past few years the development of new te
hnologies and the standardisation ofnew air interfa
es both for infrastru
ture-less and infrastru
ture-based wireless net-works (su
h as e.g. WiFi, WiMAX, Bluetooth, Zigbee, et
..), has in
reased the inter-est of resear
hers toward radio systems 
omposed of sub-parts implementing separatete
hnologies and network paradigms (like for instan
e ad ho
 and 
ellular networks).Let us denote these systems as Wireless Hybrid Networks (WHNs) [138℄. They are
hara
terised by the 
oexisten
e of several 
ommuni
ation te
hnologies and the pres-en
e of devi
es with di�erent fun
tionalities and 
omputational 
apabilities. Thispaper in parti
ular refers to a network ar
hite
ture denoted as Hybrid Hierar
hi
alAr
hite
ture (HHA, see Figure 8.1), whi
h in fa
t is a parti
ular 
ase of WHN. The



297HHA has been sele
ted as referen
e ar
hite
ture in CRUISE, a Network of Ex
ellen
efunded by the European Commission through the sixth Framework Program, dealingwith Wireless Sensor Networks (WSNs) CRUISE IST Proje
t 1.The HHA is hybrid, be
ause the mobile gateways at level 1 need to link air inter-fa
es based on di�erent paradigms (they should therefore be able to bridge networksimplementing very di�erent types of paradigms). At level zero, radio a

ess ports (i.e.�xed stations 
overing the area through Radio A

ess Networks - RANs - using airinterfa
e standards like e.g. GPRS or UMTS or WiFi) provide a

ess to mobile termi-nals (denoted here as Mobile Gateways, level one), 
arried usually by people. Thesemobile devi
es 
an also be 
onne
ted through a di�erent air interfa
e (e.g. Zigbee,or Bluetooth) to a lower level of wireless nodes (level two), with limited energy andpro
essing 
apabilities, whi
h 
an �nd a

ess to the �xed network only through thegateways. These wireless nodes, whi
h might be sensor nodes, are distributed in theenvironment and provide information taken from it; moreover they intera
t throughpossibly di�erent air interfa
es with tiny devi
es at level three (e.g. smart tags, orvery-low-
ost sensors) whi
h are part of movable obje
ts (e.g. printers, books, ti
kets,et
). The hierar
hy is thus 
omposed of four levels.As an example of appli
ation, let us 
onsider a large oÆ
e building. The areais 
overed by some indoor UMTS stations, and the employees working in the oÆ
es
arry UMTS mobile devi
es also equipped with Zigbee air interfa
es; these mobile ter-minals 
an intera
t with Zigbee-enabled small devi
es distributed over the 
orridors,and inside the oÆ
es. Su
h devi
es might provide lo
alisation and logisti
 informa-tion, and are also able to dete
t the presen
e in their immediate neighbourhood of1See the proje
t website: http://www.ist-
ruise.eu/
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Figure 8.1: The Hybrid Hierar
hi
al Ar
hite
ture.obje
ts, like laptops, printers, pie
es of equipment, et
, whi
h have Zigbee-enabled,low 
ost devi
es that 
ommuni
ate with the nodes distributed in the environment.In this s
enario, every employee 
an s
an the environment to get the information onthe lo
alisation of movable obje
ts. This 
an also be done through web servi
es im-plemented in the intranet serving the building: the user sitting in his/her oÆ
e willget the requested information through a sequen
e of links from the lower level (theobje
ts) to the upper (the a

ess ports, bringing the information to the infrastru
tureand the Internet or intranet).In this 
ontext, this paper 
onsiders a s
enario 
omposed of three levels, namelylevel 0, 1 and 2: an IEEE 802.15.4 
ompliant WSN (level 2), whi
h has to periodi
allytransmit data taken from the environment to a sink, that is the mobile gateway (level1); the latter must forward data re
eived to a UMTS radio a

ess port (level 0).In this s
enario a spe
i�
 issue arises: the UMTS s
heduler [139℄, [140℄ needs toallo
ate radio resour
es to the mobile gateway that generates data a

ording to the



299inputs re
eived from the WSN [27℄, [28℄. The IEEE 802.15.4 air interfa
e is based on arandom multiple a

ess strategy (Carrier Sense Multiple A

ess, CSMA); as a result,the statisti
 of the traÆ
 generated by the Sensor Nodes (SNs) is not known a priori,even if a periodi
 trigger is sent by the mobile gateway toward the environment. Onthe other hand, the UMTS s
heduler will assign radio resour
es based on requestsfrom the mobile gateway, that needs to be based on the inputs from the SNs. It istherefore very relevant to have knowledge of the statisti
s of the traÆ
 re
eived bythe mobile gateway. Su
h traÆ
 depends on the way the CSMA proto
ol is used inthe WSN. The WSN, on its turn, is organised in a tree-based topology. This is thetopology 
hosen by the Zigbee Allian
e [82℄, [141℄ for the IEEE 802.15.4 networks.We denote as level 2; i nodes, the SNs belonging to level 2 of the HHA hierar
hy andto level i of the WSN hierar
hy (see Figure 8.2). In our formalism, level 2; i+1 nodestransmit their pa
kets to level 2; i nodes. Therefore, at level 2; 0 we have the gateway,that is the root of the tree, and whi
h belongs also to level 1 of the HHA hierar
hy.Having this s
enario in mind, the goal of this paper is the des
ription of statisti
s oftraÆ
 at the mobile gateway, gathering data from SNs. Results are obtained throughsimulations, using a simulator written in C language.This work is an extension of a previous published paper [25℄, where, however, adi�erent topology for the WSN was 
onsidered and where di�erent metri
s for theevaluation of the traÆ
 were evaluated.Next Se
tion deals with the WSN, 
onsidering MAC and routing aspe
ts and the
hara
terisation of the traÆ
. Finally, simulation results and 
on
lusions are dealtwith.



3008.3 The Wireless Sensor NetworkThe referen
e s
enario 
onsidered 
onsists of a number of SNs randomly and uniformlydistributed over a square area (having side L) and a sink, that is the gateway, lo
atedin the 
entre of the area. The network must be able to provide the informationdete
ted by nodes to the gateway, hereafter denoted as Personal Area Network (PAN)
oordinator [142℄, [52℄ whi
h periodi
ally sends a query and waits for replies from SNs.SNs are IEEE 802.15.4 standard 
ompliant devi
es. IEEE802.15.4 is an emerg-ing standard whi
h represents an enabling te
hnology for WSNs. In parti
ular, theIEEE 802.15.4 de�nes the physi
al and MAC layer aspe
ts, while leaves the 
hoi
eof routing and network formation proto
ols to network designers. The upper layersof the proto
ol sta
k are proposed by the ZigBee Allian
e [51℄: Zigbee spe
i�
ationspropose a tree-based topology des
ribed in the following.The rest of the Se
tion will introdu
e the IEEE 802.15.4 MAC proto
ol and thetree-based topology de�ned by the Zigbee Allian
e.8.3.1 The IEEE 802.15.4 MAC Proto
olIEEE 802.15.4 allows two types of 
hannel a

ess me
hanisms: Bea
on or non-Bea
onenabled. In the �rst 
ase a slotted Carrier Sensing Multiple A

ess proto
ol withCollision Avoidan
e (CSMA/CA) is used; whereas in non-Bea
on enabled networks,an unslotted CSMA/CA is performed. We refer to the Bea
on-enabled mode, sin
e,a

ording to Zigbee spe
i�
ations, this is the modality to be used for tree-basedtopologies. A

ording to the standard, time is organised in a superframe stru
ture
omposed by an a
tive and an ina
tive part [52℄. Ea
h superframe is started by aBea
on pa
ket, sent by the PAN 
oordinator. The a
tive part is 
omposed of 16
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Figure 8.2: Hierar
hi
al tree-based network topology.equally sized slots and is divided, on its turn, into two parts: the Contention A

essPeriod (CAP), where the a

ess to the 
hannel is managed by a slotted CSMA/CAproto
ol and the Contention Free Period (CFP), in whi
h a maximum number ofseven Guaranteed Time Slots (GTSs) 
an be allo
ated by the 
oordinator to spe
i�
nodes (see Figure 8.3).The duration of the a
tive part and of the whole superframe, depend on thevalue of two integer parameters ranging from 0 to 14, that are, respe
tively, theSuperframe Order (SO) and the Bea
on Order (BO). The latter, de�nes the intervalof time between two su

essive Bea
ons, namely the Bea
on Interval (BI), given by:BI = 16 � 60 � 2BO � Ts (8.3.1)where 16 is the number of slots, Ts is the symbol time that equals 16 [�s℄, and60 � 2SO � Ts is the slot size.The duration of the a
tive part of the superframe (hereafter denoted as Superframe



