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Abstract

The intensity of regional specialization in specific activities, and conversely, the level
of industrial concentration in specific locations, has been used as a complementary
evidence for the existence and significance of externalities. Additionally, economists
have mainly focused the debate on disentangling the sources of specialization and
concentration processes according to three vectors: natural advantages, internal,
and external scale economies. The arbitrariness of partitions plays a key role in
capturing these effects, while the selection of the partition would have to reflect
the actual characteristics of the economy. Thus, the identification of spatial bound-
aries to measure specialization becomes critical, since most likely the model will
be adapted to different scales of distance, and be influenced by different types of
externalities or economies of agglomeration, which are based on the mechanisms of
interaction with particular requirements of spatial proximity. This work is based
on the analysis of the spatial aspect of economic specialization supported by the
manufacturing industry case. The main objective is to propose, for discrete and
continuous space: i) a measure of global specialization; ii) a local disaggregation
of the global measure; and iii) a spatial clustering method for the identification of
specialized agglomerations.
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Chapter 1

Presentation of the study

1.1 Introduction

If we observe a map with the location of economic activities, the following may be
noticed: i) there are clusters of points in a certain region, i.e. the spatial distribution
is not uniform; and ii) some clusters show a wide variety of activities with a high
proportion of a uniform or a small number of activities.

The results of these observations may be summarized in three basics concepts:
concentration, specialization and agglomeration. These concepts are reviewed in the
following section.

One of the goals of economic geography is precisely to explain the location of
economic activities vis-à-vis the intensity of above-mentioned concepts. Section 1.3
provides an approach to this perspective. Finally, section 1.4 puts forth the goal of
this thesis.

1.2 Three basic concepts: concentration, special-

ization and agglomeration

Prior to introducing the causes and theoretical underpinnings of economic geography
that explain such phenomena, this section seeks to clarify the differences and existing
relations among such concepts from a technical and conceptual perspective.
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1.2.1 Specialization vs. concentration

The concentration of production, one of the most striking feature of the geography of
economic activities, is probably also the most direct evidence of the pervasive need
of firms to draw benefits from the presence of externalities. The concentration of an
economic activity is a distribution measure of its country share, and an activity is
said to be regionally concentrated if a few regions have a large share.

On the other hand, specialization or relative concentration of an economic ac-
tivity becomes readily apparent when part of the territory has a greater proportion
of elements (most often uses employment as the gauge) from a particular activity
than the proportion of such activity in the whole territory. In other words, spe-
cialization compares an area’s share of a particular activity with the area’s share
of an aggregate phenomena. Simply put, specialization identifies the way in which
local activities are packed up with respect to national average. Benchmarking the
degree of relative concentration of an activity in the analysis of area localization,
has received considerable attention in the geographic and economic literature.

Overall specialization (e.g. of US or Europe) is then a weighted or unweighted
average over the regions and overall concentration over industries. However, the
specialization of countries in a particular activity and the concentration of industries
in regions or countries it not identical. However, empirical studies often focus either
on specialization or concentration, sometimes assuming that these would develop in
parallel (Aiginger and Rossi-Hansberg 2006 discusses the basic setup of the model
in Rossi-Hansberg 2005, and the implication that specialization and concentration
in fact go in opposite directions when transport costs change; in particular, lower
transport costs imply higher specialization and lower concentration). The intensity
of regional specialization in specific activities, and conversely, the level of industrial
concentration in specific locations, has been used as a complementary evidence for
the existence and significance of externalities. Besides, economists have focused
the debate mostly on disentangling the sources of specialization and concentration
processes according to three vectors: natural advantages, internal and external scale
economies.

Table 1.1 shows four possible combinations of these two concepts. In this exam-
ple, the total geographical area could represent a country, polygonal subdivisions to
regions, points to firms, and the orange and blue colors to two different economic
activities.

Should we focus on the triangular central region and orange activity, it is easy to
note that such location or region is specialized when its share of firms in the activity
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Table 1.1: Specialization vs. concentration

Specialization
Concentration

Yes No

Yes

No

exceeds its national share (Fig. a and b in Table 1.1). By opposition, the triangular
central region in Fig. c isn’t specialized because it shows the same proportion of
orange and blue points than the rest of the regions.

1.2.2 Agglomeration vs. just concentration

Although a large number of indices are used by economists and geographers to in-
quire about the patterns of concentration, the key problem is that they do not take
into account anything that is truly spatial, i.e. they only consider the global dis-
tribution of counted data, without considering the relative position of geographical
units in space. In fact any statistical measure of variation or concentration satisfies
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the condition of anonymity with respect to the individuals, that is the property of
being insensitive to any spatial permutation of individual orderings. However, this
is absolutely not a desirable property for the spatial inequality measure.

On the other hand, agglomeration considers the space interdependencies between
the geographical units in question, that have been used as complementary evidence
of the existence and significance of externalities. Agglomeration is used to refer
to the degree of spatial correlation among observations which may be distributed
in a two-dimensional space in order to form some specific distance-based pattern,
i.e. as a synonym of positive spatial auto-correlation. The spatial correlation at
a given geographic scale translates, to a certain extent, into concentration at a
more aggregated level. A-spatial concentration measures are constant under spatial
permutations, and therefore they represent only one aspect of spatial concentration.

Concentration can be measured with the standard locational Gini coefficient
(Krugman 1991b) or the more sophisticated γEG (Ellison and Glaeser 1997) and
γMS and γUW (proposed by Maurel and Sédillot 1999) indexes. By contrast, ag-
glomeration can be measured with the spatial auto-correlation coefficient I (Moran
1950) and the GO statistic based on the local indicator of spatial association (Getis
and Ord 1992), which consider the space interdependencies between the geograph-
ical units in question (for further details about spatial processes and measures of
association, see Cliff and Ord 1981, and Anselin 1995).

Following Arbia (2001b) let us consider a hypothetical example in which we
have 12 firms located in a study area exhaustively partitioned into 16 squared cells
(subregions) arranged in a 4-by-4 regular lattice grid.

Fig. 1.1 shows three very different location situations. Agglomeration (or polar-
ization in terms of Arbia) is higher in case a than in case c. However, concentration
remains unchanged in the three cases because it is essentially an a-spatial mea-
sure that remains constant under permutation, and not distinguished between the
inequality of the a-spatial distribution, while it provides a permutation invariant
quantification of how much variable is a phenomenon with respect to the same av-
erage (note that the three cases in Fig. 1.1 show 4 cells with 3 firms each one and
12 empty cells).1

The case of positive spatial auto-correlation is thus associated to a high degree

1Using a simple rook’s definition of neighbours, in case a of Fig. 1.1 (high polarization), Moran’s
I assumes the I = 0.227 value; in the intermediate case b assumes I = 0.222; and in the case of
high dispersion c assumes a negative value I = −0.183. Similarly the GO statistic assumes values
of 0.67, 0.5 and 0 respectively in the three cases. However, the Gini coefficient remains unchanged
in the three cases (0.75).
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Figure 1.1: Agglomeration vs. concentration

of polarization, whereas the case of low spatial correlation indices is associated to
low degrees of polarization when data are spatially dispersed in the area studied.
However, a spatial correlation coefficient is not a good measure of spatial concentra-
tion since for instance, I Moran spatial auto-correlation coefficient and GO statistic
measure the level of polarization and do not take into account the variability of
the phenomenon. To deal with this problem, Arbia (2001b) propose a summary
index that measures simultaneously a-spatial concentration and polarization, that
combines the three measures: Gini coefficient, I Moran coefficient and GO statistic.

In case c of Fig. 1.1, firms are evenly distributed among locations, as if there
was a completely random process that associates the 4 given clusters of the 3 plants
to the 16 available locations. In this situation, although there is some concentration,
spatial agglomeration is clearly not the source of such variability. By contrast, in
case a, firms are distributed in such a way that we can clearly identify an agglom-
eration of firms in the upper-left corner of our grid, that leaves an empty space of
abandoned locations. Location is here highly informative because high (low) values
are surrounded by high (low) values following a pattern that is known as positive
spatial correlation (Lafourcade and Mion 2003).

Finally, in a more complex space, with a distance diffusion process agglomeration
is identified because it implies a distance decay pattern witch is not obviously related
to concentration. Hence, there might be agglomeration without concentration, and
concentration without agglomeration.

1.2.3 Specialized agglomeration vs. just agglomeration

Just agglomeration (spatial concentration) doesn’t mean specialized agglomeration
(spatial specialization). Spatial specialization of regions in a particular activity and



6 1. Presentation of the study

Figure 1.2: Specialized Agglomeration vs. just agglomeration

spatial concentration of industries in regions it not an identical phenomena, but
empirical studies often focus either on the spatial analysis of specialization or of
concentration, sometimes assuming that these would develop in the same way. This
two different spatial configurations are closely related to a very different combination
of centripetal and centrifugal forces and internal-external increasing returns of scale
(for more details see Section 1.3).

Fig. 1.2 shows a spatial clusters or agglomeration, as a synonym for positive
spatial auto-correlation formed for two contiguous polygons or regions (to refer to
distance-based location patterns): central triangular and upper right corner. Case
a in Fig. 1.2 shows spatial specialization, while case b shows spatial concentration.

Cases a and b in Fig. 1.2 have a close spatial cluster relationship with the figures
a and c shown in Table 1.1. In a certain way, spatial specialization should occur
when the location share of firms in the activity exceeds its national share (the case a
of Fig. 1.2). By opposition, the spatial cluster of case b in Fig. 1.2 is not specialized
because it has the same proportion of orange and blue points than the remaining
regions.

1.2.4 The MAUP problem

Specialization, concentration and agglomeration may appear in different geograph-
ical scales and may involve different disaggregation levels in an industry, and con-
sequently, a certain space scale is not necessarily equivalent to another. The reason
for this difference probably lies in the nature and balance of the centrifugal and
centripetal force systems acting in different geographical scales, which explains the
different levels of analysis raised (see Krugman 1991b and Anas, Arnott and Small
1998). Hence, identifying the space limits of specialization, concentration or ag-
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glomeration becomes essential. In ecological studies, this problem is known as the
“Ecological Fallacy” and lies in thinking that the relationships observed between the
groups will necessarily apply to individuals. In other words, the inferences about
the nature of individuals are based solely upon aggregate statistics collected for the
group to which those individuals belong (Robinson 1950). In spacial statistics, this
problem is known as the “Modifiable Areal Unit Problem” (MAUP), which refers
to the arbitrariness of the geographical partition used (for more details, see Yule
and Kendall 1950; Openshaw 1984; Arbia 1989; Amrhein 1995 and Unwin 1996).
The arbitrariness of geographical boundaries gives rise to two different manifesta-
tions, namely aggregation and scale, and any statistical measure based on spatial
aggregates is sensitive to the scale and aggregation problems.

Following Arbia (2001a) the case a in Fig. 1.3 poses an obvious situation involv-
ing a strong geographic concentration at the core of the study area (spatial point
pattern-continuous space). Suppose we would want to measure the concentration
by regional aggregates, and that we would superimpose -or use a previously defined-
grid of quadrates (lattice data-discrete space) as in case b of Fig. 1.3. Each point
represents a firm. In this situation, any concentration measure would identify the
absence of concentration. However, if we use the same grid, but shift the origin
in the northwest direction as in case c of Fig. 1.3, we would reach the opposite
conclusion, since any concentration index would identify a maximum level of con-
centration. There lies the description of the aggregation problem. Conversely, by
examining the case en which a finer grid of quadrates (one-fourth the size of the
previous one) is superimposed onto the same set of data, a concentration index
will take an intermediate value between case b and case c of Fig. 1.3. This is the
description of the scale problem.

One can easily imagine that the situation is even worse in real cases, where the
spatial units are irregular in size and shape, thus yielding an even higher degree of
arbitrariness.

This example shows that, by observing any geographical distribution through
regional aggregates, we would be in fact observing two separate phenomena which
are matched in an unpredictable way with respect to: i) the actual distribution of
objects in the space, and ii) the partition considered.

