
1

Alma Mater Studiorum � Università di Bologna

DOTTORATO DI RICERCA
in Ingegneria Elettronica, Informatica e delle Telecomunicazioni

Ciclo XXI

Settore scientifico disciplinare di afferenza: ING-INF/05

PRINCIPI, METODOLOGIE E PROGETTO
DI MIDDLEWARE PER SERVIZI CONTEXT-AWARE

UBIQUITOUS INTERNET MIDDLEWARE:
ARCHITECTURE DESIGN AND PROTOTYPE EVALUATION

Presentata da: Samuele Pasini

Coordinatore Dottorato Relatori

Chiar.ma Prof. Ing. Paola Mello Chiar.mo Prof. Ing. Maurelio Boari
Chiar.mo Prof. Ing. Antonio Corradi

Esame finale anno 2009

2

Keywords

Ubiquitous Internet

Distributed services

Middleware

Composition

Orchestration

3

4

Contents

Introduction..13

Chapter 1 – Generalities...17

1.1 Aim of the work...20

1.2 Guidelines..22

Chapter 2 – Architecture..27

2.1 Component model..27

2.2 Overall mechanisms...31

Chapter 3 – Resource Reification Model...37

3.1 Session management..42

3.2 Context-awareness ..48

Chapter 4 – Integration Facilities...51

4.1 Multimodal interfaces..53

4.2 Multiple interaction paradigms..56

4.3 Multichannel content adaptation and delivery.......................................59

Chapter 5 – Business Process Management...63

5.1 Resource composition..64

5.1.1 Composition model..65

5.1.1.1 Templates...65

5.1.1.2 Static metadata attributes and dynamic conditions................68

5.1.1.3 Scenario requirements..68

5.1.1.4 Composability expressions and domains...............................69

5.1.1.5 Roles...71

5.1.1.6 Scores...73

5.1.2 Composition calculus...74

5.1.2.1 Representation..75

5.1.2.2 Evaluation...79

5.2 Process orchestration...82

5.2.1 Parameter resolution..84

5.2.2 Result passing..89

5.2.3 Automatic reconfiguration...90

Chapter 6 – Related Work..93

6.1 Session...93

6.2 Context...95

6.3 Multimodal and multichannel access...96

6.4 Standard tools for enterprise integration ...97

6.5 Models for service composition...98

Chapter 7 – Prototype Implementation..103

7.1 Intercommunication, container and registry levels..............................103

5

7.2 Engine level...105

7.3 Integration and support facility level...108

7.4 Resource proxies..109

Chapter 8 – Some Scenarios...111

8.1 Campus Web site ..111

8.1.1 Notification of news availability ...114

8.1.2 Scheduled content aggregation delivery......................................116

8.1.3 Web content adaptation..117

8.2 Personal podcast channel...121

8.3 Middleware configuration...126

8.3.1 Resource proxy registration...128

8.3.2 Creation of a novel resource composition...................................129

Chapter 9 – Performance evaluation..135

9.1 Coordination overhead...135

9.2 Scalability..138

9.3 Memory occupation...139

Conclusions..145

Acknowledgments..149

Publications..151

Bibliography...153

6

Illustration Index

Illustration 1: Proxy adaptors enable resource integration...............................25

Illustration 2: A sample workflow to realize content transformation and

delivery...26

Illustration 3: Middleware architecture..29

Illustration 4: Example of metadata exposed by a proxy.................................34

Illustration 5: A text synthesizer service proxy, and a streaming server one...35

Illustration 6: A news service proxy, and a Web browser one.........................36

Illustration 7: Resource Reification Model..39

Illustration 8: Reification of a voice synthesis service.....................................40

Illustration 9: An RSS reader proxy leveraging session to read and store

information...44

Illustration 10: Different scopes of session information..................................45

Illustration 11: Session scopes for the streaming server in the Arianna example

..46

Illustration 12: Session scopes for the playlist manager in the Arianna example

..47

Illustration 13: Context exploitation within a business process.......................49

Illustration 14: Integration facility level...51

Illustration 15: Syntax labeling..55

Illustration 16: Interaction module behavior..58

Illustration 17: Multichannel content adaptation..59

Illustration 18: Composition templates..66

Illustration 19: Actualization of composition templates..................................67

Illustration 20: Reuse of composition templates..67

Illustration 21: Main template and scenario requirements for the "News by

SMS" application..69

Illustration 22: Different templates, same roles...72

Illustration 23: Overall schema for the composition calculus..........................75

Illustration 24: Invoking configuration, execution, and deconfiguration

methods on resource proxies within a business process...................................83

Illustration 25: RSS service proxy interacts with middleware via the Request-

only Interaction Module to demand the orchestration of "RSS to SMS"

workflow..84

Illustration 26: Middleware implementation technologies.............................104

Illustration 27: Graphical user interface for middleware configuration.........113

Illustration 28: Different configurations of the same resource proxy in

different business processes to perform publish/subscribe interaction..........115

Illustration 29: RSS to SMS Workflow..116

7

Illustration 30: Scheduled content aggregation and delivery.........................117

Illustration 31: Web content adaptation (GPRS case)....................................119

Illustration 32: Web content adaptation (Wi-Fi case)....................................120

Illustration 33: Web identification...121

Illustration 34: Personal podcast channel...123

Illustration 35: Podcast subscription with iTunes..124

Illustration 36: Access to the personal podcast channel via a traditional Web

browser...125

Illustration 37: Activity interception to command workflow orchestration...127

Illustration 38: Activity interception to command resource proxy registration

..128

Illustration 39: Resource proxy registration by means of a Web application 129

Illustration 40: Activity interception to create a novel resource composition

..131

Illustration 41: Choice of configuration parameters for a novel resource

composition..132

Illustration 42: Result of the creation of a novel resource composition.........133

Illustration 43: Web content adaptation burst requests, average serving time

..137

Illustration 44: Elapsed time to perform run-time parameter resolution........139

Illustration 45: Memory usage in case of non-overlapping podcast requests 141

Illustration 46: Memory usage in case of partially overlapping podcast

requests...142

Illustration 47: Memory usage in case of request burst-cycles, and in case of

no request...143

8

Listing index

Listing 1: Sample of service metadata...76

Listing 2: Sample syntax rules for producer and consumer roles....................78

Listing 3: Simplified scenario requirements description..................................78

Listing 4: Example of score definition...79

Listing 5: Imperative formulation for the composition calculus......................80

Listing 6: Metadata for execution method of the RSS reader service..............86

Listing 7: Metadata for the execution method of the text synthesis service....87

Listing 8: Metadata for monitoring characteristics..91

Listing 9: Workflow sample, written in jPDL language................................106

9

10

11

12

Introduction

Technology advances in recent years have dramatically changed the way

users exploit contents and services available on the Internet, by enforcing

pervasive and mobile computing scenarios and enabling access to networked

resources almost from everywhere, at anytime, and independently of the

device in use. In addition, people increasingly require to customize their

experience, by exploiting specific device capabilities and limitations, inherent

features of the communication channel in use, and interaction paradigms that

significantly differ from the traditional request/response one.

So-called Ubiquitous Internet scenario calls for solutions that address

many different challenges, such as device mobility, session management,

content adaptation, context-awareness and the provisioning of multimodal

interfaces. Moreover, new service opportunities demand simple and effective

ways to integrate existing resources into new and value added applications,

that can also undergo run-time modifications, according to ever-changing

execution conditions.

Despite service-oriented architectural models are gaining momentum to

tame the increasing complexity of composing and orchestrating distributed

and heterogeneous functionalities, existing solutions generally lack a unified

approach and only provide support for specific Ubiquitous Internet aspects.

Moreover, they usually target rather static scenarios and scarcely support the

dynamic nature of pervasive access to Internet resources, that can make

existing compositions soon become obsolete or inadequate, hence in need of

reconfiguration.

This thesis proposes a novel middleware approach to comprehensively

deal with Ubiquitous Internet facets and assist in establishing innovative

application scenarios. We claim that a truly viable ubiquity support

infrastructure must neatly decouple distributed resources to integrate and push

any kind of content-related logic outside its core layers, by keeping only

13

management and coordination responsibilities. Furthermore, we promote an

innovative, open, and dynamic resource composition model that allows to

easily describe and enforce complex scenario requirements, and to suitably

react to changes in the execution conditions.

In this thesis, we present middleware design principles and key

architectural aspects that permit effective Ubiquitous Internet support. We also

provide implementation details and description of typical use cases we have

been able to realize, in time, to demonstrate viability of our proposal. Thesis is

structured as follows. Chapter 1 introduces aim of the work and guidelines we

have considered. Chapter 2 illustrates foundational concepts behind our vision

and it introduces the architectural model our work bases on. Chapter 3 deepens

the analysis of aspects entailed by the integration of distribute heterogeneous

resources, and describes management, communication and interoperation

facilities our solution provides. Chapter 4 concentrates on middleware

components that pursue effective resource integration and demonstrates how

our platform enables support to multiple interfaces, multiple user-service

interaction paradigms and suitable content adaptation, while helping to keep

problems orthogonal. Chapter 5 points out resource composition challenges

we have faced and the composition model we have developed in response,

stressing activity orchestration issues in actual business processes as well as

the need for dynamic and automatic reconfiguration of resource compositions

to fit all-changing scenario requirements. Chapter 6 reports extensive

investigation of current attempts to orchestrate computational activities from

both final users and services and highlights relevant issues concerned with the

Ubiquitous Internet scenario; we propose comparisons between our solution

and related work and draw on both current achievements and limitations to

motivate our approach. Chapter 7 presents middleware prototype

implementation characteristics and debates about technologies we have

leveraged and scalability issues. Chapter 8 depicts actual scenarios we have

realized over time and shows how we have been able to enforce middleware

mechanisms for the sake of administration of middleware itself, by exposing

14

its core functionalities as ordinary resources to orchestrate. Chapter 9

evaluates prototype performance, overhead, and scalability, Finally,

Conclusions summarize design principles and architectural achievements and

indicate future research directions.

15

16

Chapter 1 – Generalities

Over the last few years, new heterogeneous types of wireless networks

and new kinds of devices able to exploit them have become more and more

inexpensive and available. Compared to late 70s, when mobile and networked

notebook appliances were just “research directions” [Kay77], people have

nowadays a plethora of information processing devices at their fingertips and

can reach and interact with remote contents via many communication links.

We all now own and carry things like mobile phones, handheld devices,

personal computers, digital TV set-top-boxes or portable media players, and

they exchange data among each other and/or with remote servers through

several connection types such as Bluetooth PAN, wired/wireless LAN, ADSL

or WiMax powered WAN or even UMTS and satellite links.

Even though today scenario seems to be the result of several

concurrent driving factors, connected to both Internet achievements and

technological improvements, the overall goal turns out surprisingly clear right

from the start. As Alan C. Kay wrote in 1972, talking about a Xerox project at

that time:

“... Though the Dynabook will have considerable local

storage and will do most computing locally, it will spend

a large percentage of its time hooked to various large,

global information utilities which will permit

communication with others of ideas, data, working

models, as well as the daily chit-chat that organizations

need in order to function. The communications link will

be by private and public wires and by packet radio. ...”

[Kay72]

From those times on, technology has evolved and eventually almost

fulfilled also Mark Weiser's foundational vision for ubiquitous computing: an

environment saturated with pervasive computing and communication

capability, yet so gracefully integrated with users that they slightly become

17

unaware of it, letting computers fade in the background and not demand

attention [Wei02].

Even if today machines cannot truly make computing an invisible part of

life, devices are little by little integrating with several aspects of the natural

human environment. Thus, thanks to a wider and wider set of computing

hardware and network infrastructures, users can now exploit remote contents

and services almost from anywhere and at anytime and, furthermore, they can

experience augmented-life scenarios by combining real-world needs with

online-world possibilities. Not only literature [Hen02][Int02][Joh02] but also

current reality presents plenty such scenarios: trains are full of laptop users

surfing the web or doing instant-messaging, and people buy GPS-enabled

mobiles that can leverage online maps and location-based information.

So-called Ubiquitous Internet actually represents a great chance to

provide highly customized services to further enhance user satisfaction and

create new service opportunities. Its evolution towards a global platform for

the retrieval, combination and utilization of rich resources is clearly gaining

momentum, and relevant applications have been emerging over the last few

years [GMaps][Wiki]. Nevertheless, this also entails great challenges, due to

different client device capabilities, context conditions and modifications,

session management, and software integration issues [Sat01][Sah03].

Providing and consuming services via the Internet still is at its early stage and

lacks widely accepted standards for defining service choreographies and

semantics. Ultimately, this has prevented global meshes of collaborating

Internet resources to appear [Sch07a].

In the fields of Business-to-Business (B2B) and Enterprise Application

Integration (EAI), Web Services have experienced great interest as means to

realize seamless cross-organizational collaborations, by basing on the

principles of Service-Oriented Architectures (SOAs) [Alo03a][SOA]. But on

the global side, apart from inflexibility and performance problems, service

mashups also suffer from the absence of effective platforms to allow for both

human interaction and service composition, able to consider people as “part of

18

the system” [Chr02]. Focus on user-empowerment and the consideration of the

Web as a platform for building systems will certainly facilitate the

establishment of global service-orientation, but in the Internet of today users

are not usually enabled to draw on more than one “resource” at a time. For

instance, iGoogle pages [iGoogle] just represent a first intuitive attempt for a

mashup platform, as they base on mere content syndication and limited

application functionalities. Very few examples exist that try to enable resource

processing and choreography for the (skilled) final users [Pipes][Kapow],

though producing “information islands” and applications that are mostly

accessible via proprietary portals, rather than actual integration [Sch07b].

In 2005, Tim O'Reilly invented the term Web 2.0 to describe these kinds

of scenario, where a set of Web-based applications are “tied together by a set

of protocols, open standards, and agreements for cooperation” [Rei05]. Högg

et al. deeply investigate the business model of forty Web 2.0 applications in

[Hog07], concluding that they maximize intelligence and added value by

means of formalized and dynamic information sharing and creation. Indeed,

while conventional SOAs merely aim at interconnecting dispersed business

functionalities and facilitating seamless machine-to-machine collaboration,

Web 2.0 applications also incorporate human interaction and social aspects,

and deal with human-readable content, such as text and pictures.

Both SOA and Web 2.0 enforce reuse and composition of existing

resources and promote collaboration of loosely coupled remote services.

Despite issues about interoperability and how to model human-intervention,

convergence of the two philosophies actually does represent the driving force

for the growth of future global SOAs, constituting what is being called the

novel Internet of Services (IoS) [Sch07c]. So far, such a complex and evolving

scenario is being pioneered by several innovative applications and

development guidelines, still leading to ad-hoc solutions and heterogeneous

ways of facing similar problems several times. Initiatives like Google Mashup

Editor [Mashup], for instance, force programmers to mandatorily adopt given

technologies to develop services (i.e., AJAX [Gar05]), while framework

specifications such as Sun Microsystems Portlet [Pat05] still lack integration

19

among features they let syndicate. And still final users have to adapt to system

behavior to get their 2.0 experience.

1.1 Aim of the work

In our opinion, no matter how powerful the integration platform in use

theoretically is, few key elements are crucial to achieve effectiveness in

making global resource mashups. First of all, final users must be kept unaware

of what is going on behind the scenes: system must support all interaction

paradigms they wish to follow – maybe due to personal preferences or

terminal capabilities – and not oblige them to behave in a constrained manner.

Secondly, developers life should become simpler, rather than more

complicated: the business logic they want to pursue is usually complex enough

and they certainly do not approve the learning of other software layers.

Software infrastructures that enable our modern information society

have to foster the conception, development and provisioning of application

scenarios wherein services can meet user requirements in highly efficient and

transparent ways, according to preferences that user themselves express or that

depend on the inherent nature of the desired interaction type, as well as on

current device capabilities and other physical and computational environment

information. To tame the growing complexity that such a pervasive computing

scenario entails, final users and services that are available via the Internet must

remain as much as possible independent of each other. Intermediate software

layers, often called middleware [Ber96], must intervene to decouple different

resources that need to cooperate, in order to consistently and comprehensively

tackle the problems that Ubiquitous Internet raises.

From a technical perspective, most challenging issues that Ubiquitous

Internet middleware has to address stem from the concepts of mobility and

heterogeneity.

On the one hand, mobility is a fundamental characteristic of modern

Internet scenarios: users no longer exploit services only via their desktop PCs

20

over wired network connections, but demand access via multiple devices,

often free to move in space and to connect through different moments in time

and different network infrastructures. Providing effective services to this kind

of users must adapt to ever-changing device capabilities, as well as take into

consideration relevant and dynamic information from their surrounding

physical and computational context (e.g., geographical location and available

bandwidth). Besides, the opportunity to grant service access to mobile devices

also requires suitable session management to avoid users loose information

and experience inconsistencies when changing device in use or network

address.

On the other hand, heterogeneity relates to intrinsic differences that

different types of terminal present in terms of interfaces they provide of users,

allowed interaction paradigm, and support of media. To give a short example,

getting information of one bank account by visiting the bank Web site via a

traditional browser, rather than by performing a phone call to an automatic SIP

server extension, can actually consist in leveraging the same bank Web

Services, though accessed in extremely different ways. HTTP requests from

the browser can convey multiple parameters at once and get complex data in

response, such as HTML tables and graphics; on the contrary, phone calls are

typically served with nested multiple choice selection menus and they have to

cope with them by dialing tones in the correct order, to get limited but detailed

information in a voice-synthesized form.

We also claim that support for a given application scenario must not be

perceived and considered as some kind of static facility, obtained as the result

of human “manual” intervention and programming on the middleware

platform. In order to let final users express highly customized preferences and

to support dynamic changes in their requirements, middleware must provide

mechanisms to deterministically adapt service provisioning to possible varying

conditions, hence support automatic reconfiguration.

Final users must be able to specify different means and devices to access

desired services, either by indicating explicit choices or by leveraging

21

middleware capabilities to detect their status and to react properly. Given the

current operating conditions and available services, middleware must arrange

most suitable type of interaction, content processing and result delivery to

satisfy user needs.

Resource integration therefore can only happen in the form of

composition of pieces of business logic that altogether define a business

process to model the given application scenario, and in the orchestration of

that process to accordingly exploit the resources that it entails. Anyway,

manual definition of suitable business processes cannot be a solution to

Ubiquitous Internet challenges by any means; rather, automatic calculation of

such processes is inherently necessary to leverage pervasive computing

opportunity to provide value-added services without negative impact on final

user experiences. As long as middleware executes autonomously, users can

concentrate on their very goal in service exploitation as well as developers can

focus on service core logic and undertake little or no additional complexity.

1.2 Guidelines

In a world of pervasive Internet access, people connect with

heterogeneous devices and exploit several services, simultaneously in case.

Besides, wireless infrastructures let them move freely in space, so that their

physical and computational surrounding environment changes continuously.

For instance, in a near-tomorrow scenario, university student Arianna has just

subscribed to an Internet music service that lets her specify the genre and

mood of the songs she would like to listen to and automatically creates a track

playlist for her (alike today's Musicovery [Musicovery]). At the university

campus, Arianna can exploit free Wi-Fi network coverage to access the

service; thus, today she's studying with her earphones on, attached to her

smartphone playing online music. Bandwidth is high and the service lets her

download contents coded at an elevate bitrate. Later in the afternoon, she

decides to go shopping downtown. On her way there, she can keep on

listening to music on the smartphone 3G connection; system recognizes that

22

and reacts by downsizing content bitrate. Back to her student room, she

switches on her PC, stops her playlist on the phone and resumes it on the

computer, by sending audio to quality speakers. Arianna never stops listening

to music nor has to reconfigure things, despite changes in network connection

and device she uses. Just as with the mythological red fleece thread of

Ariadne, her status and conditions never get lost. Finally, as service plays a

song she's particularly fond of, Arianna can leverage the instant messaging

service that integrates with the music one to invite one of her online friends to

listen to the same song, having the system send data flow to him too.

To tell the truth, this scenario and similar ones are not so distant in

future. It is already of no difficult to develop one player per device and a

server able to deliver and keep status of song playlists. And desired bitrate

may come from one of different song versions or via real-time conversion, and

depend on the round-trip time of out-of-band control signaling. And instant

messaging user status (e.g., on-line, off-line, busy) may depend on

reproduction status (on, off, paused). And data flow forwarding for sharing

songs may exploit the same packet circuits already reserved by the instant

messaging service. And on, and on, and on. Problems arise, anyway, when it

comes to maintain such a system, or add functionalities, or bring existing ones

to new kinds of device. As long as scenarios get complex, it is simply

unconceivable to let remote services and client software interact directly.

We claim that a truly viable and comprehensive infrastructure for

Ubiquitous Internet support must follow a middleware approach [Ber96] and

decouple distribute resources that application scenarios involve, to relieve

them of the burden of integration. On the one hand, heterogeneous

users/clients must be able to access heterogeneous contents/services without

worrying about how to invoke each one and how to explicitly influence their

behavior; on the other hand, service developers must concentrate only on

service business logic, disregarding how users will exploit services to fit their

requirements. In other words, final users must be prevented from tedious

manual configuration and, at the same time, service developers must not be

23

concerned with user monitoring and profiling issues or mutual service

integration and orchestration problems.

We strongly promote the idea of modeling novel Ubiquitous Internet

applications in terms of arbitrarily complex business processes, where a

distributed and intermediate software layer is in charge to compose resources

involved in computation by orchestrating their execution, while providing

them with suitable integration facilities.

At the same time, we also argue that complexity and potential relations

among different aspects in content processing within the Ubiquitous Internet

scenario definitively require a unified perspective approach, in order to keep

things as clean and simple as possible, to avoid unnecessary interdependencies

and, vice versa, to highlight similarities and unifying abstractions in

supporting those aspects. Most current middleware solutions, instead, just

focus on providing dedicated features that services and client applications can

exploit to face content transformation and aggregation, as well as profiling or

monitoring [VoiceXML][Opera]. But as a matter of fact, when the number of

functionalities increases and functions have to interact with each other,

traditional middleware complexity inevitably grows, making this approach

inadequate for facing general application domains. On the contrary,

middleware infrastructure should facilitate and reduce resource responsibilities

and dependencies, hence promote the concept of disappearing computing and

integration.

In our vision, we model both human activities (endorsed by

heterogeneous client-side applications) and distributed services (regardless of

their implementing technologies) in terms of resources we conceive as

abstract functionalities we can leverage and provide facilities. This permits to

highlight similarities among diverse entity types and to adopt uniform and

established ways of representing them within our system.

In particular, we overcome mobility and heterogeneity by means of a

well defined resource behavior and lifecycle model. We claim that proxy

adaptors represent the solution to enforce this model, by making resource

24

adhere to it via the execution of proxies themselves, and by supplying

additional integration features. As Illustration 1 shows, we leverage proxy

adaptors to deal with uniform representations of possibly remote and

heterogeneous objects to orchestrate; by means of proxies, then, we provide

those objects with effective and always available status information and

communication capabilities.