302Duration, SD), is given by: SD = 16 � 60 � 2SO � Ts: (8.3.2)The replies 
oming from SNs, must arrive to the PAN 
oordinator, by the end ofthe a
tive part of the superframe started with the transmission of the query, that theBea
on pa
ket.The CSMA/CA proto
ol developed in the simulator is the IEEE 802.15.4 slottedCSMA/CA proto
ol [52℄ with no battery life extension, BEmin=3, BEmax=5 andNBmax=4. The algorithm is implemented using time units 
alled ba
ko� periods,having duration 20Ts. The ba
ko� period boundaries of every SN in the PAN mustbe aligned with the superframe slot boundaries of the PAN 
oordinator. Therefore,the beginning of the �rst ba
ko� period of ea
h SN is aligned with the beginning ofthe Bea
on transmission. All transmissions must start on the boundary of a ba
ko�period. Ea
h SN maintains three variables for ea
h transmission attempt: NB, CWand BE. NB is the number of times the CSMA/CA algorithm was required to ba
ko�while attempting the 
urrent transmission; this value is initialized to 0 before ea
hnew transmission attempt. When NB rea
hes its maximum value, NBmax, the SN
annot more try to a

ess the 
hannel and its pa
ket is lost. CW is the 
ontentionwindow length, de�ning the number of ba
ko� periods that need to be 
lear of 
hannela
tivity before the transmission 
an start; this value is initialized to 2 before ea
htransmission attempt and reset to 2 ea
h time the 
hannel is assessed to be busy. BEis the ba
ko� exponent, whi
h is related to how many ba
ko� periods a SN has towait before attempting to a

ess the 
hannel.For the sake of 
on
iseness we do not report the details of the algorithm, but we



303refer to the standard.An a
knowledge me
hanism is performed: ea
h node, after the transmission of apa
ket, waits for the ACK pa
ket for a time equals to 54 Ts, at the end of whi
h, ifit has not re
eived the ACK, it retransmits the pa
ket.Three kinds of pa
ket are thus 
onsidered:� Bea
on: the pa
ket sent by the PAN 
oordinator, having size 120 Ts;� ACK: the a
knowledge sent to notify the 
orre
t re
eption of a data pa
ket,having size 22 Ts;� DATA: the data pa
ket 
ontaining the measurement result; the size is set to 50Ts.The CSMA/CA algorithm must not be used for the transmission of Bea
on framesand ACK.A pa
ket is lost in 
ase a node tries to a

ess the 
hannel for more than NBmax
onse
utive times without su

ess and in 
ase a node does not su

eed in transmitting
orre
tly its pa
ket by the end of a
tive part of the superframe.8.3.2 The Zigbee Hierar
hi
al Tree-Based TopologyDi�erent network topologies for WSNs might be 
onveniently 
reated su
h as, forinstan
e, trees, or rings, or 
luster-based topologies [81℄, [80℄, but sin
e in thesenetworks the set of destination nodes (the sinks) are generally separated by those ofsour
es (namely sensor nodes), tree-based topologies seem to be more eÆ
ient thanthe others: in fa
t, routing is mu
h simpler, and also distributed data aggregationme
hanisms 
an be used eÆ
iently. This is, in fa
t, the topology 
hosen by the
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Figure 8.3: Superframe stru
ture used in the IEEE 802.15.4 Wireless Sensor Network.ZigBee Allian
e for the IEEE 802.15.4 networks [51℄. The Zigbee spe
i�
ations de�nea Bea
on-enabled tree-based topology, as a parti
ular 
ase of the IEEE 802.15.4 peer-to-peer networks. A

ording to the topology formation pro
edure de�ned in theIEEE 802.15.4 standard (brie
y des
ribed in the following), a tree, rooted at thePAN 
oordinator, is formed. As stated above, in the tree, SNs at a given level haveto transmit their pa
kets to SNs at a lower level to rea
h the PAN 
oordinator. Wehave two di�erent types of nodes in the tree: the routers, whi
h re
eive data fromtheir 
hildren, aggregate them, and transmit the pa
ket obtained to their parents;and the leafs, whi
h have no routing fun
tionalities and have only to transmit theirpa
kets to the parent (see Figure 8.2).The topology formation pro
edure is started by the PAN 
oordinator, whi
hbroad
asts Bea
on pa
kets to neighbour SNs. A 
andidate SN re
eiving the Bea-
on may request to join the network at the PAN 
oordinator. If the PAN 
oordinator



305allows the SN to join, it will begin transmitting periodi
 Bea
ons so that other 
an-didate SNs may join the network.As stated above, SNs must be in Bea
on-enabled mode: ea
h 
hild node tra
ksthe Bea
on of its parent (see Figure 8.4, where the tra
king period is outlined as adashed re
tangle). A 
ore 
on
ept of this tree topology is that the 
hild node maytransmit its own Bea
on at a prede�ned o�set with respe
t to the beginning of itsparent Bea
on: the o�set must always be larger than the parent SD and smallerthan BI (see Figure 8.5). This implies that the Bea
on and the a
tive part of 
hildsuperframe reside in the ina
tive period of the parent superframe; therefore, there isno overlap at all between the a
tive portions of the superframes of 
hild and parent.This 
on
ept 
an be expanded to 
over more than two nodes: the sele
ted o�set mustnot result in Bea
on 
ollisions with neighbouring nodes. This implies that the nodemust re
ord the timestamp of all neighbouring nodes and sele
ts a free time slot forits own Bea
on. Obviously a 
hild will transmit a Bea
on pa
ket only in 
ase it is arouter in the tree; if the 
hild is a leaf it has only to transmit the pa
ket to its parent.Ea
h 
hild will transmit its pa
ket to the parent in the a
tive part (CAP or CFP) ofthe parent supeframe.Therefore, ea
h router in the tree, after the re
eption of the Bea
on 
oming fromthe parent, will sele
t the instant in whi
h transmits its Bea
on.We assume that all the a
tive parts of the superframes generated by the routersand by the PAN 
oordinator have the same duration; therefore, we �x a unique valueof SO. Moreover, we �x the value of BO of the PAN 
oordinator superframe, so thatthe ina
tive part in
ludes at least NR SDs, being NR the number of routers presentin the tree (see Figure 8.5).



306

Figure 8.4: The tra
king of the Bea
on's parent, performed by a generi
 
hild.Therefore, BO is 
hosen as the minimum integer whi
h satis�es:2BO � (NR + 1) � 2SO: (8.3.3)
8.4 Chara
terisation of the traÆ
 generated bythe WSNSin
e, all routers in the network aggregate the data re
eived to 
reate a single pa
ket(having 
ommon size, 50 Ts) and transmit it to the parent, the statisti
s of the traÆ
generated at the PAN 
oordinator depends only on the instant in whi
h pa
kets sentby level 2,1 SNs rea
h the PAN 
oordinator.We simulate K = 100 di�erent and un
orrelated realisations of SN lo
ations and,
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Figure 8.5: The superframe stru
ture used in the tree-based topology.for ea
h s
enario, we simulate M = 1000 transmissions for SNs to the PAN 
oordi-nator (1000 BI); therefore results reported are based on K �M = 105 BIs. For ea
hBI we store the instant of arrival at the PAN 
oordinator (i.e., the time interval be-tween the beginning of the PAN 
oordinator superframe, set at t = 0, and the instantin whi
h the last bit of the pa
ket is re
eived by the PAN 
oordinator) of a pa
ket
oming from a level 2,1 SN. From this result, we 
an evaluate the probability thata pa
ket arrives at the PAN 
oordinator in a 
ertain time slot. The time resolutionused is the duration of the slot obtained when SO = 0, that is Trslot = 60Ts (i.e., theminimum size that a slot 
an assume). Therefore, we evaluate the number of pa
ketsthat arrive in ea
h resolution time slot and we 
ompute the frequen
y of the arrivalsfor ea
h slot.Sin
e level 2,1 SNs transmit their pa
kets in the a
tive part of the superframegenerated by the PAN 
oordinator (see Figure 8.5), the traÆ
 will be present onlyin this part of the superframe, whereas in the ina
tive part, in whi
h level 2; i nodes