Likewise, and to illustrate the effects of the partition considered for specializa-
tion, Fig. 1.4 shows that with the same distribution of firms in the space, it is
possible to find specialization and the absence of specialization, respectively.

Arbia (1989) shows that the distortions due to scale and aggregation are min-
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Figure 1.3: A continuous space distribution of firms (a) and three discretised versions
of it. Figures (b) and (c) illustrate the aggregation problem. Figures (b) and (d)
illustrate the scale problem

Figure 1.4: Effects of the spatial partition considered on specialization
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imized (but never eliminated) under some very restrictive conditions involving the
identity of the sub-areas considered (in terms of size, shape and neighboring struc-
ture), and the absence of spatial interdependence. Such conditions are never realized
in economic geography -where data are observed within administrative regions that
are unequal in size, shape and neighborhood- and where, typically, neighboring re-
gions usually resemble more between each other than regions that are far apart.
In particular, Arbia and Espa (1996) demonstrate analytically that by aggregating
spatial units we can observe a general decrease of variance and an increase in the
correlation between pairs of variables.

Therefore, it is important to note that the arbitrariness of partitions plays a key
role in capturing the effects mentioned previously, and becomes potentially more
dangerous the more unequal become the elements of it in terms of area. In this
sense, to minimize MAUP, the selection of the partition would have to reflect the
actual characteristics of the economy. For example, the Italian statistical institute
developed a partition called Local Labor Systems (LLS), which covers urban and
rural areas, while minimizing the commuting patterns and maximizing the overlap
between the working and residential areas. The LLS gray thug is not dissimilar to the
U.S. partition into zip-code units. In general, available data refer to a discrete space
(lattice data), geographically aggregated at different levels: states, regions, cities,
districts, etc. Therefore, above mentioned effects coupled with the effect of crowding
can appear in different geographical scales and involve several levels of sectorial
breakdown, that is, a certain spatial scale is not necessarily similar to another.
The identification of spatial boundaries to measure specialization, concentration
or agglomeration becomes critical, since most likely the model will be adapted to
different scales of distance and be influenced by different types of externalities or
economies of agglomeration, which are based on the mechanisms of interaction with
particular requirements of spatial proximity.

The data available refer to a discrete space, and our limitations push us to
discretise the phenomena in some way (and subsequently distort it by reducing
the quantity of information). The availability of statistical data at an individual
level has increased considerably in recent years as well as the GIS technologies to
deal with them, and the methods for analyzing spatial data in a continuous space
now form a well-consolidated methodological body (see Ripley 1981; Cressie 1993;
Arbia and Espa 1996; Lawson and Denison 2002; Diggle 2003; Møller 2003; and
Møller and Waagepetersen 2004). Therefore, currently there seem to be no technical
obstacles to a micro approach to regional problems, i.e. to move from a discrete to
a continuum space. Also, the boundaries cannot be completely ignored, given that
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economic conditions can change abruptly due to such changes in the tax system,
in transportation costs, or to the impact of public policies at regional and sectoral
levels.

By starting from these considerations, in the first stage of an exploratory analysis
one can simply ignore such boundaries, i.e. one think that the shift of emphasis
from a meso-to a micro-level is likely to bear interesting results. In fact, Krugman
(1991a) has observed that if we wanted to understand the differences in the rate
of national growth is necessary to begin by examining the differences in regional
growth. Therefore, a good way to understand regional economics is to begin by
examining the micro behaviour of economic agents in the space economy, and then
to explore the micro foundations of regional economics (see Barff 1987; Duranton
and Puga 2004; Duranton and Overman 2005 and 2006; and Arbia, Espa and Quah
2007). After a model has been identified at the micro spatial level, we could certainly
superimpose an administrative grid and examine the implied meso-scenario.

1.3 An introduction of the Economic Geography

During the last 20 years, we have witnessed reinvigorated discussions about the role
of the geographical space in the economic growth. In order to explain the differ-
ences in the observed evolution of the nations and regions wealth, the “geographical
hypothesis” was raised to the explanatory category, that runs counter to the “in-
stitutional hypothesis” and to the “cultural hypothesis”.2 The most substantial
arguments in favor of the geographical hypothesis are based on the reconsideration
of the role played by the increasing scale returns of firms, transportation costs, and
the mobility of production factors, especially work. Other type of literature, inspired
by A. Marshall, has also revalued the role of increasing firm-external scale returns (a
kind of “industrial environment” that prevails in certain territories, promoting the
rapid dissemination of technical knowledge and human behavior, in favor of produc-
tion).Using these new concepts, it has been demonstrated that “geography counts”
(Krugman 1991a).

In addition, the new economic growth models, called “endogenous growth” mod-
els (Romer 1986 and 1990, Lucas 1988), by introducing the human capital concept
and the concept involving the externalities created by the dissemination of technical

2For a discussion of these three optional hypotheses and the different approaches, the most
comprehensive collection of writings can be found in Aghion, P., and Durlauf, S. (eds) (2005).
Handbook of Economic Growth.
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knowledge, have concluded that the economic growth process is subject to increas-
ing scale returns, and that it consequently tends to accelerate in the long term in
countries and regions with higher availability of human capital that deliberately
promote their production. Due to the introduction of the concept related to the
increasing scale returns both by firms and societies, seen from the perspective of
the new growth models and the new economic geography models, we may conclude
that the convergence between the profit level of rich and poor countries is no longer
the natural result of the growth process, as has been the hypotheses posed by neo-
classical growth models such as Solow’s (1956). Additionally, international trade is
no longer a mechanism to balance the economic development of the different world
countries and regions. In fact, some countries and regions are growing more rapid
than others. Space counts. Localization counts. The operation of the mechanisms
of increasing scale returns by firms and societies is not evenly distributed across all
territories worldwide, or across the different regions in a country.

Today we know that economic growth is shown through the spatial concentration
and de-concentration of the economic activity. The rapid growth of East Asia in but
short decades, or specifically of Japan, a country that with only 3.5 percent of the
total surface of the region and 8 percent of its population, accounts for 72 percent of
GDP and 67 percent of manufacturing GDP in its macro-region. In addition, there
are strong regional disparities implied by the existence of space agglomerations of
different scale firms in the same country, such as Seoul in Korea, Paris in France,
Sao Paulo in Brazil or Buenos Aires in Argentina, that concentrate more than 30
percent of the respective country’s GDP.

The wealth or poverty of nations seems to be increasingly related to development,
and to the presence of competitive clusters of specific industries and of extended and
diversified metropolitan areas. Hence, the reports released by multilateral credit
entities such as the World Bank (2000), highlight the importance of agglomeration
economies and of the cities, arguing that the world’s liberalization and the effect of
regional trade treaties reduce the power of national governments, while increasing
the power of regions and cities.

The spatial concentration of the industrial activities phenomena can be very
diverse.

Large metropolis such as New, Tokyo or Buenos Aires are highly diversified in
many industries that are not directly related (Fujita and Tabuchi 1997), while on
the contrary, many cities can be specialized in a small number of activities by sector
(Henderson 1997a). Many well-known agglomerations by territory and sector are
used as examples by this type of literature. For example, the high-tech sectors, such
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as Silicon Valley (California), Route 128 (Boston), Cambridge (UK) and Sophia An-
tipolis (France); the automotive sector, Baden Württemberg (Germany) and Detroit
(USA); the tile and premium clothing sectors in the regions of Third Italy (Italy);
and the financial services sector, Wall Street (New York) and London City (UK).

Firms and activities of different sizes may be organized differently both at an
urban and at a regional level. Agglomeration can take the form of large business
districts in the interior of the same city, such as Soho in London, Ginza in Tokyo,
etc. At a smaller geographical scale, we may find restaurants, movie theaters, per-
formance halls or shops grouped in the same neighborhood, street or shopping mall,
that sell very similar or strictly complementary products.

Urbanization economies (Hoover 1937) refers to the advantages of the size and
density of local economies. It includes the variety of specialized services implied in
having different industries located close to each other. Consumers may benefit from
similar advantages. Storper (1995) recognized the concept of “untraded dependen-
cies”, arising, not only from input-output linkages, but also from the conventions,
rules, practices and institutions involved. Following Jacobs (1969), more diverse en-
vironments, such as those existing in cities, provide a better breeding-ground for new
ideas as a result of the cross-fertilization of ideas from different areas. The diversity
of ideas is used differently in the new spatial agglomeration theory (Fujita et al. 2001
and Fujita and Thisse 2002). Together, the stage of the product life-cycle and the
size of the urban settlement play a crucial role for the location of production, and as
suggested by Jacobs, for the development of ideas. While diversity/specialization ar-
guments emphasize agglomeration in general, Jacobs’s discussion always emphasizes
the development of ideas, resulting from diversity (Ejermo 2005).

Firm groupings may appear in different geographical scales and involve differ-
ent disaggregation levels by sector, and consequently, a certain space scale is not
necessarily equivalent to another (see Section 1.2.4). The reason for such difference
probably lies in the nature and balance of the centrifugal and centripetal force sys-
tems acting in the different geographical scales, and therefore, the different levels of
analysis subsequently raised. Anas, Arnott and Small (1998) argue that the model
required to account for the different distance scales is likely to be affected by different
types of agglomeration economies, that are based on the interaction of mechanisms
with specific space closeness requirements. Hence, identifying the space limits of
agglomerations becomes essential. O’Donoghue and Gleave (2004) and Duranton
and Overman (2005) put forth to initially provide a measure for the agglomeration
concept, and to define clearly its boundaries before making the empirical analysis of
the causes that define it, while Rosenthal and Strange (2001) and Fujita and Thisse
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(2002) state that the type of agglomeration can be specified on the basis of the issue
under analysis.

Thus, based on the new significance given to the “geographical hypothesis”,
exploring the statistical indicator that may contribute to measure more precisely
the distribution of economic phenomena in the geographical space, has regained a
more vigorous lead in the last years (Ellison and Gleaser 1997, Maurel and Sédillot
1999, Mori and Smith 2005).

However, in view that in general, available data about the territorial economic
activity are geographically aggregated at different levels, such as states, regions,
cities, districts, etc., in other words, on a discreet space, and not always with the
same degree of uniformity and continuity across the various countries and regions,
the difficulties to rigorously identify the functional boundaries are not minor.

This study is based on the analysis of this perspective, and is focused on propos-
ing a new methodology to measure some of these phenomena including the agglom-
eration and the specialization of the economic activity.

1.3.1 How to explain the location trends of the economic
activity?

The body of theories known as “The New Economic Geography” (NEG) tries to
account for the large number of economic agglomeration typologies at different geo-
graphical levels, i.e. the economic mechanisms that cause the spatial concentration
of certain economic activities in certain territories.

The differences between the NEG’s modern approach and the traditional ap-
proach based on the theories of localization and economic geography, are: a) the
general balance model approach; b) increasing returns or technology indivisibleness
at the firm level; c) the imperfect competitiveness resulting from prior item; d)
transportation costs; and e) the considerations about the factors’ mobility. Based
on the new models, the goal would be to explain how the geographic structure of
an economy is determined by the conflict between the “centripetal” forces that con-
centrate the activity in terms of territory, and the “centrifugal” forces that disperse
it.

Fujita (1988), Krugman (1991a, b; 1995) and Venables (1996) can be considered
among the key forerunners of the NEG approach. They acknowledge that their ana-
lytic approaches originate in the models based on general balances with monopolistic
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Table 1.2: Centripetal and centrifugal forces

Centripetal forces Centrifugal forces
-linkages -immobility factors
-thick market -land rent/commuting
-knowledge spillover and -congestion and other pure diseconomies
other pure economic externalities

competitiveness.3 Krugman (1995) demonstrates that the constant returns-perfect
competition paradigm proves unable to account for the rising and growth of large
territorial economic concentrations. The presence of scale economies is essential to
explain the geographical distribution of economic activities, and provide countries
the incentive for specialization and trading, even if there are no differences in terms
of technology or accounting factors. In particular, the trade -off between increas-
ing returns from productive activities and transportation costs is core to understand
the geographical distribution of economic activities. The first formal model acknowl-
edged by this literature is the Krugman (1991a) regional model, that explains the
rising of a core-periphery structure within a country, or within any other boundaries
where there is free work mobility. Krugman demonstrates that in the presence of
increasing returns, work mobility and transportation costs, the centripetal forces
and forward-backward links create a trend towards agglomeration (territorial con-
centration) of firms and workers.

