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Preface

Mixed integer programming is up today one of the most widely used techniques for
dealing with hard optimization problems. On the one side, many practical optimization
problems arising from real-world applications (such as, e.g., scheduling, project plan-
ning, transportation, telecommunications, economics and finance, timetabling, etc) can
be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the
other hand, 50 and more years of intensive research has dramatically improved on the
capability of the current generation of MIP solvers to tackle hard problems in practice.
However, many questions are still open and not fully understood, and the mixed integer
programming community is still more than active in trying to answer some of these
questions. As a consequence, a huge number of papers are continuously developed and
new intriguing questions arise every year.

When dealing with MIPs, we have to distinguish between two different scenarios.
The first one happens when we are asked to handle a general MIP and we cannot assume
any special structure for the given problem. In this case, a Linear Programming (LP)
relaxation and some integrality requirements are all we have for tackling the problem,
and we are “forced” to use some general purpose techniques. The second one happens
when mixed integer programming is used to address a somehow structured problem. In
this context, polyhedral analysis and other theoretical and practical considerations are
typically exploited to devise some special purpose techniques.

Interestingly, these two different scenarios are indeed strongly related, as the gene-
ral algorithmic approach used in both cases is typically the same: i.e., branch-and-cut.
In particular, it is worth noting that several among the main ingredients which are
actually embedded in the most effective general purpose MIP solvers (e.g., cutting pla-
nes) were first devised and proven to be effective for specific combinatorial optimization
problems, and only afterwards were successfully extended to the general MIP context.
The history of the branch-and-cut framework itself is strongly related to the history
of the Traveling Salesman Problem (TSP), probably one of the most widely studied
combinatorial optimization problems. On the other side, general purpose MIP solvers
are now able to solve a large variety of hard optimization problems arising from many
different contexts, because most of the tools embedded in general MIP solvers (e.g.,
again cutting planes) are effective in practice. The connections between these two dif-
ferent situations are more important every day. Having a magic black-box which allows
one to solve any problem is clearly not possible, but the current trend when addressing
specific problems by means of specific approaches is to keep them as much general as
possible, in the spirit of possibly extend such approaches to cover other related problems.

xi



This thesis tries to give some insights in both the above mentioned situations. The
first part of the work is focused on general purpose cutting planes, which are probably
the key ingredient behind the success of the current generation of MIP solvers. Chap-
ter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm,
while Chapter 2 recalls some results from the literature in the context of disjunctive
cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theo-
retical and computational investigation of disjunctive cuts. In particular, we analyze
the connections between different normalization conditions (i.e., conditions to truncate
the cone associated with disjunctive cutting planes) and other crucial aspects as cut
rank, cut density and cut strength. We give a theoretical characterization of weak rays
of the disjunctive cone that lead to dominated cuts, and propose a practical method
to possibly strengthen those cuts arising from such weak extremal solution. Further,
we point out how redundant constraints can affect the quality of the generated disjunc-
tive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents
some preliminary ideas in the context of multiple-row cuts. Very recently, a series of
papers have brought the attention to the possibility of generating cuts using more than
one row of the simplex tableau at a time. Several interesting theoretical results have
been presented in this direction, often revisiting and recalling other important results
discovered more than 40 years ago. However, is not clear at all how these results can
be exploited in practice. As stated, the chapter is a still work-in-progress and simply
presents a possible way for generating two-row cuts from the simplex tableau arising
from lattice-free triangles and some preliminary computational results.

The second part of the thesis is instead focused on the heuristic and exact exploita-
tion of integer programming techniques for hard combinatorial optimization problems
in the context of routing applications. Chapters 5 and 6 present an integer linear pro-
gramming local search algorithm for Vehicle Routing Problems (VRPs). The overall
procedure follows a general destroy-and-repair paradigm (i.e., the current solution is
first randomly destroyed and then repaired in the attempt of finding a new improved
solution) where a class of exponential neighborhoods are iteratively explored by heu-
ristically solving an integer programming formulation through a general purpose MIP
solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 pre-
sents an extended formulation for the Traveling Salesman Problem with Time Windows
(TSPTW), a generalization of the well known TSP where each node must be visited
within a given time window. The polyhedral approaches proposed for this problem in
the literature typically follow the one which has been proven to be extremely effective
in the classical TSP context. Here we present an overall (quite) general idea which is
based on a relaxed discretization of time windows. Such an idea leads to a stronger
formulation and to stronger valid inequalities which are then separated within the clas-
sical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in
the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class
of NP-hard generalizations of the classical minimum spanning tree problem). In this
chapter, we show how some basic ideas (and, in particular, the usage of general purpose
cutting planes) can be useful to improve on branch-and-cut methods proposed in the
literature.

xii



xiii



Chapter 1

An overview of Mixed Integer
Programming

1.1 Introduction

A general Mixed Integer linear Program (MIP) can be defined as a “non linear” optimi-
zation problem, where all the non linearities can be expressed by imposing integrality
restrictions on a subset of variables: i.e., any general MIP can be expressed in the form

min{cx : Ax ≥ b, x ≥ 0, xj ∈ Z ∀j ∈ J}, (1.1)

where c ∈ Rn and A ∈ Rm×n are the given objective function and constraint matrix,
while J ⊆ {1, . . . , n} denotes the set of variables constrained to be integer. When all
the variables are integer-constrained (i.e., J = {1, . . . , n}), problem (1.1) is referred as
a pure Integer linear Program (IP).

Integer programming and mixed integer programming emerged in the late 1950’s and
early 1960’s, when researchers realized that the ability to solve mixed integer program-
ming models would had great impact for practical applications (see, e.g., Dantzig [63]).
Up today, mixed integer programming is one of the most widely used techniques for
handling hard combinatorial optimization problems. On the one side, many combinato-
rial optimization problems arising from practical applications (such as, e.g., scheduling,
project planning, transportation, telecommunications, economics and finance, timeta-
bling) can be easily formulated as MIPs. On the other hand, several academic and
commercial MIP solvers now available on the market can solve hard MIPs in practice.

The basic approach for tackling a MIP is the well known branch-and-bound algorithm
[110], which relies on the iterative solution of the Linear Programming (LP) relaxation
of (1.1),

min{cx : Ax ≥ b, x ≥ 0}, (1.2)

where all the integrality requirements on the x variables are dropped. The reason for
dropping such constraints is that MIP is NP-hard while LP is polynomially solvable
and general-purpose techniques for its solution are efficient in practice.
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When dealing with MIPs and MIP solvers, we have to distinguish between two diffe-
rent situations. The first one happens when we have no knowledge on the given problem
(i.e., when we cannot assume any special structure for the given matrix A in (1.1)). In
this case, we are “forced” to use a general purpose algorithmic approach which is ty-
pically based on the above branch-and-bound scheme. The second one happens when
the addressed formulation arises from a particular optimization problem. In this case,
polyhedral analysis and other theoretical and practical considerations can be exploited
to devise some special purpose techniques for handling the problem and/or to improve
on the performance of a general purpose MIP solver. Interestingly, several among the
main ingredients which are actually embedded in the most effective general purpose
MIP solvers (e.g., cutting planes) were first devised and implemented for tackling spe-
cific combinatorial optimization problems and specific MIP formulations. On the other
hand, general purpose MIP solvers can now be easily customized in order to deal with
the specific structure of MIPs arising from hard combinatorial optimization problems.

This chapter1 presents an overview of mixed integer programming techniques. In
particular, Section 1.2 recalls the branch-and-bound and the branch-and-cut frameworks,
Section 1.3 provides a historical overview of general purpose MIP solvers, while Section
1.4 describes some of the main ingredients of a branch-and-cut based MIP solver. The
attention is focused on the current generation of general purpose MIP solvers. However,
when dealing with a particular optimization problem, the main ingredients which turn
out to be of crucial importance for an effective branch-and-cut algorithm are typically
the same. Obviously, each one of them can be customized by exploiting the specific
structure of the addressed formulation.

1.2 Branch-and-bound, cutting-plane and branch-and-cut

Roughly speaking, MIP solvers integrate the branch-and-bound and the cutting-plane
algorithms through variations of the general branch-and-cut scheme proposed by Pad-
berg & Rinaldi [134] in the context of the Traveling Salesman Problem (TSP)2.

The branch-and-bound algorithm [110]. In its basic version the branch-and-bound
algorithm iteratively partitions the solution space into sub-MIPs (the children nodes)
which have the same theoretical complexity of the originating MIP (the father node, or
the root node if it is the initial MIP). Given the optimal solution x∗ of the LP relaxation
of the current sub-MIP (initially, the optimal solution of the LP relaxation of the root
node), the branching usually creates two children by choosing one integer-constrained
variable, say xj , having a fractional value x∗j in the current x∗ solution, and imposing
the disjunctive condition

xj ≤ bx∗jc OR xj ≥ dx∗je
1Part of this chapter has been taken from: A. Lodi, “MIP computation and beyond”, to appear in

M. Jünger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, L. Wolsey, editors, 50 Years
of Integer Programming 1958–2008, Springer-Verlag, 2008 [117].

2The history of the branch-and-cut framework is tightly connected to the history of the TSP itself.
We refer the reader to Cook [52] for a detailed account on this topic.
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on the two created nodes (i.e., the two nodes are created by imposing, respectively, the
constraint xj ≤ bx∗jc on the first one and the constraint xj ≥ dx∗je on the latter). On
each of the sub-MIPs the integrality requirement on the variables xj , ∀j ∈ J is relaxed
and the LP relaxation is solved again. Despite the theoretical complexity, the sub-MIPs
become smaller and smaller due to the partition mechanism (basically some of the deci-
sions are taken) and eventually the LP relaxation is directly integral for all the variables
in J . In addition, whenever the optimal solution value cx∗ of the LP relaxation turns
out to be not smaller than the best feasible solution encountered so far, called incum-
bent, the node can safely be fathomed without further partitioning its corresponding
sub-MIP, because none of its children will yield a better solution than the incumbent.
Finally, a node is also fathomed if its LP relaxation is infeasible.

The cutting-plane algorithm [98]. Any MIP can be solved without branching by
“simply” finding a linear programming description of the convex hull of its feasible
solutions, i.e., a linear programming description of the set

P := conv{x ∈ Rn : Ax ≥ b, x ≥ 0, xj ∈ Z ∀j ∈ J}.

In order to do that, one can iteratively solve the so called separation problem:

(Separation problem). Given a feasible solution x∗ of the LP relaxation (1.2) which is

not feasible for the MIP (1.1), find a linear inequality γx ≥ γ0 which is valid for (1.1),

i.e., satisfied by all feasible solutions x̄ of the system (1.1), while it is violated by x∗, i.e.,

γx∗ < γ0.

Any inequality solving the separation problem is called cutting plane (or cut, for short)
and has the effect of tightening the LP relaxation to better approximate the convex
hull.

Gomory [98] has given an algorithm that converges in a finite number of iterations
for pure integer linear programs with integer data, thus implicitly proving that IPs
can be solved by pure cutting-plane methods. Such an algorithm solves the separation
problem above in an efficient and elegant manner in the special case in which x∗ is an
optimal basis of the LP relaxation. No algorithm of this kind is known for MIPs, that
being one of the most intriguing open questions in the area (see, e.g., Cook, Kannan &
Schrijver [54]).

The branch-and-cut algorithm incorporates the cutting-plane algorithm in the branch-
and-bound scheme, by separating cuts at each3 node of the search tree. The idea behind
integrating the two algorithms above is that LP relaxations (1.2) do not naturally well
approximate, in general, the convex hull of mixed-integer solutions of MIPs (1.1), thus
some extra work to devise a better approximation by tightening any relaxation with
additional linear inequalities (cutting planes) increases the chances that fewer nodes in
the search tree are needed. On the other hand, pure cutting plane algorithms show, in
general, a slow convergence and the addition of too many cuts can lead to very large

3Clearly, several heuristic criteria are typically used to decide, at each node of the search tree, if cut
separation may be useful in practice to improve on the current LP relaxation or not.
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LPs which in turn present numerical difficulties for the solvers4. As already mentioned,
branch-and-cut has been initially proven to be very effective for combinatorial optimi-
zation problems (like TSP, see Padberg & Rinaldi [134, 135]) with special-purpose cuts
based on a polyhedral analysis of the addressed formulation. Later on, such a framework
has been successfully extended to the general MIP context.

1.3 MIP Evolution

The early general-purpose MIP solvers were mainly concerned with developing a fast
and reliable LP machinery used within good branch-and-bound schemes.

There are at least two remarkable exceptions to this trend. The first is a paper
of Crowder, Johnson & Padberg [61] which describes the implementation of a general-
purpose code for pure 0–1 IPs, called PIPX, that used the IBM linear programming
system MPSX/370 and the IBM integer programming system MIP/370 as building
blocks. The authors were able to solve ten instances obtained from real-world industrial
applications. Those instances were very large for that time, up to 2,756 binary variables
and 755 constraints. Some cutting planes were integrated in a good branch-and-bound
framework (with some preprocessing to reduce variables’ coefficients) and in particular
cover inequalities which will be discussed in Section 1.4.2 below.

The second exception is a paper by Van Roy & Wolsey [170] in which the authors
describe a system called MPSARX that solved mixed 0–1 industrial instances arising
from applications like production planning, material requirement planning, multilevel
distribution planning, etc. Also in this case, the instances were very large for the time,
up to 2,800 variables and 1,500 constraints. The system acted in two phases: in phase
one some preprocessing was performed and, more importantly, cutting planes were ge-
nerated. Such a phase was called reformulation in [170] and performed by a system
called ARX. The second phase was the solution of the new model by the mathematical
programming system called SCICONIC/VM.

After the success of the two early MIP solvers [61, 170] and, mainly, the formalization
of the branch-and-cut algorithm given by Padberg and Rinaldi in the TSP context [135],
a major step was required to prove that cutting plane generation in conjunction with
branching could work in general, i.e., without exploiting the structure of the underlying
polyhedron, in particular in the cutting plane separation phase.

The proof of concept came through two papers both published in 1996. In [20],
Balas, Ceria and Cornuéjols showed that a branch-and-cut algorithm based on general-
purpose disjunctive cuts (see, Balas [16]) could lead to very effective results for 0–1
MIPs. More precisely, the cutting planes used are the so called lift-and-project cuts
in which the separation problem amounts to solving an LP in an extended space5.

4Note, however, that very recently Zanette, Fischetti & Balas [177] have shown that the original
cutting plane algorithm of Gomory [98] can be surprisingly effective, thus raising to many open questions
related to an effective cutting planes exploitation.

5Disjunctive cuts are recalled more in detail in Chapter 2 and are then investigated in Chapter 3.
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The computational results in [20] showed a very competitive and stable behavior. In
addition, those results showed that the quality and the speed of LP solvers in the
late nineties allowed the solution of LPs as an additional building block of the overall
algorithm. Such an outcome was not granted and LP rapid evolution showed to have
reached a very stable state.

In [21], Balas, Ceria, Cornuéjols and Natraj revisited the classical Gomory mixed
integer cuts [99] by overruling the common sense that these cuts had a purely theore-
tical interest. In fact, the results in [21] showed that, embedded in a branch-and-cut
framework, Gomory mixed-integer cuts were a fundamental tool for the solution of 0–1
MIPs. Such an improvement was mainly obtained by separating and adding groups
(denoted as “rounds”) of cuts6 instead of one cut at a time.

The two papers above have played a central role in the move to the current generation
of MIP solvers and the fact that the use of cutting planes, and in particular within a
branch-and-cut framework, has been a breakthrough is shown by the following very
meaningful experiment due to Achterberg & Bixby and reported by Lodi [117]. On
a testbed of 1,734 MIP instances all Cplex [105] versions beginning with Cplex 1.2,
the first having MIP capability, have been extensively compared. The results of this
experiment are shown in Tables 1.1 and 1.2. Specifically, Table 1.1 reports the evolution
of Cplex by comparing each version with the most current one, version 11.0. The first
column of the table indicates the version while the second recalls the year in which the
version has been released. The third and fourth columns count the number of times each
version is better and worse with respect to Cplex 11.0, respectively: computing times
within 10% are considered equivalent, i.e., counted neither better nor worse. Finally, the
last column gives the computing time as geometric mean again normalized with respect
to Cplex 11.0. A time limit of 30,000 CPU seconds for each instance was provided
on a cluster of Intel Xeon machines 3 GHz. Besides the comparison with the current
Cplex version, the most interesting way of interpreting the results reported in the
table is looking at the trend the columns show: together with a very stable decreasing
of the computing time from version 1.2 up, it is clear that the biggest step forward
in a version-to-version scale has been made with Cplex 6.5 which is the first having
full cutting plane capability, and in particular Gomory mixed-integer cuts. Indeed, the
geometric mean of the computing times drops from 21.30% to 7.47% going from version
6.0 to 6.5, by far the biggest decrease.

The trend is confirmed by the numbers reported in Table 1.2. On a slightly larger set
of 1,852 MIPs (including some models in which older versions encountered numerical
troubles), the table highlights the version-to-version improvement in the number of
solved problems. Besides the first two columns which report the same information as
Table 1.1, the third and fourth column report the number and percentage of problems
solved to proven optimality, respectively. Finally, the last column gives precisely the
version-to-version improvement in the percentage of problems optimally solved.

6In principle, one Gomory mixed-integer cut can be separated from each tableau row where an integer
variable is non-zero and fractional.

5



Table 1.1: Computing times for 12 Cplex versions: normalization with respect to
Cplex 11.0.

Cplex
version year better worse time

11.0 2007 – – 1.00
10.0 2005 201 650 1.91
9.0 2003 142 793 2.73
8.0 2002 117 856 3.56
7.1 2001 63 930 4.59
6.5 1999 71 997 7.47
6.0 1998 55 1060 21.30
5.0 1997 45 1069 22.57
4.0 1995 37 1089 26.29
3.0 1994 34 1107 34.63
2.1 1993 13 1137 56.16
1.2 1991 17 1132 67.90

Table 1.2: Version-to-version comparison on 12 Cplex versions with respect to the
number of solved problems.

Cplex # % v-to-v %
version year optimal optimal improvement

11.0 2007 1,243 67.1% 7.8%
10.0 2005 1,099 59.3% 3.5%
9.0 2003 1,035 55.9% 2.6%
8.0 2002 987 53.3% 2.5%
7.1 2001 941 50.8% 4.3%
6.5 1999 861 46.5% 13.4%
6.0 1998 613 33.1% 1.0%
5.0 1997 595 32.1% 1.8%
4.0 1995 561 30.3% 4.4%
3.0 1994 479 25.9% 6.2%
2.1 1993 365 19.7% 4.7%
1.2 1991 278 15.0% —

1.4 Main ingredients of MIP solvers

This section provides an overview of the main ingredients of a branch-and-cut based
MIP solver. For many more details on the arguments of this section we refer the reader
to Part II of the PhD dissertation of Achterberg [3].
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1.4.1 Presolving

In the presolving (often called preprocessing) phase the solver tries to detect certain
changes in the input that will probably lead to a better performance of the solution
process. This is done without changing the set of optimal solutions of the problem at
hand and it affects two main situations.

On the one side, it is often the case that MIP models, in particular those originating
from real-world applications and created by using modeling languages, contain some
“garbage”, i.e., irrelevant or redundant information that tend to slow down the solution
process forcing the solver to perform useless operations. More precisely, there are two
types of sources of inefficiency: first, the models are unnecessary large and thus harder to
manage. This is the case in which there are redundant constraints or variables which are
already fixed and nevertheless appear in the model as additional constraints. Second,
the variable bounds can be unnecessary large or the constraints could have been written
in a loose way, for example with coefficients weaker than they could possibly be.

Thus, modern MIP solvers have the capability of “cleaning up” the models so as to
create a presolved instance associated with the original one on which the MIP technology
is then applied. With respect to the two issues above, MIP presolve is able to reduce
the size of the problems by removing such redundancies and it generally provides tools
that, exploiting the information on the integrality of the variables in set J , strengthen
variables’ bound and constraints’ coefficients. If the first improvement has only the
effect of making each LP relaxation smaller and then quicker to be solved, the second
one has the, sometimes crucial, effect of making such relaxations stronger, i.e., better
approximating the convex hull of mixed-integer solutions.

On the other hand, more sophisticated presolve mechanisms are also able to discover
important implications and sub-structures that might be of fundamental importance
later on in the computation for both branching purposes and cutting plane generation.
As an example, the presolve phase determines the clique table or conflict graph, i.e.,
groups of binary variables such that no more than one can be non-zero at the same time.
The conflict graph is then fundamental to separate clique inequalities (see, Johnson and
Padberg [107]) which are written as

∑

j∈Q

xj ≤ 1 (1.3)

where Q denotes a subset of (indices of) binary variables with the property, stated
above, that at most one of them can be non-zero.

The most fundamental work about presolving is the one of Savelsbergh [157] to
which the interested reader is referred to.

At first glance, the presolving phase seems to be relevant only when dealing with
“badly-written” MIP formulations, which typically contain many redundancies and
weak constraints. However, this is definitely not the case, as experienced with the
Traveling Salesman Problem with Time Windows (TSPTW) (see Chapter 7). For this
problem, a strong MIP formulation is proposed and a branch-and-cut algorithm is inve-
stigated in this thesis. In this context, a special-purpose preprocessing which exploits the
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specific structure of the problem turns out to be of crucial importance for all the above
mentioned reasons. First, it is fundamental for reducing the size of the formulation
and for strengthening the corresponding LP relaxation. Second, it allows to discover
important connections among the variables which are then used to derive strong valid
inequalities, separated during the branch-and-cut algorithm. We refer the reader to
Chapter 7 for a detailed account on this work.

1.4.2 Cutting plane generation

As shown in Section 1.3, cutting plane generation has been a key step for the success of
MIP solvers and their capability of being effective for a wide variety of problems. Several
groups of cuts are actually available in most academic and commercial MIP solvers
(as, e.g., Cbc [44], Cplex [105] and Xpress [65]). These groups are strongly related
each other, and include Chvátal-Gomory cuts [98, 49], Gomory mixed-integer cuts [99],
mixed-integer rounding cuts [129, 67], {0, 1

2} cuts [41], lift-and-project cuts [16, 20]
and split cuts [54] (also known as disjunctive cuts). Essentially, all these inequalities
are obtained by applying a disjunctive argument on a mixed-integer set of a single
constraint only, which is often derived by aggregating many others. Gomory mixed-
integer cuts and disjunctive cuts are addressed more in detail in Chapter 2 of this
thesis. For a brilliant and unified presentation of all these family of cuts we refer the
reader to Cornuéjols [57].

Besides the groups above and clique inequalities already discussed in the previous
section, two more classes of very useful cuts are generally used within a MIP solver,
namely cover inequalities and flow cover inequalities, which are briefly discussed in the
following.

Cover cuts. Somehow similarly to the clique inequalities, cover constraints define a
property on a set of binary variables. More precisely, given a knapsack kind constraint
in the form γx ≤ γ0 where we assume that γ ∈ Z|V |+ , γ0 ∈ Z+ and V is a subset of
(indices of) binary variables, a set Q ⊆ V is called a cover if

∑
j∈Q γj > γ0. The cover

is said to be minimal if
∑

j∈Q\{`} γj ≤ γ0 for all ` ∈ Q. In other words, Q is a set of
binary variables which cannot be all together non-zero at the same time. In the light
of the definition above, the simplest version of a cover inequality is

∑

j∈Q

xj ≤ |Q| − 1. (1.4)

The amount of work devoted to cover cuts is huge starting with the seminal work of
Balas [15] and Wolsey [174]. In particular, cover cuts do not define facets, i.e., poly-
hedral faces of dimension one less of the dimension of the associated polyhedron7, but
can be lifted (see, Padberg [133]) to become facet defining.

Flow cover cuts. The polyhedral investigation of the so called 0–1 single node flow
problem is at the base of the definition of flow cover cuts by Padberg, Van Roy & Wolsey

7For a detailed presentation of polyhedral basic concepts as dimensions, faces, facets, etc. the reader
is referred for example to Papadimitriou & Steiglitz [137].
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[136]. Essentially, this is a fixed charge problem with arcs incoming and outgoing to a
single node: to each of these arcs is associated a continuous variables measuring the flow
on the arc and upper bounded by the arc capacity, if the flow over the arc is non-zero
a fixed cost must be paid and this is triggered by a binary variable associated with
the same arc. A flow balance on the node must also be satisfied. Flow cover cuts can
then be devised as mixed-integer rounding inequalities (see, Marchand [122]) and then
strengthened by lifting (see, Gu, Nemhauser & Savelsbergh [101]). We also refer the to
Louveaux & Wolsey [118] for a general discussion on these mixed-integer sets.

It is worth noting that despite the origin of the flow cover cuts is a specific poly-
hedral context, they are useful and applied in general within MIP solvers. The reason
is that it is easy to aggregate variables (and constraints) of a MIP in order to derive a
mixed-integer set like the 0–1 single node flow set (see, e.g., [122]).

The separation of all mentioned cuts (including cliques) but lift-and-project cuts
is NP-hard for a general x∗. Note that this is not in contrast with the fact that one
can separate, e.g., Gomory mixed-integer cuts by a polynomial (very cheap) procedure
[98, 99] once the fractional solution x∗ to be cut off is a vertex of the continuous rela-
xation.

Cutting planes have been widely studied in the literature and the arsenal of sepa-
ration algorithms has been continuously enlarged over the years. However, there are
still several fundamental questions about the use of cutting planes which are probably
not fully answered, thus reducing what we could really gain from cuts. Some of these
questions are discussed in the following and are probably strongly related each other.

Accuracy. Accuracy checks are needed in basically all parts of a MIP solver but
maybe the most crucial part is cutting plane generation. Sophisticated cutting plane
procedures challenge the floating-point arithmetic of the solvers heavily, the danger
being the generation of invalid cuts, i.e., linear inequalities cutting off mixed-integer
feasible solutions, eventually the optimal one. The common reaction is defining confi-
dence threshold values for a cut to be safe. This is only a heuristic action, probably
very conservative too. The accuracy issue has been recently investigated in two papers.
Margot [123] studied a methodology for testing accuracy and strength of cut generators
based on random dives of the search tree by recording a well-chosen set of indicators.
Cook, Dash, Fukasawa & Goycoolea [53] proposed a method that slightly weakens the
Gomory mixed-integer cuts but makes them “safe” with respect to accumulation of
floating-point errors.

Both papers above investigate the accuracy issue of cutting plane generation mainly
from a research viewpoint. At the moment, the standard method of dealing with inac-
curacy of cuts in the solvers is discarding “suspicious” or “dangerous” cuts without
doing extra work to either test their correctness or separating them in a proven careful
way. Among other indicators, cutting planes with high rank8 are considered suspicious

8The rank of the inequalities in the original formulation is 0 while every inequality obtained as
combination of two or more inequalities of rank 0 has rank 1. An inequality has rank k (k ≥ 2) if it can
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in the sense that they might have accumulated relevant floating-point errors while dense
inequalities are said to be dangerous since they generally slow down the LP machinery.

Cut selection and interaction. The number of existing procedures for generating cuts
is relevant and that is the number of cuts we could generate at any round. Thus, one of
the most relevant issues is which cuts should be selected and added to the current LP
relaxation. In other words, cuts should be able to interact in a profitable way together
so as to have an overall “cooperative behavior”. Results in this direction have been
reported by Andreello, Caprara & Fischetti [8].

Cut strength. The strength of a cut is generally measured by its violation. However,
scaling, normalization conditions and other factors can make such a measure highly
misleading. If this is the case, cut selection is very hard and, for example, separating
over a larger class of cuts is not necessarily a good idea with respect to preferring a
smaller (thus, theoretically weaker) sub-class which is known to produce effective cuts in
practice. An example of such a counter-intuitive behavior is the separation of Chvátal-
Gomory cuts instead of their stronger mixed integer rounding version as experienced
by Dash, Günlük & Lodi [67]: separating over the sub-class as a heuristic mixed inte-
ger rounding procedure helped accelerating the cutting plane convergence dramatically9.

The role of the rank and other aspects such as normalization conditions, (i.e., con-
ditions to truncate the cone associated with disjunctive cutting planes) are not fully
understood and much more can be done in this direction. Some new results on the
connections among normalization conditions, cut rank, cut density and cut strength are
presented in Chapter 3 of this thesis and also appear in Fischetti, Lodi & Tramontani
[85].

We close this section by mentioning one of the most exciting and potentially helpful
challenges in the cutting plane context. A recent series of papers [7, 29, 39, 60, 71, 75,
176] has brought the attention of the community to the possibility of generating cuts
using more than one row of the simplex tableau at a time. These multiple-row cuts are
based on the characterization of lattice-free triangles (and lattice-free bodies in general)
instead of simply split disjunctions as in the case of the single row tableau cuts discussed
in this section. Some new ideas for generating two-row cuts from the simplex tableau
by exploiting lattice-free triangles and some computational results in this direction are
presented in Chapter 4 of this thesis.

be obtained as combination of two or more rows of rank ≤ k−1 but not as a combination of inequalities
of rank ≤ k − 2 only. The reader is referred to Chvátal [49] for a more formal definition of the rank of
an inequality and its implications for IP.

9Note that such an outcome might be also related to the stable behavior of Chvátal-Gomory cuts
with respect to Gomory mixed-integer or mixed integer rounding cuts due to their numerical accuracy
[83].
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1.4.3 Branching strategies

The branching mechanism introduced in Section 1.1 requires to take two independent
and important decisions at any step: node selection and variable selection. We will
analyze them separately in the following by putting more attention on the latter.

Node Selection. One extreme is the so called best-bound first strategy in which one
always considers the most promising node, i.e., the one with the smallest LP value,
while the other extreme is depth first where one goes deeper and deeper in the tree and
starts backtracking only once a node is fathomed, i.e., it is either mixed-integer feasible,
or LP infeasible or it has a dual bound not better (smaller) than the incumbent. The
main advantages and drawbacks of each strategy are well known: the former explores
less nodes but generally maintains a larger tree in terms of memory while the latter can
explode in terms of nodes and it can, in the case some bad decisions are taken at the
beginning, explore useless portions of the tree itself. All other techniques, more or less
sophisticated, are basically hybrids around these two ideas, like interleaving best-bound
and diving10 in an appropriate way.

Variable Selection. The variable selection problem is the one of deciding how to
partition the current node, i.e., on which variable one has to branch on in order to
create the two children. For a long time, a classical choice has been branching on the
most fractional variable, i.e., in the 0–1 case the closest to 0.5. That rule has been
computationally shown by Achterberg, Koch & Martin [5] to be worse than a com-
plete random choice. However, it is of course very easy to evaluate. In order to devise
stronger criteria one has to do much more work. The extreme is the so called strong
branching technique (see, e.g., Applegate, Bixby, Chvátal & Cook [9] and Linderoth &
Savelsbergh [116]). In its full version, at any node one has to tentatively branch on
each candidate fractional variable and select the one on which the increase in the bound
on the left branch times the one on the right branch is the maximum. Of course, this
is generally unpractical but its computational effort can be easily limited in two ways:
on the one side, one can define a much smaller candidate set of variables to branch on
and, on the other hand, can limit to a fixed (small) amount the number of Simplex
pivots to be performed in the variable evaluation. Another sophisticated technique is
pseudocost branching which goes back to Benichou, Gauthier, Girodet & Hentges [31]
and keeps a history of the success (in terms of the change in the LP relaxation value) of
the branchings already performed on each variable as an indication of the quality of the
variable itself. The most recent effective and sophisticated method is called reliability
branching [5] and it integrates strong and pseudocost branchings. The idea is to define
a reliability threshold, i.e., a level below which the information of the pseudocosts is not
considered accurate enough and some strong branching is performed. Such a threshold
is mainly associated with the number of previous branching decisions that involved the
variable.

More sophisticated branching mechanisms are clearly possible, an example being
10A dive in the tree is a sequence of branchings without backtracking.
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the so called Special Order Sets (SOS) branching (Beale & Tomlin [30]). When, for
instance, the formulation at hand contains a constraint of the form

∑

j∈B

xj = 1,

where B is a set of binary variables, one can branch by imposing the disjunctive condi-
tion ∑

j∈B1

xj = 1 OR
∑

j∈B2

xj = 1

on the children nodes, with B1 ∪ B2 = B and B1 ∩ B2 = ∅. This idea is detailed, e.g.,
in Williams [173].

Karamanov & Cornuéjols [108] highlighted the possibility of using some cutting
plane theory in the branching context. They experimented with branching on Gomory
mixed-integer disjunctions obtained by the optimal basis of the LP relaxation. More
precisely, from each tableau row i in which an integer variable x` is basic at the fractional
value x∗` , say āix = x∗` , instead of deriving the associated Gomory mixed-integer cut,
they consider the corresponding disjunction

πx ≤ bx∗`c OR πx ≥ dx∗`e,

where

πj =





bāijc if j ∈ J, j 6= `, āij − bāijc ≤ x∗` − bx∗`c
dāije if j ∈ J, j 6= `, āij − bāijc > x∗` − bx∗`c

1 if j = `
0 otherwise.

The best disjunction according to a heuristic measure is selected for branching.
In the line of the work in [108], Cornuéjols, Liberti & Nannicini [59] try to improve

the disjunction to be used for branching by row manipulations in the spirit of the
reduce-and-split approach for cuts [6].

Branching on general disjunctions has been also used in context less related to cut-
ting plane theory. A pioneering work in this direction is the one of Owen & Mehrotra
[132] where the general disjunctions to branch on are generated by a search heuristic
in the neighborhood containing all disjunctions with coefficients in {−1, 0, 1} on the
integer variables with fractional values at the current node. Moreover, branching on
appropriate disjunctions has recently been proposed in the context of highly symmetric
MIPs by Ostrowsky, Linderoth, Rossi & Smriglio [131]. Finally, Bertacco [33] has expe-
rimented with branching on general disjunctions either associated with “thin” directions
of the polyhedron or resulting in the maximization of the corresponding lower bound.
A very similar approach has been followed recently by Mahajan & Ralphs [121].

As discussed above, until now the methods proposed in research papers and imple-
mented by MIP solvers to do enumeration have been rather structured, very relying
on the tree paradigm which has proven to be stable and effective. Few attempts of
seriously revisiting the tree framework have been made, one notable exception being

12



the work of Chvátal called resolution search [50]. In that paper, the idea is to detect
conflicts, i.e., sequences of variable fixings that yield an infeasible subproblem, making
each sequence minimal and use the information to construct an enumeration strategy.
A similar concept of conflicts has been used by Achterberg [2, 3] to do propagation in
MIP and it has been known in the Artificial Intelligence and SATisfiability (SAT) com-
munities with the name of “no good recording” (see, e.g., Stallman & Sussman [159])
since the seventies.

1.4.4 Primal heuristics

Primal heuristics, going from easy to complex, are generally used within any effective
branch-and-cut algorithm. These heuristics typically start from the fractional solution of
the continuous relaxation of each sub-MIP of the search tree, trying to produce a feasible
mixed-integer solution. In the last years, the continuous hybridization between rounding
and diving techniques with local search has dramatically improved the capability of the
current generation of MIP solvers to quickly find in the search tree very high quality
solutions.

Following the structure of Chapter 9 of [3], we distinguish among the following types
of heuristics.

Rounding heuristics. Starting from a feasible solution of the continuous relaxation
(generally the optimal one) one rounds up or down the fractional values of the variables
in J by trying to produce a mixed-integer solution still satisfying the linear constraints.
This can be done in a straightforward and very fast manner or in a more and more
complex way, i.e., by allowing some backtracking mechanism in the case a (partial)
mixed-integer assignment becomes infeasible.

Diving heuristics. With respect to a rounding heuristic, the diving is performed
in an iterative way: after rounding one or more variables the LP relaxation is solved
again and the process is iterated. In this category, Achterberg [3] distinguishes between
“hard” rounding in which the variables are really fixed to a specified value and “soft”
rounding in which the effect is obtained implicitly by changing the objective function
coefficient of the variables to be “rounded” in an appropriate way. In the latter ca-
tegory falls the feasibility pump heuristic [81, 34, 4]. The idea of the algorithm is to
alternatively satisfy either the linear constraints (by solving LP relaxations) or integer
constraints (by applying rounding). The LP relaxations are obtained by replacing the
original objective function with one taking into account the distance with respect to
the current mixed-integer rounded solution. If the trajectory of the rounded solutions
intersects the one of the LP (neighborhood) relaxations, then a feasible solution with
respect to both the linear constraints and the integer ones has been found. Such an
algorithmic framework has been recently extended to convex mixed-integer non-linear
programming [38].

Improving heuristics. The heuristics in this category are designed to improve the
quality of the current incumbent solution, i.e., they exploit that solution or a group of
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solutions so as to get a better one. These heuristics are usually local search methods
and we have recently seen a variety of algorithms which solve sub-MIPs for exploring
the neighborhood of the incumbent or of a set of solutions. When these sub-MIPs are
solved in a general-purpose fashion, i.e., through a nested call to a MIP solver, this is
referred to as MIPping [82] and will be the content of Section 1.4.5 below. Improvement
heuristics of this type have connections to the so called metaheuristic techniques [95]
which have proven very successful on hard and large combinatorial problems in the ni-
neties. Techniques from metaheuristics have been now incorporated in the MIP solvers,
see e.g., [82, 152]. As a result, MIP solvers have now improved their ability of quickly
finding very good feasible solutions and can be seen as competitive heuristic techniques
if used in a truncated way, i.e., with either a time or node limit.

It is interesting to note that Achterberg [3] has shown that the impact of heuristics
is not dramatic in terms of ability of the MIP solver to prove optimality in a (much)
quicker way. However, in many cases mixed integer programming techniques are used
to derive effective heuristics for hard optimization problems. In this context, the goal
is to find high-quality feasible solutions, with a minor attention to the possibility of
also prove the optimality. Clearly, when the MIP solver is embedded in an overall
heuristic procedure, the capability of the solver itself to produce high-quality feasible
solutions very quickly is of crucial importance to improve on the performance of the
overall algorithm.

1.4.5 MIPping

The MIP computation has reached such an effective and stable quality to allow the
solution of sub-MIPs during the solution of a MIP itself, i.e., the MIPping approach
[84]. In other words, optimization sub-problems are formulated as general-purpose MIPs
and solved, often heuristically, by using MIP solvers, i.e., without taking advantage of
any special structure. The novelty is not in solving optimization sub-problems having
different levels of complexity, but in using a general-purpose MIP solver for handling
them. In some sense such a technique, originally proposed by Fischetti & Lodi [82] for
modeling large neighborhoods of 0–1 solutions, shows the high quality of the current
generation of MIP solvers like the solution of large LPs in the cutting plane generation
phase [20] showed more than ten years ago the effectiveness of the LP phase.

After the original paper on the primal heuristic side, the MIPping technique has
been successfully applied in the cutting plane generation phase [83], for accelerating
Benders decomposition [148], and again to devise very high quality primal solutions
[62], just to cite a few applications.

In Chapters 5 and 6 of this thesis, the MIPping approach is investigated to derive an
effective local search algorithm in the context of the Vehicle Routing Problem (VRP).
The overall local search algorithm is based on a class of exponential neighborhoods
which are iteratively explored, in a heuristic way, by solving an IP through a general
purpose MIP solver. The results of Chapters 5 and 6 also appear, respectively, in Toth
& Tramontani [169] and Salari, Toth & Tramontani [153].
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Chapter 2

Disjunctive cuts and Gomory
Mixed Integer cuts

2.1 Introduction

Disjunctive cuts for mixed integer linear programs have been introduced by Egon Balas
[16] in the late 70’s, and successfully exploited in practice since the late 90’s (see, e.g.,
Balas, Ceria and Cornuéjols [20]). This chapter recalls some theoretical results from the
literature related to the separation of disjunctive cuts, and the main connections between
disjunctive cuts and Gomory Mixed Integer (GMI) cuts [99]. A new investigation and
some new results on this topic are developed in Chapter 3.

In the following we consider a mixed integer set S of the form S = {x ∈ Rn :
Ax ≥ b, x ≥ 0, xj ∈ Z ∀j ∈ J}, where A ∈ Rm×n is the given constraint matrix and
J ⊆ {1, . . . , n} denotes the set of variables constrained to be integer. We assume for the
sake of simplicity the set S to be nonempty and we denote with P = {x ∈ Rn : Ax ≥
b, x ≥ 0} the underlying polyhedron obtained by dropping all the integral requirements
from S.

2.2 Gomory Mixed Integer cuts

Let αx ≥ α0 be any valid inequality for P (recall that, by Farkas lemma, the valid
inequalities for P are of the form (λA + µ)x ≥ λb− δ, with λ ∈ Rm

+ , µ ∈ Rn
+, δ ∈ R+),

and add a nonnegative surplus variable s to αx ≥ α0, thus obtaining the valid equality
αx− s = α0. Define f0 = α0 − bα0c, fj = αj − bαjc for any j ∈ J , and assume f0 > 0.
Then, the following equality is valid for P ,

∑

j∈J :fj≤f0

fjxj +
∑

j∈J :fj>f0

(fj − 1)xj +
∑

j 6∈J

αjxj − s = k + f0,

where k is some integer. Since k ≤ −1 or k ≥ 0, any x ∈ S satisfies the disjunction

∑

j∈J :fj≤f0

−fj

1− f0
xj +

∑

j∈J :fj>f0

1− fj

1− f0
xj +

∑

j 6∈J

−αj

1− f0
xj +

s

1− f0
≥ 1
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OR

∑

j∈J :fj≤f0

fj

f0
xj +

∑

j∈J :fj>f0

fj − 1
f0

xj +
∑

j 6∈J

αj

f0
xj − s

f0
≥ 1.

The above disjunction is of the form a1z ≥ 1 or a2z ≥ 1 which naturally implies∑
j max{a1

j , a
2
j}zj ≥ 1 for any z ≥ 0. For each j, one of the coefficient in the disjunction

is positive and the other is negative. Hence, the following inequality is valid for S:

∑

j∈J:fj≤f0

fj

f0
xj +

∑

j∈J:fj>f0

1− fj

1− f0
xj +

∑

j 6∈J:αj>0

αj

f0
xj +

∑

j 6∈J:αj<0

−αj

1− f0
xj +

s

1− f0
≥ 1. (2.1)

The inequality (2.1) is the well known Gomory Mixed Integer inequality [99]. Clearly,
the GMI (2.1) can be expressed in the x space by rewriting the surplus variable s in
terms of the x variables (i.e., by rewriting s = αx− α0). The GMI closure is obtained
from P by adding all the GMI inequalities for S.

