
Alma Mater Studiorum � Università di Bologna

DOTTORATO DI RICERCA

in Ingegneria Elettronica, Informatica e delle Telecomunicazioni

Ciclo XXI

Settore scientifico disciplinare di afferenza: ING-INF/05

MIDDLEWARE PRINCIPLES AND DESIGN

FOR THE INTEGRATION OF UBIQUITOUS MOBILE SERVICES

Presentata da: Stefano Monti

Coordinatore Dottorato Relatori

Chiar.ma Prof. Ing. Paola Mello Chiar.mo Prof. Ing. Maurelio Boari

Chiar.mo Prof. Ing. Antonio Corradi

Esame finale anno 2009

To my parents, Liviana and Cesare,

I thank them for having made me become as I am

To Silvia,

I thank her for standing me as I am

�But is not an event in fact more significant and noteworthy the greater the

number of fortuities necessary to bring it about?�

The unbearable essence of being,

M. Kundera

1

2

Table of Contents

 ABSTRACT ..7

1 INTRODUCTION..8

2 UBIQUITOUS SERVICE PROVISIONING: BACKGROUND........11

2.1 DISTRIBUTED ARCHITECTURES..12

2.1.1 Middleware..12

2.1.2 Service-oriented architecture..13

2.2 UBIQUITOUS COMPUTING SCENARIOS...15

2.2.1 Mobility..15

2.2.2 Context-awareness...16

2.2.3 Multimodal multichannel multipattern user interaction....................18

2.2.3.1 Multimodal access..18

2.2.3.2 Multichannel access...19

2.2.3.3 Multipattern access...20

3 MIDDLEWARE DESIGN..21

3.1 REQUIREMENTS...21

3.2 DESIGN PRINCIPLES..23

3.2.1 Delegation: a disappearing middleware approach...........................25

3.2.2 Decoupling: service-oriented computing..26

3.2.3 Layered semantics..27

3.3 ARCHITECTURE..28

3.4 RELATED WORK...30

3.4.1 Web mashups..31

3.4.2 Semantic ubiquitous service composition..31

4 SERVICE COMPOSITION...33

4.1 SERVICE COMPOSITION PRINCIPLES..33

3

4.2 COMPOSITION MODEL...37

4.2.1 Business logic layer..40

4.2.1.1 Services..40

4.2.1.2 Workflows..40

4.2.2 Semantics fusion layer..41

4.2.2.1 Semantic domains..41

4.2.2.2 Roles..43

4.2.2.3 Rules..44

4.2.3 User semantics layer..45

4.2.3.1 Service metadata..45

4.2.3.2 Templates...46

4.2.3.3 Interaction patterns...47

4.2.4 Usage scenario � user requirements...48

4.3 COMPOSITION REIFICATION...51

4.3.1 Evaluation facilities..51

4.3.1.1 Consistency..51

4.3.1.2 Scoring ..52

4.3.1.3 Substitution..52

4.3.2 Service and template rules..52

4.3.3 Rule evaluation...55

4.3.4 Template reification..57

4.3.5 Syntactical consistency...59

4.3.6 Reification process principles ..59

4.3.7 Workflow ranking...61

4.3.8 Usage scenario - template reification..61

5 KERNEL SUPPORT FEATURES...64

5.1 SERVICE COMPOSITION..64

5.2 SERVICE SUPPORT...65

5.2.1 Service lifecycle management...65

4

5.2.2 Operational parameter mapping..68

5.2.2.1 Parameter mapping - responsibility..68

5.2.2.2 Parameter mapping - choice policies..69

5.2.2.3 Parameter mapping - example excerpt code................................70

5.3 WORKFLOW MANAGEMENT..71

5.3.1 Workflow lifecycle management..71

5.3.2 Workflow Execution..72

5.4 USER PROXY...73

5.5 INTERACTION MANAGEMENT...73

5.5.1 Interceptors..74

5.5.2 Interaction Managers...75

5.6 SESSION MANAGER..75

5.7 MESSAGE BROKER..77

5.8 SUPPORT FEATURES...78

6 IMPLEMENTATION...80

6.1 SERVICE LAYER..82

6.1.1 Operational and semantic interfaces..83

6.1.2 Service invocation..84

6.1.3 Service provider standpoint..86

6.2 KERNEL LAYER..87

7 CASE STUDIES..90

7.1 PUSH-BASED INTERACTION: NEWS-ON-SMS..92

7.2 PULL-BASED INTERACTION: ADAPTEDHTML...96

7.3 MULTI-OUTPUT INTERACTION...99

8 DESIGNING MIDDLEWARE RECONFIGURABILITY...............105

8.1 RELATED WORK...106

8.1.1 Reconfigurable systems..106

8.1.2 Reconfiguring Ubiquitous middleware..107

5

8.2 DESIGN PRINCIPLES..108

8.2.1 Layered architecture...108

8.2.2 Delegating reconfiguration responsibility.......................................109

8.2.3 Decoupling non-functional logic...110

8.3 ARCHITECTURE..111

8.4 RECONFIGURATION DETAILS...112

8.4.1 Applicative layer reconfiguration..112

8.4.2 Non-functional layer reconfiguration..113

8.5 IMPLEMENTATION ..115

8.6 CASE STUDY...115

9 CONCLUSIONS...117

 PUBLICATIONS..120

 REFERENCES...122

 ACKNOWLEDGMENTS...132

6

Abstract

Nowadays, in Ubiquitous computing scenarios users more and more require to

exploit online contents and services by means of any device at hand, no matter

their physical location, and by personalizing and tailoring content and service

access to their own requirements. The coordinated provisioning of content tailored

to user context and preferences, and the support for mobile multimodal and

multichannel interactions are of paramount importance in providing users with a

truly effective Ubiquitous support.

However, so far the intrinsic heterogeneity and the lack of an integrated

approach led to several either too vertical, or practically unusable proposals, thus

resulting in poor and non-versatile support platforms for Ubiquitous computing.

This work investigates and promotes design principles to help cope with these

ever-changing and inherently dynamic scenarios. By following the outlined

principles, we have designed and implemented a middleware support platform to

support the provisioning of Ubiquitous mobile services and contents. To prove the

viability of our approach, we have realized and stressed on top of our support

platform a number of different, extremely complex and heterogeneous content and

service provisioning scenarios.

The encouraging results obtained are pushing our research work further, in

order to provide a dynamic platform that is able to not only dynamically support

novel Ubiquitous applicative scenarios by tailoring extremely diverse services and

contents to heterogeneous user needs, but is also able to reconfigure and adapt

itself in order to provide a truly optimized and tailored support for Ubiquitous

service provisioning.

Keywords: Ubiquitous computing, Mobility, Context-awareness, Middleware,

Service-oriented computing, Service composition.

7

1 Introduction

Ubiquitous computing envisions a landscape where Information Technology so

intimately permeates everyday user life that it becomes a commodity final users

access almost unconsciously. From the Ubiquitous computing first proposal in

early 90's, in effect, technology advances have been astonishing and have begun

revolutionize people everyday life. Novel wired and wireless connectivity

channels as well as increasingly sophisticated, heterogeneous and powerful user

devices are making users more and more eager to access services and contents

while moving, no matter the device they use, and according to their own

preferences.

Nevertheless we can not say the Ubiquitous computing scenario has become

really pervasive and ultimately available. Ironically enough, users are more than

ready to it, but technology is still a step behind. So far, the major barrier toward

Ubiquitous computing is the lack of integration: technologies (both for

connectivity and for end user devices) have grown so rapidly that they have

missed to evolve in a coordinate and integrated way.

8

As an example, users are becoming more and more skilled in handling mobile

portable devices such as smartphones and palmtops that enable an almost always-

on connection to the Internet (by means of, say, 3G mobile networks or WiFi

connections). But, the contents on the Web hardly suit these mobile devices and

ready to use devices are still to come. As another example, voice synthesis

technologies have fostered tools such as screen readers that allow impaired users

to have the plain text or web content read by their fixed PC browser. Imagine that

while driving a car we can seamlessly exploit the same technology to receive

phone calls on our mobile phone with a vocal reading of traffic news HTML portal

content and newly arrived e-mails.

In our vision, to make Ubiquitous computing scenarios ultimately concrete and

widespread, novel connectivity and computational technologies need to

coordinate, cooperate, and integrate seamlessly, transparently and with no effort

for final users. However, the intrinsic heterogeneity of Ubiquitous computing

scenarios and the need for a user-transparent approach make the design of such

integration platforms still extremely challenging.

Clear identification and separation of concerns related to integration is the key

for providing an integration support platform able to deal with heterogeneity and

to provide users with the right abstraction level, so as to result extremely seamless

and easy to use. In fact, currently proposed integration platforms tend to lack the

desired clean separation, and results are either too vertical and tightly bound to ad-

hoc and specific applicative domains (i.e., by dealing with a limited set of

communication channels and formats or with specific services and contents), or

too generic and overly complex for final general knowledge users.

This work proposes to overcome the lack of technology integration by means of

a middleware platform to support cooperation of very heterogeneous services and

contents on the Internet, and to enable users to access them while moving, by

means of any device and in any format. Our design aims at neatly identifying and

separating concerns that emerge in the integration of Ubiquitous scenarios, thus

9

providing an extremely flexible yet user-friendly platform for the integration of

Ubiquitous services and contents.

This dissertation is organized as follows. Section 2 provides background

knowledge of middleware platforms and of the main issues in Ubiquitous

computing. Section 3 delineates the design requirements and principles that

animated our work and ends sketching out the overall architecture of our

middleware platform. Section 4 describes the key architectural element in our

proposal, namely the service composition model that grants our platform both

flexibility and support for heterogeneity, and user transparency and ease of use.

Section 5 describes support features our platform relies on to cope with some

relevant ubiquity aspects. Section 6 provides an overview of the most notable

implementation technologies we adopted in the realization of our platform.

Section 7 describes some relevant case studies that our platform has successfully

realized in several different deployment. Finally, section 8 reports some

considerations related to the extension of our platform toward autonomous

reconfiguration, in order for the platform to better and more efficiently cope with

changes in Ubiquitous scenarios. Section 9 concludes the dissertation, by

providing the most relevant remarks in our research experience in the field of

Ubiquitous computing.

10

2 Ubiquitous service provisioning: background

In Ubiquitous computing scenarios, users require to access services and

contents from anywhere, at anytime and with any device at hand. This forces

service provisioning support platforms to address several challenging and debated

research areas, such as mobility management, or multimodality and context-

awareness support. Middleware-based approaches are emerging in order to face

this issue, however current solutions only partially support Ubiquitous service

provisioning and tend to focus only on specific research areas, thus providing

vertical and ad-hoc support.

This section describes some relevant architectural approaches in designing

large heterogeneous distributed applications, then deepens the description of state-

of-the-art research in Ubiquitous Computing by also reviewing some preliminary

and partial proposals in the field of Ubiquitous service support and provisioning.

11

2.1 Distributed architectures

In distributed systems, different pieces of business logic spread over different

network nodes cooperate with the goal of realizing a certain application or

business case. Heterogeneity in these scenarios is a key characteristic: network

nodes can be extremely different in terms of hardware resources and of software

support (e.g., operating systems, programming languages, ...). A number of

different architectural approaches have emerged to help distributed applications

cope with these heterogeneity issues; in the following sections we describe some

of the most notable ones.

2.1.1 Middleware

Distributed applications typically reside on a number of different nodes, each

with its on peculiarities (e.g., hardware, operating system, ...); in order to

cooperate, they need to overcome this intrinsic heterogeneity. Middleware is

emerging as an architectural approach to facilitate the interaction between

applications distributed across heterogeneous network nodes [1].

Middleware offers an abstraction layer that relieves application designers of

some of the burden of realizing distributed applications from scratch. In recent

years, different kinds of middleware have emerged, each providing a different

category of features and abstraction level. In the following we report some of the

most notable ones.

RPC-based middleware [2] is one of the most basic forms of middleware and

aims at providing programmers of distributed applications with an intuitive and

powerful abstraction: pieces of distributed software that need to cooperate can

invoke procedures of each other transparently from their physical locations, as if

they were on the same network node. TP Monitors [3] enable the abstraction of

distributed transactions: in a typical distributed interaction, in order to realize their

business logic, pieces of distributed software typically need interact with physical

12

or logical resources either locally, or remotely. These interactions typically are

strictly interconnected, so, for instance, the failure of one piece of business logic

can invalidate the overall process. Distributed transactions provide a way to

master the overall execution of a series of complex interdependent distributed

tasks in a consistent way. Object brokers appeared as an evolution of RPC-based

middleware to allow for the remote interaction and cooperation of distributed

objects; in time, their specification has grown to encompass much more complex

features than simple remote invocation of business logic, for instance by providing

naming, discovery, or event management services, Quality of Service management

and so on. The most notable class of Object Broker middleware is the Common

Object Request Broker Architecture (CORBA) [4], promoted and standardized by

the Object Management Group (OMG). Object Monitors [5] basically resulted

from the convergence and fusion of Object brokers with TP monitors to extend

remote object brokering with transaction support. Message-oriented middleware

(MOM) has raised as a proposal to overcome the intrinsically synchronous remote

interaction style proposed by RPC-based mechanisms and has promoted

asynchronous messaging as a way to coordinate distributed pieces of business

logic. Some of the most notable proposals in this area are IBM Websphere MQ

[6], Microsoft's MSMQ [7], and the Java API standard Java Message Service [8].

2.1.2 Service-oriented architecture

Service Oriented Architecture (SOA) [9] is an architectural approach in

building large heterogeneous distributed systems that leverages the abstraction of

service to encapsulate and easily manage heterogeneous pieces of distributed

business logic. Service clients (either end users or machines, e.g., other services)

access services by means of a standardized interface that decouples concrete

service implementation from description of features and the way to access them.

Service providers can publish services (and their interfaces) to publicly available

service registries that service client in turn can query. The service interface is the

key in mastering heterogeneity: it represents a standardized contract that hides

13

service realization details and by means of which users can automate access to the

service itself. SOA is not a novel concept and has proven to be a suitable approach

to hide service heterogeneity, but in recent years it has gained momentum and

renewed interest thanks to the Web Services [10] revolution. Web Services

initiative is an implementation of a SOA that leverages widespread Web-related

technologies for both the description and the enactment of services. Web Services

do not formally mandate any specific standard, but typically they exploit a set of

widespread specifications, like the HTTP protocol for communication of

exchanged data, and XML-based grammars for exchanged data format definition

(SOAP protocol [11]), service interface description (WSDL protocol [12]), and

service registry standardization (UDDI protocol [13]).

Service-oriented Computing (SOC) [14] is a more and more emerging paradigm

in the realization of distributed software that extends Service Oriented

Architectures by proposing a much more complex and feature-rich layered vision

in which services are just the bare low-level of the architecture. Higher levels of

the proposed architecture promote features to, for instance,

� compose and coordinate services into more complex and value-added

aggregates;

� monitor services and Quality of service characteristics

� establish and enforce Service Level Agreement policies between producers

of services and consumers

� rate and certificate services or compositions of service

This vision is becoming more and more important in that it envisions a

comprehensive and more structured approach to service oriented architectures,

specially by intimately promoting service composition and aggregation to build

more complex services by simply assembling other off-the-shelf services.

14

2.2 Ubiquitous computing scenarios

Ubiquitous computing scenarios were first envisioned in early '90s by some

work [15] at Xerox PARC and promoted an ecosystem where mobile devices and

network connectivity intimately permeates end users everyday life.

Recent technology advances in wired and wireless network connectivity and

the availability of increasingly powerful and feature-rich mobile end user devices

are more and more fostering and making Ubiquitous computing scenarios

concrete. Users are more and more requiring to exploit services and contents

anytime, anywhere and by means of any device. Furthermore, services and

contents much more need to tailor to fit user needs and characteristics (e.g., device

in use) as well as to adapt to environmental conditions (e.g., network connectivity

type and status, user location,...). Ubiquitous computing scenarios stress many

debated research fields, from mobility to context-awareness and multimodal

multichannel content access. Though preliminary works exist that try to cope with

the aforementioned issues, currently, they are not really adopted on a large scale;

the main reason is that most approaches tend to face only a limited set of the

previous properties, thus producing solutions that, for instance, provide support

for content adaptation but miss to support mobility and multimodality.

In the following we analyze state of the art in the most relevant fields of

Ubiquitous computing and we provide an insight into the most relevant

middleware support proposals for each one of them.

2.2.1 Mobility

The increasing availability and mass-market adoption of novel wireless

connectivities (e.g., 3G mobile networks, IEEE 802.11 standards,) and much

more powerful devices able to exploit them promotes novel scenarios for the end

users. Access to services and computation more and more becomes free from fixed

positions and enables users to roam and move while still performing their tasks.

15

Typically, state of the art of research identifies different categories of mobility,

each one with well-defined characteristics [16]. User mobility concerns problems

in supporting user activities while they move across different locations; in this

situation, users require to access a uniform and consistent view of their specific

working environment (e.g., user preferences or profile information) independently

of their current location. Terminal mobility allows end user devices to move and

connect or reconnect to different communication networks while remaining

reachable and keeping communication sessions consistent. Finally, resource

mobility allows resources to move across different location by still remaining

available, independently of their physical location and the current position of their

(possibly mobile) clients.

In recent years, some proposals tried to face mobility issues by means of

Mobile Agent platforms. Mobile Agents platforms [17] provide a support layer

that allows software components to migrate between different network nodes

during execution, by carrying their code and the reached execution state. Solutions

basing on this approach are currently adopted not only to support user and

terminal mobility (e.g., [18]), but also to realize multimedia content adaptation for

both fixed and mobile users (e.g., [19]). Agents are also used to convey context

information (e.g., [20]) while effectively integrating services.

2.2.2 Context-awareness

Mobile computing opens up novel scenarios in which computation can occur at

different physical locations and by spanning a multitude of different

environmental conditions. Context is a rather generic term used to indicate a broad

category of information that relates to specific characteristics of both users and

devices operating in a certain applicative domain [21]. A typical example of

context information is the current location of devices and users; in fact,

preliminary research work in the area of context-aware computing highly focused

on location information. However, other relevant context information exist and

16

they typically relate to user activities and/or preferences, user interactions and

interrelationships with other users and/or devices, as well as device capabilities

and/or their current state and operating conditions.

Context-awareness refers to the ability of a computing system to provide

services and contents that are adapted and tailored to the specific conditions in

which users and devices are currently operating [22]. Context-aware systems need

to face a number of non-trivial tasks, some of which do not yet have a clear and

commonly agreed upon solution. The most intuitive task in designing context-

aware systems relates to context information retrieval and basically requires

context-aware systems to provide convenient and effective ways to both gather

context information from a wide variety of sources, such as user profiles held in a

database, sensors that monitor environmental conditions, status and operative

conditions of user device and/or other devices operating in the same area. Another

crucial task relates to reasoning and reaction to context information changes:

variations of context can force the system to re-adapt and reconfigure in order to

provide a much more tailored system.

As heterogeneity of context-aware scenarios increases, different sources of

context information may be involved, possibly exploiting different formats for

conveying such information; the need for common formats and models for context

information thus becomes a compelling issue. Furthermore, as context information

becomes very large, reasoning and reacting to context variations may lead to

inconsistencies or conflicts in the actions to be taken; therefore conflict resolution

in context-aware adaptation process becomes a non negligible task. Finally, other

relevant aspects context-aware systems may need to cope with relate to efficient

and distributed context information storage and dissemination.