The group of external economies mentioned above as those accounting for ag-
glomeration correspond only partially to the “Marshallian economies”. The anal-
ysis of external economies dates back to more than a century, when the British
economist Alfred Marshall (1890) was shocked to observe the existence of “indus-
trial districts” that had spontaneously concentrated firms and workers from the same
sector in a certain territory: cutlery manufacturing in Sheffield, socks manufactur-
ing in Northampton, etc. The existence of these industrial districts could not be
accounted for by the mere proximity of the sources of raw material and of specific
natural resources. In more up-to-date terms, Marshall puts forth three reasons (see
the picture above) why a group of firms can be productively more efficient than
an individual firm working in isolation: the forward-backward linkages associated
to large local markets that translate in the group’s ability to support specialized

3The first operative non-competitive general balance model was developed by Dixit and Stiglitz
(1977).
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providers; the existence of a specialized labor market; and the profits resulting from
speed of technology dissemination. Marshallian economies consider the presence and
the nature of firm-external economies though territory-internal economies, and the
advantages of work specialization/division that take place in the firms of a system.
To build an efficient production system, facing the transaction costs that are the
base of the vertical integration in large firms, such de-centralized systems basically
depend on local characteristics. These characteristics create an “industrial atmo-
sphere” defined in socio-economic terms, i.e. a group of contiguous localized firms
related systemically, based on the characteristics of the local society.

Consequently, the externalities related to human capital, the information flow,
the technology innovation and dissemination processes, and finally, the relationships
between customers and providers in the endogenous growth models (Romer 1986,
1990 and Lucas 1988), provide the adequate theoretical and analytical framework
to develop applied studies about the presence and nature of firm-external economies
though territory-internal economies.

The NEG considers only the first of these marshallian externalities -the forward-
backward linkages among the firms-, which may be argumentatively less significant
in practice, but which, according to Fujita and Krugman themselves, is easier to
formalize in models than the rest of the variables identified by Marshall.

1.3.2 The three NEG’s basic models

Fujita, Krugman and Venables (2001) present three different types of models to ac-
count for firm localization, all of them based on the theory of monopolistic compet-
itiveness: regional models, urban system models, and international models. These
models are based on the same concept architecture, since as they relate to urban
economy, location theory or international trade, it is only about where and why the
economic activity takes place. In addition, as it has been previously noted, these
authors put special emphasis on the centripetal force triggered by the links between
the production and transaction of goods and services.

Due to the highly non-linear nature of the geographic phenomenon, building
valid geographical balance models becomes very difficult. Currently, other general
balance models that are wider than the monopolistic competitiveness are under de-
velopment. These models include, for example, imperfect competitive markets in
space, such as those approached by Ottaviano, Tabuchi and Thisse (2002), who con-
sider the core-periphery “linear models”. Additionally, other empirical works such
as those by Dumais, Ellison and Glaeser (1997) that analyze the significance of a
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specific centripetal force are emerging, and also other works based on Krugman’s
labor pooling (1991b), that explain the specific impact on the industry and the
firm through the mobility of workers’ cost among the industries, and the endoge-
nous impacts resulting from the risks investments made by the firms to increase
productivity.4

Core-periphery regional model

This model developed by Krugman (1991a) is focused on illustrating the mechanisms
through which a space economic structure may emerge or change based on the
interaction among the increasing scale returns of firms, transportation costs, and
factor mobility.

The model’s assumptions are: there are two regions -A and B-, two production
industries -agriculture and manufacturing-; and two work types -farmers and work-
ers. The manufacturing industry produces a continuum of a variety of products
that differentiate horizontally, while each product variety is produced by a different
company subject to scale economies and using the work as the only input. The agri-
cultural sector produces a homogeneous good according to the continuous return
method and uses farmers as the only input. Workers can move freely across regions
A and B, while farmers are non-movable and are equally distributed across both
regions. Inter-regional manufacturing trade requires a positive transportation cost
(in the form of an inverted U), while the agriculture good is transported at zero cost
between both regions.

The farmer’s immobility acts as a centrifugal force, since farmers consume both
types of goods. If a larger number of companies localize in region A, the variety of
horizontally differentiated products to be manufactured there will be higher. There-
fore, the workers in that region who are also consumers, will be able to access more
easily a wider range of products than those in region B. If the rest maintains ceteris
paribus, the workers in region A will earn better salaries, attracting more workers
to emigrate to the region.5 In addition, due to the scale economies, the increase in
the number of workers, and consequently of consumers, creates a broader market
than that in region B. Therefore, there is an incentive to concentrate production in
region A, because transportation costs and the market size make it more productive
to produce in region A and transport products from there to region B. In a nutshell,
the centripetal force is created through the la Myrdal (1957) circular causality of

4See Stahl and Walz (2001) and Gerlach, Rønde and Stahl (2001).
5For more, see Razin and Sadka (1997).
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forward linkages -the workers’ incentive to be close to the producers of consumer
goods-, and backward linkages -the producers’ incentive to concentrate in larger
markets. When these linkages are strong enough to exceed the centrifugal force
built out of the farmers’ immobility and sufficiently low transportation costs, the
economy is likely to follow a core-periphery pattern whereby the full manufacturing
production is concentrated in a single region. The core-periphery pattern may oc-
cur when: a) transportation costs are sufficiently low; b) the diversity of goods is
sufficiently differentiated; c) manufacturing expenses are sufficiently high.

Eventually, the agglomeration may not emerge. However, a small change in
the critical parameters may cause an economy with two symmetrical and equal
regions, to be transformed into another economy, in which small initial advantages
are accumulated and end up by transforming one of the two regions in the industrial
core, and the other in a de-industrialized periphery. The model’s dynamic is subject
to “catastrophic bifurcations”, i.e. sudden changes in the trend.

Urban systems models

These models are supported by the core-periphery model that has been described
above, and are based on the following assumptions: instead of two regions -A and B-,
the localization space is now described according to the line uniformly dividing the
geographical areas, while workers are identical and free to choose their localization
and occupation. The agricultural good is now produced using both factors, i.e. the
workers and the land. Finally, there are positive transportation costs for both goods
-agricultural and manufacturing. Consequently, the only centrifugal force in this
model is the land, for it is the only immobile factor.

Under this model’s assumptions (Fujita and Krugman 1995, Fujita and Mori
1997, Fujita, Krugman and Venables 2001), it is possible to find a well-defined bal-
ance model according to which the core city derives the effects of forward-backward
linkages instead of being a mere assumption of the model, which translate into a
gradual increase of the economy population as a whole.

This balance is based on Von Thünen’s (1826) “isolated states” approach: a city,
defined as a manufacturing concentration, surrounded by an agricultural belt. At a
certain point in time, a new city may emerge, because the ending boundaries of the
agricultural belt are already too far from the core to justify the relocation of some
firms to better supply the market, therefore causing the emergence of a new city.
Future population growths promote the creation of more cities. In this context,
it is critical to acknowledge that for the manufacturing industry, the attraction
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of a localization lies in the size of the “underlying market potential” (Krugman
1993). As a result, the economy change process may be considered as a certain co-
evolution: the market’s potentiality determines where the economic activity will be
localized, while the activity location change redefines the market’s potential map.
Despite the potential existence of many possible balances, the models predict some
predictable regularities in the space structure. The relative force of the centripetal
and centrifugal forces will determine that once the number of cities is large enough,
their size and the distance separating them will tend to stabilize at a constant level.

It is generally acknowledged that the role played by the natural geography and
the vast and varied number of historical circumstances and casual arbitrary acts
that determine the current economic geography, was very significant. The new and
more sophisticated NEG models, known as urban systems, capable of accounting
for the emergence of a system of cities, are designed to consider all of these, i.e. the
relationships between natural geography, historical circumstances and the force of
economic geography.

According to Fujita and Krugman (2004):

The aspects that are favorable to a certain location, such as the existence of an
adequate port, usually play a catalytic role: it works so that when a new core emerges,
it will locate there, instead of in a new and close location. But when a new core is
already established, a new loop process is started that can reach a point in growth at
which the initial localization benefits are irrelevant compared to the advantages of the
self-sufficient process triggered by the agglomeration. Too uncommonly, it could be said
that the natural geography is so important precisely due to the self-organizational nature
of the space economy.

International models: can the means used by the NEG explain the con-
centration of activities by territory and sector?

The two previous NEG models provide an explanation for the emergence of spa-
tial economic concentrations, and for the emergence of cities. However, the forces
promoting concentration are not always capable of explaining the appearance of
sector-specific productive activities. There is a large number of cities specialized in
a small number of activities or sectors, such as Detroit (cars) and Hollywood (film)
in the US or Sassuolo (tile) or Carpi (textile) in Italy.

The previous NEG models cannot properly account for this phenomenon of
specialization by territory and sector, without the introduction of some changes
to the prior models. Since in previous models, only two goods and two regions
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were considered, the spatial concentration processes imply that all the firms and
consequently all the manufactured goods concentrate in a single region. All the firms
are concentrated in the manufacturing region, each producing a different good, and
therefore no trend towards specialization by sector may be observed.

To explain the emergence of the spatial concentration of specific activities by
sector, Fujita, Krugman and Venables (2001) introduce a model that assumes two
countries, one of them including two regions. In the country with two regions, work-
ing assumptions are those of the core-periphery model. In other words, these new
models now have two sectors and three regions. When the trade costs between the
countries plunge, the localization patterns also change, allowing the deployment of
two different processes that do not necessarily go in the same direction: concentra-
tion and specialization. The space economic theory that best embraces these differ-
ences is the Rossi-Hansberg (2005) model, whereby lower transport cost increase the
specialization of regions or countries and decrease the (regional) concentration of in-
dustries. The driving force for the first effect is that lower transport costs allow firms
to take greater benefits from sector-specific production externalities. The driving
force for the second effect is that lower transport costs shift production to regions
far away from main markets, since exporting to distant locations is less costly.

For high transport costs, the incentives to specialize are low. A firm moving to an
area that does not produce the manufactured good would profit from increases in the
demand for its product from local consumers, but will lose from paying higher wages
(agents have to import all manufactured goods). The gain from the increase in sales
(home market effect) outweighs the loss from higher wages (wage effect), because
agents consume agricultural goods as well. Hence, regions do not specialize. As
transport costs decrease, both the home market and wage effect decrease. However,
the home market effect decreases faster than the wage effect. The reason is that
agents substitute local manufactured goods for foreign manufactured goods, so the
value of local sales decreases as transport costs decrease. Local wages decrease at a
lower rate, since part of the agents consumption is in agricultural goods. This implies
that as transport costs decrease, the incentives to move to the agricultural region
decrease. Eventually, it becomes unprofitable for firms to deviate, and specialization
becomes in equilibrium. If transport costs are even lower, the loss in higher wages
becomes less and less important, as does the gain from higher sales.

However, for low-enough transport costs, the home market effect will decrease
slower than the wage effect. The reason is that if regions do not specialize, the
location to which the firm is deviating will become almost as large as the original
region, i.e. local markets will increase and so the benefits from relocating there will
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increase. Eventually, when transport costs are zero, the wage and market effects
will cancel out, and there will be no incentives to deviate. This means that there
will be no specialization. Aiginger and Rossi-Hansberg (2006) use two data sets
for the manufacturing activity, one for the US states and ten industries, the other
for EU member countries and 23 industries. In both data sets specialization and
concentration do not develop in parallel, and the kind of divergence is roughly in
line with the model prediction. Specialization of industries is indeed increasing over
the past years in Europe and the US, and regional concentration of industries is
decreasing in both areas (in Europe to a less degree, starting from a much lower
level).