As shown by Caprara and Letchford [42] and, independently, by Cornuéjols and
Li [58], it is NP-hard to optimize a linear function over the GMI closure relative to a
polyhedron P . Equivalently, given a point x̄ ∈ P \S, it is NP-hard to find a GMI which
separates x̄ or show that none exists. Note, however, that this is not in contrast with
the problem of finding a GMI cut that cuts off a basic solution x∗ of the polyhedron P .
Indeed, given a basic solution x∗ of P and its corresponding tableau, each row of the
tableau corresponding to a basic variable xj , with j ∈ J and x∗j fractional, can be used
to derive a violated GMI cut by following the simple procedure described above.

2.3 Disjunctive cuts

For any given disjunction of the form

πx ≤ π0 OR πx ≥ π0 + 1 (2.2)

such that (π, π0) ∈ Zn+1, πj = 0 ∀j 6∈ J , let P0 (respectively, P1) be the polyhedron
obtained from P by imposing the additional restriction πx ≤ π0 (resp., πx ≥ π0 + 1).
A disjunctive inequality is an inequality γx ≥ γ0 valid both for P0 and P1, and then
also for conv(P0 ∪P1) and hence for conv(S). Disjunctive cuts which can be derived by
imposing a single disjunction such as (2.2) on a polyhedron P are also known as split
cuts; see Cook, Kannan, and Schrijver [54]. The intersection of all split inequalities (for
all the possible disjunctions of the form (2.2)) is called the split closure relative to P .

By Farkas lemma, the validity of γx ≥ γ0 for P0 and for P1 can always be certified by
means of nonnegative multipliers (u, u0, v, v0) associated with the inequalities defining
P0 and P1 according to the following scheme:

P0

(u) Ax ≥ b
(u0) −πx ≥ −π0

P1

(v) Ax ≥ b
(v0) πx ≥ π0 + 1
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Given a fractional solution x∗ of P , a most-violated disjunctive cut can therefore be
found by solving the following problem that determines the disjunction (π, π0) and the
Farkas multipliers so as to maximize the violation of the resulting cut with respect to
the given point x∗:

min γx∗ − γ0

γ ≥ uA− u0π
γ ≥ vA + v0π
γ0 ≤ ub− u0π0

γ0 ≤ vb + v0(π0 + 1)
u, v, u0, v0 ≥ 0
π0 ∈ Z
πj ∈ Z, j ∈ J
πj = 0, j 6∈ J.

(2.3)

By construction, any feasible solution with negative objective function value in (2.3)
corresponds to a violated disjunctive cut. However, when solving the separation pro-
blem (2.3), there are two different aspects to be considered. On the one side, (2.3) is a
mixed integer nonlinear program involving products of integer and continuous variables.
On the other hand, even if the disjunction is fixed a priori, the resulting Linear Program
(LP) is defined on a cone and needs to be truncated so as to produce a bounded LP
in case a violated cut exists. From a theoretical point of view, Caprara and Letchford
[42] have formulated the problem of optimizing over the split closure as a mixed integer
nonlinear program and have shown that the separation problem for split cuts is stron-
gly NP-hard. On a practical side, Balas and Saxena [26] addressed the problem by
exploiting the normalization condition u0 + v0 = 1, which allows one to restate (2.3)
and to solve it as a parametric MIP with a single parameter. A similar approach was
also proposed by Dash, Günlük and Lodi [66, 67] in the context of the Mixed Integer
Rounding (MIR) closure1.

A typical approach for separating disjunctive cuts in a branch-and-cut framework is
the one arising from Balas, Ceria and Cornuéjols [20], which showed the effectiveness of
lift-and-project cuts in the context of 0–1 MIPs2. This approach can be easily extended
to general MIPs (i.e., MIPs with general integer-constrained variables) and can be de-
scribed as follows. Given the current fractional solution x∗ of the current LP relaxation,
a violated disjunction of the form (2.2) is fixed, with πx∗−π0 ∈ ]0, 1[, and a disjunctive
cut is separated by solving the so-called Cut Generating Linear Program (CGLP):

(CGLP) min γx∗ − γ0

γ ≥ uA− u0π
γ ≥ vA + v0π
γ0 ≤ ub− u0π0

γ0 ≤ vb + v0(π0 + 1)
u, v, u0, v0 ≥ 0.

(2.4)

1Note that the MIR closure and the Split closure define the same polyhedron; see e.g., [57, 66, 67].
2Lift-and-project cuts are a particular class of disjunctive cuts for 0–1 MIPs arising from elementary

disjunctions of the form xj ≤ 0 OR xj ≥ 1; see, e.g., [57].
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As already stated, CGLP is defined on a cone and needs to be truncated with a sui-
table normalization condition so as to produce a bounded LP in case a violated cut
exists. Different normalization conditions lead in general to very different results. The
connections among normalization conditions, cut strength and other related issues are
investigated in Chapter 3 of this thesis.

Usually, the CGLP is projected onto the support of x∗ (see, e.g., [20]). Given a
variable xk such that x∗k = 0, the value of the cut coefficient γk does not affect the
cut violation. Hence, one can avoid considering the CGLP constraints associated with
γk. The resulting (reduced) CGLP is then solved and the cut coefficient γk is derived
afterwards as

γk = max{uAk − u0πk, vAk + v0πk}, (2.5)

where all the Farkas multipliers are fixed as in the optimal solution of the reduced
CGLP.

In practice, the disjunction selected for solving CGLP is typically elementary, i.e.,
it involves only one integer variable, thus reading xj ≤ bx∗jc OR xj ≤ dx∗je (j ∈ J). As
such, the disjunctive cut only exploits the integrality requirement on a single variable
and can therefore be easily improved by an a posteriori cut strengthening procedure as
the one proposed by Balas and Jeroslow [23].

Theorem 2.1 (Balas and Jeroslow [23]). Let (γ, γ0, u, v, u0, v0) be an optimal solution
of CGLP with respect to a certain disjunction (π, π0). Define mj = uAj−vAj

u0+v0
, and

γ̃j =
{

min{uAj − u0bmjc, vAj + v0dmje} if j ∈ J,
max{uAj , vAj} if j 6∈ J.

Then the inequality γ̃x ≥ γ0 is valid for conv(S) and dominates γx ≥ γ0 over the set
{x ∈ Rn : x ≥ 0}.
The strengthening described in the above theorem can be interpreted as finding the
best disjunction for the given set of multipliers, by fixing πj = bmjc or πj = dmje for
any j ∈ J .

2.4 Some connections

GMI cuts and disjunctive cuts are strongly related. On the one side, Nemhauser and
Wolsey [128, 129] have shown that the GMI closure and the split closure relative to a
polyhedron P are identical. On the other hand, Balas and Perregaard [24, 25] discovered
several connections between GMIs from the tableau and basic solutions of CGLP in the
context of 0–1 MIPs3.

In particular, Balas and Perregaard [25] addressed the CGLP truncated with nor-
malization

m∑

i=1

ui +
m∑

i=1

vi + u0 + v0 = 1

3All the results from [24, 25] were presented in the context of 0–1 MIPs. The results reported in this
section also apply to the general-integer case.
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and considered elementary disjunctions of the form xj ≤ 0 or xj ≥ 1. Given a basic
solution x∗ of the polyhedron P and a row of the corresponding simplex tableau (lifted
in the space (x, s) by including also the nonnegative surplus variables si = bi − aix)
associated with a basic variable xj (j ∈ J , x∗j fractional), they first showed that the
simple disjunctive cut which can be read from the given tableau row4 corresponds to
a basic (and, generally, nonoptimal) solution of the CGLP obtained by considering the
elementary disjunction on variable xj . Further, they also showed that, by applying
the Balas-Jeroslow [23] strengthening procedure to the above basic solution, one gets
precisely the GMI cut associated with the same tableau row. Finally, they discovered a
precise correspondence between the (possibly infeasible) bases of the simplex tableau of
the polyhedron P in the space (x, s) and the bases of the CGLP. This allowed them to
develop an elegant and efficient way of solving the CGLP by making pivot operations
in the “natural” tableau involving the original x variables only (plus surplus variables).
Such a method represents a crucial speed-up in the implementation of a disjunctive cut
separation procedure.

Roughly speaking, the GMI cut from the tableau is a basic solution, generally no-
noptimal, of CGLP. Hence, solving the CGLP, in the extended space which involves the
Farkas multipliers u, v or in the original space through the procedure developed in [25],
can be interpreted as a way of strengthening the GMI cut. A new investigation on this
topic is presented in Chapter 3.

4Recall that the simple disjunctive cut associated with a tableau row ãix+ g̃is = x∗j is the cut which
can be obtained by applying the disjunction xj ≤ bx∗j c or xj ≥ dx∗j e to the system ãix + g̃is = x∗j ,
x ≥ 0, s ≥ 0. See, e.g., [25].
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Chapter 3

On the Separation of Disjunctive
Cuts

3.1 Introduction

As discussed in Chapter 1, cutting planes (and, in particular, Gomory mixed integer
cuts) are probably the main ingredient behind the success of the current generation of
general purpose MIP solvers. Cutting planes have been widely studied in the literature
and the arsenal of separation algorithms has been continuously enlarged over the years.
However, there are still several fundamental questions about the use of cutting planes
which are probably not fully answered, thus reducing what we could really gain from
cuts.

This chapter1 presents an investigation of the main aspects related to the separation
of disjunctive cuts, which, as recalled in Chapter 2, are known to be strictly related to
Gomory mixed integer cuts.

In the following we consider the MIP

min{cx : Ax ≥ b, xj ∈ Z ∀j ∈ J} (3.1)

with bounds on x (if any) included in Ax ≥ b, where c ∈ Rn and A ∈ Rm×n are the
given objective function and constraint matrix, while J ⊆ {1, . . . , n} denotes the set of
variables constrained to be integer. For technical reasons, we assume w.l.o.g. that the
system Ax ≥ b implies (or contains explicitly) the trivial inequality 0x ≥ −1, in the
sense that this latter inequality can be obtained as a nonnegative combination of the
rows of Ax ≥ b2.

Let x∗ denote an optimal solution of the continuous relaxation min{cx : x ∈ P}
1The results of this chapter appear in: M. Fischetti, A. Lodi and A. Tramontani, “On the separation

of disjunctive cuts”, Technical Report OR-08-2, DEIS, University of Bologna, 2008 [85].
2For problems with at least one bounded variable, the trivial inequality can always be obtained by

adding the bound constraints on a single variable, say xj ≥ LBj and −xj ≥ −UBj , and dividing the
resulting inequality by UBj − LBj > 0.
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where
P := {x ∈ Rn : Ax ≥ b}. (3.2)

We are given a disjunction of the form

πx ≤ π0 OR πx ≥ π0 + 1 (3.3)

such that (π, π0) is integer, πj = 0, ∀j 6∈ J and πx∗ − π0 = η∗, with η∗ ∈ ]0, 1[.
In this chapter3 we are interested is deriving the “strongest” (in some sense to be di-

scussed later) disjunctive cut γx ≥ γ0 violated by x∗, according to the classical approach
of Balas [16]. (Disjunctive cuts which can be derived by imposing a single disjunction
such as (3.3) on a polyhedron P are also known as split cuts; see Cook, Kannan and
Schrijver [54].) To this end, let us denote by P0 (respectively, P1) the polyhedron ob-
tained from P by imposing the additional restriction πx ≤ π0 (resp., πx ≥ π0 + 1). By
Farkas lemma, the validity of γx ≥ γ0 for P0 and for P1, and hence for conv(P0 ∪ P1),
can always be certified by means of nonnegative multipliers (u, u0, v, v0) associated with
the inequalities defining P0 and P1 according to the following scheme:

P0

(u) Ax ≥ b
(u0) −πx ≥ −π0

P1

(v) Ax ≥ b
(v0) πx ≥ π0 + 1

A most-violated disjunctive cut can therefore be found by solving the following Cut
Generating Linear Program (CGLP) that determines the Farkas multipliers so as to
maximize the violation of the resulting cut with respect to the given point x∗:

(CGLP) min γx∗ − γ0 (3.4)
γ = uA− u0π (3.5)
γ = vA + v0π (3.6)

γ0 = ub− u0π0 (3.7)
γ0 = vb + v0(π0 + 1). (3.8)

u, v, u0, v0 ≥ 0 (3.9)

Note that, according to Farkas lemma, the two equations (3.7) and (3.8) defining γ0

should be relaxed into ≤ inequalities. However it is not difficult to see that, due to the
(possibly implicit) presence of the trivial inequality 0x ≥ −1, one can always require
that equality holds in both cases.

By construction, any feasible CGLP solution with negative objective function value
corresponds to a violated disjunctive cut. However, as stated, the feasible CGLP set is

3The main steps related to a typical disjunctive cut separation procedure (i.e., projection onto the
support, subsequent lifting, a posteriori cut strengthening by changing the disjunction) have been already
discussed in Chapter 2. To avoid confusion, these steps are briefly recalled even in this chapter, in the
context of the required different notation, in which the bounds on x variables are eventually included
in the system Ax ≥ b.
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a cone and needs to be truncated so as to produce a bounded LP in case a violated cut
exists. This crucial step will be addressed in the next section.

Usually, the CGLP is projected onto the support of x∗. Given a variable xk restricted
to be nonnegative and such that x∗k = 04, it is well known [20] that one can project xk

away. More precisely, one can avoid considering the CGLP constraints associated with
γk and neglect constraint xk ≥ 0 in both P0 and P1. The resulting (reduced) CGLP is
then solved and the cut coefficient γk is derived afterwards by solving the trivial lifting
problem

min{γk : γk = uAk − u0πk = vAk + v0πk, u, v ≥ 0}, (3.10)

where the Farkas multipliers u and v are fixed as in the optimal solution of the reduced
CGLP but those related to the previously neglected bound constraint xk ≥ 0.

In practice, disjunction (3.3) is typically elementary, i.e., it involves only one integer
variable and it reads xj ≤ bx∗jc OR xj ≥ dx∗je, with j ∈ J and x∗j fractional. As such,
the disjunctive cut only exploits the integrality requirement on a single variable and
can therefore be improved easily by an a posteriori cut strengthening procedure as the
one proposed by Balas and Jeroslow [23]. As already discussed in Chapter 2, such a
strengthening can be also interpreted as finding the best disjunction for the given set
of multipliers.

Recently, Balas and Perregaard [25] developed an elegant and efficient way of solving
the CGLP by making pivot operations in the “natural” tableau involving the original
x variables only (plus surplus variables), which represents a crucial speed-up in the
implementation of the method.

In this chapter we investigate computationally the main ingredients of a disjunctive
cut separation procedure, and analyze their impact on the overall performance at the
root node of the branching tree. To be more specific, we consider a testbed of MIPs
taken from MIPLIB library [36]. For each instance, we solve the root-node LP rela-
xation and generate 10 rounds of disjunctive cuts computed according to alternative
strategies. In each round, a violated disjunctive cut is generated for each fractional LP
components x∗j , by exploiting the disjunction xj ≤ bx∗jc OR xj ≥ dx∗je. In order to
limit possible side effects, no a posteriori cut strengthening procedure is applied, unless
otherwise stated.

The chapter is organized as follows. In Section 3.2 we compare classical normali-
zation conditions used to truncate the CGLP cone, and try to better understand their
role. In Section 3.3 we characterize weak rays/vertices of the CGLP leading to domi-
nated cuts and we propose a practical heuristic method to strengthen them. In Section
3.4 we show that using redundant constraints in the CGLP can lead to very weak cuts,
and we analyze such an issue with respect to the normalization used. In Section 3.5
we introduce a new normalization which is particularly suited for set-covering type pro-
blems and we analyze its theoretical properties and computational behavior. Finally,
some conclusions are drawn in Section 3.6.

4Of course, variables with nonzero lower bound can be shifted, while variables at the upper bound
can be complemented.
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3.2 The role of normalization

In order to truncate the CGLP cone one can introduce a suitable cut normalization
condition expressed as a linear (in)equality. A possible normalization, called trivial in
the sequel, is as follows:

u0 + v0 = 1. (3.11)

One of the most widely-used (and effective) truncation condition, called the Standard
Normalization Condition (SNC) in the following, reads instead:

m∑

i=1

ui +
m∑

i=1

vi + u0 + v0 = 1. (3.12)

This latter condition was proposed in Balas [17] and investigated by Ceria and Soares
[45] and by Balas and Perregaard [24, 25]. (Obviously, (3.11) and (3.12) are just two
among the possible normalization conditions for truncating the CGLP cone, probably
the simplest and the most widely used, respectively. For a detailed account on other
normalization conditions we refer the reader to [45, 24].)

The choice of the normalization condition turns out to be crucial for an effective
selection of a “strong” disjunctive cut in that it affects heavily the choice of the optimal
CGLP solution. To see this it is enough to observe that, since the CGLP feasible set is
a cone and assuming a violated cut exists, one can always swap the role of the objective
function and of the normalization condition. In other words, one could equivalently
fix the objective function to a given negative value (say, -1) so as to only allow for
violated cuts, and use the left-hand side of the normalization condition as the objective
function to be minimized. Hence, the actual CGLP “optimal” cut depends heavily on
the normalization condition.

Balas and Perregaard [25] showed that the well-known Gomory Mixed-Integer (GMI)
cut [99] is a basic solution of the CGLP when either the SNC or the trivial normalization
is applied. Our first result is to prove that this solution is indeed optimal when the trivial
normalization (3.11) is used. We start with a useful lemma.

Lemma 3.1 Let x∗ ∈ P and let (γ, γ0, u, v, u0, v0) be a feasible solution of the CGLP
(3.4)-(3.9). Then valid upper bounds on the cut violation can be computed as follows:

UB1: γ0 − γx∗ ≤ u0η
∗

UB2: γ0 − γx∗ ≤ v0(1− η∗)

UB3: γ0 − γx∗ ≤ (u0 + v0) (1− η∗) η∗.

Proof. Because of (3.5) and (3.7), γx∗ − γ0 = u(Ax∗ − b) − u0(πx∗ − π0) ≥ −u0η
∗.

Analogously, from (3.6) and (3.8) we obtain γx∗−γ0 = v(Ax∗− b)+ v0(πx∗−π0− 1) ≥
−v0(1− η∗). Adding up the two inequalities above weighed by 1− η∗ and η∗, respecti-
vely, one gets the claimed UB3 bound. 2
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Given a vertex x∗ of P and the associated basis, the next theorem shows how to
compute a solution of the CGLP whose violation is equal to bound UB3 above—for
any given disjunction (3.3). Moreover, as shown in [24, 25], for an appropriate choice
of a non-elementary disjunction this CGLP solution yields precisely a GMI cut asso-
ciated with the optimal LP tableau (see Chapter 2, Section 2.4). As a consequence of
Lemma 3.1, this easily-computable cut has a violation that is optimal among the cuts
with constant u0 + v0, i.e., when the trivial normalization (3.11) is imposed. Note ho-
wever that this is not necessarily the case when a different normalization (in particular,
the SNC one) is applied.

For any vector v, let operator [v]+ takes the maximum between the argument and
zero (componentwise); by definition, v ≡ [v]+ − [−v]+ with [v]+ ≥ 0 and [−v]+ ≥ 0.

Theorem 3.1 Assume w.l.o.g. rank(A) = n. Given a vertex x∗ of P , let system
Ax ≥ b be partitioned into Bx ≥ bB and Nx ≥ bN , where Bx∗ = bB and B is an
n × n nonsingular matrix. Let (uB, vB) and (uN , vN ) denote the Farkas multipliers
associated with the rows of B and N , respectively. For a given disjunction (3.3) with
η∗ = πx∗ − π0 ∈ [0, 1], let u∗0 = 1 − η∗, v∗0 = η∗, u∗N = v∗N = 0, u∗B = [πB−1]+
and v∗B = [−πB−1]+, while γ∗ and γ∗0 are defined through equations (3.5) and (3.7),
respectively. Then (γ∗, γ∗0 , u∗, v∗, u∗0, v

∗
0) is an optimal CGLP solution w.r.t. the trivial

normalization (3.11).

Proof. We first prove feasibility. Consistency between (3.5) and (3.6) requires
u∗A − u∗0π = v∗A + v∗0π, i.e., u∗B − v∗B = (u∗0 + v∗0)πB−1 = πB−1, a condition that
follows directly from the definition of u∗B and v∗B. Analogously, consistency between
(3.7) and (3.8) requires (u∗B − v∗B)bB = (u∗0 + v∗0)π0 + v∗0, i.e., πB−1bB = π0 + v∗0. This
latter equation is indeed satisfied because B−1bB = x∗ and v∗0 = η∗ = πx∗ − π0. As to
optimality, we first observe that u∗0 + v∗0 = 1 holds by definition. Because of (3.5) and
(3.7), γx∗−γ0 = u∗(Ax∗− b)−u∗0(πx∗−π0) = u∗B(Bx∗− bB)+u∗N (Nx∗− bN )−u∗0η

∗ =
0 + 0− (1− η∗)η∗, hence the cut violation attains bound UB3 of Lemma 3.1. 2

The theorem above shows that, in case the trivial normalization is adopted, the
CGLP can be solved in a closed form for any vertex x∗. Moreover, with this nor-
malization, in all optimal CGLP solutions the slack constraints receive a null Farkas
multiplier, i.e., only tight constraints play a role in the cut derivation. This is an un-
necessary restriction that can actually lead to weak cuts, as computationally shown in
the sequel.

The first set of experiments we designed was aimed at evaluating the actual practi-
cal impact of different normalization conditions. In particular, we compared the SNC
normalization (3.12) with the alternative trivial normalization (3.11) by warm starting
each CGLP with the basic feasible solution from Theorem 3.15. Moreover, unless expli-
citly stated, CGLP is projected onto the support of x∗, possibly after complementing
and shifting variables at their bound.

5The Balas and Perregaard [25] technique working on the original tableau and the solution of CGLP
by using the GMI as a warm start, are equivalent procedures.
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The outcome of our experiments is given in Table 3.1. As already mentioned, we
applied 10 rounds of cuts. At each round, a cut was generated from each fractional
variable. No a-posteriori cut strengthening was applied. As usual, the CGLP is solved
projected on the x∗ support. Instances denoted as “∗” are neglected in the average
computations. The table reports (i) the number of separated cuts, (ii) the quality of
the lower bound (i.e., percentage gap closed at the root node) and (iii) the average
cardinality of the support of vector u + v, denoted as S(u, v) := {i ∈ {1, . . . , m} :
ui + vi > 0} (|S| for short), i.e., how many constraints are actually used, on average, to
generate a cut.

Table 3.1: Trivial vs. SNC normalization.

Trivial normalization (GMI) SNC normalization
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 137 70.74 59.49 71 70.74 43.72
bell5 202 28.18 31.20 178 94.29 11.75

blend2 156 28.73 11.70 192 30.51 8.10
flugpl 93 15.15 7.57 92 18.36 5.85

gt2 191 98.71 14.52 196 93.46 10.28
lseu 152 32.94 14.34 196 41.33 9.17

∗markshare1 68 0.00 1.00 74 0.00 1.39
mod008 104 12.09 10.40 139 17.05 12.41

p0033 103 58.33 5.72 113 67.86 4.81
p0201 574 18.58 56.03 767 93.82 13.43

rout 445 8.52 135.39 434 24.26 68.07
∗stein27 235 0.00 19.74 252 0.00 6.53

vpm1 255 36.95 9.03 263 55.84 5.39
vpm2 424 42.08 71.72 403 74.96 17.27
avg. 236.333 37.583 35.593 253.667 56.873 17.521

Table 3.1 shows clearly that normalizations (3.12) and (3.11) yield quite different
results. As a matter of fact, the dual support of cuts separated with (3.12) is much
sparser (i.e., less constraints are used in the cut derivation) and the quality of final
bound is significantly improved. To get more insights on the different behaviors of
(3.12) and (3.11), for instance p0201 we provide a full picture of the main differences
between the separated inequalities.

Figures 3.1–3.3 report, for each iteration, the dual bound reached after adding the
cuts, the average density of the cuts (i.e., the number of nonzero coefficients), and the
average cardinality of S(u, v). Figure 3.4 reports, for each k = 1, . . . , 10, the number of
separated cuts having “rank” k. Here, we use a relaxed definition of rank, namely we
compute the rank rnk(γ, γ0) of a cut γx ≥ γ0 as

rnk(γ, γ0) := 1 + max
i∈S(u,v)

rnk(ai, bi),

where rnk(ai, bi) is the rank of constraint aix ≥ bi (constraints in the original formula-
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Figure 3.1: SNC vs. GMI: dual bound
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Figure 3.3: SNC vs. GMI: avg. cardi-
nality of S(u, v) for instance p0201.
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Figure 3.4: SNC vs. GMI: cut rank for
instance p0201.

tion are defined to be of zero rank)6.

3.2.1 Why does SNC normalization work so well?

A careful analysis of the computational results in Table 3.1 and Figures 3.1–3.4 reveal
a very (tricky but) important feature of the SNC scheme that improves significantly its
performance. Indeed, it turns out that the use of the SNC normalization (3.12) enforces
the following very nice properties:

1. The norm of the separated cuts tends to become smaller and smaller as a result
of the small multipliers used for the newly generated cuts (that is, in turn, a
consequence of having limited the multiplier sum to 1). This means that the
separated cuts inserted in the LP are automatically scaled so as to have “small
coefficients”. Therefore, in the subsequent iterations these cuts would need big
Farkas multipliers to become relevant, a situation that is however penalized by
the normalization condition itself. As a consequence, the normalization penalizes

6Note that this way of computing the rank provides just an upper bound on the classical definition
of Chvátal rank [49].

27



implicitly the rank of the cuts to be generated, because high-rank cuts will be
“expensive” in terms of multiplier sum, hence low-rank cuts tend to be separated
at each step.

2. Since low-rank cuts are preferred and since the original (rank-0) inequalities are
generally sparse, the separated cuts tend to remain sparse; this is also a conse-
quence of the fact that the SNC normalization tends to reduce the sum of the
components of the Farkas multiplier vector and hence it increases the sparsity of
its support, so a small number of constraints are typically used in the disjunctive
cut derivation.

Trivial normalization (3.11), instead, takes care only of the Farkas multipliers u0 and
v0 associated with the disjunction. Indeed, as shown in Section 3.2, only constraints
which are tight at x∗ are used in the cut derivation, thus the rank of the cuts increases
very quickly, basically at each iteration. Moreover, all other constraint multipliers are
not penalized, hence (i) several constraints are used in the cut derivation, thus cuts
increase their density, and (ii) Farkas multipliers can assume huge values, thus the
subsequent cut lifting procedure may produce very weak coefficients for the variables
outside the support of x∗.

In the SNC normalization case the coefficient lifting is not an issue. Indeed, since all
the constraint multipliers in the SNC normalization are penalized and each multiplier
tends to be small, the coefficient lifting of the variables outside the support of x∗ – to
be performed afterwards – is “safe”, i.e., also the coefficients of these variables remain
under control.

3.2.2 Nothing is perfect!

Although it produced good results in the experiments reported in Table 3.1, there are
cases where normalization (3.12) may lead to very weak disjunctive cuts.

Bad Scaling.

A bad feature of the SNC normalization is its dependency on the relative scaling of
the constraints, in the sense that the relative size of the Farkas multipliers (whose
sum is fixed to 1) depends on the relative size of the coefficients of the corresponding
constraints. Indeed, it is easy to see that the multiplication by a positive factor φ
of the i-th constraint in the system Ax ≥ b implies that the corresponding ui and vi

multipliers are divided by φ, which in turn is equivalent to use a coefficient 1/φ (instead
of 1) in the normalization condition (3.12). Thus, the scaled constraint is “cheaper” if
one interprets the right hand side of (3.12) as a resource.

The following experiment clearly demonstrates this unstable behavior: we ran the
CGLP code with the classical SNC normalization condition, as in Table 3.1, but we
just multiplied by 1,000 each disjunctive cut before its addition to the current LP. At
first glance, one could guess that this “innocent change” would not have any impact on
the overall performance, but the actual results reported in Table 3.2 show that this is
definitely not the case.
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Table 3.2: “Classical” SNC approach vs. “Bad scaled” SNC approach.

“Classical” SNC “Bad scaled” SNC
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 71 70.74 43.72 69 70.74 44.32
bell5 178 94.29 11.75 214 88.83 17.47

blend2 192 30.51 8.10 166 28.91 11.71
flugpl 92 18.36 5.85 90 15.40 7.40

gt2 196 93.46 10.28 184 93.42 17.22
lseu 196 41.33 9.17 137 38.58 10.88

∗markshare1 74 0.00 1.39 206 0.00 14.60
mod008 139 17.05 12.41 104 3.90 10.21

p0033 113 67.86 4.81 94 57.09 6.40
p0201 767 93.82 13.43 610 49.91 45.72

rout 434 24.26 68.07 435 13.03 152.66
∗stein27 252 0.00 6.53 248 0.00 22.39

vpm1 263 55.84 5.39 244 47.59 8.50
vpm2 403 74.96 17.27 420 54.39 22.27
avg. 253.667 56.873 17.521 230.583 46.816 29.563

As explained, multiplying by 1,000 the generated cuts is equivalent to dividing by
1,000 the coefficient of the corresponding Farkas multipliers ui and vi in the normaliza-
tion condition, so we actually weaken the penalty on the choice ui +vi > 0 that leads to
low-rank sparse cuts. In other words, the scaling operation interferes with the nice SNC
tendency of producing low-rank cuts, and the overall performance deteriorates signifi-
cantly, as shown in detail for problem p0201 in Figures 3.5–3.8. (Incidentally, the above
discussion shows the importance of “small implementation details” when evaluating the
performance of a method–two apparently equivalent implementations of precisely the
same idea lead to very different outcomes.)

Bad Examples.

Even for toy instances, the CGLP can have hard time in finding a good disjunctive cut.
This is illustrated by the following two simple 2-dimensional cases, where the optimal
CGLP solution may correspond to very weak cuts.

Example 3.1 Consider the simple ILP whose continuous relaxation, depicted in Figure
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Figure 3.5: “Classical” SNC vs. “Bad
scaled” SNC: dual bound for instance
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scaled” SNC: avg. cut density for in-
stance p0201.
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Figure 3.7: “Classical” SNC vs. “Bad
scaled” SNC: avg. cardinality of S(u, v)
for instance p0201.
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scaled” SNC: cut rank for instance
p0201.

3.9, has one of the constraints, namely (a5), scaled by a parameter k > 0:

min −x1 −2x2

(a1) 4x1 −4x2 ≥ −2
(a2) −2x1 −2x2 ≥ −3
(a3) 8x1 −4x2 ≥ −1
(a4) −x1 ≥ −1
(a5) −kx2 ≥ −k
(a6) x1 ≥ 0
(a7) x2 ≥ 0

The optimal solution of the LP relaxation is x∗ = (1
2 , 1) and three cuts can be derived

from disjunction x1 ≤ 0 OR x1 ≥ 1, namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, u0, v0), of value
z1 = − 2

11 , optimal for k ≤ 8;
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Figure 3.9: Example 3.1 depicted.

(c2) −x1 +4x2 ≤ 1, corresponding to the basic solution of the CGLP (u3, v2, u0, v0), of
value z2 = −1

6 , never optimal.

(c3) −x1 +2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v5, u0, v0), of
value z3 = − k

4+5k , optimal for k ≥ 8.

So, depending on the value of k, the optimal CGLP solution corresponds to weak cuts,
either (c1) or (c3), whereas the facet-defining cut (c2) will never be selected. 2

Note that the redundant (with respect to P ) constraint (a5) is only used in the above
example to show dependency on scaling. In fact, such a constraint can be removed wi-
thout making cut (c1) optimal—the constraint is indeed removed in the slightly modified
example that follows.

Example 3.2 For the ILP whose continuous relaxation is depicted in Figure 3.10:

min −x1 −2x2

(b1) 2x1 −2x2 ≥ −1
(b2) −2x1 −2x2 ≥ −3
(b3) 4x1 +4x2 ≥ 3
(b4) −x1 ≥ −1
(b5) x1 ≥ 0
(b6) x2 ≥ 0

the optimal solution of the continuous relaxation is again x∗ = (1
2 , 1) and three cuts can

be derived from disjunction x1 ≤ 0 OR x1 ≥ 1 (yielding P0 = ∅), namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, u0, v0), of value
z1 = −1

6 (optimal);
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Figure 3.10: Example 3.2 depicted.

(c2) x1 ≥ 1, corresponding to the basic solution of the CGLP (u1, u3, u0, v0), of value
z2 = − 1

22 (nonoptimal).

Since (c2) is not optimal for the associated CGLP, the only facet-defining cut (c2) will
not be selected. 2

3.2.3 Comments

The examples above show clearly the following fact: even if the solution of the CGLP is a
vertex, the corresponding disjunctive cut can be very weak. At first glance, this may be
seen as a counter-intuitive result as one would expect that CGLP vertices correspond to
facets of conv(P0∪P1). This is however not the case, as discussed e.g. in Balas and Per-
regaard [24], since the CGLP is not defined in the “natural” reverse polar space (γ, γ0)
but in an enlarged space involving the Farkas variables explicitly. As a matter of fact,
in the extended space (γ, γ0, u, v, u0, v0) there are several rays/vertices whose projection
in the (γ, γ0) space is nonextremal, therefore the corresponding cut can be obtained as
the sum of other valid cuts and hence is dominated. By using software PORTA [46]
we can get a clear picture of the situation in Example 3.1. In the natural polar space
(γ, γ0), the projected CGLP cone has only 4 extreme rays that correspond to the facets
of conv(P0 ∪ P1). In space (γ, γ0, u, v, u0, v0), instead, the CGLP cone has 117 extreme
rays that correspond to 117 vertices once normalization (3.12) is applied. Only 6 of
these vertices correspond to violated constraints, and 3 of them correspond to the cuts
depicted in Figure 3.9. So, most CGLP vertices in the (γ, γ0, u, v, u0, v0) space corre-
spond to very weak cuts, and the cut separation procedure can be in trouble in returning
a facet-defining cut even in this toy example. As mentioned above, this is essentially
due to the fact that the cut is separated in the extended space (γ, γ0, u, v, u0, v0), where
a dominated cut could turn out not to be dominated in terms of the multipliers used
for its generation. For instance, 3 extreme rays of the CGLP cone for Example 3.1 are
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reported below.

γ1 γ2 γ0 u1 u2 u3 u4 u5 u6 u7 v1 v2 v3 v4 v5 v6 v7 u0 v0

(r1) 1 −4 −1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 7 5
(r2) −1 0 −1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
(r3) 0 −4 −2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 4 4

In the (γ, γ0) space, the third constraint is clearly dominated as it is just the sum of
the previous ones, but there is no way to obtain ray r3 as conic combination of rays r1

and r2 in the extended space, due to the presence of the Farkas components. The above
drawback is even more evident in Example 3.2 where P0 = ∅, hence x1 ≥ 1 itself is a
valid cut (c2), but not the best one for the CGLP.

3.3 Weak CGLP rays/vertices and dominated cuts

The examples in the previous section show that some rays/vertices of the CGLP lead
to weak cuts and should not be used. In the next section we formally characterize
those rays/vertices which correspond to cuts that are trivially dominated by other cuts
associated with solutions of the same CGLP (Section 3.3.1). In Section 3.3.2 we pro-
pose a heuristic procedure to strengthen disjunctive cuts associated with dominated
rays/vertices, whose practical effect is computationally investigated in Section 3.3.3.

3.3.1 Characterization

The first step to characterize weak rays/vertices is the following definition.

Definition 3.1 (Strictly dominated cuts) Let γ̃x ≥ γ̃0 be a cut valid for conv(P0 ∪ P1)
but not for P . If there exists another cut γx ≥ γ0 valid for conv(P0 ∪ P1) such that
{x ∈ P : γx ≥ γ0} ( {x ∈ P : γ̃x ≥ γ̃0}, then the cut γ̃x ≥ γ̃0 is said to be strictly
dominated w.r.t. P .

Note that, in the above definition, the domination of cut γ̃x ≥ γ̃0 only depends on
a single other cut (γx ≥ γ0).

Lemma 3.2 Let γ̃x ≥ γ̃0 be a valid cut for conv(P0∪P1) such that P̃ := {x ∈ P : γ̃x ≥
γ̃0} ( P , and assume P̃ full dimensional. If there exists another cut γx ≥ γ0 valid for
conv(P0 ∪P1) and such that γ̃ = γ + µA, γ̃0 = γ0 + µb for a certain µ ∈ Rm

+ \ {0}, then
γ̃x ≥ γ̃0 is strictly dominated w.r.t. P .

Proof. Define P := {x ∈ P : γx ≥ γ0}. By definition, x ∈ P and γx ≥ γ0

imply γ̃x ≥ γ̃0, hence P ⊆ P̃ . We need to show that the above inclusion is al-
ways strict. Indeed, let F̃ := {x ∈ P : γ̃x = γ̃0} denote the face of P̃ induced by
γ̃x ≥ γ̃0, and consider any given h ∈ {1, . . . ,m} such that µh > 0. Since P̃ is full
dimensional, there exists x̂ ∈ F̃ such that ahx̂ > bh (otherwise γ̃x ≥ γ̃0 would be
a positive multiple of ahx ≥ bh, impossible since we are assuming P̃ ( P ). Hence
γx̂− γ0 = (γ̃x̂− γ̃0)− µ(Ax̂− b) ≤ −µh(ahx̂− bh) < 0, i.e., x̂ ∈ P̃ \ P . 2
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For any feasible solution (γ, γ0, u, v, u0, v0) of (3.5)–(3.9), we denote by S(u) := {i ∈
{1, . . . , m} : ui > 0} and S(v) := {i ∈ {1, . . . , m} : vi > 0} the support of vectors u and
v, respectively. It is not difficult to show that in any extreme ray of (3.5)–(3.9) yielding
a cut nonvalid for P , both u0 and v0 are strictly positive, while S(u) and S(v) are
disjoint. This property is also inherited by the vertices of the CGLP with normalization
(3.12) (see, Balas and Perregaard [25]). We next give a characterization of the extreme
rays/vertices of the CGLP that lead to strictly dominated cuts according to Definition
3.1.

Theorem 3.2 Assume conv(P0 ∪ P1) full dimensional. Let (γ̃, γ̃0, ũ, ṽ, ũ0, ṽ0) be an
extreme ray of the CGLP cone (3.5)–(3.9) corresponding to a cut γ̃x ≥ γ̃0 nonvalid for
P . Then γ̃x ≥ γ̃0 is strictly dominated w.r.t. P if and only if there exists a feasible
solution (γ̃, γ̃0, û, v̂, û0, v̂0) of (3.5)–(3.9) such that S(û) ∩ S(v̂) 6= ∅.
Proof. We first prove the if condition. Given a feasible solution (γ̃, γ̃0, û, v̂, û0, v̂0) of
(3.5)–(3.9) such that S(û) ∩ S(v̂) 6= ∅, define µ = min{û, v̂} (componentwise) and note
that µi > 0 for any i ∈ S(û) ∩ S(v̂). Then, define u = û − µ ≥ 0, v = v̂ − µ ≥ 0,
γ = γ̃ − µA, γ0 = γ̃0 − µb. Since (γ, γ0, u, v, û0, v̂0) is a feasible solution of (3.5)–(3.9),
the cut γx ≥ γ0 is valid for conv(P0∪P1) and dominates γ̃x ≥ γ̃0 w.r.t. P from Lemma
3.2. Concerning the only if condition, assume γ̃x ≥ γ̃0 to be strictly dominated w.r.t. P
by γx ≥ γ0, and let (γ, γ0, u, v, u0, v0) be a feasible solution of (3.5)–(3.9) yielding the
dominating cut. Then, there exist µ ∈ Rm

+ \ {0} and µ0 > 0 such that γ̃ = µA + µ0γ,
γ̃0 = µb + µ0γ0. Hence (γ̃, γ̃0, û, v̂, û0, v̂0) is a feasible solution of (3.5)–(3.9) yielding
the dominated cut, where û = µ + µ0u, v̂ = µ + µ0v, û0 = µ0u0, v̂0 = µ0v0 and
S(û) ∩ S(v̂) 6= ∅. 2

Corollary 3.1 Let (γ, γ0, u, v, u0, v0) be an optimal solution of the CGLP with norma-
lization (3.12), yielding a cut violated by x∗ (i.e., γx∗−γ0 < 0). Then S(u)∩S(v) = ∅.
Note that the above corollary holds even if the CGLP cone is truncated with a more
general normalization than (3.12), e.g., the one to be discussed in Section 3.5.

3.3.2 Strengthening

Theorem 3.2 above suggests a way to strengthen disjunctive cuts arising from weak
rays/vertices of the CGLP. Let us assume to be given a vertex (γ̃, γ̃0, ũ, ṽ, ũ0, ṽ0) of the
CGLP associated with a valid disjunction (3.3) and truncated by any normalization,
e.g., (3.11) or (3.12). Consider the following LP:

max 1T µ (3.13)
γ̃ = (u + µ)A− u0π (3.14)
γ̃ = (v + µ)A + v0π (3.15)

γ̃0 = (u + µ)b− u0π0 (3.16)
γ̃0 = (v + µ)b + v0(π0 + 1) (3.17)

u, v, µ, u0, v0 ≥ 0, (3.18)
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where (γ̃, γ̃0) is fixed. Assuming conv(P0∪P1) to be full dimensional, it is not difficult to
see that the above LP is always bounded and the optimal solution value is greater than 0
if and only if γ̃x ≥ γ̃0 is strictly dominated w.r.t. P . Moreover, in this case any optimal
solution (u, v, u0, v0, µ) of (3.13)–(3.18) yields a valid cut γx ≥ γ0 for conv(P0 ∪ P1),
computed as γ = uA−u0π = vA+v0π, γ0 = ub−u0π0 = vb+v0(π0 +1), which strictly
dominates γ̃x ≥ γ̃0 w.r.t P . However, the LP (3.13)–(3.18) involves three sets of Farkas
multipliers and might be quite time consuming in practice.

A practical heuristic way to look for a dominating cut is based on the following Cut
Dominating LP (CDLP), which uses only two sets of Farkas multipliers as in the CGLP:

(CDLP) max z =
∑

i∈S(ṽ)

ui +
∑

i∈S(ũ)

vi (3.19)

γ̃ = uA− u0π (3.20)
γ̃ = vA + v0π (3.21)

γ̃0 = ub− u0π0 (3.22)
γ̃0 = vb + v0(π0 + 1) (3.23)

u, v, u0, v0 ≥ 0. (3.24)

Let us assume the above CDLP to be bounded and consider an optimal solution
(u∗, v∗, u∗0, v

∗
0) of value z∗, yielding the same cut γ̃x ≥ γ̃0 as (ũ, ṽ, ũ0, ṽ0). For any

α ∈ [0, 1], the convex combination of (u∗, v∗, u∗0, v
∗
0) and (ũ, ṽ, ũ0, ṽ0) computed as

û = αũ + (1− α)u∗, v̂ = αṽ + (1− α)v∗,
û0 = αũ + (1− α)u∗0, v̂0 = αṽ0 + (1− α)v∗0,

(3.25)

still yields cut γ̃x ≥ γ̃0. However, in case z∗ > 0 we have S(û) ∩ S(v̂) 6= ∅, i.e., we
have obtained the same cut from two sets of nondisjoint multipliers. Hence, a valid
disjunctive cut γx ≥ γ0 which dominates γ̃x ≥ γ̃0 w.r.t. P can be computed through
Theorem 3.2 as:

µ = min{û, v̂}, u = û− µ, v = v̂ − µ,
u0 = û0, v0 = v̂0,
γ = uA− u0π, γ = vA + v0π,
γ0 = ub− u0π0, γ0, = vb + v0(π0 + 1).