State-of-the-art in context-awareness support tends to focus on positioning-

based service provisioning and on the development of toolkits and frameworks to

create new context-driven applications. As for location-awareness, most

widespread applications so far have been GPS-based car navigation systems and

17

handheld (sometimes wearable) tourist guide systems (e.g., [23]). Despite the

success in this field, location-aware applications are often dedicated to precise

scenarios (e.g., museum locations, car driving, ...) and it is still difficult to

integrate heterogeneous positioning systems (e.g., GPS does not work indoor).

Works are being published to address the issue of integrating different positioning

information (e.g., [24]). As for toolkit-solutions, some frameworks exist (e.g.,

[25]) that offer tools and libraries to easily develop services that leverage context-

related information such as user location, connection type, device features and so

on. We do not disregard these approaches, but claim the importance of a much

more comprehensive view that takes into account a wider range of both context

information and, more generally, of Ubiquitous issues.

2.2.3 Multimodal multichannel multipattern user
interaction

Device heterogeneity opens up novel ways for the users to exploit contents:

users are no longer bound to traditional fixed PC workstations with Web browsers

but can access content or applications on the Internet by means of different user

interfaces, via different communication channels and according to their

preferences or device features.

2.2.3.1 Multimodal access

Multimodal access relates to the coordination of different natural input

modalities (such as speech, touch, hand gestures, eye gaze and body movements)

with different multimedia output modalities (text-only documents, images or vocal

readings are typical output formats). This aspect is becoming important not only to

provide users with multiple media access channels but also to promote and extend

content accessibility to impaired users. The ��eEurope 2005 Action Plan�� from the

Commission of the European Communities [26] witnesses the importance of this

issue for e-government stakeholders. Though compelling requirements for

integration of different natural input/output modalities are evident, the proposed

18

solutions and frameworks tend to have vertical approaches and focus only on

specific and fixed sets of interaction modalities or application domains. Typical

solutions address, for instance, e-learning [27], medical consultation [28] or crisis

management [29]. Similarly, some general purpose multimodal frameworks

[30-34] have been proposed, but, again, they tend to be limited to sets of

predefined interaction modes (specially auditive ones) and therefore still lack a

concrete and widespread adoption.

2.2.3.2 Multichannel access

We refer to multichannel content access as the ability of providing services or

information content through different media channels and platforms [35].

Typically, different heterogeneous communication channels can be involved in

service/content provisioning, from traditional fixed Ethernet or DSL connections,

to wireless technologies (e.g., WiFi, 3G mobile phone networks, Bluetooth

PANs, ...), and also GSM SMS technology or DVB-T broadcasting. By supporting

multichannel access, heterogeneous devices access contents in a consistent manner

and receive them in different forms, depending on the particular channel being

exploited. For instance, TV news can come as video streaming on DVB-T

channels and broadband networks, perhaps together with useful MHP applications;

on limited devices or GPRS connections, instead, they should be converted to

snapshot images surrounded by plain text to save bandwidth. Finally, users willing

to exploit older legacy technologies such as SMS and/or GSM standard can

receive plain text short messages or phone calls with a synthesized voice reading

news content. Traditional multichannel content access platforms, anyway, are

usually built with a restricted number of delivery channels in mind and need re-

engineering to enable access via multiple channels. Typically, this is achieved by

exposing functionalities as software services and adopting SOA strategies to

compose them [36], either implementing a channel-agnostic communication

system [37] or channel-adaptive information systems [38].

19

2.2.3.3 Multipattern access

Support for multimodal and multichannel access allows users to remodel the

interaction patterns [39] to exploit services and contents. Indeed, different

interaction forms and channels could render the typical pull-type request/response

interaction pattern quite limiting; it becomes more and more necessary to support

also push-based, conversational or even mixed communication patterns. By

mixing different interaction styles and channels it is possible, for instance, to

realize complex single-request/multiple-response patterns: a user may ask (say, by

means of an SMS) for traffic information related to a certain path. In response she

could receive a concise resume by an SMS text message and a detailed mail that,

along with textual content, provides user with maps of alternative paths. State of

the art research in this field focuses on generically modeling human/services

interaction by means of coordination/orchestration platforms: BPEL4People [40]

and WS-HumanTask [41] proposals try to model human participation in process

orchestration by providing extensions to BPEL that integrate human resources and

coordinate with human tasks. However, these approaches are controversial: some

recent work criticizes the richness and quality of offered features [42], others [43]

argue that these approaches are too technology-dependent and suggest to raise the

abstraction level to provide a much more user-friendly model-driven approach.

20

3 Middleware Design

�The most profound technologies are those that disappear.

They weave themselves into the fabric of everyday life

until they are indistinguishable from it.�

Mark Weiser,

The Computer for the 21st Century

This section describes the main requirements we identified in building a

Ubiquitous support middleware. By analyzing them, and by evaluating state of the

art, we identified some key design principles in the realization of a truly

Ubiquitous support middleware.

3.1 Requirements

Heterogeneity is a key characteristic of Ubiquitous computing scenarios. Users

can exploit a plethora of different devices and connectivities, and need to access a

virtually unlimited set of services and contents. Furthermore, environmental

conditions in which both users and services operate may be extremely different

and can vary in time, thus requiring to cope with such changes. A platform that

supports Ubiquitous Pervasive computing should therefore be extremely flexible

and extensible in order to enrich and tailor itself, by adding novel features and

21

support for novel scenarios.

Furthermore, end users are the primary audience for such a kind of platform:

users should be able to easily arrange, access and share contents and services,

without having to cope with technical details. User-friendliness is therefore a key

element in providing a really usable and pervasive platform to support Ubiquitous

computing. Weiser [15] himself recognized that a truly effective and widespread

technology needs to permeate everyday life so intimately that it disappears at all,

and it is so simple to use that users exploit it unawarely.

Middleware approaches typically tame heterogeneity of distributed applications

by providing a uniform layer of support functionalities that hides heterogeneity

(hardware, operating systems, network connectivity) of network nodes involved in

the realization of a distributed application. In fact, some recent work in the

literature propose middleware infrastructures to provide ubiquity support features

to help build Ubiquitous scenarios. As described in section 2, current middleware

solutions typically tend to face only a limited set of Ubiquitous issues, and, as

Ubiquitous scenarios become more and more mature, they tend to enrich with

novel, more complex and extremely interconnected features. However, this

collides with a basic middleware principle: in order to be really effective,

middleware should be extremely essential and tailored, and provide exactly the

needed features and no more [44].

Platform design needs therefore to cope with apparently strongly diverging

driving forces: support for heterogeneity, flexibility and extensibility calls for the

dynamic addition and enrichment of middleware with novel features whereas the

need for essentiality and tailoring pushes the platform to provide the sole features

needed to realize a certain scenario.

Dealing with increasing complexity, frequent changes and tailoring needs have

always been compelling concerns in the design of large complex software

systems; however some software design principles have proven to help master

these requirements. The following sections describe key principles in designing

22

and engineering a truly effective middleware for Ubiquitous computing.

3.2 Design principles

�... But nothing is gained --on the contrary!-- by tackling these

various aspects simultaneously. It is what I sometimes have called 'the

separation of concerns', which, even if not perfectly possible, is yet

the only available technique for effective ordering of one's thoughts,

that I know of. This is what I mean by 'focussing one's attention upon

some aspect': it does not mean ignoring the other aspects, it is just

doing justice to the fact that from this aspect's point of view, the other

is irrelevant. It is being one- and multiple-track minded

simultaneously. ...� (E.W. Dijkstra) [45].

Though many valuable architectural design approaches in modern software

development help software architects in building large heterogeneous distributed

systems, separation of concerns has proven to the the key in approaching

problems with the right abstraction level and in a manageable way [46, 47].

Separation of concerns refers to the process of identifying and decomposing

software logic into parts that are relevant to a particular concern (concept, goal,

purpose, etc.), with the goal of addressing each problem separately, still with a

unifying approach that ultimately aims at integrating them into a coherent view.

We claim that separation of concerns is the key in providing an intuitive, user

oriented platform for ubiquity support.

The first essential separation of concerns stage in the design of this kind of

platform calls for a neat distinction of the features our platform exposes to final

users: in our opinion, users need to access a restricted number of simply and

23

explicitly defined facilities. Hence, from a user perspective, we adopt separation

of concerns to clearly classify the major different kinds of tasks users are able to

perform by means of our platform. In our opinion, no matter the complexity of the

Ubiquitous scenarios, users will always need (and are restricted) to cope with three

main concerns: service/content choice logic grants users a convenient and intuitive

way to search for and choose services and contents they are interested in among

the currently available ones; service coordination logic provides high-level service

coordination features, such as facilities for aggregating contents from a bunch of

services rather than using them standalone; finally user interaction logic lets users

choose how to exploit services or groups of coordinated services, by choosing the

interaction style/pattern as well as the input/output channels and formats.

This broad separation is a first step toward user-friendliness in that it clearly

drives what users can generally do with the platform; however, so far, this does

not fill the gap between high-level user requisites and concrete pieces of

ubiquitous business logic.

To face this gap by still supporting heterogeneity and flexibility, the

middleware platform itself should undergo a design intimately inspired by

separation of concerns. Many different software design architectural principles

incarnate the concept of separation of concerns and have emerged as patterns and

approaches that help in the realization of complex heterogeneous software

systems. The delegation principle aims at keeping software component logic

simple: each software component should cope with a specific concern (or a limited

set thereof) and delegate responsibility of other concerns to other suitable

components. The decoupling principle aims at keeping interacting software

components as much reciprocally loosely coupled as possible. Semantics-based

software description allows to separate and abstract software high level features

and characteristics from concrete, low-level operational details. Finally, the

layering principle promotes to stratify software functions into different levels

(layers), each one at a different abstraction level. Hence, lower levels typically

24

target practical operational concerns, whereas higher levels typically address high

abstraction level concerns that stress the inherent principles of the software being

realized. The following sections describe how design principles that directly stem

from separation of concerns can help in the design of our middleware for

Ubiquitous computing.

3.2.1 Delegation: a disappearing middleware approach

The delegation principle [48] pushes a software component receiving requests

of a certain feature to delegate their fulfillment to another piece of software. This

design principle is extremely helpful to tame the growth in software complexity:

increasingly elaborate software components may decide to delegate and

modularize software logic to other components, thus keeping inner logic simple.

The delegation principle naturally fits the inherently dynamic and ever-growing

Ubiquitous scenarios and is the key in mastering the diverging forces that drive

Ubiquitous middleware design.

By following the delegation principle, we propose a Ubiquitous middleware

design that delegates all of the concrete Ubiquity support features outside of the

middleware itself and that leaves middleware only a limited set of basic support

functionalities. Thus novel ubiquity support features (e.g., different kinds of

content retrieval/transcoding/adaptation or novel communication channels) can be

added/removed with little or no effort; middleware then somehow tends to

disappear behind an increasingly heterogeneous and varying set of features it is

able to offer.

In our opinion, by keeping middleware logic simple and lightweight, this

disappearing middleware approach is able to perfectly tailor to a wide variety of

Ubiquitous scenarios, providing the sole needed features and thus remaining

extremely effective.

25

3.2.2 Decoupling: service-oriented computing

The decoupling principle refers to the practice of keeping pieces of software

logic as independent and unaware as possible from technical and operational

details of other software artifacts they collaborate with. This sort of divide and

conquer approach aims at maximizing software maintainability and manageability

and at minimizing the impact of changes, additions or removals of software

artifacts. Service-oriented computing pushes decoupling principles to the

extremes, calling for a distributed landscape where software functionalities are

modeled by means of the abstraction of services. Services know and cooperate

with each other only by means of service interfaces that completely hide

implementation details. Service providers can publish novel services, hence

allowing old existing services to exploit novel ones.

By following a decoupling principle we therefore model ubiquity support logic

by means of the abstraction of service, hence allowing for easy addition and

removal of novel features in the form of services. Services ultimately are the

pieces of business logic our platform exploits to satisfy user needs by choosing

among the currently available ones and by arranging and making them cooperate.

As a consequence, our middleware platform provides only features to help users

select, compose and coordinate services, thus remaining extremely lightweight and

application-unaware.

Services can be implemented by exploiting a vast heterogeneity of different

programming languages, operating systems or physical resources; however, each

service provides a standardized interface that completely, in detail and in a

standardized way describes all of the features the service offers. This kind of

description is typically targeted at operational description (input/output

parameters, methods/procedure names), hence determining how to interact with a

service and allowing automated tools to autonomously generate logic to interact.

On the contrary, it features poor user-friendliness and typically is not suitable to

provide a high-level, user comprehensible description of what a service does. End

26

users should be able to choose, arrange and exploit service logic according to their

needs in an easily understandable, intuitive way.

3.2.3 Layered semantics

In recent year, semantics [49] has emerged as a means to "decorate" concrete

pieces of business logic with high-abstraction level information that helps in

describing, reasoning on and managing application logic from a much higher

standpoint than operational details. Various examples of semantics are nowadays

widespread: metadata annotations of modern programming languages (e.g., Java)

allow compilers to manage and more thoroughly and deeply reason on code

correctness than simply enforcing syntax checks, and at the same time provide

users with high-level description of certain characteristics of the software they are

writing. As another example, the Semantic Web initiatives [50, 51] aim at

enriching contents on the Web with descriptions that end users (or machines) can

exploit to more naturally and intuitively search for and establish correlations

between contents from different content sources on the Web.

In our opinion, semantics is the keystone that prevents users from having to

cope with low-level operational details and allows middleware to automatically

handle and translate user requirements into concrete arrangements of business

logic. To allow for this, semantics needs to face three distinct concerns, each one

at a distinct abstraction layer: the first one relates to providing users with a set of

high-level abstractions that help them easily expressing their requirements; the

second one relates to providing low-level operational instruments for the

middleware to concretely arrange business logic to fulfill user needs; finally, the

third one relates to mechanisms and formal tools to translate high-level user

requirements into concrete arrangements of business logic.

The Layers architectural pattern [52] promotes separation of concerns into a

stratified view where each layer groups concerns at a specific abstraction level and

hides details of the underlying layers to the upper ones. By following this

27

principle, we stratify semantics into a layered structure that features the following

levels: user semantics layer provides the high level user requirement description

facilities; the semantics fusion layer is in charge of interpreting and translating

details of the user semantics layer into concrete arrangements of pieces of business

logic; finally, the business logic layer provides the low level commodities to

manage concrete business logic and arrange it according to user requirements.

3.3 Architecture

By following the principles described in the previous section, we can devise

and put together a unifying and integrated architecture, depicted in Figure 1.

In our opinion, the separation of concerns approach is the key in both

smoothing and making users experience easier, and in designing an extremely

flexible, open and heterogeneous middleware platform for Ubiquitous service and

content provisioning.

The final architecture reflects an intimate adoption of the separation of

concerns approach for what concerns both users and the middleware layer. In fact,

users approach our middleware with a clear and neatly distincted view of what

they can do; in our opinion, no matter the complexity and heterogeneity of the

Ubiquitous scenarios and applications, users basically will always have to choose

one or more services (or contents) of interest, to arrange them according to their

preferences, and to define how to interact with and exploit them.

Similarly, middleware clearly separates a minimal, almost disappearing, kernel

layer that provides support functionalities and delegates the responsibility of

concrete Ubiquitous logic to a layer of services that can be added (and removed)

by need.

To fill the gap between high-level user requirements and low-level details of

building correct and sound arrangements of services, we introduce semantics

mechanisms and we separate them into different levels of abstraction. The

28

business logic layer encompasses all of the concrete logic to realize Ubiquitous

Pervasive scenarios; content retrieval and adaptation services or channel

management and delivery services typically reside at this level. This level is also

responsible of managing the concrete operational details of services that determine

whether they can concretely cooperate and interact with each other, e.g., by

checking that input/output messages of cooperating services are compatible and

expressed in the same format. The user semantics layer, on the contrary, provides

a restricted set of tools and high-level abstractions that easily allow users to

accomplish the tasks of choosing services, arranging them and interacting with

such arrangements, without having to delve into the hard to manage service

operational details. The semantics fusion layer provides a set of instruments to

help the platform interpret, merge, and translate distinct high-level user

requirements (service choice, service coordination and user interaction) into a

unified concrete set of services, suitably arranged to fulfill user needs.

User semantics layer, semantics fusion layer and business logic layer constitute

the composition model of our platform and their elements (described in section 4)

drive the concrete process of composing services according to user needs. The

service composition engine is the key middleware element that manages the

composition model (i.e., all of the above mentioned abstraction tools) and

concretely enacts routines and algorithms to realize service composition.

29

3.4 Related work

Aggregating and composing pieces of business logic/services is gaining

momentum as a way to tame the inherently increasing complexity of Ubiquitous

Pervasive Internet scenarios. An SoC approach allows to easily plug in support for

novel features (communication channels/patterns, media format, and so on) by

simply adding new services and by arranging (more or less complex) service

aggregates. State of the art highlights two main tendencies about adopting service

composition to provide users with ubiquity and pervasivity support platforms. On

the one hand, Web mashup platforms leverage user-friendly Web techniques to let

30

Figure 1. Architecture

users graphically arrange compositions of contents from a (usually restricted)

catalogue of available ones. On the other hand, more formal approaches leverage

semantics to propose automatic composition platforms able to reason on and

interpret user requirements expressed by means of a certain semantic agreement.

3.4.1 Web mashups

An interesting trend in service composition directly relates to the emerging

Web Mashup scenarios: users more and more are provided with Web-enabled user-

friendly appealing tools to aggregate contents over the Web [53]. Yahoo Pipes

[54], Intel Mashmaker [55] and Google Maps-based [56] mashups allow users to

directly aggregate and interconnect Web-based contents by means of easily

exploitable visual tools.

These tools let users participate more and more in the process of content

creation and aggregation and generally propose an effective way to help and guide

them throughout such a non-trivial task. However, these solutions are typically

vertical and ad-hoc: allowed contents and services are usually Web pages (or

XML-based formats such as RSS) and users are allowed to exploit such contents

basically by means of the sole Web browser. As a consequence, flexibility and

extensibility are still open issues of this kind of approach and research [57] starts

perceiving the SoC model as a promising way to extending and broadening

mashup platform support.

3.4.2 Semantic ubiquitous service composition

The semantic service composition tries to overcome heterogeneity and

complexity of Ubiquitous scenarios by modeling business logic into semantic-

enabled services and composing them into value-added aggregates. Some current

work [58] propose composition models based on a fixed stack of semantic

description layers; this clearly evidences the main different abstraction levels

involved in semantic service description, but, being fixed, it inherently suffers

31

from the lack of extendibility: service providers willing to plug in new services

need to conform to such fixed model and are not able to provide newer or different

semantic metadata to capture novel service features. The Scooby middleware

platform [59] aims at providing a user-oriented service description and

composition enactment middleware; even if this approach seems promising, the

chosen model for service description limits service modularity and reuse; as an

example, if a service needs to interact with other services, its description needs to

explicitly define bindings with the other required services. Other works [60]

propose a semantic-enabled framework for dynamic service composition where

users can exploit natural language to express their requirements; platform is then

in charge of translating natural language requests into concrete service

compositions. In our opinion, natural language requirement specification is

potentially extremely flexible but offers no help to the average end user in the

process of service choice; by allowing for natural language expression, the

platform gives no perception or feedback to users about, for instance, what kind of

compositions the platform can cope with, what kind of services are available and

so on. As a consequence, so far semantic composition of ubiquitous pervasive

services seems to be a promising, powerful and flexible way to realize and

automate service composition, but current approaches miss the right abstraction

level and result either overly complex for average end users (in reason of a lower

abstraction level that lets emerge large part of the operational details), or too

expressive and free (hence at a higher abstraction layer) but practically poorly

usable in real world scenarios.