When the trade costs between the countries plunge, agents can consume less
local goods and consequently, there is a decrease in the benefits of territorial con-
centration. At the same time, the decrease in trade costs between the countries
increases the incentives to create clusters by sectors in particular regions, since now
sales depend less on the local market, and countries can be supplied even from
more distant locations, thus increasing the benefits of specialization by territory
and sector.

In these NEG’s models, the selection of the specific production by sector to be
located in the region, from where the other internal region and the foreign country
will be served, depends on the existence of some firm-external marshallian economies,
that the authors of the model restrict to “cash” ones, or in other words, those
derived from the intensity of the forward-backward linkages trade connections of
firms located in the same territory.

The key is to abandon the emphasis put on the assumption that firms produce
a complete range of horizontally differentiated goods, to emphasize the notion that
now firms choose to produce only the horizontally differentiated goods that integrate
vertically in the productive structure (Venables, 1996). One or more industry sectors
in the upper layer of the production structure produce inputs for one or more sectors
located in the lower layer. All firms located in the upper and lower layers are subject
to increasing scale returns and transportation costs. Thus, the vertical relationships
between the companies become apparent and encourage them to locate in the same
territory. The producer of intermediate goods have incentives to locate in areas
with higher market possibilities, i.e. where the industry demanding its products is
located. Likewise, the producers of final goods have incentives to locate where their
providers are located.

The dynamics of the third model highlights the significant role played by exter-
nalities, i.e. the firm-external economies but internal to their localization territories,
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in the creation and maintenance of concentrations by territory and sector in the real
world.

Positive externalities derived from forward-backward linkages associated to large
local markets, that translate in the group’s abilities to support specialized providers,
have been covered a long time ago by Hirschman (1958) and Perroux (1955). How-
ever, the means provided by the NEG today allow us to analyze these externalities
as derived from the model and not as exogenous data.

Based on this model, some authors (Puga and Venables, 1996) have built an
input-output matrix model in which a sector in the upper layer of the production
structure produces inputs for several sector of the concentration by territory and
sector, and the specialization sequences followed by the regions that become indus-
trialized as markets expand.

By introducing the firm-external economies in this NEG’s model, i.e. the mecha-
nism of increasing returns for the production activity as a whole (and not only at the
level of individual firms or establishments), it may be claimed that some countries
may specialize in the production of certain consumer goods, giving an advantage
to some countries to the detriment of others (Krugman 1987). Hence, some expla-
nation may be given to the Italian advantage in tile production or to the British
dominance of the financial service world. However, not only this third model with
its derived external economies are capable of accounting for the specific localizations
in the countries (Porter, 1990).

1.3.3 From the spatial concentration to the spatial-sectorial
specialization: the introduction of Marshallian Exter-
nalities

Whether increasing returns are internal or external to firms, the logical consequence
of location-specific externalities is the geographic concentration of the economic
activity in a small number of locations. To counterbalance, the degree of space
agglomerations depends on the strength of scale economies, the scope of transport
costs, and the importance of congestion costs (derived from the presence of immobile
factors or non-traded goods).

If average production costs decline as the scale of production, at the firm, indus-
try, or regional level, rises, to concentrate production in a particular location will
be beneficial.
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As we have seen, the NEG model implied a change of perspective from the
non-differentiated spatial economic concentration towards the specialized sectorial
territory concentration. The emphasis was on the role of external economies, but
only on the pecuniary economies derived from the large size of markets resulting
from the territorial concentration of a large number of vertically related firms.

However, the model predictions can be subsequently reinforced if not only pe-
cuniary economies are considered, but also non-pecuniary economies derived from
spillovers between workers and learning across firms. The source of these external-
ities is not made explicit, but in general it is possible to imagine that the dense
concentration of firms promotes learning and the exchange of knowledge, as in Mar-
shall.

Lucas (1988) proposes a dynamic version of these externalities, in which workers
learn from one another. If a worker becomes more productive through education or
training, all workers in a location will also become a bit more productive. In the
Lucas model, each region is a closed economy, so there is no space agglomeration per
se. In a bibliographical review on the works of some economists about geographic
concentration, Hanson (2000) informs that Black and Henderson (1999), building on
the work by Eaton and Eckstein (1997), present a dynamic model of city formations,
which combine the agglomeration economies in Henderson (1974) with the localized
human capital spillovers of Lucas. This body of theories suggest that if there are
spillovers in the accumulation of human capital, a worker will be more productive
as the workers with whom he or she shares a given location become more educated.

External economies have a complex nature that is difficult to reduce to a single
dimension. We can speak of economies with a local or international scope, with
a technological or pecuniary technology, that are static or dynamic in nature, and
finally, that they may have an inter- or intra-industrial scope. Hence, the empirical
work about space agglomerations has to face an identification problem. The exter-
nalities that contribute to space agglomeration, such as spillovers between workers,
learning across firm, or cost and demand linkages between local industries, are dif-
ficult to observe. We are left to infer their presence from the covariance of observed
variables, such a wages, employment and output (Dumais, Ellison and Glaeser 1997
and Hanson 1998).

Marshallian externalities

Among the externalities linked to a territory and, through it, to a certain re-
gional production structure, are static localization economies related to the access
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to certain production resources and low costs to access markets, and urbanization
economies, i.e. those linked to the demand of intermediate goods and services pro-
vided to firms. Simultaneously, dynamic intra-industrial economies -within the same
activity-, or inter-industrial -among different productive activities-, reflect the pres-
ence of external effects of a technology and/or pecuniary nature. All of these forces
affect the territories, and thus the effectiveness of resident establishments and the
firms’ ability to growth. It must be noted that when these external scale economies
are significant, a country that started to product a certain good before others, can
consolidate its international industrial presence, although other country may be in
a condition to produce the same goods at a lower cost. Seen from this perspective,
“history counts”.

In current terms, Fujita and Thisse (2002) summarize the relevant externalities
that contribute to cluster formation:

• Mass production (the internal economies that are identical to scale economies
at the firm’s level);

• The availability of specialized input services;

• The formation of a highly specialized labor force and the production of new
ideas, both based on the accumulation of human capital and face-to-face com-
munications; and

• The existence of a modern infrastructure.

As mentioned in section 1.3.1, the NEG considers only the first of these mar-
shallian externalities -the forward-backward linkages among the firms.

Scitovsky (1954) considered two categories of external economies: “technological
externalities” (spillover) and ”pecuniary externalities”. The technological external-
ities refer to the effects of non-market interactions produced through processes that
directly affect the utility of an individual or a firm’s production function, i.e. aimed
at capturing the critical role of non-market institutions, which significance and role
has always been strongly emphasized by geographers and space analysts (Saxenian
1994). On the contrary, pecuniary externalities stem from the interactions mea-
sured by the market, affecting firms and workers (or consumers) according to their
involvement in the interchange measured by price mechanisms.

The distinctive feature of external economies is that they only affect the agents
in the same geographical area, and their impact on other distant regions may be
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insignificant. The advantages of the production proximity are based on human
beings’ tendency to interact with other human beings, whereby distance can be
an impediment. This need for interaction is gravitational, and its intensity may
probably increase according to the number and type of agents in each territory, and
decrease with the distance between two territories. The need for interaction acts as
a centripetal force and the competition for the land as a centrifugal force (Fujita
and Thisse 2002).

Technology externalities are essential to account for geographical clusters of a
certain limited space dimension as highly-specialized scientific cities and districts.
Jaffe, Trajtember and Henderson (1993) argue that in the United States, the geo-
graphic concentration of some sectors affect the localization of patent use. Mention
to patents is more frequent in local environments, and usually come from the same
statistical metropolitan area or state, therefore suggesting that knowledge dissemi-
nation is concentrated in terms of space. Ausdretsch and Feldman (1996) observe
that external spillovers are probably more linked within a region where the new
knowledge was built. Face-to-face communication within agglomerations encour-
ages the continuous intercommunication of ideas, and therefore are a substantial
part of innovations. Most likely, these spillovers owe their existence to face-to-face
contacts. For example, Saxenian (1994) emphasizes the significance of this factor
that is capable of transforming Silicon Valley into an effective productive system, ar-
guing that informal talks are omnipresent and serve as a major source of up-to-date
information about competitors, customers, markets and technology. In an industry
marked by increasingly rapid technological changes and a strong competition, such
informal communications offer a higher value than conventional business fora.

The singularity of the market structure arising out of external economies produc-
ing an interdependence between an industry firms and workers, is compatible with
the presence of a large number of small and medium firms, as has been observed by
Beccattini and Brusco in Italy, and does not necessarily imply the presence of large
industrial corporations. The modelization of “industrial districts” marked by the
presence of the marshallian “industrial atmosphere” is compatible with the compet-
itive paradigm (Anas, Arnott and Small 1998). The works from Becattini (1979,
1990 and 2004), and Becattini and Musotti (2003), have made several important
contributions to our knowledge about industrial districts based on this Marshallian
concept applied to an Italian context. Becattini emphasizes the role of the cultural
and historical background of the districts, and extended Marshall’s analysis of the
purely economic effects of agglomeration to a broader perspective, to include the
social, cultural and institutional foundations of local industrial growth.
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Specialization

A homogeneous space with mechanisms of competition is not compatible with the
existence of economic agglomerations such as cities or specialized areas, which are
explained by economies of scale and importance of forces such as diversity of inter-
mediate goods and effects of matching process on the labor market that lead to the
division of labor and increasing returns (Fujita and Thisse 2002). The advantages of
specialization shown as increasing returns are likely to arise in the final goods sector
when the intermediate goods sector is described by monopolistic competition model,
while imperfect competition of the major labor markets, as in big cities, reduced the
matching cost average. Both models show how the urban population growth has
allowed the profits that are generated by specialization and matching.

Dynamic economies of intra-industry are characterized by the relative impor-
tance of externalities, both technological and pecuniary nature, linked to the geo-
graphical setting and the production structure of the regions. When externalities
are large enough in relation to business costs, the agglomeration of each type of
x firms within the same region is in balance. Because of these externalities, the
agglomeration of firms in the same industry generates endogenous spatial inhomo-
geneities that allow the existence of a balance when such inhomogeneities are strong
enough, and they generate new forces that are capable of overcoming the instability
generated by local competitive prices mechanisms.

The evidence shows that both types of externalities: localization economies,
defined as the profits generated by the proximity of firms that produce similar prod-
ucts; and the urbanization economies, defined by all the benefits associated with
the level of total activity prevailing in a particular area, are the source of high lev-
els of expertise and prosperous areas, and as demonstrated by Porter (1998), the
main reason for the success of the industrial cluster in the global economy is the
presence of strong localization economies. The ideas of the economies of location
also explains the growth and success of industrial districts, ie regions that are home
to many small companies that produce similar products which are undertaken by
the localized accumulation of skills associated with workers residing in these places
(Becattini 1990). Both in Porter’s and in Becattini’s approach, the advantages of
concentration at a local level lie in work division through the fragmentation of the
productive process among the firms (horizontal competition) and its territorial re-
structuring, i.e. the vertical cooperation (input-output linkage among firms over
subsequent stages).

Some industrial districts are developing high-tech activities, while others operate
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labor-intense activities (Third Italy: Sassuolo specializes in ceramic tiles, textiles
in Prato, Montegranaro in shoes, etc.). In each case, the combination of several
factors are essential for localized accumulation of various types of knowledge within
a region. In this sense, Prescot (1998), emphasizes that each region is characterized
by a “social capital” that affects the total productivity and this capital can vary in
each region. Recent works like the Fujita and Thisse (2002) emphasize the origin
of such external economies and explore the implications of marshallian externalities
in the spatial distribution of production activities, regarding them as a general
technological externalities without specifying their specificity. In addition, they
demonstrate that a certain externality can govern the expansion of wealth in a
region with such a head start at the expense of another.