Besides, we simplify middleware design by endorsing a powerful task

delegation strategy that assigns any kind of content-related activity to

resources themselves, and leaves to the middleware platform the sole

responsibility for their composition, orchestration and management. In details,

we adopt workflow entities and related patterns [Aal03][Rus08] to gather

computational resources into coherent and structured activities that can model

concrete Ubiquitous Internet scenarios. Workflow execution represents

nowadays a well-established and appreciated practice for organizing

distributed functionalities into flows of operations made up of both business

logic and control blocks, able altogether to achieve well-defined goals such as

those pursued by the business processes in distributed Internet applications.

Illustration 2, below, demonstrates this by arranging diverse resource

functionalities, via their corresponding proxies, into a workflow structure that

enables content transformation and delivery through different communication

channels.

25

Illustration 1: Proxy adaptors enable resource integration

26

Illustration 2: A sample workflow to realize content transformation and delivery

Chapter 2 – Architecture

Our approach to support Ubiquitous Internet issues strongly relies on the

idea to disappearingly integrate final user activities and available distributed

services into coherent resource compositions, by means of a middleware

coordination platform. At the same time, we abstract resource heterogeneity

by means of managed proxy adaptors to potentially introduce any kind of

additional integration functionality that business processes from actual

application scenarios may require.

By means of proxy-based resource management, we relieve service

developers as well as final users of the burden of software integration and let

them concentrate on their own needs. Furthermore, thanks to the central role

played by our platform in the orchestration of business processes, we endeavor

support for changes in user requirements and service conditions in seamless

ways, enabling dynamic reconfiguration of their business processes and

automatic selection of the resources that participate in them.

2.1 Component model

Most current middleware solutions adopt a layered architectural model

and focus on enriching the middleware itself with dedicated features that

services and users in turn exploit to face mobile and pervasive computing

challenges. But when the number of such features increases, and perhaps they

need to interact with each other, middleware complexity inevitably grows,

making this approach inadequate for facing the wide domain of Ubiquitous

Internet support.

In our opinion, the only viable approach for dealing with increasing

complexity consists in simplifying middleware design by leaving it only the

core of management and coordination functions, and by moving ubiquity

feature logic outside its layers. As a result, the middleware architecture we

propose still adopts a layered model, because of the clear definition of

27

dependencies that it provides, but it permits to simplify the middleware itself

by applying a pattern of delegation.

We introduce entities, the proxies, that are responsible for modeling

mobile and heterogeneous resource diversity and to provide a unified lifecycle

management model; then, we exploit the well-established resource

representation that proxies provide to delegate to such kind of non-middleware

pieces of business logic all of the content-related activities (e.g., generation,

transformation, adaptation, delivery, ...) that otherwise would lead to

middleware sophistication. Middleware role hence becomes that of abstracting

actual resource distribution and enforce business processes that entail those

resources, to pursue the desired Ubiquitous Internet scenarios. By doing so,

middleware offers to resource proxies a suitable (but minimal) set of facilities

that can overcome mobility and heterogeneity problems, and it provides for

effective means of describing resource proxy functional and non-functional

characteristics, in order to enable automatic composition of those proxies into

business processes that can fit the scenario requirements.

In the following, we report the general architecture schema of our

middleware solution (Illustration 3).

28

Middleware components divide into separate levels of responsibility,

dedicated to well-define and effectively face the diverse aspects of resource

communication, management, and coordination. The different parts in the

depicted architecture can be briefly described as follows, whereas the most

relevant ones, providing resource integration and support facilities, will be

stressed in the following Chapters, by deepening the analysis of innovative

concepts and design principles they base on. In details:

� Resource level: resources can be distributed services that are available

over the Internet as well as applications running on client devices,

sensors, legacy appliances, or whatever;

� Proxy level: proxies enable resource management and exploitation by

the middleware and grant access to its support and integration

facilities;

29

Illustration 3: Middleware architecture

� Support facility level: middleware maintains context and session

information that are always available for direct use by the proxies;

� Integration facility level: resource interaction with middleware

business processes and resource orchestration are both enabled via

software components that middleware can dynamically plug-in and

exploit to support application scenarios;

� Engine level: engine components provide implementation of

functionalities that are exploited by higher level middleware parts, to

face the issues of resource and business process management and

actuation;

� Registry level: registries maintain the knowledge basis for engine

operations;

� Container level: typical features of SOA frameworks are usually

provided out-of-the-box by the run-time execution environment, often

called the container.

� Intercommunication level: facilities such as remote method

invocation, clustering, caching, marshaling, and more, help

masquerading actual resource and middleware component distribution.

On top of traditional SOA mechanisms, we conceptually model,

represent, and maintain within registries, all pieces of information that

characterize current resource composability requirements (Template and

Expression Domain Registries), status (Resource Registry), relations

(Mapping Domain Registry), and formats of data they exchange with

middleware (Syntax Registry). Registry components have the sole

responsibility of providing the knowledge basis that enable higher level

operations.

Engine components, instead, implement the middleware logic that deals

with resource lifecycle management (Reification Engine), composition into

business processes (Composition Engine), and invocation according to those

30

processes (Orchestration Engine). Besides, engine level (i.e., the

Normalization Engine) also provides means to normalize the heterogeneous

information that resources communicate to middleware, by translating them to

commands that middleware itself can understand.

Integration facilities come in the form of two different flavor of

pluggable middleware components. Interaction Modules and Workflows,

respectively, enable resource interaction with middleware-aided business

processes and model middleware orchestration of resource-provided logic (in

both cases, via their corresponding proxies).

Support facilities are available for direct use by the proxies, via a

suitable middleware Application Programming Interface (API), in order to

provide them with reliable and effective management of both Context and

Session information;

Finally, Resources represent virtually any kind of functionality that

middleware is able to manage, compose and orchestrate to foster Ubiquitous

Internet application scenarios. Middleware interaction with each resource,

anyway, is always mediated by its corresponding Proxy, to grant uniform

representation and consistent lifecycle management, for the sake of business

process modeling and enacting.

2.2 Overall mechanisms

By adopting our architectural model, developers of both client and

service software are left free to concentrate on their specific goals, whereas the

opportunity to proxy actual computational resources can introduce support for

all Ubiquitous Internet issues to consider. Furthermore, this permits

integrating also existing client applications and legacy services. For instance,

it is possible to intervene on communications from existing browsers via

traditional HTTP proxies, to save session information or enable content

adaptation, say, to fit current bandwidth; similarly, suitable proxies can

mediate requests towards legacy services to enforce specific user preferences

or to parametrize them by exploiting middleware-provided information.

31

This allows to focus the attention on orchestration design, and shifts

complexity from the programming of distributed software modules that have

to integrate with each other to the sketching of the overall business process

they will be involved in. According to this approach, business process

architects must draw on resource capabilities to orchestrate suitable business

processes; then, provided the role and facilities that proxies can play,

architects assign to proxy developers the tasks needed to accomplish their

vision. Dealing with existing resources, proxies will pursue integration of

legacy assets according to middleware requirements and the described

middleware support features; instead, when developing brand new resource

types, proxy developers will be able to state their syntactical and semantical

behavior and have other programmers apply on it. Finally, to enable final users

to become architect of their own resource choreographies too, middleware

platform offers simple means to make proxies work together in business

processes and have those business processes run, either on middleware or on

non-middleware components initiative.

Aside already mentioned proxies, we therefore introduce and leverage

additional middleware functionalities to act as glue that makes pieces get

along together, keeping at the same time things clean and responsibilities

separate, to avoid unnecessary interdependencies. By adhering to definition in

[Ber96], they constitute the “general purpose software that sits in between,

providing functionalities and facilities that do not tie to any particular

scenario” and that “is not an application itself or a specific-purpose service”.

In details, the middleware architecture we propose provide means to formally

define what a business process is, the goals it pursues and the constraints it has

to satisfy, the kind of workflows it entails and the actual resource proxies that

take part in them. It permits automatic selection and configuration of the

resource proxies to involve in the process and grants safety, by avoiding

incompatible resources to be arranged together. When orchestrating a process,

then, middleware infrastructure performs resolution of resource proxy

invocation parameters, and it enables and supervises message passing among

32

cooperating proxies. At the same time, middleware monitors process status

(e.g., resource availability, context and session information) and it reacts to

changes that dissatisfy requirements that have driven its definition. Finally, it

provides means to expose workflows of existing business processes as

convenient facilities that other resources and processes can invoke, in turn.

We maintain, anyway, that middleware intervention must not be

intrusive: neither in terms of the supplied API and the explicit dependencies in

code that it entails, nor as far as the set of interaction paradigms that it

supports. In our opinion, middleware has not to drive service development,

and not even to force behavior of the final users. That is why our system

totally disappears in the background, coordinating and orchestrating resources

that can be completely unaware of the overall business process they are

participating: by supporting communications and by providing integration

facilities that achieve location transparency we abstract the actual distributed

processing environment to resources that we let compose.

For instance, context information in Illustration 3 is made seamlessly

available to all resource proxies of a business process no matter their actual

location, as well as means to accept requests for the execution of one business

process do not depend on the location of resources involved in that process. As

for proxy development, then, we provide simple session and context

management API, but do not oblige proxy themselves to implement any other

particular programming interface. Rather, we enable integration by means of

metadata that proxy developers can provide to describe features, constraints,

dependencies and so on (Illustration 4). Finally, thanks to metadata again, we

let proxies associate methods they expose to moments of their lifecycle, as

managed by the middleware, and map invocation arguments to values that our

system can resolve and provide as actual invocation parameters.

33

Involvement of resource proxies in business processes, to realize

arbitrarily complex Ubiquitous Internet scenarios, is a consequence of defining

workflows that entail invocations of their methods and result passing among

them. From their own point of view, proxies are not aware of being interacting

with other resource proxies, and not even of being part of any business

process.

When playing a servant role, proxies just perceive invocation by some

external client that they can serve by exchanging messages with. As

Illustration 5 reports, this is typically what happens with services like a text-

to-voice synthesizer or a media file streaming server. The former one, indeed,

is clearly a stateless service that supports one-shot request/response message

exchange pattern, returning synthesis results upon input arguments; it does not

really matter who is requesting service and who will further process its results.

The latter one is instead a stateful and connection-oriented service that enables

streaming on-demand; middleware orchestration simply makes this possible

by commanding its proxy appropriately. It has to be observed that establishing

direct connections with clients to download media is inherently part of the

streaming server core business logic. There is maybe a subtle distinction

between proxy direct interaction and resource direct one, but it is crucial to

understand this as a key element to achieve expressiveness and separation of

concerns. While proxies have to be kept separate and decoupled, offered

simple API when necessary and disappearingly integrated with each other,

34

Illustration 4: Example of metadata exposed by a proxy

resource interaction is instead sometimes strictly necessary and useful and

cannot be avoided: on the contrary, it has to be effectively enabled by the

middleware.

From a totally different perspective, resource proxies that play active

roles in processes do not need direct interaction too. This is what happens, for

instance, with a news service that causes sending of SMS messages, or with a

browser requesting customized news pages. Middleware has only to expose

suitable ways of enacting workflows of the desired processes, to support the

diverse interaction paradigm that proxies can leverage. As Illustration 6

shows, news service is not interested in results: it just needs one-way message

exchange facilities towards the middleware; middleware, in turn, evaluates its

message content and enacts a workflow from a business process able to

convert news, say from RSS to SMS format, and perform delivery via an

available SMS gateway. Conventional browsers, instead, adopt a

request/response message exchange pattern, and wait for results. And

obviously, there could be also scenarios that expect conversational patterns,

connection-oriented simplex, duplex, and publish/subscribe ones, and many

others [MomentumA][Gor05].

35

Illustration 5: A text synthesizer service proxy, and a streaming server one

Rather than modeling and supporting as many interaction paradigms as

possible a priori, we argue that middleware must be extensible and provide

pluggable means of exposing business process workflows, and allow support

for additional message exchange patterns in time. Besides, while still

considering middleware flexibility and extensibility as crucial requirements,

we also claim that composition and orchestration can actually disappear from

the user and service point of view, and become automatic, given the set of

business process goals and constraints to satisfy.

To deeply investigate workflow-based business process enactment and

metadata-based resource support that our system provides, following chapters

will stress conceptual model and mechanisms that demonstrate feasibility of

our approach. In details, Chapter 3 will stress lifecycle and management

model that middleware adopts to provide resource proxies with suitable

context and session support and to enable their participation in business

processes. Chapter 4, then, will deepen analysis of the integration facilities

that permit resource interaction with middleware business processes and

modeling of business process logic itself.

36

Illustration 6: A news service proxy, and a Web browser one

Chapter 3 – Resource Reification Model

We provide uniform representations of both client software applications

and services by introducing the notion of managed resource proxy, to abstract

on their different functionalities and conditions. In our vision, proxies are

nothing more than simple means to represent diverse entities that can show

analogies and be managed similarly.

The concept of proxies allows assembling elements of Ubiquitous

Internet applications in an easy and uniform way, just if they were LEGO®

blocks with well-defined characteristics. It does not matter whether they are

local or remote, stateless or stateful, available or not: by means of a resource

proxy we provide an object that can serve as an endpoint for sending data, to

identify the owner of other resources, and as a storage box for saving feature

descriptions and information on status. In our system, communications among

resources always happen via their proxies, and integration and composition of

resources is expressed in terms of integration and composition of proxies.

Besides, proxies undergo middleware management since they enable

lifecycle operations, according to a predefined Resource Reification Model

(RRM). In details, we adopt a 7-steps model that demonstrated to be highly

flexible and general: not forcing resources to adhere to it, but mapping to their

own lifecycle when due, or enabling additional configuration via their proxies

otherwise. Management takes place via the so-called Reification Engine

component of middleware Engine level; resource proxy characteristics are

then stored to the Resource Registry component in middleware Registry level.

Adhering to the 7-steps RRM depicted in Illustration 7 simply requires

resource proxies to support the following operations:

� Registration: publication to the system of resource metadata,

describing properties that are useful for integration purposes and for

resource involvement in real ubiquitous computing scenarios. From

this moment on, the resource is potentially available to the system for

37

orchestrating business processes that comprise it.

� Activation: loading and initialization of a proxy instance for that

resource, representing the endpoint to be used to communicate with it.

After activating, proxy instance conveys features such as location and

availability information of the actual resource, and provides concrete

implementation for its business interface.

� Configuration: behavior setup of a proxy instance for a specific

business process. Every single business process that middleware

orchestrates reserves (and binds to) a particular proxy configuration of

each resource it leverages. Resource proxy can directly enact

configuration on its corresponding resource, when supported, or permit

it by simply storing configuration information for use during actual

resource invocation.

� Execution: enactment of actual business logic that resource provides,

through its configured proxy, within a particular business process.

� Deconfiguration: discarding of a particular resource configuration;

this happens when the system discards the business process that was

reserving it.

� Deactivation: discarding of a particular resource proxy; this can

happen when no more business processes in the system reserve

configurations from that proxy and it always happens in case of failure

of the host where the proxy resides and/or in case of deregistration of

its corresponding resource (forcing passivation or reconfiguration of

the business processes that leverage it).

� Deregistration: deletion of resource metadata; performed in case of

resource unavailability or withdrawal by its provider.

38

By means of RRM, system can uniformly treat both users and services

as resources to manage and leverage by need, enabling a consistent and

uniform abstraction of business process participants.

For instance, providing a CORBA service that converts text to Mp3 files

is achieved by registering a resource that performs voice synthesis, as its

metadata describe (Illustration 8). Let's now assume that service is stateless,

that it can be parametrized in terms of language (influencing word

pronunciation) and bitrate quality, and that it is physically located on a

German server. Proxy instances can activate on any convenient system node,

optimizing business process communications and permitting message

reliability and retransmission even if remote service does not natively support

that. Furthermore, each proxy can provide different configurations for use in

different business processes, for instance “English@320kbps”, or

“Italian@160kbps”. As the business process that leverages the Italian

configuration needs to synthesize text, proxy stores and forwards its

request/response messages and commands the remote service according to its

39

Illustration 7: Resource Reification Model

stored configuration.

On the user side, browsers used to render an online newspaper page are

actually resources too. And, in particular, every new supported browser type is

a fully-fledged resource that can be registered to the system and perhaps

manipulated in terms of supported formats, display resolution, font size, and

so on. A user logging onto the newspaper site by means of such a browser

commands activation of the corresponding resource proxy. And since every

user can have different preferences, maybe depending not only on the browser

she's using (e.g., OperaMini [Opera] on her Mobile versus Mozilla Firefox

[Firefox] on her PC), but also on her current conditions (say the connection

type in use: e.g., Wi-Fi versus UMTS on the same mobile phone browser),

they can configure their proxies to behave differently in different business

processes. Each and every time a user request the online newspaper

homepage, the proxy she leverages executes and exploits its configuration to

format HTTP responses.

40

Illustration 8: Reification of a voice synthesis service

And what if the online newspaper would like to embed spoken versions

of its textual news? There you have a hint at what compositions of suitably

configured resources in different business processes can achieve.

It is worth insisting on the fact that RRM does not drive resource

characteristics, but it instead allows for them, by being as general as possible.

Resources that can maintain status and/or be configured are inherently

admitted, as Configuration step lets different business processes bind to proxy

objects that behave in different and customized ways (perhaps also

conversational or connection-oriented). In this case, proxy configuration

directly “maps” and “is forwarded” to the resource one. Stateless resources are

supported too: in case business processes need configuration, proxies will just

save configuration on their own and use it to parametrize actual resource

Execution.

Besides providing a powerful resource abstraction model, RRM also

enables fault tolerance and load distribution in simple ways. Indeed, model

does not describe a linear sequence of lifecycle steps – with one resource

traversing successive states after one another –, but rather it leads to a tree-like

generation process, that permits multiple reifications of the same resource as

well as the coexistence of reification trees from multiple equivalent resources.

To clarify this, every resource becomes available by means of its

metadata Registration event. Then, one or more resource proxies perform

Activation, possibly on different hosts, to concretely represent that one

resource in the system and enable communication with it. Resource inclusion

in business processes is possible by means of proxy behavior Configuration,

and the same proxy can provide different configurations in different processes.

Finally, configured resource proxies can perform Execution several times,

upon events, direct invocation or, simply, on their own. As long as the

referenced resource is available, system can optimize communication of

business processes and status management among different network nodes,

and even adopt strategies to migrate proxies and proxy configurations from

one node to another in case of local failures. Furthermore, model transparently

41

enables multiple equivalent resources being registered to the system. Every

such resource just provides its own metadata and system lets business

processes bind to the proxy of the most available one, on the basis of resource

availability information that proxy themselves provide.

3.1 Session management

To support complex and conversational communications, beyond simple

request/response message exchange, resources that cooperate within business

processes need to preserve status for the operations they are running.

Moreover, to let those processes span across time and distributed network

nodes, resources also need to establish interaction sessions and to maintain

information about them. Session, indeed, can be seen as “temporary

confederation of one or more parties” for performing “negotiated and

cooperative” activities [Mak94].

As an example, buying at an online shop via the browser consists in

successively adding items to an electronic shopping cart, and finally let the

remote shop application process it to calculate total costs, enact shipment and

update stock. Cart information is usually stored in server memory until order

is confirmed, aside information regarding active carts of other users. Every

browser, hence, can retrieve and modify its own cart by labeling request

messages with the session identifier it has initially agreed on with the server.

In this case, cart description and the identifier do represent the session

information that browser and server need to collaborate.

Managing session information, anyway, does not just support simple use

cases like that, but can actually empower much more complex scenarios.

Dealing with Ubiquitous Internet, for instance, also mobility problems arise

and integration of resources moving in space and time becomes harder. As a

matter of fact, business processes have to allow for device disconnection and

reconnection, possibly from different network addresses, and even for user

changing the device they use, while maintaining a consistent view of their

ongoing activities [Bel03]. Moreover, distributed and fault-tolerant SOA

42

implementations can expect several service replicas to provide the same kind

of service, perhaps varying the one to exploit on the basis of proximity,

availability or quality-of-service (QoS) constraints. For instance, back to

Arianna music service, it is clear that only suitable session management

permits mobility of both terminal (from Wi-Fi network to 3G connection) and

user/service resources (from her smartphone to her PC).

We strongly believe that as long as resources cooperate with each other

to realize complex scenarios, they also need facilities to deal with status of

their interactions and session information scoping to allow simultaneous use of

shared resources in multiple processes. For instance, suppose to let users

subscribe to a news service where they can choose any kind of RSS news

source and where messages are triggered at a predefined moment of day. Sure,

some kind of RSS reader is needed to retrieve RSS feeds from news sources.

Users who read news via dedicated applications (e.g., Mozilla Thunderbid

[Thunderbird]) can keep track of the news they already received via a text file

on their own device. In case they exploit some web interface to do so (e.g.,

Google Reader [GReader]), session can remain on the client device,

leveraging browser cookies. But what if users like to get new available feeds

via SMS messages? An hypothetical RSS to SMS converter resource has no

means to read past messages on the user phone before sending new ones, so it

must save session on its side, and maintain separate news histories for

different users! Actually, orchestrating business processes out of distributed

resources makes effective session management an absolutely crucial issue.

In our model, we leverage proxy entities to associate session information

with actual resources and we enforce proxy functionalities to retrieve this

information and use it in actual invocation of resource logic. For instance,

Illustration 9, below, demonstrates how proxy of the RSS reader service from

the previous example can leverage session for storing and reading relevant

information for its own execution. Besides, we impose no predefined

semantics on session information, but let resource proxy implementations free

of making the most suitable usage of system-provided session information,

either by forwarding it to final resources when supported, or by using it to

43

invoke session-agnostic resources accordingly otherwise.

By leveraging RRM, we enable session scoping support for resources

that are involved in different business processes. As Illustration 10 reports,

this is done by simply applying different session facilities to the different

proxy-related states that RRM entails:

� lifetime span: session information that “belongs to” and can be

“referenced by” all proxy instances of one resource. In other words,

information that is available for execution of business processes of all

activated and configured proxy instances for that resource.

� proxy instance: session information shared among business processes

that leverage configurations from one single proxy instance. Although

not relevant for the design of business processes, proxy developers are

encouraged to store here session information that is relevant for proxy

instance activation, so as to enable failover mechanisms.

� active configuration: session information that spans multiple

executions of the business process to which one single proxy instance

configuration belongs.

� current execution: session information that is valid only within a

single execution of the business process to which the proxy instance

configuration belongs.

44

Illustration 9: An RSS reader proxy leveraging session to read and store information

Examples apply to demonstrate approach achievements (Illustration 11

and Illustration 12). Let us consider Arianna story again, and the possible

distributed resources and session information that it entails. The “connect-and-

play” business process (or, better, “reconnect-and-resume-playback”)

obviously expects something like a streaming server that provides media files,

and a client-side software module connected to it that decodes stream. Then, a

remote playlist manager can enable mobility by holding playlist information

and commanding the legacy streaming server as a consequence. “Connect-

and-play” execution leads to connection establishment between media server,

client, and the playlist manager, to enable download and song playback.