32

4 Service Composition

�All models are wrong. Some are userful�

(George E.P. Box)

Application and service composition is at the heart of our model and is the key

in providing an extremely flexible and heterogeneous Ubiquitous support

platform. Novel services (e.g., logic to handle novel communication channels or

novel content kinds) can be plugged in by need and composed with other services

to face novel ubiquity scenarios. This section describes the composition principles

that drove the design of our composition model, then deepens the description of

the composition model itself and of the concrete process to translate user

requirements into concrete service aggregates.

4.1 Service composition principles

Service-oriented Computing strongly promotes aggregation and reuse of

software artifacts (services) to increase modularity and flexibility of distributed

systems. Service composition is rapidly gaining momentum as a way to fuse

33

existing services to realize novel value-added service aggregates.

The extremely vast and heterogeneous landscape of service composition

proposes a number of different approaches and proposals that target extremely

different scenarios.

Early service composition platforms focused on rather static scenarios

(especially Enterprise Application Integration) that required to coordinate a

(usually limited) number of services in a well-defined and deterministic way. First

proposals therefore aimed at providing methods and tools to clearly define static

and immutable compositions of services by explicitly expressing how services had

to cooperate, e.g., the order in which they needed to be invoked and the

operational parameters (e.g., input/output) involved. BPEL4WS [61] is one of the

most widespread standards for service composition and proposes an XML-based

grammar to define compositions of Web Services; a number of tools currently

exist to both easily and graphically sketch out service compositions and to manage

the concrete execution of BPEL4WS-based service compositions.

However, this kind of approach has proven to be very limited for some

compelling reasons. The first crucial one relates to the fact that designing a service

composition in such a way is typically a completely user-dependent process: a

human is in charge of finding useful services and of manually defining

interconnections between them to realize the required task. This obviously

requires the composition designer to have a wide and high level expertise in both

the applicative domain the task relates to and in the formal grammar used to

express the composition.

The second problem with early static approaches relies in the fact that they

inherently fall short in more dynamic scenarios. For instance, the initial set of

available services may vary in time (by either growing or shrinking), an exact

match between a specific subtask and a concrete service may not be available, or

the overall final task can not be expressed in a precise and unambiguous way,

either because the final service composition user has little expertise of the

34

applicative domain or of the composition model, or because the requirements

themselves are unclear.

Many different approaches tried to face the problems that arise in such dynamic

scenarios; basically, two main tendencies outstand and sometimes even coexist.

The adoption of a semantic description allows to capture service/service

composition features that go beyond traditional basic operational features (such as

input/output parameters) and provides a higher level description both of

requirements the composition need to fulfill, and of service features such as

behavior and/or interoperability constraints. WSDL-S [62] and OWL-S [63] are

two of the most notable XML-based proposals in the field of semantic metadata

service description and enforcement. The semantic approach provides users with

richer and more detailed descriptions of services. This has the obvious benefit of

being much more clear to unexperienced users. However, a richer service

description allows also to capture details such as what a service is able to do rather

than how it does it; this information can be used to automate (e.g., by inference)

compositions of suitable services each time no clear solution is evidently

achievable.

Other proposals aim at providing much more theoretical formal service

composition models to not only describe service compositions but also to help

reasoning on them, for instance to detect inconsistencies and/or possible deadlock

conditions or to infer novel and/or better compositions from previous ones.

Typical approaches that fall in this category model service compositions by means

of Petri Nets [64] or of some variants of process algebras (e.g., Calculus of

Communicating Systems [65] or Calculus of Sequential Processes [66]). Other

approaches [67] define semantics in terms of a first-order logic, namely the

situation calculus [68] and, based on this semantics, they describe service

compositions by means of a Petri Nets model. Formal approaches, such as Petri

Nets or first-order logic ones, have proven to be extremely powerful, especially

when it comes to reason on a certain applicative domain and/or set of service

35

compositions. Some models are able to determine whether a composition not only

satisfies initial requirements but also if it is secure, e.g., provides no deadlock

conditions or unreachable states. Other models allow to automatically infer novel

service compositions from existing ones in order, for instance, to provide

optimized compositions (e.g., service composition with equivalent overall

behavior but with less services involved) or alternative versions.

In our opinion, the main features a composition model should provide in order

to help realizing ubiquity support scenarios relate to user-friendliness, automation

of service composition process, scalability of the process itself, and extensibility.

User-friendliness requires to lower the level of required expertise of the final

user, by hiding service connectivity details and by rather conveying high-level

features description. Service composition automation requires the concrete process

of choosing suitable services and arranging them into suitable service

compositions to not involve users, apart from initial requirements specification.

Scalability requires to build a service composition model that can scale as the

number of available services and/or templates grow, by finding out a reasonable

amount of compositions in a reasonable amount of time. On the contrary, we are

not interested in building an intelligent composition system that can infer novel

optimal solutions by, for instance, recursively applying previous solution patterns

(such as previous formal models), since this approach can quickly become

unmanageable as composition elements (e.g., services and templates) number

grows.

Finally, in a highly dynamic and flexible scenario where novel applicative

services can be plugged into the platform by need and therefore can be employed

to build novel compositions, extensibility forces the composition model itself to be

able to cope with novel services and novel scenarios in a flexible and extensible

way.

We acknowledge that automatic composition of services needs both a formal

model to represent compositions and semantics to give meaning to the formal

36

representation itself. However, we aim at tackling this problem from a different

perspective with regards to, say, first-order logic or Petri nets modeling

approaches. Even though extremely extensible and intelligent, these formal

models in fact typically result extremely difficult for unexperienced users (since

the elements of the model typically are mathematical or logical entities) and they

seriously affect and compromise scalability.

We therefore claim that semantics provides a convenient means to fill in the

gap between concrete service arrangements and unexperienced users, and

therefore we adopt semantics to convey high-level description of services and

service compositions; similarly, we acknowledge the need for a strong and

rigorous formal model to help automating service composition. However we want

our formal model to explicitly provide a set of clear abstractions the users can

exploit to accomplish the composition process in a more intuitive way rather than

being so extremely powerful to be able to reason, infer and extend itself.

By using our composition model, an average user is able to express high-level

requirements about the overall task he is interested in by means of a set of intuitive

semantic notions and abstract modeling facilities. Then, it is up to the platform to

decide whether suitable compositions can be arranged out of existing services, and

if more than one exist, possibly to rank them by a certain criteria.

4.2 Composition model

Figure 2 reports an overall view of the architecture, with a specific focus on the

main components of the composition model.

37

Services and workflows represent the lowest level of our model and basically

involve syntactical elements: services are the basic building blocks of our

applicative system and workflow [69] is the concrete means to make them

cooperate. Workflows describe structured activities and their complexity can range

from simple sequences of services activated after one another, to complex

compositions of both services and control blocks, such as conditional branches,

forks, joins and so on.

At the opposite highest level, service metadata conveys high-level information

about semantic features of services, e.g., their typology (content generation and

retrieval, transcoding, etc...) or QoS-related aspects (average computational load,

38

Figure 2. Architecture

etc) that can be used to drive service choice for users. Templates model abstract

flows of activities, i.e. flow definitions whose nodes need to be partially of fully

filled in with concrete business logic; hence templates are a suitable abstraction to

help users in sketching out arrangements of services (so to express service

coordination logic). Finally, Interaction patterns allow users to model their

preferred service (or service aggregates) interaction styles, hence providing

suitable abstractions to drive user interaction logic specification.

In between, the semantics fusion layer provides features that allow to translate

abstract templates into concrete workflows. Rules express constraints on pieces of

business logic that participate in the realization of a template, whereas roles allow

to express such constraints not on a specific business logic element (e.g., a service

or a workflow node) but to abstract, share and reuse them across different elements

of the template. Finally, semantic domains convey a useful means to partition

semantic features into distinct spaces, so as to avoid providing a fixed and

immutable semantic knowledge base, but rather to foster insertion of novel

semantic concepts while still keeping older ones consistent.

It is important here to notice that we choose to realize an inherently non-

recursive service composition model; basically, consistently with principles

described in the previous section, we do not want our system to find out all

possible solutions or even novel ones, by automatically composing templates into

much more complex templates. In fact, when available templates, services and

semantic domain number increases, intelligent approaches that recursively explore

all possible solutions may become practically unusable and too much expensive in

terms of computational cost. Rather, in an average system condition, we prefer

arranging only the most minimal workflows, without having to guess whether

more complex ones can be arranged with similar functionalities.

Nevertheless, we acknowledge that under certain conditions, recursive

compositions may help realizing infeasible solutions. The most typical case relates

to a piece of business logic that can not be carried out by a single service but can

39

be realized by, say, building up a sequence of several available services.

In ourmodel, we want to explicitly control the adoption of recursion, for

instance by limiting it to specific cases (e.g., when no other compositions can be

arranged) and by carefully selecting the most meaningful templates that can act as

sub-pieces of other templates. This is why we relegated recursive mechanisms to

the concrete service composition algorithm, as described in Section 4.3.6.

Finally, to foster model extensibility and by following a SoC approach, novel

service metadata, templates and interaction patterns can be plugged in by need;

therefore, since average end users will typically exploit already available ones,

administrators and/or smart users can build and share novel metadata, templates

and patterns, hence extending platform facilities.

4.2.1 Business logic layer

Business logic layer provides the low level facilities that concretely realize

applicative scenarios. Entities of this layer should be completely invisible to final

users: it is up to our middleware to concretely manage business logic

implementation details to realize user requirements.

4.2.1.1 Services

Following a SoC paradigm, we model pieces of application logic as services

that can be plugged in by need to extend middleware ubiquitous features support.

Hence, support for novel content types as well as novel formats (and consequent

adaptation/transcoding logic) or novel user interaction channels can be easily

added by simply adding new services.

4.2.1.2 Workflows

In traditional SoC approaches, aggregation and coordination of services help

realizing more complex value-added applicative scenarios out of basic building

blocks, thus promoting business logic reuse and modularity. Workflows can range

40

from simple sequences of services to more complex aggregates with conditional

branches, fork/join nodes and so on. Managing execution of logic entails

concretely invoking services after one another, hence workflows are in charge of

tasks such as parameter passing between subsequent stages and exception

handling.

Definition 1. We model workflows as directed graphs WF :=�WFN ,WFL �

Workflow nodes (WFN) can be concrete services or control blocks (e.g., fork, join

or conditional nodes). Workflow links (WFL) are directed connections that

interconnect two workflow nodes.

Definition 2. Two workflow nodes connected by a link are adjacent.

Services and workflows are concrete entities of the system and are in charge of

concretely realizing user-driven ubiquitous scenarios. Once established,

workflows and services need no semantic interpretation; on the contrary,

semantics is used to decide whether a given (more or less formal) description of

requirements can be satisfied and translated into a concrete workflow of services.

4.2.2 Semantics fusion layer

Semantics fusion layer realizes the glue that helps translate high level user

requirements into concrete workflows of available services.

4.2.2.1 Semantic domains

A number of different proposals exist to specify semantic information on

services; some approaches are extremely tailored to specific areas of interest or

applicative domains, whereas other proposals aim at giving generic purpose

models and languages to describe any kind of semantic feature. As an example,

Web Service Semantics [62] or OWL-S [63] promote standard XML formats to

describe semantics.

41

The model we propose does not rely on a specific service semantic description,

but rather can be reused with any standard, thus improving flexibility and reuse.

Furthermore, a monolithic and predetermined set of semantic notions does not

fit well with intrinsically dynamical scenarios where semantic itself may need to

grow and adapt to ever-changing scenarios.

We therefore prefer providing our system with a way to conveniently add novel

semantic information and make it coexist with already existing one. To cope with

such intrinsic heterogeneity and openness, we propose the notion of semantic

domains to conveniently group semantic information on the basis of, for instance,

metadata area of interest (e.g., metadata regarding service quality rather than

binding features) or even metadata format. Novel semantic domains can be

introduced to capture novel aspects or give novel and different interpretations to

pieces of business logic.

Definition 3. We define D as the set of available semantic domains. Each

domain can carry in semantic attributes (i.e. named properties that describe

specific features) and values related to such attributes. We define Ad the set of

available semantic attributes over semantic domain d and Vad is the set of

available semantic values for semantic attribute a of domain d.

As an example, given the Syntax semantic domain, possible attributes could be

Asyntax={input , output }

and possible values for attribute input could be:

V input , syntax={application / xml ,text / plain ,...}

Typical attributes for a QoS semantic domain could be

AQoS={estimatedComputationLoad , billing , ...}

42

and possible values for attributes could be numerical values representing the

average estimated computational load or the cost of the service if its use is not

free-of-charge.

Semantic attributes and values can be associated to any kind of element in our

model. Associations between an element of our model and an attribute or value

can be either direct or indirect.

Directly associating an attribute or value to an element means describing an

element with a certain semantic meaning. Even if this is a perfectly viable

approach (and we will use this approach in the following for service semantic

metadata), sometimes it is much more helpful to provide a way to express a certain

semantic feature for an entire class or group of elements without having to

explicitly bind each one of them to that feature. Furthermore, sometimes it could

be impossible at all to specify semantics for an element since this element is not a

concrete one but rather is an abstract element our service composition engine

needs to concretely substitute with pieces of business logic.

To overcome these problems and provide indirect attribute associations, we

introduce the notion of role.

4.2.2.2 Roles

Roles allow to create classes of model elements that share common semantic

features. Adding a semantic feature (attribute and/or value) to a role means each

element that wants to play that role has the specified attribute. Roles are a

convenient means to realize indirect semantic association, hence they can be used

to express semantic on elements that are still not concrete (e.g., template

elements).

Definition 4. We define R as the set of available roles and Ar
d as the set of

available semantic attributes of domain d for role r.

43

For instance, given the contentGenerator role, the attribute

output
syntax

contentGenerator={contentGenerator , syntax , output }

identifies the semantic attribute output (of semantic domain syntax) for

business logic willing to play the role of contentGenerator.

4.2.2.3 Rules

Rules are the concrete means to drive selection and arrangement of concrete

services into workflows that realize user requirements.

Rules provide semantic composition constraints by comparing semantic

attributes and/or values of a specific semantic domain for one or more pieces of

business logic; hence they are used to concretely evaluate whether a real

composition of services can be arranged to fulfill user requirements.

We distinguish consistency rules and scoring rules as follows.

Definition 5. Consistency rules (cr) evaluate whether a certain set of semantic

attributes and/or values are compatible with each other.

cr :=[AD

R�V D]
n� {0,1}

Definition 6. Scoring rules (sr) evaluate the degree of compatibility of a

certain set of semantic attributes and/or values. We indicate the degree of

compatibility with a real value

sr :=[A
D

R�V
D
]n��

As an example, we provide the following rules.

44

output syntax

generator=input syntax

deliverer

� estimatedComputationLoad
QoS

rolei , role
i
�{generator ,transcoder , deliverer }

The former one is a consistency rule and determines whether the semantic

attribute output (of semantic domain syntax) of role generator and semantic

attribute input of role deliverer are compatible; the latter one sums up values of

attribute estimatedComputationLoad (semantic domain QoS) for roles generator,

transcoder, and deliverer, in order to evaluate the overall estimated computational

cost for each piece of business logic that plays one of the aforementioned roles.

4.2.3 User semantics layer

User semantics layer provides facilities that can easily assist users in choosing

the right services, in arranging them, and in deciding how to exploit them.

4.2.3.1 Service metadata

Services represent atomic pieces of business logic related to content

production, transcoding, adaptation and so on, and are described by means of

semantic service metadata, to express both low-level grounding connection

features and high level semantic information.

Definition 7. Given S the set of available services, we define service metadata

property

pd ,a

s =�s , ad , v ad� where s�S , ad�Ad , v ad�V ad

Service metadata property (or simply property) is the value vad of semantic

attribute a on semantic domain d for service s.

Similarly, P
d

s
denotes the set of properties of service s on semantic domain d

and P
s

the set of properties of service s.

45

4.2.3.2 Templates

Templates are modeled as a directed graph and represent abstract workflows of

business logic: they are made up of nodes that can represent both concrete service

logic and abstract placeholders with some semantics associated.

By adopting a graph-based description, we are able to easily and graphically

convey information of what a template does to final users; in fact, graph-based

representations easily allow users to perceive the flow of control between

subsequent stages of a complex aggregate of business logic. Not surprisingly,

intuitive and user-oriented Web 2.0 mashup tools such as Yahoo Pipes [54] exploit

the same approach and provide a drag-n-drop graphical interface that allows to

arrange blocks (services) into more or less complex graphs.

Definition 8. We define N :=S�CB�PL as the set of available template

nodes. Thus each node in a template can be a concrete service, a control block

(CB) or a placeholder (PL).

Definition 9. Nodes are connected by links that represent directed connections

between two nodes. We define L :=�N×N � as the set of links connecting

available nodes.

Control blocks (CB set) can be nodes such as fork, join, condition, and so on,

and they are typically used to manage and control the flow of execution among

successive stages.

Placeholders (PH set) are the key elements in templates since they are the

abstract nodes our platform must substitute with concrete business logic in order

to fulfill user requirements. In order to do so, we typically put consistency rules on

placeholders, thus expressing semantic constraints on the concrete business logic

46

that will replace placeholders. Typically, consistency rules may involve different

placeholders and can be also shared and reused for different sets of placeholders in

the same template. A typical example would be a rule to constrain each service

willing to replace any of the placeholders to have a computation load (e.g.,

estimatedComputationLoad semantic attribute) below a certain threshold value.

Indirect semantic association by means of roles is a straightforward method to

avoid having to specify such a rule for each placeholder.

As a consequence, we provide a way to explicitly associate roles to

placeholders, hence allowing for the sharing and reuse of rules across the

template.

Definition 10. We define PRR := {prr : PH� R } as the set of Placeholder-

Role Relations and PRRp as the set of Placeholder-Role Relations for placeholder

p.

Finally each template carries a set of rules RU that drive the process of filling

placeholders by evaluating semantic attributes over placeholders roles they

declare.

Definition 11. We define a template as follows: T := {N , L , PRR , RU }

Given a template t, N t , Lt , PRR t , RU t identify respectively the nodes, links,

Placeholder-Role Relations and rules of template t.

4.2.3.3 Interaction patterns

 Interaction patterns provide convenient facilities to help users easily specify

how to interact with a given template (more precisely, with the corresponding

47

workflow, if one can be generated out of the given template and existing services).

Interaction roles (IR set) are a subset of roles used to mark template nodes as,

for instance, user input (userInput), user output (userOutput) or event-driven

nodes (eventInput).

Each interaction role is associated to specific consistency rules that drive the

selection of business logic suitable for playing interaction roles. As an example, a

specific rule

typologybehavior

userOutput=delivery

constrains each service willing to play the userOutput role to provide a certain

value (�delivery�) for the property typology of semantic domain behavior.

Definition 12. Given a template t, we model an interaction pattern

IP :={IPRR , IRU }

where IPRR is a subset of PRR relations that mark template nodes with

interaction roles and IRU (a subset of RU) is a set of interaction rules on

interaction roles to drive concrete interaction service choice.