From a microeconomic Chipman (1970) assumes that firms in the same sector or
industry will benefit from the high productivity if they are found together. Such ex-
ternalities interact with the centrifugal forces generated by the market competition
within the global economy and lead to the formation of various clusters. The local-
ization economies are the agglomeration forces and at the same time the geographic
proximity generates strong price competition by encouraging firms to be located
separately from others to enjoy local market power. Also, when price competition
is lower because of product differentiation, firms prefer to isolate themselves when
are prices high transport. Because supposedly the spatial distribution of demand
is not affected by the location and size of the clusters, reducing costs associated
with the agglomeration offset to a greater extent the decline in exports (by con-
trast, firms could enjoy higher profits by being local monopolists). Consequently,
transport costs tend to be low when firms are agglomerated. In other words, firms
should be able to serve virtually all markets (globalization) to maintain the ben-
efits associated with the formation of a cluster (localization). Silicon Valley is an
example: the agglomeration occurs because firms can take advantage of the high
levels of localization economies while they are able to continue selling a substantial
part of its output in distant markets. The high degree of product differentiation
allows firms did not enter a price competition by allowing the existence of any force
of agglomeration that dominates the dispersion force. These forces are crucial in
many different spatial configurations and probably stronger in modern economies.
When the attraction by the output of an industry grows, more firms will tend to
be located within the same cluster, whose relative size will grow at the expense of
other firms. As a result, economic growth, measured by the relative importance
of differentiated goods tends to encourage the geographic concentration of produc-
tion. Consequently, the formation of a cluster would seem to depend on the relative
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strength of three different forces: the size of the localization economies, the intensity
of price competition and the level of transportation costs, which give rise to such
structures market very different: competition within a small group and within a
large group of firms. An example might be the first of the German chemical cluster,
in which a small number of large companies are located together not only to reduce
production costs but also as a strategy to their rivals. In relation to the second,
might be some of the clusters in Italy, where companies have a negligible impact on
other location choice but this affects production costs because this factor depends on
where your competitors are located. In this sense, Fujita and Thisse (2002) conclude:

Small initial advantages may lead to the emergence of a strongly polarized space once
we explicitly account the existence of localized production externalities, natural ameni-
ties, or both. This effect is magnified when the mobility of factors or the transportability
of products are high, or both. Indeed, either of the two possibilities allows the localized
externalities to display their full impact.

In the real world, some territories traded goods instead of producing them. Ag-
glomeration and trade are not inconsistent because the economies of scale are ex-
ternal to firms but internal at the industry, therefore, some firms producing the
same goods by the advantages of being located together. On the other hand, add
a new employee in such areas leads to higher average cost per person commuting.
Accordingly, when external economies are present in an industry, specialization is
the better exploitation of scale effects.

The degree of increasing returns vary with the good produced, so territories spe-
cialized in the production of different products have different sizes. By varying the
economies of scale, the territories will have different levels of congestion and com-
muting cost. Henderson (1997) demonstrated empirically that small and medium
cities tend to specialization. Therefore, the trade-off between increasing returns and
commuting cost between territories is as follows:

- when increasing returns are strong in the production of an asset, the relative
amount of regions that produce it decreases when they increase their size;
- when increasing returns grow, increasing the relative number of specialized areas,
where these are small.

On the other hand, Duranton and Puga (2000) emphasize that some territories
specialize in the production of a few products or services while others are more
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diversified. Historically, territories are diversified when commercial costs between
them are truly low. One reason for diversification is the ability to exploit economies
of scale associated with the large variety of intermediate goods and public services
exist (Goldstein and Gronberg 1984). If the demand for final products of a territory-
sector is not perfectly elastic, is not profitable for the industry to grow to a certain
limit. Two different industries located in the same territory, which has a strong
intermediate sector and a large quantity of public services, every industry becomes
more productive. On the other hand, this co-localization requires more workers in
the same city, hence longer commuting. Therefore, both industries in final products
must pay higher wages. In this case, the balance between the gain in productivity
of the two industries is given by the existence of a large intermediate sector and the
commuting cost between the diversified territories (Adbel-Rahman 2000). A second
reason is that the territories diversified smoothing the random shocks affecting spe-
cific industries. In this case, a territory is seen as a portfolio of activities. When an
activity is negatively affected, workers have the option of moving to work in other
sectors. Expected wages are higher than in a specialized area (Krugman 1991b).
Duranton and Puga (2001) argue that when firms manage to be experts in what
they produce will be relocated to those areas more specialized.

1.3.4 Relationship between specialization, growth and pol-
icy

The main effect of Inter-regional and international integration is the increase of
economic efficiency in the space economy. However, based on the static models in
which the number of firms and goods determined by the economy parameters are
constant, Fujita and Thisse (2002) conclude that:

market expansion may well be accompanied by the development of some core regions
whose wealth is, in part, obtained at the expense of peripheral regions -the average wel-
fare in the region accommodating the modern sector rises, but it decreases in the other
region.

In order to know how increase and location affect each ones, we need to know first
whether regional discrepancies increase or decrease over time, as well as the rea-
sons for such potential convergence or divergence. Space and time are intrinsically
mixed in the economic development process, while agglomeration and growth are a



1.3. An introduction of the Economic Geography 29

complex phenomena in themselves. Some examples of an integrated analysis of such
concepts are the works by Fujita and Thisse (2002), that set forth two models based
on the mobility of qualified workers, and the intensity of the spillover effects among
regions. The works by Martin and Ottaviano (1999 and 2001) that studied the
reciprocal influences between growth and location should also be mentioned. In ad-
dition, other works such as Donato and Haedo’s (2002) and those by Donato, Haedo,
Reynolds and Rocha (2008), empirically demonstrate that during periods of strong
macro-economic crisis, firms closedown and the fall in manufacturing employment
is lower in specialized regions.

Small cores specialized in a certain activity enable access to intra-sectorial
economies, deriving significant implications for regional development policies. If
external intra-sectorial economies are too strong, environments specialized in a cer-
tain activity will obtain the highest benefits from the creation of external effects.
If on the contrary, intra-sectorial externalities are too weak, the diversified areas
will create the greatest crossed external effects. Generally speaking, intra-sectorial
economies are key for many industries, and determine the specific localization pat-
tern.

The connection between growth and geography gets stronger inasmuch as the
regional specialization in innovative activities is considered the result of the combina-
tion of abilities and skills developed in these regions. In this connection, Hirschman
(1958) argues that growth is localized because social and technological innovations
tend to be spatially clustered where dissemination between places is low. Feldman
and Florida (1994) observe that in the past century, innovations were geographically
clustered in areas where research and development-oriented firms and universities
were established. This approach suggests that the development process is similar to
that accounted for in the creation of regional agglomerations. Hence, agglomeration
may be considered the territorial counterpart of economic growth. Fujita and Thisse
(2002) conclude that the RD sector appears as a strong centripetal force at a multi-
regional level, amplifying the circular causation at the core of the core-periphery
model, i.e. agglomeration and development go hand in hand, putting this debate at
the core of the economic policy of industrialized countries.

When the economy moves from dispersion to agglomeration, innovation devel-
ops at a faster pace. In this connection, Fujita and Thisse (2002) demonstrate that:

even those who stay put in the periphery are better off than under dispersion, provided
that the growth effect triggered by the agglomeration is strong enoughIn other words,
agglomeration gives rise to regressive income distribution effects.
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Additionally, when transport costs are low enough, modern and innovative sec-
tors tend to concentrate in the same region, while other regions specialize in the
production of traditional goods. This is so even when the number of firms that op-
erate in these modern sectors may increase over time, regardless of whether or not
technologies are transferable among the different regions. Fujita and Thisse (2002)
demonstrate that agglomeration and growth are reinforced, thus confirming the re-
sults obtained in different contexts by Martin and Ottaviano (2001). An interesting
implication of these conclusions is that the policies that encourage dispersion may
potentially disrupt the global economic growth.

The rationale supporting the role of the cities in the economic growth is that
these are considered the main social institutions in which technological and social
innovations are developed through market and non-market institutions. In addi-
tion, the specialization of the cities changes over time creating diverse geographical
patterns of economic development. For this reason, cities are the railway engines of
growth.

Regional discrepancies are considered socially undesirable, and are critical from
a political point of view. Further, the growth of regional disparities does not neces-
sarily imply the impoverishment of peripheral regions. If there is proof of the persis-
tence of these disparities, or even worse, that agglomerations give rise to peripheries
in worse conditions, governments and international bodies should work on the de-
sign of active policies to encourage a more equitable distribution of wealth among
nations and regions. Urban externalities are not necessarily negative, while increas-
ing profits can be a strong force in favor of geographical concentration. Therefore,
there is a non-presumption related to the direction in which governments should go
with their regional and urban policies.

The NEG models should be a priority object for government intervention, since
they suggest that under certain circumstances, the intervention of small-scale policies
may have a strong effect, probably on a permanent basis. The lack of formal NEG
models about the potential implications for public policies lies in the difficulty of
going from small indicative models to models with an empirical base, that can be
used to evaluate specific policies.

The coexistence of centripetal and centrifugal forces is generally relevant, and
both create external effects. In addition, there are market failures for both types
of agglomerations, either if they are too large (congestion and contamination), or
too small (links and positive externalities derived from greater activity). Yet, ge-
ography is a critical issue for development, and undoubtedly major impacts of this
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type may affect policy-making. Model optimization is closely linked -although not
identically- to the impact of public policies. It could be argued that considering a
model’s efficiency and optimization, and comparing it to the equilibrium conditions,
provide a better understanding of the model’s properties, even disregarding whether
the results reached should or shouldn’t affect the implementation of public policies
(Fujita and Krugman 2004). To summarize, understanding the regional and urban
growth based on an efficiency, equitable and optimum agglomeration, is critical to
improve our knowledge about how a modern economy can develop.

To conclude, do economies grow faster if they are concentrated in the space?

In the police debate, increasing specialization has been welcomed, for example
in the European or North American integration process, since it increases produc-
tivity. Rising concentration on the other hand, specifically the concentration (ag-
glomeration) of economic activities in the core part or in the north, has been more
controversial as it may aggravate asymmetries or differences in per-capita income.

This recent theoretical work generally supports the view that spatial proximity
encourages economic growth. Martin y Ottaviano (1999) state that agglomeration
and growth are mutually reinforcing processes. According to Fujita and Thisse
(2002), growth and agglomeration go hand-in-hand. Baldwind and Martin (2004)
claim that given localized spillovers, spatial agglomeration is conducive to growth.

As claimed by Martin (1999), the complementarities between growth and spatial
concentration has a remarkable practical significance for the public policy, since it
may imply supporting the economic growth at a national level at the expense of
supporting the most underdeveloped regions in the country.

However, this complementarities can be non linear. Indeed, according to some
authors agglomeration promotes growth at the early stages of development, but has
not, or is even detrimental, in economies that have reached a certain income level
(Williamson 1965). Williamson suggests that agglomeration matters most at the
early stages of development. When transport and communication infrastructure is
scarce and the reach of capital markets is limited, efficiency can be enhanced by
concentrating the production in space; but as infrastructure improves and market
expands, congestion externalities may favor a more dispersed economic geography.
The dynamic game of agglomeration has to be weighed against the cost of static
congestion diseconomies. The relative importance of these two effects changes over
the different stages of development.

There are a relatively small number of empirical studies about the causal rela-
tionships between agglomeration and growth. Some of the most significant studies
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that analysis the positive relationships between urbanization, spatial inequality, in-
dustrialization and economic development, are those by Bairoch 1993, Hohenberg
and Lees 1985, and Hohenberg, 2004.

The econometrical studies about the impact of agglomerations on growth are
even scarcer. But based on this perspective, the most recent and significant work
we are interested in is the work by Brülhart and Sbergami (2008), which explores the
causal link running from agglomeration to growth, mediated by stage of development
and external openness. These authors empirically investigate the impact of the
within-country spatial concentration of the economic activity (agglomeration) on
country level-growth. They assemble the most comprehensive data base used for this
purpose to date, combining cross-section and panel data analysis of a large country
level dataset with panel analysis of sectorially and regionally disaggregated data for
Europe. Since agglomeration on the growth effects across sector, they investigate
the impact of agglomeration of the growth of individual sectors in addition to study
aggregate economic growth.

