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Introduction 
 
 

During the last few years geophysical methods employed in underground exploration 

have been constantly and substantially evolving in both physical and technological 

aspects. 

The geophysical prospecting methods can be divided, in the first instance, into two 

categories, artificial source and natural source. The artificial source methods are based 

on the study of the observed responses on the surface of the interested volume of ground 

to a physical stress artificially induced in the ground. For example, the geoelectric 

method takes in exam the electric properties of the subsoil by studying the flux of 

artificially injected currents, thus allowing the retrieval of information about the electric 

resistivity of the surveyed ground portion. It can successfully highlight even weak 

resistivity contrasts that buried objects create with the hosting background. 

 The natural source methods, instead, base their development on the study of the 

fields naturally found inside the earth, as e.g. the gravimetric method. By analysing the 

gravitational field, it allows the properties of the matter which originated the field to be 

detected and hence the mass distribution below the surface to be imaged. 

In synthesis, the principal aim of the geophysical studies is to retrieve information 

about shape, location and physical  characteristics of the investigated bodies. To  this 

purpose, it is necessary to solve the so-called “inverse problem”, i.e. to determine the 

characteristic parameters of the buried structures, starting from a series of measures 

obtained on the surface. The solution to this problem is very complex because of the 

many solutions compatible with an acquired data set, indeed, different bodies can cause 

the same image on the surface. 

The probability tomography approach allows the analysis of the experimental data 

without introducing some a priori information on  the investigated structures. In the 

limits of the experimental accuracy, the probability tomography is able to give a 

geometrical representation of the buried sources of anomalies. Therefore, the main 
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difference with the classical inversion methods is the absence of any possibility to 

estimate the intrinsic physical parameters of the source bodies. In many near-surface 

applications, e.g. in archaeological prospection, this is not a serious limitation, since in 

most cases location and geometry of the sources are more than sufficient to resolve the 

practical problem. In the cases in which the knowledge of the intrinsic physical 

parameter of the bodies is essential, the results of the probability tomography can 

suitably used as robust geometrical constraints in any of the classical inversion routines. 

Geophysical probability tomography (GPT) was proposed as an approach to virtually 

explore the subsoil in the search for the most probable localization of the sources of 

anomalies appearing in a field dataset collected in a given datum domain. It was 

originally formulated for the self-potential method [41,42] and then extended to the 

geoelectric [25,26,32], em induction [27], gravity [28,29] and magnetic [18,19,30] 

prospecting methods. In all of these formulations, the buried bodies responsible for the 

observed anomalies were considered as aggregates of small cells, definitively 

assimilated to poles. A pole was thus assumed to represent the physical centre of a small 

cell with a constant electric charge density in the self-potential and, mass density in 

gravity and resistivity in geoelectrics. GPT sensitivity and resolution power have been 

and are still widely and successfully tested on synthetic and experimental data in many 

application fields [6,7,8,12,13,24,43,53] . 

An extension of the GPT theory has been recently proposed [32] by postulating that 

some given geophysical dataset can be viewed as the simultaneous response of a double 

set of buried physical sources, say poles and dipoles. In this new formulation, while 

poles hold the original meaning as explained above, dipoles, instead, are assumed to 

simulate sharp boundary elements. The two-source GPT approach has been shown to 

provide a more reliable depiction of the most probable spatial collocation and extent of 

source bodies [1]. 

This  thesis is composed of two parts. The first part , theoretical and methodological, 

has been addressed to the development of the  GPT method to multipole source analysis 

in order to obtain more information on the shape and the position of the sources of the 

experimentally detected anomalies. 
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We develop the theory of the generalized 3D GPT to image source poles,  dipoles, 

quadrupoles and octopoles,  from a generic geophysical vector or scalar field dataset 

[2,3,4].  

The generalised 3D GPT method is described by first assuming that any geophysical 

field dataset can be hypothesized to be caused by a discrete number of source poles, 

dipoles, quadrupoles and octopoles. 

Then, the theoretical derivation of the source pole occurrence probability (SPOP) and 

source dipole occurrence probability (SDOP) tomography, previously published in 

detail for single geophysical methods, is symbolically restated in the most general way. 

Finally, the theoretical derivation of the source quadrupole occurrence probability  

tomography (SQOP) and  source octopole occurrence probability  tomography (SOOP) 

are given following a formal development similar to those of the SPOP  and SDOP 

tomography. 

These elementary sources are used to image, in the most complete way and without 

any a priori assumption, shape and position of the most probable anomaly source 

bodies, by picking out the location of the centres and of peculiar points of the 

boundaries, such as corners, wedges and vertices. In this new formulation, poles and 

dipoles still have the original meaning to represent centres and boundaries, respectively, 

of elementary bodies with constant constitutive parameters, while quadrupoles and 

octopoles are assumed to simulate sharp  corners, wedges and vertices elements. The 

purpose of multipole analysis is to improve the resolution power of geophysical 

methods, using once more probability as a suitable paradigm allowing all possible 

equivalent solutions to be included into a unique 3D tomography image.  

The second part is dedicated to the application of the developed theory to synthetic 

data for method  testing and to real data for a comparison with the previous inversion 

results. The  innovative aspects and the improvements of this method for the 3D 

tomographic imaging of buried targets is discussed in detail. 

The applications fields have been archaeology for near-surface analysis and 

vulcanology for deep analysis. 

In particular, for the near-surface analysis in archaeological prospection, a 

geoelectrical survey was planned in an unexplored site of the archaeological park of 

Pompei.  
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For the deep analysis in volcanological prospection, the experimental  data taken into 

consideration are related to a gravity survey carried out in the volcanic area of Mount 

Etna (Sicily, Italy), and an SP dataset collected in the Mt. Somma-Vesuvius volcanic 

district (Naples, Italy).   
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1. Multipole Geophysical Tomography 
 

 

1.1  General theory 

 

 

Consider a reference coordinate system with a horizontal (x,y)-plane and the z-axis 

positive downwards, and a 2D datum domain S as in figure 1.1. The S-domain is 

generally a non-flat ground survey area characterised by a topographic function z(x,y). 

Let A(r) be a vector anomaly function at a set of datum points r(x,y,z), with rS, 

we assume that A(r) can be discretised as 

 

 
1 1
( ) ( , ) ( ) ( , )

M N
u u

m m m n n n
m n 

    A r p P s r r d L s r r  

        
1 1
( ) ( , ) ( ) ( , )

G H
uv uv uvw uvw
g g g h h h

g h 

    q S s r r o C s r r                                                          (1.1) 

 

i.e. as a sum of effects due to: 

- a set of M poles, the mth element of which is located at rm(xm,ym,zm) and has 

strength pmPm, where pm and Pm are the pole moment and a point operator zero-

order tensor, respectively; 

- a set of N dipoles, whose nth element is located at rn(xn,yn,zn) with strength 

( u
n

u
n Ld  ) (u=x,y,z), where u

nd  and u
nL  are the dipole moment and a line operator first-

order tensor, respectively; 

- a set of G quadrupoles, whose gth element is located at rg(xg,yg,zg) with strength 
uv
g

uv
g Sq   (u,v=x,y,z), where uv

gq  and uv
gS  are the quadrupole moment and a square 

operator second-order tensor, respectively; 
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- a set of H octopoles, whose hth element is located at rh(xh,yh,zh) and has strength 
uvw
h

uvw
h Co   (u,v,w=x,y,z), where uvw

ho  and uvw
hC  are the octopole moment and a cube 

operator third-order tensor, respectively. 

The dot in the definition of the source strength tensors indicates inner product. The 

operator tensors P, Lu, Suv and Cuvw (u,v,w=x,y,z) are explicated in figure 1.2 . 

The effect of the M, N, G and H source elements at a point rS is determined by the 

same kernel function s(r,ri), (i=m,n,g,h). 

 

 
 

Figure 1.1 The datum domain (S-domain) generating the A(r) map on top. The (x,y)-plane is placed at 

sea level and the z-axis points into the earth. 

 

We define the information power , associated with A(r), over the surface S as 

 

   
S

dS  A r A r                                                              (1.2) 



                                                                                                                          Chapter I 
                                                                                                                                            3D Multipole GPT 
 
 
 
 

   7 
 
 

 

which, using eq. 1.1, is expanded as  

 

 
1

Λ ( , )d
M

m m
m S

p S


  A r s r r  

 
1 , ,

( , ) d
N

u n
n

n u x y z nS

d S
u 


 

  
s r rA r  

 
2

1 , , , ,

( , )G
guv

g
g u x y z v x y z g gS

q dS
u v  


 

    
s r r

A r  

 
3

1 , , , , , ,

( , )H
uvw h
h

h u x y z v x y z w x y z h h hS

o dS
u v w   


 

      
s r rA r                                                     (1.3) 

 

 
 

Figure 1.2 Explicit representation of the symbolic tensor operators appearing in the definition of the 

strengths of the pole, dipole, quadrupole and octopole source elements defined in eq. 1.1. 
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1.2 The source pole occurrence probability 

 

 

We consider a generic mth integral of the first sum in eq. 1.3 and apply Schwarz’s 

inequality, thus obtaining 

 
2

( ) ( , )m
S

dS
 

  
 
A r s r r 2 2( ) ( , )m

S S

A dV s dS r r r                                                            (1.4) 

 

where A(r) and s(r,rm) are the modulus of A(r) and s(r,rm), respectively. 

Inequality 4 is used to define a source pole occurrence probability (SPOP) function 

[2,28] as 

 

 ( ) ( ) ( , )p p
m m m

S

C dS  A r s r r                                                        (1.5) 

 

where 

 
1/2

( ) 2 2( ) ( , )p
m m

S S

C A dS s dS


 
  
 
 r r r                                                                  (1.6) 

 

The 3D SPOP function, which satisfies the condition 11 )(  p
m , is given as a 

measure of the probability of a source pole of strength pm placed at rm, being 

responsible for the observed anomaly field A(r). The )(P
m  function can readily be 

computed knowing the mathematical expression of the function s(r,rm), which is given 

the role of source pole scanner. 

For computational purposes, we assume the projection of S onto the (x,y)-plane can 

be fitted to a rectangle R of sides 2X and 2Y along the x- and y-axis, respectively. Using 

the topography surface regularization factor g(z) given by [28,29] 
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  2/122 )/()/(1)( dyzdxzzg t                                                                   (1.7) 

 

eq. 1.5 is definitely written as follows 

 

 ( ) ( ) ( , ) ( )
X Y

p p
m m m

X Y

C g z dxdy
 

 

   A r s r r                                                      (1.8) 

 

with 

 

( ) 2 ( ) ( )
X Y

p
m

X Y

C A g z dxdy
 

 


 

  r

2/1
2 )(),(







 




  

X

X

Y

Y
m dxdyzgs rr                           (1.9) 

 
 
 

 

 

1.3 The source dipole occurrence probability 

 

 

We take a generic nth integral of the second sum in eq. 1.3 and apply, as previously, 

Schwarz’s inequality to each u-component (u=x,y,z). We can thus define a source dipole 

occurrence probability (SDOP) function [2,18] as 

 

 ( ) ( )
, ,

( , )
( )

X Y
d d n

n u n u
nX Y

C g z dxdy
u


 

 


 

 
s r rA r                                                    (1.10) 

 

with 

 

 ( )
, ( )

X Y
d

n u
X Y

C g z dxdy
 

 


 

  A r

1/22
( , ) ( )

X Y
n

nX Y

g z dxdy
u


 

 




 
 

s r r                 (1.11) 
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where surface regularization has been accounted for. 

Also )(
,
d
un  falls in the range [-1,1]. Thus, at each rn, 3 values of )(

,
d
un  can be computed. 

They are interpreted to give a probability measure, with which a single source dipole 

located at rn can be retained responsible of the whole A(r) field.  

Each first derivative of s(r,rn) takes the role of source dipole scanner. 