4.2.4 Usage scenario � user requirements

In the following we will describe a typical ubiquitous content aggregation

scenario from the user standpoint. User requires to gather information from

different content sources (e.g., an RSS feed, a newsletter and a plain HTML

portal); furthermore, user requires to receive aggregated content via an SMS

message on her mobile phone at a certain hour every day.

In our vision, the average end user should provide no deeper or more technical

information about her requirements and it is up to the platform to arrange available

business logic components to satisfy user needs (if possible).

48

Our platform provides a content aggregation template that features a couple of

initial and final placeholders and a variable number of placeholders in between (in

the following we will consider three generator nodes), each one of them playing a

generator role.

This template already comes with a rule that constrains services willing to play

the generator role to provide the value �generation� for semantic attribute

typology of domain behavior.

The user marks the initial placeholder (p1) as an eventInput node to tell the

system she wants the composition be activated asynchronously by means of an

event. This action brings into the template a novel rule (associated to the role

eventInput) that constrains services willing to play the eventInput role to provide

the value �timerEvent� for semantic attribute typology of domain behavior.

Similarly, she marks the final placeholder (p6) as an userOutput node to tell the

system she wants the composition to send its output via an SMS message. This

brings into the template a novel rule (associated to the role userOutput) that

constrains services willing to play the userOutput role to provide the value

�delivery� for semantic attribute typology of domain behavior.

By performing these simple choices, user has constrained the template to

49

Figure 3. User requirements

behave and interact with the user in a well-defined way, i.e. by asynchronously

reacting to an event and by notifying the user of the elaboration result via an SMS

message. In a similarly simple way, the user could have required a synchronous

direct pull-based interaction, for instance by configuring both input and output on

an HTTP channel.

Available semantic attributes over the generationDomain semantic domain

relate, for instance, to content type (contentType). Users can therefore select

semantic values (e.g., by means of convenient web user interfaces) for such

attributes, to impose constraints on each placeholder. Our platform therefore adds

a rule to the template that forces service (or service aggregates) willing to replace

node p2 to provide the semantic value �RSS� for attribute contentType. By

following the same approach, user configures nodes p3 and p4 to produce

newsletter- and HTML-related content. Note that rules that can (or need to) be

shared among different placeholders (e.g, rules on the generator role) should be

expressed indirectly by means of attributes over a role that marks more than one

placeholder. To force placeholder-specific semantic values, we use roles specific

to each placeholder (e.g., by convention, a role with the same name as the

placeholder). This is the case with �contentType� attribute for generator nodes:

each generator placeholder should feature a different value, hence a different rule,

to force the platform select different kinds of contents.

Finally, user drives the interaction pattern choice by requiring output to be of

type SMS.

The service composition layer is now in charge of deciding whether currently

available services (or service aggregates) can satisfy user needs.

Notice that a skilled user may access a more sophisticated interface by means

of which she can modify the template graph (e.g., by inserting and/or removing

templates) in order, for instance to provide two alternative input or output

placeholders.

50

4.3 Composition reification

The main goal of the composition layer is to translate abstract templates into

concrete workflows (we call this process reification) made up of available

business logic. This basically entails filling template placeholders with services (or

service workflows, in cases of limited recursiveness, as explained in the

following) that are suitable to play the roles declared by the placeholder. Service

suitability is determined by evaluating all of the rules that involve roles of the

placeholder to be filled.

In section 4.2 we introduced rules as a means to compare semantic attributes

and values. In this section we will deepen the definition of rules, and show how to

use them to enforce user requirements.

4.3.1 Evaluation facilities

This section describes basic tasks at the heart of the template reification

process, namely service substitution, consistency and scoring evaluation.

4.3.1.1 Consistency

Consistency evaluation refers to the process of determining whether semantic

values are consistent with each other under a certain meaning.

Definition 13. We define consistency as a function that compares semantic

values to check whether they are consistent.

f
consistency

=[V
AD
]n�{0,1} , n	2

The most common consistency function imposes that two or more semantic

values have to be equal, nevertheless, our platform is able to deal with any kind of

consistency function, thus providing a convenient way to model complex

51

relationships. For instance, in a typical heterogeneous content format scenario,

some kind of business logic (e.g., audio transcoding) can be compatible with each

type of MIME audio input type (�audio/*�).

4.3.1.2 Scoring

Scoring evaluation refers to the process of determining the degree of

consistency of semantic values with each other under a certain meaning.

Definition 14. We define scoring as a function that scores the degree of

consistency of two or more semantic values.

f
score

=[V
AD
]n�� , n	2

4.3.1.3 Substitution

Concrete services are meant to substitute placeholders by playing certain roles.

Since each role may be associated with semantic attributes, the substitution

function is in charge of extracting the service semantic property whose attribute

matches with the one of the role. This value is then used to either concretely verify

whether consistency rules are satisfied, or to evaluate scoring rules.

Definition 15. We define substitution as a function

f
sub
=[AR×S]�V

AD
�

4.3.2 Service and template rules

Rules usually do not tie to a particular service, instead, they are expressed in

terms of roles; hence roles allow to abstract and reuse rules across services.

52

Indeed, each service willing to play a specific role must satisfy each rule that

involves such roles.

Rule definitions given in the previous section are extremely generic; in this

section we refine their definition and we identify significant subsets of both

consistency and scoring rules.

Service rules bind a semantic attribute of a candidate service to a concrete

semantic value; hence service rules constrain the choice of a single service.

Template rules compare semantic attributes of candidate services to semantic

attributes of other candidate services; hence template rules establish relationships

among different service candidates.

By following the previous considerations (and by explicitly including

consistency and scoring functions), we refine consistency and scoring rules as

follows.

Definition 16. We define SCR as the set of service consistency rules (scr)

defined as follows:

SCR:={scr
r
:�a

d

r
, v

ad
, f

consistency
��a

d

r �A
d

r
, v

ad
�V

ad
}

A service consistency rule therefore binds a specific attribute of a role to a

specific semantic value. Each service willing to play role r needs to provide a

semantic property whose value is consistent (by verification with a consistency

function fconsistency) with vad.

Definition 17. We define TCR as the set of template consistency rules (tcr)

defined as follows:

TCR :={tcr
r
1
, ... , rm

: �a1
d

r
1 ,... , an

d

r m , f
consistency

��a1
d

r
1 ,... , an

d

r m�A
d
}

53

A template consistency rule therefore binds n attributes of m roles to each other

(m<=n since more attributes of the same role can participate in the rule).

Similarly, we impose the same distinction on scoring rules and we define

service scoring rules (ssr) and template scoring rules (tsr):

Definition 18. We define SSR as the set of service scoring rules (ssr) defined as

follows:

SSR:={ssr
r
:�a

d

r
, v

ad
, f

score
��a

d

r�A
d

r
, v

ad
�V

ad
}

Definition 19. We define TSR as the set of template scoring rules (tsr) defined

as follows:

TSR :={tsr
r
1
, ... , rm

:�a1
d

r
1 , ... , an

d

r m , f
score

��a1
d

r
1 ,... , an

d

r m�A
d
}

Even though in section 4.2 we modeled rules in a more generic way, in practice

from an operational standpoint, we claim that the only interesting rules for a

template are the ones defined in Definition 16-19. As a consequence we make the

following operational hypothesis.

Hypothesis 1. Each template declares only service consistency, template

consistency, service scoring, and/or template scoring rules.

� t�T , RU
t

�SCR�TCR�SSR�TSR �

54

4.3.3 Rule evaluation

In order for a placeholder to be filled with a candidate service, rules related to

the placeholder roles (PRR relations) must be evaluated. Consistency rule

evaluation determines whether a service (or a set of services) can play the required

role(s), whereas scoring rule evaluation determines �how well� the candidate

service can play the required role(s).

Definition 20. We define service rule consistency evaluation as a function that

determines whether a given service can play a given role according to a given scr.

eval scr : [SCR×R×S]�{0,1}

Specifically, given a service s, a role r, and an scr
r
: �a

d

r
, v

ad
, f

consistency
�

consistency evaluation takes place by substituting service s to the corresponding

roles r in the rule, and then by applying the consistency function declared by the

rule itself.

eval
scr
�scr

r
, r , s�= f

consistency
� f

sub
�a

d

r
, s� , v

ad
�

Definition 21. We define template rule consistency evaluation as a function

that determines whether a given set of services can play a given set of roles

according to a given tcr.

eval
tcr
:[TCR×[R×S]n]�{0,1 }

55

Specifically, given a template consistency rule

tcr
r
1
, ... , rm

:�a1
d

r
1 ,... , an

d

rm , f
consistency

�

and a set of role-service substitutions1 (rj ,sk), j��1, m� , k��1, p� evaluation

takes place by substituting services to the corresponding roles in the rule, and the

by applying the consistency function declared by the rule itself.

eval
tcr
�tcr

r
1
,.. rm

,�r
1
, s

1
� , ... ,�r

m
, s

p
��= f

consistency
� f

sub
�a1

d

r
1 , s

1
� , ... , f

sub
�an

d

rm , s
p
��

Definition 22. We define service rule scoring as a function that evaluates “how

well” a given service can play role according to a given ssr.

score ssr : [SSR×R×S]��

Specifically, given a service s, and a service scoring rule ssr
r
:�a

d

r
, v

ad
, f

score
�

scoring takes place by substituting service s to the corresponding roles r in the

rule, and then by applying the scoring function declared by the rule itself.

score
ssr
�ssr

r
, r , s�= f

score
� f

sub
�a

d

r
, s� , v

ad
�

Definition 23. We define template rule scoring as a function that evaluates

“how well” a given set of services can play a given set of roles according to a

given tsr.

score
tsr
: [TSR×[R×S]n]��

1 Notice that it is allowed that a service plays more than one role.

56

Specifically, given a template scoring rule tsr
r
1
, ... , rm

:�a1
d

r
1 , ... , an

d

rm , f
score

� and

a set of role-service substitutions2 �r j , sk � , j�[1,m] , k�[1, p] scoring takes

place by substituting services to the corresponding roles in the rule, and then by

applying the scoring function declared by the rule itself.

score
tsr
�tsr

r
1
, ..r m

,�r
1
, s

1
� ,... ,�r

m
, s

p
��= f

score
� f

sub
�a1

d

r
1 , s

1
� ,... , f

sub
�an

d

r m , s
p
��

4.3.4 Template reification

We call template reification the process of filling each placeholder node in a

template with a suitable service. A reifiable template is a template whose

placeholders can be substituted by at least a set of services that satisfy the

following two consistency properties, namely service consistency and template

consistency.

Definition 24. Service consistency requires that each service willing to replace

a placeholder should satisfy all of the service consistency rules associated with

each one of the roles associated with the placeholder.

Given a placeholder p, a template t, and a candidate service (for placeholder

p) c p�S cp is service-consistent for placeholder p iff:

� r�� prr p�{r} ,

� scr r�RU t ,

evalscr �scr p , r , c p�=1

Definition 25. Template consistency requires that each set of services willing to

replace a set of placeholders should satisfy all of the template consistency rules

2 Notice that it is allowed that a service plays more than one role.

57

associated with each one of the roles associated with each placeholder.

Given a placeholder p, a service candidate service sp to substitute p, and a set

of other candidate services CS, sp is template consistent in CS iff

�r�� prr p�{r},

� tcr r
1
, ... , r

m

�RU t��r i=r

�{s
1
, ...sm�1

}�si service consistent in p x�PH t� i

eval
tcr
�tcr

r
1
,.. rm

,�r
1
, s

1
� , ... ,�r

i
, s

p
� ,... ,�r

m
, s

m�1
��=1

Template consistency verifies that a service willing to replace a placeholder can

satisfy all of the template consistency rules that involve one (or more) role of the

placeholder to be replaced.

Definition 26. Given a template t and a set of candidate services CS={s1,...sn},

template t is reifiable in {s1,...sn} iff

 � s i�CS

si is service consistent in pi�PH t

 si is template consistent in {s1,...sn}

Each service in {s1,...sn} can therefore be used to substitute a corresponding

placeholder in a way that guarantees satisfaction of all the consistency rules. So,

the composition platform can build a concrete workflow out of the template by

consistently replacing its abstract placeholders with existing services (set

{s1,...sn}).

Definition 27.Given a template t that is reifiable in {s1,...sn}, we call {s1,...sn}

reification set.

58

4.3.5 Syntactical consistency

Our model easily and flexibly allows to express syntactical consistency, e.g., to

check whether services can interoperate in terms of basic interconnection features

such as input/output parameters or pre- and post-conditions satisfaction.

In our approach we define a specific syntaxDomain semantic domain to express

service input/output features. We also provide a link consistency rule (a template

consistency rule) in this generic form:

lcr :=�� producer , syntaxDom ,output � ,�consumer , syntaxDom , input���{0,1}

where producer and consumer are example roles that mark subsequent nodes.

So, basically, a service willing to play the producer role should declare a

semantic property output (in the semantic domain syntaxDomain) whose value is

consistent with the value of semantic property input of the service willing to play

the role of consumer.

To guarantee that each preceding service in a template has output compatible

with the following service input, it is sufficient to add a link consistency rule to

each adjacent couple of services.

4.3.6 Reification process principles

The reification process is in charge of determining whether a specific template

can be reified and by means of which reification set(s), if any.

Different kinds of techniques can be used to determine whether one or more set

of services can reify the required template. The most naïve solutions could provide

an imperative brute-force-like approach that randomly selects a subset of services

(a candidate reification set) and checks whether template t is reifiable in the

59

candidate reification set (e.g., checks whether template and service consistency

rules are satisfied). On the contrary, much smarter solutions might exploit

Artificial Intelligence techniques (such as first-order logic approaches) to logically

determine reification sets out of existing rules and available services. Such

techniques could also allow for inference-based or recursive approaches to build a

sub-workflow that fulfills a specific task no currently available service is able to

satisfy.

Our approach is much more operational and exploits a Constraints Satisfaction

approach [70] in order to realize an efficient algorithm that iteratively reduces the

set of available candidates by using rules as constraints on suitable services. More

precisely, at the first stage of our algorithm we apply service consistency rules to

each role associated to each placeholder. This step helps creating finite sets of

candidate services (we indicate them as CSr) for each role.

Once got a finite number of candidate services for each role, template

consistency rules now define typical CSP constraints, where roles are variables of

the CSP and CSrn is the domain of the n-th variable (role). We therefore adopt CSP

solution techniques to further shrink CSrn sets, by eliminating services that can not

cooperate with other services according to a certain tcr. At the end of this process,

each CSrn contains services that can safely play the specified role (rn). Obviously, if

no service satisfies a given role, composition is infeasible.

Finally, to determine whether a suitable composition exists, for each

placeholder p we determine the set of replaceable services (RSp) by intersecting

CS for each role declared by the placeholder p. Again, if any of the RSp is an

empty set, no reification set is available. Otherwise, each service in each RSp can

be used to build a valid reification set.

In case the algorithm detects an infeasible composition (either an empty CSr or

an empty RSp), it tries to recursively generate sub-compositions that can provide

aggregates of services compatible with rules of the initial template. According to

scalability requirements, and in order to not provide potentially unmanageable

60

recursive algorithms, this process is sub-template dependent, and only a limited set

of templates is actually available for sub-process composition. As an example, a

transcoding template is a template made up of a sequence of placeholders, each

one forcing link consistency with preceding/following placeholders; moreover,

first/last placeholders need to enforce link consistency with the

preceding/following placeholders in the initial template.

4.3.7 Workflow ranking

Template reification process allows to translate user requirements into concrete

workflows; as the number of available services grow, more reification sets can

satisfy user needs and could be translated into workflows. Scoring rules (both

service and template ones) allow to establish metrics to evaluate workflows and

eventually rank them in order to automatically provide users with the most

suitable composition. Service and template rules can be used to enforce any kind

of workflow ranking. One typical example relates to QoS policies enforcement:

services specify service metadata to describe features such as average

computational time, cost and so on. Template scoring rules can evaluate these

values, for instance by simply summing them: workflow with the best value is

therefore the preferred candidate the platform suggests to the user.

4.3.8 Usage scenario - template reification

In section 4.2 we showed how user selected a content aggregation template and

how user choices translated into concrete template placeholders by means of

consistency rules. Service composition layer now inspects available services to

determine whether services exist whose semantic properties can cope with the

specified rules.

The available �generation� RSSReader service provides the �RSS� value for

61

attribute contentType, therefore it can play the role generator and thus fill in

placeholder p2. The same applies to placeholders p3 and p4 and NewsReader and

HTMLReader services. By providing �aggregation� as typology attribute, the

Aggregator service is suitable to fill in placeholder p5. Finally, the SMSSender

service metadata allow SMSSender to fill in placeholder p6.

However, suitable link consistency rules enforce syntactical correctness by

means of link consistency checks on each couple of adjacent nodes.

The Aggregator and SMSSender violate link consistency check, since the latter

one requires input as plain text but the former one provides an XML content.

The algorithm then detects that no suitable reification set exists; as a

consequence, it tries to adopt a recursive approach to p5 and p6 nodes. The

platform provides an adaptation template that is able to transcode data from one

format into another. This template is made up of three placeholders, respectively

marked with source, transcoder, and destination roles. Finally, template bounds to

a single service consistency rule that forces the service willing to play the

transcoder role to explicitly provide the value transcoding for semantic attribute

62

Figure 4. Link consistency violation

typologybehavior.

By recursively applying the adaptation template to the original content

aggregation one, the service composition layer is able to determine that a

convenient XML-to-text transcoding service is available.

The composition layer therefore arranges the final workflow as reported in

Figure 6.

63

Figure 6. Final workflow

Figure 5. Adaptation template

5 Kernel support features

This section describes kernel-level features of our middleware. These features

range from basic persistence and naming support to more complex workflow

management and execution or user context management. However, no matter their

degree of complexity, functionalities of this layer all act as support facilities that

can be exploited by other entities in the platform, both at the applicative level

(services) and at the kernel level itself (i.e., by other kernel components).

5.1 Service composition

The Service Composition Engine is the concrete kernel component that

manages the composition model and the reification process described in section 4.

The main tasks of the Composition engine component relate to gathering user

requirements (e.g., by means of a convenient graphical user interface), and to

translating them into concrete workflows (if possible), by searching the service

catalogue for currently available services.

64

5.2 Service support

As stated in the previous chapter, each service provides a semantic description

to help the composition engine translate user requirements into concrete

workflows. However, a part from semantic high-level descriptions, concrete

service entities feature a lot more interesting operational details that our platform

almost completely hides to final users.

Specifically, two main aspects need to be taken into account when concretely

managing services from an operational standpoint:

� services seldom are stateless entities that operate with no side-effects on

external resources, no notion of status or no need for pre- or post-conditions

check;

� services seldom operate only on single input parameter (e.g., data coming

from previous services in a workflow) and produce a single result; far more

frequently, services operate also by exploiting (and by modifying) external

resources (e.g., file system, other network resources and external services,

and so on).

To overcome these limitations, in our proposal services undergo a specific

lifecycle that manages service status across executions and they exploit a resource

mapping management to bind execution to external environment.

To convey information about lifecycle and resource mapping, in a typical SoC

style, services provide an operational interface that provides the platform with

useful configuration information.

5.2.1 Service lifecycle management

When executing standalone or within a workflow, services rarely are stateless;

instead, some notion of state between executions may be required. The most basic

65

notion of state we support relates to configuration and de-configuration of

services. Specifically, each service instance can be configured once (at the

beginning of its lifecycle) and keep this configuration across all executions of the

workflow. More complex and different notions of state could apply to services: as

an example, some could exploit state for optimization purposes (e.g., to cache

previous executions in order to reason on and/or speedup subsequent ones).