Brülhart y Sbergami (2008) have found evidence supporting the “Williamson hy-
pothesis”: agglomeration boosts GDP growth only up to a certain level of economic
development. The critical level is estimated at around 10,000 US dollars in 2006
prices, corresponding roughly to the current development level of Brazil or Bulgaria.
This implies that the benefits of agglomeration become increasingly unimportant,
and that the trade-off between national growth and inter-regional equity may grad-
ually lose its relevance as the world’s economy continues to growth. Conversely,
it also means that it is in the poorest countries where policies aimed at inhibiting
spatial economic concentration are most damaging in terms of foregone growth.

1.4 The purpose of this research

The intensity of regional specialization in specific activities, and conversely, the level
of industrial concentration in specific locations, has been used as a complementary
evidence for the existence and significance of externalities. Besides, economists
have focused the debate mostly on disentangling the sources of specialization and
concentration processes according to three vectors: natural advantages, internal and
external scale economies.

The arbitrariness of partitions plays a key role in capturing these effects and
becomes potentially more dangerous the more unequal become the elements of it
in terms of area. In this sense, as we mention in Section 1.2.4, the selection of the



1.4. The purpose of this research 33

partition would have to reflect the actual characteristics of the economy. Therefore,
above mentioned effects coupled with the effect of crowding can appear in different
geographical scales and involve several levels of sectorial breakdown, that is, a certain
spatial scale is not necessarily similar to another.

Thus, the identification of spatial boundaries to measure specialization becomes
critical, since most likely the model will be adapted to different scales of distance
and be influenced by different types of externalities or economies of agglomeration,
which are based on the mechanisms of interaction with particular requirements of
spatial proximity.

This work is based on the analysis of the spatial aspect of economic specialization
supported by the manufacturing industry case. The main objective is propose for
discrete and continuous space: i) a measure of global specialization; ii) a local
disaggregation of the global measure; and iii) a spatial clustering method for the
identification of specialized agglomerations.

In Chapter 2 specialization is approached in terms of stochastic independence:
non specialization is viewed as the case where the joint proportion of employees of
a region in an specific activity is equal to the product of marginal proportions of
this region and activity; equivalently, the activity distribution within this region
is the same as the global distribution at the country level. Hence, we propose a
series of non parametric dependence measures, derived from the goodness-to-fit of
the above hypothesis of non specialization, as natural measures for international
comparisons of the global specialization level in addition to the basic weighted or
unweighted indexes based on the Lorenz curve commonly used. On the other hand,
the appropriate grouping of rows and columns of a two-way contingency table can
often simplify the analysis of association between two categorical random variables.
Hence, rows and column groupings have received considerable attention and have
been driven by: i) decomposing global measures of non independency; ii) a focus on,
and accordingly a better understanding of the sources of non independency; and iii)
avoiding tables with too many cells, a larger proportion of which would be empty or
nearly empty. Similar motivations are present when grouping activities and regions
for a specialization analysis. Thus, we propose an automatic grouping procedure of
regions and activities based on hierarchical clustering and correspondence analysis
(HCCA), defining a goodness of association measure for a given collapsed table.
The goal is to measure the effectiveness of the HCCA to preserve association while
reducing the table dimension. The proposed quantity measures the gain in asso-
ciation produced by the HCCA method compared to the association that would
be expected under a random grouping strategy, that enabled us to i) significantly
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reduce the size of the original table and obtain a collapsed table with low level of
information loss vis-à-vis the degree of original specialization; and ii) identify the
homogeneous regions according to the industrial structure in terms of sub, and over
specialization activities in large two-way contingency tables. The study cases of
this chapter refer to the cases of Argentina, Brazil and Chile, based on employment
data of manufacturing industry at two digits of ISIC Rev.3. This chapter focuses on
the detection of specialization through the pattern of activity concentration among
regions, without considering the distance among them, in which regions are defined
according to process-exogenous criteria, namely administrative entities.

In the same way as Chapter 2, Chapter 3 is based on the administrative en-
tities but now we introduce contiguity among regions as distance criteria for the
identification of specialized agglomerations in discrete space. In addition, the ex-
ternalities arising from the proximity among firms, i.e. externalities and location,
are concerned with firm interaction in a certain region. The spatial externalities
are significant for the plant location distribution, i.e. the outcome of firms location
choice. Consequently, should we measure the strength of these spillover effects, the
unit of analysis would be in favor of firms. Simultaneously, dynamic intra-industrial
economies -within the same activity, or inter-industrial -among different productive
activities, show the presence of external effects of a spillover and/or pecuniary na-
ture. These forces affect the territories, and thus the effectiveness of resident firms,
and the firms’ ability to growth. We define a probability model for the location of
firm which helps us identify spatial clusters of specialized industrial allocation for
a given specific manufacture sector. The approach is closely related to the cluster-
identification methods proposed by Besag and Newell (1991), Kuldorff and Nagar-
walla (1995), and Kuldorff (1997), that have been used to detect disease cluster in
epidemiology. The basic idea is to develop a probability model of multiple clusters,
called cluster schemes. Simply put, a cluster scheme is a space partition through
which it is postulated that firms are more likely to locate in cluster partition than
elsewhere. Thus, in this partition the model is equivalent to a multinominal sam-
pling model. The method starts by postulating a null hypothesis of no specialized
agglomeration, i.e. no clustering in terms of the uniform distribution of industrial
locations across regions. Then, it continues testing this hypothesis on each activity
by finding a single most significant contiguous cluster of regions with respect to this
hypothesis. In other words, on a first stage we start with an individual region, and
then the algorithm proceeds by adding contiguous regions to find the most signif-
icant clusters. The study cases of this chapter refer to the cases of manufacture
industry of Chile, based on establishment data at two digits of ISIC Rev.3. At the
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end of this Chapter we show some remarks about the co-localization of firms in
specialized agglomerations.

Now, in Chapter 4, the space is a unique continuum. The spatial process ap-
proach is based on geocodified data, and aims at assessing the power of attraction
from a local space perspective. From the point of view of a non-homogeneous Pois-
son process, firm localization points are randomly distributed, and disjoint area
counts are mutually independent, each based on Poisson’s distribution according to
which the intensity parameter forms a finite measure of the reference space, in this
case a bi-dimensional space. This measure may be interpreted as the representation
of the differentiated power of attraction of the space and, in the case of a specific
area, the expected value of the number of locations in such area. As we mention
in Section 1.2.4, the availability of geocodified data unleashes the need to quantify
the specialization level of a certain activity in a particular point of the space. With
this purpose, we present the methodology that uses kernel density estimators as a
key tool to define a local specialization measurement for a point x as an extension
of the well-known local quotient measurement to the continuous space. In addition,
we propose a possible Average Specialization Measure (ASM) for continuous space.
For the identification of specialized agglomerations in continuous space, we use the
identification of statistical significance or significant feature of the specialization
level, based on the method of bootstrap hypothesis testing proposed by Efron and
Tibshirani (1993), to approximate the distribution of the local quotient under the
non-specialization hypothesis. The study cases of this Chapter first analyze simu-
lated data and next use geocodified data of firms of manufacture sector of Buenos
Aires City at four digits of ISIC Rev.3.

Finally, Chapter 5 presents the summary and overall conclusions, and the po-
tential directions to continue with this research project.





Chapter 2

Stochastic independence model
approach for the measurement of
global specialization

For a given country, let us consider regions labeled i = 1, ..., I, and activities labeled
j = 1, ..., J . For each pair (i, j) ∈ I × J , we observe the number of employees,
let’s say Nij. Thus we obtain a two-way I × J contingency table N = [Nij]. The
contingency table also produces row totals Ni·

Ni· =
∑J

j=1
Nij (2.1)

column totals

N·j =
∑I

i=1
Nij (2.2)

and the table total N··

N·· =
∑I

i=1

∑J

j=1
Nij =

∑J

j=1
N·j =

∑I

i=1
Ni· (2.3)

This chapter is focused on the detection of specialization through the pattern
of activity concentration among regions, without considering the distance among
them.
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The underlying idea is to compare the distribution corresponding correspond-
ing to each file i, and consequently to the regions, with the aggregate distribution
corresponding to the column totals. For this purpose, we switch from the count
Nij to the file proportions cij = Nij/Ni·. Thus, for each i = 1, ..., I, the vector
(ci1, ..., cij, ..., ciJ) corresponds to the regional distribution of activities (in particular
cij ≥ 0 and ci· =

∑
j cij = 1), whereas vector (c·1, ..., c·j, ..., c·J), with c·j =

∑
i cij,

correspond to the activity distribution aggregated at a country level, particularly
I−1

∑
j c·j = 1.

2.1 Basic indexes to measure local specialization

The indexes commonly used throughout the economic literature to describe the phe-
nomenon of local specialization, i.e. the analysis of the regional industry structure
or concentration of the regional activity, are based on the Lorenz curve. Concentra-
tion measures, such a those of Lorenz or Gini, have been developed for numerical
variables, endowed with the natural order (a < a + 1). Here, activities are con-
sidered as the distributed variable, each one ordered according to their relative
importance at the country level. Thus, the activities are labeled in such a way that
c·j ≤ c·(j+1). This ordering allows us to construct a cumulative distribution of the
activities, distributions (Cij) and (C·j), i.e. to construct cumulative distribution

functions Cij =
∑J

k=1 cik and C·j =
∑J

k=1 c·k.

In order to compare the activity distribution of region i to that of the country,
we build in the spirit of lorenz curve a bivariate graph with coordinates (Cij) and
(C·j), where the main diagonal would correspond to a region i with the same activity
distribution as that of the country. Sorting the observations in increasing order by
gradient cij/c·j, the relationship between Cij and C·j is the Lorentz curve. Fig. 2.1
shows the Lorenz curve.

The Lorenz curve always starts at (0,0) and ends at (1,1) and is completed by
linear interpolation among the ordered points corresponding to the activities j.

Gini specialization coefficient GIi

Many indexes try to summarize the graphic information provided by the Lorenz
curve in a quantitative measure that shows the difference between that curve and
the situation of perfect equality. The most popular of these measures is the Gini
coefficient GIi (Gini 1912). That is, GIi can be geometrically defined, as in Fig.
2.1, as the ratio of two geometrical areas in the unit box: (a) the area between the
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Figure 2.1: Lorenz Curve

line of perfect equality (45-degree line in the unit box) and the Lorenz curve, which
is called area A and (b) the area under the 45-degree line, or areas A + B. Since
areas A + B represent the half of the unit box, that is, A + B = 1

2
, the GIi can be

written as A
A+B

= 2A = 1− 2B.

For a discrete distribution, we can compute (C·j) and (Cij) and then the area
below Lorenz curve 1

B =
1

2

J∑
j=1

(C·j − C·j−1) (Cij + Cij−1) (2.4)

⇒ GIi = 1−
J∑
j=1

(C·j − C·j−1) (Cij + Cij−1) (2.5)

There are various expressions of this definition. For example, Yao (1999) adopted
a spread sheet approach using this method. Osberg and Xu (2000) modified the
definition to accommodate the complex sampling survey data.

1Optionally, and also from a geometric point of view, we can define GIi as two times less the
area under the curve of Lorenz (Rao 1969).
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In this work, we calculate GIi from Brown’s formula

⇒ GIi =

∣∣∣∣∣1−
J−1∑
j=1

(C·j − C·j−1) (Cij + Cij−1)

∣∣∣∣∣ (2.6)

GIi is a measure of specialization based on the variability in the industrial
structure of a region compared to the industrial structure of the whole country. GIi
takes values in the range [0;1], i.e. between 0 (perfect equality) and 1 (maximum
inequality), and will be greater the further away it will be from the line of perfect
equality. A value 0 means that a region has the same activity j’s employment share
with respect to the whole country, while on the contrary, a value 1 denotes extreme
inequality, i.e that the industrial structure of a region is completely different from
or unequal to the whole country.

