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Introduction 
Probably, no other branch of engineering has do deal with as much uncertainly as 
earthquake engineering, e.g. recurrence of earthquakes, intensity of earthquakes, ground 
motion features, soil effects, topographic effects, structural properties, nonlinear dynamic 
behaviour of structures, etc. Therefore it is necessary to assess seismic safety of structures 
using probabilistic procedures able to threat in a systematic and consistent way all the 
uncertainties involved in the problem. Things are even more complicated because seismic 
safety assessment procedures require the interaction of experts in different subjects, such 
as geology, engineering seismology, structural engineers, architects, loss experts, etc. 
The main task that structural engineers are required to perform usually consists in 
assessing the vulnerability of structures. This kind of assessment cannot be performed 
independently of information regarding the characteristic of seismic action at the sites 
where the structures under investigation are located. In other words it is extremely 
important to keep consistency between seismic hazard procedures and seismic fragility 
assessment procedures. 
The present work is divided into two parts, the first one (Chapters 1-4) is mainly focused 
on the characterization of input in seismic risk analysis, while the second part (Chapters 
5-7) is focused on seismic fragility assessment of RC frame structures, and in particular 
on procedures based on response surfaces.  
The concepts of seismic risk, vulnerability and hazard are introduced in Chapter 1. This 
chapter is mainly focused on presenting seismic hazard assessment procedures, which are 
the basis for every risk assessment analysis. Among these procedures a particular focus is 
given to probabilistic seismic hazard assessment procedures which are the de facto 
standard in seismic hazard assessment.  
The typical outputs of probabilistic seismic hazard analyses are hazard curves and 
uniform hazard spectra. These results may not be sufficient, especially if the nonlinear 
behaviour of structures is to be investigated. In this case, in fact, the seismic action must 
be described in terms of acceleration time histories, i.e. accelerograms. These latter may 
be artificially generated or recorded during past earthquakes. This second category of 
accelerograms is the most widely used in the literature, since artificial accelerograms have 
been criticized by some researchers.  Different methods have been proposed to select 
recorded accelerograms consistent with results of seismic hazard analyses. These methods 
often require to modify accelerograms, for example by a linear scaling. A state-of-the-art 
review of accelerogram selection and scaling procedures is given in Chapter 2. 
The objectives of accelerograms selection and modification procedures may be different; 
the vast majority of those available in the literature a are aimed at estimating the mean 
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value of some structural-response measure. In many applications (e.g. loss assessment) 
this kind of information does not suffice and information on the probability distribution of 
the considered -response measure is required. Chapter 3 presents a novel procedure, based 
on the theory of point approximation of continuous variables, to select recorded 
accelerograms. The aim of the procedure is estimating, with a low computational effort, 
the distribution of maximum interstorey-drift demand for reinforced concrete frames. 
As previously anticipated, accelerograms may also be artificially generated. I has been 
shown that the oldest methods proposed in the literature generate accelerograms which 
are not suitable for nonlinear dynamic analysis of structures. More advanced procedures, 
recently proposed, are able to generate accelerograms which are free from the issues of 
the older procedures. Chapter 4, after a state-of-the-art review of the procedures to 
generate artificial accelerograms, presents a revision of the procedure proposed by Sabetta 
and Pugliese (1996) in order to generate non stationary artificial accelerograms. The 
accelerogram generation procedure is based on the approximation of the spectrogram of 
the accelerograms by means of lognormal functions. The parameters controlling the shape 
of these latter functions depend on some ground-motion features such as Arias intensity, 
duration and frequency content. The values of these parameters, required to generate an 
accelerogram, are estimated, as functions of earthquake magnitude, source-to-site distance 
and soil stiffness, using ground-motion prediction equations (attenuation relationships). 
The ground-motion predictive equations originally proposed by Sabetta and Pugliese 
(1996) have been revisited an updated in the present work, using a more comprehensive 
database of ground-motions. The accelerograms generated according to the updated 
Sabetta and Pugliese (1996) procedure have been used as input for nonlinear dynamic 
analysis of three case study RC frame structures. The results of these analyses suggest that 
these accelerograms may be a valid alternative to recorded accelerograms. 
The second part of the present work is focused of on the estimation of seismic fragility of 
concrete structures. Different methods have been proposed by many researchers with this 
aim. A review of the procedures which have been proposed in the literature is presented in 
Chapter 5. The classical random vibration theory, which has produce very important 
results for linear systems, has some limitations in dealing with strongly nonlinear systems, 
such as concrete structures. Simulation procedures are much more flexible, i.e. they can 
be used to address almost every class of problems, but often their high computational cost 
makes them unpractical. For these reasons many simplified, approximate, methods have 
been proposed by many researchers. Among these methods, which are described in 
Chapter 5, those based on response surfaces seem to be particularly promising. Response 
surfaces are statistical polynomial models which can be used to approximate the limit 
state surface of the structure under consideration. Data required to calibrate response 
surface models is collected by performing a series of simulations for some specific values 
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of the variables controlling the problem. The number of simulations required increases as 
the number of variables considered increases. This is a strong limitation for seismic 
reliability problems where the usually the number of variables involved is high. This issue 
can be addressed by including random factors in the response surface models. These 
factors allow to take in account implicitly, and therefore maintaining a low computational 
cost, the effects of some groups of variables. The theory or response surface models is 
described in Chapter 6, as well as the criteria to plan the simulations to be used to get  
data for calibrating the models.  
Chapter 7 describes a application of the response surface method to the assessment of the 
seismic fragility of a case study RC frame structure. This case study structure has been 
used in order to investigate the efficiency of different response surface models as well as 
of different simulation plans. 





 
 

 
 
 

PART 1 
 





 
 

1 Seismic risk and seismic hazard 
 

1.1 Seismic Risk 
Earthquake risk reduction is a complex problem involving may people of many vocations, 
much information, many options, and many decisions and actions.  
In normal English usage the word risk means exposure to the change of injury or loss. It is 
noted that the word hazard is almost synonymous with risk, and the two words are used in 
the risk literature with subtle variations which can be confusing. An authoritative attempt 
has been made to overcome this difficulty trough the publication by the Earthquake 
Engineering Research Institute’s glossary f standard terms for use in this subject (EERI 
Committee on Seismic Risk, 1984). Thus, the definition of seismic risk is the probability 
that social or economic consequences of earthquakes will equal or exceed specified values 
at a site, at several sites, or in an area, during a specified exposure time. 
Seismic hazard, on the other hand, is any physical phenomenon (e.g. ground shaking, 
ground failure) associated with an earthquake that may produce adverse effects on human 
activities. Thus, hazards may be either purely descriptive terms or quantitatively 
evaluated, depending on the needs of the situation. In practice, seismic hazard is often 
evaluated for given probabilities of occurrence. It follows that seismic risk is an outcome 
of seismic hazard as described by relationships of the form 

 Seismic Risk Seismic Hazard Vulnerability Value= × ×  (1.1) 

where vulnerability is the amount of damage induced by a given degree of hazard and 
expressed as a fraction of the value of the damaged item under consideration. The × 
symbols in Eq. (1.1) do not represent multiplication, in fact, how seismic hazard, 
vulnerability and value are to be combined depends on how they are expressed. Different 
ways to do so have been adopted in the numerous procedures proposed in the literature 
(Dowrick, 2003) . To better understand the meaning of Eq. (1.1) it is worth considering an 
example. One of the most complete risk assessment frameworks recently proposed is the 
PEER’s performance based earthquake engineering methodology (Porter, 2003).  
The principal outputs of PEER’s approach are system-level performance measures: 
probabilistic estimates of repair costs, casualties, and loss-of-use duration (“dollars, 
deaths, and downtime”). The objective of the methodology is to estimate the frequency 
with which a particular performance metric will exceed various levels for a given design 
at a given location. These can be used to create probability distributions of the 
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performance measures during any planning period of interest. From the frequency and 
probability distributions can be extracted simple point performance metrics that are 
meaningful to facility stakeholders, such as an upper-bound economic loss during the 
owner-investor’s planning period. Figure 1.1 illustrates the PEER methodology. As it 
shows, PEER’s PBEE approach involves four stages: hazard analysis, structural analysis, 
damage analysis, and loss analysis. In the figure, the expression p[X|Y] refers to the 
probability density of X conditioned on knowledge of Y, and g[X|Y] refers to the 
occurrence frequency of X given Y (equivalent to the negative first derivative of the 
frequency with which X is exceeded, given Y). Eq. (1.2) frames the PEER methodology 
mathematically. Note that Figure 1.1 omits conditioning on D after the hazard analysis for 
brevity, but it is nonetheless implicit. 

 
Figure 1.1. Schematic representation of the PEER’s performance based earthquake engineering 
procedure (after Porter, 2003). 
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Eq. (1.2) can be considered as a specialization of Eq. (1.1): hazard maintains the same 
meaning, vulnerability is expressed as the combination of the results of two stages, 
structural analysis and fragility analysis, and value is evaluated by the loss analysis. 
Within this framework the × symbol represents convolution.  
Seismic fragility and vulnerability of structures will be described in greater detail in the 
second part of this dissertation, while this part is focused on seismic hazard assessment 
and on defining input for structural analysis in terms of accelerograms.  
For design or risk assessment purposes the assessment of seismic hazard consists of the 
following basic steps: 

− definition of the nature and location of earthquake sources 
− magnitude-frequency relationships for the sources 
− attenuation of ground motion with distance from source 
− determination of ground motions at the site having the required probability 

of exceedance. 
Because seismic risk and hazard statements are essentially forecasts of future situations, 
they are inherently uncertain. Seismic hazard assessment attempts to forecast the likely 
future seismic activity rate and strengths, based on knowledge of the past and present, and 
significant uncertainties arise partly because the processes involved are not fully 
understood and partly because relevant data are generally scarce and variable in quality. 
For reasonable credibility considerable knowledge of both historical seismicity and 
geology need to be used, together with an appropriate analysis of uncertainties.  Where 
available other geophysical or seismological knowledge, such as crustal strain studies, 
may also be helpful, particularly in evaluating regional seismic activity patterns.  
The present chapter introduces the basis of the procedures that may be used to assess 
seismic hazard, giving particular relevance to Probabilistic Seismic Hazard Analysis 
(PSHA). Some of the concepts described here (e.g. hazard curve, attenuation relationship, 
disaggregation) will be widely used in the following chapters of the present work. 

1.2 Seismic Hazard Analysis 

Seismic hazard could be defined, in the most general sense, as the possibility of 
potentially destructive earthquake effects occurring at a particular location. With the 
exception of surface fault rupture and tsunami, all the destructive effects of earthquakes 
are directly related to the ground shaking induced by the passage of seismic waves. 
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Textbooks that present guidance on how to assess the hazard of strong ground-motions 
invariably present the fundamental choice facing the analyst as that between adopting a 
deterministic or probabilistic approach.  

1.2.1 Deterministic and probabilistic approaches to seismic 
hazard analysis 

Probabilistic seismic hazard assessment (PSHA) was introduced by Cornell in 1968 
(Cornell, 1968) and has become the most widely used approach to the problem of 
determining the characteristics of strong ground-motion for engineering design. Some 
authors, however, have criticized the approach in defence of the deterministic seismic 
hazard assessment (DSHA), producing a vast debated in the scientific and technical 
literature. The basis of DSHA (Reiter, 1990; Kramer, 1996; Krinitzsky, 2002) is to 
develop earthquake scenario, defined by location and magnitude, which could affect the 
site under consideration. The resulting ground motions at the site, from which the 
controlling event is determined are then calculated using attenuation relations; in some 
cases, there may be more than one controlling event to be considered in design.  
The mechanics of PSHA are less obvious than those of DSHA. Its essence (Cornell, 
1968; Bazzurro and Cornell, 1999; Abrahamson, 2000b; Hanks and Cornell, 2001; 
Abrahamson, 2006) is to identify all possible earthquakes that could affect a site, 
including all feasible combinations of magnitude and distance, and to characterise the 
frequency of occurrence of different size earthquakes through a recurrence relationship. 
Attenuation equations are then employed to calculate the ground-motion parameters that 
would results at the site due to each of these earthquakes and hence the rate at which 
different levels of ground motion occur at the site is calculated. Common to both 
approaches is the fundamental issue of identifying potential sources of earthquakes. 
Another common feature is the modelling of the ground motion through the use of 
attenuation relationships (more correctly called ground-motion prediction equations). 
The principle difference in the two procedures, resides in those steps of PSHA that are 
related to characterising the rate at which earthquakes and particular levels of ground 
motion occur. As Hanks and Cornell (2001) point out the two approaches have far more 
in common that they do in differences. In fact, the only difference is that a PSHA has 
units of time and DHSA does not. In DHSA the hazard will be defined as the ground 
motion at the site resulting from the controlling earthquake, whereas in PSHA the 
hazard is defined as the mean rate of exceedance of some ground-motion amplitude. 
Once a mean rate of exceedance or probability of exceedance or return period is 
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selected as the basis for design, the output of PSHA is the expressed in terms of a 
specified ground motion, in the same way as PSHA. Another important difference 
between the two approaches is related to the treatment of hazard due to different sources 
of earthquakes. In PSHA, the hazard contributions of different seismogenic sources are 
combined into a single frequency of exceedance of the considered ground motion 
parameter; in DHSA, each seismogenic source is considered separately, the design 
motions corresponding to a single scenario in a single source. 
Regarding difference and similarities between the two methods, as Bommer notices 
(Bommer, 2002), it is often pointed out that probabilities are at least implicitly present 
in DSHA in so far as the probability of a particular earthquake scenario occurring 
during the design life of the engineering project is effectively assigned as unity. An 
alternative interpretation is that within a framework of spatially distributed seismicity, 
the probability of occurrence of a deterministic scenario is, mathematically, zero, but in 
general the implied probability of one is a valid interpretation of the scenarios defined 
in DSHA. As regarding the resulting ground motions, however, the probability depends 
upon the treatment of the scatter in the strong-motion prediction equation; if the median 
plus one standard deviation is used, this will correspond to a motion with a 16-percent 
probability of exceedance, for the particular earthquake specified in the scenario.  
There is not a single, universally accepted approach to DSHA. However, a paper by 
Krinitzsky (Krinitzsky, 2002), has become a sort of standard reference for DSHA. One 
important difference between DSHA as proposed by Krinitzsky (2002) and DSHA as 
described by Reiter (1990) and Kramer (1996), is that whereas the latter imply that the 
ground motions for each scenario should be calculated using median (50-percentile) 
values from strong-motion scaling relationships, Krinitzsky (2002) proposes the use of 
the median-plus-one-standard deviation (84-percentile) values.  
It can equally be pointed out that any PSHA includes many deterministic elements in so 
much that the definition of nearly all of the input requires the application of judgements 
to select form a range of possibilities. This applies in particular to the definition of the 
geographical limits of the seismic sources zones and the selection of the maximum 
magnitude. In addition to the various parameter that define the physical model that is 
the basis for any PSHA, it could also be argued that another parameter, which has 
pronounced influence on the input to engineering design, is also defined 
deterministically: the design  probability of exceedance. This latter issue, which is of 
fundamental importance is discussed in Bommer (2002) and Bommer (2006). 
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1.2.2 Different approaches to probabilistic seismic hazard 
assessment 

The formal beginning of PSHA, can be traced back to the paper by Cornell (Cornell, 
1968). Important developments included the development of the software EQRISK by 
McGuire (McGuire, 1976). A significant difference between EQRISK and the original 
formulation of Cornell was the inclusion of the influence of the uncertainty or scatter in 
the strong-motion prediction equation. Two fundamental features of the Cornell-
McGuire method are definition of seismogenic zones, as areas or lines, with spatially 
uniform activity and the assumption of a Poisson process to represent the seismicity, 
both of which have been challenged by different researchers who have proposed 
alternatives. Many alternatives to uniformly distributed seismicity within sources 
defined by polygons have been put forward, such as Bender and Perkins (Bender and 
Perkins, 1982; Bender and Perkins, 1987) who proposed sources with smoothed 
boundaries, obtained by defining a standard error on earthquake locations. 
There have also been proposals to do away with source zone altogether and use the 
seismic catalogue itself to represent the possible locations of earthquakes, an approach 
that may have been used before 1968. Such historic approaches can be non-parametric 
or parametric. Recent adaptation of these “zone-free” methods include the approach 
based on spatially smoothed historical seismicity of Frankel et al. (1996) and the kernel 
method of Woo (1996).  
The differences amongst these different approaches to PSHA are not simply academic: 
Bommer et al. (1998) produced hazard maps for upper-crustal seismicity in El Salvador 
determined using the Cornell-McGuire approach, two zone-free methods and the kernel 
method. The four hazard maps, prepared using the same input, showed very significant 
differences in the resulting spatial distribution of the hazard, and the maximum values 
of PGA vary amongst the four maps by a factor of more than two. 
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1.3 Recurrence relationships 

The two most widely used models to describe the frequency of earthquakes in seismic 
sources are the Gutenberg-Richter model (Gutenberg and Richter, 1944) and the 
characteristic earthquake model (Schwartz and Coppersmith, 1984b). This latter model 
requires more parameters to be estimated than the first one. There is a lot of evidence to 
support both models, and a great deal of controversy regarding which of the two is the 
most appropriate for application in a given situation (Wesnousky, 1994; Kagan, 1996; 
Wesnousky, 1996). It should be noted from the outset that both of these models are 
essentially empirical statistical models; there is no generally accepted physical basis to 
either of them. Additionally, there are other models that may be employed, and that may 
produce a stronger statistical fit to the data, but they require the specification of more 
parameters than the Gutenberg-Richter model and consequently their feasibility of their 
use depends on the dataset size. In the following only the Gutenberg-Richter and the 
Characteristic model will be briefly described because they are the most widely adopted 
models. They both share many common attributes. For small to moderate sized events 

 
Figure 1.2. Recurrence relationships for earthquakes that fit the characteristic earthquake model 
(after Reiter, 1990). 
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the two distributions are the same and are based upon the general form of the 
Gutenberg-Richter relation. The original form of this relation is typically expressed as: 

 ( )( )10log N m a b m= −  (1.3) 

where N(m) is the number of events of magnitude equal to or greater then occurring 
throughout the observation period, a is the number of events with 0m ≥ , and is named 
the activity parameter, while b defines the relative frequency of occurrence between 
events of different sizes. In their initial study, Gutenberg and Richter found values of b 
close to 1 over a reasonable range of magnitudes. Since then, Eq. (1.3) has been applied 
to many other regions of the world, and only small departures from a b value of 1.0 
have been observed. 
The basic form of the Gutenberg-Richter relationship given in Eq. (1.3) is usually 
modified for use in general applications in two fundamental ways. Firstly, the range of 
magnitudes is restricted so that only events having a magnitude larger than some 
particular value are considered, and secondly, the form of the relation at large 
magnitudes is modified. This latter modification constitutes the difference between the 
general Gutenberg-Richter model and the Characteristic model (see Figure 1.2). These 
modifications will be shortly described in the following. 

1.3.1 Modification of the general Gutenberg-Richter model 
at low magnitudes 

There are four generic issues to address in regard to this lower bound modification. 
Firstly, is there some lower physical limit to the size that an earthquake, in the most 
general sense of the expression, may possess? Secondly, does the power law sacaling of 
earthquake size break down at some level of magnitude? Thirdly, and irrespective of the 
previous two points, what is the smallest size earthquake that the national seismic 
network can accurately detect? And finally, what is the magnitude of the smalles size 
earthquake that is capable of generating ground motions large enough to cause damage 
to engineered structures? 
For the purpose of PSHA the first issue of a theoretical lower limit of the size of 
magnitudes is of little practical relevance as seismic events at the scales in question are 
not capable of generating ground motions of interest for the engineering community.  
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The second issue however, is of much greater relevance. Various researchers have given 
evidence to support that the validity of the power law scaling to very-small magnitudes. 
However there also exits evidence to the contrary. The general consensus however, is 
that the Gutenberg-Richter relation is applicable to very low magnitude levels. The 
issue of the smallest magnitude able to be consistently detected for a seismic network is 
of direct relevance to PSHA analyses and should be considered when processing 
earthquake catalogues. Typically the total catalogue can be partitioned into various 
interval of completeness. 
The last of the four issues mentioned above is perhaps the most important one in PSHA 
framework. When conducting a PSHA, the probabilistic contributions to ground 
motions exceedances at a particular site are calculated for all magnitudes above a 
certain minimum size. Therefore, the numerical values assigned to seismic hazard for a 
site are directly related to the selection of the minimum magnitude. 
There are several issues relating to the selection of the minimum magnitude, some of 
which are discussed by Bender and Campbell (1989). One reason for there not being 
universally accepted values for this parameter is that the value chosen should be 
problem specific. Whether or not a certain size event should be considered or not 

 
Figure 1.3. Forms of earthquake recurrence relationships in non-cumulative (top row) and 
cumulative (bottom row) forms: Gutenberg-Richter model (left panels), maximum magnitude model 
(centre panels), and characteristic earthquake model (right panels). (After Bommer and Stafford, 
2007) 
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depends upon the structure for which the assessment is being undertaken. The selection 
of the most appropriate value must be chosen will be discussed later.  
Given the above considerations, no distinction can be made between the Gutenberg-
Richter and characteristic models based upon considerations of the lower magnitude 
limit. The limit that is imposed in determining the parameters of the models normally 
coincide with the completeness levels of the considered catalogue. The relation is the 
simply truncated at the lowest magnitude considered. Consequently, the probability 
distributions related to this curtailment need to be normalized to ensure that the total 
probability theorem is not violated. 

1.3.2  Modification of the general Gutenberg-Richter model 
at large magnitudes 

The modification that is made over the domain of large magnitudes represents the point 
of departure of the Characteristic model from the Gutenberg-Richter models. In fact 
Schwartz and Coppersmith (1984b) found evidence for recurrence intervals for large 
magnitudes that significantly exceeded the rates expected from the extrapolation of the 
Gutenberg-Richter relation to the equivalent magnitudes of the large events. This 
behaviour is more representative of the magnitude-frequency nature of earthquakes 
form fault sources. However, there are also many examples where faults do not exhibit 
this. 
One of the arguments presented in support of a characteristic fault model is that the 
Gutenberg-Richter relation that is commonly observed is the results of a huge number 
of Characteristic earthquake sources, each relating to varying spatial scales, acting 
together (Wesnousky, 1994). However, recurrence intervals estimated for large events 
are usually based upon a very small dataset of a few points at most and inference made 
with respect to departures from power-scaling may be related with the incompleteness 
of the earthquake data. 
An obvious way to determine whether the characteristic model is more appropriate for 
modelling future earthquake occurrence than the Gutenberg-Richter relation is to 
consider the dataset obtained from the seismicity procedures outlined above. This, of 
course, requires a large enough dataset. The other source of information is form 
paleoseismic investigations. 
Previously, it was implied that the Characteristic model requires more parameters to 
define the recurrence rates at the upper magnitude ranges. These parameters are usually 
provided by geologic information rather than from statistics. In the case where geologic 
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information does not exist it is still possible to employ the Characteristic distribution by 
making some assumptions based upon the form of characteristic models for faults where 
the data is available (Schwartz and Coppersmith, 1984b). 
Regardless of which model is finally adopted, the probability distributions must be 
normalized in order to satisfy the total probability theorem. The normalization process 
for the Characteristic model must be done on a case by case basis as the magnitude, and 
the distribution for the magnitude, of the annual rate at large magnitudes will vary 
depending upon the fault source in question. In this case, the Gutenberg-Richter 
relation, is referred to as doubly bounded Gutenberg-Richter relation (Kramer, 1996). 

1.4 Attenuation relationships 

Numerous options that are available for describing the intensity of ground motions (see 
Section 2.3.1.1). Now, given a large number of records, one can calculate values for any 
of these parameters and obtain a robust estimate of the correlation of these values with 
any other parameter relevant to this suite of records, such as the magnitude of the 
earthquake from which they came. This type of reasoning is the basis for the 
development of empirical predictive equations for strong ground-motions. Usually, a 
relationship is sought between a suite of observed ground-motion parameters and an 
associated set of independent variables including a measure of the size of the 
earthquake, a measure of distance from the source to the site, some classification of the 
style-of-faulting involved and some description of the geological and geotechnical 
conditions at the recording site. 
An empirical ground-motion prediction equation is simply a function of these 
independent variables that provides an estimate of the expected value of the ground-
motion parameter in consideration as well as some measure of the distribution of values 
about this expected value. 
Thus far the development of empirical ground-motion prediction equations has been 
almost exclusively focussed upon the prediction of peak ground-motions, particularly 
PGA and, to a far lesser extent, PGV, and ordinates of 5% damped elastic acceleration 
response spectra (Douglas, 2003; Bommer and Alarcon, 2006). Predictive equations 
have also been developed for many of the most important ground-motion parameters, 
but as seismic design actions have historically been derived from PGA or Sa(T) the 
demand for such equations is relatively weak. However, the performance of PGA (Wald 
et al., 1999) and, to a lesser extent, Sa(T) (Priestley, 2003; Akkar and Özen, 2005 ) for 
the purposes of predicting structural damage· has begun to be questioned. Improvements 
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in the collaboration between engineering seismologists and structural earthquake 
engineers has prompted the emergence of research into what really are the key 
descriptors (such as inelastic spectral ordinates and elastic spectral ordinates for 
damping ratios other than 5%) of the ground motion that are of importance to structural 
response and to the assessment of damage in structures. 
Regardless of the ground-motion intensity measure in consideration, a ground-motion 
prediction equation can be represented as a generic function  

 ( ) ( )log , , Ty M R= μ + εσθ  (1.4) 

of predictor variables, ( ), ,M Rμ θ , where M is magnitude, R distance and θ  is a vector 
of parameters, and a variance term, Tεσ , where Tσ .represents the total standard 
deviation and ε  is a standard normal variable. 
Many developers of ground-motion prediction equations attempt to assign physical 
significance to the terms in the empirically derived function ( ), ,M Rμ θ . In some cases 
it is possible to derive theoretical equations that may be used as the bas is for selecting 
appropriate functional forms (e.g.,·Douglas, 2002). Although these theoretical 
considerations enable us to select appropriate functional forms, once the regression 
analysis has been conducted the actual values of regression coefficients should not be 
interpreted as having physical meaning as correlations of varying degrees always exist 
between the coefficients for different terms of the model. 
For most ground-motion measures the values will increase with increasing magnitude 
and decrease with increasing distance. These two scaling effects form the backbone of 
prediction equations and many functional forms have been proposed to capture the 
variation of motions with respect to these two predictors (Douglas, 2003). For modern 
relationships distinctions are also made between ground motions that come for 
earthquakes having different styles of faulting, with reverse faulting earthquakes 
tending to generate larger ground motions than either strike-slip or normal faulting 
events (Bommer et al., 2003). Historically, account was also taken for site conditions by 
adding modifying terms similar to those used for the style-of-faulting effects - stiff soil 
sites have· larger motions than rock and soft soil sites have larger motions still. In 
Europe this use of dummy variables for generic site classes remains the adopted 
approach in the latest generation of prediction equations (Ambraseys et al., 2005; Akkar 
and Bommer, 2007a; Akkar and Bommer, 2007b), primarily due to the absence of more 
detailed site information. However, in the US site response is now modelled using the 
average shear-wave velocity over the upper 30m, as introduced by Boore et al. (1997). 
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Furthermore, the influence of non-linear site response, whereby weaker motions tend to 
be amplified more so than stronger motions due to the increased damping and reduced 
strength associated with the latter, is also taken into account (Abrahamson and Silva, 
1997; Choi and Stewart, 2005).  
In addition to the basic scaling of ground motions with magnitude, distance, site 
conditions, etc., there are additional situations that may result in modified ground 
motions that are commonly either omitted from developed equations or are later applied 
as correction factors to the base models. The most common examples include 
accounting for differences between sites located on the hanging or foot wall of dip-slip 
fault sources (Abrahamson and Somerville, 1996; Chang et al., 2004), accounting for 
rupture directivity effects (Somerville et al., 1997a; Abrahamson, 2000a), including 
models for the velocity pulse associated with directivity effects (Bray and Rodriguez-
Marek, 2004), basin effects (Choi et al., 2005) and topographic modifiers (Toshinawa et 
al., 2004). The most recent predictor variable to be included in prediction equations for 
peak ground-motions and spectral ordinates is the depth to the top of the rupture 
(Kagawa et al., 2004; Somerville and Pitarka, 2006). Currently, none of these effects are 
incorporated into any predictive equations for ground motions in Europe, nor is any 
account made for non-linearity of site response. Again, this is primarily a result of the 
lack of well-recorded strong earthquakes in the region. 

1.4.1 Variability 
For any particular ground-motion record the total variance term given in Eq. (1.4) may 
be partitioned into two components as: 

 ( ) ( ) , ,log , ,ij i ij ij e i a ijy M R= μ + δ + δθ  (1.5) 

where the terms ,e iδ  and ,a ijδ  represent the inter-event and the intra-event residuals 
respectively and quantify how far away from the mean estimate of ( )log ijy  the motions 
from the i-th event and the j-th recording from the i-th event are respectively 
(Abrahamson and Youngs, 1992).  
Alternatively, these terms may be expressed in terms of standard normal variates (ze,i 
and za,ij) and the standard deviations of the inter-event ( τ ) and intra-event ( σ ) 
components, i.e. , ,e i e izδ = τ  and , ,a ij a ijzδ = σ . The total standard deviation for a 
predictive equation is obtained from the square root of the sum of the inter-event and 
intra-event variances, 2 2 2

Tσ = τ + σ . Later, when discussing PSHA, mention will be 
made of epsilon, ε , representing the number of total standard deviations from the 
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median predicted ground-motion. Often ground motion modellers represent the terms 

,e iδ  and ,a ijδ ; by iη  and ijε  respectively. Under this convention care must be taken to 
not confuse the epsilon, ε , with the intra-event residual, ijε , term. The two are related 
via the expression ( )i ij Tε = η + ε σ , i.e. ( ), ,e i a ij Tε = δ + δ σ using the notation adopted in 
Eq. (1.5). 
When both components of a ground-motion record are used the variance structure of the 
data is better modelled via the form: 

 ( ) ( ) , , ,log , ,ijk i ij ijk e i a ij c ijky M R= μ + δ + δ + δθ  (1.6) 

where the term ,c ijkδ  represent the inter-component residuals and quantify how far away 
from the mean estimate of ( )log ijky  the motion of k-th component from the j-th 
recording and the i-th event is . 
Each of these components of variability may be modelled as functions of other 
parameters such as the magnitude of the earthquake (Youngs et al., 1995), the shear-
wave velocity at the site (Abrahamson and Silva, 2008b; Abrahamson and Silva, 
2008a), or the amplitude of the ground motion (Campbell, 1997). Exactly how these 
components are calculated depends upon the regression methodology that is used to 
derive the equations. However, the most common approach is to adopt random effects 

 
Figure 1.4. Graphical representation of inter-event and intra-event residuals (after Bommer and 
Stafford, 2007). 
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procedures where the correlation between ground motions observed within any 
particular event is assumed to be the same across events. This concept is shown 
schematically in Figure 1.4. 
Many people think of ground-motion variability as a measure of the lack of fit of a 
particular predictive equation. However, in most cases it is better to think of a predictive 
equation as providing an estimate of the distribution of ground motions given a set of 
predictor variables such as magnitude and distance. From this perspective, the real 
misfit of the model is related to how well the model's distribution represents the true 
distribution of ground motions rather than how large are the variance components. 
People tend not to like large variability, reasoning that this implies that we cannot 
predict this measure of ground motion with much certainty. However, this perspective is 
closely related to the paradigm that ground motions are ultimately predictable and that it 
is only through a. result of inadequate modelling and incomplete knowledge that the 
apparent variability arises. If, on the other hand, one views ground motions as being 
inherently unpredictable (beyond a certain resolution) then one must view the variability 
not as a measure .of the misfit, but rather as an additional part of the model that 
describes the range of observable ground motions given an event. Under this latter 
paradigm there is no reason to like or dislike a particular ground-motion measure simply 
because predictive equations for this measure have a broad distribution. The only 
rational basis for judging the importance of a ground-motion measure is to assess the 
ability of this measure to accurately predict structural response. That said, in most cases, 
less variability in the ground motion estimate will translate into less variability in the 
response. 
The ground-motion variability plays a very important role in seismic hazard analysis. In 
many cases the ground-motion variability is the most important component of a ground-
motion model as it is the component of the model that defines how likely levels of 
ground motion are for a particular magnitude-distance scenario. The specification of 
this distribution of values, and their proper treatment, is central to PSHA yet there are 
many instances in practice where this element of the model is not treated appropriately. 
Bommer and Abrahamson (Bommer and Abrahamson, 2006) provide a comprehensive 
summary of the historical development of PSHA and the important role that the ground-
motion variability has played. 
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1.5 Mechanics of the Cornell-McGuire method for 
probabilistic seismic hazard analysis 

While the mathematical formulation of PSHA can seem complex, most of the 
mechanics behind the framework are very simple. 
Formally, basic PSHA may be represented as in Eq. (1.7) (Bazzurro and Cornell, 1999; 
Abrahamson, 2006; Bommer and Abrahamson, 2006): 

 ( ) ( ){ }*
, ,| , , , ,GM i M R E i

i
gm I GM gm m r f m r dmdrd∗ ⎡ ⎤λ = > ε ν ε ε⎣ ⎦∑ ∫∫∫  (1.7) 

where the capital letters represent random variables (GM: a chosen ground-motion 
parameter (such as PGA, spectral acceleration, Arias intensity, etc.), M: magnitude, R: 
distance, and E: epsilon) while their lower-case counterparts represent realizations of 
these random variables. The total rate at which earthquakes occur having a magnitude 
greater than the minimum considered for source i is denoted by iν  (as this terms is a 
constant for each source it may be taken outside the integral in Eq. (1.7)). The joint 
probability density function of magnitude, distance and epsilon is given by 

( ), , , ,M R E i
f m r ε  and * | , ,I GM gm m r⎡ ⎤> ε⎣ ⎦  is an indicator function equal to one if 

*GM gm>  and zero otherwise. Finally, ( )*
GM gmλ  is the total annual rate at which the 

target ground-motion value, *gm , is exceeded. This is often the way that PSHA is 
presented in the literature; however it is worth to spend some time to describe the nature 
of the joint probability density function in magnitude, distance and epsilon appearing in 
Eq. (1.7).  
First of all, it should be observed that because ε  is statistically independent of M and R 
(although ( )log IMσ  might not be so), then the joint probability function may be expressed 
as: 

 ( ) ( ) ( ), , ,, , ,M R E M R Ef m r f m r fε = ε  (1.8) 

where ( )Ef ε  represents the standard Normal distribution (see Section 1.4.1). A further 
decomposition is almost always made; that being to decompose the joint probability 
density function in magnitude and distance into the product of the probability density 
functions corresponding to each variable separately. This methodology is presented in 
Kramer (Kramer, 1996) and is expressed in Eq. (1.9). 

 ( ) ( ) ( ) ( ) ( ) ( ), , ,, , ,M R E M R E M R Ef m r f m r f f m f r fε = ε = ε  (1.9) 
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The probability density function with respect to distance, ( )Rf r , is usually generated 
by assuming that events are equally likely to occur anywhere with a given source and 
the probability density function is consequently only related to the geometry of the 
source. However in reality the decoupling presented in Eq. (1.9) is not possible as 
modern predictive equations make use of distance measures that do not correspond to 
point sources. The above decomposition is valid when point source measures of 
distance are made as in that case one is able to make the assumption that events are 
equally likely to occur anywhere within the source and that the corresponding source 
site distance are simply the geometric distance from the site to each point that is 
considered within the source. It has long been recognised however, that point source 
distance measures are generally not appropriate for modelling strong ground motions 
(Bolt and Abrahamson, 2003; Campbell, 2003). If the distance measures used in a 
PSHA analysis are related to the size of the rupture surface, which in turn is related to 
the size of the earthquake creating this surface, then the distance from a site to the 
rupture surface depends upon the hypocentral position as well as the magnitude of the 
event. The joint probability density function should therefore be written as conditional 
distribution dependent upon the magnitude of the causative event. The more appropriate 
form of the join probability distribution function is therefore given in Eq. (1.10). 

 ( ) ( ) ( ) ( ) ( ), , , , | | , ,
hypM R E M hyp hyp R hyp i Ei

f m r e f m f f r m f= εxx x x θ  (1.10) 

where xhyp denotes the hypocentral distance, and the vector θ  represents a set of 
parameters that describe the orientation of the rupture surface, such as the strike and dip 
of the fault, the depth to the bottom of the fault, the segment of the fault the hypocentre 
is located in, and so on, i.e. { }, , , ,...seisz segment= θ δθ . In this case, the probability 
density function with respect to hypocentral distance, ( )| , ,R hyp if r m x θ , makes use of 
the assumption that events are likely to occur anywhere in the source, but the 
conditional probability density of the actual distance measure used to calculate hazard 
contributions from the attenuation equations must account for other parameters, 
including magnitude. This framework for hazard is based on that of Der Kiureghian and 
Ang (1977). Eq. (1.10) explicitly shows how the hazard computations are dependent 
upon the nature of the scaling relationships adopted in the analysis. In the following the 
terms appearing in Eq. (1.10) will be explained in detail. 

( )
hyp hypfx x : the pdf for an event having a hypocentre equal to hypx , where 

( ), ,hyp longiture latitude depth=x   is any position within source i. A common 
assumption that is made, and that was made in Cornell’s original presentation of PSHA, 
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is that hypocentres are equally likely to occur anywhere within a seismic source. This 
assumption requires the least amount of information regarding the nature of activity for 
the seismic source. 

( )|M hypf m x  - The conditional pdf of magnitude given the hypocentral position. In 
many hazard analyses this term is not implicitly considered, instead analyst simply take 
the previous assumption that earthquakes may occur with equal probability anywhere 
within a seismic source and also assume that these events may have the full range of 
magnitudes deemed possible for the source. In this case this term is not conditioned 
upon the hypocentre position and one simply recovers ( )Mf m , the pdf of magnitude. 
However, some analysts may wish to address this problem thoroughly and make 
alternative assumptions using analyses such as those of Somerville et al., 1999 and Mai 
et al., 2005. For example, it may be assumed that large earthquakes tend to have 
relatively deep hypocentres and the pdf may be modified accordingly. The pdf of 
magnitude s  often assumed to follow a doubly-bounded exponential distribution for 
areal sources (Cornell and Vanmarcke, 1969); a modified form of the Gutenberg-
Richter equation (Gutenberg and Richter, 1944), and a characteristic distribution for 
fault sources (Schwartz and Coppersmith, 1984a). However any distribution that relates 
the relative rates of occurrence of earthquakes of different size is permissible. 

( )| , ,R hyp if r m x θ  - The conditional pdf of the distance measure used in the ground-
motion prediction equation gives the rupture surface of the earthquake. The rupture 
surface depends upon the hypocentre, the size of the event and various other parameters 
encapsulated in iθ  including the strike and dip of the fault plane (for fault sources), the 
depth boundaries of the seismogenic zone, the segment of the fault on which the rupture 
stars, etc. This term is important as it translates the assumptions regarding the potential 
locations of earthquakes into measures of distances that are appropriate for use in 
empirical prediction equations. Note that this term is necessarily different for each 
distance measure that is considered. 

( )Ef ε  - The pdf of epsilon. It is important to note that this term is always simply the 
pdf of the standard normal distribution. For this reason it is not necessary to make this a 
conditional pdf with respect to anything else. Although standard deviations from 
ground-motion predictive equations may be dependent upon predictor variables such as 
magnitude, the pdf f epsilon remains statistically independent of these other variables 
(Bazzurro and Cornell, 1999). 
Given this more complete representation of Eq. (1.10) one must now evaluate the 
integrals in Eq. (1.7) once they are expressed in terms of the relevant variables. The 
integrals are not evaluated analytically and all that is required is to discrete the range of 
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possible parameter values and to determine the contribution to the hazard from each 
permissible permutation of each parameter.  

1.5.1 Integration limits 
In the situation defined by Eq. (1.7), the integration must be performed with respect to 
magnitude, distance, and epsilon. In order to proceed practically, one must define the 
range of each of these variables for which the integration must be performed. Some of 
these limits have received considerable attention in the literature, in particular the upper 
limit on magnitude, while the remaining limits have received relatively little attention.  

1.5.1.1 Limits on magnitude 
Usually the magnitude frequency relationship is specified as the double bounded 
Gutenberg-Richter relationship. The upper bound of which automatically precludes the 
consideration of any magnitude event greater that this values. The upper limit on the 
magnitude range is therefore automatically imposed from the fault source model and 
does not need to be discussed in any more detail here. 
Considerable attention has gone into developing procedure for estimating the upper 
bound on the range of magnitudes that a given source can generate. Conversely, very 
little attention has been given to the specification of the minimum magnitude, even 
though this parameter can have a significant influence upon hazard estimates, 
particularly for short period ordinates of spectral acceleration. The degree to which 
minimum magnitude affects the calculated seismic hazard depends on many factors, 
including the level of seismicity, the type of zonation, the maximum magnitude, the 
variability in ground motion, the period (in the case of response spectra), and the 
attenuation relationship. Decreasing the minimum magnitude though to be of 
engineering relevance, causes a drastic increase of the hazard at small mean return 
periods. 
The PSHA procedure must represent the contribution to hazard of all potentially 
damaging earthquake scenarios. The problem of specifying a minimum magnitude is 
therefore a problem in defining what a potentially damaging earthquake is. As has been 
previously mentioned an earthquake scenario consists of, at least, a magnitude-distance 
pair. This coupling between the magnitude of the event and the distance between the 
source and the site is critical because the core of the problem is defining ground motion 
levels at the site of interest.  
It can be shown (Stafford, 2006) that reducing the minimum magnitude of engineering 
relevance will have a more marked effect on increasing the calculated hazard for short 
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period spectral accelerations (peak ground acceleration included) than long period 
motions. The degree to which this effect is observed depends upon the relative rates of 
activity of the seismic source is the vicinity of the site being considered. If sources 
proximal to the site have high rates of activity then the high frequency components of 
distal sites is obviously also true. The influence of the distance is minimized, however, 
by the fact that the high frequency ground motions are severely attenuated in the near 
surface where lithospheric pressures are low and allow cracks and fissures to exist in the 
propagating medium. 
Cornell and Vanmarcke (1969) presented evidence of the influence that proximal, small 
magnitude events have on the calculation of hazard. In light of these findings, it is very 
important to ascertain the destructive potential these small, close events. Bommer et al. 
(2001), investigated some historical events of small-moderate magnitude that caused 
significant destructions. The key finding of the Bommer et al. (2001) research was the 
strong correlation between the destructive potential of these small-moderate events and 
the focal depth of these events. Shallow events were found to be far more likely to cause 
destruction than deeper ones. This is a natural consequence of the rate at which near 
field effects attenuate coupled with the initial strength of these waves. Another finding 
of the above research was that there appears to be evidence of directivity effects being 
observed in small-moderate sized events. Traditionally, the small rupture areas 
associated with small to moderate events implied that these events could be regarded as 
point sources. Consideration of directivity effect was therefore constrained to cases for 
magnitudes of 6.5 and above (Somerville et al., 1997a). 
It is also worth noting that while the probability of a small events causing significant 
damage to engineered structures remains low, even taking into accounts shallow focal 
depths, site amplification, and forward directivity effects, many of these small events 
occur. The effect of these numerous events may act in conjunction with each other, i.e. 
while a single event may not be significant enough to incite large scale damage, it may 
be significant enough to weaken the existing building stock to the point where a 
successive event of a similar nature may cause ensuing damage. The cumulative effect 
of numerous small events should therefore be considered in the selection of the 
minimum magnitude used in the PSHA. 

1.5.1.2 Limits on distance 
The selection of a lower bound to the distance range may seem trivial, i.e. the minimum 
distance must be zero. However, this may not necessarily be the case. Cornell and 
Vanmarcke (1969) comment on the influence of this selection with respect to area 
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sources. In addition, Campbell (1997) uses a measure of distance, that precludes the 
occurrence of earthquakes in the non-seismogenic near surface. While Campbell (1997) 
gives a clear and explicit reason for requiring all the events to occur at some distance 
from the site in question, most other attenuation relationships inadvertently include a 
parameter that essentially increases the theoretical distance between the source and the 
site. His parameter that modifies the distance is usually simply described as a regression 
parameter that enables to better fit to the empirical data. Regardless of its physical 
meaning, the result is that while the trivial case of a lower bound of zero for the distance 
variable is commonly adopted, in reality the effective lower bound on the distance is 
slightly above zero. 
The upper bound on distance is rarely mentioned in PSHA. This parameter may have 
influence upon the results of the hazard analysis if care is not taken in being consistent 
when defining the seismicity rates for various sources. Again, Cornell and Vanmarcke 
(1969) address this issue in arriving at the conclusion that small events, close to the site, 
contribute strongly to the total hazard at a site. There is a coupling between the 
frequency of events of magnitude greater than some threshold level and the volume of 
the region considered in the derivation of this value. Obviously, the larger the region 
considered, the higher the frequency of events exceeding a given magnitude. One must 
therefore endure that the activity rates assigned to seismic sources are consistent with 
the region used in the derivation of these activity rates. 

1.5.1.3 Limits on epsilon 
The essence of PSHA is to determine the rate at which some ground motion is 
exceeded. As previously observed the pdf of epsilon is always a standard normal 
distribution, therefore, In terms of ground motions, this implies that negative values of 
epsilon characterise events in which the recorded ground motions resulting from an 
earthquake scenario (magnitude-distance pair) are lower than that which would 
ordinarily be expected. Therefore, if it is fair to assume that ground motions are 
lognormally distributed, which many authors suggest it is (Campbell, 1985; Douglas 
and Smit, 2001; Restrepo-Velez and Bommer, 2003), one can use the limits of the 
above equation for the normal distribution to infer the lower limit on the value of 
epsilon to be used in PSHA. The lower bound on epsilon is consequently trivial, and 
correspond to the conditions where it is certain that a magnitude-distance pair will 
exceed the target ground motion measure; that being epsilon equal to negative infinity. 
The upper bound on epsilon on the other hand is far from trivial. Positive values of 
epsilon represent ground motions that are in excess to the median predicted ground 
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motion given a magnitude-distance pair (as well as other relevant parameters). The 
question that must be addressed when selecting an upper bound on epsilon regards what 
degree of exceedance on this median will be allowed in the PSHA. This is not a simple 
question to answer. For a start, we assume that the ground motions associated with a 
particular magnitude-distance pair are lognormally distributed. This appears to be a very 
good assumption (Restrepo-Velez and Bommer, 2003) over a wide range of epsilon 
values (± 2ε  at least). However, with any empirical dataset, the number of recorded 
data points lying in the tails of the distribution is very low, and it is in these regions that 
only the weakest statistical inference can be made. That said, Restrepo-Velez and 
Bommer (2003) found that the hypothesis that residuals of ground motion predictive 
equations are normally distributed could not be rejected when testing using the 
Anderson-Darling goodness of fit test (Anderson and Darling, 1952). This measure of 
the goodness of fit is a modification of the Kolmogorov-Smirnov test (Stephens, 1974); 
modified to better indicate the goodness of fit in the tails of a distribution. Therefore, if 
the conditions of the Anderson-Darling test are satisfied, one can be confident that the 
upper bound on epsilon would indeed extend beyond the previously mentioned level of 
positive two if more data were collected. 
The satisfaction of statistical tests is one aspect of the matter, the most important 
condition that we should seek to meet though relates to the physical limits and the 
magnitude of ground motions. There must be a physical limit, while conservation of 
energy is maintained, to the level of ground motion that a particular size event can 
generate. Exactly what this limit is, is currently an area of active investigation (Bommer 
et al., 2004; Strasser et al., 2009). In the future, it may be desiderable to modify the 
assumption of lognormality at large values of epsilon. Restrepo-Velez and Bommer 

 
Figure 1.5. Hazard curves for PGA at the sites of Ferrara and Ravenna (Campedel et al., 2008). 
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(Restrepo-Velez and Bommer, 2003) propose the upper limit lognormal distribution for 
this purpose.  

1.5.2  From hazard to probabilities 
The procedure described thus far allows to calculate the rate at which a single target 
ground-motion is exceeded. If one selects a series of target ground-motion levels and 
calculate the total rate at which each level is exceeded one may obtain a hazard curve, 
which is the standard output of a PSHA, i.e. a plot of ( )*

GM gmλ  against *gm . An 
example of a typical hazard curve is given is Figure 1.5.  
Starting from a hazard curve and introducing a model for the occurrence in time of 
earthquakes it is possible to calculate the probabilities that given ground motion levels 
are exceeded in a considered time interval. The Poisson process model has been widely 
used since it was adopted in the initial development of PSHA, but there have been 
numerous other alternative models proposed. 
In order for  the occurrence of earthquakes in time to be considered a Poisson process, 
three conditions must be met (Benjamin and Cornell, 1970): 

1. Stationarity. The probability of an earthquake event in a short interval of time t 
to t + τ is approximately λτ, for any t. 

2. Non-multiplicity. The probability of two or more earthquakes in a short interval 
of time is negligible compared to λτ. 

3. Independence. The number of earthquakes in any interval of time is independent 
of the number in any other non-overlapping interval of time. 

The validity of both the second and third assumptions can be questioned. The condition 
of non-multiplicity is not met by foreshock or aftershock sequence of earthquakes. 
Furthermore, the condition of independence does not agree with the earthquake 
regeneration model of Elastic Rebound Theory. However, the Poisson model, whose 
probability density function is given in Eq. (1.11) 

 ( ) ( )
!

x t

X

t e
p x

x

−λλ
=  (1.11) 

is very simple and easy to implement, requiring only knowledge of the average rate of 
earthquake occurrence, λ. In Eq. (1.11), x represents the number of earthquakes and t 
time. 
The partial violation of the conditions above does not generally pose significant 
problems to PSHA for the following reasons. The violation of the second condition may 
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be remedied by removing spatially and temporally dependent events from the 
earthquake catalogues used to estimate the rates of activity for the various seismic 
sources in the PSHA model, i.e. declustering the seismicity catalogues. The violation of 
the third condition may present a bigger problem, particularly in the case where 
evidence of characteristic behaviour is observed, or where the hazard calculation at a 
site is strongly dependent upon the contribution from a single source (Stafford, 2006). 
However, Cornell and Winterstein (1988) have pointed out that the sum of non-
Poissonian processes may be approximately Poissonian, becouse the Poisson model is 
the limit of a sum of point processes (Cornell and Winterstein, 1988; Lomnitz, 1989). 
Therefore regardless of the temporal dependence of the individual seismic sources 
within a region, the combination of these sources will yield a regional model of seismic 
activity that will approach a Poisson model as the number of sources increases. The 
preponderant use of the Poisson model is therefore justified in the aforementioned case. 
Adopting the Poisson process as a model for earthquake occurrence, one is readily able 
to calculate the probability of an event occurring in a given period of time. Defining T 
as a random variable representing the time to the first occurrence of an earthquake, the 
probability that T exceed some value t is equal to the probability that no events occur 
during this interval of time. The probability of no events occurring is found from Eq. 
(1.11) by setting x = 0: 

 ( ) ( )0

0
0!

T
T

X

T e
p x e

−λ
−λλ

= = =  (1.12) 

 
Figure 1.6. Probability of occurrence of ground motions with different PGA values in 50 years 
(Campedel et al., 2008). 
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Obviously, the probability that at least one event occurs during this interval must be the 
complement of this expression, and is equal to the cumulative distribution function for 
the occurrence of an earthquake, i.e. ( ) 1 T

TF T e−λ= − . This latter expression defines an 
exponential distribution. Figure 1.6 gives an examples of a so calculated cumulative 
distribution function for the site of Ravenna (Italy) and T = 50 years, calculated by the 
author (Campedel et al., 2008). 
Under the assumption that ground motions may be described by a Poisson distribution 
over time, the average rate corresponding to the probability, P, of at least one 
exceedance within a given time period may be determined using Eq. (1.13): 

 ( )log 1 P
T

− −
λ =   (1.13) 

For example the 475-year return period used in most seismic design codes throughout 
the world comes from specifying ground motions having a 10% of being exceeded at 
least once in any 50 year period (Bommer, 2006).  Inserting P = 0.1 and T = 50 years 
into Eq. (1.13) yields the average annual rate corresponding to this conditions, the 
reciprocal of which is the return period, that in this case is equal to 475 years. Because 
Eq. (1.13) is a function of both P and T there are an infinitely many combinations of P 
and T that results in a 475-year return period. Once this design criterion is specified, one 
simply finds the level of ground motion that corresponds to this rate on the hazard curve 
in order to obtain the design ground-motion. 
As previously anticipated, other models have been proposed in the literature, two of the 
most widely used are the lognormal model and the Brownian passage time model. In 
order to address the violation of the assumption three of the Poisson process, Nishenko 
and Buland (1987) have proposed to adopt a lognormal distribution for the inter-arrival 
times of repeated earthquakes of similar magnitude on individual source.  This model 
has been criticized by Mattehews et al. (2002), who pointed out that for the lognormal 
model, the hazard rate function, defined as: 

 ( ) ( )
( )1

T

T

f t
h t

F t
=

−
 (1.14) 

tends to zero for long times. The function in Eq. (1.14) describes the instantaneous failure 
propensity of the fault under consideration. And according to the currently understanding 
of the earthquake cycle, the most proper behaviour of the hazard rate function would be 
that it started at zero (following the occurrence of a major event), and the gradually 
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increased with time, suggesting that the instantaneous likelihood of failure in turn 
increases with time. Following a period of increase of the hazard rate function it would 
then be preferable for the function to approach some asymptotic limit that represents the 
case in which the stress state around the fault is conductive to failure and that the 
occurrence of next event can be modelled as a random process. For these reason 
Matthews et al. (2002) have proposed to adopt the Browninan passage time model, a 
model derived from a physical basis by adding Browninan perturbation to as steady 
loading cycle of tectonic stress. 

1.5.3 Aleatory and epistemic uncertainties 
The PSHA methodology laid out thus far is capable of accounting for all the aleatory 
variability that exists within the process. However, there is another important 
component of uncertainty that must also be accounted for – the uncertainty associated 
with not knowing the applicability of available methods (Bommer, 2003; Abrahamson 
and Bommer, 2005; Bommer and Abrahamson, 2006). This type of uncertainty is 
known epistemic uncertainty within the context of PSHA. Aleatory variability and 
epistemic uncertainty can further be partitioned into modelling and parametric 
components. These distinctions are not just semantics, each aspect of the overall 
uncertainty must be treated prudently and each must be approached in a different 
manner. The logic-tree is the mechanism via which practical application often reveals 
nuances that require further investigation and many such issues have recently been 
brought to light as a results of the PEGASOS project (Abrahamson et al., 2002). 
Aspects such as model selection, model compatibility and the overall sensitivity of 
PSHA to logic-tree branches for ground motion models have all been addressed 
(Abrahamson et al., 2002; Bommer et al., 2005; Scherbaum et al., 2005) and have issues 
associated with how the outputs of the logic-tree are harvested.  
The range of ground-motion values corresponding to a given hazard level may vary 
considerably across fractiles, and as one moves to longer return periods the difference 
between the mean and median hazard curves may become very large. The first aspect 
reinforces the importance of taking into account different interpretations of the regional 
seismo-tectonics as well as different models of approaches to estimating ground 
motions, while the second aspect demonstrates that one must be clear about how the 
design ground-motion is to be specified as the results corresponding to the mean hazard 
and various fractiles may differ considerably. 
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1.5.4 Uniform hazard spectra 
The primary output from a PSHA is a suite of hazard curves for response spectral 
ordinates for different response periods. A design return period is then selected and the 
response parameter at this return period is determined at each response period and used 
to construct the elastic response spectrum. A spectrum produced in this way, for which 
it is known that the return period associated with several response periods is the same, is 
known as uniform hazard spectrum (UHS) and it is considered an appropriate 
probabilistic representation of the basic earthquake actions at a particular location. The 
UHS will often be an envelope of the spectra associated with different sources of 
seismicity, with short-period ordinates controlled by nearby moderate-magnitude 
earthquakes and the longer-period part of the spectrum dominated by larger and more 
distant events. As a consequence, the motion represented by the UHS may not be 
particularly realistic and this becomes an issue when the motions need to be represented 
in the form of acceleration time histories. If the only parameter of interest to the 
engineer is the maximum acceleration that the structure will experience in its 
fundamental mode of vibration, regardless of the origin of this motion or any other of its 
features such as duration, then the USH is a perfectly acceptable format for the 
representation of the earthquake actions. 

 
Figure 1.7. Magnitude-distance-epsilon disaggregation for the site of Scalea (CS) (Buratti et al., 
2007a). 
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1.5.5 Disaggregation of probabilistic seismic hazard 
Commonly the results of a Probabilistic Seismic Hazard Analysis (PSHA) are 
disaggregated in order to show how the resulting hazard at a particular site relates to its 
constituent components. Usually the integration of the join probability density function 
in magnitude distance, and epsilon is consequently approximated in reality by 
performing a series of simple summations for discrete increments of each variable 
between the limits of integration. The true value of the integral is recovered in the limit 
where the increment size of each variable tends to zero. This process of approximation 
is summarized in Kramer (1996). In its most basic form this disaggregation can be 
performed with respect to one parameter such as magnitude or distance. In this case the 
hazard is said to be marginally disaggregated. Typically though, the total hazard is 
disaggregated with respect to at least two variables; usually magnitude and distance. 
Because of the numerical procedure adopted to evaluate the integral this is a relatively 
simple exercise. Only simply stores the contributions to hazard determined for every 
combination of increment s between each of the variables before the numerical 
integration is performed. The contributions to the total hazard for every scenario 
considered can then be extracted from these stored values. 
The representation of the hazard at a site afforded by the disaggregation procedure is 
very instructive as it takes a step back from the probabilistically framed final outcomes 
and displays the hazard in terms of the readily understandable parameters. Most people 
can easily consider the scenario of an earthquake of some magnitude occurring at some 
distance from them. When the hazard is disaggregated in this manner the result is a suite 
of magnitude-distance pairs that occur with various probabilities. The identification of 
the most critical earthquake scenarios is therefore made relatively transparent to the end 
user of PSHA. There are however some subtleties associated with the disaggregation 
procedure, such as whether or not the probability mass function, or the probability 
density function is used to portray the hazard, and how the hazard contributions are 
assigned to increments of epsilon (McGuire, 1995; Bazzurro, 1998; Bazzurro and 
Cornell, 1999). An example of a disaggregation histogram, in terms of probability mass 
function, is given in Figure 1.7, which shows the contributions to the hazard for PGA 
with a return period of 475 years for the site of Scale (CS) (Buratti et al., 2007a). 
Different colours represent contributions by different epsilon values. 
As well as disaggregating the total hazard with respect to magnitude and distance one 
should also consider the contributions to the hazard that are made by various values of 
epsilon. When the hazard disaggregation is performed in terms in terms of the three 
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primary variables, M, R, e, one is able to get a complete picture of where the overall 
hazard comes from. An additional method that provides even greater clarity is the 4D 
disaggregation methodology proposed by Bazzurro (Bazzurro, 1998) and Bazzurro and 
Cornell (Bazzurro and Cornell, 1999) in which the positional contributions are also 
included by disaggregation the distance, further into latitude and longitude. 
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2 Ground motion selection and 
scaling issues1 
 

2.1 Introduction 

Assessment of seismic demands and their uncertainties necessitates the availability of 
sets of acceleration time histories that represent the seismic hazard at different return 
periods, and describe intensity, frequency content, and duration with sufficient 
comprehensiveness so that central values and measures of dispersion of the demand 
parameters can be determined with confidence and efficiency. At this time there is no 
established procedure to select such sets of ground motions. On the other hand, rigorous 
demand prediction necessitates inelastic time history analysis, which means that records 
have to be selected (or generated) for the aforementioned purpose. The accepted process 
is to perform hazard analysis on selected ground-motion parameters, and use the hazard 
information for record selection and uncertainty propagation. This process implies that 
the selected ground-motion parameters should be capable of capturing all intensity, 
frequency content, and duration information that significantly affect the elastic and 
inelastic response of complex soil-structure systems. No single parameter is ideally 
suited for this purpose, and, unfortunately, the best choice of parameters depends, 
sometimes weakly and sometimes strongly, on the structural system and the 
performance level to be evaluated. This issue is one of the basic challenges of 
performance-based earthquake engineering (Krawinkler et al., 2003). 

2.2 Ground motion selection  

Ground motion record selection is considered a critical problem in assessment of 
structural response based on numerical dynamic analysis. The structural engineer 
expects the ground motion specialist to select records whose magnitudes, distances, site 
conditions, and faulting style are representative of the threat to the site. This may be 
accomplished with the use of disaggregation. In some cases the records are selected to 
                                                 

1 This Chapter has been written with the supervision of Prof. J.J. Bommer and Dr. P.J. Stafford, 
Department of Civil and Environmental Engineering, Imperial College, London, UK. 
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provide response spectra that approximate the uniform hazard spectrum or other design 
response spectrum. The properties (natural period, ductility, etc.) of the structure may or 
may not be considered in the record selection. The choice of the ground motions may be 
affected by the interface variable used to measure the intensity of ground motion. This 
latter is named Intensity Measure (IM) in the PEER Performance Based Earthquake 
Engineering (PBEE) framework (Porter, 2003). It is extremely important to put the 
ground motion selection procedures in their context, because different selection criteria 
must be used depending on the problem under investigation and on the object one likes 
to achieve.  
For example, if a new building is to be designed, the majority of codes prescribe that a 
suite of ground motions has to be selected such as to be compatible with a Uniform 
Hazard Spectrum (UHS). These records have to be used to evaluate the mean structural 
response while the uncertainty on possible ground-motion intensity is already included 
in the UHS. On the other hand if a probabilistic procedure as the PEER’s PBEE Porter, 
2003) is used, the distribution of a structural response parameter (engineering demand 
parameter) conditional to different levels of ground-motion intensity have to be 
evaluated. The seismic hazard at the site and the structure are coupled by an intensity 
measure. The adopted records should be representative of the ground-motion variability 
for different given values of the intensity measure. 
Many different selection procedures have been proposed by different authors in the last 
years. Following Luco (Luco, 2006) the following objectives can be defined: 
1. Evaluation of mean structural response given scenario (magnitude (M), distance (R), 

site soil conditions (S), fault rupture (F), etc.). 
2. Evaluation of CDF of structural response given scenario. 
3. Evaluation of mean structural response given scenario and IM. 
4. Evaluation of distribution of structural response given scenario and IM. 
5. Evaluation of mean structural response given UHS 
6. Other (e.g. experimental tests). 
Tables 1-2 summarize the record selection and scaling methods which will be described 
in the following. 

2.2.1 Preselecting records 
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Before a record can be considered for selection, it is necessary to check that the 
properties of the record are such that it is suitable input for dynamic structural analysis. 
Properties of the record depend on the recording technique of the ground motion and the 
Table 2.1. Summary of the record selection procedure described in this document. 
Procedure M R S F ε Dur. Property matching Proxy
Chapman 1995         
Shome et al. 1998 
and Shome 1999 

(x) (x)       

Bommer et al. 2000 x x       
Stewart et al. 2001 x x x x x    
Malhotra  2003 x x       
Dhakal et al. 2006 x x     Matching with percentile IDA curves  
Bommer and 
Acevedo  2004 

x (x) (x)    UHS  

Baker and Cornell  
2005 

x x (x)  x    

Iervolino and 
Cornell 2005 

        

Baker and Cornell  
2006b 

(x) (x) (x)    CMS-ε  

Delgado et al. 2006       Acceleration response spectrum  
Watson-Lamprey 
and Abrahamson 
2006b 

     x PGA, PGV, Arias intensity (after scaling) x 

Watson-Lamprey 
and Abrahamson 
2006c 

     x PGV, Sa(T1), Sa([T1,T2]) (after scaling) x 

Douglas 2006 x x    x Sd(0.1), Sd(1.0).  
Shantz 2006       Inelastic response surface (after scaling) x 
Trombetti et al. 2006       [PGA, PGV]  
Malhotra 2007 (x) (x) (x)   x [PGA, PGV, PGD]  
ATC-58 Zareian, 
2007 

x x       

Geomatrix 
Consultants 2007 

x x x    Sa(T2)| Sa(T1) after scaling.  

ATC-63 
Kircher and 
Haselton, 2007 

x x x x   PGV > 15 cm/sec 
PGA > 0.2 g 

 

Hancock et al. in 
press 

x x x    GMPE  

Youngs et al. 2006 x x x      
Rathje and Kottke  
2007 

x x x x   GMPE  

Shome 2007 x x x x   [Sa(T2),Sa(T3)|Sa(T1)]   
Tothong and Luco 
2007 

        

Zhai and Xie  2007      x PGA, PGV, PGD, IV, ID, EPA, EPV, 
demanded yield strength and hysteretic 
energy 
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processing of the data. Most databases provide the processed records only while the raw 
data is rarely published. All ground motion records contain noise due to imperfections 
in the recording process (and, for analogue records, the digitizing) and the aim of 
processing the recorded data is to limit the data to frequency ranges where the signal-to-
noise ratio is satisfactory (Boore and Bommer, 2005).  
Boore and Bommer (2005) pointed out that the most important processing for all 
records is the application of low-cut filters to remove the low-frequency parts of the 
record contaminated by long-period noise. The most important aspect of applying a 

Table 2.2. Summary of the scaling procedures described in this document. 
Procedure Type of scaling Reference for scaling 
Chapman 1995 linear PGV 
Shome et al. 1998 and Shome 1999 linear Sa(T1) 
Carballo and Cornell 2000 freq-domain GMPE spectrum 
Carballo and Cornell 2000 time-domain GMPE spectrum 
Bommer et al. 2000 linear UHS 
Stewart et al. 2001 linear UHS. Single period or period range. 
Stewart et al. 2001 time-domain UHS. If a low number of time histories is 

used. 
Malhotra  2003 linear Part of the UHS 
Bommer and Acevedo  2004 linear Part of the UHS 
Baker and Cornell  2005 linear Sa(T1) 
Iervolino and Cornell 2005 linear Sa(T1) 
Baker and Cornell  2006b linear Sa(T1) 
Delgado et al. 2006   
Watson-Lamprey and Abrahamson 2006b linear PGA or PGV or Arias intesity or 

Sa([T1,T2]) 
Watson-Lamprey and Abrahamson 2006c linear PGV or Sa(T1) or Sa([T1,T2]) 
Zhai and Xie  2007   
Douglas 2006   
Shantz 2006 linear Inelastic response surface 
Trombetti et al. 2006   
Malhotra 2007 linear [PGA, PGV, PGD]. Multiple values. 
ATC-58 Zareian, 2007 linear Sa(T1). Multiple values (11) defined 

according to the distribution of Sa(T1) 
given by GMPE. 

Geomatrix Consultants 2007 linear Sa(T1) 
ATC-63 
Kircher and Haselton, 2007 

linear Sa(T1) 

Hancock et al. in press wavelet GMPE spectrum (multiple damping 
ratios). 

Youngs et al. 2006 linear GMPE spectrum (MSE and slope) 
Rathje and Kottke  2007 linear GMPE spectrum. Multiple values. 
Shome 2007 linear Sa(T1) 
Tothong and Luco 2007 linear Sdi or IM1I&2E 
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low-cut filter is selecting the long-period cut-off, for which a model of the noise is 
ideally required. The choice is never unambiguous and depends on what is considered 
to be an acceptable signal-to-noise ratio. From an engineering perspective the most 
important point is that once the filter frequency is selected, this automatically defines 
the range of periods over which the data is usable. Akkar and Bommer (2006) suggested 
that, depending on the type of recording instrument, the magnitude of event and the site 
class, only spectral displacement ordinates up to 0.65-0.97 times the corner period of 
the low-cut filter should be trusted. Bazzurro et al. (2004), by studying near-field 
records, concluded that the more severe is the non-linear behaviour of structures the 
more important is this issue. These authors also concluded that the value of the high-
pass corner frequency, fHP, has a visible effect on the linear and non-linear response 
spectrum ratio. Records that are filtered with a larger value of the high-pass corner 
frequency tend to be more benign if used to compute the non-linear response of 
oscillators with periods even much lower than the reciprocal of the value of fHP used. 
Among the ground-motion parameters considered in their study, only PGD and, to a 
lesser extent, PGV, were affected by the different aspects of the filtering technique; all 
the other ground-motion parameters were found to be virtually unaffected by the 
selection of fHP. Acausal filters should be preferred to causal filters since they do not 
distort the phase spectra (Boore and Akkar, 2003). Other characteristics such as the 
order of the filter are of lesser importance (Bazzurro et al., 2004; Boore and Bommer, 
2005). 
If ground motions are to be used for bi-directional analysis, the choice of the filter types 
and parameters are of particular concern: the horizontal components should, be filtered 
with the same filter parameters (same order and corner periods of the filter); it is also 
important that the leading zeroes, which should be retained in the filtered record, are of 
equal length on both components (Boore, 2005). On the other hand, if the vertical 
component is also included in the analysis, it is not recommended to use the same filter 
parameters for the vertical as for the horizontal components. Processing all three 
components with the same filter parameters would lead to loss of low-frequency content 
of the horizontal components which is valuable to the structural engineer (Boore and 
Bommer, 2005) for if the same processing is applied to all three components, the filter 
cut-off will generally be controlled by the vertical component since this will usually 
have a lower signal-to-noise ratio than the horizontal components, particularly in the 
long-period range. Similar arguments hold for strongly polarized horizontal components 
of motion, as may be encountered in near-source recordings, since the stronger 
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component could be subjected to an unnecessarily severe filter because of the lower 
signal-to-noise ratio of the fault-parallel component. 
Finally, another issue that should be considered is the presence of shifts in the baseline 
of records; baseline fitting techniques can be used to adjust for reference these shifts in 
both digitized analog records and digital recordings. Boore and Bommer (2005) pointed 
out that one advantage of baseline fitting techniques over filters is that the former can 
enable residual displacements to be recovered although the corrected baseline can rarely 
be validated by independent observations, especially if displacements are of concern. 
Bazzurro et al. (2004) pointed out that as far as near-fault ground motions are 
concerned, the  removal or preservation of the residual static displacement has a large 
impact on structural response and concluded that the ground motions with static residual 
displacement preserved seem to cause more severe non-linear response of structures 
with a wide range of natural periods (even much shorter than the typical rise time of the 
static displacement offset). The authors also expect this effect to be less noticeable on 
more standard accelerograms recorded where the residual displacements tend to be 
more limited.  