Streaming server and the decoder module, in this case, have to connect with

each other directly, in order to manage data flow. Incidentally, notice that to

overcome problems like NATs, firewalls and alike, they can do that by

sending SIP signaling information through their proxies [Pan04]] and exploit

proxies themselves to traverse NAT, too.

45

Illustration 10: Different scopes of session information

Obviously, information that lets server and client keep the connection up

is only valid within the “current execution” of the “connect-and-play” process.

Instead, Arianna's preferences and the current song she is listening to are

pieces of information that are essential to resume playback, despite network

disconnection/reconnection and device change. In particular, playlist manager

keeps the latter one up-to-date, so that it can serve for playing resumption

upon every new reconnection; this is “active configuration” session

information, hence, for use by resources involved in successive “connect-and-

play” executions. Finally, the most general session scope is what enables

information sharing across same-resource proxies in different business

processes. In this case, streaming server proxies might be programmed to act

as members of IP-multicast groups. Thus, new friends of Arianna can join her

by means of the streaming server proxies that take part in their own “connect-

and-play” business processes, simply by having them access her IP-multicast

group information, located in the “lifetime span” session of proxies of the

46

Illustration 11: Session scopes for the streaming server in the Arianna example

unique streaming server resource they are about to share.

Two more things it is worth to highlight here. First of all, proxies and

the session model provide support for all kind of scopes and do not pose

constraints on the kind of session data that resources wish to use. There are no

predefined data format nor wrapping objects: session scopes are in all similar

to reliable tuple spaces where proxies can save interaction status. Secondly,

system does not impose the usage of a particular session scope. Proxy instance

implementations are free to choose the scope(s) to use on the basis of the

desired scenario to enable.

To provide another example, let us consider a user leveraging the

browser-based version of the aforementioned RSS news service. Resources

taking part in the process are just the user browser and the RSS reader service,

and it is possible to create multiple “news-aggregation-set” processes by just

specifying different preferences for each one of them. Web pages (or page

47

Illustration 12: Session scopes for the playlist manager in the Arianna example

fragments) corresponding to different URLs are created to show content from

the different processes, and user commands process execution by requesting

one of these URLs. Browser message exchange pattern is request/response,

and no connection is established: “current execution” scope is not used. Then,

by leveraging the “active configuration” session scope to store preferences,

user can run the processes simultaneously and display results at the same time

in different browser tabs or page sections, perhaps to embed in other web sites.

3.2 Context-awareness

One of the goals of context-aware computing is to “acquire and utilize

information about the context of a device to provide services that are

appropriate to the particular people, place, time, events, and so for” [Mor01].

Concrete examples of such service opportunities already are all around us,

ranging from conference vs. theater vs. street profiles of our cellular phones to

GPS navigators. Depending on physical, social and computational

environment conditions, we can experience different kinds and qualities of

traditional services and enable brand new ones, too. Besides, leveraging

context also represents a key element in the attempt to seamlessly embed

computation facilities in everyday life: indeed, as services become able to

adapt to context by themselves, minimal effort is needed on the user part and

technology can disappear in the background.

In our view, producers and consumers of context information must not

be involved in management and transportation of it, since they are often

separate entities (e.g., sensors and monitoring applications) and their roles and

responsibilities must remain distinct and focused on their respective goals. To

achieve this, we provide configured proxy instances with simple context

blackboard functionality that is globally accessible from all proxies that

belong to the same business process. Blackboard entries are always available

for context consuming resources via their proxies, and at the same time they

also allow simple read/write access for context generating ones, such as

sensors, client-side monitoring applications, server-side services, or even

48

infrastructure-side entities (e.g., programmable WLAN access points, GSM

base transceiver stations, and so on).

By means of proxies, resources have not to deal with context

management directly. For instance, proxies of RFID sensors can just poll such

resources in time or be notified by them, depending on sensors API, and then

write sensed information to context. Context-leveraging resources, such as an

alarm bell to prevent shoplifting, can have their proxies read context

information on their behalf and command them accordingly. Similarly, as in

Illustration 13 below, several GPS antennas can write coordinates to context

by communicating them to their proxies, while a sole geographical application

can leverage coordinates from context to draw points-of-interest on a map.

Again QoS measurements can take place, leveraging context as a drop box for

their results; then, services that can react accordingly will read information

from context and make their decision: for instance, to downgrade audio quality

when Arianna uses her 3G connection!

We argue that to achieve effective context support and extensibility in

time, the intermediate software layer that is responsible for context

management must know nothing about context representation, a priori. Hence,

49

Illustration 13: Context exploitation within a business process

although addressing different semantic issues than session, proxy-aided

context handling resolves to nothing more than tuple spaces provisioning, too.

Anyway, while purpose of session support is to enable interaction status

management from one-single resource point-of-view, context support

inherently aims at enabling cooperation of space- and time-decoupled context

consumers and producers.

To demonstrate this, let us go back to the online shop example: cart

content and its association with a specific customer identifier are server-side

pieces of information, while client browser just holds the identifier one. Back

to the passion of Arianna for nonstop music playing, playlist manager

intervenes in process to keep track of playlist progress, while media streaming

server just plays what it is told to: they don't share information, but each of

them deals with the information fragments it needs to work with the other.

And the same applies to the socket technology that enables server-client

streaming: each endpoint is storing information on its own: there is no

“singleton data” describing the established connection.

On the contrary, context information is inherently shared by resources,

hence they need common facilities to interact with it. Context scope is set to

correspond to the collection of resources belonging to the same business

process, because it is within one business process boundaries that context

production and consumption take place. Nevertheless, this does not prevent

different business processes to leverage the same context-information, since

proxy-based RRM trivially supports this scenario, too: there is no need for

multiple resources generating the same context-information, but just for

multiple configured proxy instances of the actual resource that generates the

information.

50

Chapter 4 – Integration Facilities

The middleware architecture we propose provides users with extremely

flexible and extensible ways of accessing contents and services, no matter the

communication channel in use, the user interface they choose and the

interaction paradigm that it demands, and not even the customized user

preferences and inherent device capabilities to be considered.

On the one hand, we delegate application-dependent logic to external

resources (e.g., content retrieval, transformation, dispatch, ...), in order to

move it outside middleware functionalities and leave only coordination and

management responsibilities to the middleware itself. On the other hand, we

clearly and neatly separate into diverse software components the concerns of

providing convenient user interfaces, supporting different interaction

paradigms and orchestrating managed resource proxies to process and

transform content in suitable ways.

As Illustration 14 shows, we introduce workflow entities to describe the

business processes of the resource proxies we compose. Furthermore, we

denote by the name activity interceptor every kind of resource proxy that is

able to directly interact with the middleware, via a specific interaction module,

51

Illustration 14: Integration facility level

to communicate relevant information about its resource, such as commands

and selections on some kind of user interface, sensor measurements, incoming

messages through a given service gateway, and so on. In details:

� Ordinary Proxies: represent managed resource proxies that are not

aware of participating to business processes that middleware

orchestrates. A part from exploiting middleware context and session

management facilities, they just expose suitable methods for

invocation, in accordance to RRM lifecycle steps;

� Activity Interceptors: realize a particular flavor of resource proxy

whose goal is to have middleware run previously configured business

processes. Heterogeneous resources (i.e., not only client side

applications, but also interactive web pages, SMS gateways, and any

kind of service) can therefore trigger the execution of one or more of

these processes by conveying, through their proxies, explicit requests

as well as any kind of information about their ongoing activities;

� Interaction Modules: support the different communication patterns

through which interceptor requests can interact with middleware

business processes (e.g., request/response message pairs, request-only

ones, conversational patterns, connection-oriented data flow, and so).

Besides, Interaction Modules intervene on such requests to analyze the

information that they convey and to command middleware facilities

accordingly;

� Workflows: provide the description and support data structures for the

business processes that middleware lets define by means of resource

composition. By leveraging workflows, it is possible to orchestrate

multiple resource proxies to serve an interceptor requests, in order to

retrieve, transform and deliver the desired response content according

to the most suitable format (e.g., text, audio, ...) and communication

channel (e.g., HTTP, SMS, e-mail, digital TV carousel data, etc...).

52

As well as external resource proxies can register to the system at run-

time and take part in novel application scenarios, afore mentioned middleware

coordination components can easily plug in by need too, thus allowing

incremental support for additional means of interfacing, interaction paradigms

and resource compositions.

4.1 Multimodal interfaces

Historically, multimodality relates to permitting different natural input

modalities (such as speech, touch, hand gestures, body movements, and more)

and coordinating them with corresponding multimedia output [Obr04][Ovi99]

[Tur00]. By providing different modal interfaces it is possible to enable users

to access the same service from different kinds of device, to gather requests of

respective types and to produce suitable results as a consequence, such as

contents, side effects, service status modifications, and more.

In our vision, we consider interfaces as fully fledged resources, with

associated metadata and proxy objects that can abstract heterogeneity and

provide management-, session- and context-related features, according to

RRM. Besides ordinary behavior, precise goal of this kind of proxies is to:

� intercept information about ongoing activities on the actual interface in

use;

� forward such information to the middleware, along with format

description;

� provide results to the actual interface, if expected.

Final users and software developers hence can exploit any kind of

interface to interact with the middleware, since it actually constitutes an

ordinary resource from the system point of view. Corresponding proxy gathers

information from it and then applies for further middleware-aided processing.

To provide some examples, intercepted resources can be remote services

as well as web sites, client side applications and user devices in general.

53

Interceptor implementations range from traditional HTTP proxies (that enable

Web navigation on legacy browsers behind firewalls while filtering incoming

HTTP requests), to software modules that poll SMS gateways (for incoming

messages conveying service requests), digital TV Xlet applications (that react

to remote control operations), VoIP server extensions (that deal with tone

selections by the users), e-mail daemons, Web Services endpoints and many

more.

We believe, anyway, that responsibilities of activity interceptors have to

remain as limited as possible, in order to ease their development, deployment,

and run-time execution: they are not requested to cope with any kind of

activity processing or analysis, but just to forward raw activity data to the

middleware. This approach enforces development of highly efficient

interceptors, that afford limited computational cost and communication

overhead, while avoiding unnecessary integration issues. Moreover, facilities

such as authentication and naming – that interceptors would need to evaluate

activity information – are not always available at resource proxy level, perhaps

due to possible distribution of proxies themselves on client or network nodes

where not all middleware platform components are present.

We therefore introduce the concept of “syntax” to identify the raw and

channel-dependent format of the activity information that each activity

interceptor acquires. Syntax indication determines the algorithm through

which to normalize corresponding pieces of activity information, in order to

extract commands and execution arguments that middleware can exploit to

orchestrate business processes.

Every single interceptor can easily provide syntax indication for

requests/activities coming from its specific resource and expressed in channel-

dependent formats (e.g. HTTP, SMS, e-mail, …) because it simply well-

knows the characteristics of data from the resource it is proxy of. Thus, its sole

responsibility consists in forwarding pieces of activity information to a

suitable interaction module, along with the indication of the syntax to consider

for normalizing them. Finally, by exploiting the Normalization Engine

54

component from the middleware Engine level, interaction module applies the

required syntax-driven algorithm to perform identification and authentication,

extract request parameters and select the desired middleware functionality to

enact: typically the execution of one or more workflows from a given business

process.

To exemplify this, requests typically contain information such as a user-

friendly indication of the activity that middleware platform should enact,

additional parameters and properties through which to identify the user. For

instance (Illustration 15), along with user sending number, an SMS message

containing the text “RSS http://some-news.com/feed.xml 5” can express the

will to obtain the five latest RSS feeds from the given URL. And in the

example of Web pages aggregating RSS feeds, syntax for an HTTP GET

request for content at URI “http://more-news.com/aggr?tab=politics” might

be normalized by identifying requester on the basis of the JSESSIONID cookie

header and the requested resource composition upon the value of tab

parameter.

55

Illustration 15: Syntax labeling

Besides forwarding syntax-activity couples to the appropriate interaction

module, some interceptors are also responsible for returning activity results to

their own interface-resource, depending on the exploited interaction paradigm.

HTTP interceptors, for instance, are used both to receive an HTTP request and

to convey its HTTP response.

Moreover, since middleware cannot know every possible algorithm a

priori, interceptor themselves can teach it new algorithms, by registering

syntax name associations with corresponding algorithm implementations.

Syntax Registry component from the middleware Registry Level stores this

kind of associations and makes them available for use by the Normalization

Engine.

Finally, as stated before, interceptors are fully fledged resource proxies

from the middleware point of view and they can therefore dynamically plug at

run-time.

4.2 Multiple interaction paradigms

Supporting multiple interaction paradigms is a direct consequence of

providing multimodal access to services, on multiple media channels. Indeed,

as long as different interaction forms and media are available, the pull-type

request/response message exchange pattern does not certainly suffice alone,

but it is necessary to support also push-type communication patterns,

conversational ones, and more.

For instance, an HTML form can pass all request parameters to a given

service at once, while exposing that service via phone calls must take care of

collecting parameters one-by-one, perhaps by having the user dial her choices

on the phone keypad. Again, SMS requests, although able to convey all

parameters at once, are inherently decoupled from their responses: a service

could either send back an SMS or MMS message or store the user subscription

for later response delivery, on event occurrences (e.g., notification of goals

during a soccer match!). And finally, orchestrating services into business

processes that have some form of human involvement often entails

56

technological and/or functional issues that can influence human-service

interaction paradigm.

In our architecture, interaction modules permit modeling the different

interaction paradigms through which it is possible to serve different flavors of

activities. To realize this, they exploit middleware engine for normalizing

incoming pieces of activity information to extract relevant information and

enact the workflows from the business process that they entail, while

supporting the given interaction paradigm by realizing all needed

communication operations (Illustration 16). In details, interaction modules:

� receive raw information data about ongoing activities, along with the

indication of the syntax they adhere to, hence the suitable normalization

algorithm;

� perform authentication and identification by means of syntax-dependent

identification information;

� translate syntax-dependent content of activity information into

normalized commands and execution arguments that middleware can

understand;

� exploit these pieces of information to execute workflows that belongs

to previously configured business processes.

� handle results of such activities and commands, accordingly to the

embodied interaction paradigm.

57

Thanks to this separation of responsibilities, activities that demand the

same kind of interaction paradigm but come in different formats and/or

demand different normalization algorithms, can leverage functionalities that

are encapsulated in the same modular and reusable interaction module.

To sketch some practical examples, our platform prototype exposes both

a pull-based symmetric (request/response) and a pull-based asymmetric

(request-only) one-shot interaction module; the former one returns a result

through the same interceptor from which the request came, whereas the latter

one does not return results at all, meaning that request results (if any) will be

delivered through different channels than the request one. We also provide

push-type modules, able to monitor and react to virtually any kind of event,

for instance time-based ones. Furthermore, we developed symmetric and

asymmetric modules for streaming-type continuous interactions.

Finally, consistently with the principle of middleware architecture

extensibility, interaction modules are pluggable components in all effects, so

as to enable incremental support for additional interaction paradigms.

58

Illustration 16: Interaction module behavior

4.3 Multichannel content adaptation and delivery

Providing multichannel access consists in supporting heterogeneous

client applications and devices in order to exploit available services and

content information always in the most suitable and consistent manner [Artix]

[New05], accordingly to user preferences, communication media in use, and

current device capabilities.

For instance, as Illustration 17 shows, by formatting news content into a

Web page it is possible to combine text, links and related multimedia content,

hence to produce multi-dimensional output at once. Similarly, news can come

as video streaming on DVB-T channels, perhaps with text scrolling in the

lower part of the screen. On limited devices and/or slow connection types,

instead, pictures should be down-scaled and video converted to snapshot

images surrounded by plain text. Even more, only text should remain in place

to enable SMS delivery and it should be synthesized to perform voice-only

communications, such as with VoIP, leading to a linear, mono-dimensional,

output type.

59

Illustration 17: Multichannel content adaptation

In our approach, we combine functionalities of resources that can

elaborate and transform content by defining workflows whose goal is to:

� generate brand new content;

� enrich content being currently processed within the workflow;

� filter content to preserve only relevant or suitable information;

� aggregate pieces of content coming from different workflow branches;

� manipulate content to perform format conversion, transformation from

one kind of media to another one, adaptation to device capabilities, and

so on;

� deliver content over the desired channel.

Weather forecasts provide the typical example of enabling multichannel

access to the same kind of content by means of fine-grained resources whose

proxies are arranged into workflows that our middleware orchestrates. For

instance, resources that generate content can be weather observation stations

that produce METAR reports once an hour [METAR]. METAR format bases

on character strings with well-defined characteristics, so conversion to XML

data is needed to further process reports in rich applications. A content

aggregation service collects XML reports every hour and is followed by a

filter selecting weather reports on the basis of current user coordinates.

Remaining reports are converted to RSS feeds and then enriched with map

images of the interested areas, taken from the Google Maps service. Finally,

depending on bandwidth available for the download, final result can be either

published “as is” at a certain URI, converted to PDF and sent by e-mail, or

enriched with Mp3 tracks from the synthesis of feed textual descriptions, to

deliver forecasts over a podcast channel.

This way, users can specify what contents or services to access, in which

format and by means of which device and available communication channel.

Then, middleware core layer components analyze available service metadata

60

and user context and requirements, in order to automatically arrange and

configure the most suitable transformation flows.

61

62

Chapter 5 – Business Process Management

To provide value-added services, leverage new service opportunities,

and improve final user experience, the Internet of Services scenario pushes the

need to coordinate functionalities from remote and distributed resources. One

way this can be done is to expose the business logic of these resources in the

form of reusable software modules, and to model business processes that can

realize the desired composite applications by means of coordination of

operations of modules themselves.

A business process can be defined as the execution of activities from

diverse software modules, according to a defined set of rules, to achieve a

common goal [Ana04]. In particular, we refer by the term composition to the

issue of analyzing and selecting the most suitable resource functionalities in

order to satisfy a given scenario requirements, whereas we indicate by the

name orchestration the execution support that middleware provides in order to

enact previously configured compositions.

In our model, we use proxy adaptors – as seen – to abstract

heterogeneous resource types and execution environments, hence realize a

unified and consistent means to deal with diverse software characteristics and

to provide additional integration facilities. Thus, resource proxies constitute

the actual participants in our business processes, whereas middleware acts as

the business process management system that permits modeling, validating,

executing and measuring effectiveness of those processes.

Given the description of a desired application scenario and the set of

currently available resource proxies, middleware Composition Engine

component is in charge to create one or more workflow definitions that can

altogether pursue the business process goal for that scenario. Then, to serve

explicit requests as well as asynchronous events, Workflow Orchestration

Engine provides all needed facilities to interpret such workflow definitions

and enact the activities that they expect.

63

Finally, each business process in our system binds to a specific set of

configurations from the resource proxies that it entails. Indeed, once a

workflow definition exists, system invokes RRM configuration methods

(when present) on every proxy that participates in it, to reserve specific

settings. Following proxy RRM execution steps within that particular process

will therefore leverage those settings. In the end, when deleting workflow

definitions for the corresponding business process, system releases settings by

calling RRM deconfiguration methods (when present) on the proxies.

5.1 Resource composition

Ubiquitous computing calls for dynamic resource composition models,

able to cope with changes in user requirements and resource conditions such

as location or availability. Variations in user needs as well as in service

characteristics can indeed make running compositions less adequate or even

useless; they therefore demand support for dynamic reconfiguration to avoid

unbearable management burden. Arianna would certainly cancel her online

music account if she had to keep up with setup issues every time she changes

device or connectivity type!

Within our composition model, resources embody generic pieces of

application logic that can be arranged together within business processes, by

means of their proxies, to pursue the desired service scenario. We allow the

middleware to get knowledge about new or modified resources and to learn

how to deal with them by leveraging metadata “attributes” that describe

resource features. In our model, resource proxy developers are in charge of

specifying such attributes and can do that in easy and extensible ways. At the

same time, final users willing to exploit distributed resources (as well as

expertized process choreographers) can draw on complex aggregations by

leveraging intuitive and natural concepts. To achieve this, we adopt a

translucent approach: we both guide users/choreographers in the composition

creation process by hiding details and complexity, and still remain extremely

flexible by unveiling composition mechanisms to metadata providers.

64

On the complexity hiding side, we enforce a template-based approach to

the composition problem, wherein “templates” act as models for possible

business processes, to fill in with actual resources, and typically represent

resource composition schemata that are common to several scenarios.

On the flexibility and extensibility side, we drive resource composition

by evaluating composability “expressions” that can assert resource

compatibility with each other and within the selected template in forms of

constraints on acceptable values from their metadata attributes and from

resource dynamic characteristics, such as context and session.

According to our model, resource composition to satisfy a given set of

requirements resolves to nothing more than expression evaluation and

therefore constitutes a deterministic process that can be automatized and

performed without human intervention. As a consequence, automatic reaction

to changes in scenario requirements and/or resource conditions becomes

possible by simply having the middleware re-evaluate those expressions.

Furthermore, by not limiting expression results to mere boolean values,

we also enable ranking among valid compositions, via the comparison of their

composability scores. And finally, since different expressions can govern

different aspects of resource composability, we can choose the ranking policy

to adopt by assigning different weights to scores regarding different

composability aspects (say “low billing price” versus “high quality of

service”).

5.1.1 Composition model

Before deepening the description of the overall mechanism that permits

calculating resource compositions, following sections analyze the diverse

entity types that concur in creating our composition model.

5.1.1.1 Templates

In our vision, outlining a service provisioning scenario by means of

distributed resources must be as simple as shaping the corresponding template

65

and indicating features for the actual resources that will take part in it.

Templates represent abstract definitions of business processes. Their

goal is to indicate a suitable composition schema and, if needed, to express

constraints on the resources that actualize it. To illustrate this, Illustration 18

shows a possible composition schema as a set of empty blocks, representing

both control and resource (via their proxies) logic.

Actualization of templates with concrete resources is the result of filling

in all empty blocks by satisfying both template-required features and all the

composability issues that arise, given a set of candidate resources. Illustration

19 provides a snippet of such actualization.

66

Illustration 18: Composition templates

Besides, in order to enforce reuse of existing templates (and, possibly, of

their already-computed actualizations), every template can be defined in terms

of other ones. To clarify this, Illustration 20 provides two complex kinds of

composition template.

Finally, since novel scenarios can require additional composition

schemata, novel template definitions can be plugged in at any time in the

system.

67

Illustration 19: Actualization of composition templates

Illustration 20: Reuse of composition templates

5.1.1.2 Static metadata attributes and dynamic conditions

Resources provide the actual implementation of business logic like

content transcoding, generation, delivery, enrichment, aggregation, adaptation,

filtering, and so on. No middleware feature indeed aims at providing this kind

of facilities, as this approach would lead to limited flexibility and to

overwhelming complexity in API definition and usage. Rather, we enable

third-party provided products to do so, by registering their corresponding

proxies to the system and by indicating how to integrate them with both

middleware capabilities (e.g., messaging, persistence, naming, ...) and with

other services (i.e., within composition templates).