From the above expression, it is possible to obtain an aggregate measure of
specialization for the whole country

GI =
I∑
i=1

wi GIi (2.7)

where wi is the weighting assigned to region i according to its economic or demo-
graphic size, with

∑I
i=1 wi = 1.

The Gini coefficient is based on the mean of the industrial structure distribution.
This means it implicitly lends greater weight to the middle structure classes, which
makes it more resistant vis-à-vis the underestimation of very high and very low
employment structures. For these same attributes, the Gini coefficient has been
criticized as tending to underestimate the amount of inequality (owing to the lower
weight of values on the edge of the distribution). For more details about the Gini
coefficient see Atkinson (1983) and Lernan and Yitzhaki (1989).

Krugman index SKi

The index SKi proposed by Krugman (1991a) is a measure of relative specialization,
based on GIi expressed as half of the average relative difference (Kendall and Stuart
1963). This index captures the gap between the activity structure of region i and
the average of the activity j structure of the other regions. It is defined as:
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SKi =
1

2

J∑
j=1

abs (cij − cij) (2.8)

where

cij =

∑I
k 6=iNkj∑I

k 6=i
∑J

j=1 Nkj

(2.9)

The SKi index takes a zero value if the activity structure of region i is identical
to the average of the other regions. Given the normalization used here, the maximum
value of SKi is equal to 1 when the activity structure of one region differs completely
from the rest of the country. Likewise, from above expression it is possible to obtain
an aggregate measure of specialization for the whole country

SK =
I∑
i=1

wi SKi (2.10)

where wi is the weighting assigned to region i according to its economic or demo-
graphic size, with

∑I
i=1wi = 1.

The LQij gradient

Gradient cij/c·j is the Hoover-Balassa Local Quotient coefficient LQij. The LQij

gradient is an index to compare the characteristics or activities of a local area across
a larger system (see Gibson et al. 1991; Beyene et al. 2003; Beyene and Moineddin
2005; and Brenden et al. 2008), and is commonly used by geographers, health pro-
fessionals, and economists to quantify and compare local conditions (e.g. industry
share) to an overall, aggregate condition.

LQij is often used in economic-based analysis as the initial step to begin to
understand what sectors are driving a region’s economy. It is a measure of the
relative concentration or specialization of the economic activity (i.e. a comparative
approach), and frequently uses employment as gauge.

A particular location or region i is defined as specialized in a single activity
j if the employees’ share in the region exceeds the national share, i.e. a region is
said to be specialized in an single activity if it has an over-representation in terms
of employment. A region with a high LQij may mean that the local economy is
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specialized: firms take the profits of the firm-internal economies of scale, and the
firm-external scale economies derived from the spatial concentration of employees.

Thus, the LQij index for region i and activity j is defined by

LQij =
cij
c·j

=
NijN

−1
i·

N·jN−1
··

(2.11)

where the numerator denotes activity j’s share of employment in region i and the
denominator denotes its share in the whole country.

Complementary to the previous index, we can also define the employee “Industry
Quotient” IQij along with the idea that an industry should be concentrated in a
particular region if its share of employees in the region exceeds the corresponding
national share. Indeed, we have

LQij =
NijN

−1
i·

N·jN−1
··

= IQij =
NijN

−1
·j

Ni·N−1
··

(2.12)

Values above 1 mean that the region (activity) is relatively specialized (concen-
trated) in the activity (location), as it has a relatively lower number of employees
than it would be predicted, based on its aggregate employee’s share, and values ap-
proximately equal to 1.0 indicate that a region (activity) has a number of employees
compatible with the national average of this activity (region). A series of rules of
thumb for the determination of cut-off values have been suggested by some authors
because a region with very few employees can also show very high values of LQij.
In this sense, Botham et al. (2001) use a cut-off value 1.25 and Isaksen (1996) and
Malmberg and Maskell (2002) prefer a more restrictive definition and use a cut-off
of 3, while Donato and Haedo (2002) use a LQij weighted for Nij.

However, one commonly observed limitation of LQij is its widespread use as
only a point estimate without an accompanying confidence interval. Although the
calculation of LQij is straightforward, constructing confidence intervals to assess
uncertainty in the LQij estimates is difficult because the index is a ratio (for more
details, see Beyene et al. 2003 and Beyene and Moineddin 2005). Closed-form
solutions for constructing confidence intervals based on approximation methods are
available. Gustafson (1988) proposed a method for constructing confidence intervals
for Proportional Size Distribution (PSD) indices based upon a normal approximation
to the binomial distribution. However, Beyene and Moineddin (2005) found that
profile likelihood confidence intervals were narrower than approximation confidence
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intervals when sample sizes were small and when P -values were extreme; these
situations often occur for PSD indices. Thus, the profile likelihood method may be
the best method for constructing LQij confidence intervals for PSD indices.

2.2 Stochastic independence model

For international comparisons, and other similar purposes, it is necessary to sum-
marize the level or the degree of specialization of a country using the above indexes
GIi and SKi. For this purpose, a simple weighted or unweighted average of values
at regional level is usually used. For more details, see Amiti (1999), and Midelfart-
Knarvik, Overman, Redding and Venables (2000).

Understanding the structure of specialization independently of its spatial pat-
tern may be illuminated by imagining a random experiment where an employed is
randomly allocated independently to a region i and activity j. Therefore, each em-
ployee generates a bivariate random variable X=(I, J) with values in the finite set
of pairs (i, j), i ∈ R = {1, ..., r}, j ∈ A = {1, ..., a} and probabilities2

P (X = (i, j)) = pij , X ∼ Ber(P) , P = [pij]i,j∈R×A (2.13)

where Ber(P) is to be intended as a generalized Bernoulli.

These probabilities give a joint distribution of (I, J), with marginal distributions

P (I = i) =
∑
j∈A

pij = pi· , P (J = j) =
∑
i∈R

pij = p·j (2.14)

Thus, the N observed employed Xl, l = 1, ..., N , give rise to N i.i.d observed
bivariate vectors, X1, ...,XN , Xl ∼ Ber(P), l = 1, ..., N .

Define an indicator matrix Yl associated to observation Xl = (Il, Jl) : Yl is a
{r × a}-matrix so that

Yl = (Yij) , i ∈ R , j ∈ A (2.15)

2A measure P is a function defined on a σ-algebra Σ over a set X and taking values in the
extended interval [0,∞] such that the following properties are satisfied: 1) the empty set has a zero
measure: P (∅) = 0, and 2) countable additivity or σ-additivity: if Ei, i = 1, ...,∞, is a countable
sequence of pairwise disjoint sets in Σ, the measure of the union of all the Ei is equal to the sum
of the measures of each Ei: P (

⋃∞
i=1Ei) =

∑∞
i=1 P (Ei).
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where

Yij =

{
1 if (Il, Jl) = (i, j)

0 otherwise

Thus, we will say that Yl has the multinomial distribution

Yl ∼Mr×a(1,P) (2.16)

where P is the {r × a}-matrix of cell probabilities pij. Our final matrix from the
observed count is thus

N =
∑N

l=1
Yl ∼Mr×a(N,P) (2.17)

Then the table N = [Nij] may be viewed as a two-way contingency table, where

Nij =
∑N

l=1 1I{Xl=(i,j)} is the number of employees in cell (i, j).

From above formula (2.11) for LQij, the employment in region i of activity j,
Nij, provides 3 cases:

i)
Nij

N··
=
Ni·

N··

N·j
N··

“no specialization′′ (2.18)

ii)
Nij

N··
>
Ni·

N··

N·j
N··

“over specialization′′ (2.19)

iii)
Nij

N··
<
Ni·

N··

N·j
N··

“sub specialization′′ (2.20)

Proportions
[
Nij
N··

]
and

[
Ni·
N··

N·j
N··

]
may be viewed as two (empirical) distributions

on a bi-dimensional discrete variable.

“No specialization” implies that the joint proportion of employees of region i in
activity j is equal to the product of marginal proportions of region i and activity j,
i.e. the connection of specialization with stochastic independence is apparent. No
specialization may be viewed as a null hypothesis of stochastic independence.
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It is evident that specialization arises from the interaction between regions and
activities. Searching for a measure of specialization is to search for an association be-
tween the variables I and J . More formally, the null hypothesis of non specialization
could be written

H0 : P (I = i|J = j) = P (I = i) ∀i , ∀j (2.21)

The null hypothesis would be that I, J are independent, i.e. the joint distribu-
tion is the product of its marginals

P (I = i, J = j) = pi·pj· = pij , i ∈ R , j ∈ A (2.22)

In order words, the non specialization hypothesis is equivalent to the indepen-
dence hypothesis between the variables I and J . A natural goal is to find the regions
(i.e. region i∗) and activities (i.e. activity j∗) for which P (I = i∗|J = j∗) > P (I =
i∗), for some i∗ ∈ R and j∗ ∈ A. In this case, we will say that the activity i∗ is
specialized in region j∗.

Under H0 we know only the form pij = pi·p·j but we do not know the marginal
probability pi·, p·j. A reasonable procedure is to estimate them under the hypothesis
of independence. These estimates can be obtained as follows: we would estimate
the marginal probability pi· of an employed falling into the i-th category (for the
first categorical variable) in the usual way, by the sample proportion. The sample
proportion in this case is

p̂i· = N−1
·· Ni· (2.23)

since Ni· is the count of all objets falling in the i-th category. Analogously

p̂·j = N−1
·· N·j (2.24)

This yield an estimated N̂ij value

N̂ij = N·· p̂i· p̂·j =
Ni· N·j
N··

(2.25)
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2.3 Global measure of specialization

A measure of the goodness-of-fit of the no specialization hypothesis may be

• based on any divergence or distance between these two distributions; and

• interpreted as an empirical measure of the degree of specialization vs. non
specialization.

The desirable properties of such measure include:

• indicating the degree of fit along a continuum bounded by values such as 0
and 1, where 0 represents a complete lack of fit and 1 reflects a perfect fit;

• be independent from sample size (higher or lower values would not be obtained
simply because the sample size is large or small);

• have known distributional characteristics to assist interpretation and enable
the construction of a confidence interval;

• a partition showing that an association that was significant for the overall
table primarily reflects differences between some categories and/or groups of
categories; and

• for international comparisons, the measure should not be affected by the num-
ber of categories.

Unfortunately, no index has been able to satisfy these conditions acceptably;
further, not all researchers would even agree with all of these criteria (Bollen and
Long 1993).

Examples of “well-informed” measures include the moment generating and char-
acteristic functions, as well as many entropy functionals developed in information
theory. The robustness of nonparametric implementation of entropy indices is one
of the main reasons for the recent surge in their popularity. The interested reader
is directed to Tjøstheim’s (1996) survey on the subject and Aparicio (1998), who
report superior performance for nonparametric entropy measures of dependence over
the traditional measures.

Entropies are defined over the distribution space which form the bases of inde-
pendence/dependence concepts in both continuous and discrete cases. Entropy is
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also “dimension-less” as it applies seamlessly to univariate and multivariate contexts.
For these reasons, Shannon’s mutual information function has been increasingly uti-
lized in the literature (see Joe 1989 and Robinson 1991).

However, Shannon’s relative entropy and almost all other entropies fail to be
“metric”, as they violate either symmetry, or the triangularity rule, or both. This
means that they are measures of divergence, not distance. This is not a problem
for testing purposes, but if someone is interested in comparing distances with other
distances (e.g. for cluster analysis), then the triangle inequality is essential (for
more details see Maasoumi and Racine 2002). In general, a divergence measure
might serve just as well as a distance and/or as a basis for constructing a test for
independence.

Dependence measures are based on the divergences between the m-dimensional
density p and its counterpart under the null hypothesis, q. Divergences are func-
tionals of density pairs which, like distances, are equal to zero whenever p = q, and
strictly positive otherwise.

The concept of statistical independence is well defined in terms of the joint
distribution of variables and of examples of criteria that incorporate the divergence
of joint distributions from the product of their marginals (see Gibbs and Su 2002
and Tjøstheim 1996 who use the Hellinger and several other measures).