2.2.2 Selection based on geophysical parameters 
If scenario-based selection is applied, records are selected which fall in bins around 
central values of seismic parameters. In most cases, not only one parameter but two or 
more parameters are used for selection. The three most traditional selection parameters 
are magnitude (M), source-to-site distance (R), and site class (S). The reason for this is 
that important characteristics of the record such as frequency content, spectral 
amplitudes, spectral shape, and duration are correlated to magnitude, distance, and site 
class. Site classes are commonly based on the shear-wave velocity of the uppermost 
ground layers. It should be noted that the use of recorded ground motions is based on 
the implicit assumption that “provided similar tectonic environments are considered, 
strong-motion records from one country can be selected and applied in another” 
Bommer and Acevedo, 2004.  
Reference seismic scenarios can be defined by performing Deterministic Seismic 
Hazard Analysis (DSHA) or Probabilistic Seismic Hazard Analysis (PSHA) for the site 
under investigation (See Chapter 2). If the first kind of analysis is performed the design 
earthquake is fully defined, in terms of magnitude, site-fault distance and nature of 
surface geology. Usually the 84-percentile ground-motion is considered in this approach 
(Bommer et al., 2000; Krinitzsky, 2002; Bommer and Acevedo, 2004). If PSHA is 
adopted, the controlling earthquake scenarios need to be evaluated by disaggregation, 
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adopting one of the several techniques proposed in literature (Chapman, 1995; 
McGuire, 1995; Bazzurro and Cornell, 1999). It is worth noting that two slightly 
different approaches are possible: Bazzurro and Cornell (1999) proposed to 
disaggregate the hazard conditioned on the spectral acceleration, Sa, exceeding a given 
level of interest (i.e. Sa ≥ *

as ). McGuire (1995) proposed a slightly different approach 
that is conditioned on the Sa equalling the Sa level of interest (i.e. Sa = *

as ). Depending 
on the application one of the two approaches can be preferable, for example in assessing 
structural performance, one is often interested in Sa equalling a level of interest (10% in 
50 years): in this case the latter approach is preferable (Haselton and Deierlein, 2006). 
Krinitzsky (2002) argued that particular care should be taken when disaggregating data 
from hazard models in which logic trees are used in order to avoid the risk of averaging 
non-uniform data sets. 
In the method proposed by McGuire (1995) a hazard assessment, using all relevant 
seismic sources, is performed for each spectral response period. Next, a conditional 
distribution of M, R and ε (number of logarithmic standard deviations above or below 
the logarithmic mean from the ground-motion prediction equation used in the analysis) 
is determined for each source and for each period, where the condition is the matching 
of the design motion. If one source dominates the hazard for both periods then the 
distributions will be similar and can be combined to form a composite distribution, the 
peak of which is used to define the earthquake scenario. If different sources dominate 
the hazard for different periods then the distributions will be different and a scenario 
must be defined for each.  
Chapman (1995) defined the hazard-consistent earthquake scenario using the modal 
event. The underlying probabilistic hazard assessment integrates over all sources, 
which, the author notes, can sometimes result in the existence of several local maxima, 
indicating the need to consider multiple design events. The author proposed a procedure 
to accommodate the difference between the ground motion predicted from the 
attenuation relationship with the design event and the design ground-motion from the 
hazard analysis. It is based on counting statistics of a sample of records satisfying the 
M-R combination, i.e. a record is chosen which is consistent with the number of 
standard deviations by which the two values differ. This procedure cannot be applied if 
only a low number of records compatible with a given M, R scenario can be found, in 
this case the author suggested to select or synthesize a “best estimate” ground motion 
time-history representative of the modal event, and scale the amplitude of the time-
history (Section 2.3.1) such that the PSV response is corresponding to the design 
expected  ground-motion level. 
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All the aforementioned techniques yield dominant scenarios contributing to the hazard 
at different parts of the response spectrum, defined by a magnitude, distance and ε. 
Once the dominant scenario is defined it is important to decide which parameters should 
be included in the search and for each parameter how much tolerance should be allowed 
in the degree of matching between the record and the scenario. The parameter ε, has not 
been considered in many ground-motion selection procedures, but recently it was shown 
(Baker and Cornell, 2005) to be a strong indicator of spectral shape if the spectral 
acceleration at the natural period of the structure under investigation, is used as  
intensity measure (Section 2.2.3.3). 
Before closing this section it is worth noting that, as Bommer and Acevedo (2004) 
suggested, if the vertical ground-motion is considered important, its controlling M-R 
scenarios may differ from those for the horizontal component.  

2.2.2.1 Magnitude 
There is a strong debate in literature about the importance of magnitude on structural 
response and hence about the need of taking into account this parameter when selecting 
records. Many authors demonstrated, by regression analysis, that magnitude has a 
strong influence on spectral shape and on strong-motion duration. For this reason many 

 
Figure 2.1. Response spectral shapes (normalised to the ordinate at 0.2 s) for rock sites at 10 km from
earthquakes of magnitude 5.5, 6 and 7 using the median values obtained from the following
attenuation equations (clockwise from top left ): Ambraseys et al. 1996, Campbell 1997, Abrahamson
and Silva 1997 and Boore et al. 1997. After Bommer and Acevedo (2004). 
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authors suggested that magnitude should be considered in record selection. Figure 1 
shows the dependence of response spectral shapes on magnitude as predicted by 
different attenuation equations. Bommer et al. (2000) suggested that records should 
match the reference M-R pair as closely as possible, stating that it is important that  “the 
records are from earthquakes with magnitude close to the design value since scaling 
cannot alter the duration and the spectral shape”. Stewart et al. (2001) asserted that 
particular attention should be paid in matching magnitude and suggested that is 
desirable to use earthquake magnitudes within 0.25 magnitude units of the target 
magnitude.  Bommer and Acevedo (2004) recommended that the search be based on 
achieving a good match in terms of magnitude and suggested to use earthquakes within 
0.2 magnitude units of the target.  
Some other authors argued that magnitude and distance matching is not important if 
records are scaled in amplitude (See Section 2.3), in particular if they are scaled in 
terms of Sa(T1), i.e. the spectral acceleration at the fundamental frequency of the 
structure considered. Bazzurro and Cornell (1994) investigated the non-linear response 
of a simple model of an offshore structure and found that it is not strongly correlated 
with magnitude, distance and strong-motion duration. Later Bazzurro et al. (1998) 
stated that “a careful search of the records that closely match the hypothesized M and R 
scenarios for the site with the aim of computing the structural response of the building 
is not crucial. Beyond the spectral Sa level […] M and R play little systematic role in 
typical non-linear response measures”. The authors pointed out that M and R values 
may be important only in those cases were near-source directivity effects are expected 
to be significant. In Shome et al. (1998) and in Shome (1999) it was concluded that 
provided the records are scaled to match the elastic design spectrum at the fundamental 
period of the structure considered, then matching the records for the magnitude-distance 
combination of the design earthquake scenario is not important. However the authors 
recommend in their conclusions that “records from roughly the same magnitude” should 
be used. Iervolino and Cornell (2005) compared the non-linear response of a suite of 
model structures to sets of records selected to match a specific magnitude and distance 
scenario and other sets of records selected arbitrarily. Records in each target stet were 
linearly scaled to the mean spectral acceleration of the set and records in the arbitrary 
sets were scaled to the mean spectral acceleration of the different target sets. The 
authors found there is no evidence that suggests that it is necessary to take great care in 
the selection of records with the respect of these factors. The target sets were defined 
according to a M = 7.0, R = 20 km (closest distance to fault rupture) scenario. Five 
events with magnitudes ranging from 6.7 to 7.4 were chosen from the PEER ground 
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motion databank. Six different sets of 10 records (2 for each event) were considered. 
Almost all the records were in the distance range 20 ± 5 km. As for the arbitrary sets, 
they contained 10 records too, which had distances spanning from 15 to 50 km and were 
obtained from events with magnitudes in the range 6.4 < M < 7.4. The method used to 
infer about importance of matching a M-R scenario is based on statistical hypothesis 
testing of the ratios of mean structural response obtained by target and arbitrary sets. It 
should be noted that the authors adopted small samples and the hypothesis tests are 
strongly influenced by the high dispersion of the results. Furthermore they supposed the 
statistical independence of the mean value of structural response obtained by the target 
and the reference sets while, as the authors stated, the target and the arbitrary sets 
overlapped each other, i.e. some records were obtained from common events. 
Jalayer (2003) investigated structures with very short and very long first-mode periods 
(a 20-storey structure), and concluded that the structural response is conditionally 
independent of ground-motion characteristics such as magnitude and source-to-site 
distance for a given seismic intensity level (e.g. Sa(T1)). This conclusion may justify 
“random” record selection for the site condition and considering the relative position of 
the site with respect to the major faults around it. The dependence of the response on 
periods other than T1 was studied by investigating the (linear) dependence of the 
residuals of the regression of the structural response (interstorey drift) on the spectral 
shape factor at a period T ≠ T1. It was demonstrated, confirming findings of many other 
authors (e.g. Abrahamson and Silva, 1997), that the shape of the acceleration spectrum 
depends on the moment magnitude of the ground motion. Furthermore Jalayer found 
that given Sa(T1), the structural response is positively correlated to spectral shape at a 
period different than T1. For the case of the 20-storey structure, the response was found 
to be most strongly correlated to spectral shape factors at periods shorter than T1 and 
close to the second-mode frequency. For the high-frequency SDOF system, the response 
was found to be most strongly correlated to shape factors at periods longer than T1. For 
the 20-storey building, the spectral shape factor at T2 period was negatively correlated 
to magnitude with a relatively large dispersion around the line fitted to the data. As 
Jalayer stated the dependence of the response on the shape factor and also the negative 
correlation between the shape factor and magnitude in the case of a long-period 
structure like the 20-storey structure may suggest that the response depends on 
magnitude. Jalayer (2003) found no confirmation of this statement from the results 
obtained by residual-residual plot for structural displacement and magnitude. These 
results indicated that given Sa(T1), the displacement-based response for the 20-storey 
structure is not significantly dependent on magnitude. The author argued that, although 
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the response might suggest some minor dependence on magnitude for the 20-storey 
structure, the large variability in the data-points causes the observed dependence not to 
be (statistically) significant, and that regression analyses that showed dependence of 
response (given T1 spectral acceleration) on shape factor and also shape factor on 
magnitude, do not necessarily imply that there must be a positive (linear) correlation 
between response (given T1 spectral acceleration) and magnitude. Jalayer (2003) 
concluded that there is no evidence in the data, from either the very long or very short 
period systems he studied, for a dependence of structural response on magnitude. Some 
inconsistency can be found in the method used by the author to infer the dependence of 
structural response on magnitude: since a dependence of structural response on spectral 
shape has been observed and since this latter has been observed to be dependent on 
magnitude, the only conclusion that can be drawn is that no statistical significance has 
been found for a linear dependence of the mean structural response (given Sa(T1)) on 
magnitude. 
Krawinkler et al. (2003) and Medina and Krawinkler (2004) investigated the structural 
response of different frames with the number of stories ranging from 3 to 18 and natural 
period ranging from 0.3 s to 3.6 s subjected to 80 ground motions recorded during 
Californian earthquakes of magnitude between 5.8 and 6.9 grouped in 4 different set 
characterized by different magnitude and distance ranges. It is worth noting that 57 of 
the aforementioned ground motions were produced by 4 earthquakes. The authors 
concluded that there appears to be justification to de-emphasize magnitude and distance 
dependence of seismic demand parameters given Sa(T1). However the authors noted 
that these conclusions apply only to ground motions outside the near-fault and soft-soil 
regions. Moreover the results are only limited to magnitude and distance range 
considered: in fact the median and the dispersion of the response spectra of the 
accelerograms selected according to the different M and R ranges were very similar, i.e. 
within the range of magnitude and distance covered by the four bins used in this study, 
the magnitude-distance dependence of the spectral shapes does not have a dominating 
effect. Dependence of median (or mean) spectra on magnitude and distance has been 
established through regression analysis in many studies. 
As Bommer and Acevedo (2004) pointed out the core of the issue is the degree to which 
the duration of shaking influences structural demand (Hancock and Bommer, 2007). It 
is worth noting that many of the aforementioned studies, when making inferences 
regarding the influence of magnitude matching on structural response adopted non-
linear models that did not account for energy-based cyclic deterioration and therefore 
are not able to give good predictions of the duration effect on structural response. 
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Furthermore, Hancock and Bommer (2006), pointed out that the influence of duration or 
effective cycles on the structural response is still debated in the scientific community. 
Before duration or effective cycles are included as selection criteria one should 
therefore consider whether duration or effective cycles are expected to affect the 
structural response. This depends not only on the structure but also on the response 
parameter which is used to measure the structural response. Cumulative damage 
parameters often used to assess the damage to reinforced concrete members are, for 
example, more dependent on the effective number of cycles than the maximum roof 
displacement of a structure. If it is decided that duration should be considered when 
selecting records, the choice of definition of duration or effective cycles requires 
attention. There is a large number of definitions available in the literature for duration 
(Bommer and Martinez-Pereira, 1999) and effective cycles (Hancock and Bommer, 
2006. Bommer et al. 2006) have also shown that the correlation between different 
duration and effective number of cycles measures is commonly very poor. If a 
correlation between duration or effective cycles and structural response is expected, the 

 
Figure 2.2. Response spectral shapes (normalised to the ordinate at 0.2 s) for rock sites at 5, 20 and 50
km from an earthquake of magnitude 7 using the median values obtained from the following
attenuation equations (clockwise from top left ): Ambraseys et al. 1996, Campbell 1997, Abrahamson
and Silva 1997 and Boore et al. 1997. After Bommer and Acevedo (2004). 
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choice of an appropriate definition for these parameters is hence important.  

2.2.2.2 Distance 
A second parameter that should be considered in record selection is source-to-site 
distance. As Bommer and Acevedo (2004) suggested by observing attenuation values 
predicted by different ground-motion prediction equations, the influence of distance on 
spectral shape is lower if compared to that of magnitude. Figure 2 shows the 
dependence on distance of response spectral shape for a magnitude 7 earthquake as 
predicted by different attenuation equations. Furthermore attenuation with distance is 
almost invariant with period and the ratio of the variation of duration with distance is 
usually low. Therefore an imperfect correspondence in terms of distance can be fixed by 
linearly scaling the ground motion record. This draws attention to the issues related to 
the limits of scaling which are discussed in Section 2.3.1.3. 
There are two important exceptions to these conclusions: the first is if records are 
selected from soft soil sites, since weak, distant motion would not scale linearly for sites 
closer to the source due to soil non-linearity (Bommer and Acevedo, 2004). The second 
exception is if near-source rupture directivity effects are to be considered as part of the 
design scenario. The effect of forward directivity is to produce short-duration motions 
with high-energy pulses that amplify the spectral ordinates at intermediate or long 
periods (Somerville et al., 1997b). As Stewart et al. (2001) suggested selected records 
must be representative of rupture-directivity or fling-step effects. 

2.2.2.3 Site classification 
The third parameter that should be included in the search is the site classification, since 
it strongly influences the ground motion. Soil effects can affect both the amplitude and 
shape of response spectra. However, specifying a close match for this parameter may 
not always be feasible since the geotechnical profile has been determined with 
confidence for a relatively small number of strong-motion recording sites. Furthermore 
within any site class there can be considerable variation in dynamic response 
characteristics. Bommer and Acevedo (2004) recommended that if the number of 
available records matching the magnitude and distance criteria is small, records be 
considered from sites that are within one site class (e.g., NEHRP or EC8) either side of 
the classification of the site under consideration. Stewart et al. (2001) suggested that 
ground motion records should be selected from accelerograph sites having conditions 
similar to those of the site under consideration. If this is not possible they suggested to 
scale record by the ratio of soil to rock response spectra for the appropriate magnitude 
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and distance using an empirical attenuation equation. The authors also suggested that 
particular care should be taken in selecting records to represent ground motion in 
basins. Instead of selecting records with a matching site class it is also possible to select 
ground-motions recorded on rock sites and conduct site response analyses. 

2.2.2.4 Other criteria  
The rupture mechanism could also be considered if it is determined as part of the design 
scenario. There is no definitive evidence for systematic and significant differences 
between the ground-motions from normal and strike-slip faulting earthquakes, but there 
is general consensus that reverse-faulting events produce larger amplitudes of motion.  
Bommer and Acevedo (2004) also suggested that especially when setting up a small 
suite of real records, the records should not come predominantly from one recording 
station. A possible exception to this condition would be in the case of the recording 
station being located very close to the site of interest. Another possible criterion is that 
any suite of records used in dynamic analyses should not be dominated by 
accelerograms from a single earthquake event. 

2.2.3 Selection based on ground-motion properties and 
structural response 

2.2.3.1 Selection based on peak values of ground-motion  
Trombetti et al. (2006) proposed a ground-motion selection procedure based on 
matching both PGA and PGV values obtained by hazard analysis. The main objection 
that can be raised against this procedure is that the reference PGA and PGV values are 
calculated by two independent PSHA hence no correlation between the two parameters 
is considered. This can be an issue if one is interested in estimating the probability of 
structural failure. Furthermore very few case studies have been reported by the authors: 
only two SDOF systems with given period. The results considered are the maximum 
displacement as obtained by incremental dynamic analysis. The authors compared the 
dispersion in structural response obtained when their selection criterion is used with that 
obtained using PGA as the intensity measure. Since no information was provided about 
the period of the SDOF systems considered it is difficult to make any further comment. 
Nevertheless many authors have shown the inefficiency of PGA as an IM, especially for 
flexible structures. Finally no information was provided about the possible bias in 
structural response. 
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2.2.3.2 Selection based on elastic response spectra 
Bommer and Ruggeri (2002) and Bommer and Acevedo (2004) performed a review of 
the guidance in different codes about ground-motion selection and found that guidance 
given in seismic design codes on how to select appropriate records is usually focused on 
compatibility with the response spectrum rather than seismological parameters, for the 
simple reason that the information on seismic source zones and activity rates that 
underlie zonation maps is not presented and only the uniform hazard spectrum (UHS) is 
given: “In current codes, earthquakes are effectively invisible and for this reason the 
engineer using the code will not easily be able to identify scenario earthquakes”. 
Guidance in codes can vary from being purely descriptive to being highly prescriptive. 
Where specific criteria for selecting records are provided in seismic codes (Bommer and 
Ruggeri, 2002; Bommer and Acevedo, 2004), they are generally based on the ordinates 
of the elastic design spectrum although some only specify a match with PGA. Some 
codes do not specify the relationship between the selected records and the elastic design 
spectrum, but rather specify that the base shear obtained from dynamic analysis should 
not be lower than a certain proportion - usually between 0.7 and 0.9 - of that obtained 
using the equivalent lateral force method, which does not actually help the engineer in 
making the initial selection of records. Most of the codes that give some guidance on 
the preparation of suites of acceleration time-series to be used as input to dynamic 
analyses specify conditions that the records must meet with respect to the ordinates of 
the elastic design spectrum. Seismic design codes require that it is the average ordinates 
of the real spectra that have to match the target and not the individual spectra. Bommer 
and Acevedo (2004) pointed out that this can conceal the issue of the maximum 
exceedance of the target spectrum by the ordinates from any individual record. Any 
design spectrum that is derived through the use of PSHA will include the influence of 
the scatter in the ground-motion prediction equations, which represents the aleatory 
variability in ground-motion parameters for given combinations of magnitude, distance 
and site conditions. The strong-motion parameters of the selected records will also 
display an aleatory variability. Therefore the authors suggested that, if the analysis is 
performed following the procedure presented in some design codes of selecting three 
accelerograms, scaling their average ordinates to not fall below the design spectrum, 
and then using the maximum structural response as the basis for design decisions, the 
variability in the ground motion is effectively being double counted. A common 
misconception is to assert that the selected suite of accelerograms should capture the 
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variability in ground-motion amplitudes, whereas this variability is already fully 
accounted for in the derivation of the probabilistically-defined response spectrum.  
In this document building codes will not be reviewed because most of the conclusions 
of Bommer and Ruggeri and Bommer and Acevedo are still valid, since as Beyer and 
Bommer (2007) observed “guidelines have been copied from codes used in other parts 
of the world without significant review of the recommendations given therein”. The only 
code that will be described in the following is the New Zealand Building, and the drafts 
produced by the ATC-58 and ATC-62 workgroups will be described.  
Different procedures can be used to search for ground motions compatible with the 
design response spectra. Bommer and Acevedo (2004) proposed to use the matching 
criteria available in the European Strong Motion Database CD-ROM (Ambraseys et al., 
2004). This procedure is based on the root-mean-square difference Drms between the 
spectrum of the real record and the reference spectrum: 
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where N is the number of periods at which the spectral shape is specified, Sa0(Ti) is the 
spectral acceleration from the record at period Ti, Sas(Ti) is the target spectral 
acceleration at the same period; PGA0 and PGAs   are the peak ground acceleration of 
the record and the zero-period anchor point of the target spectrum, respectively. The 
authors sustained that this procedure is superior to matching on the basis of spectrum 
intensities (area below the response spectrum) in a specified period range, because a 
good match in that case could easily be obtained with the record having ordinates 
significantly above the target spectrum at one period and significantly below at another. 
This procedure limits the maximum deviation of individual peaks or troughs on the 
spectrum from the target ordinates. 
Lately Beyer and Bommer (2007) modified the aforementioned procedure to make 
allowance for the need of matching the target spectrum over the period range which is 
of prime interest for the structural analysis. For each record a scale factor α was 
determined which minimized the root-mean-square difference Drms between the scaled 
geometric mean spectrum, SaR, of the real record and the target spectrum, SaT: 
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where Ti is the i-th entry of the period vector for which the spectral accelerations are 
defined; j and k define the period interval [Tj, Tk] for which spectral matching is desired. 
From all records those with the smallest root-mean-square difference are selected. 
Another approach to matching which eliminates the influence of the variation of 
amplitude of the spectral acceleration with period is to normalize the error by the target 
value at each period: 
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Iervolino et al. (2006a) used a different matching procedure, based on: i) the deviation 
of the average spectrum with respect to the code spectrum (σ); ii) the maximum 
deviation of a single spectrum within a set with respect to the code spectrum (σmax); iii) 
records coming from different events within a set; iv) small variability of  magnitude of 
events within a set. The maximum deviation of a single spectrum, σ, is defined as: 

 
( ) ( )

( )

2

,

1

1 N
o med i s i

i s i

Sa T Sa T
N Sa T=

⎛ ⎞−
σ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2.4) 

where Sao,med(Ti) represents the pseudo-acceleration ordinate related to the mean real 
spectrum corresponding to the period Ti, while Sas (Ti) is the value of the spectral 
ordinate of the code spectrum at the same period and N is the number of points 
considered inside the considered range of periods. 
Naeim et al. (2004) proposed a genetic algorithms based method to select groups of 
ground-motion records that in combination are compatible with design response spectra. 
This method treats any random union of a given number of records (taken from a large 
database) and the corresponding scaling factors as independent variables and is able to 
find an optimal solution in terms of distance from a reference response spectrum (the 
authors used this procedure to select groups of 7 records). The matching function 
considered by the authors is: 
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where Si is the scaling factor of the record i, Sai(T) is the spectral acceleration at period 
T of the record i, FT is the value of the target spectrum at period T and T0 and Tn are 
respectively the lower and higher period considered. The authors also introduced a 
penalty function in the optimization problem in order to avoid the solution going below 
the target spectrum in the period range under consideration. 
All the aforementioned procedures were originally proposed to find records compatible 
with a uniform hazard spectrum, but they can be use with any reference spectrum e.g. 
with the spectrum predicted by a  GMPE or with a conditional mean spectrum (Section 
2.2.3.3). 
The New Zealand Building Code proposed the following selection and scaling 
procedure. The stronger component of the ground-motion is considered which is 
defined as the component with the larger spectral values over the period range 0.4 - 1.3 
T1, where T1 is the fundamental period of the structure in one specific direction. A 
record scale factor k1 is determined which minimizes the error between the target 
spectrum and the spectrum of the stronger component over the period range of interest. 
This is done for all records of the suite which will be used for the structural analysis. 
Finally, a record family scale factor k2 is determined which ensures that at each period 
within the period range of interest at least one spectrum of a stronger component scaled 
with the respective factor k1 is larger than the target spectrum. The two components of 
each record are hence scaled with the total factor k1 · k2. The stronger component of 
every record is applied in the direction in which the structural period T1 was determined. 
This procedure is repeated for all directions of the structure. Dhakal et al. (2007) 
investigated the effectiveness of these recommendations and concluded that the 
intensity measure proposed by the code (based on least squares fit of logarithms of 
spectral accelerations in the range 0.4 – 1.3 T1) is slightly more efficient than the 
spectral acceleration at the natural period. The authors concluded also that if only three 
records are used the scale factor k2 resulted in a overly conservative estimation of 
structural response. 
Malhotra (2003) proposed a different procedure to select strong-motion records for site-
specific analysis. Once a site-specific response spectrum is obtained by PSHA the 
controlling events are identified via disaggregation. Next the duration of the controlling 
events is estimated using ground-motion prediction equations. The matching with the 
PSHA spectrum is performed for different ranges of periods and is defined in terms of 
maximum spectral acceleration Samax, control periods T2 and T3 as defined by the 
Newmark and Hall smooth spectrum and strong-motion duration as defined by Trifunac 
and Brady (1975). Hence for each record in the databank considered the aforementioned 
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values are calculated by least squares fit between the actual and the smooth spectrum. 
Different ground motions (e.g. two) are chosen for each controlling event and are  
linearly scaled to match the UHS in different period ranges  
It should be noted that due to the different frequency content of small, local events and 
large, distant events it might often be the case that the UHS at different response periods 
is dominated by different earthquake scenarios. Hence, if spectra of real records are 
scaled to match the UHS over either the entire or a very broad frequency range, the 
seismic input used for the analysis does not represent a single earthquake scenario. 
Different warnings have been published in terms of the accuracy of the results that the 
use of spectrum-compatible accelerograms can offer. Barenberg (1989) suggested that 
“a time history derived from a design response spectrum may be dominated by high or 
low frequency components resulting in a time history that does not represent a realistic 
earthquake” and Naeim and Lew (1995) indicated the possibility that spectrum matched 
records may yield highly conservative results and suggested that “urge extreme caution 
in dealing with frequency-domain scaled spectrum compatible time histories in the 
design of earthquake resistant structures”. It has become widely accepted in practice 
that records should not be scaled to the UHS; this limitation applies to all of the codified 
guidelines cited herein for scaling of records and indeed represents a major shortcoming 
in current code definitions of seismic actions. 
Other procedures have been proposed in literature which do not use the uniform hazard 
spectrum as reference but the spectra predicted by ground-motion prediction equations.  
Youngs et al. (2006)  worked on the development of a Design Ground Motion Library 
(DGML), which is an electronic library of selected recorded acceleration time histories 
defined with the aim of being suitable for use by engineering practitioners for the time 
history dynamic analysis of various types of facilities in California and other parts of 
the western United States. The records for this project have been grouped in M-R-S bins 
such that: i) the bins do not include combinations of low M and/or large R that would 
result in low ground-motion amplitudes for which time history analyses would generally 
not be performed; ii) the bins are wide enough in M and R that there are significant 
differences in spectral shape between adjacent bins; iii) for near-source bins, the farthest 
distance of 15 km is selected to capture most records potentially having near-source 
characteristics. The definition of period ranges appropriate for evaluating response 
spectral shapes is based on evaluation of typical period ranges of significance for 
different structure types. The spectral shape of the records in a given M-R-S bin and 
period-range sub-bin is compared to the target median which is determined using 
ground-motion attenuation equations for the mid-range M and R of the bin. The records 
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are first scaled to the level of the smooth median spectra. The scaling criterion is that 
the spectrum of the record has equal differences above and below the median spectrum 
over the period range considered. Two measures are used to calculate and evaluate 
response spectral shapes of records in comparison to the median spectral shape: the first 
measure is the Mean Squared Error (MSE) of the differences between the median 
spectrum and the spectrum of the record after scaling. This measure determines the 
overall “fit” of the spectrum of the record to the target median spectral shape over the 
period band. The equations for scaling and for determining the MSE of a record are: 
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where n, i.e. the number of periods considered, is determined by specifying equally 
spaced values of ln(Ti). The second measure of the spectral shape of the record relative 
to the median shape is the “slope” of the record spectrum compared to the slope of the 
median spectrum across the period band. It is determined by a linear regression on the 
spectral differences with period, between an actual record spectrum and the median 
spectrum. Spectra with larger slopes (positive or negative) relative to the median 
spectrum are more skewed relative to the median shape. The equations used to 
determine the slope of the spectra of the records are given below: 
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were: 
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The ATC-63 project (Kircher and Haselton, 2007) is working on developing sets of 
strong- motions (i.e. a Near-Field set and a Far-Field set) appropriate for collapse 
evaluation of structural systems using Incremental Dynamic Analysis (IDA) methods 
(Vamvatsikos and Cornell, 2002). The sets have to be generically applicable, i.e. 
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independent of site, ground motion hazard-level, and structure type (e.g. building 
fundamental period). Since the set is independent of the building period and site, the set 
was selected without regard to spectral shape or ε. To account for the effects that ε has 
on the collapse fragility, the authors propose to use the post-processing method defined 
by Haselton (2006). The selection procedure is based on the following criteria: i) only 
records with M > 6.5 are considered; ii) ground-motions have to be generated by 
earthquakes with strike-slip and reverse (thrust) mechanisms; iii) recording station 
located on soft-rock (Site Class C) or stiff soil (Site Class D); iv) R > 10 km; v) not 
more than two records per event; vi) peak ground acceleration > 0.2g; vi) peak ground 
velocity > 15 cm/sec; vii) lowest useable frequency < 0.25 Hz; viii) recording station in 
free-field or ground floor of a small building. A scaling procedure to model ground-
motion variability is defined: first, individual records (of a given set) are “normalized” 
by their respective peak ground velocities and factored such that median spectral 
acceleration of the normalized record set is the same as the median spectral acceleration 
of the unscaled record set. The second step is to “anchor” the normalized record set to 
have the target median intensity. Each record in the set is factored by the same amount 
such that median spectral acceleration (Sa) of the record set matches the target at the 
fundamental period (T1) of the structure. 
Douglas (2006) proposed a ground-motion selection procedure based on two steps: in a 
first phase records are selected according to a seismic hazard scenario, defined in terms 
of magnitude and distance and focal depth, then, in the second step, the selection 
procedure proceeds in terms of strong-motion parameters adopting a two-level factorial 
design, i.e. for each strong-motion parameter accelerograms are selected to fall within 
two intervals, corresponding to an high and a low value of the parameter considered 
respectively. The parameters the author considered are  two spectral displacements 
Sd(0.1 s), Sd(1.0 s) and the ground-motion duration according to Trifunac and Brady 
(1975). 
Finally Delgado et al. (2006) proposed a different ground-motion selection criterion 
based on cluster analyses. Starting from 20 records selected from a wide range of M and 
R, the authors chose the most homogeneous subset by cluster analysis. Since no 
reference scenario (spectrum) was  defined this technique allows only to indentify a set 
of similar ground motions in terms of response spectrum, and is probably very sensitive 
to the initial sample adopted. 
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2.2.3.3 Spectral shape and epsilon 
It has long been known that spectral shape has important effects on structural response. 
This is especially true when higher mode effects are important or when the building is 
significantly damaged, causing the effective fundamental period to elongate. Baker and 
Cornell (2005) found that when ground motions are scaled by Sa(T1), the shape of the 
uniform hazard spectrum is often inappropriate and can lead to extremely conservative 
predictions of structural responses. This study showed that epsilon, when Sa(T1) is used 
as intensity measure, is an indicator of spectral shape, i.e. is an indicator of the presence 
of “peaks” or “valleys” in a response spectrum. This can be derived considering the 
conditional mean response spectrum, 

2 1ln( ( ))|ln( ( ))Sa T Sa Tμ and its conditional standard 
deviation. This was found to be especially true for rare ground-motions in coastal 
California, such as a motion with 2% PE in 50 years (Baker, 2005; Baker and Cornell, 
2005; Baker and Cornell, 2006b). This unique spectral shape comes from the fact that 
Sa(T1) is used to define the ground-motion hazard. If the hazard was based on another 
ground-motion intensity measure such as inelastic spectral displacement (Tothong and 
Cornell, 2007) or an average spectral-acceleration over a range of periods, this would 
cause the expected spectral shape to be less peaked for rare ground-motions (Baker and 
Cornell, 2006b). Thus, there are alternative ways to address the spectral shape issue, 
either by adjusting the selection and scaling of ground motions or by modifying the 
definition of ground-motion hazard.  
Recent studies have verified that a positive ε value normally corresponds to a peaked 
spectral shape. To illustrate this, Figure 2.3 compares the mean spectral shape of three 

 
Figure 2.3. Comparison of spectral mean spectral shape of sets of ground-motions selected with: a) no
regard for ε (blue line); b) accounting for ε(1 s) = 2 and c) accounting for ε(2 s) = 2. After Haselton
and Baker 2006. 
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ground-motion sets (Haselton and Baker, 2006): a) a set selected without regard to ε, b) 
a set selected to have ε(1 s) = +2, and c) a set selected to have ε(2 s) = +2. These records 
are scaled such that the mean Sa(1 s) is equal for sets (a) and (b) and the mean Sa(2 s) is 
equal for sets (a) and (c). This shows that the spectral shapes are distinctly different 
when the records are selected with or without regard to ε. When the records are selected 
to have positive ε values at a specified period, the spectra tend to have a peak at that 
period. This shape is very different from a standard uniform hazard spectral shape. This 
makes intuitive sense, because if a ground motion has a much larger than expected 
spectral acceleration at one period (i.e. high positive ε), then it is unlikely that the 
spectral accelerations at all other periods are also similarly large. 
Furthermore selecting ground motions with proper spectral shape (proper ε) has been 
shown to significantly increase collapse capacity predictions. This difference in collapse 
capacity can be explained by comparing the spectral shapes of the aforementioned sets. 
For example, if the building period is 1.0 second and the ground-motion records are 
scaled to a common value of Sa(1 s), the spectral values of the (b) set are smaller for 
Sa(T > 1 s) (i.e. the spectral values that are important when the building is damaged and 
the effective period elongates) and Sa(T < 1s) (i.e., the spectral values that are important 
for higher mode effects).  
Baker and Cornell (2006b) studied the effects of various ground-motion properties on 
the collapse capacity of a seven-storey non-ductile reinforced concrete frame building 
located in Van Nuys, California with a fundamental period T1 of 0.8 seconds. They 
found that the mean collapse capacity increased by a factor of 1.7 when an ε(0.8 s) = 2.0 
ground-motion set was used in place of a set selected without regard to epsilon (which 
had mean ε(0.8 s) = 0.2). Goulet et al. (2006) studied the collapse safety of a modern 
four-storey reinforced concrete frame building with a period of T1 = 1.0 second. They 
compared the collapse capacities for a ground-motion set selected to have a mean ε(1.0 
s) = 1.4 and a set selected without regard to epsilon (which had a mean ε(1.0 s) = 0.4). 
They found that the set selected considering ε resulted in a 1.3 to 1.7 times larger mean 
collapse capacity. Haselton and Baker (2006) used a ductile single-degree-of-freedom 
oscillator, with a period of T1 = 1.0 seconds, to demonstrate that a ε(1.0 s) = 2.0 ground-
motion set resulted in a 1.8 times larger mean collapse capacity as compared to using a 
ground-motion set selected without regard to epsilon.  
For all the aforementioned reasons Backer and Cornell (2005) suggested that epsilon 
should be considered in the prediction of the annual rate of exceedence of a given 
hazard when Sa(T1) is used as the intensity measure. This can be done either using a 
vector intensity measure (Section 2.3.1.1.2) or by considering carefully epsilon values 
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when selecting ground-motions by relaxing the desire of matching distance and 
magnitude. These considerations about the relationship between epsilon and spectral 
shape are not appropriate for pulse-type ground motions (Tothong and Cornell, 2007).  

2.2.3.4 Procedures based on conditional mean spectrum 
Lately Baker and Cornell (2006b) proposed a new ground-motion selection criterion 
extending their previous studies on epsilon influence on structural response and defining 
a Conditional Mean Spectrum given M, R and ε (CMS-ε). As the name suggests a 
conditional mean spectrum is a spectrum conditional to a given level of Sa(T1) taking 
into account the correlation among spectral accelerations at different periods. The first 
step required to evaluate the CMS-ε is performing a PSHA to find the Sa(T1) value 
corresponding to the target probability of exceedance (Sa(T1)*) at the site under 
consideration. Disaggregation is then used to find the mean of the M, R and ε values (
M , R , ε ) that cause occurrence of the Sa(T1)* level. M  and R  determine the means 
and standard deviations of response spectral values for all periods via ground-motion 
prediction models, and ε  the number of standard deviations away from the mean 
ground-motion at the first-mode period, T1. The conditional mean value of the target 
response spectrum based on M , R  and ε  is computed using the equation: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 2ln 2 ln 2 1ln |ln 1 * ln ,ln, , ,Sa SaSa T Sa T Sa T Sa T Sa TM R T M T T=μ = μ + σ ρ ⋅ε  (2.11) 

The terms ( )ln 2, ,Sa M R Tμ  and ( )ln 2,Sa M Tσ  are the marginal mean and standard 
deviation of ln(Sa(T2)), respectively, and are obtained from a ground-motion prediction 
equation. The term ρ is the correlation factor between ln(Sa(T1)) and ln(Sa(T2)). This 
latter can be predicted by regression on empirical observations (Baker, 2005): 
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where Tmin and Tmax are the smallest and largest value of T1 and T2 respectively and 
I(Tmin<0.189) is an indicator function equal to 1 if Tmin < 0.189 and equal to 0 otherwise. 
As the authors pointed out using the aforementioned equations the conditional variances 
of the response spectrum could be easily evaluated, and perhaps it could be used to 
obtain a criterion to select ground motion to obtain information on the distribution of 
structural response rather than on its mean value only.  
As Baker and Cornell (2006b) pointed out, Eq. (2.11) is, an approximation obtained by 
substituting the mean values M , R  and ε  for the random values of M, R and ε 



Chapter 2 – Ground motion selection and scaling issues 

55 
 

obtained from disaggregation. When the ground-motion hazard is dominated by a single 
magnitude and distance scenario, the approximation is nearly exact, otherwise M , R  
values from disaggregation can correspond to values that do not occur from any fault in 
the area surrounding the site (Bazzurro and Cornell, 1999), causing some to express 
concern about using M , R  as target values for record selection. Baker (2005) argued 
that concern should be lessened with regard to the CMS-ε procedure, in fact M and R  
are used only to identify a target response spectrum distribution and not to identify 
target M and R values. However Baker (2005) derived an exact formulation for the 
conditional mean spectrum that takes into account the contributions to hazard given by 
different faults. Further, when substituting M , R  and ε  into Eq. (2.11), one does not 
necessarily obtain exactly the target Sa(T1) value back again. This can be addressed by 
re-assigning ε  to the ε value that results in a prediction of the Sa(T1) target value; the 
modification will be small and this is consistent with the treatment of ε by McGuire 
(1995).  
Baker and Cornell (2006b) compared structural response (interstorey drift) produced by 
records selected according to different criteria: i) arbitrarily selection; ii) M and R 
matching with no attempt matching ε; iii) matching ε with no attempt matching M and 
R; iv) matching the conditional mean response spectrum given M , R  and ε ; and found 
that records selected according to the first two criteria produce biased results if Sa(T1) is 
used as intensity measure and that the CMS-ε selected records produced lower 
dispersion in structural response than the other sets of records. This reduces the number 
of records required to estimate the mean structural response but “the dispersion is 
somewhat artificially suppressed […] this may be problematic for probabilistic drift 
hazard assessments, where accurate estimates of both the mean and dispersion of 
response are needed, although no significant errors were observed in the assessments 
performed here”. 
The authors also suggested that if the structural response parameter of interest is 
sensitive to spectral-acceleration values at multiple periods, then perhaps this specific 
peaked spectrum should not be of primary concern. In that case an IM which averages 
spectral acceleration values over a range of periods might be a better indicator of 
structural response as suggested by many other authors. In particular Baker and Cornell 
proposed to adopt the geometric mean of the spectral values in a given range of period 
and derived specific expressions for the conditional mean spectrum. This latter intensity 
measure has been recently investigated by Bianchini et al. (in preparation) (Section 
2.3.1.1.1). 
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Recently Shome (2007) proposed a ground-motion selection procedure with the aim of 
obtaining a set of ground-motion records for non-linear structural dynamic analysis that 
will result in an accurate estimate of the cumulative distribution function (CDF) and the 
median of the Engineering Demand Parameter(s) (EDP) of interest for a given structure, 
earthquake magnitude (M), source-to-site distance (R), site classification (S), style of 
faulting (F), and a given spectrum. The first step of the procedure requires to select 
records from the M-R-S-F bin that is consistent with the given scenario, then records are 
scaled to the spectral acceleration at the first-mode period (T1) of the structure for the 
given spectrum. A period range such that the non-linear response of the structure is 
mostly affected by the periods of the ground-motion within the specified range must be 
selected. The author proposed to adopt the interval [T2, T3]=[0.5T1, 2.0T1]. Once the 
aforementioned range is defined the procedure requires to calculate the conditional joint 
distribution, [Sa(T2), Sa(T3)| Sa(T1)=sa*] for the bin of records. Since the joint 
distribution of [Sa(T1), Sa(T2), Sa(T3)] is lognormal, the conditional joint distribution 
will also be lognormal. This can be done using the correlation coefficients of spectral 
accelerations at two different periods developed by Baker and Cornell (2006a). Any 
ground-motion record falls within a region enclosing a percentage of the multivariate 
normal population [Sa(T2), Sa(T3)| Sa(T1) = sa*]. The estimation of the percentages of 
the population can be obtained by a quadratic form Q depending on the covariance of 
the conditional joint distribution. The values of the aforementioned quadratic form can 
be shown to be distributed as a chi-square distribution with 2 degrees of freedom. The 
Q-value of records will indicate if the record falls inside a certain percentage of the 
lognormal population of [Sa(T2), Sa(T3)| Sa(T1)=sa*]. Therefore, the author suggested 
using Q-values of the records in the bin as a ranking criterion: the records that have low 
Q-values are close to the target spectrum in the specified period range therefore they can 
be used to estimate the mean EDP for the given spectrum. While a random selection 
from the bin of records so that the selected records follow the chi-square distribution is 
proposed to be used to estimate the distribution of EDP for the given spectrum. Some 
concerns can be raised against this procedure: even if an interval of periods of interest is 
defined only the spectral values at the boundaries of the interval are used, hence the 
results are probably very sensible to local fluctuations of the response spectrum. 
Perhaps a ranking criterion based on matching the conditional mean spectrum over the 
entire interval could perform better. 
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2.2.3.5 Selection based on non-linear structural response 
Dhakal (2006) proposed a procedure to select ground motions for pseudodynamic tests. 
The method proposed uses results of Incremental Dynamic Analysis to select ground 
motions. The records are scaled in terms of PGA, although the authors suggested that 
using Sa(T1) could bring better results. In a first stage a suite of ground motions is 
selected according to a magnitude and distance scenario. Next the obtained records are 
used to perform an Incremental Dynamic Analysis on the structure that will be tested. 
Once the 50th and 90th percentile IDA curves, in terms of displacements, have been 
evaluated the records with the IDA curves closer to the two aforementioned ones at give 
value of PGA are selected. This method can have some drawbacks: first of all the 
percentile curves are evaluated with a small suite of records, hence results can be suite-
dependant and as the authors admit PGA is not a good performing IM.  
Watson-Lamprey and Abrahamson (2006b) proposed a procedure to select ground 
motions for slope stability analysis based on using Newmark displacements (Newmark, 
1965) as a proxy for more complex non-linear behaviours. The basic observation of the 
authors is that “it is difficult to anticipate which time series will give an average 
response to a non-linear system” even if spectral shape is considered in the selection 
together with magnitude distance and site condition. Therefore the authors developed a 
prediction equation for Newmark displacement as a function of four ground-motion 
parameters: PGA, Sa, arms (root mean square acceleration) and ground-motion duration 
as defined by Trifunac and Brady (1975). The authors showed that Newmark 
displacement can be modeled with a relatively small variability. Watson-Lamprey and 
Abrahamson (2006b) concluded that if the accelerograms are selected such that after 
scaling, the values of the aforementioned time-history parameters lead to a median 
Newmark displacement similar to that expected for the design event, then that time-
history can be expected to give a near average response for a more complicated slope 
deformation evaluation. This procedure allows ranking of different ground-motions in 
order to find those best matching the reference values of the search parameters. Some 
concerns can be raised against the ground-motion records adopted, in fact the authors 
used all the records in the PEER database with the only exception of records from 
subduction zones, from the North-eastern California and from non-free-field stations. 
Post-processing of ground-motion records was not taken in consideration as a selection 
criterion. Furthermore each record was linearly scaled with factors ranging from 0.5 to 
20. It is not clear from the paper how the presence of bias in the predictive equation was 
checked, in fact even if the authors stated that the model for median displacements is 
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unbiased for scale factors up to 20, the residuals of the regression are clearly linearly 
dependant on the scale factor. 
Lately, Watson-Lamprey and Abrahamson (2006c) extended their previous procedure 
and proposed a criterion to select input ground-motions for building assessment. They 
proposed to predict non-linear structural response using a proxy bilinear SDOF system. 
The authors developed a prediction equation for the inelastic displacement as a function 
of the following properties of the ground-motion: Sa(2T1)/ Sa(T1), arms, PGV and 
ground-motion duration as defined by Trifunac and Brady (1975). The aim of this 
selection procedure, as described above, is the identification of time-histories whose 
parameters (i.e. Sa(2T1)/ Sa(T1), arms, PGV) are similar, after scaling, to those giving the 
design event when substituted in the structural-response predictive equation.  
Shantz (2006) proposed a similar procedure for record selection and scaling based on 
the Normalized Inelastic Displacement Demand, by defining a target displacement 
surface (defined for a SDOF structure) for peak inelastic displacement over a range of 
periods and ductilities. Records that satisfy broad magnitude or duration criteria are 
individually scaled to provide the best match to the target surface. Shantz (2006), by 
studying the response of a simple bridge, showed that records selected with the criterion 
he proposed produced a sensible reduction in dispersion of structural response if 
compared to that produced by record selected according to a M, R scenario or scaled to 
the same PGA, without introducing bias. 
Cornell, Luco and Tothong (Luco, 2002; Luco and Cornell, 2007; Tothong and Cornell, 
2007) proposed an approach to ground-motion selection for Probabilistic Seismic 
Demand Analysis completely based on the intensity measures. If these latter satisfy 
some basic properties, which will be described in Section 2.3.1.1.3, the authors stated 
that the selection can be performed with no regards for magnitude, distance, site soil 
conditions and fault rupture mechanism. A possible issue in this kind of approach is that 
if magnitude is neglected in the selection procedure no constrains on ground-motion 
duration are defined. Moreover since many authors (Iervolino et al., 2006b; Hancock 
and Bommer, 2007) showed that peak structural displacements are not too much 
affected by duration, the aforementioned intensity measures themselves are not able to 
represent duration effects. Finally it is worth noting that all the procedures based on 
non-linear structural response use simple bilinear SDOF systems as a proxy of more 
complex structural behaviours. The parameters of these models are usually estimated 
using non-linear static procedures, therefore the accuracy of the latter is critical for the 
selection procedures described in this section to work properly. This could be an issue 
for strongly irregular structures and bi-directional problems. 
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Zhai and Xie (2007) proposed the concept of the most unfavourable real seismic design 
ground-motion and selected two groups of input design ground-motions (for different 
soil conditions): the first group is the most unfavourable real seismic design ground-
motions, which Zhai and Xie proposed to use  for seismic analysis of very important 
structures; the second group is the real input design ground-motions with medium 
damage potential so, according to Zhai and Xie, adequate for seismic analysis of 
structures located in areas with low or moderate seismicity. The severity of the strong 
motions was evaluated investigating the response of non-linear SDOF systems. This 
approach does not allow to include site specific hazard information and to perform 
structural reliability assessment. 

2.3 Scaling 

Whether records are selected by performing searches in terms of seismological and 
geophysical parameters, or according to one of the procedure described in the previous 
section, there will generally be a requirement to ensure that the records conform to some 
specified level of agreement with the one or more of the ordinates of a reference 
response spectrum; the latter can be a Uniform Hazard Spectrum, a spectrum obtained 
by a ground-motion prediction equation or a Conditional Mean Spectrum. The most 
widely used scaling technique is linear amplitude scaling. According to this technique 
an accelerogram is simply multiplied by a constant; therefore neither the frequency 
content nor the duration of the ground motion are modified. Both different definitions of 
matching and different ground-motion parameters have been proposed in the literature 
to scale ground motions.  
Besides codes, many probabilistic procedures (Porter, 2003) require to evaluate the 
distribution of a structural response parameter for different given intensities of the 
ground motion (IM-based procedures). Those approaches are based on the assumption 
that the chosen IM is a good predictor of the ground-motion damage potential on 
structures. The variability related to the IM is included in calculations with a fully 
probabilistic approach performing convolution of hazard and structural fragility. In this 
case the suites of ground motions have to be representative of the conditional variability 
of the ground motion given a value of the intensity measure (Baker, 2005; Baker and 
Cornell, 2006b). Most of the probabilistic procedures are based on Incremental 
Dynamic Analysis (Vamvatsikos and Cornell, 2002) and implicitly assume that the 
same suite of ground motions can be representative of different intensity levels if 
properly scaled. More advanced approaches consider different sets of ground-motion 
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records for different intensity levels (Baker, 2005; Baker and Cornell, 2006b). Finally 
some procedures try to correct results obtained by scaling the same set of records to 
different intensity levels by introducing vector intensity measures or by careful post-
processing of the results (Haselton and Deierlein, 2006; Baker, 2007c). 
Other techniques have the aim of obtaining Spectrum Compatible Records, also known 
as Spectrum Matched Records. These are artificially generated or edited time-histories 
of ground acceleration whose response spectral shapes are equal, within a prescribed 
tolerance, to a predetermined target spectrum. The use of spectrum matched records for 
the estimation of non-linear structural response has become increasingly widespread in 
the past 15 years. Its origins arise from the inability of traditional response spectral 
analyses to be used to estimate maximum responses of non-linear systems, for which a 
time-integration scheme was deemed more appropriate (Preumont, 1984). The use of 
spectrum matched accelerograms as surrogates for actual recorded ground motion is 
attractive for multiple reasons. It is generally accepted that they are able to produce 
results that present relatively lower dispersion, such that they can more efficiently allow 
the estimation of seismic demands. This is an important benefit, especially for non-
linear analyses that can be highly computer intensive. The iterative generation of 
Spectrum Matched Records can be done in many ways, but the different schemes can be 
separated into two major groups: frequency-domain-based, and time-domain-based 
compatibilization or matching.   
Finally, it is worth noting that all the aforementioned scaling techniques do not change 
the duration on the ground-motion records. Scaling the time axis of an accelerogram can 
increase or decrease the significant duration, which might be acceptable to compensate 
for small changes associated with distance, but not to compensate for any mismatch in 
magnitude because for that it would also be necessary to change the number of cycles of 
motion. Scaling the time axis of a record changes not only the duration of the motion 
but also the frequency content of the record over the entire period range. Bommer and 
Acevedo 2004 strongly recommended that this procedure is to be used with caution. 

2.3.1 Linear amplitude scaling 
The most widely used scaling technique is linear amplitude scaling. According to this 
technique a ground-motion acceleration is simply multiplied by a constant; therefore 
neither the frequency content or the duration of the ground motion are modified. In 
Section 2.3.1.1 linear scaling procedures proposed by various authors will be discussed. 
Some intuitive concerns can be raised about record scaling: namely, that low intensity 
ground motions have different frequency content than rare or extreme ground motions. 
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Han and Wen (1994), for example, speculated that “scaling an earthquake to attain a 
target damage level of different intensity is questionable since scaling a ground-motion 
does not account for variations in ground-motion characteristics (e.g., frequency 
content) which change with intensity” and Bazzurro et al. (1998) stated that “a M = 5 
record scaled to match the PGA of a M = 7 record will certainly be deficient in the 
frequency content below 1 Hz”. Those concerns will be discussed in Section 2.3.1.3. 
Recently many authors (Luco, 2002; Giovenale et al., 2004; Luco and Cornell, 2007; 
Tothong and Cornell, 2007) tried to define a common framework to compare different 
measures of the intensity of ground motions. Their efforts were focused on  
probabilistic based procedures. The aim of these approaches is estimating the annual 
frequencies of exceeding specific limit states. Adopting the PEER framework the latter 
can be calculated as: 

 ( ) [ ] [ ] ( )λ LS LS | DM D | I λ IMG dG M M d= ∫ ∫  (2.13) 

where λ(LS) is the annual frequency of exceeding the limit state LS, G[LS |DM] is the 
conditional probability of exceeding LS given the damage measure DM, G[DM |IM] is 
the conditional probability of exceeding DM given the intensity measure IM, and λ(IM), 
known as the hazard curve, is the mean annual frequency of occurrence of seismic 
action with intensities higher than IM at a particular site. The aforementioned authors 
suggested that the following properties should be considered when assessing the 
performances of intensity measures: 

- efficiency; 
- sufficiency; 
- hazard computability; 
- scaling robustness. 

A sufficient intensity measure is defined as one that yields DM conditionally 
independent, given IM, of earthquake magnitude (M), source-to-site distance (R) and 
any other ground-motion characteristics that can affect the structural response (e.g. 
rupture mechanism, soil type, etc.). Adopting a sufficient IM avoids potentially biased 
evaluation of λ(LS), because in this case the function G[DM |IM] is effectively 
independent from the ground-motion characteristics (M, R, etc.) of the records selected. 
It also leads to a simpler evaluation, because its use allows the choice of the records to 
be free from almost any constraints on the values of the ground-motion characteristics. 
Moreover, adopting a sufficient IM legitimizes the operation of scaling the 
accelerograms. An efficient IM is one that results in a relatively small variability of DM 
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given IM. Since G[DM |IM] in Eq. (2.13) is commonly evaluated by a number of non-
linear dynamic analyses the use of an efficient IM leads to a comparatively smaller 
dispersion in the results. The benefits of this reduction will in general be observed in a 
narrower confidence interval for the conditional median DM value for a given IM level 
or, from a different perspective, in a smaller number of non-linear dynamic analyses 
needed to obtain an acceptable confidence interval. The efficiency and sufficiency of an 
IM are both criteria that can be quantified via regression analysis with demand measure 
results (e.g., drift responses) from non-linear dynamic analysis of a structure. The 
hazard computability can be defined as the effort required in order to determine the 
hazard curve in terms of the proposed IM. Since the intensity measure (IM) is the link 
between seismic hazard and structural analysis, the choice of the IM to be used in the 
non-linear dynamic analysis should keep in consideration the effort required to calculate 
hazard curves in terms of that variable. Finally the scaling robustness can be defined in 
terms of the bias induced in structural response when the IM is used to scale ground 
motions, i.e. the responses for records scaled to different factors but to the same 
resulting IM level should not show a trend in responses versus scale factors.  

2.3.1.1 Ground-motion properties (Intensity measures) 
Many authors have investigated ground-motion amplitude scaling. Most of the works 
that can be found in literature are focused on finding strong motion parameters which 
are strongly correlated with structural response. Tables 2.3-2.6 summarize the measures 
of the ground-motion intensity proposed in literature. 

2.3.1.1.1 Scalar measures 

Nau and Hall (1984) considered the efficiency of different normalizing factors with the 
aim of investigating the effectiveness of scaling earthquake response spectra by the 
peak ground acceleration. Two groups of factors were considered: one based on ground-
motion data (integrals of the squared motion, root square, mean square and root mean 
square motions) and one based on response related quantities (spectrum intensity and 
amplitude of Fourier spectrum of the ground acceleration). Comparisons were made in 
terms of elastic and inelastic spectra for a suite of 12 ground-motion records. All the 
records considered had been recorded in free-field (or in basements of relatively small 
buildings) and had a PGA greater than 0.15 g. As the authors stated no attempts were 
made to categorize the records selected, on the contrary “the rather broad range of 
characteristics was desired to cover those which might be expected in practice”.  
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Table 2.3. Acceleration based intensity measures proposed in literature. 
Measure Name Reference 
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Nau and Hall (1984) found that none of the alternative scaling factor based upon 
recorded ground-motion data provided noteworthy reductions in dispersion compared 
with that obtained from normalization by the PGA. However the spectrum intensities 
and mean Fourier amplitude were showed to be potential alternative scaling factors for 
earthquake spectra, the spectrum intensities being the factor providing lowest dispersion 
in structural response. The authors also proposed a three-parameter system of spectrum 

Table 2.4. Velocity based intensity measures proposed in literature. 
Measure Name Reference 

maxPGV v=  Peak ground velocity  

( ) ( )2 05

1 95

2 2 2

2 1 95 05

1 1t t

v rmst t
P v t dt v t dt v

t t t t
= = =

− −∫ ∫  
  

( )2 2

0

ft

sq v rsv E v t dt v= = =∫  
Squared velocity  

rms vv P=  Root mean square 
acceleration 

 

rs vv E=  Root square 
acceleration 

 

0.25
maxF dI v t= ; td = t95-t05 (significative duration).  Fajfar et al. 

1990 
2 3 1 3
maxv dI v t= ; td = t95-t05 (significative duration).  Riddell and 

Garcia  2001 

( )5%,1EPV Sv s= ; Sv: spectral velocity; Effective peak velocity FEMA 1994 

( ) ( )2

1
1 2, , ,

T

H T
SI T T Sv T dTβ = β∫ ; 

1 20.1; 2.5.T T= =  

Housner’s spectral 
intensity 

Housner 1952 

( ),0.1,1.0HC HSI SI= β ;   Hidalgo and 
Clough 1974 

( )maxMIV IV=  

IV: area under the accelerogram between two consecutive 
0 crossings. 

Maximum incremental 
velocity. 

Bertero et al. 
1976 

( )1 ,2M HSI SI T T
T

=  
 Matsumura 

1992 

( )1 ,MR H h
y

SI SI T T
T T

=
−

 

Th: hardening period, i.e. period computed using the 
tangent stiffness of the hardening branch of the idealized 
lateral response of the structure. 

 Martínez-Rueda  
1998 

( )1 1 1 2, ,KK HSI SI T t T t= β − +  

T: Natural period of the structure; t1 = t2 = 0.2 T1 

 Kappos and 
Kyriakakis  
2000 



Chapter 2 – Ground motion selection and scaling issues 

65 
 

intensities, based on pseudovelocity spectrum values for different frequency intervals: 
SIa, SIv, SId.  
Matsumura (1992) investigated the efficiency of four ground-motion parameters, 
namely: peek ground acceleration, peak ground velocity, mean velocity spectral 
intensity, SIM, between T and 2T (T being the natural period of the SDOF system 
considered in the study) and mean equivalent velocity, Ve, converted from the input 
energy, Ei, between T and 2T. The conversion was done by 2 iVe E m= . Twelve 
ground-motion records were used in this study, although the records are reported in the 
paper the adopted selection criterion is not described by the author who only states that 
the records “are commonly used in Japan as induced ground acceleration in the 
analysis of tall buildings”.  
The author concluded that PGA and PGV are good measures only in narrow frequency 
ranges, in the high and in the low frequency ranges respectively. On the other hand SIM 

and Ve were found to be good measure in a wide range of frequency therefore 
Matsumura suggested their use as measures of the intensity of the ground motions.  
Martìnez-Rueda (1998) investigated different parameters based on spectral scales (Nau 
and Hall criterion, SIMR, SIM, SIH, SIKK) by studying the response of bilinear SDOF 
systems with kinematic hardening and non-degrading stiffness with different periods, 
seismic coefficients and post-yield stiffness ratios.  
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Table 2.5. Displacement based intensity measures proposed in literature. 
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Table 2.6. Hybrid intensity measures. 

Measure Name Reference 

( )2

0

Dt

z

a t dt
I

PGA PGV
=

⋅
∫

 

 Cosenza and 
Manfredi 1998 

( )

( )

( )

1 ,0.028,0.185 [0.118,0.500]
0.157

1 ,0.285,2.000 [0.500,5.000]
1.715

1 ,0.4.167,12.500 [5.000,14.085]
8.333

a H

v H

d H

SI SI T s

SI SI T s

SI SI T s

= β ∈

= β ∈

= β ∈

 

 Nau and Hall 1984 

 



Chapter 2 – Ground motion selection and scaling issues 

67 
 

The author used an ensemble of 100 accelerograms, corresponding to the two horizontal 
components of 50 ground motions. The only selection criteria reported by the author are 
magnitude greater than 6.0 (six accelerograms with lower magnitudes were included) 
and PGA greater than 0.1 g. The ground motions used had been recorded at epicentral 
distances of up to 400 km and produced by earthquakes with magnitudes ranging from 
5.4 to 8.1. Soft soil, stiff soil and rock-site recordings were included. The author 
concluded that there is not a unique spectral intensity that performs better over the 
entire period rage: for structures with medium and high strengths, SIH was found to be 
the most unstable scale and showed poor correlation with displacement ductility 
demand for short- and long-period structures. Both SIM and SIMR reduced their 
performance for the intermediate period range. For structures with low strength, SH 
showed the best performance in the short-period region, SIMR dominated over the 
intermediate- and long-period range. The performance of SIH were found to deteriorate 
for increasing periods whereas the opposite occurs in the case in SIM and SIMR. Taking 
advantage of these observations the author proposed a combined spectral intensity scale 
that uses, a different spectrum intensity for different values of period, yield seismic 
coefficient and post yield stiffness. It should be noted that MDOF structures were not 
investigated in this study. 
Shome et al. (1998) observed that the non-linear response from a bin of records chosen 
from a narrow magnitude and distance interval display wide dispersion and suggested 
that when the records in each bin are normalized or scaled to the bin median spectral 
acceleration at the fundamental frequency of the structure, the same median structural 
response is obtained with reduced variability compared to those of the unscaled sets. 
Therefore the author suggested that the most efficient way to estimate the non-linear 
structural response from a given scenario (M, R) is to first use an attenuation equation to 
estimate the median Sa(T1) and then to scale record from roughly the same magnitude to 
this spectral acceleration. Doing so can reduce the number of runs by a factor of 4 
(Section 2.3.4) the authors also suggested that apart from the Normalized Hysteretic 
Energy (NHE) damage measure, scaling records did not appear to bias non-linear 
response estimates. Shome et al. also found that among several scaling measures 
considered in their study Sa(T1,5%) is the one performing best. All their results were 
obtained for SDOF structures and for a  single first mode dominated MDOF structure, 
hence they require verification to be extended different kinds of MDOF structures.  
Later, Shome (1999) investigated the efficiency of scaling with respect to Sa(T1) on tall 
buildings whose response is strongly dependent on higher vibration modes. The author 
found that the reduction in structural response is lower than in first-mode dominated 
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structures. Therefore Shome investigated an improved intensity measure composed by 
weighted average spectral accelerations at different periods, and showed that using this 
intensity measure a remarkable reduction in the dispersion of structural response can be 
obtained. The main drawback of this approach is that a structure-specific probabilistic 
seismic hazard analysis is required. In Shome (1998) and Shome and Cornell (2000) the 
records used were selected in magnitude-distance bins from stiff soil sites, excluding 
accelerograms with near-source forward directivity pulses. 
Kappos and Kyriakakis (2000) compared the efficiency of different ground-motion 
parameters. Two different ground-motion datasets were used in this work: 11 records 
from 11 Greek earthquakes, and 13 records from 8 US earthquakes. Records within 
each set were almost evenly distributed with respect to rock and alluvia sites. The 
authors claimed that this “compilation of records permits consideration of the effect of 
soil conditions (inevitably in a rough way) as well as of the tectonic regime”. The first 
part of the study focused on the effect of scaling on both acceleration and displacement 
spectra. It was concluded that in the intermediate- and long-period ranges any of the 
three velocity-related parameters, PGV, SIH and Iv can be used to good effect. The 
authors investigated also the response of multi-storey frames. Kappos and Kyriakakis 
suggested that narrow-band spectrum intensities calculated on the basis of elastic and 
inelastic pseudovelocity spectra as an alternative scaling. In particular the authors found 
scaling on the basis of the area under the inelastic pseudovelocity spectrum, taken 
between the initial elastic and the effective inelastic period of the structure to be the 
most attractive procedure. Their proposals based on the narrow-band elastic SI concept 
led to COV values between 10% and 40% in the calculated drifts and member 
ductilities, and a reasonably uniform distribution of scatter along the building height. 
The case-study considered involves a single structure designed to modern design 
practice which targets and achieves uniform damage distribution. Bommer and Acevedo 
(2004) commented that since the Greek records are filtered with a low-frequency cut-off 
at 1 Hz, therefore the elastic and inelastic displacement spectral ordinates at longer 
periods, discussed in the paper, should have been neglected. Furthermore Bommer and 
Acevedo (2004) suggested that differences in the characteristics of the two data sets are 
attributed to other factors including “the deeper deposits in some Californian sites (e.g. 
the Bay area)”, despite the fact that two of the three records obtained in the San 
Francisco Bay Area are from rock sites and the third (Parking Garage, Stanford) is not 
located on Bay mud. Bommer and Acevedo (2004) also suggested the finding that for 
inelastic spectral responses the COV increases with increasing ductility factors, may 
simply be due to the large range of magnitudes - and hence durations - in their data sets. 
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Furthermore Bommer and Acevedo (2004) argued that another explanation for the 
increase in the COV for the rock data sets than for the alluvial (soil) data sets, which 
Kappos and Kyriakakis attributed to the different site classifications, could be found in 
the different ranges of magnitude in the data sets. For the US data, the maximum 
differences in magnitude amongst the soil records was 1.4 as opposed to 1.8 for the rock 
data, and for the Greek records the magnitude  variation amongst the soil site recordings 
was just 1.3 compared with 2.1 for the rock site accelerograms. 
As was concluded in Shome (1999), spectral shape plays a central role in the response 
of multi-degree-of-freedom structures, therefore many authors tried to derive specific 
parameters to address this issue. Mehanny and Deierlein (2000) proposed the following 
intensity measure to reduce the dispersion in structural response of concrete structures: 

 ( ) 1 32
, 1, SM

a

t
M D SI Sa T R eβ ββ= α ξ  (2.14) 

where Sa(T1,ξ) is the spectral acceleration at the fundamental frequency of the structure, 
R is the ratio of the spectral acceleration at fundamental frequency of the “damaged” 
structure and Sa(T1,ξ), and tSM is the strong-motion duration according to Trifunac and 
Brady (1975). The parameters α, β1, β2 and β3 were determined by regression analysis. 
The authors studied the response of two reinforced concrete frames and concluded that 
the most of the structural dispersion was explained by the spectral shape term (R). No 
noteworthy reduction in structural response was obtained by considering the strong-
motion duration. In this work 8 far-field and 8 near-field records were adopted. 
Moreover three records in the former set were obtained from ground motions produced 
by the same earthquake. The authors stated that the aforementioned records should be 
representative of two different scenarios: respectively an high magnitude (6.9 < M < 
7.4) large distance (8.5 < R < 66km) events and small magnitude (6.5 < M < 7.0) short 
distance (1.2 < R < 7.5) events. All the accelerograms were recorded on stiff soil or rock 
sites. All the records were selected such that Sa at the fundamental frequency of the 
structure was as close as possible to the reference target value, i.e. the 2% in 50 years 
value. As for the near-field records, only ground motions with forward directivity were 
selected.  
Cordova et al. 2001 investigated a simplified version of the aforementioned intensity 
measure, namely ( ) ( ) ( )( )*

1 1 1S Sa T Sa cT Sa T
α

= . The authors showed that this 
proposed index significantly reduces the record-to-record variability in predicted 
response obtained from inelastic time history analyses. The same set of ground motions 
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and of structural models adopted by Mehanny and Deierlein (2000) was used in this 
study. 
Khurama and Farrow (2003) investigated the effectiveness of seven ground-motion 
scaling methods, based on different IMs, in reducing the scatter in estimated peak lateral 
displacement demands. This study investigated response of different SDOF and MDOF 
systems and the influence of soil type. Ground-motion records from very-dense-, stiff- 
and soft-soil profiles were considered: twenty records were used for each soil category. 
In addition 20 records chosen from the 40 proposed by the SAC steel project Somerville 
et al., 1997b were used. Khurama and Farrow considered the following IMs: PGA, 
EPA, A95, EPV, MIV (maximum incremental velocity), Sa(T1), Sa(T0-Tμ).  The main 
conclusions of this study were: 

- for the very-dense, stiff-, and soft-soil ground-motion ensembles at long periods 
the MIV-based scaling is more effective the PGA based method.  

- For the very-dense- and stiff-soil ground-motion ensembles, the method based on 
Sa(T1) is more effective than the method based on PGA, except for short- and very-
short-period structures; the effectiveness of the method decreases as the strength 
ratio increases.  

- With the Sa(T0-Tμ) method the scatter is lower that the scatter produced by the 
Sa(T0) method.  

- For the very-dense-, stiff- and soft-soil ground-motion sets, the MIV method is 
more effective than the Sa(T1) and Sa(T0-Tμ) methods  for a wide range of periods.  

- For the soft-soil and near-field ground-motion sets the effectiveness of the Sa(T1) 
and Sa(T0-Tμ) methods with respect to the PGA method is decreased.  

- Except for long periods, the Sa(T1) and Sa(T0-Tμ) methods are less effective that 
the PGA based method for the soft-soil set.  