(3.26)

Obviously, the dominance might be not strict if conv(P0 ∪ P1) is not full dimensional.

3.3.3 Empirical Analysis

In order to understand how much we can improve on the disjunctive cuts obtained by
solving the CGLP with SNC, we performed the following experiment. For any violated
cut γ̃x ≥ γ̃0 separated by solving the CGLP with SNC normalization (3.12), we try
to strengthen it by solving the corresponding CDLP (3.19)–(3.24). If z∗ > 0, then we
compute the new dominating cut γx ≥ γ0 by using (3.25), with α = 1/2, and (3.26),
and we replace the original cut γ̃x ≥ γ̃0 by the dominating one. Otherwise, if either
z∗ = 0 or CDLP turns out to be unbounded, we keep the original cut γ̃x ≥ γ̃0.
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The computational results reported in Tables 3.3 and 3.4 compare the cuts obtained
by using the SNC normalization with those strengthened through the additional solution
of the CDLP. In order to get a better understanding of the impact of the strengthening,
we first solved both CGLP and CDLP without the projection onto the support of x∗

(Table 3.3). Indeed, solving the problem on the complete model guarantees that the
strengthened cut dominates the original one, domination being guaranteed to be strict
in the full dimensional case. Since the computing time in the complete variable space is
not negligible, we also solved the problem in the projected space (Table 3.4). However,
a domination on the support might not correspond to a dominated cut once the cut is
lifted outside the support. In fact, a cut which is stronger in the support might turn
out to be weaker overall. Hence, to limit such a phenomenon, in the experiments in
Table 3.4 we strengthen the cut by the Balas-Jeroslow procedure [23] before defining
and solving the CDLP. Of course, both the original and the dominating cuts are also
strengthened afterwards.

Table 3.3: SNC Normalization vs. SNC Normalization + CDLP. No projection (and no
Balas-Jeroslow strengthening).

SNC Normalization SNC Normalization + CDLP
Instance # cuts %gap sep. time # cuts # dom # unb %gap sep. time

bell3a 71 70.74 0.1 71 19 14 70.74 0.4
bell5 188 94.12 0.5 186 11 125 94.31 1.2

blend2 197 30.49 4.7 210 54 2 32.72 12.0
flugpl 93 18.34 0.1 91 26 0 18.36 0.1

gt2 218 94.13 1.2 200 141 1 94.49 2.8
lseu 171 42.46 0.5 191 68 4 42.51 0.7

∗markshare1 77 0.00 0.1 75 0 75 0.00 0.2
mod008 107 15.46 3.9 112 27 0 15.84 6.0

p0033 116 57.25 0.1 106 55 8 57.30 0.2
p0201 692 92.53 46.4 750 38 622 98.97 70.3

rout 349 29.46 80.5 351 159 142 30.93 118.1
∗stein27 251 0.00 0.6 248 21 0 0.00 1.3

vpm1 267 50.62 2.3 275 8 115 59.91 5.9
vpm2 390 74.73 7.5 397 84 130 75.71 14.5
avg. 238.250 55.861 12.317 245.000 57.649 19.350

Tables 3.3 and 3.4 report the number of separated cuts, the percentage gap closed
(within ten rounds) and the computing time spent on separation. In addition, for the
strengthened version of the cuts we also report how many times the CDLP returns z∗ > 0
(column ‘# dom’) and the number of times in which CDLP was instead unbounded
(column ‘# unb’). Separation time of the strengthened version includes CGLP solution
time.

Both Tables 3.3 and 3.4 show that the CDLP is indeed effective to change the
disjunctive cuts obtained using the SNC normalization. In general, the procedure is
computationally rather cheap and allows an improvement in the %gap closed which is
sometimes non-negligible.

Of course, the same CDLP can be constructed and solved to strengthen a disjunctive
cut obtained by using any normalization, e.g., the trivial one (3.11). Indeed, we also
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Table 3.4: SNC Normalization vs. SNC Normalization + CDLP. CGLP and CDLP
solved projected onto the x∗ support. Balas-Jeroslow strengthening applied before and
after CDLP.

SNC Normalization SNC Normalization + CDLP
Instance # cuts %gap sep. time # cuts # dom # unb %gap sep. time

bell3a 71 70.74 0.1 69 11 23 70.74 0.2
bell5 172 96.16 0.3 179 38 63 96.16 0.7

blend2 215 33.45 0.7 225 77 30 33.66 5.1
flugpl 92 18.36 0.1 90 29 0 18.59 0.1

gt2 151 96.19 0.2 157 50 55 96.19 0.7
lseu 179 81.09 0.2 171 9 135 86.04 0.4

∗markshare1 80 0.00 0.0 80 3 46 0.00 0.1
mod008 100 31.46 0.1 98 46 9 36.33 0.2

p0033 104 70.98 0.1 113 14 71 75.85 0.2
p0201 669 100.00 10.9 674 1 663 100.00 17.0

rout 603 47.91 38.0 613 6 600 49.50 55.7
∗stein27 251 0.00 0.5 252 14 0 0.00 1.1

vpm1 298 57.88 1.2 255 25 23 58.97 2.1
vpm2 400 75.11 4.0 401 133 29 75.76 6.0
avg. 254.500 64.944 4.658 253.75 66.483 7.367

tested it to strengthen classical GMIs. The results are reported in Table 3.5.

Table 3.5: GMI vs. GMI + CDLP. CDLP solved projected onto the x∗ support. Balas-
Jeroslow strengthening applied before and after CDLP.

GMI GMI + CDLP
Instance # cuts %gap sep. time # cuts # dom # unb %gap sep. time

bell3a 128 70.74 0.1 124 2 103 70.74 0.4
bell5 208 42.23 0.0 200 49 116 67.31 1.0

blend2 125 25.44 0.1 147 56 45 26.26 2.6
flugpl 93 15.15 0.0 91 69 0 15.44 0.1

gt2 146 99.12 0.1 180 35 88 99.99 0.3
lseu 134 53.67 0.1 134 24 106 53.71 0.2

∗markshare1 69 0.00 0.0 69 0 33 0.00 0.0
mod008 77 29.86 0.1 77 0 10 29.86 0.1

p0033 114 71.37 0.0 120 8 103 71.37 0.1
p0201 490 62.29 0.7 490 0 490 62.29 9.0

rout 424 7.60 1.4 424 0 424 7.60 19.6
∗stein27 238 0.00 0.1 245 220 0 0.00 0.8

vpm1 259 36.69 0.1 280 116 100 43.35 2.3
vpm2 389 43.40 0.3 402 74 252 45.22 18.3
avg. 215.583 46.463 0.250 222.417 49.428 4.500

The table has the same structure as Table 3.4 and compares the GMI cuts obtained
from the tableau (i.e., obtained by considering a strengthened non-elementary disjunc-
tion; see Chapter 2, Section 2.4) with those obtained through the additional solution
of the CDLP in the projected space. In particular, the CDLP is solved by considering
an elementary disjunction (note that, the non-elementary disjunction associated with
GMI is indeed elementary in the x∗ support) and the cuts are afterwards strengthened
through the Balas-Jeroslow procedure [23].
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Overall, if the “starting point” is the GMI cut, CDLP is not competitive with
the optimal solution of CGLP with SNC normalization, 49.428% average gap w.r.t.
64.944%. However, it can be viewed as a general tool to improve on the optimal solution
of CGLP, whenever such a solution corresponds to a weak ray/vertex, according to
Definition 3.1.

3.4 Redundancy hurts

Loosely speaking, a redundant constraint for a polyhedron is a constraint whose removal
does not enlarge the polyhedron itself. By Farkas lemma, a constraint aix ≥ bi is said
to be redundant for P = {x ∈ Rn : Ax ≥ b} if there exist δ ≥ 0 and λI ∈ Rm−1

+ such
that ai = λIAI and λIbI = bi + δ, where AI (resp., bI) denotes the submatrix of A
(resp., subvector of b) induced by the row index set I = {1, . . . ,m} \ {i}. Redundancy
is strict if δ > 0.

In the attempt to find a way to get rid of the “weak vertices” in the CGLP, we looked
for more combinatorial properties. A more careful analysis of Example 3.1 reveals a
more general property that allows one to classify as “bad” certain constraints. Indeed,
consider the role of constraint (a1) with respect to the left-branch polytope P0. This
constraint is clearly redundant for P0 (note that this is not the case if the original P
is considered). However, if constraint (a1) participates with a positive multiplier to the
definition of the disjunctive cut whereas constraint (a3) does not (i.e., if u1 > 0 and
u3 = 0), then the cut itself has to be valid for the point x1 = 0, x2 = 1/2 and cannot be
“pushed” any further inside P0. This is precisely what happens for the weak cuts (c3)
and (c1), that cannot be supporting for P0 precisely because of the bad choice u1 > 0.

The role of redundancy is formally stated as follows.

Proposition 3.1 If a constraint that is strictly redundant for P0 (resp. P1) is used
in the cut derivation with a nonzero multiplier, then the resulting disjunctive cut is
nonsupporting in P0 (resp. P1).

Proof. Let (γ̃, γ̃0, ũ, ũ0, ṽ, ṽ0) be a feasible solution of the CGLP, with ũi > 0, and
assume that constraint i is strictly redundant for P0. Then there exists (λ, λ0, δ) ∈
Rm+1

+ , with δ > 0 such that ai = λIAI − λ0π and bi = λIbI − λ0π0 − δ. By using
equations (3.5) and (3.7), we get

γ̃ = ũIAI + ũiai − ũ0π = (ũI + ũiλI)AI − (ũ0 + ũiλ0)π
γ̃0 = ũIbI + ũibi − ũ0π0 = (ũI + ũiλI)bI − (ũ0 + ũiλ0)π0 − ũiδ

Thus, for each x ∈ P0 we have γ̃x− γ̃0 = (ũI + ũiλI)(AIx− bI)− (ũ0 + ũiλ0)(πx−π0)+
ũiδ ≥ ũiδ > 0, and this shows that cut γ̃x ≥ γ̃0 is nonsupporting in P0. In the same
way it can be shown that if vh > 0 for a constraint h strictly redundant for P1, then
the cut γ̃x ≥ γ̃0 does not support P1. 2
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By definition, a redundant constraint for P0 or P1 can be obtained as a conic com-
bination of other constraints. If the sum of the multipliers in the conic combination is
greater than 1, then using a redundant constraint is cheaper (with respect to normali-
zation (3.12)) than using the constraints that generate it, hence a redundant constraint
can in fact be preferred by the CGLP. This is formally proved by the following theorem
dealing with redundancy for P0 (the case dealing with P1 being perfectly analogous).

Theorem 3.3 Assume that constraint aix ≥ bi is redundant for P0 as conic combina-
tion of AIx ≥ bI ,−πx ≥ −π0 with multipliers (λI , λ0) ∈ Rm

+ , and let (γ, γ0, u, u0, v, v0)
be a feasible solution of the CGLP with normalization (3.12), such that γx∗ < γ0 and
ui > 0. Then there exist θ > 0 and a feasible solution (γ̃, γ̃0, ũ, ũ0, ṽ, ṽ0) of the CGLP
with normalization (3.12) such that ũi = 0, γ̃ := γ/θ, γ̃0 = γ0/θ, γx∗−γ0 = θ(γ̃x∗−γ̃0),
and θ > 1 if and only if 1λI + λ0 > 1.

Proof. Since (γ, γ0, u, u0, v, v0) is feasible for the CGLP with normalization (3.12),
writing aix ≥ bi in terms of the multipliers (λI , λ0) one gets

γ = (uI + uiλI)AI − (u0 + uiλ0)π = vA + v0π
γ0 = (uI + uiλI)bI − (u0 + uiλ0)π0 = vb + v0(π0 + 1)

while from the normalization condition 1u + 1v + u0 + v0 = 1 one obtains

θ := 1(uI + uiλI) + (u0 + uiλ0) + 1v + v0,

which is then simplified as

θ = 1 + ui(1λI + λ0 − 1).

Since cut γx ≥ γ0 is violated, one must have u0 + v0 > 0, hence θ > 0 holds.
Therefore, one can define the nonnegative quantities ũI := (uI + uiλI)/θ, ũi = 0,
ũ0 := (u0+uiλ0)/θ, ṽ = v/θ, ṽ0 = v0/θ, γ̃ := γ/θ, γ̃0 = γ0/θ, thus getting a feasible solu-
tion of the CGLP that satisfies normalization (3.12) and such that γx∗−γ0 = θ(γ̃x∗−γ̃0).
Moreover, being ui > 0, one has θ > 1 if and only if 1λ + λ0 > 1. 2

The above theorem shows that redundant constraints do not introduce new cuts,
but just scaled copies of already-existing cuts that may have a better objective function
(violation). Loosely speaking, redundant constraints can “trick” normalization (3.12),
in the sense that they can create vertices of the CGLP corresponding to scaled copies
of cuts that are strictly dominated but more attractive (i.e., with a better objective
function value) than the dominating ones.

A very natural way to cope with redundancy is to just eliminate the redundant
constraints from the CGLP, or equivalently to fix their Farkas multipliers to zero. In
Example 3.1, the CGLP without redundant constraints has only 9 extreme rays and 9
vertices (instead of 117), and only one of them corresponds to a violated constraint –
namely, the facet-defining cut (c2).

At a first glance, this example seems to suggest that only strictly redundant (i.e.,
nonsupporting) constraints should be avoided in the cut generation. However, redun-
dant constraints should be avoided even in case they are supporting, as shown by the
example reported below.
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Example 3.3 For the simple ILP

min −x1 −2x2 +10x3

(a1) 4x1 −4x2 ≥ −2
(a2) −2x1 −2x2 −x3 ≥ −3
(a3) 3x1 −2x2 −x3 ≥ −1
(a4) x1 ≥ 0
(a5) x2 ≥ 0
(a6) x3 ≥ 0

only two cuts violated by the optimal solution of the LP relaxation x∗ = (1
2 , 1, 0) can be

derived from disjunction x1 ≤ 0 OR x1 ≥ 1, namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, v6, u0, v0), of
value z1 = − 2

13 (optimal);

(c2) 2x2 + x3 ≤ 1, corresponding to the basic solution of the CGLP (u3, v2, v6, u0, v0),
of value z2 = −1

7 (nonoptimal).

Conv(P0 ∪ P1) has 6 vertices, namely V1 = (0, 0, 0), V2 = (0, 1
2 , 0), V3 = (0, 0, 1),

V4 = (3
2 , 0, 0), V5 = (1, 1

2 , 0), and V6 = (1, 0, 1). In the reverse polar space (γ, γ0), the
projected CGLP cone has only 5 extreme rays that correspond to the facets of conv(P0∪
P1). In space (γ, γ0, u, v, u0, v0), instead, the CGLP cone has 33 extreme rays that
correspond to 33 vertices once normalization (3.12) is applied. In the optimal basis,
constraint (a1) (which is redundant but supporting for P0) is used with u1 > 0, and
the corresponding cut (c1) supports both P0 and P1 in V2 and V5, respectively, but it
is not facet-defining. The CGLP without redundant constraints (in particular without
(a1)) has only 10 extreme rays and 10 vertices (instead of 33), and only one of them
corresponds to a violated constraint—namely, the facet-defining cut (c2). Note that cut
(c2) dominates cut (c1) and is facet-defining since it supports conv(P0 ∪ P1) in the 3
affinely independent vertices V2, V3, and V5. For illustration purposes, 3 extreme rays
r1–r3 and a nonextremal direction α of the CGLP cone are reported below.

γ1 γ2 γ3 γ0 u1 u2 u3 u4 u5 u6 v1 v2 v3 v4 v5 v6 u0 v0

(r1) 0 −2 −1 −1 0 0 1 0 0 0 0 1 0 0 0 0 3 2
(r2) 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
(α) 0 −2 0 −1 0 0 1 0 0 1 0 1 0 0 0 1 3 2
(r3) 0 −2 0 −1 1/2 0 0 0 0 0 0 1 0 0 0 1 2 2

The weak cut (c1) is strictly dominated w.r.t. P by (c2), as the vector α is just the
sum of the extreme rays r1 and r2, the latter corresponding to the original constraint
x3 ≥ 0. However, the redundant constraint (a1) creates an extremal copy of the weak
cut – the extreme ray r3 – which turns out to be the optimal vertex once normalization
(3.12) is applied. 2

The previous discussion shows that extreme rays of the CGLP cone in the extended
space (γ, γ0, u, v, u0, v0) may be nonextremal when projected onto the (γ, γ0) space, and
redundant constraints can add to the cone several extreme-rays corresponding to very
weak cuts. The SNC normalization (3.12) simply maps extreme rays to vertices, and
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creates a possibly “wrong” ranking among the vertices. Unfortunately, as far as we
know no normalization equation is able to truncate the CGLP cone so as to guarantee
that an optimal CGLP vertex in the extended space remains a vertex when projected
in the (γ, γ0) space. For instance, consider normalizations of the form

γ(q − x∗) = 1, (3.27)

which have been deeply investigated in Bonami [37]. Balas and Perregaard [24] proved
that, if q ∈ conv(P0 ∪ P1), then the CGLP truncated with (3.27) has a finite optimum
and that there exists an optimal vertex of the resulting polyhedron in the extended
space whose projection in the natural reverse polar space (γ, γ0) remains extremal.
However, this does not imply that any optimal vertex in the extended space is a vertex
in the projected space – hence even normalization (3.27) could not help in finding a
facet-defining cut.

Example 3.4 (Example 3.3 continued)
Consider again the simple ILP discussed in Example 3.3. If the corresponding CGLP
cone is truncated with normalization (3.27), with q = (0, 0, 0), the resulting polyhedron
has 60 extreme rays and 20 vertices. As before, only two vertices correspond to violated
cuts, namely:

i) the basic solution (u1, v2, v6, u0, v0), of value z1 = −1
2 (optimal), corresponding to

the weak cut (c1);

ii) the basic solution (u3, v2, v6, u0, v0), of value z2 = −1
2 (optimal), corresponding to

the facet-defining cut (c2).

So, even in this case, the separation procedure could select the weak cut (c1), since the
choice of q makes (c1) and (c2) completely equivalent in terms of objective function. 2

3.4.1 Empirical Analysis

In our fourth set of experiments we eliminated redundant constraints in a trivial way
(i.e., by solving LPs) before solving the CGLP. To get a clearer picture, we did not
project the separation problem onto the support of x∗ since such a projection makes
the definition of what is redundant and what is not less clear.

The results are reported in Table 3.6 and show that removing redundant constraints
is indeed very useful. Besides an average improvement in the percentage gap closed of
around 2.5%, only for two problems, namely bell5 and gt2, the “Classical” SNC is
slightly better than the “No redundancy” SNC version, while for some single problems
the improvement is quite substantial, up to 13% for instance p0033. Concerning the
average cardinality of the dual support of the cut there is a slight increase in the “No
redundancy” version which however does not seem relevant.

3.4.2 Working on the Support

Projecting the separation problem onto the support of x∗ has of course the advantage
of dealing with a problem of smaller size. However, according to our experience the
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Table 3.6: “Classical” SNC vs. “No redundancy” SNC with no projection.

“Classical” SNC “No redundancy” SNC
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 71 70.74 64.65 54 70.74 66.19
bell5 188 94.12 16.83 189 93.54 15.80

blend2 197 30.49 71.42 212 30.63 119.90
flugpl 93 18.34 6.45 90 18.83 6.48

gt2 218 94.13 58.11 167 93.68 63.16
lseu 171 42.46 23.86 184 45.10 30.96

∗markshare1 77 0.00 55.99 77 0.00 56.00
mod008 107 15.46 304.18 107 15.48 304.19

p0033 116 57.25 8.75 126 70.32 10.99
p0201 692 92.53 23.40 757 98.31 37.44

rout 349 29.46 189.07 384 31.93 202.18
∗stein27 251 0.00 7.29 249 0.00 6.46

vpm1 267 50.62 11.13 282 54.55 11.10
vpm2 390 74.73 24.23 376 76.47 22.82
avg. 238.250 55.861 66.840 244.000 58.298 74.267

projection can enlarge the set of redundant constraints in a way that decreases the
positive effects associated with their removal. A possible explanation of this behavior is
that projection may hide the redundancy of some bound constraints, hence weakening
the final disjunctive cut. Indeed, consider a variable xk restricted to being nonnegative
and such that x∗k = 0. If xk is projected away with the aim of computing coefficient γk

afterwards through (3.10), then we lose any control on the Farkas variables associated
with the constraint xk ≥ 0, say ui(k) and vi(k). In fact, if it happens that constraint
xk ≥ 0 is redundant, it is very useful to keep explicitly constraints γk = uAk − u0πk =
vAk + v0πk in the CGLP and to impose the additional requirement ui(k) = 0 and/or
vi(k) = 0.

As the above property seems to be crucial for the variable bounds, we defined an
extended support of x∗ by avoiding projecting away any variable whose bound condition
is (tight in x∗ and) redundant. The results when using the extended support are reported
in Table 3.7, where %supp indicates the average percentage of the x variables which are
kept in the (extended) support.

The first part of Table 3.7 reports the same figures as Table 3.1, plus a column
which gives the percentage size (w.r.t. the nominal size) of the CGLP projected on
the support. By comparing the first and second part of the table, we note that the
gain shown by Table 3.6 due to the redundancy removal is lost here (the average gap
closed of 56.873% deteriorates to 54.269%), thus confirming our intuition about the
smaller precision of the redundancy test in such a case. However, the situation is
totally recovered using the extended support as defined above. Indeed, the percentage
value 56.873 improves to 58.793, and the average size of the support does not increase
much (from 50.268% to 53.529%). The only large increase in the size of the CGLP
arises for problem rout, which is in fact a very instructive case: the “Classical” SNC

42



Table 3.7: “Classical” SNC vs. “No redundancy” SNC with cuts separated projected
on the support.

“Classical” SNC “No redundancy” support “No redundancy” ext. support
Instance # cuts %gap %supp |S| # cuts %gap %supp |S| # cuts %gap %supp |S|

bell3a 71 70.74 69.25 43.72 88 70.74 69.32 44.82 54 70.74 65.61 44.60
bell5 178 94.29 72.69 11.75 207 94.62 72.88 13.32 180 94.29 71.64 11.99

blend2 192 30.51 53.06 8.10 200 30.99 53.54 10.84 193 30.53 53.99 8.34
flugpl 92 18.36 86.11 5.85 93 18.94 86.11 5.89 93 18.86 86.29 5.95

gt2 196 93.46 18.30 10.28 191 94.13 18.14 10.58 187 93.88 20.00 13.10
lseu 196 41.33 29.44 9.17 191 40.16 27.08 12.28 178 43.45 29.41 9.08

∗markshare1 74 0.00 11.94 1.39 130 0.00 13.39 2.56 77 0.00 12.59 1.69
mod008 139 17.05 4.51 12.41 136 17.70 4.42 12.17 157 19.13 5.85 14.43

p0033 113 67.86 55.76 4.81 106 70.32 55.76 5.74 146 70.29 58.84 5.89
p0201 767 93.82 45.02 13.43 873 81.59 43.43 25.83 769 100.00 48.93 13.39

rout 434 24.26 42.19 68.07 355 6.56 38.11 58.23 353 30.88 69.46 140.29
∗stein27 252 0.00 93.70 6.53 252 0.00 93.70 6.68 251 0.00 93.61 7.13

vpm1 263 55.84 62.14 5.39 275 50.18 62.25 6.30 259 57.63 65.18 6.60
vpm2 403 74.96 64.74 17.27 377 75.30 65.08 18.10 373 75.84 67.15 17.71
avg. 253.667 56.873 50.268 17.521 257.667 54.269 49.677 18.675 245.167 58.793 53.529 24.281

closed 24.26% of the gap, the “No redundancy” SNC version on the support closes only
6.56%, while in the extended support the situation is totally recovered (and improved)
with 30.88% gap closed. For such a particular instance the extended support size is also
substantially different from the support size, namely 69.46% with respect to 42.19%.
Our interpretation is the following: in order to forbid the use of some variable bounds
in the derivation of the cut we have to enlarge the support considerably (half of the
projected variables are re-inserted) with the overall effect of generating much stronger
cuts.

3.4.3 A practical perspective

Of course, a more efficient approach to check redundancy would be to do it “on the
fly”, by only considering those constraints that have a nonzero Farkas multiplier in the
optimal CGLP solution. This approach would require to extend the support also “on the
fly”, i.e., any time a bound constraint is discovered to be redundant, its corresponding
variable must be added to the support so as to be able to fix to zero the Farkas multiplier
associated with the constraint, as explained in the previous section.

It is possible that working on the support together with such an on-the-fly redun-
dancy check might become practical in terms of computational effort. On the other
hand, another way to decrease the computational effort on the redundancy check is to
use heuristics. Both ideas are currently under investigation.

3.5 An effective (and fast) normalization for the set cove-
ring

As shown in the previous sections, the standard normalization has the main advantage of
generating low-rank inequalities, which is in general a desirable property. As a matter of
fact, it has been recently showed that rank-1 inequalities on general disjunctions are able
to close a large portion of the integrality gap (see, e.g., Fischetti and Lodi [83], Balas and
Saxena [26], Dash, Günlük and Lodi [66, 67]). When normalization (3.12) is applied,
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the norm of the separated cuts tends to be smaller with respect to the constraints
used for their generation, and small-norm constraints are implicitly penalized by the
normalization itself. Thus, high-rank constraints are selected in the cut derivation only
if needed, hence generating weak cuts does not hurt the overall separation procedure
in that these cuts are less likely to be used in the next iterations. However, as stated
in Section 3.4, the standard normalization creates a ranking among the CGLP vertices
which depends on the scaling of the constraints, i.e., the overall separation procedure
is heavily affected by the scaling of the constraints in the original formulation. To
overcome the latter drawback, one can replace the standard normalization with the
following Euclidean Normalization (EN):

m∑

i=1

‖ai‖ui +
m∑

i=1

‖ai‖vi + ‖π‖u0 + ‖π‖v0 = 1, (3.28)

where ‖t‖ denotes the Euclidean norm of vector t.

Lemma 3.3 Let Ãx ≥ b̃ be a scaled copy of system Ax ≥ b where, for all i ∈ {1, . . . , m},
ãi := ai/Ki and b̃i := bi/Ki, with Ki > 0. For any solution of the CGLP with nor-
malization (3.28) corresponding to a cut γx ≥ γ0, there exists a solution of the CGLP
associated with the system Ãx ≥ b̃, still with normalization (3.28), corresponding to the
same cut.

Proof. Let (γ, γ0, u, v, u0, v0) be a solution of the CGLP with normalization (3.28),
and for all i ∈ {1, . . . ,m} define ũi = Kiui and ṽi = Kivi. From equations (3.5) we
obtain

γ = uA− u0π =
m∑

i=1

uiai − u0π =
m∑

i=1

(Kiui)(ai/Ki)− u0π = ũÃ− u0π.

Analogously, from (3.6) we get γ = ṽÃ + v0π and from (3.7)–(3.8) we have γ0 =
ũb̃ − u0π0 = ṽb̃ + v0(π0 + 1). Hence (γ, γ0, ũ, ṽ, u0, v0) is a feasible solution of the
CGLP associated with system Ãx ≥ b̃ yielding the same cut as (γ, γ0, u, v, u0, v0). Since
‖ãi‖ũi + ‖ãi‖ṽi = ‖ai‖ui + ‖ai‖vi ∀ i ∈ {1, . . . , m}, then (γ, γ0, ũ, ṽ, u0, v0) fulfills nor-
malization (3.28) as well. 2

The above lemma shows that the CGLP with Euclidean normalization is not affected
by scaling issues. Moreover, the CGLP with (3.28) is the same as the CGLP with the
standard normalization for a system Ãx ≥ b̃ where all the constraints have been scaled
in order to have Euclidean norm equal to 1 (i.e., ‖ãi‖ = 1 ∀ i ∈ {1, . . . , m}). By
replacing normalization (3.12) with (3.28) we are losing the implicit penalization of
high-rank inequalities hidden in the standard normalization. However, the Euclidean
normalization associates penalties with the Farkas multipliers which are in some way
related to the structure of the corresponding constraints instead of being all equal to 1
without any distinction.

Unfortunately, normalization (3.28) is not likely to work well in all cases. For exam-
ple, consider a constraint aix ≥ bi having both positive and negative coefficients, say
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aij > 0 and aik < 0, and assume the nonnegative variables xj and xk are nonbasic
and hence cut coefficients γj and γk do not affect violation. In this case, the effect
of the Farkas multipliers ui and vi on the strength of the cut coefficients γj and γk is
not univocal—a large value of the Farkas multipliers ui or vi would lead to a weak cut
coefficient γj but to a strong cut coefficient γk. Hence, associating a penalty ||ai|| with
constraint ai in the normalization might not be the right choice.

On the other hand, for constraints with nonnegative coefficients only, the Euclidean
norm of a constraint is likely to give a reliable measure on how bad is to use its associated
Farkas multipliers ui and vi. In particular, the Euclidean Normalization seems to be
particularly suited for Set Covering problems. Indeed, set covering constraints have
nonnegative coefficients only, and this property is known to be inherited by nontrivial
valid inequalities, including the disjunctive cuts we can separate through our procedure.
This implies that weighing a constraint by means of its norm has a more direct impact
on the cut density, and gives a sensible indication for nonbasic variables.

Finally, note that it is not necessary to solve the CGLP in the lifted space to use
normalization EN. This has been recently shown by Balas and Bonami [19] who imple-
mented our normalization on the original tableau by adapting the approach of Balas
and Perregaard [25], thus proving that EN might be used within a fast implementation.

We performed a set of computational experiments on a test-bed of Set Covering
instances taken from the OR–Library [35], and the results are reported in Table 3.8.
The improvement in the percentage gap closed by EN w.r.t. SNC is quite substantial

Table 3.8: SNC normalization vs. Euclidean normalization on SCP instances.

SNC normalization Euclidean normalization
Instance # cuts %gap |S| # cuts %gap |S|
scpnre1 904 13.67 89.22 951 17.35 93.62
scpnre2 963 9.38 95.42 997 12.51 98.14
scpnre3 923 15.14 91.41 944 18.13 92.82
scpnre4 878 13.25 85.99 897 15.70 87.82
scpnre5 889 16.84 87.77 935 21.03 91.16
scpnrf1 678 10.23 67.75 682 12.62 67.77
scpnrf2 655 9.62 65.42 689 12.90 68.50
scpnrf3 586 12.08 58.34 617 15.58 60.93
scpnrf4 664 10.21 66.35 692 12.59 68.91
scpnrf5 661 8.63 66.05 700 11.85 69.70

avg. 780.100 11.905 77.372 810.400 15.026 79.937

as it ranged from 2.38% to 4.19%, with an average of 3.12%.
Figures 3.12–3.14 describe the behavior of the two normalizations on the particular

instance scpnre5. One can observe that the considerably higher rank of the cuts gene-
rated using the Euclidean normalization with respect to those obtained through SNC
(see Figure 3.14) does not correspond at all to denser cuts. Indeed, as shown in Figure
3.12, the former cuts are consistently sparser than the latter. (Cuts generated using
SNC are fully dense: the number of variables of the instance is 5,000 and the number
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of nonzero coefficients is almost always very close to 5,000 too.)

A natural question concerns the effectiveness of the Euclidean Normalization (3.28)
on the MIPLIB instances [36] used in the previous sections. The answer is empirically
given by the computational results in Table 3.9 which compares the standard and the
Euclidean normalization on the MIPLIB instances. As expected, the table shows that
the Euclidean normalization does not provide a relevant improvement on general MIP
problems. In particular, for instance rout the gap closed decreases from 24.26% to
7.92% (note, in any case, that without such an instance the Euclidean normalization
would exhibit an average improvement of 1.7%). However, most of the negative re-
sults are recovered by removing redundant constraints as shown in Table 3.10. The
table compares the “classical” SNC and the Euclidean normalization after removal of
redundant constraints and by working in the extended support.
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Table 3.9: SNC normalization vs. Euclidean normalization on MIPLIB instances.

SNC normalization Euclidean normalization
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 71 70.74 43.72 71 70.74 34.95
bell5 178 94.29 11.75 213 93.01 13.78

blend2 192 30.51 8.10 182 31.80 9.04
flugpl 92 18.36 5.85 89 18.75 6.41

gt2 196 93.46 10.28 166 93.68 12.03
lseu 196 41.33 9.17 177 42.35 10.40

∗markshare1 74 0.00 1.39 75 0.00 1.77
mod008 139 17.05 12.41 135 18.27 11.98

p0033 113 67.86 4.81 97 70.32 4.28
p0201 767 93.82 13.43 741 99.07 28.72

rout 434 24.26 68.07 412 7.92 71.53
∗stein27 252 0.00 6.53 254 0.00 12.39

vpm1 263 55.84 5.39 256 67.17 5.59
vpm2 403 74.96 17.27 379 71.68 12.34
avg. 253.667 56.873 17.521 243.167 57.063 18.421

Table 3.10: SNC vs. Euclidean normalization on MIPLIB instances. Redundant con-
straints removed in both versions and projection on the extended support of x∗.

“No redundancy” SNC “No redundancy” EN
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 54 70.74 44.60 50 70.74 44.21
bell5 180 94.29 11.99 194 94.07 15.39

blend2 193 30.53 8.34 181 32.83 9.99
flugpl 93 18.86 5.95 92 19.20 6.02

gt2 187 93.88 13.10 215 94.71 13.54
lseu 178 43.45 9.08 165 45.00 8.86

∗markshare1 77 0.00 1.69 75 0.00 1.77
mod008 157 19.13 14.43 135 18.36 11.98

p0033 146 70.29 5.89 99 70.32 4.47
p0201 769 100.00 13.39 765 100.00 32.44

rout 353 30.88 140.29 351 29.42 193.85
∗stein27 251 0.00 7.13 251 0.00 13.17

vpm1 259 57.63 6.60 272 68.91 6.44
vpm2 373 75.84 17.71 361 76.61 14.38
avg. 245.167 58.793 24.281 240.000 60.014 30.131

Indeed, once the redundant constraints are removed, the average gap closed increases
from 58.793% (“No redundancy” SNC) to 60.014% (“No redundancy” EN) and the
negative behavior of EN on instance rout is almost fully recovered.
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3.6 Conclusions and future work

Disjunctive cuts are a well-known (and often quite effective) class of cutting planes for
mixed-integer linear programs. It is well known that, if the disjunction is fixed, then
one can search for violated disjunctive cuts by solving an auxiliary LP, the so-called
“Cut Generating Linear Program”. Unfortunately, the solution of such an LP can yield
weak cuts in some cases.

In this chapter we explored possible causes of this problem and possible ways to
solve it. The main ingredients of a disjunctive cut separation procedure were critically
analyzed, both from a theoretical and a computational point of view, often with the
help of simple illustrating examples.

In particular, we compared classical normalization conditions used to truncate the
CGLP cone, tried to better understand their role, and addressed a new normalization
based on Euclidean norms.

We gave a theoretical characterization of weak rays/vertices of the CGLP cone that
leads to dominated cuts, and proposed a practical heuristic method to strengthen them
by solving a simple “Cut Dominating Linear Program”.

We also pointed out, for the first time, the negative effects of redundancy in the
quality of the generated disjunctive cuts, and discussed possible ways to cope with
them.

Future work should address the practical implementation of the proposed streng-
thening procedures and of the new normalization condition within an efficient solution
framework, possibly in conjunction with the open-source Balas and Bonami [19] imple-
mentation of the Balas-Perregaard pivoting scheme.
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Chapter 4

Two-row cuts from the simplex
tableau: a preliminary
investigation

4.1 Introduction

Very recently, a series of papers have brought the attention to the possibility of genera-
ting cuts using more than one row of the simplex tableau at a time. Several interesting
theoretical results have been presented in this direction, often revisiting and recalling
other important results discovered more than 40 years ago. This chapter1 presents a pos-
sible way for generating two-row cuts from the simplex tableau arising from lattice-free
triangles and some preliminary computational results on a large set of mixed integer
binary knapsack problems with two constraints. Interestingly, the results show that
triangles are useful in practice to improve on the dual bound yielded by the classical
GMI cuts.

The chapter is organized as follows. The remainder of this section introduces the
required notation and discusses some of the main results from the literature. A first idea
to derive maximal lattice-free triangles from two rows of the simplex tableau is presented
in Section 4.2, while Section 4.3 reports the computational results, comparing triangle
cuts with classical GMI cuts. Some preliminary conclusions and some open questions
are highlighted in Section 4.4.

4.1.1 Multiple-row cuts

Let us assume to be given a mixed integer set

S = {x ∈ Rn : Ax = b, x ≥ 0, xj ∈ Z ∀j ∈ J}, (4.1)

with A ∈ Qm×n and b ∈ Qm, and denote the continuous relaxation of S as P = {x ∈
Rn : Ax = b, x ≥ 0}. We assume for the sake of simplicity the set S to be nonempty.

1The results of this chapter are part of a joint work-in-progress with S. Dey, A. Lodi and L.A. Wolsey.
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Given a basis B ⊂ {1, . . . , n} corresponding to the vertex x∗ ∈ P \ S of the polyhe-
dron P , the set S can be rewritten as

xB = x∗B +
∑

j∈N rjxj ,

x ≥ 0,
xj ∈ Z, j ∈ J,

(4.2)

where N denotes the set of nonbasic variables. A valid relaxation of S can be obtained
by dropping the nonnegative restrictions on all the basic variables and considering a
subset Q (with |Q| = q) of rows of (4.2) associated with basic integer-constrained
variables (i.e., a subset of variables xi with i ∈ B ∩ J), thus getting

(SQ) xi = fi +
∑

j∈N rjxj , i ∈ Q

xj ≥ 0, j ∈ N
xj ∈ Z, j ∈ J

(4.3)

with fi = x∗i −bx∗i c for any i ∈ Q and fi > 0 for some i ∈ Q. In the following we assume
w.l.o.g. Q = {1, . . . , q}.

Set SQ can be further relaxed by dropping all the integrality requirements on the
nonbasic variables, thus getting a system of the form

x = f +
∑k

j=1 rjsj ,

x ∈ Zq,
s ∈ Rk

+,

(4.4)

where all the continuous variables have been renamed as s and |N | = k. Recall that
f, r1, . . . , rk ∈ Qq and f 6∈ Zq, and denote as Rf (r1, . . . , rk) the convex hull of all vectors
s ∈ Rk for which there exists x ∈ Rq such that (x, s) satisfies (4.4). Since S in non
empty and all the data are rational entries, Rf (r1, . . . , rk) is a rational full-dimensional
polyhedron: i.e., it is a rational polyhedron and its recession cone is Rk

+.

Borozan and Cornuéjols [39] considered relaxing the k-dimensional space of variables
s = (s1, . . . , sk) to an infinite-dimensional space, where the variables sr are defined for
any r ∈ Qq, thus getting the following semi-infinite relaxation, related to Gomory and
Johnson’s infinite group problem [100]:

x = f +
∑

r∈Qq rsr,

x ∈ Zq,
s ≥ 0 with finite support

(4.5)

where s = (sr)r∈Qq is said to have a finite support if it has a finite numbers of nonzero
components. Let now Rf be the convex hull of all s ∈ RQq

for which there exists
x ∈ Rq such that (x, s) satisfies (4.5). In this general context, they showed that any
valid inequality for Rf that cuts off the infeasible solution s = 0 can be written in the
form ∑

r∈Qq

ψ(r)sr ≥ 1 (4.6)
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where ψ : Qq −→ Q∪{+∞} is said to be a valid function if the corresponding inequality
(4.6) is valid for Rf . Then, they provided a strong correspondence between minimal
valid inequalities and maximal lattice-free convex sets2 as follows. Let define a minimal
valid function as a valid function ψ such that there is no other valid function ψ′ with
ψ′(r) ≤ ψ(r) for all r ∈ Qq and ψ′(r) < ψ(r) for some r ∈ Qq. For any valid function ψ,
consider the set Bψ = {x ∈ Qq : ψ(x− f) ≤ 1} associated with ψ and denote as cl(Bψ)
the topological closure of Bψ in Rq. The following theorem holds:

Theorem 4.1 (Borozan and Cornuéjols [39]). Let f ∈ Qq \ Zq. A minimal valid
function ψ for Rf is nonnegative, piecewise linear, positively homogeneous and convex.
Furthermore the set cl(Bψ) is a full-dimensional maximal lattice-free convex set contai-
ning f . Conversely, for any full-dimensional maximal lattice-free convex set B ⊂ Rq

containing f , there exists a minimal valid function ψ for Rf such that cl(Bψ) = B, and
when f is in the interior of B, this function is unique.

In practice, the above theorem shows that any minimal valid inequality for Rf arises
from a maximal lattice-free convex set B containing f . Further, any maximal lattice-
free convex set B containing f in the interior lead to a unique minimal valid inequality.
However, the latter results does not hold if f is on the boundary of B; i.e., any maximal
lattice-free convex set containing f on the boundary leads, in the general case, to several
minimal valid inequalities arising from different minimal valid functions ψ. Let denote
any maximal lattice-free convex set B containing f on the boundary as a degenerate
set. With the same meaning, let denote any minimal valid function ψ associated with
a degenerate set as a degenerate function. The following question naturally arises from
Theorem 4.1: should one consider degenerate sets/functions in practice?

The answer has been provided by Zambelli [176] for the finite dimensional case (i.e.,
for the set Rf (r1, . . . , rk)):

Theorem 4.2 (Zambelli [176]). Given a minimal valid inequality
∑k

j=1 αjsj ≥ 1 for
Rf (r1, . . . , rk), there exists a nondegenerate minimal valid function ψ such that ψ(rj) =
αj for all j = 1, . . . , k.

Thus, from the practical point of view of generating cuts for the finite dimensional
set Rf (r1, . . . , rk), one does not need to be concerned with the complications arising
from degenerate functions, since any minimal valid inequality can be obtained from a
nondegenerate minimal valid function.