 

 

1.4 The source quadrupole  occurrence probability 

 

 

Accordingly, we consider now a generic gth integral of the third sum in eq. 1.3 and 

apply again Schwarz’s inequality to each uv-element (u,v=x,y,z), which is used to define 

the source quadrupole occurrence probability (SQOP) function [2] as 

 
2

( ) ( )
, ,

( , )
( ) ( )

X Y
gq q

g uv g uv
g gX Y

C g z dxdy
u v


 

 


 

  
s r r

A r                                                               (1.12) 

 

with 

 

( ) 2
, ( ) ( )

X Y
q

g uv
X Y

C A g z dxdy
 

 


 

  r

1/222 ( , )
( )

X Y
g

g gX Y

g z dxdy
u v


 

 




  


 
s r r                 (1.13) 

 

As previously, also the 3D SQOP function falls in the range [-1,1]. Thus, at each rg, 

9 values of )(
,
q
uvg  are taken as a measure of the probability for a quadrupole source 

located at rg, to be responsible of the ( )A r  dataset. Since uv
gS  is a symmetric square 

tensor, it follows )(
,

)(
,

q
vug

q
uvg   . Hence, at each rg, the 3 diagonal plus the 3 right-up or 

left-down off-diagonal terms of )(
,
q
uvg  are sufficient. 

Each second derivative of s(r,rg) has the role of source quadrupole scanner. 
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1.5 The source octopole  occurrence probability  

 
 

Finally, we consider a generic hth integral of the fourth sum in eq. 1.3 and apply 

again Schwarz’s inequality to each uvw-term (u,v,w=x,y,z), allowing a source octopole 

occurrence probability (SOOP) function [3,4]  to be defined as  

 
3

( ) ( )
, ,

( , )
( ) ( )

X Y
o o h

h uvw h uvw
h h hX Y

C g z dxdy
u v w


 

 


 

   
s r rA r                                                   (1.14) 

 

with 

 

( ) 2
, ( ) ( )

X Y
o

h uvw
X Y

C A g z dxdy
 

 


 

  r

1/223 ( , ) ( )
X Y

h

h h hX Y

g z dxdy
u v w


 

 




   
 

s r r      (1.15) 

 

As previously, the 3D SOOP function falls in the range [-1,1]. At each rh, 27 values 

of ( )
,
o

h uvw  may be calculated, which are interpreted as a measure of the probability of a 

single source octopole located at rh, being responsible of the whole ( )A r  dataset. 

However, as we are interested in finding only the position of the vertices of a source 

body, we will limit our analysis only to the SOOP function with uvw.      

Each third derivative of s(r,rh) takes the role of source octopole scanner.
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2.  Multipole Geoelectrical Tomography 
 
 
 

2.1  The basic geoelectrical theory 

 
 
 

The fundamental physical law used in resistivity surveys is Ohm’s Law that governs 

the flow of current in the ground. The equation for Ohm’s Law in vector form for 

current flow in a continuous medium is given by 

 
  J = σ·E                                                                                                                       (2.1) 
 

where σm is the conductivity of the medium, J (A/m2) is the current density 

and E (V/m),  is the electric field intensity. In practice, what is measured is the electric 

field potential. We note that in geophysical surveys the medium resistivity ρ, which is 

equals to the reciprocal of the conductivity ρ = 1/σ, is more commonly used. The 

relationship between the electric potential U  (Volt) and the field intensity is given by 

 

E = -U                                                                                                                      (2.2) 

 

Combining equations (2.1) and (2.2), we get 

 

J = -σU                                                                                                                     (2.3) 

                                                                                                                   

In almost all surveys, the current sources are in the form of point sources. In this 

case, over an elemental volume V  surrounding the a current source I, located at (xs, 

ys,zs) the relationship between the current density and the current [11] is given by 

 

 ·J ( ) ( ) ( )s s s
I x x y y z z
V

        
                                                                     (2.4) 
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where  is the Dirac delta function. Equation (2.4) can then be rewritten as 

 

   , , , , ( ) ( ) ( )σ s s s
Ix y z U x y z x x y y z z
V

              
                            (2.5) 

 

This is the basic equation that gives the potential distribution in the ground due to a 

point current source. A large number of techniques have been developed to solve this 

equation. This is the “forward” modeling problem, i.e. to determine the potential that 

would be observed over a given subsurface structure. Fully analytical methods have 

been used for simple cases, such as a sphere in a homogenous medium or a vertical fault 

between two areas each with a constant resistivity. For an arbitrary resistivity 

distribution, numerical techniques are more commonly used.  

We consider  simplest case with a homogeneous subsurface and a single point 

current source on the ground surface (figure 2.1). In this case, the current flows radially 

away from the source, and the potential varies inversely with distance from the current 

source. The equipotential surfaces have a hemisphere shape, and the current flow is 

perpendicular to the equipotential surface. The potential in this case is given by 

 

 
2
ρ IU r
πr

                                                                                                                 (2.6) 

 

where r is the distance of a point in the medium (including the ground surface) from the 

electrode. 

In practice, all resistivity surveys use at least two current electrodes, a positive 

current and a negative  current sources and two electrodes of measurement (for the 

potential difference). A typical arrangement with 4 electrodes is shown in figure 2.2. 

The potential difference is then given by 

 

   


































NBNAMBMA
BNANBMAMNM rrrrπ

ρIUUUUUΔ 1111
2

        (2.7) 
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The above equation gives the potential that would be measured over a homogenous 

half space with a 4 electrodes array. 

Actual field surveys are invariably conducted over an inhomogenous medium where 

the subsurface resistivity has a 3-D distribution.  

 

 
 

Figure 2.1 The flow of current from a point current source and the resulting potential distribution. 
 

 

The resistivity measurements are still made by injecting current into the ground 

through the two current electrodes (A and B in figure 2.2), and measuring the resulting 

voltage difference at two potential electrodes (M and N). From the current (I) and 

potential ( MNU ) values, an apparent resistivity ( a ) value is calculated. 

I
ΔU

Kρ NM
g                                                                                                               (2.8) 

 

kg is a geometric factor that depends on the arrangement of the four electrodes.  
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Figure 2.2 Example surface electrode configurations 
 

 
The calculated resistivity value is not the true resistivity of the subsurface, but an 

“apparent” value that is the resistivity of a homogeneous ground that will give the same 

resistance value for the same electrode arrangement. The relationship between the 

“apparent” resistivity and the “true” resistivity is a complex relationship. To determine 

the true subsurface resistivity from the apparent resistivity values is the “inversion” 

problem. 

 
 
 
 
 

2.2  The  generalized formalism for geoelectrical method 

 

To approach the geoelectric problem, we assume, for the sake of simplicity and 

without loss of generality, that the volume V in figure 2.3 is a rectangular prism with its 

upper surface S representing a portion of a flat ground level. We also assume that the 

apparent resistivity values are attributed to the nodes of a 3D regular grid filling V, each 

identified by a tern of integer numbers i,j,k specifying the position along the x,y,z axes, 

respectively, originating from a point arbitrarily chosen over S. 
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Figure 2.3 The 3D datum domain, characterized by irregular boundary surfaces. The (x,y)-
plane is placed at sea level and the z-axis points into the earth . 

 

In geoelectrics, the anomaly and kernel functions are scalar quantities. In order to 

obtain the explicit expressions of A(r) and s(r) we proceed as follows. We consider a 

homogeneous half-space with resistivity 0, where a perturbation of resistivity, say 

m=m-00, is introduced at a generic single pole with coordinates (xm,ym,zm). The 

apparent resistivity a(i,j,k) of such a weakly perturbed model, where neither dipole nor 

quadrupole effects can generate, is approximated by a Taylor’s expansion stopped to 

Born approximation, i.e. to the first derivative term, as 
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Using eq. 2.9, we readily construct the geoelectrical anomaly function as 
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0),,(),,()(   kjikjiA aar          (2.10) 

 

and the kernel function as 
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In practice, the geoelectrical anomaly function a(i,j,k) is calculated by subtracting 

from the measured apparent resistivities a(i,j,k) a reference uniform resistivity, which 

can be either the background resistivity of the medium hosting the target bodies, if 

known, or, alternatively, any other reasonable value, as, e.g., the average apparent 

resistivity. The geoelectrical anomaly function has thus a quite obvious relative 

meaning, as it represents the responses of whatever bodies which are assigned true 

resistivities differing from 0. 

For the calculation of the kernel function a(i,j,k)/mm=0, (appendix a), the 

reader can refer to an expanded version reported in previous papers [1,2,26], which was 

derived using the Frechet derivative [40] of the geoelectric potential, obtained by Loke 

and Barker  [23]. 

Once the key functions A(r) and s(r) have been defined, we can readily apply the 

general 3D GPT theory, previously exposed, by admitting that the anomaly sources 

responsible of any a(i,j,k) dataset can generally be made of M poles, each with its 

own strength m (m=1,2,..,M), N dipoles, each with its own 3 moment vector 

components nun (n=1,2,..,N; u=x,y,z), and G quadrupoles, each with its own 9 

moment tensor elements gugg (g=1,2,..,G; u,=x,y,z). Eq. 1.1 is therefore 

explicated as follows 
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   Skipping all intermediate steps, we directly arrive at the explicit expressions of the 

geoelectrical SPOP, SDOP and SQOP functions, using a discretised version of the 

integrals appearing in the pair of eq.s 1.8 and 1.9, eq.s 1.10 and 1.11 and eq.s 1.12 and 

1.13. The geoelectrical 3D SPOP function is given as [1] 
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The geoelectrical 3D SDOP function is given as [1] 
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Finally, the geoelectrical 3D SQOP function is given as [2] 
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with 
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2.3  Synthetic examples 

 

We show a few simple synthetic examples in order to highlight the main aspects of 

the SQOP tomography. In all of the examples, the new SQOP tomography will always 

be compared with the SPOP and SDOP tomographies in order to elicit complementary 

aspects. The first case is a rectangular prism with resistivity of 5000   m , immersed in 

a homogeneous half-space with resistivity of 500   m, reproduced in all templates of 

figures 2.4a and 2.4b with light blue lines, where the bigger prism with yellow lines 

represents the datum volume V, and columns A and B display the same results under 

different viewing angles. 
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Figure 2.4 (a) The SPOP, SDOP and SQOP 3D GPT for a rectangular prism of 5000  m (bordered by light blue 
lines) and spatial location as in legend, immersed in a homogenous half space of 500 m. The larger prism bordered 
by yellow lines is the 3D datum domain. Scale of axes is in m. For the isosurfaces bounding the coloured nuclei, 
containing the SPOP, SDOP and SQOP primary MAV, see table 2.1 appendix b. (b) The SPOP, SDOP and SQOP 3D 
GPT for a rectangular prism of 5000 m (bordered by light blue lines) and spatial location as in legend, buried in a 
homogenous half space of 500 m. The prism with yellow borders is the datum domain. The scale of axes is in m. 
For the isosurfaces bounding the coloured small (row a) and big (row b) nuclei, containing the SPOP, SDOP and SQOP 
MAV, see table 2.2 appendix b. 
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 In figure 2.4a the ( )P
m , ( )

,
D

n u  (u=x,y,z ) and ( )
,
Q

g xy  primary maximum absolute values 

(MAV) are considered, which, for the sake of visibility, are each represented by a 

nucleus bounded by the isosurface relative to 95% of the corresponding primary MAV 

(table 2.1 appendix b). Row a refers to the combination of SPOP and SDOP nuclei, 

which confirm known results [32]. 

 In fact, a ( )P
m nucleus, a pair of  ( )

,
D

n x  and ( )
,
D

n y  nuclei and a ( )
,
D

n z appear in 

correspondence to the centre, close to the lateral faces oriented along the x- and y-axes 

and at the base of the prism, respectively. 

Row b shows the position of the six SQOP nuclei, drawn as before by considering 

the isosurface relative to 95% of the corresponding primary MAV (table 2.1 appendix 

b). Of all of them, only the ( )
,
Q

g xy  nuclei are assumed to give additional information. In 

fact, they appear located close to the prism basal vertices, whereas the other ( )
,
Q

g u  nuclei 

confirm the position of the prism central axis and its lateral and bottom faces. 

Finally, row c shows the set of  ( )P
m , ( )

,
D

n u  (u=x,y,z ) and ( )
,
Q

g xy  nuclei, which are 

assumed to provide a sufficient set of information as to the prism spatial location. One 

gets the impression that the ( )P
m  nucleus locates right at the centre of the prism, whereas 

the ( )
,
D

n u  (u=x,y,z )  and ( )
,
Q

g xy  nuclei appear confined around the base of the prism. Thus, 

the whole set of nuclei in figure 2.4a is interpreted as the simplest combination of pole, 

dipole and quadrupole source elements with maximum occurrence probability, out of 

the group of all equivalent, more complex multipole source combinations providing the 

same apparent resistivity dataset within V. 