This study did not investigate limits of scaling and bias. 
Akkar and Ozen (2005) investigated features of PGV for non-linear deformation 
demands on SDOF systems and for some specific ground-motion features that can be 
effective in structural response. A total of 60 soil site records with 2.5 < R < 23 km and 
5.5 < M < 7.6 were used. The accelerograms used are low-cut filtered by corner 
frequencies between 0.1 and 0.2Hz except for the digital 1999 Chi-Chi, Taiwan, 
earthquake records that are processed by corner frequencies of 0.04 Hz. This 
information was used in defining the period bound for non-linear response history 
computations. Ground motions with pulse signals were not considered in this study. The 
records were grouped, depending on their PGV, in 3 sets of 20 records each. The 
considered ranges of PGV were PGV 20cm sec< ,  20 PGV 40cm sec cm sec< <  and 
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40 PGV 60cm sec cm sec< < . The non-linear time-history analyses were conducted 
using non-degrading and stiffness-degrading hysteretic behaviours for constant η and R 
levels. The results presented in this study indicate that the PGV intensity measure 
correlates well with the earthquake magnitude, effective ground-motion duration and 
frequency content of ground motions. The increase in PGV values is associated with an 
increase in earthquake magnitude and effective duration of records. The frequency 
composition of ground motions systematically becomes richer in the long-period range 
for increasing PGV. The statistical results presented for the mean spectral displacements 
at different inelastic levels show a consistently increasing trend for ground motions of 
higher velocity.  The mean spectral displacement statistics at different PGV levels also 
reveal that the spectral region where the inelastic deformations are significantly higher 
than their elastic counterparts is sensitive to the amplitude of ground velocity. This 
spectral region shifts towards longer periods with the increase in PGV.  The validity of 
these observations was also tested for PGA and PGV/PGA ratio by computing the 
period-dependent correlation coefficients at different inelastic deformation levels. The 
comparisons of correlation coefficients between PGV and these two alternative intensity 
measures highlighted the superiority of PGV with respect to these two measures. 
Correlation coefficients computed for spectral acceleration do not resemble a stable 
behaviour when compared to the general performance of correlation coefficients 
computed for PGV. The dispersion statistics also reveal a better performance of PGV 
with respect to Sa particularly when the short-period SDOF demands are conditioned on 
PGV rather than on Sa. 
Riddell (2007) investigated the effectiveness of 23 ground-motion intensity indices in 
terms of correlation with four different structural response variables, i.e. elastic and 
inelastic deformation demands, input energy and hysteretic energy. Non-linear 
responses were computed using elastic-plastic, bilinear, and bilinear with stiffness 
degradation SDOF models. No index showed satisfactory correlation with the non-
linear response in all the spectral regions simultaneously. Indeed, acceleration-related 
indices were found to be the most efficient for rigid systems, velocity-related indices for 
intermediate-frequency systems, and displacement-related indices for flexible systems; 
some velocity-related indices also showed and high efficiency in the low-frequency 
region. In this study 90 ground motions were used, although the author listed all the 
records adopted no information was provided on the selection criteria adopted. 
Bianchini et al. (in preparation) investigated an intensity measure based on the 
geometric mean of spectral accelerations at different periods and 5% damping: 
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where Sa(Ti) is the spectral acceleration at the period Ti and n is the total number of 
periods considered. This intensity measure had been firstly proposed by Baker and 
Cornell (2006b) who extended and idea of Cordova et al. (2001) and Mehanny (2000). 
By taking the logarithm of both sides, Eq. (2.15) can be rewritten as: 
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This form is particularly convenient for attenuation equations quote the results of 
regression analyses in terms of the logarithm of spectral accelerations. Therefore a 
predictive equation for ln(Saavg) can be easily developed with an arbitrary set of periods 
T1; … ; Tn  using existing attenuation models. The regression coefficients for 
ln(Saavg(T1;…; Tn)) can be obtained simply taking the mean of the regression 
coefficients for each ln(Sa(Ti)). Thus, PSHA can be performed using ln(Saavg) as 
intensity measure in the same way of any single spectral acceleration value. Concerning 
the distribution of ln(Saavg), if it is assumed that multiple ln(Sa(Ti)) values are jointly 
Gaussian distributed then Saavg is also normally distributed for it is a linear function of 
normal variables. Therefore the parameters of this distribution can be easily derived 
considering the correlation coefficients derived by Baker (2005). 
The authors demonstrated the efficiency of Saavg compared to traditional elastic (Sa(T1)) 
and peak-ground parameters) and advanced inelastic intensity measures. A huge set of 
inelastic SDOF and MDOF systems was used to represent the dynamic behaviour of 
different typologies of buildings. Forty ordinary ground-motions were used in this work. 
They do not exhibit pulse-type near-fault characteristics and are recorded on stiff soil or 
soft rock. The source-to-site distance, ranges from 13 to 40 km and the moment 
magnitude, Mw, from 6.5 to 6.9. Additional ground-motion features considered defining 
this set of 40 ordinary ground-motions were: (i) strike-slip, reverse-slip and reverse-
oblique fault mechanisms; (iii) aftershocks were not included; (iv) the high-pass corner 
frequency less or equal than 0.20 Hz. For each recording station, one horizontal 
component was randomly selected. The authors stated that the use of a single set of 
GMs is acceptable because it has been shown that inelastic response of systems is not 
greatly affected by Mw and R (except for near fault regions). The size of the set of 
records was chosen by considering the confidence interval on the estimated response, 
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i.e. in order to obtain estimates of the median that are within a one-sigma confidence 
band of 10% as long as the standard deviation of the natural logarithm of the collapse 
capacities was less than 0.1 40 0.63= . This set of ground-motions was originally 
proposed by Medina and Krawinkler 2004. 

2.3.1.1.2 Vector measures 

Some researchers have recently focused their attention on intensity vectors (Shome, 
1999; Baker and Cornell, 2004; Baker, 2005; Baker and Cornell, 2005; Baker, 2007c). 
The use of a vector intensity measure instead of a scalar one involves many unsolved 
problems, such as the scaling techniques and the more difficult and unfamiliar hazard 
calculations (Bazzurro and Cornell, 2002). 
The first proposal of a vector measure of the ground-motion intensity can be found in 
Shome (1999). The author observed that the response of MDOF structure depends on 
the spectral ordinates at different periods therefore proposed to adopt the following 
vector measure: [Sa(T1), Sa(T2)], where T1 and T2 are the first and the second natural-
period of the structure, respectively. Later Baker and Cornell (2004) proposed to adopt a 
vector containing Sa(T1) and the ratio R = Sa(T1)/Sa(cT1). Later, the same authors 
suggested to substitute R with ε (see 2.2.3.3) because this latter was shown to be a better 
indicator of spectral shape than R. Further research is needed on scaling procedures for 
vector intensity measures. The state of the practice is to use one of the elements of the 
vector as reference for scaling and include the second term by careful post-processing of 
the results (Baker, 2007c). 

2.3.1.1.3 Measures based on non-linear response 

With the aim of finding highly sufficient and efficient measures Luco and Cornell 
(2007) and Tothong and Luco (2007) proposed some “advanced” structure specific 
ground-motion intensity measures based on elastic and inelastic structural response. 
Luco and Cornell (2007) proposed to take in account multi-modal response and inelastic 
displacements. In this work both ordinary and near-source records were adopted: a first 
set of time-histories consists of records with closest distances to the rupture surface, R, 
between 30 and 46 km and a second of records with R less than 16 km. The near-source 
suite was restricted to “forward-directivity” earthquake records, whereas the ordinary 
suite excludes such earthquake records. The strike-normal component of each of the 
near-source ground-motion records was considered by the authors (the strike-normal 
component of each ordinary ground-motion record was considered to maintain 
consistency). All of the ground-motion records selected also satisfied the following 
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criteria: i) earthquake moment magnitude, M, greater than or equal to 6.0, ii) recorded 
on “stiff soil” or “very dense soil and soft rock” and iii) record processed with a 
maximum (between two horizontal components) high-pass filter corner frequency less 
than or equal to 0.25 Hertz. Two other groups of near-source records, selected with less 
restrictive criteria, were used as a check for the results obtained with the main sets. All 
of the near-source earthquake records considered were scaled by a factor of two. The 
ordinary earthquake records were scaled by a factor of eight.  
The ground-motion intensity measure denoted IM1I&2E, which takes into account 
second-mode frequency content and inelastic structural behaviour, was demonstrated to 
be relatively efficient and sufficient with respect to the structural drift response 
measure. The intensity measure IM1I&2E is defined as: 
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where β denotes the damping ratio, Sd(T1,β) the spectral displacement at the natural 
frequency, Sdi(T1,β,dy) the spectral displacement for an elastic-perfectly-plastic SDOF 
oscillator with period T1 and ductility dy. IM1E&2E is an intensity measure defined as: 

 [ ] ( ) [ ] ( )
2 22 2
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where [ ]2
1PF  and [ ]2

2PF  are record-dependant participation factors depending on 
different vibration-modes and on maximum interstorey drift. Further details can be 
found in Luco 2007. For ordinary records, using these “advanced “ intensity measures 
led to the same conclusions obtained using the vector IM, <Sa, ε>. However, using 
advanced IMs to evaluate the structural performance for near-source pulse-like records 
is found to be more accurate than using the elastic-based IMs. 
In order for the aforementioned non-linear intensity measures to be applied in a 
probabilistic earthquake engineering framework, ground-motion attenuation 
relationships are required. Those latter have been recently developed for Sdi(T1,β,dy), by 
Tothong and Cornell (2006). Although their application is probably restricted to special 
projects because the involved computations must be structure specific (the GMPE 
depends on structural period and yield displacement).  
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2.3.1.2 Scaling to model the distribution of ground-motions  
Normally scaling procedures are adopted to achieve a good degree of compatibility with 
some kind of reference spectrum. Recently some authors proposed procedures that not 
only try to match a median spectrum but also try to control the distribution of the 
ground-motions. 
Rathje and Kottke (2007) proposed a “semi automated” procedure to select and scale 
ground-motion records to fit a target response spectrum (given M, R, S, F) while 
controlling the variance. The methodology selects motions for the suite based on 
matching the spectral shape, and then fits the amplitude and standard deviation of the 
target by adjusting the scale factors. The method is based on defining the median 
response spectrum of a set of records as the mean value of the natural logarithm of the 
spectral accelerations at each period; adopting this formulation the average response 
spectrum at the period i can be written as: 
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where n is the number of records considered, sj is the scaling factor for the record i and 
Saj,i is the spectral acceleration of the record j at the period i. The first term of the 
equation controls the amplitude while the second term controls the spectral shape. Since 
the individual scale factors can be varied without changing ,ln scaled

avg iSa  the authors 
proposed to use this property to control the standard deviation of the spectra of the set 
of records; i.e. the average scale factor is  used to achieve a good match with the target 
mean spectrum (in a given period range) while the individual scale factors are chosen in 
order to match the median ±1 σ spectra. 
Malhotra (2007) proposed a scaling procedure based on the peak values of acceleration, 
velocity and displacement. First the median and standard deviation of peak values of 
ground acceleration, velocity and displacement (PGA, PGV and PGD) are estimated 
from a prediction equation given M, R, S and F. Next, some values of the 
aforementioned parameters are randomly sampled taking into account their correlation. 
Records are then chosen which match the median ± 1σ values of significant duration at 
the site (also calculated via prediction equation) and are scaled to match the simulated 
values of PGA, PGV and PGD. It is not clear if only one of the three peak values is 
assumed as reference for scaling or if all are considered together trying to minimize the 
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mean square error. Furthermore the author did not provide specific recommendations on 
the number of samples that should be used. 
The ATC-58 project (Zareian, 2007) is developing a ground-motion selection procedure 
with the aim of defining a suite of ground motions that allows an accurate estimate of 
the cumulative distribution function of a structural response under consideration, given 
M, R and Sa(T1). The selection procedure is based on defining a M-R bin and then 
randomly choosing eleven records from this latter. The chosen records are scaled 
according to the following procedure: first given M and R the median spectra 
acceleration and its associated dispersion is determined using any ground-motion 
prediction equation appropriate for the site and the earthquake sources considered. Then 
eleven values of spectral acceleration are computed using the equation

( ) ( )1 expi iSa T = θ βη  where i = 1 to 11 and ( )1
i iP−η = Φ , where ( )1−Φ ⋅  is the inverse 

standardized normal distribution and ( )( ) ( )1 11 1 1 22iP i= − + . Each individual record 
is scaled to one of the eleven computed ( )1iSa T  values. Some objection can be made to 
this method: this procedure does not take in account the “record to record” variability 
because only one records is used for each given Sai value; records are chosen with no 
regard to the spectral shape; no limits on scaling are defined and finally estimating tails 
of the structural distribution with 11 records only can produce results very sensitive to 
the adopted set of ground-motion. 
The Geomatrix consultancy group (2007) proposed the following procedure as a part of 
the Ground-Motion Selection and Modification program. The DGML package (see 
Section 2.2.3.2) is used to identify records within a user-specified M-R bin that includes 
the given M, R and fault mechanism. Next records are scaled to the level of the given 
first-mode spectral acceleration Sa(T1), so each spectrum matches the target value at the 
given period. The theoretical conditional mean and conditional mean standard deviation 
are calculated at a period T that is well away from T1 (the authors suggested 
“approximately 0.1 T1”). A given number of  log-normally distributed points are then 
randomly sampled based on the theoretical distribution. For each point of the 
distribution, one scaled record within the data-bin is selected which has Sa(T1) closest to 
that point. Those steps are repeated until the realization that appears to best match the 
distribution over the full period range is selected. The mean squared error (MSE) of the 
selected records against the target conditional mean spectrum is calculated, and records 
are ranked in ascending order of MSE over a specified period range of interest. The 
authors suggested that groups of 7 records can be used to estimate median EDP, while 
to estimate the whole probability distribution more records are needed (the authors 
suggested 28). 
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2.3.1.3 Bias and scaling limits 
Many papers on the comparison of different intensity measures only focused on the 
reduction of dispersion of structural response, but an important point that should always 
be considered is the degree of which scaling introduces bias in the estimated structural 
response and therefore what the limits of scaling are. 
Concerning this latter point contrasting recommendations can be found in the literature 
on the topic and as Bommer and Acevedo (2004) suggested, many of the often cited 
limits to scaling do not have any scientific motivation. The authors reported that 
Krinitzsky and Chang (1977) proposed that if scaling factors of 4 or more needed to be 
applied to accelerograms, then the records should be rejected, although no justification 
was given for this assertion. Subsequently Vanmarcke (1979) proposed reduction of the 
limits on scaling to a factor of 2 for liquefaction analysis, although the limit of 4 was 
upheld for linear elastic systems. Vanmarcke (1979) based his conclusions on a study of 
inelastic spectra and of correlations amongst different strong motion parameters, using a 
dataset of 70 accelerograms. The dataset only included 12 accelerograms that had 
horizontal peak accelerations of at least 0.2 g and 41 of the accelerograms had PGA 
values below 0.1 g. Despite the limitations of the data and the analyses underlying the 
conclusions, the recommendations from these two studies are frequently used as a rule 
in practice. Malhotra (2003) found that a scaling factor of 5.84 was required for one 
record used in his study and concluded that this was “higher than the normally accepted 
upper limit of 4”. Bommer and Acevedo (2004) concluded that presumably, the 
rationale behind imposing limits on scaling is to avoid creating unrealistic ground 
motions, since this would undermine the inherent value in using real accelerograms in 
the first place. A more rational approach to investigate the limits of scaling is based on 
looking for the presence of bias in structural response, in particular on trying to define a 
dependence between scaling and bias.  
It should be noted that it is not the scaling itself that induces bias in structural response, 
in fact this phenomenon is strictly dependent on the intensity measure used. 
Quantitative investigations into ground-motion scaling indicated that a suite of ground 
motions may be safely scaled to the suite’s median spectral acceleration value, at a 
period T1, without biasing the median response of a structure having the same first-
mode period T1 (Bazzurro and Cornell, 1994; Shome et al., 1998; Shome, 1999; 
Iervolino and Cornell, 2005). But recent work suggests that in some other situations 
record scaling may induce some bias in structural response (Baker and Cornell, 2005; 
Baker, 2007b; Luco and Bazzurro, 2007). This bias appears to result from the scaled 
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ground motions having inappropriate values of spectral shape or the parameter ε, which 
is an indirect measure of spectral shape (Section 2.2.3.3). An important feature of these 
ground-motion scaling studies is that record selection and scaling approaches are 
evaluated by studying the response of structures subjected to these motions. If it can be 
verified that scaled ground motions produce structural responses similar to those from 
unscaled ground motions having the same intensity, then it can be concluded that the 
given scaling approach is valid.  
In Baker (2007b) and Luco and Bazzurro (2007) it was concluded that inappropriate 
record scaling can bias estimated structural response; this supports the concern that 
record scaling might fail to modify all ground-motion properties in an appropriate way. 
Baker( 2007b), through the exploration of conditional mean response spectra, showed 
that the frequency content of ground-motions does change as the intensity (i.e., Sa(T1)) 
changes and concluded that the frequency content is more affected by the variation of ε 
than by the variation of magnitude or distance. The author suggested that if records are 
selected with the desired spectral shape through a careful record selection scheme (i.e., 
ε-based or CMS-based selection), they can be scaled without inducing bias. Similar 
recommendations were suggested by Bommer and Acevedo (2004).  
These results may at first glance appear to conflict with the past aforementioned studies 
that did not detect scaling bias when records were scaled to target Sa(T1) values. The 
reason for the difference can be found in the fact that those studies were considering a 
specific problem where the mean scale factor among all the records in a suite was 
approximately one. In those cases, where as many records were scaled up as were 
scaled down, the median observed maximum interstorey drift ratio was unbiased. This 
is consistent with the aforementioned results obtained by Baker (2007b) and Luco and 
Bazzurro (2007), which predict that biases from scaled-up and scaled-down records 
would offset, resulting in unbiased median response when the average scale factor is 
approximately one.  
Hancock et al. (2008) obtained similar conclusions about the importance of spectral 
shape in the reduction of bias induced by scaling. The authors proposed a new method 
to investigate bias. It is based on calculation of the “true” median response by 
regression analysis, i.e. by fitting an empirical predictive equation for different 
structural response parameters using data obtained by a huge set of ground motions. As 
the authors noted “Although the number of records available for a particular scenario 
does not change, a great deal of additional constraint on the expected inelastic 
response is provided by the records from other magnitudes and distance ranges”. The 
authors compared sets of ground motions scaled according to different criteria (Sa(T1), 
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average spectral acceleration between 0.25s and 1.25s, spectral matching to 5% damped 
spectrum using wavelets and spectral matching to multiple damping ratios using 
wavelets) to match a reference spectrum obtained by a ground-motion prediction 
equation. All the ground motions used were selected according to the criterion proposed 
by Bommer and Acevedo (2004) i.e. the matching with the reference spectrum was 
considered. It was concluded that if the accelerograms are selected to match the 
reference spectrum shape they can be scaled up to factors of 10 without introducing 
bias. The authors also concluded that since the fatigue and absorbed hysteretic energy 
damage measures are known to be dependent on ground-motion duration, the lack of 
bias they observed in these damage measures demonstrates that selecting records to 
match magnitude is sufficient to prevent scale bias from different ground-motion 
durations. Hancock et al. (2008) suggested that the bias can be further reduced when the 
accelerograms are wavelet adjusted to match multiple damping ratios (Section 2.3.3).  

2.3.2 Frequency domain scaling 
Frequency-Domain techniques for the generation of artificial accelerograms associated 
to earthquake response spectra have existed for many years. An early proposition is 
utilized by the computer code SIMQKE (Gasparini and Vanmarcke, 1976); it is based 
on the relationship between expected response spectral values and the spectral-density 
function of a random process representation of ground motions. This relationship is 
derived from analytic Random Vibration Theory (RVT) techniques. A seed record is 
generated as a simulated realization of this random process, and subsequent iterations 
are conducted in the frequency domain.  
Carballo and Cornell (2000) proposed a procedure for the modification of existing 
earthquake records in which the target spectrum depended on the response spectrum of 
the record itself. The modification technique is based on scaling the record's Fourier 
amplitude spectrum by a smooth "factor function" which is computed by finding the 
ratio of the predicted response spectrum of the target scenario event to the predicted 
target of the seed event. 
Another widely used Frequency-Domain method is the one coded in the computer 
program RASCAL (Response Spectra and Acceleration Scaling) (Silva, 1987). It is a 
semi-empirical procedure, which evolved from random vibration theory based 
techniques, with the additional (empirical) utilization of the observed Fourier phase 
spectrum of a real ground motion. The RASCAL procedure modifies the Fourier 
amplitude spectrum of a seed record in two stages. In the first stage, the factor function 
applied to the Fourier amplitude spectrum is a smooth one, generated by the ratio of the 
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RVT-predicted expected smooth response spectrum associated to a Brune-based source 
spectrum to the target response spectrum. This factor function is then used to modify the 
Brune Fourier amplitude spectrum. This product is taken as the Fourier amplitude 
spectrum of the first iteration for a number of predefined iterations. The Brune source 
spectrum considered is that of the so-called ω-squared model. This basic form is then 
modified to include the radiation pattern, the amplification due to the free surface, high-
frequency filtering, and the path attenuation. In the second stage, the factor function is 
based on the observed  response spectrum (computed in the time domain) of the current 
iteration's time history (which is generated from the current amplitude spectrum and the 
seed's phase spectrum).  

2.3.3 Time domain scaling 
Even though the target used as the criterion for generating the artificial accelerogram is 
based on what looks like a frequency representation (i.e., the target response spectrum), 
such a representation indicates a (maximum) response that occurred in time. Time-
domain schemes take advantage of this fact, working in a backward approach to modify 
the time-specific event of maximum response (e.g., the maximum observed acceleration 
of an oscillator). The basic idea of such time-domain modification of earthquake records 
assumes that the time of the peak response will not be perturbed by adding a small 
adjustment to the original time history. This way, the observed response is modified to 
that of the indicated value given by the response spectrum, taking care of the observed 
difference between it and the accelerogram actual observed maximum response. Sets of 
“adjustment functions” are then found iteratively, correcting the accelerogram at all the 
corresponding frequencies of the target, requiring the solution of simultaneous 
equations to find the amplitudes of the adjustment functions. Two good properties of the 
procedure (Carballo and Cornell, 2000) are its fast convergence and the ability to 
conserve for most cases the nonstationary character of the seed time history, provided 
that the adjustment functions are appropriately selected. Different adjustment functions 
(wavelets) have been proposed by different authors, a comprehensive review can be 
found in Hancock 2006 and Hancock et al. 2006.  
The use of spectrum compatible records has been common for different non-linear 
systems. Examples can be found in Preumont (1984), Barenberg (1989) and Naeim and 
Lew (1995). It should be mentioned that the level of satisfaction of the results obtained 
by different authors has not been constant. As Carballo and Cornell (2000) suggested, it 
is important to put the results obtained by these different authors in the context in which 
they were generated. In contrast to other studies, Carballo and Cornell (2000) 
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considered the use of spectrum-matched records for obtaining representative demands 
corresponding to a particular M-R seismic event. The authors found that for this 
particular case the use of spectrum-matched accelerograms may yield unconservatively 
biased estimates of non-linear ductility demands. Carballo and Cornell compared 
structural response of different SDOF and MDOF structures obtained by unscaled M-R 
scenario compatible ground-motions and by compatibilizing the same records to their 
median response spectrum. The authors found that for the estimation of the ductility 
demands that correspond to a scenario event, spectrum-matched records will generate 
results that predict an unconservatively biased estimate of median displacement-based 
non-linear responses. Some points can be raised here: firstly the authors selected the 
reference ground-motion according to a scenario defined in terms of magnitude and 
distance only, recent works (Baker and Cornell, 2005) showed that ε is an important 
predictor of spectral shape therefore it should be considered when defining a ground-
motion scenario; secondly, the median spectral shape corresponds as well to the median 
responses of SDOF elastic systems, but this statement is not true for non-linear systems, 
therefore the bias could be caused by a wrong definition of the reference spectrum.  
Carballo and Cornell (2000) results also confirmed what other authors already discussed 
(Shome, 1999): spectral accelerations other than the one at the structure's fundamental 
frequency may be important to consider for the efficient prediction of non-linear 
demands. This implies that spectral shape in general may be important. In this study it 
was found that a primary contributor to the apparent aforementioned biased estimation 
relies on the global shape. Local variations (i.e. in the close vicinity of the fundamental 
elastic frequency) of the spectral shape did not seem to have any major effect on the 
observed bias.  
Hancock et al. (2008) compared structural response of an RC frame building obtained 
by spectral-matched ground-motion time histories with those obtained by sets of records 
selected according to different criteria. The authors found that the degree of bias 
systematically decrease as one applies more constraint on the scaling and matching of 
accelerograms.  
Watson-Lamprey and Abrahamson (2006a) investigated the possible bias caused by the 
use of spectrum-matched ground motions. In this study the authors compared the 
response of a SDOF non-linear oscillator (bilinear model) when subjected to two 
different suites of ground motions, obtained by scaling the same set of records (selected 
in terms of M, R scenario) with two different procedures: the wavelet based procedure 
proposed by Hancock et al. (2006). and a linear scaling to match Sa(T1). The reference 
spectrum considered is the one given by Abrahamson and Silva (1997) GMPE. The 
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authors found that spectrum-compatible ground motions tend to underestimate the 
response as compared to scaled ground-motions with troughs at the fundamental period 
and tend to overestimate the response as compared to scaled ground-motions with peaks 
at the fundamental period. Their results confirm that spectral shape is a factor that 
should be taken in account in record selection. Furthermore the authors did not 
investigate if the set of records adopted is well represented by the database used by 
Abrahamson and Silva (1997) to calibrate their GMPE, hence the bias they observed 
could be partially due to a lack of consistence between the two scaling procedures. 

2.3.4 Number of records required to estimate the median 
structural response 

Seismic design codes require that the average ordinates of the real spectra have to match 
the target and not the individual spectra. Bommer and Acevedo (2004) and Bommer and 
Ruggeri (2002) observed that the number of ground-motion records that the building 
codes prescribe can vary from 3 to 7, but all the codes allows to use a minimum number 
of 3 records. Stewart et al. (2001) proposed that if only three records are used, they 
should be adjusted with one of the techniques presented in Section 2.3.3, to remove 
their peaks and troughs so that “the results of structural analyses are not unduly 
controlled by the particular time histories that are chosen”. Bommer and Acevedo 
(2004) suggested that from a seismological perspective, a preferable approach may be to 
use at least seven records and then use the average response obtained from the structural 
analysis. 
The number of required records is usually estimated by evaluating confidence intervals 
on the median structural response, i.e. by evaluating the number of records that have to 
be used in order to obtain a given margin of error on the estimate of the mean structural 
response. Given a sample of structural response values and supposing they are 
distributed according to a normal distribution, the best unbiased linear estimator of the 
mean of the distribution is the sample mean: 
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where N is the sample size and Xi is the i-th observed value. The Mean Squared Error 
(MSE) of this estimator can be written as: 
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where σ is the variance of the population. If this latter is known and the population is 
normal the confidence interval at C % on the population mean is * σX z N±  where 
z* is the (1-C)/2 critical value for the standard normal distribution. If the variance of the 
population is unknown, Eq. (2.21) is not exact and σ has to be replaced by the estimated 
standard deviation (standard error) s: 
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It can be shown that in this case the distribution of the sample mean is no longer 
normal, instead the sample mean follows a t distribution. In this case the exact 
expression for the confidence interval for the population mean is *X t s N±  where t* 
is the (1-C)/2 critical value for the t distribution with n-1 degrees of freedom. 
When the population is distributed according to a lognormal distribution the most 
widely used estimate of the central value is the median, and the estimator is defined as 
the geometric mean which is the exponential of the average of the natural logarithms of 
the observed values: 
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and the most widely used estimate for the dispersion is the standard deviation of the 
natural logarithms of the observed data: 
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For small values the above dispersion measure (e.g. lower than 0.3) is approximately 
equal to the coefficient of variation. This approximation is adopted in many papers 
about ground-motion selection and scaling. If this is the case, Eq. (2.21) can be used as 
an approximation and it can be rearranged to calculate the number of records required to 
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predict some measure of structural response to a certain accuracy, given the standard 
deviation of the response, σ. The lognormal distribution and the estimators in Eq. (2.23)  
and Eq. (2.21) are almost universally used in ground-motion estimation (Shome, 1999). 
Using the aforementioned approximations Shome (1998) suggested that if one wants to 
obtain an estimate of the median response within a factor of Z (e.g. ± 0.1) with a 95% 
confidence, he must use approximately 2 24.0δN Z=  records. The authors suggested 
that typical values of δ for unscaled records can vary from 0.43 to 0.75. 
Hancock et al. (2008) compared different structural response parameters values 
obtained by ground-motions selected according to different criteria and confirmed the 
findings of Shome and Cornell (1998) and Shome (1999). The standard deviation of the 
response, and hence the number of records required to predict the response to a given 
level of confidence, is reduced through scaling the ground-motions to the elastic 
spectral acceleration at the initial period of the structure when compared to using 
unscaled accelerograms selected purely on the basis of seismological characteristics. 
However, this study also showed that further reduction in the number of required 
records may be achieved by scaling the accelerograms to match the target acceleration 
spectrum on average between periods of 0.25 and 1.2 seconds. The number of records 
required to obtain an estimate of peak roof drift to ±10% accuracy (measured on a log 
scale) at one standard deviation confidence reduces by a factor of about 4 when records 
are scaled to the initial period of the structure instead of being unscaled. This reduces by 
a further factor of about 3 when records are selected and scaled to the average spectral 
acceleration over a range of periods. This result is particularly useful as it reduces the 
number of records required to estimate measures of peak response (peak roof and 
interstorey drifts) to this confidence level from 13 unscaled records to a single record 
scaled to the average spectral acceleration. What is an even more significant result is 
that when the selected records are matched using RspMatch2005 (Hancock et al., 2006) 
to the target spectrum at a single damping ratio, or multiple damping ratios, the number 
of records required to predict the expected response for other damage measures, 
including end rotations and the Park and Ang damage index (Park et al., 1985), also 
decreases significantly from the case where spectra are linearly scaled to the average 
spectral acceleration to just one or two records at the 10% confidence level. 
This confirms the findings of Carballo and Cornell (2000) that the non-linear demands 
obtained by spectrum-matched records present a significant reduction in dispersion, 
which allows the use of a substantially smaller suite of accelerograms (of the order of 
1/4 the size of an actual recorded ground-motion suite) for estimating the median 
response. The authors suggested that even though the reduction allowed is large, it is 
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not large enough to use single spectrum compatible records as some seismic codes call 
for. 
As Hancock et al. (2008) observed the numbers of records required to estimate different 
local damage indices varies. Low-cycle fatigue and absorbed hysteretic energy have the 
greatest variability and therefore require more records to predict the inelastic response 
to a given confidence level than measures of the peak response. The absolute numbers 
of records required to predict the response to a given confidence level is specific to the 
structure being considered; however, the trends in the numbers of accelerograms 
required for the various damage measures and scaling and matching approaches are 
broadly consistent with previous studies and are therefore expected to be generally 
representative. 

2.4 Bi-directional loading issues 

Planar structural analysis, including seismic input, has typically been performed with 
simplistic representations of actual systems. In the dynamic analysis case the effects of 
the orthogonal horizontal component (out-of-plane) of the ground-motion used (in-
plane) are considered to be uncoupled from the in-plane analysis. Typically, although 
within the same plane, the effects of the vertical component are also considered not 
important, such that this direction of ground motion is not included in the analysis. 
In the following the most critical issues in bi-directional excitation problems will be 
described. The main reference for this section is the paper by Beyer and Bommer (2007) 
which investigated many aspects involved in selecting and scaling ground-motion 
records for bi-directional analysis.  

2.4.1 Direction of loading 
In ground-motion databanks usually records are given with the orientation in which they 
were recorded. The orientation of the horizontal axes can be rotated by a simple matrix 
multiplication: 
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where ( )xa t  and ( )ya t  are the components of the recorded ground-motion in the 
orientation they were recorded and ( )'xa t , ( )'ya t  are the components of the records 
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after a rotation by an angle θ. Values of response spectra can be very different in 
different orientations as Figure 2.4 shows.  
In some papers (e.g. Marušiæ and Fajfar, 2005 and Peruš and Fajfar, 2005) on structural 
response to bi-directional excitation one of the components is multiplied by −1 before 
being used on the structure; this transformation does not correspond to any rotation 
therefore has no physical meaning and should not be used. 
Different axes can be defined: studies on response spectrum analysis often refer to the 
principal components of the ground motion (Penzien and Watabe, 1975). Those latter 
are defined as a set of axes for which the covariance of the ground motion, considered 
as a random process, disappears. If the three components of the ground motion are 
considered, the principal directions are defined by the eigenvectors of the matrix Lopez 
et al., 2006: 
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The orientation of the principal axes is time dependent but Penzien and Watabe 1975 
found that the orientation is fairly constant over the strong interval of the ground 
motion.  
It is worth noting that many studies make the approximation that a component of the 
ground motion is vertical; Lopez et al. 2006 found, by investigating a database 
containing 97 records, that the average inclination of the pseudo-vertical component is 
11.4°, and the modal value of the distribution is between 5° and 10°. The accelerograms 
in the database were recorded during 25 earthquakes. No events with PGA < 0.10 g 
were considered. The ground motions were divided in two groups: far-fault (R > 15 km) 
and near-fault records (R <15 km). Moment magnitude ranges from 5.4 to 8.2 for the 
first set and from 6.1 to 7.6 for the second set. The maximum epicentral distance for the 
far-field records is 187 km. Recording stations were on rock or soil (the authors did not 
specify the kind of soil). 
The authors suggested that a traditional analysis disregarding this inclination may 
significantly underestimate the critical response (Hernández and López, 2003) for the 
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amplification effect of a small inclination of the quasi-vertical component is important 
in the presence of periods that are close to each other. Those results were obtained by 
response spectrum analysis only. As far as the acceleration response spectrum is of 
concern the difference between the vertical and the quasi-vertical component seems to 
be limited according to Lopez et al. (2006). 
Since spectral ordinates vary when the two horizontal components are rotated, the 
response of the structural system will hence depend on the orientation of the structural 
axis system relative to the ground motion axes. Therefore, rotating the ground motion 
will lead to a different structural response. In EC8 it is specified that the seismic action 
shall “be applied in both positive and negative directions”. However, no specifications 
are made regarding the original orientation. Beyer and Bommer (2007) suggested that it 
is likely that the components are applied with an arbitrary orientation first and in a 
second analysis run the polarities of both components are switched. In ASCE 4-98 it is 
stated that the axes of the ground-motion “shall, in general, be aligned with the 
principal axes of the structure”. However, it is not stated how the ground motion axes 

 
Figure 2.4. Imperial Valley, 1979, Station Delta PEER, 2005: Spectral acceleration as a function of 
orientation angle θ (thick dark and light lines). The outer circle represents the maximum spectral
acceleration of one component obtained for all possible orientations of axes. The horizontal and
vertical axes correspond to fault-normal and fault-parallel orientation. The thick black radial lines 
give the orientation of the principal axes with θp = 18.8°. The solid black line is the geometric mean of 
the two components as a function of θ. The dashed black line represents GMRotD50. After Beyer and 
Bommer (2007). 
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should be orientated. The provisions ASCE 7-05, FEMA 368 and NZS require that the 
components are applied in the direction that will produce the most adverse effect of the 
considered parameter. They do not specify, however, how the most critical direction 
should be established. Normally the direction is found by rotating the ground-motion 
components at a certain angle interval (e.g., 1° or 5°) and analyzing the structure for all 
orientations of the components. If linear modal analysis is performed the critical 
directions can be defined according to the procedures proposed by Lopez et al. (2000) 
and Lopez and Torres (1997). 
Recently Rigato and Medina (2007) examined the influence that the angle of incidence 
of the ground motion has on structural response parameters for a single-storey structure 
subjected to bi-directional ground motions. Various degrees of inelasticity were 
considered. The fundamental periods ranged from 0.2 to 2.0 s for both symmetrical and 
asymmetrical structures. A suite of 39 pairs of horizontal ground-motion records were 
used. This is a subset of the 80 ground motions used in Krawinkler et al. (2003) and 
Medina and Krawinkler (2004). The accelerograms are records of ground motions 
produced by 5 different earthquakes (9 from the Imperial Valley earthquake (1979), 11 
from the Loma Prieta earthquake (1989), 14 from the Northridge earthquake (1994), 1 
from the San Fernando earthquake, and 4 from the Superstition Hills earthquake 
(1987)). For a given ground-motion, one of the two horizontal components was 
classified as either being a major component or a minor component based on its PGA 
value. The records were applied at various angles of incidence. All major components 
of the 39 pairs of ground motions were scaled to the same Sa(T1) value at the 
fundamental period of the model, while the minor component was scaled by the same 
factor used for the major component.  
Maximum responses for individual ground motions were found to occur for virtually 
any angle of incidence (regardless of whether or not a building has a torsional 
irregularity) and varied with the degree of inelasticity, which implies that inaccurate 
estimates of structural performance and damage may result if based on ground motions 
applied at principal orientations alone. The critical angle for a given response parameter 
varies with fundamental period, model type and the level of inelastic behaviour, and it is 
difficult to determine a priori like that of an elastic structure. Although an optimal 
building orientation that minimizes demands for all the parameters considered for a 
given model cannot be determined explicitly, for a given degree of inelasticity, the 
average ratio of peak deformation responses based on all angles of incidence to the peak 
deformation response when the ground-motions are applied at principal building 
orientations shows stable trends. Generally, these ratios increase with the fundamental 
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period of vibration. These average ratios typically vary between 1.1 and 1.6; however, 
ratios for individual ground-motions can be as high as 5 for the parameters examined.  
Beyer and Bommer (2007) studied the structural response of a regular concrete  
building under bi-directional excitation. When investigating the issue related to 
direction of the ground-motions the authors considered three different definitions of 
response (the ductility demand on a structural wall was investigated): the maximum 
response among all the possible directions of the input; median response from all the 
possible orientation; random choice for each ground-motion a random direction is 
chosen. Figure 2.5 shows the results obtained for the different sets of ground-motions. 
The ratio of these response values varies between 1.05 and 1.68.  This great variability 
in structural response is strictly related to the minimum number of records that should 
be used to estimate structural response. Beyer and Bommer (2007) concluded that the 
usual number of records prescribed by codes (i.e. 3 records) it is not sufficient to 
estimate the maximum median response. 

2.4.2 Definition of spectral ordinates 
A crucial point in bi-directional problems is the definition of the spectral ordinates. 
Different definitions can be adopted. The following list is adapted from Beyer and 
Bommer (2006) and Beyer and Bommer (2007): 
• x, y: Orientation of the two horizontal components as recorded. 
• FN, FP: Components in the fault-normal and fault-perpendicular direction. 
• Principal: Components along the principal axes. 
• AMxy: Arithmetic mean of the recorded components. 

 

 
Figure 2.5. Maximum response (black tick line), median response (gray tick line), and their median 
values (thin lines) as obtained using set of ground-motions selected according to different criteria. 
After Beyer and Bommer (2007). 
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• GMxy: Geometric mean of the recorded components: 

 ( ) ( ) ( )GMxy x ySa T Sa T Sa T=  (2.29) 

• SRSSxy: Square root of the sum of squares ot the components x and y: 

 ( ) ( ) ( )2 2
SRSSxy x ySa T Sa T Sa T= +  (2.30) 

• Both: Both horizontal components of a record are considered and treated as two 
independent realizations of a random process. 

• Larger PGA: From the x and y components the one with the larger PGA is chosen and 
used for all response periods. 

• Env: Larger spectral ordinate for the x and y component at each period 
• Random: Random choice of one horizontal component from each accelerogram. 
• GMRotD50: At each response period, the median value of the geometric mean from 

all possible orientations of the ground-motion axis system is computed. The 
orientation corresponding to the median value might vary between different spectral 
periods (Boore et al., 2006). 

• GMRotI50: This ground-motion measure is an approximation of GMRotD50 with a 
constant axis orientation for all periods, which minimizes the sum of differences 
between GMRotD50 and GMRotI50 over all considered periods (Boore et al., 2006). 

• MaxD: At each period the maximum spectral ordinate from all the possible 
orientations is determined. 

• MaxI: This ground-motion measure is determined following a procedure similar to the 
one used by Boore et al. (2006) but determining an approximation of MaxD instead of 
GMRotD50 with a constant axis orientation. The objective function for the angle is 
slightly different from the one specified by Boore et al. (2006) because it considers 
the differences between MaxI and MaxD only for periods greater than 0.5 sec. 

• Maximum PSA and η(T, θ): Maximum pseudo spectral acceleration and ratio η of 
spectral acceleration for period T and orientation θ to maximum PSA (Hong and 
Goda, 2007).  

Empirical conversion factors between median values of most of the definitions listed 
and the geometric mean spectrum have been derived by Beyer and Bommer (2006). 
Watson-Lamprey and Boore (2007) gave adjustment factors that allow converting the 
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predictions of geometric mean of the ground motion into either the maximum spectral 
acceleration (SaMaxRot) or the random component of spectral acceleration (SaArb). The 
authors  provided modification factors for both the mean and the standard deviation of 
the logarithm of the motions. Moreover the provided conversion factors from SaGMRotI50 
to SaMaxRot showed that the ratio of SaMaxRot over SaGMRotI50 is period dependent, ranging 
from 1.2 at short periods to 1.35 at long periods. These conversion factors are distance, 
magnitude, and radiation pattern dependent. The authors suggested that since the 
dependencies are small for most engineering applications the conversion factors 
independent of these variables can be used. 
Finally Shoja-Taheri and Bolt (1977) defined the concept of Spectral Maximized Record: 
for each frequency of interest the authors summed in the frequency domain the 
components of the two horizontal accelerograms orthogonally oriented in the directions x 
and y, i.e. they considered the vector combination of amplitudes and phases for a given 
azimuthal angle: 
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Eq. (2.31) describes an ellipse therefore it is possible to find the azimuthal angle giving 
the direction of its major axis: 

 ( )( ) ( )( )1 2 21 tan 2 cos
2m x yAB A B−θ = ψ − ψ −  (2.32) 

and the maximum amplitude Zmax: 

 ( ) ( )max max maxcos sin cosm mz x y Z tω = θ + θ = ω + Φ  (2.33) 

The authors used this method to generate artificial acceleration time histories 
compatible with the maximized spectrum. 

2.4.3 Ground-motion selection and scaling 
2.4.3.1 Definition of a target spectrum 
The definition of the spectral ordinate of the target spectrum depends on the ground-
motion prediction equations which have been used to derive the spectrum. Most GMPEs 
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use either the geometric mean (GMxy) or the envelope spectrum (Envxy) of two 
components with the orientation as recorded (Beyer and Bommer, 2007).  
In structural analysis with uni-directional input the spectrum of an arbitrarily selected 
component and the envelope spectrum of two components have traditionally been 
widely employed, although  some authors pointed out that many studies are not 
completely consistent (Baker and Cornell, 2006c). When only a single component of the 
ground motion is needed for the analysis, spectral acceleration is computed only for the 
selected component at a period equal to the elastic first mode period of the structure, 
and that is used as the intensity measure. In most cases, no distinction is made between 
the two components of a ground motion, so using a single component in this case is 
equivalent to using SaArb as the intensity measure. But frequently the ground-motion 
hazard analysis has been unwittingly performed with SaGMxy to utilize existing 
attenuation models; this results in an inconsistency when spectral acceleration hazard is 
coupled with response analysis during performance-based analysis procedures. 
Previous studies (Malhotra, 2003; Baker and Cornell, 2006c; Beyer and Bommer, 
2007), which have been concerned with bi-directional input for dynamic structural 
analysis have chosen the geometric mean spectra as the preferred definition of the 
spectral ordinates of the target spectrum. Beyer and Bommer (2007) suggested that the 
geometric mean of the spectral ordinates should be used for the following reasons:  

- A relatively large set of GMPEs based on this definition is available for use in 
hazard assessment. 

- The measure results in a single spectrum and hence the comparison of target and 
record spectrum is straightforward. 

- The variation of the spectrum with orientation of the ground-motion axes is small. 
- Hence, selecting and scaling of records is less sensitive to the orientation of the 

ground-motion axes than for other definitions. 
- The measure is also meaningful in logarithmic space since it corresponds to the 

arithmetic mean of the logarithmic values. This can be important in structural 
reliability analysis where logarithmic response parameters are commonly linked to 
the logarithm of spectral ordinates. 

- If the analysis results with bi-directional input are to be compared against results 
from analysis with uni-directional input, the conversion of the geometric mean 
spectrum to the spectrum of a single randomly chosen component is fairly 
straightforward since the median of the two measures are identical while the 
standard deviation is smaller for the geometric mean than for the single 
component.  
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Other definitions such as the envelope spectrum and the SRSS spectrum (which is 
frequently used in codes) can also be used but it is more difficult to define procedures 
which are consistent over the process of defining the hazard and selecting and scaling 
the records. After the geometric mean, the envelope of the two components is probably 
the most frequently used component definition for GMPEs and hence might be used to 
define the hazard at a given site.  

 
Figure 2.6. Failure probability for a structure designed to resist to SaSRSSxy (θ) or SaGMxy (θ) as a
function of the structural orientation. After Hong and Goda (2007). 

 
Figure 2.7. Failure probability for a structure of unknown orientation designed to resist to SaSRSSxy(θ)
or SaGMxy(θ) as a function of the angle of the recording sensors. After Hong and Goda (2007). 
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Hong and Goda (2007) raised some concerns about using the geometric mean or the 
square root of the sum of squares of the spectral ordinates. The authors showed that it is 
not possible to infer on the structural failure probability if only SaSRSSxy or SaGMxy are 
known: “if the attenuation relations developed based on SaGMxy (Tn,θ) or SaSRSSxy(Tn,θ) 
are employed in assessing seismic hazard and in estimating UHS, it is not clear what 
exactly and actually the return period value entails in the context of codified design and 
structural safety”. For example Figure 2.6 shows the failure probability for a structure 
designed to sustain SaSRSSxy(θ) or SaGMxy(θ) as a function of its orientation δ with respect 
to the ground-motion major axis, θ being random and varying uniformly between 0° and 
90. Figure 2.7 shows the failure probability of a structure of unknown orientation δ 
(considered uniformly distributed between 0 and 360°) designed according to SaSRSSxy(θ) 
or SaGMxy(θ) as a function of the angle θ of the recording sensor with respect to the 
major axis. 
As Beyer and Bommer (2007) suggested the geometric mean might be replaced in the 
future by either GMRotD50 or GMRotI50 once new ground-motion prediction equations 
for these component definitions have been adopted in practice.  

2.4.3.2 Ground motion selection 
Beyer and Bommer (2007) performed a review of code provisions on ground-motion 
selection for bi-dimensional analyses. The authors found that most codes do not 
distinguish between record selection for uni-directional analysis and record selection for 
bi- or tri-dimensional analysis.  
Only the most significant prescriptions are reported here; for a complete description of 
those provisions see Beyer and Bommer (2007). The use of the same component for 
both horizontal directions is prohibited by all the guidelines reviewed by the authors. 
ASCE 4-98 explicitly states that the same component for both horizontal directions 
must not be used even if the starting time of one component is shifted with respect to 
the other. ASCE 4-98 requires that geological and seismological settings and local 
subsurface conditions are appropriate for those of the considered site. It further specifies 
that the records should be free-field ground motions at the top of the foundation layer 
and that duration and amplitude of ground-motion parameters such as peak ground 
acceleration, velocity and displacement shall be representative for the expected ground-
motion at the site for that level of hazard. All other codes which were reviewed by 
Beyer and Bommer (2007) suggested selecting records from earthquake events with 
geophysical features similar to the design earthquake and in some cases also to the site 
conditions.  The minimum number of records required for structural analysis is three for 
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all reviewed codes except for ASCE 4-98 which specifies that at least one record should 
be used unless the structure is sensitive to long-period motion; in this case the minimum 
required number of records is also three. 
ASCE 4-98 states that the components “shall be statistically independent. (. . .) Two 
time histories shall be considered statistically independent if the absolute value of the 
correlation coefficient does not exceed 0.3”. For structures sensitive to long-period 
motion “the input motions in the three orthogonal directions shall, in the frequency 
range 0.2 to 1.0 Hz, have a correlation coefficient representative of empirical data 
recorded at sites of similar geotechnical conditions and tectonic environment”. Beyer 
ad Bommer (2007) argued that these recommendations seem impractical because: i) it is 
not specified whether the correlation coefficient refers to time histories, response 
spectra, or power spectral density spectra of the components. Moreover, the correlation 
coefficients of acceleration, velocity, and displacement time histories of the same record 
are very different. The correlation coefficient further depends on the orientation of the 
components. ii) The authors were unaware of studies which give correlation coefficients 
as a function of geotechnical and tectonic settings at a site and ASCE 4-98 provides no 
reference values.  
Besides codes very few provision for bi-directional problems have been proposed in the 
literature. As far as the selection is performed in terms a seismological scenario then 
there is no difference whether the records are selected for uni- or bi-directional 
problems. Furthermore if the ordinate of the design spectrum used for the bi-directional 
analysis is a single component measure, such as for example GMxy, many of the 
procedures described in Section 2.2.3.2 can be used. For bi-directional analysis it would 
also be possible to choose an ordinate definition which retains the two components and 
to disaggregate the joint ordinate pairs using Vector PSHA 2002. If the ground-motion 
residual ε is included in the set of selection parameters it is important that the spectrum 
of the record matches the definition of the GMPE that is used to determine the ground-
motion residual.  
If duration is of concern, Beyer and Bommer (2007) stated that defining the duration or 
effective cycles for in-plane motion is not straightforward. Malhotra (2003) suggested 
to take simply the arithmetic mean of the durations of each component. Another 
common way to count cycles of in-plane motion is to consider the SRSS sum of the 
component time histories. Beyer and Bommer (2007) concluded that neither of the 
presented definitions for duration or effective cycles of in-plane motion seems to have a 
robust physical basis.  
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2.4.3.3 Scaling 
When scaling records to a target design spectrum, it is important that the definition of 
the spectral ordinates, in terms of treatment of the two horizontal components, is 
consistent between the design spectrum and the spectrum of the scaled record. 
However, the underlying definition of the horizontal component of code spectra is not 
always clear.  
Beyer and Bommer (2007) concluded that two options seem possible to match the 
geometric mean target spectrum: 

- Scaling of the geometric mean spectrum of the record to match the target spectrum. 
The record was scaled to minimize the error between record and target spectrum. 

- Scaling of the components individually so that not only the geometric mean but 
also each component matches the target spectrum as well as possible. This is done 
by first scaling the geometric mean spectrum of the record to match the target 
spectrum; this scaling factor is called α. In a second step one component is scaled 
by a factor β while the other is scaled by the factor 1/β. In this way the geometric 
mean spectra of the two components remains unaltered. 

Carballo and Cornell (2000) considered a simple application to a bi-dimensional 
problem by considering three sets of ground-motions: the first, adopted as reference, 
contained ground-motions selected according to a M, R scenario. It should be noted that 
only four records were used due to limited availability of computational resources. All 
the components of the ground motion were scaled by a factor defined such that the 
spectral acceleration of the larger component of the ground-motion corresponded to 
some reference values. The second set contained records which have been spectrally 
matched in order to make each of their components compatible with the median spectra 
of the respective components of the reference set. Finally the third set was made of 
ground motions for which both components had been edited in order to achieve 
compatibility with the response spectrum predicted by the ground-motion predictive 
equation proposed by Abrahamson and Silva (1997). This procedure introduces an 
intensity ratio of the two components of 1. All vertical components of the ground 
motion were compatibilized to the corresponding vertical-motion attenuation 
relationship; the ratio of horizontal-to-vertical intensity, for the unit horizontal intensity 
ratio case, was directly taken from there as well. The stronger components (as indicated 
by the spectral acceleration of interest) of the ground-motion input were applied in one 
structural direction and the weaker components in the other direction. As for the second 
suite of records, the authors observed a little reduction in the dispersion of structural 
response compared to results of the reference set. The authors also observed an 
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unconservative bias ranging from 10% to 35%. As for the third set, obviously 
unconservative structural responses were observed. The same way one would not use 
the same accelerogram of one component of ground-motion simultaneously in both 
directions, one should not use the same level of spectral target for both directions. The 
authors suggested the shapes to be considered should be generated by attenuation 
relationship constructed with different sets of ground-motion records (e.g., fault-parallel 
and fault-normal). As the authors stated, the sample size adopted is extremely small and 
the effect of different orientations of ground-motion were neglected therefore the results 
obtained are hardly extendable. Furthermore, some objections can be raised about the 
consistency of the procedure: each component of the records of the third set was 
spectrally matched to the spectrum predicted by the GMPE proposed by Abrahamson 
and Silva (1997) which is the geometric mean of the spectra of the two components. 

2.4.4 Vertical component of the ground-motion  
Typically, although within the same plane, the effects of the vertical component are 
considered not important, such that this direction of the ground motion is not included 
in the analysis. Many authors showed that the high-frequency spectral acceleration of 
the vertical component of the ground motion can be stronger than the horizontal ones in 
the near-filed. Bozorgnia and Campbell (2004) found that the observed and predicted 
V/H spectra are strong functions of natural period, source-to-site distance, and local site 
conditions; and a relatively weak function of earthquake magnitude and faulting 
mechanism. The behaviour of the V/H spectra with distance is different for firm soil 
than for stiffer soil and rock deposits, at firm soil sites approaching a factor of 1.8 at 
short periods, close distances, and large magnitudes. 
Based on the observed and predicted behaviour of the V/H spectra, Bozorgnia and 
Campbell (2004) proposed a tentative simplified model for estimating V/H spectral 
ordinates for practical engineering applications (see Figure 2.8). A reasonable 
agreement between the simplified and predicted V/H spectral ordinates was found over 
a wide range of seismological parameters. A simple procedure for generating a 
preliminary vertical design spectrum was also proposed.  
Similar results were obtained by Lopez et al. (2006). The authors calculated the 
response spectra in the principal directions for 97 ground-motion records (see Figure 
2.9). The pseudo-vertical to horizontal ratio can be greater than 1 for short distances and 
high frequencies. 
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2.5 Conclusions and possible future work 

2.5.1 Scenario based selection 
Disaggregation has to be used to define reference scenarios in terms of magnitude, site-
fault distance, epsilon etc. Disaggregation results can be not easy to manage if a single 
scenario is not strongly predominant. In this case multiple scenarios have to be 
considered. Particular care should be taken if logic trees are adopted to combine different 
ground-motion prediction equations and seismic sources.  
Magnitude. It has been shown by many authors that magnitude has a strong influence on 
spectral shape and duration. This parameter should therefore be considered in ground-
motion selection. Some researchers stated that magnitude matching is not important if 
records are scaled to spectral acceleration. This statement has recently been shown to be 
incorrect, in fact if spectral shape is not considered in selection structural response can be 
biased.  

Figure 2.8. V/H ratio as predicted by the ground-motion prediction model by Bozorgnia and 
Campbell. Effects of magnitude, distance, site conditions and faulting mechanism. After Bozorgnia
and Campbell (2004). 
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Distance. A lack of matching in terms of distance seems to be of less importance and it 
can be compensated by linear scaling. This procedure is strictly depends on which 
parameter is used to define the intensity of the strong motion and therefore to define the 
reference for scaling. If multiple spectral values are used, high scaling factors can be 
allowed, on the other hand if a more “local” parameter such as PGA, PGV, Sa(T1) is used 
it can give biased results. The literature on this topic is limited because even if many 
authors studied the correlation of structural response with different ground-motion 
parameters few of them investigated the possible presence of bias in structural response. 
In fact the aim of these works was mainly trying to find the best descriptor of the intensity 
ground-motion effects on building. Furthermore in the majority of these studies very 
simple structures and small ground-motion sets were used. 
Epsilon. Recently it has been shown that if the intensity of the ground-motion is measured 
via Sa(T1), ε is a strong indicator of spectral shape. Therefore if this intensity measure is 
used spectral shape can be included in the selection by using ε. 

2.5.2 Selection based on UHS 
Most of the current building codes prescribe to select sets of ground-motions such as their 
“mean” response spectrum matches the UHS given by the codes. This is probably the 
state of the practice in many engineering companies. The aim of these procedures is 
trying to define a set of records giving a structural response with the same level of 
probability of occurrence of the UHS. Some critical aspects can be highlighted and could 
be investigated: 

- Definition of the reference spectrum. In particular many codes do not contain 
information on which definition of spectral is used in their spectra (geometric 
mean, random component etc...). Furthermore, given the non-linear behaviour of 

 
Figure 2.9. Ratios of the acceleration response spectra in the principal directions of ground-motions. 
γ2 is the ratio of the spectral component in the principal direction 2 and the spectral component in the 
principal direction 1. γ3 is the ratio of the spectral component in the principal direction 3 and the 
spectral component in the principal direction 1. After Lopez et al. 2006. 



Chapter 2 – Ground motion selection and scaling issues 

100 
 

the structures, does a set of  records matching a given UHS give a mean structural 
response with the desired probability of occurrence? 

- Components of the ground-motion and direction. Many codes do no give 
instructions on which of the two horizontal components should be used and usually 
ground-motions are used according to the recording-axes: no rotation is 
considered. This is particularly important since structural failure probability can be 
strongly dependant on ground-motion orientation if structures are designed 
according to definitions of the response spectrum not dependant on orientation 
(e.g. geometric mean). 

- Definition of matching. Which period range should be considered? Which 
tolerance should be allowed? Can the median structural response be affected by the 
dispersion of the ground-motions around their mean? And therefore, should this 
dispersion be controlled? 

- Number of ground-motions. Many codes allow to use 3 records only and to 
consider the maximum structural response. Many authors suggested that this 
practice should be abandoned. 

- Limits on scaling. Many codes do no give any instructions about scaling.  
- Records from the same event. No prescription are usually given about the number 

of records obtained by the same event that can be used. Does this affect structural 
response? 

- Magnitude and distance. Many codes do not prescribe limits on magnitude and 
distance. How does this affect structural response? 

2.5.3 Selection procedures based on non-linear structural 
response 

Some authors proposed to adopt simple non linear SDOF systems as proxies of more 
complex structures and to select ground motions with characteristics similar to those of 
the records giving a desired value of the proxy response. The main issue in these methods 
is related to the definition a simple system able to mimic the dynamic behaviour of more 
complex structures. 

2.5.4 Selection procedures for probabilistic approaches. 
Recently Performance Based Earthquake Engineering procedures received great attention 
by many researchers. The aim of these procedures is to evaluate the probability of 
reaching some given limit states. To do so structural response must be combined with 
seismic hazard in a fully probabilistic framework. The best state of the practice is to use 
an Intensity Measure as interface variable, i.e. expressing both hazard and structural 
response in terms of this variable. Therefore the selection and scaling of ground-motions 
is strictly related to this interface variable. The most attractive possibility would be 
selecting ground motions in terms of the IM only, for this to be done the IM should have 
some properties as: efficiency, sufficiency, hazard computability, scaling robustness. For 
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many years Sa(T1) has been used as IM and it has been stated that ground-motion could 
be select with little regard for magnitude and distance, recently it has been shown that 
doing so can produce biased results. At the state of the practice no IM seem to have the 
required properties to allow for a “IM” based selection. The current state of the best 
practice is to use Sa(T1) as IM and select ground motions according to a Conditional 
Mean Spectrum. 
Finally, in fully probabilistic procedures the variability of structural response is as 
important as its mean value, because the probability distribution of the structural response 
has to be estimated. Some procedures have been proposed to define set of ground-motions 
with this aim but much research is still required in this field.   

2.5.5 Bi-directional problems 
- Definition of the reference spectrum and of scaling procedures. Definition of the 

reference spectrum is a crucial aspect in bidirectional problems. The most widely 
adopted definition is the geometric mean of the two horizontal components. This 
definition does not account for all the possible orientations of the ground motion. 
Therefore criteria based on GMRotD50 or GMRotI50 could produce more stable 
results. 

- Effects of the vertical component of the motion: usually the vertical component of 
the motion is not included in structural analyses. Recently it has been shown that 
the high frequency content of this component can be particularly important. No 
criteria have been proposed in the literature about the ground-motion selection 
criteria in this case. This is particularly important if disaggregation is used, because 
the controlling scenarios could be different for the vertical and the horizontal 
ground motion. 
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3 Accelerogram selection and 
scaling procedures for estimating the 
distribution of drift response2 
 

3.1 Introduction 

For the majority of applications in which the effects of earthquakes on structures are 
considered, seismic actions are represented in the form of pseudo-acceleration or 
displacement response spectra. There are, however, many situations for which the 
specification of structural actions via a response spectrum is deemed insufficient. In 
such cases, the structural response for a given earthquake scenario is estimated by 
subjecting the structure to acceleration time-histories that are compatible with the 
scenario in question. These time-domain analyses are far more computationally 
expensive than response-spectrum-based alternatives but with ongoing improvements in 
the power of desktop computers commonly encountered in design offices, this issue is 
becoming less of a constraint. Recent work, such as that of Hancock et al. (2008), has 
demonstrated that robust estimates of the median structural response of a typical MDOF 
structure may be obtained with the use of very few accelerograms if their spectra 
initially have an appropriate shape and the records are then scaled and adjusted with 
wavelets to ensure that they have particular characteristics. The study of Hancock et al. 
(2008),  is just one recent example of the numerous approaches that have been proposed 
for selecting, scaling and modifying real accelerograms in order to obtain robust 
estimates of the median structural response. Approaches based upon linearly scaling or 
wavelet adjusting real accelerograms tend to be favoured now over earlier procedures 
that were proposed for synthesizing spectrum-compatible accelerograms (Gasparini and 
Vanmarcke, 1976; Boore, 2003) as these earlier approaches result in accelerograms with 
unrealistic energy contents (Naeim and Lew, 1995; Bommer and Acevedo, 2004). 
Whether or not accelerograms are obtained through scaling or adjustment of real 
                                                 

2 This Chapter has been written with the supervision of Prof. J.J. Bommer and Dr. P.J. Stafford, 
Department of Civil and Environmental Engineering, Imperial College, London, UK. 
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records or via synthetic means, the objective once the suite has been obtained is 
generally to determine a central estimate, such as the mean or median, of the structural 
response that may then be used for design purposes. As a result, the research that has 
been conducted thus far has principally focused upon how to estimate the median 
response most efficiently as well as on how to identify the characteristics of records that 
lead to biased estimates of this response measure. There are numerous applications for 
which knowledge of a central estimate of the response is not sufficient and for which 
one requires an estimate of the full distribution of the structural response. Generally, 
these applications are related to the assessment of existing structures whereas the 
approaches focusing on estimating the median response are primarily geared towards 
the specification of loading for structural design, in fact the great majority of building 
codes require to estimate the median structural response through an ensemble of ground 
motions (although, ultimately, knowledge of the distribution of response may have 
implications for the specification of design requirements in codes). For example, in 
earthquake loss assessment one must not only consider the potential damage associated 
with the expected response, but also the damage due to the full range of possible 
responses that may be experienced under a particular scenario. Likewise, when 
undertaking structural assessments one should consider the utility of alternative options 
for retrofit or demolition on the basis of costs estimated from consideration of all 
possible levels of future damage that might be experienced by the structure in question. 
Intuitively, one would expect that more time-history analyses are required in order to 
estimate the characteristics of the full distribution of a particular response measure than 
are required to obtain an estimate of the median response. The purpose of this study is 
to outline an efficient approach via which the full distribution of drift response may be 
approximated using estimates of the first two moments of the distribution. While the 
numbers of records that are required under this approach are greater than that required 
to estimate the median alone, it is shown that the numbers of records are not as high as 
one might imagine and that it is plausible to run these analyses in a design-office 
environment. 

3.2 Overview of the procedure 

3.2.1 Definition of the reference distribution 
The objective of the research presented herein is to identify methods via which the 
distribution of drift response may be estimated for a given seismological scenario. In 
order to evaluate the performance of any approach one must first establish a basis for 
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comparison. In the present case the true distribution of drift response is unknown and 
we must therefore define some reference distribution. To this end the approach adopted 
by Hancock et al. (2008), is implemented whereby a structure is analyzed under the 
action of a very large number of unscaled natural accelerograms. 
The drift responses that are obtained during these analyses are then compiled and 
empirical models that relate the calculated drift values to common seismological 
parameters are derived via regression analysis. An empirical model for estimating 
spectral accelerations over a broad range of periods is also derived. Given these models 
one may take an earthquake scenario, defined during a seismic hazard analysis, and 
obtain the distribution of spectral acceleration or drift values that are associated with 
this scenario. Provided that the dataset used for the development of the empirical 
models is large and that the seismological scenario being considered is not beyond or 
near the magnitude-distance range of applicability of the models (Bommer et al., 2007) 
it is reasonable to assume that the distributions thus obtained will be good 
approximations to the true, but unknown, distributions. Although this assumption 
cannot be validated, most empirically-based methods within engineering seismology 
and earthquake engineering are founded upon similar assumptions. 
A fundamental assumption of the regression analyses that have been conducted and are 
presented herein is that the ordinates of spectral acceleration and the inter-storey and 
roof drifts are lognormally distributed. This assumption has been used by many 
researchers (Bazzurro et al., 1998; Shome et al., 1998; Cornell et al., 2002; Baker and 
Cornell, 2006b; Stoica et al., 2007) and is well supported by the distributions of 
residuals that are observed following the regression analyses (see 0). This is of 
particular importance in the present study as by assuming a lognormal distribution 
during the regression analysis we are also making an implicit assumption regarding the 
nature of the reference distribution. Making the assumption that the drift values are 
lognormally distributed is also very convenient as it means that the distribution of drift 
may be fully described by the first and second moments of the drift only, i.e., if one can 
obtain robust estimates of the mean and standard deviation of the logarithmic drift then 
the complete distribution is known (Shome et al., 1998; Cornell et al., 2002). 

3.2.2  Description of the procedure 
The large number of time-history analyses that are required for deriving the empirical 
relationships, and hence the reference distributions, may also be used to infer 
relationships among the ground-motion parameters and measures of structural response. 
For example, if one plots the calculated inter-storey drifts against the spectral 



Chapter 3 – Accelerogram selection and scaling procedures for estimating the distribution 
of drift response 

106 
 

accelerations at the fundamental period of the structure one is able to observe very 
strong dependencies. Such dependencies are useful for identifying functional 
relationships among different parameters such as spectral acceleration and roof drift, 
and the existence of such trends implies that a robust model for the median drift may be 
obtained from the median spectral acceleration. For the purposes of the present study, 
however, the distributions of spectral acceleration and drift values about these median 
values are more important. In particular if it is possible to demonstrate that a higher-
than-average, or positive epsilon (Shome et al., 1998; Cornell et al., 2002) spectral 
acceleration also leads to a higher-than-average drift in a systematic manner (this is not 
obvious, given the non-linear behaviour of structures under earthquake loading) then we 
may be well placed to relate the distribution of drift values to the distribution of spectral 
acceleration values.  
The above reasoning forms the basis of the approach taken in this study. First a large 
number of time-history analyses are conducted and the results of these analyses are used 
to derive empirical models for inter-storey and roof drift. These models are then 
analysed in order to look for correlations that exist among the residuals of the models 
for the drifts and the residuals of the model for spectral acceleration at the initial 
fundamental period of the structure. If strong correlations exist then it is possible to 
relate particular levels of spectral acceleration to particular levels of drift response. 
Hence, the rationale is that if one linearly scales a record to a particular level above or 
below the median spectral acceleration for a given scenario, then one may anticipate 
that the drift response will also be above or below the median drift response to a similar 
degree, as measured in units of standard deviation (assuming a positive correlation in 
this case). If such inferences are possible then all that remains is to identify the optimal 
way of mapping levels of spectral acceleration into levels of drift and hence recovering 
the distribution of drift. Two different approaches are taken for mapping the distribution 
of logarithmic spectral acceleration into the distribution of logarithmic drift. It must be 
noted that although two approaches are investigated herein, there are many other 
alternative approaches for representing a continuous distribution by a discrete 
approximation (Cornell et al., 2002; Baker and Cornell, 2006b). The first approach that 
is taken is to subdivide the realm of possible logarithmic spectral acceleration values 
into ranges that have an equal probability of occurring. This is achieved by subdividing 
the range of cumulative probabilities into equal intervals and then using the inverse 
cumulative distribution function to obtain the logarithmic spectral acceleration values 
that correspond to the centres of these probability intervals. The logarithmic spectral 
acceleration values are identified by their corresponding epsilon values, i.e., the number 
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of standard deviations above the median value. This approach is demonstrated in the left 
and centre panels of Figure 3.1, where three- and five-point approximations to the 
standard normal distribution are shown. Note that although the ordinate is subdivided 
into equal intervals the resulting epsilon values on the abscissa are not equally spaced 
for four-point approximations and higher. This method of approximating a continuous 
distribution is rather common due to its simplicity (Keefer and Bodily, 1983), but it is 
known to have some deficiencies. For example, Miller and Rice (1983) demonstrate that 
while the mean value of both the cumulative and discrete distributions will be the same, 
the even moments of the discrete distribution should be less than those of the 
continuous distribution. The second approach adopted is more sophisticated and makes 
use of an approximation based upon Gauss-Hermite quadrature.  
This latter approach is based on the results of Miller and Rice (1983) who have 
demonstrated that the moments of a continuous distribution fE may be exactly replicated 
by a discrete distribution consisting of epsilon values (nodes) and associated 
probabilities (weights) that correspond to the nodes and weights used in Gauss-Hermite 
quadrature. This approach approximates the integral of the product of a function ( )g ε  
and a weighting function ( )w ε  by evaluating ( )g ε  at several values iε  of ε , and 
computing a weighted sum of the results: 

 ( ) ( ) ( )
1

nb

i ia
i

g w d w g
=

ε ε ε = ε∑∫  (3.1) 

where wi is the i-th weight. To establish the correspondence between the numerical 
integration formula and a discrete approximation of a probability distribution, Miller 
and Rice (1983) associated the distribution with the weighting function, ( )w ε , and the 
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Figure 3.1. Three (a) and five (b) point approximations of a normal probability distribution
accordingly to the equal-probability rule. Hermite polynomials (c), and their zeros used for three and
five point approximation procedure proposed by 1983. 
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probabilities, pi, with the weights wi. Furthermore they approximated ( )g ε  by a 
polynomial, and chose iε  and pi (or wi) to provide an adequate approximation for each 
term of the polynomial. Thus, one must find a set of values iε  and probabilities pi such 
that: 

 
1

0,1,2,
N

k k k
E i i

i

f d p k
+∞

=−∞

ε = ε ε = ε =∑∫ …  (3.2) 

where ⋅  stands for expected value. It is possible to demonstrate that the iε  values to 
be used correspond to the roots of Hermite polynomials (Miller and Rice, 1983). The n-
th order Hermite polynomial may be defined as 

Figure 3.2. Reference spectra defined according to a) equal-probability three point approximation, b)
Gauss-Hermite quadrature three point approximation, c) equal-probability five point approximation
and d) Gauss-Hermite quadrature five point approximation. 
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 (3.3) 

which leads to the following expressions for the third- and fifth-order polynomials 

 ( ) 3
3 3H ε = ε − ε  (3.4) 

 ( ) 5 3
5 10 15H ε = ε − ε + ε  (3.5) 

These polynomials along with their roots are plotted in Figure 3.1. The roots of these 
polynomials correspond to the epsilon values that should be used to define target levels 
for scaling the accelerograms. The results that are obtained from the structural analyses 
conducted using records scaled according to these epsilon values are then combined 
with the corresponding weights to obtain estimates of the moments of the distribution. 
The moments of the logarithmic drift may be expressed as: 

10
−1

10
0

10
1

10
2

10
3

5

5.5

6

6.5

7

7.5

8

8.5

R [km]

M

 

 
R
St
So
VSo

Figure 3.3. Moment magnitude – distance distribution of the dataset used. 
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n

k k
i i
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p k

=

δ = δ =∑  (3.6) 

Where ( )10log kδ  is the k-th moment of log10(δ), i.e., the mean and variance of log10δ 
correspond to k = 1 and k = 2 respectively, and pi are weights which are given by Miller 
and Rice (1983). 
From a statistical point of view this second approach should perform better than the 
simpler first approach as the moments obtained via Eq. (3.6) using the discrete nodes 
and weights are identical to the moments of the equivalent continuous distribution 
(Spiegel and Liu, 1999). Figure 3.1 presents examples corresponding to three- and five-
point approximations to normal distributions and these approximations are those that we 
opt to use for the remainder of the analysis. However, it should be noted that there is no 
particular reason for having chosen to use three- and five-point approximations. 
Whether or not superior performance may be achieved using alternative orders for the 
polynomials remains to be tested. Once the epsilon values have been defined, these may 
be used in conjunction with the empirical model for spectral acceleration in order to 
define either three or five target spectra that correspond to a particular seismological 
scenario. Examples of three and five target spectra obtained according to the two 
aforementioned criteria are given in Figure 3.2.  Note that in this study the common 
assumption that the spectral ordinates are fully correlated is adopted, i.e., for a given 
target spectrum the ordinates at every period are the same number of standard 
deviations away from the median spectral level. This is a widely adopted assumption, 
the first attempt to consider correlation among spectral values are being made by Baker 
et al. (2006b) and Jayaram et al. (2008) (. 
The scaled accelerograms whose spectra best match these multiple target spectra, as 
quantified by the root-mean-square difference between the logarithmic target and 
candidate spectra over a range of periods, are then used as inputs into time-history 
analyses and the drift responses of the structure under these records are obtained. The 
statistics of the drift values are then compared to the statistics of the reference 
distribution defined by the empirical models derived from the time-history analyses 
conducted on the unscaled accelerograms. 