A first computational investigation on the possibility of generating cuts from a set of
multiple rows has been provided by Espinoza [75], who considered relaxing the simplex
tableau of a general MIP as a set of the form (4.4). This is obtained by selecting a
subset Q of rows associated with basic integer-constrained variables and by dropping
nonnegative requirements on all the basic variables and integrality requirements on all
the nonbasic variables. The computational results reported in [75] on a large set of
MIPLIB [36] instances showed that cutting planes from multiple-row sets are effective

2A lattice-free convex set is a convex set with no integer point in the interior.
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in practice to improve on the lower bound at the root node yielded by the “classical”
single-row cuts.

4.1.2 Two-row cuts

All the results reported above of course apply to the particular case of a two-row system
of the form 4.4 (i.e. a system as 4.4 with q = 2). In this particular case, several authors
provided even stronger results, thus giving a precise characterization of the facets of
Rf (r1, . . . , rk) for q = 2.

A first interesting result has been provided by Andersen, Louveaux, Weismantel and
Wolsey [7], which formally proved that all the facets of Rf (r1, . . . , rk) are intersection
cuts (Balas [14]) arising from two-dimensional lattice-free convex sets. These set are
triangles, quadrilaterals and split bodies, thus implying that Rf (r1, . . . , rk) can be obtai-
ned as intersection of the split closure Sf (r1, . . . , rk), the triangle closure Tf (r1, . . . , rk)
and the quadrilateral closure Qf (r1, . . . , rk)3. Interestingly, they also provided a cha-
racterization of facets which cannot obtained as split cuts.

More recently, Cornuéjols and Margot [60] provided a precise description of which
split bodies, triangles and quadrilaterals are facet inducing for Rf (r1, . . . , rk), and
also pointed out that degenerate sets are not required to obtain a full description of
Rf (r1, . . . , rk), thus giving an alternative proof of Theorem 4.2 for the case q = 2.

Finally, Basu, Bonami, Cornuéjols and Margot [29] compared the strength of the
above mentioned closure from a theoretical point of view. First, they proved that
the triangle closure and the quadrilateral closure are at least as strong as the split
closure: i.e., Tf (r1, . . . , rk) ⊆ Sf (r1, . . . , rk) and Qf (r1, . . . , rk) ⊆ Sf (r1, . . . , rk). Then,
they showed how the triangle and the quadrilateral closures always provide a good
approximation of Rf (r1, . . . , rk) in a well defined sense (i.e., they always close at least
half of the integrality gap), while the approximation provided by the split closure can
be arbitrarily bad.

4.1.3 Lifting triangle inequalities

The typical approach to derive a valid inequality for a MIP defined over the set S is
to consider only one row of (4.3) (i.e., by considering Q = {h} for any h ∈ B ∩ J with
fh > 0). This leads to the well known GMI cut [99]. As discussed in Chapter 2, GMI
cut can be obtained by lifting (i.e., strengthening) the intersection cut arising from the
set {xh ∈ R : 0 ≤ xh ≤ 1} through the Balas-Jeroslow [23] procedure4.

Roughly speaking, a GMI cut is in practice a valid inequality which is first obtained
as a “trivial” intersection cut and it is afterwards strengthened by lifting the cut coef-
ficients of nonbasic variables j ∈ N ∩ J (i.e., by exploiting the integrality requirements

3The split closure is defined as the intersection of all the valid inequalities arising from lattice-free
split bodies. In a similar way, the triangle and the quadrilateral closure are defined as the intersection of
all the valid inequalities arising, respectively, from lattice-free triangles and lattice-free quadrilaterals.

4The intersection cut from the set {xh ∈ R : 0 ≤ xh ≤ 1} was also denoted in Chapter 2 as the simple
disjunctive cut associated with the row xh = x∗h +

∑
j∈N rj

hxj and the split disjunction xh ≤ bx∗hc or
xh ≥ dx∗he (see Section 2.3).
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on the nonbasic variables.)5. Dey and Wolsey [71] addressed the set SQ for |Q| = 2 and
the problem of lifting intersection cuts arising from maximal lattice-free triangles.

Let consider two rows of the system (4.3). Assume w.l.o.g. Q = {1, 2} and rewrite
SQ in the more convenient form

(S2) x1 = f1 +
∑

j∈N rj
1xj

x2 = f2 +
∑

j∈N rj
2xj

xj ≥ 0, j ∈ N
xj ∈ Z, j ∈ J

(4.7)

Given any maximal lattice-free convex set Π in R2 containing f in the interior, define
the following function π : Q2 −→ Q+:

π(ω) =

{
0, if ω = (0, 0)
λ, if ω 6= (0, 0) and

ω

λ
∈ Boundary(Π). (4.8)

For all the already mentioned reasons, the inequality

∑

j∈N

π(rj)xj ≥ 1 (4.9)

is clearly valid for S2. However, in the general case it is not minimal for conv(S2).
Let f(v) = (f(v1), f(v2)) denote the fractional part of any vector v = (v1, v2) ∈ Q2

(i.e., f(vk) = vk − bvkc, k = 1, 2). Dey and Wolsey [71] considered the Johnson’s mixed
integer infinite group problem [106] to show that the inequality

∑

j∈N\J
π(rj)xj +

∑

j∈N∩J

φ0(f(rj)) ≥ 1 (4.10)

is valid for S2, where φ0 : [0, 1[2−→ [0, 1] is the so-called “trivial” fill-in function (see
[71]) defined as

φ0(u) = min
n∈Z2

(π(u + n)). (4.11)

Clearly, for a given set Π, inequality (4.9) dominates (4.10), since φ0(f(rj)) ≤ π(rj) for
any j ∈ N ∩ J . Furthermore, addressing the special case in which Π is a triangle, they
provided the following strong characterization of maximal lattice-free point triangles:

Proposition 4.1 (Dey and Wolsey [71]). If Π is a maximal lattice-free triangle in R2,
then exactly one of the following is true:

1. One side of Π contains more than one integral point in its relative interior.

2. All the vertices are integral and each side contains one integral point in its relative
interior.

3. The vertices are non-integral and each side contains one integral point in its rela-
tive interior.

5The reader is referred to Nemhauser and Wolsey [128] for a complete overview on lifting.
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Then, they proved that function (π, φ) is minimal for the Johnson’s mixed integer infinite
group problem if Π is a triangle of Type 1 or Type 2. Finally, they provided a more
general fill-in procedure yielding minimal inequalities even for triangle of Type 3 under
certain sufficient conditions.

4.2 A practical idea to generate triangle inequalities

Generating cuts from a single tableau row poses no problem. When moving to the
two-row case, instead, natural questions concern the choice of the row pairs and, for
any fixed pair, the choice of one or more maximal-lattice free sets. In this chapter we
decided to investigate the “potential” of lattice-free triangles of type 1 (i.e., according
to Proposition 4.1, triangles with one edge containing more than one integral point in
its relative interior) for which the lifting described in the previous section has been
proven to be the best possible by Dey and Wolsey [71]. Hence, we consider all the row
pairs whose corresponding basic variables xB1 and xB2 (say) are integer-constrained and
strictly fractional (i.e., fB1 > 0 and fB2 > 0)6, and for each pair we generate a bunch
of maximal-lattice free triangle of type 1 by looking at the directions provided by the
rays associated with continuous variables in the selected rows.

Rewrite the set S2 of the form (4.7) associated with xB1 and xB2 by renaming
f = (fB1 , fB2) as f = (f1, f2), the nonbasic integer variables as x1, . . . , xn1 and the
nonbasic continuous variables as y1, . . . , yn2 . We get then the system

xB1 = f1 +
n1∑

i=1

ai
1xi +

n2∑

j=1

bj
1yj

xB2 = f2 +
n1∑

i=1

ai
2xi +

n2∑

j=1

bj
2yj

x ∈ Zn1
+ y ∈ Rn2

+

For any pair of rows defining the system above (with f1 > 0 and f2 > 0) we generate a
bunch of cuts according to the following scheme:

1. Select some sets of three continuous variables (yj1 , yj2 , yj3) such that the positive
combination of bj1 , bj1 , and bj3 spans R2 according to the following strategy:

(a) Consider, in turn, all pair of variables (yj1 ,yj2) with bj1 6= (0, 0) and bj2 6=
(0, 0).

(b) For each selected pair, let c := (c1, c2) be the direction bisecting the angle
made by −bj1 and −bj2 (with c belonging to the cone spanned by −bj1 and
−bj2), and look for the third variable yj3 whose associated direction bj3 is as
close as possible to c. (If no variable can be found in the interior of the cone
spanned by −bj1 and −bj2 we skip the pair (yj1 ,yj2).)

6Generating cuts from two rows with fB1 = 0 or fB2 = 0 is clearly possible. However, we decide to
leave these “special” cases to a future investigation.
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2. For each set of three selected variables (yj1 , yj2 , yj3), look for a maximal lattice-free
triangle Π of type 1, with f ∈ interior(Π), in the attempt of finding an inequality

π(bj1)yj1 + π(bj2)yj2 + π(bj3)yj3 ≥ 1

extreme for the problem

xB = f + bj1yj1 + bj2yj2 + bj3yj3 , xB ∈ Z2, yj1 , yj2 , yj2 ≥ 0

where π : R2 → R+ is the function defined in (4.8). This step is discussed in detail
in Section 4.2.1.

3. For any triangle found in the previous step, compute the corresponding valid
inequality by means of the functions π and φ0 (from (4.11)), thus getting the cut

n1∑

i=1

φ0(f(ai))xi +
n2∑

j=1

π(bj)yj ≥ 1.

4.2.1 Strategy to generate triangles with multiple integer points on
one side

The procedure described in the previous section generates (for any pair of rows) at most
one cut for any pair of nonbasic continuous variables. Given an ordered set of three
variables (yj1 , yj2 , yj3) and the corresponding three directions (bj1 , bj2 , bj3) in the two
tableau rows, we next outline a potential strategy to find maximal lattice-free triangles
of type 1 when the exact rational representation of bj is not known. The procedure
works as follows: i) find a facet for a problem with two continuous variables (this step
is equivalent to finding one side of the triangle which contains multiple integer points)
and then ii) lift the third continuous variable. In the following we rewrite j1 = 1, j2 = 2
and j3 = 3 to simplify the notation.

• Step1: Finding a facet with two variables.

Choose the first two variables y1, y2 and consider the set Y2:

(Y2) x = f + b1y1 + b2y2, x ∈ Z2, y1, y2 ≥ 0.

The goal here is to generate one of the facets of conv(Y2) other than the “unboun-
ded facets”, i.e., a facet that is “most different” from a Gomory mixed integer cut.
We divide this step into two sub steps: (a) finding the first integer point, and (b)
finding the second integer point such that line segment passing through the two
integer points forms a side of the triangle or proving that no such integer point
exists.

Step (a): Choose any vector c = (c1, c2) in the interior of the cone formed by b1

and b2. Solve the problem

min cx

s.t. x = f + λ1b
1 + λ2b

2

λ1, λ2 ≥ 0, x ∈ Z2.
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Let the optimal solution of this problem be x1. x1 is going to be one of the integer
points in the interior of the side of the triangle. Note that x1 gives a valid cut
of the form c1x1 + c2x2 ≥ cx1. Re-written in the y-space, we will obtain a cut of
the form ν1y1 + ν2y2 ≥ 1 for some ν1, ν2 > 0. However, this cut is not necessarily
facet defining for conv(Y2).

Step (b): Define the vector v = x1 − f and the angles α = (b1, v) and β = (b2, v).
By following the same approach described in Step (a), we look for an integer point
x2 6= x1 in cone(v, b1) if α > β, or in cone(v, b2) otherwise (the choice of the cone
based on the angles α and β is done just to limit possible numerical troubles).
Suppose w.l.o.g. that β > α. Then we define b′ = v + θb2, with θ > 0, we choose
any vector c = (c1, c2) in the interior of the cone formed by b2 and b′, we solve the
problem

min cx

s.t. x = f + λ1b
2 + λ2b

′

λ1, λ2 ≥ 0, x ∈ Z2

and we denote as x2 its optimal solution.

The line segment passing through x2 and x1 may not give a valid cut. Hence we
repeat the following step to obtain a valid cut.

1. Let e ∈ R2 such that ex2 = ex1 = 1 and ef < 1.

2. Solve the problem:

min ex

s.t. x = f + λ1b
1 + λ2b

2

λ1, λ2 ≥ 0, x ∈ Z2.

Let the optimal solution of this problem be x̃. If ex̃ ≥ 1, then the inequality
ex ≥ 1 is a valid cut and can be rewritten in the y-space. Otherwise, if
ex̃ < 1, then set x2 ← x̃ and repeat from Step 1.

One final check is needed to verify that the final x2 is a vertex of conv(Y2). This
check becomes relevant when conv(Y2) has one vertex only (i.e., x1) and hence
the line passing through x2 and x1 does not intercept b1 and/or b2 (in such a case,
we skip the triangle). In order to perform this check, one can simply verify that
(x1 − x2) and (x2 − x1) do not belong to the cone formed by b1 and b2.

• Step 2: Lifting the third continuous variable.

From the previous step we have two integer points x1 and x2 that are tight at
the inequality. Let v1 (resp. v2) be the vertex obtained by extending the line
segment passing through x1 and x2 until meeting the ray f + µb1, µ ≥ 0 (resp.
f + µb2, µ ≥ 0). v1 and v2 are two vertices of the triangle and the line segment
connecting v1 and v2 is the edge of the triangle containing multiple integer points
in its interior (e.g., x1 and x2).
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We need now to identify the other two integer points which lie in the interior of
the other two sides of the triangle, and then we can complete the triangle. This
is done through the following steps.

Step (a): Let r1 be the line passing through x2 and x1, defined as

(r1) x = x1 + λw,

with w = x2 − x1. Shift r1 in the direction provided by the third ray b3 until
meeting some integer point, thus getting a line r2 parallel to r1. r1 and r2 describe
a maximal lattice-free split body, and the line r2 can be expressed as

(r2) x = x̃ + λw,

with x̃ ∈ Z2.

Step (b): From the previous step we know that the other two integer points which
lie on the boundary of the triangle must belong to the line r2. They can be
obtained as x13 = x̃+kw and x23 = x̃+(k+1)w for some integer k, by considering
two different situations. If f lies in the interior of the split described by r1 and
r2, then the choice of k depends on b3. In this case we solve the system

x̃ + λw = f + µb3

µ ≥ 0.

Otherwise, if f it is not in the interior of the split described by r1 and r2, then
the choice of k does not depend on b3. In this case we solve the system

x̃ + λw = f + µ(x1 − f)
µ ≥ 0.

In both cases we set k = bλc.
Step (c): Once we know the integer points x13 and x23 which lie in the interior of
the other two sides of the triangle, we can easily complete the triangle by extending
the rays v1 + µ(x13 − v1), µ ≥ 0 and v2 + µ(x23 − v2), µ ≥ 0 until they meet, thus
getting the third vertex v3.

Example 4.1 (Finding the first side of triangle) Suppose that b1 = (1, 0), b2 =
(−1,−2) and f = (0.5, 0.5).

1. Let us choose c = (1,−2). Therefore we solve the problem,

min x1 − 2x2

s.t. x1 = 0.5 + λ1 − λ2

x2 = 0.5− 2λ2

λ1, λ2 ≥ 0, x ∈ Z2

The optimal solution is x1 = (1, 0) and cx1 = 1. This gives us the cut x1−2x2 ≥ 1.
Re-written in the y-space, we obtain the cut, 2

3y1 + 2y2 ≥ 1. This cut is not facet-
defining for conv(Y2) as illustrated in Figure 4.1.
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Figure 4.1: Step 1(a): finding the first integer point.

Next we would like to improve this cut. Since in this case β > α, then we look
for an integer point x2 6= x1 in the cone spanned by v = x1 − f = (0.5,−0.5)
and by b2. Let θ = 1. So b′ = (0.5,−0.5) + (−1,−2) = (−0.5,−2.5). Let choose
c := (−1, 0). Therefore, we solve

min −x1

s.t. x1 = 0.5− λ1 − 0.5λ2

s.t. x2 = 0.5− 2λ1 − 2.5λ2

λ1, λ2 ≥ 0, x ∈ Z2.

The optimal solution is x2 = (0,−1). Then we take e = (1,−1) (since ex1 =
ex2 = 1 and ef < 1) and we solve the problem

min x1 − x2

s.t. x = (0.5, 0.5) + λ1b
1 + λ2b

2

λ1, λ2 ≥ 0, x ∈ Z2

The optimal objective function is 1. Therefore the inequality x1 − x2 ≥ 1 is a
valid cut and the two integer point in the interior of the first edge are precisely
x1 = (1, 0) and x2 = (0,−1), as depicted in Figure 4.2. Rewritten in the y-space,
the above inequality reads as y1 + y2 ≥ 1. 2

Example 4.2 (Completing the triangle) In the previous example we obtained the
inequality: y1 + y2 ≥ 1 for the system with b1 = (1, 0), b2 = (−1,−2) and f = (0.5, 0.5).
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Figure 4.2: Step 1(b): finding the second integer point.

The first edge of the triangle is passing through the integer points x1 = (1, 0) and
x2 = (0,−1). Then we consider the line r1 defined as

(r1) x = (1, 0) + λ(−1,−1).

Suppose we want to lift the continuous variable y3 corresponding to b3 = (−0.5, 1). By
shifting r1 in the direction provided by b3 we find the line r2 defined as

(r2) x = (−1,−1) + λ(−1,−1).

Since in this case f belongs to r2, then the other two integer points do not depend on
the choice of b3. By solving the system

(−1,−1) + λ(−1,−1) = (0.5, 0.5) + µ(0.5,−0.5), µ ≥ 0

we obtain λ = −1.5 and hence we get k = −2. Then we compute x13 = (−1,−1) +
k(−1,−1) = (1, 1), x23 = (−1,−1) + (k + 1)(−1,−1) = (0, 0) and we complete the
triangle as depicted in Figure 4.3. 2

4.3 Preliminary computational results

This section presents some preliminary computational experiments aimed at providing
some insights on the practical impact of two-row cuts arising from maximal lattice-
free triangles of Type 1. When moving to two-row cuts, the first natural question
concerns how much we can gain, with respect to the classical single-row cuts, on two-
row problems. Hence, as a first testbed, we considered a large set of 0–1 mixed knapsack
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Figure 4.3: Step 2: completing the triangle.

problems with two constraints only. All the instances have been generated by slightly
modifying the mixed integer knapsack problem generator kindly provided by Alper
Atamturk, and are named as mik2-x-y.n, where x and y denote, respectively, the
number of binary and continuous variables.

Tables 4.1–4.3 report the results obtained by adding one round of cuts to the LP
relaxation. In particular, the tables compare the effect of “triangle cuts” with respect to
the classical GMI cuts. Three different possibilities have been considered: i) adding the
classical GMI cuts only, ii) adding the triangle cuts only, and iii) adding both families
of cuts. For each of these configurations, the tables report the number of generated
cuts (# cuts), the percentage gap closed (% gap) and the CPU seconds spent for the
cut generation (sep.secs). The last table also reports the average values over all the
90 considered instances. As usual, when dealing with the GMIs, we generated one
cut for each tableau row associated with a fractional integer-constrained basic variable.
Triangle cuts are instead generated as discussed in the previous section.

The tables show that triangles are useful in practice to improve on the dual bound
yielded by the classical GMI cuts. Behind an average improvement in the % gap (i.e.,
GMIs close an average gap of 13.57% while triangles 15.21%), it is worth noting that
the gap provided by triangles is better than the one yielded by GMIs in 60 out of the
90 instances, while GMIs provide a better dual bound in the remaining 30 instances.
Interestingly, as shown by the third tested configuration (i.e., GMI + triangles), the
two families of cuts often collaborate. In particular, the average gap closed adding both
cuts raises to 16.58, and we can observe that triangles dominate GMIs (in terms of
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dual bound) in 42 cases out of 90, GMIs dominate triangles in 17 cases, while the two
families collaborate in the remaining 31 problems.

Tables 4.4–4.6 reports the same results as Tables 4.1–4.3 but considering two round
of cuts. Even in this case the last table reports the average values on all the 90 instances.

By adding two rounds of cuts the trend is confirmed and triangles seems even more
effective. GMIs close an average gap of 19.55% while triangles 23.66%. Out of the 90
problems, triangles are better in 71 cases, and in 33 cases dominate GMIs, while GMIs
are better in 19 cases and in 5 cases dominate triangles. Finally, on 52 out of the 90
tested problems the two families collaborate, and the average gap closed by adding both
cuts together raises to 25.02%. When applying two round of cuts, it is worth noting that
the number of generated cuts consistently increases when considering triangles, because
the number of tableau rows of the second tableau becomes larger and all the pair of
rows are considered in our cut generation procedure (i.e., no selection rule is applied).

4.4 Open questions

This chapter presented a first practical idea to generate two-row cuts arising from one
type of maximal lattice-free triangles. Preliminary computational results on a large
set of two-row problems have shown that triangles are effective in strengthening the
relaxation obtained at the root node by adding the classical GMI cuts.

Many questions have still to be answered. First, other type of triangles need to be
investigated, as well as quadrilaterals. Second, even in the simpler context of two-row
problems, several different cuts can be generated, and hence some selection rules must
be investigated. Third, the effect of two-row cuts on multiple-row problems (i.e., on
general MIPs) has not been tested in this chapter. On the practical side, moving to
general MIPs requires also to devise an effective way to select only few row pairs from
the simplex tableau, because adding cuts arising from all the row pairs seems not to be
a practical approach.
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Table 4.1: GMI cuts vs. triangle cuts: 1 round of cuts, part I.

Instance GMI triangles GMI + triangles

# cuts % gap sep.secs # cuts % gap sep.secs # cuts % gap sep.secs

mik2-50-10.01 2 29.34 0.0 7 34.57 0.2 9 35.45 0.2
mik2-50-10.02 2 8.43 0.0 4 10.06 0.1 6 10.06 0.1
mik2-50-10.03 2 45.31 0.0 5 54.83 0.2 7 54.83 0.2
mik2-50-10.04 2 10.45 0.0 5 17.48 0.1 7 17.48 0.1
mik2-50-10.05 2 1.92 0.0 8 3.66 0.3 10 3.66 0.3
mik2-50-10.06 2 20.59 0.0 5 20.04 0.1 7 22.52 0.1
mik2-50-10.07 2 5.31 0.0 5 4.63 0.1 7 6.45 0.1
mik2-50-10.08 2 5.42 0.0 4 2.92 0.2 6 5.42 0.2
mik2-50-10.09 2 7.91 0.0 3 13.34 0.1 5 13.34 0.1
mik2-50-10.10 2 10.50 0.0 5 20.26 0.2 7 20.26 0.2

mik2-50-20.01 2 18.07 0.0 6 19.00 0.2 8 19.04 0.2
mik2-50-20.02 2 12.86 0.0 7 16.64 0.3 9 17.64 0.3
mik2-50-20.03 2 10.54 0.0 5 15.92 0.4 7 16.03 0.4
mik2-50-20.04 2 9.14 0.0 4 9.74 0.2 6 9.74 0.2
mik2-50-20.05 2 19.20 0.0 5 21.02 0.2 7 21.02 0.2
mik2-50-20.06 2 28.46 0.0 5 20.82 0.3 7 28.46 0.3
mik2-50-20.07 2 26.20 0.0 6 19.45 0.3 8 26.20 0.3
mik2-50-20.08 2 26.71 0.0 6 25.44 0.3 8 28.30 0.3
mik2-50-20.09 2 16.61 0.0 5 13.65 0.3 7 18.03 0.2
mik2-50-20.10 2 23.59 0.0 3 17.61 0.1 5 24.05 0.1

mik2-50-30.01 2 26.75 0.0 5 26.92 0.6 7 30.84 0.6
mik2-50-30.02 2 11.48 0.0 5 10.73 0.4 7 11.48 0.4
mik2-50-30.03 2 11.94 0.0 6 12.89 0.4 8 12.89 0.4
mik2-50-30.04 2 27.36 0.0 6 27.10 0.5 8 30.83 0.5
mik2-50-30.05 2 14.25 0.0 6 17.67 0.3 8 17.67 0.3
mik2-50-30.06 2 13.70 0.0 5 19.23 0.3 7 20.97 0.3
mik2-50-30.07 2 14.80 0.0 6 15.28 0.2 8 15.29 0.2
mik2-50-30.08 2 21.43 0.0 6 27.64 0.3 8 29.21 0.3
mik2-50-30.09 2 10.65 0.0 3 9.88 0.2 5 10.65 0.2
mik2-50-30.10 2 11.22 0.0 4 11.61 0.3 6 11.61 0.3

62



Table 4.2: GMI cuts vs. triangle cuts: 1 round of cuts, part II.

Instance GMI triangles GMI + triangles

# cuts % gap sep.secs # cuts % gap sep.secs # cuts % gap sep.secs

mik2-100-10.01 2 8.14 0.0 3 12.83 0.1 5 12.83 0.1
mik2-100-10.02 2 20.50 0.0 6 21.40 0.1 8 23.25 0.1
mik2-100-10.03 2 9.81 0.0 8 16.12 0.1 10 16.12 0.1
mik2-100-10.04 2 6.00 0.0 5 4.85 0.2 7 6.00 0.2
mik2-100-10.05 2 9.39 0.0 4 7.98 0.0 6 9.39 0.0
mik2-100-10.06 2 2.67 0.0 5 4.55 0.1 7 4.55 0.1
mik2-100-10.07 2 1.04 0.0 5 10.30 0.1 7 10.30 0.1
mik2-100-10.08 2 6.87 0.0 3 8.91 0.1 5 9.55 0.1
mik2-100-10.09 2 33.71 0.0 3 18.84 0.1 5 34.21 0.1
mik2-100-10.10 2 18.28 0.0 4 18.63 0.1 6 18.77 0.1

mik2-100-20.01 2 16.49 0.0 7 12.60 0.2 9 16.49 0.2
mik2-100-20.02 2 16.81 0.0 6 15.48 0.3 8 16.93 0.2
mik2-100-20.03 2 20.87 0.0 4 21.48 0.2 6 22.84 0.2
mik2-100-20.04 2 3.89 0.0 7 11.85 0.2 9 11.85 0.2
mik2-100-20.05 2 14.20 0.0 7 11.20 0.4 9 14.20 0.4
mik2-100-20.06 2 18.89 0.0 5 22.91 0.5 7 22.91 0.5
mik2-100-20.07 2 10.44 0.0 6 5.82 0.2 8 10.44 0.2
mik2-100-20.08 2 1.58 0.0 6 8.04 0.4 8 8.04 0.4
mik2-100-20.09 2 9.78 0.0 5 11.47 0.2 7 12.07 0.2
mik2-100-20.10 2 5.50 0.0 2 6.10 0.3 4 6.32 0.2

mik2-100-30.01 2 7.98 0.0 5 9.52 0.3 7 9.52 0.3
mik2-100-30.02 2 18.23 0.0 5 14.62 0.5 7 18.23 0.4
mik2-100-30.03 2 17.09 0.0 4 17.53 0.7 6 17.53 0.7
mik2-100-30.04 2 15.54 0.0 5 34.13 0.4 7 34.13 0.4
mik2-100-30.05 2 4.81 0.0 5 8.10 0.4 7 8.10 0.4
mik2-100-30.06 2 18.53 0.0 6 20.17 0.7 8 20.17 0.7
mik2-100-30.07 2 19.68 0.0 5 26.78 2.0 7 26.78 2.0
mik2-100-30.08 2 3.41 0.0 5 3.18 0.3 7 3.41 0.3
mik2-100-30.09 2 22.38 0.0 6 19.97 0.3 8 22.55 0.3
mik2-100-30.10 2 8.74 0.0 6 7.41 0.3 8 8.74 0.3
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Table 4.3: GMI cuts vs. triangle cuts: 1 round of cuts, part III.

Instance GMI triangles GMI + triangles

# cuts % gap sep.secs # cuts % gap sep.secs # cuts % gap sep.secs

mik2-150-10.01 2 8.27 0.0 6 17.37 0.3 8 17.37 0.3
mik2-150-10.02 2 16.84 0.0 6 16.56 0.2 8 17.68 0.2
mik2-150-10.03 2 5.85 0.0 6 11.31 0.1 8 11.31 0.1
mik2-150-10.04 2 2.30 0.0 3 2.65 0.1 5 3.25 0.1
mik2-150-10.05 2 6.73 0.0 5 6.91 0.1 7 7.61 0.1
mik2-150-10.06 2 6.56 0.0 5 7.07 0.1 7 7.07 0.1
mik2-150-10.07 2 4.75 0.0 5 7.81 0.1 7 7.81 0.1
mik2-150-10.08 2 12.17 0.0 6 11.90 0.1 8 12.55 0.1
mik2-150-10.09 2 14.30 0.0 4 4.81 0.1 6 14.30 0.1
mik2-150-10.10 2 43.32 0.0 6 38.72 0.2 8 43.32 0.2

mik2-150-20.01 2 10.25 0.0 4 18.99 0.1 6 18.99 0.1
mik2-150-20.02 2 18.06 0.0 1 15.34 0.2 3 18.06 0.2
mik2-150-20.03 2 6.98 0.0 4 12.54 0.2 6 12.54 0.2
mik2-150-20.04 2 8.98 0.0 4 24.23 0.3 6 24.23 0.3
mik2-150-20.05 2 13.11 0.0 6 15.85 0.3 8 16.00 0.3
mik2-150-20.06 2 22.54 0.0 7 26.86 0.5 9 26.86 0.5
mik2-150-20.07 2 5.18 0.0 5 7.67 0.2 7 7.67 0.2
mik2-150-20.08 2 15.19 0.0 7 17.28 0.6 9 17.28 0.6
mik2-150-20.09 2 11.08 0.0 6 18.13 0.3 8 18.13 0.2
mik2-150-20.10 2 18.85 0.0 4 13.72 0.3 6 19.40 0.3

mik2-150-30.01 2 16.55 0.0 6 20.21 0.4 8 23.69 0.4
mik2-150-30.02 2 3.71 0.0 2 2.88 0.2 4 3.71 0.2
mik2-150-30.03 2 8.06 0.0 5 11.04 0.2 7 11.04 0.2
mik2-150-30.04 2 9.85 0.0 3 9.53 0.6 5 10.40 0.6
mik2-150-30.05 2 25.45 0.0 5 26.62 0.6 7 26.62 0.7
mik2-150-30.06 2 4.69 0.0 4 6.09 0.4 6 6.09 0.4
mik2-150-30.07 2 3.68 0.0 2 5.02 0.2 4 5.02 0.2
mik2-150-30.08 2 16.36 0.0 4 24.81 0.7 6 24.81 0.6
mik2-150-30.09 2 4.84 0.0 5 6.28 0.5 7 6.28 0.5
mik2-150-30.10 2 5.43 0.0 6 7.56 0.4 8 7.56 0.4

avg. 2.0 13.57 0.0 5.0 15.21 0.3 7.0 16.58 0.3
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Table 4.4: GMI cuts vs. triangle cuts: 2 round of cuts, part I.

Instance GMI triangles GMI + triangles

# cuts % gap sep.secs # cuts % gap sep.secs # cuts % gap sep.secs

mik2-50-10.01 5 34.00 0.0 85 41.48 2.2 186 40.25 4.7
mik2-50-10.02 6 12.41 0.0 30 18.50 1.1 35 18.50 1.1
mik2-50-10.03 5 47.24 0.0 43 63.93 1.0 48 63.93 1.0
mik2-50-10.04 5 23.01 0.0 25 29.26 0.7 58 27.65 1.9
mik2-50-10.05 6 2.39 0.0 75 4.54 2.7 81 4.54 2.7
mik2-50-10.06 6 22.80 0.0 35 25.77 1.3 438 29.11 7.4
mik2-50-10.07 6 6.05 0.0 51 7.76 1.4 55 8.71 1.7
mik2-50-10.08 5 11.98 0.0 41 14.93 0.9 22 17.84 1.1
mik2-50-10.09 5 17.39 0.0 24 31.29 0.6 29 38.88 0.6
mik2-50-10.10 5 17.44 0.0 24 26.84 0.8 29 27.17 0.8

mik2-50-20.01 5 22.25 0.0 33 22.44 2.0 77 23.41 4.3
mik2-50-20.02 6 14.88 0.0 92 22.12 4.8 183 20.62 11.2
mik2-50-20.03 5 20.78 0.0 191 20.87 17.1 170 24.38 6.9
mik2-50-20.04 6 10.24 0.0 184 12.92 6.3 191 12.92 6.3
mik2-50-20.05 5 31.39 0.0 49 29.32 1.7 54 29.53 1.7
mik2-50-20.06 6 37.73 0.0 77 34.50 3.1 148 33.72 6.3
mik2-50-20.07 6 40.65 0.0 27 38.53 11.0 53 53.30 4.8
mik2-50-20.08 5 34.26 0.0 88 31.52 3.7 112 33.59 5.8
mik2-50-20.09 5 25.22 0.0 79 24.77 2.6 56 30.96 3.5
mik2-50-20.10 6 32.40 0.0 62 28.68 3.6 69 38.38 6.9

mik2-50-30.01 4 31.44 0.0 71 34.89 1.3 86 37.89 1.4
mik2-50-30.02 6 15.58 0.0 64 21.59 6.7 63 21.85 5.1
mik2-50-30.03 5 15.17 0.0 27 18.57 3.7 32 18.57 3.7
mik2-50-30.04 5 36.95 0.0 45 44.93 6.4 102 45.67 4.6
mik2-50-30.05 6 16.24 0.0 23 26.84 2.0 28 26.84 2.0
mik2-50-30.06 6 24.45 0.0 77 26.95 3.6 41 29.24 2.3
mik2-50-30.07 6 30.75 0.0 69 32.13 3.6 71 31.98 5.8
mik2-50-30.08 6 34.05 0.0 145 40.37 8.4 129 44.83 11.4
mik2-50-30.09 4 21.14 0.0 68 20.84 4.1 17 22.89 0.7
mik2-50-30.10 5 19.85 0.0 23 29.29 2.3 28 29.29 2.3

65



Table 4.5: GMI cuts vs. triangle cuts: 2 round of cuts, part II.

Instance GMI triangles GMI + triangles

# cuts % gap sep.secs # cuts % gap sep.secs # cuts % gap sep.secs

mik2-100-10.01 6 10.41 0.0 26 18.69 0.7 31 18.92 0.7
mik2-100-10.02 6 22.54 0.0 35 31.13 0.8 88 32.51 2.1
mik2-100-10.03 5 14.25 0.0 205 24.92 4.1 212 25.15 4.2
mik2-100-10.04 4 7.76 0.0 34 18.71 1.0 9 7.76 0.2
mik2-100-10.05 5 18.25 0.0 26 20.49 0.9 18 20.99 2.5
mik2-100-10.06 5 9.17 0.0 31 13.17 1.0 36 13.17 1.0
mik2-100-10.07 5 4.88 0.0 31 15.73 1.0 36 15.73 1.0
mik2-100-10.08 5 21.04 0.0 35 18.55 0.9 61 18.42 1.6
mik2-100-10.09 6 37.45 0.0 26 29.09 1.3 101 40.52 2.0
mik2-100-10.10 5 29.86 0.0 69 32.90 1.9 72 33.17 2.0

mik2-100-20.01 5 23.71 0.0 25 18.99 16.8 57 26.15 2.2
mik2-100-20.02 5 25.30 0.0 40 29.69 1.7 40 36.39 1.6
mik2-100-20.03 5 22.80 0.0 217 25.10 9.1 124 24.55 4.5
mik2-100-20.04 5 9.63 0.0 68 19.20 5.1 74 19.38 5.2
mik2-100-20.05 6 15.65 0.0 56 14.82 5.6 51 16.21 2.7
mik2-100-20.06 5 27.33 0.0 93 40.24 3.5 99 40.24 3.5
mik2-100-20.07 6 13.54 0.0 73 13.71 4.9 94 18.25 3.6
mik2-100-20.08 6 1.88 0.0 23 16.04 1.9 28 16.73 1.9
mik2-100-20.09 6 19.11 0.0 39 22.39 50.1 47 20.45 1.5
mik2-100-20.10 5 9.08 0.0 14 9.32 1.5 98 10.57 3.2

mik2-100-30.01 6 10.60 0.0 61 25.06 4.0 67 25.06 4.0
mik2-100-30.02 5 21.38 0.0 42 19.30 2.1 36 22.45 3.7
mik2-100-30.03 6 19.29 0.0 31 24.57 1.9 36 24.62 1.9
mik2-100-30.04 5 39.73 0.0 50 56.70 8.2 55 56.70 8.2
mik2-100-30.05 5 7.84 0.0 25 9.27 2.0 30 9.47 2.0
mik2-100-30.06 5 19.96 0.0 74 29.39 7.4 80 29.39 7.3
mik2-100-30.07 4 23.28 0.0 24 33.56 3.4 29 33.73 3.3
mik2-100-30.08 5 5.75 0.0 28 7.71 2.9 32 6.55 6.3
mik2-100-30.09 5 25.33 0.0 30 24.32 2.5 101 25.51 8.5
mik2-100-30.10 5 13.10 0.0 34 13.60 1.9 39 14.48 2.2
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Table 4.6: GMI cuts vs. triangle cuts: 2 round of cuts, part III.

Instance GMI triangles GMI + triangles

# cuts % gap sep.secs # cuts % gap sep.secs # cuts % gap sep.secs

mik2-150-10.01 6 20.79 0.0 66 25.16 4.0 72 25.16 3.9
mik2-150-10.02 6 19.12 0.0 170 25.23 3.1 128 25.34 2.8
mik2-150-10.03 5 14.71 0.0 91 16.61 2.0 97 16.65 2.0
mik2-150-10.04 5 2.61 0.0 49 4.01 1.3 170 3.74 5.1
mik2-150-10.05 5 9.34 0.0 73 11.18 3.4 92 13.39 2.0
mik2-150-10.06 5 9.74 0.0 77 10.93 8.7 83 10.93 8.7
mik2-150-10.07 4 8.02 0.0 84 10.47 1.7 90 10.48 1.6
mik2-150-10.08 6 17.14 0.0 40 22.26 0.9 105 24.77 3.8
mik2-150-10.09 5 15.20 0.0 17 10.19 0.4 31 15.94 0.7
mik2-150-10.10 6 52.35 0.0 80 50.61 1.7 93 54.27 2.6

mik2-150-20.01 6 14.23 0.0 66 21.94 4.8 72 21.94 4.8
mik2-150-20.02 6 24.31 0.0 19 26.70 1.4 97 27.88 3.7
mik2-150-20.03 6 8.77 0.0 82 26.59 4.0 88 26.59 3.9
mik2-150-20.04 5 15.26 0.0 80 26.80 3.4 86 26.80 3.4
mik2-150-20.05 5 20.91 0.0 93 32.26 4.5 101 31.89 6.0
mik2-150-20.06 5 27.36 0.0 214 30.06 9.1 221 30.06 9.2
mik2-150-20.07 6 6.05 0.0 20 11.95 2.8 25 11.95 2.8
mik2-150-20.08 6 23.78 0.0 35 25.74 3.6 40 25.74 3.6
mik2-150-20.09 5 19.69 0.0 36 23.44 1.2 41 23.44 1.2
mik2-150-20.10 6 27.87 0.0 38 20.59 2.5 80 31.27 4.5

mik2-150-30.01 6 18.13 0.0 76 25.94 10.7 160 27.72 12.3
mik2-150-30.02 5 6.38 0.0 31 4.20 3.1 16 9.54 1.9
mik2-150-30.03 5 16.73 0.0 30 19.34 1.6 35 19.61 1.6
mik2-150-30.04 5 17.88 0.0 23 17.42 2.7 48 20.29 3.7
mik2-150-30.05 6 31.92 0.0 137 29.34 9.3 144 29.41 9.3
mik2-150-30.06 5 11.62 0.0 37 16.53 3.8 42 16.76 3.8
mik2-150-30.07 5 12.14 0.0 25 16.65 3.1 30 16.69 3.1
mik2-150-30.08 6 22.07 0.0 40 33.80 3.3 46 33.80 3.3
mik2-150-30.09 5 10.85 0.0 34 12.99 3.6 39 13.07 3.5
mik2-150-30.10 6 14.08 0.0 75 17.34 13.8 81 17.36 13.8

avg. 5.4 19.55 0.0 60.3 23.66 4.2 78.1 25.02 3.9
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Chapter 5

Integer Linear Programming
Local Search for the Vehicle
Routing Problem

5.1 Introduction

The Vehicle Routine Problem (VRP) calls for the determination of the optimal set of
routes to be performed by a fleet of vehicles to serve a given set of customers, and it is
one of the most important and studied combinatorial optimization problems.

Fifty years have elapsed since Dantzig and Ramser [64] introduced the problem in
1959. They described a real-world application concerning the delivery of gasoline to
service stations and proposed the first mathematical programming formulation and al-
gorithmic approach. A few years later, in 1964, Clarke and Wright [51] proposed an
effective greedy heuristic that improved on the Dantzig-Ramser approach. Following
these two seminal papers, hundreds of models and algorithms were proposed for the
optimal and approximate solution of different version of VRP. Dozens of packages for
the solution of various real-world VRPs are now available on the market, but VRP is
still widely studied in the literature, and several exact and heuristic approaches are
proposed every year.

In this chapter1 we address the “classical” (Capacitated and Distance Constrained)
version of VRP, which can be formally stated as follows. We are given a central depot
and a set of n customers, which are associated with the nodes of a complete undirected
graph G = (V, E) (where V = {0, 1, . . . , n}, node 0 represents the depot and V \ {0} is
the set of customers). Each edge e ∈ E has an associated finite cost ce ≥ 0 and each
customer v ∈ V \ {0} has a demand qv ≥ 0 (with q0 = 0 for the depot node). A fleet
of k identical vehicles is located at the depot, each one with a capacity Q and a total

1The results of this chapter appear in: P. Toth and A. Tramontani, “An integer linear programming
local search for capacitated vehicle routing problems”, in B. Golden, S. Raghavan, E. Wasil, editors, The
Vehicle Routing Problem: Latest Advances and New Challenges, pages 275–295, Springer, New York,
2008 [169].
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distance-traveled (duration) limit D. The customers must be served by at most k cycles
(routes), each cycle associated with one vehicle, starting and ending at the depot. Each
route must have a duration (computed as the sum of the edge costs in the route) not
exceeding the given limit D of the vehicles, and can visit a subset S of customers whose
total demand

∑
v∈S qv does not exceed the given capacity Q. The problem consists of

finding a feasible solution covering (i.e., visiting) exactly once all the customers and
having a minimum overall cost, computed as the sum of the traveled edge costs; see,
e.g., [166].