In order to see whether there is a way to highlight the 3D geometry of the source 

body, row b in figure 2.4b shows the ( )P
m , ( )

,
D

n u  (u=x,y,z ) and ( )
,
Q

g xy  isosurfaces relative 

to a percentage of the primary MAV as listed in table 2.2 appendix b. Except for the 
( )P
m  nucleus, for which the same reduction as before has been used, all other reductions 

have been set at 50%, so chosen as to fit to the following criterion. By gradually 

decreasing the percentage at steps of 5% from 95%, we have observed the growth of a 

bump in the isosurfaces, peaking up to a maximum and then gradually flattening, till 

vanishing. We have assumed the percent value corresponding to the observed maximum 

bump peaking.  
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Figure 2.4 (b) (Continued.) 
 

This approach is nothing but a quick inspection of the presence of secondary MAV. 

The picture thus obtained is compared with the previous one drawn in row c of figure 

2.4a, and replicated in row a of figure 2.4b. The peaking bumps are all directed 

topwards, with those of ( )
,
D

n u  (u=x,y ) spreading against the lateral faces, and those of  

climbing ( )
,
Q

g xy  along the vertical edges of the prism. 

As a second example, we consider the situation where the same prism with a 

resistivity of 5000   m as before emerges from a substratum with the same resistivity 

into a top layer of 500   m. Figure 2.5 shows the results of the new simulation. In 

detail, row a shows the ( )P
m , ( )

,
D

n u  (u=x,y) and ( )
,
Q

g xy   nuclei bounded by isosurfaces 

relative to 95% of the corresponding primary MAV (see table 2.2 appendix b).  
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Figure 2.5 The SPOP, SDOP and SQOP 3D GPT for a rectangular prism of 5000 m (bordered by light 
blue lines) and spatial location as in legend, immersed in a two-layer host medium with an overburden of 
500 m and substratum of 5000 m. The prism with yellow borders is the datum domain. Scale of 
axes is in m. For the isosurfaces bounding the coloured small (row a) and big (row b) nuclei, containing 
the SPOP, SDOP and SQOP MAV, see table 2.2 appendix b. 
 
 

Compared with the previous case, we do not recognize now any relation of the nuclei 

with characteristic points of the prism, due to the presence of the high-resistivity 

basement. Once again, we must retain that this set of primary MAV nuclei represents the 

simplest array of source elements with maximum occurrence probability, within the 

class of equivalent arrangements. Row b shows the ( )P
m , ( )

,
D

n u  (u=x,y) and ( )
,
Q

g xy   

isosurfaces relative to the percentages of the primary MAV listed in table 2.2 Appendix 

B, obtained by the maximum bump peaking criterion previously illustrated. 

Row b shows a clear smooth version of the prism-basement geometry, rather 

distorted at the margins due to the finite extent of V. The influence of the finite extent of 

the data volume is a topic poorly investigated in most modelling and inversion 
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approaches. We continue our simulation analysis by proposing a more complex target 

structure, made of two separated prisms, with different sizes and collocation, without 

and with basement. The results are depicted in figures 2.6 and 2.7 for the two-prism 

structure in a homogeneous half-space and in a two-layer host medium, respectively. 

For both simulations, the same comments as in the previous corresponding cases can be 

made, except for the evident loss of symmetry of the isosurfaces, due to the different 

size and collocation of the two prisms. 

 

 
 

Figure 2.6 The SPOP, SDOP and SQOP 3D GPT for a two-prism model of 5000 m (bordered by light 
blue lines) and spatial location as in legend, immersed in a homogenous half space of 500 m. The 
larger prism with yellow borders is the 3D datum domain. Scales are in m. For the isosurfaces bounding 
the coloured small (row a) and big (row b) nuclei, containing the SPOP, SDOP and MAV, see table 2.2 
appendix b. 
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Figure 2.7 The SPOP, SDOP and SQOP 3D GPT for a two-prism model of 5000  m (bordered by 
light blue lines) and spatial location as in legend, immersed in a two-layer host medium with overburden 
of 500 m and substratum of 5000 m. The larger prism bordered by yellow lines is the 3D datum 
domain. The scale of the three coordinate axes is in m. For the isosurfaces bounding the coloured small 
(row a) and big (row b) nuclei, containing the SPOP, SDOP and SQOP MAV, see table 2.2 appendix b. 
 

2.4    A field example at Pompei 

 
. 
We show the results obtained from the application of an advanced geoelectrical 

tomography survey performed in an unexplored site of the archaeological park of 

Pompei, aiming at identifying anomalies ascribable to remains of walls and roads, 

according to the expectation of the local archaeological authority. 

The Roman town of Pompei, located 30 km SE of Naples, developed on a flat 

topographical surface gently degrading towards the Gulf of Naples, created by the 
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Vesuvius activity, which had prior deposited in this sector an alternating sequence of 

fall and flow pyroclastic products. Then, the 79 AD Vesuvius eruption completely 

destroyed the Roman town, covering it with even more than 10 m of pyroclastic fall 

products. Nowadays, only a little amount of the vestiges of the ancient Pompeian 

civilization has been brought to light. 

The study area is located in the Regio III sector of the archaeological park (figure 2.8), 

on a locally flat topographic high created by the 79 AD pyroclastic deposits (figure 

2.9a), placed at no more than 6 m above the original ground level of the ancient town, 

judging from the adjacent visible ruins (figure 2.9b). 

 

 
 

Figure 2.8 Plan view of a portion of the Pompei archaeological park. The rectangle in the Regio III sector 
is the area surveyed by the geoelectrical method. The top right corner of the rectangle is assumed to be 
the origin of the local reference coordinate system. 
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Figure 2.9 (a) The rectangular geoelectrical survey area in the Regio III sector of the Pompei 
archaeological park. The far-field left corner corresponds to the top right corner of the rectangle sketched 
in figure 2.8 and is assumed to be the origin of the local reference coordinate system. (b) Pompeian 
exposed ruins adjacent to the top longer side of the rectangle sketched in figure 2.8. 
 
 
 
 

2.4.1  Geoelectrical data acquisition, processing and pseudoimaging 

 
 

Figure 2.9a shows the rectangular area of 2820 m2 (94 m  30 m), where 16 parallel 

profiles of 94 m of length equispaced by 2 m were programmed. The longer side of the 

rectangle was oriented N60°E, normal to the main axis of the nearby excavated Roman 

insulae (figure 2.8). This axis was thus assumed as the strike of a prevailing 2D 

resistivity structure expected under the chosen rectangle. For this reason, the dipole-

dipole (DD) electrode array, notoriously most sensitive to lateral resistivity contrasts 

[34], was run along each line according to the well known pseudosection data 

acquisition technique. 

A programmable resistivity-meter was used, which allowed up to 23 simultaneous 

voltage measurements for every current injection, by setting the maximum standard 

deviation at 3% and selecting the number of stacking cycles between 3 and 10 for 

random noise attenuation. The spreads of the emitting and receiving dipoles and the 

advancing step along the profiles were fixed at 2 m. The distance between the centres of 

the dipoles was expanded from an initial spacing of 4 m up to 28 m, thus reaching the 

maximum pseudodepth of 14 m starting from 2 m and going down by 1 m every 2 m of 
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spacing increase. 507 DD apparent resistivity determinations were thus realized along 

each profile for a total of 8112 data collected inside the whole rectangle.  

Figure 2.10 resumes the DD data acquisition procedure. As said, it consists of a 

sequence of parallel profiles on a flat ground surface, identified by the index j=1,2,..,16, 

as in figure 2.10a. The generic jth profile is then considered in detail in figure 2.10b, 

where the emitting (AB) and receiving (MN) dipoles are identified by the indices 

i=1,2,..,45 and k=1,2,..,13, and the depth of attribution of the apparent resistivity value 

(pseudodepth) by the index k=1,2,..,13. Hence, each apparent resistivity value is a 

function of the three indices, say a(i,j,k). 

 

 
 

Figure 2.10  The dipole–dipole (DD) geoelectrical procedure in the rectangular survey area of figure 2.8 . 
(a) Plan view of the regular DD profile distribution in the area; (b) the pseudodepth data attribution 
technique along a DD profile. 
 
 

Figure 2.11a displays a sequence of horizontal slices, in each of which the common 

logarithm of the DD apparent resistivities at the same pseudodepth are contoured. The 

slices were drawn using the whole dataset of the 16 parallel profiles. This slice sequence 

gives a quick view of the degree of inhomogeneity in the subsoil, which in the 
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pseudodepth range from 2 m down to about 8 m seems to dominate along the x-axis, i.e. 

the direction of the long side of the survey rectangle (figure 2.8). In the following 

pseudodepth range from 9 m down to 14 m, the DD apparent resistivity pattern radically 

changes showing the tendency to homogenize towards low apparent resistivity values, 

except for two evident anomalous highs, of which the biggest one dominates in the 

whole central area and the other one is confined in the top marginal area in the left-hand 

sector of the slices. 

 

 
 

Figure 2.11 The DD (a) and Wenner (b) pseudoslice imaging of the apparent resistivity values collected 
in the rectangular survey area of figure 2.8. 
 
 

The DD apparent resistivity pattern in the near-surface pseudodepth range can 

qualitatively be interpreted as the geoelectric signature of archaeological remains, in 

accordance with the initial hypothesis of anomalies expected to conform to a probable 

S30°E continuation of the wall-and-road mesh appearing aside in the partially excavated 

insulae viii-ix-x (figure 2.8 and figure 2.9b). The DD pattern in the deeper pseudodepth 
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range seems, instead, to represent the relatively less resistive nature of the local 

substratum. It appears to expand under the whole survey area, except for the mentioned 

positive nuclei, which are suspected to be ghost anomalies, typical of the dipole-dipole 

array, due to the diagonal downward dragging effect of shallow resistive anomalies, 

also known as the inverted V-shaped effect. 

To better visualize this effect, figure 2.12 shows the pseudosections relative to two 

profiles selected in correspondence with the top marginal and the bigger central positive 

anomaly, respectively. These anomalies here appear as the result of a focalization of 

two nearby inverted V-shaped dragging effects, right where the inner tails intersect. 

Nonetheless, to take a final decision, we carried out in the whole area a further 

geoelectric survey, using the Wenner array, which is not influenced by dragging effects. 

An approach similar to the DD technique was used, consisting in expanding the Wenner 

spacing, equal to one third of the distance between the external A and B current 

electrodes, by multiples of 2 m, starting from 2 m up to 14 m. The Wenner apparent 

resistivity values conventionally are attributed along the vertical axis through the centre 

of the array at a pseudodepth set equal to the array spacing. 

 

 
 

Figure 2.12 DD pseudosections across the profiles at y = 2m (j= 2)and y = 28m (j= 15) cutting the 
pseudoslice at the pseudodepth of 7 m (k = 13). 
 
 

Figure 2.11b displays the sequence of horizontal slices so obtained, in each of which 

the common logarithm of the Wenner apparent resistivities at the same pseudodepth are 

contoured. No positive anomaly appears in the critical zones, at pseudodepths 
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comparable with those in figure 2.11a. Hence, we conclude that the deep DD positive 

nuclei in figure 2.11a are likely to be considered ghost anomalies. 

It is finally worth noticing the less pronounced selectivity power of the Wenner array 

with respect to the DD array. The shallow anomalies of potential archaeological interest 

appear in figure 2.11b less articulated and more rapidly vanishing versus depth than the 

corresponding anomalies in figure 2.11a. This is the reason why we have definitely 

focused our attention only on the DD survey. 

A DD apparent resistivity imaging like that in figure 2.11a has, however, only a 

rough relationship with the true resistivity structure, whose localization is the ultimate 

scope of this survey. In fact, shape and amplitude of the anomalies in figure 2.11a 

strictly represent the shift among different DD apparent resistivity values, each 

depending not only on the true resistivity distribution, but also on the array stepping 

used to sense the subsoil. In order to remove this last effect and get a more realistic 

imaging of the buried structures from the apparent resistivity dataset, we have applied 

the 3D probability tomography method [26] of which we give in the following section 

an extension according to the 3D DD data acquisition technique used in this survey. 

Probability tomography was originally proposed for the self-potential method [41,42], 

and very recently applied also to the magnetic method [30]. 