308(with i > 1) transmit to level 2; i� 1 SNs, no traÆ
 toward the PAN 
oordinator ispresent.The statisti
s of the traÆ
 generated at the PAN 
oordinator, depends on thevalues of the following parameters:� SO, whi
h de�nes the interval of time in whi
h we 
an have arrivals at the PAN
oordinator;� BO of the PAN 
oordinator superframe. It depends on NR, a

ording to (8.3.3),and de�nes the BI, that is the periodi
ity of the arrivals at the PAN 
oordinator(we have a sequen
e of arrivals every BI se
);� the number of SNs at level 2; 1 hereafter denoted as N1.The distribution of the traÆ
 within the a
tive part of the PAN 
oordinatorsupeframe depends on the number of GTSs allo
ated. When no GTSs are allo
ated,level 2,1 SNs have to a

ess the 
hannel through CSMA/CA; whereas, when a numberof GTSs, NGTS, is allo
ated, only the remaining level 2,1 SNs (N1 � NGTS), use theCAP portion to a

ess the 
hannel.Moreover, we have evaluated the statisti
al distribution of the number of pa
ketsre
eived by the PAN 
oordinator per UMTS frame. A UMTS frame has a durationof 10 ms whi
h 
orrespond to 625 Ts. By denoting as nR the number of pa
ketsre
eived per UMTS frame, the probability P(nR = x), with x 2 [0; N1℄, is derived.In parti
ular, the number of pa
kets re
eived every 10 ms 
onsidering a sequen
eof 1000 BIs, has been evaluated. Results are averaged over 100 di�erent realisations
enarios. We assume that the beginning of the �rst UMTS frame is syn
hronisedwith the beginning of the �rst IEEE 802.15.4 superframe.



309Finally, we have evaluated the 
onditioned probability, P(nRZ = xjnRp = y), thatis the probability that the number of pa
kets re
eived during the Z-th UMTS frameis equal to x, 
onditioned to the fa
t that the PAN 
oordinator has re
eived a totalnumber of y pa
kets in the previous Z � 1 UMTS frames. In the following, we willdenote P(nRZ = xjnRp = y) as PZ(xjy). We suppose, on
e again, that the �rst UMTSframe is syn
ronised with the beginning of the �rst 802.15.4 frame. The probabilityPZ(xjy) is evaluated for Z ranging from 1 to the number of UMTS frames 
ontainedin the PAN 
oordinator superframe. Thus, for example, in 
ase SO = BO = 0, wehave two UMTS frames in ea
h 802.15.4 superframe and we derive P1(nR), whi
h isnot 
onditioned be
ause we are 
onsidering the �rst UMTS frame and P2(xjy), thatis the statisti
al distribution of the number of pa
kets re
eived in the se
ond UMTSframe, 
onditioned to the fa
t that in the �rst UMTS frame, the sink has re
eived ypa
kets (with y 2 [0; N1℄).The knowledge of the 
onditioned probabilities 
ould be useful for managing dataaggregation me
hanisms at the PAN 
oordinator. In general, in fa
t, the PAN 
oor-dinator 
ould perform aggregation of the data re
eived before transmitting it to theinfrastru
ture network. As an example, the PAN 
oordinator 
ould perform aggrega-tion of the data re
eived in 
ase the probability to have no arrivals in the followingframe is high; on the opposite, it 
ould de
ide to wait for other pa
kets in 
ase theprobability to re
eive data in the following UMTS frames is high.8.5 Simulation ResultsThis Se
tion shows numeri
al results related to the traÆ
 generated by SNs, obtainedthrough our simulator.



310We 
onsider a network where nodes are uniformly distributed over a square area,having side L = 50 meters and the PAN 
oordinator is lo
ated in the 
enter ofthe area. We do not simulate the topology formation pro
edure, but we evaluateperforman
e by varying the number of level 2,1 SNs, N1, in the network and thenumber of routers, NR. Owing to 
hannel model parameters, transmit power andarea side sele
ted, all nodes in the network 
an 
apture the PAN 
oordinator queriesand 
ould be sele
ted as level 2; 1 nodes. We assume that a maximum number ofN1 
hildren per parent is imposed (
apa
ity 
onstraint) [51℄, [82℄, so that the PAN
oordinator will sele
t randomly the N1 level 2; 1 nodes 
onne
ted to it.In Figure 8.6 we show the statisti
al distribution of pa
ket arrival time at the PAN
oordinator, as a fun
tion of time, normalized with respe
t to Ts (t=Ts) for di�erentvalues of SO, BO and NGTS, having �xed N1 = 10. Note that the resolution time
hosen in the Figure is equal to Trslot. We 
onsider the following 
ases: (i) SO = 0,BO = 4 (NR = 10, a

ording to eq. (8.3.3)), NGTS = 0; (ii) SO = 0, BO = 4,NGTS = 7; (iii) SO = 0, BO = 5 (NR = 20), NGTS = 0; (iv) SO = 0, BO = 5,NGTS = 7; (v) SO = 1, BO = 5 (NR = 10), NGTS = 0; (vi) SO = 1, BO = 5,NGTS = 7; (vii) SO = 1, BO = 6 (NR = 20), NGTS = 0; (viii) SO = 1, BO = 6(NR = 20), NGTS = 7. On
e we have �xed SO and NGTS the 
urves do not vary byvarying BO, sin
e this parameter a�e
ts only the duration of the ina
tive part of thesuperframe, where no traÆ
 is present. Therefore, we obtain the same statisti
 for the
ases (i) and (iii); (ii) and (iv), and so on. As we 
an see, we have no arrivals in the�rst three resolution slots. The �rst two slots are devoted to the Bea
on transmission(120 Ts) and in the third slot no arrivals are possible, be
ause the minimum delaybetween the beginning of the CSMA/CA algorithm at the node and the re
eption of



311the pa
ket at the PAN 
oordinator, is 90 Ts. A

ording to the di�erent SDs (seeeq. (8.3.2)) the traÆ
 for SO = 0 is distributed between 180 Ts and 960 Ts, whereasfor SO = 1, it ends at 1920 Ts. Moreover, for NGTS = 0 the 
urves obtained forSO = 0 and 1 are approximately the same up to 960 Ts, where the traÆ
 of the 
aseSO = 0 �nishes. When seven GTSs are allo
ated, we have an arrival for ea
h GTS(in both 
ases, SO = 0 and 1), be
ause N1 is larger that 7 and all GTSs are allo
ated(no losses are possible for pa
kets transmitted in the GTSs). In this 
ase, only theremaining nodes (3 nodes) will use the CAP portion to a

ess the 
hannel.In Figure 8.7, the distribution of the number of pa
kets re
eived by the PAN
oordinator per UMTS frame, P (nR = x), when N1 = 5 for di�erent values of SO,BO and NGTS, is shown. The probabilities that no pa
kets are re
eived in a UMTSframe, P (nR = 0), are reported in Table I (to better visualise the distribution forx > 0 in the Figure 8.7). As we 
an see in the Table, these probabilities are veryhigh, with respe
t to the probabilities P (nR = x) for x > 0. In fa
t, being BO = 4or 5, the most of the superframe is ina
tive and no traÆ
 is present. In Figure8.8 we show the overlapping between the Zigbee and the UMTS frames, in the two
ases 
onsidered: SO = 0, BO = 4 (Figure above) and SO = 1, BO = 5 (Figurebelow). As stated above, the �rst UMTS frame is syn
hronised with the �rst Zigbeesuperfarme, but sin
e BI does not 
ontain 625 Ts, the position of the UMTS frames isnot always the same in the 1000 BIs simulated. This position is uniformly distributedinside the Zigbee frame. Therefore, the probability P (nR = x) is larger that zero onlywhen the UMTS frame 
ompletely of partially overlaps the a
tive part of the 802.15.4superframe. Moreover, we 
an note that by in
reasing BO, being the duration of theUMTS frame the same, an higher number of UMTS frames is needed to 
over all the