3.3 Case study 

The principle of the procedure is very simple but it relies heavily on the assumption that 
the characteristics of ground-motions that lead to high spectral acceleration values also 
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lead to high drift values. In order to test this assumption an example is necessarily 
required. The particular application of the proposed procedure is outlined in the 
following sections. 

3.3.1 Ground-motion dataset 
Dataset Accelerograms were selected from a subset of the records in the Next 
Generation of Attenuation (NGA) project database (Power et al., 2006; Power et al., 
2008) . A total of 1666 accelerograms were used for the analysis. This subset was 
defined by excluding all records from the Chi-Chi earthquake sequence, to prevent its 
1813 accelerograms dominating the results, as well as any records with only one 
horizontal component and records for which appropriate metadata were not available 
(moment magnitude, Mw, Joyner Boore distance, RJB, and shear wave velocity over the 
topmost 30 m, Vs30). All of the selected records have a maximum usable period of at 
least 3 seconds (Boore and Bommer, 2005), i.e. records where either component has a 
high-pass filter frequency greater than 0.33 Hz (less than 3s period) have been excluded. 
The site classification is based on the average shear-wave velocity over the upper 30 m 
(Vs30). The magnitude-distance distribution of the dataset is given in Figure 3.3. For a 
more straightforward understanding of the data distribution in Figure 3.3 the record are 
grouped into three categories according to their Vs30 value. The grouping follows Boore 

Figure 3.4. Geometry of the case study frame structure considered. 
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and Joyner (1982) and Ambraseys et al. (1997) as follows: sites with Vs30 higher than 
760 m/s are classified as rock (R), sites with Vs30 between 360 m/s and 760 m/s are 
classified as stiff soil (St); sites with a Vs30 between 360 m/s and 180 m/s are classified 
as soft soil (So) and those with Vs30 lower than 180 m/s as very soft (VSo). The style-
of-faulting was not taken into account because tests on regression results showed it had 
little significance. A detailed list of the ground-motion database used is provided in 
Appendix A. 

3.3.2 Structural model and nonlinear analysis 
A six-storey, three-span reinforced-concrete frame building is considered in this study.  
The structure has an initial fundamental period of 0.93 seconds (after the application of 
gravity loads). The time-domain analyses take into account both geometric nonlinearity 
and material inelasticity. Structural members are modelled using force-based fiber 
elements (Spacone et al., 1996b; Spacone et al., 1996c) which have the advantage, over 
displacement-based approaches, of satisfying equilibrium in the nonlinear range, 
alleviating the need for mesh refinement. The confined concrete constitutive behaviour 
is modelled using the model proposed by Mander (Mander et al., 1989), the unconfined 
concrete constitutive behaviour is modelled using the model developed by Saenz Pinto 
(Ceb-Fip, 1993) and the steel constitutive behaviour is modelled using the Menegotto–
Pinto’s model (Menegotto and Pinto, 1973).  A confinement factor of 1.2 was 
considered for the confined concrete. All nonlinear time-history analyses were 
conducted using the software OpenSees (McKenna et al., 2000). Figure 3.5 gives push-
over curves for the columns at the different floors of the structure (the curves were 
obtained individually for each column). Gravity and live loads were applied before 
performing the push-over procedure. 

Table 3.1. Reinforcements in the members of the case study structure. 
Member As 

[cm2] 
As'  
[cm2] 

Columns   
I Storey 6.03 6.03 
II Storey 6.03 6.03 
III Storey 6.03 6.03 
IV Storey 6.03 6.03 
V Storey 4.02 4.02 
VI Storey 4.02 4.02 
Beams   
All 8.17 3.08 
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Figure 3.5. Force-drift curves for the columns of the different storeys of the case study structure. 

3.4 Regression Analyses 

In this study, regression analysis is used to derive predictive equations for spectral 
acceleration, for interstorey drifts and for roof drift. According to the results of some 
preliminary statistical tests performed the same statistical model was used for spectral 
acceleration and interstorey drifts: 

 ( ) ( ) ( ) ( )2 2 2
10 1 2 3 4 5 10 6 7 10 30log log logw w w JBY c c M c M c c M R c c Vs= + + + + + +  (3.7) 

Here log10(Y) is the base ten logarithm of the parameter to be regressed (i.e. spectral 
acceleration at different periods and interstorey drifts); Mw is moment magnitude 
(Hanks and Kanamori, 1979); RJB is the closest distance to the surface projection of the 
fault rupture, as proposed by Joiner and Boore (1981); Vs30 is the shear-wave-velocity 
over topmost 30 m. 
The functional form adopted in this study is similar to that previously used by Hancock 
et al. (1981) but with two key differences being the inclusion of the average shear-wave 
velocity over the uppermost 30 m at the site as an additional predictor variable and the 
inclusion of a magnitude dependant geometric spreading. The functional form adopted 
for this study also omits the previously included dummy variables for style-of-faulting. 
The style of faulting is not included as the regression analyses did not lead to 
statistically significant coefficients for the dummy variables that we used to account for 
style-of-faulting. It is well known that style-of-faulting influences the amplitude of 
ground motions, but one might argue that this effect influences spectral shape. While in 
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some models the shape will be modified slightly by the style-of-faulting factors it is 
certainly not a significant effect and it is not included in all of the models. For example, 
the Abrahamson and Silva (2008a) NGA model, that can be considered the most 
comprehensive model available has a constant factor for style-of-faulting for normal 
events across all periods from PGA to 10 seconds. Although their factors for reverse 
events do vary with period, the effect is very small and hardly influences spectral shape. 
Furthermore another key difference may be found in the adopted structure for the 
variance. The total standard deviation, σT, of each empirical model may be decomposed 
into three independent components: the inter-event standard deviation, σE; the intra-
event standard deviation, σA; and the inter-component standard deviation, σC, which 
must be considered when both horizontal components of a ground-motion recording are 
used in the regression analysis, as is done in this study (Boore et al., 1997; Douglas, 
2003; Boore and Bommer, 2005; Baker and Cornell, 2006c). As these three components 
of variability are independent, the total standard deviation may be represented as:  

 2 2 2
T E A Cσ = σ + σ + σ  (3.1) 

The coefficients and the variance components of the models were obtained using the 
nonlinear mixed effects procedure of Lindstrom and Bates (1990) as implemented in the 
statistical computing package R (Pinheiro and Bates, 1995; R Development Core Team, 
2008).  

3.4.1 Spectral accelerations and PGA 
In order to define the reference acceleration spectra, regression analysis was used to develop ground-
motion prediction equations (attenuation relationships) for acceleration spectrum values at 66 periods 
and for peak ground acceleration. The period values were defined accordingly to Brady et al. (1973). 
Figure 3.6 and Figure 3.7 give an example of attenuation of PGA over magnitude and distance.  
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Table 3.2 gives the so obtained regression coefficients as well as the standard 
deviations. 

 
Figure 3.6. Attenuation of PGA over magnitude for ground motions recorded at distances in the 
interval [18.3 km, 41.43 km]. Circles indicate mean values of PGA for different magnitude bins. 

 
Figure 3.7. Attenuation of PGA over distance for ground motiond generated by earthquakes with 
magnitude in the interval [6.5, 6.7]. Circles indicate mean values of PGA for different distance bins. 
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Table 3.2. 5% damping spectral values: estimates of the regression parameters and of the standard 
deviations of Equation (3.7). Predicted spectral accelerations are in m/s2. 
T [s] c1 c2 c3 c4 c5 c6 c7 σΕ σC σΑ σT 
PGA -2.13 1.41 -0.11 -2.31 0.19 8.90 -0.27 0.11 0.20 0.07 0.24 
0.05 -1.82 1.40 -0.12 -2.71 0.23 9.86 -0.19 0.13 0.21 0.07 0.25 
0.055 -1.47 1.32 -0.11 -2.74 0.23 10.46 -0.19 0.12 0.21 0.06 0.25 
0.06 -1.30 1.29 -0.11 -2.77 0.23 10.91 -0.18 0.13 0.21 0.06 0.25 
0.065 -1.48 1.20 -0.09 -2.38 0.17 10.89 -0.14 0.14 0.21 0.06 0.26 
0.07 -1.23 1.13 -0.09 -2.33 0.16 11.22 -0.15 0.13 0.21 0.06 0.26 
0.075 -0.70 1.00 -0.08 -2.43 0.18 11.72 -0.14 0.13 0.21 0.06 0.25 
0.08 -0.43 0.99 -0.08 -2.63 0.20 12.50 -0.14 0.12 0.21 0.06 0.25 
0.085 -0.28 0.96 -0.08 -2.65 0.20 12.66 -0.14 0.12 0.21 0.06 0.25 
0.09 0.03 0.88 -0.07 -2.65 0.20 12.85 -0.15 0.13 0.21 0.06 0.25 
0.095 0.19 0.86 -0.07 -2.71 0.21 13.43 -0.16 0.13 0.21 0.06 0.25 
0.1 0.23 0.88 -0.08 -2.74 0.21 13.69 -0.17 0.12 0.21 0.06 0.25 
0.11 0.07 0.97 -0.08 -2.88 0.23 14.33 -0.17 0.12 0.21 0.06 0.25 
0.12 0.47 0.85 -0.07 -2.82 0.22 14.72 -0.18 0.12 0.21 0.06 0.26 
0.13 0.31 0.98 -0.09 -3.05 0.25 15.70 -0.20 0.13 0.21 0.07 0.26 
0.14 0.55 0.96 -0.09 -3.18 0.26 16.26 -0.20 0.12 0.21 0.07 0.26 
0.15 0.45 0.98 -0.09 -3.19 0.27 16.01 -0.19 0.12 0.21 0.07 0.25 
0.16 0.21 1.05 -0.09 -3.17 0.27 15.95 -0.19 0.12 0.21 0.07 0.26 
0.17 -0.11 1.13 -0.10 -3.10 0.26 15.83 -0.20 0.12 0.21 0.07 0.26 
0.18 -0.68 1.28 -0.11 -3.05 0.26 15.76 -0.20 0.12 0.21 0.07 0.26 
0.19 -0.39 1.14 -0.10 -2.87 0.23 15.25 -0.20 0.12 0.22 0.07 0.26 
0.2 -0.39 1.12 -0.09 -2.81 0.23 15.04 -0.21 0.11 0.22 0.07 0.25 
0.22 -0.37 1.15 -0.10 -2.87 0.24 14.39 -0.25 0.11 0.22 0.07 0.25 
0.24 0.09 1.00 -0.08 -2.76 0.23 13.39 -0.28 0.11 0.21 0.08 0.25 
0.26 0.03 0.93 -0.08 -2.44 0.19 11.79 -0.29 0.11 0.22 0.08 0.26 
0.28 -0.05 0.91 -0.07 -2.21 0.17 10.38 -0.32 0.12 0.22 0.08 0.26 
0.3 -0.37 0.98 -0.08 -2.08 0.15 9.33 -0.35 0.11 0.22 0.08 0.26 
0.32 -1.25 1.25 -0.10 -2.10 0.16 8.64 -0.37 0.12 0.22 0.08 0.27 
0.34 -1.70 1.37 -0.10 -2.07 0.16 8.09 -0.38 0.12 0.22 0.08 0.27 
0.36 -2.27 1.57 -0.12 -2.22 0.18 8.24 -0.39 0.12 0.23 0.08 0.27 
0.38 -2.84 1.73 -0.13 -2.25 0.19 7.85 -0.39 0.12 0.23 0.09 0.27 
0.4 -3.04 1.74 -0.13 -2.07 0.17 7.47 -0.38 0.13 0.23 0.08 0.28 
0.42 -3.42 1.82 -0.14 -1.98 0.16 7.24 -0.38 0.13 0.23 0.09 0.28 
0.44 -3.68 1.90 -0.14 -1.99 0.16 7.29 -0.39 0.14 0.23 0.09 0.28 
0.46 -3.80 1.94 -0.14 -1.99 0.16 7.19 -0.41 0.14 0.23 0.09 0.28 
0.48 -3.89 2.01 -0.15 -2.07 0.17 7.21 -0.43 0.14 0.23 0.09 0.28 
0.5 -3.97 2.06 -0.16 -2.16 0.18 7.16 -0.45 0.14 0.23 0.09 0.28 
0.55 -3.91 2.01 -0.15 -2.00 0.17 6.16 -0.48 0.14 0.24 0.09 0.29 
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T [s] c1 c2 c3 c4 c5 c6 c7 σΕ σC σΑ σT 
0.6 -4.34 2.11 -0.16 -1.88 0.16 5.08 -0.51 0.16 0.24 0.09 0.30 
0.65 -4.09 2.04 -0.15 -1.89 0.16 4.50 -0.54 0.16 0.24 0.09 0.30 
0.7 -3.44 1.83 -0.14 -1.83 0.16 3.79 -0.56 0.17 0.24 0.09 0.31 
0.75 -3.27 1.76 -0.13 -1.80 0.16 3.33 -0.57 0.17 0.24 0.09 0.31 
0.8 -3.93 1.94 -0.14 -1.85 0.16 3.25 -0.56 0.16 0.24 0.09 0.31 
0.85 -4.59 2.15 -0.16 -1.98 0.18 3.37 -0.55 0.16 0.24 0.10 0.31 
0.9 -5.07 2.31 -0.17 -2.11 0.20 3.64 -0.56 0.16 0.24 0.10 0.31 
0.95 -5.63 2.49 -0.19 -2.21 0.22 3.88 -0.56 0.16 0.24 0.10 0.31 
1 -6.07 2.64 -0.20 -2.27 0.22 4.22 -0.57 0.16 0.24 0.10 0.30 
1.1 -7.57 3.09 -0.23 -2.21 0.22 4.07 -0.61 0.16 0.24 0.10 0.31 
1.2 -7.65 3.05 -0.23 -2.03 0.19 3.71 -0.62 0.16 0.25 0.10 0.31 
1.3 -7.72 3.04 -0.22 -1.93 0.18 3.52 -0.64 0.16 0.25 0.10 0.31 
1.4 -7.76 3.01 -0.22 -1.86 0.17 3.57 -0.63 0.16 0.24 0.10 0.31 
1.5 -7.52 2.92 -0.21 -1.88 0.17 3.69 -0.65 0.16 0.24 0.10 0.31 
1.6 -7.85 3.01 -0.22 -1.90 0.17 3.59 -0.66 0.16 0.24 0.10 0.31 
1.7 -8.72 3.25 -0.23 -1.89 0.17 3.26 -0.67 0.16 0.24 0.10 0.31 
1.8 -8.91 3.30 -0.24 -1.88 0.17 2.94 -0.68 0.16 0.25 0.11 0.31 
1.9 -9.12 3.34 -0.24 -1.83 0.17 2.65 -0.69 0.16 0.24 0.11 0.31 
2 -9.20 3.34 -0.24 -1.87 0.18 2.46 -0.69 0.16 0.25 0.11 0.31 
2.1 -9.03 3.28 -0.23 -1.93 0.19 2.41 -0.69 0.16 0.25 0.11 0.31 
2.2 -8.79 3.21 -0.23 -1.99 0.19 2.44 -0.69 0.16 0.25 0.11 0.32 
2.3 -8.90 3.24 -0.23 -1.98 0.19 2.42 -0.70 0.17 0.25 0.11 0.32 
2.4 -9.08 3.26 -0.23 -1.88 0.18 2.39 -0.70 0.17 0.25 0.11 0.32 
2.5 -9.21 3.26 -0.23 -1.79 0.16 2.39 -0.70 0.17 0.25 0.11 0.32 
2.6 -9.23 3.23 -0.22 -1.73 0.16 2.41 -0.71 0.17 0.25 0.11 0.32 
2.7 -9.25 3.20 -0.22 -1.65 0.14 2.41 -0.71 0.17 0.25 0.11 0.32 
2.8 -9.33 3.19 -0.22 -1.61 0.14 2.42 -0.72 0.17 0.25 0.11 0.32 
2.9 -9.51 3.22 -0.22 -1.61 0.14 2.47 -0.71 0.17 0.25 0.11 0.32 
3.0 -9.69 3.25 -0.22 -1.62 0.14 2.57 -0.70 0.16 0.25 0.11 0.32 
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Table 3.2It should be noted that, the standard deviations vary with period by cover the 
range (in base 10 logarithm) [0.24, 0.32] with generally increasing values with 
increasing period. These values are entirely consistent with other empirical ground-
motion models for spectral acceleration (e.g. Ambraseys et al., 2005; Akkar and 
Bommer, 2007b; Abrahamson and Silva, 2008a). 
Using the coefficients given in Table 3.2 together with Eq. (3.7) one can evaluate 
response spectra for different scenarios in terms of magnitude, distance, and shear wave 
velocity. As an example Figure 3.8 gives the median acceleration response spectra at 
5% damping predicted for sites with Vs30 = 1000 m/s at distances of 10, 50, 100 and 
200 km for a M = 6.5 event. Figure 3.9 and Figure 3.10 give the predicted attenuation 
over magnitude and distance of spectral acceleration at 0.5 s for sites with Vs30 = 1000 
m/s. 

 
Figure 3.8. Acceleration response spectra (5% damping ratio) predicted by the regressions developed 
in the present work (Mw=6.5; Vs30 = 1000 m/s). 
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Figure 3.9. Attenuation of spectral acceleration (5% damping ratio) over distance predicted by the 
regressions developed in the present work (Vs30 = 1000 m/s). 

 

 
Figure 3.10. Attenuation of spectral acceleration (5% damping ratio) over magnitude predicted by the 
regressions developed in the present work. 



Chapter 3 – Accelerogram selection and scaling procedures for estimating the distribution 
of drift response 

120 
 

 
Figure 3.11. Histogram of log10(Sa(0.5 s)), the solid black line is a normal distribution and the dashed 
line is obtained through a kernel smoothing procedure. 

 
Figure 3.12. Dependency of standardized residuals on fitted values of Sa(0.5 s). 

 
Figure 3.13. Dependency of standardized residuals on magnitude for Sa(0.5 s). 
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Figure 3.14. Dependency of standardized residuals on distance for Sa(0.5 s). 

 
Figure 3.15. Dependency of standardized residuals on base 10 logarithm of shear wave velocity over 
the upper 30 meters for Sa(0.5s). 



Chapter 3 – Accelerogram selection and scaling procedures for estimating the distribution 
of drift response 

122 
 

 
Figure 3.16. Histogram of the standardized residuals for Sa(0.5 s). The solid black line is a standard 
normal distribution and the dashed line is obtained through a kernel smoothing procedure. 

 
Figure 3.17. Normal quantile-quantile plot for the standardized residuals for Sa(0.5 s). 

When performing the regressions the goodness of fit was checked for all the parameters 
considered, and in particular the hypothesis of normal distribution of log10(Y) was 
verified (Y being the generic variable considered). As an example some diagnostic plots 
for the regressions performed for Sa(0.5 s) are reported in Figure 3.11-Figure 3.17. Figure 
3.11 shows a histogram which allows to check the normality of the logarithm of the data. 
The solid line represents a reference normal distribution and the dashed line was obtained 
using a kernel smoothing procedure on the data.  
A plot of the standardized residual versus the fitted values is depicted in Figure 3.12. No 
dependency of the standardized residual on the fitted values can be observed, the average 
residual is 0 and its distribution can be assumed constant with good approximation. 
Similar plots investigating the presence of trends of the residuals versus distance, 
magnitude and shear wave velocity are given in Figure 3.13-Figure 3.15. These plots 
confirm the goodness of the regression. Finally Figure 3.16 and Figure 3.17 allow to 
check the normality of the residuals, in fact Figure 3.16 reports an histogram of the 
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residuals, it can be observed that their distribution (dotted line) is pretty close to a normal 
distribution (solid line) and that their mean value is 0. Figure 3.17 gives a quantile-
quantile plot which allows to check the same assumptions, apart from little deviations in 
very high and low quantiles the normality hypothesis can be accepted. It should be noted 
that other attenuation relationship for spectral accelerations available in the literature 
could have been used to estimate spectral acceleration distribution. In the present work it 
was chosen to develop specific relationships in order to keep the procedure as much 
internally consistent as possible in order to reduce uncontrollable source of error.  

3.4.2 Interstorey drifts 
As previously stated regression analysis was used to develop predictive equations for 
the demand measures under investigation. The predictive equations where then used to 
define the reference probability distributions of the demand measures. Goodness of fit 
tests showed that the same attenuation formula used for spectral acceleration could be 
used for interstorey and roof drifts as well. Examples of attenuation of the second floor 

Table 3.3. Estimates of regression coefficients and standard deviations (see Equation (3.7)) for the 
interstorey drift ratios and for the roof displacement. Predicted interstorey drifts are not dimensional 
(drift ratios) and roof displacement is in m. 

Drif c1 c2 c3 c4 c5 c6 c7 σΕ σC σΑ σΤ 
I Storey -6.64 1.73 -0.12 -1.34 0.09 2.62 -0.57 0.17 0.09 0.24 0.31 
II Storey -7.12 1.98 -0.14 -1.53 0.12 3.12 -0.58 0.17 0.09 0.24 0.31 
III Storey -7.46 2.11 -0.15 -1.64 0.13 3.34 -0.57 0.17 0.09 0.24 0.31 
IV Storey -6.93 1.95 -0.14 -1.72 0.15 3.77 -0.55 0.16 0.08 0.23 0.29 
V Storey -7.37 2.21 -0.16 -1.82 0.15 2.89 -0.62 0.15 0.10 0.26 0.32 
VI Storey -7.07 2.02 -0.14 -1.80 0.16 3.38 -0.5 0.13 0.08 0.23 0.28 
Roof -6.36 2.16 -0.15 -1.65 0.14 3.05 -0.60 0.17 0.09 0.25 0.32 

 

Table 3.4. p-values for the statistical tests for normality conducted upon the considered drift 
measures. A-D: Anderson-Darling; K-S: Kolmogorov-Smirnov; L: Lilliefors; and S-W: Shaporo-
Wilks tests. Bold test indicates values less than 0.05. 
 Inter-event residuals Intra-event residuals 
Drift A-D K-S L S-W A-D K-S L S-W 
I St. 0.899 0.974 0.787 0.703 0.298 0.222 0.107 0.192 
II St. 0.704 0.928 0.741 0.570 0.543 0.400 0.479 0.114 
III St. 0.592 0.903 0.890 0.573 0.329 0.374 0.287 0.150 
IV St. 0.650 0.851 0.805 0.624 0.080 0.281 0.027 0.131 
V St. 0.539 0.778 0.754 0.456 0.001 0.035 0.001 0.000 
VI St. 0.293 0.696 0.786 0.237 0.000 0.093 0.031 0.000 
Roof 0.675 0.922 0.926 0.568 0.088 0.312 0.085 0.132 
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interstorey drift, δ2, over distance and magnitude are depicted in Figure 3.18 and Figure 
3.19, which if compared with Figure 3.6 and Figure 3.7 respectively, show many 
similarities. 
Diagnostic plots for second floor interstorey drift are reported in Figures 1.23-1.29. 
Their meaning is similar to those concerning the regression on Sa(0.5 s). It is worthily 
noted that Figure 3.22 supports the hypothesis of normal distribution of the base ten 
logarithm of the drift. Since attenuation relationships for drift ratios are not common in 
the literature (being Hancock et al. (2008) and Watson-Lamprey (2006) the only other 
examples), the normality of the logarithm of the drift ratios was checked using four 
different statistical tests. The so obtained results are given in Table 3.4. It can be 
observed that that the intra-event residuals for the interstorey drifts of the V storey are 
not lognormally distributed (at 5% significance); conflicting test results are obtained 
also for the VI storey with some tests indicating not to reject the hypothesis that the 
residuals are lognormally distributed. However, for all other storeys and for the roof 
drift all of the tests allow to retain the assumption that the logarithmic drift values are 
lognormally distributed. 

 
Figure 3.18. Second-floor interstorey drift: attenuation over distance. Data are grouped in RJB bins 
which mean values are depicted as circles. Interstorey drift shows an attenuation with a shape similar 
to that of PGA and spectral acceleration. 
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Figure 3.19 Second-floor interstorey drift: attenuation over magnitude. Data are grouped in M bins 
which mean values are depicted as circles. Interstorey drift shows an attenuation with a shape similar 
to that of PGA and spectral acceleration. 

 
Figure 3.20. Predicted attenuation over distance of the II storey drift. A Vs30 value equal to 1000 m/s is 
considered. 
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Figure 3.21.  Predicted attenuation over magnitude of the II storey drift. A Vs30 value equal to 1000 
m/s is considered. 

 
Figure 3.22. Histogram of log10(drift2), the solid black line is a normal distribution with and the 
dashed line is obtained through a kernel smoothing procedure. 
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Figure 3.23. Dependency of standardized residuals on fitted values. 

 
Figure 3.24. Dependency of standardized residuals upon magnitude. 

 
Figure 3.25. Dependency of standardized residuals on distance. 
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Figure 3.26. Dependency of standardized residuals on log10(vs30) 

 
Figure 3.27. Histogram of the standardized residuals for second storey drift. The solid black line is a 
standard normal distribution and the dashed line is obtained through a kernel smoothing procedure. 

 

 
Figure 3.28. Quantile-quantile plot for the standardized residuals for second storey drift regression. 



Chapter 3 – Accelerogram selection and scaling procedures for estimating the distribution 
of drift response 

129 
 

 
Figure 3.29. Correlation of regression residuals for first storey drift (left column), sixth storey drift  
(centre column) and roof drift (right column) with spectral acceleration at natural period of the 
structure considered 

3.4.3 Correlations between Sa(T1) and δ 
Following the development of the empirical models, the residuals were examined in 
order to identify the strength of any correlations that exists. For the purpose of 
determining the correlations it is important to make the distinction between the inter-
event and intra-event components of the total residuals. The correlations between all of 
the considered drift measures (the six inter-storey drifts and the roof drift) and the 
spectral acceleration at the initial fundamental period of the structure are very strong.  
The strength of these correlations may be appreciated by inspection of Table 3.5 where all 
of the calculated correlations are presented, as well as in Figure 3.29 where examples of 

Table 3.5. Correlation of regression residuals with spectral acceleration at natural period of the 
structure. 

 Correlation with Sa(T1) 
 I storey 

drift, δ1 
II storey 
drift, δ2 

III storey 
drift, δ3 

IV storey 
drift, δ4 

V storey 
drift, δ5 

VI storey 
drift, δ6 

Roof drift, 
δroof 

Inter-event 0.9640 0.9709 0.9742 0.9814 0.9615 0.9396 0.9788 
Intra-event 0.8930 0.9126 0.9240 0.9357 0.9250 0.9053 0.9349 
Total 0.9177 0.9327 0.9416 0.9515 0.9387 0.9224 0.9502 
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the normalized residuals are shown. The weakest correlation determined from the 
analyses of the unscaled records is between the spectral acceleration and the first storey 
drift, while the strongest correlations are found between the spectral acceleration and the 
fourth storey drift. 
The strength of these correlations strongly suggests that if one were to scale an 
accelerogram to a level of, say, one epsilon, then one should expect that the drift values 
that are obtained following a time-history analysis conducted with this scaled record will 
also be very close to a one epsilon (i.e., 84th-percentile) level in terms of drift. 
It could be argued that the strength of the correlation depends on the extent to which the 
structure is behaves nonlinearly during the analyses. Figure 3.30 shows the relationships 
between maximum interstorey drift ratios and Sa(T1) obtained by the analyses performed 
on the 1666 reference ground motions. Comparing Figure 3.30 with Figure 3.5 one can 
conclude that may ground motions bring the structure in the non linear range. 

3.4.4 Record Selection 
Once some reference acceleration response spectra have been defined by applying the 
theory of point approximations of continuous variables on the response spectra 
distributions predicted by attenuation relationships, accelerograms are to be selected 
according to those reference response spectra. This section describes the criteria 
adopted to select accelerograms consistent with the reference spectra. 

 
Figure 3.30. Relationship between maximum inter-storey drift and the spectral acceleration at the 
fundamental period of the structure, Sa(T1), found from the 1666 time-domain analyses conductedin 
this study using unscaled natural records. The gray shaded area indicates drift demands causing non 
linear behaviour of the structure- 
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3.4.4.1 Reference scenario 
Prior to describing the approach to record selection it necessary to define the 
seismological scenario that was considered for this case study. The scenario 
corresponds to an event with a moment magnitude of Mw 7.0 located at a Joyner-Boore 
distance of RJB = 10 km from a site with an average shear-wave velocity over the 
uppermost 30 m of Vs30 = 300 m/s. This scenario is purely hypothetical and was not 
selected with a view to representing any particular situation. However, the scenario was 
also not defined arbitrarily. The primary reason for working with this scenario is that it 
represents a severe loading case that should ensure that the structure behaves in a 
nonlinear manner. This combination of magnitude, distance and site class is also one for 
which a reasonable number of records exist, which thus provides one with more options 
when implementing the adopted selection procedure outlined in what follows. The final 
key reason is associated with the confidence that it may be placed in the empirical 
models that have been derived for the drift responses. Given that there are a good 
number of records that have seismological characteristics similar to those of the 
specified scenario and that the scenario is well within the range of parameter values 
used to derive the empirical models, it is reasonable to be confident that the model will 
perform robustly and will act as a good surrogate for the unknown true distribution of 
drift. Hence, one can be confident that any biases that one observes in the final results 
are predominantly due to actual biases rather than being due to a poor definition of the 
basis for comparison. 

3.4.4.2 Spectral matching procedure 
Numerous researchers have demonstrated, either explicitly (e.g., Hancock et al., 2008; 
Baker and Cornell, 2006b), or implicitly (Luco and Bazzurro, 2007), that an effective 
way to prevent biased estimates of structural response when using scaled records is to 
ensure that careful attention is paid to the spectral shapes of the accelerograms. That is, 
it is important to ensure that when accelerograms are scaled their spectra match a target 
spectrum at multiple periods so that one does not inadvertently select records that 
contain significant peaks or troughs at particular periods. As the focus in this study is 
upon estimating the distribution of drift response, selection on the basis of spectral 
shape should take priority over other commonly imposed constraints such as restrictions 
on the magnitude of the event from which the original accelerogram came. This 
prioritization is justified as Hancock (2006) and Hancock and Bommer (2006) have 
demonstrated that peak responses like drift are not particularly sensitive to the duration 
of shaking (which is correlated to magnitude). That said, when selecting records for the 
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purpose of estimating the structural response due to a particular seismological scenario 
it is, in principle, preferable to select records that are at least broadly consistent with this 
scenario and for this reason an initial screening was made to limit the selection of 
accelerograms to those coming from events having magnitudes within ±0.2 units of the 
specified scenario. Following this initial screening, records were selected on the basis of 
their ability to fit, when scaled, the target spectra over a period band ranging from 
roughly half the initial fundamental period of the structure to roughly double the initial 
fundamental period of the structure, i.e., over the range [0.2, 2.0] seconds. The 
boundaries of the period range are defined following consideration in the framework of 
direct displacement-based design (Priestley et al., 2007).  
The goodness-of-fit is quantified by the root-mean-square difference (Drms) between the 
logarithmic ordinates of the candidate spectrum, SaR, and the logarithmic ordinates of 
the target spectrum, SaT, in the interval [Ta, Tb]: 

 
Figure 3.31. Examples of the selection procedure: reference spectra and best matching accelerogram 
spectra. 
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where α is a scaling factor and n is the number of periods considered. For each 
candidate record the scaling factors that minimize the Drms are calculated for each of the 
different target spectral levels. The records that are finally selected are those with the 
smallest Drms (Beyer and Bommer, 2007).  

3.4.4.3 Selected suites of ground motions 
The selection procedure outlined above is approached in two ways. In the first 
approach, each of the three or five target spectral levels (prescribed either via the equal-
probability, EP, approach or the Gauss-Hermite, GH, approach) are considered 
independently and the records whose scaled spectra best fit each of these levels are 
selected. In this first approach the selection is performed without replacement so that 
once a record has been selected it is no longer a candidate for selection at any of the 
other target levels. In the second approach, all target levels are considered 
simultaneously and the selected records are those whose spectra are able to be scaled 
(by three or five different factors as the case may be) in order to provide a good match 
to all target levels. Initially only the first approach was considered but it was observed 
that the standard deviation of the empirical model for spectral acceleration is fairly 
constant across periods with the implication (when specifying target ordinates using the 
same epsilon over all periods) that the shapes of the target spectra are all very similar. 
Hence, if a record has a spectrum that matches one level it will also have a reasonable 
fit to the other levels and one may therefore work with a reduced set of accelerograms. 
Note that this does not imply a reduction in the number of structural analyses, just a 
smaller number of accelerograms that must then be scaled multiple times and that the 
constraint of non-replacement following selection becomes redundant. Figure 3.31 
demonstrates the results of this second selection procedure for the four different 
methods of specifying target spectral levels considered in this study. 
Note that in each case the target spectrum corresponding to ε = 0 is the same yet 
different accelerograms are chosen due to their ability to match all of the target levels 
simultaneously. 

3.4.5 Results 
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For both the EP and GH approaches the procedure based upon 3-point and 5-point 
approximations was evaluated for all inter-storey drifts and the roof drift. Previously, in 
Table 3.5 it was observed that the weakest correlation determined from the analyses of 
the unscaled records was between the spectral acceleration and the first-storey drift 
(although these parameters were still strongly correlated) while the strongest 
correlations were found to exist between the spectral acceleration and the fourth-storey 
drift followed very closely by the roof drift.  
The underlying assumptions of the methodology proposed herein would suggest that the 
worst performance of the method should be observed for the first-storey drift while the 
best performance should be observed for the fourth-storey and roof drifts. For this 
reason the results of the analyses conducted on the scaled records for the first-storey 
drift in Figure 3.32 and the roof drift in Figure 3.33 are presented. For all of the other 
measures of drift, for which the results are not presented herein, the performance of the 
approaches exhibited similar trends and the results shown in Figure 3.32 and Figure 
3.33 may be regarded as being indicative of the general performance of the approaches 
for this structure. 
 

Table 3.6. Maximum drift ratio demands (see Figure 3.5 for capacity curves) for the record selection 
based upon single records scaled to multiple reference spectra. GH: Gauss-Hermite, EQ: Equal 
Probability. 
 Storey 
Method I  II III IV V VI 
GH 3 levels 0.038 0.037 0.037 0.029 0.064 0.048 
GH 5 levels 0.073 0.083 0.06 0.032 0.25 0.064 
EP 3 levels 0.021 0.021 0.022 0.015 0.05 0.03 
EP 5 levels 0.033 0.032 0.035 0.022 0.058 0.038 

Table 3.7. Maximum drift ratio demands (see Figure 3.5 for capacity curves) for the record selection 
based upon a different record scaled to each reference spectrum. GH: Gauss-Hermite, EQ: Equal 
Probability. 
 Storey 
Method I II III IV V VI 
GH 3 levels 0.038 0.037 0.037 0.029 0.061 0.048 
GH 5 levels 0.056 0.067 0.055 0.032 0.081 0.064 
EP 3 levels 0.01 0.01 0.012 0.011 0.032 0.022 
EP 5 levels 0.033 0.03 0.026 0.018 0.051 0.025 
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Figure 3.32. Predictions, obtained by the different procedures considered, of mean value (left column) 
and standard deviation (right column) of the logarithm of first storey drift. 
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Figure 3.33. Predictions, obtained by the different procedures considered, of mean value (left column) 
and standard deviation (right column) of the logarithm of roof drift. 
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In both Figure 3.32 and Figure 3.33, the estimates of the first two moments of drift 
ratios are shown in addition to the 95% confidence interval about this estimate. It is 
very clear that the performance of the Gauss-Hermite approach is significantly superior 
to that of the Equal-Probability approach, although it is important to note that different 
scales have been used on the ordinates of these figures. In the vast majority of cases it 
may be appreciated that the 95% confidence interval includes mean values and standard 
deviations of drift ratio distributions estimated through attenuation relationships, and 
assumed to represent the reference drift distributions. This implies that in most cases it 
is not possible to state that the estimates based upon the scaled analyses are significantly 
different (in a statistical sense) from the reference levels shown in these figures by the 
heavy gray lines. 
Finally Table 3.6 and Table 3.7 give the maximum interstorey drifts observed during the 
analyses performed with the ground motions selected according to the different 
procedures investigated. Comparing those tables with Figure 3.5 one can observe that 
the structure has a nonlinear behaviour during the analyses. 

3.5 Discussion and conclusions  

The results presented in Figure 3.32 and Figure 3.33 seem to be very promising. When 
the target spectral levels are defined according to the roots of Hermite polynomials and 
individual records are scaled to match all of these different targets, it may be 
appreciated that both the 3-point and 5-point approximations work extremely well. This 
statement holds for both the estimates of the means and of the standard deviations of the 
logarithmic drifts. Good approximations to the full distribution of drift may therefore be 
obtained by using a single record with a spectral shape that is well matched to the 
specified scenario. This approximation is generally improved, but only very slightly, 
when a second record is used. It also appears that the use of a 5-point approximation 
does not provide significant advantages over a 3-point approximation which means that 
as few as six (two records, each scaled to three target levels) carefully designed time-
history analyses may be all that is required in order to obtain a reasonable estimate of 
the full distribution of drift response. Of course, while the 95% confidence intervals for 
these estimates in Figure 3.32 and Figure 3.33 were presented no statement was made 
regarding how many records would be required to achieve a particular precision in these 
estimates of the first and second moments. However, it can be observed from these 
figures that for the preferred GH approach, and with replacement allowed during the 
record selection, there are no significant trends, which means that an estimate of the 
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number of records that are required to achieve a certain level of precision can be 
obtained from consideration of the formulae for determining the standard errors of the 
estimates of the mean and standard deviation. 
The approach using a single record scaled to match all target levels of the response 
spectrum performs very well, which is perhaps not unexpected given that the shape of 
the target spectra are always very similar, as discussed previously. When different 
records are selected to match each of the target levels separately, and the rule not 
allowing replacement of the selected records is invoked, the method is somewhat less 
efficient because of the still rather limited coverage of the global strong-motion 
databank. Given that the total number of available records in any magnitude distance- 
site class bin is generally small, if a separate record is required for each target level of 
the spectrum, it is almost inevitable that for the third or fifth record, as the case may be, 
the match to the target spectral shape will not be as good as for the first record selected. 
Therefore, for as long as the number of candidate records remains rather limited it is 
advantageous to scale individual records to multiple target levels. 
In this study the records were selected by first finding the record that provided the best 
match to the median target spectrum before progressively moving to target spectra more 
distant from the median. 
This approach makes some intuitive sense when the objective is to estimate the median 
drift response but it may be that for the purposes of modelling the full distribution 
greater priority could be placed upon ensuring better fits to the target levels away from 
the median. 
This study has only been concerned with the estimation of the distribution of drift 
response and the proposed methodology in this case has proven to be effective for the 
single structure and earthquake scenario considered herein. Whether or not this 
approach would yield similar quality results when applied to alternative damage 
measures such as fatigue damage or absorbed hysteretic energy remains to be seen but 
this will most likely be related to the strength of the correlation between spectral 
acceleration and these parameters. For these damage measures it is likely that more 
importance would have to be placed upon ensuring that the duration and frequency 
contents of the selected records were consistent with the specified seismological 
scenario (Hancock, 2006; Hancock and Bommer, 2006; Hancock and Bommer, 2007). 
The recent study of Hancock et al. (2008) suggests that the approach presented in this 
study might work even more effectively if in addition to linearly scaling the 
accelerograms so that their spectra matched the target spectra over a broad period range, 
these records were then adjusted with wavelets so that this match was further improved. 
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Furthermore, it would seem that the chances that the proposed approach would work 
when applied to estimate the distributions of fatigue damage or absorbed hysteretic 
energy would be greatly enhanced if the wavelet adjustments were made to not only 
multiple target spectra but also to spectra constructed for different damping ratios. 
Hancock et al. (2008) have demonstrated that this approach further ensures that the 
duration of the selected records are consistent with the prescribed seismological 
scenario. 
This work represents a first attempt at investigating the problem of how many records 
are required in order to obtain a robust estimate of the full distribution of a response 
parameter. The study has been conducted for a single six-storey reinforced concrete 
frame and for a single seismological scenario and the performance of the proposed 
approaches should be considered in this light. Clearly, further work is required for 
different earthquake scenarios and different structures in order to qualify and generalize 
the findings of this study as well as to refine the overall procedure. 
However, the results that have been presented herein are promising and suggest that it is 
conceivable for engineers to obtain stable estimates of the distribution of structural 
response parameters from a relatively small number of time-history analyses. 
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4 Generation of non-stationary 
artificial accelerograms  
 

4.1 Introduction 

In the last ten years an increasing effort to install strong-motion recording networks has 
been done worldwide. In spite of this initiative, the availability of natural records is 
sometime limited due to the absence of nearby recording stations or because the site is 
in a low or moderate seismicity region. For this reason, the generation of synthetic 
accelerograms is important to provide engineers with reliable input excitation for sites 
with no strong motion data. Thus, simulated accelerograms must have realistic energy 
duration and frequency content, representing the physical conditions of natural recorded 
acceleration time histories. Moreover, providing information about the aleatory 
variability of ground motion predictions is necessary for probabilistic seismic hazard 
assessment (Thrainsson and Kiremidjian, 2002; Boore, 2003). In addition, the increase 
of computational power and the development of numerical methods enable the use of 
acceleration time histories in the study of linear and nonlinear dynamic behaviour of 
structures. 
Many engineering methods have been proposed for simulating ground motions. A first 
attempt to simulate accelerograms was made by filtering and windowing a Gaussian 
noise or by using Autogregressive Moving Average models (Saragoni and Hart, 1974; 
Nau et al., 1982). The time histories are in general disconnected from any specific 
geophysical parameter. Other approaches provide accelerograms with response spectra 
matching a target response spectrum (Gasparini and Vanmarcke, 1976; Kaul, 1978). 
The core of the problem is that the matching procedure generates too many cycles of 
strong motion. The artificial accelerograms have consequently an unreasonably high 
energy content and Naiem an Lew (1995) demonstrated the inefficiency of using such 
artificial record for non-linear analysis. 
A second category of methods for simulating acceleration time histories relies on a 
more physical approach, for which the ground motion is modelled by convolving the 
source, path and site effect (Aki and Richards, 1980). Some important efforts have been 
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devoted to the modelling of the source process. For example, point source summation 
(Hartzell, 1978; Irikura, 1983) and stochastic subevent summation (Schneider et al., 
1993; Zeng et al., 1994; Beresnev and Atkinson, 1997) have  been developed to 
simulate the source complexity. However, when used, empirical Green’s function may 
poorly represent the variability of actual records in different source or site conditions. 
Other authors have concentrated their effort on accurate modelling of wave propagation 
in 3D structures based of finite-difference modelling (Kristek and Moczo, 2003), But 
these methods still demand extremely high computational resources and very good 
knowledge of the media. 
To overcome these difficulties, a stochastic method that combines seismological models 
of the spectral amplitude of ground motion with the engineering notation that high 
frequency motions are basically random has been developed (Hanks, 1979; Hanks and 
McGuire, 1981; Boore, 1983; Boore, 2003). High frequency ground motions are 
modelled as band-limited Gaussian noise in which the radiated energy i s distributed 
over a specified duration. The application of this method requires the spectral shape as a 
function of earthquake size (Boore, 1983; Atkinson and Somerville, 1994), which 
implies the knowledge of parameters characterizing the source process (e.g. corner 
frequency) and the wave propagation. However the variability of the motion is only 
taken into account by the random generation of the phase, and the method assumes 
stationarity of the frequency content with time. 
The purpose of this chapter is to develop a stochastic model based on the Sabetta and 
Pugliese (1996) approach to simulate artificial accelerograms. The accelerogram 
simulations are derived from a spectrogram which is approximated by some strong 
motion indicators: the strong motion duration, the arias intensity, the central frequency 
and the frequency bandwidth of the signal. The values of these indicators are obtained 
through the use of ground motion prediction equations (attenuation relationships). The 
model allows to simulate the signal non stationarity, as well as the time dependence of 
the instantaneous power. In addition, this approach seems to be promising in  modelling 
the ground motion natural variability.  
The original Sabetta and Pugliese (1996) procedure was developed using a limited 
database of ground-motions recorded in Italy. Recently Pousse et al. (Pousse, 2005; 
Pousse et al., 2006) proposed an enhanced version of the procedure and derived the 
required predictive equations using ground-motions from the K-NET database 
(Kinoshita, 1998). Neither of these two papers investigated the performances of the so 
obtained ground-motions when used for structural analysis. In the present work, a 
modified version of the Sabetta and Pugliese (1996) procedure is developed using 
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ground-motions from a subset of the NGA database and the performances of the so 
obtained accelerograms for non-linear structural analysis are assessed. 

4.2 Model formulation 
The simulation of non-stationary ground-motions is performed through an empirical 
model, where time dependence and frequency content of the signal are represented 
through a spectrogram, PS(t,f), named physical spectrum after Mark (1970), and. defined 
as 

 ( ) ( ) ( ) ( )
2

, exp 2PS t f w t u x u i fu du
+∞

−∞
= − − π∫  (4.1) 

where t is time, f is frequency, x(u) is the ground-motion acceleration at time u, and w(t-
u) is a running Hamming window. Figure 4.1 shows a spectrogram calculated for one of 
the accelerograms considered in the present work.  

 
Figure 4.1. Example of spectrogram for one of the accelerograms in the database. The spectrogram 
can be considered as a time dependent power density spectrum. 

Integration of equation (4.1) over time and frequency yields the Arias intensity, IA, of 
the accelerogram (Arias, 1970). This parameter is proportional to the total energy of the 
ground motion and is calculated as the integral of the squared acceleration. 
The spectrogram can be factorized as a series of power spectral densities, calculated at 
different times PSt(f), which, according to the Sabetta and Pugliese’s formulation (Sabetta 
and Pugliese, 1996) can be fitted with a lognormal function defined through tree 
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parameters derived from the theory of spectral moments (Vanmarcke, 1980; Lai, 1982). 
The above mentioned parameters are the average total power Pa, corresponding to the 
area under PSt; the central frequency, Fc, giving a measure of where the spectral density 
is concentrated along the frequency axis, and the frequency bandwidth, Fb, corresponding 
to the dispersion of the spectral density around the central frequency. Therefore, the 
factorized spectrogram can be written as 

 ( ) ( ) ( ), tPS t f PS f Pa t=  (4.2) 

where both PSt(f) and Pa(t), are fitted through lognormal functions. Considering time 
dependence, the definition of the j-th spectral moment at time t becomes (Lai, 1982) 

 ( ) ( )
0

, 0,1, 2j
jM t f PS t f df j

+∞
= =∫  (4.3) 

where f is frequency. The afore mentioned parameters used to approximate the 
spectrogram are defined as: 

 ( ) ( )0Pa t M t=  (4.4) 

 ( ) ( )
( )

1

0

M t
Fc t

M t
=  (4.5) 

 ( ) ( )
( )

( )
( )

1 22

2 1

0 0

M t M t
Fb t

M t M t

⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4.6) 

Pa(t), the instantaneous average power, is the time envelope function describing the 
amplitude variation of the ground motion . Its integral in the time domain is equal to the 
integral of PS in the time frequency plane and therefore corresponds to the Arias 
intensity IA: 

 ( ) ( ) ( )2 ,IA a t dt PS t f dtdf Pa t dt= = =∫ ∫ ∫ ∫  (4.7) 

Central frequency, Fc(t) and frequency bandwidth, Fb(t), represent the non-stationarity 
of the frequency content and correspond respectively to the centroid of PS and to the 
radius of gyration of PS with respect to Fc on the frequency plane. 
With the above-defined parameters, it is possible to derive a lognormal function 
approximating the PS (Sabetta and Pugliese, 1996): 
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 ( ) ( ) ( ) ( )( ) 2
log log1, exp

22approx

f tPa t
PS t f

f

⎛ ⎞⎛ ⎞− β⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟δπδ ⎝ ⎠⎝ ⎠
 (4.8) 

where β(t) and δ are derived from Fc(t) and Fb(t) in the following way: 

 ( )( ) ( )( ) 2log log 2t Fc tβ = − δ  (4.9) 

 ( ) ( )( )2 2log 1 Fb t Fc tδ = +  (4.10) 

Fc(t) and Fb(t) are derived through empirical ground motion prediction equations (see 
Section 4.4.5), while Pa(t) is supposed to follow a lognormal distribution 

 ( ) ( ) 2
log1exp

22
tIAPa t

t

⎛ ⎞− σ⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟μπμ ⎝ ⎠⎝ ⎠

 (4.11) 

with mean μ  and standard deviation σ  empirically determined and depending on strong 
motion duration (see Section 4.4.5). As Eq. (4.11) shows, the integral of Pa(t) in the 
interval [0, ∞] is scaled to the Arias intensity, IA, in order to recover the predicted 
energy in the simulated accelerograms. The reference values of the Arias intensity are 
calculated through an empirical attenuation relationship (see 4.4.3). 

4.3 Computation of the time history 

To generate accelerograms Sabetta and Pugliese (1996) assumed that the ground motion 
at time t results from the contribution of random uncorrelated phases. In the frequency 
range of interest for engineers, this assumption is physically reasonable because of the 
complexity of the source and propagation effects (Boore, 2003). 
The accelerograms are simulated by calculating the inverse Fourier transform ( ),tα μ  
of ( ) ( )( ), expPS t f i fϕ , where ϕ  is a random phase: 

 ( ) ( ) ( )( )1, , exp
2

t PS t f i f i f dfα μ = 2π μ + ϕ
π ∫  (4.12) 

Using the definition of PS in Eq. (4.1) and taking tμ = , Eq. (4.12) yields the following 
inversion formula: 

 ( ) ( ) ( )( )1 , exp
2

a t PS t f i ft i f df= 2π + ϕ
π ∫  (4.13) 
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The simulated accelerogram corresponds to the sum, of a Fourier series terms with 
amplitude ( ) ( ), ,A t f PS t f=  and uniformly distributed random phase ϕ . Since 
PS(t,f) depends on the central frequency Fc(t) and on frequency bandwidth Fb(t) the 
time histories are non-stationary. 

4.4 Estimation of the functions defining the 
spectrogram 

The database originally used by Sabetta and Pugliese (1996) contained 190 horizontal 
components and 95 vertical components of strong motions recorded from 17 Italian 
earthquakes. The distribution of recordings with respect to magnitude, distance, and site 
classification is given in Figure 4.2. Acceleration time histories were baseline and 
instrument corrected with a frequency domain routine. The cut-off frequencies for the 
high-pass filtering ranged from 0.2 to 0.7 Hz with typical values of 0.3 Hz; the cut-off 
frequencies for the low-pass filtering ranged from 20 to 35 Hz with typical values of 25 
Hz. The magnitude scale adopted by Sabetta and Pugliese corresponded to the surface-
wave magnitude (Ms) when both local magnitude (ML) and Ms were greater than or equal 
to 5.5 and corresponded to ML when magnitude was lower than this value. Moment 
magnitude (Hanks and Kanamori, 1979), which unlike other scales does not saturate at 
high magnitudes, was not used because reliable estimates of seismic moments were not 
available for some of the smaller earthquakes used in the regression analysis. 
In the present work, the ground motion prediction equations developed by Sabetta and 
Pugliese have been revisited using a new and more comprehensive database. 
Accelerograms were selected from a subset of the records in the Next Generation of 
Attenuation (NGA) project database (Power et al., 2006; Power et al., 2008). A total of 
1504 accelerograms were used for the analysis. This subset was defined by excluding 
all records from the Chi-Chi earthquake sequence, all pulse-like records, all records 
with only one horizontal component and records for which appropriate metadata were 
not available (moment magnitude, Mw, Joyner-Boore distance RJB and shear wave 
velocity over the upper 30 meters, Vs30). Pulse like ground-motions were identified 
using the procedure proposed by Baker (2007d). All the selected records have a 
maximum usable period of at least 3 seconds (Boore and Bommer, 2005). The Mw 7.6 
Chi-Chi, Taiwan, earthquake was recorded in 1999 by a very large number of strong 
motion instruments very close to the rupture surface of the event. Consequently, this 
event may potentially increase the number of near source ground motion records. 
However, it is thought that the ground motions from this event are lower than those that 
might be expected from future earthquake of similar magnitude. Because this event 
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contributes such a large number of near field records, the inclusion of these records 
would have a significant impact upon the nature of the near source scaling of ground 
motion measures. However, the impact of including this event in a regression analysis is 
to cause the resulting equations to underestimate ground motions in this important near 
field region. For this reason Campell and Bozorgnia (Campbell and Bozorgnia, 2003a; 
Campbell and Bozorgnia, 2003b; Campbell and Bozorgnia, 2004) refrained from 
including records from the Chi-Chi event. Speculated reasons for the lower than 
expected ground motions from the Chi-Chi event include large amounts of surface 
rupturing, large amounts of slip on the fault plane and long rise times over the fault 
(Campbell and Bozorgnia, 2003b). Currently these effects are not taken into account in 
empirical regression equations. 
On the other hand it is noteworthy, that the coefficients of the predictive equations are 
obtained using mixed effect models, are able to take into account systematic differences 
between events. These models are employed in the present work and there may be 
ample justification for including the Chi-Chi events, but it should be noted that the 
structure of the mixed model adopted to develop predictive equations is not capable to 
account for systematic events which are not simply additive in terms of the regressed 
parameter. A complete list of the ground motions used is provided in Appendix A. 
 

 
Figure 4.2. Magnitude-distance distribution of the ground-motion database originally used by Sabetta 
and Pugliese (1996) (after Sabetta and Pugliese, 1996). 
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4.4.1 Bidirectional issues 

 
Figure 4.3. Normalized Arias intensity values for recording 1093 (left panel) and 1099 (right panel), 
calculated for different directions. Directions 0° and 90° correspond to the as recorded components. 

One of the problems that one must face when developing ground-motion prediction 
equations is the definition of the component of the ground motion to be used. In fact, 
excluding the vertical component, each recording contains two orthogonal acceleration 
time histories. The orientation of these components with respect to the rupture direction is 
usually random, depending on the sensor orientation. Different approaches have been 
proposed in the literature for dealing with this issue. A briefly summary has been given in 
Section 2.4. Further details can be found in Douglas (2003), Baker and Cornell (2006c), 
Boore et al. (2006), Watson-Lamprey and Boore (2007), Beyer and Bommer (2006) and 
Beyer and Bommer (2007). One of the most widely adopted approaches is to use the 
geometric mean, of parameter under investigation, of the two components. This approach 
can have some drawbacks, in fact, if on one hand it gives a more stable prediction of the 
mean response, on the other hand it can provide a reduced estimate of the ground-motion 
variability. This issue can be overcome using the procedure proposed by Joyner and 
Boore (Joyner and Boore, 1993; Joyner and Boore, 1994) which was adopted in the 
previous chapter when fitting attenuation relationships (See 3.4). Sabetta and Pugliese 
(1996) adopted a different approach. For the Arias intensity, IA (Arias, 1970), the 
horizontal component of the motion having the larger value of IA was used. This 
approach gives higher values than the previous one but predicts a lower variability since 
only one component per ground motion is used. 
Even using the Joyner and Boore’s procedure (Joyner and Boore, 1993; Joyner and 
Boore, 1994) one can argue that using the two components of the ground-motion as 
recorded one can under estimate the actual variability of the ground motion. As an 
example, consider the Arias intensity as measure of the ground motion intensity. Using 
the simple rotation formula 
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 (4.14) 

where ax(t) and ay(t) are the recorded accelerograms and ax’(t) and ay’(t) are the 
acceleration time histories after a rotation θ of the axes, one can calculate the IA values 
at different angles. Figure 4.3 shows the dependence of IA values on the angle θ for two 
of the recordings in the considered database. The values of Arias intensity have been 
normalized to their respective maxima. As figure Figure 4.3b suggests, the maximum 
and the minimum values of IA may not correspond to the orientation of the sensors (0° 
and 90° in the figure). Therefore in the case depicted in Figure 4.3a considering the as 
recorded components to develop an attenuation relationship will give a good prediction 
of the variability of IA, on the other hand considering the as recorded components 
depicted in Figure 4.3b gives lower estimates of variability of IA. Similar 
considerations can be made for different measures of the ground-motion intensity, such 
as PGA and spectral accelerations. These aspects may have consequences on structural 
reliability assessment because the orientation of a structure is usually fully random with 
respect to the direction of the possible ground-motions (see Section 2.4). Therefore it is 
very important to have sound estimates of both mean value and variance of the 
considered ground motion intensity measures. 
To overcome these difficulties, in the present work, for each couple of accelerograms in 
the database, Arias intensity was calculated for all the possible rotation angles (with 1° 
steps) and the accelerograms in the direction of the maximum and minimum values 
have been used in order to obtain a good estimate of the ground motion variability. The 
considered durations (see Section 4.4.4) are those of the so obtained components. 

4.4.2 Power amplitude 
According to Sabetta and Pugliese (1996), power amplitude, Pa(t), is approximated 
trough a lognormal function the parameters of which depend on strong motion duration 
DV. Furthermore the unit area under the lognormal function is scaled to the Arias 
intensity, IA:  

 ( ) ( ) 2
log1 1exp

22
t

Pa t IA
t

⎛ ⎞− σ⎛ ⎞
⎜ ⎟= ⋅ − ⎜ ⎟⎜ ⎟μπμ ⎝ ⎠⎝ ⎠

 (4.15) 
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where the mean value, μ, and the standard deviation, σ, of the lognormal function are 
defined by Sabetta and Pugliese as: 

 ( ) ( )log 2 log 3 2 2.5T T Tμ = + σ σ =  (4.16) 

with: 
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= = + ⋅

= ⋅

 (4.17) 

where T1 corresponds to the time delay in seconds between S waves, with propagation 
velocity Vs, and P waves, with propagation velocity Vp, and is calculated by dividing the 
distance R (in kilometres) by the factor ( )P S P SV V V V⋅ −  assumed to be equal to 7 
km/sec. The choices of T2, T3 and σ were derived in order to have i) a modal value of 
the lognormal function in Eq. (4.15) at time t = T2, correlated to the distance; ii) a 
standard deviation proportional to the strong-motion duration DV; iii) an area equal to 
the Arias intensity IA; and iv) a total duration 30% greater than the value of T3, 
corresponding to the modal value plus 2·DV. To specify the duration of the ground 
motion, DV, Sabetta and Pugliese adopted the definition given by Vanmarcke and Lai 
(1980). In the present work, the definition of duration given by Trifunac and Brady 
(1975) was adopted. According to this definition, duration is related to the release of 
ground motion energy and it is defined as the time during which the 90% of the Arias 
intensity is released. Figure 4.4 explains the adopted definition of duration showing a 
Husid plot (Husid, 1969) for one of the considered accelerograms. This plot shows the 
increase of Arias intensity over time, in fact it shows the values of the function 

 ( )
( )
( )

( )2 2

0 0

2

0

f

t t

t

a t dt a t dt
H t

IAa t dt
= =∫ ∫
∫

 (4.18) 

where tf is the total accelerogram duration. Of course, the values given by (4.18) are in 
the interval [0,1]. Accordingly to the definition adopted, the duration is written as 

 0.05 0.95 0.95 0.05| |H HDV t t t− = == = −  (4.19) 
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where |t H x=  indicates time at which Eq. (4.18) gives a value equal to x. Since, in the 
present work a different definition of ground-motion duration and a different database 
have been used the coefficients in Eq. (4.17)  have been modified. 

 
Figure 4.4. Husid plot for one of the ground motions contained in the database considered in the 
present work. 

 
Figure 4.5. Comparison power amplitude, Pa(t), defined according to different criteria: actual 
accelerogram Pa (thin solid line), best fit lognormal (solid thick line), original Sabetta and Pugliese 
model (dash dot line) and model developed in the present study (dashed line). Curves are normalized 
to unit area. 
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In order to do so, Power amplitude, Pa(t), was calculated for each accelerogram 
considered using Eq. (4.4) and fitted using a lognormal function. Then the values of the 
parameters in Eq. (4.17) were modified in order to obtain the best average fit over the 
whole ground-motion database. The so obtained relationships are given in Eq. (4.20) 

 

1 7
2 1 0.35
3 1 1 1.3

. 1.3 3

T R
T T DV
T T T DV
Tot duration T

=
= + ⋅
= = + ⋅

= ⋅

 (4.20) 

where the symbols have the same meaning of those in Eq. (4.17). Figure 4.5 shows a 
comparison of the original and the modified model against the best fitting lognormal 
function for the power amplitude calculated for one of the considered accelerograms. 

4.4.3 Arias Intensity 
As previously stated the lognormal function approximating power amplitude is scaled in 
order to obtain an area equal to Arias intensity. The reference value for this latter 
parameter is estimated through a ground motion attenuation relationship. In the present 
work the following expression has been used in order to express attenuation of Arias 
intensity 

 
( ) ( )

( ) ( ) ( )

2
10 1 2 3

2 2
4 5 10 6 7 30

log 6

log log10JB

IA c c M c M

c c M R c c Vs

= + + −

+ + + +
 (4.21) 

where IA is Arias intensity, M is moment magnitude, RJB is Joyner and Boore distance 
and Vs30 is shear wave velocity over the last 30 meters. As done in Section 3.4 the total 
standard deviation, σT, of each empirical model is decomposed into three independent 
components: the inter-event standard deviation, σE; the intra-event standard deviation, 
σA; and the inter-component standard deviation, σC, which must be considered when 
both horizontal components of a ground-motion recording are used in the regression 
analysis, as done in this study. It is worth recalling that the two horizontal components 
used in the present work are those having the maximum and the minimum Arias 
intensity. The estimates of the regression parameters and of the variance are listed in 
Table 4.1. Figure 4.6 and Figure 4.7 compare the median values of Arias intensity as 
predicted by Eq. (4.21) for a rock site, with those predicted by the attenuation models 
proposed by Sabetta and Pugliese (1996).  
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Table 4.1. Predictions of regression coefficients and standard deviations of Eq. (4.21) for Arias 
Intensity. 
c1 c2 c3 c4 c5 c6 c7 σE σC σA 
1.42 0.54 -0.27 -3.68 0.29 9.36 -0.88 0.23 0.10 0.35 

 
It is worth recalling that the definitions of magnitude and distance adopted in the 
present word are different from those adopted by Sabetta and Pugliese (1996), therefore 
the results of the comparisons should be taken with care. Though, it can be concluded 
that the Sabetta and Pugliese’s attenuation relationships predict larger Arieas intensities 
over the whole magnitude-range considered. This can be explained considering that 
those regressions were performed on the larger Arias intensity among the two recorded 
components, while in the present work, the models have been fitted using two 
components of the ground motion.  
As done in the previous chapter the goodness of fit of the regression was tested using 
different diagnostic plots (Pinheiro and Bates, 2000) which are given in Figures 4.8-
4.14. Figure 4.8 depicts an histogram of the fitted data and allows to check the 
normality assumption. Figures from Figure 4.9 to Figure 4.12 give plots of the 
standardized residuals against the fitted values and against the independent variables of 
the regression model. From these plots one can conclude that the residuals are 
independent of the fitted value and on the independent variables of the regression 
model. Finally using Figure 4.13 and Figure 4.14 it is possible to check the normality of 
the standardized residuals. 

 
Figure 4.6. Attenuation of Arias intensity over distance, as predicted by Eq. (4.21). 
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Figure 4.7. Attenuation of Arias intensity over magnitude as predicted by Eq. (4.21). 

 

 
Figure 4.8. Histogram of log10( IA) used as input data for regression. Solid line represents a normal 
distribution and dotted line is obtained using a kernel smoothing procedure. 
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Figure 4.9. Standardized residuals of IA regression versus fitted values.  

 
Figure 4.10. Standardized residuals of IA regression versus moment magnitude.  
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Figure 4.11. Standardized residuals of IA regression versus distance.  

 
Figure 4.12. Standardized residuals IA regression versus log10(Vs30).  
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Figure 4.13. Histograms of standardized residuals of IA regression. Solid line shows a standard 
normal distribution and the dashed line is obtained using a kernel smoothing procedure. 

 
Figure 4.14. Normal quantile-quantile plot for standardized residuals of IA regression. 

4.4.4 Duration 
Another parameter used to approximate the spectrogram is ground-motion duration. 
Therefore in order to generate an accelerogram one needs to estimate of its value using 
an attenuation relationship.  
The expression adopted to develop a ground-motion prediction equation for duration is 
given in Eq. (4.22) 
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 ( ) ( )2 2
10 1 2 3 10 4 5 10 30log log logJBDV c c M c R c c Vs= + + + +  (4.22) 

where the symbols have the same meaning as in Eq. (4.21) and c1, ..., c5 are regression 
parameters to be determined. Comparing Eq. (4.21) with Eq. (4.22) it is evident that the 
latter has a simpler form. This simpler form was defined accordingly to the results of 
significance tests performed on the regression parameters of a model with the form given 
in Eq. (4.21). Regression results are reported in Table 4.2. Figure 4.15 and Figure 4.16 
show the attenuation of duration predicted by Eq. (4.22). Since Sabetta and Pugliese 
(1996) used a different definition of duration no comparison is possible. Diagnostic plot 
for the regression are given in Figures 4.17-4.23. These plots confirm the assumption of 
normality of the base ten logarithm of duration and show that the standardized residuals 
are independent of the fitted values and of the independent variables of the model 

Table 4.2. Estimates of regression parameters and standard deviations of Eq. (4.22).  
c1 c2 c3 c4 c5 σE σC σA 
0.41 0.17 0.28 3.36 -0.30 0.13 0.04 0.15 

 

 
Figure 4.15. Attenuation of duration over distance as predicted by regression. 
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Figure 4.16. Attenuation of duration over magnitude as predicted by regression. 

 
Figure 4.17. Histograms of log10(DV) used as input data for regression. Solid line shows a normal 
distribution and the dotted line is obtained using a kernel smoothing procedure. 
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Figure 4.18. Standardized residuals versus fitted values. 

 
Figure 4.19. Standardized residual against magnitude for duration regression.  
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Figure 4.20. Stanardized residuals of duration regression versus distance.  

 
Figure 4.21. Standardized residuals of duration regression versus log10(Vs30).  
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Figure 4.22. Histogram of standardized residuals of duration regression. Solid line is a standard 
normal distribution and the dashed line is obtained using a kernel smoothing procedure. 

 
Figure 4.23. Normal quantile-quantile plot for duration regression standardized residuals. 