VRP is NP-hard in the strong sense, as it generalizes the Bin Packing Problem
and the Traveling Salesman Problem. The interest in VRP is motivated by both its
practical relevance and its considerable difficulty: the largest benchmark instance that
can be solved to proven optimality has 120 customers only, whereas instances with more
than 200 customers can be effectively attached by heuristic and metaheuristic approa-
ches only. Exact methods usually deal with the capacitated problem with no distance
constraints and no empty routes allowed (i.e., customers must be served by exactly k
routes and D = ∞). Heuristic and metaheuristic algorithms usually take into account
both capacity and distance constraints, and often consider the number of routes as a
decision variable. For a comprehensive survey on solution techniques for the Vehicle
Routing Problem we refer the reader to [55, 56, 96, 168]. Recent exact algorithms have
been proposed by Augerat et al. [12], Hadjiconstantinou et al. [103], Ralphs et al. [146],
Baldacci et al. [28], Lysgaard et al. [119], Fukasawa et al. [92]. Effective metaheuristic
algorithms have been recently proposed by Osman [130], Taillard [161], Gendreau et al.
[94], Rochat and Taillard [151], Rego and Roucairol [147], Xu and Kelly [175], Berger
and Barkaoui [32], Toth and Vigo [167], Prins [145], Reimann et al. [149], Li et al. [114],
Tarantilis [162], Wassan [172], Kytöjoki et al. [109], Mester and Bräysy [125], Pisinger
and Ropke [141].

In this chapter we present an Integer Linear Programming (ILP) Local Search algo-
rithm for VRP, based on an exponential neighborhood which is explored by solving an
ILP formulation. The method follows a destroy-and-repair paradigm, where the current
solution is randomly destroyed (i.e., customers are removed in a random way) and re-
paired by following ILP techniques. Hence, the overall procedure can be considered as a
general framework which could be extended to cover other variants of Vehicle Routing
Problems.

Our starting point is the refinement heuristic procedure proposed by De Franceschi
et al. [68]. Given an initial solution to be possibly improved, the procedure performs the
following steps: (a) randomly select several customers from the current solution, and
build the restricted solution obtained from the current one by extracting (i.e., short-
cutting) the selected customers; (b) reallocate the extracted customers to the restricted
solution by solving an ILP problem (denoted as Reallocation Model), in the attempt
of finding a new improved solution. To explore different neighborhoods of the same
solution, customers are selected by means of different randomized selection criteria.
The method proposed in [68] often provides an improvement of the initial solution, but
is rather expensive in terms of computing time. To get a more effective and deeper
exploration of the solution space, we present a generalization of the neighborhood pro-
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posed in [68] and investigate the corresponding ILP formulation. Since the Reallocation
Model has a number of variables exponential in the number of the extracted custo-
mers, the solution of its LP relaxation has to be handled by using pricing and column
generation techniques. In [68], such a relaxation was heuristically solved through an
intensive pricing loop, in which a huge number of variables were iteratively generated
and added to the model only if their reduced costs were under a fixed threshold. Va-
riable generation was driven by heuristic criteria (see [68] for details). In this chapter
we investigate the column generation problem associated with the LP relaxation of the
Reallocation Model, which is shown to be NP-hard, and propose a two-phase approach
for the neighborhood exploration, which first reduces the neighborhood size through a
simple heuristic criterion, and then explores the reduced neighborhood by solving the
corresponding Reallocation Model formulation through the (heuristic) solution of the
column generation problem associated with its LP relaxation.

The chapter is organized as follows. In Section 5.2 the exponential neighborhood
we propose for VRP is described, and the ILP formulation corresponding to the neigh-
borhood exploration is presented. The implementation of the Local Search algorithm is
given in Section 5.3, while Sections 5.4, 5.5 and 5.6 describe in detail the basic steps of
the method. In particular, Section 5.4 describes the heuristic criteria for selecting the
customers to be extracted (i.e., the neighborhood to be explored), Section 5.5 presents
the heuristic procedure we propose for reducing the neighborhood size, while Section
5.6 presents the column generation problem associated with the LP relaxation of the
Reallocation Model. Computational experiments on benchmark capacitated VRP in-
stances from the literature (with/without distance constraints) are reported in Section
5.7, comparing the proposed method with the approach presented in [68], and with the
most effective metaheuristic techniques proposed for VRP. Some conclusions are finally
drawn in Section 5.8.

5.2 Exponential neighborhood

Let Z be the set of all the feasible solutions of the VRP defined on G. For any given
solution z0 ∈ Z and node subset F ⊆ V \ {0}, we define z0(F) as the restricted solution
obtained from z0 by extracting (i.e., by short-cutting) all the nodes v ∈ F . Let I =
I(z0,F) denote the set of all the edges in z0(F), and S = S(F) the set of all the
sequences which can be obtained through the recombination of nodes in F (i.e., the set
of all the paths in F). Each edge i ∈ I is viewed as a potential insertion point which
can allocate one or more nodes in F through at most one sequence s ∈ S.

With the above notation, for each z0 ∈ Z and F ⊆ V \ {0}, we define the neigh-
borhood N(z0,F) as the set of all the feasible solutions z ∈ Z which can be obtained
through the reallocation of all the extracted nodes v ∈ F to the restricted solution
z0(F). This is obtained by allocating some sequences s ∈ S to some insertion points
i ∈ I, so that each node v ∈ F is covered exactly once by the allocated sequences
and each insertion point i ∈ I allocates at most one sequence s ∈ S. We say that the
insertion point i = (a, b) ∈ I allocates the nodes {vj ∈ F : j = 1, . . . , h} through the
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sequence s = (v1, v2, . . . , vh) ∈ S, if the edge (a, b) in the restricted solution is replaced
by the edges (a, v1), (v1, v2), . . . , (vh, b) in the new feasible solution.

N(z0,F) is an exponential neighborhood of the given solution z0 which can be viewed
as an extension of the neighborhood proposed by Sarvanov and Doroshko [155], and,
independently, by Gutin [102], for the pure Traveling Salesman Problem (see [68] for de-
tails). Of course, N(z0,F) depends on the choice of F , and in particular N(z0, ∅) = {z0},
while N(z0, V \ {0}) = Z for any z0 ∈ Z, since any empty route in z0(F) is viewed
as an insertion point (0, 0). In the general case, N(z0,F) can be explored by solving a
set-partitioning model (denoted as the Reallocation Model) which is theoretically NP-
hard, but effectively solvable in practice. The reallocation model corresponding to z0

and F can be described as follows.

Let R denote the set of routes in the restricted solution. For any sequence s ∈ S, let
V (s) be the node set of s, c(s) the sum of the costs of the edges in the sequence, and q(s)
the sum of the demands qv associated with the nodes v ∈ V (s). For any node v ∈ F , let
S(v) := {s ∈ S : v ∈ V (s)} denote the set of sequences s ∈ S containing node v. For each
insertion point i = (a, b) ∈ I and for each sequence s = (v1, v2, . . . , vh) ∈ S we define γsi

as the extra-distance (i.e., the extra-cost) for assigning sequence s to insertion point i
in its best possible orientation (i.e., γsi := c(s)− cab +min{cav1 + cvhb, cavh

+ cv1b}). For
each route r ∈ R, let I(r) denote the set of insertion points (i.e., edges) associated with
r, while let q̃(r) and c̃(r) denote, respectively, the total demand and distance computed
for route r, still in the restricted solution. With the above notation, the Reallocation
Model is an Integer Linear Programming (ILP) problem based on the decision variables

xsi =
{

1 if sequence s ∈ S is allocated to insertion point i ∈ I
0 otherwise

(5.1)

and reads as follows:

∑

r∈R
c̃(r) + min

∑

s∈S

∑

i∈I
γsixsi (5.2)

subject to:

∑

s∈S(v)

∑

i∈I
xsi = 1 v ∈ F , (5.3)

∑

s∈S
xsi ≤ 1 i ∈ I, (5.4)

∑

s∈S

∑

i∈I(r)

q(s)xsi ≤ Q− q̃(r) r ∈ R, (5.5)

∑

s∈S

∑

i∈I(r)

γsixsi ≤ D − c̃(r) r ∈ R, (5.6)

xsi ∈ {0, 1} s ∈ S, i ∈ I. (5.7)
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The objective function (5.2), to be minimized, gives the cost of the final VRP solution.
Constraints (5.3) impose that each extracted node belongs to exactly one of the selected
sequences, i.e., that it is covered exactly once in the final solution. Note that, if the
costs satisfy the triangle inequality, one could replace = by ≥ in (5.3), thus obtaining
an ILP having the structure of a set-covering (instead of a set-partitioning) problem
with side constraints. Constraints (5.4) avoid to allocate two or more sequences to an
insertion point. Finally, constraints (5.5) and (5.6) impose that each route in the final
solution fulfills the capacity and distance restrictions, respectively.

Solving the reallocation model to optimality corresponds to the complete exploration
of the neighborhood N(z0,F). However, for some choices of F , the neighborhood can be
too large and cannot be completely explored with an acceptable computational effort
(note that the number of variables xsi is exponential in the number of nodes in F).
Moreover, the quality of the feasible solutions in N(z0,F) depends on the choice of
F . Indeed, in order to explore the solution space close to z0 in an effective way, three
different aspects have to be considered:

(a) different neighborhoods N(z0,F) have to be explored, using different sets F , se-
lected by using different selection criteria;

(b) it is of crucial importance to reduce the neighborhood to explore without loosing
possible improvements of the current solution z0;

(c) even the reduced neighborhood can be too large and has to be explored only in a
partial way.

5.3 Local Search algorithm

The choice of the extracted node set F is a key factor of the proposed approach. In
particular, wrong choices of F lead to bad neighborhoods which contain no improved
solutions with respect to z0, even if z0 is not a “good” quality solution. To get promi-
sing neighborhoods, we apply an iterative local search algorithm: at each iteration, a
different neighborhood N(z0,F) is explored, using a different set F of extracted nodes,
determined according to different selection criteria (see Section 5.4).

Moreover, as previously mentioned, the neighborhood N(z0,F) could be too large
and its complete exploration could not be performed in a reasonable computing time.
Therefore, at each iteration of the local search algorithm, we first determine a redu-
ced neighborhood N(z0,F , λ) ⊆ N(z0,F) and its corresponding Reduced Reallocation
Model (see Section 5.5), and then we perform only a partial exploration of the current
reduced neighborhood, which corresponds to the selection of a small subset of all the
potential variables xsi, with (s, i) ∈ S × I, for the Reduced Reallocation Model (see
Section 5.6).

Given an initial feasible solution z0 for VRP (taken from the literature or found by
any heuristic method), the proposed Local Search Algorithm (LSA) works as follows:
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1. (Initialization). Initialize a list Θ of all the available selection criteria.

2. (Selection). Apply the next selection criterion in Θ to determine the set F of
nodes to be extracted.

3. (Extraction). Extract the nodes selected in the previous step and construct the
corresponding restricted VRP solution obtained by short-cutting the extracted
nodes.

4. (Reduction). Determine a reduced neighborhood N(z0,F , λ) ⊆ N(z0,F) and
build the Linear Programming (LP) relaxation of the corresponding Reduced Real-
location Model with an initial empty set of variables.

5. (Construction). Populate the Reduced Reallocation Model with a promising
subset of variables, determined by using pricing and column generation techniques.

6. (Reallocation). “Freeze” the current set of variables, add the integrality requi-
rements to the variables and solve the corresponding Reduced Reallocation Model
by using a general-purpose MIP solver. Once an (almost) optimal ILP solution
has been found, construct the corresponding new VRP solution and possibly up-
date the incumbent solution. If the incumbent solution has been updated, then
process each route in the new solution through a 3-OPT exchange heuristic (in
the attempt of further improving it) and repeat from Step 1.

7. (Termination). If the list Θ is empty, then STOP; otherwise repeat from Step
2.

5.4 Node selection criteria

Selection criteria determine the set F of extracted nodes, and therefore the neigh-
borhood N(z0,F) to explore. Several deterministic criteria have been considered and
experimentally evaluated, but none of them seems to work better than randomized crite-
ria. Therefore we use the same randomized selection criteria proposed by De Franceschi
et al. in [68]. They can be briefly described as follows.

– Random-Alternate scheme: this criterion is akin to the Sarvanov and Doroshko
[155] scheme for the pure Traveling Salesman Problem: for each route all the nodes
in even position or all the nodes in odd position are selected, the position parity
being randomly-determined (with equal probability) for any route.

– Scattered scheme: each node has a probability p of being extracted, where p is
a fixed parameter; this scheme allows for the removal of consecutive nodes, i.e., of
route subsequences.

– Neighborhood scheme: given a seed node v∗, then v∗ is selected and each other
node v is selected with a probability inversely proportional to the distance cvv∗ of
v from v∗ (such that a given percentage p of the nodes are selected on average).
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At the beginning of the computation a list N containing all the customer nodes is
created, associating with each node v∗ a score equal to the average distance from
v∗ of the 10 nodes nearest to v∗ and sorting the list N by increasing scores. At
each application of the scheme, the next node v∗ in the list (in a circular way)
plays the role of the seed node.

Random-Alternate and Scattered schemes appear particularly suited to im-
prove the first solutions, and they seem to be useful even to improve new solutions
obtained by the application of the Neighborhood scheme. On the contrary, the
Neighborhood scheme seems more appropriate to improve good quality solutions,
whereas the other schemes fail. Therefore, in Step 1 we initialize the list Θ as Θ :=
{R(3), S(3), N(n)} with the following meaning: we first apply 3 times the Random-
Alternate scheme, then we apply 3 times the Scattered scheme, and afterwards
the Neighborhood scheme is applied for each customer node. In this way, in the first
iterations we look for “global” improvements by using completely randomized selection
criteria, and afterwards we concentrate on the neighborhoods of different customers
looking for “local” improvements.

5.5 Neighborhood reduction

Concerning the Reallocation Model (5.2)–(5.7), for each sequence s ∈ S and for each
insertion point i ∈ I, we say that s is feasible for i if s can be allocated to i without
violating capacity and distance constraints for the route ri containing i. With the same
notation, we say that each node v ∈ F is feasible for i ∈ I if the sequence (v) is feasible
for i. Then we define F∗i := {v ∈ F : v is feasible for i} and I∗v := {i ∈ I : v ∈ F∗i }.

During the neighborhood construction, whenever we have to find a new variable
xsi for a given insertion point i ∈ I, we are required to generate a new sequence s by
considering all the sequences in S. However, many sequences in S may be infeasible for i,
and many feasible sequences can have a too high insertion cost γsi with respect to other
feasible sequences. Removing a priori all the infeasible sequences and all the “bad”
sequences (i.e., the sequences with a too high insertion cost) would lead to a strong
reduction of the computational effort needed for the generation of new variables. To
this end, for each i ∈ I we determine a reduced node subset Fi ⊆ F . All the sequences
generated for i are sequences s ∈ Si, where Si := {s ∈ S : V (s) ⊆ Fi}. Associating each
insertion point i ∈ I only with a reduced node subset Fi ⊆ F corresponds to reduce the
neighborhood N(z0,F) of all the feasible solutions that can be reached from z0. With
the above reduction, we get a reduced neighborhood which can be explored by solving
a Reduced Reallocation Model (RRM), which is similar to the original Reallocation
Model (5.2)–(5.7) and reads as follows:

∑

r∈R
c̃(r) + min

∑

s∈S

∑

i∈Is

γsixsi (5.8)

subject to:
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∑

s∈S(v)

∑

i∈Is

xsi = 1 v ∈ F , (5.9)

∑

s∈Si

xsi ≤ 1 i ∈ I, (5.10)

∑

s∈S

∑

i∈Is(r)

q(s)xsi ≤ Q− q̃(r) r ∈ R, (5.11)

∑

s∈S

∑

i∈Is(r)

γsixsi ≤ D − c̃(r) r ∈ R, (5.12)

xsi ∈ {0, 1} s ∈ S, i ∈ Is, (5.13)

where, for each s ∈ S and each r ∈ R, Is := {i ∈ I : s ∈ Si} and Is(r) := Is ∩ I(r). Of
course, the approach is effective only if we are able to find a smart reduction without
loosing any potential improvement of z0 in N(z0,F).

Assuming that the triangle inequality holds, a first exact reduction can be performed
by setting Fi := F∗i for any i ∈ I. Since any feasible sequence s for i has to be a path
in F∗i , the above setting is not a true reduction of the neighborhood N(z0,F), but
it corresponds to a strong reduction of the solution space of the LP relaxation of the
Reallocation Model. In addition, we perform a true neighborhood reduction based on
the following heuristic assertion: if an extracted node v ∈ F has to be allocated to a
certain route r ∈ R, then it will probably be allocated to one of the insertion points
i ∈ I(r) nearest to v. Therefore, an effective problem reduction has to satisfy the
following requirements:

(a) any node v has to be associated with its pivot iv (i.e., the insertion point v was
extracted from). In this way we can always get z0 as the new solution;

(b) any node v has to be associated with at least one insertion point i ∈ I(r) for each
route r ∈ R;

(c) if the insertion cost of the sequence (v) in the insertion point i is “too high”, then
v can be removed from Fi (i.e., any sequence s containing v is removed from Si).

For each v ∈ F and for each i ∈ I∗v , let γvi denote the insertion cost of the sequence (v)
in i. For each r ∈ R and for each v ∈ F , we define δvr as the average insertion cost of
the sequence (v) in the route r, computed as

δvr :=

∑
i∈I(r)∩I∗v γvi

|I(r) ∩ I∗v |
. (5.14)

With the above notation, assuming that the triangle inequality holds, for each i ∈ I we
set

Fi := {v ∈ F∗i : γvi ≤ λ δvri} ∪ {v ∈ F : i = iv} (5.15)
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where λ is a fixed parameter. We denote the reduced neighborhood corresponding
to the Reduced Reallocation Model (5.8)–(5.13) with N(z0,F , λ). Note that ∀ λ ≥
0, N(z0,F , λ) ⊆ N(z0,F), and lim

λ→∞
N(z0,F , λ) = N(z0,F).

5.6 Neighborhood construction

Once the reduced neighborhood N(z0,F , λ) has been built, it could be entirely explo-
red by solving the Reduced Reallocation Model (RRM) (5.8)–(5.13) to optimality. As
mentioned before, for computing time reasons we decide to explore this neighborhood
only in a partial way. Therefore we initialize RRM with a small subset of variables
which ensure the model to be feasible, and then we solve its LP relaxation adding other
variables by using column generation techniques. When no other variable with small
(say) reduced cost can be added to the model, we “freeze” the current set of variables
and we add the integrality requirements. The Partial Reduced Reallocation Model we
get in this way corresponds to a partial reduced neighborhood which can be explored
by solving the model through a general purpose MIP solver.

Let LP-RRM denote the Linear Programming relaxation of RRM. Then let SB

denote the set of all the basic sequences in S extracted from the incumbent solution
z0 (we say that s ∈ S is a basic sequence if it belongs to z0 and no other sequence in
S belonging to z0 contains s). For each s ∈ SB let is ∈ I denote the pivot insertion
point the basic sequence s has been extracted from. Finally, let VP and SP denote
the variable pool and the sequence pool, which contain, respectively, all the variables
and all the sequences generated so far. With the above notation, the Neighborhood
construction can be described in detail through the following steps:

1. (Initialization). Set SP := SB and VP := {xsi : s ∈ SB, i = is}. For each
insertion point i ∈ I, construct a small number of new sequences s ∈ Si that “fit
well” with i (i.e., that have a small insertion cost with respect to i), add these
sequences to SP and the corresponding variables to VP . After this step, a feasible
solution for RRM exists (e.g., the current solution z0) and we can use reduced
costs for evaluating the “goodness” of the other variables.

2. (Pricing). Apply a fast Pricing step with the sequences generated so far to reduce
the computational effort required for the Column generation step:

(a) add to SP all the sequences s ∈ S with cardinality 1 and 2;

(b) solve LP-RRM;

(c) ∀i ∈ I and ∀s ∈ SP ∩ Si, if the reduced cost rcsi of the variable xsi does not
exceed a given threshold RCmax (i.e., rcsi ≤ RCmax), then add xsi to VP ;

(d) if at least one variable has been added, repeat from Step 2b.

3. (Column generation). Look for “good” variables by (heuristically) solving the
column generation problem associated with each insertion point in LP-RRM:
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(a) for each i ∈ I, try to solve the column generation problem associated with i
finding as many variables with small reduced cost as possible;

(b) if at least one variable has been found, add all the variables to VP , solve
LP-RRM and repeat from Step 3a.

The Column generation step represents the crucial step of the Neighborhood con-
struction phase, and is described in Section 5.6.1. This is the most time consuming
step, but it often allows to improve even good quality initial solutions. However, preli-
minary computational experiments showed that the Initialization and the Pricing steps
are important as well, since they provide an initial nice structure for the Reduced Real-
location Model. If we initialize the variable pool as VP := {xsi : s ∈ SB, i = is} and
then apply only the Column generation step, we generally find the same final solution
but in a much higher computing time, since in the first iterations of the Column gene-
ration step a huge number of useless variables are generated and added to the variable
pool. Moreover, during all the steps of the Neighborhood construction phase, hashing
techniques are used to handle the variable and sequence pools to avoid the generation
of duplicated variables.

5.6.1 The column generation problem

Consider the Linear Programming relaxation LP-RRM of the Reduced Reallocation
Model, and let π1

v , π2
i , π3

r and π4
r be the dual variables associated, respectively, with

constraints (5.9), (5.10), (5.11) and (5.12) in LP-RRM, where v ∈ F , i ∈ I and r ∈ R.
Then, for any (s, i) ∈ {(s, i) ∈ S × I : i ∈ Is}, with s = (v1, . . . , vh) and i = (ai, bi), the
reduced cost rcsi of variable xsi is defined by

rcsi := γsi −
∑

v∈V (s)

π̃1
v − π̃2

i − q(s)π̃3
ri
− γsiπ̃

4
ri

(5.16)

where π̃ = (π̃1
v , π̃

2
i , π̃

3
r , π̃

4
r ) denotes the optimal dual solution of LP-RRM. Let P (s, i) =

(VP , EP ) denote the path (ai, v1, . . . , vh, bi) in G corresponding to variable xsi, where
VP := {v1, . . . , vh} ⊆ V and EP := {(ai, v1), . . . , (vh, bi)} ⊆ E. We can rewrite the
reduced cost of variable xsi as

rcsi := −π̃2
i − ci(1− π̃4

ri
) +

∑

e∈EP

ce(1− π̃4
ri

) +
∑

v∈VP

−(π̃1
v + qvπ̃

3
ri

) (5.17)

where ci denotes the cost of edge i = (ai, bi). Now consider the graph G(i, π̃) = (Vi, Ei),
with Vi := {ai, bi}∪Fi and Ei := E(Vi)\(ai, bi), where E(Vi) denotes the set of edges in
E having both endpoints in Vi. Associate with each edge e ∈ Ei a cost c′e = ce(1− π̃4

ri
)

and a weight ce, and associate with each node v ∈ Fi a cost q′v = −(π̃1
v + qvπ̃

3
ri

) and a
weight qv. We say that a path P = (VP , EP ) from ai to bi in G(i, π̃) is a feasible path if

∑

v∈VP

qv ≤ Q− q̃(ri), (5.18)
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∑

e∈EP

ce ≤ D − c̃(ri) + ci, (5.19)

and its cost is

c′(P ) =
∑

e∈EP

c′e +
∑

v∈VP

q′v. (5.20)

With the above definitions the following proposition holds:

Proposition 5.1 For any i ∈ I, the column generation problem associated with i in
LP-RRM is the problem of finding a feasible path P from ai to bi in G(i, π̃), with cost
c′(P ) < π̃2

i + ci(1− π̃4
ri

).

Proof. For any i ∈ I, the column generation problem associated with i in LP-
RRM is the problem of finding a variable xsi with negative reduced cost, such that
q(s) ≤ Q − q̃(ri), γsi ≤ D − c̃(ri), and s ∈ Si. For any s = (v1, . . . , vh) ∈ Si, let
P = (ai, v1, . . . , vh, bi) be the corresponding path in G(i, π̃). xsi fulfills both capacity
and distance constraints if and only if P is feasible. Moreover, the reduced cost of xsi

is given by rsi = c′(P )− π̃2
i − ci(1− π̃4

ri
). 2

As described above, the column generation problem for LP-RRM associated with any
insertion point i ∈ I is in practice a Resource Constrained Elementary Shortest Path
Problem (RCESPP) defined on a graph G(i, π̃), which also arises as column generation
problem in the classical Set Partitioning formulation of VRP (see, e.g., Feillet et al.
[76] and Righini and Salani [150]). It is worth noting that the size of G(i, π̃) and of the
corresponding RCESPP strictly depend on |Fi|. Indeed, the Neighborhood Reduction
described in Section 5.5 corresponds to reducing the size of G(i, π̃) and hence of RCESPP
for any insertion point i ∈ I.

In the general case, G(i, π̃) contains negative cycles (i.e., cycles in which the sum
of the costs c′e associated with the edges and the costs q′v associated with the nodes
is negative): indeed, while dual variables π2

i , π
3
r , π

4
r are non positive, dual variables π1

v

are free and usually assume positive values (note that they are always non negative if
the triangle inequality holds). Positive values of variables π1

v usually lead to negative
node costs q′v and to negative cycles in graph G(i, π̃). Therefore, the column generation
problem in LP-RRM is strongly NP-hard.

Since the aim of the Neighborhood Construction phase is to find promising variables
for the Reduced Reallocation Model in a short computing time, we solve the column
generation problem through a simple heuristic, whose aim is to find as many variables
with small reduced cost as possible. For any given graph G(i, π̃), the algorithm works
as follows:

1. Find an initial feasible path P = (ai, v, bi), with v ∈ Fi (such a path always exists
if Fi 6= ∅).
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2. Evaluate all the 1-1 feasible exchanges between each node w ∈ Fi \ VP and each
node v ∈ VP , and select the best one (with respect to the cost of the corresponding
path); if this exchange leads to an improvement, perform it and repeat from Step
2.

3. Evaluate all the feasible insertions of each node w ∈ Fi \VP in each edge (v1, v2) ∈
EP and select the best one; if no feasible insertion exists, terminate; otherwise,
force such an insertion even if it leads to a worse path and repeat from Step 2.

Whenever a new path is generated, the corresponding variable is added to the va-
riable pool VP if its reduced cost is smaller than a given threshold RCmax (say).

5.7 Computational results

The performance of the Local Search Algorithm (LSA) proposed in the previous sec-
tions was evaluated by considering two classes of experiments, corresponding to two
different possibilities for finding the initial solutions to be possibly improved. In Class
1, the initial solution is obtained by means of the C code corresponding to the Gra-
nular Tabu Search algorithm proposed by Toth and Vigo [167]. In this way we get a
self-contained algorithm which requires no initial solution to be given. In several cases,
the Granular Tabu Search algorithm provides very good initial solutions, while in other
cases it provides solutions which are quite far from the best-known ones reported in
the literature. In Class 2, we start from an extremely-good feasible solution (in several
cases, the best-known solution reported in the literature), with the aim of improving it
(this is of course possible only if the initial solution is not optimal, as it is the case for
some of them).

Our computational analysis considers two well known sets of Euclidean instances
from the literature, that are generally used as standard benchmarks for the considered
problem. The first set consists of the 14 instances (with |V | varying from 51 to 200)
proposed by Christofides, Mingozzi and Toth [47] (CMT instances). Both real costs and
rounded-integer costs have been considered for these instances. The second set consists
of the 20 large-scale instances (with |V | varying from 201 to 484) proposed by Golden,
Wasil, Kelly and Chao [97] (GWKC instances). Only real costs have been considered
for the GWKC instances in the literature. For the second class of experiments we
consider, in addition, instance E101-14u (also called E-n101-k14), with rounded-integer
costs, from Vigo’s web page [171], and the large-scale instance tai385, with real costs,
from Taillard’s web page [160]. All the instances but tai385 (with 386 nodes and 47
routes) are denoted as Tn-kx, according to the notation adopted by Toth and Vigo [166],
where “T” is equal to “E” for VRP instances with capacity constraints only and “D”
for VRP instances with both capacity and distance constraints, “n” and “k” indicate,
respectively, the number of nodes and the maximum number of routes, and “x” refers
to the paper where the instance was proposed.

Cordeau et al. [56] provide a computational comparison of recent VRP heuristics
on the CMT and the GWKC instances with real costs. On the CMT instances, the
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best solutions are obtained by Taillard [161] in 12 cases out of 14, Rochat and Taillard
[151] for all the instances but E200-17c, Mester and Bräysy [125] for all the instances
but D200-18c. On the GWKC instances, the best solutions are obtained by Mester and
Bräysy [125] for all the 20 instances but D281-08k, D361-09k and E400-18k, Prins [145]
for instance D281-08k, Pisinger and Ropke [141] for instance D361-09k and De France-
schi et al. [68] for instance E400-18k. If the two instance sets are considered together,
the best performers in terms of accuracy and computing time are Mester and Bräysy
[125] and Prins [145]. It should be noted that these two methods combine population
search and local search approaches, thus allowing for a broad and deep exploration of
the solution space. Results on VRP instances with rounded-integer costs are less re-
ported in the papers considering heuristic methods. The best solutions on the CMT
instances are obtained by Gendreau et al. [93], Xu and Kelly [175] and Wassan [172].
We refer the reader to [56, 125, 168] for a deeper analysis of the most effective heuristic
and metaheuristic techniques proposed in the literature for VRP.

LSA has been tested on a Pentium M 1.86 GHz notebook with 1 GByte RAM,
running under Microsoft Windows XP Operative System, and has been coded in C++
with Microsoft Visual C++ 6.0 compiler. The ILP solver used in the experiments is
ILOG Cplex 10.0 [105] with a limit of 30,000 branching nodes. In the Reallocation step
we provide to the ILP solver the feasible solution corresponding to the current incumbent
VRP solution, where each basic sequence is just reallocated to its corresponding pivot
insertion point. In this way the ILP solver can immediately initialize its own incumbent
solution, so every subsequent update (if any) corresponds to an improved VRP solution
(the run being interrupted as soon as the internal ILP lower bound gives no hope to
find an improvement).

LSA setting depends on the parameters RCMAX , p and λ, which are related to the
neighborhood size. Although RCMAX could be tuned considering the edge costs of the
tested instances, we prefer to run all the experiments with a fixed value of RCMAX ,
and we fix RCMAX = 1. For the CMT instances we fix p = 0.5 and consider two diffe-
rent settings for λ, namely λ = 1 (strong reduction) and λ = ∞ (feasibility reduction).
For the GWKC instances we fix p = 0.3 and λ = 1, in order to reduce the number of
variables generated for the Reallocation Model (in some GWKC instances, if λ = ∞ we
cannot handle the Reallocation Model, because of the excessive memory requirement).

Tables 5.1 and 5.2 report the results obtained by algorithm LSA for the CMT in-
stances, with rounded-integer cost and real costs, respectively. The initial solutions are
found by applying the Granular Tabu Search algorithm [167], and two different settings
of λ are compared (i.e., λ = ∞ and λ = 1). The columns in the tables have the following
meaning:

- Prev. best is the previously best known solution value from the literature; provable
optimal values are marked by ∗;

- Start is the value of the initial solution;

- Final is the value of the solution found by LSA (the number of used routes is
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given if it is smaller than the maximum one);

- Time is the total computing time (in seconds) required by LSA to terminate the
search process.

For each instance, the best solution value reported in the table is represented in bold
face. All the provably optimal solution values are obtained by Fukasawa et al. [92] for
instances with rounded-integer costs, while instance E051-05e with real costs has been
solved to optimality by Hadjiconstantinou et al. [103].

Table 5.1: Computational results for the 14 CMT instances with rounded-integer costs.
Initial solutions obtained by means of the C code of Toth and Vigo [167].

LSA (λ = ∞) LSA (λ = 1)

Instance Prev. best Start Final Time Final Time
D051-06c 548 551 548 15 548 10
D076-11c 905 915 905 146 905 133
D101-09c 856 858 856 66 856 52
D101-11c 865 866 865 506 865 67
D121-11c 1526 1536 1524 795 1524 670
D151-14c 1147 1162 1146 441 1146 281
D200-18c 1392 1422 1392 1826 1392 1001
E051-05e ∗ 521 521 — 7 — 5
E076-10e ∗ 830 836 832 66 832 57
E101-08e ∗ 815 817 815 85 815 66
E101-10c ∗ 820 820 — 56 — 20
E121-07c ∗ 1034 1036 1034 95 1034 62
E151-12c 1015 1026 1024 1298 1024 367
E200-17c 1289 1304 (16)1285 3431 (16)1285 1959

The two tested configurations always provide the same final solution value, but
strong reduction (λ = 1) outperforms feasibility reduction (λ = ∞) in terms of com-
puting time. The results show that LSA is able to improve substantially the initial
solution, even for the instances for which the Granular Tabu Search algorithm provides
very good-quality solutions. Table 5.1 shows that, with rounded-integer costs, LSA im-
proves the initial solution in 12 cases out of 14 (failing, of course, for instances E-051-05e
and E101-10c, where the initial solution is proved to be optimal). In particular, in 7
cases out of 12, LSA is able to reach the best-known solution (which in 2 cases is opti-
mal), and in 3 cases out of 12 it improves the previous best-known solution. Table 5.2
shows that, with real costs, LSA improves the initial solution in 10 cases out of 14 (i.e.,
whenever the initial solution is not the best-known one) and in 3 cases it is able to reach
the best-known solution. Note that, for instance E200-17c, with both rounded-integer
costs and real costs, LSA is able to find a solution with an empty route (i.e., it is able to
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Table 5.2: Computational results for the 14 CMT instances with real costs. Initial
solutions obtained by means of the C code of Toth and Vigo [167].

LSA (λ = ∞) LSA (λ = 1)

Instance Prev. best Start Final Time Final Time
D051-06c 555.43 555.43 — 8 — 6
D076-11c 909.68 920.72 912.49 123 912.49 113
D101-09c 865.94 869.48 865.94 128 865.94 91
D101-11c 866.37 866.37 — 975 — 83
D121-11c 1541.14 1545.51 1543.73 646 1543.73 601
D151-14c 1162.55 1173.12 1164.12 453 1164.12 441
D200-18c 1395.85 1435.74 1403.71 6458 1403.71 3370
E051-05e ∗ 524.61 524.61 — 8 — 6
E076-10e 835.26 838.60 835.32 53 835.32 37
E101-08e 826.14 828.56 826.14 81 826.14 77
E101-10c 819.56 819.56 — 66 — 41
E121-07c 1042.11 1042.87 1042.11 136 1042.11 92
E151-12c 1028.42 1033.21 1031.71 1157 1031.71 458
E200-17c 1291.29 1318.25 (16)1301.52 6202 (16)1301.52 2718

reduce the number of used routes from 17 to 16). In order to find feasible solutions for
this instance using the maximum number of available routes, we ran LSA by associa-
ting an infinite cost with the empty routes (i.e., with the insertion points (0,0)). With
rounded-integer costs, we found a solution of value 1288 in 3992 seconds, while, with
real costs, we found a solution of value 1301.79 in 5420 seconds. Finally, we ran LSA
with an unlimited number of iterations (i.e., when the list Θ of the available selection
criteria is empty we restart from the Initialization step) and a time limit of 10 hours,
looking for possible better solutions. With rounded-integer costs, LSA found a solution
of value 1145 after 1141 seconds for instance D151-14c, and a solution of value 1378
after 11006 seconds for instance D200-18c. (Note that these solutions correspond to a
further improvement on the corresponding previous best-known solutions.) With real
costs, LSA found a solution of value 1162.99 after 1791 seconds for instance D151-14c,
and a solution of value 1399.92 after 15676 seconds for instance D200-18c.

Table 5.3 reports the results obtained by algorithm LSA for the 20 large-scale GWKC
instances. The columns have the same meaning as in the previous tables.

For these instances, the initial solutions found by the C code of Toth and Vigo
[167] are quite far from the best-known solutions from the literature. The table shows
that LSA always improves substantially the initial solutions, but it never reaches the
best-known ones (although in some cases it reduces the number of used routes). This is
probably due to the regular structure of these instances, which allows LSA to find only
small improvements of the incumbent solution, and to the value of parameter p which
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Table 5.3: Computational results for the 20 large-scale GWKC instances. Initial solu-
tions obtained by means of the C code of Toth and Vigo [167].

LSA (λ = 1)

Instance Prev. best Start Final Time
D201-05k 6460.98 6697.53 6654.00 421
D241-10k 5627.54 5736.15 5728.91 373
D281-08k 8412.80 8963.32 (7)8535.35 1080
D321-10k 8447.92 8553.03 8459.73 1444
D361-09k 10181.75 10547.44 10276.81 4043
D401-10k 11036.22 11402.75 11115.95 2819
D441-11k 11663.55 12036.24 11847.68 3357
D481-12k 13624.52 14910.62 (10)13886.64 4921
E241-22k 707.79 711.07 709.23 5636
E253-27k 859.11 868.80 (26)862.84 25439
E256-14k 583.39 593.35 586.85 27257
E301-28k 997.52 1016.83 (27)1000.39 11495
E321-30k 1081.31 1096.18 1087.48 18330
E324-16k 741.56 751.66 743.35 50386
E361-33k 1366.86 1400.96 1372.38 68445
E397-34k 1345.23 1369.44 (33)1347.03 26492
E400-18k 918.42 936.04 927.96 86323
E421-41k 1820.09 1915.83 (38)1836.54 46219
E481-38k 1622.69 1652.32 (37)1623.52 80819
E484-19k 1107.19 1147.14 1132.75 58321
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is fixed to 0.3 (i.e., at each iteration only 30% of the customers are extracted on average
from the incumbent solution) to avoid an excessive memory requirement.

For the second class of experiments, in which we start from a good feasible solution
taken from the literature, we selected the same initial solutions as in De Franceschi et
al. [68]. In this way, we can compare LSA with the method proposed in [68]. Com-
putational results for this class of experiments, concerning the 14 CMT instances with
both rounded-integer costs and real costs, the 13 large-scale instances with only capacity
constraints, and instance E101-14u, are reported in Table 5.4. The columns have the
same meaning as in the previous tables. We also report the computational results taken
from [68] (algorithm SERR), which were obtained on an AMD Athlon XP 2400+ PC
with 1 GByte RAM, using ILOG Cplex 8.1 [105] as ILP solver. The computing times
refer to machines with similar performance, and can be used for comparing the two ap-
proaches. In addition, we report the font of the initial solution we start from (Source),
and, in the last column, all the new best-known solution values found by LSA (New
best). Note that for instance E151-12c, with rounded-integer costs, the initial solution
(taken from [160]) corresponds to instance M-n151-k12, which is the same as E151-12c
with a different order of the nodes.

The table shows that LSA clearly outperforms the method proposed in [68] in terms
of the quality of the solution found.2 Moreover, in many cases, the computational effort
for finding the final solution is strongly reduced. Finally, concerning the large-scale
VRP instances, when starting from very good solutions, LSA is able to improve the
best-known solution from the literature in 7 cases out of 13.

5.8 Conclusions

In this chapter we presented an Integer Linear Programming (ILP) Local Search al-
gorithm for the classical Vehicle Routing Problem (VRP), based on an exponential
neighborhood which is explored by solving an ILP formulation. We investigated the
neighborhood structure and the column generation problem associated with the LP re-
laxation of the ILP formulation used for the neighborhood exploration. We showed that
the column generation problem is NP-hard, and we proposed a two-phase approach for
an effective neighborhood exploration, which first reduces the neighborhood size th-
rough a simple heuristic procedure, and then explores the reduced neighborhood by
solving the corresponding ILP problem through the (heuristic) solution of the column
generation problem associated with its LP relaxation.

Computational results on 50 capacitated VRP instances from the literature (with/without
distance constraints) showed that the proposed method can be used as a profitable tool
for improving existing VRP solutions, and that even extremely-good quality solutions
found by the most effective metaheuristic techniques proposed for VRP can be further
improved. For 11 instances, the proposed method was able to improve the best-known

2In Table 5.4, the new best solution of value 1285, found by LSA for instance E-200-17c with rounded-
integer costs, has an empty route. For the same instance LSA finds a solution of value 1288 with no
empty routes.
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Table 5.4: Comparison on benchmark instances with “good” CVRP/DCVRP initial
solutions from the literature.

SERR [68] LSA (λ = 1)

Instance Prev. best Start Source Final Time Final Time New best
D051-06c 548 548 [93] — — — 5 —
D076-11c 905 907 [93] 905 178 905 30 —
D101-09c 856 856 [93] — — — 48 —
D101-11c 865 866 [93] 865 1274 865 69 —
D121-11c 1526 1529 [93] 1526 26622 1524 337 1524
D151-14c 1147 1180 [93] 1161 44578 1146 734 1145
D200-18c 1392 1404 [93] 1398 4075 1385 1384 1378
E051-05e ∗ 521 521 [93] — — — 5 —
E076-10e ∗ 830 832 [93] 831 279 831 25 —
E101-08e ∗ 815 815 [93] — — — 51 —
E101-10c ∗ 820 824 [93] 820 18 820 38 —
E121-07c ∗ 1034 1035 [93] 1034 89 1034 63 —
E151-12c 1015 1016 [160] 1015 377 1015 283 —
E200-17c 1289 1316 [93] 1307 48488 1292 5940 1285
D051-06c 555.43 555.43 [93] — — — 6 —
D076-11c 909.68 913.23 [93] — — 911.76 40 —
D101-09c 865.94 865.94 [93] — — — 60 —
D101-11c 866.37 866.37 [93] — — — 83 —
D121-11c 1541.14 1551.63 [93] 1546.10 232466 1545.56 871 —
D151-14c 1162.55 1189.79 [93] 1178.02 7431 1164.55 915 —
D200-18c 1395.85 1421.88 [93] 1416.47 42262 1406.47 2759 —
E051-05e ∗ 524.61 524.61 [93] — — — 6 —
E076-10e 835.26 836.37 [93] 835.26 381 835.26 34 —
E101-08e 826.14 826.14 [93] — — — 60 —
E101-10c 819.56 822.85 [93] 819.56 20 819.56 45 —
E121-07c 1042.11 1043.94 [93] 1043.42 115 1042.11 94 —
E151-12c 1028.42 1034.90 [93] 1034.50 397 1031.07 1023 —
E200-17c 1291.29 1311.35 [94] 1305.35 18386 1301.79 1686 —
E241-22k 707.79 707.79 [124] — — — 5225 —
E253-27k 859.11 (26)859.11 [124] — — — 4259 —
E256-14k 583.39 583.39 [124] — — 582.64 19903 582.64
E301-28k 997.52 (27)998.73 [124] — — (27)998.69 9440 —
E321-30k 1081.31 1081.31 [124] — — — 7194 —
E324-16k 741.56 742.04 [124] 741.70 61662 739.53 45516 739.53
E361-33k 1366.86 1366.86 [124] — — 1366.54 12717 1366.54
E397-34k 1345.23 (33)1345.23 [124] — — (33)1343.47 31629 1343.47
E400-18k 918.42 918.45 [124] 918.42 5585 916.62 63207 916.62
E421-41k 1820.09 (38)1821.15 [124] — — (38)1820.94 15721 —
E481-38k 1622.69 (37)1622.69 [124] — — (37)1622.39 36867 1622.39
E484-19k 1107.19 1107.19 [124] — — — 23792 —
E101-14u ∗ 1067 1076 [171] 1067 2866 1067 139 —

tai385 24422.50 24435.50 [160] 24422.50 152287 24421.11 8271 24421.11
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solution reported in the literature.
The presented method follows a destroy-and-repair paradigm, where the current

solution is randomly destroyed (i.e., customers are removed in a random way) and
repaired by following ILP techniques. Hence, the overall procedure can be considered
as a general framework which can be extended to cover other variants of Vehicle Routing
Problems.
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Chapter 6

Integer Linear Programming
Local Search for the Open
Vehicle Routing Problem

6.1 Introduction

In Chapter 5 we presented an Integer Linear Programming (ILP) Local Search algori-
thm for the “classical” (Capacitated and Distance Constrained) Vehicle Routing Pro-
blem (VRP). As already discussed, the overall procedure follows a destroy-and-repair
paradigm (i.e., the current solution is first randomly destroyed and then repaired by
following ILP techniques) which can be considered as a general framework and can be
extended to cover other variants of Vehicle Routing Problems.