 

 

 

 

2.4.2  Result of the 3D probability tomography  

 
 

Figure 2.13 shows the 3D geoelectric source pole tomography, represented as a 

sequence of slices at increasing depth from 2 m bgl down to 6.5 m bgl.  
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Figure 2.13 The near-surface 3D source pole tomography of the DD apparent resistivity values collected 
in the rectangular survey area of figure 2.8. 
 

We have deliberately chosen this depth interval, because, as previously outlined, it is 

likely to represent the buried environment thickness of archaeological interest. In fact, 

all SPOP nuclei potentially associable to archaeological bodies appear in this range. 

Firstly, we notice the presence of positive nuclei, mostly aligned along the y-axis, 

representing the zones where higher is the probability to find true resistivities exceeding 

the reference value, which was taken equal to the mean apparent resistivity of 432.5 

m, whose common logarithm is 2.64. The maximum SPOP value of each of these 

positive nuclei is met at a depth around 3.5 m bgl, which is assumed as the depth of the 

centre of mass of the more resistive bodies. From the archaeological point of view, 

these masses can be associated with remains of walls and/or heaps of collapsed stone 

blocks. 
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Another clear signal is the central large negative nucleus, which of course identifies 

a zone where the probabilities to find true resistivities lower than the reference value 

are higher. The maximum absolute value within this negative nucleus is found again at 

a depth around 3.5 m bgl. From the archaeological point of view, we can now 

associate this less resistive volume to accumulation of wet volcanic products filling an 

originally open air space, very likely a peristilio, i.e. a home court with columned 

portico. Less intense are two other negative nuclei, one visible since the shallowest 

slice, around the point x=32 m and y=28 m, and the other starting from the slice at 2.5 

m of depth, around the point x=70 m and y=8 m. As the previous negative nucleus, 

also the two smaller cores may be ascribed to accumulations of wet volcanic products 

filling again originally open spaces, very likely associable now to the presence of 

roads, as the cores seem to assume a narrow elongated shape from 4.5 m of depth 

down to 5.5-6 m. They finally tend to be fully absorbed inside deeper and much larger 

negative nuclei, visible in the far-surface tomography depicted in figure 2.12, very 

likely representing the virgin volcanic top soil existing before the 79 AD eruption. 

 

 

 
 

Figure 2.14 The far-surface 3D source pole tomography of the DD apparent resistivity values collected in 
the rectangular survey area of figure 2.8. 
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To enhance the previous archaeological tentative interpretation of the anomalies 

emerged from the 3D tomographic analysis, we show in figure 2.15 how the SPOP 

nuclei spread over the most significant slice at 3.5 m of depth correlate with the traces 

of the remains so far explored within the insulae viii, ix and x inside the Regio III sector 

of the park. 

It is worthwhile to observe how the 3D probability tomography method behaves in 

presence of ghost anomalies, like e.g. the deep positive anomaly appearing in the central 

part of the deep pseudoslices in figure 2.11a. This ghost effect has almost completely 

dropped out as no positive nucleus appears in the same region across the bottom depth 

range in figure 2.8. This is a further evidence of the filtering power of the probability 

tomography method, already tested in previous applications [26,27]. 

 

 
 

Figure 2.15 The investigated area in the archaeological park of Pompei with the SPOP tomographic slice 
at a depth of 3.5 m. 
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Figure 2.16 shows the 3D source dipole tomography, given as a sequence of slices from 

2 m down to 6.5 m bgl. Owing to the vector character of the dipole, the 3D SDOP 

analysis is performed for each scalar dipole component along its relative reference axis. 

 

 
 

Figure 2.16 The 3D source dipole tomography of the DD apparent resistivity values collected in the 
survey area of figure 2.8. Tomography of the x-component (a), the y-component (b) and the z-component 
(c) of the dipole sources. 
 
 



                                                                                                            Chapter II                 
                                                                                                             Multipole Geoelectrical  Tomography 
 
 
 
 

   36 
 
 

We recall that the presence of a SDOP nucleus along a given axis marks the passage 

from one to another different resistivity along that direction, thus providing an 

indication about the position of a resistivity boundary. Since in the present application 

the expected geometry of the concealed targets should nearly conform to right prismatic 

bodies with corners parallel to the x,y,z axes, the presence of a pair of adjacent SDOP 

nuclei with opposite sign occurring along one axis can be a useful indicator of the body 

size along that axis. Moreover, as it regards the sign of a SDOP nucleus we recall that, 

moving along the positive direction of a system axis, a positive sign of the relative 

dipole component marks the transition from a lower to a higher resistivity value across 

the boundary that the nucleus highlights, and the reverse for a negative sign. 

Figure 2.16a refers to the x-component of the dipole sources. The sequence of pairs 

of opposite sign SDOP nuclei, elongated along the y-axis, is a clear evidence of where 

the transition from the resistive blocks to the conductive filled spaces and vice versa are 

most likely located along the x-axis. A similar conclusion can be reached along the y-

axis looking at figure 2.16b, which shows the SDOP analysis of the y-component of the 

dipole sources, now characterized by less intense, but more concentrated nuclei. At last, 

figure 2.16c refers to the z-component of the dipole sources. This last representation is 

quite similar to the SPOP tomographic sequence in figure 2.16 as far as the shallow 

nuclei of archaeological concern are considered. The only difference, apart from the 

expected sign inversion, is that the nuclei of both signs are all shifted downwards, and 

their maximum absolute values are met around 5-6 m of depth bgl, i.e. approximately at 

the depth of the ancient ground level, amply visible north of the surveyed area (figure 

2.9b). 

Figure 2.17 shows the SPOP, SDOP and SQOP 3D tomographies obtained at 

Pompei, where, in order to put in evidence a source geometry as close as possible to the 

expected targets, only the ( )P
m , ( )

,
D

n u  (u=x,y,z) and ( )
,
Q

g xy  isosurfaces relative to a 

percentage of the primary MAV as listed in table 2.3 appendix b have been plotted.  
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Figure 2.17 The SPOP, SDOP and SQOP 3D GPT of the geoelectrical survey in the archaeological park 
of Pompei (Naples, Italy). The prism bordered by yellow lines is the 3D datum domain. The scale of the 
three coordinate axes is in m. For the isosurfaces bounding the coloured nuclei, containing the SPOP, 
SDOP and SQOP MAV, see table 2.3 appendix b. 
 
 

The pictures in figure 2.17 are now arranged in a different way as follows. Row a 

shows the combination of the ( )P
m  and ( )

,
D

n z  tomographies, where, for the importance 

that the sign has during interpretation, a distinction has been made between negative 

and positive SPOP nuclei using different colours.  

Row b shows together ( )P
m , ( )

,
D

n u  (u=x,y) tomographies. From the archaeological 

point of view, the sequence of pairs of SDOP nuclei, elongated along the x- and y-axes, 
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may be taken as evidence of the existence of planar lateral bounds to the SPOP 

anomalies previously discussed, i.e., where the transition from the resistive blocks to the 

conductive filled spaces and vice versa are most likely located [1,2]. 

Finally, row c shows the new experimental result derived from the theory exposed, 

i.e. the ( )
,
Q

g xy  tomography, combined with the ( )P
m  tomography.  

The SQOP nuclei clearly appearing at the corners of the positive SPOP nuclei would 

likely indicate the presence of vertical edges at the borders of the resistive structures 

delineated by the SPOP and SDOP analysis. For the marginal SQOP nuclei along the x-

axis, the distortion due to the lateral wall of the data volume is also well evident. In 

conclusion, the prismatic shape of these structures, thus emerged from the combined 

SPOP, SDOP and SQOP analysis, is likely to be interpreted as belonging to elongated 

remnants of walls, rather than chaotic heaps of collapsed stones. 
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3. Multipole Gravity Tomography 
 
 

3.1 The basic gravity theory 

 
 

Gravity is defined as the force of mutual attraction between two bodies, which is a 

function of their masses and the distance between them, and is described by Newton’s 

law of universal gravitation. An effect of gravity is observed when the fruit from a tree 

falls to the ground. The gravity field at each location on Earth consists of a global field 

which is superimposed by a local anomaly field. In a gravity survey, measurements are 

made of the local gravity field differences due to density variations in the subsurface. 

The effects of small scale masses are very small compared with the effects of the global 

part of the Earth’s gravity field (often on the order of 1 part in 106 to 107). 

 

 
Figure 3.1 Principle of a gravity measurement: (a) the model shows a geological structure with a density 

1  embedded in material with a higher density 2 , (b) the spring with a small mass at the end of it 
changes length with changes in the gravity field, (c) the measurement results are plotted to document the 
gravity anomaly  g(x) 
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Highly sensitive gravimeters are necessary for measuring such variations in 

gravitational attraction accurately. Special data processing and interpretation techniques 

are used to interpret the shape and amplitude of the anomalies in terms of subsurface 

geological or anthropogenic structures. Gravity measurements can be performed on 

land, at sea, and in the air. For environmental problems, land measurements are 

generally made. A necessary condition for the application of this method is the 

existence of density contrasts. The schematic in figure 3.1 shows structure with a 

density 1  embedded in material with a higher density 2 . Considering a gravimeter as 

basically a mass on a spring, the amplitude of the gravity anomaly is a function of the 

expansion or contraction of the spring, the geological situation in figure 3.1 will cause 

the length of the spring to decrease above the anomalous structure. The fundamental 

physical law used in gravity surveys is the universal gravitation. 

Each point P (identified by the position vector r )  ,on, above and below the Earth’s 

surface is affected by the gravitational (or gravity) field g(r). This is a natural potential 

field like, for example, the magnetic field. The gravity field is measured in units of 

acceleration [m s-2]. This field is mainly caused by the attraction between masses of the 

Earth and an arbitrary mass at point P with the position vector r. The gravitational force 

F  between two point masses m and m’ with the distance r  between them is: 

 

  3

'F r rmmG
r

                                                                                                           (3.1) 

 

where the gravitational constant G = 6.672  10-11 (m3 kg-1 s-2). The effect of the 

gravitational field g of m on m’ is derived from equation (3.1): 

 

3( )g r rE
mG
r

                                                                                                             (3.2) 

 

This effect is called gravitational acceleration. The mass m of a body is given by the 

product of its density   and volume V. In addition to the gravitational acceleration of 

the Earth  g rE  point P is affected by centrifugal acceleration  g rC and by the 

gravitational attractions of mainly the moon and the sun  g rT the variations of which 
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are called tides. These tides vary with respect to place and time. The centrifugal 

acceleration  g rC  is due to the rotation of the Earth and depends on the latitude   of 

the point P. The gravitational field at point P is  

 

 g r =  g rE +  g rC +  g rT                                                                                  (3.3) 

 

This formula describes the global gravity field. The gravimeters measure the vertical 

component of acceleration due to gravity. 

The anomalous gravity field  zg  caused by density inhomogeneities of geological 

or anthropogenic structures is superimposed on the global field. Equation (3.2) can be 

used to calculate  zg  if the mass m is replaced by the anomalous mass m = 

( )qr V1, where ( )qr  is the density contrast between the inhomogeneity and the 

surrounding material, V1 is the volume of the inhomogeneity. 

Consequently, the gravity value zg ( r ) at point P is calculated from the theoretical 

gravity field value th
z , the tidal effect and the anomalous field 

 

zg ( r )= th
z ( r )+  rT

zg + zg (r )                                                                               (3.4)  

                               

For geophysical surveys, only gravity anomalies zg (r ) related to density 

inhomogeneities in the subsurface are of interest.  

The gravity value is influenced by the elevation and the coordinates of the gravity 

station, the time of the measurement, and the surrounding morphology. Therefore, it is 

necessary to carry out several corrections. The aim of the corrections is to make the 

measurement at a single station comparable to the results at the other stations and to 

remove from the gravity value all known influences that are not due to the investigated 

structure . The repeated measurements at the reference station in a loop are normally 

different from the first measurement in the loop. This is due to the effect of tides and 

instrument drift. These effects have to be eliminated using the internal software of the 

gravimeter or PC software. When the measurement at the reference station is repeated at 

least every 45 - 60 minutes, the differences from the first measurement are due to 
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instrument drift and tidal changes; only when the measurements are repeated can the 

correction of both effects be carried out in one step. The result of this data processing is 

the drift and tidal corrected gravity value ( )rzg . 