4.4.5 Central frequency and frequency bandwidth 
As far as the predictive equation for central frequency (Fc) is concerned, the 
exponential decay originally proposed by Sabetta et al. (1986) has been maintained but 
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the predictive model has been modified with respect to that proposed by Sabetta and 
Pugliese (1996) which was 

 ( ) ( )log 3.4 0.35log 0.218 0.15Fc t M S= − − −  (4.23) 

where t is time and S is a dummy variable used to take into account soil conditions has 
been modified as follows 

 ( ) ( )( ) ( ) ( )1 2 3 4 5 10 30 6 10 30log log log 1.25 logFc c c M c c M c Vs t c Vs= + + + + + +  (4.24) 

The structure of the variance was partitioned into three components similarly to what 
was done for IA ad DV. The definitions of intra-event and of inter-event variances was 
maintained but the definition of the variance, Cσ , related to the two components of the 
ground motion was modified. In fact in this case log(Fc) depends on time, t, and 
therefore there is more than one Fc value for each component. Conceptually the 
meaning of Cσ  is unchanged but it must be calculated in a different way. Estimates of 
regression parameters and standard deviations of the model are given in Table 4.3. In 
Figure 4.24 the Fc values predicted by the present model are compared with those 
predict by the Sabetta and Pugliese’s model and with some data points used to fit the 
models. Figure 4.25 compares the prediction, for different magnitudes, of the present 
model with those of the Sabetta and Pugliese’s model (Sabetta and Pugliese, 1996). 
Diagnostic plots for the regression on Fc are given in Figures 4.26-4.30. 
Table 4.3. Estimates of the regression parameters and of the standard deviations of the regression 
model for Fc. 

c1 c2 c3 c4 c5 c6 σC σE σA 
2.60 0.20 -1.46 -0.04 0.44 -0.47 0.36 0.30 0.43 

 
The second parameter defining the frequency content of the ground motion is frequency 
bandwidth Fb. Following Sabetta and Pugliese (1996) the predictive equation has been 
defined in terms of the ratio Fb/Fc. The adopted functional model is 

 ( )1 2 3 10 30 4log logFb c c M c Vs c t
Fc

⎛ ⎞ = + + +⎜ ⎟
⎝ ⎠

 (4.25) 

In contrast to the predictive equation proposed by Sabetta and Pugliese (1996) time 
dependence was included in the predictive equation for Fb/Fc. Estimates of regression 
parameters and standard deviations of the model in Eq. (4.25) are given in Table 4.4. 
Figure 4.32 compares the prediction of the ratio Fb/Fc predicted by the present model 
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(see Eq. (4.25)) and by the Sabetta and Pugliese’s model with some of the data points 
used in the present work. Figure 4.31 depicts predictions for different magnitudes.  
Diagnostic plots for the regression on Fb/Fc are given in Figures 4.33-4.37. 

Table 4.4. Estimates of the regression parameters and of the standard deviations of the regression 
model for Fb/Fc. 

c1 c2 c3 c4 σC σE σA 
0.42 0.0026 -1.46 0.0038 0.20 0.12 0.32 

 
 

 
Figure 4.24. Dependence of  Fc on time for ground motions 905, 908, 768, 913, 873, 767, 821, 860, 914 
(see Appendix A): actual data (dots), prediction my the model in Eq. (4.25) and prediction by the 
Sabetta and Pugliese (1996) model. 
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Figure 4.25. Predictions of Fc for different magnitudes as given by the model in Eq. (4.25) and by the 
Sabetta and Pugliese (1996) model. 

 
Figure 4.26. Histogram of standardized residuals of Fc regression. Solid line is a standard normal 
distribution and dashed line is obtained using a kernel smoothing procedure. 
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Figure 4.27. Standardized residuals of Fc regression versus magnitude. 

 
Figure 4.28. Standardized residuals of Fc regression versus distance (log scale). 
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Figure 4.29. Standardized residuals of Fc regression versus log10(Vs30). 

 
Figure 4.30. Standardized residuals of Fc regression versus fitted values. 
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Figure 4.31. Dependence of Fb/Fc on time as predicted by different models: actual data (dots), 
prediction by the model in Eq. (4.25) and by the model proposed by Sabetta and Pugliese (1996). Note 
that the latter model neglected time dependence. 

 
Figure 4.32. Predictions of Fb/Fc for different magnitudes given by the model in Eq. (4.25). 
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Figure 4.33. Histogram of standardized residuals of Fb/Fc regression. The solid line is a standard 
normal distribution and the dashed line is obtained using a kernel smoothing procedure. 

 
Figure 4.34. Standardized residuals of Fb/Fc regression versus magnitude. 
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Figure 4.35. Standardized residuals of Fb/Fc regression versus distance (log scale). 

 
Figure 4.36. Standardized residuals of Fb/Fc regression versus log10(Vs30). 
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Figure 4.37. Standardized residuals of Fb/Fc regression versus fitted values.  

4.4.6 Generation of accelerograms 
Using the predictive equations developed in the previous sections it is possible to 
generate artificial accelerograms once a scenario is defined in terms of magnitude, 
distance and soil conditions. 
One of the objectives of the present work was developing artificial accelerograms 
suitable for estimating not only the mean value of structural response (e.g. drift) but also 
its variance. In fact many procedures for generating artificial accelerograms have been 
developed in order to obtain estimates of mean structural response and therefore 
produce ground-motions with an unnatural low variability. 
The ground-motion variability plays a very important role in seismic hazard analysis. In 
many cases the ground-motion variability is the most important component of a ground-
motion model. For example, the specification of ground motion distribution values is 
central to PSHA (Cornell, 1968; Bommer and Abrahamson, 2006; Bommer and 
Abrahamson, 2007a; Bommer and Abrahamson, 2007b; Strasser et al., 2009). 
Often, the of ground-motion variability is considered as a measure of the lack of fit of a 
particular predictive equation. However, in most cases it is better to think of a predictive 
equation as providing an estimate of the distribution of ground motions, given a set of 
predictor variables such as magnitude and distance. From this perspective, the real 
misfit of the model is related to how well the model’s distribution represents the true 
distribution of ground motions rather than how large are the variance components. 
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With this perspective, using the predictive equations developed in the previous sections, 
it is possible to obtain estimates of the distributions of IA, DV, Fc and Fb/Fc as a 
function of magnitude, distance and soil stiffness. According to the present approach, 
the logarithm of each one of the four parameters defining the physical spectrum is a 
normal variable. Its mean value can be calculated using Eqs. (4.21), (4.22), (4.24), 
(4.25) with estimated regression parameter values provided in Tables 4.1, 4.2, 4.3, 4.4. 
Those tables give the estimated standard deviations of the models as well. 
Therefore, when an artificial accelerogram is generated values IA, DV, Fc and Fb/Fc 
can be randomly sampled according to their distributions and used in Eq. (4.8) and Eq. 
(4.11) to obtain an approximated spectrogram. Since four random variables are involved 
in the simulation procedure, before proceeding further it is mandatory to check for the 
presence of correlation among them. This can be done plotting the residuals one against 
another. The only correlation found was the one between the residuals of the regression 
of Fc and of Fb/Fc. As Figure 4.38 shows there is a negative correlation the value of 
which is equal to -0.396.  
As an example average acceleration response spectra of 8 accelerograms generated 
using the proposed procedure are compared in Figure 4.39 with acceleration response 
spectra predicted by the attenuation relationships developed in Section 3.4.1. Figure 
4.39 shows a good match between the two kinds of spectra. It should be noted that the 
artificial accelerograms are not scaled in order to enhance spectral compatibility as done 
in the procedure proposed by Pousse et al. (Pousse, 2005; Pousse et al., 2006).  

 
Figure 4.38. Standardized residuals of Fb/Fc regression versus standardized residuals of Fc regression. 



Chapter 4 – Generation of non-stationary artificial accelerograms 

173 
 

 
Figure 4.39. Comparisons among acceleration response spectra predicted by attenuation relationships 
developed in Chapter 3.4.1 and average spectra of eight accelerograms generated according to the 
modified Sabetta and Pugliese (1996) method. 

4.5 Artificial accelerograms as input for nonlinear 
structural analysis 

The comparisons given in Figure 4.39 suggest that the acceleration response spectra of 
the accelerograms generated according to the present procedure are in good agreement 
with the spectra given by ground-motion predictive equations. This does not give any 
information on the suitability of the accelerograms as input for non-linear dynamic 
analysis. It should be noted that the common concern that artificial ground-motions 
have unreasonably high energy content (Naeim and Lew, 1995) does not hold for the 
ground motions generated according to this procedure, since the energy content of the 
accelerograms (measured by the Arias intensity) is define in a physically consistent 
way. 
In order to investigate this important aspect as series of nonlinear dynamic analyses 
were performed on three case study structures, in order to compare the results given by 
artificial accelerograms (generated for different scenarios in terms of magnitude, 
distance and soil conditions) with those given by recorded accelerograms and 
considered as reference. Results given by the two different kinds of accelerograms were 
compared in terms of maximum interstorey-drift-ratio demand because this is one of the 
most widely used measures of structural demand.  
In order to obtain the reference distributions of interstorey drift, the same procedure 
adopted in Chapter 3 was used. These distributions are obtained by fitting attenuation 



Chapter 4 – Generation of non-stationary artificial accelerograms 

174 
 

relationships on the maximum drifts observed during nonlinear dynamic analyses 
performed using all the recorded accelerograms in the considered database. 
Predictive equations (one for the maximum drift of each floor) used have the form: 

 ( ) ( ) ( ) ( )2 2 2
10 1 2 3 4 5 10 6 7 10 30log log logw w w JBY c c M c M c c M R c c Vs= + + + + + +  (4.26) 

where log10(Y) is the base ten logarithm of the parameter to be regressed; Mw is moment 
magnitude; RJB is the closest distance to the surface projection of the fault rupture, as 
proposed by Joiner and Boore (1981); Vs30 is the shear-wave-velocity over upper 30 m. 
The total standard deviation, σT, of each empirical model may be decomposed into three 
independent components: the inter-event standard deviation, σE; the intra-event standard 
deviation, σA; and the inter-component standard deviation, σC, which must be 
considered when both horizontal components of a ground-motion recording are used in 

 
Figure 4.40. Frame structures considered in the present study. Natural periods in the cracked range: 
frame A = 0.46 s; frame B = 0.69 s; frames C = 0.84 s. Cross section details are given in Table 4.5. 
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the regression analysis, as is done in this study (Boore et al., 1997; Douglas, 2003; 
Boore and Bommer, 2005; Baker and Cornell, 2006c). As done in Section 3.4.2 these 
predictive equation were used to define reference drift distributions as a function of 
magnitude, distance and soil conditions. Details on the regressions and goodness of fit 
tests have been omitted. 

4.5.1 Case study structures 
Three reinforced concrete frames were used as case study structures. In the following 
they will be referred as Building A, Building B and Building C. Details on the geometry 
and on the reinforcing bars are given in Figure 4.40 and Table 4.5.  
The time-domain analyses take into account both geometric nonlinearity and material 
inelasticity. Structural members are modelled using the force-based elements  with 
plastic hinges proposed by Scott and Fenves (2006). These elements were chosen in 
order to avoid the localization problems that elements with distributed inelasticity can 
experience when sections have strain-softening behaviour (Spacone et al., 1996a; 
Spacone et al., 1996b; Spacone et al., 1996c; Coleman and Spacone, 2001; Scott and 
Fenves, 2006). Both displacement-based and force-based finite elements are affected by 
this issue. The displacement-based approach causes localization of response over a 
single finite element (De Borst et al., 1994; Bazant and Planas, 1998). The length of the 
element undergoing softening response controls the structural response, thus leading to 
non-objectivity because the structural response depends on the choice of the 
characteristic length in the finite element discretization (Scott and Fenves, 2006). On 

Table 4.5. Cross section details for the RS frames considered in the present study. All lengths are in 
cm. 

Frame A Frame B Frame C 
Section b h As As' b h As As' b h As As' 
A-A 30 30 4f16 4f16 35 35 3f20 3f20 40 45 2f24 2f24 
B-B 30 30 4f20 4f20 35 35 4f24 4f24 40 45 5f24 5f24 
C-C 30 50 2f14 2f14+2f18 35 35 3f24 3f24 40 40 2f24 2f24 
D-D 30 50 4f14 2f14 30 30 4f20 4f20 40 40 5f24 5f24 
E-E 30 50 2f14 2f14+4f18 30 30 3f24 3f24 40 40 4f24 4f24 
F-F 30 30 3f20 3f20 35 35 3f24 3f24 
G-G 30 50 2f14 2f14 35 35 5f24 5f24 
H-H 30 50 2f14 2f14+2f20 35 35 3f24 3f24 
I-I 30 50 2f14 2f14+3f20 30 30 3f24 3f24 
L-L 30 50 2f14 2f14+2f20 30 30 2f24 2f24 
M-M 30 50 2f14 2f14 
N-N 30 50 2f14 2f14+4f20 
O-O 30 50 2f14 2f14+3f18 
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the other hand, with force-based beam-column elements deformations localize at a 
single integration point rather than across an entire element, making the characteristic 
length equal to the integration weight associated with the section undergoing strain 
softening. This leads to a loss of objectivity because the response changes as a function 
of the number of element integration points rather than as a function of the element 
length (Scott and Fenves, 2006). In the present study, this problem has been addressed 
by using the integration method proposed by Scott and Fenves (2006), which confines 
non-linear constitutive behaviour to plastic hinge regions of a specified length 
maintaining objectivity. Non-linear behaviour of sections in the plastic hinge regions is 
modelled using fibre discretization. The confined concrete constitutive behaviour is 
modelled using the model proposed by Mander (Mander et al., 1989), the unconfined 
concrete constitutive behaviour is modelled using the model developed by Saenz (Ceb-
Fip, 1993) and the steel constitutive behaviour is modelled using the Menegotto and 
Pinto’s model (Menegotto and Pinto, 1973).  
All nonlinear time-history analyses were run using the software OpenSees (McKenna et 
al., 2000).  

4.5.2 Definition of the length of plastic hinges 
The adopted finite element beam-column model requires to define the length of plastic 
hinges (Scott et al., 2008).This parameter is very important, because it has a strong 
influence on analysis results (Inel and Ozmen, 2006). Different methods have been 
proposed in the literature in order to evaluate this length.  
Indeed, the most accurate way of defining this parameter is using results of experimental 
tests of RC column under cycling loading and trying to reproduce the experimental force-
displacement behaviour with the numerical model. According to this approach the plastic 
hinge length is defined together with the hysteretic behaviour of the hinge (Ibarra and 
Krawinkler, 2005; Ibarra et al., 2005). Of course, this approach is not always practicable 
since results of experimental tests under cycling-loading for columns similar to those of 
the columns of the structure that is to be modelled may not be available. 
A simpler approach, which is widely used in the literature (Scott et al., 2008), is to 
determine the length of plastic hinge through empirical equations calibrated using data 
from experimental test. Many researchers have proposed equations with this aim (e.g. 
Baker, 1956; Mattock, 1964; Corley, 1966; Mattock, 1967; Priestley and Park, 1987; 
Paulay and Priestley, 1992; Sheikh and Khoury, 1993; Mendis, 2001; Panagiotakos and 
Fardis, 2001; Priestley et al., 2007; Bae and Bayrak, 2008). The length of a plastic hinge 
depends on many factors: i) level of axial load; ii) moment gradient; iii) level of shear 
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stress in the plastic hinge region; iv) mechanical properties of longitudinal and 
transverse reinforcement; v) concrete strength; and vi) level of confinement and its 
effectiveness in the potential hinge region (Bae and Bayrak, 2008). Though, some of the 
models proposed in the literature do not consider the dependence on some of the 
aforementioned parameters (e.g. axial load). A very comprehensive review of the 
available models can be found in Bae and Bayrak (Bae and Bayrak, 2008). 
The dependency of the ratios lp/h, where lp is plastic hinge length and h is cross section 
height, on shear span-depth ratio, L/h, predicted by different models available in the 
literature is given in Figure 4.41. This Figure shows that there is a wide scatter in the 
length predicted by the different models. Furthermore, using empirically relationships 
determined directly from experimental data to define the length of plastic hinges in 
finite element models can be questionable. In fact, the plastic hinge lengths predicted by 
empirical models are usually defined on the basis of physical considerations. 
Considerations which may not be consistent with the definition of plastic hinge length 
used in the numerical model. For this reason this approach was not used in the present 
work. 

 
Figure 4.41. Plastic hinge lengths versus shear-span ratio, as predicted by different empirical models 
available in the literature (after Bae and Bayrak, 2008). 

Another possible way to define plastic hinge length is that described by Scott and 
Fenves (2006) who developed a procedure that Coleman and Spacone (2001) had 
proposed to address localization issues in force-based beam-column elements. 
According to this procedure the plastic hinge length is determined imposing that the 
numerical model maintains a constant energy release after strain-softening initiates. 



Chapter 4 – Generation of non-stationary artificial accelerograms 

178 
 

Even if this definition has a theoretical basis, it is not possible to relate plastic hinge 
length with experimental data. 
For the aforementioned reasons and for lack of experimental data, in the present work a 
different method has been used in order to define the plastic hinges length. According to 
the adopted procedure the plastic hinge length is calculated is such a way that the finite 
element model gives, for a cantilever column, an ultimate displacement equal to that 
predicted by the Fardis’s model (Panagiotakos and Fardis, 2001). This model predicts 
the ultimate displacement of concrete columns as a function of some geometric 
parameters, of materials characteristic and, confinement ration and axial load level. 
Fardis’s model, which is also included in Eurocode 8, was chosen because it has been 
fitted using a very comprehensive database of experimental data (Panagiotakos and 
Fardis, 2001). According to the proposed procedure the plastic hinge length is 
determined, using an iterative algorithm, such a way that the ultimate displacement, i.e. 
the displacement corresponding to the attainment of the ultimate deformation in one of 
the cross sections, given by the numerical model corresponds to that predicted by the 
Fradis’s model. Ultimate deformations for steel and concrete are defined according to 
the criteria given in Priestley et al. (2007). 
Figure 4.42 shows, for a 30x30 cm2 cross section with a reinforcing-steel-ratio equal to 
0.03, the dependency of the plastic hinge length, obtained according to the adopted 
procedure, on axial load ratio, ( )cN f b hν = ⋅ ⋅ , and on concrete compressive strength, 

cf . The change in the slope of the curves at 0.05ν =  is a consequence of the chance of 
failure type, in fact for 0.05ν ≤  the ultimate strain is attained by the reinforcing steel 
and for 0.05ν >  by the confined concrete. Increasing the reinforcing steel ratio may 
eliminate the steel-side rupture. Figure 4.43 shows dependency of plastic hinge length 
on axial load ratio, for fc = 30 MPa, reinforcing-steel-ratio equal to 0.05, and different 
cross section sizes. 
This procedure has been adopted to define the length of plastic hinges for the beam-
column finite-elements used to model the case study structures. It is worth noting that lp 
depends on the axial load level. Axial loads produced by gravity loads have been used 
in order to calculate plastic hinge lengths for the case study structures. 
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Figure 4.42. Plastic hinge length versus axial load ratio for three different concrete strengths, 
reinforcing-steel-ratio equal to ρ = 0.03, and 30x30 cm2 cross section. 

 
Figure 4.43. Plastic hinge length versus axial load ratio for three different cross sections,  reinforcing-
steel-ratio ρ = 0.05, and concrete strength fc = 30 MPa. 

4.5.3 Overview of the analyses 
In this section, the drifts obtained performing time-history analyses with unscaled 
artificial accelerograms generated according to different magnitude, distance and soil 
stifness scenarios will be discussed for the case study building. The following scenarios 
were considered: i) M = 6.5, R = 20 km, Vs30 = 300 m/s; ii) M = 6.5, R = 100 km, Vs30 = 
300; iii) M = 7.0, R = 10 km, Vs30 = 300; iv) M = 7.0, R = 20 km, Vs30 = 300 and v) M = 
7.0, R = 50 km, Vs30 = 300 m/s. Furthermore, two different sets of accelerograms were 
generated for each scenario, one set (A) considering the variability of IA and DV only 
and the other set (B) considering the variability of all the parameters (IA, DV, Fc and 
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Fb) defining the approximated spectrogram. 100 accelerograms were generated for each 
set. 

4.5.4 Results of time-history analyses for the frame 
structure A 

Figures 4.44-4.48 show the results, in terms of distribution of maximum drift at 
different storeys, obtained for the sets A and B and the five scenarios considered. The 
reference drift distribution was obtained, as described in Section 4.5, by fitting 
attenuation relationships on the results of time history analyses performed using all the 
recorded accelerograms in the considered database. These reference values are depicted 
by gray lines; the solid line indicates the reference median response, the dashed lines 
indicate ±σ intervals, and the dash-dot lines indicate ±2σ intervals. As done in Chapter 
3 a lognormal distribution was assumed for maximum drift. This choice has been 
verified performing different statistical tests, as done in Section 3.4.2, which are not 
reported here. 
Artificial ground motions of both sets give median values of drift in good agreement 
with the reference values, but they give a variability of drift response which is less 
accurate. This loss of accuracy in predicting response variability increases as the non-
linear demand on the structure increases. In fact, comparing Figure 4.45 and Figure 4.46 
one can see that for the M = 6.5, R = 100 km scenario, which brings the structure to very 
low inelastic excursions, the drift predictions are very good in terms of both mean value 
and standard deviation. In particular, for this scenario, the set B, generated taking into 
account the variability of all the parameters defining the spectrogram gives very good 
predictions. On the other hand for the M = 7.0 R = 10 km scenario, which brings the 
structure to higher inelastic excursions there is a loss of accuracy especially as far as 
drift variability is concerned.  
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Figure 4.44. Frame A: M = 6.5, R = 20 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.45. Frame A: M = 6.5, R = 100 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 
and ± 2 standard deviation values of the reference drift distribution. Dots represent results of 
analyses, their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.46. Frame A: M = 7.0, R = 10 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 
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Figure 4.47 Frame A: M = 7.0, R = 20 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.48 Frame A: M = 7.0, R = 50 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

4.5.5 Results of time-history analyses for the frame 
structure B 

Figures 4.49-4.53 give drift values obtained for the RC frame B. Similarly to what was 
obtained for the frame A, the artificial ground motions give predictions of mean drift 
values in good agreement with the reference values given by the reference attenuation. 
As previously observed, predicting response variability is more problematic especially 
when the structure has strong inelastic excursions. The variability predicted by artificial 
ground motions of set A is usually lower that the reference one while variability 
predicted by set B is usually higher. Furthermore the goodness of prediction, in terms of 
variability, decreases as the inelastic demand on the structure increases (compare Figure 
4.50 with Figure 4.51). 
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Figure 4.49 Frame B: M = 6.5, R = 20 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.50 Frame A: M = 6.5, R = 100 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 
and ± 2 standard deviation values of the reference drift distribution. Dots represent results of 
analyses, their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 
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Figure 4.51 Frame B: M = 7.0, R = 10 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.52 Frame B: M = 7.0, R = 20 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.53. Frame B: M = 7.0, R = 50 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 
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4.5.6 Results of time-history analyses for the frame 
structure C 

Finally, results in terms of maximum drift demand for structure C are given in Figures 
4.54-4.58. These results confirm the conclusions that were drawn for buildings A and B. 
That is, the artificial ground motions generated following the procedure proposed give 
good results in terms of mean drift response but give less accurate results in terms of 
drift variability especially when high inelastic excursions occur.  

 
Figure 4.54 Frame C: M = 6.5, R = 20 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.55 Frame C: M = 6.5, R = 100 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 
and ± 2 standard deviation values of the reference drift distribution. Dots represent results of 
analyses, their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 
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Figure 4.56 Frame C: M = 7.0, R = 10 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.57 Frame C: M = 7.0, R = 20 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 

 
Figure 4.58. Frame C: M = 7.0, R = 50 km, Vs30 = 300 m/s scenario. Gray lines indicate mean, ± 1 and 
± 2 standard deviation values of the reference drift distribution. Dots represent results of analyses, 
their mean, ± 1 and ± 2 standard deviation values are indicated with horizontal segments. 
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4.6 Conclusions 

The procedure for generating artificial accelerograms originally proposed by Sabetta 
and Pugliese (1996) has been revisited and enhanced by i) proposing new forms for the 
ground-motion prediction equations involved in the model, ii) using a bigger and more 
comprehensive database of accelerograms, iii) using a more consistent definition of 
magnitude, iv) proposing a new criterion for taking into account the directions of 
recording sensors and giving a better description of ground motion variability.  
The attenuation relationships originally developed by Sabetta an Pugliese had very 
simple functional form and, most importantly, had a very simple representation of the 
variance structure of the data. In fact the total variance of the model was not partitioned 
into intra- and inter-event components. This representation of the variance is nowadays 
used in almost any attenuation relationship because it provides a better representation of 
the actual data correlation. The functional form adopted in the present work are 
consistent with those recently proposed by Stafford, 2006 when developing an 
attenuation relationship for Arias intensity in New Zealand. 
Furthermore a bigger accelerogram database was used when performing regression 
analysis: Sabetta and Pugliese considered 190 accelerograms while in the present work 
1504 accelerograms were considered. Though, it is worth noting that the original 
database contained only Italian earthquakes while in the present work a subset (See 
Sextion 4.4) of the NGA database was used which contains events recorded all around 
the world, even thou it particularly US focused. Recent studies  (Stafford et al., 2008) 
performed on the NGA attenuation relationships suggest that these latter can be adopted 
for the Europe and Middle East as well.  
In contrast to what was done by Sabetta and Pugliese (1996), in the present work, 
moment magnitude (Hanks and Kanamori, 1979) has been used to measure earthquake 
intensity. It is recognized that this measure is preferable to other magnitude measures 
because it does not saturate at high values. 
Finally, in the present work, particular care has been taken to correctly represent the 
variability of ground motion. In particular two horizontal components of ground-
shaking were used, defined in such a way that one corresponds to the direction with the 
maximum Arias intensity and the other to the direction with the minimum Arias 
intensity. 
Accelerograms generated according to the proposed procedure, for different scenarios in 
terms of magnitude, distance and soil conditions, were used as input for non-linear 
dynamic analysis of three case study RC buildings. The so obtained results, in terms of 
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maximum-interstorey-drift-demand distribution, were compared with reference 
distributions obtained using the procedure described in Chapter 3. That is fitting 
attenuation relationships on the maximum drift values obtained from dynamic analyses 
performed using all the recorded accelerograms contained in the database used to 
develop attenuation relationships for Arias intensity, duration, central frequency and 
frequency bandwidth.  
Maximum-drift-demand distributions obtained from artificial accelerograms are 
generally in good agreement in terms of mean value, while the agreement in terms of 
variability is lower. It is worth noting that both artificial and recorded accelerograms 
were not scaled. Most probably introducing a linear scaling procedure could enhance 
results, especially in terms of mean structural response. 
 
 



 
 

 
 
 

PART 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 





191 
 

5 Seismic reliability 
 

5.1 Introduction 

 Perhaps no other discipline within engineering has to deal with as much uncertainty as 
the field of earthquake engineering (Der Kiureghian, 1996). The randomness in the 
occurrence of earthquakes in time and space, the vast uncertainty in predicting 
intensities of resulting ground motions, and the inability to accurately assess capacities 
of structures under cyclic loading all compel to make use of probabilistic methods in 
order to consistently account for the underlying uncertainties and make quantitative 
assessments of structural safety. While the need for probabilistic methods in earthquake 
engineering has long been recognized, their use in practice has been limited because of 
the analytical and computational difficulties that these methods impose on the design 
and evaluation process.  
The final objective in earthquake engineering often is decision on design specifications. 
This usually requires risk analysis, involving the assessment of probabilities as well as 
costs associated with each design alternative and the corresponding consequences, should 
structural failure occur. A simpler, more practical framework is provided by probabilistic 
design codes, which implicitly account for the underlying uncertainties and optimize (in 
an approximate manner) the expected utility derived from each design.  

5.2 Sources of uncertainty 

Der Kiureghian (1996) provides a list of the dominant types of uncertainty in structural 
engineering: (a) inherent randomness, which arises from intrinsic variability in 
materials and in environmental effects, such as loads and support movements; (b) 
statistical uncertainty, which arises in the course of estimating parameters of probability 
distributions from observational samples of limited size; and (c) model uncertainty, 
which arises from the imperfection of mathematical models used to describe complex 
physical phenomena, such as models describing loads and capacities of soils or 
structures. Whereas the uncertainty due to inherent randomness is irreducible, statistical 
and model uncertainties can be reduced, the former by collection of additional samples 
and the latter by use of more refined models. 
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More recently Der Kiureghian and Ditlevsen (2009) further detailed the above list and 
expanded some of the points given above, suggesting the following list of sources of 
uncertainty: (a) Uncertainty inherent in the basic random variables, such as the 
uncertainty inherent in material property constants and load values, which can be 
directly measured; (b) uncertain model error resulting from selection of the form of the 
probabilistic sub-model used to describe the distribution of basic variables; (c) uncertain 
modelling errors resulting from selection of the physical sub-models used to describe 
the derived variables; (d)  statistical uncertainty in the estimation of the parameters of 
the probabilistic sub-model; (e) statistical uncertainty in the estimation of the 
parameters of the physical sub-models; (f) uncertain errors involved in measuring of 
observations, including errors involved in indirect measurement; (g) uncertainty 
modelled by the random variables corresponding to the derived variables, which may 
include, in addition to all the above uncertainties, uncertain errors resulting from 
computational errors, numerical approximations or truncations. 
Given these numerous sources of uncertainties, it is particularly important to threat and 
propagated them correctly. Many approaches have been proposed in the literature, the 
reader is referred to Ditlevsen (1982), Der Kiureghian (1989), Der Kiureghian (1996), 
Ditlevsen and Madssen (1996), Gardoni et al. (2002), and Der Kiureghian and Ditlevsen 
(2009). 
While there can be many sources of uncertainty, it is convenient to categorize the 
character of uncertainties as either aleatory or epistemic. An aleatory uncertainty is one 
that is presumed to be intrinsic randomness of a phenomenon. On the other hand, an 
uncertainty is one that is presumed as being caused by lack of knowledge. As Der 
Kiureghian and Ditlevsen (2009) suggest, the above distinction may raise the 
philosophical question whether there is any aleatory uncertainty at all. This distinction 
does not make sense outside the model universe: from a semantic point of view, all 
uncertainties are the same as lack of knowledge. However, it is convenient within a 
probabilistic model to introduce the categorization of uncertainties into aleatory and 
epistemic. The advantage of separating the uncertainties is that this makes clear which 
uncertainties can be reduced and which uncertainties are less prone to reduction (at least 
in the near-term, i.e. before major advances occur in scientific knowledge). Therefore 
the categorization of uncertainties is a choice that must be made by the model builder, 
and generally depends on the context and application. 
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5.3 The reliability problem 

5.3.1 Limit states 
The concept of limit state related to a specific requirement is defined as a state of the 
structure including its loads at which the structure is just on the point of not satisfying 
the requirement. Usually the requirement will be interpreted and formulated within a 
mathematical model for the geometric and mechanical properties of the structure and 
for the actions on the structure. Let x1, x2,... , xn be those variable that independently 
contribute to that part of the mathematical model that concerns geometry, strength 
properties and actions. To each choice of values corresponds a uniquely defined 
structure with uniquely defined loads. This structure with its loads is a pure 
mathematical object that does or does not satisfy a given limit state requirement. 
Some reliability problems can be formulated in terms of a finite number of variables, 
but there are relevant reliability problems where the model formulation most 
conveniently requires use of an infinity of variables (functions). In particular this is the 
case when random temporal and spatial property variations of actions and resistances 
are relevant. A given limit-state requirement divides the domain of definition of the 
model in two sets, the safe set and the failure set, in which the requirement is satisfied 
and not satisfied, respectively. The boundary of the safe set is called the limit state.  
Limit states can be of different categories. The principal ones are collapse limit states 
(ultimate limit states) and serviceability limit states. A collapse limit state usually 
represents a situation where the structure is just at the point of losing its integrity, that 
is, to pass into an irreversible state that may have a catastrophic nature and from which 
the structure only recovers by repair or reconstruction. A serviceability limit-state 
corresponds to the limit between an acceptable and a not acceptable state under normal 
use. Such a sate is with respect to direct damage of the structure often reversible in the 
sense that the structure by unloading passes unchanged back to the safe set. However, 
passages of a serviceability limit-state can also cause permanent damages of the 
structure such as formation of cracks or other visible defects. Generally these damages 
will not raise a reliability problem of the collapse limit-state category provided the 
structure is subject to general running maintenance.  

5.3.2 Formulation of time invariant reliability problems 
The essence of the structural reliability problem is the probability integral 
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 ( )F F
P f d= ∫ x x  (5.1) 

where PF denotes the failure probability, ( )f x  denotes the PDF of a vector of random 
variables x that represent time-invariant uncertain quantities influencing the state of the 
structure under consideration and F denotes a subset of the outcome space where failure 
occurs. By failure, usually the exceedance of a prescribed serviceability or safety limit 
is implied. For mathematical analysis, it is necessary to describe the failure domain F in 
an analytical form. Usually this is done in terms of a performance function, i.e. 

( ){ }: 0F g= ≤x x , where g(x) is known as the limit-state function. The boundary of F 
is defined by ( ) 0g =x and is known as the limit-state surface. Obviously the safe set is 
defined by ( ) 0g >x . 
A measure of interest, related to Eq. (5.1), is the generalized “reliability index”, defined 
by  

 ( )1 1 FP−β = Φ −  (5.2) 

where ( )Φ ⋅  denotes the inverse of the standard normal cumulative probability. When 
the failure domain is linear and the variables are standard normal, β  can be interpreted 
as the minimum distance from the origin (the mean point) to the failure domain. This 
interpretation has been found useful in second-moment reliability analysis and in 
developing probabilistic codes.  

5.3.3 Statistical and model uncertainties 
The formulation presented in Eq. (5.1) only accounts for the inherent randomness 
represented by the random variables x. To explicitly account for statistical and model 
uncertainties, it is convenient to write the PDF of x as ( )|f x θ  and the limit state 
functions as ( ),g x θ , where θ  is a vector collecting all the uncertain parameters present 
in the distribution function and the mathematical models describing the limit-states. The 
probability of failure and the reliability index are now dependent on θ  and hence are 
uncertain. There are different positions in the literature as to how these uncertainties 
should be treated. One view, supported by Madsen et al. (1986) and Ditlevsen (1982), is 
to not differentiate between the uncertainties in θ  form those in x. The result is the 
expected probability of failure obtained from the total probability formulation 

 ( )( ) ( ) ( )|F F
E P f f d d= ∫θ x θ θ x θ  (5.3) 
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where ( )f θ  is the distribution of θ , which may be obtained, for example, from 
regression or from Bayesian updating. This integral has the same form as in Eq. (5.1), 
provided that x and θ  are combined to form a single vector. Hence methods used for 
the solution of Eq. (5.1) can also be used to evaluate Eq. (5.3). 
Another approach for the analysis of uncertainties, supported by Der Kiureghian (Der 
Kiureghian, 1989; Der Kiureghian, 1996; Der Kiureghian and Ditlevsen, 2009) 
recognizes the fundamental difference between the inherent randomness represented by 
x, which are irreducible, and the statistical and model uncertainties represented by θ , 
which are reducible. In this case, failure probability, PF, and reliability index, β, are 
treated as random variables with probability distributions that reflect the effect of 
statistical and model uncertainties on their estimated values. The cumulative distribution 
function of β, for example is given by 

 ( ) ( )
( ) 0

0 0
P f d

β −β ≥
β ≤ β = ∫ θ

θ θ  (5.4) 

and its PDF can be seen as the sensitivity of the above probability with respect to the 
parameter 0β . The integral in Eq. (5.4) is also of the type shown in equation (5.1), 
except that the limit state function here involves the conditional reliability index ( )β θ .  
In applications, one is often interested in a simple measure to describe the effect of 
statistical and model uncertainties on computed PF and β. One measure of this kind is 
an interval on PF or β with a specified probability or confidence. The probability 
distribution described above can be used to generate such intervals. Another convenient 
measure is the variance of ( )FP θ  or ( )β θ  with θ  regarded as random variables. These 
variances can be obtained from the distribution described above, however, it is simpler 
to use a first order approximation, which for β leads to 

 ( )( )Var T
θ θθ θβ ≈ ∇ β⋅ ⋅∇ βθ C  (5.5) 

where θ∇ β  is the gradient vector of β at the mean of θ  and θθC  is the covariance 
matrix of θ . This variance together with an assumed distribution can be used to obtain 
an approximate confidence interval on β. A similar equation for the variance of ( )FP θ  
can be written, which is, however less accurate, because typically PF has a strong non-
linear dependence on θ (Der Kiureghian, 1996). For this reason Der Kiureghian (1996) 
suggests to use the confidence interval of β together with Eq (5.2) to obtain a 
confidence interval on PF. 
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5.3.4 Time variant reliability problems 
A reliability problem is said to be time-variant when the limit-state function depends on 
time, t. One important case is when some of the uncertain variables are stochastic in 
nature, as in ( )( ),g tx y , where ( )ty  denotes a vector of stochastic processes. For 
example, x may denote uncertain mass, stiffness or damping properties of a structure, 
which are usually time-invariant, and ( )ty  may denote ground acceleration processes at 
the support points of the structure. For this class of reliability problems, the failure 
event constitutes the out-crossing of the vector process ( )ty  through the limit-state 
surface ( ), 0g =x y . Usually it is necessary to solve this problem by conditioning on x, 
i.e. 

 ( )( )( )( ) ( )
0
min , 0 |F t T

P P g t f d
≤ ≤

= ≤∫ x y x x x  (5.6) 

where T denotes the structure lifetime. The conditioned failure probability for given x is 
solved by the methods of stochastic process theory and the integral is evaluated by one 
of the methods described later on. The nested reliability approach described in the 
following section is particularly suitable for this purpose, provided certain smoothness 
conditions on the out-crossing problem are satisfied. 
The exact solution of the out-crossing probability unfortunately is not available even for 
the special case of a linear limit-state function and stationary Gaussian processes. For 
small failure probabilities, however, the following upper bound provides a good 
approximation: 

 ( )( )( )( ) ( )( )( ) ( )
0

0

min , 0 | , 0 ,
T

t T
P g t P g v dt

≤ ≤
≤ ≤ + ∫x y x x y x t  (5.7) 

where ( ),v x t denotes the mean rate of out-crossing of y(t) for given x. The first term on 
the right-hand side is a time invariant reliability problem of the type defined in Eq. (5.1)
. The main difficulty is in computing the mean out-crossing rate and considerable effort 
in recent years has been devoted to finding exact or approximate solutions to this 
problem. For a linear limit-state surface, the out-crossing problem can be converted to a 
scalar process up-crossing, a problem for which a well known solution by Rice is 
available. For a nonlinear limit-state surface, a generalization of the Rice formula is 
available that requires integration over the surface. Based on this formula, solutions of 
the out-crossing rate for special cases of the limit-state surface (e.g., polyhedral or 
ellipsoid surfaces) have been derived. Asymptotic solutions for certain classes of 
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processes have also been derived. These solutions are rather involved and require a 
considerable amount of computation. Another idea has been to liberalize the limit-state 
surface at an appropriate point (either the point of maximum mean out-crossing rate or 
the point of maximum likelihood) and convert the problem into an up-crossing rate 
problem. A comprehensive review of the afore mentioned classical random approaches 
is provided by Pinto et al. (2004), who point out that limitations of these approaches are 
severe, especially in view of aspects peculiar to earthquake engineering, i.e. non-linear 
behaviour and the presence of uncertainties in the structural model.  
Another class of time-variant reliability problems is defined by a limit-state function 
which is a direct function of time, i.e. of the form ( ), 0g t =x . For example, an 
uncertain structure subjected to a time-varying deterministic load belongs to this class. 
In some cases it is possible to represent stochastic processes in terms of random 
variables and deterministic functions of time. In that case, a problem defined by a limit-
state function of the form ( ), 0g =x y  can be converted to one of the form ( ), 0g t =x , 
where x now includes the random variables defining. The probability of failure for this 
class of problems is described by the integral in Eq. (5.1), where the failure domain now 
is ( )( )

0

{min , 0}
t T

D g t
≤ ≤

= ≤x . Hence, the methods available for solving time-invariant 
reliability problems are also applicable to this class of problems. However, caution 
should be exercised since the limit-state surface in this case is not continuously 
differentiable and can be strongly non-linear (Der Kiureghian, 1996). The above 
formulations can be extended to space-variant reliability problems, such as those 
involving random fields of material properties or loads, or those where the limit state 
function is explicitly dependent on a spatial coordinate. Furthermore, one can formulate 
problems where the limit-state function is dependent on both time and space 
coordinates. 

5.4 Probability computation methods 

Researchers devoted great deal of effort to developing efficient algorithms for 
computing probability integrals of the type in Eq. (5.1). A straightforward integration, 
by analytical or numerical means, usually is not possible because of the arbitrary nature 
of the integration domain and the typically high dimension of the problem. Often the 
size of x is large, and consequently indirect approaches for evaluating the integral are 
essential. A review of the most widely used of these methods is presented in the present 
section. Several of the methods described below require transformation of the random 
variables in the original space, d∈x \ , where d represents the dimension of the 
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problem, into the standard normal space, d∈u \ , where each component of the vector u 
is associated with an independent central unit Gaussian standard distributions. The 
transformation, which is nonlinear for non Gaussian random variables, is expressed as 

( )=u u x , where u has the standard normal density. These transformations, ( )xuT=u x
 and ( )uxT=x u , are established by applying for example the Rosenblatt’s or the Nataf’s 

transformation (Ditlevsen and Madsen, 1996; Pinto et al., 2004).  
There is a vast literature of different procedures on how to estimate the probability of 
failure given the performance function. However, the performance function, ( )g x , can 
only be specified explicitly for rather simple and particular cases. In most cases of 
practical interest however, the function ( )g x  will not be known explicitly in terms on 
an analytically tractable expression. In cases where a deterministic finite-element-
method (FEM) analysis code will be used to compute the structural response, the 
performance function will be known only point wise, i.e. the performance ( )( )i

ig g= x  
can be computed for each vector ( )ix . Using the transformations mentioned above, the 
performance function ug  defined in the standard normal space, can be determined as 
follows: 

 ( ) ( ) ( )( )u uxg g g T= =u x u  (5.8) 

In other words, the evaluation of the performance at a single point ( )iu  in the standard 
normal space requires a transformation into the original space, a complete run of the FEM 
model and the computation of the performance form the response. The computational cost 
of evaluating the failure probability is governed by the number of structural analyses that 
have to be carried out. Hence, in view of feasibility and efficiency, the basic problem in 
structural reliability using deterministic FEM code should be specified as follows 
(Schuëller et al., 2004): determine the probability of failure within a specified confidence 
interval such that the number of required structural analyses is small. 

5.4.1 First- and second-order methods 
The first- and second-order reliability methods (FORM and SORM) take advantage of 
the fact that the point ( )( )* min , 0g= =u u u , where ( )g u  indicates the transform of 
the limit-state function in the u space, is a point located on the limit state surface with 
minimum distance from the origin. Therefore this point has the highest probability 
density among all the failure points in the standard normal space. This point is known as 
the design point or the most likely failure point. It is evident that probability densities in 
the standard normal space are rotationally symmetric and decay exponentially with the 
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square of distance in both radial and tangential directions from u*. It follows that the 
major contribution to the probability integral in Eq. (5.1) comes from the 
neighbourhood of u*, provided the surface is not strongly nonlinear and there is only 
one significant design point. These conditions, for example, are satisfied for most 
structural component reliability problems (Der Kiureghian, 1996). Based on this, the 
limit-state surface in the neighbourhood of the design point is approximated by a first- 
or second-order surface for which the solution of the probability integral is available. 
Specifically, in FORM, the limit-state surface is replaced by the tangent hyper-plane at 
u* an the first order approximation of the failure probability is given by 

 ( )FP ≈ Φ −β  (5.9) 

where *β = αu , the first-order reliability index, is the distance from the origin and a 
denotes the unit normal vector at the design point directed toward the failure set. In 
SORM, the limit-state surface is fitted with a second-order surface (usually a 
paraboloid) at u*, and the second-order approximation of the failure domain is given in 
terms of β and the principal curvatures, iκ , of the paraboloid. The exact expression of 
this probability is given in terms of a single-fold integral, which must be evaluated 
numerically.  
An important step in FORM/SORM is the determination of the design point. This 
requires the solution of a constrained optimization problem. Most algorithms construct a 
converging sequence of points according to the rule 1k k k ku u d+ = + λ , k = 0,1,..., where 
dk denotes the search direction vector at step k and λk denotes the step size. In most 
efficient algorithms dk is expressed in terms of the gradient of the constrain function, 

G∇ .  
When the limit-state surface in the standard normal space is strongly nonlinear, which 
may arise from strong nonlinearity of g(x) or from strong non-normality of the basic 
variables x, multiple design points on the surface may occur with significant 
neighbourhood densities. For such cases, an improved approximation may be obtained 
by fitting first- or second-order approximations at all significant local design points 
followed by a series system analysis, provided certain convexity conditions are 
satisfied. Finding these local design points, however, is a challenge by itself since it is 
difficult to prevent convergence of the optimization algorithm to the global design 
point.  
The major advantage of FORM/SORM is that the probability integral is computed with 
a relatively small number of computations of the limit-state function and its gradient. 
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Typically (Schuëller et al., 2004), for FORM the number of computations of each g and 
g∇  is of order 10-100, and for SORM depending on the method used, extra 

computations of g of order 10d or d2 are required to determine the principal curvature 
where d denotes the number of random variables. These numbers are independent of the 
magnitude of the failure probability. These methods have the additional advantage of 
providing the coordinates of the most likely failure point and, in SOMR, the shape of 
the limit-state surface in the neighbourhood of the design point. Furthermore FORM 
readily provides the sensitivities of the failure probability, which are important in many 
applications. 
As for the disvantages, FORM provides a point estimate, subject to linearization errors, 
without confidence. Moreover, it requires the evaluation of the design point, which 
becomes difficult in high dimensions for non-linear limit state functions in the standard 
normal space. The efforts to compute the design point grows proportionally with the 
dimension d. SORM requires in addition to the design point n-1 main curvature which 
cannot be obtained in a feasible manner for high dimensions d. The procedure implies that 
the domain close to the design point is the important domain which is not the case for 
high dimensions. 

5.4.2 Simulation methods 
5.4.2.1 Monte Carlo simulation 
Among the procedures developed for the estimation of PF, a prominent position is held 
by simulation methods. These techniques are based on traditional Monte Carlo 
sampling. If an indicator function ( )fI x  is introduced which assumes a value equal to 1 
if x is in the failure domain and equal to 0 otherwise, then the integral in Eq. (5.1) can 
be rewritten as: 

 ( ) ( ) ( )f f fF S
P I f d E I

∪
⎡ ⎤= = ⎣ ⎦∫ Xx x x x  (5.10) 

which shows that failure probability is the expected value of the indicator function 
according to the probability density function ( )fX x . Therefore, in Monte Carlo 
simulation an estimator of the form 

 l ( )( )
1

1 N
i

F F
i

P I
N =

= ∑ x  (5.11) 

is used, where the samples ( )ix  in Eq. (5.11) are independently identically distributed 
(i.i.d) according to ( )f x . It can be shown that the estimator in Eq. (5.11) is unbiased 
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(Pinto et al., 2004). The greatest advantage of Monte Carlo is its generality; in fact it 
can be applied to almost any class of problems. Furthermore Monte Carlo simulation 
the convergence rate, which in the mean square sense is measured by the coefficient of 
variation l ( )Var 1FMC F F FP P P NP⎡ ⎤δ = = −⎣ ⎦  of l

FP , is independent of the 
dimensionality of the random vector x. Its main disvantage is its inefficiency in 
estimating small failure probabilities PF due to the large number (proportional to 1/PF) 
of samples or equivalently system analyses needed to achieve an acceptable level of 
accuracy. Many variance reducing techniques have been proposed in the literature, e.g. 
importance sampling, directional sampling, importance sampling using design points, 
adaptive importance sampling, subset simulation, etc. It should be noted that some of 
these methods, directional simulation for example, are usually limited by the 
dimensionality of the problem. A brief overview of the most important and efficient 
(even in high dimensions) among these methods will be given in the following. 

5.4.2.2 Importance sampling 
Importance sampling has been one of the most prevalent approaches in the context of 
simulation based methods for the estimation of structural reliability. The underlying 
concept is to draw samples of the vector of random parameters x from a distribution 

( )f x  which is concentrated in the important region of the random parameter space, that 
is the failure domain F. This requires re-expressing the probability of failure PF as 
follows 
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P I f d h d E

h h
⎡ ⎤

= = = ⎢ ⎥
⎣ ⎦

∫ ∫
x x x x

x x x x x
x x

 (5.12) 

and using an estimator of the form 
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i.i.d. is given by: 
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it is straightforward to verify that the latter becomes zero when 

 ( ) ( ) ( ) ( )F
opt

F

I f
h h

P
= =

x x
x x  (5.15) 

which represents the optimal choice for the importance sampling density which is 
practically infeasible since it requires the knowledge of the failure probability a priori. 
Several techniques have been developed in order to approximate the optimal sampling 
density or to construct a different one which, exhibits a decreased variance of the 
estimator in Eq. (5.13). At present, the most prevalent approaches are those based on 
kernel density estimators or on design points. 
Importance sampling is more robust and accurate than FORM or SORM, but not 
competitive to methods line sampling and subset simulation, because it is generally 
impossible to sample according to the optimal sampling density. The approach has 
difficulties to deal with multiple failure domains if they are not well separated. Used 
together with a surrogate response surface, the robustness and accuracy of importance 
sampling is lost, because such global simple analytical approximation cannot be 
determined efficiently in a robust and accurate manner for high dimensions. 

5.4.2.3 Importance sampling using design points 
The design point – which was defined previously, is also the point of maximum 
likelihood (Der Kiureghian, 1996; Pinto et al., 2004). This is the best choice unless 
additional information on the true limit state surface is available. However, it should be 
noted that the contrary to FORM and SORM, the estimates obtained by importance 
sampling are not sensitive to the exact position of the design point, which therefore does 
not necessarily need to be determined with great accuracy. For a convex failure domain 
the centre of the sampling density might be shifted into the failure region or into the 
safe domain for a convex safe region. 

5.4.2.4 Importance sampling using kernel density estimators 
As demonstrated in the precious sections, the design points and their neighbourhood do 
not always represent the most important region of the failure domain, especially in high 
dimensional spaces. Furthermore, the computational cost associated with their 
determination can be quite high which adversely affects the efficiency of the method. 
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Therefore, it has been proposed to use points lying inside the failure domain F in order 
to construct kernel density estimators of the optimal importance sampling density as 
described in the sequel. In the earliest versions of this method, the points in F were 
generated using standard rejection sampling from the original pdf (Ang et al., 1992). 
This of course is extremely inefficient in cases where PF is small since it requires the 
simulation of an exuberant number of points in order to obtain sufficient samples in the 
failure domain (Schuëller et al., 2004; Schuëller and Pradlwarter, 2007). The 
aforementioned problem was addressed in (Au and Beck, 1999) where a Markov Chain 
metropolis algorithm was used. Markov Chain techniques provide an ideal tool when 
one needs to sample from a distribution which is known up to a constant as is the case 
for the optimal importance sampling density (Eq. (5.15)). Points ( )ix  which are 
(asymptotically) distributed according to hopt can be obtained as intermediate stats of an 
irreducible Markov Chain whose unique stationary distribution is hopt. The initial point 

( )0 F∈x  is selected either by rejection sampling or using engineering judgement (and 
this does not present serious difficulties in most systems of practical interest). The 
sequence of points ( )ix  obtained, will lie in F. Subsequently, a kernel sampling density 
estimator is constructed 
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1

1 1 iM

d
i ii

k K
M ww=

⎛ ⎞−= ⎜ ⎟⎜ ⎟λλ ⎝ ⎠
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using M points ( )ix  obtained by the Markov Chain. In the equation above, w is the 
window width, iλ  is the local bandwidth factor and k is the kernel pdf which is most 
commonly selected as the normal pdf: 
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The density in Eq. (5.16) is used as the importance sampling density in order to estimate 
PF based on Eq. (5.13).  
The total cost of this approach, in terms of number of systems analyses needed equals 
the number of points generated by the Markov Chain in order to construct the kernel 
density estimate (M in Eq. (5.16)) and the number of points sampled form ( )k x  in the 
estimation of the failure probability (N in Eq. (5.13)). The quality of the estimate of the 
optimal sampling pdf provided by Eq. (5.16) depends on the particular parameters (w, 

iλ , K) but most importantly on the probabilistic characteristics of the points ( )ix  used. 
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Further details on the issues regarding this procedure can be found in Schuëller et al. 
(Schuëller et al., 2004). 

5.4.2.5 Subset simulation 
Recently, a novel procedure called subset simulation was proposed by Au and Beck 
(2001) for structural reliability problems. It was further developed and investigated in 
the context of seismic risk dynamic analysis (Au and Beck, 2003). The basic concept on 
which it is based first appeared in the context of statistical physics under the name 
umbrella sampling. Subset simulation overcomes the inefficiency of direct Monte Carlo 
in estimating small probabilities, by expressing PF as a product of larger, conditional 
probabilities. This is achieved by defining a decreasing sequence of events (subsets) 
{ } 1

m
i i

F
=

 such that mF F=  and 1 2 mF F F F⊃ ⊃ ⊃ =… . Due to the latter property, 

1

k
i ki

F F k m
=

= ∀ ≤∩ . As a result, the probability of failure PF can be written as: 
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It is obvious that by an appropriate selection of { } 1

1

m
i i

F −

=
 the probabilities ( )1P F  and 

( )1 | 1i iP F F+ ≥  can be made sufficiently large so that their estimation can be performed 
efficiently by direct Monte Carlo estimators. Hence, the original problem is broken up 
into a series of m intermediate problems, for each one of which a solution can be 
obtained with a small number of simulations. Distinct estimators 1̂P  and 1

ˆ 1iP i+ ∀ ≥  
appearing in Eq. (5.18). A key ingredient in the overall efficiency of the method is the 
use of Markov Chains which allow the generation of the samples needed for 1îP+  by 
using the samples simulated in the previous step for calculating îP . For that purpose a 
Metropolis-Hastings algorithm can be applied similar to the discussed in the previous 
section. Unfortunately, the gain in efficiency that is achieved with the use of Markov 
Chains, comes at the expense of the independence of the samples generated which leads 
to biased estimated PF. The samples produced this way will be correlated which results 
in a decelerated convergence of the estimators 1îP+  compared to the i.i.d. case. Despite 
the dependence introduced in the samples generated, their use is justified as long as the 
respective estimators converge when the number of samples N goes to infinity.  
The coefficient s of variation 1i+δ  of the estimators 1îP+  are given by 
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1 1
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−δ = + γ  (5.19) 
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where ( )1 1 |i i iP P F F+ += . The factor 1 0i+γ ≥  depends on the correlation between the 
samples used for the estimation of 1iP+  and is equal to zero when those are independent. 
The coefficient of variation of PF is bounded from above 

 2

, 1

m

i j
i j=

δ ≤ δ δ∑  (5.20) 

If, for example 410FP −=  and 4m = , 0.1iP =  and iγ = γ  then δ  will always be less 
than ( )12 1N + γ . In contrast, when direct Monte Carlo simulation is used, the 
coefficient of variation decays as ( )50 N  and therefore it will be larger than δ  unless 
the correlation between the samples, as measured by the factor γ , is considerably high. 
Subset simulation has a wide range of applicability. It performs well irrespectively of the 
geometry and number of the failure domains. It is also applicable to non-Gaussian 
distributed random variables. It retains the basic advantage of Monte Carlo whose 
performance is unaffected by the dimension of the random parameter vector. 

5.4.2.6 Line Sampling 
Line sampling evolved from the need to treat high dimensional reliability problems with 
an implicitly available performance function ( )f x  obtained from deterministic FEM-
analyses.  
As an introduction to the procedure, consider the widely used importance sampling 
procedure, which can be written as in Eq. (5.13) repeated here for ease of lecture: 
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In the standard normal space ( )f x  is standard normal distributed. Considering the 
estimator in Eq. (5.21), it s obvious that its variance, and hence its efficiency, depends 
only on two factors. First on the ratio ( )( )( )1

N i
F Fi

N N I N
=

= ∑ x , and on the variance 
of the ratios ( ) ( )( ) ( )( )i i iR f x h x= . In the ideal case of optimal importance sampling the 
first ratio is one and the second ratios are constant and equal to PF. As already 
mentioned such sampling procedure is not realizable. However, something quite close 
to optimal can be obtained using line sampling if an important direction, α , can be 
computed which points toward the failure domain nearest to the origin. Hence, the 
important direction assumes the role which the design point plays in importance 
sampling using design point and in FOMR/SORM. It is not required that the vector α  
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points exactly to the design point, nor are any assumptions made regarding the shape of 
the limit function. 
Without loss of generality, it is possible to assume that 1x  points in the direction of α . 
This can be always be ensured by a suitable rotation. If the sampling in direction 1x  is 
assumed to be independent from sampling in all remaining directions, the estimate in 
Eq. (5.21) assumes the form: 
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The variation in the last term of the product will vanish if the sampling density 
( )2 , , dh x x…  normal to the direction α  assumes the (d-1)-dimensional standard normal 

distribution. The optimal sampling normal to the important direction should follow a 
standard normal distribution, which corresponds exactly to direct Monte Carlo 
simulation in the subspace normal to α . Hence, under the condition that direct Monte 
Carlo will be used for the subspace x⊥ , the estimator in Eq. (5.22) reduces to the simple 
form: 
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Clearly, it can never be efficient to perform importance sampling for a single standard 
normal distributed variable, because it approximates just the integral of the standard 
normal density function in the failure domain which can be computed quasi exactly 
using the cumulative standard normal distribution function ( )Φ ⋅ . As a consequence, the 
above estimate for the failure probability is most efficiently approximated by 
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with the conditional failure probabilities 
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This procedure can be generalized for the case where 1x  does not point in the directionα  
(Schuëller et al., 2004). The independent estimates ( )i

FP  for the failure probability allow to 
compute an unbiased estimate for the failure probability and to establish the variance of 
this estimate 
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which is the basis for deriving further confidence intervals. Line sampling can also be 
applied to an arbitrary number of directions. For multiple failure regions, each point x of 
the d-dimensional standard space is associated in disjunct unique manner to one of the 
given direction.  
The performances of line sampling can be enhanced by using a stepwise algorithm 
(Koutsourelakis et al., 2004). It utilizes the basic idea of subset simulation that was 
illustrated in the previous section. Specifically, the original problem of estimating PF 
using Eq. (5.24) is split into a series of intermediate problems. The information gathered 
at every step is utilized in subsequent steps in order to obtain accurate solutions using a 
small number of samples. 
Line sampling is capable to take advantage of simple flat limit states in standard normal 
space and samples in the most important domain, without assuming a linear or quadratic 
limit state surface of requiring a design point computation. Line sampling can be applied 
for any irregular limit state and can deal with any arbitrary number or failure domains. 
The advantages of line sampling become most pronounced when d → ∞ , but is also 
competitive in low dimensions. Furthermore, the application of the stepwise procedure 
proposed in Koutsourelakis et al. (Koutsourelakis et al., 2003) can further reduce the 
computational cost. 

5.4.3 Response surface 
An alternative approach form computing probabilities of the type in Eq. (5.1) is to 
replace the integration boundary by an approximating response surface and then 
perform the integration by an appropriate means without having to engage the actual 
limit-state function. This approach is particularly useful when the limit state function is 
algorithmic in form and its gradient is difficult to compute. To construct the response 
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surface one typically computes g(x) at a number of points and then fits a polynomial 
surface to the points by the least squares method. One important consideration in using 
the response surface methodology is the selection of the experiment points, which can 
be done following the theory of design of experiments. It is important to note that the 
number of simulations needed to calibrate the model grows as the number of variables 
in the model increase. Therefore the model is not computationally efficient in very high 
dimensions. However, this issue can be addressed using response surfaces with random 
effects (Faravelli, 1989) which allow to take into account implicitly the effects of some 
of variables involved in the considered problem. Doing so allows to greatly increase the 
computational efficiency but on the other had reduces accuracy. Further details on 
response surface models can be found in Chapter 6 and Chapter 7. 

5.5 Specialized methods for earthquake engineering 

5.5.1 Seismic fragility and failure probability 
The term fragility function, or simply fragility stands for the probability of exceeding a 
give state of structural performance (i.e. a limit state), as a function of one parameter 
describing the intensity of the ground motion, most typically the PGA or the Sa (see 
Section 2.3.1.1). In a structural engineering sense, such limit states for specific 
structural components and systems may be either strength or deformation-related. In a 
broader socioeconomic context, the LS may be related to repair costs that are in excess 
of a desired amount, opportunity losses, or morbidity/mortality. Limit sated 
identification requires a thorough understanding of the behaviour of the safety-related 
systems within the plant and the role of structural components and systems in ensuring 
acceptable behaviour of such systems (Wen et al., 2004). With the limit state (LS) 
identified, its probability 

 ( ) ( ) ( )|P LS P LS IM im P IM im= = =∑  (5.27) 

where IM is a random variable (or vector) describing the intensity of the demand 
(ground motion) on the system, ( )|P LS IM im=  is the conditional limit state 
probability given that IM = im, and the summation is taken over all the possible values 
of IM. The conditional probability ( ) ( )| LSP LS IM im F im= =  is the fragility. The 
probability ( )P IM im= defines the hazard (in earthquake engineering, the seismic 
hazard is defined by the cumulative distribution function ( )P IM im> ), which can be 
determined for according to the procedures described in Chapter 1.  
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The fragility of a component or system defines the conditional probability of its 
attaining a performance limit state, which may range from loss of function to incipient 
collapse, given the occurrence of a particular operational or environmental demand. 
Furthermore, fragility provides a probabilistic measure of safety margin with respect to 
design-basis or other events.  
Most commonly the states of interest in the non-linear range of behaviour therefore 
evaluation of fragilities normally requires some form of simulation, i.e. performing a set 
of non-linear analyses to obtain the statistics of the maximum response, on set for each 
ground-motion intensity. Given the statistics of the response and a suitable probabilistic 
model for it (the most frequently used one being the lognormal distribution), and 
knowing the CDF of the corresponding capacity, the fragility is evaluated as for the 
fundamental time-invariant reliability problem described in: 

 ( ) ( ) ( )
0

|LS D CF im f IM im F d
∞

= α = α α∫  (5.28) 

where FC, the CDF of capacity, and fD, the pdf of demand, are both expressed in terms 
of the same structural response parameter α (e.g. interstorey drift, roof drift, hysteretic 
energy). 
It is noted that although only the intensity of the ground motion appears as a variable in 

( )LSF im , this latter is also a function of all the other characteristics of the ground 
motion, notably the frequency content and the duration, from which the response is 
significantly affected. Hence, the fragility is not exclusively a property of the structure, 
but also of the features of the expected ground motion, and it will be in general different 
in different tectonic environments. The influence of the detailed features of the motion 
depends to a significant extent on the choice of the intensity parameter.  

5.5.2 Practical reliability methods 
So called practical reliability and risk methods specialized for seismic problems have 
been developing since the mid-seventies, mainly for nuclear ad other important 
installations, but it is only recently that these approaches are finding a theoretical 
stability and wider application also for more ordinary types of construction. Practicality 
has obviously a cost in terms of loss of accuracy and generality with respect to the 
rigorous formulations: the nature and the consequences of these losses need to be well 
understood in order for these methods to be used properly. They rest on two 
assumptions, both referring to the time dimensions of the problem (Pinto et al., 2004): 
the temporal sequence of the seismic event and the dynamic response of the structure 
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during an event. The first one consists in choosing an appropriate interval of time, 
normally one year, and considering that if failure is to occur within any such interval, it 
will do so under the seismic event of largest intensity. Since the yearly maximum event 
is obviously random, the implication is that what is needed is a statistical basis and a 
probabilistic model for the CDF of the yearly maxima. If afterwards one wants to pass 
from the annual CFF to the same quantity referred to a longer period of time, the 
common practice is to advocate independence among annual events and to introduce the 
annual rate of occurrences of events, which assuming the process as Poissonian, allows 
the CDF of the maxima relative to any desired period of time to be obtained. The 
second assumption is that in a structure subjected to ground acceleration, failure occurs 
when the response attains its maximum. In more refined versions the dependence of the 
capacity of some of the failure models on the demand is accounted for, so that the 
failure event is defined as ( )( ) ( ), 0C t D t D t− ≤  and it may not occur when ( ) maxD t D=
. This assumption is quite consequential, since it allows the collection, through a 
number of dynamic analyses, of the statistics of the maximum responses so as to obtain 
a vector of correlated random variables, to be subsequently compared with the 
corresponding random capacities, as for the case of a time-invariant problem. It remains 
to note that the definition of maximum demand is obvious in the case of SDOF 
structures or of a structure whose response is dominated by a single mode, in the latter 
case Dmax coinciding with the maximum modal response. In a MDOF structure with no 
single dominant mode, the demands on its various members attain generally their 
maxima at different instants of time. The statistics of the individual maxima can still be 
collected, as well as their correlation: in general, however, a larger number of dynamic 
analyses are needed to obtain stable estimates of the statistical parameters. The 
components of the vector D are obviously not simultaneous: this recognised fact, that 
tends to reduce the correlation between them, cannot be accounted for in this category 
of approaches. 