To enforce this possibility we leverage both static metadata attributes

and dynamic information about resource conditions. Resource proxies, indeed,

can provide metadata to describe almost any aspect of the resources they

represent, without affecting their actual implementation. Besides, to face

dynamic aspects of resource composition and orchestration, we enforce

middleware support for context and session management to describe run-time

conditions of running resources.

The set of possible values is not predefined, but can expand at any time.

For instance, a resource can introduce a new type of metadata in the system by

just presenting values for it. As an alternative, it can define it implicitly by

imposing constraints on its possible values from interacting services, via the

indication of suitable composability expressions.

5.1.1.3 Scenario requirements

Scenario requirements convey the particular features and preferences

that final users or process choreographers express to select and/or configure

actual resources within the composition. In addition, these requirements also

indicate the main template that describes the business process of the scenario

itself, whose definition may in turn recall those of other finer-grained

templates.

As an example, let us consider the “News by SMS” scenario in

68

Illustration 21 wherein, at a given time of the day, an RSS reader service is

triggered to generate news feeds; feeds are then processed to extract news title

and description, hence converted to plain text, suitable for SMS distribution.

Scenario main template expects a first resource to be configured to retrieve

RSS feeds at a given time of the day, then to deliver these feeds via the

publish/subscribe middleware interaction module to all interested consuming

workflows (say, all subscribed users). Choice of time of the day for firing

messages and RSS feeds URL are part of scenario requirements.

Consuming workflows are shaped on the basis of the “Content

adaptation template”, consisting in a sequence of an arbitrary number of

resources, each one operating on the result from the preceding one. This finer-

grained template requires the first resource to accept content of type RSS feeds

and final output to be SMS text, whereas candidate resources pose constraints

on their input and output format, thus limiting possible compositions.

5.1.1.4 Composability expressions and domains

Template-driven features, mutual resource compatibility issues, and

specific scenario requirements, all formulates in terms of constraints on

69

Illustration 21: Main template and scenario requirements for the "News by SMS"

application

metadata attributes and current conditions from the resources that take part in

the composition. The evaluation of composability expressions on such values

constitutes the only basis for the composition calculus: middleware does not

impose any expression a priori, but just apply the ones from templates,

resources, and scenario, jointly.

As seen, each of these entities can indicate its own set of constraints to

satisfy (in case, leading to discard a candidate resource itself if no valid

composition is possible, given its constraints). Expressions, anyway, always

evaluate against values that have to be correctly specified. Therefore, to ease

resource description on the side of resource proxy developers, we do not

consider single composability expressions, but group semantically related

expressions within so-called domains that can represent composability

constraints at a higher abstraction level.

Besides collecting related expressions, domains also declare the name of

attribute values needed for evaluation, their value type, and allow for testing.

Domains hence represent a shared knowledge base that resource proxy

developers can refer to, in order to provide feature descriptions that are

suitable for evaluation. Eventually, when calculating definition of an actual

composition, requirements, templates and candidate resources themselves

specify what domains to apply on current metadata.

To exemplify this, a trivial domain we have leveraged several times in

real scenarios consists in the MIME datatype compatibility one. This domain

is made up of one single expression, that bases on outputMime and

inputMime attributes of composed resources. The expression just asserts

that a resource (e.g., an RSS feed aggregator service) must provide an

inputMime attribute value that is compatible with the outputMime one

from the resource that produces the data it will further processes (e.g., an RSS

feed reader service), within the composition. Hence, developers of resource

proxies to compose with each other can leverage MIME type compatibility

domain to agree on the metadata attributes to specify. In an all similar way,

they can refer to other well-known domains to express data transport issues,

aspects such as synchronous/asynchronous behavior, the ability to accept just

70

one input data payload to process at a time or more (think of content

aggregating resources), as well as other syntactical or semantical constraints.

Knowledge of new expression domains can be registered to the

middleware at run-time, enabling incremental support for additional resources,

templates and requirements in general, by supporting the additional constraints

that they entail.

5.1.1.5 Roles

By defining the resource composition schema of an application scenario,

a composition template also defines the roles that resources play within the

schema. Role concept enables evaluation of composability expressions against

attributes from actual resources, since it permits indicating which resource

should provide which attribute value. Indeed, as expressions apply to attributes

of resources that candidate to play roles that template indicates, evaluation

simply consists in substituting formal expression arguments with actual values

from those resource attributes, according to the role that each one candidates

to play.

Recalling the previous MIME type example, MIME type composability

domain expects attributes 'inputMime' and 'outputMime' to be

provided from resources that candidate to compose with each other. Hence, by

leveraging the roles of content 'producer' and 'consumer', its sole

expression formulates the following constraint:

producer.outputMime == consumer.inputMime

Roles, anyway, do not tie to any particular composability domain, but

several domains can refer to the same role set, each one to formulate its own

constraints. For instance, to express direct composability between sibling

resources in a content distribution process (e.g., streaming server and

connected client of Arianna example), transport type composability domain

might express constraints such as:

producer.outputProtocol == consumer.inputProtocol

71

Or, again (in a short form, by assuming method definitions as being

provided elsewhere by the domain itself):

producer.codec isSupportedBy consumer.knownCodecs

Similarly, roles do not event tie to any particular composition template,

but several templates can expect resources playing the same role, in different

composition schemata.

Trivially, direct resource composition such as that of the streaming

server and its connected client does not leverage workflow execution for result

passing between composed resources. On the contrary, an RSS feed reader

simply returns content to its invoker (i.e., the middleware), that will pass it

over to the next resource in the composition flow. Clearly, as Illustration 22

shows, these two resource couples are part of different resource composition

schemata; anyway, corresponding templates can both leverage the roles of

content 'producer' and 'consumer' to formulate constraints.

Summarizing, roles as well as composability expression domains realize

a knowledge base that composition players in the system share. Hence, by

referencing the same roles within templates, scenario requirements, and

resource compatibility constraints, it is possible to determine the resources

72

Illustration 22: Different templates, same roles

providing the most suitable metadata values for the sake of composition in the

given scenario.

Moreover, since the actual roles to consider in a composition process are

entailed by entities that can dynamically add and/or register to the middleware

(i.e., templates, resources, requirements), we do not even assume any a priori

knowledge of roles, but let those entities define any new role they may need

by just introducing its corresponding and unique noun.

5.1.1.6 Scores

Expression evaluation produces not only boolean results (meaning that

composition actualization is acceptable), but values potentially of any type.

Thus, by leveraging non-boolean results as composition scores it is possible to

enable ranking and automatic choice among several possible composition

actualizations.

By basing on scores, scenario requirements can state the particular kind

of ranking to perform, perhaps reflecting user-specific preferences. Indeed, a

composition will typically show more than just one score value (e.g., number

of services, computational load, billing costs, ...) and there is no way to tell

which one should prevail, a priori. Requirements, hence, are also in charge of

indicating weights for each score type.

Middleware can therefore autonomously calculate the most suitable

composition that satisfies the composition request from a particular set of

requirements, given the resources that are currently registered to the system.

Scores that requirements do not mention are simply ignored.

Alike roles and expression domains, scores too realize a kind of

knowledge that middleware does not provide, but that entities can introduce

and share with each other. Indeed, scores do not tie to any particular domain,

but can be the result of expressions from several different ones. Hence, every

kind of score also defines a function to aggregate values of its own score type,

coming from the evaluation of multiple expressions and a comparison function

to judge on compositions that show different values for the same kind of score.

73

5.1.2 Composition calculus

To summarize previous sections, our composition model requires:

� resource proxies to provide static metadata attributes and to leverage

middleware session and context support to describe dynamic resource

conditions;

� composition templates to declare roles;

� scenario requirements to indicate the main composition template to

realize;

� scenario requirements, composition templates and candidate resources

to address domains of composability expressions to evaluate;

� candidate resources to enter expression evaluation by playing the role

they are being considered for, within the selected template;

� middleware to evaluate composability expressions to determine

possible resource compositions;

� middleware to leverage composition scores to rank possible

compositions and to select the most suitable one.

Illustration 23 below reports the overall schema of the composition

calculus actors.

74

5.1.2.1 Representation

For the sake of integration with our middleware, resource proxies

typically provide general information, such as:

� name, provider, version;

� lookup and invocation mechanism (e.g, EJB3, WebServices,

CORBA, ...);

� expected invocation parameters and how they map to middleware

entities (e.g., argument #1 in signature corresponds to tuple labeled

'XXX/YYY' in context description);

To enable mutual composability, then, resources have not to adhere to

any particular information format, but simply to indicate:

� a set of attribute names and values;

� the composability domains that express conditions to successfully

compose with other resources, given their own metadata attributes;

� the composability domains that express conditions upon which

75

Illustration 23: Overall schema for the composition calculus

resource execution can be performed (entailing information from the

session of the resource itself or the context of its business process).

To exemplify this, Listing 1 reports the values of metadata from a

typical content generation service, capable of extracting weather forecasts

from METAR messages [METAR]:

<?xml version="1.0" encoding="UTF-8"?>

<properties>

 <comment>

 Service to read location-aware METAR messages from a given url

 </comment>

 <!-- Framework-integration metadata-->

 <entry type="fwk" name="general">

 name=MetarReader;provider=Swimm;version=1.0.0

 </entry>

 <entry type="fwk" name="deployment">

 mechanism=EJB3;jndihost=137.204.58.65; jndiport=1099;

 jndiname=metar-app/ReaderBean/remote;

 interface=it.swimm.impl.generation.METAR.ReaderRemote;

 clientlib=MetarAPP-client-lib.jar;method=read

 </entry>

 <entry type="fwk" name="mapping">

 args=request/url,user/context/location/coordinates

 </entry>

 <!-- Service-composability metadata-->

 <entry type="cmp" name="typology">

 type=generation

 </entry>

 <entry type="cmp" name="load">

 avg=low

 </entry>

 <entry type="cmp" name="billing">

 fee=0.001c

 </entry>

 <entry type="cmp" name="datatype">

 outputmime=text/plain;outputformat=METAR

 </entry>

 <entry type="cmp" name="semantics">

 pull=true;push=false;before=none;after=one

 </entry>

 ...

</properties>

Listing 1 – Sample of service metadata

Metadata are simple name/value pairs and they obey no particular

76

format. The first three entries in the listing are middleware-specific ones and

let the service declare, for the sake of invocation, that it runs as an 'EJB3'

component on host '137.204.58.65' with the JNDI name of 'metar-

app/ReaderBean/remote'. Besides, it expects two arguments: the

'URL' (extracted from the user request) where to read METAR messages and

the current user geographical position (as mapped to the

'/user/context/location/coordinates' element in context).

Composability metadata, instead, just represent the fact that “as far as a given

expression domain is considered, the service provides a certain set of

attributes”. For instance, according to 'datatype' domain, the service

formats its results as 'METAR' and their MIME type is 'text/plain'.

Keys 'datatype' and 'arguments' are just the domain names referring

the expressions that tell about service suitability and composability with the

other resources in the composition.

In our model, an expression domain defines as:

� a unique name;

� a set of expressions;

� a set of roles that its expressions base on;

� a set of attributes that its expressions expect.

To achieve implementation simplicity, every domain is also associated

to the URL where its XML definition is published (alike locations of XML

schema definitions). As soon as an entity – be it a resource, a template or a set

of requirements – entails a new expression domain, the system can achieve

knowledge of that particular domain by simply downloading its definition

from the corresponding URL.

To provide a brief example, Listing 2 reports an expressions excerpt

from the 'datatype' domain. As the text suggests, these expressions can

be used to assert mutual resource compatibility within a composition template

that expects the roles of 'consumer' and 'producer' :

77

...

<expression domainName="datatype" type="boolean">

producer.outputformat == consumer.inputformat

</expression>

<expression domainName="datatype" type="boolean">

consumer.inputmime isSupersetOf producer.outputmime

</expression>

...

Listing 2 – Sample syntax rules for producer and consumer roles

As for scenario requirements, they simply:

� indicate the main composition template;

� can impose required features to the resources to compose;

� define the ranking criteria that govern the election of the best template

actualization, in case multiple ones are possible.

Listing 3 provides a brief XML example of a requirements description:

<?xml version="1.0" encoding="UTF-8"?>

<requirements>

 <user fwk="swimm">31231</user>

 <template name="pushAggregation"/>

 <properties>

 <entry type="cmp" name="delivery">channel=MMS</entry>

 </properties>

 <ranking>

 <score weight="1.5">billing</score>

 <score weight="1">performance</score>

 </ranking>

</requirements>

Listing 3 – Simplified scenario requirements description

Listing 4, finally, reports a sample definition for the 'billing' type

score:

78

<?xml version="1.0" encoding="UTF-8"?>

<score name="billing">

 <format type="java.lang.Double"/>

 <compare>></compare>

 <aggregate>+</compare>

</score>

Listing 4 – Example of score definition

5.1.2.2 Evaluation

We can think of solving the composition problem for a given application

scenario by simply producing a map of roles and corresponding actual

resources where every role of the composition template is played by one

resource and all expressions from requirements, templates and resources are

satisfied.

When filling in map entries, to accept a given resource in a composition

role it is necessary that all indicated expressions successfully evaluate against

all other entities already in place: candidate resources already in the

composition, the composition template, and the scenario requirements. The

same applies to the expressions from the other resources that have already

proposed as candidates for other roles in that composition, as well as to

expressions specified by the composition template and the scenario

requirements: they must of course remain valid as new resources are accepted

as candidates.

To demonstrate a possible implementation of the solution to the

composition problem, Listing 5 reports an almost self-explanatory imperative

formulation of the algorithm that, given the above actors, leads to the election

of the most suitable composition to meet an application scenario requirements.

79

Composition compute(Requisites requisites, Resource[] available_resources) {

 // Step 1.1 – Expression from requisites and templates, individually

 List< Set< Map<Resource,Role> > > list_of_resources2roles_maps;

 foreach domain in domain_union(

 requisites.domains, requisites.template.domains

)

 foreach expression in domain.mandatory_expressions

 list_of_resources2roles_maps.add(

 /* applies expression to the possible role-resource pairs, saving every

 allowed combination as resources2roles map, returning the set of the

 possible maps */

 evaluate(expression, requisites.template.roles, available_resources)

);

 // Step 1.2 – Intersection of results from individual expressions

 Set< Map<Resource,Role> > resources2roles_maps =

 /* keeps only the maps that are present in all list items

 (i.e., allowed by all expressions) */

 intersection(list_of_resources2roles_maps.entries);

 // ---

 // Step 2 – Rules from the candidate-to-roles resources

 /* note: a cloned structure is used to avoid removing entries from

 a data structure that is being iterated */

 Set< Map<Resource,Role> > allowed_resources2roles_maps =

 clone(services2roles_maps);

 /* requirements- and template- allowed maps of resources to roles

 associations are validated against expressions from the resources */

 foreach map in resources2roles_maps

 foreach domain in domain_union(map.keyset)

 foreach expression in domain.manadatory_expressions

 /* evaluation is skipped if current map has already been discarded */

 if (map in allowed_resources2roles_maps)

 /* same behavior and result type as of

 evaluate(expression, req.template.roles, candidates)

 but with already-known resources-to-roles associations */

 if (evaluate(expression, resources2roles_map) == null)

 /* failure leads to discarding the current map */

 allowed_resources2roles_maps.remove(map);

 // ---

 // Step 3.1 – Scoring

 List<Composition> allowed_compositions;

80

 foreach map in allowed_resources2roles_maps {

 Composition composition = new Composition(requisites, map);

 /* domains of an actual composition are the union of those

 from resources in the map, requisites and template */

 foreach domain in composition.domains

 foreach expression in domain.scoring_expressions

 composition.assign(score(expression, composition.map));

 allowed_compositions.add(composition);

 }

 // Step 3.2 – Ranking

 Composition best_composition =

 rank(requisites.criteria, allowed_compositions);

 // ---

 // Step 4 – Monitoring

 foreach property in best_composition.monitored_properties

 Middleware.monitor(property.value, property.expression);

 // ---

 // Step 5 – Allocation

 Middleware.register(best_composition);

 return best_composition;

}

Listing 5 – Imperative formulation for the composition calculus

Every candidate resource that plays a role in the composition adds its

own expression to evaluate. This leads to a tree of possible choices where

nodes correspond to incremental actualizations of the available roles. The first

resource being considered for a role in the composition template becomes root

of one possible tree. At any depth, to accept a resource in the tree as a player

for a vacant role, the expressions it entails must be satisfied, as well as the

expressions from the rest of resources already in the tree.

Actual implementation of the evaluate() function explores resource

trees depth-first and stops upon finding a given (configurable) number of

acceptable composition actualizations to rank and choose from.

Optimization strategies start filling the role that probably has the lowest

number of available candidates (we called it “per-role early pruning”) and

81

consider candidates in the order they bring the lowest number of new

expressions to the system (named as “information base greediness”).

When all roles are filled, all entailed expressions need to be satisfied.

Theoretically, there is no conceptual distinction among those coming from

scenario requirements, composition template or candidate resources.

Nevertheless, expressions from scenario requirements and composition

template are present in all trees and permit to discard immediately the ones

with unfit resources. Thus, it is smart to process them first: a service “not

providing attributes for” or “not satisfying” a requirements- or template-driven

expression can never be a candidate.

Finally, algorithm code also permits to dynamically react to variations in

resource conditions that may entail business process reconfiguration. Indeed,

as previously shown, expressions can refer to both static metadata attributes

and dynamic session and context characteristics. In the latter case, middleware

registers “monitor” entities to watch on changes of their values, in order to re-

evaluate corresponding expressions accordingly and trigger business process

reconfiguration in case, as the next section discusses.

5.2 Process orchestration

Resource composition constitutes the basis for the execution of

arbitrarily complex business processes, entailing both control and business

logic, wherein the middleware orchestrates resource proxies to accomplish the

goals of a given application scenario.

According to RRM, all resource proxies within a business process can

expose suitable methods for the sake of configuration and deconfiguration and

leverage suitable metadata to advertise such functionalities. Upon calculation

of a resource composition, the middleware looks up a proxy instance for each

and every resource that takes part in the composition itself and invokes the

configuration method that it provides (if any). Similarly, upon

deletion/modification of a composition, the middleware recalls the same proxy

instances to invoke corresponding deconfiguration methods (if any). Between

82

these two moments, resource proxies primary business logic executes as many

times as the system needs to orchestrate the business process to which it

belongs. Illustration 24 below exemplifies this, in the case of the business

process for receiving RSS news via SMS messages.

As previously described, business processes bind to resource

configurations because the precise resource proxy instance that takes part in a

business process execution corresponds to the one that has provided

configuration for that process. Thus, it is in charge of resource proxies to

maintain separate business process configurations and, in case, interact with

middleware session and context facilities accordingly. As for the rest, resource

proxies are completely unaware of collaborating within complex

compositions: they do not directly interact with each other, but just provide

results to middleware requests (i.e., invocations of methods that expose their

primary business logic) or demand middleware operations themselves.

83

Illustration 24: Invoking configuration, execution, and deconfiguration methods on

resource proxies within a business process

At run time, by basing on build time definitions of resource

composition, middleware orchestrates business processes by exposing one or

more suitable interceptor resources and by registering one or more workflow

definitions. Upon final user activities and/or system events, resource

interceptors stimulate the interaction modules that correspond to the

interaction paradigm that they enforce, demanding execution of suitable

resource workflows (Illustration 25).

5.2.1 Parameter resolution

Workflow definitions enforce activity sequences wherein each resource

operates on the results from the previous ones in the flow. Anyway, in real IoS

scenarios, distributed resources and functionalities typically expect several

parameters in addition to the main payload to elaborate, to influence behavior,

result type, authentication, billing, and many more aspects.

Invocation of resource proxy methods therefore demands a scrupulous

match between formal and actual parameters that they expect, by basing on

both resource-provided metadata and scenario-related preferences. Besides,

resolution of part of these values can happen at build-time, to directly hard-

coded them to the workflow definition, whereas other ones necessarily refer to

84

Illustration 25: RSS service proxy interacts with middleware via the Request-only

Interaction Module to demand the orchestration of "RSS to SMS" workflow

properties that only are available (or significant) at run-time.

Values of properties that do not change over time, such as user identity,

composition-related preferences, and many others, can become inherent part

of the workflow description. This helps saving system resources and improves

the overall run-time performance when executing workflows. On the contrary,

values for remaining parameters, that depend on present conditions at

workflow execution time, must be dealt with at run-time, upon corresponding

resource invocation, while the middleware orchestrates workflow business and

control logic.

Invocation values map to several possible domains of data within our

middleware, depending on both explicit user/choreographer preferences and

resource characteristics that metadata convey. By means of metadata, indeed,

developers can parametrize resource behavior upon user profile data, session

and context information, network infrastructure conditions, features such as

addresses or status of serving nodes, and a lot more, and indicate whether

resolution must happen at build-time (composition calculus) or run-time

(process orchestration). Besides, to enable resource configuration driven by

final user preferences, it is in charge of resource metadata also to specify the

set of possible values from data domains and the choice criteria to adopt.

Resource metadata achieve this, by specifying on each formal parameter

to resolve for actual resource invocation:

� the data domain to consider;

� the precise property name to read or the value sets to choose from;

� the actual choice criteria to enforce.

For instance, in order to support automatic delivery of customized

breaking news via podcast, content transformation workflow involves services

like several RSS readers and a voice synthesizer, among the others. By

leveraging this kind of workflow, every user in the system can configure her

own personal podcast channel and download content in Mp3 format from it.

Since RSS documents consist in XML data that syndicates content feeds, each

85

reader executes upon the indication of a) the URI of the RSS source to analyze

and b) the identifier of the last feed that the current user already retrieved from

that source (to avoid returning the same content several times). Instead, voice

synthesis service accepts as arguments a) the current text to reproduce and, in

addition, b) the user language to adopt for text analysis and c) the desired

output bitrate.

User explicitly selects the sources of content that she desires, by

specifying URLs for the corresponding feeds at time of resource composition

creation. Thus, possible values undergo build-time resolution and are chosen

from the set of known URLs that each RSS reader service advises in the so

called service data domain (depending on supported RSS version, character

encoding, or, merely, commercial agreements between service provider and

news publisher). On the contrary, identifiers of past RSS feeds are part of

session domain and only relevant at run-time. To clarify this, Listing 6 in the

following reports a snippet of the actual metadata that an RSS reader resource

proxy provides, limitedly to the method it indicates for RRM execution step:

<?xml version="1.0" encoding="UTF-8"?>

...

<methods>

 ...

 <method rrm-step="execution" name="readFromChannel">

 <argument name="url"

 description="location of the XML descriptor of news">

<!-- user is presented the whole set of possible URLs from the indicated

mapping field of the specified domain; her preferences are hard-coded to the workflow

definitions for the business processes this resource will take part in -->

 <resolution>build-time</resolution>

 <domain>service</domain>

 <mapping>/ACME/rss-reader/URL</mapping>

 <choice>user</choice>

 <default>http://swimm0.ing.unibo.it/blog/rss.php </default>

 </argument>

 <argument name="lastRead"

 description="identifier of the most recent already read feed">

<!-- all rss reader instances store here the association between the-URL-they-

read-from and the-last-read-feed-id, in an array-like structure. Middleware cannot

know which one to choose, so each service will get the whole array and filter the

86

sole id it is interested in. -->

 <resolution>run-time</resolution>

 <domain>session</domain>

 <mapping>/ACME/rss-reader/lastfeed</mapping>

 <choice>service</choice>

 <default>null</default>

 </argument>

 </method>

 ...