312Zigbee superframe; therefore, the probability P (nR = 0) in
reases (see Table I) andthe average number of pa
kets re
eived per UMTS frame de
reases too (see Figure8.7).In Figure 8.7 we 
an see that, having �xed NGTS = 0, by varying SO and BO the
urves trend is approximately the same, but the values are di�erent: by in
reasingSO and BO, P (nR = 0) in
reases and P (nR = x) for x > 0 de
reases. WhenNGTS = 7, we have the same probability to re
eive 1, or 2, or 3, or 4 pa
kets; whereasthe probability to re
eive 5 pa
kets is very high in the 
ase SO = 0, BO = 4 andvery low in the 
ase SO = 1, BO = 5. The reason is that, in the �rst 
ase the UMTSsuperframe is larger (approximately the double) of the duration of the �ve GTSs wereall the traÆ
 of the Zigbee frame is distributed, therefore the probability that theUMTS frame 
ompletely overlaps the CFP and that �ve pa
kets are re
eived is large.Whereas, in the se
ond 
ase, the UMTS duration is approximately the same of the�ve GTSs and the probability of a 
omplete overlapping is low.In Figure 8.9 we show the probabilities PZ(xjy), for N1 = 5 and 10, having �xedSO = BO = 0 and NGTS = 0 (here no ina
tive part and CFP are present). BeingSO = 0, only two UMTS frames are needed to 
over the a
tive part of the Zigbeesuperframe. When N1 = 5 P1(x) assumes its maximum value for x = 3, sin
e theUMTS frame 
ontains a large part of the Zigbee superframe. P2(xj2) is maximisedfor x = 2, be
ause 2 pa
kets are re
eived in the �rst frame and there is an highprobability that one pa
ket is lost. For the same reason P1(xj3) is maximum forx = 1. We do not report the probability P2(xj1), sin
e there are too few 
ases inwhi
h only one pa
ket is re
eived in the �rst UMTS frame. When N1 = 10 in the �rstUMTS frame the probability is maximum for x = 4, whereas, for example, P2(xj3)



313is maximum for x = 3, sin
e in this 
ase an average number of 3:6 pa
kets are lost.Finally, note that having �xed SO = 0, even if BO in
reases, the 
urves shown inFigure 8.9 do not 
hange. The only di�eren
e is that we will have others PZ(xjy) forZ > 2, that will assume the value 1 for x = 0 and zero for x 6= 0, whatever y.Finally, in Figure 8.10 we show the probabilities PZ(xjy), for N1 = 5, having �xedSO = BO = 1 and NGTS = 0. Being SO = 1, we have 4 UMTS frames in ea
hZigbee superframe. As we 
an see, P1(x) assumes its maximum value on
e again forx = 3; whereas P2(xj2), P2(xj3) and P2(xj4) are maximised, respe
tively, in x = 3,nR = 2 and x = 1, sin
e no pa
kets are lost on average. Finally P2(xj5) is equal to 1for x = 0, sin
e all the pa
kets are arrived in the previous UMTS frames. The samebehavior 
an be observed for P3(xjy) and P4(xjy).8.6 Con
lusionsA hybrid hierar
hi
al ar
hite
ture, where a WSN transmits data to an infrastru
ture-based network (UMTS) through a gateway, is 
onsidered. An IEEE 802.15.4 standard
ompliant WSN organised in a tree-based topology, is studied: the statisti
s of thetraÆ
 generated by SNs toward the gateway, that is the PAN 
oordinator, are derived.These results 
ould be useful for the design of the UMTS s
heduler. In parti
ular,the statisti
al distribution of the number of pa
kets re
eived by the PAN 
oordinatorper UMTS frame, has been evaluated for di�erent values of the parameters SO andBO. Results show that by in
reasing BO the probability that in a UMTS frame nopa
kets are re
eived in
reases, therefore the interval of time between two su

essivedata bursts in
reases. Moreover, larger WSNs 
ould be served by in
reasing BO. Onthe other hand, however, the larger BO, the larger is the delay with whi
h data are



314 Table 8.1: P(nR = 0) for N1 = 5.SO BO NGTS P(nR = 0)0 4 0 0.921 5 0 0.950 4 7 0.941 5 7 0.96delivered to the infrastru
ture based network in
reases. Results show also that byin
reasing SO, the average number of pa
kets re
eived in ea
h UMTS frame de
reases;therefore, the load of the UMTS network in ea
h frame de
reases. Moreover, byin
reasing SO the pa
ket losses in the WSN de
rease, even if, on
e again the delayin
reases. The statisti
al distribution of the traÆ
 re
eived in the Z-th UMTS frame,
onditioned to the fa
t that y pa
kets were re
eived in the previous Z � 1 UMTSframes, is also provided. This probability 
ould be used by the gateway to plan theinstant in whi
h performing aggregation of the re
eived data. In fa
t, in 
ase theprobability to have no arrivals in the subsequent frame is high, it is 
onvenient toperform aggregation.
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Figure 8.6: Statisti
al of the pa
ket arrival time for N1 = 10, for di�erent values ofSO, BO and NGTS.
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Figure 8.8: The syn
ronisation between the Zigbee and the UMTS frames, in the
ases SO = 0 and BO = 4 (above Figure) and SO = 1 and BO = 5 (below Figure).

0 1 2 3 4 5 6
x

0

0.5

1

C
on

di
tio

ne
d 

pr
ob

ab
ili

tie
s

P1(x), N1=5
P2(x|2), N1=5
P2(x|3), N1=5
P2(x|4), N1=5
P2(x), N1=10
P1(x|3), N1=10
P2(x|4), N1=10
P2(x|5), N1=10

Figure 8.9: The probabilities PZ(xjy) for N1 = 5 and 10, having �xed SO = BO = 0and NGTS = 0.



317

0 1 2 3 4 5
x

0

0.5

1

C
on

di
tio

ne
d 

pr
ob

ab
ili

tie
s

P1(x)
P2(x|2)
P2(x|3)
P2(x|4)
P2(x|5)
P3(x|3)
P3(x|4)
P3(x|5)
P4(x|4)
P4(x|5)

Figure 8.10: The probabilities PZ(xjy) for N1 = 5, having �xed SO = BO = 1 andNGTS = 0.





List of a
ronyms
CH 
luster headMIMO Multiple Input Multiple OutputWAN Wireless Ambient NetworkRSSI Re
eived Signal Strength Indi
ationED energy dete
tionr.v. random variableIF intermediated frequen
yACK a
knowledgeDDSP distributed digital signal pro
essingPPM pulse position modulationDS-SS dire
t sequen
e spread spe
trumBPP Binomial Point Pro
essRFD redu
ed fun
tion devi
e 319



320PHR Physi
al HeaderLLC Logi
al Link ControlCRC 
y
li
 redundan
y 
he
kIR-UWB impulse radio UWBOFDM Orthogonal Frequen
y Division MultiplexingPAN Personal Area NetworkTPP Thomas Point Pro
essBSN boby sensor networkBPSK binary phase shift keyingCAP Contention A

ess PeriodCH 
luster headCFP Contention Free PeriodCSMA 
arrier sensing multiple a

essCSMA/CA 
arrier sensing multiple a

ess with 
ollision avoidan
eCSS 
hirp spread spe
trumCTR 
riti
al transmission rangeFFD full fun
tion devi
eGTS Guaranteed Time Slot



321HHA Hybrid Hierar
hi
al Ar
hite
turei.i.d. independent,identi
ally distributedISM industrial s
ienti�
 medi
alMAC medium a

ess 
ontrolMFR MAC FooterMHR MAC HeaderMPDU MAC Payload Data UnitMSDU MAC Servi
e Data UnitMSE mean square errorO-QPSK O�set Quadrature Shift Keyingp.d.f. probability distribution fun
tionPHY physi
alPPDU Physi
al Proto
ol Data UnitPPP Poisson Point Pro
essPSDU Physi
al Servi
e Data UnitRF radio frequen
yr.v. random variableSHR Syn
hronization Header



322NoE Network of Ex
ellen
eEC European CommissionUMTS Universal Mobile Tele
ommuni
ations SystemUWB ultrawide bandwidthWHN Wireless Hybrid NetworkWPAN wireless personal area networkWSN Wireless Sensor Network