The resulting value due to unknown subsurface structures is called the Bouguer 

anomaly ( )raB and it is calculated as follows 

 

 ( ) ( ) ( )r r r'th
a z z FA Boug TopB g g g g                                                               (3.5) 

 

with   ( )r'th
z  is the theoretical gravity field at sea level, FAg  is the free air correction, 

Bougg  is the Bouguer correction and Topg  is the topographic correction. 

Bouguer anomaly is write as follows 

 

1
3( ) ( ) q

a V

z z
B G d


 


 q q

q

r r r
r r

                                                                                    (3.6) 

and represents the difference between the observed and the theoretical gravity value in 

the point P, it describes the vertical component of gravity in the point station P due to an 

anomalous body with a density difference  to the host material. 

 

 
 

Figure 3.2 Schematic of a non-flat portion of the earth used to derivation of the Bouguer anomaly 

concept. 
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3.2 The generalized formalism for gravity 

 
Let us consider a reference system with a horizontal (x,y)-plane and the z-axis 

positive downwards, and a 2D datum domain S as in figure 1.1. The S-domain is 

generally a nonflat ground survey area described by a topographic function z(x,y). 

Indicating with Ba(r) the Bouguer anomaly at a set of datum points r(x,y,z), with rS, 

we assume that Ba(r) can be discretised as 

 



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n

u
n
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m
mmma ssB

11

),()(),()()( rrLdrrPpr  

          



H

h
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uvw
h

uvw
h

G
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g

uv
g

uv
g ss

11

),()(),()( rrCorrSq                                                   (3.7) 

 
The effect of the M, N, G and H source elements at a point rS is determined by the 

kernel s(r,ri)=(zi-z)/ri-r3 (i=m,n,g,h), which represents the vertical component of the 

gravitational acceleration due to a point mass of unitary strength [28,29]. 

We define the information power , associated with Ba(r), over the surface S as 

 


S

a dSB )(2 r                                                         (3.8) 

 

which, using eq. 3.7, is expanded as 
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   Skipping all intermediate steps, we directly arrive at the explicit expressions of the 

gravity SPOP, SDOP, SQOP and SOOP functions, using the pair of eq.s 1.8 and 1.9, eq.s 

1.10 and 1.11,  eq.s 1.12 and 1.13, eq.s 1.14 and 1.15 

 The gravity 3D SPOP function is given as  

  

dxdyzgsBC m

X

X

Y

Y
a

p
m

p
m )(),()()()( rrr 









                                          (3.10) 

 

with 

 
1/2

( ) 2 2( ) ( ) ( , ) ( )
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C B g z dxdy s g z dxdy
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   

 
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   r r r                 (3.11) 

 

The gravity 3D SDOP function is given as  
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with 

 
1/22
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nX Y X Y

sC B g z dxdy g z dxdy
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
   

   

 
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   
r rr , (u=x,y,z)    (3.13) 

 

Each first derivative of s(r,rn) takes the role of source dipole scanner. The first 

derivatives of s(r,rn) are given in expanded form in appendix c. 

The gravity 3D SQOP function is given as [3] 
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with 
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r r
r ,(u,=x,y,z)                 (3.15) 

Each second derivative of s(r,rg) has the role of source quadrupole scanner. The 

second derivatives of s(r,rg) with u≠v are reported in appendix c. 

Finally, the gravity 3D SOOP function is given as [3] 

 
3
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Each third derivative of s(r,rh) takes the role of source octopole scanner. Its 

expression for u≠v≠w is reported in appendix c. 

 
 

3.3 Synthetic examples 

We show a few synthetic examples, in order to highlight the main aspects of this GPT 

multipole generalisation. 

 

3.3.1 The one-cube model 

At first, we consider the cube model, which is assigned a density contrast  =0.5 

g/cm3, sides 6 m long parallel to the coordinate axes and M centre at x0, y0, z6 m. 

The Ba dataset has been calculated at the nodes of a square grid with a step of 2 m from 

-18 m to 18 m along both the x- and y-axis, using the formula for the rectangular 

parallelepiped reported by Parasnis [39, p.81, eq.2.27]. Figure 3.3 shows the calculated 
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Ba map on the x,y plane. We remind that an identical Ba image results if a change of the 

model distance scale is made, provided that the Ba values are all multiplied by the same 

scale factor.  

 
 

Figure 3.3 The Ba map for the one-cube model with  =0.5 g/cm3, sides 6 m long and M centre at x=0, 
y=0 and z=6 m. 
 

Figure 3.4 shows the results from the application of the multipole GPT algorithms to 

the Ba map in figure 3.3 . For the sake of clarity, in this and all of the following 3D plots 

we will show sufficiently small SPOP, SDOP, SQOP and SOOP nuclei, each enclosing 

the maximum absolute value (MAV) of the corresponding - function.  

The SPOP image shows a positive nucleus around the M source centre. The SDOP 

image shows, instead, three distinct doublets of nuclei with opposite sign very close to 

the centres of the corresponding opposite faces of the cube. Three distinct quadruplets 

appear around the centres of the cube sides in the SQOP tomographies of the off-
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diagonal terms, and an octoplet located at the vertices of the cube is the peculiar result 

from the SOOP image.  

 

 
 

Figure 3.4 The SPOP (Aa), x-SDOP (Ab), y-SDOP (Ac), z-SDOP(Ad), xy-SQOP (Ba), xz-SQOP (Bb), 
yz-SQOP (Bc) and xyz-SOOP (Bd) tomographies derived from the Ba synthetic map in figure 3.3. The 
body with light blue lines is the cube model. 

 

 

The parameters characterising the nuclei drawn in figure 3.4 are listed in table 3.1 

appendix d. A shift of 0.1 m along the z-axis is estimated for the cube centre from its 

true position. Furthermore, an average error of about 3% affects the estimate of the side 

length of the cube, from the distance between the MAV points of two opposite nuclei in 

each multiplet. Of practical interest is to retrieve shape and position of the source body. 
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Figure 3.5 suggests that a quick modelling can be done, by plotting into a single image 

all of the nuclei drawn in figure 3.4. 

 

 
 

Figure 3.5 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei, viewed from top (a) and laterally (b), useful to retrieve the source body of the Ba  map in 
figure 3.3. 
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3.3.2 The sphere model 

 
The Ba map in figure 3.3 has a very close resemblance with the map generated by a 

spherical body. It is thus instructive to analyse the GPT response of a sphere. To this 

purpose, we consider a sphere model, which is given  =0.5 g/cm3, radius 3 m and ΔM 

centre at x=0, y=0, z=6 m. The Ba  map has been computed at the nodes of a square grid 

with the same characteristics as in the previous case, using the formula for the sphere 

reported by Parasnis [39, p.76, eq.3.20]. Figure 3.6 depicts the Ba map thus obtained.  

 

 

 
 

Figure 3.6 The Ba map for the sphere model with  = 0.5 g/cm3, radius 3 m and ΔM centre at x= 0, y= 0 
and z= 6 m. 
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Figure 3.7 shows the results from the application of the multipole GPT imaging. As 

previously, in the SPOP image a nucleus appears about the ΔM centre.  

 
 

Figure 3.7 The SPOP (Aa), x-SDOP (Ab), y-SDOP (Ac), z-SDOP (Ad), xy-SQOP (Ba), xz-SQOP (Bb), 
yz-SQOP (Bc) and xyz-SOOP (Bd) tomographies derived from the Ba map in figure 3.6. The body with 
light blue scatter plot is the sphere model. 

 

The SDOP images show the three doublets of nuclei with opposite sign closely 

where the coordinate axes cross the sphere. The nuclei of the off diagonal SQOP 

quadruplets and the SOOP octoplet also appear adjacent to the sphere. Considered 

singularly, the SPOP, SDOP, SQOP and SOOP nuclei are so regularly located that no 

difference can be detected with respect to the previous cube model. The situation 

changes notably if we plot the nuclei altogether into a multipole image as in figure 3.8. 

It is no longer possible, now, to combine a set of SDOP, SQOP and SOOP nuclei 
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crossed by a single plane as in the previous case. In other words, a cube’s face can no 

longer be traced.  

 
 

Figure 3.8 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei under two different angles of view, useful to retrieve the source body of the Ba  map in 
figure 3.6. 
 

The multipole GPT seems thus capable to differentiate the response of a cube from 

that of a sphere. The parameters of the SPOP, SDOP, SQOP and SOOP nuclei depicted 

in figure 3.7. 
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3.3.3  The rotated and tilted cube model 

 
We show now what happens when the sides of the cube are no longer parallel to the 

reference coordinate axes. A new model is thus analysed by rotating the cube previously 

dealt with by 45° around both the vertical axis and the y-oriented horizontal axis 

through the ΔM centre. Figure 3.9 shows the Ba map of this new source body 

configuration. Figure 3.10 illustrates the results from the application of the multipole 

GPT imaging.  

 
 

Figure 3.9 The Ba  map for the tilted cube model with same parameters as in figure 3.3, rotated by 45° 
around the vertical and horizontal axes through the M centre. 
 

The SPOP image still shows a nucleus located around the ΔM centre. On the 

contrary, the SDOP, SQOP and SOOP nuclei exhibit a mixed behaviour compared with 

that of the coaxial cube model. While in the former case they distinctly represent the 
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faces, corners and vertices of the cube, respectively, now the same multiplets can 

indistinctly simulate any of these geometrical features. The only regularity is that the 

nuclei are always revealed in homologous couples. However, it must be stressed that 

this behaviour is not casual, since our procedure simply implies the search for the MAV 

points of the first, second and third order crossed derivatives of the kernel function with 

respect to the reference axes. 

 

 
 

Figure 3.10 The SPOP (Aa), x-SDOP (Ab), y-SDOP (Ac), z-SDOP(Ad), xy-SQOP (Ba), xz-SQOP (Bb), 
yz-SQOP (Bc) and xyz- SOOP (Bd) tomographies derived from the Ba  synthetic map drawn in figure 3.9. 
The body with light blue lines is the inclined cube model. 
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Figure 3.11 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei, under two different angles of view, useful to retrieve the source body of the Ba map in 
figure 3.9. 

 
 

 
 

3.3.4   The two prism model 

 
The forth example is the coaxial two prisms model, whose aim is to test the 

resolution power of the new GPT method. The first prism is simply a cube with  =0.5 

g/cm3 and the second one is a parallelepiped with  =-1.0 g/cm3. Three cases are 

shown with three different distances between the ΔM centres of the two prisms. 

Positions and side lengths of the two bodies are detailed in the caption of figure 3.12. 

The Ba datasets have been computed at the nodes of a square grid by a 2 m step in the 

rectangle [-60,60]×[-30,30] m2. Figure 3.12 shows the Ba maps for the three cases in 

order of decreasing distance between the centres from the top (a) to the bottom plot (b). 
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It is quite evident that the decreasing distance is the cause of an increasing compression 

of the Ba contour lines in the region of highest mutual interference. 

 

 
 

Figure 3.12 The Ba  map for the two prisms model made of a cube with  =0.5 g/cm3, side 12 m long 
and centre at x=20 m (a), x=14.5 m (b) and x=11 m (c), y=4 m, z=15 m, and a parallelepiped with  =-
1.0 g/cm3, x- and z-oriented sides 13 m long and y-oriented  sides 13.5 m long, and centre at x=-20 m (a), 
 x=-15 m (b) and x=-11.5 m (c), y=-4.75 m, z=15 m. 
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   Figure 3.13 displays the GPT results for the three cases, where, for brevity only the 

combined multipole images are reported.  

 

 
 

Figure 3.13 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei for the two-cube model with decreasing distance between the centres of the two cubes. 
The sequence of the images is the same as that of the Ba  maps in figure 3.12. 
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In the top one, which refers to a distance between the centres greater than 3 times the 

average side length of the bodies, the interaction between the two prisms is rather 

negligible and their true shape can still be recognised. In the middle image, which refers 

to a distance between the centres of about 2,5 times the average side length, all of the 

facing SDOP, SQOP and SOOP nuclei depart from their initial places to converge to the 

centre of the two bodies’ system. Finally, in the bottom picture, which refers to a 

distance a little greater than 2 times the average side length, the detached facing nuclei 

of same type are wholly melted midway between the prisms. The facing faces, corners 

and vertices of the two nearby bodies have therefore completely lacked resolution. 