Such a framework is extended in this chapter1 to the Open Vehicle Routing Problem
(OVRP), thus showing the flexibility and the effectiveness of the proposed technique.
OVRP is a variant of the classical VRP in which the vehicles are not required to return
to the depot after completing their service. Clearly, most of the theoretical and practical
considerations developed in the previous chapter for VRP still apply to OVRP. However,
as discussed in the following, this apparently minor change in the problem definition
leads in a sense to a more general problem, thus requiring to extend the framework in
order to capture the different structure of the addressed problem. Further, the main
ingredients of the Local Search algorithm (i.e., node selection criteria, neighborhood
definition, termination conditions) are slightly modified in this chapter with the aim of
providing an overall simpler and more general procedure, less dependent on small im-
plementation details. Hence, to avoid confusion between this chapter and the previous
one, we decided to represent the overall procedure, pointing out the main differences
with respect to the method presented in Chapter 5 for VRP.

The chapter is organized as follows. In Section 6.2 OVRP is formally stated and

1The results of this chapter appear in: M. Salari, P. Toth and A. Tramontani, “An ILP improvement
procedure for the open vehicle routing problem”, Technical Report OR-08-06, DEIS, University of
Bologna, 2008 [153].
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the main works proposed in the literature for the problem are discussed. In Section
6.3 we describe the neighborhood proposed for OVRP and the ILP formulation used
to implicitly define and explore it. The implementation of the Local Search algorithm
is given in Section 6.4, while Section 6.5 reports the computational experiments on
benchmark capacitated OVRP instances from the literature (with/without distance
constraints), comparing the presented method with the most effective metaheuristic
techniques proposed for OVRP. Some conclusions are finally drawn in Section 6.6.

6.2 Problem statement and literature review

The Open Vehicle Routing Problem (OVRP) is a variant of the classical (Capacitated
and Distance Constrained) Vehicle Routing Problem (VRP) in which the vehicles are not
required to return to the depot after completing their service. OVRP can be formally
stated as follows. We are given a central depot and a set of n customers, which are
associated with the nodes of a complete undirected graph G = (V,E) (where V =
{0, 1, . . . , n}, node 0 represents the depot and V \ {0} is the set of customers). Each
edge e ∈ E has an associated finite cost ce ≥ 0 and each customer v ∈ V \ {0} has a
demand qv ≥ 0 (with q0 = 0 for the depot node). A fleet of m identical vehicles is located
at the depot, each one with a fixed cost F , a capacity Q and a total distance-traveled
(duration) limit D. The customers must be served by at most m paths (open routes),
each path associated with one vehicle, starting at the depot and ending at one of the
customers. Each route must have a duration (computed as the sum of the edge costs
in the route) not exceeding the given limit D of the vehicles, and can visit a subset S
of customers whose total demand

∑
v∈S qv does not exceed the given capacity Q. The

problem consists of finding a feasible solution covering (i.e., visiting) exactly once all
the customers and having a minimum overall cost, computed as the sum of the traveled
edge costs plus the fixed costs associated with the vehicles used to serve the customers.

OVRP is known to be NP-hard in the strong sense, as it generalizes the Bin Pac-
king Problem and the Hamiltonian Path Problem. At first glance, having open routes
instead of closed ones looks like a minor change with respect to the classical VRP, and
in fact OVRP can be also formulated as a VRP on a directed graph, by fixing to 0 the
cost of each arc entering the depot. However, if the undirected case is considered, the
open version turns out to be more general than the closed one. Indeed, as shown by
Letchford et al. [113], any closed VRP on n customers in a complete undirected graph
can be transformed into an OVRP on n customers, but there is no transformation in
the reverse direction. Further, there are many practical applications in which OVRP
naturally arises. This happens, of course, when a company does not own a vehicle fleet,
and hence customers are served by hired vehicles which are not required to come back
to the depot (see, e.g., Tarantilis et al. [165]). But the open model also arises in pick-up
and delivery applications, where each vehicle starts at the depot, delivers to a set of cu-
stomers and then it is required to visit the same customers in reverse order, picking up
items that have to be backhauled to the depot. An application of this type is described
in Schrage [158]. Further areas of application, involving the planning of train services
and of school bus routes, are reported by Fu et al. [90].
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OVRP has recently received an increasing attention in the literature. Exact branch-
and-cut and branch-cut-and-price approaches have been proposed, respectively, by Let-
chford et al. [113] and Pessoa et al. [140], addressing the capacitated problem with no
distance constraints and no empty routes allowed (i.e., D = ∞ and exactly m vehicles
must be used). Heuristic and metaheuristic algorithms usually take into account both
capacity and distance constraints, and consider the number of routes as a decision va-
riable. In particular, an unlimited number of vehicles is supposed to be available (i.e.,
m = ∞) and the objective function is generally to minimize the number of used vehicles
first and the traveling cost second, assuming that the fixed cost of an additional vehi-
cle always exceeds any traveling cost that could be saved by its use (i.e., considering
F = ∞). However, several authors address as well the variant in which there are no
fixed costs associated with the vehicles (i.e., F = 0) and hence the objective function
is to minimize the total traveling cost with no attention to the number of used vehicles
(see, e.g., Tarantilis et al. [165]). Considering capacity constraints only (i.e., taking
D = ∞), Sariklis and Powell [154] propose a two-phase heuristic which first assigns
customers to clusters and then builds a Hamiltonian path for each cluster, Tarantilis et
al. [163] describe a population-based heuristic, while Tarantilis et al. [164, 165] present
threshold accepting metaheuristics. Taking into account both capacity and distance
constraints, Brandão [40], Fu et al. [90, 91] and Derigs and Reuter [69] propose tabu
search heuristics, Li et al. [115] describe a record-to-record travel heuristic, Pisinger
and Ropke [141] present an adaptive large neighborhood search heuristic which follows a
destroy-and-repair paradigm, while Fleszar et al. [88] propose a variable neighborhood
search heuristic.

6.3 Reallocation Model

Let z be a feasible solution of the OVRP defined on G. For any given node subset
F ⊂ V \ {0}, we define z(F) as the restricted solution obtained from z by extracting
(i.e., by short-cutting) all the nodes v ∈ F . Let R be the set of routes in the restricted
solution, I = I(z,F) the set of all the edges in z(F), and S = S(F) the set of all the
sequences which can be obtained through the recombination of nodes in F (i.e., the set
of all the elementary paths in F). Each edge i ∈ I is viewed as a potential insertion
point which can allocate one or more nodes in F through at most one sequence s ∈ S.
We say that the insertion point i = (a, b) ∈ I allocates the nodes {vj ∈ F : j = 1, . . . , h}
through the sequence s = (v1, v2, . . . , vh) ∈ S, if the edge (a, b) in the restricted solution
is replaced by the edges (a, v1), (v1, v2), . . . , (vh, b) in the new feasible solution. Since
the restricted routes, as well as the final ones, are open paths starting at the depot,
in addition to the edges of the restricted solution we also consider the insertion points
(called appending insertion points in the following) i = (pr, 0), where pr denotes the
last customer visited by route r ∈ R, which allow to append any sequence to the last
customer of any restricted route. Further, empty routes in the restricted solution are
associated with insertion points (0, 0).

For each sequence s ∈ S, c(s) and q(s) denote, respectively, the cost of the elemen-
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tary path corresponding to s and the sum of the demands of the nodes in s. For each
insertion point i = (a, b) ∈ I and for each sequence s = (v1, v2, . . . , vh) ∈ S, γsi denotes
the extra-cost (i.e., the extra-distance) for assigning sequence s to insertion point i in its
best possible orientation (i.e., γsi := c(s)−cab +min{cav1 +cvhb, cavh

+cv1b}). Note that,
for the appending insertion points i = (pr, 0), γsi is computed as c(s)+min{cprv1 , cprvh

}.
The extra-cost for assigning the sequence s to the insertion point i = (0, 0) associated
with an empty route is simply c(s)+min{c0v1 , c0vh

}. For each route r ∈ R, I(r) denotes
the set of insertion points associated with r, while q̃(r) and c̃(r) denote, respectively,
the total demand and the total distance computed for route r, still in the restricted
solution.

For each i ∈ I, suppose to define a subset Si ⊆ S of all the available sequences,
containing only the sequences which can be allocated to the specific insertion point i
(the definition of Si will be discussed later in this section). Then, a neighborhood of the
given solution z can be formulated (and explored) by solving an ILP problem (denoted
as the Reallocation Model) based on the decision variables

xsi =
{

1 if sequence s ∈ Si is allocated to insertion point i ∈ I ,
0 otherwise

(6.1)

which reads as follows:
∑

r∈R
c̃(r) + min

∑

i∈I

∑

s∈Si

γsixsi (6.2)

subject to:
∑

i∈I

∑

s∈Si(v)

xsi = 1 v ∈ F , (6.3)

∑

s∈Si

xsi ≤ 1 i ∈ I , (6.4)

∑

i∈I(r)

∑

s∈Si

q(s)xsi ≤ Q− q̃(r) r ∈ R , (6.5)

∑

i∈I(r)

∑

s∈Si

γsixsi ≤ D − c̃(r) r ∈ R , (6.6)

xsi ∈ {0, 1} i ∈ I, s ∈ Si , (6.7)

where, for any i ∈ I and v ∈ F , Si(v) ⊆ Si denotes the set of sequences covering
customer v which can be allocated to insertion point i. The objective function (6.2),
to be minimized, gives the traveling cost of the final OVRP solution. Constraints (6.3)
impose that each extracted node belongs to exactly one of the selected sequences, i.e.,
that it is covered exactly once in the final solution. Constraints (6.4) avoid to allocate
two or more sequences to the same insertion point. Finally, constraints (6.5) and (6.6)
impose that each route in the final solution fulfills the capacity and distance restrictions,
respectively. Note that, if there is a non-null fixed cost F associated with the vehicles,
it can be taken into account by simply adding F to the cost of the edges incident at the
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depot node.

The Reallocation Model (6.2)–(6.7) defines a neighborhood of a given solution z
which depends on the extracted nodes F and on the subsets Si (i ∈ I). As discussed
in the previous chapter, for any given F , the choice of Si is a key factor in order to
allow an effective exploration of the solution space in the neighborhood of the given
solution. The subsets Si are built by following a two-phase approach. First, for each
i ∈ I, we define a subset Fi ⊆ F of the extracted nodes, containing only the nodes
which can be allocated through some sequences to the specific insertion point i. Then,
we build the subsets Si by iteratively solving the column generation problem associated
with the Linear Programming (LP) relaxation of the Reallocation Model (LP-RM), by
generating, for each specific insertion point i ∈ I, variables xsi with small reduced cost
obtained by considering only the extracted nodes in Fi (i.e., variables xsi such that
all the nodes in s belongs to the set Fi). Hashing techniques are used to avoid the
generation of duplicated variables.

6.3.1 Building the Reallocation Model

The Reallocation Model (6.2)–(6.7) defined in the previous section is built through the
following steps.

1. (Reduction). For each i ∈ I, build a subset Fi ⊆ F containing only the extracted
nodes which can be allocated to the specific insertion point i. Subsets Fi are built
by following the parametric procedure defined in the previous chapter, where the
parameter λ is fixed to 1 (see Chapter 5, Section 5.5). In particular, any node
v ∈ F is associated with at least one insertion point i ∈ I(r) for each restricted
route r ∈ R, and with its pivot iv (i.e., the insertion point v was extracted from).

2. (Initialization). For each insertion point i = (ai, bi) ∈ I, initialize subset Si

with the basic sequence extracted from i (i.e., the, possibly empty, sequence of
nodes connecting node ai and bi in the given solution z) plus the feasible singleton
sequence with the minimum insertion cost (i.e., the sequence (v), with v ∈ Fi, with
the minimum extra-cost among all the singleton sequences which can be allocated
to i without violating the capacity and distance restrictions for the restricted route
containing i). Initialize LP-RM with the initial set of variables corresponding to
the current subsets Si, and solve LP-RM. (Note that, with such an initialization,
each subset Si contains the basic sequence extracted from insertion point i, and
hence the current solution can always be obtained as a new feasible solution of
the Reallocation Model.)

3. (Pricing). Apply a fast Pricing step with the sequences generated so far to reduce
the computational effort required for the column generation step:

(a) ∀i ∈ I and ∀v ∈ Fi, consider the singleton sequence s = (v). If the reduced
cost rcsi of the variable xsi does not exceed a given threshold RCmax (i.e.,
rcsi ≤ RCmax), then add xsi to LP-RM;
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(b) if at least one variable has been added, solve LP-RM and repeat from Step
3a.

4. (Column generation). Look for “good” variables by (heuristically) solving the
column generation problem associated with each insertion point in LP-RM:

(a) for each i ∈ I, solve the column generation problem associated with i and Fi

(i.e., by considering only the sequences s of nodes belonging to Fi), finding
as many variables with small reduced cost as possible;

(b) add to LP-RM all the variables xsi with rcsi ≤ RCmax found in the previous
step. If at least one variable has been added, solve LP-RM and repeat from
Step 4a.

For any fixed insertion point i ∈ I, the column generation problem associated with i
and Fi in LP-RM is exactly the same Resource Constrained Elementary Shortest Path
Problem (RCESPP) described in the previous chapter, and it is solved through the same
greedy heuristic (see Chapter 5, Section 5.6.1), with the aim of finding as many variables
with small reduced cost as possible. However, while in the classical VRP context the
RCESPP associated with all insertion points i ∈ I can be defined on a undirected graph
G(i, π̃), in the OVRP context the appending insertion points i = (pr, 0), r ∈ R, (i.e.,
the insertion points which allow to append a sequence to the end of a restricted route),
need to be addressed on a mixed graph. Indeed, if the considered i = (ai, bi) ∈ I is an
appending insertion point (i.e., bi is the depot node), the column generation problem
must be addressed on a mixed graph, where the edges incident at the depot are replaced
by directed arcs (of different cost and weight) entering and leaving the depot.

6.4 Local Search Algorithm

The Reallocation Model described in the previous section allows for exploring a neighbo-
rhood of a given feasible solution, depending on the choice of the extracted customers
in F . We propose a Local Search algorithm for OVRP, based on model (6.2)–(6.7),
which iteratively explores different neighborhoods of the current solution. Given an ini-
tial feasible solution z0 for OVRP (taken from the literature or found by any heuristic
method), the procedure works as follows.

1. (Initialization). Set kt := 0 and kp := 0. Take z0 as the incumbent solution
and initialize the current solution zc as zc := z0.

2. (Node selection). Build set F by selecting each customer with a probability p.

3. (Node extraction). Extract the nodes selected in the previous step from the
current solution zc and construct the corresponding restricted OVRP solution
zc(F), obtained by short-cutting the extracted nodes.

4. (Reallocation). Define the subsets Si (i ∈ I(zc,F)) as described in Section
6.3. Build the corresponding Reallocation Model (6.2)–(6.7) and solve the model
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by using a general-purpose ILP solver. Once an optimal ILP solution has been
found, construct the corresponding new OVRP solution and possibly update zc

and z0.

5. (Termination). Set kt := kt + 1. If kt = KTmax, terminate.

6. (Perturbation). If zc has been improved in the last iteration, set kp := 0;
otherwise set kp := kp + 1. If kp = KPmax, “perturb” the current solution zc and
set kp := 0. In any case, repeat Step 2.

The procedure performs KTmax iterations and at each iteration explores a randomly
generated neighborhood of the current solution zc. However, if zc is not improved for
KPmax consecutive iterations, we introduce a random perturbation (see Step 6) in order
to move to a different area of the solution space, so as to enforce the diversification of
the search. In particular, when performing a Perturbation step, we randomly extract
np customers from zc (with np uniformly randomly chosen in [npmin, npmax] and with
each customer having the same probability to be extracted), and reinsert each extracted
customer, in turn, in its best feasible position. If a customer cannot be inserted in any
currently non-empty route (due to the capacity and/or distance restrictions), a new
route is created to allocate the customer. In general, when performing the Perturba-
tion step, several customers cannot be inserted in the non-empty routes of the current
solution, and hence the new perturbed solution can use more vehicles than the current
one.

6.5 Computational Results

The performance of the Local Search Algorithm (LSA) described in the previous sections
was evaluated on the 16 benchmark instances usually addressed in the literature, taken
from Christofides et al. [47] (instances C1–C14)2 and from Fisher [87] (instances F11–
F12), and on the 8 large scale benchmark instances proposed by Li et al. [115], and
also addressed by Derigs and Reuter [69] (instances O1–O8). The number of customers
of C1–C14 and F11–F12 ranges from 50 to 199. C1–C5, C11–C12 and F11–F12 have only
capacity constraints, while C6–C10 and C13–C14 are the same instances as C1–C5 and
C11–C12, respectively, but with both capacity and distance constraints. Instances O1–O8
have no distance restrictions and a number of customers varying from 200 to 480. As
usual, for the problems with distance constraints, the route duration limit D is taken
as the original value for the classical VRP multiplied by 0.9.

LSA needs an initial solution to be given, which in principle could be computed
through any available constructive heuristic algorithm. We decided to run LSA starting
from an extremely-good feasible solution available from the literature (in several cases,
the best-known solution reported in the literature), with the aim of attempting to

2Instances C1–C14 are exactly the same instances addressed also in the classical VRP context and
denoted in the previous chapter as CMT instances (see Chapter 5, Section 5.7). In this chapter these
instances are named in a different way (i.e., instances C1–C14), according to the usual notation of the
other works proposed in the literature for OVRP.
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improve it (this is of course impossible if the initial solution is provably optimal, as it
is the case for some of them). In particular, we considered as initial solutions the ones
obtained by Derigs and Reuter [69], Fu et al. [90, 91], Fleszar et al. [88] and Pisinger
and Ropke [141].

LSA has been tested on a Pentium IV 3.4 GHz with 1 GByte RAM, running under
Microsoft Windows XP Operative System, and has been coded in C++ with Microsoft
Visual C++ 6.0 compiler. The ILP solver used in the experiments is ILOG Cplex 10.0
[105]. LSA setting depends on the parameters RCmax, p, npmin, npmax, and on the
number of iterations KPmax and KTmax. Although these parameters could be tuned
considering the edge costs and the particular characteristics of the tested instances,
we preferred to run all the experiments with a fixed set of parameters: RCmax = 1,
p = 0.5 (i.e., 50% of the customers are selected on average), npmin = 15, npmax = 25,
KPmax = 50 and KTmax = 5, 000 (i.e., we perform globally 5,000 iterations, and the
current solution is perturbed if it cannot be improved for 50 consecutive iterations).
Finally, since several authors address the problem considering as objective function the
minimization of the number of vehicles first and of the traveling cost second (i.e., assu-
ming F = ∞), while other authors considered as objective function the minimization of
the traveling cost (i.e., F = 0), we decided to run LSA without allowing to change the
number of vehicles used in the initial solution. However, as stated in Section 6.4, the
Perturbation step often requires additional routes to be created (to preserve the feasi-
bility of the solution). In such cases, we add a small penalty θ to the cost of the edges
incident at the depot, in order to force LSA to “recover” the solution in the following
iterations. After some preliminary tests, we decided to fix θ = 12 for the considered
instances.

The computational results are reported in Tables 6.1–6.3. All the CPU times are
expressed in seconds, and all the solution costs have been computed in double precision.
Table 6.1 reports the computational results on the 16 instances C1–C14 and F11–F12
obtained by starting from the solutions provided by Fu, Eglese and Li and obtained
through the algorithm proposed in [90]. In some cases, several solutions are provided
for the same instance, obtained by using slightly different versions of their algorithm,
with the same number of routes and different traveling cost. Among the different
solutions for the same instance, we considered as initial solution for LSA the best one
provided. The first column of the table gives the instance name. Columns 2–3 report
the number of used vehicles (m) and the traveling cost of the initial solution (cost),
while column 4 reports the CPU time of the corresponding algorithm (time), run on a
Pentium IV 3 GHz. (CPU times have been taken from [91]. However, the cost of the
initial solution for instance C8 is better than the ones reported in [91], and hence for
this initial solution we did not report the corresponding computing time.) Columns 5–7
report the computational results provided by LSA. For each instance, we report the final
solution cost (cost), the CPU time required to reach the final solution (b.time) and the
overall computing time required to perform all the 5,000 iterations (t.time). The last
column reports the cost of the best known solution using the same number of vehicles
as the initial solution. When LSA was not able to improve on the initial solution, we
mark with a “—” the final solution cost and the corresponding b.time. Final solution
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costs equal to the previously best known ones are underlined, new best solutions are
in bold face, while provably optimal solutions, taken from Letchford et al. [113], are
marked with an ∗ (LSA was not run when the initial solution is provably optimal).

Table 6.2 reports the computational results on the same instances by starting from
the best available solutions among the ones obtained by Derigs and Reuter [69], Fu et
al. [90, 91], Fleszar et al. [88] and Pisinger and Ropke [141]. The table has the same
structure as Table 6.1, but column 4 reports the source of the initial solution used in
the experiments. For instances C5, C7, C9, C13 and C14, the best available solutions for
the case F = ∞ and the case F = 0 are different. In such cases, we considered both
the solutions as initial solutions for LSA.

Finally, Table 6.3 reports the computational results on the 8 large scale instances
O1–O8 by starting from the solutions provided by Derigs and Reuter [69]. The table
has the same structure as Table 6.1, but the CPU time related to the initial solution
(column 4) was obtained on a Pentium IV 2.8 GHz.

Table 6.1: Computational results on the “classical” 16 benchmark instances starting
from the solutions by Fu et al. [90, 91].

Instance Initial solution LSA Prev. best sol.

m cost time cost b.time t.time cost

C1 5 ∗416.06 0.8 ∗416.06
C2 10 567.14 7.8 — — 84.2 567.14
C3 8 641.88 23.2 ∗639.74 106.0 119.9 ∗639.74
C4 12 738.94 6.8 733.13 21.2 156.6 733.13
C5 17 878.95 61.9 868.81 10.3 220.3 869.25
C6 6 412.96 0.6 — — 45.1 412.96
C7 11 568.49 6.0 — — 83.1 568.49
C8 9 646.31 644.63 0.1 136.2 644.63
C9 14 761.28 46.6 756.14 102.7 255.5 756.14
C10 17 903.10 51.9 878.54 323.9 460.2 875.07
C11 7 717.15 23.1 683.64 165.8 198.8 682.12
C12 10 534.71 4.2 ∗534.24 1.6 94.0 ∗534.24
C13 12 917.90 82.1 894.19 475.0 1165.3 896.50
C14 11 600.66 2.5 591.87 293.8 354.7 591.87
F11 4 ∗177.00 0.4 ∗177.00
F12 7 777.07 28.4 769.55 77.8 148.2 769.66

Pentium IV 3 GHz Pentium IV 3.4 GHz

The tables show that LSA is able to improve even extremely-good quality solutions,
obtained by some of the most effective metaheuristic techniques proposed for OVRP. It
is worth noting that the solutions and the CPU times provided by Fu et al. [90, 91] (i.e.,
columns 2–4 of Table 6.1) are the best ones from among 20 runs of the corresponding
randomized algorithm with different seeds. Hence, taking into account the different
performance of the processors used for testing the different algorithms, the overall com-
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Table 6.2: Computational results on the “classical” 16 benchmark instances starting
from the best available solutions.

Instance Initial solution LSA Prev. best sol.

m cost source cost b.time t.time cost

C1 5 ∗416.06 [88, 91, 141] ∗416.06
C2 10 567.14 [88, 91, 141] — — 84.2 567.14
C3 8 ∗639.74 [88] ∗639.74
C4 12 733.13 [88, 141] — — 151.2 733.13
C5 16 896.08 [141] 892.37 276.5 450.2 879.37
C5 17 869.24 [69] 868.93 130.2 275.2 869.24
C6 6 412.96 [88, 91, 141] — — 45.1 412.96
C7 10 583.19 [141] — — 80.6 583.19
C7 11 568.49 [91] — — 83.1 568.49
C8 9 644.63 [88] — — 136.8 644.63
C9 13 757.84 [141] 757.73 33.9 412.5 757.84
C9 14 756.14 [69] — — 243.4 756.14
C10 17 875.07 [69] 874.71 2.6 454.7 875.07
C11 7 682.12 [88, 141] — — 178.3 682.12
C12 10 ∗534.24 [88, 141] ∗534.24
C13 11 904.04 [88] 899.16 6.3 959.3 904.04
C13 12 917.90 [91] 894.19 475.0 1165.3 896.50
C14 11 591.87 [88, 141] — — 276.3 591.87
C14 12 581.81 [69] — — 364.2 581.81
F11 4 ∗177.00 [91, 141] ∗177.00
F12 7 769.66 [88] 769.55 56.6 142.2 769.66

Table 6.3: Computational results on the 8 large scale benchmark instances starting from
the solutions by Derigs and Reuter [69].

Instance Initial solution LSA Prev. best sol.

m cost time cost b.time t.time cost

O1 5 6018.52 467.0 — — 182.2 6018.52
O2 9 4584.69 467.0 4573.53 34.6 284.0 4584.55
O3 7 7731.46 4047.0 — — 304.6 7731.46
O4 10 7260.59 927.0 7259.81 34.4 438.9 7260.59
O5 9 9167.19 1186.0 9165.40 41.4 499.6 9167.19
O6 9 9805.45 1231.0 — — 581.3 9803.80
O7 10 10348.57 3190.0 10344.37 8.6 653.0 10348.57
O8 10 12420.16 1969.0 — — 623.6 12420.16

Pentium IV 2.8 GHz Pentium IV 3.4 GHz
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puting time required by LSA is comparable with the others reported in the tables, and
in several cases the final improved solution is found very quickly. Our test-bed concerns
in practice 35 different, non provably optimal, initial solutions which could be possi-
bly improved, corresponding to 22 different instances. Out of these 35 solutions, LSA
improves on the initial solution in 21 cases. For these cases, LSA reaches 6 times the
previously best known solution (provably optimal in 2 cases), while finds 12 times a
new best solution. Considering the 14 initial solutions which LSA does not improve, it
is worth noting that 13 of them are the best solutions known in the literature (for the
case F = ∞ or F = 0).

In order to look for possible better solutions, we performed some additional experi-
ments. In particular, after the first 5,000 iterations, we ran LSA for 2,000 more iterations
with a slightly different parameter setting. Starting from the solutions provided by Fu
et al. [91], for instance C5 with 17 vehicles LSA found a solution of cost 868.44 after
5220 iterations and 237.4 seconds, for instance C10 a solution of cost 878.52 after 5151
iterations and 483.1 seconds, and for instance C11 a solution of cost 683.15 after 6371
iterations and 380.1 seconds. Starting from the solutions provided by Derigs and Reuter
[69], for instance O4 LSA found a solution of cost 7251.74 after 6616 iterations and 869.4
seconds, and for instance O5 a solution of cost 9162.93 after 6293 iterations and 716.2
seconds. (Note that the solutions obtained for instances C5, O4 and O5 correspond to a
further improvement on the previous best-known solutions.)

Finally, still starting from the solutions by Fu et al. [91], we ran LSA with a
different tuning of parameter p, to investigate how the neighborhood size affects the
overall performance of the method, both in terms of quality of the solutions found
and of CPU time. Let zavg(p) be the average final solution cost obtained on the 14
instances C2–C14 and F12 with p = p, and let ttimeavg(p) be the corresponding ave-
rage CPU time in seconds. With p = 0.3, p = 0.5 and p = 0.7 we obtained the
following results: zavg(0.3) = 684.55 and ttimeavg(0.3) = 71.9, zavg(0.5) = 681.65 and
ttimeavg(0.5) = 251.6, zavg(0.7) = 683.32 and ttimeavg(0.7) = 460.0. As expected, the
average CPU time consistently increases with the number of extracted customers, while
the best solution costs are obtained with the default setting of p (i.e., p = 0.5), thus
indicating that extracting too many customers leads in general to worse solutions (i.e.,
zavg(0.7) > zavg(0.5)). This is not completely surprising, and it is essentially due to
the column generation heuristic, which falls in troubles in finding good variables for the
Reallocation Model when the current solution has been almost completely “destroyed”
by the removal of too many customers.

The current best known solution costs for the tested instances are given in summary
in Table 6.4, where we also report the number of customers n and the route duration
limit D associated with the vehicles. Solution costs are given both for the case F = ∞
(i.e., when the objective is to minimize the number of used vehicles first and the traveling
cost second) and the case F = 0 (i.e., when the objective is to minimize the traveling
cost). As usual, the best known solution cost for the case F = 0 is reported only if
the traveling cost is smaller than the corresponding one for the case F = ∞. For each
instance whose best known solution was not improved by LSA we report the algorithms
providing the corresponding best known costs. Previously best known solution costs
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reached also by LSA (starting from a worse solution) are underlined, while new best
solution costs found by LSA are in bold face. For the capacitated instances, in the case
F = ∞, we also report the best known lower bound LB taken from [113] and [140].

Table 6.4: Current best known solution costs for the tested OVRP benchmark instances.

Inst. n D Best known solution

F = ∞ F = 0

m LB cost best heuristics m cost best heursitiscs

C1 50 5 416.1 ∗416.06 [40], [69], [88], [90, 91], [115], [141] 6 412.96 [163], [164], [165]
C2 75 10 559.62 567.14 [69], [88], [90, 91], [115], [141] 11 564.06 [163], [164], [165]
C3 100 8 639.7 ∗639.74 [69], [88], [115] 9 639.57 [165]
C4 150 12 730.2 733.13 [69], [88], [115], [141]
C5 199 16 848.5 879.37 [164] 17 868.44
C6 50 180 6 412.96 [40], [69], [88], [90, 91], [115], [141]
C7 75 144 10 583.19 [141] 11 568.49 [69], [90, 91], [115]
C8 100 207 9 644.63 [40], [69], [88], [115]
C9 150 180 13 757.73 14 756.14 [69]
C10 199 180 17 874.71
C11 120 7 657.1 682.12 [69], [88], [141] 10 678.54 [165]
C12 100 10 534.2 ∗534.24 [69], [88], [115], [141], [163], [164], [165]
C13 120 648 11 899.16 12 894.19
C14 100 936 11 591.87 [69], [88], [115], [141] 12 581.81 [69]
F11 71 4 177.0 ∗177.00 [69], [90, 91], [115], [141]
F12 134 7 762.9 769.55

O1 200 5 6018.52 [69], [115]
O2 240 9 4573.53
O3 280 7 7731.46 [69]
O4 320 10 7251.74
O5 360 8 9197.61 [115] 9 9162.93
O6 400 9 9803.80 [115]
O7 440 10 10344.37
O8 480 10 12420.16 [69]

6.6 Conclusions

The Integer Linear Programming (ILP) Local Search algorithm presented in the previous
chapter for the classical Vehicle Routing Problem (VRP) has been extended in this
chapter to the Open Vehicle Routing Problem (OVRP), a variant of VRP in which the
vehicles are not required to return to the depot after completing their service. OVRP
has recently received an increasing attention in the literature, and several heuristic
and metaheuristic algorithms have been proposed for this problem, as well as exact
approaches.

The algorithm has been extended in order to capture the different structure of the
addressed problem. Further, the main ingredients of the framework have been slightly
modified, with the aim of providing an overall simpler and more general procedure, less
dependent on small implementation details.

Computational results on 22 benchmark instances from the literature showed the
effectiveness and the flexibility of the method, which can be used as a profitable tool for
improving existing OVRP solutions, and even extremely-good quality solutions found by
the most effective metaheuristic techniques proposed for OVRP. Out of 30 best known
solutions which are not provably optimal, in 10 cases the proposed method was able to
improve on the best known solution reported in the literature.
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Chapter 7

An extended formulation for the
Traveling Salesman Problem with
Time Windows

7.1 Introduction

This chapter1 presents an extended formulation for the Traveling Salesman Problem
with Time Windows (TSPTW), a well known generalization of the classical TSP where
each node must be visited within a given time window. The polyhedral approaches
proposed for this problem in the literature typically follow the one which has been
proven to be extremely effective in the classical TSP context. Here we present an
overall (quite) general idea which is based on a relaxed discretization of time windows.
Such an idea leads to a strong formulation and to strong valid inequalities which can
be effectively separated within a classical branch-and-cut framework.

The overall branch-and-cut algorithm has been tested on hard benchmark instan-
ces from the literature, arising from a practical scheduling application. The results
show that the relaxed discretization of time windows is effective in practice for tackling
TSPTW. Interestingly, several unsolved benchmark instances are here solved for the
first time.

The chapter is organized as follows. Section 7.2 recalls some of the main results
from the literature for TSPTW. In Section 7.3 we formally state the problem and pre-
sent a new extended formulation for TSPTW, based on a relaxed discretization of time
windows. Section 7.4 presents some valid inequalities for the proposed formulation
and discuss their connections with other inequalities which are typically used to tac-
kle TSPTW. Section 7.5 discuss the main steps of the separation procedure for the
proposed inequalities. Section 7.6 describes a possible way for exploiting the relaxed
discretization in practice, and describe how to deal with some crucial aspects of this
method. Section 7.7 report computational results on 50 benchmark instances from the

1The results of this chapter are part of a joint work-in-progress with S. Dash, O. Günlük and A.
Lodi.
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literature, comparing the proposed approach with a more classical but effective one.
Finally, some conclusions are drawn in Section 7.8.

7.2 Literature review

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of
finding a minimum-cost path visiting a set of cities exactly once, where each city must be
visited within a specific time window. This problem can be found in a variety of real-life
applications such as routing, scheduling, manufacturing-and-delivery problems, and, for
this reason, has been extensively studied (see Desrosiers et al. [70] for a survey). The
problem is of course NP-hard because it generalizes the classical Traveling Salesman
Problem (TSP) and Savelsberg [156] showed that even finding a feasible solution of
TSPTW is NP-complete.

The first approaches dealing with TSPTW, back in the eighties, are due to Christo-
fides, Mingozzi and Toth [48] and Baker [13] and considered a variant of the problem
where the total schedule time has to be minimized. Both papers presented branch-
and-bound schemes where the former used a so-called state-space-relaxation approach,
whereas the latter exploited a time-constrained critical-path formulation.

In the nineties, several contributions were proposed. Langevin et al. [111] addressed
the problem by using a two-commodity flow formulation within a branch-and-bound
scheme. Dumas et al. [74] proposed a dynamic-programming approach with sophisti-
cated elimination tests to reduce the state space, while. Mingozzi, Bianco and Ric-
ciardelli [126] presented a dynamic-programming algorithm with a generalization of the
state-space-relaxation technique which can also be applied to TSPTW problems with
precedence constraints. Also in the nineties, the problem started to receive quite a lot of
attention by the Constraint Programming (CP) community. Indeed, the double nature
of TSPTW, which includes at the same time routing and scheduling characteristics,
makes it suitable for CP techniques. First, small TSPTW instances were solved as sub-
problems of a large task assignment by Caseau and Koppstein [43]. Lately, the problem
was instead the main focus of a paper by Pesant et al. [138] where the authors solved it
by enriching a simple CP model with redundant constraints. A variant of the TSPTW,
called TSP with multiple Time Windows, has been solved by the same authors (Pesant
et al. [139]) with basically the same algorithmic approach (and slightly adapting the
model), thus showing the flexibility of the CP paradigm.

The most recent approaches are due to Balas and Simonetti [27], Ascheuer, Fischetti
and Grötschel [11] and Focacci, Lodi and Milano [89].

Specifically, Balas and Simonetti (2001) proposed a special dynamic-programming
approach: under the assumption that, given an initial ordering of the cities, city i
precedes city j if j ≥ i+k (k > 0), the authors discussed and experimented an algorithm
that is linear in n and exponential in k. For those problems satisfying these conditions,
the dynamic-programming procedure finds an optimal solution, while in the other cases
it can be used as a linear time heuristic to explore an exponential-size neighborhood
exactly.

Ascheuer, Fischetti and Grötschel [11] considered several formulations for the Asym-
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metric version (ATSPTW) of the problem (among which a new one introduced in the
companion paper, Ascheuer, Fischetti and Grötschel [10]), and computationally com-
pared them within a branch-and-cut scheme. The framework incorporates up-to-date
techniques tailored for the Asymmetric TSPTW such as data preprocessing, primal
heuristics, local search, and variable fixing (obviously, besides the specific separation
algorithms).

Finally, Focacci, Lodi and Milano [89] proposed a hybrid algorithm merging classical
Operations Research techniques (as reduced-cost fixing, cutting planes and Lagrangean
relaxations) for coping with the optimization perspective (the routing part), and CP
propagation algorithms for the feasibility viewpoint (the scheduling part).

7.3 Problem definition and formulations

We formally define the problem by considering the more general directed case. Let
G = (V, A), be a directed graph where each node i ∈ V represents a city with an
associated time window Wi = [Ri, Di]. We call Ri the release time and Di the deadline
of node i. For each (i, j) ∈ A there is an associated travel cost cij ≥ 0, and a travel
time θij > 0. We assume that all data is integral. Moreover, there are two special nodes
p, q ∈ V . A tour is a permutation of the nodes in V that starts with node p and ends at
node q. Given a tour, we associate an arrival time and a start time with each node as
follows: arrival and start time at node p is its release time rp. For all other nodes the
arrival time is the start time at the previous node in the tour plus the travel time from
that node to the current one. The start time at node i is defined as the maximum of the
arrival time at i and Ri. A tour is feasible if the start time at each node is contained in
its time window. An optimal solution to the problem is a feasible tour with minimum
cost. In this setting early arrivals are allowed, in the sense that a the tour can arrive at
a node before its release time. However, in this case the tour “waits” until the release
time of the node.

Note that our definition of the problem requires two special “start” and “end” nodes
p and q. In some variations of the problem studied in the literature, any permutation
of the nodes is potentially feasible. However, these instances can trivially be translated
into our setting by creating two new artificial nodes to stand for p and q and adding
zero-cost arcs from p to all other nodes and from all nodes to q having fixed travel time
(say 1). In addition, the time windows are set as follows: Wp = [m,m] and Wq = [M,M ]
where m is less than all other release times, and M is larger than all other deadlines.

Throughout the paper we use V +(i) to denote the set of nodes that can follow i in
a tour, that is V +(i) := {j ∈ V : (i, j) ∈ A}. Similarly, V −(i) := {j ∈ V : (j, i) ∈ A}.
We next describe three mixed integer programming formulations for the problem. The
first one is the so-called Big M Formulation. The following two formulations are new
and we call them the Time indexed Formulation, and the Bucket Formulation.
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7.3.1 Big M Formulation (BMF)

This formulation uses a binary variable xij for each arc (i, j) ∈ A to denote whether or
not node j follows node i in the tour. In addition, there is a variable si associated with
each node i ∈ V to represent its start time in the tour. The formulation is:

min
∑

(i,j)∈A

cijxij , (7.1)

∑

j∈V +(i)

xij = 1 ∀ i ∈ V \ {q}, (7.2)

∑

k∈V −(i)

xki = 1 ∀ i ∈ V \ {p}, (7.3)

si + θij − (1− xij)Mij ≤ sj ∀ (i, j) ∈ A, (7.4)

Ri ≤ si ≤ Di ∀ i ∈ V, (7.5)

xij ∈ {0, 1} ∀ (i, j) ∈ A, (7.6)

where Mij = Di−Rj +θij . Note that the constraints (7.2) and (7.3) ensure that the xij

variables with value 1 in a feasible integral solution correspond to the union of a path
from p to q and a collection of directed cycles. In addition, the constraints (7.4) ensure
that start times at the nodes are increasing along any path and therefore directed cycles
cannot exist in the solution. Finally, the constraints (7.4) and (7.5) together ensure that
the solution respects time windows and defines a feasible tour.

7.3.2 Time Indexed Formulation (TIF)

In this formulation, instead of the start time variables si, there are binary variables zt
i

associated with each t ∈ Wi such that zt
i = 1 if and only if the start time at node i is t.

In addition, there are binary variables yt
ij associated with each arc (i, j) ∈ A and each

t ∈ Wi such that yt
ij = 1 if and only if the start time at node i is t and arc (i, j) is

present in the tour. We assume that yt
ij is present in the formulation only if t+θij ≤ Dj ,

i.e., one can start at time t at node i, and travel along arc (i, j) and arrive at j by its
deadline.

We use Ik(i, t) to denote the collection of possible start times at node k assuming
that the start time at node i is t and arc (k, i) is selected. More precisely, we define

Ik(i, t) = {τ ∈ Wk : max{τ + θki, Ri} = t}.

In other words, if the start time t at node i is Ri, then the start time at node k in a
feasible tour is some τ ∈ Wk satisfying τ ≤ Ri− θki, otherwise the start time at node k
is exactly t− θki if it belongs to Wk.
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The following is the Time Indexed Formulation (TIF) for ATSPTW:

min
∑

(i,j)∈A

cijxij

∑

t∈Wi

zt
i = 1 ∀ i ∈ V, (7.7)

∑

j∈V +(i)

yt
ij = zt

i ∀ i ∈ V \ {q}, ∀ t ∈ Wi, (7.8)

∑

k∈V −(i)

∑

τ∈Ik(i,t)

yτ
ki = zt

i ∀ i ∈ V \ {p}, ∀ t ∈ Wi, (7.9)

∑

t∈Wi

yt
ij = xij ∀ (i, j) ∈ A, (7.10)

zt
i ∈ {0, 1} ∀ i ∈ V, ∀ t ∈ Wi, (7.11)

yt
ij ∈ {0, 1} ∀ (i, j) ∈ A,∀ t ∈ Wi, (7.12)

xij ∈ {0, 1} ∀ (i, j) ∈ A.