</methods>

...

Listing 6 – Metadata for execution method of the RSS reader service

Similarly, text to synthesize represents the main payload being

processed by the text synthesis service; hence, it belongs to the execution

scope domain of the current workflow, which is unavailable at build-time.

User language is part of the user profile information that is known to the

middleware since user account creation. And finally, depending on service

metadata, audio output quality can either rely on build-time QoS agreement

(that user has paid for) or relate to run-time available bandwidth from the

current context information (to enable download over slow connections as

well). Listing 7 illustrates how the text synthesis service proxy exposes

suitable parameter mapping:

<?xml version="1.0" encoding="UTF-8"?>

...

<methods>

 ...

 <method rrm-step="execution" name="synthesize">

 <argument name="text" description="the textual content to process">

 <resolution>run-time</resolution>

 <domain>execution</domain>

 <mapping>/PAYLOAD</mapping>

 <choice>none</choice>

 <default>null</default>

 </argument>

 <argument name="language" description="the language determining rules to

 adopt for text analysis and to determine pronunciation of word tokens">

87

<!-- notice: this parameter directly maps to user profile information, but

other pieces of metadata also impose composability expressions, to prevent selection

of this service in case of unsupported languages -->

 <resolution>build-time</resolution>

 <domain>profile</domain>

 <mapping>/language</mapping>

 <choice>none</choice>

 <default>en</default>

 </argument>

 <argument name="quality"

 description="a parameter influencing the final output bitrate">

 <resolution>build-time</resolution>

 <domain>QoS</domain>

 <mapping>/festival/bitrate</mapping>

 <choice>user</choice>

 <default>64kbps</default>

 </argument>

 </method>

 ...

</methods>

...

Listing 7 – Metadata for the execution method of the text synthesis service

Data domain that resource proxies specify can be well-known domains

that middleware inherently provides (i.e., session, context, execution, ...) as

well as additional domains for supporting traditional real life scenarios (e.g.,

profile, ...) or specific tasks (e.g., service, QoS as well as network,

middleware, and so on).

In all cases, from the moment middleware accepts registration of any

data domain implementation, it then supports transparent access to its entries

for both build-time and run-time resolution moments. In particular, at time of

creation of a composition, resolution happens at once for all build-time

parameters of all resources that take part in it and selected values are directly

written to the definitions of its corresponding workflows, to improve actual

resource invocation. At workflow execution time, instead, middleware

resolves run-time parameters resource by resource, and it leverages values

from the workflow definition to assign remaining parameters.

88

5.2.2 Result passing

Though quite a trivial issue from a theoretical point of view, result

passing permits to support business process execution by coordinating

invocation of resources that participate to workflows. Indeed, dependency

constraints, sequences of operations on a same data payload, parallel branches,

error handling and conditional executions driven by result characteristics are

all typical problems that arise when commanding invocation of independent

resources that have to cooperate with each other.

Traditionally, workflow engines deal with coordination and data

treatment by interpreting formal descriptions of the business processes they

have to enact, and by providing a suitable execution environment for method

invocation and data exchange among all resources entailed by a composition.

Every workflow describes actions to enforce on specific resources as well as

control logic that determines the order of operations, time dependencies, data

transportation, and so. Interpreter evaluates such instructions to arrange a work

flow of successive activities to orchestrate.

Thread safety of multiple simultaneous interpreters guarantees

concurrent execution of multiple processes, as well as forks, branches, and

joins are possible by splitting up a single workflow in multiple subparts, to

assign to different interpreters, each one providing its own execution scope.

In our middleware architecture, as seen, resource proxies never directly

interact with each other. Hence, in order to cooperate and exchange partial

results, they either enforce the actual resources they manage to

intercommunicate with each other (e.g., in Arianna story, the case with

streaming) or demand handling of such results to who actually orchestrates

their execution. It is therefore middleware responsibility not only to invoke

resources according to a given workflow definition and parameter resolution

strategy, but also to properly handle their results, in case, and to transmit them

to successive stages of the running workflow.

Besides, to deal with huge resource distribution (such as with distributed

and replicated services), middleware features location transparency while

89

orchestrating and forwarding results among them. Resources are unaware of

their invoker location and do not influence result destination, neither in terms

of consuming resources nor in terms of transport mechanisms.

Finally, to support human actors who participate to workflow activities

(i.e., the final users), middleware also provides durable and reliable result

passing between resources. This way, it is possible to allow for passivation

and resumption of long-running processes, in order to save computational

capacity.

For instance, in traditional enterprise scenarios as well as in more typical

IoS ones (e.g., online order processing, instant messaging, download of web

pages followed by form submission, and so), human involvement may lead to

long lasting workflows, where inactivity time exceeds actual processing time.

To overcome this, invocations by the middleware to resource proxy methods

can enforce a blocking policy as well as exploit a callback mechanism to

prevent waiting for results.

5.2.3 Automatic reconfiguration

Dealing with modern IoS scenarios, where user conditions can vary in

extremely dynamic ways, automatic and efficient composition (re-)calculation

can become really effective only by monitoring relevant user characteristics to

learn when and how to perform it.

Our composition model enables this by means of a particular kind of

composability expressions, called monitors. Monitors not only evaluate when

the middleware first calculates a composition definition, but they also register

to the system the resource characteristics to observe and re-evaluate upon their

changes. When a monitored resource characteristic changes, compositions that

depend on it may become no more valid, depending on the result of monitors

re-evaluation. Hence, they are forced to check their own validity again and to

recalculate their own definitions in case of failure.

It is fundamental to notice that composition check and (in case)

recalculation occur at time of changes in monitored values, and not when the

90

user demands results from that resource composition. Hence, reconfiguration

is proactive and brings little or no impact on user experience.

Listing 8, in the following, completes the METAR service metadata

example by arguing on “non-nullable” values, data format constraints and

allowed ranges (e.g., Bologna metropolitan area).

<?xml version="1.0" encoding="UTF-8"?>

<properties>

 <comment>

 Service for reading location-aware METAR messages published at a given url

 </comment>

 ...

<!-- Monitoring metadata-->

 <entry type="mon" name="notnullable">

 props=user/context/location/coordinates

 </entry>

 <entry type="mon" name="allowedformat">

 props=user/context/location/coordinates,LatLong

 </entry>

 <entry type="mon" name="allowedrange">

 props=user/context/location/coordinates,[44.55,11.17]/[44. 44,11.42]

 </entry>

</properties>

Listing 8 – Metadata for monitoring characteristics

Whether the final user has no valid position or she is outside the service

scope, the service itself must be substituted by another one (maybe not

location-driven – e.g., forecasts for the whole user's country – or related to

another geographical area and perhaps at another billing cost). If substitution

is not possible, composition becomes unavailable until middleware succeeds

again in calculating its expressions (e.g., new available services or changes in

user coordinates arise).

91

92

Chapter 6 – Related Work

To define middleware features, we strongly enforce concepts form the

general structure of a Distributed Processing Environment (DPE) as exposed

in [Cha95], and endorse best practices and integration strategies described in

Rod Johnson famous book on enterprise application design and development

[Joh03]. In details, likewise TINA-C specification in [Cha95], we promote the

idea of abstracting the current distributed processing environment to

cooperating resources, by offering communication and interoperation facilities

that can provide location transparency. Furthermore, we advocate a business

process management and coordination role for the middleware itself, rather

than making it a sort of content-related facilities provider with which

resources have to deal directly. Middleware intervenes on middleware-

unaware resources and orchestrates their integration and execution. Thus,

complexity shifts from software design issues to business process modeling

and middleware disappears in the background while it manages resource

functionalities.

Usage of proxy entities to abstract resource location and to enable

technology agnostic interaction is a well-know software design pattern

[Gam94]. Though others adopt proxies as a means to pursue integration of

heterogeneous distributed legacy assets [Ber04], we argue that leveraging

proxies to provide uniform and consistent resource lifecycle management and

to provide Ubiquitous Internet related facilities is an original contribution

from our work.

6.1 Session

Session related issues are being heavily debated in SOA and enterprise

software communities and several standards [Kri97][Pan04][Sch02] and

proposals [Ueh01a][Roh97][Ueh01b] are emerging to provide viable

solutions.

93

Seam project from the JBoss group [Kin08] promotes a framework

architecture where the run-time environment that is in charge of enacting

resource business logic also provides the session management facilities that

are needed to orchestrate resources themselves into complex business

processes. Furthermore, as validity of session information can undergo

different constraints on different kinds of business processes, framework also

enables differentiated session scoping for different pieces of session

information. In details, by focusing on rapid development of Web

applications, Seam framework provides session contexts that can tie to a single

request/response message pair, to all requests from a single client for a

particular Web page, or to a conversational flow spanning across multiple

pages, as well as to one business process entailing multiple software

components, or to the entire application.

By studying a set of target applications, also [Abr96] derives the

description of a set of functional scopes to provide effective session facilities

to distributed applications. Although from a different perspective – that is to

say, abstracting session management for the application programmer rather

than enabling use case driven composition of resources –, proposed reference

model claims to differentiate session details that are provided to diverse

business participants: final users, application as a whole, distributed

cooperating functionalities and their coordination protocols.

[Haa97] emphasizes the problems of session establishment and service

continuity as session participants distribute over different – and even mobile –

network nodes. Separating resources with intermediate software layers is

claimed to ease solutions for both mutual discovery, hence initiating

interactions, and state information retention/transferring among resources. In

our vision, configured proxy instances realize part of such in-between

software, in effect. And the uniform resource abstraction they provide also

constitutes the basis for a uniform approach on session management issues.

94

6.2 Context

Context Toolkit from Salber at al. [Sal99] is generally considered as one

of the most important milestones in work on context-aware ubiquitous

computing. Authors observe several technological efforts on sensing and

interacting with physical context of people's activities, and highlight the need

for exploring realistic scenarios and location-dependent services in easy ways.

Article also crafts a new operational definition of context, in terms of the

actors and information sources involved in creating and leveraging it: context

is “any information that can be used to characterize the situation of entities [...]

that are considered relevant to the interaction between a user and an

application, including the user and the application themselves. Context is

typically the location, identity, and state of people, groups, and computational

and physical objects”. To endorse this definition, authors provide a suitable

toolkit to build context-aware applications, after the premise that combined

toolkit components can determine a contextual state by capturing,

transforming and aggregating raw information. Thus, they also insist on

aspects such as context representation, management, integration in the

computer world and exploitation in software.

Nowadays, context is actually a broad topic and it involves approaches

from several disciplines, ranging from computer science to cognitive and

social sciences. For example, [Eri02] investigates chances of building robust

context-aware systems that will rarely fail to react appropriately to context-

related events; artificial intelligence techniques are criticized, due to

difficulties in capturing relevance differences in people experiences. [Gre01]

emphasizes the inherently dynamic nature of context information,

continuously varying and changing as long as interaction proceeds; author

claims that it may be difficult to limit possible contextual states a priori and

also to determine what information is necessary to infer one of these states, as

well as to automatically enact appropriate actions on it. On the contrary,

[Che06] tries to model a formal way to define context descriptions pertaining

to service requesters and providers by means of ontologies and [Sva01] even

95

appeals to phenomenology to develop foundational understanding of context-

awareness as it was done with aspects of human activities and interactions.

We strongly agree on concepts from [Hon01], that argues on facing

context-aware computing by means of an underlying service infrastructure,

made up of a pervasive intermediate software layer, thanks to which much of

the work of collecting and processing context information can be decoupled

from the application itself. We believe that benefits from a similar approach

lead straightforward to loosely-coupled resources, able to leverage context to

differentiate their behavior without directly coping with retrieval and

transformation problems. Furthermore, we agree on considerations in

[Win01], where different architectural approaches are compared for building

context-aware systems; conclusions assert that a blackboard-based approach

shows more flexibility than using software components to model context

domain.

6.3 Multimodal and multichannel access

Research on multimodal interfaces, multichannel access and interaction

paradigms have so far evolved almost separately: for instance, multichannel

platforms too often focus on adapting contents to devices, but do not easily

integrate with different interfaces from the one initially expected. In a similar

way, multimodal frameworks enable development of effective multimodal

applications, but do not easily integrate with existing services or different

standards from those they adopt. Although requirements for integration of

different modalities of natural input/output are commonly acknowledged, the

proposed solutions and frameworks tend to have vertical approaches and focus

only on specific and fixed sets of interaction modalities or application

domains.

Typical platforms target, for instance, e-learning [Shi07], medical

consultation [Aka98] or crisis management [Sha03]. Although some general

purpose multimodal frameworks [Mmi][Rav03][VoiceXML][Opera][IBM]

have been proposed, again they are limited to a set of predefined interaction

96

modes (specially auditive ones) and therefore still lack concrete and

widespread adoption.

As for content multichannel access, instead, legacy systems are usually

built with one delivery channel in mind and need re-engineering to enable

access via multiple channels; typically, this is done by exposing functionalities

as software services and adopting SOA strategies to compose them [Jef08],

either implementing a channel-agnostic communication system [Zim05] or a

channel-adaptive one [Com04].

6.4 Standard tools for enterprise integration

We commonly refer to services as “self describing, open components

that support rapid, low-cost composition of distributed applications”,

providing “a distributed computing infrastructure for both intra- and cross-

enterprise integration and collaboration” [Pap03]. SOA approaches promote

the encapsulation of application logic within independent service modules that

expose well-defined interfaces, to act as service contracts and specify behavior

and interaction details [Ort05]. Service composition techniques enable the

creation of brand new valued-added services on top of existing ones and offer

abstractions and tools to achieve this goal. Finally, orchestration is often

referred to as the act of executing business processes that are defined in form

of service compositions, by dealing with the aspects of message passing and

identification, invocation sequences and branching logic [MomentumB].

Current service composition platforms usually provide models and

languages to define complex business processes and suitable execution

environments to enact them. Being developed by BEA, IBM, Microsoft and

SAP (among the others), BPEL [Cur03] has emerged over time as an XML-

based definition language to “support process-oriented service composition by

means of interaction with a Web Services subset to achieve a given task”

[Mil04]. Especially in the field of open source software, other relevant

attempts tried to enable business process management out of distributed

computational resources [Koe04] and/or message routing and transformation

97

[Camel]. Eventually, BPEL established as a de facto standard for process

definition and gained support from orchestration engines of other vendors.

Initially, BPEL lacked to support human involvement in service-oriented

architectures, wherein business activities invoke services to perform various

tasks of their processes and human intervention plays a central role, too. To

provide means to model human tasks and to enact services that deal with

human actors playing particular roles in the overall process, technologies have

been proposed for integrating people interaction with BPEL processes, such as

BPEL4People [Agr07a] and the related WS-HumanTask [Agr07b] standards.

Anyway, these kinds of specification mainly define syntax and semantics

element and introduce a technological-dependent perspective, based on

languages and tools, rather than a model-driven one. This forces adaptation of

existing implementations (realized by both industry and academia in the

meantime) to comply with the standards themselves. As [Hol08] states, “to

reduce migration and maintenance costs, adaptation to such technology

standards should be easy to perform: while concepts of a system may not

change, new technology may introduce new syntax elements and may modify

semantics. Therefore it is desirable to have conceptual representations within a

system that have only the necessary dependencies on foundational

technology”. By adopting the pattern-based approach in [Aal03] to describe

these requirements, [Rus08] criticizes BPEL achievements; similarly, [Hol08]

argues that such a technological-dependent perspective should be replaced

with a model-driven approach capable of expressing system concepts at a

higher level of abstraction.

6.5 Models for service composition

Several B2B success stories regard middleware adoption as a a

comprehensive integration platform for resource composition and process

orchestration. For instance, IBM WebSphere Message Broker [WebSphere] is

a leading commercial product to connect existing IT system to an SOA

messaging backbone, realizing distributed processing and transactions.

98

Recently, enterprise service bus architectures (ESB) have emerged to expose

service functionalities on a shared message bus and to enable orchestration of

business processes on top of message flows [Rad09][Woo06]. Open source

initiatives are gaining momentum too, dealing with ESB implementation

technologies [Mule][ServiceMix].

Most of these solutions, anyway, mainly target static scenarios – such as

organizations and optimization of existing business processes – where long-

lasting requirements rarely demand service reconfiguration/substitution or

expect new services to become available in time for use in existing processes

[Alo03b]. As a consequence, they leverage tools for assisting humans in

manual creation of service compositions and neatly separate build-time and

run-time moments. Networking facilities and the opportunity to provide users

with a huge number of services via the Internet, as well as the evolution

towards mobile and ubiquitous computing scenarios have clearly made these

assumptions obsolete. Indeed, frequent changes in user requirements (e.g.,

typology and features of the device in use) and service variations (e.g.,

temporary unavailability or brand new services being published) can easily

cause current compositions to become less adequate or even invalid [Boa07].

Given these premises, the lack of support for dynamic and automatic

reconfiguration becomes a crucial issue in realizing global mashups of

services and final-users.

Research tries to tackle these problems mostly by focusing on a

semantic approach. It is argued that for composition platforms to dynamically

arrange and compose resources, they should describe them from both a

syntactic and a semantic standpoint. For instance, dealing with Web Services,

this entails coupling traditional WSDL descriptors with additional semantic-

related annotations. So far, a wide set of solutions have been proposed to

enable this, ranging from custom application-driven formalization of resource

features [Cha06] to the definition of ontology standards and meta-languages

for expressing them [OWL][Mar04][Her04][Rom05]. Ontologies, in

particular, realize “formal and explicit specifications of shared

conceptualizations” [Ber01] and can be created by domain experts to provide

99

relevant vocabulary for describing properties and relations. Thus, by

formalizing concepts, values and meanings used to semantically describe

resources, the task of retrieving and dealing with the desired functionalities

can be improved and automatized.

Some solutions [Kal07][Fuj06] rely on a graph-based composition

model that leverages semantic descriptions to dynamically generate paths

among available services, to satisfy user requirements. We disregard this kind

of approach, due to the difficult in predicting and ranking actual compositions

out of multiple valid paths, as well as in formulating requirements that involve

intermediate graph nodes (such as supported service preferences, besides

initial and final states) or the overall resulting composition (such as QoS

constraints).

Other approaches enforce composition models that base on rules to

check for service compatibility and to rank possible compositions, leveraging

semantic information to infer service degree of interoperability. [Nar07]

separates requirements into two parts, functional and extra-functional,

regarding commitments on the overall service composition and constraints on

the behavior of individual services, respectively. Authors then concentrate on

defining modular requirements that can be processed along the execution of

their adaptive workflow model. [Med05] insists on the benefits of

differentiating composability rule levels according to syntactic, semantic and

qualitative degrees. Besides, they introduce the notion of partial composability

and highlight the problem of relative weights of composability results from

different rule levels. Finally, [Med03] illustrates four conceptually separate

phases in automatic service composition, from specification of requirements to

features matchmaking, service selection and final generation of the

composition description; an ontology-based framework to support formulation

and processing of semantic information is provided.

Though these approaches sometimes miss the right abstraction level, as

they concentrate on too vertical and domain-specific descriptions, nevertheless

we strongly agree on the benefits of rule-driven composition and of leveraging

separate rule sets to model different composability issues. Anyway, we also

100

maintain that rule evaluation framework has to allow for addition of new

concepts, values and rules at any time, to guarantee service set and application

domain extensibility. In fact, as [Sch07b] criticizes, “semantic islands” are

only useful to a limited degree.

101

102

Chapter 7 – Prototype Implementation

For the implementation of our middleware prototype, we have adopted

the most relevant de facto standards, both in terms of technologies and

development tools. Given the active and lively user community, and the

availability of several free and/or open source support projects, most

references in the following relate to the Java language and its Java Enterprise

Edition (JEE) APIs and facilities [JEE]. However, design guidelines and

principles we have depicted so far grant our architectural proposal real

independence of the underlying software infrastructure and execution

environment.

7.1 Intercommunication, container and registry levels

To avoid redesigning from scratch solutions for persistence, resource

naming, component pooling, and so on, development has strongly relied on the

adoption of an application server infrastructure. In particular, among JEE

solutions, we have chosen to exploit the open source application server

implementation from the JBoss Group, now part of Red Hat Middleware, Inc.

[JBoss], due to the out-of-the-box implementation that it provides for most

JEE API specifications and its support to custom extensions of its core

functionalities.

As Illustration 26 in the following shows, middleware

Intercommunication, Container, and Registry levels heavily leverage some

major JEE facilities, such as Java Naming Directory Interface (JNDI)

specification as for resource and component naming [JNDI], Java

Authentication and Authorization Service (JAAS) to deal with security

management [JAAS], Java Persistency API as a simple programming model

for entity persistence [Bis06], Java Transaction API (JTA) to coordinate

parties involved in possibly distributed transactional operations [JTA], and

Java Message Service (JMS) to support persistent and reliable message

103

exchanges among system parts [JMS]. As a database support, we exploit

MySQL server [MySQL], an outstanding open source database application

with support for transactions and master-slave replication. Besides, to

effectively persist middleware entities (in the form of Java objects) on a

relational database, we leverage Hibernate leading open source persistence

framework [Hibernate] for Object-Relational Mapping (ORM). Finally,

application server provides transparent support for Java Remote Method

Invocation (RMI) among system components [RMI] as well as efficient

caching and clustering mechanisms.

Application server clustering facility, in particular, has allowed us to

achieve load balancing and middleware scalability in very easy and

transparent ways. We have therefore avoided typical client-server solutions

and limitations and easily provided a distributed and scalable solution with

104

Illustration 26: Middleware implementation technologies

almost no effort, but deployment configuration and administration.

Components up to the whole platform can indeed be easily replicated and/or

moved over the network nodes where application server instances are running,

while sharing the same knowledges and bases of information. By doing so, we

have managed to keep most of the computation at the middleware side, thus

posing virtually no constraints on client device capabilities and remote servers

hosting the services being exploited. This has resulted in a highly powerful

and lightweight approach for integrating resources, that can be ultimately old

and legacy ones, too.

7.2 Engine level

Components in the Engine level extend traditional application server

facilities by leveraging JBoss support for the Java Management eXtension

(JMX) specification [JMX]. JMX objects, in particular, permit to develop

software components that can both execute autonomously within the

application server environment – by running and controlling threads, holding

in-memory data, and so on – and serve requests from other, same or higher

level, components. Though other promising standard specifications are

emerging, and we will consider them in the near future – e.g., the Open

Service Gateway initiative (OSGi) [OSGi] –, JMX technology currently

constitutes the main way through which our middleware prototype

implementation deals with resource management problems, in terms both of

control on object dependencies and policy enforcement.