 

 

 

 

 

3.4 A field example 

 
 

We show the application of the 3D GPT to a gravity survey of Mt. Etna (Eastern 

Sicily, Italy), carried out in the frame of a multi-method geophysical project, aimed at 

delineating the structural setting of the whole volcanic apparatus. Etna is the biggest and 

most active volcano in Southern Europe, which formed within a large extension zone 

related to the subduction of the African under the Eurasian Plate. Figure 3.14 shows the 

survey area and the relative Ba residual map, obtained from the Ba field map after the 

application of a 2D high-pass filter of 50 km cut-off wavelength. The reference mean 

crustal density of 2.67 g/cm3 was taken for slab and terrain corrections. Further details 

on field data acquisition and processing are in [22] The Ba  residual map was already 

elaborated by the GPT method, limitedly, however, only to the SPOP analysis [29].  
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Figure 3.14 The Mt. Etna survey area and corresponding residual Ba map [22]. Numbers in the Ba map 
indicate the dominant closed anomalies. 
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The SPOP image in figure 3.15 displays a set of distinct nuclei containing the poles, 

which are interpreted as the ΔM centres responsible of the Ba closed anomalies in figure 

3.14 . Combining in pairs and altogether the SPOP, SDOP, SQOP and SOOP nuclei into 

single pictures, regardless of their algebraic sign, the images in figure 3.16 are obtained.  

 

 
 

Figure 3.15 The Mt. Etna 3D SPOP tomography of the residual gravity map reported in figure 3.14. 
 

 

Figure 3.16 shows a complex assemblage of the SDOP, SQOP and SOOP multiplets. 

All the related nuclei appear clustered around the 8 poles of figure 3.15, tending thus to 

configure 8 distinct blocks. Some remarkable features can now be noted in this 3D 

block pattern. 

Compared with the results from the previous synthetic examples with simple 

confined bodies, the first feature is a rather frequent incompleteness of the multiplets 

around the poles. For instance, the three doublets of the dipole sources never total 6 

nuclei, and in one case, around the pole n.1 in figure 3.15, they even drop to only 3, one 

for each doublet. A similar situation occurs for the 3 quadruplets, which drop to only 5 

nuclei from a total of 12, around the pole n.3 in figure 3.15, and for the octoplet, which 

drops to only 2 nuclei from a total of 8, around the pole n.4 in figure 3.15. 
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Figure 3.16 A joint representation of the SPOP and SDOP (a), SPOP and SQOP (b), SPOP and SOOP 
(c), SPOP, SDOP, SQOP and SOOP (d) nuclei, resulting from the application of he GPT method to the 
Mt. Etna gravity map in figure 3.14. 
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 Also, we do not happen to see in each cluster a number of multiplets, belonging to 

any of the source typologies, greater than the corresponding maximum number as 

detected by the GPT of the synthetic cases previously considered. Another feature is the 

presence of the detachment and melting effects due to closeness of the causative bodies, 

as explained along with the discussion of the two prisms model. This feature can 

particularly be viewed in figure 3.16, midway between the poles n.6 and n.7 and the 

poles n.2 and n.5, marked in figure 3.15. No tilts can be appreciated around any 

horizontal axis, while moderate horizontal rotations can be observed for the sources n.3, 

n.4 and n.8, reported in figure 3.15. In conclusion, basing on the above remarked 

features, an assemblage of vertical prismatic blocks seems to be the most probable 

gravity model of the Etna apparatus within the first 5 km of depth b.s.l..  

The biggest central blocks n.5, n.6 and n.7 appear as truly confined bodies with a 

roughly quadrangular section. All of the other peripheral blocks, are reasonably to be 

interpreted as partially unconfined bodies, because of either an insufficient number of 

data or the lack of a density contrast, at least along one of the reference directions[3].  

The geometry of the source bodies responsible of the anomalies in figure 3.14 appears 

now much better delineated than in the former GPT study by the single SPOP algorithm 

[28,29] 
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4. Multipole Self-Potential Tomography 
 
 

4.1 The basic Self Potential theory 

 
 

The SP measurements refer to that part of the natural electrical field which is 

stationary in time, or slowly varying in relation to the time span required for the 

execution of a survey, and whose current source system is generated and sustained by 

phenomena occurring underground within geologica1 structures. The most important 

source mechanism in rocks, which has been proposed to explain SP field data both in 

exploration geophysics and in tectonophysics, is the so called electrokinetic effect 

related to the movement of fluids in porous systems in presence of an electrical double 

layer at the fluid-rock matrix interface. Basically, the electrokinetic effect is included 

within the constitutive relationships that formalise Onsager’s coupled flow theory [20]. 

From the physical point of view, the common aspect of the many source models is that 

an electrical charge polarization is developed, which is assumed to be responsible for 

the electrical current circulation in conductive rocks. It follows that the detected SP 

anomalies are simply the surface evidence of a more or less steady state of electric 

polarization. Therefore, in the final interpretation stage, the SP inverse problem merely 

consists of finding the location and outlining the shape of the electrical charges 

accumulations underground. SP data are collected in field surveys as potential drops, 

ΔU, across a passive dipole, normally consisting of a pair of liquid junction copper-

copper sulphate porous pots as grounded electrodes. If the dipole length is sufficiently 

small relative to the expected anomaly wavelengths, the ratio SP drop to dipole length 

gives an estimate of the component of the natura1 electrical field along the dipole axis 

on the measurement surface. The sequence of progressive readings of this ratio along a 

survey line is currently known as the gradient technique and is the most commonly used 

procedure in difficult areas. Furthermore, a standard polarity cable- connecting 

convention, with reversal of leading and trailing electrodes between successive 

measurements, known as the leapfrog profiling technique, permits measurement of SP 
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data which is virtually free of electrode polarization error. Finally, the use of loops or 

two-way profiles helps to eliminate virtually any spurious effects of SP drift, by 

distributing the tie-in closure error among all the readings around the closed circuit [10]. 

Let us consider a reference system with a horizontal (x,y)-plane placed at sea level 

and the z-axis positive downwards, and a 2D datum domain S as in figure 1.1. The S-

domain is generally a non-flat ground survey area described by a topographic height 

function z(x,y). We indicate with ES(r) the SP electrical field vector at a set of datum 

points r[x,y,z(x,y)], with rS. In areas with rough topography and inaccessible sites 

the current practice in collecting SP data consists of a continuous displacement of the 

measuring dipole along a generally irregular network of closed circuits and/or two-way 

interconnected branched lines. In order to provide a uniform and dense distribution of 

ES(r) data, a pre-processing is required according to the following three steps [41,42]. 

The first step consists in assigning a zero potential value to an arbitrary reference point 

in the area, where an electrode had been placed, and in recovering from the origina1 

sequence of SP drops, by simple algebraic summation, a new sequence of SP values, all 

defined to within an unknown common constant. The second step consists in contouring 

the new set of potential data, in order to draw an SP anomaly map covering the entire 

survey area, as sketched in figure 1.1. The third step consists in selecting a double set of 

curvilinear - and -profiles with horizontal surface projections onto the horizontal 

(x,y)-plane, parallel to the x-axis and the y-axis and equally spaced from each other by 

the spacings Δy and Δx, respectively. Along any -profile or -profile, the sampling 

interval projection onto the (x,y)-plane, equal to y and x, respectively, is assumed 

constant and, for the sake of easier calculations, such that x=y=, where   is taken 

once for all as the unique distance discretization element. Using a regular square grid on 

the (x,y)- plane, at each cross point of every pair of perpendicular x-line and y-line, a 

pair of values of the electrical field components, E(r) and E(r), is assigned. These are 

estimated by interpolation from the SP map across dipoles of length  and , 

respectively, and attributed to the midpoint of the projected dipoles, both of length . 

By indicating with U and U the potential difference across  and , 

respectively, we readily obtain the estimates of E(r) and E(r) as 
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4.2 The generalized formalism for Self Potential 

 

We assume that ES(r) can be discretised as 
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The effect of the M, N, G and H source elements at a point rS is determined by the 

vector kernel s(r,ri) (i=m,n,g,h), which represents the electrical field vector due to a 

point positive charge of unitary strength. The components s(r,ri) and s(r,ri) of s(r,ri) 

over the S-domain are explicitly given as 

 

   x
zzyyxx

zzzxxs
iii

xii
i 




 2/3222 )()()(

)()(),( rr                                                          (4.4) 

 

   y
zzyyxx

zzzyy
s

iii

yii
i 




 2/3222 )()()(

)()(
),( rr                                                         (4.5) 

 

where it is xzzx  / , yzz y  / ,  d/dxx   and  d/dyy  . 

 

We define the information power , associated with ES(r), over the surface S as 
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Skipping all intermediate steps, we directly arrive at the explicit expressions of the 

self-potential  SPOP, SDOP, SQOP and SOOP functions, using the pair of eq.s 1.8 and 

1.9, eq.s 1.10 and 1.11,  eq.s 1.12 and 1.13, eq.s 1.14 and 1.15 

 The self-potential 3D SPOP function is given as  
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The self-potential 3D SDOP function is given as  
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Each first derivative of s(r,rn) has the role of source dipole scanner. The first 

derivatives of the components s(r,rn) and s(r,rn) of s(r,rn) over the S-domain are 

reported in appendix e. 

 

The self-potential 3D SQOP function is given as [4] 
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Each second derivative of s(r,rg) has the role of source quadrupole scanner. The 

useful second derivatives of the components s(r,rg) and s(r,rg) of s(r,rg) over the S-

domain with u≠v are reported in appendix e. 

 

 

The self-potential 3D SOOP function is given as [4] 
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Each third derivative of s(r,rh) has the role of source octopole scanner. The third 

derivatives of the components s(r,rh) and s(r,rh) of s(r,rh) over the S-domain with 

u≠v≠w are reported in appendix e. 
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4.3 Synthetic examples 

 
We show some synthetic examples, in order to outline the main aspects of the 

multipole generalisation of the SP probability tomography. 

 

4.4.1 The one-cube model 

 
At first, we consider a coaxial cube model with sides 6 m long parallel to the 

coordinate axes and centre at x=0, y=0, z=6 m. A positive charge of 0.5 C is assumed 

uniformly distributed on the surface of the cube with a charge surface density 

  2.315 310  C/ 2m . The SP data have been computed at the nodes of a square grid 

using a 1 m step from −18 m to 18 m along both the x-axis and y-axis. Figure 4.1 shows 

the synthetic SP map on the (x,y)-plane. 

 

 
 

Figure 4.1. The SP map for the cube model with a positive charge surface density   2.315  103 

C/m2,  sides 6 m long and centre at x=0, y=0 and z=6 m. 
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Figure 4.2 shows the results from the application of the multipole probability 

tomography algorithm to the SP map in figure 4.1. Since no topographic effects have 

been simulated, the scanner functions used to compute the   functions have been 

obtained from the previous formulae putting xz   yz  0, x   y  1 and g(z)=1.  

 

 
 

Figure 4.2 The SPOP (Aa), x-SDOP (Ab), y-SDOP (Ac), z-SDOP (Ad), xy-SQOP (Ba), xz-SQOP (Bb), 
yz-SQOP (Bc) and xyz-SOOP (Bd)  tomographies derived from the SP synthetic map in figure 4.1. The 
body with blue lines is the cube model. 
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     For the sake of clarity, in all of the 3D probability tomography plots we will show 

sufficiently small SPOP, SDOP, SQOP and SOOP nuclei, each enclosing the maximum 

absolute value (MAV) of the corresponding η-function.  

The SPOP image shows a positive nucleus around the cube centre. The SDOP image 

shows, instead, three distinct doublets of nuclei with opposite sign very close to the 

centres of the corresponding opposite faces of the cube. Three distinct quadruplets 

appear around the centres of the cube sides in the SQOP tomographies of the off-

diagonal terms, and an octoplet located at the vertices of the cube is the peculiar result 

from the SOOP image. The parameters of the nuclei in figure 4.2 are listed in table 4.1 

appendix f.  

 
 

Figure 4.3 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei, viewed from top (a) and laterally (b), useful to retrieve the source body of the SP map in 
figure 4.1. 
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A shift of 0.1 m along the z-axis is estimated for the cube centre from its true position. 

Furthermore, an average error of about 3% affects the estimate of the side length of the 

cube, from the distance between the MAV points of two opposite nuclei in each 

multiplet. Of practical interest is to retrieve shape and position of the source body. 

Figure 4.3 suggests that a quick modelling can be done, by plotting into a single image 

all of the nuclei drawn in figure 4.2. 