We will show that TIF is a valid formulation of the ATSPTW problem – feasible tours
correspond to integral solutions of TIF – and is stronger than BMF. The constraints
(7.7) assert that a tour must start at each node i within the window Wi. Constraint
(7.8) asserts that a tour with start time t at node i 6= q must leave the node at time
t along some arc (the “processing” time at i is zero), whereas constraint (7.9) asserts
that tour has a start time at the previous node (say k; also i 6= p) contained in Ik(i, t).
Clearly any feasible tour can be mapped to an integral solution of TIF by setting xij = 1
if arc (i, j) is used in the tour, and zt

i = 1 if the tour has start time t at node i. Further,
if θij > 0 for all arcs in A, then every integral solution of TIF defines a feasible tour as
there cannot be any directed cycle in the support of the solution.

Proposition 7.1 The LP relaxation of TIF dominates the LP relaxation of BMF.

Proof. We define a linear transformation which maps a solution of TIF to a solution
of BMF by letting the xij values remain unchanged, and letting

si =
∑

t∈Wi

tzt
i for all i ∈ V.

We will show that the values of si and xij satisfy the constraints defining BMF. Firstly,
(7.2) holds as

∑

j∈V +(i)

xij =
∑

j∈V +(i)

∑

t∈Wi

yt
ij =

∑

t∈Wi

∑

j∈V +(i)

yt
ij =

∑

t∈Wi

zt
i = 1.

The first equality above is implied by (7.10), the third equality by (7.8) and the last
one by (7.7). To see that (7.3) holds, note that

∑

k∈V −(i)

xki =
∑

k∈V −(i)

∑

t∈Wk

yt
ki =

∑

k∈V −(i)

∑

t′∈Wi

∑

t∈Ik(i,t′)

yt
ki.
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The last expression in the previous equation equals
∑

t′∈Wi

∑

k∈V −(i)

∑

t∈Ik(i,t′)

yt
ki =

∑

t′∈Wi

zt′
i = 1

by equations (7.8) and (7.9). Now define zt
i = zt

i − yt
ij . Then

∑

t∈Wi

zt
i =

∑

t∈Wi

zi −
∑

t∈Wi

yt
ij = 1− xij

by equations (7.7) and (7.10). Therefore

si =
∑

t∈Wi

tzt
i =

∑

t∈Wi

tzt
i +

∑

t∈Wi

tyt
ij

≤ Di

∑

t∈Wi

zt
i +

∑

t∈Wi

tyt
ij = Di(1− xij) +

∑

t∈Wi

tyt
ij . (7.13)

Now, using the fact that Mij = Di + θij −Rj , we have

si + θij − (1− xij)Mij = si + θijxij − (1− xij)(Di −Rj).

The inequality in (7.13) and (7.10) imply that the last term above is less than or equal
to

Rj(1− xij) + θijxij +
∑

t∈Wi

tyt
ij = Rj(1− xij) +

∑

t∈Wi

(t + θij)yt
ij .

Similarly, writing zτ = zτ −∑
t∈Ii(j,τ) yt

ij , we have
∑

τ∈Wj
zτ = 1− xij . Further

sj =
∑

τ∈Wj

τzτ
j =

∑

τ∈Wj

τzτ +
∑

τ∈Wj

τ
∑

t∈Ii(j,τ)

yt
ij ≥ Rj(1− xij) +

∑

τ∈Wj

τ
∑

t∈Ii(j,τ)

yt
ij

≥ Rj(1− xij) +
∑

t∈Wi

(t + θij)yt
ij .

2

7.3.3 Time Bucket Relaxation (TBR)

We next present a new formulation which is obtained by aggregating some of variables
in the time-indexed formulation presented above. This formulation, as we describe
below, is a relaxation for ATSPTW and some feasible solutions to this formulation
may not correspond to feasible tours. As we discuss in the next section, we add the
so-called infeasible path inequalities to this formulation to make it an exact formulation
for ATSPTW.

We call this formulation the time bucket formulation (TBF) where, unlike the time-
indexed formulation, we do not define variables associated with each time index. We
instead, partition the time window of a node into a collection of non-overlapping in-
tervals and define variables associated with these intervals. More precisely, the time
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window Wi for a node i ∈ V is divided in a set of buckets (intervals) Bi = {bi
1, . . . , b

i
L},

with b = [rb, db], rbi
1

= Ri, dbi
L

= Di, and the start time of bi
j+1 is greater than the end

time of bi
j . We allow Wi 6=

⋃
b∈Bi

[rb, db] as long as each missing time instant t ∈ Wi

cannot be a valid starting time of the node i associated with a feasible tour. Using
earlier notation, a sufficient condition for such a time instant is

⋃
k∈V −(i) Ik(i, t) = ∅.

As in the previous formulations, binary variables xij indicate whether or not arc
(i, j) ∈ A is a part of the tour. We define binary variables zb

i associated with each
bucket b ∈ Bi of a node i ∈ V such that zb

i = 1 if and only if bucket b is selected for
node i (b is then called the starting bucket at i). We also define binary variables yb

ij

associated with each arc (i, j) ∈ A and each bucket b ∈ Bi such that yb
ij = 1 if and only

if xij = 1 and zb
i = 1.

We also use Ik(i, b) to denote the collection of possible starting buckets at node k
assuming that arc (k, i) is selected and the starting bucket at node i is b. More precisely,
for a bucket b` ∈ Bi

Ik(i, b`) = {b ∈ Bk : db`−1
< rb + θki ≤ db`

}

where we assume db0 = −∞. Conversely, if the starting bucket at node k is b and arc
(k, i) is selected then the starting bucket at node i is denoted by Ni(k, b) and is defined
as the bucket β ∈ Bi such that b ∈ Ik(i, β). If rb + θij > Dj, we define Ni(k, b) to be
null. The following is the time bucket relaxation (TBR) of ATSPTW:

min
∑

(i,j)∈A

cijxij

∑

b∈Bi

zb
i = 1 ∀ i ∈ V (7.14)

∑

j∈V +(i)

yb
ij = zb

i ∀ i ∈ V \ {q}, ∀ b ∈ Bi (7.15)

∑

k∈V −(i)

∑

β∈Ik(i,b)

yβ
ki = zb

i ∀ i ∈ V \ {p}, ∀ b ∈ Bi (7.16)

∑

b∈Bi

yb
ij = xij ∀ (i, j) ∈ A (7.17)

zb
i ∈ {0, 1} ∀ i ∈ V,∀ b ∈ Bi

yb
ij ∈ {0, 1} ∀ (i, j) ∈ A,∀ b ∈ Bi

xij ∈ {0, 1} ∀ (i, j) ∈ A

yb
ij = 0 for all (i, j) ∈ A, b ∈ Bi such that rb + θij > Dj.

Note that equation (7.14) implies that for each node i ∈ V , there is precisely one
b ∈ Bi for which zb

i = 1. Therefore, if i 6= q, equation (7.15) implies that precisely
one yb

ij = 1 for some j ∈ V +(i). Similarly, if i 6= p, equation (7.16), implies that
precisely one yβ

ki = 1 for some k ∈ V −(i). Therefore, if i 6= p, there is precisely one node
j ∈ V +(i) for which xij = 1 and if i 6= p, there is precisely one node k ∈ V +(i) for which
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xki = 1. Consequently, a feasible solution to the TBR does not necessarily give a tour
(a permutation of the nodes) but instead gives a directed path from p to q that does
not necessarily visit all other nodes on the way. If there are nodes that do not appear
on this path, they are partitioned into cycles. Therefore, as presented above, the TBR
has feasible solutions that do not correspond to feasible tours for ATSPTW.

We next show that all feasible tours for the ATSPTW are feasible for the this
formulation and therefore TBR is a relaxation for ASTPTW.

Proposition 7.2 Any feasible tour for ATSPTW is also feasible for the TBR and the-
refore TBR is a relaxation for ATSPTW.

Proof. Let V = {1 . . . n} and without loss of generality consider a feasible tour
(1 → 2 → . . . → n) for which there are feasible starting times si ∈ Wi for each i ∈ V
such that s1 = R1 and si = max{Ri, si−1 + θi−1,i} for i ≥ 2. For i ∈ V , remember that
Bi = {b1, . . . , bL}, with b = [rb, db], rb1 = Ri, dbL

= Di, and rbj+1
> dbj

.
For all i ∈ V , we next identify a time instant τi and the associated bucket β(i) and

then construct a feasible y vector using these buckets. Let τ1 = R1 and β(1) be the
first bucket of node 1 and notice that τ1 = rβ(1) = s1. For i > 1, we iteratively define
τi = max{Ri, rβ(i−1) + θi−1,i} and we define β(i) to be the bucket b` ∈ Bi such that
db`−1

< τi ≤ db`
where we let db0 = −∞. Notice that as Ri ≤ τi, if τi ≤ si, then τi ∈ Wi

and it is possible to identify the time window β(i) ∈ Bi.
We next inductively argue that τi ≤ si for all i ∈ V . First note that τ1 = s1, and

assume that the claim is true for i ∈ V . As τi ≤ si, τi ∈ Wi and there exists a time
window β(i) ∈ Bi. If τi ≥ rβ(i), then using the definition of si and τi, we clearly have
τi+1 ≤ si+1. If, on the other hand, τi < rβ(i) then τi ∈ Wi is a time instant that cannot
be a valid starting time of the node i associated with a feasible tour. Let τ̂ > τi be
the earliest possible starting time for a feasible tour. Clearly τ̂ is contained in some
bucket for node i and τ̂ ≥ rβ(i). Furthermore, as si ≥ τi and as si is a valid starting
time at node i, we have si ≥ τ̂ implying si ≥ rβ(i) and therefore τi+1 ≤ si+1 as desired.
Therefore, time windows β(i) ∈ Bi can be constructed for all i ∈ V as claimed.

The last step is to set xi,i+1 = z
β(i)
i = y

β(i)
i,i+1 = 1 for i ∈ {1, . . . , n− 1} and z

β(n)
n = 1

to obtain a feasible solution to TBR. As this solution has the same cost as the starting
solution to ATSPTW, the proof is complete. 2

Therefore, all feasible solutions and in particular the optimal solution to the AT-
SPTW corresponds to a feasible solution for the TBR. However, the converse is not true
as feasible solutions to the TBR do not have to give feasible solutions to ATSPTW.

7.3.4 Time Bucket Formulation (TBF)

We next present the so-called subtour elimination and infeasible path constraints that
help turn the TBR to a valid formulation for ATSPTW. Let S be a proper subset
of V and δ(S) be the set of arcs in with their tail in S and head outside S, that is
δ(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S}. Clearly, any feasible tour has at least one arc
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that connects nodes in S to nodes in V \ S assuming q 6∈ S. Therefore, the well known
subtour elimination constraints:

∑

(i,j)∈δ(S)

xij ≥ 1 (7.18)

are valid for ATSPTW for all S ⊂ V with q 6∈ S. Note that if a feasible solution to the
TBR also satisfies subtour elimination constraints for all S ⊂ V , then it gives a directed
path from p to q that visits all remaining nodes.

Let P = (v1, v2, . . . , vh) be a permutation of the nodes in S ⊆ V . We call P an
infeasible path if it is not possible to construct feasible start times svi ∈ Wvi that
satisfy svi ≥ svi−1 + θvi,vi−1 for all i ≥ 2. Clearly, if P is an infeasible path, it cannot
be a part of a feasible tour and therefore any feasible tour satisfies the infeasible path
constraint

h−1∑

i=1

xvi,vi+1 ≤ h− 2 (7.19)

for all infeasible path P . Notice that, if a solution to the TBR has no cycles and
in addition contains no infeasible paths (in particular, if the solution itself is not an
infeasible path from p to q) then it gives a feasible solution to ATSPTW.

Therefore, it is possible to formulate the ATSPTW using only the x variables and
an exponential number of constraints. Ascheuer, Fischetti and Grötschel [11] exploited
constraints (7.19) to derive an ILP formulation which uses only a set of binary variables
associated with the arcs in the graph. We instead use this observation to obtain a
new formulation for the ATSPTW which we call the time-bucket formulation (TBF).
The new formulation is obtained by simply adding all possible subtour elimination
constraints (7.18) and all possible infeasible path constraints (7.19) to the TBR. In
practice, these constraints should clearly be used as cutting-planes in a branch-and-cut
framework.

7.4 Valid inequalities for TBF

For S ⊆ V , let S stand for V \ S. If S ⊆ V and S′ ⊆ S, we define δ(S, S′) = {(i, j) ∈
A : i ∈ S, j ∈ S′} to be the set of arcs going from S to S′. Furthermore, we next define
a “bucket” graph G′ = (B, AB) associated with the formulation where

B =
⋃

i∈V

Bi and AB =
⋃

(ij)∈A

{
(b, b′) : b ∈ Bi, b

′ ∈ Bj , b
′ = Nj(i, b)

}
.

Notice that there is a one-to-one correspondence between the variables yb
ij of TBF and

the arcs AB of G′ and there is a one-to-one correspondence between the zb
i variables

and the nodes B. Therefore, every feasible solution of TBF corresponds to a path in
G′ that starts from a bucket in Bp and ends at a bucket of Bq that visits exactly one
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bucket of each of the remaining nodes. Given a collection of buckets B ⊆ B, we define
B = B \B. For disjoint B ⊆ B and B′ ⊆ B, we define

∆(B, B′) = {(i, j, b) : i, j ∈ V, b ∈ Bi ∩B, Nj(i, b) ∈ B′}

where Nj(i, b) is the the starting bucket at node j if arc (i, j) is selected and the starting
bucket at node i is b. In other words, ∆(B,B′) corresponds to collection of y variables
associated with the cut δ(B,B′) in G′ (the arcs in G′ that go from buckets in B to
buckets in B′).

For any S ⊆ V , B(S) = ∪i∈SBi denotes the set of buckets associated with the nodes
in S. For any B ⊆ B, V (B) = {i ∈ V : Bi ⊆ B} denotes the set of nodes which have all
their buckets contained in B.

7.4.1 Subtour elimination constraints

Recall the subtour elimination constraints (SEC)
∑

(i,j)∈δ(S)

xij ≥ 1, (SECs) (7.20)

which are valid for ATSPTW for all S ⊂ V with q 6∈ S. The following inequalities
involving buckets generalize the SECs:

∑

(i,j,b)∈∆(B,B)

yb
ij ≥ 1, (BSECs) (7.21)

provided that B ⊆ B \Bq and Bt ⊆ B for some t ∈ V .

Proposition 7.3 Inequalities (7.21) are valid for TBF and they subsume inequalities
(7.20).

Proof. Remember that every feasible solution of TBF corresponds to a path in G′

that visits exactly one bucket of each node and and ends at a bucket of Bq. Therefore,
the path has to cross the cut ∆(B, B) at least once as Bq ⊂ B \B and Bt ⊆ B for some
t ∈ V . This observation shows that the inequality is valid. To see that these inequali-
ties subsume (7.20), it suffices to observe that choosing B = ∪i∈SBi in inequality (7.21)
gives inequality (7.20) as

∑
(i,j)∈δ(S) xij =

∑
(i,j,b)∈∆(B,B) yb

ij . 2

7.4.2 SOP Inequalities

We next present the so-called SOP (sequential ordering polytope) inequalities described
in the literature. These inequalities have been presented by Balas, Fischetti and Pul-
leyblank [22] in the context of the Precedence-constrained TSP, and are known to be
effective even for ATSPTW (see, e.g., [11]). SOP inequalities are based on a concept of
“precedence” between nodes2. We say that a node i ∈ V precedes another node j ∈ V

2Obviously, several precedences between nodes can be inferred by exploiting the node time windows.
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if j has to be visited after i in any feasible tour. We denote this precedence as i ≺ j.
We extend this definition to subsets of nodes as follows. Let S, S′ ∈ V , we say S ≺ S′

if each node in S precedes every node in S′.
Let S ⊂ V , and define π(S) := {j ∈ V : j ≺ i for some i ∈ S}, and σ(S) := {j ∈ V :

i ≺ j for some i ∈ S}. Further, let

δπ(S) = δ(S \ π(S), S \ π(S)) and δσ(S) = δ(S \ σ(S), S \ σ(S)).

Here δπ(S) stands for the arcs (i, j) from S to S where i, j /∈ π(S). The following
inequalities are valid for the BMF and therefore for the TBF:

∑

(i,j)∈δπ(S)

xij ≥ 1, (π-cuts) (7.22)

∑

(i,j)∈δσ(S)

xij ≥ 1, (σ-cuts) (7.23)

where S ⊂ V \ {q}. It is known that constraints (7.22) and (7.23) dominate subtour
elimination constraints (7.20) (see, e.g., [22]).

For any permutation P = (v1, . . . , vh) of nodes of V , define θ(P ) =
∑h−1

i=1 θvi,vi+1 .
Then, given disjoint sets X,Y with X ⊆ V \ {q} and X ≺ Y , let

W = {k ∈ V \ (X ∪ Y ) : ∃ i ∈ X, j ∈ Y with Ri + θ(i, k, j) > Dj}, (7.24)

and note that a path from i to k to j arriving at node j after Dj even if starting at Ri

at i cannot be part of a feasible tour. Further, let

Q := {(u, v) ∈ A : ∃ i ∈ X, j ∈ Y with Ri + θ(i, u, v, j) > Dj}. (7.25)

Finally, let W̃ = π(X)∪ σ(Y )∪W . Then, for any S ⊂ V such that X ⊆ S, Y ⊆ S, the
following inequalities are also valid for BMF and therefore for TBF:

∑

(i,j)∈δ(S\W̃ ,S\W̃ )\Q
xij ≥ 1. ((π, σ)-cuts) (7.26)

In this chapter we refer inequalities (7.26) as (π, σ)-cuts. However, they are indeed
a strengthened version of the classical (π, σ)-cuts for the Precedence-constrained TSP
(see, e.g., [10, 11]).

7.4.3 Bucket SOPs

For buckets, we extend the concept of precedence as follows: for a node i ∈ V , we say
that bucket b ∈ Bi precedes node j ∈ V if in any feasible solution of TBF that visits
node i at bucket b (i.e., any feasible solution with zb

i = 1), node j is visited after node
i. We denote this precedence as b ≺ j. In a similar fashion, we say that a node j ∈ V
precedes a bucket b ∈ Bi if in any feasible TBF solution that visits node i at bucket
b, node j is visited before node i. We denote this precedence as j ≺ b. Note that
the original node precedence relationship implies bucket-node precedences as follows:
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i ≺ j ⇒ b ≺ j for all b ∈ Bi and i ≺ b for all b ∈ Bj . Furthermore, the bucket-node
precedence relationship can be combined with node precedence relationships as follows:
for a bucket b and nodes j, k ∈ V , b ≺ j and j ≺ k implies b ≺ k, while j ≺ b and k ≺ j
implies k ≺ b.

Let B ⊆ B be a collection of buckets. We next abuse notation and use π(B) to
denote the set of buckets which precede nodes with all buckets contained in B, in other
words

π(B) = {b ∈ B : b ≺ i, where i ∈ V and Bi ⊆ B}.
Similarly, we define σ(B) as

σ(B) = {b ∈ B : i ≺ b, where i ∈ V and Bi ⊆ B}.

Furthermore, we define

∆π(B) = ∆(B \ π(B), B \ π(B)) and ∆σ(B) = ∆(B \ σ(B), B \ σ(B)).

We next generalize π-cuts and σ-cuts in the context of TBF as follows: Let B ⊆ B
such that Bt ⊆ B for some node t ∈ V and Bq ⊆ B. We call the following inequalities

∑

(i,j,b)∈∆π(B)

yb
ij ≥ 1 (πB-cuts) (7.27)

and ∑

(i,j,b)∈∆σ(B)

yb
ij ≥ 1 (σB-cuts) (7.28)

bucket SOP inequalities. It is easy to see that bucket SOP inequalities (7.27) and (7.28)
dominate bucket subtour elimination constraints (7.21).

Proposition 7.4 The Bucket SOP inequalities (7.27) and (7.28) are valid for TBF.

Proof. As discussed earlier, a feasible solution to TBF corresponds to a directed path
in G′ that starts with a bucket in Bp, ends at a bucket in Bq and visits exactly one
bucket associated with the remaining nodes. As Bt ⊆ B for some t ∈ V and Bq ⊆ B
by assumption, the path must visit one of the buckets in B and must end in one of
the buckets in B′. Therefore, the path must cross the cut δ(B,B′) at least once. Let
(b, b′) be the last arc on the path that crosses from B to B′ and let b ∈ Bi and b′ ∈ Bj .
Notice that b and b′ cannot be included in π(B). If b ∈ π(B), then there is a node k
with Bk ⊆ B such that b ≺ k, which means that some bucket of Bk is visited after b,
a contradiction. The same argument holds for b′. Therefore (i, j, b) ∈ ∆π(B) and the
inequality (7.27) is valid. One can similarly argue that if (b, b′) is the first arc crossing
from B to B′ in a feasible solution to TBF, then b, b′ /∈ σ(B). Therefore inequality
(7.28) is valid. 2

Furthermore, constraints (7.27) and (7.28) dominate constraints (7.22) and (7.23),
respectively. Instead of proving it directly, we will show that constraints (7.22) and
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(7.23) are actually dominated by a simpler subfamily of the inequalities described in
the next section.

The same generalization used to derive πB-cuts and σB-cuts can be applied to derive
the (πB, σB)-cuts, which dominate inequalities (7.26). Let again X, Y be disjoint subset
of nodes, with X ⊆ V \ {q} and X ≺ Y , and define W and Q as in (7.24) and (7.25),
respectively. If now W̃ and Q̃ are defined in the “bucket” space as

W̃ := π(B(X)) ∪ σ(B(Y )) ∪B(W ) (7.29)

and
Q̃ = {(i, j, b) : (i, j) ∈ Q, b ∈ Bi}, (7.30)

then, for any B ∈ B such that X ⊆ V (B) and Y ⊆ V (B), the following inequalities are
valid for TBF: ∑

(i,j,b)∈∆(B\W̃ ,B\W̃ )\Q̃
yb

ij ≥ 1. ((πB, σB)-cuts) (7.31)

7.4.4 Simple Bucket SOPs

Let S ⊆ V and take B = ∪i∈SBi. Then we call the corresponding inequality (7.27) a
simple πB-cut (s-πB-cut). We similarly define simple σB-cuts (s-σB-cuts) as a special
case of (7.28).

By abusing notation, s-πB-cuts and s-σB-cuts can be restated more conveniently
as follows. For any S ⊆ V , let define πB(S) = {b ∈ B : b ≺ j for some j ∈ S} and
σB(S) = {b ∈ B : j ≺ b for some j ∈ S}, i.e., πB(S) = π(B(S)) and σB(S) = σ(B(S)).
In a similar way, we define

∆πB (S) = ∆(B(S) \ πB(S), B(S) \ πB(S)), i.e., ∆πB (S) = ∆π(B(S)),

and

∆σB(S) = ∆(B(S) \ σB(S), B(S) \ σB(S)), i.e., ∆σB (S) = ∆σ(B(S)).

Then, the following constraint are clearly valid for any S ⊂ V \ {q} (see Proposition
7.4): ∑

(i,j,b)∈∆πB
(S)

yb
ij ≥ 1 (s-πB-cuts) (7.32)

and ∑

(i,j,b)∈∆σB
(S)

yb
ij ≥ 1 (s-σB-cuts) (7.33)

By simply recalling the TBF constraints (7.17), and noting that B(π(S)) ⊆ πB(S)
and B(σ(S)) ⊆ σB(S) for any S ⊂ V , the following proposition is straightforward:

Proposition 7.5 The simple Bucket SOP inequalities (7.32) and (7.33) dominate, re-
spectively, the SOP inequalities (7.22) and (7.23).
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Since (7.32) and (7.33) are a particular case of (7.27) and (7.28), one gets immedia-
tely the following:

Corollary 7.1 The Bucket SOP inequalities (7.27) and (7.28) dominate, respectively,
the SOP inequalities (7.22) and (7.23).

The same arguments above can be used to define simple (πB, σB)-cuts (s-(πB, σB)-
cuts) as a particular case of constraints (7.31). To this end, let suppose to be given,
again, disjoint subsets of nodes X, Y , with X ⊆ V \ {q} and X ≺ Y . Define W and
Q as in (7.24) and (7.25), respectively, and define W̃ and Q̃ as in (7.29) and (7.30),
respectively. Then, for any S ∈ V such that X ⊆ S and Y ⊆ S, we get the following
valid inequality for TBF:

∑

(i,j,b)∈∆(B(S)\W̃ ,B(S)\W̃ )\Q̃
yb

ij ≥ 1. (s-(πB, σB)-cuts) (7.34)

Even in this case, the following proposition is straightforward:

Proposition 7.6 s-(πB, σB)-cuts (7.34) dominate (π, σ)-cuts (7.26).

As a consequence, even (πB, σB)-cuts (7.31) dominate (π, σ)-cuts (7.26).

7.4.5 Tournament constraints

Let P = (v1, v2, . . . , vh), be a directed elementary path in G and let |P | = h− 1 denote
the number of arcs on P. The path P is called an infeasible path if it cannot be contained
in any feasible tour. It is known that deciding whether a given path is infeasible or not
is NP-complete. However, there are some simple conditions that imply infeasibility. In
particular the path P is infeasible if

rv1 + θ(P ) > dvh
, (7.35)

where θ(P ) =
∑h−1

i=1 θvi,vi+1 denotes the length of the path. In addition, the path P is
infeasible if for some node vt, not on the path, we have both P ′ = (vt, v1, v2, . . . , vh) and
P ′′ = (v1, v2, . . . , vh, vt) infeasible. The infeasibility of the paths P ′ and P ′′ can again
be checked using (7.35). As discussed in Section 7.3.4, given an infeasible path P , the
following infeasible path elimination constraint (IPEC)

h−1∑

i=1

xvi,vi+1 ≤ |P | − 1, (IPECs) (7.36)

is valid for both BMF and TBF. Furthermore, these inequalities can be strengthened
to obtain the so-called tournament constraints (TOUR)

∑

(i,j)∈T (P )

xi,j ≤ |P | − 1, (TOURs) (7.37)

114



where T (P ) = {(i, j) ∈ A : (i, j) = (vi, vj) for some 1 ≤ i < j ≤ h} are also valid for
both BMF (see [11]) and TBF. Also note that if P1 and P2 are both infeasible paths
such that P1 is contained in P2, then inequalities (7.36) and (7.37) associated with P2

are dominated by the corresponding inequalities associated with P1.
Let S = {v1, . . . , vh} be the collection of nodes associated with path P = (v1, . . . , vh)

and let Ψ(S) denote the collection of all possible paths that visit all nodes in S. As
described in [11], if all paths in Ψ(S) are infeasible then the following stronger inequality

∑

(i,j)∈A(P )

xi,j ≤ |P | − 1, (7.38)

where A(P ) = {(i, j) ∈ A : (i, j) = (vi, vj) for some 1 ≤ i, j ≤ h} is also valid for
BMF and TBF. Whenever a violated tournament constraint (7.37) is identified it is
customary to try to strengthen it this way.

7.4.6 Bucket tournament constraints

We extend inequalities (7.37) by considering time buckets as follows. Let P = (v1, . . . , vh)
be a path with Bv1 = {b1, . . . , . . . , bk}. Let bt ∈ Bv1 be the first bucket of v1 such
that rbt + θ(P ) > dvh

. In other words, if the starting bucket at node v1 is one of
{bt, bt+1, . . . , bk}, then a feasible tour cannot visit the nodes in {v1, . . . , vh} in the order
specified by P . Note that P itself is not necessarily an infeasible path if the starting
bucket at node v1 is one of {b1, . . . , bt−1}. It is therefore easy to see that the following
inequality ∑

b∈{bt,bt+1,...,bk}
zb
v1

+
∑

(i,j)∈T (P )

xi,j ≤ |P | (7.39)

is valid for the TBF. If one of the buckets in {bt, bt+1, . . . , bk} is chosen for node v1, then
inequality (7.39) becomes the tournament constraint (7.38) as P becomes an infeasible
path. If, on the other hand, one of the buckets in {b1, . . . , bt−1} is chosen, then inequality
(7.39) is implied by the subtour elimination constraint.

We strengthen these inequalities further. For v ∈ V \S, S = {v1, . . . , vh}, let Lv(bt)
denote the collection of time buckets at node v that will lead to a starting bucket in
{bt, bt+1, . . . , bk} if arc (v, v1) is chosen. More precisely, Lv(bt) = {b ∈ Bv : (b, b′) ∈
B for some b′ ∈ {bt, bt+1, . . . , bk}}. It is now easy to see that

∑
v∈V \S

∑
b∈Lv(bt)yb

v,v1
≥

∑
b∈{bt,bt+1,...,bk} zb

v1
. As a consequence, the following bucket tournament inequality do-

minates (7.39):
∑

v∈V \S

∑

b∈Lv(bt)

yb
v,v1

+
∑

i∈S:(i,v1)∈A

xi,v1 +
∑

(i,j)∈T (P )

xi,j ≤ |P | (BTOURs) (7.40)

Proposition 7.7 Given any elementary path P = (v1, . . . , vh), BTOUR inequality
(7.40) is valid for TBF.

Proof. Notice that if the first term in inequality (7.40) can either be 0 or 1. If it is
1, then the second term has to be zero and therefore the inequality reduces to the valid
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inequality (7.39). If, on the other hand, the first term in inequality (7.40) is zero, then
the inequality is implied by the subtour elimination constraint. 2

7.5 Separation routines

We next outline the main steps of the separation routines we developed for embedding
all the inequalities presented in the previous section in a branch-and-cut algorithm based
on BTF.

7.5.1 Separating bucket SOPs

In their most general version, SOP inequalities (7.22), (7.23) and (7.26) cannot be se-
parated in polynomial time. However, Ascheuer, Fischetti and Grötschel [11] developed
a heuristic polynomial separation procedure which turn outs to be effective in prac-
tice, by following some important theoretical results presented by Balas, Fischetti and
Pulleyblank [22] in the context of the Precedence-constrained ATSP. Following their
main ideas, we developed a heuristic polynomial procedure for bucket SOP inequalities.
We next outline the main steps of the separation procedure for s-πB-cuts (7.32) and
s-(πB, σB)-cuts (7.34). All the other families of bucket SOP inequalities are separated
by following an identical approach.

Simple πB-cuts separation

Given a fractional solution y∗, we consider, in turn, each node v ∈ V \{p, q}, we initialize
S := {v} and we apply the following steps:

1. Define the reduced y-arc set A0
B = {(b, b′) ∈ AB : b 6∈ πB(S), b′ 6∈ πB(S)}. For each

arc (i, j) ∈ A, denote as Bi(j) the subset of buckets of Bi which are connected to
node j in A0

B: i.e.,

Bi(j) = {b ∈ Bi : (b,Nj(i, b)) ∈ A0
B}. (7.41)

Then exploit the “linking” constraints (7.17) and compute, for each (i, j) ∈ A,

qij =
∑

b∈Bi(j)

y∗bij . (7.42)

Build the sparse graph G0 = (V 0, A0) in the x-space, with A0 = {(i, j) ∈ A : qij >
0} and V 0 induced by A0.

Compute the max-flow z0 from cluster S to q in G0 (where each arc has a capacity
qij) and denote as (S′, S′) the corresponding min-cut. If z0 < 1, then add the
violated s-πB-cut (7.32) corresponding to S to the cut pool.

2. Note that S ⊆ S′ and hence πB(S) ⊆ πB(S′). If πB(S) = πB(S′), then terminate.
Otherwise set S := S′ and repeat from Step 1.
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The procedure described above also acts as an exact separation for the classical
subtour elimination constraints. Whenever the procedure fails in finding violated s-πB-
cuts, no violated SEC can occur in the fractional solution x∗. Note, however, that
“extended” subtours in the y-space can occur. A similar approach has been developed
for separating s-σB-cuts (7.33).

Simple (πB, σB)-cuts separation

Following Ascheuer, Fischetti and Grötschel [11], we separate over constraints (7.34) by
considering sets X and Y of the form X = {u}, Y = {w} with u ≺ w (u,w ∈ V \{p, q}).
For each u, v, w ∈ V such that u ≺ v ≺ w, it can be easily shown that all the s-(πB, σB)-
cuts arising from X = {u}, Y = {w} are implied by those arising from X = {u},
Y = {v} and those arising from X = {v}, Y = {w}. Hence, at any time we look for
violated s-(πB, σB)-cuts, we consider only the pairs of nodes u,w, u ≺ w, such that
the precedence between u and w cannot be inferred by any transitive relationship with
some other node v. Given a fractional solution y∗, we consider, in turn, each pair of
node u,w with the above mentioned properties (i.e., u ≺ w and no node v exists such
that u ≺ v ≺ w), and we apply the following steps:

1. Define W̃ and Q̃ as in (7.29) and (7.30), respectively. Build the reduced y-arc set
A0
B = {(b, b′) ∈ AB : b 6∈ W̃ , b′ 6∈ W̃ , (v(b), v(b′), b) 6∈ Q̃}, where for any bucket

β ∈ B, v(β) denotes the node in V containing β. For each arc (i, j) ∈ A, compute
Bi(j) as in (7.41) and then qij as in (7.42).

2. Build the sparse graph G0 = (V 0, A0) in the x-space, with A0 = {(i, j) ∈ A : qij >
0} and V 0 induced by A0.

3. Compute the max-flow z0 from u to w in G0 (where each arc has a capacity qij)
and denote as (S′, S′) the corresponding min-cut. If z0 < 1, then add the violated
s-πB-cut (7.34) corresponding to S, u, w to the cut pool. In any case terminate.

As highlighted in the above detailed description of the separation procedures, the
simple bucket SOPs allow to exploit the potential of the extended y-space for streng-
thening the classical SOP inequalities, while keeping the computation of max-flow in
the x space. Similar procedure have been implemented for separating the more general
version of bucket SOPs (i.e., inequalities (7.27), (7.28) and (7.31)). However, for those
kind of constraints we are forced to explicitly work in the extended space.

7.5.2 Separating tournament and bucket tournament constraints

Given any fractional solution x∗, it can be proven that at most a polynomial number
of (feasible or infeasible) elementary paths corresponding to violated tournament con-
straints (7.37) can occur. (This result is due to Savelsbergh and reported by Ascheuer,
Fischetti and Grötschel [10].) Hence, all the violated tournament constraints can be
enumerated in polynomial time. However, given a path P corresponding to a violated
tournament, deciding if P is infeasible is NP-complete. On the other hand, it can also
be proven the following statement:
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Proposition 7.8 If x∗ is integral and does not contain any cycle, then it is a feasible
solution for ATSPTW iff, for any path P = (v1, . . . , vh) corresponding to a violated
tournament constraints, Rv1 + θ(P ) ≤ Dvh

.

In practice, the results of Savelsbergh and the above proposition imply that a poly-
nomial separation of tournaments constraints suffices to provide a correct formulation
for ATSPTW. Exploiting this result, we developed the following separation procedure,
similar to the one proposed in [11].

Given a fractional solution x∗, for each node v ∈ V \ {p, q} we enumerate all the
elementary paths on x∗ ending at v, by following the flow in the fractional solution x∗

through a depth-first strategy. For each v ∈ V , we implicitly explore a decision tree in
which any node corresponds to an elementary path P ending at v. At each node of the
tree, three different situations can occur:

(i) the TOUR (7.37) corresponding to P is not violated ⇒ we stop extending the
path P ;

(ii) the TOUR corresponding to P is violated and P is infeasible according to the
trivial check (7.35) ⇒ we add the constraint and we stop extending the path P
(by further extending the path we can only find dominated constraints);

(iii) the TOUR corresponding to P is violated but P is not proven to be infeasible
according to the check (7.35) ⇒ we extend P following the flow in x∗.

As discussed, the above procedure is polynomial and acts as an exact method whe-
never x∗ is integer and with no cycles (note however that the procedure is heuristic if
x∗ is fractional). As it is customary, whenever we succeed in finding a violated TOUR,
we try to strengthen it as a constraint (7.38).

Bucket tournament constraints (7.40) can effectively be separated by slightly mo-
difying the procedure described above: at any node of the decision tree, if the current
TOUR (7.37) is violated but P is not proven to be infeasible, we check if the bucket
tournament (7.40) corresponding to P is also violated, and in the case we add it to the
cut pool. Interestingly, note that, in our separation procedure, we stop extending the
path as soon as there is no hope to find a violated tournament constraint. Whenever
this happens, there is also no hope to find a violated bucket tournament (7.40).

7.6 Building the formulation

In order to exploit the potential of Time Bucket Formulation, we have to devise an
effective strategy for building the buckets. In addition, we have to derive a profitable
set of bucket-node precedences for separating Bucket SOP inequalities. Furthermore, it
is also worth mentioning that Ascheuer, Fischetti and Grötschel [11] have shown that
a deep preprocessing phase is of crucial importance for strengthening any ATSPTW
formulation. To this end, one can first try to exploit the time windows to infer some
precedence relationships among nodes. Then, the detected node precedences can be
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used for fixing some x variables (i.e., for removing some arcs), while the removal of
some arcs might allow to tighten the time windows themselves.

Assume w.l.o.g. that the triangle inequality holds for the traveling time matrix (i.e.,
θij + θjk ≥ θik for any i, j, k ∈ V \ {p, q}, i 6= j 6= k). Given an ATSPTW instance, we
perform the following preprocessing in order to build a possibly strong formulation.

1. (Node preprocessing.) We apply the same node preprocessing proposed in [11]
which can be briefly summarized as follows3. First, we set p ≺ j ∀ j ∈ V \ {p}
and j ≺ q ∀ j ∈ V \ {q}. Then we iterate the following steps until we are able to
enforce the formulation:

(a) For each i, j ∈ V \ {p, q}, if Rj + θji > Di, set i ≺ j.

(b) For each i, j, k such that i ≺ j and j ≺ k, set i ≺ k.

(c) For each i, j such that i ≺ j, remove arc (j, i). For each i, j, k such that
i ≺ j ≺ k, remove arc (i, k).

(d) Tightening the time windows through the following rules (see [11]):

Rk := max{Rk, mini∈V−(k){Ri + θik}} ∀ k ∈ V s.t. V −(k) 6= ∅
Rk := max{Rk, min{Dk, minj∈V +(k){Rj − θkj}}} ∀ k ∈ V s.t. V +(k) 6= ∅
Dk := min{Dk, max{Rk, maxi∈V−(k){Di + θik}}} ∀ k ∈ V s.t. V −(k) 6= ∅
Dk := min{Dk, maxj∈V +(k){Dj − θkj}} ∀ k ∈ V s.t. V +(k) 6= ∅

(e) Arc removal based on 3-infeasible paths. For any (i, j) ∈ A, if there exists
k ∈ V such that (i, j, k) and (k, i, j) are both infeasible, then arc (i, j) can
be removed.

After this step, we end up with a sparse graph, a set of tightened time windows
and a set of node precedences.

2. (Building the buckets.) We build buckets by exploiting the sparse graph obtained
at Step 1 in the following way.

For each node i ∈ V and for each t ∈ Wi, we compute the sets V +
t (i) := {j ∈

V +(i) : t + θij ≤ Dj} and V −
t (i) := {j ∈ V −(i) : Ij(i, t) 6= ∅}. V +

t (i) is the set of
nodes which can follow node i if the start time at node i is t. V −

t (i) is the set of
nodes which can precede node i if the arrival time at node i is t.

Then we build the buckets as follows. The first bucket of node i is defined as b1 :=
[Ri, Ri]. The other buckets are computed by aggregating in intervals consecutive
time instants t, t′ such that V +

t (i) = V +
t′ (i) and V −

t (i) = V −
t′ (i).

It is worth noting that holes are detected whenever V +
t (i) = ∅ or V −

t (i) = ∅,
where a hole for node i is defined as a time instant t ∈ Wi such that the start
time at node i cannot be t in any feasible ATSPTW solution. In several cases, the
buckets we obtain through such a procedure are nonconsecutive time intervals.

3The reader is referred to [11] for a detailed description of this steps.
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3. (Imposing “bucket triangle inequality”.) Consider three different nodes i, j, k ∈ V
and a bucket b ∈ Bi. Then, in the complete graph (i.e., the one provided on
input before node preprocessing), let b = Nk(i, b) be the bucket of node k which
is visited if selecting arc (i, k) and visiting node i at bucket b. In the same way,
define b̃ = Nj(i, b) and b̂ = Nk(j, b̃). b̂ is the bucket of node k which is visited if
the path (i, j, k) is selected and node i is visited at bucket b. If, for any choice of
nodes i, j, k ∈ V (i 6= j 6= k) and for any choice of b ∈ Bi, b̂ does not precede b,
then the graph G′ = (B, AB) is said to be “bucket triangular”.

Bucket triangle inequality seems to be relevant for getting a strong Time Bucket
Formulation. Indeed, if this property is not satisfied, negative waiting times intro-
duced by buckets can easily “cheat” the LP relaxation. Further, bucket triangle
inequality is also required to infer in a very simple way a profitable set of bucket-
node precedences for separating Bucket SOP inequalities.

Since the heuristic outlined at Step 2 typically provides a graph G′ = (B, AB)
not bucket triangular, then we impose this property by splitting the buckets in a
careful way, i.e., in the attempt of imposing such a condition without increasing
too much the number of buckets and hence the size of the formulation.

4. (Bucket preprocessing.) Given the sparse graph and the node precedences ob-
tained at Step 1, and given the buckets computed at Steps ??–3, we apply a
further preprocessing step, with the aim of removing bucket-arcs (i.e., y variables)
and computing a suitable set of bucket-node precedences. This is accomplished
through the following steps.

(a) For any i, j ∈ V such that i ≺ j, set b ≺ j for all buckets b ∈ Bi and i ≺ b
for all buckets b ∈ Bj .

(b) For any i, j ∈ V and b ∈ Bi such that rb + θij > Dj , set j ≺ b. For any
i, j ∈ V and b ∈ Bj such that Ri + θij > db, set b ≺ i.

(c) For any b ∈ Bi and any j, k ∈ V such that b ≺ j and j ≺ k, set b ≺ k. For
any b ∈ Bi and any j, k ∈ V such that j ≺ k and k ≺ b, set j ≺ b.

(d) For any b ∈ Bi and any j ∈ V such that b ≺ j, remove all bucket-arcs (b′, b)
with b′ ∈ Bj . For any b ∈ Bi and any j ∈ V such that j ≺ b, remove
bucket-arc (b, b′) with b′ ∈ Bj .