Reification Engine is a custom Java component, exposed as a JMX

service, that accepts registration of resource proxy metadata and

implementations, by leveraging the underlying Resource Registry. Besides, it

is also responsible for maintaining information about RRM status of each

resource proxy in the system and to enforce RRM steps.

Normalization Engine is a custom Java component, too. As a JMX

service, it accepts registration of syntaxes and corresponding normalization

algorithms, by leveraging the underlying Syntax Registry. It is then the

105

interpreter of such algorithms, thus the transformer of actual raw intercepted

activity data into middleware commands.

Composition Engine is in charge of evaluating composability

expressions (from the Expression Domain Registry) within composition

template schemata (from the Template Registry) in order to satisfy a given

scenario requirements, by producing an actual composition. To ease

expression formulation and adoption, hence metadata provisioning by proxy

developers, we model composability expressions in the form of Java language

ordinary expressions. Metadata enter evaluation as properties from the

resource proxy objects that play the desired roles, being selected by means of

ordinary “getter” and “setter” methods. To grant flexibility and extensibility,

expression domains are not compiled to Java classes, but undergo evaluation

by means of a run-time interpreter. In details, our implementation builds on

top of the BeanShell lightweight scripting interpreter [BeanShell].

Finally, Orchestration Engine employs an open source and third-party

provided framework to describe and enact the workflows that realize the

business processes within our system. Also from the JBoss group, the Java

Business Process Management (jBPM) platform [jBPM] realizes a powerful

workflow execution engine, able to support even passivation and resumption

of long-lasting processes, for instance in case of currently unavailable

resources or human direct intervention in intermediate content

transformations. jBPM workflows can either be described via the jBPM-

specific Java Process Definition Language (jPDL) or the standard BPEL

composition language. By choosing the first-one for the sake of clarity and

simplicity, Listing 9 reports a sample from an “RSS-to-mail” workflow:

<?xml version="1.0" encoding="UTF-8"?>

<process-definition name="rsstomail_workflow">

 <start-state name="start">

 <transition name="begin" to="state_1"/>

 </start-state>

 <state name="state_1">

 <transition name="service_1" to="state_2">

 <action name="rss_srvc" class="it.swimm.workflow.jbpm.Ejb3Handler">

 <typology>content_generation</typology>

106

 <subtypology>rss_reader</subtypology>

 <deployment>

 java.lang.String:servicetype:EJB;java.lang.String:host: localhost;

 java.lang.Integer:jndiport:1099;

 java.lang.Str ing:jndiname:RSSReaderService/local

 </deployment>

 <method>downloadNews</method>

 <arguments>

 java.lang.String[]:urls:request(/PARAMS/urls)

 </arguments>

 <return>

 java.lang.String:rss:execution(/PAYLOAD)

 </return>

 </action>

 </transition>

 </state>

 <state name="state_2">

 <transition name="service_2" to="state_3">

 <action name="rss2txt_srvc" class="it.swimm.workflow.jbpm.Ejb3Handler">

 <typology>content_adaptation</typology>

 <subtypology>text_converter</subtypology>

 <deployment>

 java.lang.String:servicetype:EJB;java.lang.String:host: localhost;

 java.lang.Integer:jndiport:1099;

 java.lang.Str ing:jndiname:RSS2TextService/local

 </deployment>

 <method>extractNews</method>

 <arguments>

 java.lang.String:in:execution(/PAYLOAD)

 </arguments>

 <return>

 java.lang.String:out:execution(/PAYLOAD)

 </return>

 </action>

 </transition>

 </state>

 <state name="state_3">

 ...

 </state>

 ...

</process-definition>

Listing 9 – Workflow sample in jPDL language

As description shows, orchestration of services performing content

generation (RSS reading), adaptation (RSS feed to plain text conversion) and

delivery (e-mail sending) is as simple as performing traditional EJB3 lookups

and invocations. jPDL listing reports metadata needed to complete this task

(deployment information, method names and argument mapping to existing

properties, if needed) and assigns actions to an object of custom class

107

it.swimm.workflow.jbpm.Ejb3Handler, we have developed on purpose to

manage invocation of methods on EJB3 components. Composition Engine

saves workflow description to middleware persistence layer, for later

execution by the Orchestration Engine, and associates it to the name

“rsstomail_workflow”.

7.3 Integration and support facility level

Interaction Modules and Workflows come in the form of version 3

Enterprise JavaBeans (EJB3) [EJB]. In particular, according to current EJB3

specification, interaction modules are Session-type EJBs, that execute upon

activity interceptor initiative, whereas workflows are Entity-type EJBs,

bearing business process definition, partial computation results and status.

This inherently provides for scalability support at the application server level,

thanks to container-managed pooling, caching, and clustering mechanisms.

By exploiting the different flavors of Session-type EJBs, interaction

modules manage to support different interaction patterns, such as the request-

only one (via Message-Driven Beans), the request-response one (via Stateless

Beans), conversational ones (via Stateful Beans) and combinations of them, up

to supporting multi-party interactions (via Singleton Beans, from the most

recent EJB3.1 specification release). As for workflows, JBoss support for

distributed transactions and clustered data cache, through Hibernate, enables

entity management through different application server nodes, hence load

balancing and fault tolerance.

Context and Session blackboards are provided to resource proxies in

terms of a simple API that proxy themselves can leverage to gain access to

reliable data storage, independently of their actual location. API

implementation currently bases on Java Persistence API, too. Remote access

to non-Java software modules, such as Win32 client applications managing

GPS measurements or Linux network gateways tracking device connections,

rely on custom adapters to deal with API implementation and data marshaling

towards actual Java Persistence layer. We have evaluated the viability of other

108

approaches, too, such as in-memory databases and cross-platform support

frameworks; experiments have been conducted, in particular, on Oracle

Coherence [Coherence], a proprietary in-memory distributed data grid for

clustered applications and application servers.

Monitoring of relevant properties from context, session, and other data

domains (that composability expressions mandate to assert validity of existing

business processes), as well as mapping of proxy invocation arguments (that

need resolution to perform workflow orchestration) are crosscutting concerns

that spans multiple middleware components and levels. We have enforced

Aspect-Oriented Programming (AOP) techniques to manage with them, by

associating execution of monitoring and parameter resolution routines to

relevant middleware activities entailing such properties, such as value

modifications and resource proxy invocations. Current AOP support leverages

SpringFramework facilities [Joh05]: Spring AOP benefits of low complexity,

in that it supports runtime configuration to weave aspects – i.e., execution of

crosscutting functionalities – into execution of methods from other objects.

We have investigated different solutions, in order to smoothly integrate the

Spring lightweight container within the JBoss application server infrastructure,

and eventually permitted a synergistic coexistence of the two environments.

7.4 Resource proxies

Resource proxies undergo different forms and implementing

technologies, depending on the actual business processes to support. In time,

to demonstrate our approach viability, we have realized a number of actual

application scenarios and developed corresponding proxies for the resources

that they involve.

We have adopted several different solutions, often arranged together

within the same workflow to orchestrate rich business processes. To provide

some examples, we have typically exploited WebServices and EJBs to model

proxies for remote services, as Listing 9 showed. For instance, proxy for the

voice synthesis service bases on a Stateless Session Bean component, able to

109

communicate via telnet to a remote Festival server, i.e., the actual resource to

integrate. SMTP server resource for e-mail sending, instead, integrates by

means of a simple Plain Old Java Object (POJO) proxy, exposed as a platform

agnostic Web Services interface that expects additional invocation arguments

to customize messages. Besides, other content transformers, such as an XML

parser for RSS documents, and a picture-downsizer to improve web navigation

on slow connections, are just POJOs that directly run at middleware side.

As for activity interceptors, we have managed to intercept HTTP

requests by means of both coarse- and fine-grained web components. HTTP

proxies as well as HTTP filters permit us to intervene on legacy requests, for

the wide Internet area and local web site resources, respectively. Instead,

specific web application components (often in the form of JEE Servlets and

JSP pages) let us accept requests that provide well-defined headers, cookies

and parameters. Other stand-alone applications, running on local or remote

network nodes, allow us to monitor incoming requests, for instance on SMS

gateways or VoIP servers, whereas Windows Mobile or Java Micro Edition

(JME) applications provides functionalities to deal with peripherals on mobile

devices, for instance to read current GPS coordinates and send them as UDP

datagrams to a suitable, request-only, interaction module endpoint.

110

Chapter 8 – Some Scenarios

The middleware prototype we have developed covers the discussed core

architectural levels and a few basic types of interaction modules, featuring

support for the most common interaction paradigms such as request-only,

request-response, publish/subscribe, and conversational ones. By leveraging

registries, it allows for dynamic addition of composition templates, as well as

of composability expression domains, syntax normalization algorithms, and

property domains to map invocation arguments of resources that participate in

business processes. Finally, it can be extended not only in terms of resource

proxies that it lets integrate and workflows that it can enact as a result for the

composition calculus, but also with novel types of interaction modules.

After providing it with knowledge of an initial set of composability

domains and quite a numerous set of resource proxies, we have thoroughly

tested it in several different scenarios, to stress critical Ubiquitous Internet

problems and enforce novel Ubiquitous Internet applications.

8.1 Campus Web site

A typical use case is with one student that can access the Internet by

means of her personal smartphone, either by exploiting a slow GPRS

connection or a faster Wi-Fi one, and wants to read Web pages from the

campus Web site. Furthermore, college provides a news service she is

particularly interested in, a shared student calendar with indication of campus

events and a blog service where students can comment on aspects of campus

life, music, politics, and so on.

We expose service configuration facilities via a dedicated Web

application, to let students express their preferences. Student we observe has

chosen:

� to subscribe to the campus news service;

111

� to receive news title via SMS messages on her phone as soon as news

become available;

And, furthermore:

� to have daily e-mail reports of the full content of the news of the day;

� to enrich every daily report with calendar events regarding next seven

days, starting from the present date;

� to aggregate to this report also contributions from the blogs of two

friends of her.

As for Web browsing, then, she has chosen:

� when surfing the campus Web pages through a GPRS connection, to

have middleware resize pages to fit her device screen and reduce

dimension of image files to save bandwidth;

� when surfing the campus Web pages through a Wi-Fi connection, to

just have middleware resize pages.

These requirements point out important aspects our middleware

supports. First of all, user can exploit both synchronous and asynchronous

interaction paradigms, via the HTTP request/response message exchange

pattern and the news service publish/subscribe one, respectively; indeed, some

functionalities obey a “pull”-type provisioning model and are only useful

when she connects to the campus site; other ones, instead, realize “push”-type

content provisioning and must be running even when she is not logged onto

the system. Secondly, changes in the user context can cause service

compositions to change accordingly, at run-time, such as when the shift from

GPRS to Wi-Fi connection type occurs.

The Web configuration interface we expose (Illustration 27) is in charge

of collecting user preferences and to assemble them into a corresponding set of

requirements that middleware Composition Engine can leverage to compute a

suitable resource composition. In the case we consider, preferences also entail

constraints that require different business processes, according to different

112

context conditions. Of course, user neither directly indicates composability

expressions nor provide requirement description on her own, but she selects

intuitive GUI controls that achieve the desired effect by adding corresponding

composability expressions to her scenario requirements.

According to RRM, middleware activates (if needed) all resource

proxies that participate in the business processes that satisfy current scenario

requirements, and it configures them accordingly. On the contrary,

middleware does not reserve resource proxy configurations for non-running

processes.

Thus, when user is not logged in, middleware does not need Web

content adaptation process and it does not reserve any proxy configuration for

it. Indeed, composition calculus fails since constraint on user authentication

113

Illustration 27: Graphical user interface for middleware configuration

status makes no actual proxy composition satisfy the scenario requirements.

Nevertheless, monitoring of user authentication status takes place all the same,

to enable reactions to property changes that may lead to feasibility.

Web content adaptation workflows are saved to system entities only in

case user logs in to the middleware, via the campus Web site; by that time,

middleware selects participating proxies as a function of actual user

connectivity type.

Business processes that relate to news forwarding via SMS messages

and mail delivery, instead, correspond to workflows that must always be

available and ready to run at any given moment, to serve the events of “news

publication” and “mail sending-time reached”.

Finally, monitoring of user authentication status and connectivity type

permits workflows construction to be pro-active: compositions are not created

when the user actually exploits them, but as soon as her characteristics vary.

This has proven to work very well as a solution to the trade-off between

responsiveness and average computational load.

8.1.1 Notification of news availability

Considering campus Web site as a legacy resource to integrate within

business processes, availability of campus news represents the actual resource

activity that campus site proxy must intercept and forward to the middleware

for further processing. Thus, campus site proxy can be, in effect, an RSS

reader application.

Since campus Web site – of course – is not interested in processing

results, message exchange pattern between proxy and the middleware can

leverage the request-only interaction paradigm to just trigger execution of the

workflow that realizes the desired content processing.

Anyway, more than a user may share interest in the same campus news,

despite they indicate content processing through different workflows. For the

sake of these business processes, hence, campus Web site proxy accepts

configuration arguments in the form of identifiers of workflow subscriptions

114

that wish to receive campus news.

As Illustration 28 shows, to enforce one-to-many content distribution,

campus site proxy forwards news raw data to the middleware, along with the

collection of all subscription identifiers for that content, and message syntax

indication to normalize data to middleware commands. On the middleware

side, we provide an appropriate publish/subscribe interaction module that can

leverage subscription identifiers to enact as many different workflows as

required.

Finally, in the case we consider, by supposing updates of campus site

just consist in publication of RSS feed documents, we enable SMS sending by

means of a simple workflow that analyzes those documents, extracts RSS feed

titles and gathers them in a text message, finally delivered via a GSM gateway

(Illustration 29).

115

Illustration 28: Different configurations of the same resource proxy in different

business processes to perform publish/subscribe interaction

8.1.2 Scheduled content aggregation delivery

User preferences we consider permit to exemplify publish/subscribe

mechanisms once again. Indeed, since user has chosen to also get campus

news in the form of daily e-mail reports, another business process of hers

entails workflow subscription to the campus “news publication” event. By

simply leveraging a buffering service, such a workflow enables collection of

RSS news for later processing and delivery, perhaps at a given time of the day.

The whole business process that models “scheduled content aggregation

and delivery via e-mail” consists of two separate workflows, as Illustration 30

reports. The first one, as seen, subscribes to RSS updates to store campus news

RSS documents to a temporary buffer. The second one, instead, executes upon

scheduled events to retrieve contents from that buffer, aggregate it to content

from other sources, and finally perform e-mail sending.

By intercepting activities of system clock (as an actual resource), a

“timer service” proxy permits to model scheduled business processes. It

reserves business process configuration by accepting the “identifier of the

workflow to enact” and the “desired daytime to trigger execution” as

parameters of its RRM configuration method. When the given time comes,

then, it self-performs RRM execution and forwards to the middleware request-

only interaction module the raw data that describes the current event

(including workflow-to-enact indication), along with the appropriate syntax

that lets middleware normalize message, hence identify and run the desired

workflow.

116

Illustration 29: RSS to SMS Workflow

8.1.3 Web content adaptation

As the user logs in to the campus Web site, middleware determines a

suitable resource composition to provide Web content adaptation.

This time, activity interceptor proxy consists in a simple HTTP filter

component that campus Web server associates to all pages from the campus

Web site. Filter allows configuration by means of “user identity” and

“workflow identifier” arguments. Then, when user requests a page from the

campus site, filter intervenes on her browser HTTP request to operate as

follows:

� it extracts the client IP from the request data and stores it to the

business process context blackboard;

� it modifies the request by adding a further HTTP header, indicating the

workflow that middleware must enact for that user (as specified at

117

Illustration 30: Scheduled content aggregation and delivery

configuration time);

� it forwards the modified HTTP request to the middleware

request/response interaction module, once again along with syntax

information.

In the very beginning, user connectivity type is unknown; composability

expressions therefore behave as if we were in the worst-case. Practically

speaking, this is done by preventing selection of picture down-sampling

service if connection type certainly is from a broadband Internet Service

Provider (ISP). Thus, by assuming that user exploits a GPRS connection at

first, resource composition by the middleware (Illustration 31) expects:

� a first resource proxy, to submit client IP address information in the

business process context to an IP database, in order to learn about

approximate client location and Internet Service Provider (ISP), and

store such information to context, too;

� a second proxy, to analyze the HTTP request headers and save relevant

device information to the business process context blackboard, such as

user-agent characteristics and client device capabilities (e.g., screen

resolution), by leveraging the WURFL specification file [Pas08] as its

own resource;

� following service in the workflow, to actually serve the user request

and save the resulting HTML content to the current workflow

execution payload, for further processing;

� a forth proxy, to exploit an ImageMagick-based [ImageMagick]

service in order to reduce the size in kilobytes of page images (via

down-sampling), and to modify the HTML payload accordingly (by

linking modified image versions, instead of the original ones);

� last stage in the workflow, finally, to modify the body style of the

HTML page payload, in order to fit user device screen resolution,

according to device information in the business process context.

118

Given this workflow characteristics, as soon as user connectivity type

changes, context properties that relate to her IP address and ISP are changed

accordingly. In particular, middleware performs monitoring on the latter value

to prevent picture down-sampling in case ISP is recognized to be a broadband

provider. When this happens, it forces composition calculus to evaluate

scenario requirements again, hence substitutes the current web content

adaptation business process with its Wi-Fi version (Illustration 32).

119

Illustration 31: Web content adaptation (GPRS case)

It has to be observed that HTTP filter has no means to directly recognize

identity of a specific user upon her HTTP requests. Indeed, although requests

convey session cookies, filter cannot directly exploit such cookies to tell the

precise user identity, hence select her corresponding workflow to command:

session cookies just distinguish different users, but do not provide identity

information.

To overcome this, when user requests a page from the campus Web site

first, she is presented a login form to fill in. By also belonging to the “Web

identification process” depicted in Illustration 33, HTTP filter proxy intercepts

this form submission and forwards data to the “Web login” Workflow, to

evaluate credentials, authenticate users, and – most important – append user

identity information to the response.

Before returning results to the final user, filter reads (and removes)

explicit user identity indication from the response and leverages its own proxy

instance session scope to save the association between user identity and the

current HTTP session cookie from the Web server.

120

Illustration 32: Web content adaptation (Wi-Fi case)

Session-managed user identity information enables monitoring of user

authentication status by the middleware itself, hence configuration and

deconfiguration of her Web content adaptation process, as she logs in and out.

Besides, given the chosen session scope, cookie-identity association is

available to all business processes in which HTTP filter participates; therefore,

it can survive business process reconfiguration (for instance, from GPRS to

Wi-Fi adaptation), just as traditional browser cookies do.

From this moment on, by leveraging cookie-identity association, HTTP

filter manages to tell user identity upon HTTP requests and choose the

corresponding workflow to demand orchestration of.

8.2 Personal podcast channel

“Personal podcast channel” belongs to a number of Ubiquitous Internet

application scenarios we have developed, in partnership with an enterprise

consortium to provide pervasive services in the field of tourism. Precisely, aim

121

Illustration 33: Web identification

of this scenario is to enable travelers to download tourist guide excerpts as

Mp3 tracks on their mobile devices, in podcast format [Podcast].

In simple words, podcast files are XML files that resemble the RSS

format and embed links to multimedia resources, such as audio files, videos,

and so. Podcast channel is the term in use to indicate the podcast file URL,

i.e., the Internet location from where final users can download its content,

usually via an ordinary HTTP request. Subscribing to a podcast channel,

hence, consists in saving the podcast file URL to a client application that can

automatically recognize updates and download podcast tracks at regular

intervals (e.g., Apple iTunes [iTunes] or Mozilla Songbird [Songbird]) .

Within the “personal podcast channel” scenario, we enable

personalization of the podcast content by leveraging additional user-specific

information to filter and download customized data. In details, scenario

requires:

� user to communicate her current geographical position to the

middleware, by leveraging a GPS device connected to her PC;

� user to subscribe to a given podcast channel by means of Apple iTunes

application, from her PC;

� middleware to provide a business process that intercepts iTunes

request for the podcast file, and arranges a customized podcast content

by leveraging user geographical position, geographically-related

excerpts of a tourist guide, and a voice synthesis service;

� finally, user to exploit Apple iTunes to save podcast Mp3 tracks to her

iPod device.

The choice to enforce legacy iTunes application as an inherent part of

the scenario depends on the supposed habits of final users: scenario is targeted

to yachtsman tourists, used to leverage a notebook PC when on-board, and to

carry just an iPod music player with them when visiting the country.

As Illustration 34 shows, process realization bases on two different types

122

of activity interceptor and two different workflows for content processing.

As for GPS positioning, we have leveraged Microsoft .Net Framework

[dotNet] to develop a simple client application, running in the background of

the user PC, that reads coordinates via serial port commands on the device

GPS module and sends them as UDP datagrams to the middleware. On the

middleware side, we have developed a UDP front-end for the message queue

that we associate to middleware request-only interaction module, to let it

receive and normalize UDP datagrams. Middleware commands in the

datagrams convey user identity and coordinates, and demand running the

“GPS analysis” workflow.

Proxy for the podcast subscriber application consists in a simple JSP

page running at a given URL, such as:

http://137.204.46.234:8080/Podcast/init.jsp

Interception of podcast channel requests from iTunes happens by simply

leveraging this address as the starting point to provide the podcast service. JSP

logic handles requests targeted to this URL, and forwards them to the

middleware request/response interaction module, for processing by the

123

Illustration 34: Personal podcast channel

“Personal podcast” Workflow.

To let middleware identify the user, hence write and read her correct

GPS position in the business process context, we provide each user with a

different identification parameter: such value must be provided to both the

GPS application (at its startup), and the podcast subscriber one (as a URL

query fragment to append to the podcast/JSP page URL):

C:\gpsdemon.exe userA (or via the application GUI)

http://137.204.46.234:8080/Podcast/init.jsp?id=userA

In case user cannot run the GPS application, JSP page can be invoked

from a traditional browser, too: response is an interactive map of Southern

Italy (Illustration 36), where user can click on her approximate position and

get a popup message with the corresponding podcast URL to provide to

iTunes (Illustration 35).

124

Illustration 35: Podcast subscription with iTunes

Finally, by requesting the given URL, user obtains her podcast

customized content as the result of the following sequence of activities

(Illustration 34):

� a first resource proxy retrieves user coordinates from the process

context and invokes the tourist guide Web Services accordingly;

� a custom Java routine analyzes guide items, assemble them to an

ordered list and make mutual references explicit by appending suitable

predefined text to each item (i.e., “to get more information on... go to

track number ...”);

125

Illustration 36: Access to the personal podcast channel via a traditional Web browser

� a text-to-speech application, namely Festival [Festival], synthesizes

item text to wave files (and saves them to a cache to improve following

executions on the same data);

� an audio converter, namely Lame [LAME], transforms wave files to

Mp3 tracks (and saves them to a cache);

� finally, guide items and Mp3 tracks are arranged together to create a

suitable podcast XML descriptor file.

8.3 Middleware configuration

The Web configuration interface in Illustration 27, through which we

mask to final users the burden of assembling scenario requirements, is not

actually an ad hoc application that directly accesses and commands

middleware components to achieve its results. Rather, such a Web application

and any other graphical tool – we have exploited to manage and configure

middleware – are all resource proxies that we leverage to intercept

management and configuration activities in different forms, and to command

the middleware accordingly.