4.4.2  The single point charge model 

 

The SP map in figure 4.1 has a very close resemblance with the map due to a point 

charge. To this aim, we consider a point charge of 0.5 C placed at x=0, y=0, z=6 m. The 

SP map has been computed at the nodes of a square grid with the same characteristics as 

in the previous case. Figure 4.4 depicts the SP map thus obtained.  

 

 
 

Figure 4.4 The SP map due to a point charge of 0.5 C placed at x=0, y=0 and z=6 m. 
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Figure 4.5 shows the results from the application of the multipole tomography imaging. 

As in the coaxial cube case, the SPOP image gives a clear indication as to the correct 

position of the point charge. 

 

 
 

Figure 4.5 The SPOP (Aa), x-SDOP (Ab), y-SDOP (Ac), z-SDOP (Ad), xy-SQOP (Ba), xz-SQOP (Bb), 
yz-SQOP (Bc) and xyz-SOOP (Bd) tomographies derived from the SP map in figure 4.4. 

 
 However, in spite of the fact that the source is a single pole, SDOP, SQOP and 

SOOP nuclei also appear so regularly located that, considered singularly, no difference 
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can be detected with respect to the previous cube model. The situation changes 

considerably if we plot the SDOP, SQOP and SOOP nuclei altogether into a multipole 

image as in figure 4.6. It is no longer possible, now, to combine a set of SDOP, SQOP 

and SOOP nuclei crossed by a single plane as in the previous case. In other words, a 

cube’s face can no longer be traced.  

 

 
 

Figure 4.6 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei under two different angles of view, derived from the SP map in figure 4.4. 
 
The multipole analysis seems thus able to differentiate the response of a cube from that 

of a point source. The fact that SDOP, SQOP and SOOP nuclei are developed also for 

the single point charge model must be interpreted as the consequence of how the 

corresponding η-functions operate and the degree of equivalence of the responses due to 
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different source patterns. In other words, the multipole source geometry in figure 4.6 is 

likely to represent the most probable polyhedral figure generating an SP response 

equivalent to that drawn in figure 4.1. The parameters of the SPOP, SDOP, SQOP and 

SOOP nuclei are listed in table 4.2 appendix f. 

 

 

4.4.3  The rotated and tilted cube model 

 

We show now what happens when the sides of the cube are no longer parallel to the 

reference coordinate axes. A new model is thus analysed by rotating the cube previously 

dealt with by 45° around both the vertical z-axis and the y-axis through the centre. 

Figure 4.7 shows the SP map of this new source body configuration. 

 

 
Figure 4.7 The SP map for the tilted cube model with same parameters as in figure 4.1, rotated by 45° 
around the vertical and horizontal axes through the centre. 
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Figure 4.8 illustrates the results from the application of the multipole tomography 

imaging. The SPOP image still shows a nucleus located around the centre. On the 

contrary, the SDOP, SQOP and SOOP nuclei exhibit a mixed behaviour compared with 

that of the coaxial cube model. 

 

 
 

Figure 4.8 The SPOP (Aa), x-SDOP (Ab), y-SDOP (Ac), z-SDOP (Ad), xy-SQOP (Ba), xz-SQOP (Bb), 
yz-SQOP (Bc) and xyz-SOOP (Bd) tomographies derived from the SP synthetic map drawn in figure 4.7. 
The body with light blue lines is the inclined cube model. 
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While in the former case they distinctly represent the faces, corners and vertices of 

the cube, respectively, now the same multiplets can simulate any of these geometrical 

features, indistinctly. The only regularity is that the nuclei are always revealed in 

homologous pairs. However, it must be stressed that this behaviour is not casual, since 

the procedure simply implies the search for the MAV points of the first, second and 

third order crossed derivatives of the kernel function with respect to the reference axes. 

 

 
 

Figure 4.9 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei, under two different angles of view, useful to retrieve the source body of the SP map in 
figure 4.6. 
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4.4.4  The two prism model 

 
The forth example is the coaxial two-prism model, whose aim is to test the resolution 

power of the new tomography method. The first prism is a cube with       

  5.787  10-4 C/m2 and the second one is a parallelepiped   -4.822  10-4 C/m2. 

Three cases are shown with three different distances between the centres of the two 

prisms. Position and side lengths of the two bodies are detailed in the caption of figure 

4.10.  

 
Figure 4.10 The SP map for the two-prism model made of: 1) a cube with   5.787  10-4 C/m2, sides 
parallel to the three coordinate axes and 12 m long each, and centre at x=20 m (a), x=14.5 m (b) and x=11 
m (c),  y=4 m, z=15 m; 2) a parallelepiped with   -4.822  10-4 C/m2, x- and z-oriented sides 13 m long 
and y-oriented sides 13.5 m long, and centre at x=−20 m (a), x=−15 m (b) and x=−11.5 m (c), y=−4.75 m, 
z=15 m. 
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The SP datasets have been computed at the nodes of a square grid by a 1 m long step 

in the rectangle [−60,60]×[−30,30] m2. 

Figure 4.10 shows the SP maps for the three cases in order of decreasing distance 

between the centres from the top (a) to the bottom plot (b).  

 

 
 

Figure 4.11 A joint representation of the SPOP (red), SDOP (light blue), SQOP (green) and SOOP 
(purple) nuclei for the two-prism model with decreasing distance between the centres of the two prisms. 
The sequence of the images is the same as that of the SP maps in figure 4.10. 
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It is quite evident that the decreasing distance is the cause of an increasing 

compression of the SP contour lines in the region of highest mutual interference. Figure 

4.11 displays the tomography results for the three cases, where, for brevity only the 

combined multipole images are reported.  

In the top one, which refers to a distance between the centres greater than 3 times the 

average side length of the bodies, the interaction between the two prisms is rather 

negligible and their true shape can still be recognised. In the middle image, which refers 

to a distance between the centres of about 2,5 times the average side length, all of the 

facing SDOP, SQOP and SOOP nuclei depart from their initial places to converge to the 

centre of the two bodies’ system. Finally, in the bottom picture, which refers to a 

distance a little greater than 2 times the average side length, the detached facing nuclei 

of same type are wholly melted midway between the prisms. The facing faces, corners 

and vertices of the two nearby bodies have therefore completely lacked resolution. 
 
 
 

4.5 A field example 

 
As is well documented, in natural hydrothermal systems SP signals are generated 

mainly by electrokinetic flows. Generally speaking, in active volcanic areas, SP positive 

anomalies correspond to upward migrating fluids, while negative ones to a downward 

fluid movement [32,46]. We illustrate now the application of the SP 3D multipole 

probability tomography to an SP survey carried in the volcanic area of Mt. Somma- 

Vesuvius (Naples, Italy), which aimed to configure the main plumbing system of the 

volcanic complex. Mt. Somma-Vesuvius is a polygenic strato-volcano, whose most 

recent period of history (1631-1944) was characterized by a semipersistent, relatively 

mild activity (lava fountains, gases and vapour emission from the crater), frequently 

interrupted by short quiet periods that never exceeded seven years. From 1944 to the 

present time, Mt. Somma-Vesuvius has remained quiet. The SP data were collected in 

1995 by the gradient technique with a 100 m long passive dipole, continuously 

displaced along a wide net of randomly distributed circuits within an area of about 144 

km2 [13], sketched in figure 4.12. Figure 4.13 shows the behaviour of the SP field in 

mV, resulting from the processing of 1250 measurements [13,19]. 
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Figure 4.12 The Mt. Somma-Vesuvius survey area. 

 

 As the area is characterized by a strongly uneven topography, the 3D multipole 

tomography algorithm with topographic effects has been used. The SP map in figure 

4.13 was already elaborated by the probability tomography method, limitedly, however, 

only to the source pole and dipole analysis [13,19,32].  

The SPOP image in figure 4.14 displays a pair of nuclei of opposite sign containing 

two poles with the highest occurrence probability. They are interpreted as the centres of 

the polarised bodies responsible of the SP biggest anomalies of opposite sign drawn in 

figure 4.13. The negative pole appears to correspond closely to the Mt. Somma caldera 

rim, while the positive pole closely corresponds to the summit portion of the Vesuvius 

chimney. 
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Figure 4.13 The Mt. Somma-Vesuvius SP map. 

 

 
Figure 4.14 The Mt. Somma-Vesuvius 3D SPOP tomography of the SP map reported in figure 4.13. 
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Combining in pairs and altogether the SPOP, SDOP, SQOP and SOOP nuclei into 

single plots, the images in figure 4.15 are obtained [4]. 

 

 
 

Figure 4.15 A joint representation of the SPOP and SDOP (a), SPOP and SQOP (b), SPOP and SOOP 
(c), SPOP, SDOP, SQOP and SOOP (d) nuclei, resulting from the application of the 3D multipole 
tomography method to the Mt. Somma-Vesuvius SP map in figure 4.13. 
 
 

Figure 4.15 shows a quite regular assemblage of the SDOP, SQOP and SOOP 

multiplets. All the related nuclei appear clustered around the two poles of figure 4.13, 

tending to configure two distinct blocks. 

Compared with the results from the previous two-prism model, we can state that the 

two blocks are so sufficiently distant from each other as to exclude any interaction 

between them, as in the example (a) in figure 4.11. The parameters of the SPOP, SDOP, 

SQOP and SOOP nuclei in figure 4.15 are listed in table 4.3 appendix f, from which the 

source bodies are estimated to be confined within the first 3 km of depth b.s.l.. The 

geometry of the source bodies responsible of the anomalies in figure 4.13 appears now 
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much better delineated than in the former study where only the SPOP and SDOP 

algorithms were used [32].  

In conclusion, the SP field in the Mt. Somma-Vesuvius volcanic area can be thought 

of as the response of a gas-dominated hydrothermal engine made of a single large 

convective circuit. The charging branch, where the cold meteoric waters are channelled 

into the subsoil, is located in the area of the Mt. Somma caldera rim, and the 

discharging branch, where the hot uprising fluids flow out in the air, closely 

corresponds with the Vesuvius central crater where a vast fumaroles front is almost 

permanently active. 
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Conclusion 
 
 
 

The main result of this thesis has been the development of the theory of the 

generalized 3D probability tomography method (3D GPT) to image source poles,  

dipoles, quadrupoles and octopoles,  of a geophysical vector or scalar field dataset.  

The theoretical derivation of the source quadrupole occurrence probability  

tomography (SQOP) and  source octopole occurrence probability  tomography (SOOP) 

has been given following a formal development similar to those of the  source pole 

occurrence probability tomography (SPOP)  and  source dipole occurrence probability 

tomography (SDOP), previously published in detail for single geophysical methods, 

using an abstract formalism which makes no reference to any particular geophysical 

prospecting method. 

These elementary sources have been used to image, in the most complete way and 

without any a priori assumption, shape and position of the most probable anomaly 

source bodies, by picking out the location of the centres and of peculiar points of the 

boundaries, such as corners, wedges and vertices. In this new formulation, poles and 

dipoles still have the original meaning to represent centres and boundaries, respectively, 

of elementary bodies with constant constitutive parameters, while quadrupoles and 

octopoles are assumed to simulate sharp  corners, wedges and vertices elements. The 

purpose of the multipole analysis has been improving the resolution power of 

geophysical methods, using probability as a suitable paradigm allowing all possible 

equivalent solutions to be included into a unique 3D tomography image.  

Then, the 3D GPT has been adapted to the geoelectrical, gravity and self potential 

methods. The multipole sources have been used to detect the position of the centres of 

the true sources and to highlight the features of their boundaries. A few tests on simple 

synthetic models and the analysis of three field examples have been documented, in 
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order to evaluate both feasibility and fidelity of the new approach to geophysical 

modelling. 

The  simple synthetic examples have shown the notably enhanced resolution power 

of the new approach and how the combined pole, dipole, quadrupole and octopole 

tomographies can provide a complete resolution of the most probable buried sources of 

the anomalies detected within a datum domain. 

We have shown that the 3D multipole GPT method can be successfully applied to a 

field example related to a dipole–dipole geoelectrical survey carried out in the 

archaeological park of Pompei to recognize remains of the ancient Roman urban 

network including roads, squares and buildings, which were buried under the thick 

pyroclastic cover fallen during the 79 AD Vesuvius eruption. 