Bibliography
[1℄ T. Basten, M. Geilen, and H. De Groot. Ambient Intelligen
e: Impa
t onEmbedded System Design. Springer, Berlin, Germany, 2003.[2℄ W. Weber, J.M. Rabaey, and E. Aarts. Ambient Intelligen
e. Springer, Berlin,Germany, 2003.[3℄ L. Benini, E. Farella, and C. Guidu

i. Wireless sensor networks: Enabling te
h-nology for ambient intelligen
e. Mi
roele
troni
s Journal, 37(12):1639{1649,2006.[4℄ C. Buratti, A. Giorgetti, and R. Verdone. Simulation of energy eÆ
ient
arriersensing multiple a

ess proto
ol for 
lustered wireless sensor network. In Pro
.of IEEE IWWAN 2004, Oulu, June 2004.[5℄ C. Buratti, A. Giorgetti, and R. Verdone. Cross layer design of an energyeÆ
ient 
luster formation algorithm with 
arrier sensing multiple a

ess forwireless sensor networks. Eurasip Journal, 5:672{685, De
ember 2005.[6℄ R. Verdone and C. Buratti. Modelling for wireless sensor network proto
oldesign. In Pro
. of IEEE IWWAN 2005, London, England, May 2005.[7℄ D. Dardari, A.Conti, C. Buratti, and R. Verdone. Mathemati
al evaluationof environmental monitoring estimation error through energy-eÆ
ient wirelesssensor networks. IEEE Trans. Mobile Comput., 6:790{803, July 2007.323



324[8℄ A. Conti, D. Dardari, C. Buratti, D. Sangiorgi, and R. Verdone. Simulationof energy eÆ
ient
arrier sensing multiple a

ess proto
ol for 
lustered wirelesssensor network. In Pro
. of European Conferen
e on Wireless Sensor Networks,EWSN2005, Instanbul, Tur
hy, January 2005.[9℄ R. Verdone, C. Buratti, and J. Orriss. On the design of tree-based topologiesfor wireless sensor networks. In Pro
. IEEE MedHo
Net 2006, Lipari Island,Italy, June 2006.[10℄ C. Buratti, J. Orriss, and R. Verdone. On the design of tree-based topologiesfor multi-sink wireless sensor networks. In Pro
. IEEE NEWCOM/ACORNWorkshop 2006, Vienna, Austria, September 2006.[11℄ C. Buratti and R. Verdone. On the number of 
luster heads minimizing theerror rate for a wireless sensor network using a hierar
hi
al topology over ieee802.15.4. In Pro
. of IEEE Int. Symp. on Personal, Indoor and MoRadio Com-muni
ations, PIMRC 2006, pages 1{6, September 2006.[12℄ C. Buratti and R. Verdone. Tree-based topology design for multi-sink wire-less sensor networks. In IEEE Int. Symp. on Personal, Indoor and MoRadioCommuni
ations, PIMRC 2007, Atene, Gree
e, September 2007.[13℄ F. Fabbri, C. Buratti, and R. Verdone. A multi-sink multi hop wireless sensornetwork over a bounded region: Conne
tivity and energy 
onsumption issues. InPro
. of IEEE Wireless Mesh and Sensor Networks, WMSN 08, New Orleans,LA, USA, November 2008.[14℄ C. Buratti. Performan
e analysis of ieee 802.15.4 bea
on-enabled mode. Sub-mitted to IEEE Trans. on Vehi
ular Te
hnologies.



325[15℄ C. Buratti and R. Verdone. A mathemati
al model for performan
e analysisof ieee 802.15.4 non-bea
on enabled mode. In Pro
. IEEE European Wireless,EW2008, Prague, Cze
h Republi
, June 2008.[16℄ C. Buratti and R. Verdone. Performan
e analysis of ieee 802.15.4 non-bea
onenabled mode. IEEE Trans. Veh. Te
hnol., 2009.[17℄ C. Buratti. A mathemati
al model for performan
e of ieee 802.15.4 bea
on-enabled mode. In Submitted to IEEE IWCMC 2009, 2009.[18℄ R. Verdone, F. Fabbri, and C. Buratti. Area throughput for 
sma based wirelesssensor networks. In Pro
. of IEEE Int. Symp. on Personal, Indoor and MoRadioCommuni
ations, PIMRC 2008, Cannes, Fran
e, September 2008.[19℄ C. Buratti, F. Fabbri, and R. Verdone. Area throughput of an ieee 802.15.4based wireless sensor network. In Pro
. of Europen Conferen
e on WirelessSensor Networks, EWSN 2009, Cork, Ireland, February 2009.[20℄ J. Riihij�arvi, F. Fabbri, C. Buratti, P. M�ah�onen, and R. Verdone. Areathroughput and energy eÆ
ien
y for 
lustered wireless sensor networks de-ployed in bounded regions. In Pro
. IEEE NEWCOM/ACORN Workshop 2009,Bar
elona, Spain, Mar
h 2009.[21℄ F. Fabbri, C. Buratti, R. Verdone, J. Riihij�arvi, and P. M�ah�onen. Area through-put and energy 
onsumption for 
lustered wireless sensor networks. In Pro
. ofIEEE WCNC 2009, Budapest, Hungary, April 2009.[22℄ C. Buratti and Alberto Zanella. Capa
ity analysis of two-hop virtual mimosystems in a poisson �eld of nodes. In Pro
. of IEEE Vehi
ular Te
hnologies,VTC fall 2009, Bar
elona, Spain, April 2009.



326[23℄ C. Buratti, I. Korpeoglu, E. Karasan, and R. Verdone. Bluetooth or 802.15.4te
hnologies to optimise lifetime of wireless sensor networks: Numeri
al 
om-parison under a 
ommon framework. In WNC3, Wireless Networks: Communi-
ation, Cooperation and Competition Workshop, WiOpt 2008, Berlin, Germany,Mar
h 2008.[24℄ C. Buratti, F. Cuomo, S.D. Luna, U. Mona
o, J. Orriss, and R. Verdone. Op-timum tree-based topologies for multi-sink wireless sensor networks using ieee802.15.4. In Pro
. IEEE 65th Vehi
ular Te
hnology Conferen
e (VTC'07), pages130{134, April 2007.[25℄ C. Buratti and R. Verdone. A hybrid hierar
hi
al multi-hop wireless network:From wireless sensors to the �xed infrastru
ture. In Pro
. of LOCAN 2007,Pisa, Italy, O
tober 2007.[26℄ C. Buratti and R. Verdone. A hybrid hierar
hi
al ar
hite
ture: From a wirelesssensor network to the �xed infrastru
ture. In Pro
. of IEEE European Wireless,EW2008, Prague, Cze
h Republi
, June 2008.[27℄ Ian F. Akyildiz, Yogesh SankarasubramaniamWeilian Su, and Erdal Cayir
i. Asurvey on sensor networks. IEEE Commun. Mag., 40(8):102{114, August 2002.[28℄ M. Tubaishat and S. Madria. Sensor networks: an overview. IEEE Potentials,22:20{30, April 2003.[29℄ Anna Ha
. Wireless Sensor Network Designs. John Wiley & Sons Ltd, 2003.[30℄ C.S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati. Wireless SensorNetworks. Kluwer A
ademi
 Publishers, 2004.[31℄ K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie. Proto
ols for self-organization of a wireless sensor network. IEEE Personal Communi
ations,7:16{27, O
tober 2000.



327[32℄ David Culler, Deborah Estrin, and Mani Srivastava. Overview of sensor net-works. IEEE Computer, 37(8):41{49, August 2004.[33℄ V. Rajaravivarma, Yi Yang, and Teng Yang. An overview of wireless sensornetwork and appli
ations. In Pro
. of 35th Southeastern Symposium on SystemTheory, 2003, pages 432{436, Mar
h 2003.[34℄ R. Verdone. Wireless sensor networks. Pro
. of the 5th European Conferen
e,EWSN 2008, Bologna, Italy. Springer-Verlang, January 2008.[35℄ R. Verdone, D. Dardari, G. Mazzini, and A. Conti. Wireless sensor and a
tuatornetworks. Elsevier, 2008.[36℄ C. Y. Lin, Y. C. Tseng, and T. H. Lai. Message-eÆ
ient in-network lo
ationmanagement in a multi-sink wireless sensor network. In IEEE Int. Conf. onSensor Networks, Ubiquitous, and Trustworthy Computing, 2006., pages 1{8,June 2006.[37℄ Y. Chen and Q. Zhao. On the lifetime of wireless sensor networks. IEEECommun. Lett., 9(11):976{978, 2005.[38℄ M. Esseghir, N. Bouabdallah, and G. Pujolle. A novel approa
h for improvingwireles sensor network lifetime. In IEEE Int. Symp. on Personal, Indoor andMoRadio Communi
ations, 2005. PIMRC 2005, volume 4, pages 11{14, Berlin,Germany, September 2005.[39℄ Texas Instruments. Chip
on Produ
ts.[40℄ G. Lu, B. Krishnama
hari, and C. S. Raghavendra. An adaptive energy eÆ
ientand low-laten
y ma
 for data gathering in wireless sensor networks. In Pro
. of18th International Parallel and Distributed Pro
essing Symposium, 2004, 2004.