Indeed, alike with conventional resource activities/requests, it is possible

to label management and configuration requests with suitable syntax

indications too, and to command middleware behavior accordingly.

Illustration 37, in the following, briefly reports the mechanism through

which an activity interceptor proxy demands middleware orchestration of a

certain workflow:

� explicit requests or information about current activities are intercepted

on the actual resource;

� proxy labels raw activity data with the corresponding syntax

information, in order to describe their format to the middleware, and

let it understand how to behave as a consequence;

� raw activity data are sent to the middleware via the interaction module

126

component that realizes the needed interaction paradigm;

� by leveraging Normalization Engine, middleware analyzes the activity

information to identify its origin (typically, the requesting user),

extract parameters (if any), and translate raw data into middleware

commands;

� finally, if activity demands orchestration of one or more workflows

from a given business process, middleware exploits the Orchestration

Engine to suitably serve the request.

Given these premises, following paragraphs will demonstrate how it is

possible to leverage similar mechanisms for commanding other middleware

behaviors than the process orchestration one, hence performing management

and configuration operations; for instance, in case of registration of a novel

resource proxy and of creation of a novel resource composition.

127

Illustration 37: Activity interception to command workflow orchestration

8.3.1 Resource proxy registration

Resource proxy registration consists in submitting to the middleware:

� the metadata that describe resource/proxy characteristics, for the sake

of composition within business processes;

� the actual implementation of the resource proxy (or, at least, a facade

[Gam94] to command it), for the sake of activation, configuration and

execution by the middleware, according to its reification model.

Submission can leverage a simple request/response interaction paradigm

in order to command middleware Reification Engine to store metadata and

proxy implementation in the Resource Registry (Illustration 38).

To easily enable registration and deregistration of resource proxies, we

have therefore developed a simple Web application that reports the list of

128

Illustration 38: Activity interception to command resource proxy registration

currently available resource proxies, and permits both adding new entries (by

submitting their code and metadata, in the form of .jar archives), and deleting

existing ones. Illustration 39, below, reports a snapshot of such application.

8.3.2 Creation of a novel resource composition

To enable effective setup of novel resource compositions, hence to

create and save their corresponding workflows to the middleware, it is

necessary to present final users with simple choices and selections on a

friendly graphical interface. Scenario requirements are then created step by

step, by letting users express their own preferences in terms of device to

exploit for a given service scenario, type of content adaptation, output media

format, and so on.

129

Illustration 39: Resource proxy registration by means of a Web application

Anyway, in several circumstances, operations that users can perform

depend on (or are mandate by) their previous choices. For instance, upon

selection of a given resource, it may be necessary to configure its invocation

parameters according to user explicit preferences (as seen) or selection from a

given list of possible values. Again, when user selects a given resource for her

application scenario (e.g, the SMS gateway as the communication channel to

receive content), other ones may become no more useful or valid and their

selection can be prevented or disabled (e.g., picture-related services,

alternative output channels, and more).

As Illustration 40 shows, configuring a resource composition therefore

requires a conversational interaction paradigm with the middleware, in order

to let it process partial preferences and filter available choices to the final user,

until all scenario requirements are in place. Intercepted activities consist hence

in incremental sets of scenario requirements and corresponding syntaxes, that

a conversational interaction module leverages, via the middleware

Normalization Engine, to enforce composition calculus by the Composition

Engine.

130

Illustration 41 and Illustration 42, below, present two more snapshots

from the Web application interface for configuring novel resource

compositions. In particular, Illustration 41 refers to an intermediate choice of

configuration parameters that user has to perform before proceeding.

Illustration 42, instead, reports the final result of the conversation, wherein

middleware confirms that composition calculus was successful and also

advices user on how to exploit the new resource composition. In details,

advice message is nothing more than a particular, textual, kind of composition

score. Though of course of no use for the sake of composition ranking,

composition template permits to create it by indicating a composability

expression domain, wherein placeholders in a given statement are substituted

by properties from the services that play roles in the composition.

131

Illustration 40: Activity interception to create a novel resource composition

132

Illustration 41: Choice of configuration parameters for a novel resource composition

133

Illustration 42: Result of the creation of a novel resource composition

134

Chapter 9 – Performance evaluation

To verify the feasibility of our approach, as for computational overhead,

impact on system resources of nodes that run middleware components, and

system scalability as well, we have intensively stressed the software

components involved in the scenarios depicted so far.

We have collected relevant measurements about performance and

resource exploitation on both middleware nodes and hosts running resource

proxies (and support facilities) only. Since results were similar in quality,

independently of the considered scenario, in the following we concentrate on

describing single reports in terms of coordination overhead, performance

scaling, and memory occupation.

9.1 Coordination overhead

Overhead tests aim at demonstrating how coordination by the

middleware impacts the overall execution time in serving user requests.

Considered scenario relates to the Web content adaptation example, where

middleware orchestrates a set of resource proxies – dealing with the analysis

of context conditions, actual content retrieving and successive transformations

of it – to let the final user download Web pages that fit her device screen and

connectivity type.

To separate middleware overhead contribution from actual service

request time, tests leverage workflows from two different business processes

sharing the same scenario requirements. In the first process, services actually

perform valuable operations such as downloading Web content on the behalf

of user, and manipulating images. In the second process, instead, workflows

exploit “fake” versions of those services, that perform no time- consuming

operations and that immediately return control to the middleware, to just entail

its overhead in terms of invocation and coordination. Furthermore, tests point

out how our prototype implementation manages to transparently exploit some

135

relevant application server facilities – such as resource pooling and caching –

while serving multiple requests that involve the same kind of middleware

components and resource proxy entities.

Tests come as a series of request burst-cycles at very small time

intervals, resembling actual scenarios of intense middleware exploitation by

final users. AOP techniques let us register suitable observers to both

interaction modules and actions entailed by the workflow components, in

order to keep track of the elapsed time to normalize requests and enact

corresponding workflows. A modified version of the HTTP filter that serves as

the browser proxy, is in charge to capture the initial HTTP request from the

browser, and to forward several replicas of it to the middleware, in the form of

request burst-cycles.

Testbed consists in two identical workstations, say A and B, each one

equipped with a 3,06 GHz Intel Pentium4 CPU, 2 Gigabytes of RAM and

linux operating system, kernel 2.6.15. Workstation A hosts the middleware

central components, from Intercommunication and Container levels up to the

Integration and Support facility ones, whereas workstation B runs the actual

resource proxies for the content-related services and grants them access to

middleware Support facility level.

Illustration 43 reports average performance results for a a 50-series of

request burst-cycles, issued at 100 millisecond time intervals from each other:

136

We can observe that heavy system load causes the overall service

provisioning to run significantly slow, up to 9 seconds on service startup and

regular garbage collection occurrences (i.e., the peeks in the figure). Anyway,

this is partially due to network connection establishment and download time

when fetching actual Web content and, most important, middleware overhead

rarely exceeds 500 milliseconds per request (about 10% to 14% of total time),

in order to perform syntax-driven request normalization, workflow resolution,

and service orchestration.

Finally, we chose to implement tests in the form of request burst-cycles

(slightly spread over time, though partially in overlap), rather than by issuing

lots of completely concurrent requests, to both prevent “denial-of- service”

effects and to enable EJB container facilities. Indeed, thanks to technology and

implementation considerations, system is able to scale well on increasing

request numbers, and to impose a nearly constant average overhead. This is

possible by leveraging component replicas that the application server provides

137

Illustration 43: Web content adaptation burst requests, average serving time

within pools, and by exploiting in-memory cache replicas of both persistent

objects (such as recently read workflow descriptions) and remote component

stubs (such as remote proxy ones).

9.2 Scalability

Two major factors determine the middleware overhead we have

experienced in the previous test. On the one hand, remote method invocations

on distributed resource proxies involve establishing connections between

middleware Orchestration Engine and resource proxies themselves. On the

other hand, middleware orchestration intervenes in proxy invocation by also

performing run-time resolution of part of their execution parameters, as seen.

Whereas connection setup type is an intrinsic consequence of coordinating

distributed software functionalities and proportionally grows as the number of

resource proxies increases, middleware run-time parameter resolution – if not

dealt with effectively – can seriously affect the overall performance of

business processes.

In particular, at time of resource proxy invocation, parameter resolution

can either happen sequentially, one by one resolving all expected values, or in

parallel, by exploiting concurrent threads to operate simultaneously. After

experimental results (Illustration 44), the first solution proves to work well,

especially on business processes that are made up of limited numbers of

resource proxies. On the contrary, as the number of proxies increases,

sequential implementation of the resolution routines does not sufficiently

scale.

138

We have therefore developed an alternative, concurrent, implementation

for the resolution routine, able to leverage execution threads from a pool of of

either fixed or varying dimension. Illustration 44 also reports performance of

such concurrent implementation, according to different thread pool sizes.

Experimental results show that whereas concurrency permits better scaling in

business processes of more than 32 resource proxies, overhead from the pool

management itself makes this kind of solution far less convenient in simple

business processes.

9.3 Memory occupation

Middleware memory occupation largely benefits from the choice of

orchestrating business processes by means of workflow activities. Workflows,

indeed, determine the execution of flows of operations that are inherently

organized in a pipeline form, wherein each pipeline stage (leveraging a

particular resource proxy, in our case) gets immediately available after

performing its own piece of work, with no need to wait for the whole process

139

Illustration 44: Elapsed time to perform run-time parameter resolution

to complete, before accepting further requests.

On the contrary, traditional systems that leverage monolithic servant

objects, usually need to handle requests one by one or, to increase parallelism,

to instantiate a number of servant object replicas, usually managed within a

pool. Anyway, by doing so, memory occupation becomes a crucial problem

for these kind of systems. Application server containers, in particular,

generally let specify a maximum pool size and dynamically create and destroy

servant replicas, according to current system load.

Our middleware solution, by organizing servant objects in workflows,

manages to further increase parallelism with little or no additional memory

usage, hence to tolerate heavier system load. In details, by dividing request

serving into separate pipeline-like stages, we enable reuse of already exploited

proxies to serve successive requests before completing current business

processes, and – most important – without requiring the application server

container to instantiate additional object replicas.

Experimental results demonstrate the effectiveness of our approach by

comparing memory occupation in different load conditions. In details, we

consider the “Personal Podcast Channel” scenario and issue HTTP requests for

the podcast channel that corresponds to a given geographical position.

Workstations A and B from previous tests realize this testbed environment,

too.

Under all circumstances, HTTP response (bearing the podcast XML

descriptor) is returned within 3 seconds to the requesting application: text

synthesis leverages cache for the audio files, hence simulation stresses once

again middleware orchestration logic and, in particular, its memory needs for

creating the remote object stubs that let it invoke actual distributed resource

proxies.

Illustration 45 , below, reports memory occupation in case of a series of

separate podcast requests. Requests are served one by one: we wait for

response to each request before issuing a new one, thus they do not overlap.

Container instantiates needed object in the Java heap, and destroy them, after a

140

little lingering, as they are no longer needed by our middleware applicative

logic. Memory occupation remains nearly constant throughout test execution.

 In Illustration 46, instead, we report memory occupation for a series of

partially overlapping podcast requests. Workflows permit reusing part of the

proxy stub replicas that are already in the application server heap. Thus,

despite higher values, especially in the central part of test execution, memory

occupation does not experience critical growth.

141

Illustration 45: Memory usage in case of non-overlapping podcast requests

Finally, we stress middleware operations by issuing request burst-cycle

series; Illustration 47, reports memory usage we obtain, and compares it with

Java heap dimension that server presents when serving no requests at all. In

this case, too, despite higher memory peaks, memory occupation continues to

take advantage of the efficient reuse of system resources that workflow

organization permits.

142

Illustration 46: Memory usage in case of partially overlapping podcast requests

143

Illustration 47: Memory usage in case of request burst-cycles, and in case of no

request

144

Conclusions

Ubiquitous Internet presents incredible opportunities to provide

innovative and value-added services to users, by leveraging and reusing

existing resources as well as by developing brand new functionalities.

Nowadays, indeed, people connect via traditional PCs as well as PDAs,

smartphones, network-enabled multimedia players, or even digital TV

appliances, and they do so through both wired and wireless network

infrastructures, 3G operators, Bluetooth data link, and lots of other connection

types. They ask for moving across different networks and staying connect

through different terminals in a seamless way, while keeping their

communication session consistent. As well, services and contents should base

on user-specific information, and adapt to her preferences and physical or

computational environment. Furthermore, interfaces and interaction paradigms

should tailor to device support and characteristics, to consistently enable Web

browser access, rather than service exploitation via SMS, VoIP phone calls,

and more. Finally, it should be possible to reuse existing resources in simple

and effective ways to build new applications, or to dynamically reconfigure

current ones, according to runtime characteristics.

As a matter of fact, research achievements tend to evolve separately and

often lead to ad hoc solutions and too vertical approaches, that focus only on

specific application domains. Solutions exist, for instance, that either enable

content adaptation but still miss multimodal interface capability, or that permit

context-awareness while lacking effective session management. In the field of

Business-to-Business and Business-to-Consumer integration, most promising

solutions adopt service oriented architectures; by promoting modularity and

reuse of software components, indeed, service abstraction can highly empower

the creation of complex and value-added applications. Nevertheless,

configuration of such applications usually demands explicit human-

intervention, hence fall short of potentials for dynamic reconfiguration.

145

As the result of in-depth analysis of state-of-the-art proposals,

formulation of theoretical design principles, and experimental verification of

their viability, this thesis work has described an innovative approach to

comprehensively deal with Ubiquitous Internet challenges. This dissertation

has argued that an effective solution to support Ubiquitous Internet scenarios

must follow a middleware approach, decouple final users and services to

exploit and uniformly treat them in the form of resources to integrate. At the

same time, it must push any kind of content-related logic outside its core layer,

by keeping only management and coordination responsibilities. That succeeds

in making the middleware design clearer and neater, and in enforcing its

adoption to support actual scenarios.

On the one hand, client devices must be able to access heterogeneous

services and contents without worrying about how to suitably request them,

and service developers must concentrate only on improving service business

logic, disregarding how users will actually exploit it to fit their own

requirements. On the other hand, it is possible to simplify the design of

Ubiquitous Internet middleware by assigning to external and pluggable

resources all the facilities that relate to content processing and transforming,

while introducing workflow entities to effectively compose and orchestrate

them.

Our proposed model enables the integration of distributed resources via

proxy entities that can abstract their heterogeneity; besides, model can be

easily extended in terms of supported interaction paradigms and composition

schemata, to cope with novel scenarios and ubiquity support aspects.

Encouraging results and middleware employment in several actual use cases

have proven to demonstrate viability of our approach.

Future research work will consider adoption of alternative industry

standards and frameworks for the implementation of current middleware parts,

and will deeply investigate the opportunity to distribute middleware

components to heterogeneous and unclustered network nodes, including client

devices, to promote migration and replication of system parts and resource

146

proxies on such nodes, for the sake of performance, scalability and fault-

tolerance.

With a more detailed focus, we are considering enforcing Enterprise

Service Bus (ESB) support for middleware components and resource proxies.

ESB technology represents nowadays the de facto standard for orchestrating

business-to-business applications out of distributed services. We strongly

believe that ESB resources available through the Internet can really bring to

Ubiquitous Internet applications a higher level of functionalities and

opportunities: from e-commerce, to cross-enterprise Business-to-Consumer

processes, and more.

Furthermore, we share interest in the Open Service Gateway initiative

(OSGi), to leverage the increasing computational capability of client devices,

both to develop new and more powerful resource proxies, and to enforce the

execution of middleware parts directly on the client side. OSGi is today a

leading framework for modular software development and deployment; it

enables over-the-air download of software components, and leverages

characteristics of the current execution environment to select most suitable

service implementations. Manufacturers from mobile phone companies to

automotive ones participate in the OSGi project, with the aim to spread

adoption of framework-enabled devices and foster pervasive computing

application scenarios.

Finally, we intend to exploit distribution and replication of both

middleware components and resource proxy instances to promote

communication efficiency, load balancing and fault tolerance. In details, we

want to leverage the opportunity of migrating proxy configurations to different

network locations, in order to enforce proximity policies while executing

corresponding business processes, to improve system scalability by suitably

distributing proxy configurations themselves, and to permit failover by re-

enabling configurations of broken proxies on different nodes.

147

148

Acknowledgments

I would like to express my gratitude to all those

who gave me the possibility to complete this

thesis.

I want to thank my advisors, Maurelio Boari and

Antonio Corradi for their patience, moral

support, and trust.

I'm grateful to those who have encouraged me to

go ahead with my PhD, and to those who have

not, too.

I am deeply indebted to my present and former

colleagues at the SWIMM project and, later on,

at the "via Nosadella" laboratory.

I wish to thank them all for their help, support,

suggestions, confidence, interest and valuable

hints.

Finally, I would like to give my special thanks to

my wife, my parents, and all my family

members, whose patient love - especially patient

- enabled me to complete this work.

March 17th, 2009.

149

150

Publications

M. Boari, E. Lodolo, S. Monti, S. Pasini, “Middleware for Automatic Dynamic

Reconfiguration of Context-Driven Services”, 11th Symposium on Computers

and Communications (ISCC'06), IEEE , Pula, Italy, June 2006.

M. Boari, E. Lodolo, S. Monti, S. Pasini , “Progetto SWIMM (Servizi Web

Interattivi e Multimodali per la Mobilità). Risultati ed applicazioni”, AICA

national conference, Milano-Mantova , Italy, September-October 2007.

A. Corradi, E. Lodolo, S. Monti, S. Pasini, “User-Centric Emergency

Management: a Disappearing Middleware Approach”, Wireless Rural and

Emergency Communications Conference (WRECOM'07), Rome, Italy,

October 2007.

M. Boari, E. Lodolo, S. Monti, S. Pasini, “Middleware for Automatic Dynamic

Reconfiguration of Context-Driven Services”, Microprocessors And

Microsystems Journal, Issue 32, pages 145-148, Elsevier, November 2007.

M. Boari, A. Corradi, E. Lodolo, S. Monti, S. Pasini, “Coordination for the

Internet of Services: a user-centric approach”, 3rd International Conference on

Communication System Software and Middleware (COMSWARE'08),

Bangalore, India, January 2008.

A. Corradi, E. Lodolo, S. Monti, S. Pasini, “A user-centric composition model for

the Internet of Services”, 13th Symposium on Computers and Communications

(ISCC'08), IEEE, Marrakesh, Morocco, July 2008.

A. Corradi, A. Landini, E. Lodolo, S. Monti, S. Pasini , “Integrating Service

Composition with Mobile Code Technologies”, 2nd International Workshop on

Distributed Agent-based Retrieval Tools (DART'08), Cagliari, Italy ,

September 2008.

151

S. Monti, S. Pasini, A. Corradi, E. Lodolo, M. Boari, “An eXtensible middleware

for Multichannel, Multimodal, and Multipattern services (X3M)”, 5th

International Workshop on Next Generation Networking Middleware

(NGNM'08), Samos Island, Greece, September 2008.

A. Corradi, F. Di Marco, S. Monti, S. Pasini, “Facing Crosscutting Concerns in a

Middleware for Pervasive Service Composition”, accepted for publication, 14th

Symposium on Computers and Communications (ISCC'09), IEEE, Port El

Kantaoui, Tunisia, 2009.

A. Corradi, E. Lodolo, S. Monti, S. Pasini, “Dynamic reconfiguration of

middleware for Ubiquitous Computing”, submitted to the 3rd Workshop on

Adaptive and DependAble Mobile Ubiquitous Systems (ADAMUS'09),

London, England, 2009.

152

Bibliography

[Aal03] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski,

A. P. Barros , “Workflow Patterns”, Distributed and Parallel

Databases, Volume 14 Issue 1, Pages 5-51, Springer Netherlands,

July 2003. DOI 10.1023/A:1022883727209.

[Abr96] Abramowski, S.; Klabunde, K.; Konrads, U.; Newnest, K.; Tjabben,

H.; “Multimedia session management”, Intelligent Network

Workshop, 1996. IN '96., IEEE 21-24 April 1996. Digital Object

Identifier 10.1109/INW.1996.539694.

[Agr07a] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann,

D. König, F. Leymann, R. Müller, G. Pfau, K. Plösser, R.

Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trickovic, A.

Yiu, and M Zeller, “WS-BPEL Extension for People

(BPEL4People)”, version 1.0, 2007.

[Agr07b] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann,

D. König, F. Leymann, R. Müller, G. Pfau, K. Plösser, R.

Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trickovic, A.

Yiu, and M Zeller, “Web Services Human Task (WS- HumanTask)”,

version 1.0, 2007.

[Aka98] M. Akay, I. Marsic, A. Medl, G. Bu, “A System for Medical

Consultation and Education Using Multimodal Human/Machine

Communication”, IEEE Transactions on Information Technology in

Biomedicine, Vol. 2, No. 4, December 1998.

[Alo03a] G. Alonso, F. Casati, H. Kuno, V. Machiraju, “Enterprise application

integration”, in: “Web Services: Concepts, Architectures and

Applications”, Springer-Verlag, 2003, ISBN 354044008.

[Alo03b] G. Alonso, F. Casati, H. Kuno, V. Machiraju, “Service composition”

in “Web Services: Concepts, Architectures and Applications”,

Springer-Verlag, June 2003.

[Ana04] A. Anagol-Subbarao, “J2EE Web Services on BEA WebLogic”,

Prentice-Hall, October 18, 2004. ISBN-10: 0-13-143072-6.

[Artix] IONA Technologies, “Using Artix and Service-Oriented Architecture

for Multi-Channel Access”, http://www.iona.com/devcenter/

artix/articles/0304soa.pdf, February 2008.

[BeanShell] “BeanShell – Lightweight scripting for Java”, available from

http://www.beanshell.org/.

153

[Bel03] Bellavista, P.; Corradi, A.; Montanari, R.; Stefanelli, C.; “Dynamic

binding in mobile applications”, Internet Computing, IEEE Volume

7, Issue 2, March-April 2003 Page(s):34 – 42. Digital Object

Identifier 10.1109/MIC.2003.1189187.

[Ber01] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”,

Scientific Am., vol. 284, no. 5, pp. 34-43, May 2001.

[Ber04] Girma Berhe, Lionel Brunie, Jean-Marc Pierson , “Modeling service-

based multimedia content adaptation in pervasive computing ”,

Proceedings of the 1st conference on Computing frontiers , CF '04.

ACM, April 2004.

[Ber96] P. A. Bernstein, “Middleware: a model for distributed system

services ”, Communications of the ACM, Volume 39 Issue 2,

February 1996.

[Bis06] R. Biswas, “The Java Persistence API - A Simpler Programming

Model for Entity Persistence”, available from

http://java.sun.com/developer/technicalArticles/J2EE/jpa/, May 2006,

© 2009 Sun Microsystems, Inc.