The relative SQOP tomography has allowed a prismatic shape with vertical edges, 

associated with some aligned, elongated resistive bodies with sharp lateral bounds, 

disclosed by a previous SPOP and SDOP analysis, to be definitely ascribed to well-

preserved remnants of some aligned walls of Roman edifices, buried and partially 

destroyed by the 79 AD Vesuvius pyroclastic fall. 

We have applied, also, the theory of the probability tomography for the gravity 

method to a gravity survey carried out in the volcanic area of Mt. Etna (Sicily, Italy) to 

delineate the geometry of the Bouguer anomaly sources in the central volcanic area.  

In conclusion, an assemblage of vertical prismatic blocks has appeared to be the most 

probable gravity model of the Etna apparatus within the first 5 km of depth below sea 

level. 

Finally , an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic 

district (Naples, Italy) has been elaborated with the new theory in order to define 

location and shape of the sources of two SP anomalies of opposite sign detected in the 

northwestern sector of the surveyed area. The modelled sources have been interpreted as 

the polarization state induced by an intense hydrothermal convective flow mechanism 

within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l.. 

The probabilistic approach has mainly been efficient to solve the problems developed 

in this thesis. In fact all the geophysical methods are based on incomplete cognitive 

processes due to not comparable measurements, difficulties to have data sets enough 

thick and noise presence. Moreover the probabilistic approach has proved to fit well 
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with the imaging of the geophysical field interaction with the structures inside the 

investigated medium, without any constrain or a priori model assumption. 

One of the possible developments of this thesis work will be the 3D GPT evolution 

towards a true inversion process in order to obtain at the same time information on the 

position, on the geometry and on the intensity of the sources of any geophysical 

anomaly. 

To conclude, it is worth emphasising the role of the 3D multipole geophysical 

probability tomography approach in the definition of the sources of the SP anomalies 

which are observed on the ground surface in many application fields, among which 

volcanology, as in this study, seismology  and archaeology. It is also worth stressing the 

importance that the probability tomography can have in the study of the time evolution 

of the SP signals in high-risk volcanic areas, where the electrokinetic source field may 

undergo a rapid increase of intensity in conjunction with an increase of the volcanic 

emission activity. The 4D tomography is in fact becoming a very promising monitoring 

technique especially in fast flow visualization. 
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Appendix A 

 

The DD apparent resistivity a(i,j,k) is defined as 
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where IAB is the intensity of the primary current injected into the ground through the 

current electrodes A and B, K is the well known DD geometrical factor given by 

 

K=ak(k+1)(k+2)             (A2) 

 

with a being both the spread of the dipoles and the spacing between adjacent profiles 

(in the Pompei case it is a=2 m), and MN is the potential difference across the 

electrodes M and N. Referring to figure 2.8, MN is expanded as 
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The four Frechet derivatives are taken from Mauriello and Patella [26] as follows 
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Appendix B 

 

 
 

Table 2.1  SPOP, SDOP and SQOP primary maximum absolute values (MAV) and corresponding 

reduced levels in per cent (%), considered for the tracing of the isosurfaces bounding the nuclei in figure 

2.4(a). 

 

 

 

 

 
 

Table 2.2 SPOP, SDOP and SQOP primary maximum absolute values (MAV) and corresponding 

reduced levels in per cent (%), considered for the tracing of the isosurfaces bounding the nuclei appearing 

in figures 2.4(b), 2.5–2.7. 
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Table 2.3 SPOP, SDOP and SQOP primary maximum absolute values (MAV) and corresponding 

reduced levels in per cent (%), considered for the tracing of the isosurfaces bounding the nuclei appearing 

in figure 2.17. 
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Appendix D 
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Table 3.1 Characterization of the SPOP, SDOP SQOP and SOOP nuclei in figure 3.4. A: nucleus type; B: 

bounding isosurface; C: maximum absolute value (MAV); D: (x,y,z) of the MAV point. 
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Appendix F 
 
 
 
 
 

A B C D 

SPOP (+) )( p
m =0.903 

max
)( p

m =0.904 (0.1, 0.0, 6.1) 

x-SDOP (+) )(
,
d
xn =0.375 

max
)(

,
d
xn =0.398 (-2.9, 0.1, 6.0) 

x-SDOP () )(
,
d
xn =0.38 

max
)(

,
d
xn =0.408 (3.0, 0.0, 6.1 ) 

y-SDOP (+) ( )
,
d

n y =0.375 
( )
, max

d
n y =0.391 (-0.2, -3.1, 6.0) 

y-SDOP () ( )
,
d

n y =0.371 
( )
, max

d
n y =0.395 (-0.1, 3.1, 6.1) 

z-SDOP (+) ( )
,
d

n z =0.40 
( )
, max

d
n z =0.445 (-0.1, 0.1, 3.1) 

z-SDOP () ( )
,
d

n z =0.401 
( )
, max

d
n z =0.447 (0.0, 0.1, 9.0) 

xy-SQOP (+) ( )
,
q

g xy =0.252 
( )

, max

q
g xy =0.258 (3.0, 3.0, 5.9) 

(-3.0, -3.1, 5.9) 

xy-SQOP () ( )
,
q

g xy =0.252 
( )

, max

q
g xy =0.258 (3.0, -3.0, 6.0) 

(-3.0, 3.1, 6.1) 

xz-SQOP (+) ( )
,
q

g xz =0.270 
( )

, max

q
g xz =0.393 (-3.3, 0.0 3.1) 

(3.3, 0.0, 9.0) 

xz-SQOP () ( )
,
q

g xz =0.270 
( )

, max

q
g xz =0.39 (3.1, 0.2, 3.1) 

(-3.3, 0.2, 9.0) 

yz-SQOP (+) ( )
,
q

g yz =0.275 
( )

, max

q
g yz =0.381 (0.1, -3.2, 3.1) 

(0.0, 3.4 9.0) 

yz-SQOP () ( )
,
q

g yz =0.275 
( )

, max

q
g yz =0.381 (0.0, 3.3, 3.1) 

(0.1, -3.2, 9.0) 

xyz-SQOP (+) ( )
,
o

h xyz =0.104 
( )
, max

o
h xyz =0.113 

(3.1, 3.2, 3.1) 
(-3.1, -3.1, 3.0) 
(3.2, -3.1, 9.1) 
(-3.1, 3.0, 9.0) 

xyz-SQOP () ( )
,
o

h xyz =0.105 
( )
, max

o
h xyz =0.114 

(3.2, -3.1, 3.1) 
(-3.1, 3.1, 3.1) 
(-3.1, -3.1, 9.1) 
(3.2, 3.1, 9.1) 

 
 
Table 4.1. Characterization of the SPOP,SDOP,SQOP and SOOP nuclei in figure 4.2. A: nucleus type; B: 
bounding isosurface; C: Maximum absolute value (MAV); D: (x,y,z) of the MAV point. 
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A B C D 

SPOP (+) )( p
m =0.885 

max
)( p

m =0.886 (0.0, 0.0, 6.0) 

x-SDOP (+) )(
,
d
xn =0.143 

max
)(

,
d
xn =0.151 (-3.6, -0.2, 6.0) 

x-SDOP () )(
,
d
xn =0.143 

max
)(

,
d
xn =0.152 (3.5, 0.0, 6.0) 

y-SDOP (+) ( )
,
d

n y =0.143 
( )
, max

d
n y =0.152 (-0.1, -3.7, 6.0) 

y-SDOP () ( )
,
d

n y =0.143 
( )
, max

d
n y =0.153 (0.0, 3.6, 6.1) 

z-SDOP (+) ( )
,
d

n z =0.161 
( )
, max

d
n z =0.171 (0.1, -0.3, 2.3) 

z-SDOP () ( )
,
d

n z =0.161 
( )
, max

d
n z =0.183 (0.1, -0.3, 10.0) 

xy-SQOP (+) ( )
,
q

g xy =0.099 
( )

, max

q
g xy 0.102 (2.8, 2.8, 6.2) 

(-2.7, -2.8, 6.1) 

xy-SQOP () ( )
,
q

g xy =0.099 
( )

, max

q
g xy 0.102 (2.8, -2.7, 6.1) 

(-2.8, 2.8, 6.1) 

xz-SQOP (+) ( )
,
q

g xz =0.094 
( )

, max

q
g xz 0.126 (-2.8, -0.2, 4.3) 

(3.3, -0.1, 7.3) 

xz-SQOP () ( )
,
q

g xz =0.094 
( )

, max

q
g xz 0.126 (2.8, -0.2, 4.3) 

(-3.4, -0.1, 7.3) 

yz-SQOP (+) ( )
,
q

g yz =0.094 
( )

, max

q
g yz 0.122 (-0.2, -2.7, 4.4) 

(-0.1, 3.2, 7.3) 

yz-SQOP () ( )
,
q

g yz =0.094 
( )

, max

q
g yz 0.122 (-0.2, 2.6, 4.5) 

(-0.1, -3.3, 7.3) 

xyz-SQOP 
(+) 

( )
,
o

h xyz =0.046 
( )
, max

o
h xyz =0.053 

(3.0, 3.2, 4.5) 
(-3.1, -3.1 4.4) 
(3.9, -3.8, 7.6) 
(-3.8, 3.7, 7.5) 

xyz-SQOP 
() 

( )
,
o

h xyz =0.046 
( )
, max

o
h xyz =0.053 

(3.1, -3.2, 4.4) 
(-3.1, 3.2, 4.4) 
(-3.8, -3.7, 7.5) 
(3.8, 3.8, 7.5) 

 
 
Table 4.2. Characterization of the SPOP,SDOP,SQOP and SOOP nuclei in figure 4.5. A: nucleus type; B: 
bounding isosurface; C: Maximum absolute value (MAV); D: (x,y,z) of the MAV point. 
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       Anomaly  SPOP (+) SPOP (-) 
SPOP (5.4, 6.3, 1.5) (6.5, 9.9, 0.9) 

x-SDOP (+) (4.3, 6.2, 1.6) (7.3, 10.0,1.0) 
x-SDOP () (6.9, 6.2, 1.6) (5.4, 9.8, 1.0) 
y-SDOP (+) (5.3, 5.4, 1.8) (6.3, 11.6, 1.0) 
y-SDOP () (5.3, 7.0, 1.7) (6.4, 9.0, 0.9) 
z-SDOP (+) (5.5, 6.3, 0.9) (6.4, 9.9, 1.9) 
z-SDOP () (5.5, 6.3, 2.7) (6.5, 9.9, 0.4) 

xy-SQOP (+) (4.6, 5.5, 1.8) 
(6.5, 6.9, 1.8) 

(5.5, 9.0, 1.2) 
(7.1, 11.5, 1.3) 

xy-SQOP () (4.6, 6.9, 1.8) 
(6.6, 5.5, 1.8) 

(5.5, 11.3, 1.2) 
(7.1, 9.0, 1.3) 

xz-SQOP (+) (4.5, 6.0, 0.9) 
(6.5, 6.1, 2.7) 

(5.4, 9.7, 0.2) 
(7.4, 10.2, 2.1) 

xz-SQOP ()  (6.5, 6.0, 0.8) 
  (4.6, 6.1, 2.7) 

(7.2, 9.9, 0.2) 
(5.2, 10.2, 2.2) 

yz-SQOP (+) (5.4, 5.2, 0.7) 
(5.4, 7.2, 2.6) 

 (6.3, 9.0, 0.3) 
(6.2, 11.6, 2.1) 

yz-SQOP () (5.2, 7.1, 0.7) 
(5.4, 5.2, 2.6) 

(6.3, 11.3, 0.2) 
(6.3, 9.1, 2.1) 

xyz-SQOP (+) 

(4.5, 6.8, 0.7)         
(6.3, 5.3, 0.7) 

  (4.7, 5.6, 2.7)  
(6.4, 7.0, 2.7) 

(5.4, 8.8, 0.3)    
(6.9, 11.0, 0.2) 

 (5.5, 11.2, 1.9)  
(7.0, 9.3, 2.0) 

xyz-SQOP () 

(4.6, 5.3, 0.7)    
(6.3, 5.6, 0.7) 

  (4.7, 7.1, 2.7)  
(6.4, 6.8, 2.7) 

(5.4, 10.8, 0.1)    
(6.9, 8.8, 0.3) 

 (5.5, 9.3, 2.0)  
(7.0, 11.5, 2.3) 

 
Table 4.3. Coordinates in km of the points with relative maximum absolute values for the SPOP, SDOP 
,SQOP and SOOP nuclei in figure 4.15. 
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