328[41℄ C. S
hurgers and M. B. S
rivastava. Energy eÆ
ient routing in wireless sen-sor networks. In Pro
. of IEEE Militaryy Communi
ations Conferen
e, 2001,volume 1, pages 357{361, 2001.[42℄ W. B. Heinzelman, A. P. Chandrakasan, and H. Balakishnan. Energi-eÆ
ient
ommuni
ation proto
ol for wireless mi
rosensor networks. In Pro
. of 33thHawaii International Conferen
e on System S
uien
es, 2000, volume 2, 2000.[43℄ P. J. Marron, D. Minder, and Embeddeed WiseNts Consortium. EmbeddeedWiseNts Resea
rh Roadmap. Information So
iety Te
hnologies, Berlin, Ger-many, 2006.[44℄ EC Proje
t e-SENSE, FP6. See the website: http://www.ist-esense.org.[45℄ EC Proje
t CRUISE, FP6. See the website: http://www.ist-
ruise.eu.[46℄ P. J. Marron. Cooperating Obje
ts NETwork of Ex
ellen
e. University of Bonn,Germany.[47℄ M. Lu

hi, A. Giorgetti, and M. Chiani. Cooperative diversity in wireless sensornetworks. InWPMC'05, pages 1738{1742, Aalborg, Denmark, September 2005.[48℄ T.Q.S. Quek, D. Dardari, and Moe Z. Win. Energy eÆ
ien
y of dense wire-less sensor networks: To 
ooperate or not to 
ooperate. IEEE J. Sel. AreasCommun., 25(2):459{470, February 2007.[49℄ S. N. Simi�
 and S. Sastry. Distributed environmental monitoring using randomsensor networks. In Pro
. of of Workshop on Information Pro
essing in SensorNetworks, April 2003.[50℄ C. F. Chiasserini, A. Nordio, and E. Viterbo. On data a
quisition and �eldre
onstru
tion in wireless sensor networks. In Pro
. of Tyrrhenian Workshopon Digital Communi
ations, 2005, July 2005.



329[51℄ Zigbee Alian
e. Zigbee Spe
i�
ations. Zigbee Standard Organisation, 2008.[52℄ IEEE 802.15.4 Standard. Part 15.4: Wireless Medium A

ess Control (MAC)and Physi
al Layer (PHY) Spe
i�
ations for Low-Rate Wireless Personal AreaNetworks (LR-WPANs). IEEE, Pis
ataway, New Jersey, 08855-1331, 2006.[53℄ Moe Win and Robert S
holtz. Impulse radio: How it works. IEEE Commun.Lett., 2(2):36{38, February 1998.[54℄ IEEE 802.15.4a Standard. Part 15.4: Wireless MAC and PHY Spe
i�
ations forLow-Rate Wireless Personal Area Networks (LR-WPANs): Amendment to addalternate PHY (Draft). IEEE, Pis
ataway, New Jersey, 08855-1331, De
ember2006.[55℄ BluetoothTM. Spe
i�
aton of the Bluetooth System, volume 0-3. IEEE, 2004.[56℄ P. Santi and D. M. Blough. The 
riti
al transmitting range for 
onne
tivityin sparse wireless ad ho
 networks. IEEE Trans. Mobile Comput., 2(1):25{39,2003.[57℄ C. Bettstetter and J. Zangl. How to a
hieve a 
onne
ted ad ho
 network withhomogeneous range assignment: an analyti
al study with 
onsideration of bor-der e�e
ts. In Pro
. of 4th International Workshop on Mobile and WirelessCommuni
ations Network 2002, pages 125{129, September 2002.[58℄ C. Bettstetter. On the minimum node degree and 
onne
tivity of a wireless mul-tihop network. In Pro
. ACM Symp. on Mobile Ad Ho
 Networks and Comp.,Mobiho
 2202, June 2002.[59℄ A. Fanimokun and J. Frolik. E�e
ts of natural propagation environments onwireless sensor network 
overage area. In Pro
. of 35-th Southeastern Sympo-sium on System Theory, 2003, pages 16{18, Mar
h 2003.



330[60℄ J. Orriss, A.R. Phillips, and S. Barton. A statisti
al model for the spatialdistribution of mobiles and base stations. In Pro
. of IEEE Vehi
ular Te
hnol.Conferen
e, VTC 1999, volume 1, pages 19{22, September 1999.[61℄ J. Orriss and S. K. Barton. Probability distributions for the number of radiotrans
eivers whi
h 
an 
ommuni
ate with one another. IEEE Trans. Commun.,51(4):676{681, April 2003.[62℄ D. Miorandi and E. Altman. Coverage and 
onne
tivity of ad ho
 networks inpresen
e of 
hannel randomness. In Pro
. of 24th Annual Joint Conferen
e of theIEEE Computer and Communi
ations So
ieties, INFOCOM 2005., volume 1,pages 491{502, 13-17 Mar
h 2005.[63℄ E. Salbaroli and A. Zanella. A 
onne
tivity model for the analysis of a wirelessad-ho
 network of �nite area. In Sensor and Ad Ho
 Communi
ations andNetworks, 2006 SECON '06 3rd Annual IEEE Communi
ations So
iety on,volume 3, pages 756{760, 2006.[64℄ F. Zhao, J. Liu, L. Guibas, and J. Rei
h. Collaborative signal and informa-tion pro
essing: an information-dire
ted approa
h. In Pro
. of IEEE, 2003, toappear., volume 91, pages 1199{1209, August 2003.[65℄ C.F. Chiasserini and R.R. Rao. On the 
on
ept of distributed digital signalpro
essing in wireless sensor networks. In Pro
. of MILCOM 2002, volume 1,pages 260{264, O
tober 2002.[66℄ R. E. Van Di
k, L. E. Miller, and M. Gaithersburg. Distributed sensor pro
ess-ing over an ad ho
 wireless network: simulation framework and performan
e
riteria. In Pro
. of IEEE Mil
om, O
tober 2001.



331[67℄ D. Miorandi and E. Altman. Coverage and 
onne
tivity of ad ho
 networks inpresen
e of 
hannel randomness. In Pro
. of IEEE 24th Annual Joint Confer-en
e of the IEEE Computer and Communi
ations So
ieties, INFOCOM 2005,volume 1, pages 491{502, 13-17 Mar
h 2005.[68℄ W.A. Gardner. Introdu
tion to random pro
esses: with appli
ations to signalsand systems. M
Graw Hill, se
ond edition, 1989.[69℄ E. Masry. Poisson sampling and spe
tral estimation of 
ontinuos-time pro
esses.IEEE Trans. Inf. Theory, 24(2):173{183, Mar
h 1978.[70℄ F.J. Beutler. Alias-free randomly timed sampling of sto
hasti
 pro
esses. IEEETrans. Inf. Theory, 16(2):147{152, 1970.[71℄ F. Marvasti. Signal re
overy from nonuniform samples and spe
tral analysison random nonuniform samples. In Pro
. of IEEE International Conferen
e onA
ousti
s, Spee
h, and Signal Pro
essing, ICASSP'86, volume 11, pages 1649{1652, apr 1986.[72℄ S. S. Pradhan, J. Kusuma, K. Ram
handran, and F.J. Beutler. Distributed
ompression in a dense mi
rosensor network. IEEE Signal Pro
essing Magazine,pages 51{60, 2002.[73℄ W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan. An appli
ation-spe
i�
 proto
ol ar
hite
ture for wireless mi
rosensor networks. IEEE Trans.Wireless Commun., 1:660{670, O
tober 2002.[74℄ A. De Pedri, A. Zanella, and R. Verdone. An energy eÆ
ient proto
ol forwireless ad ho
 sensor networks. In IEEE Pro
. of Int'l Symp. on AutonomousIntelligent Networks and Systems (AINS '03), Bologna, Italy, June 2003.[75℄ J. Orriss, A. Zanella, R. Verdone, and S. Barton. Probability distributionsfor the number of radio trans
eivers in a hot spot with an appli
ation to the