However, in our opinion these kinds of state are extremely application-dependent

and therefore should be mastered by the service logic itself.

In our platform, service lifecycle undergoes three main states:

� a started state: services are in this state immediately after the template

reification process; at this stage, an instance of the service has been put into

the workflow. In this phase, the service composition engine can call suitable

service functionalities (configuration activity) to configure initial parameters

and/or resources of services (e.g., instantiate database connections);

� a running state: service instances in this state are configured and fully

operational and can be executed each time a workflow needs them; services

remain in this state as long as the corresponding workflow exists;

66

Figure 7. Service lifecycle

� a shutdown state: when a workflow instance is no longer required into the

system, it can be removed; before entering the shutdown state, some

convenient logic (deconfiguration activity) can be called to shutdown

services (e.g., to deallocate resources).

Figure 7 depicts the main states and the associated transitions.

During transitions between states, service-specific logic can execute to

configure, concretely execute and deconfigure services;

To provide this information, services exploit the operational interface and can

declare methods of this interface to be configuration, execution, and

deconfiguration methods to specify how to configure, execute and/or deconfigure

themselves. None of these methods is strictly required, so, as an example, services

declaring only an execution method typically require no

configuration/deconfiguration logic.

Figure 8 reports a Java-style code excerpt describing an RSS service

operational interface. This service provides a method (activateChannel), marked

as Configuration to initially configure the service (e.g., perform some initial RSS

content pre-fetching for performance reasons); another method (pollChannel),

marked as Execution concretely executes service logic (e.g., retrieve novel

67

public interface RSS {

@Configuration({ "urlToWatch"})

public boolean activateChannel(String url);

@Execution({ "url"})

public Object pollChannel(String url);

@Deconfiguration({ "urlToUnwatch"})

public boolean deactivateChannel(String url);

...

}

Figure 8. Declaring lifecycle methods

content from and RSS feed). Finally, the deactivateChannel method, marked as

Deconfiguration, deconfigures the service (e.g., frees cache from pre-fetched

content).

5.2.2 Operational parameter mapping

During their lifecycle, services can exploit different resources (other than

parameters received by preceding services in the workflow) to both

configure/deconfigure themselves and to execute their business logic.

The needed resources are declared as parameters of service lifecycle methods

of the operational interface. The platform is responsible of dynamically binding

each parameter to a concrete resource.

To perform this task, the platform needs to determine which element in the

platform is concretely responsible of parameter resolution and, possibly, how to

automatically choose the correct parameter value when the responsible component

can not provide an unambiguous one (e.g., in case more valid values are

available).

5.2.2.1 Parameter mapping - responsibility

Some relevant built-in responsibility levels are:

� ServiceInstance responsibility: parameters of this kind are determined on a

per-service-instance base;

� Session responsibility: a session-level parameter is currently stored and

managed by the SessionManager component;

� UserProfile responsibility: a user-profile-level parameter is currently

stored and managed by the UserProxy component;

� ExecutionContext state: an execution-context level parameter comes from

previous stages in the workflow execution;

� CoreProperties state: parameters of this level reference system-wide

68

defined properties, such as deployment network nodes IP address.

Our platform is responsible for parameter resolution, hence to runtime

determine the current value of the declared parameter by querying the specific

kernel component.

5.2.2.2 Parameter mapping - choice policies

Some of the responsibility levels may not be able to directly provide an

unambiguously determined value; a typical example is a parameter that maps to a

phone number (e.g., for an SMS delivery service) of a user profile (UserProfile

responsibility): the corresponding information in the user proxy may be bound to

more than one phone number, thus impeding automatic selection of a suitable

value.

To overcome this and similar limitations, we introduce the notion of choice

policies: each parameter value can be determined according to a choice policy

defined in the operational interface itself.

Relevant choice policies are in the following:

� AskUser: the user himself is responsible of resolving the ambiguity, by

specifying a value;

� SuggestUser: the same as the previous one, but user is prompted with a

choice of already available candidate values (if any exist);

� PickFirst: the platform autonomously selects the first value out of a list of

available ones;

� Random: the platform autonomously selects a random value out of a list of

available ones.

69

5.2.2.3 Parameter mapping - example excerpt code

Figure 9 reports an excerpt code of parameter mapping for the previously

mentioned Configuration method for the RSS service. Since instances of this

service can be used by different users, hard-coding the concrete RSS feed from

which to retrieve contents is not a suitable approach; on the contrary, users should

be able to specify their own configuration. To capture this, the RSS service

declares responsibility of the parameter (urlToWatch) to be of type

ServiceInstance, hence, once specified, its value is bound to the service instance.

However, initially no suitable value exists, and it should be up to the user to

specify the RSS feed of interest: to capture this, this parameter is bound to a

choice policy of type AskUser. This basically drives the service composition

engine to explicitly ask user for a suitable value during the process of service and

workflow setup (especially during the configuration activity).

70

public interface RSS {

@Configuration({ "urlToWatch"})

public boolean activateChannel(

@Declaration(

name = "urlToWatch",

description = "the rss url to monitor",

responsibility = ResponsibilityLevels.ServiceInstance,

)

@MappingStrategy(

choice = ChoicePolicies.AskUser

)

String url,

);

...

}

Figure 9. Parameter mapping

5.3 Workflow management

The Workflow Manager kernel component is in charge of concretely managing

workflows of services. This basically entails two main activities, namely lifecycle

management and workflow execution. Following sections will deepen their

description.

5.3.1 Workflow lifecycle management

Composition engine is in charge of translating user requirements into concrete

workflows made up of available services. Once created, each workflow undergoes

a lifecycle made up of three main states:

� started state: this is the state of newly created workflows;

� running state: workflows in this state are fully functional and can

execute;

� shutdown state: workflows in this state are no longer runnable and can

be deallocated.

Workflows in the started state are not ready to run, since services may need to

be configured (see previous section). Hence, transition (namely, workflow

configuration) from started state to running state requires to run configuration

activity of each service of the workflow. Similarly, when a workflow is no longer

needed in the system, it can be shut down; to do this, every service should be

deconfigured first. Hence, transition (workflow deconfiguration activity) from

running state to shutdown state entails invoking the deconfiguration activity on

each service that constitutes the workflow.

Figure 10 illustrates the aforementioned states.

71

5.3.2 Workflow Execution

Workflow Manager is in charge of concretely executing workflows. This

basically entails invoking execution methods of each involved service,

coordinating parameter passing between subsequent stages (services) of the flow

and, finally, managing execution flow in case of control blocks (e.g., by choosing

the valid branch in a conditional execution flow).

Workflow executions can be triggered by any kind of kernel component;

however, in practice, workflow executions happen to fulfill explicit user requests

or in reaction to specific events. As a consequence, typically workflow executions

are issued by Interaction Managers (for user request) and by the Message Broker

(for asynchronous events and messaging) kernel components.

72

Figure 10. Workflow lifecycle

5.4 User proxy

In a typical Ubiquitous scenario, users freely move across different locations

and change the devices in use. This poses non-trivial issues when it comes to

keeping user-related information (e.g., device in use) consistent, especially when

available networks force to frequent disconnections or are limited in terms of

bandwidth.

The user proxy kernel component is responsible for keeping context

information consistent and for suitably reacting to changes. User proxies (one for

each user in the system) collaborate with other kernel components in order, for

instance, to keep session up-to-date (by interacting with session manager) or to

trigger workflow reconfiguration in case context variations invalidated previous

ones. A notable piece of context information held by the proxy is the catalogue of

the workflows currently running for each user.

Finally, to better follow mobile users, user proxies can exploit mobile code

techniques (especially Mobile Agent-based ones) to move across network nodes

and keep proximity with current user device.

5.5 Interaction management

As Ubiquitous scenarios become more and more complex, users may want to

configure rich heterogeneous interaction patterns; specifically, users want to

access the system (e.g., require execution of specified workflows) no matter the

device and the media channel they exploit. This basically concerns two main

aspects that need to be addressed.

On the one hand, it is necessary to physically capture interactions coming from

different communication channels, with different data exchange formats. As an

example, in order to provide users with a way to request interactions by means of

an SMS message, a suitable SMS gateway logic is in charge of physically

73

receiving messages on a given PSTN network. Since this task is intrinsically

channel-dependent and obviously calls for extensibility, the abstraction of service

is the most intuitive and viable approach to deal with this issue. We call

Interceptors specific kinds of services whose main task is to capture user requests

coming from different communication channels.

On the other hand, it is necessary to provide an abstraction level that helps

deciding which actions to take in response to a specific interaction, no matter the

communication channel or format interactions come from. This task is

responsibility of the Interaction Managers kernel components.

5.5.1 Interceptors

Interceptors 'physically� intercept user requests from specific communication

devices and channels (e.g., HTTP, SMS, e-mail, ...) and expressed in a certain

channel-dependent syntax. Requests typically contain the following pieces of

information:

� user identity: any kind of information that helps determining user identity;

as an example, for an SMS input channel, the incoming message sender

number or a session token for an HTTP request;

� required action: information that helps determining what the user wants

the platform to do in response to the current interaction;

� action parameters: optional parameters of the action to perform.

For instance, along with user sending number, an SMS message containing the

text �RSS http://rss.url/... 5� could express the will to obtain the five latest RSS

feeds from URL �http://rss.url/...�. Each request, along with its syntax indication,

is forwarded to the appropriate interaction manager. Some interceptors are also

responsible for returning activity results to the users: HTTP interceptors, for

instance, are used both to receive an HTTP request and to convey its

corresponding response.

74

5.5.2 Interaction Managers

Interaction managers receive user request messages (from interceptors) along

with the indication of the syntax they refer to (so as to determine the suitable

request processing algorithm) and are responsible for the following activities:

� they identify users by means of syntax-dependent identification

information (e.g., a session cookie for an HTTP channel, the sender phone

number for an SMS channel, ...);

� they translate user-friendly information conveyed within requests into a

middleware-interpretable command and extract possible parameters;

� they use these pieces of information to enact user requirements such as

activating previously configured workflows, performing common

predefined middleware tasks, and so on.

Among the others, our platform provides pull-based symmetric

(request/response) and pull-based asymmetric (request-only) one-shot interaction

managers; the former one returns a result through the same interceptor from which

the request came, while the latter one does not return results at all, meaning that

request result(s) will be delivered to user through different channel(s) than the

request one.

5.6 Session Manager

The Session Manager component is in charge of managing session information.

The notion of session is generally quite ambiguous and depends on the

applicative or technological domain. As an example, HTTP session is an

abstraction that captures the status of an ongoing interaction between a Web server

and a generic client; once the client first contacts a server, the latter can initiate a

session to keep track of what a specific user has done during the interaction with

the server (e.g., HTML pages viewed or parameter submitted by means of forms).

75

Session then can end either by an explicit user action (e.g., logout actions) or by

server initiative (e.g., session timeout). Generally speaking, a session captures the

notion of an interaction between a user and a service; this is obviously of

paramount importance in Ubiquitous Computing scenarios where user interactions

are much more heterogeneous and dynamic.

In a typical example, a mobile user begins exploiting a service, e.g., an Instant

Messaging (IM) application, by means of her smartphone. When user arrives at

office, she would like to seamlessly switch interaction with the IM application to

her fixed workstation. Keeping session consistent here requires the user to

continue exploiting the application by the fixed workstation without losing

previous conversation messages and information about other online users.

In our opinion, no unambiguous and monolithic concept of session can capture

the heterogeneity of Ubiquitous Computing applications; on the contrary our

SessionManager adopts more different levels of granularity.

User lifetime session level is the coarsest-grained level of session our system

supports; as long as our platform �knows� a user (e.g by registration), user lifetime

session information is guaranteed to be consistent.

User interaction level holds session information as long as a user explicitly

interacts with our system, either by arranging compositions or by exploiting

workflows; a typical case relates to users logged into the web-based interface of

our platform for composition arrangement.

Workflow lifetime session level holds session information as long as a specific

workflow exists; when a workflow gets deallocated, Session Manager discards its

corresponding workflow lifetime session information.

Workflow execution session level holds session information during a single

executions of a specific workflow; when a workflow execution ends, Session

Manager discards its corresponding workflow execution session information.

76

5.7 Message broker

The Message Broker kernel component provides messaging facilities to help

coordinate components of the platform via asynchronous message exchange.

We model the Message Broker as a Publish-Subscribe3 [71] messaging

component: publisher components can produce (e.g., send to the Message Broker)

messages for a certain topic, whereas subscriber components register to the

Message Broker for a given topic. Each time a publisher sends a message for a

given topic, Message Broker dispatches that message to every subscriber who has

previously registered for that specific topic.

A typical Message Broker scenario relates to inter-workflow interactions.

Specifically, workflows typically execute autonomously and separated from each

3 A Publish-Subscribe messaging infrastructure allows for the asynchronous one-to-many

exchange of messages between two kinds of entities. Publishers produce messages whereas

subscribers register to the infrastructure in order to get notified each time a publisher produces

a message.

77

Figure 11. Message Broker behavior

other; however, in some cases it is helpful or even necessary to make existing

workflows cooperate. For instance, suppose (see Figure 12) a workflow gathers

content from different sources (e.g., HTML portals) and dynamically arranges

(and publishes to a given website) a personalized homepage for a user. In case

other users are interested in variations of user homepage, it would be extremely

more efficient to have the first workflow asynchronously (at the end of execution)

notify other workflows rather than having them to explicitly monitor homepage

content to check for differences.

This approach also allows to optimize workflow creation, for instance by

splitting monolithic workflows into smaller ones that share common fragments

and communicate asynchronously.

5.8 Support features

Our platform provides also other basic features as reported in the following.

The Service catalogue component provides basic features to register new

services to the platform and to search for them by following different criteria.

Search criteria obviously encompass semantic properties, hence providing a sound

basis for the composition engine to retrieve suitable services.

The Naming component provides a naming system for elements of the

platform, so as to facilitate interoperation of platform components.

Finally, Persistence component provides the basic layer other components

78

Figure 12. Inter-workflow messaging example

exploit when they need to persistently store information, e.g., by means of a

relational database.

79

6 Implementation

Implementation of a distributed middleware platform entails a number of non-

trivial tasks, that range from realizing and exposing application-driven logic (i.e.,

the logic middleware is able to provide, e.g., by means of a web interface, to its

users or clients) to coping with lower-level details such as performing remote

intercommunication between elements of the platform, or managing distributed

information storage.

To overcome these issues, in recent years Application Servers [44] have

emerged as convenient means to help developers realize Web-oriented distributed

applications. Application servers usually provide a layered stack of support

functionalities that are typically required in building distributed applications.

Figure 13 sketches out the main levels of an application server. At the lowest

level, resource management layer provides basic features to access to physical or

logical resources applications need to access to perform their tasks. Typical

examples of resources relate to data stored in databases or file systems. The

application logic layer is in charge of providing facilities to help develop the

concrete business logic; typical examples include for instance management of

80

remote communications between software elements or naming functionalities.

Finally, the presentation layer exposes application logic functionalities to final

clients via different formats and interaction protocols or styles. As an example,

typical human interactions happen by providing a suitable Web interface, whereas

machine-to-machine integration can exploit Web Services-related protocols such

as SOAP.

The most preeminent proposals among application servers rely on two main

frameworks, the Sun's Java 2 Enterprise Edition (J2EE) [72] and the

Microsoft's .NET. Both approaches outline a (similar) set of functionalities that an

application server needs to implement in order to provide a useful framework for

developers of distributed applications. In a traditional Ubiquitous computing

scenario, network nodes where distributed applications (or fragments of

distributed applications) reside are inherently heterogeneous and can rely on a

plethora of different hardware and/or software configurations. The intrinsic

portability of the J2EE platform has naturally led our implementation choices, and

we adopted the JBoss [73] open source implementation of this framework to build

81

Figure 13. Application server layers

our middleware platform.

The J2EE proposal mandates the adoption of several relevant technologies at

each layer of the application server. Specifically, the resource management layer

relies on the Java DataBase Connectivity (JDBC) [74] functionalities to manage

access to databases and in the Java Connector Architecture (JCA) [75] to access

generic Enterprise Information System resources (such as ERPs or legacy non-

Java applications). The application logic layer proposes standard tools to realize

applicative logic; the Enterprise Java Beans (EJB) 3.0 [76] specification is at the

heart of this layer and provides a component-oriented framework to build

applicative logic in a modular fashion. EJB components live inside an EJB

container which provides support features for, as an example, remote inter-

component communication (by remote method invocation), component naming

and security. Other relevant standards in the application logic layer relate to, for

instance, to asynchronous messaging (Java Message Service, namely JMS [8]),

transaction management (the Java Transaction API specification, namely JTA [77])

and naming/directory (Java Naming and Directory Interface, namely JNDI [78]).

Finally, the presentation layer offers features to help realize client Web interfaces,

such as Java Server Pages (JSP) [79] and Java Server Faces (JSF) [80]

specifications.

Main kernel components have been realized as J2EE EJB 3.0 components; this

approach has extremely fastened realization and deployment times, since the

modular approach of the EJB architecture easily allowed us to separate applicative

concerns into (relatively) small interacting components.

In the following we deepen the description of some relevant implementation

aspects of some kernel components.

6.1 Service layer

In our platform, virtually any kind of business logic can act as an applicative

82

service, and hence be composed with other services and participate in the

fulfillment of user requirements. So, even if realizing service logic by means of

Web Services technologies or EJB components is probably the most

straightforward way (due to the inherent support the application server provides

for these technologies), we do not want to limit our platform to these kinds of

technologies, and rather we prefer opening up to a wider landscape of service

providers with different implementation technologies.

Another important aspect to take into account relates to the concrete ownership

and physical location of service implementations. In the most intuitive case, our

platform receives service implementations from service providers and moves them

into our platform to manage and run it locally. Even if, to some extent (e.g., for

services realized in J2EE-compatible technologies), our platform is able to do that

for performance reasons (local invocations are far more efficient than remote

invocations), this is not a generally feasible approach. Service implementation

logic, in fact, can be strictly resource-dependent (e.g., rely on certain operating

system or hardware features) and therefore can need to operate only on a specific

network node. In this case, our platform needs a way to transparently manage

remote invocations.

The aforementioned requirements pose two main issues; on the one hand, even

if realized in any technology, services need to provide middleware with metadata

about both operational aspects (the operational interface) and semantic (the

semantic metadata exploited by the composition model); on the other hand our

platform needs a way to transparently invoke services, no matter the technology

(e.g., programming language, remote communication facilities) they rely upon or

their physical location.

6.1.1 Operational and semantic interfaces

We chose to realize both the operational interface and the semantic metadata

as plain Java interfaces, and to exploit Java Annotations to convey additional

83

metadata on them. As an example, in section 5, we already showed (see Figure 9)

excerpts of the operational interface to describe how to identify activity methods

(i.e., configuration, execution, and deconfiguration), and how to describe

parameter responsibility and resolution policies.

The code excerpt in Figure 14 presents semantic metadata information for an

RSS reader service. This service basically conveys semantic metadata properties

to tell that its behavior relates to generating content (behaviorDomain), that the

kind of generated content is of type RSS (generationDomain), and that it outputs

data in text/xml format (syntaxDomain).

6.1.2 Service invocation

Since our platform wants to cope with potentially any kind of service, we need

a way to transparently manage service invocation, no matter the technology in use.