[Boa07] M. Boari et al., “Middleware for automatic dynamic reconfiguration

of context-driven services”, Microprocessors and Microsystems, No.

32, Pages 145-160, September 2007.

[Camel] “Camel Manual 2.0”, Apache, 2008. Available from

http://activemq.apache.org/camel/manual/camel-manual-2.0-

SNAPSHOT.pdf.

[Cha06] A.T.S. Chan, Y. Zheng, “Coordinated composition of services for

adaptive mobile middleware”, “Proceedings of the 11th IEEE

Symposium on Computers and Communications”, Page(s): 789 –

794, 26-29 June 2006. Digital Object Identifier

10.1109/ISCC.2006.55.

[Cha95] M. Chapman, S. Montesi, ‘‘Overall Concepts and Principles of TINA

– Version 1.0’’, Telecommunications Information Networking

Architecture Consortium, 17 February 1995. Available from:

http://www.tinac.com/speci cations/documents/overall.pdf.fi

[Che06] Chen, I.Y.L.; Stephen J.H. Yang; Yang, S.J.H.; Ubiquitous Provision

of Context Aware Web Services, Services Computing, 2006. SCC

'06. IEEE International Conference on, Sept. 2006 Page(s):60 - 68.

Digital Object Identifier 10.1109/SCC.2006.110.

[Chr02] Christopher Lueg, “Representations in Pervasive Computing”,

Proceedings of the Inaugural Asia Pacific Forum on Pervasive

computing, 2002.

[Coherence] “Oracle Coherence”, http://www.oracle.com/technology/products/

coherence/index.html.

154

[Com04] M. Comerio, F. De Paoli, S. Grega, C. Batini, C. Di Francesco, A. Di

Pasquale, “A service re-design methodology for multi-channel

adaptation”, Proceedings of the 2nd International Conference on

Service Oriented Computing, ICSOC 2004, November 2004.

[Cur03] F. Curbera, S. Weerawarana, et al., “Business Process Execution

Language for Web Services Version 1.1”. Speci cation, BEAfi

Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems,

2003.

[dotNet] “Microsoft .NET Framework”, http://www.microsoft.com/net/, ©

2008 Microsoft.

[EJB] “Enterprise JavaBeans Technology”, http://java.sun.com/products/

ejb/, Copyright 1994-2009 Sun Microsystems, Inc.

[Eri02] Thomas Erickson, Some problems with the notion of context-aware

computing, Communications of the ACM, Volume 45, Issue 2,

February 2002. Pages: 102 - 104. ISSN:0001-0782.

[Festival] “The Festival Speech Synthesis System”,

http://www.cstr.ed.ac.uk/projects/festival/, Centre for Speech

Technology Research, Edinburgh, © The University of Edinburgh.

[Firefox] “Firefox web browser: Faster, more secure, & customizable”, http://

www.mozilla.com/en-US/firefox/, 2009 © Mozilla Foundation.

[Fuj06] K. Fujii and T. Suda, "Semantics-based Dynamic Web Service

Composition," the International Journal of Cooperative Information

Systems (IJCIS), special issue on Service-Oriented Computing, Vol.

15, No. 3, pp. 293-324, Sep. 2006.

[Gam94] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, “Structural

Patterns” in “Design Patterns: Elements of Reusable Object-Oriented

Software”, Addison-Wesley, 1994. ISBN: 0-201-63361-2.

[Gar05] J. J. Garrett, “Ajax: A New Approach to Web Applications”,

http://www.adaptivepath.com/ideas/essays/archives/000385.php,

Adaptive Path, February 18, 2005.

[GMaps] “Google Maps”, http://maps.google.com, © 2009 Google.

[Gor05] R. Gorrieri, C Guidi, R. Lucchi, "Reasoning About Interaction

Patterns in Choreography", from "Formal Techniques for Computer

Systems and Business Processes", Pages 333-348. Springer Berlin /

Heidelberg, 2005. DOI: 10.1007/11549970, ISBN:

978-3-540-28701-8.

[Gre01] Saul Greenberg , “Context as a Dynamic Construct ”, Human-

Computer Interaction, Volume 16, Issue 2 - 4 February 2001 , pages

257 – 268 . DOI: 10.1207/S15327051HCI16234_09.

[GReader] “Google Reader”, http://www.google.com/reader. © 2008 Google.

155

[Haa97] Oliver Haase , “Session maintenance ” from “The Handbook of

Mobile Middleware ”, P. Bellavista, A. Corradi, CRC Press, 2007 .

ISBN 0849338336, 9780849338335.

[Hen02] Henricksen, K., Indulska, J., and Rakotonirainy, A. (2002). Modeling

context information in pervasive computing systems. In Mattern, F.

and Naghshineh, M. (eds) Proceedings of the International

Conference on Pervasive Computing 26 28 August 2002, Zurich,−

Switzerland. Springer LNCS 2414, pp. 167 180.−

[Her04] I. Herman, R. Swick, D. Brickley, “Resource Description Framework

(RDF)”, W3C Semantic Web Activity, 2004. Available from: http://

www.w3.org/RDF/.

[Hibernate] “hibernate.org – Hiberante”, http://www.hibernate.org/, © Copyright

2006, Red Hat Middleware, LLC.

[Hog07] R. Högg et al., “Overview of Business Models for Web 2.0

Communities”, Proc. Gemeinschaften in Neuen Medien, Technische

Universität Dresden, 2006, pp. 23-37.

[Hol08] T. Holmes, H. Tran, U. Zdun, S. Dustdar, “Modeling Human Aspects

of Business Processes - A View-Based, Model-Driven Approach”,

European Conference on Model Driven Architecture, Foundations

and Applications (ECMDA-FA), 2008. Springer Berlin / Heidelberg .

Volume 5095/2008 . from book “Model Driven Architecture –

Foundations and Applications ”. DOI 10.1007/978-3-540-69100-6 ,

ISBN 978-3-540-69095-5 , DOI 10.1007/978-3-540-69100-6_17 ,

Pages 246-261.

[Hon01] Hong. J. I., Landay J. A., "An infrastructure approach to context-

aware computing", Human-Computer Interaction, Volume 16, Issue

2 - 4 February 2001 , pages 287 - 303.

[IBM] International Business Machines Corporation, “Why IBM? –

Leadership in Multimodal”,

http://www-306.ibm.com/software/pervasive/multimodal/, 2006.

[iGoogle] “iGoogle”, http://www.google.com/ig, © 2009 Google.

[ImageMagick] “ImageMagick: Convert, Edit, and Compose Images”,

http://www.imagemagick.org/script/index.php, © 1999-2009

ImageMagick Studio LLC.

[Int02] Intille, S.S., “Designing a home of the future”, Pervasive Computing,

IEEE, Volume 1, Issue 2, April-June 2002, Page(s): 76 - 82. Digital

Object Identifier 10.1109/MPRV.2002.1012340.

[iTunes] “Apple – iTunes”, http://www.apple.com/it/itunes/overview/,

Copyright © 2009 Apple Inc.

156

[JAAS] “Java Authentication and Authorization Service (JAAS) Reference

Guide”, available from http://java.sun.com/javase/6/docs/technotes/

guides/security/jaas/JAASRefGuide.html.

[JBoss] “Community driven open source middleware”, available from http://

www.jboss.org/, 2009.

[jBPM] “JBoss jBPM”, available from http://www.jboss.com/pdf/

jb_jbpm_04_07.pdf, © 2008 Red Hat Middleware, LLC.

[JEE] "Sun Java EE 5 - Overview", available from http://java.sun.com/

javaee/technologies/javaee5.jsp, © 2009, Sun Microsystems, Inc.

[Jef08] C. Jefferies, P. Brereton, M. Turner, “A Systematic Literature

Review of Approaches to Reengineering for Multi-Channel Access”,

12th European Conference on Software Maintenance and

Reengineering, pp. 258-262, April 2008.

[JMS] “Java Message Service (JMS)”, available from http://java.sun.com/

products/jms/, © 2009 Sun Microsystems, Inc.

[JMX] “Java Management Extensions (JMX) Technology”, available from

http://java.sun.com/javase/technologies/core/mntr-

mgmt/javamanagement/, Copyright 1994-2009 Sun Microsystems,

Inc.

[JNDI] “Java Naming and Directory Interface (JNDI)”, available from http://

java.sun.com/products/jndi/, © 2009 Sun Microsystems, Inc.

[Joh02] Johanson, B.; Fox, A.; Winograd, T., “The Interactive Workspaces

project: experiences with ubiquitous computing rooms ”, Pervasive

Computing, IEEE , Volume 1, Issue 2, April-June 2002, Page(s):67

– 74 . Digital Object Identifier 10.1109/MPRV.2002.1012339.

[Joh03] Rod Johnson, “Design techniques and coding standards for J2EE

projects”, from “Expert One-on-One J2EE Design and development”,

Wrox, 2003. Available from: http://www.theserverside.com/tt/

articles/content/ RodJohnsonInterview/JohnsonChapter4.pdf.

[Joh05] Rod Johnson, “Introduction to the SpringFramework”, available from

http://www.theserverside.com/tt/articles/article.tss?

l=SpringFramework, May 2005.

[JTA] “Java Transaction API (JTA)”, available from http://java.sun.com/

javaee/technologies/jta/index.jsp, © 2009 Sun Microsystems, Inc.

[Kal07] Kalasapur, S.; Kumar, M.; Shirazi, B.A.; “Dynamic Service

Composition in Pervasive Computing”, Parallel and Distributed

Systems, IEEE Transactions on; Volume 18, Issue 7, July 2007

Page(s):907 – 918. Digital Object Identifier

10.1109/TPDS.2007.1039.

157

[Kapow] “Kapow Mashup Server Product Family”, available from:

http://www.kapowtech.com/products/products.aspx, © 2008 Kapow

Technologies.

[Kay72] A. Kay, "A Personal Computer for Children of All Ages," Draft,

Xerox Palo Alto Research Center, 1972.

[Kay77] A. Kay and A. Goldberg, “Personal Dynamic Media”, IEEE

Computer, vol. 10, no. 3, Mar. 1977, pp. 31-42.

[Kin08] G. King et al., “Seam - Contextual Components. A Framework for

Enterprise Java”, version 2.1.0.SP1, ed. S. Kittoli, © 2008, Red Hat

Middleware LLC. Available at http://docs.jboss.com/seam/2.1.0.SP1/

reference/en-US/pdf/seam_reference.pdf.

[Koe04] J. Koenig, “JBoss jBPM – White paper”, 2004. Available from http://

www.jboss.com/pdf/jbpm_whitepaper.pdf.

[Kri97] D. Kristol and L. Montuli, “HTTP State Management Mechanism,“

RFC 2109, Network Working Group, 1997.

[LAME] "LAME MP3 Encoder", http://lame.sourceforge.net/.

[Mak94] V. W. Mak, “Session management for distributed multimedia

applications”, 5th IEEE COMSOC International Workshop on

Multimedia Communications, Pages: 6/2/1 – 6/2/5, May 1994.

Digital Object Identifier 10.1109/IWMC.1994.601228.

[Mar04] D. Martin et al., “OWL-S: Semantic Markup for Web

Services”, W3C Member Submission, 22 November 2004. Available

from: http://www.w3.org/Submission/OWL-S/.

[Mashup] “What is Google Mashup Editor?”, http://code.google.com/gme/, ©

2009 Google.

[Med03] Brahim Medjahed, Athman Bouguettaya, Ahmed K. Elmagarmid,

“Composing Web services on the Semantic Web”, The VLDB

Journal — The International Journal on Very Large Data Bases ,

Volume 12 Issue 4 , November 2003. Springer-Verlag, New York,

Inc.

[Med05] Medjahed, B.; Bouguettaya, A.; “A multilevel composability model

for semantic Web services ”, Knowledge and Data Engineering,

IEEE Transactions on ; Volume 17, Issue 7, July 2005. Page(s):954

– 968 . Digital Object Identifier 10.1109/TKDE.2005.101.

[METAR] “METAR Data Access”, http://weather.noaa.gov/weather/

metar.shtml, 2007.

[Mil04] Milanovic, N.; Malek, M., “Current solutions for Web service

composition ”, Internet Computing, IEEE ,Volume 8, Issue 6, Nov.-

Dec. 2004 Page(s):51 – 59 .Digital Object Identifier

10.1109/MIC.2004.58.

158

[Mmi] W3 Consortium, “W3C Multimodal Interaction Framework”, W3C

Note, http://www.w3.org/TR/mmi-framework/, May 2003.

[MomentumA] “Message Exchange Pattern”, http://www.serviceoriented.org/

message_exchange_pattern.html, © 2006 Momentum s.r.l.

[MomentumB] “Web Service Orchestration (WSO)”, © 2006 MomentumSI.

Available from: http://www.serviceoriented.org/

web_service_orchestration.html.

[Mor01] Thomas P. Moran; Paul Dourish ; “Introduction to This Special Issue

on Context-Aware Computing”, Journal of Human-Computer

Interaction, Volume 16, Issue 2 - 4 February 2001 , pages 87 – 95 .

DOI: 10.1207/S15327051HCI16234_01.

[Mule] MuleSource Inc., “Mule 2.x Getting Started Guide”, 2008. Available

from: http://mule.mulesource.org/display/MULE2INTRO/Home.

[Musicovery] “Musicovery – The first intuitive webradio”, Press Kit,

available from http://musicovery.com/pressRelease/

PressKitMUSICOVERY.doc, © 2007 musicovery.com.

[MySQL] “MySQL - The world's most popular open source database”,

http://www.mysql.com/, © 1995-2008 MySQL AB, 2008-2009 Sun

Microsystems, Inc.

[Nar07] N. C. Narendra, Bart Orriens , “Modeling web service composition

and execution via a requirements-driven approach ”, SAC '07:

Proceedings of the 2007 ACM symposium on Applied computing ,

March 2007, ACM.

[New05] E. Newcomer, G. Lomow, “Understanding SOA with Web Services”,

Addison Wesley. ISBN 0-321-18086-0, 2005.

[Obr04] Z. Obrenovic, D. Starcevic, “Modeling Multimodal Human-

Computer Interaction”, IEEE Computer, Vol. 37 , No. 9, September

2004.

[Opera] Opera Software ASA, “Opera Multimodal Browser”,

http://www.opera.com/products/verticals/multimodal/index.dml,

2001.

[Ort05] E. Ort, “Service-Oriented Architecture and Web Services: Concepts,

Technologies and Tools”, Sun Microsystems Inc., April 2005.

Available from: http://java.sun.com/developer/technicalArticles/

WebServices/soa2/.

[OSGi] “OSGi Alliance - Main / OSGi Alliance”, http://www.osgi.org/Main/

HomePage, Copyright © 2009 OSGi™ Alliance.

[Ovi99] S. L. Oviatt, “Ten myths of Multimodal Interaction”,

Communications of the ACM, pp. 74-81, November 1999.

159

[OWL] W3 Consortium, “OWL Web Ontology Language Overview”, W3C

Recommendation. Available from: http://www.w3.org/TR/owl-

features/.

[Pan04] Ai-Chun Pang; Jyh-Cheng Chen; Yuan-Kai Chen; Agrawal, P.;

"Mobility and session management: UMTS vs. cdma2000", IEEE

Wireless Communications, IEEE, Volume 11, Issue 4, Aug. 2004

Page(s): 30 – 43. Digital Object Identifier

10.1109/MWC.2004.1325889.

[Pap03] M. P. Papazoglou and D. Georgakopoulos, “Service Oriented

Computing”, Comm. ACM, vol. 46, no. 10, 2003, pp. 25–28.

[Pas08] L. Passani, “WURFL”, http://wurfl.sourceforge.net/, © 2008 Luca

Passani.

[Pat05] S. Patil, “What is a Portlet”, O'Reilly, http://www.onjava.com/pub/a/

onjava/2005/09/14/what-is-a-portlet.html, September 14, 2005.

[Pipes] “Yahoo Pipes”, http://pipes.yahoo.com/pipes/, © 2008, Yahoo! Inc.

[Podcast] “Podcast”, availabale from http://en.wikipedia.org/wiki/Podcast, 14

March 2009.

[Rad09] T. Rademakers, J. Dirksen, “Implementing a process engine in the

ESB”, from “Open source ESBs in action”, Manning, 2009.

[Rav03] T. V. Raman, G. McCobb, R. A. Hosn, “Versatile Multimodal

Solutions. The Anatomy of User Interaction”, XML Journal, Vol. 4,

No. 2, Apr. 2003.

[Rei05] T. O’Reilly, “What Is Web 2.0: Design Patterns and Business Models

for the Next Generation of Software”, 2005, available from:

www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-

web-20.html.

[RMI] “Remote Method Invocation Home”, available from

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp,

Copyright 1994-2009 Sun Microsystems, Inc.

[Roh97] Roh, J.R.; Kook, K.M.; "A switchable session management for the

distributed multimedia-on-demand system", Protocols for

Multimedia Systems - Multimedia Networking, 1997. Proceedings.,

IEEE Conference on, 24-27 Nov. 1997 Page(s):102 - 111. Digital

Object Identifier 10.1109/PRMNET.1997.638886.

[Rom05] D. Roman et al., “Web Service Modeling Ontology ”, “Applied

Ontology ”, Volume 1, Number 1/2005 , Pages 77-106, IOS Press .

ISSN: 1570-5838.

160

[Rus08] N. Russell, W.M.P. van der Aalst, “Evaluation of the BPEL4People

and WS-HumanTask Extensions to WS-BPEL 2.0 using the

Workflow Resource Patterns”, Technical report, Queensland

University of Technology, Brisbane, 2008.

[Sah03] Saha, D.; Mukherjee, A., “Pervasive computing: a paradigm for the

21st century ”, IEEE Computer , Volume 36, Issue 3, March 2003,

Page(s):25 – 31 . DOI 10.1109/MC.2003.1185214.

[Sal99] D. Salber, A.K. Dey and G.D. Abowd, “The Context Toolkit: Aiding

the development of context-enabled applications”, in Proceedings of

the SIGCHI conference on Human factors in computing systems,

Pittsburgh, Pennsylvania, United States . Pages: 434 - 441 , 1999.

ISBN:0-201-48559-1.

[Sat01] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges”,

IEEE Personal Computing, Aug. 2001, pp. 10–17.

[Sch02] H. Schulzrinne et al., "SIP: session initiation protocol", IETF RFC

3261, Available from: http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[Sch07a] C. Schroth, O. Christ, “Brave New Web: Emerging Design Principles

and Technologies as Enablers of a Global SOA”, in Proceedings of

the 2007 IEEE International Conference on Services Computing

(SCC 2007), Salt Lake City, USA, 2007.

[Sch07b] Schroth, Christoph, "The internet of services: Global industrialization

of information intensive services," Digital Information Management,

2007. ICDIM '07. 2nd International Conference on , vol.2, no.,

pp.635-642, 28-31 Oct. 2007.

[Sch07c] Schroth, C.; Janner, T., “Web 2.0 and SOA: Converging Concepts

Enabling the Internet of Services” , IT Professional, Volume 9, Issue

3, May-June 2007, Page(s):36 – 41. Digital Object Identifier

10.1109/MITP.2007.60.

[ServiceMix] The Apache Software Foundation, “Apache ServiceMix 3.x Users'

Guide”, February 2008. Available from:

http://servicemix.apache.org/users-guide.html.

[Sha03] R. Sharma, M. Yeasin, N. Krahnstoever, I. Rauschert, G. Cai, I.

Brewer, A.M. Maceachren, K. Sengupta, “Speech–Gesture Driven

Multimodal Interfaces for Crisis Management”, Proceedings of the

IEEE, Vol. 91, No. 9, September 2003.

[Shi07] T.K. Shih, T. Wang, C. Chang, T. Kao, D. Hamilton, “Ubiquitous e-

Learning With Multimodal Multimedia Devices”, IEEE Transactions

on Multimedia, Vol. 9, No. 3, April 2007.

[SOA] “Reference Model for Service Oriented Architecture 1.0”, Committee

Speci cation 1, available from: http://www.oasis-open.org/fi

committees/download.php/19679/soa-rm-cs.pdf, August 2nd 2006.

161

[Songbird] “Songbird – Open source music player”, http://

www.getsongbird.com/, © 2005-2009 Pioneers of the Inevitable.

[Sva01] D. Svanaes, “Context-aware technology: a phenomenological

perspective”. Human-Computer Interaction, Volume 16, Issue 2 - 4

February 2001 , pages 379 – 400.

[Thunderbird] “Thunderbird - Reclaim your inbox”,

http://www.mozilla.com/thunderbird. 2008 © Mozilla Foundation.

[Tur00] M. Turk, G. Robertson, "Perceptual User Interfaces (Introduction)",

Communications of the ACM, pp. 33-35, March 2000.

[Ueh01a] Uehara, S.; Mizuno, O.; Kikuno, T.; "Development of session

management mechanism for cellular phone with WWW connection",

Software Engineering Conference, 2001. APSEC 2001. Eighth Asia-

Pacific, 4-7 Dec. 2001 Page(s):345 - 348.

[Ueh01b] Uehara, S.; Mizuno, O.; Kikuno, T.; "An implementation of

electronic shopping cart on the Web system using component-object

technology", Object-Oriented Real-Time Dependable Systems, 2001.

Proceedings. Sixth International Workshop on, 8-10 Jan. 2001

Page(s):77 - 84. Digital Object Identifier

10.1109/WORDS.2001.945116.

[VoiceXML] VoiceXML Forum, “XHTML + Voice Profile 1.2”, VoiceXML 2.0

Recommendation, http://www.voicexml.org/specs/multimodal/x+v/

12/spec.html, Mar. 2004.

[WebSphere] IBM, “WebSphere Message Broker: Delivering business value

through a universal enterprise service bus.”, White paper, December

2007. Available from: ftp://ftp.software.ibm.com/software/

websphere/integration/wbimessagebroker/WSW14004-

USEN-00_WMB_ESB_WP_1206.pdf.

[Wei02] M. Weiser, “The Computer for the 21st Century”, Scientific

American, Sept., 1991, pp. 94-104; reprinted in IEEE Pervasive

Computing, Jan.-Mar. 2002, pp. 19-25.

[Wiki] “Wikipedia”, http://www.wikipedia.org, Wikimedia Foundation,

2009.

[Win01] Terry Winograd, "Architectures for Context", Human-Computer

Interaction, Volume 16, Issue 2 - 4 February 2001, pages 401 – 419.

DOI: 10.1207/S15327051HCI16234_18.

[Woo06] Bobby Woolf, “ESB and Workflow”, Weblog, 31 March 2006.

Available from: http://www.ibm.com/developerworks/blogs/

page/woolf?entry=esb_and_workflow.

162

[Zim05] O. Zimmermann, V. Doubrovski, J. Grundler, K. Hogg, “Service-

oriented architecture and business process choreography in an order

management scenario: rationale, concepts, lessons learned”,

Companion To the 20th Annual ACM SIGPLAN Conference on

Object- Oriented Programming, Systems, Languages, and

Applications, pp. 301-312, ACM Press, October 2005.

163