5.5.2.1 Determination of seismic fragility 
In the literature it is possible to find a high number of practical procedures and methods 
proposed for defining seismic fragility or to directly obtain failure probability. 
The fragility functions can be generated by using: (i) observation of damages caused by 
earthquakes, (ii) experimental data (usually at the component level), (iii) detailed 
analytical models, (iv) simplified analytical models, and (v) design information and 
engineering judgement. 
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Post-earthquake survey-based procedures rely theoretically on the most reliable data 
source — damage data from earthquakes. In a number of such procedures (e.g. Gulkam 
and Sozen, 1999; Yucemen et al., 2004), some basic structural information (e.g., 
number of stories, structural system), material properties (e.g., in-situ concrete 
strength), apparent structural deficiencies (e.g., vertical and plan irregularities), and 
building site location were collected with damage data through a post-earthquake 
survey. This information was utilized to arrive at a rating score or index in which the 
numerical value usually determines whether the building is safe or unsafe, with respect 
to the traditional goal of assuring life safety. Other procedures (e.g. Shinozuka et al., 
2000; Rossetto and Elnashai, 2003) utilized the collected information for developing 
seismic assessment tools in the form of fragility curves. 
These observation-based or empirical procedures are highly specific to a particular 
seismo-tectonic, geotechnical, and built environment (Rossetto and Elnashai, 2003). 
Application of these procedures to regions other than those for which they were 
developed often does not yield satisfactory damage estimates when seismic 
characteristics and building infrastructure differ. Consequently, they have found limited 
use only in highly seismic regions, where they have been used to rank seismic 
vulnerability of buildings. In contrast, more recent seismic vulnerability and risk 
assessment procedures require multiple performance evaluations within a performance 
or consequence-based framework, which may only be feasible with simulation-based 
analytical procedures. Before the resources for intensive analytical simulations required 
for the derivation of fragility curves were available, expert opinion had been the 
substitute for analytical simulations. The ATC relied on expert opinion with limited 
observational data from the 1971 San Fernando earthquake when preparing the ATC-13 
report (ATC, 1985), which is one of the first  applications of fragility modelling to civil 
infrastructure subjected to earthquake demand. The reliability of the fragilities in ATC-
13, which were identified in terms of damage state probability matrices, is questionable 
in that the fragilities are subjective and the associated degree of conservatism is 
unknown (Rossetto and Elnashai, 2003). 
The well-known loss estimation software package, HAZUS, developed under the 
sponsorship of FEMA (FEMA, 2003), is also based on expert opinion to a considerable 
degree (Celik, 2007). HAZUS incorporates fragilities for 36 categories of building and 
4 damage states, where the fragilities are modeled by lognormal distributions with the 
distribution parameters based primarily on expert opinion. The loss estimation 
methodology classifies the buildings in terms of building type on the basis of their 
height and structural system and seismic design level on the basis of the seismic 
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standard used in their design, the seismic zones in which they are built, their design 
vintage, and their use (Kircher et al., 1997a). Based on this classification, building 
capacity is represented by a non-linear static pushover curve in the form of base shear 
versus roof displacement, and building response to an input scenario earthquake, 
considering the local site conditions, is determined with the capacity spectrum method. 
The building response is then entered into the associated built-in fragility curves defined 
at the thresholds of four discrete damage states (slight, moderate, extensive, and 
complete), defined separately for the structural system and for drift- and acceleration-
sensitive non-structural components, to perform the loss estimation calculations given 
the occupancy class of the building (e.g., residential, commercial) (Kircher et al., 
1997b). Whitman et al. (1997) observed that the losses estimated using HAZUS should 
be viewed with caution since they may be off by a factor of two, or even more in the 
CEUS. But the most significant limitation is that, HAZUS does not provide for the 
analysis or propagation of uncertainty (Celik, 2007).  
More recent approaches have relied on analytical simulations. The relation between 
structural response and earthquake ground motion intensity, which is the basic 
ingredient for deriving the fragility curves, is established through analytical simulations 
with varying comprehensiveness. Differences also exist in characterization of 
earthquake hazard, structural damage, performance limits, etc. 
 Hwang and Jaw (1990) proposed a procedure to calculate fragility curves taking into 
account uncertainties in both ground-motion and structure. The uncertainty in each 
parameter defining the earthquake-structure system is characterized by several 
representative values that are selected considering the uncertainty range of the 
parameter and its use in engineering practices. Samples of structures and earthquake 
motions are constructed from the combination of these representative values, and then 
the latin hypercube sampling technique is used to construct the samples of earthquake-
structure system. For each sample, the nonlinear seismic analysis is performed to 
produce response data, which are then statistically analyzed. Five limit states 
representing various degrees of structural damage are defined and the statistics of the 
structural capacity corresponding to each limit state can be established. The fragility 
curve is generated by evaluating the limit state probabilities at different levels of peak 
ground acceleration.  
Singhal and Kiremidjian (1996) developed fragility curves for low-, mid-, and high-rise 
RC frames that were designed using seismic provisions. The uncertainty in structural 
capacity and demand was taken into account through Monte Carlo simulations. 
Stochastically generated frame models randomly paired with simulated ground motion 
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records were used in the non-linear time history analyses. Structural demand versus 
seismic intensity relationships were determined from so-called stripe analyses (i.e. 
incremental dynamic analyses with ground motions scaled to different intensity levels 
(Vamvatsikos and Cornell, 2002)). The structural demand at each seismic intensity level 
was assessed using ground motions scaled to that particular intensity level and was 
represented by a lognormal probability density function. The lognormal model of 
demand was then utilized to compute fragility estimates (for the performance limits 
considered) at that particular level. Finally, fragility curves were represented by 
lognormal cumulative distribution functions that were fit to individual fragility 
estimates, computed at several seismic intensity levels. Singhal and Kiremidjian (1998) 
later presented a Bayesian method for updating the fragility curves that they developed 
earlier for low-rise RC frames and estimating confidence bounds on those fragility 
curves, by using the observed building damage data from the 1994 Northridge 
earthquake.  
Mosalam et al. (1997) developed fragility curves for RC frames with and without 
masonry infill walls. Single-degree-of-freedom (SDOF) models were employed in the 
analysis. These models were obtained from the adaptive nonlinear static pushover 
analyses of the frame models, which were generated using Monte Carlo simulations to 
take into account the uncertainty in structural material properties. The structural 
responses of these SDOF models to each ground motion (i.e., each model was paired 
with each ground motion rather than randomly as in Singhal and Kiremidjian (1996)) 
were used to determine the fragility estimates (for the performance limits considered) 
for that particular ground motion. 
Shinozuka et al. (2000) developed both empirical and analytical fragility curves for 
bridges. The empirical fragility curves utilized the observed bridge damage data from 
the 1995 Kobe earthquake. In contrast, the analytical fragility curves utilized such data 
that were simulated from the nonlinear time history analyses of stochastically generated 
models of two bridges, taking into account the uncertainty in structural material 
properties. Both fragility curves were represented by lognormal distribution functions 
with the distribution parameters estimated using the maximum likelihood method. 
Confidence intervals for the distribution parameters were also provided.  
Porter et al. (2001) proposed an assembly-based vulnerability framework for assessing 
the seismic vulnerability of buildings on a building-specific basis. The proposed 
approach differs from the above analytical procedures in that “a vulnerability function” 
that relates the seismic losses to the seismic intensity was developed for a particular 
building and the damage to individual assemblies was determined for this purpose. The 
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seismic losses were assessed using stripe analyses. The structural response to each 
scaled ground motion was entered into assembly fragility curves, and the associated 
damage to each structural and non-structural element in the building and to its contents 
was determined as outlined in the study. The total damage was then expressed in terms 
of the sum of repair and loss-of-use costs as a fraction of replacement cost. After 
performing a regression analysis on the generated data, the seismic vulnerability 
function was obtained for a particular building. The application of the proposed 
framework to a steel moment frame building revealed that substantial uncertainty exists 
in the vulnerability function derived for the building. 
Cornell et al. (2002) developed a probabilistic framework for seismic design and 
assessment of structures in a demand and capacity format, addressing the uncertainties 
in hazard, structural, damage, and loss analyses. Structural-demand versus seismic-
intensity relationships were determined from a so-called cloud analysis (i.e. nonlinear 
dynamic analyses using accelerograms not staled to the same intensity levels). The 
structural demand was assessed using a suite of ground motions and the median 
structural demand was represented by a log-linear function of seismic intensity. The 
structural demand was assumed to be distributed lognormally about the median with 
constant logarithmic standard deviation. This framework provided the probabilistic 
basis for the design recommendations that resulted from the SAC project. The 
procedure proposed by Cornell et al. (2002) has been extended by Lupoi et al. (2002) in 
order to be applied to reinforced concrete frame structures. 
Franchin et al. and Schotanus et al. (Franchin et al., 2003b; Franchin et al., 2003a; 
Franchin et al., 2004; Schotanus et al., 2004) developed fragility curves using a 
response surface with random block effects approach. This procedure allows to take into 
account uncertainties in both ground-motion and structure and can be used in 
conjunction with state-of-the-art FEM models. Structural capacity is approximated by a 
polynomial response surface as a function of the uncertain structural parameters. 
Uncertainty in ground-motion or in spatial variability of material strength is taken into 
account implicitly introducing random factors in the response surface model. Data 
required to calibrate the model is gathered performing an ensemble of non-linear 
incremental dynamic analysis planned according to the theory of the Design of 
Experiments. This method has also been investigated by the author (Buratti et al., 
2006b; Buratti et al., 2006c; Buratti et al., 2006a; Buratti et al., 2007b; Buratti et al., 
2007c). Further details and a case-study application can be found in Chapter 6 and 
Chapter 7 respectively. 
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Erberik and Elnashai (2004) used the same methodology as in Singhal and Kiremidjian 
(1996) for deriving fragility curves for mid-rise flat-slab RC buildings with masonry 
infill walls. However, they paired each stochastically generated building model with 
each ground motion record considered in the study rather than randomly matching the 
models with the ground motions. Performance limits for which the fragility curves were 
developed were identified from nonlinear static pushover analysis of the building.  
Rossetto and Elnashai (2005) developed fragility curves for low-rise RC frames with 
masonry infill walls that were designed according to the seismic design code in place in 
Italy in 1982. Structural demand versus seismic intensity relationships were determined 
using the same methodology as in Erberik and Elnashai (2004) but the capacity 
spectrum method with adaptive nonlinear static pushover analysis was employed. A 
response surface equation was fit to the demand versus intensity data. Fragility curves 
were then developed using a larger dataset at refined seismic intensity levels, which was 
generated through a re-sampling process from the response surface equation. 
Confidence bounds were also identified on the fragility curves.  
Kwon and Elnashai (2006) developed fragility curves for low-rise GLD RC frames but 
the problematic reinforcing details associated with such frames, such as the inadequate 
joint shear capacity and the insufficient positive beam bar anchorage, were not 
considered. The finite element model of the three-story GLD RC frame was validated 
using experimental data from the shake table tests (Bracci et al., 1995a; Bracci et al., 
1995b). The fragility curve derivation methodology followed that in Erberik and 
Elnashai (2004) with full combination of the randomly generated material strength 
parameters in the generated frame models. The analysis of structural demand statistics 
indicated that the effect of material uncertainty is negligible with respect to that of 
ground motion uncertainty. Furthermore, the comparison of fragility curves that were 
developed using different sets of ground motions revealed a dependency on the choice 
of the ensemble as in Mosalam et al. (1997).  
In a recent study, Ramamoorthy et al. (2006) also developed fragility curves for low-
rise RC frames. The structural demand was assessed using a cloud analysis based on 
nonlinear time history analysis and the median demand was represented by a bilinear 
function rather than a linear function as in Cornell et al. (2002) with the regression 
parameters estimated from a Bayesian methodology presented in the study. More 
recently (2008) extended the procedure adopted in the aforementioned study in order to 
provide confidence bounds for the fragility curves. 
Lupoi et al. (Lupoi et al., 2006) proposed a method for computing fragility function with 
the aim of taking in account different aspect involved in the reliability problem: that is, 
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the possibility of multiple failure modes to occur and their reciprocal interaction, the 
uncertainty in structural capacity, and the influence on dynamic response of the variability 
of system parameters. The method has some important similarities with the one presented 
by  Gardoni et al. (Gardoni et al., 2002; Gardoni et al., 2003). In fact, they both share the 
idea of obtaining the system fragility for a structure having multiple modes of failure, by 
solving a reliability problem that involves structural capacities at the component level and 
the corresponding, earthquake-induced demands. The main feature of the method in 
Gardoni et al. (Gardoni et al., 2002; Gardoni et al., 2003) consists of using Bayesian 
techniques to correct for the systematic and random errors in the capacity and demand 
models, while in the method in Lupoi et al. (2006) it is assumed that these corrections are 
already implemented into the models.  

5.6 Conclusions 

The present chapter presented an introduction of the structural reliability problem, with 
particular focus on seismic reliability of structures. Different formulations and solution 
procedures have been presented and discussed.  
Most simulation procedures are computationally too expensive in order to be applied to 
seismic reliability problems, and are mainly used as reference for validating practical 
procedures. Therefore, in the great majority of seismic reliability problems, practical 
methods adopted. These procedures, aimed at calculating seismic fragility, are often 
based on strong assumptions and simplifications. For example many approaches use 
very simplified structural models (e.g. SDOF systems), take into account only 
uncertainty in ground-motion, not considering uncertainty in structural parameters. 
Among the methods described above, the most promising seem to be those based on 
response surfaces. In fact response surface approach can be applied to different 
structural systems, it can take into account multiple failure modes, it can be used 
together with state-of-the-art non-linear models, and has good computational efficiency, 
especially when random factors are used to describe implicitly the effects of some 
groups of variables involved in the problem.  
For these reasons the remaining chapters of the present work are dedicated to 
assessment of seismic fragility via response surface method. The theoretical basis of the 
method is described in Chapter 6 and a case study is presented in Chapter 8. In 
particular, in the case study, some critical aspects of response surface models are 
investigated.  
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6 3B3BResponse Surface Method 
 
The Response Surface (RS) method is based on the definition of a statistical model 
expressing a structural response parameter as a function of a set of variables, called 
factors in the statistical language. The RS is typically based on a polynomial function, 
and has been used in many research fields (Box and Draper, 1987; Searle et al., 1992; 
Khuri and Cornell, 1996). This chapter describes the theory of standard response 
surfaces is described as well as the theory of response surfaces with random factor. This 
chapter also introduces the theory of design of experiments which gives criteria to 
define the experiments needed to obtain data for response surface calibration. 

6.1 8B8BStandard Response Surface 

The response variable is the measured quantity the value of which is assumed to be 
dependent upon the levels of the factors. The true value of the response corresponding 
to any particular combination of the factor levels and in the absence of experimental 
error of any kind is denoted by η. The dependence of η on the factors can be written as: 

 ( )1 2, , , kx x xη = φ …  (6.1) 

where φ f is an unknown function, called the true response function, and it is assumed to 
be continuous. Considering the response function for a single factor it is possible to 
represent it locally to any required degree of approximation with a Taylor series 
expansion about some arbitrary point x10, i.e., 

 2
10 1 10 10 1 10 10

1( ) ( ) ( ) ( ) ( )
2

x x x x x x x′ ′′η = φ + − φ + − φ +…  (6.2) 

where ϕ and ϕ  are, respectively, the first and second derivatives of ϕ with respect to 1x  
and evaluated at x10. The expansion reduced to a polynomial of the form 

 2
1 0 1 1 11 1( )x x xη = φ = β + β + β +…  (6.3) 

where the coefficients 0β , 0β  and 0β  are parameters which depend on x10 and the 
derivatives of the response function at x10. Therefore if k factors are considered Eq. (6.2) 
can be rewritten as 



Chapter 6 – Response surface method 

218 

 ( ) ( )( ) ( ) ( )( )0 10 10 0 10
1 ...
2

Tη = ϕ + ∇ϕ − + − − +x x x x x x H x x x  (6.4) 

where x is a vector containing the levels of the factors, x0 is the centre point of the 
Taylor expansion, ∇ϕ  is the gradient of f and H is the hessian matrix. Eq. (6.4) can be 
rewritten as a polynomial equation in the factor levels, in a form similar to that of Eq. 
(6.3): 

 0
1 1 1

k k k

i i ij i j
i i j

x x x
= = =

η = β + β + β∑ ∑∑  (6.5) 

A statistical model of this kind is called fixed effect model because the effects are 
related to a finite set of levels of the factors. The model in Eq. (6.3) is non-linear as far 
as the xi variables are concerned but is linear with regard to β . The latter are called 
regression coefficients or parameters. The coefficients iβ  are the values of the first-
order partial derivatives and are referred to as first-order effects. The coefficients ijβ  are 
defined as the values of the second order partial derivatives and are called second-order 
effects. The structural form of η  is usually unknown and therefore an approximating 
form is sought using a polynomial or some type of empirical model equation. 
Furthermore, as far as experimental data is concerned, the real value of the response is 
not known and is substituted by the expected values of the response parameter E(y). The 
model in Eq. (6.5) can therefore rewritten as (Searle et al., 1992; Khuri and Cornell, 
1996): 

 ( ) ( )TE Y = η = f x β  (6.6) 

where f(x) and β  are defined as 

 2 2
1 1 1 2 1 1( ) 1

T

k k k k kx x x x x x x x x x−⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦f x " " " "  (6.7) 

and 

 0 1 11 12 1 1,

T

k kk k k k−⎡ ⎤= β β β β β β β β⎣ ⎦β " " " "  (6.8) 

The deviation of the i-th observation yi (the result of a numerical simulation in the 
present study) from the expected value E(yi) can be written as: 
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 ( )ε ( ) ( ) 1,...,T
i i i i iy E y y i N= − = − =f x β  (6.9) 

Therefore, considering n observations, the model in Eq. (6.9) can be expressed in matrix 
notation, as Khuri and Cornell, 1996: 

 = +y Xβ ε  (6.10) 

where y is a vector collecting the observed response values 

 1[ ]T
ny y=y …  (6.11) 

X is a n p×  matrix the i-th row of which is the vector of monomials f(x)T calculated at 
the values assumed by the variables x at the i-th trial  

 
1( )

( )

T

T
n

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

f x
X

f x
#  (6.12) 

and ε  is the vector containing the random errors with respect to E(yi): 

 [ ]T
n= ε ε1ε "  (6.13) 

As an example, if 2 factors and 6 experiments are considered, the model in Eq. (6.10) 
can be written as: 

 

2 2
1 1,1 2,1 1,1 2,1 1,1 2,1

2 2
2 1,2 2,2 1,2 2,2 1,2 2,2

2 2
3 1,3 2,3 1,3 2,3 1,3 2,3

2 2
4 1,4 2,4 1,4 2,4 1,4 2,4

2 2
5 1,5 2,5 1,5 2,5 1,5 2,5

2 2
6 1,6 2,6 1,6 2,6 1,6 2,6

1
1
1
1
1
1

y x x x x x x
y x x x x x x
y x x x x x x
y x x x x x x
y x x x x x x
y x x x x x x

⎡⎡ ⎤
⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣
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21

32

411

522

612

⎤ εβ ⎡ ⎤⎡ ⎤
⎥ ⎢ ⎥⎢ ⎥ εβ⎥ ⎢ ⎥⎢ ⎥
⎥ ⎢ ⎥⎢ ⎥ εβ

+⎢ ⎥ ⎢ ⎥⎢ ⎥ εβ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ εβ
⎢ ⎥ ⎢ ⎥⎢ ⎥

εβ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎦

 (6.14) 

where xi,j is the j-th level of the i-th factor. Matrix X is named design matrix. 
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6.1.1  Least squares method 
Given a model in the form of Eq. (6.10) the regression coefficient values can be 
estimated using the least squares method: one of the simplest in statistics. The following 
assumptions are to be made about the errors ε : 

1. Random errors have zero mean and common variance, σ2. 
2. Random errors iε  are mutually in depended in the statistical sense. 

For tests of significance (t- and F-statistics), and confidence interval estimation, an 
additional assumption must be satisfied: 

3. Random errors iε  are normally distributed. 
The method of least squares selects as estimates for the unknown parameters in Eq. 
(6.10), those values, b0, b1, ..., bk, which minimize the quantity: 

 2

1
( ) ( ) ( )

n
T T

i
i

R
=

= ε = = − −∑β ε ε y Xβ y Xβ  (6.15) 

Setting to zero the derivatives of (6.15) with respect to β gives: 

 0T T− =X Xβ X y  (6.16) 

from which the estimates of the least squares estimates of the elements of β can be 
obtained: 

 1( )T T−=b X X X y  (6.17) 

It is worthily noted that this method does not require the value of the variance of the 
error to be known. The statistical properties of the estimator b derive from the 
assumptions concerning the elements of ε. The expectation vector of b is 

 
( ) ( ) ( ) ( )

( )

1 1

1

T T T T

T T

E E E

E

− −

−

⎡ ⎤ ⎡ ⎤= = + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= + =

b X X X y X X X Xβ ε

β X X X ε β
 (6.18) 

therefore b is an unbiased estimator of β. The variance-covariance matrix of the vector 
of the estimates is 

 ( ) ( ) ( ) ( ) ( )1 1 1
var var varT T T T T

bb

− − −⎡ ⎤= = =⎢ ⎥⎣ ⎦
C b X X X y X X X y X X X  (6.19) 
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and, since the covariance matrix of the vector y can be written (accordingly to 
assumption 1) as 

 ( ) ( )( ) ( ) 2var varT T
YY e nE E εε

⎡ ⎤ ⎡ ⎤= = − − = = = = σ⎣ ⎦⎣ ⎦C y y Xβ y Xβ εε ε C I , (6.20) 

the variance-covariance matrix of b can be rewritten as 

 ( ) 1 2var( ) T
bb

−

ε= = σC b X X  (6.21) 

Along the main diagonal of the matrix Cbb, the ii-th element, is the variance of bi. The 
ij-th element of Cbb is the covariance between the elements bi and bj of b. If the errors 
are jointly normally distributed, then b is distributed as a normal multivariate: 

 ( ) 1 2, TN X X
−

ε
⎡ ⎤σ⎢ ⎥⎣ ⎦

b β∼  (6.22) 

Another important property of the estimator b is that it produces the minimum variance 
estimates of the elements of β , therefore it is called best linear estimator of β . 
One of the purposes in obtaining a fitted model is to use the model for predicting 
response values at points throughout the experimental region. Let x  denote a 1p×  
vector the elements of which correspond to the elements of a row of the matrix X in Eq. 
(6.10). An expression for the predicted value of the response, at any point x in the 
experimental region is: 

 ( )ŷ ′=x x b  (6.23) 

A measure of the precision of the prediction ( )ŷ x , defined as the variance of ( )ŷ x , is 
expressed as 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )1 2

ˆvar ( ) var varT T

T T

y
−

ε

⎡ ⎤= = =⎣ ⎦

= σ

x f x b f x b f x

f x X X f x
 (6.24) 

It is worth noting that the variance of the prediction depends on x, i.e. it is not constant 
throughout the experimental region. 
In Eq. (6.19) for the variance-covariance matrix ob b, as well as in Eq. (6.24) for the 
variance of ( )ŷ x , the variance of errors, 2

εσ , was assumed known. This assumption is 
seldom true and usually an estimate 2

εσ  is needed. The estimate is obtained from the 
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analysis of the data values. For the general case where the fitted model contains p 
parameters and the total number of observations is n (n > p), the estimate, s2, is 
computed from 

 
( ) ( )2 2

1

1 1

1 1( )

n
T

i
i

s
n p n p

S SSE
n p n p

=

= ε = − − =
− −

= =
− −

∑ y Xb y Xb

b
 (6.25) 

where SSE is the sum of squared residuals. The divisor n – p is the degrees of freedom 
of the estimator s2, which is an unbiased estimator of 2

εσ . 

6.1.2 Maximum likelihood estimation 
Let x be a vector of random variables with joint probability density function f(x), the 
parameters of which are denoted by θ; f(x) can be considered from two different 
perspectives. In fact, on one hand f(x) can be considered as a probability density 
function and therefore θ is known, i.e. ( ) ( )|f f=x x θ . On the other hand the vector x 
may be considered as containing known data and θ may be considered unknown. In this 
case f(x) is a function of this latter only, i.e. ( ) ( )|f f=x θ x , it is called likelihood and 
indicated as ( )|L θ x . From the mathematical point of view the two representations refer 
to the same object ( ) ( )| |f L≡x θ θ x  but they are used for the sake of clarity. The 
likelihood function is the base of the maximum likelihood estimation method, which 
takes as an estimator of θ  the vector θ�  which maximizes the likelihood function. When 
response surfaces are concerned, the unknown parameters are the regression parameters 
β  and the variance of the error term 2

εσ . 
Assuming, that ε is normally distributed it follows that 

 ( ),   ( , )YYN Nεε →ε 0 C y Xβ C∼ ∼  (6.26) 

and therefore the likelihood function has the following form 

 ( )
( ) ( )

( )

1

2
11
22

1exp
2, |

2

T
YY

e
N

YY

L

−⎡ ⎤− − −⎢ ⎥⎣ ⎦σ =
π

y Zβ C y Zβ
β y

C
 (6.27) 

If ( )|L θ x  is sufficiently regular, as in Eq. (6.27), θ�  can be calculated by setting to zero 
the partial derivatives of the likelihood function with respect to the unknown parameters 
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∂
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β y
β

β y
 (6.28) 

Maximizing the likelihood function L (or log(L)) is, in general, a difficult numerical 
problem. Setting to zero the first derivatives of log(L) gives a non-linear system of 
equations. Moreover, the likelihood function contains the inverse of an n×n matrix, 
which is computationally expensive especially if the number of observations is large. In 
addition, the maximization problem is a constrained problem. In the present study, the 
EM (Expectation-Maximization) algorithm has been used, alternating calculation of the 
conditional expected values and maximization of simplified likelihoods Searle et al., 
1992.  

6.1.3 Tests on the model 
The usual test of significance of the fitted regression equation is a test of the null 
hypothesis H0: “all values of βi ( 0i ≠ ) are zero”. The alternative hypothesis is Ha: “at 
least one value of βi 0i ≠  is not zero”. Assuming normality of the errors, the test of H0 
involves first calculating the value of the F-statistics: 

 ( )
( )

1SSR p
F

SSE N p
−

=
−

 (6.29) 

where the sum of squares due to regression (SSR) is 

 ( )( )2

1

ˆ
N

u
u

SSR y y
=

= −∑ x  (6.30) 

where y  is the overall average, and the sum of squares accounted for by the fitted 
model (SSE) is 

 ( )( )2

1

ˆ
N

u u
u

SSE y y
=

= −∑ x  (6.31) 

If the null hypothesis is true the F-statistics in Eq. (6.29) follows a F distribution with 
1p −  and N p−  degrees of freedom in the numerator and in the denominator, 
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respectively. Therefore the test is performed by comparing the value given by Eq. (6.29) 
with the upper 100α percent point of the F distribution with 1p −  and N p−  degrees of 
freedom. If this value is exceeded then the null hypothesis is rejected at the α level of 
significance. 

6.1.3.1 Tests concerning the individual terms of the model 
The F-statistics in Eq. (6.29) is a test of the hypothesis that all of the parameters 
(excluding β0) in the proposed model are 0. In general, tests of hypotheses concerning 
the individual parameters in the proposed model are performed by comparing the 
parameter estimates in the fitted model to their respective estimated standard errors. 
Denoting the least squares estimate of βi with bi and the estimated standard error of bi 
by “est. s.e. (bi)”, then a test of the null hypothesis H0: βi = 0, is performed by 
calculating the value of the following test statistic 

 ( )est. s.e.
i

i

bt
b

=  (6.32) 

and comparing the so obtained value with a table value from the t-table. The choice of this 
latter value depends upon the alternative hypothesis, Ha, the level of significance α, and 
the degrees of freedom for t. If the alternative hypothesis is : 0a iH β ≠  the test is called 

two-sided test, and the table value is 2tα , i.e. the upper 100 (α/2) percentage point of the 

t-distribution. If, on the other hand, the alternative hypothesis is : 0a iH β <  or : 0a iH β >

, the test is a one-sided test, and the table value is tα. Finally it should be noted that when 
the model contains more than one unknown parameter, say iβ  and jβ  (in addition to β0) 

and the estimates of the coefficients of the terms are not uncorrelated, then the tests of H0: 
βi = 0 and H0: βj = 0 are not independent. Consequently when the null hypothesis is 
expressed as H0: βi = 0 versus : 0a iH β ≠ , what is actually being tested is the hypothesis 

that the term i iXβ  does not explain any additional amount of variation in the response 
values above that which is explained by the other terms in the model. 

6.2 Extension to time dependent problems 

The standard formulation of RS cannot be used for applications in earthquake 
engineering because not all the random variables on which the structural behaviour 
depends can be expressed in explicit form as reported in Eq. (6.10). In fact, the 
evaluation of the seismic fragility requires to take the variability of the seismic action 



Chapter 6 – Response surface method 

225 

and mechanical parameters over the structure into account. As for the first aspect, the 
earthquake ground-motion is a non-stationary process, with amplitude and frequency 
content variable in time, therefore a fully probabilistic description of it would require an 
enormous amount of variables. Moreover, the material properties can be very 
inhomogeneous among different structural members, due to building construction 
phases or degradation. Mathematical description of this aspect, would also require many 
random variables. The response surface method is a good alternative to Monte Carlo 
methods (in terms of reduced computational effort) only if the number of variables is 
low (6-8 variables), because the number of simulations required to calibrate the RS 
(called the model) strongly increases with the number of variables (Franchin et al., 
2003a; Schotanus et al., 2004). In order to reduce the number of random variables in the 
response surface, they are divided in two groups: explicit xE and implicit xI variables 
(Veneziano et al., 1983; Faravelli, 1989; Casciati and Faravelli, 1991). The effects of 
the first ones are accounted for explicitly, while the effects of the latter are considered 
implicitly through random factors. The formulation of the model given in the previous 
sections needs to be extended, in order to take into account the differences between 
fixed and random factors. This type of model is named mixed model. In the following 
description of the model the notation used by Khuri and Cornell, 1996 and Searle et al., 
1992 has been employed. 
The model including fixed and random factors can be written as: 

 ( )( )1 2 1, | ( )TE y δ = + δx x f x β  (6.33) 

introducing the error as previously done 

 ( ) ( )( )1| Ty E y yε = − δ = − + δf x β  (6.34) 

it is possible to write: 

 1 2 1( , ) ( )Ty x= + δ + εx x f β  (6.35) 

where 1( )Txf β  represents the fixed effects, which are treated explicitly, and δ  is the 
random factor describing implicitly the effects of the variables xI, on the response. In 
this type of model the distribution of the random factor δ  has to be determined together 
with the regression parameters. The random factor is assumed to be a random variable 
with null mean value with no lack of generality, in fact the mean effect of the random 
factor is included in the constant term of the fixed effects portion of the model. A 
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second, and stronger hypothesis, is that δ  has a Gaussian distribution with variance 2
δσ  

which becomes the only additional parameter to be estimated. Statistically the random 
effects can be thought as being related to an infinite set of levels of which only a 
random sample is present the data. In this kind of problems there are two different 
sources of variability, one related to the random factors and one related to the error ε. 
These terms are called variance components and their sum is the total variability of the 
observed quantity. 

6.2.1 Random effects and blocks 
The partition of the experiments into blocks (a block is simply a group of experiments) 
is a procedure originally developed for conditions when they could not be performed 
under homogeneous conditions. These non homogeneous conditions can be 
uncontrollable, for example if materials produced by different factories are to be tested 
together. As an alternative, experiments can be deliberately performed under non 
homogeneous conditions in order to evaluate their effects on the response. This is what 
it is done in the present work: experiment blocking is used to include the uncertainty on 
the possible ground motions into the model. 
When the experiments are blocked the assumption of independence of the errors must 
be relaxed. Furthermore in the following it is assumed that a random factor can 
influence the response only additively. Partitioning n total experiments into b block of ni 
elements each: 

 
1

b

i
i

n n
=

=∑  (6.36) 

the response surface mixed model can be written as: 

 = + +y Xβ Zδ ε  (6.37) 

where δ  is the vector of the random effects and Z is a n b×  matrix which assigns each 
random effect realization to its corresponding block. As an example if 3 blocks with 2 
experiments each are considered the matrix Z becomes 
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1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Z  (6.38) 

In the most general case matrix Z can be written as 

 

1 1 1

2 2 2

b b b

n n n

n n n

n n n

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0

0 1 0
Z

0 0 1

"

…
# # % #

"

 (6.39) 

where 
in1  and 

in0  represent 1 in×  vectors containing ones and zeros respectively. In the 
following sections details will be given for models for which the blocking is controlled 
by one or more random effects. 

6.2.2 One-way classification 
Recalling the general form of the model given in Eq. (6.37) which was obtained under 
the assumptions 

 ( )E =y Xβ  (6.40) 

 ( )|E = +y δ Xβ Zδ  (6.41) 

 ( )|E= −ε y y δ  (6.42) 

and assuming that the random factor is normally distributed, ( )2, bN δσδ 0 I∼ , 
independently form ( )2, nN εσε 0 I∼ , i.e. assuming that ( )cov , 0=δ ε , the following form 
of the covariance matrix of y is obtained: 

 
( )( ) ( )( ) ( )( )

2 2 2

T T
YY

T
n

E E E E

δ ε ε

⎡ ⎤ ⎡ ⎤= − − = + + =⎣ ⎦⎣ ⎦
= σ + σ = σ

C y y y y Zδ ε Zδ ε

ZZ I A
 (6.43) 

where A is a block diagonal matrix, 1diag[ ]b=A A A… , with 
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i ii n n= γ +A J I , (6.44) 

where 
inJ  is a   i in x n  matrix of ones and γ  is the ratio of the variances, 2 2

δ εγ = σ σ . 
This representation of the variance structure is named Hartley-Rao representation. 
As an example if 6 experiments are partitioned into 3 blocks of size 2 Eq. (6.43) 
becomes 

 

2 2

2 2

2

1 1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0
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0 0 0 0 1 1 0 0 0 0 0 1

1 0 0 0 0
1 0 0 0 0

0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

T
YY nδ ε

δ ε

ε

= σ + σ =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= σ + σ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

+ γ γ⎡ ⎤
⎢ ⎥γ + γ⎢ ⎥
⎢ ⎥+ γ γ

= σ ⎢ γ + γ⎢
⎢ + γ γ
⎢

γ + γ⎣ ⎦

C ZZ I

2

1 0 0 0 0
1 0 0 0 0

0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

ε

=⎥
⎥
⎥
⎥

ρ⎡ ⎤
⎢ ⎥ρ⎢ ⎥
⎢ ⎥ρ

= σ ⎢ ⎥ρ⎢ ⎥
⎢ ⎥ρ
⎢ ⎥

ρ⎣ ⎦

�
 (6.45) 

where 2 2(1 )ε εσ = + γ σ�  and 1
γρ = + γ . From Eq. (6.45) it is evident how blocking of 

experiments changes the variance structure and introduces a correlation among the 
blocks. This correlation is constant after the assumptions made on the distributions of δ  
and ε . 
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6.2.2.1 Parameter estimation 
If the variance ratio γ  is known, values of the unknown parameters of the model can 
easily be obtained via generalized least squares. In fact in this case the likelihood 
function can be written as: 

 

( ) ( )
( ) ( )

( )

2 2 2

1

11
22

, | , , | ,

1exp
2

2

T
YY

N
YY

L Lε ε δ

−

σ γ = σ σ =

⎡ ⎤− − −⎢ ⎥⎣ ⎦=
π

β y β y

y Xβ C y Xβ

C

 (6.46) 

Eq. (6.46) clearly shows that the maximization of L corresponds to the maximization of 
the argument of the exponential function. This lead to the following generalized least 
squares estimate of the regression parameters: 

 ( ) 1T T
YY YY

−
=b X C X X C y  (6.47) 

Eq. (6.47) corresponds to Eq. (6.17) when errors are not correlated, i.e. when =A I . 
Normally the variance ratio γ  is not known and has to be estimated, in this case least 
square method can no longer be used, contrariwise maximum likelihood method can 
still be applied and the likelihood function can be written as follows: 

 ( ) ( )2 2 2, , | , , |L Lε ε δσ γ = σ σβ y β y  (6.48) 

Once again Eq. (6.48) can be maximized by setting equal to zero its partial derivatives 
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( )

2 2
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δ

∂ σ σ
=

∂

∂ σ σ
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∂ σ σ
=

∂σ

β y
β

β y

β y

 (6.49) 

under the following constrains: 
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2
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0

0
e

δ

σ >

σ ≥
  (6.50) 

Once the estimates of the regression parameters b and of the variances 2ˆ εσ , 2ˆ δσ  have 
been calculated the covariance matrix of b can be estimated as 

 ( ) ( ) 1
1 2ˆ ˆvar T

−
−

ε= σb X A X  (6.51) 

and the predicted response and its variance as 

 ( ) ( )ˆ Ty =x f x b  (6.52) 

 ( ) ( ) ( ) ( )
1

1 2ˆˆ ˆvar T Ty
−

−
ε= σf x X A X f x  (6.53) 

6.2.3 Multiple-way classification 
Random effects can be used to describe more than one source of variability. In the 
present work, for example, they are use to take in account non only the variability of the 
ground motions but also the variability of the concrete strength among different 
members of structures.  
In this case, under assumptions similar to Eq. (6.40) -(6.42), the generic observation can 
be expressed as 

 
1

r
T

i
i

y
=

= + δ + ε∑f β  (6.54) 

where r is the number of random factors. The results of n experiments can be collected 
into a vector and the model can be written in matrix form: 

 = + +y Xβ Zδ ε  (6.55) 

Eq. (6.55) is formally similar to Eq. (6.37) but δ  does not collect anymore le levels (the 
number of which is denoted by qi in the following) of a single factor only, but contains 
the levels of all the factors iδ  considered. Therefore δ  can be thought as being made up 
of r different iδ  vectors, each containing the qi levels of a single random factor iδ , i.e., 

 [ ]1
T

r=δ δ δ…  (6.56) 
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Matrix Z is build by combining r matrices of size  in x q  which relate each factor to the 
proper experiments 

 [ ]
1

1
1

r

r i i
i

r
=

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

∑
δ

Zδ Z Z Z δ
δ

… #  (6.57) 

where iδ  contains the qi levels of the factor i. As an example if 4 experiments and 2 
random factor with 2 levels each are considered the matrix Z and the vector δ  can be 
written as 

 1 2

1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1

    
0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Z Z Z  (6.58) 

 1,1 1,2 2,1 2,2

T
⎡ ⎤= δ δ δ δ⎣ ⎦δ  (6.59) 

where ,i jδ  denotes the level j of the factor i.  
As done for the simper models described in the previous sections it assumed that 

( )E =ε 0 , that ε  and iδ  are mutually independent and with constant variance 
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 (6.60) 

From Eq. (6.60) it is possible to derive the following variance covariance matrices for 
δ  

 ( )
1 1
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δ

δ
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C δ
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 (6.61) 
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and for Y: 

 ( ) 2 2 2

1

var
i

r
T T

YY n i i n
i

δδ ε δ ε
=

= = + σ = σ +σ∑C y ZC Z I Z Z I  (6.62) 

which for the example for which Eq. (6.58) and Eq. (6.59) where derived becomes 
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2 2 2 2 2
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0
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YYC
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⎢ ⎥σ σ σ + σ + σ⎣ ⎦

 (6.63) 

Comparing Eq. (6.63) and Eq. (6.45) one can clearly notice that the correlation is now 
present not only inside the blocks but also among different blocks. 
In order to derive a more synthetic form for the equations of the model it is convenient 
to include ε  into the vector δ  by setting: 

 0 0 0      nq n= = =δ ε Z I  (6.64) 

From Eq. (6.64) it follows that Eq. (6.55) can be rewritten as 

 
0

r

i i
i=

= +∑y Xβ Z δ  (6.65) 

and Eq. (6.62) as 

 2

0
i

r
T

YY i i
i

δ
=

= σ∑C Z Z  (6.66) 

Also in this case it is possible to adopt the Hartley-Rao formulation which is similar to 
that shown in the previous section: 
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Regression parameter values and variances can be estimated using the maximum 
likelihood method which, in this case, is formally similar to what was described in 
section 6.2.3. The variance matrix of b, the predicted response ( )ŷ x  and its variance 
can be calculated using expressions similar to those in Eq. (6.51), (6.52) and (6.53) the 
only difference being the matrix A which has to be derived from Eq. (6.67) instead of 
Eq. (6.44). 

6.2.4 Tests on the model 
6.2.4.1 Tests concerning fixed effects 
Tests concerning the elements of β  in the model of Eq. (6.55) are carried out using 
approximate t statistics. For example, a test statistics for testing the null hypothesis 

0 : 0iH β =  versus : 0a iH β ≠  is given by 

 i
i

i

bt
s

=  (6.68) 

where bi is the i-th element of b, the estimator of β , and si is the square root of the 
corresponding diagonal element of Cbb. Under 0H , ti has approximately a t-distribution. 
Further details can be found in Khuri and Cornell, 1996 and Khuri, 1992. 

6.2.4.2 Tests concerning the block effect 
A test concerning the block effect can be performed considering the Type III sum of 
squares for δ  in the model of Eq. (6.55). The following hypothesis concerning the 
random block effect is considered: 2

0 : 0H δσ =  versus 2
0 : 0H ασ ≠ . The Type III sum of 

squares, ( )|R δ β , is equal to Searle et al., 1992  

 ( ) ( ) ( )( )1 1
| T T T T TR

− −
= −δ β y W W W W X X X X y  (6.69) 

where W = [X:Z]. The expected value of ( )|R δ β  is given by Searle et al., 1992 

 ( )( ) ( )( )( ) ( )12 2| 1T T
NE R tr b

−

δ ε= σ − + − σδ β Z I X X X X Z  (6.70) 

it follows that a test statistics for testing the null hypothesis is given by the ratio 



Chapter 6 – Response surface method 

234 

 ( )
( )

|
1 E

R
F

b MS
=

−
δ β

 (6.71) 

where MSE is the residual mean square defined as 

 
( )( )1T T T

N

EMS
n p b

−
−

=
− −

y I W W W W y
 (6.72) 

where b is the number of blocks. Under the null hypothesis the statistic in Eq. (6.71) has 
an F-distribution with b – 1 and n – p – b degrees of freedom. Further details can be found 
in Khuri and Cornell, 1996 and Khuri, 1992. 

6.2.5 Prediction of random effects 
In this section some brief details will be given on the problem of predicting the 
unobservable realized values, δ� , of random effects that are part of a mixed model. The 
generic element of δ� , iδ�  can be considered as the realized value, in a block of 
experiments, of a random variable. The vector δ�  is called prediction and not estimate 
because estimation concerns parameters only. 
The general problem can be stated as follows: suppose Δ  and Y are jointly distributed 
vectors of random variables, with those in Y being observable but those in Δ  not being 
observable. The problem is to predict Δ  from some realized observed value of Y. 
Usually Y contains more elements than Δ  and this latter is often scalar. 
A criterion that can be used to find a prediction is to look for a predictor that minimizes 
the mean square error. When ( ),f δ y  is the joint density function of the random 
variables Δ  and Y the mean square error of prediction is 

 ( ) ( ) ( ) ( ) ( ),
T T

E f d d− − = − −∫∫δ δ S δ δ δ δ S δ δ δ Y y u� � � �  (6.73) 

where S is any positive symmetric matrix. From minimizing Eq. (6.73) it is possible to 
derive the best predictor (best because it is derived using a minimum least square 
criterion) of δ�  which can be expressed as: 

 ( )|E=δ δ y�  (6.74) 

this results holds for all probability density functions ( ),f δ y  and does not depend on 
the positive symmetric matrix S. Furthermore the best predictor is not biased in fact 
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 ( ) ( ) ( )| |E E E E⎡ ⎤= =⎣ ⎦Y y δ yδ δ y δ�  (6.75) 

Noteworthy ( )|E=δ δ y�  is a random variable, being a function of y and unknown 
parameters. Thus the problem of estimating the best predictor δ�  remains, and demands 
some knowledge of the joint density ( ),f δ y . When this is normal, 

 , Y

Y YYY

N δδ δδ

δ

⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥⎢ ⎥ ′⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

C Cμu
C Cμy

 (6.76) 

which when combined with Eq. (6.80) gives 

 1 ( )Y YY Y
−

δ δ= + −δ μ C C y μ�  (6.77) 

The estimation problem is clearly visible in these results. The predictor is given in Eq. 
(6.74) but it and its succeeding properties cannot be estimated without having values 
for, or estimating, the four parameters δμ , Yμ , YδC  and YYC .  
The best predictor is not necessarily linear in y. Supposing attention is now confined to 
predictors that are linear, they must have the form 

 = +δ a by�  (6.78) 

where a is a vector and b is a matrix. Minimizing Eq. (6.73), in order to obtain the best 
linear predictor, leads to 

 1 ( )Y YY Y
−

δ δ= + −δ μ C C y μ�  (6.79) 

where the parameters are defined as in(6.76) but without the assumption of normality. 
An immediate observation on Eq. (6.79) is that it is identical to Eq. (6.77). This shows 
that the best linear predictor, derivation of which demands no knowledge of the form of 

( ),f δ Y , is identical to the best predictor under normality. Therefore this predictor is 

called best linear unbiased predictor (BLUP). Recalling the assumptions made previously 
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and that ( )Eδ = =μ δ 0  and, Y =μ Xβ  it follows that a prediction linear in y and unbiased 

can be expressed as: 

 ( ) ( )1T
YYBLUP −

δδ= = −δ δ C Z C Y Xβ�  (6.81) 

6.3 10B10BDesign of the simulation plans 

6.3.1 Some considerations on the variables 
In planning the program of experiments, the experimenter is faced with 

1. choosing the factors or input variables to be used in the experiment; 
2. selecting the range of values and the number of levels of each factor in order to 

adequately measure the effects of the factors on the response. 
Upon answering these questions the experimental region is defined.  
The used of coded variables in place of the input variables facilitates the construction of 
the experimental designs. Coding removes the units of measurements of the input 
variables and consequently distance measured along the axes of the coded variables in a 
k-dimensional space are standardized. A convenient coding formula for defining the 
coded variables is 

 ( )2 i iL iH
i

iH iL

X X X
x

X X
− +

=
−

 (6.82) 

where iLX  and iHX  are the low and high levels of the factor iX , respectively. If only 
two levels are considered for a factor, Eq. (6.82) gives the notation 1± . The region 
defined by those two levels is a cuboidal region in a k-dimensional space. 
Geometrically, the cuboidal region has 2k  vertices where each vertex is defined by the 
coordinate 1±  settings in 1 2, , , kx x x… . When a factor has three levels and the mid level 
is in the middle between the lower and upper levels, the coding formula in Eq. (6.82) 
produces the coded levels xi = -1, 0, +1 associated with the low, middle and high values 
of Xi, respectively. When all factors have three levels, again the region in the coded 
variables is a k-dimensional cuboidal region. However, the number of factor 
combinations is now 3k and 2k of the combinations are the vertices of the k-dimensional 
cuboidal region, the remaining 3 2k k−  combinations define the centroids of all the 
lower dimensional boundaries of the k-dimensional cube along with the centroid, 0, of 
the cuboidal region. Figure 6.1 gives examples of designs with 3 levels for 2 and 3 
factors respectively. 
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Figure 6.1. Designs in the coded space for a) 2 factors and 3 levels and b) 3 factors and 3 levels. 

There are several advantages to using coded variables rather than the original input 
variables when fitting polynomial models. Two of the most obvious advantages are: 

1. computational ease and increased accuracy in estimating the model 
coefficients; 

2. enhanced interpretability of the coefficient estimates. 
Both the advantages stem from the fact that the TX X  matrix in the coded variables is 
usually of a simpler form than the TX X  matrix in the original variables. The simper 
form of the TX X  matrix, the easier it is to invert TX X , and as a result, the greater will 
be the computational accuracy of the model parameter estimates and the reduction in 
computing time. Finally since the coding transformation is a one-to-one transformation, 
any linear polynomial equation in the values of ix  is expressible as (and equivalent to) a 
polynomial equation of the same degree in the values of iX  

6.3.2 Properties of a response surface design 
Prior to performing the actual experimentation, quite often it is necessary to decide 
whether the main emphasis is measuring the effects of the input variables or whether 
one is really more interested in modelling the response surface for prediction purposes. 
In the present section designs in which the primary emphasis is in modelling ad 
exploring response surface over the experimental region are concerned. 
Box and Wilson, 1951 listed some properties that a response surface design to be used 
when fitting a polynomial model should have: 

1. the design should generate a satisfactory distribution of information 
throughout the region of interest; 
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2. the design should ensure that the fitted value at x , ( )Ŷ x , be as close as 
possible to the true value at x, ( )η x ; 

3. the design should have good detectability of model lack of fit; 
4. the design should allow experiments to be performed in blocks; 
5. the design should allow designs of increasing order to be built up 

sequentially; 
6. the design should provide an internal estimate of the error variance; 
7. the design should require a minimum number of experimental points; 
8. the design should ensure simplicity of calculation of the model parameter 

estimates.  
This list of properties will serve as a reference in next sections. In addition to the 
properties listed above, there are times when the design is required to possess the 
property of orthogonally and/or the property of rotatability. An orthogonal design is one 
in which the terms in the fitted model are uncorrelated with one another and thus the 
parameter estimates are uncorrelated. In his case, the variance of the predicted response 
at any point x in the experimental region, is expressible as a weighted sum of the 
variances of the parameter estimates in the model. A first order design (i.e. a design 
suited for fitting first order models), for example, is orthogonal if and only if the 
corresponding TX X  matrix is diagonal. If second order designs are concerned, it is not 
possible to obtain a diagonal TX X  matrix as a consequence of the second order terms, 
in this case different conditions must be satisfied which will be discussed in the 
following. 
With a rotatable design, on the other hand, the variance of ( )Ŷ x , which is known to 
depend on the location of the point x, is a function only of the distance from the point x 
to the centre of the design. Thus, with a rotatable design, the prediction variance, 

( )ˆvar Y⎡ ⎤⎣ ⎦x , is the same at all points that are equidistant from the design centre. 
Consequently, in the space of the input variables, surfaces of constant prediction 
variance form concentric hyperspheres. One of the desiderable features of rotatability is 
that the quality of prediction, as measured by the magnitude of ( )ˆvar Y⎡ ⎤⎣ ⎦x , is invariant 
to any rotation of the coordinate axes in the space of the input variables. 
To better understand the rotatability and the orthogonality properties it is worth to 
concentrate on certain parameters of the distribution of design points called design 
moments. Supposing that the model to be fitted is expressed in matrix notation in the 
form of Eq. (6.10) and supposing that this model is of order d and is a function of k 
input variables (which are considered to have been coded), then a design moment of 
order δ  ( )0,1, 2dδ = … , denoted by 11  2 k kkδ δδ⎡ ⎤⎣ ⎦… , is equal to 
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where n is the total number of observations and 1 1, , , kδ δ δ…  are non-negative integers 
such as 
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called the moment matrix. For example, if a first order model in the k coded variables is 
considered and 
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where the denominator, 
ixs , is a measure of the spread of the design points in the 

direction of the iX  axis, then the following moment matrix is obtained 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

[ ]

1 2 3

1

2

3

          

1 1 2 3
11 12 13 1

1 22 23 2
33 3

k

T

k

x x x x

k
x k
x k

n
x k

sim
x kk

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X X

"
"
"
"
"

# % #

 (6.85) 

with 

 [ ] [ ] [ ]2

1 1 1

1 1 1 , 1,2,
N N N

ui ui ui uj
u u u

i x ii x ij x x i j k
N N N= = =

= = = =∑ ∑ ∑ …  (6.86) 

The moment [ ]i  is the average of the uix  values over the n observations and is called 
moment of the first order. The moments [ ]ii  and [ ]ij  have similar meaning and are 
called pure second-order moment and mixes second-order moment, respectively. 
However, by the coding convention in Eq. (6.84) it follows that 

1
0N

uiu
x

=
=∑  and 

2
1

N
uiu

x n
=

=∑  and consequently [ ] [ ]0 and 1i ii= = . Thus the moment matrix in Eq. 
(6.85) is simplified to 
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[ ] [ ]
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X X
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# % #

 (6.87) 

When the fitted model is of the second order, the moment matrix contains moments up 
to order four. With two variables, for example, the coding convention in Eq. (6.84) 
produces the moment matrix  

 

[ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]
[ ]

2 2
1 2 1 2 1 2

1

2
2
1
2
2

1 2

                    

1 0 0 1 1 12
1 12 111 122 112

1
1 112 222 122

1111 1122 1112
2222 1222

1122

T

x x x x x x

x
x

n
x
x

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X X  (6.88) 

where 

 
[ ] [ ]

[ ] [ ]

3 2
1 1 2

1 1

4 2 2
1 1 2

1 1

1 1111 122

1 11111 1122

N N

i i i
i i

N N

i i i
i i

x x x
n n

x x x
n n

= =

= =

= =

= =

∑ ∑

∑ ∑
 (6.89) 

Both orthogonality and rotatability conditions for second-order design can be defined in 
terms of the moment matrix. 
An orthogonal-second order designs can be obtained if the variables in the model 
defined by Eq. (6.10) are expressed in terms of orthogonal polynomials as shown 
below. Let ( )m uiP x  be the orthogonal polynomial of degree m ( 0m ≥ ) for the i-th input 
variable ( ) 1, 2, ,ix i k= …  then, 

 ( ) 1
1, 1 0

m m
m ui ui m m ui m ui mP x x x x−

−= + α + + α + α…  (6.90) 
where the values of the αs are chosen such as 
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 ( ) ( ) ( )0
1

0 1 1,2, ,
N

m ui m j ui ui
u

P x P x P x j m−
=

= = =∑ …  (6.91) 

The original second-order model can now be expressed in terms of these orthogonal 
polynomials as 

 ( )( )1−= + = +Y XP P β ε Xβ ε��  (6.92) 

where P is the non-singular matrix transforming the terms m
uix  into ( )m uiP x , =X XP�  

and 1−=β P β� . Under the scaling convention given in Eq. (6.84) it is obtained that 

 ( ) ( ) [ ]2
1 2 1 1, 2,ui ui ui ui uiP x x P x x iii x i k= = − − = …  (6.93) 

and the response surface model (see Eq. (6.10)) can be written, in an explicit form, as  

 

[ ]( ) ( ) ( )

( ) ( )

1 2
1 1 1

1

1 1
1 2

      1, 2,

k k k

u ii ui ii ui
i i i

k k

ij ui uj u
i j

j i

Y iii P x P x

P x P x u N

0 ι ιι
= = =

−

= =
>

⎛ ⎞= β + β + β + β + β +⎜ ⎟
⎝ ⎠

+ β + ε =

∑ ∑ ∑

∑∑ …
 (6.94) 

Since ( )1
0N

m uiu
P x

=
=∑  for 1, 2m =  and 1,2, ,i k= …  and ( ) ( )1 21

0N
ui uiu

P x P x
=

=∑  for 
1, 2, ,i k= …  then the moment matrix 1 T

N
X X� �  is diagonal if 

 

[ ] [ ] [ ]
[ ]
[ ] [ ] [ ]
[ ] [ ]
[ ] [ ]

0 per 
1 per 

0 per 
0 per 
0 per 

ii ijj iij i j
iijj i j
iijn ijjn ijnn i j n
iiij ijjj i j
ijns ijn i j n s

= = = <
= <
= = = < <
= = <
= = < < <

 (6.95) 

A simple characterization of rotatability can, as well, be given in terms of the elements 
of the TX X  matrix, or the moment matrix. In fact a necessary and sufficient condition 
for a design to be rotatable is that the moment of order δ  be of the form 

 ( )1 2 1

2
1

0 if any  is odd

!1 2          if all  are even        
2 !

2

k

i
k

d ii
i

k i
i

k δδ δ =

δ
=

δ⎧
⎪
⎪ λ δ⎡ ⎤ = ⎨ δ⎣ ⎦ δ⎛ ⎞⎪

⎜ ⎟⎪ ⎝ ⎠⎩

∏
∏

…  (6.96) 
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where δλ  is a function of δ . It can be concluded that a first order design is rotatable if 
the design matrix has the form 

 
2

11 T
T

N
⎡ ⎤

= ⎢ ⎥λ⎣ ⎦k

0
X X

0 I
 (6.97) 

When a second-order model in k variables, the form of the moment matrix to achieve 
rotatability is  
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⎢ ⎥

⎦  (6.98) 

where kJ  is a k k×  matrix of ones and ( )1 2k k k′ = − . From Eq. (6.98) it can be 
concluded that in the case of a second-order model, all odd moments of order 4≤  must 
be zero and the remaining even moments must satisfy the equations [ ] 2ii = λ , [ ] 4iijj = λ
, and [ ] 43iiii = λ  ( ), 1, 2, , ;i j k i j= <… . The value of the pure second-order moment, 
[ ]ii , is fixed at 2 1λ =  by the scaling convention give by Eq. (6.84). Scaling, however, 
does not fix the value of 4λ , which can assume different values depending on other 
criteria that a rotatable second-order design may be required to have. For example 
orthogonality as will be discussed later. For example, from Eq. (6.95), a rotatable 
second-order design is also orthogonal if 4 1λ = . 
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It has been shown by Box and Hunter (1975) that with any rotatable second-order 
design the variance of the predicted response at any point x in the experimental region is 
given by 

 ( )( ) ( ) ( )( ) ( ) ( )( )2
4 4 4 4ˆVar y 2 2 2 1 2 1 1A k k k k2 4⎡ ⎤= + λ + λ λ − + ρ + + λ − − ρ⎣ ⎦x  (6.99) 

where 2 ′ρ = x x  and ( )( ) 1

4 42 2A N k k
−

⎡ ⎤= λ + λ −⎣ ⎦ . For the particular case of an 
orthogonal second-order rotatable design, i.e., when 4 1λ = , Eq. (6.99) becomes 

 ( )( ) ( )42
ˆVar y

2
k

N

2σ + + ρ
=x  (6.100) 

from which it follows that the variance of ( )ŷ x  at the design centre, i.e. when 0ρ = , is 

 ( )( )
1

4 4ˆVar y
2

kN
k

−
2 ⎛ ⎞⎛ ⎞= σ λ λ −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

0  (6.101) 

It can be seen from Eq. (6.101) that ( )( )ˆVar y 0  is a decreasing function of 4λ  for 
( )4 2k kλ > + . As 4λ  approaches or exceeds unity, the precision at the center of the 

design increases. Finally it is worth noting that when 4λ  approaches ( )2k k + , the 
values of A in Eq. (6.99) becomes infinitely large, which renders the rotatable second-
order design useless. This occurs then all the design points of a second-order design are 
equidistant from the design centre.  

6.3.3 The central composite design 
Box and Wilson () introduced the class of central composite designs (CCD) for 
problems involving response surfaces. A central composite design consist of: 

• a complete (or fraction of a) 2k factorial design, where the factor levels are coded 
to the usual -1, +2 values. This is called factorial protion of hte design; 

• 0n  centre points; 
• two axial points on the axix of each design variable at a distance of α  from the 

design centre. This is called axial portion of the design. 
A 2k factorial design consists of all the 2k points with levels 
( ) ( )1 2, , , 1, 1, , 1kx x x = ± ± ±… …  where every possible combination of + and – signs is 
selected in turn. To better understand the features of the design it is convenient to list 
the runs in standard order. This standard order is obtained by writing alternate – and + 
signs in the column corresponding to the first factor, alternate pairs --, ++ in the second 
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column, alternate fours ----, ++++ in the third column and so on. Table 6.1 shows an 
example of runs set out in standard order. 
 
Table 6.1. 23 factorial design sorted in standard order: X1, X2, X3 are actual factor levels, x1, x2, x3 are 
coded levels and y is the observed response. 
Actual values  Coded values 

y 
1X  2X  3X   

1x  2x  3x  

400 15 35  -1 -1 -1 2.83 
460 15 35  1 -1 -1 3.56 
400 25 35  -1 1 -1 2.23 
460 25 35  1 1 -1 3.06 
400 15 45  -1 -1 1 2.47 
460 15 45  1 -1 1 3.30 
400 25 45  -1 1 1 1.95 
460 25 45  1 1 1 2.56 

 

 
Figure 6.2 23 Factorial design. 

Assuming that experiments defined according to a complete factorial design are run the 
parameters of the model can be estimated either by using Eq. (6.17) or by a different 
procedure, described in the following, which allows to better understand the features of 
factorial designs. First of all some definitions bust be gives. The main effect of a given 
variable is the average difference in the level of response as one moves from the low to 
le high level of that variable. As an example, if the data in Table 6.1 is considered, the 
main effect, indicated by 1, of the variable 1x  is 

 ( ) ( )1 11 3.56 3.06 3.30 2.56 2.83 2.23 2.47 1.95 0.75
4 4

← + + + − + + + =  (6.102) 

1x

2x

3x

( )1,1,1

( )1,1,-1

( )1,-1,1

( )1,-1,-1

( )-1,1,1

( )-1,1,-1

( )-1,-1,1

( )-1,-1,-1
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where the symbol ←  is read as “is estimated by”. A valuable property of the factorial 
design is that it makes possible not only the calculation of main effects (average effects) 
but also of interaction effects between variables as well. Two variables, say 1x  and 3x , 
are said to interact, in their effect on the response, if the effect of 1 is different at the 
two different levels of 3. In the previous example if the first four runs, in which 3x  is at 
its lower level, the main effect of 1 is 

 ( ) ( ) ( )3
1 11| 1 3.56 3.06 2.83 2.23 0.78
2 2

x = − ← + − + =  (6.103) 

For the last four runs, with 3x  at its upper level, the main effect of 1 is 

 ( ) ( ) ( )3
1 11| 1 3.30 2.56 2.47 1.95 0.72
2 2

x = ← + − + =  (6.104) 

The interaction between variable 1 and 3 is defined as half the difference between the 
main effect of 1 at the upper level of 3x  and the main effect of 1 at the lower level of 3x
. This interaction is denoted by the symbol 13, so that 

 ( ) ( ) [ ]3 3
1 113 1| 1 1| 1 0.72 0.78 0.03
2 2

x x← = − = − ← − = −⎡ ⎤⎣ ⎦  (6.105) 

It is worthily noticed that interchanging the roles of variables 1 and 3 does not change 
the value of the interaction. Performing analogous calculations the other two-factor 
interactions 12 and 23 can be obtained. Those two-factor interactions may be different 
at different levels of the variable not involved in their definition. For example 12 may 
be different at different levels of the variable 3: 

 
( ) ( ) ( )

( ) ( ) ( )

3

3

112 | 1 3.06 2.23 3.56 2.83 0.05
2

112 | 1 2.56 1.95 3.30 2.47 0.1
2

x

x

= − ← − − − =⎡ ⎤⎣ ⎦

= ← − − − = −⎡ ⎤⎣ ⎦

 (6.106) 

Half the difference between these quantities is called the 123 interaction 

 ( ) ( )3 3
1123 12 | 1 12 | 1 0.08
2

x x← = − = − ← −⎡ ⎤⎣ ⎦  (6.107) 
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Table 6.2. Table of sign for the design given in Table 6.1. 
 I 1 2 3 12 13 23 123 y 
 + - - - + + + - 2.83 
 + + - - - - + + 3.56 
 + - + - - + - + 2.23 
 + + + - + - - - 3.06 
 + - - + + - - + 2.47 
 + + - + - + - - 3.30 
 + - + + - - + - 1.95 
 + + + + + + + + 2.56 
Divisor 8 4 4 4 4 4 4 4  

There is an easy an systematic way of making the previous calculations using the columns of signs in  
 
 
Table 6.2. Considering, for example, the calculation of the main effect 1 as in Eq. 
(6.102), it could be written as 

 ( )1 2 3 4 5 6 7 8
11
4

y y y y y y y y← − + − + − + − +  (6.108) 

In other words, the main effect 1 would be obtained by multiplying the column of data y by the column of 
by the column of signs in the column labelled 1 in  and dividing by the divisor 4 indicated here. The 
indicated here. The divisors are the number of + signs in the corresponding columns. The two- and three-
The two- and three-factor interactions can be obtained performing similar calculations. A table such as   
A table such as   

 
 
Table 6.2 is easily constructed for any 2k level factorial design as follows. The first 
column is a column of ones of length 2k. The following k columns are + and – signs for 
design written down in standard order. The 2 1k k− −  columns 12, 13, ..., 123, ..., 
123...k, are then obtained by multiplying signs, row by row, in the way indicated by the 
headings. 
A factorial design does not suffice in order to estimate all the parameters of a complete 
polynomial response surface of second degree. For this reason, in CCD, centre points 
and axial points are added to the factorial design. Figure 6.3. shows the points added to 
the 2k factorial design. 
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Figure 6.3. Axial portion of a central composite design for 3 factors. 

The total number of experiments to run is therefore 02 2kN k n= + + . The values of α  
and 0n  are chosen in order the give to the CCD some useful properties. The criteria to 
do that will be described in the following. As an example a design matrix in 2 variables 
with 0 1n =  and 2α =  has the form 

1 2   
1 1

1 1
1 1

1 1

2 0

2 0

0 2

0 2
0 0

x x

X

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 

Adopting the scaling convention given by Eq. (6.84) it can be easily verified that the 
odd moments up to order 4 are 0 for a CCD, i.e. 

1x

2x

3x

α+

( )α0,0,-

( )α0,0,+

( )α- ,0,0 ( )α+ ,0,0

( )α0,- ,0

( )α0,+ ,0
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[ ]
[ ]
[ ]
[ ]
[ ]

0 1, 2, ,
0 1, 2, ,
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0
0 , 1, 2, ,    
0

i i k
iii i k
ij i j k i j
iij i j k i j
ijk i j k
iiij i j k i j
iijk i j k

= =
= =

= = ≠
= = ≠
= ≠ ≠
= = ≠
= ≠ ≠

…
…
…
…

…

 (6.109) 

The even moments, [ ]ii , [ ]iiii  and [ ] ( ) , 1, 2, ,    iijj i j k i j= ≠…  are non-zero with 
[ ] 1ii =  by the scaling convention. The latter two moments are influenced by the choice 
of the number of centre points 0n  and by the value α  of the axial points setting. 
A CCD is rotatable if [ ] [ ]3iiii iijj=  for i, j = 1, 2, ..., k; i ≠ j. If g is a scale factor chosen 
such as that [ ] 1ii = , then ( )( )1 222g N F= + α , where F is the number of points in the 
factorial portion of the design, and 02 2kN k n= + +  is the total number of points in the 
CCD. It follows that the condition of rotatability for a CCD can be written as 

 4 4 4 42 3Fg g Fg+ α =  (6.110) 

or equivalently 

 1 4Fα =  (6.111) 

As for othogonality, a CCD can have this property if the mixed fourth-order moment 
[ ]iijj , or equivalently 4λ  is equal to unity. In terms of the scale factor g, [ ]iijj  is written 
as 

 [ ]
( )

4

222

Fg FNiijj
N F

= =
+ α

 (6.112) 

In order to have [ ] 1iijj =  it must be 

 ( )222F FN+ α =  (6.113) 

Solving Eq. (6.113) brings to the conclusion that a CCD can be made orthogonal by 
choosing the value of the axial setting, α , to be equal to 
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 ( )
1 21 2

2
FN F⎛ ⎞−

α = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.114) 

If it is desired for the CCD to be orthogonal as well as rotatable, it is possible to choose 
α  and 0n  to achieve both properties. To do so, it suffices to replace 2α  in Eq. (6.113) 
by  

F  in order to respect the rotatability condition, the brings the following equation 

 ( ) ( )
2

02 2F F F F k n+ = + +  (6.115) 

which if solved for 0n  gives 

 0 4 4 2n F k+ −�  (6.116) 

where 0n  is equal to the integer closest to the expression on the right-hand side. 

Table 6.3. Partial table of signs for a 26 factorial design. 

Experiment    
1 2 3 4 5 6 123456 Block 

1 - - - - - - + II 
2 + - - - - - - I 
3 - + - - - - - I 
4 + + - - - - + II 
5 - - + - - - - I 
6 + - + - - - + II 
7 - + + - - - + II 
8 + + + - - - - I 
9 - - - + - - - I 
10 + - - + - - + II 
11 - + - + - - + II 
12 + + - + - - - I 
13 - - + + - - + II 
14 + - + + - - - I 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 
63 - + + + + + - I 
64 + + + + + + + II 
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6.3.4 Designs for mixed models 
In the previous sections the central composite design has been introduced. In its 
standard formulation this kind of design does allow to take into account fixed effect 
only. For this reason it need to be modified in order to be used with mixed models. In 
fact the central composite design must be partitioned in blocks to which different levels 
of the random factors can be associated. This section describes some criteria that can be 
used in order to block central composite design maintaining properties such as 
orthogonality and rotatability. Firs blocking for cases with one random factor only will 
be discussed (one-way classification) then the model will be extended to case with more 
random factors (multiple-way classification). 

6.3.4.1 One way blocking 
First of all blocking criteria for the factorial part of the CCD will be illustrated. To do so 
an example design with 62 64=  experiments will be used. A partial table of signs of 
this example design is given in Table 6.3. Considering the partial table of signs, which 
shows the design in standard order and supposing that a portioning into two blocks is 
required one could allocate runs for which the product column 123456 has a minus sign 
to block I, and runs for which 123456 has a plus sign to block II. In this case according 
to Box and Draper, 1987 it is said that the block effect (B) is completely confused with 
the 123456 interaction, i.e., 

 B = 123456  (6.117) 

Thus it is not possible to estimate (at least with the same accuracy) the 123456 
interaction. However, this very high-order interaction will be negligible in most 
practical cases. It is worth noting that the 2 level factorial design has an important 
orthogonal property whereby a sequence of signs corresponding to a particular effect is 
orthogonal to every other such sequence. The important implication of this, in that 
altering the apparent 123456 effect by superimposing on it the difference between 
blocks does not change the estimate on any of the other effects.  
Suppose now that the same design is to be arranged into four blocks each containing 16 
run. This can be done by confounding two high-order interactions with block contrast. 
For example the contrasts 123456 and 23456 could be associated with blocks. Thus the 
blocking generators for the contrast would be 

           1 2B = 123456 B = 23456  (6.118) 
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and the runs would then be allocated to the four blocks according to the following 
scheme: 

 
  

I II
III IV

− +
−
+

2

1

B = 23456

B = 123456
 (6.119) 

That is, runs would be allocated to the four blocks I, II, III and IV as the sign associated 
with the columns 123456 and 23456 took the values (- -), (- +), (+ -), (+ +). Unfortunately 
this arrangement presents serious issues. In fact, there are 3 independent contrasts among 
the four blocks of 16 runs each. If B1 and B2 are associated with two of these contrasts, 
the third must be the interaction 2 2× =1 1B B B B . However, then the latter interaction will 
be confounded with the interaction between 123456 and 23456 which is 
 

123456 + - - + - + + - - + + - . . . - + 
23456 - - + + + + - - + + - - . . . + + 

123456× 23456 - + - + - + - + - + - + . . . - + 
 
that is, the interaction between is the main effect 1. Therefore the main effect of the first 
variable is confounded with block differences. In order to make better blocking it is first 
mandatory to understand how to calculate the interaction between complex coefficients. 
First, it should be noted that if one takes any set of signs for any effect and multiplies it by 
the signs of the same effect one obtains a row of +’s which are denoted by the identity I  
 

1 - + - + - + - + - + - + . . . - + 
1 - + - + - + - + - + - + . . . - + 

11×1 = 1 = I + + + + + + + + + + + + . . . + + 
 
Thus the multiplication sign is used to imply the multiplication of the signs in 
corresponding positions in two rows. It is possible to write 

 2 2 2 2 21×1 = 1 = I 2× 2 = 2 = I 12×12 = 1 2 = I = I  (6.120) 

Furthermore multiplication of any contrast by the identity I gives the contrast unchanged.  

 1×I = 1 23×I = 23 12345×I = 12345  (6.121) 

therefore applying this rule in the case of the design above it is possible to obtain 
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 2 2 2 2 2 5
1 2B B = 123456× 23456 = 12 3 4 5 6 = 1×I = 1  (6.122) 

indicating that B1B2 and 1 are confounded. 
An arrangement in four blocks of 16 runs so that all the interaction confounded with 
block are of the highest possible order may be obtained by using as generators two four-
factor interactions in which only two symbols overlap. For example a possible choice is 

          1 2B = 1234 B = 3456  (6.123) 

which gives 

 1 2B B = 1256  (6.124) 

Once the block generators are defined it is possible to allocate the runs to the four 
blocks corresponding to the sign combinations 
( ) ( ) ( ) ( ) ( ) ,   ,   ,   = − − − + + − + +1 2B ,B  as follows 
 

1B = 1234  + - - + - + + - - + + - . . . - + 

2B = 3456  + + + + - - - - - - - - . . . + + 
Block IV II II IV I III III I I III III I . . . II IV 

 
Under the common assumption that the blocks contribute only additive effects, the main 
effects, two-factors interactions, and three-factor interactions will all remain 
unconfounded with any block effect.  
Finally it is considered the case in which the example design is to be partitioned into 
eight blocks. If some three-factor interactions can be confounded the design can be split 
choosing the generators 

 1 2 3B = 1234 B = 3456 B = 123  (6.125) 

which give the following confounding pattern for the seven contrasts among the eight 
blocks: 
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1

2

1 2

3

1 3

2 3

1 2 3

B = 1234
B = 3456

B B = 1256
B = 136

B B = 246
B B = 145

B B B = 235

 (6.126) 

Once the factorial portion of the CCD has been split into block the centre points and the 
axial portion must be assigned to blocks as well. An operative criterion can be derived 
from the requirements to have orthogonality of the blocks, which means that the fixed 
effects can be estimated independently from the random effects (i.e. least squares 
method can be used). Adopting for the response surface the following expression 

 2
0

1 1 1 1 1

k k k k b

u i ui ii ui ij ui uj l ul u
i i i j l

j i

y x x x x z
= = = = =

>

= β + β + β + β + δ +ε∑ ∑ ∑∑ ∑  (6.127) 

where lδ  denotes the effect of the l-th block (l=1, 2, ..., b), zul is a dummy variable 
taking the values 1, if the u-th trial is carried out in the l-th block and 0 otherwise and εu 
is the random error. Alternatively the model can be written as 

 ( )' 2
0

1 1 1 1 1

k k k k b

u i ui ii ui ij ui uj l ul l u
i i i j l

j i

y x x x x z z
= = = = =

>

= β + β + β + β + δ − +ε∑ ∑ ∑∑ ∑  (6.128) 

where ( ) 1
1 N

l ulu
z N z

=
= ∑  and '

0 0 1

b
l ll
z

=
β = β + δ∑ . The formulation in Eq. (6.128) 

allows to derive the following conditions for orthogonal blocking 

 ( )
1

0    1, 2, ,    1, 2, ,
N

ui ul l
u

x z z i k l b
=

− = = =∑ … …  (6.129) 

 ( )
1

0    , 1, 2, ,       1, 2, ,
N

ui uj ul l
u

x x z z i j k i j l b
=

− = = ≠ =∑ … …  (6.130) 

 ( )2

1

0    , 1, 2, ,    1, 2, ,
N

ui ul l
u

x z z i j k l b
=

− = = =∑ … …  (6.131) 

If it is required for the design to be also rotatable it is to be assumed that the first-order 
moments as well as the mixed second-order moments of the design are zero 
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1

0    1, 2, ,
N

ui
u

x i k
=

= =∑ …  (6.132) 

 
1

0    , 1, 2, ,    
N

ui uj
u

x x i j k i j
=

= = ≠∑ …  (6.133) 

Combining Eqs. (6.129)-(6.133) and considering the features of the z variables, it is 
possible to derive the following conditions on the xui settings for orthogonal blocking 

 
( )

0    1, 2, ,     1, 2, ,ui
u l

x i k l b= = =∑ … …  (6.134) 

 
( )

0    , 1, 2, ,         1, 2, ,ui uj
u l

x x i j k i j l b= = ≠ =∑ … …  (6.135) 

 ( )

2

2

1

    1, 2, ,     1, 2, ,
ui

u l l
n

ui
u

x
n i k l b
Nx

=

= = =
∑

∑
… …  (6.136) 

where 
( )u l
∑ denotes summation extended only over those values of u in the l-th block; 

and nl is the number of runs in the l-th block. Equations (6.134)-(6.136) can be 
summarized as follows: 

1. Conditions in Eq. (6.134) and Eq. (6.136) imply that the column arrays 
associated with x1, x2, ..., xk are orthogonal and sum to zero within each block. 
Hence each block must consist of a first-order orthogonal design. 