84

@Composability(

domains = "behaviorDomain;generationDomain;syntaxDomain" ;

)

public interface RSSSemantics {

@ComposabilityAttributes(domainName = "behaviorDomain")

public String[] behavior_attributes = {

"typology=generation"

};

@ComposabilityAttributes(domainName = "generationDomain")

public String[] generation_attributes = {

"contentType=RSS"

};

@ComposabilityAttributes(domainName = "syntaxDomain")

public String[] syntax_attributes = {

"output=text/xml"

};

...

}

Figure 14. Semantic metadata interface

To overcome this, we propose a proxied service invocation: once a workflow

needs to request service activities, service invocation is mediated by an Invoker

component. The Invoker component concretely determines the correct piece of

service logic to invoke, and performs invocation by taking into account current

location of the service (local or remote) and service implementation details such as

realization technology (e.g., Web Services, EJB components and so on).

The Invoker interface is reported in Figure 15. Intuitively enough, the configure

method is in charge of calling the configuration method of the corresponding

service, and similarly for the execute and deconfigure methods.

Invoker proxies obviously heavily depend on both the service logic and its

concrete implementation.

However, some cases exist that can greatly help in realizing such invocation

proxies. Specifically, if the concrete service implementation comes in the form of

a Plain Old Java Object (POJO) or of an EJB component that explicitly extend

their operational interface, invoker proxy realization is straightforward, since

methods to be called can be autonomously and directly inferred by inspecting

operational interface annotations. As an example, in such a case, the invoker

execute method will always call the service implementation method (either by

direct method call or by remote method invocation) that implements the one

marked as @Execute in the service operational interface.

A unique and fixed implementation based on code reflection4 techniques [81]

4 Code reflection refers to the practice of software that is able to reason on and inspect itself at

runtime.

85

public interface Invoker {

public Object configure(Object[] arg);

public Object execute(Object[] arg);

public Object deconfigure(Object[] arg);

}

Figure 15. Invoker interface

could inspect (each time a service gets invoked) service implementation classes to

dynamically determine the concrete method to invoke. However, reflection-based

techniques have proven to be extremely heavyweight and resource consuming, and

hence are not a practically viable solution. In our implementation, on the contrary,

we adopt bytecode generation techniques5 and, though still initially exploiting

reflection techniques to determine the needed concrete methods, we generate

invocation proxies (Java classes) with hard-coded logic to invoke suitable

methods. This kind of invocation proxy can be automatically generated by the

platform either dynamically when in need (e.g., at first service invocation) or

proactively (for performance reasons) at service deploy time. We also provide

similar dynamically-generated proxies that can cope with Web Services-based

service implementations.

Finally, to cope with any kind of service, we allow service providers to supply

also a suitable custom invoker (a simple Java class that implements the

aforementioned interface) along with a service registration.

6.1.3 Service provider standpoint

According to the previous sections, a service provider willing to register

services to our platform needs to provide the service catalogue with a package of

information as follows (see Figure 16).

The operational interface and the semantic metadata interface are required,

since they provide necessary information about composability and enactment of

the service. The invoker proxy, on the contrary is required only for services whose

logic is implemented in technologies other than the ones currently supported (so

far, as stated before, POJOs, EJBs and Web Services).

This layered approach allows to clearly distinguish and shape different level of

5 Java Bytecode generation techniques allow to on-the-fly and programmatically generate and

manipulate Java bytecode from within a Java program. A typical example tool is the

ObjectWeb's ASM code manipulation framework [82, 83].

86

required service provider skill; the semantic metadata interface and operational

interface provide high- and mid- abstraction level information about service

composability (e.g., the semantic metadata of our composition model or

operational details of the service); in our preliminary experiments, average service

providers are usually able to easily express semantics and operational details on

the produced services by following platform conventions (as can be seen in

previous code excerpts). Realizing a custom service invoker, on the contrary, is a

more challenging task, since it requires to have some knowledge also of the

component-oriented model (EJB) our platform exploits to realize and manage

invokers.

6.2 Kernel layer

Kernel layer components are realized by exploiting J2EE support features;

specifically, component logic is generally implemented as EJB 3.0 components.

Other relevant kernel components exploit more specific support features.

The Message Broker component exploits the JMS implementation provided by

the JBoss application server; JMS provides native support to both point-to-point

and to publish-subscribe asynchronous messaging, respectively by exploiting the

notion of Message Queues and Message Topics. Message queues realize an end-to-

end communication where a message sender asynchronously sends messages to an

87

Figure 16. Service description layers

endpoint of a queue (a JMS infrastructural object) and the receiving endpoint

extracts messages from the other endpoint. Message topics allow for a publish-

subscribe interaction between a message producer and one or more message

consumers. Each topic (a JMS infrastructural object) should be used to

send/receive specific classes of messages, e.g., to logically group messages whose

content is similar. Figure 17 reports an exemplification of JMS queues and topics.

The JMS topic notion naturally fits the Message Broker topic concept, hence,

we realized the Message Broker as an EJB component that manages a set of JMS

topics and provides features to instantiate them, register/unregister subscribers to

topics and then send messages to a specific topic.

Workflow execution and management relies on the JBoss JBPM [84] tool. This

tool provides a widely adopted and acknowledged open source workflow

88

Figure 17. JMS Queue (A) and Topic (B)

(A)

(B)

description and execution engine; the execution engine is a centralized component

that can execute and track services starting from a workflow description (typically

expressed in the standard BPEL format or in the custom JPDL JBPM language).

By exploiting the Invoker components, our JBPM engine is capable of executing

any kind of service of our platform, either remotely or locally.

Finally, persistence layer exploits JBoss JPA implementation, namely the

Hibernate Object-Relational Mapping (ORM) tool [85] and naming system relies

on the JNDI Java naming service.

89

7 Case studies

The platform we have developed covers the discussed core architectural

components and can be extended not only in terms of available service

implementations, but also with different sets of semantic metadata and with the

capability of performing different kinds of compositions (e.g., by adding novel

templates). After providing our platform with the knowledge of an initial set of

metadata and quite a numerous set of deployable services, we have developed

several different use cases, representing the most usual ubiquity scenarios.

Examples reported in the following relate to a given set of templates, semantic

metadata (attributes, values and service properties) and concrete services we

plugged into our platform to realize the following and other analogous scenarios;

it is important here to notice that, even if, in our experience, this basic setup has

proven to provide a sound basis to realize complex Ubiquitous scenarios, we are

able to extend platform capabilities by adding novel service metadata, novel

services or novel templates.

In a typical example, one user can access the Internet by means of her personal

90

smartphone, either by exploiting a slow GPRS connection or a faster WiFi one,

and wants to read pages from the RSS campus portal. Furthermore, the college

provides a news service (via RSS feed) she is particularly interested in, a shared

student calendar with indication of important campus events and a blog service

where students can post their considerations about aspects of campus life, music,

politics, and so on.

User accesses a convenient service configuration Web interface to express her

preferences; specifically, she chooses:

� to receive campus news by SMS messages on her phone as soon as news

get published;

� to browse the campus portal by means of her smartphone, hence receiving

content adapted to smartphone screen size (e.g., resized HTML pages) and

network connectivity (no images on GPRS connection, or full content in

WiFi connection);

� to request content from a generic RSS channel by means of an SMS

message potentially from any mobile phone and to receive content via both

a phone call (with content read by a synthesized voice) on the mobile

device she is currently exploiting, and as a mail to her mailbox.

Notice here that, for the sake of simplicity, these scenarios access Web-related

contents (specifically, RSS ones); actually, this is not a limitation since our

platform is able to retrieve potentially any kind of content via suitable ad-hoc

service logic.

The following sections describe each sub-scenario from both a user standpoint

(to show the ease of configuration and requirements definition) and the

infrastructural one, by showing how concretely the platform reacts to and fulfills

user requirements.

91

7.1 Push-based interaction: news-on-SMS

In the following, we describe how user configures her template, by easily

specifying service coordination, service choice and user interaction features. These

requirements translate into a concrete workflow, whose enactment and runtime

behavior is described at the end of this section.

Service coordination logic. User accesses a web interface by means of which

she can choose among a catalogue of different templates (templates are described

both verbally and graphically). Since she is not interested in complex

coordinations of services, she chooses a simple two-stage sequence template

whose first node is already marked with role generator (see Figure 18). The

template provides a link consistency rule so as to enforce consistency between the

two nodes.

The template also comes with a rule that binds typology attribute (semantic

domain behavior) to the �generation� value and the interaction style to a push-

style:

generator.behavior.typology=generation

generator.behavior.interactionStyle= push

At a glance, this template easily communicates the user that its main goal is to

autonomously (push-style) retrieve content from a generic source and to somehow

deliver it.

92

Figure 18. Two-stage sequence template

Service choice logic. In order to specify services or contents she is interested

in, user selects the generator role to have attribute contentType (of semantic

domain generationDomain) to be �RSS�. This translates to the following service

consistency rule:

generator.generationDomain.contentType=RSS

User interaction logic. In order to specify how to interact with this service

aggregation, user marks the first node with the built-in eventInput role and the last

one as userOutput role in order to tell the platform she wants to be notified of the

content and to receive it via a given output channel. The web frontend now

proposes some choices about semantic features of the input and output nodes;

specifically, the behavior semantic domain allows to specify high level

information about the nature of a service. Hence, user specifies that the typology

attribute for role eventInput must have value novelContentEvent in order to tell the

system that she wants to be notified when content becomes available (other

possible values are, for instance, timerEvent to bind to a specific time event or

localizationEvent in case the user gets localized into a specific area). This choice

translates into the following service consistency rule for the template:

eventInput.behavior.typology=novelContentEvent

Finally, to specify she wants the output to be via SMS messages, she selects the

attribute userOutput.behavior.typology to be of type delivery and the attribute

userOutput.interactionDomain.outputChannel to be of type SMS.

userOutput.behavior.typology=delivery

userOutput.interactionDomain.outputChannel=SMS

From now on, it is up to the composition engine to inspect available services

and to translate (if possible) user requirements into a concrete workflow.

Template reification. An RSSPoller service provides metadata compatible to

play both the role of eventInput and generator; in practice, the RSSPoller service

is able to inspect a given RSS channel and to generate a suitable event when novel

93

content is available; content of the generated event is the novel RSS content.

Similarly, an SMSSender service is compatible with rules on userOutput role.

However, these services violate link consistency constraint (XML output and plain

text input collide) but the composition engine is able to recursively remodel this

template by adding an adaptation template, with an XML-to-TXT service in

between the incompatible nodes.

The final result is a concrete news-on-SMS workflow as reported in Figure 19.

The news-on-SMS workflow now is registered to the platform and immediately

enters the workflow lifecycle; hence, workflow manager starts service

configuration. The RSSPoller requires the RSS URL to be configured (see Figure

9); it depends on the service instance itself and needs to be configured by asking

user for the preferred value. Therefore, the web interface asks the user to enter a

suitable URL. The SMSSender and XML-to-TXT services, on the contrary, have no

required configuration.

Runtime behavior. The RSSPoller service inherently features a push-based

behavior, by notifying contents when available, e.g., by means of the Message

Broker. Our platform is able to easily and consistently deal with this situation in a

twofold way:

� the composition engine has registered the resulting workflow to the

Message Broker, so as to trigger workflow execution each time the

concrete RSSPoller logic sends messages to the broker;

� the RSSPoller has no concrete execution method, hence, when the

workflow executes, no concrete logic is associated to the execution of the

RSSPoller stage; as usual, the workflow engine is in charge of passing data

94

Figure 19. News to SMS scenario

(the payload received with the broker message, e.g., novel RSS content) to

subsequent stages.

Runtime (see Figure 20), when the RSS poller logic detects a novel content,

sends a message to the Message Broker, which notifies all the interested

subscribers (in this case the news-on-SMS workflow). The workflow execution

engine invokes the execute methods of each service after one another (each

service takes as input the output of the previous one). Notice here that the

RSSPoller, as stated before, has no concrete execution logic since it behaves

asynchronously and in a push-style interaction. Finally, the SMSSender needs to

know current user phone number; since this piece of information is a typical

95

Figure 20. News-on-SMS runtime execution

context information, it is managed by the user proxy. The corresponding parameter

in the execution method of the operational interface is therefore mapped to the

user proxy (see Figure 21 for an excerpt code).

Hence the parameter resolution process queries the user proxy for this piece of

information; the invoker is now able to execute the concrete SMS sender logic,

and hence to send a message to the correct phone number with the required

content.

7.2 Pull-based interaction: adaptedHTML

Service coordination logic. User selects an adaptation template with four

nodes. The second node is marked with a generator role and the third one with an

adapter one. The template also comes bundled with the following rules:

96

@Execute({ "data", "destinationNumber" })

public void sendMessage(

...

@Declaration(

name = "destinationNumber",

description = "the message fallback destination",

responsibility = ResponsibilityLevels.UserProfile,

)

@Mapping(

mappedTo=PROFILE_USERDATA_PHONE,

choice = ChoicePolicies.PickFirst

)

String userPhoneNumber,

...

Figure 21. SMSSender destination number mapping

generator.behavior.typology=generation

generator.behavior.interactionStyle=pull

adapter.behavior.typology=adaptation

At a glance, this template easily communicates the user that its main goal is to

retrieve content on demand (pull interaction style) from a generic source and to

adapt it. See Figure 22 for an exemplification.

Service choice logic. User requires the generator to deal with RSS content, and

the adaptation to be of type HTML. These requirements translate to the following

rules:

generator.generationDomain.contentType=RSS

adapter.adaptationDomain.contentType=HTML

User interaction logic. User marks the first node with the built-in userInput

role and the last one as userOutput role in order to tell the platform she wants to

explicitly request the required content in a typical pull-style interaction. Moreover,

she wants the interaction to be symmetric (e.g., request/response), and the input

and output to be on an HTTP channel:

userInput.interactionDomain.interactionType=symmetric

97

Figure 22. Adapter template

userOutput.interactionDomain.outputChannel=HTTP

userInput.interactionDomain.inputChannel=HTTP

Template reification. An RSSPuller provides metadata suitable to play the

generator role whereas an HTMLAdapter can play the role of the adaptor.

Finally, an HTTPInterceptor service provides metadata compatible to play both

the userInput and the userOutput role. The service composition engine then

translates these requirements into the adaptedHTML workflow described in Figure

23. Similarly to the previous case study, the RSSPuller requires the user to

explicitly configure the RSS URL.

Runtime behavior. The HTTPInterceptor service captures user requests on the

HTTP channel (from a given device), passes them to the correct interaction

manager and waits for the interaction manager to send back workflow result. Upon

receiving result of the workflow, the HTTPInterceptor can arrange the response to

send back to the client device. Similarly to the previous scenario, the adapter

service needs to interact with the user proxy to determine the kind of connection

the device is currently exploiting: in case of a GPRS connection, the adapter

service removes images from the HTML content and resizes the page, whereas in

case of a WiFi one, the adapter performs only a page resize. Figure 24 exemplifies

runtime behavior.

98

Figure 23. HTML adaptation template

7.3 Multi-output interaction

In the previous examples, user just needed to configure some already existing

templates; in this section we show how a more skilled user is able to configure

more complex templates, hence more complex service arrangements.

Service coordination logic. User selects an adaptation template, similar to the

one of the previous section. However, she is interested in personalizing it, by

adding some novel features. A convenient section of the web interface allows user

to reshape this workflow. Specifically, she arranges a novel workflow by inserting

a fork control block that splits execution in two branches that can execute in

99

Figure 24. AdaptedHTML runtime execution

parallel (see Figure 25).

User marks placeholders p3 and p5 with the transcoder role and specify a

service rule that binds the transcoder typology to be �transcoding�, so as to tell

the system she wants both nodes to transcode the content coming out of the fork

node. Notice here the adoption of roles (transcoder) allowed to easily share the

rule among different nodes.

Service choice logic. Similarly to the previous case, user requires the content to

be of type RSS, hence imposing the following rule

generator.generationDomain.contentType=RSS

User interaction logic. To determine the required interaction, user marks the

first node as having the userInput role and nodes p4 and p6 with userOutput role.

These choices enable the usual rules on the typology of services (see previous

examples). Similarly, the user selects the input to be of type SMS:

userInput.interactionDomain.inputChannel=SMS

100

Figure 25. Custom template

However, to express semantics on the output channels, user needs to introduce

a couple more roles, since specifying a rule over the common userOutput role

would bind both nodes to the same output type. User then introduces two novel

roles (e.g., outputOnMail and outputOnPhone) and adds the following rules:

 outputOnMail.interactionDomain.outputChannel=mail

outputOnPhone.interactionDomain.outputChannel=phoneCall

The resulting template is shown in Figure 26.

Template reification. The template reification process easily determines

services able to fill in placeholders p1, p2, p4, and p6; namely an SMSInterceptor

service is able to intercept SMS messages from users, the previously mentioned

RSSPuller is suitable to extract on-demand content from the RSS channel; an

EmailSender service is able to send e-mail messages to users and a PSTNGateway

service places phone calls via a PSTN phone network. Finally, an RSS-to-Mail

service transcodes the RSS content into suitable HTML content to send via e-mail.

101

Figure 26. Final template

Requirements on placeholder p5 are satisfied by two different voice synthesizer

services; the FreeVoiceSynthesizer translates plain text (or web content) into an

MP3 file with a low bitrate but at no fee; the ProprietaryVoiceSynthesizer service

employs third-party routines that produce better MP3 files (higher bitrate) but

requires a fee (Figure 27 reports the semantic metadata interfaces of both services)

By means of some service scoring rules associated to the template, the

composition engine is able to prompt user with both possibilities; the user selects

the concrete workflow that features the FreeVoiceSynthesizer service.

The final workflow is depicted in Figure 28.

102

@Composability(domains = "...transcodingQoSDomain;..." ;)

public interface FreeVoiceSynthesizer {

...

@ComposabilityAttributes(domainName = "transcodingQoSDomain")

public String[] qos_attributes = {

"bitrate=32kbps",

"fee=0Eur",

};

...

}

@Composability(domains = "...transcodingQoSDomain;..." ;)

public interface ProprietaryVoiceSynthesizer {

...

@ComposabilityAttributes(domainName = "transcodingQoSDomain")

public String[] qos_attributes = {

"bitrate=192kbps",

"fee=15Eur",

};

...

}

Figure 27. Semantic metadata interfaces for voice synthesis services

 Runtime behavior. Runtime, the SMSInterceptor service logic captures user

requests via SMS messages and forwards them to an Asymmetric Interaction

Module (this intrinsically is an asymmetric interaction, since the request arrives

from an SMS channel and possible responses will be delivered asynchronously via

other communication channels). The Asymmetric Interaction Module interprets

user requests and determines the actions to perform (i.e., the workflow to execute),

possible parameters (e.g., the RSS URL) and then enacts the concrete workflow.

The workflow execution engine executes all the stages, and finally, the

EmailSender and PSTNGateway respectively send a mail to the user and initiate a

phone call to the user mobile phone to read the synthesized content. It is important

here to notice that the user mail address can be taken via the user proxy (as in

previous examples); contrarily, the phone number from which the initial request

came is not available as a user profile element (the user may be using the phone

number of a friend and attach a personal code to the message in order for the

system to identify her). This can be easily realized by means of the Session

Manager: the SMSInterceptor stores the phone number into the session with

Workflow execution session granularity (we want the phone number to be valid

only for the current execution, since subsequent executions could be activated by

SMS messages coming from different phone numbers). Figure 29 exemplifies the

described interactions.