332 evaluation of blo
king probabilities. In IEEE Pro
. of Personal, Indoor andMobile Radio Communi
ations, 2002, volume 2, September 2002.[76℄ R. Verdone, J. Orriss, A. Zanella, and S. Barton. Evaluation of the blo
kingprobability in a 
ellular environment with hard 
apa
ity: a statisti
al approa
h.In IEEE Pro
. of Personal, Indoor and Mobile Radio Communi
ations, 2002,volume 2, September 2002.[77℄ W. Ye, J. Heidemann, and D. Estrin. An energy-eÆ
ient ma
 proto
ol forwireless sensor networks. In IEEE Pro
. of INFOCOM, volume 3, pages 1567{1576, New York, USA, June 2002.[78℄ A. Woo and D. Culler. A transmission 
ontrol s
heme for media a

ess in sensornetwork. In Pro
. ACM MobiCom 2001, pages 272{286, Rome, Italy, July 2001.[79℄ R. Verdone. An energy-eÆ
ient de
entralised 
ommuni
ation proto
ol for anetwork of uniformly distributed sensors polled by a wireless trans
eiver. InPro
. of IEEE ICC 2004, Madison, Wis
onsin, May 2004.[80℄ P. Santi. Topology Control in Wireless Ad Ho
 and Sensor Networks. JohnWiley and Sons, Chi
hester, UK, 2005.[81℄ C. F. Chiasserini and M. Ajmone Marsan. A distributed self-healing approa
h tobluetooth s
atternet formation. IEEE Trans. Wireless Commun., pages 2649{2654, November 2005.[82℄ A. Koubaa, M. Alves, and E. Tovar. Modeling and worst-
ase dimensioningof 
luster-tree wireless sensor networks. In 27th IEEE International Real-TimeSystems Symposium, 2006, RTSS 2006, pages 412{421, De
ember 2006.[83℄ J. Orriss, S. K. Barton, and R. Verdone. A hierar
hi
al model for a sensornetwork. In Pro
. of IWWAN 2005, London, England, May 2005.



333[84℄ J. Orriss and R. Verdone. Mathemati
al analysis of tree-based topologies formulti-sink wireless sensor networks. In Pro
. of IWWAN 2006, 2006.[85℄ M. Haenggi. On distan
es in uniformly random networks. IEEE Trans. Inf.Theory, 51(10):3584{3586, o
t 2005.[86℄ B. Bollobs. Random Graphs. Cambridge University Press, se
ond ed., 2001.[87℄ R. Meester and R. Roy. Continuum Per
olation. Cambridge University Press,Cambridge UK, 1996.[88℄ M. D. Penrose and A. Pistztora. Large deviations for dis
rete and 
ontinousper
olation. Advan
es in Applied Probability, 28:29{52, 1996.[89℄ M. D. Penrose. On the spread-out limit for bond and 
ontinuum per
olation.Annals of Applied Probability, 3:253{276, 1993.[90℄ M. D. Penrose. On k-
onne
tivity for a geometri
 random graph. RandomStru
tures and Algorithms, 15:145{164, 1999.[91℄ Z. Vin
ze, R. Vid, and A. Vida
s. Deploying multiple sinks in multi-hop wire-less sensor networks. In Pro
. of IEEE International Conferen
e on PervasiveServi
es, pages 55{63, July 2007.[92℄ Pishro-Nik, K.S. Chan, and F. Fekri. On 
onne
tivity properties of large-s
alesensor networks. In Pro
. of the First Annual IEEE Communi
ations So
i-ety Conferen
e on Sensor and Ad Ho
 Communi
ations and Networks, 2004,SECON04, pages 498{507, O
tober 2004.[93℄ Frees
ale. Frees
ale Semi
ondu
tor's MC13192 Developer's Kit. Frees
ale.[94℄ S. Vural and E. Eki
i. Probability distribution of multi-hop-distan
e in one-dimensional sensor networks. ACM Computer Networks: The International



334 Journal of Computer and Tele
ommuni
ations Networking, 51(13):3727{3749,September 2007.[95℄ A. Mar
u

i, M. Nati, C. Petrioli, and A. Vitaletti. Dire
ted di�usion light:low overhead data dissemination in wireless sensor networks. In IEEE 61stVehi
ular Te
hnology Conferen
e, 30 May - 1 June 2005.[96℄ F. Fabbri and R. Verdone. Throughput analysis of an ieee 802.1lb multihop adho
 network. In Pro
. IEEE European Wireless, EW2008, Prague, Cze
h, June2008.[97℄ D. Stoyan, W. S. Kendall, and J. Me
ke. Sto
hasti
 Geometry and its Appli
a-tions. John Wiley and Sons Ltd, 1995.[98℄ G. Lu, B. Krishnama
hari, and C. S. Raghavendra. Performan
e evaluation ofthe ieee 802.15.4 ma
 for low-rate low-power wireless networks. InWorkshop onEnergy-EÆ
ient Wireless Communi
ations and Networks, 2004. EWCN 2004,pages 701{706, April 2004.[99℄ B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene.Energy eÆ
ien
y of the ieee 802.15.4 standard in dense wireless mi
rosensornetworks: Modeling and improvement perspe
tives. In Pro
. Design Automa-tion and Test in Europe Conferen
e and Exhibition, 2005, pages 196{201, Mar
h2005.[100℄ Anis Koubaa, Mirio Alves, and Eduardo Tovar. A 
omprehensive simulationstudy of slotted 
sma/
a for ieee 802.15.4 wireless sensor networks. In IEEE In-ternational Workshop on Fa
tory Communi
ation Systems, 2006. WFCS 2006,pages 183{192, June 2006.[101℄ T. O. Kim, H. Kim, J. Lee, J. S. Park, and B. D. Choi. Performan
e analysis ofthe ieee 802.15.4 with non bea
on-enabled 
sma/
a in non-saturated 
ontition.



335In International Conferen
e on Embedded And Ubiquitous Computing, 2006.EUC 2006, pages 884{893, August 2006.[102℄ J. Misi
, V. B. Misi
, and S. Sha�. Performan
e of ieee 802.15.4 bea
on-enabledpan with uplink transmissions in non-saturation mode - a

ess delay for �nitebu�ers. In Pro
. First International Conferen
e on Broadband Networks, 2004.BroadNets 2004, pages 416{425, O
tober 2004.[103℄ J. Misi
, S. Sha�, and V. B. Misi
. The impa
t of ma
 parameters on theperforman
e of 802.15.4 pan. Elsevier Ad ho
 Networks Journal, 3:509{528,September 2005.[104℄ J. Misi
, S. Sha�, and V. B. Misi
. Maintaining reliability through a
tivitymanagement in an 802.15.4 sensor 
luster. IEEE Trans. Veh. Te
hnol., 3:779{788, May 2006.[105℄ S. Pollin, M. Ergen, S.C. Ergen, B. Bougard, L. Van der Pierre, F. Catthoor,I. Moerman, A. Bahai, and P. Varaiya. Performan
e analysis of slotted 
ar-rier sense ieee 802.15.4 medium a

ess layer. IEEE Trans. Wireless Commun.,7:3359{3371, September 2008.[106℄ T.R. Park, T.H. Kim, J.Y. Choi, S. Choi, and W.H. Kwon. Throughput andenergy 
onsumption analysis of ieee 802.15.4 slotted 
sma/
a. IEEE Ele
troni
sLetters, 41:1017{1019, September 2005.[107℄ G. Bian
hi. Performan
e analysis of the ieee 802.11 distributed 
oordinationfun
tion. IEEE J. Sel. Areas Commun., 18:535{547, Mar
h 2000.[108℄ Z. Chen, C. Lin, H. Wen, and H. Yin. An analyti
al model for evaluatingieee 802.15.4 
sma/
a proto
ol in low rate wireless appli
ation. In Pro
. IEEEAINAW 2007, 2007.[109℄ L. Kleinro
k. Queueing Systems. John Wiley and Sons, 1975.