2. Condition in Eq. (6.136) implies that the fraction of the total sum of squares for 
variable xi in each block must be equal to the fraction of the total number of runs 
allotted to that block. 

The CCD can be made to block orthogonally. In fact, each of the factorial and axial 
portion of the design forms a first-order orthogonal design. These portions provide a 
basis for a first division of the CCD into two blocks. The number of centre point 
replications will have to be determined to satisfy condition given in Eq. (6.136). The 
composition of these two blocks can be described as follows: 

• Block 1. A factorial portion consisting of 2kF = points, in addition to OFn  
centre point replications. 

• Block 2. An axial portion consisting of 2k points plus OAn  centre point 
replications. From Eq. (6.136) follows that the axial setting must have the value 
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( )
2

2
OA

OF

F k n
F n

+
α =

+
 (6.137) 

Furthermore if such a design is also required to be rotatable, the condition of which is  
1 4Fα = , then from Eq. (6.136) follows 

 ( )2
2

OF

OA

F n
F

k n
+

=
+

 (6.138) 

or equivalently 

 ( )2 2 2 0OA OFF F k n n− + + =  (6.139) 

It is worth noting from Eq. (6.139) that for some values of k, it is not always possible to 
find a rotatable CCD that blocks orthogonally. A necessary condition for the satisfaction 
of Eq. (6.139) is 

 ( )22 16 0OA oFk n n− − ≥  (6.140) 

For those values of k for which Eq. (6.140) is not satisfied, it is possible to achieve 

Table 6.4. Orthogonal blocking arrangements for rotatable or near rotatable central composite 
designs. F: runs in the factorial portion of the design, bF blocks into which the factorial protion of the 
design is partitioned, n0l number of centre point added to each block, nl number of runs in each block, 
αorth,blocks: α value to achieve orthogonality, αrot: α value to achieve rotatability and n: total number of 
runs. 

k 2 3 4 5 6 
Factorial blocks      

 4 8 16 32 64 

 1 2 2 4 8 

3 2 2 2 9 

 7 6 10 10 1 

Axial block      

3 2 2 4 6 

 7 8 10 14 18 

 1.4142 1.6330 2.0 2.3664 2.8284 

1.4142 1.6818 2.0 2.3784 2.8284 
n  14 20 30 54 90 

F

Fb

0ln

ln

0ln

ln

.orth blocksα

.rotα
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orthogonal blocking and near rotatability for a CCD. For example, when k = 3, F = 8,  
4OFn =  and 2OAn =  Eq. (6.137) gives 1 41.633 8 1.68α = =�  which is close to the 

rotatable setting. A list of orthogonal blocking arrangements for rotatable or near-
rotatable central composite designs is given in Table 6.4. 
A further partitioning of the axial portion of the design in not compatible with the 
condition 1 listed above. On the other hand, the factorial portion of the design can be 
partitioned into more than one block until the resulting designs are of order greater or 
equal to 3 and the number of repetitions of the centre point is the same for each block. 
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7 Assessing seismic fragility of RC 
frames through response surface 
method 
 
In this chapter, the response surface (RS) method with random block effects is used to 
approximate the structural capacity of an existing reinforced-concrete (RC) frame 
structure. The spectral acceleration, at the natural frequency, causing the failure of the 
structure is the parameter adopted to represent the structural capacity. In the following 
sections, the numerical model adopted to perform the non-linear time-history analyses, 
the criteria adopted to define the explicit and the implicit variables and the method 
adopted to generate the input ground-motions will be described. 
The procedure is illustrated with reference to the seismic fragility assessment of a RC 
frame structure. RS models with random block effects have been used to approximate 
the dependence of the structural capacity from the random parameters considered in the 
analysis. Accordingly, some variables are considered explicitly in the definition of the 
RS (concrete strength, steel yielding stress, live loads), whereas the uncertainties related 
to the seismic action and the variability of the mechanical properties over the structure 
are considered in an implicit way. 
As for the ground-motion, simulated acceleration time-histories are used, according to 
the method proposed by Sabetta et al. and Pugliese et al. (Sabetta and Pugliese, 1996; 
Buratti et al., 2006b). Artificial accelerograms are preferred here over recorded time-
histories because as many ground-motions as required by the probabilistic model for 
reliability analysis can be generated, according to a given seismological scenario. In 
fact, since the Monte Carlo simulation method has been used to compute the reference 
values of the fragility, a very large number of statistically independent numerical 
simulations (and therefore of ground-motions) is needed. In Buratti et al. (Buratti et al., 
2007a), it has been shown that the ground-motion generation procedure used in the 
present work gives acceleration time histories that: (i) do not introduce bias in the 
structural response and (ii) have a degree of variability similar to that of recorded 
ground-motions. 
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As for the concrete strength, non destructive testing on existing old RC frame structures 
often shows that the strength can be very variable, not only with respect to the value 
prescribed by design, but also among the various parts of the structure, for instance 
from one floor to another or even among the columns of the same floor. Therefore, the 
variation of the concrete strength has been described by a correlated random field. 
RS models based on polynomial functions of different degree and obtained with 
different simulation-plans have been employed and compared in terms of computational 
efficiency and accuracy. The reference values for the structural capacity and the failure 
probabilities have been computed by MC simulations, obtained by fully random 
generation of ground-motions and mechanical/loading characteristics of the structure. 
Quadratic polynomial models have shown a high sensitivity to the type of design used 
and require a higher number of simulations than linear models in order to give accurate 
results. On the contrary, these latter models have shown less sensitivity to the selected 
simulation plan. 

7.1 Seismic fragility 

In a seismic reliability framework, the seismic fragility curve is defined as the 
probability of failure of a structure conditional to the ground-motion intensity.  
The structural failure is attained when the limit state function, defined as the difference 
between structural capacity and demand, is less than or equal to zero: 

 ( ) ( )min , , 0
t

g C t D t= − ≤⎡ ⎤⎣ ⎦x x  (7.1) 

where both capacity, C, and demand, D, depend on the set x of random variables 
adopted to describe the variability of some properties of the structure (e.g., related to the 
strength of structural elements), and on the time t.  
In the definition of the limit state function in Eq. (7.1), the explicit dependence on time 
is eliminated, because the minimum value over the entire ground-motion duration is 
taken (Veneziano et al., 1983; Casciati and Faravelli, 1991). If the structural behaviour 
is non-linear, Monte Carlo (MC) simulation methods are typically used to solve Eq. 
(7.1) (Pinto, 2001). As well known, these methods require a great computational effort, 
especially when values of the fragility curve corresponding to low probability levels 
must be evaluated. Computationally less demanding procedures such as FORM and 
SORM may have some limitations when Eq. (7.1) is not analytical or when a suitable 
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probabilistic model is not available for all the random variables involved in the problem 
(e.g. to realistically describe the seismic action) (Pinto, 2001). 
In the present study, different RS models, together with different criteria for the design 
of simulation-plans are used to approximate the limit state function, in order to reduce 
the number of simulations required to perform the fragility analysis. 
First of all, an intensity measure (Shome et al., 1998; Luco and Cornell, 2007) must be 
chosen to express the structural capacity C and demand D adopted in the limit state 
function. This intensity measure shall be the same used to express the seismic hazard for 
the site where the structure is located. Some different proposals can be found in the 
literature (Shome et al., 1998; Luco and Cornell, 2007). In the present study, according 
to Veneziano et al. (Veneziano et al., 1983), Casciati et al. (Casciati and Faravelli, 
1991) and Shome et. al (Shome et al., 1998), both structural capacity and demand are 
written as a function of the spectral acceleration, corresponding to the first natural 
frequency of the structure, Sa. Eq. (7.1) is then rewritten as: 

 ( ), ,a C a Dg S S= −x  (7.2) 

where Sa,C represents the spectral acceleration causing the structural failure and Sa,D the 
spectral acceleration the structure is subjected to. Following this approach, Sa,D is 
independent from the structural capacity, because the fragility is conditioned on this 
parameter. The first step of the reliability analysis is to determine Sa,C as a function of 
the random variables x modelling the variability of the mechanical properties and the 
loads for the structure. Then, the seismic fragility curve is calculated by evaluating the 
structural failure probability for different values of Sa,D , i.e. Pf = P(g<0 | Sa,D). The 
evaluation of the dependence of structural capacity Sa,C on the random variables x 
involved in the problem is the most computationally expensive step due to the non-
linear structural behaviour and the high number of random variables. In the present 
study, the RS method has been used to approximate the unknown dependence of Sa,C on 
x. The natural frequency of the structure, adopted to select the value of spectral 
acceleration, is calculated using the mean values of the random variables involved in the 
problem (Franchin et al., 2003b; Franchin et al., 2003a). The 5% damping-ratio 
spectrum has been used. 
It is important to note that the effectiveness of response surface approximation depends 
on the efficiency of the intensity measure adopted to describe seismic action. Spectral 
acceleration is by far the most widely adopted parameter but some authors have recently 
demonstrated that other measures may give better performances as far as non-linear 
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response of concrete structures is concerned. Besides, scaling to spectral acceleration 
can lead to results affected by systematic errors (see Section 2.3). 
Furthermore considering uncertainty of parameters defining structural behaviour makes 
spectral acceleration even less effective because the natural frequency of the structure 
under consideration depends on these mentioned parameters. One of the most promising 
intensity measure to be used in RS applications is the one proposed by Baker and 
Cornell (2006b), which is defined as the geometric mean of spectral acceleration values 
at a set of periods: 

 ( ) ( )
1/

1
1

,...,
nn

avg n i
i

Sa T T Sa T
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∏  (7.3) 

where 1,..., nT T  are n periods of interest. Eq. (7.3) can also be expressed as arithmetic 
mean of the values of logarithmic spectral accelerations 

 ( )( ) ( )( )1
1

1log ,..., log
n

avg n i
i

Sa T T Sa T
n =

= ∑  (7.4) 

This formulation is particularly convenient, because ground motion prediction equations 
(attenuation relationships) can be easily obtained for ( )( )1log ,...,avg nSa T T , with an 
arbitrary set of periods, 1,..., nT T , using existing models. In fact the mean and variance 
of ( )( )1log ,...,avg nSa T T  are given by (Baker and Cornell, 2006b): 

 ( )( )( ) ( )( )( )1
1

1log ,..., log
n

avg n i
i

E Sa T T E Sa T
n =

= ∑  (7.5) 

 ( )( )( ) ( ) ( ) ( ) ( )1 2 loglog ,log log
1 1

1Var log ,...,
TjT Tj Ti i

n n

avg n SaSa Sa Sa
i j

Sa T T
n = =

= ρ σ σ∑∑  (7.6) 

where ( )( )( )log iE Sa T  and ( )log TiSa
σ  are the conditional mean and standard deviation of 

( )( )log iSa T , available from popular ground motion prediction models (e.g. Ambraseys 
et al., 2005; Abrahamson and Silva, 2008b). The term ( ) ( )log ,logT TjiSa Sa

ρ  describes the 
correlation between  ( )( )log iSa T  and ( )( )log jSa T  and can be be evaluated via 
regression analysis of empirical observations (Baker and Cornell, 2006a; Baker, 2007a; 
Baker and Jayaram, 2008). Eq. (7.5) and Eq. (7.6) are the conditional logarithmic mean 
and variance, given magnitude, distance, etc. as with standard ground motion prediction 
models for spectral acceleration. If ( )( )log iSa T  are assumed to be jointly Gaussian 
(Stewart et al., 2001; Bazzurro and Cornell, 2002; Jayaram and Baker, 2008), their sum 
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is also Gaussian and Eq.  (7.5) and Eq. (7.6) completely defines the distribution of 
( )( )1log ,...,avg nSa T T . Therefore probabilistic seismic hazard analysis and 

disaggregation can then be performed using this intensity measure using the same 
procedures used for any single spectral acceleration value.  
In the following, even if the described approach may have some advantages in terms of 
accuracy, since avgSa  is a much more efficient intensity measure than Sa(T1), for the 
sake of simplicity a more standard intensity measure, such as spectral acceleration at the 
natural frequency, has been used. 

7.2 11B11BThe case study: RC frame structure 

The geometry of the case study RC frame structure, the cross-sections and steel 
reinforcements of beams and columns are reported in Figure 7.1 and Table 7.1. The 
structure has two bays, 500 cm and 550 cm wide respectively, and three 300 cm high 
storeys.  In addition to beam and column self-weights, the dead load qD = 33 kN/m is 
prescribed along all the beams. The live load qL acting on the first floor beams is 1.5 
times greater than on the two upper floors and is defined according to a lognormal 
distribution. All the above parameters have been defined on the basis of engineering 
judgement with reference to the construction practice in Italy, for this kind of building, 
during the 90s.  
Non-linear dynamic analyses have been performed using the Finite Element software 
OpenSees (McKenna, 1997; McKenna et al., 2000; Scott et al., 2008). Beams and 
columns have been modelled as finite elements with distributed inelasticity, based on 
the flexibility formulation (Spacone et al., 1996b; Spacone et al., 1996c). The cross 
sections have been discretized into fibres and 5 and 7 control sections  have been used 
for beams and columns, respectively (McKenna et al., 2000). Non-linear constitutive 
behaviours have been defined for concrete and steel. Each concrete section has been 
subdivided in unconfined and confined zones: Saenz’s (Ceb-Fip, 1993) and Mander’s 
(Mander et al., 1989) models have been used for concrete constitutive laws, 
respectively. The constitutive behaviour of reinforcing steel has been modelled 
according to a bilinear model. 



Chapter 7 – Assessment of seismic fragility of RC frames through response surface 
method 

262 

7.3 12B12BSearch of the structural capacity 

The seismic capacity of the structure is defined as the value of the spectral acceleration 
Sa,C causing the failure of the structure. Therefore, a limit state condition for the 
structure must be defined. 
Different measures can be adopted to define the capacity of the structure to be compared 
with the seismic demand, e.g. maximum shear, interstorey drift, chord rotation, etc. In 
this study, only an ultimate limit state condition is defined: structural failure is attained 
when, in a section of the RC frame, the maximum strain in the confined concrete 
reaches a prescribed ultimate value, εcu (Kowalsky, 2000; Priestley et al., 2007). The 
ultimate strain capacity εcu is evaluated using the Mander’s model (Mander et al., 1989; 
Priestley et al., 2007) for confined concrete, in order to take into account the beneficial 
effect of closely spaced steel stirrups in the critical regions of the frame (end regions of 
columns and beams), where plastic deformations can be very high.  
The structural capacity of the structure, Sa,C, is calculated by scaling the considered 
ground-motion up to the attainment of the structural failure. In each simulation, in order 
to obtain the required scaling factor, an incremental dynamic analysis (Vamvatsikos, 
2002; Vamvatsikos and Cornell, 2002; Vamvatsikos and Cornell, 2004) is performed: 
according to this method, the structure is subjected to a accelerogram, linearly scaled (in 

 

Figure 7.1. Live loads, geometry and cross sections for the case study frame structure considered in 
the present chapter. See also Table 7.1 for cross section details. 
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amplitude) to increasing levels of intensity until the limit state condition is exceeded. 
Then, the iterative Brent’s method (Press et al., 2002) is used to obtain, up to the desired 
accuracy, the scaling factor causing the structural collapse and, therefore, Sa,C which is 
given by the product of the scaling factor and the spectral acceleration at the natural 
frequency of the structure of the unscaled accelerogram. The Brent’s method combines 
root bracketing, bisection and inverse quadratic interpolation. This algorithm could be 
extended (Vamvatsikos and Cornell, 2002) in order to take into account more than one 
performance level.  
The aforementioned procedure has been automated developing a software (in the 
Matlab framework) that executes all the incremental analyses required by a given 
experimental design. In particular the software performs the following tasks:  
1) definition of the experimental plans (CCDs and factorial designs) with and without 

blocking (see Section 6.3);  
2) search of structural capacity for each experiment; 

a) modification of the structural model according to the values of explicit and 
implicit variables;  

b) search for the initial interval to be used as input for Brent’s algorithm; 

Table 7.1. Cross section dimension and reinforcing bars for the case study structure. 
Section Width 

___________________ 

cm 

Height 
_____________________ 

cm 

As As’ Stirrups 

A-A 30 30 2φ20 2φ20 φ10@20 
B-B 30 30 3φ20 3φ20 φ10@20 
C-C 40 40 2φ18 2φ18 φ10@20 
D-D 35 35 2φ18 2φ18 φ10@20 
E-E 30 30 2φ18 2φ18 φ10@20 
F-F 30 60 2φ18 2φ18 φ10@20 
G-G 30 60 4φ18 2φ18 φ10@20 
H-H 30 60 2φ18+ 1φ20 2φ18+ 4φ20 φ10@20 
I-I 30 60 2φ18+ 2φ20 2φ18 φ10@20 
L-L 30 50 2φ18 3φ18 φ10@20 
M-M 30 50 4φ18 2φ18 φ10@20 
N-N 30 50 2φ18+ 3φ20 2φ18+ 4φ20 φ10@20 
O-O 30 50 5φ18 2φ18 φ10@20 
P-P 30 50 2φ18+ 3φ20 2φ18 φ10@20 
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c) search of structural capacity using Brent’s algorithm; 
3) calibration of response surfaces;  
4) calculation of fragility curves using Monte Carlo simulation. 
It is worth noting that during step 2, the Matlab software interacts with Opensees which 
is used to perform the nonlinear dynamic analyses. At step 2b, the software performs a 
sequence of nonlinear dynamic analyses at increasing levels of spectral acceleration 
until failure is attained. The highest spectral acceleration value not bringing the 
structure to collapse and the smallest spectral acceleration value bringing the structure 
to collapse are used to define the starting interval for Brent’s algorithm (step 2c). A 
block diagram of the procedure used to search to search structural capacity at step 2c is 
given in Figure 7.3. At the end of each analysis, results are automatically post-processed 
by the software and the attainment of the considered limit state is verified. To this 
purpose the maximum compressive deformations recorded for each section of each 
structural member, during the analysis are compared with their corresponding capacity 
values. It should be observed that capacity values may be different for each structural 
member as a consequence of the considered spatial variability of concrete mean strength 
(See Section 7.4.2). 

 
Figure 7.2. Example of application of Brent’s algorithm to search structural capacity in terms of 
spectral acceleration at natural period of the structure. Both structural capacity, ,c CAPε , and demand, 

,c DEMε  are expressed in terms of maximum concrete compressive strain. 
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As well known, the spectral acceleration is not a completely efficient intensity measure 
of the ground-motion, because it is only fully correlated with the structural response 
(Luco and Cornell, 2007). Hence, a number of ground-motions must be used in order to 
obtain an estimate of the capacity Sa,C (and consequently of the fragility),  which is 
independent from the input ground-motions used to perform the simulations. In the 
present work, artificial acceleration time histories, compatible with the dominant 
seismic hazard scenario at the considered site, have been generated using the procedure 
proposed by Sabetta an Pugliese (Sabetta et al., 1986; Sabetta and Pugliese, 1996) 
described in detail in Chapter 4.  

  
Figure 7.3. Search of structural capacity: block diagram of the structure of the software developed to 
automate the procedure. 
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7.4 13B13BSelection of the random variables 

The criteria adopted to define the random variables involved in the analyses, ground-
motion time-histories and to calibrate the RS are described here. 

7.4.1 17B17BExplicit random variables 
Four explicit random variables, related with the mechanical properties of the RC 
structure and applied loads, are considered in the analysis. Their distributions are 
summarized in Table 7.2. The live load acting on the structure is defined by the random 
variable qL. Steel yielding stress and mean concrete compressive strength are denoted 
by fy and fcm, respectively. Moreover, Δε represents the uncertainty in the definition of 
the ultimate confined concrete strain. In other words, the ultimate strain is defined as 
εcu·Δε, where εcu is a function of the concrete compressive strength fc (according to the 
Mander’s model) and Δε represents the uncertainty on that value. This criterion is used 
in order to introduce variability in the concrete ultimate strain while maintaining 
correlation between concrete compressive strength fc and ultimate concrete strain εcu.  

7.4.2 18B18BImplicit random variables 
The concrete compressive strength is considered non uniform among different structural 
members. The actual value, fc, of the strength of a beam/column is given as fc = fcm·μc, 
i.e., the product between the mean value fcm, valid for the entire structure and taken as 
an explicit random variable, and a local fluctuation μc. Both random variables have 
lognormal distributions. The local strength fluctuation μc is modeled using a random 
field with discrete support (one different value for each beam or column) with partial 
(prescribed) correlation among the columns of the same floor and no correlation among 
those of different floors. This model should provide a good representation, in a 
statistical sense, of the concrete strength distribution in existing RC structures, due to 
the sequence of building stages. The mean value of the random variable μc is 1. Its 
Coefficient of Variation (COV) is calculated assuming COV = 0.3 for fc and COV = 0.2 

Table 7.2. Distributions of the explicit random variables considered in the present study. 
Variable Distribution Mean value COV 

qL LN 4.31 kN/m 0.8 
fy LN 515.0 N/mm2 0.1 
fcm LN 33.0 N/mm2 0.2 
Δε LN 1.0 0.2 
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for fcm (Ceb-Fip, 1993). The random variables describing the local fluctuation μc among 
the frame elements are taken as implicit variables, and their effects on the structural 
capacity are considered through the random factor μδ c

. A different sample of the 
random field (i.e. a different strength distribution over the structure) is adopted in each 
block related to μδ c

. 
A second random factor δsis is used to represent the uncertainty on the seismic action, 
i.e., a different time-history is adopted in each block related to δsis. In order to perform a 
consistent sensitivity analysis of results, the selected accelerograms must constitute a 
homogeneous population, fully representative of the possible variability of the ground-
motion occurring in a given site. Two kinds of accelerograms are typically used in for 
non-linear dynamic analyses: artificial or recorded accelerograms Bommer and 
Acevedo, 2004; Buratti et al., 2007a). In the first case, an as wide as required population 
can be generated, but artificial accelerograms may be quite different from natural 
accelerograms (Bommer and Acevedo, 2004). On the opposite side, the selection of 
recorded accelerograms may not give a homogeneous population, because of the 
incompleteness of ground-motion databases.  
In the present work, the method proposed by Sabetta and Pugliese (1996), and described 
in detail in Chapter 4, has been adopted. It allows to generate artificial ground-motions 
starting from magnitude, epicentral distance, and soil type of the site considered. This 
model adopts four strong-motion indicators to generate the artificial time-histories. 
These indicators are the ground-motion duration, the Arias intensity, the central 
frequency (Fc) and the frequency bandwidth (Fb) of the signal. Their values are 
estimated through empirical predictive equations (attenuation relationships). The 
simulation of a non-stationary strong ground-motion is achieved through an empirical 
model, where time dependence and frequency content of the signal are represented 
through the signal spectrogram.  
Recent studies performed by the present author (Buratti et al., 2007a) have shown that, 
for the case study structure, artificial time-histories generated by this method are 
characterized by a degree of variability comparable with that of recorded ground-
motions, and that they do not introduce bias in the structural response. The adopted 
ground motions have been generated assuming rock soil. 
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7.5 14B14BRS models and Design of Experiments 

Response surface models and experimental designs have been described in great detail 
in Chapter 6, but for ease of reading it is worth repeating the general expression of the 
polynomial response model which has been used in the present work. The adopted 
model can be written as: 

  
c cseis seis μ μ= + + +Y Xβ Z δ Z δ ε  (7.7) 

where Y is a column vector collecting the results of the simulations; the design matrix, 
X contains, the values given to the explicit variables in each simulation; β  is a vector of 
unknown regression parameters; seisδ  and 

cμδ  are vectors containing the unknown 
values assumed by the two random factors considered (see Section 7.4); and ε  is a 
vector containing realizations of the random error term. The unknown values assumed 
by the random factors are associated to their corresponding blocks of simulations by the 
Boolean matrices seisZ  and  

cμZ . 
With reference to the model reported in Eq. (7.7), a simulation plan must be selected to 
obtain the data for the estimation of the RS parameters giving a good prediction of the 
true response in the region of interest (Box and Draper, 1987). In the present work, 
different RS models and simulation plans have been adopted, with the objective of 
obtaining a good compromise between reliability of results and computational saving. 
Previous works by the present authors (Buratti et al., 2006c) suggested that RS models 
simpler than quadratic may be, in some cases, sufficiently accurate in calculating 
fragility curves, and require a computational cost significantly smaller, because a 
reduced number of numerical simulations is needed to calibrate the model. 
The models and the simulation designs investigated in the present study are summarized 
in Table 3. The following polynomial models have been adopted for the RS: 

− Qfix: Quadratic model for the mean response and no random block. 
− Q: Quadratic model for the mean response and two random block effects 

Table 7.3. Number of repetitions of the simulation designs adopted for the different RS models. 
 

Design Response surface models  
 Qfix Q L C 
RND 1 - - - 
CCD - 2-9 2-9 2-9 
F1 - - 2-9 2-9 
F2 - - 2-9 2-9 
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− L: Linear model for the mean response and two random block effects. 
− C: Constant model for the mean response and two random block effects. 

Moreover, the following simulation plans have been adopted: 
− RND: fully random design. It is used to build a reference model. In each 

simulation, a new random sample of implicit and explicit variables is generated. 
1100 random samples have been used to calibrate the model (i.e., 1100 
simulations). 

− CCD: central composite design with 2k factorial points at ±1σ and centre points 
at α = ±2σ for the explicit random variables xE, 3 blocks for δsis (2 from factorial 
portion, 1 from axial portion) and 1 block for μδ c

. 2 centre point replicates are 
added to each δsis block. The total number of simulations is N = 30. 

− F1: 2k factorial design with axial points at ±1σ for xE, 2 blocks for δsis and 2 
blocks for μδ c

. The total number of simulations is N = 16. 
− F2: 2k factorial design with axial points at ±2σ for xE, 2 blocks for δsis and 2 

blocks for μδ c
. The total number of simulations is N = 16. 

For the last three designs, the simulations have been repeated a number of times in order 
to increase the total number of blocks, i.e. to increase the number of different time-
histories and random strength distributions used to calibrate the model.  
In the following, the models will be named with the notation: Model-Design-
Repetitions. For instance Q-CCD-6 is a quadratic polynomial model, calibrated using 6 
repetitions of the basic CCD described before. Therefore, the total number of blocks is 
18 for δsis and 6 for μδ c

and the total number of simulations is N = 180. Since in each 
block a different random sample of the implicit variables is used (i.e. different 
accelerograms and concrete strength distributions are uses), different results are 
obtained when different design repetitions are performed, even if the values of explicit 
random variables are the same. Different calibrations of the same model and design 
starting from different ground-motions and concrete strength distributions will be 
distinguished by appending a letter to the already described notation, e.g., Q-CCD-6a, 
Q-CCD-6b.  
The numerical values reported in Table 3 indicate the number of repetitions of the basic 
designs used to calibrate the different models. 

7.6 15B15BPredictions by different models 
Once the values of the random variables have been selected and the numerical 
simulations have been performed, the RS models are calibrated following the procedure 
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described in Section 6.2. It is convenient to use the RS to approximate ln(Sa,C) instead of 
Sa,C, so avoiding the predictions of negative values of the structural capacity which 
would be meaningless. 
First of all, the RSs calibrated using different models are compared. Figures 1.4-1.17 
show some sample sections of the mean response surface obtained by different RS 
models setting in turns three of the explicit variables to their mean values, and 
considering only the variability of the response parameter ln(Sa,C) with respect to the 
fourth, free, explicit variable. Some reference capacity values to be used for comparison 
have been obtained via Monte Carlo simulation. For each reference value, one time-
history, one strength distribution (implicit variables) and one value of the free explicit 
variable are randomly sampled. This set of results, which are plotted as crosses (×), will 
be called reduced Monte Carlo and used as the reference for comparison with 
polynomial RS models. 

7.6.1 19B19BQuadratic models  
Figures 7.4-7.7 depict some sections of the Q-CCD-9 quadratic response surface 
models. The thick line indicates the mean surface given by Qfix-RND (the reference 
model); dash-dot lines indicate intervals at 68.2% and 95.4% confidence level. The thin 
lines represent the mean response surfaces given by different Q-CCD-9 models and the 
dots some simulation results obtained from different repetitions of CCD used to 
calibrate the RS. Crosses indicate the results of the reduced Mote Carlo simulation. The 
regression parameters defining the RSs have been obtained from regression together 
with the variances of ε, δsis and μδ c

. On the right side of the figures, the structural 
capacity as predicted by the models for different values of the free explicit variable, is 
represented as a normal variable with mean value equal to that predicted by the RS and 
variance equal to Var[ε] for the Qfix-RND model (no random block effects) and Var[ε + 
δsis + μδ c

] for the models with random effects. In order to predict the structural fragility 
with accuracy, a model giving good estimates of both the mean value and the variance 
of the RS is required. It is worth noting how logarithmic structural capacity depends on 
the explicit variables considered: it increases almost linearly with concrete compressive 
strength (Figure 7.4); it increases with εΔ (Figure 7.5), but with a lower increase rate 
than in the previous case and; it is almost independent of yf  (Figure 7.6); and it 
decreases almost linearly with Lq . 
According to Figures 7.4-7.7, all Q-CCD-9 models give good predictions of the 
structural capacity at points close to the centre of the design, but the accuracy decreases 
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if RS are compared with the reference models at a certain distance from this point. It is 
important to note that all the terms of the polynomial models have been used but, in 
some cases (see Figure 7.4 and Figure 7.7) this leads to a lack of accuracy as the 
distance from the centre of design increases.  
Sections of the RSs for different Q-CCD-5 and Q-CCD-2 models are depicted in Figure 
7.8 and Figure 7.9 and compared with the reduced-MC model. It is clear that, the low 
number of repetitions of the base designs may give completely wrong predictions of 
both mean response surface and variance even at the centre of the design Ex . 
Furthermore these latter models are also very sensitive to the samples of implicit 
variables used; in fact the RSs corresponding to different repetitions of the designs are 
very spread. 
 

 
Figure 7.4. Quadratic models: sections (with qL, fy, Δε equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and Q-CCD-9 (thin gray lines) models. ×××: 
capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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Figure 7.5. Quadratic models: sections (with fcm, qL, fy, equal to their mean values) of the mean 
response surfaces predicted by Qfix-RND (thick black lines) and Q-CCD-9 (thin gray lines) models. 
×××: capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

 
Figure 7.6. Quadratic models: sections (with fcm, Δε, qL, equal to their mean values) of the mean 
response surfaces predicted by Qfix-RND (thick black lines) and Q-CCD-9 (thin gray lines) models. 
×××: capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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Figure 7.7. Quadratic models: sections (with fcm, Δε, fy, equal to their mean values) of the mean 
response surfaces predicted by Qfix-RND (thick black lines) and Q-CCD-9 (thin gray lines) models. 
×××: capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

 
Figure 7.8. Quadratic models: sections (with fcm, qL, fy, equal to their mean values) of the mean 
response surfaces predicted by Qfix-RND (thick black lines) and Q-CCD-5 (thin gray lines) models. 
×××: capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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Figure 7.9. Quadratic models: sections (with qL, fy, Δε equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and Q-CCD-2 (thin gray lines) models. ×××: 
capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

7.6.2 20B20BLinear models 
Figures 7.10-7.13 show some sections of the response surfaces obtained from the L-F1-
9 models (i.e., linear models with 2-level factorial designs and 9 repetitions, total 
number of simulations N = 144). Different L-F1-9 models give practically the same 
result, because the number of blocks is sufficiently high to describe well the variability 
of the implicit variables. Nevertheless, a (systematic) error is present for both mean 
surface and variance. In fact all these models underestimate both the mean structural 
capacity and its variance. In Figure 7.14, the sections of L-F1-2 model confirms the 
lower sensitivity of linear models to the number of blocks used, in fact the curves are 
less spread than those for Q-CCD-2 models, which are depicted in Figure 7.9. 
Figure 7.15 shows cross sections of L-CCD-9 model. It should be noted that the use of 
CCD design instead of F1 design reduces the systematic error in the mean surface 
model.  
Finally sections of L-F2-9 models are given in Figure 7.16 and Figure 7.17. These 
models are clearly the least accurate in predicting structural capacity, since they 
systematically predict lower that reference values. 
It is worth noting that the black dots in Figures 7.10-7.13 represents results from CCDs, 
because variable values in factorial designs are not intersected by planes passing from 
the origin of the space and parallel to one of the axes. There point are plotted in the 
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afore mentioned figures because they give indications on the actual structural capacity 
distribution, 

 
Figure 7.10. Linear models: sections (with Δε, qL, fy, equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-F1-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

 
Figure 7.11. Linear models: sections (with fcm, fy, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-F1-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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Figure 7.12. Linear models: sections (with fcm, Δε, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-F1-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

 
Figure 7.13. Linear models: sections (with fcm, Δε, fy equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-F1-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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Figure 7.14. Linear models: sections (with fcm, fy, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-F1-2 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

 
Figure 7.15. Linear models: sections (with fcm, fy, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-CCD-9 (thin gray lines) models. ×××: 
capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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Figure 7.16. Linear models: sections (with fcm, fy, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-F2-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

 
Figure 7.17. Linear models: sections (with fcm, Δε, fy equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and L-F2-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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7.6.3 20B20BConstant models 
Constant models have also been fitted using data from CCD, F1 and F2 designs. Figures 
7.18-7.20 depict sections of constant models fitted using data from different designs (C-
CCD-9, C-F1-9 and C-F2-9). Of course these models consider only the average 
structural capacity and do not take into account the explicit dependence on the explicit 
variables.  
The idea that may suggest to use these models is that the variability in structural 
response induced by different accelerograms is so high that an accurate estimate of the 
dependency of structural capacity on the explicit variables is not required. As it is 
evident from Figures 7.18-7.20, C-CCD-9 can still provide a reasonable approximation 
of structural capacity distribution whereas the models fitted using first order designs, C-
F1-9 and C-F2-9, are far less accurate. It is important to note that constant models are 
advantageous only if they can be fitted using simplified designs because most of the 
computational cost lies in performing the non linear incremental analyses. This will be 
further discussed in the following when fragility values obtained by different response 
surface models will be compared.  

 
Figure 7.18. Linear models: sections (with fcm, fy, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and C-CCD-9 (thin gray lines) models. ×××: 
capacity values from reduced-MC simulation and ••• from the CCD used for RS calibration.  
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Figure 7.19. Linear models: sections (with fcm, fy, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and C-F1-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 

 
Figure 7.20. Linear models: sections (with fcm, fy, qL equal to their mean values) of the mean response 
surfaces predicted by Qfix-RND (thick black lines) and C-F2-9 (thin gray lines) models. ×××: capacity 
values from reduced-MC simulation and ••• from the CCD used for RS calibration. 
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7.7 16B16BFragility analysis 
Using the RS models to express the structural capacity, the approximated limit state 
function (Eq. (7.2)) for the structure can be expressed in analytical form as: 
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Hence, g in Eq. (7.8) is a function of the explicit random variables xE, distributed 
according to the values reported in Table 2, and of ε, δsis, μδ c

, representing the error in 
the RS and the random effect of implicit variables, normally distributed (see Section 
6.2). In order to evaluate the conditional probability of the structural failure (Pf) for 
different levels of structural demand (i.e., the seismic fragility curve), the Monte Carlo 
simulation method can be applied to Eq. (7.8) with a minimum computational effort.  
In order to compare the fragility curves obtained by different RSs, some reference 
values of Pf for different values of Sa,D have been evaluated using a full Monte Carlo 
approach. For each value of Sa,D, the corresponding Pf is calculated by performing a 
sequence of non-linear dynamic analyses (simulations), with independent random 
sampling of both explicit and implicit variables. These results are indicated with circles 
in the fragility graphs reported in the following and are used as the reference solution 
for the comparison between fragility curves obtained by different RS models. The 68% 
confidence intervals for the values of the fragilities estimated by MC simulations have 
been depicted with a thick vertical interval. 
Confidence intervals can also be calculated for the fragility curves derived from 
response surfaces, starting form the variance-covariance matrix of the estimates of the 
regression parameters. In fact this matrix can be thought as a measure of the confidence 
of the estimate of the mean surface. Using a Monte Carlo simulation approach, it is 
therefore possible to compute confidence intervals for fragility curves. As an example 
mean, ±σ and ±2σ fragility curves for Qfix-RND are given in Figure 7.21. The spread of 
these curves can be considered a measure of the goodness of fit of the RS model. In the 
Q-RND model, the goodness of fig is generally very high and decreases as the distance 
from the centre of the design increases (See Chapter 6). 
In the following, fragility curves obtained by different RS models will be compared and 
in order to do not make the figures too complicated the confidence intervals will be 
omitted and plotted for the Monte Carlo reference solution only. As for the fragility 
curves obtained from RS models, only the mean curves will be plotted. 
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Figure 7.21. Mean and +- 1 and +-2 standard deviation fragility curves for Qfix-RND model. Dots 
indicate reference values, and their 68% confidence intervals, obtained by full MC simulation.  

7.7.1 21B21BQuadratic models 
Figure 7.22 shows the fragility curves obtained using different quadratic Q-CCD-9 
models (gray lines) together with their envelope (black lines). These models give 
fragility curves in good agreement with the results of MC simulation. Nevertheless there 
is a lack of accuracy as far as the low fractiles are concerned. This portion on the 
fragility curves is usually the most important in structural reliability problems because it 
is related to low Sa,D values. In fact, when the seismic risk has to be evaluated, the 
fragility curves must be combined with the seismic hazard curve of the considered site 
which is higher for low spectral accelerations (Pinto et al., 2004).  
The error of the different Q-CCD-9 models in the prediction of the value of Sa,D 
corresponding to Pf = 10-3

 is between 5% and 30%. This circumstance can be expected 
because the tails of the fragility curve are related with the tails of the probability density 
functions of the explicit random variables collected in xE and, as Figures 7.4-7.7 clearly 
show, the error of Q-CCD-9 models on the prediction of the mean surface increases 
with the distance from the mean value of the explicit random variables, xE. 
The envelopes and the fragility curves obtained using different Q-CCD-5 and Q-CCD-2 
are reported in Figure 7.23 and Figure 7.24, respectively. In this case, i.e. adopting few 
replications of CCD, the fragility curves are very scattered and usually not in agreement 
with the reference results. Figures 7.8-7.9 clearly show that this error depends on the 
low accuracy in the prediction of both the mean value and the variance of the structural 
capacity. 
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Figure 7.22. Q-CCD-9 models: fragility curves (gray lines) and their envelopes (black lines) obtained, 
in linear scale (left panel) and log-scale (right panel). ●●●: reference values obtained by full MC 
simulation with ±σ confidence intervals.  

 
Figure 7.23. Q-CCD-5: fragility curves (gray lines) and their envelopes (black lines), in linear scale 
(left panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

 
Figure 7.24. Q-CCD-2: fragility curves (gray lines) and their envelopes (black lines) obtained by Q-
CCD-2 models, in linear scale (left panel) and log-scale (right panel). ●●●: reference values obtained 
by full MC simulation with ±σ confidence intervals.  
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7.7.2 Linear models 
Figure 7.25 and Figure 7.26 show the fragility curves obtained by adopting L-CCD-9 
and L-CCD-2 models, respectively. In the first case, the fragility curves are in good 
agreement with MC simulation for both tails and median. In the second case, the 
dispersion of the curves is much higher and therefore the sensitivity to the samples of 
implicit variables used is higher.  
Figure 7.27 and Figure 7.28 show the fragility curves obtained through L-F1-9 and L-
F1-2 models. The accuracy of fragility curves derived from L-F1-9 is good for very low 
spectral acceleration values but is poor for medium/high spectral acceleration values. 
Reducing the number of repetitions of the design (L-F1-2), increases the dispersion of 
the curves. Comparison of Figure 7.24 to Figure 7.28 confirms the higher sensitivity of 
Q-CCD models to the number of repetitions of the design. 
Finally Figure 7.29 and Figure 7.30 depict the fragility curves given by L-F2-9 and L-
F2-2 models. According to the conclusions drawn for Figure 7.19 and Figure 7.20, these 
models give poor approximations of structural capacity dependence on explicit 
variables and therefore, fragility curves with low accuracy. 

 
Figure 7.25.  L-CCD-9: fragility curves (gray lines) and their envelopes (black lines), in linear scale 
(left panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 
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Figure 7.26. L-CCD-2: fragility curves (gray lines) and their envelopes (black lines), in linear scale 
(left panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

 
Figure 7.27. L-F1-9: fragility curves (gray lines) and their envelopes (black lines), in linear scale (left 
panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

 
Figure 7.28. L-F1-2: fragility curves (gray lines) and their envelopes (black lines), in linear scale (left 
panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 
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Figure 7.29. L-F2-9: fragility curves (gray lines) and their envelopes (black lines), in linear scale (left 
panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

 
Figure 7.30. L-F2-2: fragility curves (gray lines) and their envelopes (black lines), in linear scale (left 
panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

7.7.3 Constant models 
Figure 7.31 and Figure 7.32 depict the fragility curves obtained using C-CCD-9 and C-
CCD-2 models, respectively. C-CCD-9 models give fragility curves in good agreement 
with MC simulation results, with low sensitivity to the number of repetitions of the 
design. The sensitivity of C-CCD-2 models is much higher.  
Figure 7.33 and Figure 7.34 show the results obtained using C-F1-9 and C-F1-2 models. 
As previously concluded for L-F1 models (Figure 7.27 and Figure 7.28) these models 
give fragility curves with good accuracy for low spectral acceleration values but with 
very low accuracy for medium/high spectral acceleration values. 
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Finally Figure 7.35 shows fragility curves obtained from C-F2-9 models. These curves 
have an extremely low accuracy for all spectral acceleration values, because C-F2-9 
models give very poor prediction of structural capacity (see Figure 7.20). 

 
Figure 7.31. C-CCD-9: fragility curves (gray lines) and their envelopes (black lines), in linear scale 
(left panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

 
Figure 7.32. C-CCD-2: fragility curves (gray lines) and their envelopes (black lines), in linear scale 
(left panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 
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Figure 7.33. C-F1-9: fragility curves (gray lines) and their envelopes (black lines), in linear scale (left 
panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

 
Figure 7.34 . C-F1-2: fragility curves (gray lines) and their envelopes (black lines), in linear scale (left 
panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 

 
Figure 7.35. C-F2-9: fragility curves (gray lines) and their envelopes (black lines), in linear scale (left 
panel) and log-scale (right panel). ●●●: reference values obtained by full MC simulation with 
±σ confidence intervals. 
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7.7.4 Comparison of the fragility curves 

 
Figure 7.36. Discrepancy Index, DI, (see Eq. (7.9)) for the complete response surface models. Light 
gray bars indicate DI discrepancy and dark gray bars indicate mean DI. 

In order to compare the fragility corves obtained through the different RS models 
considered, a measure of their discrepancy with respect to the fragility values obtained by 
MC simulation has been defined. Considering that MC failure probabilities have been 
calculated at nMC spectral acceleration values. The following definition of Discrepancy 
Index, DI, is adopted: 
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where ( )RS iP Sa  and ( )MC iP Sa PMC indicate the probability of failure at spectral 

acceleration Sai given by MC and RS models, respectively. The definition in Eq. (7.9) is a 
measure of the distance between some selected points of two distributions, defined as 
weighted sum of squares. It has been derived from the Anderson’s test (Anderson and 
Darling, 1952; Stephens, 1974): a statistical test of whether there is evidence that a given 
sample of data did not arise from a given probability distribution, which has good 
sensitivity at the tails and at the median of distributions.  
Figure 7.36 shows the values of DI in Eq. (7.9) for all the RS models considered. Light 
gray bars show the maximum value of discrepancy among all the considered  RS models 
with the same order and design and dark gray bars the average value. The difference 
between these two bars is a measure of the sensitivity of the results to the specific samples 
of the implicit variables (i.e. accelerograms and concrete strength distributions) that are 
used to calibrate the model. In fact, when the number of repetitions of the designs 
increases, and therefore more realizations of implicit variables are used, the spread of the 
fragility curves reduces (compare, for example, Figure 7.23 with Figure 7.24) and 
therefore the difference between the dark- and the light-gray bars in Figure 7.36 reduces 
as well.  
According to the results given in Figure 7.29 and Figure 7.30 the models with the highest 
DI (i.e. lowest accuracy) in Figure 7.36 are those fitted using the F2 designs. In fact, even 
increasing the repetitions of designs, and therefore the number of ground-motions 
considered, accuracy does not increase. Figure 7.36 suggests that for the other models, 
more than 4 repetitions of the design seem to be required to achieve a good accuracy. 
Furthermore, the accuracy of L-F1 models is stable from 5 to 9 repetitions and of C-F1 
models from 6-9 repetitions. Similar conclusions can be drawn for C-CCD models, but in 
this case the maximum DI is slightly higher than that of C-F1 models. Q-CCD models are 
more sensitive than L-F1 models to the number of repetitions of the design and therefore 
even for 7 repetitions of the design the maximum discrepancy is still high. Counter-
intuitively, according to Figure 7.36, the model with the highest average accuracy (lowest 
DI) is C-CCD-9. This model does not consider any explicit dependence of structural 
capacity on the explicit variables.  
This result may be explained considering that only complete RS models have been 
considered, i.e. significance test have not been performed on the terms of the polynomial 
models. Consequently low-significance terms can decrease the accuracy of the results 
especially so far as low fractiles are concerned. In fact, these points are usually dependant 
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on response surface values far from the centre of the design. For example, considering 
Figure 7.6 one can observe that the dependence of structural capacity on steel yield stress, 
fy, is very low. For this reason, a polynomial model with a quadratic term for fy will give a 
very poor approximation especially for point far from the centre of the design.  
In order to address this issue and better compare the designs, for each design models with 
significant terms only have been fitted. These models, referred to as most significant 
models in the following, have been defined as those having only the terms which are 
significant according to significance tests (see Section 6.2.4) with a confidence level of 
5%. It should be noted that the number of significant terms may be different for each 
design and even for different repetitions of the same design. In fact, when the number of 
repetitions increases and therefore more information is provided, higher-order terms begin 
to become more significant. For CCD design, the highest-degree-model is complete 
quadratic polynomial.  For F1 and F2 designs, pure quadratic terms are excluded and 
therefore only first order and interaction terms are considered. Figure 7.37 shows the DI 
for the most significant models. Of course the models in Figure 7.37  are less than those in 
Figure 7.36 because when considering the most significant models there is only one 
model for each design. Therefore the first letter of the codes previously used to refer to 
models (e.g. Q-CCD-9) is not anymore needed (e.g. CCD-9). Figure 7.37 confirms some 
of the conclusions drawn commenting Figure 7.36. Models fitted using F2 designs give 
the worst performances: even increasing the number of repetitions of the design their 
average discrepancy is high. Fragility curves calculated from CCD-9 models have the 
highest accuracy, and are depicted in Figure 7.38. It should be noted that the most 
significant CCD-9 model has a lower DI than the C-CCD-9 model (see Figure 7.36). The 
fragility curves calculated from CCD designs are more sensitive to the number of design 
repetitions than those calculated from F1 designs.  
These results highlight the importance of performing significance tests on response 
surface models, because non-significant terms can reduce the accuracy of the models to a 
degree proportional to the distance from the centre of the design of experiments. 
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Figure 7.37. Discrepancy Index, DI, (see Eq. (7.9)) for the complete response surface models. Light 
gray bars indicate DI discrepancy and dark gray bars indicate mean DI 

 
Figure 7.38. Fragility curves (gray lines) and their envelopes (black lines) obtained by CCD-9 most 
significant model, in linear scale (left panel) and log-scale (right panel). ●●●: reference values 
obtained by full MC simulation. 

 

7.8 Conclusions 

In the present study, a RS-based method has been developed to evaluate the seismic 
fragility curve of a RC frame structure. The variability of the material properties and 
live loads have been taken into account explicitly in the adopted RS model, whereas the 
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variability of ground-motions and concrete strength among individual members 
(beams/columns) of the structure have been taken into account implicitly via random 
factors. In order to obtain a statistically homogeneous sample, artificial ground-motions, 
generated by the method proposed by Sabetta and Pugliese Sabetta and Pugliese, 1996, 
have been adopted. 
Different combinations of RS models and simulation plans have been adopted in order 
to find a good compromise between the accuracy of the results and the computational 
effort. As far as the RS models are concerned, quadratic and linear RS have been 
adopted. As for the design of the simulation plans, CCD and 2k factorial designs have 
been investigated. The results obtained through these models have been compared with 
those given by full MC simulations.  
It is shown that quadratic polynomial models are very sensitive to the design 
considered. Moreover, from the present study, a minimum number of 9 different 
ground-motion time-histories is suggested in order to include in the model the ground-
motion variability with sufficient accuracy. Reduced designs can produce completely 
wrong results. Particular care must be used if, as in reliability analysis, low fractiles of 
the fragility curve must be evaluated. It is shown that linear models are slightly less 
accurate in approximating the dependence of the structural capacity on the explicit 
variables, but are less sensitive to the design adopted and can be, in some cases, 
preferable with respect to quadratic models.  
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Appendix A 
In the present work a subset of the NGA database (Power et al., 2006; Power et al., 
2008) was used to develop the ground-motion prediction equations given in Chapter 3 
and Chapter 4. Table A.1 gives details of this subset. Criteria used to identify to select 
ground motion recordings have been given in Section 3.3.1 and Section 4.4. The 
databases used in Chapter 3 and Chapter 4 are almost completely overlapping, the only 
difference being the exclusion of pulse like ground motions from the subset used in 
Chapter 4. Record Sequence Number (RSN) is a unique ID number used in the NGA 
database ((Power et al., 2006; Power et al., 2008). Pulse classification has been 
performed according to the criterion proposed by Baker (2008). Each ground-motion 
recording in Table A.1 contains 2 horizontal components and 1 vertical component. 
Horizontal components only have been used in the present work. 
Table A.1. Ground motion database considered in the present work. 
RNS Earthquake Name Year Station Name Mw RJB Vs30 Pulse 

[km] m/s 
0 = No 
1 = Yes 

6 'Imperial Valley-02' 1940 'El Centro Array #9' 6.95 6.09 213.4 0 
12 'Kern County' 1952 'LA - Hollywood Stor FF' 7.36 114.62 316.5 0 
15 'Kern County' 1952 'Taft Lincoln School' 7.36 38.42 385.4 0 
28 'Parkfield' 1966 'Cholame - Shandon Array #12' 6.19 17.64 408.9 0 
30 'Parkfield' 1966 'Cholame - Shandon Array #5' 6.19 9.58 289.6 0 
31 'Parkfield' 1966 'Cholame - Shandon Array #8' 6.19 12.9 256.8 0 
32 'Parkfield' 1966 'San Luis Obispo' 6.19 63.34 712.8 0 
33 'Parkfield' 1966 'Temblor pre-1969' 6.19 15.96 527.9 0 
36 'Borrego Mtn' 1968 'El Centro Array #9' 6.63 45.12 213.4 0 
37 'Borrego Mtn' 1968 'LA - Hollywood Stor FF' 6.63 222.42 316.5 0 
38 'Borrego Mtn' 1968 'LB - Terminal Island' 6.63 199.84 229.8 0 
40 'Borrego Mtn' 1968 'San Onofre - So Cal Edison' 6.63 129.11 442.9 0 
51 'San Fernando' 1971 '2516 Via Tejon PV' 6.61 55.2 280.6 0 
53 'San Fernando' 1971 'Bakersfield - Harvey Aud' 6.61 111.88 271.4 0 
54 'San Fernando' 1971 'Borrego Springs Fire Sta' 6.61 214.32 271.4 0 
55 'San Fernando' 1971 'Buena Vista - Taft' 6.61 111.37 438.3 0 
58 'San Fernando' 1971 'Cedar Springs Pumphouse' 6.61 92.25 477.2 0 
59 'San Fernando' 1971 'Cedar Springs, Allen Ranch' 6.61 89.37 813.5 0 
60 'San Fernando' 1971 'Cholame - Shandon Array #2' 6.61 217.54 184.8 0 
61 'San Fernando' 1971 'Cholame - Shandon Array #8' 6.61 218.17 256.8 0 
62 'San Fernando' 1971 'Colton - So Cal Edison' 6.61 96.81 302 0 
64 'San Fernando' 1971 'Fort Tejon' 6.61 59.52 394.2 0 
65 'San Fernando' 1971 'Gormon - Oso Pump Plant' 6.61 43.95 308.4 0 
67 'San Fernando' 1971 'Isabella Dam (Aux Abut)' 6.61 130 684.9 0 
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RNS Earthquake Name Year Station Name Mw RJB Vs30 Pulse 

[km] m/s 
0 = No 
1 = Yes 

68 'San Fernando' 1971 'LA - Hollywood Stor FF' 6.61 22.77 316.5 0 
69 'San Fernando' 1971 'LB - Terminal Island' 6.61 58.99 229.8 0 
74 'San Fernando' 1971 'Maricopa Array #1' 6.61 193.25 271.4 0 
75 'San Fernando' 1971 'Maricopa Array #2' 6.61 108.56 438.3 0 
76 'San Fernando' 1971 'Maricopa Array #3' 6.61 109.01 438.3 0 
77 'San Fernando' 1971 'Pacoima Dam (upper left abut)' 6.61 0 2016.1 0 
81 'San Fernando' 1971 'Pearblossom Pump' 6.61 35.54 529.1 0 
84 'San Fernando' 1971 'San Diego Gas & Electric' 6.61 205.77 370.8 0 
86 'San Fernando' 1971 'San Onofre - So Cal Edison' 6.61 124.79 442.9 0 
87 'San Fernando' 1971 'Santa Anita Dam' 6.61 30.7 684.9 0 
88 'San Fernando' 1971 'Santa Felita Dam (Outlet)' 6.61 24.69 389 0 
89 'San Fernando' 1971 'Tehachapi Pump' 6.61 61.75 669.5 0 
90 'San Fernando' 1971 'UCSB - Fluid Mech Lab' 6.61 124.38 370.8 0 
92 'San Fernando' 1971 'Wheeler Ridge - Ground' 6.61 68.38 347.7 0 
93 'San Fernando' 1971 'Whittier Narrows Dam' 6.61 39.45 298.7 0 
94 'San Fernando' 1971 'Wrightwood - 6074 Park Dr' 6.61 61.64 486 0 
95 'Managua, Nicaragua-01' 1972 'Managua, ESSO' 6.24 3.51 288.8 0 
121 'Friuli, Italy-01' 1976 'Barcis' 6.5 49.13 424.8 0 
122 'Friuli, Italy-01' 1976 'Codroipo' 6.5 33.32 274.5 0 
124 'Friuli, Italy-01' 1976 'Feltre' 6.5 102.05 659.6 0 
125 'Friuli, Italy-01' 1976 'Tolmezzo' 6.5 14.97 424.8 0 
126 'Gazli, USSR' 1976 'Karakyr' 6.8 3.92 659.6 0 
131 'Friuli, Italy-02' 1976 'Codroipo' 5.91 41.37 274.5 0 
133 'Friuli, Italy-02' 1976 'San Rocco' 5.91 14.37 659.6 0 
135 'Santa Barbara' 1978 'Cachuma Dam Toe' 5.92 23.75 438.3 0 
136 'Santa Barbara' 1978 'Santa Barbara Courthouse' 5.92 0 515 0 
137 'Tabas, Iran' 1978 'Bajestan' 7.35 119.77 338.6 0 
138 'Tabas, Iran' 1978 'Boshrooyeh' 7.35 24.07 338.6 0 
139 'Tabas, Iran' 1978 'Dayhook' 7.35 0 659.6 0 
140 'Tabas, Iran' 1978 'Ferdows' 7.35 89.76 274.5 0 
141 'Tabas, Iran' 1978 'Kashmar' 7.35 193.91 274.5 0 
142 'Tabas, Iran' 1978 'Sedeh' 7.35 150.33 424.8 0 
143 'Tabas, Iran' 1978 'Tabas' 7.35 1.79 766.8 0 
145 'Coyote Lake' 1979 'Coyote Lake Dam (SW Abut)' 5.74 5.3 597.1 0 
146 'Coyote Lake' 1979 'Gilroy Array #1' 5.74 10.21 1428 0 
147 'Coyote Lake' 1979 'Gilroy Array #2' 5.74 8.47 270.8 0 
148 'Coyote Lake' 1979 'Gilroy Array #3' 5.74 6.75 349.9 0 
149 'Coyote Lake' 1979 'Gilroy Array #4' 5.74 4.79 221.8 0 
150 'Coyote Lake' 1979 'Gilroy Array #6' 5.74 0.42 663.3 0 
151 'Coyote Lake' 1979 'Halls Valley' 5.74 33.69 281.6 0 
153 'Coyote Lake' 1979 'SJB Overpass, Bent 5 g.l.' 5.74 20.44 370.8 0 
154 'Coyote Lake' 1979 'San Juan Bautista, 24 Polk St' 5.74 19.46 370.8 0 
158 'Imperial Valley-06' 1979 'Aeropuerto Mexicali' 6.53 0 274.5 0 
159 'Imperial Valley-06' 1979 'Agrarias' 6.53 0 274.5 0 
160 'Imperial Valley-06' 1979 'Bonds Corner' 6.53 0.47 223 0 
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161 'Imperial Valley-06' 1979 'Brawley Airport' 6.53 8.54 208.7 0 
162 'Imperial Valley-06' 1979 'Calexico Fire Station' 6.53 10.45 231.2 0 
163 'Imperial Valley-06' 1979 'Calipatria Fire Station' 6.53 23.17 205.8 0 
164 'Imperial Valley-06' 1979 'Cerro Prieto' 6.53 15.19 659.6 0 
165 'Imperial Valley-06' 1979 'Chihuahua' 6.53 7.29 274.5 0 
166 'Imperial Valley-06' 1979 'Coachella Canal #4' 6.53 49.1 345.4 0 
167 'Imperial Valley-06' 1979 'Compuertas' 6.53 13.52 274.5 0 
169 'Imperial Valley-06' 1979 'Delta' 6.53 22.03 274.5 0 
170 'Imperial Valley-06' 1979 'EC County Center FF' 6.53 7.31 192.1 0 
171 'Imperial Valley-06' 1979 'EC Meloland Overpass FF' 6.53 0.07 186.2 0 
172 'Imperial Valley-06' 1979 'El Centro Array #1' 6.53 19.76 237.3 0 
173 'Imperial Valley-06' 1979 'El Centro Array #10' 6.53 6.17 202.9 1 
174 'Imperial Valley-06' 1979 'El Centro Array #11' 6.53 12.45 196.3 0 
175 'Imperial Valley-06' 1979 'El Centro Array #12' 6.53 17.94 196.9 0 
176 'Imperial Valley-06' 1979 'El Centro Array #13' 6.53 21.98 249.9 0 
178 'Imperial Valley-06' 1979 'El Centro Array #3' 6.53 10.79 162.9 1 
179 'Imperial Valley-06' 1979 'El Centro Array #4' 6.53 4.9 208.9 0 
180 'Imperial Valley-06' 1979 'El Centro Array #5' 6.53 1.76 205.6 0 
181 'Imperial Valley-06' 1979 'El Centro Array #6' 6.53 0 203.2 1 
182 'Imperial Valley-06' 1979 'El Centro Array #7' 6.53 0.56 210.5 1 
183 'Imperial Valley-06' 1979 'El Centro Array #8' 6.53 3.86 206.1 0 
184 'Imperial Valley-06' 1979 'El Centro Differential Array' 6.53 5.09 202.3 1 
185 'Imperial Valley-06' 1979 'Holtville Post Office' 6.53 5.51 202.9 1 
186 'Imperial Valley-06' 1979 'Niland Fire Station' 6.53 35.64 207.5 0 
187 'Imperial Valley-06' 1979 'Parachute Test Site' 6.53 12.69 348.7 0 
188 'Imperial Valley-06' 1979 'Plaster City' 6.53 30.33 345.4 0 
189 'Imperial Valley-06' 1979 'SAHOP Casa Flores' 6.53 9.64 338.6 0 
190 'Imperial Valley-06' 1979 'Superstition Mtn Camera' 6.53 24.61 362.4 0 
191 'Imperial Valley-06' 1979 'Victoria' 6.53 31.92 274.5 0 
192 'Imperial Valley-06' 1979 'Westmorland Fire Sta' 6.53 14.75 193.7 0 
230 'Mammoth Lakes-01' 1980 'Convict Creek' 6.06 1.1 338.5 0 

231 'Mammoth Lakes-01' 1980 
'Long Valley Dam (Upr L 
Abut)' 6.06 12.56 345.4 0 

265 'Victoria, Mexico' 1980 'Cerro Prieto' 6.33 13.8 659.6 0 
266 'Victoria, Mexico' 1980 'Chihuahua' 6.33 18.53 274.5 0 
268 'Victoria, Mexico' 1980 'SAHOP Casa Flores' 6.33 39.1 338.6 0 
269 'Victoria, Mexico' 1980 'Victoria Hospital Sotano' 6.33 6.07 274.5 0 
283 'Irpinia, Italy-01' 1980 'Arienzo' 6.9 52.93 1000 0 
284 'Irpinia, Italy-01' 1980 'Auletta' 6.9 9.52 1000 0 
285 'Irpinia, Italy-01' 1980 'Bagnoli Irpinio' 6.9 8.14 1000 0 
286 'Irpinia, Italy-01' 1980 'Bisaccia' 6.9 17.51 1000 0 
288 'Irpinia, Italy-01' 1980 'Brienza' 6.9 22.54 500 0 
289 'Irpinia, Italy-01' 1980 'Calitri' 6.9 13.34 600 0 
290 'Irpinia, Italy-01' 1980 'Mercato San Severino' 6.9 29.79 350 0 
292 'Irpinia, Italy-01' 1980 'Sturno' 6.9 6.78 1000 1 
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293 'Irpinia, Italy-01' 1980 'Torre Del Greco' 6.9 59.63 659.6 0 
294 'Irpinia, Italy-01' 1980 'Tricarico' 6.9 51.74 460 0 
295 'Irpinia, Italy-02' 1980 'Auletta' 6.2 28.69 1000 0 
296 'Irpinia, Italy-02' 1980 'Bagnoli Irpinio' 6.2 17.79 1000 0 
297 'Irpinia, Italy-02' 1980 'Bisaccia' 6.2 14.73 1000 0 
299 'Irpinia, Italy-02' 1980 'Brienza' 6.2 41.73 500 0 
300 'Irpinia, Italy-02' 1980 'Calitri' 6.2 8.81 600 0 
302 'Irpinia, Italy-02' 1980 'Rionero In Vulture' 6.2 22.68 530 0 
303 'Irpinia, Italy-02' 1980 'Sturno' 6.2 20.38 1000 0 
314 'Westmorland' 1981 'Brawley Airport' 5.9 15.28 208.7 0 
315 'Westmorland' 1981 'Niland Fire Station' 5.9 15.16 207.5 0 
316 'Westmorland' 1981 'Parachute Test Site' 5.9 16.54 348.7 1 
317 'Westmorland' 1981 'Salton Sea Wildlife Refuge' 5.9 7.57 191.1 0 
319 'Westmorland' 1981 'Westmorland Fire Sta' 5.9 6.18 193.7 1 
322 'Coalinga-01' 1983 'Cantua Creek School' 6.36 23.78 271.4 0 
323 'Coalinga-01' 1983 'Parkfield - Cholame 12W' 6.36 55.05 408.9 0 
324 'Coalinga-01' 1983 'Parkfield - Cholame 1E' 6.36 42.76 338.5 0 
326 'Coalinga-01' 1983 'Parkfield - Cholame 2WA' 6.36 43.83 184.8 0 
327 'Coalinga-01' 1983 'Parkfield - Cholame 3E' 6.36 40.01 376.1 0 
328 'Coalinga-01' 1983 'Parkfield - Cholame 3W' 6.36 44.82 338.5 0 
329 'Coalinga-01' 1983 'Parkfield - Cholame 4AW' 6.36 46.73 338.5 0 
330 'Coalinga-01' 1983 'Parkfield - Cholame 4W' 6.36 45.49 438.3 0 
331 'Coalinga-01' 1983 'Parkfield - Cholame 5W' 6.36 47.88 289.6 0 
333 'Coalinga-01' 1983 'Parkfield - Cholame 8W' 6.36 50.98 256.8 0 
334 'Coalinga-01' 1983 'Parkfield - Fault Zone 1' 6.36 41.04 338.5 0 
335 'Coalinga-01' 1983 'Parkfield - Fault Zone 10' 6.36 30.34 438.3 0 
336 'Coalinga-01' 1983 'Parkfield - Fault Zone 11' 6.36 27.1 376.1 0 
337 'Coalinga-01' 1983 'Parkfield - Fault Zone 12' 6.36 27.96 338.5 0 
338 'Coalinga-01' 1983 'Parkfield - Fault Zone 14' 6.36 28.11 338.5 0 
339 'Coalinga-01' 1983 'Parkfield - Fault Zone 15' 6.36 28 376.1 0 
340 'Coalinga-01' 1983 'Parkfield - Fault Zone 16' 6.36 26.2 338.5 0 
341 'Coalinga-01' 1983 'Parkfield - Fault Zone 2' 6.36 37.92 338.5 0 
342 'Coalinga-01' 1983 'Parkfield - Fault Zone 3' 6.36 36.14 370.8 0 
343 'Coalinga-01' 1983 'Parkfield - Fault Zone 4' 6.36 33.42 338.5 0 
344 'Coalinga-01' 1983 'Parkfield - Fault Zone 6' 6.36 31.64 438.3 0 
345 'Coalinga-01' 1983 'Parkfield - Fault Zone 7' 6.36 29.91 370.8 0 
346 'Coalinga-01' 1983 'Parkfield - Fault Zone 8' 6.36 28.58 376.1 0 
347 'Coalinga-01' 1983 'Parkfield - Fault Zone 9' 6.36 30.43 438.3 0 
348 'Coalinga-01' 1983 'Parkfield - Gold Hill 1W' 6.36 35.04 338.5 0 
349 'Coalinga-01' 1983 'Parkfield - Gold Hill 2E' 6.36 31.85 338.5 0 
350 'Coalinga-01' 1983 'Parkfield - Gold Hill 2W' 6.36 35.93 376.1 0 
351 'Coalinga-01' 1983 'Parkfield - Gold Hill 3E' 6.36 28.72 370.8 0 
352 'Coalinga-01' 1983 'Parkfield - Gold Hill 3W' 6.36 38.1 438.3 0 
353 'Coalinga-01' 1983 'Parkfield - Gold Hill 4W' 6.36 40.13 438.3 0 
354 'Coalinga-01' 1983 'Parkfield - Gold Hill 5W' 6.36 42.72 438.3 0 
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355 'Coalinga-01' 1983 'Parkfield - Gold Hill 6W' 6.36 47.04 438.3 0 
356 'Coalinga-01' 1983 'Parkfield - Stone Corral 2E' 6.36 35.29 376.1 0 
357 'Coalinga-01' 1983 'Parkfield - Stone Corral 3E' 6.36 32.81 376.1 0 
358 'Coalinga-01' 1983 'Parkfield - Stone Corral 4E' 6.36 30.3 376.1 0 
359 'Coalinga-01' 1983 'Parkfield - Vineyard Cany 1E' 6.36 24.83 338.5 0 
362 'Coalinga-01' 1983 'Parkfield - Vineyard Cany 2W' 6.36 29.01 338.5 0 
363 'Coalinga-01' 1983 'Parkfield - Vineyard Cany 3W' 6.36 30.91 297.2 0 
364 'Coalinga-01' 1983 'Parkfield - Vineyard Cany 4W' 6.36 33.28 376.1 0 
366 'Coalinga-01' 1983 'Parkfield - Vineyard Cany 6W' 6.36 39.94 438.3 0 
367 'Coalinga-01' 1983 'Pleasant Valley P.P. - bldg' 6.36 7.69 257.4 0 
368 'Coalinga-01' 1983 'Pleasant Valley P.P. - yard' 6.36 7.69 257.4 0 
369 'Coalinga-01' 1983 'Slack Canyon' 6.36 25.98 684.9 0 
436 'Borah Peak, ID-01' 1983 'CPP-601' 6.88 82.6 424.8 0 
437 'Borah Peak, ID-01' 1983 'CPP-610' 6.88 83 424.8 0 
438 'Borah Peak, ID-01' 1983 'PBF (second bsmt)' 6.88 87.69 659.6 0 
439 'Borah Peak, ID-01' 1983 'TAN-719' 6.88 84.8 424.8 0 