103

Figure 28. Multiple output custom workflow

104

Figure 29. Custom multiple output workflow runtime execution

8 Designing Middleware reconfigurability

Heterogeneity is one of the most relevant characteristics of the Ubiquitous

computing landscape: novel services or contents keep becoming available as well

as novel communication channels, media formats and portable devices allow to

exploit them in different and increasingly personalized ways. Separation of

concerns has proven to be a powerful abstraction to tame the complexity of such a

scenario; by following this principle, we modeled an extremely versatile

middleware platform that is able to support provisioning of contents and services

in a wide range of Ubiquitous scenarios. Moreover, since these scenarios are not

predetermined and immutable, but rather are likely to rapidly change and grow in

number and complexity, our platform is able to extend itself by plugging in novel

applicative logic to realize novel scenarios.

However, the intrinsic heterogeneity and the dynamic nature of Ubiquitous

scenarios typically have a great impact also on structural and non-functional

aspects of the supporting middleware platform itself.

Facing reconfiguration of structural and non-functional aspects of the

105

middleware is becoming a compelling issue in realizing an efficient support for

Ubiquitous computing scenarios. We believe that separation of concerns is, again,

the key in designing a Ubiquitous support middleware that is able to reconfigure

and adapt both the applicative logic support and its structural non-functional

features. In the following, we describe how the adoption of separation of concerns

allowed us to extend our proposal and has led to a dynamic and fully

reconfigurable architectural solution.

8.1 Related work

This section provides some background concerning reconfiguration of software

systems, with special focus on middleware platforms.

8.1.1 Reconfigurable systems

System reaction and adaptation to changes is becoming an acknowledged and

challenging task, especially for extremely heterogeneous scenarios such as

ubiquity-enabled ones.

Reflective middleware approaches have historically been the forefront of

platform solutions to system reconfiguration. They usually rely on a causally

connected self representation model that describes characteristics of the

reconfigurable application, thus can be used as a basis to decide how to react and

reconfigure. The decision on whether to reconfigure is up to a reflection layer

which is able to dynamically inspect current status of the application (not

surprisingly, by means of language reflection techniques) [86].

In the last years, the autonomic computing initiative [87] (the term autonomic

was first coined by IBM as a metaphor to describe systems that behave as

autonomously as human autonomic nervous system) has tackled this issue from a

broader point of view, by pinpointing four main reconfiguration properties

applications need to face. Self-configuration and self-optimization relate to the

106

capability of reacting to changes in order to reconfigure systems that became

invalid or no longer optimized. Self-healing and self-protecting relate to the ability

to reactively or proactively take actions to preserve system integrity against

changes. Some reference models have been proposed to fully or partially address

these issues; one of the most appreciated and adopted models is the IBM MAPE-K

loop. This model basically identifies five main tasks of autonomic systems:

Monitor and Analyze tasks aim at tracking current component status and at

extracting information on whether system reconfiguration is necessary; Plan and

Execute stages entail the organization and concrete enactment of reconfiguration

tasks. Finally, Knowledge task aims at building and runtime updating a consistent

model of both current system features and their evolution, in order to provide a

sound basis for reconfiguration analysis and planning stages.

8.1.2 Reconfiguring Ubiquitous middleware

A substantial body of work exists in the domain of middleware platforms for

ubiquitous pervasive support scenarios and some recent proposals try to cope with

the non trivial task of system reconfiguration by borrowing ideas from the

autonomic computing initiative. However, they typically tend to be extremely

vertical, by supporting reconfiguration of specific applicative ubiquitous

scenarios. As an example, some proposals [88, 89] describe context-aware

middleware solutions able to cope with reconfiguration driven by context changes

but lack to adapt to changes in user requirements and can only reconfigure the

applicative layer. Other proposals [90] extend reconfiguration support to cope with

changes in user requirements, but, again, can only reconfigure the application

logic and do not tackle the non-functional layer reconfiguration.

From a different perspective, interesting work exists that tries to propose

generic purpose (so, not particularly bound to ubiquitous pervasive scenarios)

fully reconfigurable (so, both at application and at non-functional layer)

middleware models by adopting component-based approaches. The OpenCOM

107

[91] generic middleware relies on a generic component model with a strong and

clear separation of concerns among different layers; however, there is no evidence

of concrete deployment and tailoring of such generic model to ubiquitous and

pervasive scenarios. Another work [92] proposes a generic component metamodel

that tries to support non-functional layer reconfiguration, though it specifically

targets mobile environments.

8.2 Design principles

Reconfiguration of both the applicative and the non-functional aspects of

ubiquity support platforms is a challenging task and current state of the art

solutions only partially tackle the problem. The main issue in dealing with such

problems is the inherent heterogeneity of scenarios as well as the diversity of

environmental conditions and of user requirements.

We strongly believe that the same architectural principles that, inspired by a

separation of concerns approach, guided the design of our architecture, are the

basis to refine our model in order to provide a platform that is able to re-adapt

from both an applicative and a non-functional standpoint.

8.2.1 Layered architecture

Our proposal strongly promotes a clear separation of concerns and therefore we

refine the already proposed layered architecture to explicitly model the non-

functional layer; hence, the resulting architecture stack basically features an

applicative layer, a non-functional layer and a very minimal kernel layer.

Consistently to the previous architectural model, applicative layer groups all of

the ubiquity-related logic, hence it provides content generation and retrieval

facilities, as well as service and content adaptation and delivery or user interaction

facilities.

108

Non-functional layer provides basic support facilities the applicative layer

needs to exploit; typical examples include workflow execution logic, persistence

and naming facilities, or user/device mobility management or communication

facilities.

Finally, kernel layer offers basic low level features to enable both applicative

and non-functional layer reconfiguration.

8.2.2 Delegating reconfiguration responsibility

To tame the complexity of reconfiguring both applicative and non-functional

layer we propose to delegate reconfiguration responsibility: applicative layer

reconfiguration is essentially a non-functional feature and as a consequence should

reside at the non-functional layer, as well as reconfiguration of the non-functional

layer is the lowest level facility our platform provides and therefore resides at the

kernel layer.

By following MAPE-K model fundamental ideas, we identify the following

main elements of the reconfiguration process.

As can be seen in Figure 30, basically each reconfiguration layer features a

monitoring engine whose aim is to keep track of current status of elements of the

(monitored) layer above. The policy engine is responsible to determine both

whether reconfiguration needs to take place (by basing on current monitoring

results) and how to carry reconfigurations out (e.g., which pieces of logic need to

109

Figure 30. Reconfiguration tasks

be substituted or reconfigured). Finally, the reconfiguration enactment engine

concretely manages to execute the reconfiguration actions determined by policies.

8.2.3 Decoupling non-functional logic

Ubiquitous pervasive scenarios are inherently extremely dynamic,

heterogeneous and ever-growing. To manage the increasing demand of novel

features, both the applicative and the non-functional support layer must obey two

major requirements. First, they need to promote strong decoupling of business

logic into small, manageable and well-defined pieces; second, they need to be

dynamically extensible by either plugging in novel features (pieces of business

logic) and/or replacing/reconfiguring existing ones. These principles however,

need to cope with the inherently different nature of application logic pieces and

non-functional logic ones.

Application logic that relates to ubiquitous pervasive scenarios typically

presents well-marked isolation and loose coupling characteristics; this is why in

previous sections we modeled the applicative layer in a service oriented fashion

and let the underlying non-functional support layer provide all of the necessary

basic service catalogueing, composition and coordination support features.

On the contrary, non-functional support features are typically much more

tightly bound to each other and need to interact in a more autonomous way,

without intervention of external coordination entities. As an example, a messaging

support layer that needs to make dispatched messages persistent, could directly

invoke functionalities of the persistence support layer. Component-oriented

approaches [93, 94] have proven to naturally fit this scenario and several proposals

have emerged to build generic purpose self-reconfigurable middleware platforms

[91]. We therefore model the non-functional support layer as a set of generic

software components able to interact with each other in an autonomous manner.

110

8.3 Architecture

By following the principles sketched in section 4, we propose the architecture

represented in Figure 31.

The applicative layer concerns services that model typical ubiquity- and

pervasivity-related application logic; common examples are content retrieving

services (e.g., news and RSS feed readers, HTML scrapers,...), content adaptation

services (e.g., audio/video transcoding modules, vocal synthesizers, ...) or content

delivery services (e.g., media streaming servers, SMS gateways, DVB-T carousel

servers, HTTP servers,). Novel services can be plugged in by need at any time,

in a dynamic fashion, to realize novel ubiquity scenarios.

In order to build complex scenarios on top of such basic building blocks,

services still need to be aggregated, executed, and managed; since these are

inherently non-functional features, we model them as full-fledged non-functional

layer components. Reconfiguration of the applicative layer is therefore completely

treated and targeted by the non-functional layer and, since components of the non-

functional layer themselves can be substituted and/or reconfigured as well, our

system is able to easily change, substitute or implement different applicative

reconfiguration strategies if in need.

The non-functional layer features the support facilities described in previous

sections. In addition, in order to react to environmental or user requirements

changes, a service monitoring engine observes both services and service

compositions, in order to detect anomalies. The service policy engine is then in

charge of determining whether reconfigurations need to take place by analyzing

policies that were provided by the composition engine at composition build time.

Finally, the kernel layer provides coordination facilities to help reconfigure the

non-functional layer. The component monitoring engine monitors current state of

non-functional components (e.g., by monitoring QoS parameters such as

responsiveness, average load and so on) whereas the component policy engine

111

determines when and which components need to be reconfigured in case

environmental or user conditions/requirements change. Finally, the component

reconfiguration engine is in charge of concretely enacting component

(re)configuration.

8.4 Reconfiguration details

The intrinsically diverse nature of entities at the applicative and non-functional

layers (services and components) requires to handle reconfiguration issues in

different ways.

8.4.1 Applicative layer reconfiguration

Since workflow management system concretely handles service invocation and

management, it can easily be used also to monitor and track service status; typical

112

Figure 31. Reconfigurable architecture

examples of monitored properties involve both single-service and overall

workflow characteristics such as average execution time or execution counters.

As already explained, the service composition engine is responsible for the

crucial task of arranging services into workflows according to user needs,

available services and environmental conditions. It relies on a set of composition

rules that determine whether it is possible and, in case, how to translate user

requirements into concrete workflows of currently available services. Such

composition rules can constrain both semantic and syntactical features of services;

for instance, to enforce correct sequences of services, each one operating on the

result of the previous one, a rule may constrain the output of a service to be the

same format as the input of the following service. Similar composition rules can

be used to trigger service or workflow reconfigurations when environmental

conditions or user requirements change. Hence, as an example, the aforementioned

user proxy middleware components can monitor specific pieces of user context

and, in case of changes, can trigger the re-execution of service composition

routines.

8.4.2 Non-functional layer reconfiguration

Component-oriented models inherently promote autonomous and spontaneous

cooperation and interoperability among components. To realize this, components

willing to cooperate need to bind to each other (essentially, to know how to

communicate) in more or less decoupled ways (by direct reference, by referencing

component interfaces, and so on). This can however become a burden when

reconfiguration needs to take place: suppose a component needs to be substituted

by another one, in this case references to old component become invalid and need

to be substituted for each collaborating component.

The Inversion of Control principle (and its most widespread implementation,

the Dependency Injection technique) [95] is a novel approach that delegates

component binding and resolution to the execution environment where

113

components live. Components willing to interact need only to declare interfaces

they depend on and it is up to the component container to decide and transparently

�inject� (into the declaring component) the component that currently best

implements the required interface. Thus, our component reconfiguration engine

heavily relies on dependency injection primitives to easily reconfigure component

references.

Furthermore, since non-functional components execute autonomously with no

external management or coordination (contrarily to the service-oriented approach

where a centralized workflow management system is responsible of invoking

services), monitoring task becomes a really compelling issue to implement.

Typical naïve approaches could in fact require that each component implements its

own monitoring logic, with quite obvious limitations to portability and modularity.

Monitoring can be seen as a typical concern that cross-cuts several different

components, as well as other low-lever features such as security or transaction

management. More recent approaches to component-oriented computing solve the

issue of modeling and reusing cross-cutting concerns by means of Aspect-oriented

Programming (AoP) techniques [96]. Aspects are pieces of business logic that

implement a certain cross-cutting concern and are defined outside of any specific

component. The aspect management layer allows to programmatically and

declaratively �decorate� component activities with as many aspects as needed, and

it is in charge of concretely executing them when needed, typically before and/or

after component activities themselves. This approach again fosters clear separation

of concerns and decoupling principles. Our component monitoring engine thus

heavily relies on AoP techniques to dynamically add or remove monitoring logic

to managed components; typical examples of monitored features involve for

instance method execution average time, persistence layer access statistics and so

on. Aspects can be easily shared and reused across non-functional support

components and can be automatically re-registered in case of component

substitution or reconfiguration.

114

8.5 Implementation

The Spring framework [97] is becoming more and more largely adopted as a

full-fledged component model that natively supports Aspect oriented

Programming and Dependency Injection techniques. As a consequence we chose

to implement the component reconfiguration engine and other kernel components

by exploiting this framework facilities.

However, current implementation of the Spring dependency injection container

does not natively support dynamic component addition or removal; as a

consequence, we had to adopt the Spring Dynamic Modules extension, that targets

this issue by integrating Spring with OSGI framework [98] features for dynamic

service/component load/unload.

8.6 Case Study

This section depicts a successful deployment of our platform in a typical

ubiquitous scenario: mobile users require notification of traffic news related to a

certain urban area each time news get published on a specific traffic portal. Some

users prefer getting notified by a phone call with a synthesized voice reading news

contents whereas others prefer an SMS message be sent to their mobile phone. As

depicted in Figure 32, our platform arranges three different kinds of service

workflows, each one realizing a specific portion of the overall scenario.

115

Figure 32. Reconfiguration case study

The first workflow is made up of a couple of services: the first one monitors the

specific traffic portal to detect news publishing, whereas the second one extracts

plain-text news content from the HTML page. Each time news get published, their

plain-text version is made available to other workflows by means of the

asynchronous messaging support component. Each user interested in receiving a

phone call owns an instance of the phone call generation workflow running within

our platform whereas users interested in an SMS message have an associated SMS

delivery workflow instance. The phone call generation workflow translates plain-

text news into an MP3 content by means of a voice synthesizer service, and then

initiates the phone call by means of a PSTN gateway service (e.g., an Asterisk

server). Similarly, the SMS delivery service splits plain-text content in trunks of

160 characters and then sends them as SMS messages to the user by means of an

SMS gateway service.

As users keep getting registered, hence adding novel workflows, the platform

experiences serious performance loss. Specifically, the component monitoring

engine layer detects the Message Broker component is becoming a bottleneck and

message delivery times are increasing. As a consequence, the component

reconfiguration engine substitutes the current costless JMS-based component

implementation with a costly but outperforming RTI DDS implementation that can

better guarantee near real-time asynchronous messaging delivery. Similarly, the

service monitoring engine detects the voice synthesizer is producing MP3 files at

an increasingly lower pace. Therefore, the service composition facility

reconfigures phone call generation workflow by substituting the synthesizer

service with a lower quality one that produces MP3 contents at a consistently

lower bitrate but in a shorter time.

116

9 Conclusions

The Ubiquitous computing scenarios are fostering users to access contents and

services in most personalized ways, by exploiting them while moving, via

different communication channels and formats, and with any device at hand.

Service and content provisioning in the Ubiquitous computing scenarios requires

an integration platform support that consistently manages this intrinsic

heterogeneity and remains extremely easily accessible by final users.

This research work has investigated the state of the art of this area and has

distilled some design guidelines that help in modeling and taming heterogeneity of

the target scenarios. Separation of concerns has proven to be the key architectural

approach to realize flexible and extensible solutions able to provide the correct

abstraction level to final users, hence hiding unnecessary complexity. By

following this approach, we designed a middleware architecture to support service

and content provisioning in heterogeneous Ubiquitous computing scenarios. Our

middleware pushes ubiquity-support applicative logic (e.g., content retrieval,

adaptation and delivery, or user interaction management) outside the middleware

core, and, by modeling it with the abstraction of services, allows to plug in novel

117

ubiquity-support features by need. The middleware thus retains only the core

crucial tasks of coordinating and composing pieces of applicative logic into more

complex aggregates that can easily fulfill user needs.

To assess the viability of our approach we extensively tested and deployed our

middleware in a number of different usage scenarios, the most notable of which

are reported and described carefully. The encouraging results obtained pushed our

research work toward further investigation and extension of our platform with

self-managing capabilities to help reconfiguring both the applicative layer and the

middleware core functionalities according to Ubiquitous requirements variations.

The principles that initially drove our work have proven to be extremely helpful

and suitable also in designing strategies and architecture extensions to cope with

middleware dynamic self-reconfiguration.

In our vision, in future years different and heterogeneous kinds of middleware

support platforms for novel IT integration scenarios will keep permeating and

'disappearing' into everyday user life, just as Ubiquitous devices and wired and

wireless connectivities are more and more moving to right now. Users will more

and more access a landscape of coordinated, integrated and cooperating services,

where the integration middleware becomes just a commodity that fades in the

background.

Our work has demonstrated that truly extensible and heterogeneous support

middleware platforms also struggling for being usable for end users, should adopt

design guidelines intimately inspired by the principle of separation of concerns. In

our opinion, these design guidelines will emerge in the next years and will be

widely adopted in yet-to-come middleware platforms.

Our future work will certainly explore the adoption of our middleware into

other applicative scenarios different from the ones addressed in this work, such as

the automotive and Wireless Sensors Networks-based. Content and data fusion and

provisioning can probably highly benefit from the adoption of our platform (or

similar ones). In addition, we are also eager to challenge our platform with rather

118

different domains and research areas that stress heterogeneity as a key

requirement, such as distributed network monitoring or load balancing and fault

tolerance management for distributed applications.

119

Publications

A. Corradi, P. Bellavista, S. Monti, �Integrating Web Services and Mobile

Agent Systems�, First International Workshop on Services and Infrastructure

for the Ubiquitous and Mobile Internet (SIUMI) (ICDCSW'05), Columbus,

Ohio, USA, June 2005.

M. Boari, E. Lodolo, S. Monti, S. Pasini, �Middleware for Automatic Dynamic

Reconfiguration of Context-Driven Services�, 11th Symposium on

Computers and Communications (ISCC'06), IEEE , Pula, Italy, June 2006.

M. Boari, E. Lodolo, S. Monti, S. Pasini , �Progetto SWIMM (Servizi Web

Interattivi e Multimodali per la Mobilità). Risultati ed applicazioni �, AICA

national conference, Milano-Mantova , Italy, September-October 2007.

A. Corradi, E. Lodolo, S. Monti, S. Pasini, �User-Centric Emergency

Management: a Disappearing Middleware Approach�, Wireless Rural and

Emergency Communications Conference (WRECOM'07), Rome, Italy,

October 2007.

M. Boari, E. Lodolo, S. Monti, S. Pasini, �Middleware for Automatic Dynamic

Reconfiguration of Context-Driven Services�, Microprocessors And

Microsystems Journal, Issue 32, pages 145-148, Elsevier, November 2007.

M. Boari, A. Corradi, E. Lodolo, S. Monti, S. Pasini, �Coordination for the

Internet of Services: a user-centric approach�, 3rd International Conference

on Communication System Software and Middleware (COMSWARE '08),

Bangalore, India, January 2008.