(e) For any b ∈ Bi and any j, k ∈ V such that b ≺ j ≺ k, remove bucket-arc
(b, b′) with b′ ∈ Bk. For any b ∈ Bi and any j, k ∈ V such that j ≺ k ≺ b,
remove all bucket-arcs (b′, b) with b′ ∈ Bj .

(f) Bucket-arc removal based on 3-infeasible paths. For any (b, b′) ∈ AB connec-
ting nodes i and j (i.e., b ∈ Bi and b′ ∈ Bj), if there exists k ∈ V such that
path (k, i, j) is infeasible and rb + θij + θjk > Dk, then bucket-arc (b, b′) can
be removed.
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7.7 Computational results

Time bucket formulation has been tested within the Cplex 10.0 [105] branch-and-cut
framework. The branch-and-cut has been tested on a Pentium M 1.86 GHz notebook
with 1 GByte RAM running under Microsoft Windows XP Operative System, and has
been coded in C++ with Microsoft Visual C++ 6.0 compiler.

In this first set of experiments, no “ad hoc heuristic” or branching strategy has been
implemented. In particular, we used default branching and we disabled all the Cplex
heuristics and all the Cplex cutting planes, since the LP relaxation seems to be hard
to manage and Cplex heuristics often fall in troubles, spending a lot of time without
finding any feasible solution.

All the cutting planes discussed in Section 7.4 has been embedded in the branch-
and-cut by means of Cplex callbacks. After some preliminary tests, we decided to
separate cutting planes at each node of the search tree in the following order. We first
separate s-πB-cuts (7.32), then s-σB-cuts (7.33), then s-(πB, σB)-cuts (7.34). Finally,
we separate TOURs (7.37) and BTOURs (7.40) at the same time. Classical ATSPTW
cutting planes (i.e., SOPs and SECs) are not separated, as dominated by simple bucket
SOPs. Concerning the more general version of bucket SOPs (i.e., (7.27), (7.28), (7.31)),
we decided to not separate them after several preliminary experiments, because it seems
rather difficult to effectively exploit them. On the one side, a huge number of general
violated bucket SOPs can usually be found even when the heuristic procedure for simple
bucket SOPs fails in finding violated inequalities. On the other hand, those cuts are
time consuming to separate and the benefit they provide in the lower bound is often
negligible. Among the three families (classical, simple bucket and general bucket SOPs),
the second one really seems to be the best, because it allows to exploit the potential of
buckets by working in the x-space.

As testbed, we selected the same 50 ATSPTW instances considered by Ascheuer,
Fischetti and Grötschel [11]. These instances derive from a practical scheduling ap-
plication and have a number of nodes varying from 12 to 233. Looking at the results
reported in [11], they can be divided in two completely different classes. The branch-
and-cut proposed in [11] can easily solve 32 out of the 50 problems in a at most a few
minutes, while cannot solve the remaining 18 problems in 5 hours of CPU time. As
far as we known,, among these 18 hard problems, rbg042a as been solved to proven
optimality by Focacci, Lodi and Milano [89], while the remaining 17 instances are still
unsolved.

Table 7.1 report the results on the 32 so-called easy instances, comparing the method
proposed in [11] (AFG) with TBF. For each problem, in the first columns the table
reports the size of the instance (i.e., number of nodes and number of arcs) and the
optimal solution value. Then, for each of the compared methods, we report the lower
bound at the root node (after the addition of cutting planes and before branching), the
number of branch-and-cut nodes enumerated and the overall CPU time in seconds (see
the table key).

The table shows that both AFG and TBF are able to easily deal with these instances,
as they both provide a strong lower bound at the root node. Comparing the CPU time is

121



Table 7.1: Time Bucket Formulation vs. Ascheuer et al. [11]: comparison on easy
instances.

Ascheuer et al. [11] (AFG) Time Bucket Formulation (TBF)
Prob. |V | |A| opt rLB #nodes CPU rLB #nodes CPU

rbg010a 12 54 149 99.3 2 0.1 100.0 1 0.0
rbg016a 18 79 179 98.9 2 0.2 100.0 0 0.0
rbg016b 18 167 142 93.7 76 8.8 97.2 2 0.2
rbg017.2 17 200 107 100.0 0 0.0 100.0 0 0.0
rbg017a 19 176 146 100.0 0 0.1 100.0 0 0.0
rbg017 17 122 148 100.0 4 0.8 99.3 0 0.0

rbg019a 21 71 217 100.0 0 0.0 100.0 0 0.0
rbg019b 21 211 182 98.9 820 54.6 99.5 1 0.3
rbg019c 21 229 190 95.8 58 8.7 96.8 42 0.9
rbg019d 21 156 344 99.7 2 0.8 100.0 6 0.2
rbg020a 22 95 210 100.0 0 0.2 100.0 0 0.0
rbg021.2 21 237 182 100.0 0 0.2 100.0 0 0.1
rbg021.3 21 256 182 97.8 340 27.2 98.4 62 2.7
rbg021.4 21 264 179 98.9 72 5.8 100.0 1 0.2
rbg021.5 21 268 169 98.8 76 6.6 100.0 1 0.3
rbg021.6 21 358 134 99.3 2 1.4 100.0 1 0.3
rbg021.7 21 375 133 96.2 24 4.3 100.0 0 0.6
rbg021.8 21 380 132 97.7 254 17.4 98.5 10 1.4
rbg021.9 21 380 132 97.0 320 26.1 98.5 23 2.8

rbg021 21 229 190 95.8 58 8.8 96.8 42 0.9
rbg027a 29 479 268 99.3 6 2.3 99.3 2 1.4
rbg031a 33 388 328 100.0 0 1.7 100.0 0 0.2
rbg033a 35 421 433 100.0 0 1.9 99.8 6 0.9
rbg034a 36 535 403 99.5 2 1.0 100.0 6 1.9

rbg035a.2 37 940 166 95.2 96 64.8 100.0 3 5.3
rbg035a 37 477 254 100.0 0 1.8 100.0 2 0.2
rbg038a 40 486 466 100.0 13204 4232.2 100.0 9 1.5
rbg040a 42 539 386 92.0 1756 751.8 96.6 25 3.6
rbg050a 52 1629 414 100.0 6 18.6 100.0 2 24.5
rbg055a 57 765 814 99.9 2 6.4 100.0 19 3.5
rbg067a 69 843 1048 99.9 2 6.0 100.0 23 3.6
rbg125a 127 1824 1409 99.5 56 229.8 100.0 8 9.6

avg. 98.5 538.8 171.6 99.4 9.3 2.1

Key to Table 7.1
|V | : number of nodes
|A| : number of arcs after the preprocessing
opt : optimal solution value found by both AFG and BTF
rLB : lower bound at the root node before branching
#nodes : number of B&C nodes
CPU : overall CPU seconds obtained:

on a SUN SPARC Station 10 for AFG
on a Pentium M 1.86 GHz for BTF

rather difficult, due to the different machines4, but the number of B&C nodes explored
by TBF is usually much smaller.

Table 7.2 report the results on the 18 so-called hard instances, comparing again
the two methods. Since we are mostly interested in understanding the capability of
TBF to provide strong lower bounds, in this set of experiments we decided to provide

4The results reported for [?] have been obtained on a SUN SPARC Station 10 by using the branch-
and-cut framework ABACUS [1].
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to the method the best known as initial cutoff(i.e., we set as initial cutoff bestUB+1).
For each problem, the table reports the size of the instance and the best UB known in
the literature (the proven optimal solution in case for rbg042a). Then, for each of the
compared methods, we report the best found UB, the lower bound at the root node
(again, after the addition of cutting planes and before branching), the best available
lower bound provided at the end of the computation, the number of branch-and-cut
nodes enumerated and the overall CPU time in seconds. For TBF, we also report the
CPU time spent in separation routines and the %gap closed with respect to AFG by
considering both the root LB and the global LB (see the key of the table).

Table 7.2: Time Bucket Formulation vs. Ascheuer et al. [11]: comparison on hard
instances.

Ascheuer et al. [11] (AFG) Time Bucket Formulation (TBF)
Prob. |V | |A| bestUB UB rLB gLB #nodes UB rLB gLB #nodes totsecs sepsecs r %gap. g %gap

rbg041a 43 628 403 417 361 382 23396 402 386 402 335 28.4 3.5 60.98 100.00
rbg042a 44 762 411 435 394 409 22300 411 403 411 1724 864.2 18.5 52.94 100.00
rbg048a 50 1288 492 527 454 455 25222 — 457 458 2080 > 10800 89.9 7.89 8.11
rbg049a 51 1083 488 501 408 418 17486 — 418 426 3715 > 10800 131.3 12.50 11.43
rbg050b 52 1175 527 542 447 453 8600 — 456 460 4081 > 10800 143.3 11.25 9.46
rbg050c 52 1396 536 536 507 509 25184 — 508 508 1227 > 10800 69.6 3.45 -3.70
rbg086a 88 926 1052 1052 1042 1049 12208 1051 1048 1051 30 7.3 2.2 66.67 100.00
rbg092a 94 1367 1109 1111 1084 1102 8828 1093 1089 1093 154 269.9 14.2 55.56 100.00
rbg132.2 132 3126 1125 1125 1053 1069 4336 1083 1078 1083 69 1474.1 28.1 83.33 100.00

rbg132 132 1575 1400 1400 1323 1348 7628 1360 1345 1360 72 13.2 5.3 59.46 100.00
rbg152.3 152 6191 1594 1594 1521 1525 2558 1547 1537 1538 75 > 10800 103.6 61.54 59.09

rbg152 152 2125 1792 1792 1759 1770 5038 1783 1776 1783 138 82.8 24.1 70.83 100.00
rbg172a 174 2837 1897 1897 1777 1787 3434 1799 1794 1799 120 176.2 41.4 77.27 100.00
rbg193.2 193 6031 2093 2093 1969 1981 1726 — 2009 2009 100 > 10800 176.2 32.26 25.00

rbg193 193 3050 2452 2452 2386 2388 2790 2414 2408 2414 4465 9542.8 1073.1 78.57 100.00
rbg201a 203 3287 2296 2296 2158 2159 3282 2189 2184 2189 272 551.8 120.1 83.87 100.00
rbg233.2 233 7588 2304 2304 2146 2152 1200 — 2183 2185 40 > 10800 116.0 23.42 21.71

rbg233 233 3766 2786 2786 2635 2647 1106 2689 2683 2689 4051 5844.4 1104.7 88.89 100.00
avg. 9795.7 1263.8 5247.5 181.4 51.70 68.39

Key to Table 7.2
|V | : number of nodes
|A| : number of arcs after the preprocessing
bestUB : best available upper bound from the literature. We used bestUB+1 as initial cutoff for TBF
UB : best upper bound found by AFG vs. best upper bound found by TBF
rLB : lower bound at the root node before branching
gLB : best available lower bound at the end of the computation

5 hours of time limit on a SUN SPARC Station 10 for AFG
3 hours of time limit on a Pentium M 1.86 GHz for TBF

#nodes : number of B&C nodes
totsecs : overall CPU seconds for TBF
sepsecs : CPU seconds spent in separation routines by TBF
r %gap : TBF root lower bound improvement: (100*(TBF rLB - AFG rLB))/(best UB - AFG rLB)
g %gap : TBF global lower bound improvement: (100*(TBF gLB - AFG gLB))/(best UB - AFG gLB)

The table shows that in this case TBF clearly outperforms AFG. First, TBF can
solve 11 out of the 18 problems, and often the CPU time is just a few minutes. Second,
the root LB is generally much stronger, thus dramatically reducing the number of B&C
node required to solve the problem. As already stated, we deal with the absence of
any primal heuristics by setting the initial cutoff as the best known solution value +
1. However, it is worth noting that in most cases such best upper bound is really
far from the optimal solution value, and that TBF branch-and-cut typically find the
optimal lower bound after few nodes, spending then the rest of the time to find a feasible
solution matching the lower bound. This also confirms the difficulty of ATSPTW in
practice.

Despite these convincing results, there are 7 instances still unsolved. On the first
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4 instances, the improvement in the global lower bound with respect to AFG is much
smaller than in the other cases (and, in particular, for instance rbg050c the global lower
bound by AFG is better than the one by BTF). Probably, for such unsolved problems,
the heuristic devised for building the formulation is not effective, and some other work
is required in this direction. On the other 3 problems, instead, the formulation seems
to be strong, but the number of B&C nodes enumerated in three CPU hours is really
too small. Also this issue asks for devising a more clever way to define the formulation
(i.e., the buckets).

The last table, Table 7.3, is aimed to understand the effectiveness of the bucket
inequalities. Considering the 18 hard instances and solving the root node only, we
compare the lower bound provided by the classical cuts which do not exploit the buckets
in any way (i.e., classical SECs first, then SOPs (7.22), (7.23), (7.26) and finally TOURs
(7.37)) with the lower bound obtained through the default setting.

Table 7.3: Node cuts vs. bucket cuts at the root node: comparison on hard instances.

TBF + Node cuts TBF + Bucket cuts
Prob. |V | |A| bestUB rLB #cuts CPU rLB #cuts CPU r %gap

rbg041a 43 628 402 382.0000 3 0.3 385.9375 61 0.8 19.69
rbg042a 44 762 411 397.6071 14 1.7 402.0943 86 3.1 33.50
rbg048a 50 1288 492 457.0000 7 10.1 457.0000 51 18.7 0.00
rbg049a 51 1083 488 414.1707 4 2.5 417.5649 43 4.6 4.60
rbg050b 52 1175 527 451.3000 22 10.5 455.0559 80 16.9 4.96
rbg050c 52 1396 536 508.0000 8 22.7 508.0000 44 19.3 0.00
rbg086a 88 926 1051 1046.0781 40 1.1 1047.8000 102 2.0 34.98
rbg092a 94 1367 1093 1086.6458 59 4.9 1088.9544 163 8.0 36.33
rbg132.2 132 3126 1083 1073.6000 63 62.6 1077.7500 167 101.2 44.15

rbg132 132 1575 1360 1344.1667 44 2.2 1344.5000 59 2.8 2.11
rbg152.3 152 6191 1547 1534.9167 96 2306.8 1537.0000 211 1133.0 17.24

rbg152 152 2125 1783 1775.0556 44 3.8 1775.5000 70 4.9 5.59
rbg172a 174 2837 1799 1791.0000 91 12.8 1793.7000 155 18.6 33.75
rbg193.2 193 6031 2093 2006.8500 61 262.7 2008.5159 278 751.9 1.93

rbg193 193 3050 2414 2405.0000 40 10.5 2407.4286 116 13.5 26.98
rbg201a 203 3287 2189 2181.0000 108 16.0 2183.7000 153 22.7 33.75
rbg233.2 233 7588 2304 2177.6833 53 496.3 2182.6429 139 425.7 3.93

rbg233 233 3766 2689 2679.0000 56 22.7 2682.4286 238 46.8 34.29
avg. 45.2 180.6 123.1 144.1 18.77

Key to Table 7.3
|V | : number of nodes
|A| : number of arcs after the preprocessing
bestUB : best available upper bound (including also results from Table 7.2)
nLB : optimal solution of the LP relaxation + node cuts
bLB : optimal solution of the LP relaxation + bucket cuts
#cuts : number of generated cuts
CPU : overall CPU seconds for solving the root node
r %gap : percentage improvement obtained by the bucket cuts:

(100*(bLB - nLB))/(bestUB - nLB)

The table shows that the buckets are indeed very useful for strengthening the for-
mulation, and the theoretical dominance of bucket cuts w.r.t. node cuts is confirmed
by the results. Behind an average gap closed of 18.77%, there are several cases in which
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this value raises to more than 30%. On the other hand, there are several cases in which
the improvement provided by bucket cuts is less than 5%. Interestingly, the cases in
which the improvement seems to be not so relevant are mostly related to the instances
that TBF cannot solve, thus confirming the fact that a more clever exploitation of the
“bucket idea” is required.

7.8 Conclusions

In this chapter we presented an extended formulation for the Traveling Salesman Pro-
blem with Time Windows (TSPTW), a well known generalization of the classical TSP
where each node must be visited within a given time window. In particular, we proposed
a quite general idea which is based on a relaxed discretization of time windows. Such
an idea leads to a strong formulation and to strong valid inequalities which can been
effectively exploited within a classical branch-and-cut framework.

The overall branch-and-cut algorithm has been tested on hard benchmark instances
from the literature, arising from a practical scheduling application, and the results
have shown that the proposed formulation is effective in practice for tackling TSPTW.
Interestingly, several unsolved benchmark instances have been solved for the first time.

As discussed, the formulation is based on the idea of dividing time windows in
buckets (intervals). In this chapter, we proposed a first heuristic idea to devise buckets.
Future works should address more clever ideas for building the buckets, as it seems
to be of crucial importance for the effectiveness of the overall method. Probably, the
formulation itself can be exploited in this sense, and primal and dual solutions of its
LP relaxation should be investigated to derive a dynamic approach for the problem of
finding an “almost optimal” set of buckets.

On the other hand, other directions of work might concern the possibility of exten-
ding the presented approach to other contexts in which the time window component
seems to be relevant.
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Chapter 8

Improving on Branch-and-Cut
Algorithms for Generalized
Minimum Spanning Trees

8.1 Introduction

Several variants of Generalized Minimum Spanning Tree Problems (GMSTPs) have
been introduced in the literature in different papers by a number of authors. Roughly
speaking, all these variants are generalizations of the classical Minimum Spanning Tree
Problem (MSTP, see, e.g., [120]) on an undirected graph G = (V, E) in which the node
set V is partitioned into a given set of clusters1, and the minimum tree has to “span”
those clusters instead of simple nodes.

In particular, in this chapter2 we are concerned with two specific variants, the most
classical one in which Exactly one node in each cluster has to be visited (E-GMSTP),
and the less studied problem in which at Least one node in each cluster has to be reached
(L-GMSTP).

More precisely, V is partitioned into |K| clusters Vk, k ∈ K. Each edge e = {i, j} ∈ E
has a cost ce ∈ R+. The E-GMSTP is the problem of finding a minimum cost tree
including exactly one node from each node set of the partition (see Figure 8.1 for
a feasible solution of E-GMSTP). This problem was introduced by Myung, Lee and
Tcha [127] who have shown it is strongly NP-hard by a reduction from the node-
cover problem. Mathematical formulations and exact methods have been discussed by
Myung, Lee and Tcha [127] and Pop, Kern, and Still [142, 144], while a polynomial
approximation algorithm has been proposed by Pop, Kern and Still [143].

In the L-GMSTP, instead, at least one node from each cluster of the partition
must be included in the minimum cost tree (see Figure 8.2 for a feasible solution of
L-GMSTP). This problem was introduced by Ihler, Reich and Widmayer [104] as a

1A variant in which the clusters may overlap is considered in [73].
2The results of this chapter appear in: C. Feremans, A. Lodi, P. Toth and A. Tramontani, “Improving

on branch-and-cut algorithms for generalized minimum spanning trees”, Pacific Journal of Optimization,
1:491–508, 2005 [80].
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Figure 8.1: Feasible solutions for E-
GMSTP.

 

Figure 8.2: Feasible solutions for L-
GMSTP.

particular case of the Generalized Steiner Tree Problem under the name “Class Tree
Problem”. Ihler, Reich, Widmayer [104] have shown that the decision version of the
L-GMSTP is NP-complete even if G is a tree, and that there is no constant worst-case
ratio polynomial-time algorithm unless P = NP, even if G is a tree on V with edge
lengths 1 and 0. Heuristic algorithms have been proposed by Ihler, Reich, Widmayer
[104] and by Dror, Haouari and Chaouachi [72].

The L-GMSTP problem reduces at a first glance to the E-GMSTP when the triangle
inequalities hold, but this is not true as shown by the example in Figure 8.3. Indeed,
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Figure 8.3: A graph for which E-GMSTP and L-GMSTP differ.

if the graph depicted in Figure 8.3 is completed through shortest paths, it satisfies the
triangle inequalities and the value of the optimal solution of L-GMSTP is 12.5 (using
both nodes 5 and 6), while the optimal value of the E-GMSTP solution is 12.8 (only
using node 5).

Applications modeled by E-GMSTP are encountered in telecommunications, where
metropolitan and regional networks must be interconnected by a tree containing a ga-
teway from each network. For this internetworking, a node has to be chosen in each
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local network as a hub and the hub nodes must be connected via transmission links
such as optical fiber (see Myung, Lee and Tcha [127] for details).

The L-GMSTP has been used to solve an important real life network design problem
arising in desert environments and consisting in designing a minimal length irrigation
network which connects at least one node from each parcel to a water source (see Dror,
Haouari and Chaouachi [72] for details).

This chapter presents several effective techniques to improve on the branch-and-cut
approaches for E-GMSTP and L-GMSTP proposed by Feremans, Labbé and Laporte
[78] and by Feremans [77] respectively. In particular, we improved on the performances
through: i) new effective heuristic algorithms, ii) updated branching strategies, and iii)
the use of general-purpose Chvátal-Gomory cuts (with and without the strengthening
procedures proposed by Letchford and Lodi [112]).

Finally, a generalization of both problems requiring some clusters to be visited exac-
tly once and the remaining clusters at least once is presented. Such a generalization is
denoted as E/L-GMSTP and naturally appears when the considered network is some-
how “mixed”, i.e., involving clusters which may require a different behavior (fixed-charge
costs).

The chapter is organized as follows. In Section 8.2 the Integer Linear Programming
(ILP) formulation for E-GMSTP discussed in [78] and tested in [79] is recalled. In Sec-
tion 8.3 an ILP formulation for L-GMSTP is proposed and its relationship with the one
for E-GMSTP is discussed, while Section 8.4 discusses the proposed generalized pro-
blem. In Section 8.5 computational experiments are reported showing the effectiveness
of the proposed techniques. Some conclusions are drawn in Section 8.6.

8.2 ILP Formulation for E-GMSTP

Myung, Lee and Tcha [127] have provided two basic formulations for the E-GMSTP
using two sets of binary variables, namely xe, ∀e ∈ E and yi,∀i ∈ V . In the first formu-
lation, called ucut, connectivity is ensured by cutset constraints of the form x(δ(S)) ≥
yi + yj − 1 (i ∈ S ⊂ V, j 6∈ S), whereas in the second, called usub, cycles are prevented
through subpacking constraints of the form x(E(S)) ≤ y(S) − 1 (S ⊂ V, µ(S) 6= 0),
where for any S ⊆ V we define µ(S) = |{k : Vk ⊆ S}|, i.e., the number of clusters
included in S. As it is customary, for any S ⊆ V , δ(S) (resp. E(S)) denotes the set
of edges having exactly one endpoint (resp. both endpoints) in S, and x(δ(S)) (resp.
x(E(S))) denotes the sum of the x-values on the subset δ(S) (resp. E(S)).

The undirected cutset formulation uses the fact that a feasible Generalized Spanning
Tree (E-GST) is a connected subgraph of G containing one node per cluster and |K|−1
edges:
Undirected cutset formulation (ucut)
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min
∑

e∈E

cexe (8.1)

subject to
y(Vk) = 1 k ∈ K, (8.2)

x(E) = |K| − 1, (8.3)
x(δ(S)) ≥ yi + yj − 1 i ∈ S ⊂ V, j 6∈ S, (8.4)

xe ∈ {0, 1} e ∈ E, (8.5)
yi ∈ {0, 1} i ∈ V. (8.6)

Constraints (8.2) guarantee that each cluster is visited exactly once, while constraint
(8.3) forces the tree structure. As already mentioned, constraints (8.4) assure connec-
tivity. Finally, constraints (8.5) and (8.6) are the integrality requirements.

An E-GST can also be defined as an acyclic subgraph of G containing one node per
cluster and |K| − 1 edges:
Undirected subpacking formulation (usub)

min
∑

e∈E

cexe

subject to
y(Vk) = 1 k ∈ K,

x(E) = |K| − 1,

x(E(S)) ≤ y(S)− 1 S ⊂ V, µ(S) 6= 0, (8.7)
xe ∈ {0, 1} e ∈ E,

yi ∈ {0, 1} i ∈ V.

The model is equivalent to the previous one with the only difference of the connectivity
constraints (8.4) replaced by constraints (8.7).

Myung, Lee and Tcha [127] have also proved that Pusub ⊆ Pucut, i.e., that the
subpacking formulation dominates the cutset one in terms of continuous relaxation.
The example depicted in Figure 8.4, provided by Magnanti and Wolsey [120] in the
context of the Minimum Spanning Tree Problem, can also be used to show (with |K| =
5, Vk = {k} ∀k ∈ K) that this inclusion is strict. Indeed (8.2), (8.3) and (8.4) are
satisfied while (8.7) is violated for S = {3, 4, 5}.

The subpacking formulation is the one used by Feremans, Labbé and Laporte [79]
as a base for a branch-and-cut approach and such an approach is elaborated in Section
8.5.1.
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Figure 8.4: Example showing that Pusub ⊂ Pucut.

8.3 ILP Formulation for L-GMSTP

The L-GMSTP can be formulated as an integer linear program as follows.

min
∑
e∈E

cexe

s.t.
y(Vk) ≥ 1 k ∈ K, (8.8)

x(E) = y(V )− 1, (8.9)
x(δ(S)) ≥ yi + yj − 1 i ∈ S ⊂ V, j 6∈ S,

xe ∈ {0, 1} e ∈ E,

yi ∈ {0, 1} i ∈ V,

where constraints (8.8) and (8.9) replace constraints (8.2) and (8.3), respectively.
Notice that constraints

x(E(S)) ≤ y(S)− 1 S ⊂ V, µ(S) 6= 0,

i.e., constraints (8.7), valid for the E-GMSTP remain valid for the L-GMSTP. Ho-
wever, they do not dominate all the constraints (8.4) unlike for the E-GMSTP po-
lytope. Indeed, consider the following example (see Figure 8.5) where all the con-
straints (8.7) are satisfied but at least one of the constraints (8.4) is violated. Let
V = {1, 2, . . . , 6}, V1 = {1, 2, 3}, V2 = {4, 5}, V3 = {6} and the graph is complete. If
yi = 1, ∀i ∈ V, x12 = x14 = x24 = x35 = x56 = 1, xe = 0 otherwise, then the constraint
(8.4) for S = {1, 2, 4}, i = 1, j = 3 is violated.

The above linear formulation for the L-GMSTP is not strong with respect to its
linear relaxation. We can justify this claim in exploiting the same argument as the one
used in Magnanti and Wolsey [120] for the Minimum Spanning Tree problem. Indeed,
if each cluster is reduced to a single node, the L-GMSTP boils down to the classical
MSTP. However, this formulation is particularly effective in a branch-and-cut context
since the so-called cut-constraints (8.4) are easy to separate using max-flow algorithms.
Such a formulation is elaborated and tested in Section 8.5.2.
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Figure 8.5: Constraints (8.4) are not all implied by constraints (8.7) for L-GMSTP.

8.3.1 From L-GMSTP to E-GMSTP

One way to solve the L-GMSTP consists of seeing it as a variant of the E-GMSTP. For
this purpose, the following transformed graph has to be defined.

Let G = (V, E), with V partitioned into clusters V1, V2, . . . , V|K|, be the graph of the
L-GMSTP instance. The transformed graph G̃ = (Ṽ , Ẽ) is defined as follows:

• Ṽ is equal to V , and the partition into clusters remains the same,

• for each pair of nodes i, j ∈ Ṽ belonging to different clusters and such that there
exists a path between i and j in G, there is an edge {i, j} ∈ Ẽ with cost equal to
the value of the shortest path from i to j in the original graph G.

The transformed graph G̃ is |K|-partite complete if G is connected on V .

Proposition 8.1 The optimal solution of the E-GMSTP solved on G̃ can be transfor-
med into a feasible solution of L-GMSTP on G. It gives then an upper bound on the
value of the optimal solution of L-GMSTP.

Proof. An edge in an E-GMSTP solution in G̃ corresponds to a path in G. Removing
the repeated edges and the cycles (in deleting the edge with highest cost in each cycle,
one cycle at a time), we obtain a feasible solution to L-GMSTP with value less or equal
to the corresponding solution in G̃. 2

It is not difficult to see that repeated edges and cycles can occur from the transformation.
It does not always exist an optimal solution of E-GMSTP on G̃ such that in removing

repeated edges and cycles, we get an optimal solution for L-GMSTP on G. It means
that solving the E-GMSTP on G̃ can only provide an upper bound to the L-GMSTP
on G. To see this, it suffices to consider again the graph in Figure 8.3. The optimal
solution of L-GMSTP on G is 12.5, while the optimal value of the E-GMSTP solution
on G̃ is 12.8 and corresponds to a feasible solution of L-GMSTP in G of value 12.8.

In [77], such a transformation of G into G̃ with edges in G̃ corresponding to the
shortest paths with the maximum number of edges has been tested as a heuristic. This
is done, in order to get a solution in G̃ that is transformed into a solution in G with as
many as possible repeated edges and cycles. To obtain shortest paths with maximum
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number of edges, the following scaling is performed on G. The cost ce is replaced by
100ce − 1. Three heuristics based on the solution of E-GMSTP have been tested in
[77]: 1) the transformation using the shortest paths, 2) the transformation using the
shortest paths with maximum number of edges, and 3) L-GMSTP solved directly as
E-GMSTP. (Such a third case clearly provides an upper bound for L-GMSTP since a
feasible solution of E-GMSTP is also feasible for L-GMSTP.)

8.4 A generalization: the E/L-GMSTP

The E/L-GMSTP can be formulated as an integer linear program as follows.

min
∑
e∈E

cexe

s.t.
y(Vk) = 1 k ∈ KE , (8.10)
y(Vk) ≥ 1 k ∈ KL, (8.11)

x(E) = y(V )− 1,

x(δ(S)) ≥ yi + yj − 1 i ∈ S ⊂ V, j 6∈ S,

xe ∈ {0, 1} e ∈ E,

yi ∈ {0, 1} i ∈ V,

where K = KE ∪ KL is partitioned in two sets KE and KL such that the clusters in
KE (resp. KL) must be visited exactly (resp. at least) once.

This problem is clearly a generalization of both E-GMSTP and L-GMSTP since both
sets KE and KL can reduce to the empty set. Obviously, in case KL is the empty set
the model can be tightened to become the subpacking formulation described in Section
8.2.

8.5 Computational results

In this section we concentrate on the computation of provably optimal solutions for E-
GMSTP, L-GMSTP and E/L-GMSTP. This is done by using the same branch-and-cut
framework, which is specified so as to take into account the main differences among the
three problems. This framework, developed for Generalized Spanning Tree problems
by Feremans, Labbé and Laporte [79] and Feremans [77], has been improved in the
current chapter to obtain better results through new branching rules, primal-heuristic
algorithms and the use of general-purpose Chvátal-Gomory cuts.

First of all we briefly recall the branch-and-cut method of [79, 77]:

1. Initialization: Insert the linear program:

{min
∑

e∈E

cexe : (8.2), (8.3), xe, yi ≥ 0, ∀i ∈ V, ∀e ∈ E}
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for E-GMSTP or

{min
∑

e∈E

cexe : (8.8), (8.9), xe, yi ∈ [0, 1], ∀i ∈ V, ∀e ∈ E}

for L-GMSTP, respectively, in a problem list L. Initialize the incumbent solution
z to infinity.

2. Termination: If L is empty, STOP. Otherwise, extract one subproblem from L
according to a best-first rule.

3. LP solution: Solve the subproblem using an LP-solver and let x∗ be its optimal
solution and z∗ its value. If z∗ ≥ z, go to STEP 2. Otherwise3, if the solution is
integer and feasible update the incumbent solution z and go to STEP 2.

4. Separation I: separate the special cases of (8.7):

x(δ(i)) ≥ yi i ∈ V (8.12)

and
x(E({i} : Vk)) ≤ yi i ∈ V \ (W ∪ Vk), ∀k ∈ K (8.13)

for E-GMSTP (where W = {i ∈ V : i ∈ Vk, |Vk| = 1} is the set of nodes belonging
to a cluster which is a singleton) or

xe ≤ yi and xe ≤ yj ∀ e = {i, j} ∈ E (8.14)

for L-GMSTP, respectively4.
If violated inequalities are found, add them to the current subproblem and go to
STEP 3.

5. Separation II: separate constraints (8.7).
If violated inequalities are found, add them to the current subproblem and go to
STEP 3.

6. Separation III: separate
odd-cycle inequalities and odd-hole inequalities5

for E-GMSTP or
cut constraints (8.4)

for L-GMSTP, respectively6.
If violated inequalities are found, add them to the current subproblem and go to
STEP 3.

3Both local improvement and rounding procedures are applied in the E-GMSTP context (see [79]
for details).

4For the proof of validity and separation details of (8.12)-(8.13) and (8.14) see [79] and [77], respec-
tively.

5See [79] for proof of validity and separation details.
6Note that the constraints for E-GMSTP and L-GMSTP in STEP 6 play a rather different role.

Indeed, constraints (8.4) are necessary for the correctness of the branch-and-cut in the L-GMSTP
context, while odd-cycle and odd-hole are redundant constraints for E-GMSTP.
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7. Branching: create two new subproblems by branching on a constraint (8.2) for
E-GMSTP, or on the edge whose value is closest to 0.5 and with maximum cost
for L-GMSTP, respectively.
Add the subproblems to the list L and go to STEP 2.

8.5.1 Improving on E-GMSTP

The branch-and-cut method outlined in the previous section has been improved on as
follows.

First, we changed the branching strategy by branching on nodes, i.e., on the yi

variable closest to 0.5. As it is customary, two subproblems are created having yi = 0
and yi = 1, respectively.

Second, we improved on the separation procedure: preliminary tests have shown
that odd-cycle inequalities and odd-hole inequalities separation routines are rather time-
consuming, and these constraints are seldom generated. Instead of these constraints we
used the general-purpose Chvátal-Gomory cuts, with and without the strengthening
procedures proposed by Letchford and Lodi [112]. The use of Chvátal-Gomory cuts has
been recently re-discovered by several authors, and a number of ways of using them have
been proposed. In our computational experiments we found very useful to separate a
single round of Chvátal-Gomory cuts at the root node of our branch-and-cut tree when
no other cuts have been identified and before resorting to branching. After the addition
of such a first round, we restart from STEP 3 of the algorithm above.

Computational results comparing the algorithm in [79] with the improved one on
both random-generated Euclidean instances from [79] and the set of instances proposed
by Dror, Haouari, and Chaouachi [72] (and denoted in the following as “DHC” instances)
are presented in Tables 8.1-8.2 and Table 8.3, respectively. All the codes have been
implemented by using the branch-and-cut framework ABACUS [1] version 2.4 (alpha
release) and Cplex 9.0 [105] as LP solver. We compare four algorithms, namely,
the original algorithm presented in [79], and three versions (v. 0,1,2) of the improved
algorithm depending on the type of Chvátal-Gomory cuts used, i.e., classical ones (v.0),
strengthened of type 1 (v.1), and strengthened of type 2 (v.2) (see, Letchford and Lodi
[112] for details). Table 8.1 is organized as follows. Each line refers to a set of five
random Euclidean instances generated as in [79]. First, |V |, |K| and |E| indicate the
number of nodes, clusters and edges, respectively, of the corresponding five instances.
Then, we report the number of instances solved to optimality within the time limit of
3,600 CPU seconds on a Pentium M 1.6 Ghz notebook with 512 MByte of main memory
(Succ), the average number of nodes of the branch-and-cut tree (Nodes), the average
gap of the lower bound computed at the root node with respect to either the optimal
solution value or the best know one (LB%), the average separation time in seconds
(sepT) and, finally, the average overall time in seconds7. The last row of Table 8.1
reports for each algorithm the total number of solved instances and the average value
over all the instances of the other entries.

7An instance which is not solved to optimality in the time limit has a computing time of 3,600 CPU
seconds for computation of the average time.
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Table 8.2 reports the disaggregated results for the three sets of randomly-generated
instances for which not all the instances were solved to optimality (hard instances).

Tables 8.1 and 8.2 show that the improved version v.0 obtains the best results for
what concerns the number of solved instances and the computing time. As for the lower
bound at the root node, the use of the Chvátal-Gomory cuts generally leads to better
values, mainly the strengthening procedures proposed in [112] are applied.

Table 8.3 has the same structure as Table 8.1, but the first column indicates the
identifier of the single instance (ID) and no column indicating the number of successes is
present because the all set of 20 instances is solved to optimality by the four algorithms.
In addition, the fifth column indicates the optimal value for the instance (Opt).

Finally, we tested our improved branch-and-cut algorithm v.0 with respect to that
proposed in [79] on generalized Traveling Salesman instances generated according to
Fischetti, Salazar and Toth [86]. As also reported in [79], the branch-and-cut algorithms
solve all the problems with up to 226 nodes at the root node by using only constraints
(8.7) (i.e., without additional cuts) but instance ts225. Thus, the two algorithms
perform in the same way. On ts225, we obtained a speedup of 1.12 (computed as
the ratio of the computing times of the original algorithm and of the improved one), a
slightly reduced number of branching nodes (15 instead of 23) and a better lower bound
at the root node due to the use of Chvátal-Gomory cuts (2 units improvement on a
absolute gap of 22 units).

8.5.2 Improving on L-GMSTP

In addition to the two improvements already described in the previous section for E-
GMSTP, and also used for L-GMSTP (i.e., an effective branching strategy and the use
of general-purpose Chvátal-Gomory cuts) in the context of L-GMSTP we applied two
new improvements.

In the original version of the branch-and-cut method presented in [77], no heuristic
algorithm was used in STEP 3. We propose a greedy heuristic based on the classical
algorithm of Prim for MSTP. This heuristic is divided in two phases: the first is a
rounding procedure which starts from a fractional solution while the second one is a
simple local improvement. More precisely:

Phase 1): a maximum-priority spanning tree is computed using Prim’s algorithm (a
priority proportional to x∗e is associated with each edge e and, among edges of the same
priority, the inter-cluster edges are considered first). This phase stops when a feasible
solution T = (V ′, E′) for L-GMSTP is reached.

Phase 2): the solution is improved by removing all the redundant nodes of degree 1
(a node i is redundant if |(V ′ \ {i}) ∩ Vk| ≥ 1, k : i ∈ K). The corresponding adjacent
edges are removed from T one at a time according to nonincreasing edge cost while the
remaining edges still form a feasible solution.

Moreover, a more prudent separation policy has been implemented for constraints
(8.4). Indeed, we decided to apply the separation routine based on max-flow computa-
tion in case the solution is integer but infeasible, while in case of a fractional solution
such that neither constraints (8.7) nor their special cases (8.12) and (8.14) are violated
we resort to branching, i.e., we execute STEP 7.
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Computational results comparing the algorithm in [77] with the improved one on
the “DHC” instances are presented in Table 8.4. Table 8.4 has the same structure as
Table 8.3 but the first algorithm is now the branch-and-cut approach presented in [77].
Moreover, we report in column six the number of selected edges in the optimal solution
(|E′|).

Table 8.4 shows that the first eighteen instances require very short computing time.
As for instances 19 and 20 the improved version v.0 obtains the best computing ti-
mes, while the best lower bound values are obtained by the strengthening procedures
proposed in [112].

Before ending this section it has to be noted that Duin, Volgenant and Voß [73]
report computational results on the exact solution of L-GMSTP computed through a
transformation to the Steiner Tree Problem (STP). In particular, a code for the STP
is used to compute optimal solutions of the L-GMSTP and then assert the quality of
heuristic algorithms for L-GMSTP proposed by the same authors. Incidentally, the
computing times on the “DHC” instances are rather short suggesting that this trans-
formation is a competitive way of solving L-GMSTP.

8.5.3 E/L-GMSTP Results

Preliminary results on the introduced generalization of E-GMSTP and L-GMSTP are
presented in this section by naturally adapting the branch-and-cut framework described
in the previous section and using a subset of the “DHC” instances for which the optimal
solutions computed in the previous sections for E-GMSTP and L-GMSTP were different.
These results are reported in Table 8.5. The table presents the results for the version of
the algorithm, among the three versions considered in the previous sections, which has
on average the best results, i.e., v.0. The structure of the table is once again as the one
of the previous ones, but for the number of clusters for which we specify |KE | (resp.
|KL|), i.e., the number of clusters for which exactly (resp. at least) one node has to be
reached.

The table shows these instances as well can be effectively solved through the propo-
sed branch-and-cut algorithm.

8.6 Conclusion

In this chapter we have considered three NP-hard generalizations of the classical MSTP
which often arise in practical applications, e.g., in the telecommunication and agricul-
tural settings.

The relationships among these problems, and in particular with respect to their ILP
formulations, have been discussed and branch-and-cut approaches have been extensively
tested. More precisely, we improved on existing branch-and-cut algorithms from the
literature [79, 77] by using new effective primal heuristics, more powerful branching
strategies, and general-purpose Chvátal-Gomory cuts.

These modifications have been proved to be effective through computational results
and the branch-and-cut approaches seem to be a flexible and powerful tool to handle
such problems.
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Table 8.5: E/L-GMSTP: Modified “DHC” Instances.

Branch-and-cut v.0
ID |V | |KE | |KL| |E| Opt |E′| Nodes LB% sepT TT
2 25 1 7 100 45 7 1 100.00 0.01 0.08
3 25 1 9 150 37 9 1 100.00 0.00 0.04
8 75 1 14 400 58 14 7 98.28 0.03 0.27

10 100 1 9 500 49 9 1 100.00 0.01 0.29
11 150 1 7 300 61 8 15 78.69 0.05 0.96
12 150 1 11 500 75 12 13 94.67 0.34 2.62
13 200 1 9 500 46 12 19 86.96 0.09 1.39
14 200 1 19 1000 53 19 1 100.00 0.00 0.54
16 250 1 24 1000 119 26 7 98.32 0.71 4.60
17 300 1 19 1000 91 20 31 92.31 0.72 7.13
20 500 3 47 5000 108 53 475 94.44 52.04 1085.49
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PhD thesis, Università degli Studi di Padova, 2006.

[34] L. Bertacco, M. Fischetti and A. Lodi. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization, 4:63–76, 2007.

[35] J.E. Beasley. OR–Library: a collection of test data sets for a variety of Ope-
rations Research (OR) problems, http://people.brunel.ac.uk/\∼{}mastjjb/
jeb/info.html.

[36] R.E. Bixby, S. Ceria, C.M. McZeal, M.W.P. Savelsbergh. An updated mixed inte-
ger programming library: MIPLIB 3.0, http://www.caam.rice.edu/\∼{}bixby/
miplib/miplib.html.

[37] P. Bonami Étude et mise en oeuvre d’approches polyédriques pour la résolution
de programmes en nombres entiers ou mixtes généraux. PhD thesis, Université de
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