440 'Borah Peak, ID-01' 1983 
'TRA-642 ETR Reactor 
Bldg(Bsmt)' 6.88 79.59 659.6 0 

441 'Borah Peak, ID-01' 1983 
'TRA-670 ATR Reactor 
Bldg(Bsmt)' 6.88 80 659.6 0 

446 'Morgan Hill' 1984 'APEEL 1E - Hayward' 6.19 51.68 220 0 
447 'Morgan Hill' 1984 'Agnews State Hospital' 6.19 24.48 239.7 0 
448 'Morgan Hill' 1984 'Anderson Dam (Downstream)' 6.19 3.22 488.8 0 
449 'Morgan Hill' 1984 'Capitola' 6.19 39.08 288.6 0 
450 'Morgan Hill' 1984 'Corralitos' 6.19 23.23 462.2 0 
451 'Morgan Hill' 1984 'Coyote Lake Dam (SW Abut)' 6.19 0.18 597.1 1 
452 'Morgan Hill' 1984 'Foster City - APEEL 1' 6.19 53.89 116.4 0 
454 'Morgan Hill' 1984 'Gilroy - Gavilan Coll.' 6.19 14.83 729.7 0 
455 'Morgan Hill' 1984 'Gilroy Array #1' 6.19 14.9 1428 0 
456 'Morgan Hill' 1984 'Gilroy Array #2' 6.19 13.68 270.8 0 
457 'Morgan Hill' 1984 'Gilroy Array #3' 6.19 13.01 349.9 0 
458 'Morgan Hill' 1984 'Gilroy Array #4' 6.19 11.53 221.8 0 
459 'Morgan Hill' 1984 'Gilroy Array #6' 6.19 9.85 663.3 0 
460 'Morgan Hill' 1984 'Gilroy Array #7' 6.19 12.06 333.9 0 
461 'Morgan Hill' 1984 'Halls Valley' 6.19 3.45 281.6 0 
462 'Morgan Hill' 1984 'Hollister City Hall' 6.19 30.76 198.8 0 
463 'Morgan Hill' 1984 'Hollister Diff Array #1' 6.19 26.42 215.5 0 
464 'Morgan Hill' 1984 'Hollister Diff Array #3' 6.19 26.42 215.5 0 
465 'Morgan Hill' 1984 'Hollister Diff Array #4' 6.19 26.42 215.5 0 
466 'Morgan Hill' 1984 'Hollister Diff Array #5' 6.19 26.42 215.5 0 
467 'Morgan Hill' 1984 'Hollister Diff. Array' 6.19 26.42 215.5 0 
470 'Morgan Hill' 1984 'San Juan Bautista, 24 Polk St' 6.19 27.15 370.8 0 
471 'Morgan Hill' 1984 'San Justo Dam (L Abut)' 6.19 31.88 622.9 0 
472 'Morgan Hill' 1984 'San Justo Dam (R Abut)' 6.19 31.88 622.9 0 
480 'Lazio-Abruzzo, Italy' 1984 'Pontecorvo' 5.8 29.58 338.6 0 
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495 'Nahanni, Canada' 1985 'Site 1' 6.76 2.48 659.6 0 
496 'Nahanni, Canada' 1985 'Site 2' 6.76 0 659.6 1 
497 'Nahanni, Canada' 1985 'Site 3' 6.76 4.93 659.6 0 
511 'N. Palm Springs' 1986 'Anza - Red Mountain' 6.06 38.22 684.9 0 
512 'N. Palm Springs' 1986 'Anza - Tule Canyon' 6.06 51.91 684.9 0 
514 'N. Palm Springs' 1986 'Cabazon' 6.06 6.74 345.4 0 
518 'N. Palm Springs' 1986 'Fun Valley' 6.06 12.79 345.4 0 
520 'N. Palm Springs' 1986 'Hesperia' 6.06 71.7 345.4 0 
522 'N. Palm Springs' 1986 'Indio' 6.06 35.34 207.5 0 
527 'N. Palm Springs' 1986 'Morongo Valley' 6.06 3.67 345.4 0 
529 'N. Palm Springs' 1986 'North Palm Springs' 6.06 0 345.4 0 
530 'N. Palm Springs' 1986 'Palm Springs Airport' 6.06 10.08 207.5 0 
531 'N. Palm Springs' 1986 'Puerta La Cruz' 6.06 67.38 370.8 0 
532 'N. Palm Springs' 1986 'Rancho Cucamonga - FF' 6.06 77.98 390.2 0 
535 'N. Palm Springs' 1986 'San Jacinto - Valley Cemetary' 6.06 30.71 338.5 0 
538 'N. Palm Springs' 1986 'Sunnymead' 6.06 37.66 271.4 0 
540 'N. Palm Springs' 1986 'Whitewater Trout Farm' 6.06 0 345.4 0 
543 'Chalfant Valley-01' 1986 'Benton' 5.77 24.25 271.4 0 
544 'Chalfant Valley-01' 1986 'Bishop - LADWP South St' 5.77 23.38 271.4 0 
546 'Chalfant Valley-01' 1986 'Lake Crowley - Shehorn Res.' 5.77 24.37 338.5 0 
547 'Chalfant Valley-01' 1986 'Zack Brothers Ranch' 5.77 6.07 271.4 0 
548 'Chalfant Valley-02' 1986 'Benton' 6.19 21.55 271.4 0 
549 'Chalfant Valley-02' 1986 'Bishop - LADWP South St' 6.19 14.38 271.4 0 
550 'Chalfant Valley-02' 1986 'Bishop - Paradise Lodge' 6.19 14.97 345.4 0 
551 'Chalfant Valley-02' 1986 'Convict Creek' 6.19 29.35 338.5 0 
553 'Chalfant Valley-02' 1986 'Long Valley Dam (Downst)' 6.19 18.3 345.4 0 
554 'Chalfant Valley-02' 1986 'Long Valley Dam (L Abut)' 6.19 18.3 345.4 0 
556 'Chalfant Valley-02' 1986 'McGee Creek - Surface' 6.19 28.2 359.2 0 
558 'Chalfant Valley-02' 1986 'Zack Brothers Ranch' 6.19 6.44 271.4 0 
568 'San Salvador' 1986 'Geotech Investig Center' 5.8 2.14 545 1 
569 'San Salvador' 1986 'National Geografical Inst' 5.8 3.71 350 1 
586 'New Zealand-02' 1987 'Maraenui Primary School' 6.6 68.74 424.8 0 
587 'New Zealand-02' 1987 'Matahina Dam' 6.6 16.09 424.8 0 
591 'Whittier Narrows-01' 1987 'Anaheim - W Ball Rd' 5.99 25.81 234.9 0 
592 'Whittier Narrows-01' 1987 'Arcadia - Campus Dr' 5.99 4.53 367.5 0 
594 'Whittier Narrows-01' 1987 'Baldwin Park - N Holly' 5.99 4.34 308.6 0 
595 'Whittier Narrows-01' 1987 'Bell Gardens - Jaboneria' 5.99 10.31 308.6 0 
597 'Whittier Narrows-01' 1987 'Beverly Hills - 14145 Mulhol' 5.99 29.09 355.8 0 
602 'Whittier Narrows-01' 1987 'Burbank - N Buena Vista' 5.99 20.37 271.4 0 
603 'Whittier Narrows-01' 1987 'Calabasas - N Las Virg' 5.99 52.76 338.5 0 
604 'Whittier Narrows-01' 1987 'Canoga Park - Topanga Can' 5.99 45.98 267.5 0 
607 'Whittier Narrows-01' 1987 'Carson - Catskill Ave' 5.99 29.85 361.2 0 
608 'Whittier Narrows-01' 1987 'Carson - Water St' 5.99 26.3 160.6 0 
611 'Whittier Narrows-01' 1987 'Compton - Castlegate St' 5.99 18.32 308.6 0 
613 'Whittier Narrows-01' 1987 'Covina - W Badillo' 5.99 9.49 271.4 0 
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614 'Whittier Narrows-01' 1987 'Downey - Birchdale' 5.99 14.9 245.1 0 
615 'Whittier Narrows-01' 1987 'Downey - Co Maint Bldg' 5.99 14.95 271.9 0 
616 'Whittier Narrows-01' 1987 'El Monte - Fairview Av' 5.99 0.75 308.6 0 
618 'Whittier Narrows-01' 1987 'Fountain Valley - Euclid' 5.99 36.69 270.2 0 
619 'Whittier Narrows-01' 1987 'Garvey Res. - Control Bldg' 5.99 0.36 468.2 0 
620 'Whittier Narrows-01' 1987 'Glendale - Las Palmas' 5.99 14.68 446 0 
622 'Whittier Narrows-01' 1987 'Hacienda Heights - Colima' 5.99 9.6 337 0 
624 'Whittier Narrows-01' 1987 'Huntington Beach - Lake St' 5.99 42.16 370.8 0 
626 'Whittier Narrows-01' 1987 'LA - 116th St School' 5.99 18.23 301 0 
627 'Whittier Narrows-01' 1987 'LA - Baldwin Hills' 5.99 21.51 297.1 0 
628 'Whittier Narrows-01' 1987 'LA - Centinela St' 5.99 28 234.9 0 
630 'Whittier Narrows-01' 1987 'LA - Century City CC South' 5.99 25.95 278 0 
632 'Whittier Narrows-01' 1987 'LA - Cypress Ave' 5.99 8.56 446 0 
633 'Whittier Narrows-01' 1987 'LA - E Vernon Ave' 5.99 10.5 308.6 0 
634 'Whittier Narrows-01' 1987 'LA - Fletcher Dr' 5.99 11.07 446 0 
637 'Whittier Narrows-01' 1987 'LA - N Figueroa St' 5.99 6 405.2 0 
638 'Whittier Narrows-01' 1987 'LA - N Westmoreland' 5.99 15.34 315.1 0 
641 'Whittier Narrows-01' 1987 'LA - Saturn St' 5.99 20.35 308.7 0 
642 'Whittier Narrows-01' 1987 'LA - W 70th St' 5.99 16.77 294.2 0 
645 'Whittier Narrows-01' 1987 'LB - Orange Ave' 5.99 19.8 270.2 0 
646 'Whittier Narrows-01' 1987 'LB - Rancho Los Cerritos' 5.99 24.61 405.2 0 
647 'Whittier Narrows-01' 1987 'LB - Recreation Park' 5.99 30.4 370.8 0 
649 'Whittier Narrows-01' 1987 'La Habra - Briarcliff' 5.99 14.17 361.2 0 
650 'Whittier Narrows-01' 1987 'La Puente - Rimgrove Av' 5.99 10.24 308.6 0 
652 'Whittier Narrows-01' 1987 'Lakewood - Del Amo Blvd' 5.99 22.4 234.9 0 
664 'Whittier Narrows-01' 1987 'N Hollywood - Coldwater Can' 5.99 28.37 446 0 
666 'Whittier Narrows-01' 1987 'Newhall - W Pico Canyon Rd.' 5.99 55.93 285.9 0 
667 'Whittier Narrows-01' 1987 'Northridge - 17645 Saticoy St' 5.99 38.04 280.9 0 
668 'Whittier Narrows-01' 1987 'Norwalk - Imp Hwy, S Grnd' 5.99 14.37 270.2 0 
672 'Whittier Narrows-01' 1987 'Pacoima Kagel Canyon USC' 5.99 31.8 271.4 0 
673 'Whittier Narrows-01' 1987 'Panorama City - Roscoe' 5.99 32.13 271.4 0 
675 'Whittier Narrows-01' 1987 'Pasadena - CIT Athenaeum' 5.99 4.18 415.1 0 
677 'Whittier Narrows-01' 1987 'Pasadena - CIT Calif Blvd' 5.99 4.3 370.8 0 
678 'Whittier Narrows-01' 1987 'Pasadena - CIT Indust. Rel' 5.99 4.3 370.8 0 
683 'Whittier Narrows-01' 1987 'Pasadena - Old House Rd' 5.99 8.03 455.4 0 
694 'Whittier Narrows-01' 1987 'Studio City - Coldwater Can' 5.99 26.91 294.2 0 
695 'Whittier Narrows-01' 1987 'Sun Valley - Roscoe Blvd' 5.99 30.33 308.6 0 
696 'Whittier Narrows-01' 1987 'Sun Valley - Sunland' 5.99 26.71 271.4 0 
697 'Whittier Narrows-01' 1987 'Sunland - Mt Gleason Ave' 5.99 24.82 446 0 
699 'Whittier Narrows-01' 1987 'Sylmar - Sayre St' 5.99 36.64 338.5 0 
701 'Whittier Narrows-01' 1987 'Terminal Island - S Seaside' 5.99 37.67 229.8 0 
702 'Whittier Narrows-01' 1987 'Torrance - W 226th St' 5.99 33.07 370.8 0 
705 'Whittier Narrows-01' 1987 'West Covina - S Orange Ave' 5.99 6.42 308.6 0 

706 'Whittier Narrows-01' 1987 
'Whittier Narrows Dam 
upstream' 5.99 2.6 298.7 0 
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718 'Superstition Hills-01' 1987 'Wildlife Liquef. Array' 6.22 17.59 207.5 0 
719 'Superstition Hills-02' 1987 'Brawley Airport' 6.54 17.03 208.7 0 
720 'Superstition Hills-02' 1987 'Calipatria Fire Station' 6.54 27 205.8 0 
721 'Superstition Hills-02' 1987 'El Centro Imp. Co. Cent' 6.54 18.2 192.1 0 
722 'Superstition Hills-02' 1987 'Kornbloom Road (temp)' 6.54 18.48 207.5 1 
723 'Superstition Hills-02' 1987 'Parachute Test Site' 6.54 0.95 348.7 0 
724 'Superstition Hills-02' 1987 'Plaster City' 6.54 22.24 345.4 0 
725 'Superstition Hills-02' 1987 'Poe Road (temp)' 6.54 11.16 207.5 0 
726 'Superstition Hills-02' 1987 'Salton Sea Wildlife Refuge' 6.54 25.88 191.1 0 
727 'Superstition Hills-02' 1987 'Superstition Mtn Camera' 6.54 5.61 362.4 0 
728 'Superstition Hills-02' 1987 'Westmorland Fire Sta' 6.54 13.03 193.7 0 
729 'Superstition Hills-02' 1987 'Wildlife Liquef. Array' 6.54 23.85 207.5 0 
731 'Loma Prieta' 1989 'APEEL 10 - Skyline' 6.93 41.71 391.9 0 
732 'Loma Prieta' 1989 'APEEL 2 - Redwood City' 6.93 43.06 133.1 0 
733 'Loma Prieta' 1989 'APEEL 2E Hayward Muir Sch' 6.93 52.53 271.1 0 
734 'Loma Prieta' 1989 'APEEL 3E Hayward CSUH' 6.93 52.39 517.1 0 
735 'Loma Prieta' 1989 'APEEL 7 - Pulgas' 6.93 41.68 415.3 0 

736 'Loma Prieta' 1989 
'APEEL 9 - Crystal Springs 
Res' 6.93 40.85 449.6 0 

737 'Loma Prieta' 1989 'Agnews State Hospital' 6.93 24.27 239.7 0 

738 'Loma Prieta' 1989 
'Alameda Naval Air Stn 
Hanger' 6.93 70.9 190 1 

739 'Loma Prieta' 1989 'Anderson Dam (Downstream)' 6.93 19.9 488.8 0 
740 'Loma Prieta' 1989 'Anderson Dam (L Abut)' 6.93 19.9 488.8 0 
741 'Loma Prieta' 1989 'BRAN' 6.93 3.85 376.1 0 
742 'Loma Prieta' 1989 'Bear Valley #1, Fire Station' 6.93 61.15 338.5 0 

743 'Loma Prieta' 1989 
'Bear Valley #10, Webb 
Residence' 6.93 66.89 304.1 0 

744 'Loma Prieta' 1989 
'Bear Valley #12, Williams 
Ranch' 6.93 50.71 331.2 0 

745 'Loma Prieta' 1989 
'Bear Valley #14, Upper Butts 
Rn' 6.93 71.28 376.1 0 

746 'Loma Prieta' 1989 'Bear Valley #5, Callens Ranch' 6.93 53.46 391 0 
747 'Loma Prieta' 1989 'Bear Valley #7, Pinnacles' 6.93 68.22 597.1 0 
748 'Loma Prieta' 1989 'Belmont - Envirotech' 6.93 43.94 627.6 0 
749 'Loma Prieta' 1989 'Berkeley - Strawberry Canyon' 6.93 78.32 477.7 0 
750 'Loma Prieta' 1989 'Berkeley LBL' 6.93 79.16 597.1 0 
751 'Loma Prieta' 1989 'Calaveras Reservoir' 6.93 35.28 513.7 0 
752 'Loma Prieta' 1989 'Capitola' 6.93 8.65 288.6 0 
753 'Loma Prieta' 1989 'Corralitos' 6.93 0.15 462.2 0 
754 'Loma Prieta' 1989 'Coyote Lake Dam (Downst)' 6.93 20.44 295 0 
755 'Loma Prieta' 1989 'Coyote Lake Dam (SW Abut)' 6.93 19.97 597.1 0 
756 'Loma Prieta' 1989 'Dublin - Fire Station' 6.93 58.68 271.4 0 

757 'Loma Prieta' 1989 
'Dumbarton Bridge West End 
FF' 6.93 35.31 274.5 0 
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758 'Loma Prieta' 1989 'Emeryville - 6363 Christie' 6.93 76.87 198.7 0 
759 'Loma Prieta' 1989 'Foster City - APEEL 1' 6.93 43.77 116.4 0 
761 'Loma Prieta' 1989 'Fremont - Emerson Court' 6.93 39.66 284.8 0 
762 'Loma Prieta' 1989 'Fremont - Mission San Jose' 6.93 39.32 367.6 0 
763 'Loma Prieta' 1989 'Gilroy - Gavilan Coll.' 6.93 9.19 729.7 0 
764 'Loma Prieta' 1989 'Gilroy - Historic Bldg.' 6.93 10.27 338.5 1 
765 'Loma Prieta' 1989 'Gilroy Array #1' 6.93 8.84 1428 0 
766 'Loma Prieta' 1989 'Gilroy Array #2' 6.93 10.38 270.8 0 
767 'Loma Prieta' 1989 'Gilroy Array #3' 6.93 12.23 349.9 1 
768 'Loma Prieta' 1989 'Gilroy Array #4' 6.93 13.81 221.8 0 
769 'Loma Prieta' 1989 'Gilroy Array #6' 6.93 17.92 663.3 0 
770 'Loma Prieta' 1989 'Gilroy Array #7' 6.93 22.36 333.9 0 
771 'Loma Prieta' 1989 'Golden Gate Bridge' 6.93 79.71 641.6 0 
772 'Loma Prieta' 1989 'Halls Valley' 6.93 30.25 281.6 0 
773 'Loma Prieta' 1989 'Hayward - BART Sta' 6.93 54.01 370.8 0 
775 'Loma Prieta' 1989 'Hollister - SAGO Vault' 6.93 29.54 684.9 0 
776 'Loma Prieta' 1989 'Hollister - South & Pine' 6.93 27.67 370.8 0 
777 'Loma Prieta' 1989 'Hollister City Hall' 6.93 27.33 198.8 0 
778 'Loma Prieta' 1989 'Hollister Diff. Array' 6.93 24.52 215.5 0 
779 'Loma Prieta' 1989 'LGPC' 6.93 0 477.7 1 
780 'Loma Prieta' 1989 'Larkspur Ferry Terminal (FF)' 6.93 94.56 169.7 0 

781 'Loma Prieta' 1989 
'Lower Crystal Springs Dam 
dwnst' 6.93 48.24 712.8 0 

782 'Loma Prieta' 1989 'Monterey City Hall' 6.93 39.69 684.9 0 
783 'Loma Prieta' 1989 'Oakland - Outer Harbor Wharf' 6.93 74.16 248.6 0 
784 'Loma Prieta' 1989 'Oakland - Title & Trust' 6.93 72.09 306.3 1 
785 'Loma Prieta' 1989 'Olema - Point Reyes Station' 6.93 117.02 338.5 0 
786 'Loma Prieta' 1989 'Palo Alto - 1900 Embarc.' 6.93 30.56 209.9 0 
787 'Loma Prieta' 1989 'Palo Alto - SLAC Lab' 6.93 30.62 425.3 0 
788 'Loma Prieta' 1989 'Piedmont Jr High' 6.93 72.9 895.4 0 
789 'Loma Prieta' 1989 'Point Bonita' 6.93 83.37 1315.9 0 
790 'Loma Prieta' 1989 'Richmond City Hall' 6.93 87.78 259.9 0 
791 'Loma Prieta' 1989 'SAGO South - Surface' 6.93 33.94 684.9 0 
792 'Loma Prieta' 1989 'SF - 1295 Shafter' 6.93 68.05 338.5 0 
793 'Loma Prieta' 1989 'SF - Cliff House' 6.93 78.58 712.8 0 
794 'Loma Prieta' 1989 'SF - Diamond Heights' 6.93 71.23 582.9 0 
795 'Loma Prieta' 1989 'SF - Pacific Heights' 6.93 75.96 1249.9 0 
796 'Loma Prieta' 1989 'SF - Presidio' 6.93 77.34 594.5 0 
797 'Loma Prieta' 1989 'SF - Rincon Hill' 6.93 74.04 873.1 0 
798 'Loma Prieta' 1989 'SF - Telegraph Hill' 6.93 76.4 712.8 0 
799 'Loma Prieta' 1989 'SF Intern. Airport' 6.93 58.52 190.1 0 
800 'Loma Prieta' 1989 'Salinas - John & Work' 6.93 28.66 271.4 0 
801 'Loma Prieta' 1989 'San Jose - Santa Teresa Hills' 6.93 14.18 671.8 0 
802 'Loma Prieta' 1989 'Saratoga - Aloha Ave' 6.93 7.58 370.8 0 
803 'Loma Prieta' 1989 'Saratoga - W Valley Coll.' 6.93 8.48 370.8 1 
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804 'Loma Prieta' 1989 'So. San Francisco, Sierra Pt.' 6.93 63.03 1020.6 0 
806 'Loma Prieta' 1989 'Sunnyvale - Colton Ave.' 6.93 23.92 267.7 0 
807 'Loma Prieta' 1989 'Sunol - Forest Fire Station' 6.93 47.41 400.6 0 
808 'Loma Prieta' 1989 'Treasure Island' 6.93 77.32 155.1 0 
809 'Loma Prieta' 1989 'UCSC' 6.93 12.15 714 0 
810 'Loma Prieta' 1989 'UCSC Lick Observatory' 6.93 12.04 714 0 
811 'Loma Prieta' 1989 'WAHO' 6.93 11.03 376.1 0 
812 'Loma Prieta' 1989 'Woodside' 6.93 33.87 454 0 
813 'Loma Prieta' 1989 'Yerba Buena Island' 6.93 75.07 659.8 0 
814 'Griva, Greece' 1990 'Edessa (bsmt)' 6.1 32.84 424.8 0 
821 'Erzican, Turkey' 1992 'Erzincan' 6.69 0 274.5 1 
825 'Cape Mendocino' 1992 'Cape Mendocino' 7.01 0 513.7 1 
826 'Cape Mendocino' 1992 'Eureka - Myrtle & West' 7.01 40.23 338.5 0 
827 'Cape Mendocino' 1992 'Fortuna - Fortuna Blvd' 7.01 15.97 457.1 0 
828 'Cape Mendocino' 1992 'Petrolia' 7.01 0 712.8 1 
829 'Cape Mendocino' 1992 'Rio Dell Overpass - FF' 7.01 7.88 311.8 0 
832 'Landers' 1992 'Amboy' 7.28 69.21 271.4 0 
833 'Landers' 1992 'Anaheim - W Ball Rd' 7.28 144.9 234.9 0 
834 'Landers' 1992 'Arcadia - Arcadia Av' 7.28 137.25 308.6 0 
835 'Landers' 1992 'Arcadia - Campus Dr' 7.28 135.22 367.5 0 
836 'Landers' 1992 'Baker Fire Station' 7.28 87.94 271.4 0 
837 'Landers' 1992 'Baldwin Park - N Holly' 7.28 131.92 308.6 0 
838 'Landers' 1992 'Barstow' 7.28 34.86 370.8 0 
839 'Landers' 1992 'Bell Gardens - Jaboneria' 7.28 154.26 308.6 0 
840 'Landers' 1992 'Big Tujunga, Angeles Nat F' 7.28 144.13 446 0 
841 'Landers' 1992 'Boron Fire Station' 7.28 89.69 345.4 0 
842 'Landers' 1992 'Brea - S Flower Av' 7.28 137.44 308.6 0 
843 'Landers' 1992 'Buena Park - La Palma' 7.28 150.09 308.6 0 
844 'Landers' 1992 'Burbank - N Buena Vista' 7.28 157.94 271.4 0 
845 'Landers' 1992 'Calabasas - N Las Virg' 7.28 190.05 338.5 0 
846 'Landers' 1992 'Chatsworth - Devonshire' 7.28 172.45 376.1 0 
847 'Landers' 1992 'Compton - Castlegate St' 7.28 161.23 308.6 0 
848 'Landers' 1992 'Coolwater' 7.28 19.74 271.4 0 
849 'Landers' 1992 'Covina - W Badillo' 7.28 128.06 271.4 0 
850 'Landers' 1992 'Desert Hot Springs' 7.28 21.78 345.4 0 
851 'Landers' 1992 'Downey - Co Maint Bldg' 7.28 157.46 271.9 0 
852 'Landers' 1992 'Duarte - Mel Canyon Rd.' 7.28 126.33 446 0 
853 'Landers' 1992 'El Monte - Fairview Av' 7.28 135.88 308.6 0 
854 'Landers' 1992 'Featherly Park - Maint' 7.28 121.8 308.6 0 
855 'Landers' 1992 'Fort Irwin' 7.28 62.98 345.4 0 
856 'Landers' 1992 'Fountain Valley - Euclid' 7.28 146.89 270.2 0 
857 'Landers' 1992 'Glendale - Las Palmas' 7.28 148.07 446 0 
858 'Landers' 1992 'Glendora - N Oakbank' 7.28 122.61 446 0 
859 'Landers' 1992 'Hacienda Heights - Colima' 7.28 136.29 337 0 
860 'Landers' 1992 'Hemet Fire Station' 7.28 68.66 338.5 0 
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861 'Landers' 1992 'Huntington Bch - Waikiki' 7.28 156 234.9 0 
862 'Landers' 1992 'Indio - Coachella Canal' 7.28 54.25 345.4 0 
863 'Landers' 1992 'Inglewood - Union Oil' 7.28 167.27 316 0 
864 'Landers' 1992 'Joshua Tree' 7.28 11.03 379.3 0 
865 'Landers' 1992 'LA - 116th St School' 7.28 164.36 301 0 
866 'Landers' 1992 'LA - E Vernon Ave' 7.28 157.69 308.6 0 
867 'Landers' 1992 'LA - Fletcher Dr' 7.28 153.04 446 0 
870 'Landers' 1992 'LA - Obregon Park' 7.28 151.7 349.4 0 
871 'Landers' 1992 'LA - S Grand Ave' 7.28 161.56 308.6 0 
872 'Landers' 1992 'LA - W 15th St' 7.28 160.99 405.2 0 
873 'Landers' 1992 'LA - W 70th St' 7.28 163.96 294.2 0 
874 'Landers' 1992 'LB - Orange Ave' 7.28 160.85 270.2 0 
876 'Landers' 1992 'La Habra - Briarcliff' 7.28 143.12 361.2 0 
877 'Landers' 1992 'La Puente - Rimgrove Av' 7.28 132.08 308.6 0 
878 'Landers' 1992 'Lakewood - Del Amo Blvd' 7.28 157.41 234.9 0 
879 'Landers' 1992 'Lucerne' 7.28 2.19 684.9 0 
883 'Landers' 1992 'Northridge - 17645 Saticoy St' 7.28 172.32 280.9 0 
884 'Landers' 1992 'Palm Springs Airport' 7.28 36.15 207.5 0 
885 'Landers' 1992 'Pomona - 4th & Locust FF' 7.28 117.5 229.8 0 
886 'Landers' 1992 'Puerta La Cruz' 7.28 94.48 370.8 0 
887 'Landers' 1992 'Riverside Airport' 7.28 96 370.8 0 

888 'Landers' 1992 
'San Bernardino - E & 
Hospitality' 7.28 79.76 271.4 0 

889 'Landers' 1992 'San Gabriel - E Grand Ave' 7.28 141.92 401.4 0 
890 'Landers' 1992 'Santa Fe Springs - E.Joslin' 7.28 150.1 308.6 0 
891 'Landers' 1992 'Silent Valley - Poppet Flat' 7.28 50.85 684.9 0 
892 'Landers' 1992 'Sun Valley - Roscoe Blvd' 7.28 163.54 308.6 0 
893 'Landers' 1992 'Sun Valley - Sunland' 7.28 158.25 271.4 0 
894 'Landers' 1992 'Sunland - Mt Gleason Ave' 7.28 151.53 446 0 
895 'Landers' 1992 'Tarzana - Cedar Hill' 7.28 175.65 257.2 0 
896 'Landers' 1992 'Tustin - E Sycamore' 7.28 136.72 234.9 0 
897 'Landers' 1992 'Twentynine Palms' 7.28 41.43 684.9 0 
898 'Landers' 1992 'Villa Park - Serrano Ave' 7.28 132.94 308.6 0 
899 'Landers' 1992 'West Covina - S Orange Ave' 7.28 132.32 308.6 0 
900 'Landers' 1992 'Yermo Fire Station' 7.28 23.62 353.6 0 
942 'Northridge-01' 1994 'Alhambra - Fremont School' 6.69 35.66 550 0 
943 'Northridge-01' 1994 'Anacapa Island' 6.69 65.84 821.7 0 
944 'Northridge-01' 1994 'Anaheim - W Ball Rd' 6.69 66.33 234.9 0 
945 'Northridge-01' 1994 'Anaverde Valley - City R' 6.69 37.67 446 0 
946 'Northridge-01' 1994 'Antelope Buttes' 6.69 46.65 821.7 0 
947 'Northridge-01' 1994 'Arcadia - Arcadia Av' 6.69 39.41 308.6 0 
948 'Northridge-01' 1994 'Arcadia - Campus Dr' 6.69 41.11 367.5 0 
949 'Northridge-01' 1994 'Arleta - Nordhoff Fire Sta' 6.69 3.3 297.7 0 
950 'Northridge-01' 1994 'Baldwin Park - N Holly' 6.69 47.72 308.6 0 
951 'Northridge-01' 1994 'Bell Gardens - Jaboneria' 6.69 41.27 308.6 0 
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952 'Northridge-01' 1994 'Beverly Hills - 12520 Mulhol' 6.69 12.39 545.7 0 
953 'Northridge-01' 1994 'Beverly Hills - 14145 Mulhol' 6.69 9.44 355.8 0 
954 'Northridge-01' 1994 'Big Tujunga, Angeles Nat F' 6.69 19.1 446 0 
955 'Northridge-01' 1994 'Brea - S Flower Av' 6.69 64.63 308.6 0 
956 'Northridge-01' 1994 'Buena Park - La Palma' 6.69 59.35 308.6 0 
957 'Northridge-01' 1994 'Burbank - Howard Rd.' 6.69 15.87 821.7 0 
958 'Northridge-01' 1994 'Camarillo' 6.69 34.78 234.9 0 
959 'Northridge-01' 1994 'Canoga Park - Topanga Can' 6.69 0 267.5 0 

960 'Northridge-01' 1994 
'Canyon Country - W Lost 
Cany' 6.69 11.39 308.6 0 

961 'Northridge-01' 1994 'Carson - Catskill Ave' 6.69 46.05 361.2 0 
962 'Northridge-01' 1994 'Carson - Water St' 6.69 45.44 160.6 0 
963 'Northridge-01' 1994 'Castaic - Old Ridge Route' 6.69 20.1 450.3 0 
964 'Northridge-01' 1994 'Compton - Castlegate St' 6.69 42.96 308.6 0 
965 'Northridge-01' 1994 'Covina - S Grand Ave' 6.69 57.29 405.2 0 
966 'Northridge-01' 1994 'Covina - W Badillo' 6.69 53.21 271.4 0 
967 'Northridge-01' 1994 'Downey - Birchdale' 6.69 45.68 245.1 0 
968 'Northridge-01' 1994 'Downey - Co Maint Bldg' 6.69 43.2 271.9 0 
969 'Northridge-01' 1994 'Duarte - Mel Canyon Rd.' 6.69 48.37 446 0 
970 'Northridge-01' 1994 'El Monte - Fairview Av' 6.69 44.51 308.6 0 
971 'Northridge-01' 1994 'Elizabeth Lake' 6.69 36.2 234.9 0 
972 'Northridge-01' 1994 'Featherly Park - Maint' 6.69 82.01 308.6 0 
973 'Northridge-01' 1994 'Garden Grove - Santa Rita' 6.69 63.73 234.9 0 
974 'Northridge-01' 1994 'Glendale - Las Palmas' 6.69 21.64 446 0 
977 'Northridge-01' 1994 'Hemet - Ryan Airfield' 6.69 144.62 338.5 0 
978 'Northridge-01' 1994 'Hollywood - Willoughby Ave' 6.69 17.82 234.9 0 
979 'Northridge-01' 1994 'Huntington Bch - Waikiki' 6.69 66.43 234.9 0 
980 'Northridge-01' 1994 'Huntington Beach - Lake St' 6.69 74.7 370.8 0 
981 'Northridge-01' 1994 'Inglewood - Union Oil' 6.69 37.18 316 0 
982 'Northridge-01' 1994 'Jensen Filter Plant' 6.69 0 373.1 0 
983 'Northridge-01' 1994 'Jensen Filter Plant Generator' 6.69 0 525.8 0 
984 'Northridge-01' 1994 'LA - 116th St School' 6.69 36.39 301 0 
985 'Northridge-01' 1994 'LA - Baldwin Hills' 6.69 23.51 297.1 0 
986 'Northridge-01' 1994 'LA - Brentwood VA Hospital' 6.69 12.92 416.6 0 
987 'Northridge-01' 1994 'LA - Centinela St' 6.69 20.36 234.9 0 
988 'Northridge-01' 1994 'LA - Century City CC North' 6.69 15.54 278 0 
989 'Northridge-01' 1994 'LA - Chalon Rd' 6.69 9.87 740.1 0 
990 'Northridge-01' 1994 'LA - City Terrace' 6.69 35.03 365.2 0 
991 'Northridge-01' 1994 'LA - Cypress Ave' 6.69 28.98 446 0 
992 'Northridge-01' 1994 'LA - E Vernon Ave' 6.69 33.33 308.6 0 
993 'Northridge-01' 1994 'LA - Fletcher Dr' 6.69 25.66 446 0 
994 'Northridge-01' 1994 'LA - Griffith Park Observatory'6.69 21.2 1015.9 0 
995 'Northridge-01' 1994 'LA - Hollywood Stor FF' 6.69 19.73 316.5 0 
996 'Northridge-01' 1994 'LA - N Faring Rd' 6.69 12.42 255 0 
997 'Northridge-01' 1994 'LA - N Figueroa St' 6.69 30.19 405.2 0 
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998 'Northridge-01' 1994 'LA - N Westmoreland' 6.69 23.4 315.1 0 
1000 'Northridge-01' 1994 'LA - Pico & Sentous' 6.69 27.82 270.2 0 
1001 'Northridge-01' 1994 'LA - S Grand Ave' 6.69 29.52 308.6 0 
1002 'Northridge-01' 1994 'LA - S. Vermont Ave' 6.69 27.89 270.2 0 
1003 'Northridge-01' 1994 'LA - Saturn St' 6.69 21.17 308.7 0 
1004 'Northridge-01' 1994 'LA - Sepulveda VA Hospital' 6.69 0 380.1 0 
1005 'Northridge-01' 1994 'LA - Temple & Hope' 6.69 28.82 376.1 0 
1006 'Northridge-01' 1994 'LA - UCLA Grounds' 6.69 13.8 398.4 0 
1007 'Northridge-01' 1994 'LA - Univ. Hospital' 6.69 32.39 376.1 0 
1008 'Northridge-01' 1994 'LA - W 15th St' 6.69 25.6 405.2 0 

1009 'Northridge-01' 1994 
'LA - Wadsworth VA Hospital 
North' 6.69 14.55 392.2 0 

1010 'Northridge-01' 1994 
'LA - Wadsworth VA Hospital 
South' 6.69 14.55 413.8 0 

1011 'Northridge-01' 1994 'LA - Wonderland Ave' 6.69 15.11 1222.5 0 
1012 'Northridge-01' 1994 'LA 00' 6.69 9.87 706.2 0 
1013 'Northridge-01' 1994 'LA Dam' 6.69 0 629 1 
1014 'Northridge-01' 1994 'LB - City Hall' 6.69 53.94 381.2 0 
1015 'Northridge-01' 1994 'LB - Rancho Los Cerritos' 6.69 47.79 405.2 0 
1016 'Northridge-01' 1994 'La Crescenta - New York' 6.69 17.81 446 0 
1017 'Northridge-01' 1994 'La Habra - Briarcliff' 6.69 58.32 361.2 0 
1019 'Northridge-01' 1994 'Lake Hughes #1' 6.69 35.46 425.3 0 
1020 'Northridge-01' 1994 'Lake Hughes #12A' 6.69 20.77 602.1 0 
1021 'Northridge-01' 1994 'Lake Hughes #4 - Camp Mend' 6.69 31.27 821.7 0 

1022 'Northridge-01' 1994 
'Lake Hughes #4B - Camp 
Mend' 6.69 31.3 554 0 

1023 'Northridge-01' 1994 'Lake Hughes #9' 6.69 24.86 670.8 0 
1024 'Northridge-01' 1994 'Lakewood - Del Amo Blvd' 6.69 53.57 234.9 0 
1025 'Northridge-01' 1994 'Lancaster - Fox Airfield Grnd' 6.69 51.88 271.4 0 
1026 'Northridge-01' 1994 'Lawndale - Osage Ave' 6.69 34.31 361.2 0 
1027 'Northridge-01' 1994 'Leona Valley #1' 6.69 36.86 684.9 0 
1028 'Northridge-01' 1994 'Leona Valley #2' 6.69 36.9 446 0 
1029 'Northridge-01' 1994 'Leona Valley #3' 6.69 37 684.9 0 
1030 'Northridge-01' 1994 'Leona Valley #4' 6.69 37.23 446 0 
1031 'Northridge-01' 1994 'Leona Valley #5 - Ritter' 6.69 37.47 446 0 
1032 'Northridge-01' 1994 'Leona Valley #6' 6.69 37.7 327.4 0 
1033 'Northridge-01' 1994 'Littlerock - Brainard Can' 6.69 46.31 821.7 0 
1034 'Northridge-01' 1994 'Malibu - Point Dume Sch' 6.69 26.77 349.5 0 
1035 'Northridge-01' 1994 'Manhattan Beach - Manhattan' 6.69 33.56 405.2 0 
1036 'Northridge-01' 1994 'Mojave - Hwys 14 & 58' 6.69 85.28 308.6 0 
1037 'Northridge-01' 1994 'Mojave - Oak Creek Canyon' 6.69 75.64 338.5 0 
1038 'Northridge-01' 1994 'Montebello - Bluff Rd.' 6.69 43.22 405.2 0 
1039 'Northridge-01' 1994 'Moorpark - Fire Sta' 6.69 16.92 405.2 0 
1040 'Northridge-01' 1994 'Mt Baldy - Elementary Sch' 6.69 71.3 338.5 0 
1041 'Northridge-01' 1994 'Mt Wilson - CIT Seis Sta' 6.69 35.53 821.7 0 
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1042 'Northridge-01' 1994 'N Hollywood - Coldwater Can' 6.69 7.89 446 0 
1043 'Northridge-01' 1994 'Neenach - Sacatara Ck' 6.69 51.61 308.6 0 
1044 'Northridge-01' 1994 'Newhall - Fire Sta' 6.69 3.16 269.1 0 
1045 'Northridge-01' 1994 'Newhall - W Pico Canyon Rd.' 6.69 2.11 285.9 1 
1046 'Northridge-01' 1994 'Newport Bch - Irvine Ave. F.S' 6.69 83.01 405.2 0 
1047 'Northridge-01' 1994 'Newport Bch - Newp & Coast' 6.69 82.03 370.8 0 
1048 'Northridge-01' 1994 'Northridge - 17645 Saticoy St' 6.69 0 280.9 0 
1049 'Northridge-01' 1994 'Pacific Palisades - Sunset' 6.69 13.34 446 0 
1050 'Northridge-01' 1994 'Pacoima Dam (downstr)' 6.69 4.92 2016.1 0 
1051 'Northridge-01' 1994 'Pacoima Dam (upper left)' 6.69 4.92 2016.1 0 
1052 'Northridge-01' 1994 'Pacoima Kagel Canyon' 6.69 5.26 508.1 0 

1053 'Northridge-01' 1994 
'Palmdale - Hwy 14 & 
Palmdale' 6.69 41.37 551.6 0 

1055 'Northridge-01' 1994 'Pasadena - N Sierra Madre' 6.69 35.77 455.4 0 
1056 'Northridge-01' 1994 'Phelan - Wilson Ranch' 6.69 85.75 308.6 0 
1057 'Northridge-01' 1994 'Playa Del Rey - Saran' 6.69 24.42 405.2 0 
1058 'Northridge-01' 1994 'Point Mugu - Laguna Peak' 6.69 36.61 376.1 0 
1059 'Northridge-01' 1994 'Port Hueneme - Naval Lab.' 6.69 47.58 271.4 0 

1060 'Northridge-01' 1994 
'Rancho Cucamonga - Deer 
Can' 6.69 79.83 821.7 0 

1061 'Northridge-01' 1994 'Rancho Palos Verdes - Hawth' 6.69 48.02 477.7 0 

1062 'Northridge-01' 1994 
'Rancho Palos Verdes - 
Luconia' 6.69 50.47 508.8 0 

1063 'Northridge-01' 1994 'Rinaldi Receiving Sta' 6.69 0 282.3 1 
1064 'Northridge-01' 1994 'Riverside Airport' 6.69 98.83 370.8 0 
1065 'Northridge-01' 1994 'Rolling Hills Est-Rancho Vista'6.69 44.89 376.1 0 
1066 'Northridge-01' 1994 'Rosamond - Airport' 6.69 64.6 345.4 0 
1067 'Northridge-01' 1994 'San Bernardino - CSUSB Gr' 6.69 103.04 345.4 0 

1068 'Northridge-01' 1994 
'San Bernardino - Co Service 
Bldg - Freefield' 6.69 107.59 271.4 0 

1069 'Northridge-01' 1994 
'San Bernardino - E & 
Hospitality' 6.69 108.18 271.4 0 

1070 'Northridge-01' 1994 'San Gabriel - E Grand Ave' 6.69 38.86 401.4 0 
1071 'Northridge-01' 1994 'San Jacinto - CDF Fire Sta' 6.69 147.47 271.4 0 
1072 'Northridge-01' 1994 'San Marino - SW Academy' 6.69 34.55 379.4 0 
1073 'Northridge-01' 1994 'San Pedro - Palos Verdes' 6.69 53.24 376.1 0 
1074 'Northridge-01' 1994 'Sandberg - Bald Mtn' 6.69 41.26 821.7 0 
1075 'Northridge-01' 1994 'Santa Barbara - UCSB Goleta' 6.69 107.2 338.5 0 
1076 'Northridge-01' 1994 'Santa Fe Springs - E.Joslin' 6.69 48.06 308.6 0 
1077 'Northridge-01' 1994 'Santa Monica City Hall' 6.69 17.28 336.2 0 
1078 'Northridge-01' 1994 'Santa Susana Ground' 6.69 1.69 715.1 0 
1079 'Northridge-01' 1994 'Seal Beach - Office Bldg' 6.69 61.46 370.8 0 
1082 'Northridge-01' 1994 'Sun Valley - Roscoe Blvd' 6.69 5.59 308.6 0 
1083 'Northridge-01' 1994 'Sunland - Mt Gleason Ave' 6.69 12.38 446 0 
1086 'Northridge-01' 1994 'Sylmar - Olive View Med FF' 6.69 1.74 440.5 0 
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1087 'Northridge-01' 1994 'Tarzana - Cedar Hill A' 6.69 0.37 257.2 0 
1088 'Northridge-01' 1994 'Terminal Island - S Seaside' 6.69 53.43 229.8 0 
1089 'Northridge-01' 1994 'Topanga - Fire Sta' 6.69 10.31 376.1 0 
1090 'Northridge-01' 1994 'Tustin - E Sycamore' 6.69 81.66 234.9 0 
1092 'Northridge-01' 1994 'Ventura - Harbor & California' 6.69 54.28 271.4 0 
1093 'Northridge-01' 1994 'Villa Park - Serrano Ave' 6.69 76.38 308.6 0 
1094 'Northridge-01' 1994 'West Covina - S Orange Ave' 6.69 51.46 308.6 0 
1095 'Northridge-01' 1994 'Whittier - S. Alta Dr' 6.69 48.36 376.1 0 
1096 'Northridge-01' 1994 'Wrightwood - Jackson Flat' 6.69 64.46 821.7 0 
1097 'Northridge-01' 1994 'Wrightwood - Nielson Ranch' 6.69 81.54 345.4 0 
1098 'Northridge-01' 1994 'Wrightwood - Swarthout' 6.69 71.51 338.5 0 
1099 'Double Springs' 1994 'Woodfords' 5.9 12.48 345.4 0 
1103 'Kobe, Japan' 1995 'FUK' 6.9 158.08 256 0 
1105 'Kobe, Japan' 1995 'HIK' 6.9 95.72 256 0 
1106 'Kobe, Japan' 1995 'KJMA' 6.9 0.94 312 0 
1107 'Kobe, Japan' 1995 'Kakogawa' 6.9 22.5 312 0 
1109 'Kobe, Japan' 1995 'MZH' 6.9 69.04 609 0 
1111 'Kobe, Japan' 1995 'Nishi-Akashi' 6.9 7.08 609 0 
1112 'Kobe, Japan' 1995 'OKA' 6.9 86.94 609 0 
1113 'Kobe, Japan' 1995 'OSAJ' 6.9 21.35 256 0 
1116 'Kobe, Japan' 1995 'Shin-Osaka' 6.9 19.14 256 0 
1117 'Kobe, Japan' 1995 'TOT' 6.9 119.64 609 0 
1126 'Kozani, Greece-01' 1995 'Kozani' 6.4 14.13 659.6 0 
1127 'Kozani, Greece-01' 1995 'Larisa' 6.4 74.06 338.6 0 
1136 'Dinar, Turkey' 1995 'Balikesir' 6.4 255.44 338.6 0 
1140 'Dinar, Turkey' 1995 'Denizli' 6.4 85.8 338.6 0 
1141 'Dinar, Turkey' 1995 'Dinar' 6.4 0 219.8 0 
1143 'Dinar, Turkey' 1995 'Izmir Trigger #2' 6.4 250.31 659.6 0 
1144 'Gulf of Aqaba' 1995 'Eilat' 7.2 43.29 354.9 0 
1145 'Gulf of Aqaba' 1995 'Hadera' 7.2 365.14 277 0 
1147 'Kocaeli, Turkey' 1999 'Ambarli' 7.51 68.09 175 0 
1148 'Kocaeli, Turkey' 1999 'Arcelik' 7.51 10.56 523 1 
1149 'Kocaeli, Turkey' 1999 'Atakoy' 7.51 56.49 274.5 0 
1151 'Kocaeli, Turkey' 1999 'Balikesir' 7.51 180.24 338.6 0 
1152 'Kocaeli, Turkey' 1999 'Bornova' 7.51 315.9 274.5 0 
1153 'Kocaeli, Turkey' 1999 'Botas' 7.51 126.04 274.5 0 
1154 'Kocaeli, Turkey' 1999 'Bursa Sivil' 7.51 65.53 659.6 0 
1155 'Kocaeli, Turkey' 1999 'Bursa Tofas' 7.51 60.43 274.5 0 
1156 'Kocaeli, Turkey' 1999 'Canakkale' 7.51 266.17 274.5 0 
1157 'Kocaeli, Turkey' 1999 'Cekmece' 7.51 64.95 346 0 
1159 'Kocaeli, Turkey' 1999 'Eregli' 7.51 141.37 659.6 0 
1160 'Kocaeli, Turkey' 1999 'Fatih' 7.51 53.34 338.6 0 
1161 'Kocaeli, Turkey' 1999 'Gebze' 7.51 7.57 792 0 
1162 'Kocaeli, Turkey' 1999 'Goynuk' 7.51 31.74 424.8 0 
1164 'Kocaeli, Turkey' 1999 'Istanbul' 7.51 49.66 424.8 0 
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1165 'Kocaeli, Turkey' 1999 'Izmit' 7.51 3.62 811 0 
1166 'Kocaeli, Turkey' 1999 'Iznik' 7.51 30.74 274.5 0 
1167 'Kocaeli, Turkey' 1999 'Kutahya' 7.51 145.06 274.5 0 
1168 'Kocaeli, Turkey' 1999 'Manisa' 7.51 293.35 659.6 0 
1169 'Kocaeli, Turkey' 1999 'Maslak' 7.51 52.96 659.6 0 
1170 'Kocaeli, Turkey' 1999 'Mecidiyekoy' 7.51 51.17 424.8 0 
1172 'Kocaeli, Turkey' 1999 'Tekirdag' 7.51 164.18 659.6 0 
1175 'Kocaeli, Turkey' 1999 'Usak' 7.51 226.72 274.5 0 
1176 'Kocaeli, Turkey' 1999 'Yarimca' 7.51 1.38 297 1 
1177 'Kocaeli, Turkey' 1999 'Zeytinburnu' 7.51 51.98 274.5 0 
1599 'Duzce, Turkey' 1999 'Ambarli' 7.14 187.99 175 0 
1600 'Duzce, Turkey' 1999 'Arcelik' 7.14 131.17 523 0 
1601 'Duzce, Turkey' 1999 'Aslan R.' 7.14 130.8 274.5 0 
1602 'Duzce, Turkey' 1999 'Bolu' 7.14 12.02 326 1 
1603 'Duzce, Turkey' 1999 'Bursa Tofas' 7.14 166.07 274.5 0 
1604 'Duzce, Turkey' 1999 'Cekmece' 7.14 182.78 346 0 
1605 'Duzce, Turkey' 1999 'Duzce' 7.14 0 276 1 
1606 'Duzce, Turkey' 1999 'Fatih' 7.14 167.29 338.6 0 
1608 'Duzce, Turkey' 1999 'Hava Alani' 7.14 177.28 424.8 0 
1609 'Duzce, Turkey' 1999 'Kocamustafapaba Tomb' 7.14 168.46 338.6 0 
1610 'Duzce, Turkey' 1999 'Kutahya' 7.14 168.26 274.5 0 
1611 'Duzce, Turkey' 1999 'Lamont 1058' 7.14 0.21 424.8 0 
1612 'Duzce, Turkey' 1999 'Lamont 1059' 7.14 4.17 424.8 0 
1613 'Duzce, Turkey' 1999 'Lamont 1060' 7.14 25.78 782 0 
1614 'Duzce, Turkey' 1999 'Lamont 1061' 7.14 11.46 481 0 
1615 'Duzce, Turkey' 1999 'Lamont 1062' 7.14 9.15 338 0 
1616 'Duzce, Turkey' 1999 'Lamont 362' 7.14 23.41 517 0 
1617 'Duzce, Turkey' 1999 'Lamont 375' 7.14 3.93 424.8 0 
1618 'Duzce, Turkey' 1999 'Lamont 531' 7.14 8.03 659.6 0 
1619 'Duzce, Turkey' 1999 'Mudurnu' 7.14 34.3 659.6 0 
1620 'Duzce, Turkey' 1999 'Sakarya' 7.14 45.16 471 0 
1621 'Duzce, Turkey' 1999 'Yarimca' 7.14 97.51 297 0 
1626 'Sitka, Alaska' 1972 'Sitka Observatory' 7.68 34.61 659.6 0 
1627 'Caldiran, Turkey' 1976 'Maku' 7.21 50.78 274.5 0 
1628 'St Elias, Alaska' 1979 'Icy Bay' 7.54 26.46 274.5 0 
1629 'St Elias, Alaska' 1979 'Yakutat' 7.54 80 274.5 0 
1633 'Manjil, Iran' 1990 'Abbar' 7.37 12.56 724 0 
1634 'Manjil, Iran' 1990 'Abhar' 7.37 75.58 274.5 0 
1636 'Manjil, Iran' 1990 'Qazvin' 7.37 49.97 274.5 0 
1637 'Manjil, Iran' 1990 'Rudsar' 7.37 63.96 274.5 0 
1638 'Manjil, Iran' 1990 'Tehran - Building & Housing' 7.37 174.55 274.5 0 
1639 'Manjil, Iran' 1990 'Tehran - Sarif University' 7.37 171.75 274.5 0 
1640 'Manjil, Iran' 1990 'Tonekabun' 7.37 93.3 274.5 0 
1643 'Sierra Madre' 1991 'LA - City Terrace' 5.61 23.67 365.2 0 
1646 'Sierra Madre' 1991 'Pasadena - USGS/NSMP 5.61 13.91 370.8 0 
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Office' 
1740 'Little Skull Mtn,NV' 1992 'Station #1-Lathrop Wells' 5.65 14.12 274.5 0 
1741 'Little Skull Mtn,NV' 1992 'Station #2-NTS Control Pt. 1' 5.65 23.83 659.6 0 
1742 'Little Skull Mtn,NV' 1992 'Station #3-Beaty' 5.65 45.15 338.6 0 
1743 'Little Skull Mtn,NV' 1992 'Station #4-Pahrump 2' 5.65 61.04 274.5 0 
1744 'Little Skull Mtn,NV' 1992 'Station #5-Pahrump 1' 5.65 63.82 274.5 0 

1745 'Little Skull Mtn,NV' 1992 
'Station #6-Las Vegas Calico 
Basin' 5.65 99.44 659.6 0 

1746 'Little Skull Mtn,NV' 1992 
'Station #7-Las Vegas Ann 
Road' 5.65 98.85 274.5 0 

1747 'Little Skull Mtn,NV' 1992 
'Station #8-Death Valley 
Scotties Castle' 5.65 98.09 659.6 0 

1759 'Hector Mine' 1999 
'12440 Imperial Hwy, North 
Grn' 7.13 176.59 274.5 0 

1760 'Hector Mine' 1999 'Alhambra - LA Co PW HQ FF' 7.13 174.9 370.8 0 
1761 'Hector Mine' 1999 'Altadena - Eaton Canyon' 7.13 166.11 370.8 0 
1762 'Hector Mine' 1999 'Amboy' 7.13 41.82 271.4 0 
1763 'Hector Mine' 1999 'Anza - Pinyon Flat' 7.13 89.98 724.9 0 
1764 'Hector Mine' 1999 'Anza - Tripp Flats Training' 7.13 102.4 684.9 0 
1765 'Hector Mine' 1999 'Arleta - Nordhoff Fire Sta' 7.13 193.8 297.7 0 
1766 'Hector Mine' 1999 'Baker Fire Station' 7.13 64.08 271.4 0 
1767 'Hector Mine' 1999 'Banning - Twin Pines Road' 7.13 83.43 684.9 0 
1768 'Hector Mine' 1999 'Barstow' 7.13 61.2 370.8 0 
1769 'Hector Mine' 1999 'Beverly Hills Pac Bell Bsmt' 7.13 195.87 294.2 0 
1770 'Hector Mine' 1999 'Big Bear Lake - Fire Station' 7.13 61.85 338.5 0 
1771 'Hector Mine' 1999 'Bombay Beach Fire Station' 7.13 120.69 257 0 
1772 'Hector Mine' 1999 'Burbank Airport' 7.13 187.73 271.4 0 
1773 'Hector Mine' 1999 'Cabazon' 7.13 76.89 345.4 0 
1775 'Hector Mine' 1999 'Castaic - Old Ridge Route' 7.13 205.16 450.3 0 
1776 'Hector Mine' 1999 'Desert Hot Springs' 7.13 56.4 345.4 0 

1777 'Hector Mine' 1999 
'Devore - Devore Water 
Company' 7.13 106.17 370.8 0 

1778 'Hector Mine' 1999 'Downey - Co Maint Bldg' 7.13 184.17 271.9 0 
1779 'Hector Mine' 1999 'El Centro Array #10' 7.13 186.86 202.9 0 
1780 'Hector Mine' 1999 'Featherly Park - Maint' 7.13 149.43 308.6 0 
1781 'Hector Mine' 1999 'Fillmore Pac Bell' 7.13 232.72 271.4 0 
1782 'Hector Mine' 1999 'Forest Falls Post Office' 7.13 74.92 345.4 0 
1783 'Hector Mine' 1999 'Fort Irwin' 7.13 65.04 345.4 0 
1784 'Hector Mine' 1999 'Frink' 7.13 118.5 345.4 0 
1785 'Hector Mine' 1999 'Fun Valley' 7.13 54.68 345.4 0 
1786 'Hector Mine' 1999 'Heart Bar State Park' 7.13 61.21 684.9 0 
1787 'Hector Mine' 1999 'Hector' 7.13 10.35 684.9 0 
1788 'Hector Mine' 1999 'Hemet Fire Station' 7.13 104.55 338.5 0 
1789 'Hector Mine' 1999 'Hesperia - 4th & Palm' 7.13 89.87 345.4 0 
1790 'Hector Mine' 1999 'Huntington Beach - Lake St' 7.13 184.03 370.8 0 
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1791 'Hector Mine' 1999 'Indio - Coachella Canal' 7.13 73.55 345.4 0 

1792 'Hector Mine' 1999 
'Indio - Riverside Co Fair 
Grnds' 7.13 74 207.5 0 

1793 'Hector Mine' 1999 'Jensen Filter Plant Generator' 7.13 196.78 525.8 0 
1794 'Hector Mine' 1999 'Joshua Tree' 7.13 31.06 379.3 0 
1795 'Hector Mine' 1999 'Joshua Tree N.M. - Keys View'7.13 50.42 684.9 0 
1796 'Hector Mine' 1999 'LA - 116th St School' 7.13 191.45 301 0 
1797 'Hector Mine' 1999 'LA - City Terrace' 7.13 177.94 365.2 0 
1798 'Hector Mine' 1999 'LA - MLK Hospital Grounds' 7.13 190.3 270.2 0 
1799 'Hector Mine' 1999 'LA - Obregon Park' 7.13 179.29 349.4 0 
1800 'Hector Mine' 1999 'LA - Pico & Sentous' 7.13 186.79 270.2 0 
1801 'Hector Mine' 1999 'LA - Temple & Hope' 7.13 183.96 376.1 0 
1802 'Hector Mine' 1999 'LAX Fire Station' 7.13 203.21 370.8 0 
1803 'Hector Mine' 1999 'LB - City Hall' 7.13 194.67 381.2 0 
1804 'Hector Mine' 1999 'La Canada - Wald Residence' 7.13 172.58 370.8 0 
1805 'Hector Mine' 1999 'Lake Hughes #1' 7.13 184.96 425.3 0 
1806 'Hector Mine' 1999 'Leona Valley - Fire Station #1' 7.13 172.05 345.4 0 
1807 'Hector Mine' 1999 'Little Rock Post Office' 7.13 146.51 442 0 

1808 'Hector Mine' 1999 
'Los Angeles - Acosta 
Residence' 7.13 172.49 376.1 0 

1809 'Hector Mine' 1999 'Lytle Creek Fire Station' 7.13 112.26 345.4 0 
1810 'Hector Mine' 1999 'Mecca - CVWD Yard' 7.13 91.96 345.4 0 
1811 'Hector Mine' 1999 'Mentone Fire Station #9' 7.13 91.15 271.4 0 
1812 'Hector Mine' 1999 'Mill Creek Ranger Station' 7.13 84.87 370.8 0 
1813 'Hector Mine' 1999 'Morongo Valley' 7.13 53.17 345.4 0 
1814 'Hector Mine' 1999 'Newhall - Fire Sta' 7.13 198.13 269.1 0 
1815 'Hector Mine' 1999 'Newport Bch - Irvine Ave. F.S' 7.13 178.25 405.2 0 

1816 'Hector Mine' 1999 
'North Palm Springs Fire Sta 
#36' 7.13 61.84 345.4 0 

1817 'Hector Mine' 1999 'North Shore - Durmid' 7.13 110.72 338.5 0 
1818 'Hector Mine' 1999 'Pacoima Kagel Canyon' 7.13 186.31 508.1 0 
1819 'Hector Mine' 1999 'Palmdale Fire Station' 7.13 156.46 452.9 0 

1820 'Hector Mine' 1999 
'Pasadena - Fair Oaks & 
Walnut' 7.13 171.89 430.7 0 

1821 'Hector Mine' 1999 'Pomona - 4th & Locust FF' 7.13 143.36 229.8 0 
1822 'Hector Mine' 1999 'Riverside Airport' 7.13 123.79 370.8 0 
1823 'Hector Mine' 1999 'Salton City' 7.13 123.25 324.5 0 

1824 'Hector Mine' 1999 
'San Bernardino - Del Rosa Wk 
Sta' 7.13 96.91 684.9 0 

1825 'Hector Mine' 1999 
'San Bernardino - E & 
Hospitality' 7.13 105.2 271.4 0 

1826 'Hector Mine' 1999 'San Bernardino - Fire Sta. #10' 7.13 103.62 271.4 0 
1827 'Hector Mine' 1999 'San Bernardino - Fire Sta. #4' 7.13 101.71 271.4 0 
1828 'Hector Mine' 1999 'San Bernardino - Fire Sta. #9' 7.13 108.02 271.4 0 
1829 'Hector Mine' 1999 'San Bernardino - Mont. Mem 7.13 104.95 271.4 0 
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1830 'Hector Mine' 1999 
'San Bernardino - N Verdemont 
Sch' 7.13 104.67 370.8 0 

1831 'Hector Mine' 1999 'San Jacinto - Soboba' 7.13 92.71 370.8 0 

1832 'Hector Mine' 1999 
'Seven Oaks Dam Project 
Office' 7.13 87.2 659.6 0 

1833 'Hector Mine' 1999 'Snow Creek' 7.13 72.88 345.4 0 

1834 'Hector Mine' 1999 
'Sylmar - County Hospital 
Grounds' 7.13 191.59 338.5 0 

1835 'Hector Mine' 1999 'Temecula - 6th & Mercedes' 7.13 134.11 370.8 0 
1836 'Hector Mine' 1999 'Twentynine Palms' 7.13 42.06 684.9 0 
1837 'Hector Mine' 1999 'Valyermo Forest Fire Station' 7.13 135.77 345.4 0 
1838 'Hector Mine' 1999 'Whitewater Trout Farm' 7.13 62.91 345.4 0 
1839 'Hector Mine' 1999 'Whittier - Scott & Whittier' 7.13 169.59 338.5 0 

1840 'Hector Mine' 1999 
'Whittier Narrows Dam 
downstream' 7.13 169.83 298.7 0 

1841 'Hector Mine' 1999 'Wrightwood - Nielson Ranch' 7.13 113.45 345.4 0 
1842 'Hector Mine' 1999 'Wrightwood Post Office' 7.13 118.71 338.6 0 

2059 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - Aho Res 
(Basement)' 6.7 270.65 274.5 0 

2060 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - DOI Off. of 
Aircraft' 6.7 272.87 279.4 0 

2061 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - Dowl Eng 
Warehouse' 6.7 271.02 360 0 

2062 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-02' 6.7 265.48 366 0 

2063 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-03' 6.7 264.91 474 0 

2064 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-04' 6.7 273.69 279.4 0 

2065 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-05' 6.7 269.64 284 0 

2066 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-06' 6.7 269.22 491 0 

2067 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-07' 6.7 275.34 270 0 

2068 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-08' 6.7 272.21 274 0 

2069 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-09' 6.7 268.72 582 0 

2070 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-10' 6.7 277.35 269 0 

2071 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-11' 6.7 274.42 467.9 0 

2072 'Nenana Mountain, 2002 'Anchorage - K2-12' 6.7 272.52 514 0 
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Alaska' 

2073 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-13' 6.7 278.07 354 0 

2074 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-14' 6.7 275.58 467.9 0 

2075 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-15' 6.7 279.32 412 0 

2076 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-16' 6.7 277.15 424.8 0 

2077 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-17' 6.7 242.85 274.5 0 

2078 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-18' 6.7 216.47 274.5 0 

2079 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-19' 6.7 271.9 191.3 0 

2080 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-20' 6.7 276.74 279.4 0 

2081 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-21' 6.7 275.24 279.4 0 

2082 
'Nenana Mountain, 
Alaska' 2002 'Anchorage - K2-22' 6.7 280.41 467.9 0 

2083 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - NOAA Weather 
Fac.' 6.7 275.47 274.5 0 

2084 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - New Fire Station 
#1' 6.7 267.24 274.5 0 

2085 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - New Fire Station 
#7' 6.7 276.49 274.5 0 

2086 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - Police 
Headquarters' 6.7 270.21 467.9 0 

2087 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage - State Fish & 
Game' 6.7 273.46 360 0 

2088 
'Nenana Mountain, 
Alaska' 2002 

'Anchorage International 
Airport' 6.7 272.9 274.5 0 

2089 
'Nenana Mountain, 
Alaska' 2002 'Fairbanks - Ester Fire Station' 6.7 146.32 274.5 0 

2090 
'Nenana Mountain, 
Alaska' 2002 

'Fairbanks - Geophysic. Obs, 
CIGO' 6.7 148.82 424.8 0 

2091 
'Nenana Mountain, 
Alaska' 2002 'TAPS Pump Station #07' 6.7 199.27 659.6 0 

2092 
'Nenana Mountain, 
Alaska' 2002 'TAPS Pump Station #08' 6.7 119.84 424.8 0 

2093 
'Nenana Mountain, 
Alaska' 2002 'TAPS Pump Station #09' 6.7 104.73 382.5 0 

2094 
'Nenana Mountain, 
Alaska' 2002 'Valdez - Valdez City Hall' 6.7 276.74 338.6 0 



Appendix A 

335 

RNS Earthquake Name Year Station Name Mw RJB Vs30 Pulse 

[km] m/s 
0 = No 
1 = Yes 

2095 'Denali, Alaska' 2002 
'Anchorage - DOI Off. of 
Aircraft' 7.9 272.51 279.4 0 

2096 'Denali, Alaska' 2002 
'Anchorage - Dowl Eng 
Warehouse' 7.9 270.27 360 0 

2097 'Denali, Alaska' 2002 'Anchorage - K2-02' 7.9 264.47 366 0 
2098 'Denali, Alaska' 2002 'Anchorage - K2-03' 7.9 263.55 474 0 
2099 'Denali, Alaska' 2002 'Anchorage - K2-04' 7.9 273.56 279.4 0 
2100 'Denali, Alaska' 2002 'Anchorage - K2-05' 7.9 269.09 284 0 
2101 'Denali, Alaska' 2002 'Anchorage - K2-06' 7.9 268.17 491 0 

2102 'Denali, Alaska' 2002 
'Anchorage - NOAA Weather 
Fac.' 7.9 275.13 274.5 0 

2103 'Denali, Alaska' 2002 
'Anchorage - New Fire Station 
#1' 7.9 266.61 274.5 0 

2104 'Denali, Alaska' 2002 
'Anchorage - New Fire Station 
#7' 7.9 275.91 274.5 0 

2105 'Denali, Alaska' 2002 
'Anchorage - Police 
Headquarters' 7.9 269.02 467.9 0 

2106 'Denali, Alaska' 2002 
'Anchorage - State Fish & 
Game' 7.9 272.64 360 0 

2107 'Denali, Alaska' 2002 'Carlo (temp)' 7.9 49.94 963.9 0 

2108 'Denali, Alaska' 2002 
'Eagle River - AK Geologic 
Mat' 7.9 246.25 274.5 0 

2109 'Denali, Alaska' 2002 'Fairbanks - Ester Fire Station' 7.9 139.27 274.5 0 

2110 'Denali, Alaska' 2002 
'Fairbanks - Geophysic. Obs, 
CIGO' 7.9 140.71 424.8 0 

2111 'Denali, Alaska' 2002 'R109 (temp)' 7.9 42.99 963.9 0 
2112 'Denali, Alaska' 2002 'TAPS Pump Station #08' 7.9 104.16 424.8 0 
2113 'Denali, Alaska' 2002 'TAPS Pump Station #09' 7.9 53.01 382.5 0 
2114 'Denali, Alaska' 2002 'TAPS Pump Station #10' 7.9 0.18 329.4 1 
2115 'Denali, Alaska' 2002 'TAPS Pump Station #11' 7.9 126.4 376.1 0 
2116 'Denali, Alaska' 2002 'TAPS Pump Station #12' 7.9 164.66 338.6 0 
2117 'Denali, Alaska' 2002 'Valdez - Valdez City Hall' 7.9 239.28 338.6 0 

2118 'Denali, Alaska' 2002 
'Valdez - Valdez Dock 
Company' 7.9 239.52 659.6 0 

3548 'Loma Prieta' 1989 'Los Gatos - Lexington Dam' 6.93 3.22 1070.3 0 
3549 'Northridge-01' 1994 'Monte Nido Fire Station' 6.69 15.46 659.6 0 

3550 'Northridge-01' 1994 
'Loma Linda; VA Hospital, 
North Freefield' 6.69 112.32 274.5 0 

3551 'Northridge-01' 1994 
'Loma Linda; VA Hospital, 
South Freefield' 6.69 112.31 274.5 0 
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