A. Corradi, E. Lodolo, S. Monti, S. Pasini, �A user-centric composition model

for the Internet of Services�, 13th Symposium on Computers and

Communications (ISCC'08), IEEE, Marrakesh, Morocco, July 2008.

A. Corradi, A. Landini, E. Lodolo, S. Monti, S. Pasini , �Integrating Service

Composition with Mobile Code Technologies �, 2nd International Workshop

on Distributed Agent-based Retrieval Tools (DART'08), Cagliari, Italy ,

120

September 2008.

S. Monti, S. Pasini, A. Corradi, E. Lodolo, M. Boari, �An eXtensible

middleware for Multichannel, Multimodal, and Multipattern services

(X3M)�, 5th International Workshop on Next Generation Networking

Middleware (NGNM'08), Samos Island, Greece, September 2008.

A. Corradi, F. Di Marco, S. Monti, S. Pasini, �Facing Crosscutting Concerns in

a Middleware for Pervasive Service Composition�, accepted for publication

to the 14th Symposium on Computers and Communications (ISCC'09),

IEEE, Port El Kantaoui, Tunisia, 2009.

A. Corradi, E. Lodolo, S. Monti, S. Pasini, �Dynamic reconfiguration of

middleware for Ubiquitous Computing�, submitted to the 3rd Workshop on

Adaptive and DependAble Mobile Ubiquitous Systems (ADAMUS'09),

London, England, 2009.

121

References

[1] P. A.Bernstein. Middleware: a model for distributed system services. Commun.

ACM 39, 2 (Feb. 1996), 86-98. DOI= http://doi.acm.org/10.1145/230798.230809,

1996.

[2] A. D. Birrell, B.J. Nelson. Implementing remote procedure calls. ACM Trans.

Comput. Syst. 2, 1 (Feb. 1984), 39-59. DOI=

http://doi.acm.org/10.1145/2080.357392, 1984.

[3] P. A. Bernstein. Transaction processing monitors. Commun. ACM 33, 11 (Nov.

1990), 75-86. DOI= http://doi.acm.org/10.1145/92755.92767, 1990.

[4] Object Management Group Common Object Services Specification:

Atandt/Ncr, Bnr Europe Limited, Digital Equipment Corporation. John Wiley &

Sons, Inc., 1994.

[5] K. Boucher, F. Katz. Essential Guide to Object Monitors. John Wiley & Sons,

Inc., 1999.

[6] S. Davies, P. Broadhurst. WebSphere MQ V6 Fundamentals. IBM Redbooks

publication. ISBN 073849299X, November 2005

[7] Microsoft Corporation. Message Queuing in Windows XP. Microsoft White

Paper, 2001.

[8] Sun Microsystems Inc. Java Message Service Specification � version 1.1,

2002.

[9] Reference Model for Service Oriented Architecture 1.0, Committee

Specification 1, http://www.oasis-open.org/committees/ download.php/19679/soa-

rm-cs.pdf.

122

[10] W3 Consortium. Web Services Architecture. W3C Working Group Note,

http://www.w3.org/TR/wsarch/.

[11] W3 Consortium. SOAP Version 1.2 Part 1. W3C Recommendation,

http://www.w3.org/TR/soap12-part1/.

[12] W3 Consortium. Web Services Description Language (WSDL) 1.1. W3C

Note, http://www.w3.org/TR/wsdl.

[13] OASIS. UDDI Version 3.0.2. UDDI Committee Specification, http://uddi.org/

pubs/uddi_v3.htm.

[14] P.M. Papazoglou, D. Georgakopoulos. Service oriented Computing.

Introduction to Commun. ACM 46, 10, pp. 24-28.

DOI= http://doi.acm.org/10.1145/944217.944233, 2003.

[15] M. Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput.

Commun. Rev. 3, 3 (Jul. 1999), 3-11.

DOI=http://doi.acm.org/10.1145/329124.329126 , 1999.

[16] P. Bellavista, A. Corradi, C. Stefanelli. A mobile agent infrastructure for

terminal, user, and resource mobility. Network Operations and Management

Symposium, 2000. NOMS 2000. 2000 IEEE/IFIP , vol., no., pp.877-890, 2000

[17] N. M. Karnik, A. R. Tripathi. Design Issues in Mobile Agent Programming

Systems. IEEE Concurrency, Vol. 6, No. 3, pp. 52-61, July-Sep. 1998.

[18] P. Bellavista, A. Corradi, C. Stefanelli. Mobile Agent Middleware for Mobile

Computing. IEEE Computer, Vol. 34, No. 3, pp. 73-81, Mar. 2001.

[19] P. Bellavista, A. Corradi, L. Foschini, MUM: a middleware for the

provisioning of continuous services to mobile users, in: Proceedings of the 9th

International Symposium on Computers and Communications, vol. 1, pp. 498�

505, June 2004.

[20] R. Cissee, A. Rieger, J. Wohltorf. BerlinTainment � an agent-based

serviceware framework for context-aware services. IEEE Communications 43 (6)

123

(2004) 102�109.

[21] G. D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles.

Towards a Better Understanding of Context and Context-Awareness. In

Proceedings of the 1st international Symposium on Handheld and Ubiquitous

Computing (Karlsruhe, Germany, September 27 - 29, 1999). H. Gellersen, Ed.

Lecture Notes In Computer Science, vol. 1707. Springer-Verlag, London, 304-307,

1999

[22] B. Schilit, N. Adams, R. Want. Context-Aware Computing Applications. In

Proc. of the Workshop on Mobile Computing Systems and Applications (Santa

Cruz, CA, Dec. 1994), pp. 85-90, 1994

[23] R. Oppermann, M. Specht. Adaptive support for a mobile museum guide.

Proceedings of the Conference on Interactive Applications of Mobile Computing,

Rostock, Germany, November 1998.

[24] P. Bellavista, A. Corradi, C. Giannelli. Coupling transparency and visibility: a

translucent middleware approach for positioning system integration and

management (PoSIM), in: 3rd International Symposium of Wireless

Communication Systems, Valencia, Spain, September 2005.

[25] G.D. Abowd, A.K. Dey, D. Salber. A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications. Human-Computer

Interaction Journal 16, 2001.

[26] Commission of the European Communities, eEurope 2005: An information

society for all, Available from:

<http://ec.europa.eu/information_society/eeurope/2002/news_library/

documents/eeurope2005/eeurope2005_en.pdf>, Bruxelles, Belgium, May 28th

2002.

[27] T.K. Shih, T. Wang, C. Chang, T. Kao, D. Hamilton. Ubiquitous eLearning

With Multimodal Multimedia Devices. IEEE Transactions on Multimedia, Vol. 9,

No. 3, April 2007.

124

[28] M. Akay, I. Marsic, A. Medl, G. Bu, A System for Medical Consultation and

Education Using Multimodal Human/Machine Communication. IEEE

Transactions on Information Technology in Biomedicine, Vol. 2, No. 4, December

1998.

[29] R. Sharma, M. Yeasin, N. Krahnstoever, I. Rauschert, G. Cai, I. Brewer, A.M.

Maceachren, K. Sengupta. Speech�Gesture Driven Multimodal Interfaces for

Crisis Management. Proceedings of the IEEE, Vol. 91, No. 9, September 2003.

[30] W3 Consortium. W3C Multimodal Interaction Framework. W3C Note, http://

www.w3.org/TR/mmiframework/, May 2003.

[31] T. V. Raman, G. McCobb, R. A. Hosn. Versatile Multimodal Solutions. The

Anatomy of User Interaction. XML Journal, Vol. 4, No. 2, Apr. 2003.

[32] VoiceXML Forum. XHTML + Voice Profile 1.2. VoiceXML 2.0

Recommendation, http://www.voicexml.org/specs/multimodal/x+v/12/spec.html,

Mar. 2004.

[33] Opera Software ASA. Opera Multimodal Browser. http://www.opera.com/

products/verticals/multimodal/index.dml, 2001.

[34] IBM Corporation. Why IBM? � Leadership in Multimodal.

http://www306.ibm.com/software/pervasive/multimodal/, 2006.

[35] IONA Technologies. Using Artix and Service-Oriented Architecture for

Multi-Channel Access. http://www.iona.com/devcenter/artix/articles/

0304soa.pdf, February 2008.

[36] C. Jefferies, P. Brereton, M. Turner. A Systematic Literature Review of

Approaches to Reengineering for Multi-Channel Access. 12th European

Conference on Software Maintenance and Reengineering, pp. 258-262, April

2008.

[37] O. Zimmermann, V. Doubrovski, J. Grundler, K. Hogg. Service-oriented

architecture and business process choreography in an order management scenario:

125

rationale, concepts, lessons learned. Companion To the 20th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pp. 301-312, ACM Press, October 2005.

[38] M. Comerio, F. De Paoli, S. Grega, C. Batini, C. Di Francesco, A. Di

Pasquale. A service re-design methodology for multi-channel adaptation.

Proceedings of the 2nd International Conference on Service Oriented Computing,

ICSOC 2004, November 2004.

[39] S. Monti, S. Pasini, A. Corradi, E. Lodolo, M. Boari. An eXtensible

middleware for Multichannel, Multimodal, and Multipattern services (X3M). 5th

International Workshop on Next Generation Networking Middleware (NGNM'08),

Samos Island, Greece, September 2008.

[40] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D.

König, F. Leymann, R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A.

Rickayzen, M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, and M Zeller, WS-BPEL

Extension for People (BPEL4People). version 1.0, 2007.

[41] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D.

König, F. Leymann, R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A.

Rickayzen, M. Rowley, P. Schmidt, I. Trickovic, A. Yiu, and M Zeller. Web

Services Human Task (WSHumanTask). version 1.0, 2007.

[42] N. Russell, W.M.P. van der Aalst. Evaluation of the BPEL4People and WS-

HumanTask Extensions to WS-BPEL 2.0 using the Workflow Resource Patterns.

Technical report, Queensland University of Technology, Brisbane, 2008.

[43] T. Holmes, H. Tran, U. Zdun, S. Dustdar. Modeling Human Aspects of

Business Processes - A View-Based, Model-Driven Approach. European

Conference on Model Driven Architecture - Foundations and Applications

(ECMDA-FA), 2008.

[44] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services Concepts,

Architectures and Applications. Springer Verlag, ISBN 3-540-44008-9

126

[45] E. W. Dijkstra. Selected Writings on Computing: A Personal Perspective,

Springer-Verlag, ISBN 0�387�90652�5, 1982.

[46] P. Tarr, H. Ossher, W. Harrison, S.M. Sutton. N degrees of separation: multi-

dimensional separation of concerns. Software Engineering, 1999. Proceedings of

the 1999 International Conference on , vol., no., pp.107-119, May 1999.

[47] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Commun. ACM 15, 12 (Dec. 1972), 1053-1058. DOI=

http://doi.acm.org/10.1145/361598.361623, 1972.

[48] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, ISBN-10:

0201633612, 2004.

[49] Y. Zhang, B. Xu. A survey of semantic description frameworks for

programming languages. SIGPLAN Not. 39, 3, 14-30. DOI=

http://doi.acm.org/10.1145/981009.981013, March 2004.

[50] O. Lassila, J. Hendler. Embracing "Web 3.0". IEEE Internet Computing 11, 3

(May. 2007), 90-93. DOI= http://dx.doi.org/10.1109/MIC.2007.52, 2007.

[51] W3 Consortium. Semantic Web Activity. http://www.w3.org/2001/sw/

[52] F. Buschmann, K. Henney, D. C. Schmidt. Pattern-Oriented Software

Architecture: A Pattern Language for Distributed Computing. John Wiley and

Sons, 2007, ISBN 0470059028, 9780470059029.

[53] D. Braga, S. Ceri, F. Daniel, D. Martinenghi. Mashing Up Search Services.

Internet Computing, IEEE, vol.12, no.5, pp.16-23, Sept.-Oct. 2008.

[54] Yahoo! Inc. Yahoo Pipes. http://pipes.yahoo.com/pipes/

[55] Intel Corporation. Intel Mask Maker. http://mashmaker.intel.com/web/

[56] Google Inc. Google Mashup Editor. http://editor.googlemashups.com/

[57] J. Yu; B. Benatallah, F. Casati, F. Daniel. Understanding Mashup

Development. Internet Computing, IEEE , vol.12, no.5, pp.44-52, Sept.-Oct. 2008.

127

[58] B. Medjahed, A. Bouguettaya. A Multilevel Composability Model for

Semantic Web Services. IEEE Trans. on Knowl. and Data Eng. 17, 7, 954-968.

DOI= http://dx.doi.org/10.1109/TKDE.2005.101, July 2005.

[59] J. Robinson, I. Wakeman, T. Owen. Scooby: middleware for service

composition in pervasive computing Proceedings of the 2nd workshop on

Middleware for pervasive and ad-hoc computing, pp 161-166, 2004.

[60] F. Lécué, E. Silva, L. F. Pires. A Framework for Dynamic Web Services

Composition. Whitestein Series in Software Agent Technologies and Autonomic

Computing, Emerging Web Services Technology, Volume II, pp 59-75, DOI:

10.1007/978-3-7643-8864-5_5, October 28, 2008.

[61] IBM Corporation. Business Process Execution Language for Web Services

version 1.1. http://www.ibm.com/developerworks/library/specification/ws-bpel/

[62] W3C Consortium. Web Service Semantics � WSDL-S � Version 1.0.

http://www.w3.org/Submission/WSDL-S/

[63] W3C Consortium. OWL-S: Semantic Markup for Web Services.

http://www.w3.org/Submission/OWL-S/

[64] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-

Westfäisches Institut fur Instrumentelle Mathematik an der Universität Bonn,

1962. In German.

[65] R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

[66] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, London,

1985

[67] S. Narayanan, S.A. McIlraith. Simulation, verification and automated

composition of web services. In Proceedings of the 11th international Conference

on World Wide Web. WWW '02. ACM, New York, NY, 77-88. DOI=

http://doi.acm.org/10.1145/511446.511457, 2002

[68] R. Reiter. Knowledge in Action�Logical Foundations for Specifying and

128

Implementing Dynamical Systems. MIT Press, Massachusetts, MA, 2001.

[69] P. Barthelmess, J. Wainer, Workflow Modeling, Proceedings of 1st CYTED-

RITOS International Workshop on Groupware, pp. 1�13. September 1995.

[70] E.Tsang. A Glimpse of Constraint Satisfaction. Artif. Intell. Rev. 13, 3, pp.

215-227. DOI= http://dx.doi.org/10.1023/A:1006558104682, 1999.

[71] P. T. Eugster, P.A. Felber, R. Guerraoui, A. Kermarrec. The many faces of

publish/subscribe. ACM Comput. Surv. 35, 2, pp. 114-131. DOI=

http://doi.acm.org/10.1145/857076.857078, June 2003.

[72] Sun Microsystems Inc. Java Enterprise Edition http://java.sun.com/javaee/

[73] JBoss Community. JBoss Application Server. http://www.jboss.org/jbossas

[74] Sun Microsystems Inc. The Java Database Connectivity http://java.sun.com/

javase/technologies/database/

[75] Sun Microsystems Inc. J2EE Connector Architecture http://java.sun.com/

j2ee/connector/

[76] Sun Microsystems Inc. Enterprise JavaBeans � version 3.0

http://java.sun.com/products/ejb/docs.html

[77] Sun Microsystems Inc. Java Transaction API. http://java.sun.com/javaee/

technologies/jta/

[78] Sun Microsystems Inc.Java Naming and Directory Interface.

http://java.sun.com/products/jndi/

[79] Sun Microsystems Inc. JavaServer Pages Thechnology.

http://java.sun.com/products/jsp/

[80] Sun Microsystems Inc. JavaServer Faces Technology.

http://java.sun.com/javaee/javaserverfaces/

[81] S. Vinoski. A Time for Reflection. IEEE Internet Computing 9, 1 pp. 86-89.

DOI= http://dx.doi.org/10.1109/MIC.2005.3, January 2005.

129

[82] E. Bruneton, R. Lenglet and T. Coupaye. ASM: a code manipulation tool to

implement adaptable systems. Adaptable and extensible component systems,

November 2002.

[83] E. Kuleshov. Using ASM framework to implement common bytecode

transformation patterns. Available at http://aosd.net/2007/program/

industry/index.php

[84] JBoss Community. JBPM. http://www.jboss.org/jbossjbpm

[85] Hibernate framework.http://www.hibernate.org/

[86] F. Kon, F. Costa, G. Blair, R. H. Campbell. The case for reflective

middleware. Commun. ACM 45, 6 pp. 33-38. DOI=

http://doi.acm.org/10.1145/508448.508470, June 2002.

[87] M. C. Huebscher, J.A. McCann. A survey of autonomic computing�degrees,

models, and applications. ACM Comput. Surv. 40, 3, pp. 1-28. DOI=

http://doi.acm.org/10.1145/1380584.1380585, August 2008.

[88] D. Preuveneers, Y. Berbers. Adaptive Context Management Using a

Component-Based Approach. Lecture Notes in Computer Science, 3543/2005, pp.

14-26. DOI=10.1007/11498094_2, May 2005.

[89] S. S. Yau, F. Karim, Y. Wang, B. Wang, S.K. Gupta. Reconfigurable Context-

Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing 1, 3,

pp. 33-40. DOI= http://dx.doi.org/10.1109/MPRV.2002.1037720, July 2002.

[90] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, M. Shaw. Task-based

adaptation for ubiquitous computing. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on , vol.36, no.3, pp.328-340, May

2006.

[91] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, T.

Sivaharan. A generic component model for building systems software. ACM

Trans. Comput. Syst. 26, 1, pp. 1-42. DOI= http://doi.acm.org/10.1145/

130

1328671.1328672, February 2008.

[92] S. Zachariadis, C. Mascolo. The SATIN Component System-A Metamodel

for Engineering Adaptable Mobile Systems. IEEE Trans. Softw. Eng. 32, 11, pp.

910-927. DOI= http://dx.doi.org/10.1109/TSE.2006.115, November 2006.

[93] A. Sharma, R. Kumar, P.S. Grover. A Critical Survey of Reusability Aspects

for Component-Based Systems. In Proceedings of World Academy of Science,

Engineering and Technology, Volume 21, January 2007.

[94] C. Szyperski. Component Software: beyond Object Oriented Programming.

New York: ACM Press/ Addison Wesley 1998.

[95] M. Fowler. Inversion of Control Containers and the Dependency Injection

pattern. Available at http://martinfowler.com/articles/injection.html.

[96] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, JM Loingtier, J.

Irwin, �Aspect Oriented Programming�, Proc. 11th European Conf.,

ObjectOriented Programming, ECOOP'97, pp. 220� 242, Lecture Notes in

Computer Science, vol. 1,241, SpringerVerlag, 1997.

[97] Spring framework. http://www.springsource.org/

[98] OSGI Alliance. OSGI Framework http://www.osgi.org/About/Technology

131

Acknowledgments

First and foremost, I would like to thank my advisors, Maurelio Boari and

Antonio Corradi, and my project manager at the Swimm research project, Enrico

Lodolo, for their precious guide during these years. They have fostered my work

and my growth as a researcher and as a professional with constant attention,

providing me with continuous encouragement, advice and support.

I would also like to thank the many friends and colleagues at the Swimm

research project, for being extraordinary people and great professionals.

Many thanks are also due to all the people of the Advanced Computer Science

Laboratory (LIA) of the University of Bologna, which gave me support and

advices.

132