336[110℄ P. Stuedi, O. Chinellato, and G. Alonso. Conne
tivity in the presen
e of shad-owing in 802.11 ad ho
 networks. In Pro
. IEEE WCNC, 2005, 2005.[111℄ H. Takagi and L. Kleinro
k. Throughput analysis for persistent 
sma systems.IEEE Trans. Commun., 33(7):627{638, July 1985.[112℄ K.J. Zdunek, D.R. U

i, and J.L. Lo
i
ero. Throughput of nonpersistent in-hibit sense multiple a

ess with 
apture. IEEE Ele
troni
s Letters, 25(1):30{31,January 1989.[113℄ J. H. Kim and J. K. Lee. Capture e�e
ts of wireless 
sma/
a proto
ols rayleighand shadow fading 
hannels. IEEE Ele
troni
s Letters, 48(4):1277{1286, July1999.[114℄ P. Siripongwutikorn. Throughput analysis of an ieee 802.1lb multihop ad ho
network. In Pro
. IEEE TENCON 2006, pages 1{4, November 2006.[115℄ P. Mahonen, M. Petrova, and J. Riihijarvi. Appli
ations of topology informationfor 
ognitive radios and networks. In Pro
. IEEE 2nd International Symposiumon New Frontiers in Dynami
 Spe
trum A

ess Networks 2007, DySPAN2007,pages 103{114, 2007.[116℄ M. Petrova, P. Mahonen, and J. Riihijarvi. Conne
tivity analysis of 
lustered adho
 and mesh networks. In Pro
. IEEE Global Tele
ommuni
ations Conferen
e,2007. GLOBECOM '07, pages 1139{1143, 2007.[117℄ M. Thomas. A generalization of poisson's binomial limit for use in e
ology.Biometrika, 36:18{25, 1949.[118℄ J. Hoydis, M. Petrova, and P. Mahonen. E�e
ts of topology on lo
al throughput-
apa
ity of ad ho
 networks. In IEEE Int. Symp. on Personal, Indoor andMoRadio Communi
ations, 2008. PIMRC 2008, September 2008.



337[119℄ Y. C. Tay, K. Jamieson, and H. Balakrishnan. Collision-minimizing 
sma andits appli
ations to wireless sensor networks. IEEE J. Sel. Areas Commun.,22:1048{1057, August 2004.[120℄ J. Riihijarvi, P. Mahonen, and M. Rubsamen. Chara
terizing wireless networksby spatial 
orrelations. IEEE Commun. Lett., 11:37{39, 2007.[121℄ M. Dohler, J. Dominguez, and H. Aghvami. Link 
apa
ity analysis for virtualantenna arrays. In Pro
. of IEEE Vehi
ular Te
hnology Conferen
e, VTC 2002-Fall., September 2002.[122℄ M. Dohler, A. Gkelias, and H. Aghvami. Two-hop distributed mimo 
ommuni-
ation system. IEEE Ele
troni
s Letters, 39:1350{1351, September 2007.[123℄ M. Dohler et al. Vaa for hot-spots with applied st
. In M-VCE, InternalReports I,II, III and IV, King's College London, University of London, London,1999-2002.[124℄ M. Dohler. Virtual antenna arrays. In PhD Thesis, King's College London,University of London, London, 2003.[125℄ H. Zhang and H. Dai. On the 
apa
ity of distributed mimo systems. In Pro
.of the Conf. on Information S
ien
es and Systems, CISS 2004, Prin
eton, NJ,Mar
h 2004.[126℄ S. Jayaweera. V-blast virtual mimo for distributed wireless sensor networks.IEEE Trans. Commun., 55:1867{1872, O
tober 2007.[127℄ R. H. Y. Louie, I. B. Collings, and M. R. M
Kay. Analysis of dense ad ho
 net-works with spatial diversity. In Pro
. of IEEE GLOBECOM 2007, Washington,DC, November 2007.



338[128℄ K. Stamatiou, J. G. Proakis, and J. R. Zeidler. Evaluation of mimo te
hniquesin fh-ma ad ho
 networks. In Pro
. of IEEE GLOBECOM 2007, Washington,DC, November 2007.[129℄ A. Jovi
i
, P. Viswanath, and S.R. Kulkarni. Upper bounds to transport 
a-pa
ity of wireless networks. IEEE Trans. Inf. Theory, 50(11):2555{2565, 2004.[130℄ O. Leveque and I.E. Telatar. Information-theoreti
 upper bounds on the 
a-pa
ity of large extended ad ho
 wireless networks. IEEE Trans. Inf. Theory,51(3):858{865, 2005.[131℄ H. Bol
skei, R. U. Nabar, O. Oyman, and A. J. Paulraj. Capa
ity s
aling lawsin MIMO relay networks. IEEE Trans. Wireless Commun., 5(6):1433{1444,2006.[132℄ H. Jafarkhani, H. Youse�'zedeh, and J. Kazemitabar. Capa
ity-based 
onne
-tivity of MIMO fading ad-ho
 networks. In IEEE, editor, Pro
eedings of IEEEGLOBECOM 2005, pages 2827{2831, 2005.[133℄ E. Salbaroli and A. Zanella. A
hievable rate of wireless sensor networks withmulti-antenna sinks. In IEEE, editor, Pro
eedings of the Vehi
ular Te
hnologyConferen
e, 2007. VTC 2007-Spring, 2007.[134℄ A. Zanella, M. Chiani, and M. Z. Win. A general framework for the distributionof the eigenvalues of wishart matri
es. In IEEE, editor, Pro
. of IEEE Int. Conf.on Communi
ations, ICC 2008, Beijing, China, May 2008.[135℄ I. S. Gradshteyn and I. M. Ryzhik. Tables of Integrals, Series, and Produ
ts.Alan Je�rey, Editor.[136℄ Utz Roedig and Corma
 J. Sreenan. Wireless sensor networks. Pro
. of the 5thEuropean Conferen
e, EWSN 2009, Cork, Ireland. Springer-Verlang, February2009.



339[137℄ N. Abramson. The throughput of pa
ket broad
asting 
hannels. IEEE Trans.Commun., 25:117{128, 1977.[138℄ W. Wang Y. Wang and T. A. Dahlberg. Truthful routing for wireless hybridnetworks. In IEEE, editor, Pro
eedings of IEEE GLOBECOM 2005, 2005.[139℄ Silke Heier and Matthias Malkowski. Umts radio resour
e management bytransport format assignment and sele
tion. In Pro
. of IEEE Wireless PersonalMultimedia Communi
ations, 2002, pages 1187{ 1191, O
tober 2002.[140℄ Young-June Choi and Saewoong Bahk. Qos s
heduling for multimedia traÆ
 inpa
ket data 
ellular networks. In Pro
. of IEEE Int. Conf. on Communi
ations,ICC 2003, volume 1, pages 358{362, May 2003.[141℄ Patri
k Kinney. Zigbee te
hnology: Wireless 
ontrol that simply works. InCommuni
ations Design Conferen
e, O
tober 2003.[142℄ E. Callaway J. Gutierrez and R. Barret. Low-Rate Wireless Personal AreaNetworks - Enabling Wireless Sensors with IEEE 802.15.4. IEEE, 2006.





A
knowledgementsThis work was possible only with the support of many people. In �rst pla
e, I wish tothank my supervisor, Prof. Roberto Verdone, for his many suggestions and 
onstantsupport during this resear
h, and the Dire
tor of WiLab (the Wireless Communi
ationLaboratory at the University of Bologna, whi
h I belong to), Prof Oreste Andrisano,who set the environment for my work during this PhD.Then, after Roberto, my guide, I would like to thank the people of WiLab whomainly 
ontributed to this work, and helped me in the di�erent phases: Davide,Alberto, Andrea C., Andrea G. and Flavio. Thank you for the useful dis
ussionsand your help in the development of the di�erent models des
ribed in this thesis. Indi�erent ways and periods they all have 
ontributed to my growth, and taught medi�erent aspe
ts of this job.I am also thankful to the people I 
ollaborated with in the di�erent Proje
ts, JohnOrris, Fran
es
a Cuomo and Janne Riihij�arvi, and all the Professors and resear
hersI worked with in the framework of NEWCOM and NEWCOM++.I would like also to thank my oÆ
e mates. First of all, Virginia, the person withwhom I shared this "travel", the funny and stressed days. And all the (old and new)guys of the laboratory, Daniele, Fran
es
o, Alessandro, Mar
o, Flavio, Andrea andCengiz. Finally I would like to thank Silvia, without her support I wouldn't havetime for doing resear
h.Of 
ourse I 
annot forget the people who make my life fun and 
omplete, Silvia,Federi
a, Federi
a and Arianna. Thank you for being so spe
ial with me.Finally, I would like to thank my family, for their patien
e, love and un
onditionalsupport. Without them this work would never have 
ome into existen
e (literally).This thesis is dedi
ated to the person who allowed the realisation of this dream.