In this section we consider tests for independence based on various dependence
measures. Typically, the tests obtained through this approach are not invariant.

Pearson and likelihood ratio chi-squared tests of independence

For large samples, to test the hypothesis that two variables are statistically inde-
pendent, or to test the joint distribution from the product of their marginals, the
Pearson chi-squared test statistic, X 2, and the likelihood ratio chi-squared statistics,
G2 are given by

X 2(p | q) =
I∑
i=1

J∑
j=1

(Nij − qij)2

qij
(2.26)

G2(p | q) = 2
I∑
i=1

J∑
j=1

Nij log

(
Nij

qij

)
(2.27)

where Nij, i = 1, ..., I, j = 1, ..., J , are the cell count in an I × J contingency table,
and qij are the estimated expected frequencies under the independence hypothesis.
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When the null hypothesis is true, X 2 and G2 have asymptotic chi-squared distribu-
tion with degrees of freedom, df , (I − 1) × (J − 1) as n → ∞, with mean df and
variance 2df , and when df →∞, X 2

df → N (see for more Lancaster 1979).

These are the most popular tests of independence in contingency tables. How-
ever, the adequacy of asymptotic distribution depends both on the sample size N
and the number of cells C = I × J . For X 2 test, Cochran (1954) suggests that a
minimum expected value of 1 is permissible as long as no more than about 20% of
the 8 cells have expected values below 5. For G2 test, Koehler (1986) showed that
the chi-square approximation is poor when N/C is less than 5. Goodman (1971),
Bollen and Long (1993), and more recently Jackson, Gray and Fienberg (2008) gave
grounds for using G2/df in the model selection process. See Agresti (2002) for fur-
ther discussions on the adequacy of chi-square approximation for sparse contingency
tables.

Partitioning chisquared statistics helps to show that an association that was sig-
nificant for the overall table primarily reflects differences between some categories
and/or groups of categories. The sum of independent chi-squared statistics are them-
selves chi-squared statistics with degrees of freedom equal to the sum of the degrees
of freedom for the individual statistics. Following Agresti (2002), for partitioning to
lead to a full decomposition of G2, the following are necessary conditions

• the degrees of freedom for the sub-tables must sum to the degrees of freedom
for the original table;

• each cell count in the original table must be a cell in one and only one sub-
table; and

• each marginal total of the original table must be a marginal total of one and
only one sub-table.

With respect to the partition of chi-squared, Lancaster (1951) and Gilula and
Haberman (1998) are based on the decomposition of treatment sums of squares in a
one-way analysis of variance, while Hirschfeld (1935) provides an alternative based
on canonical correlations.

Taking into account the previous Section, it seems only natural to propose as a
global measure of specialization the P -value associated to the chi squared statistic
of the contingency table, that is
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P (X 2
(I−1)(J−1) > X 2) = 1− FX 2

(I−1)(J−1)
(X 2) (2.28)

However, this approach is not very useful, based on the following drawbacks:

• the number of employees N is quite large for most countries, in the order of
millions;

• specialization is known to exist in most countries, so we know in advance that
we are working under an alternative hypothesis; and

• the Chi squared statistic is a consistent statistic for the null hypothesis of
independence.

As a result of these features, in most cases the P -value is zero. This trivial result
does not allow us to use the P -value as a sensible measure of global specialization.
Any comparison between countries would yield a dumb comparison between zero
and zero. To solve this problem there are at least two approaches:

• use a test statistic that does not leave a fixed significance level, thus avoiding
the fast convergence of the P -value to zero; and

• use ceratin characteristics of the data (contingency table) that are non-sensitive
to the number of employees.

The X 2 and Kullback-Leibler divergences

To test the null hypothesis of independency as opposed to the alternative hypothesis
of specialization, it is possible to chose between the following information-type mea-
sures of difference of probability distribution known as f -divergences (see Csiszár
1967). For any convex function f, with f(1) = 0, we could define df (p | q) =∑I

i=1

∑J
j=1 pijf

(
pij
qij

)
, whereas p represents the data and q represents a theoretical

model of p.

The X 2-divergence by

dX 2(p | q) =
I∑
i=1

J∑
j=1

(pij − qij)2

qij
(2.29)
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have asymptotic chi-squared distributions with degrees of freedom (I − 1)× (J − 1)
as n→∞. The adequacy of asymptotic distribution depends on the number of cells
but not on the sample size.

In correspondence analysis this divergence is also known as total inertia X 2/n,
and can viewed as a measure of the magnitude of the total row (regions) squared
deviations, or in an equivalent way, of the magnitude of the column (activities)
squared deviations. Hence, total inertia is the sum of the squared standardized
residuals S

sij =
(pij − qij)√

qij
(2.30)

The total inertia can be expressed as the sum of row or column inertias, and this
decomposition measures the partial contribution of the region i or of the activity j
to the total inertia (or global measure of specialization), respectively (see for more
details Jobson 1992). The next Section shows the decomposition equation.

The relative entropy or Kullback-Leibler divergence (Shannon’s relative entropy)
by

dKL(p | q) =
I∑
i=1

J∑
j=1

pij log

(
pij
qij

)
(2.31)

The relative entropy take values in [0,∞], and dKL(p | q) = 0 if pij = qij for
all i = 1, ..., I and j = 1, ..., J . This is not a metric, since it is not symmetric and
does not satisfy the triangle inequality, dKL(p | q) 6= dKL(q | p). However, it has
many useful properties, such as being additive for independent processes. For more
details, see Kullback and Leibler (1951) and Ali and Silvey (1966).

The probability Pij that the employment pattern Nij is realized under any dis-
tribution pij is given by the multinomial probability

Pij(Nij) =

(
N !∏I

i=1

∏J
j=1Nij!

)
I∏
i=1

J∏
j=1

p
Nij
ij (2.32)

Hence, theG2 of the hypothesized distribution, qij, givenNij is
∏I

i=1

∏J
j=1

(
qij
pij

)Nij
.

Thus the likelihood ratio chi-squared statistics is just 2n times the KullbackLeibler
divergence between p and q
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G2 = 2
I∑
i=1

J∑
j=1

Nij log

(
pij
qij

)
⇒ G2 = 2n dKL(p | q) (2.33)

i.e. if E denotes the expectation with respect to the distribution p, dKL(p | q) may
also be written as

dKL(p | q) = E

[
log

pij
qij

]
(2.34)

Thus, dKL(p | q), the same as in dX 2(p | q), are independent from the sample
size. This property is highly relevant for a comparison of the degree of specialization
across regions and activities with large and small sizes, respectively.

In addition, and the same as in dX 2 , dKL may be defined with respect to any
finite (measurable) partition of the sample space. Moreover, it is well known that
there exists a powerful decomposition relation between the values of such indices
for nested partitions of the sample space. For more details, see Kullback (1959),
and Cover and Thomas (1991). This technique is particularly useful to identify the
geographic structure of specialization, and for studying how this structure changes
over time.

Let’s suppose that the set of regions i, is partitioned into M(< i) bundles of
regions, where mth bundle, im, is composed of im regions (

∑M
m=1 im = i), so

dKL(p | q) =
M∑
m=1

∑
i∈Im

J∑
j=1

pmjpij|m log

(
pmjpij|m
qmjqij|m

)
(2.35)

=
M∑
m=1

J∑
j=1

pmj log

(
pmj
qmj

)
+

M∑
m=1

J∑
j=1

pmj

{∑
i∈Im

pij|m log

(
pij|m
qij|m

)}
(2.36)

= dKL(pmj | qmj) +
M∑
m=1

J∑
j=1

pmj dKL(pij|m | qij|m) (2.37)

The first term in the right hand side shows the dKL among the regional bundles
while the second term represents the weighted average of dKL within each regional
bundle. In other words, the dKL for all regions can be decomposed into those
representing the specialization among and within regional bundles.
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Theorem. The relative entropy dKL and dX 2 divergence satisfy

dKL ≤ log(1 + dX 2) (2.38)

In particular, dKL ≤ dX 2 .

Proof. Following Gibbs and Su (2002), since log is a concave function, Jensen’s
inequality yields

dKL(p | q) ≤ log

(∫
(f/g) f dλ

)
≤ log(1 + dX 2(p | q)) ≤ dX 2(p | q) (2.39)

where the second inequality is obtained by noting that∫
(f − g)2

g
dλ =

∫ (
f 2

g
− 2f + g

)
dλ =

∫
f 2

g
dλ− 1 (2.40)

The Hellinger distance

We consider a normalization of the Bhattacharya-Matusita-Hellinger measure of
dependence given by

d2
H(p | q) =

1

2

I∑
i=1

J∑
j=1

(√
pij −

√
qij
)2

(2.41)

The Hellinger distance assumes values in [0;1] and is symmetric, since d2
H(p |

q) = d2
H(q | p), and thus it is a distance contrary to other divergences. This index is a

similarity coefficient indicating the correlation between two statistical distributions:
the closer to zero is the index, the more the distributions are similar. By applying
of the square root of the frequency, the index becomes quite robust to extreme
values. Since it works with frequencies, the index is independent from the absolute
quantities distributed. The squared power allows for a quantification of the absolute
difference.

The Hellinger distance is not a metric. However, it has a useful property: it can
be “factored” in terms of its marginals (Zolotarev 1983), enabling the representation
of the distance between the distribution of vectors with independent components in
terms of component-wise distances..
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Reiss (1989) shows the relationship of d2
H among dX 2 and dKL is as follows:

d4
H ≤ 4dX 2 and d2

H ≤ dKL.

2.4 Automatic grouping of regions and activities

The appropriate grouping of rows and columns of a two-way contingency table can
often simplify the analysis of association between two categorical random variables.

Hence, rows and column groupings have received considerable attention and
have been driven by:

• decomposing global measures of non independency;

• focalizing, and accordingly understanding better, the sources of non indepen-
dency;

• avoiding tables with too many cells, a larger proportion of which would be
empty or nearly empty.

Similar motivations are present when grouping activities and regions for a spe-
cialization analysis.

The purpose of this Section is to find regions with the same industrial structure
in terms of sub, and over specialization activities in large two-way contingency tables

Finding parsimonious summaries of data sets and contingency tables created
from them has been a long-term objective of statisticians. The traditional method
of analysis using hierarchical log-linear models (HLLMs) as described in Bishop,
Fienberg and Holland (1975), Haberman (1978), Fienberg (1980), and Whittaker
(1990) structures the analysis based on the interaction terms between the variables.

Goodman (1981) proposed homogeneity and structure criteria in association
models, allowing us to determine if certain rows or columns in a contingency table
should be grouped. In later works, he showed the relationship between canoni-
cal scores and that corresponding to association models. Gilula (1986) developed
grouping results suggested by the canonical scores in a contingency table under a
canonical correlation model of Fisher (or saturated model RC). On the other hand,
correspondence analysis can be seen like a re-parametrization of the canonical cor-
relation model model, based on the results shown by Goodman (1986) and van der
Heijden et al. (1994).
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In statistical literature, the simplification is often called collapsing or coarsening
(see Lauritzen 1996 and the references contained therein), while global recoding in
the confidentiality literature (see Willenborg and de Waal 2000 who use the concept
of minimizing information loss to consider alternatives).

The paired category collapsing process constructs a partition or coarsening of the
categories for each variable. Such coarsening is typically not coarsening at random
(see Heitjan and Rubin 1991 and Jaeger 2005) and thus there is a loss of informa-
tion with respect to the original category sets. The papers by Lancaster (1949 and
1951), Goodman (1968 and 1970), Kreiner (2003) and many others, have explored
alternative methods of partitioning the data in tables mainly for significance test-
ing. Gokhale and Kullback (1978) provide illustrations, applications and extensions
of theses ideas. Important results of this literature are summarized in Gilula and
Haberman (1998) and recently, Jackson, Gray and Fienberg (2008) propose an ap-
proach by finding members of a class of restricted log-linear models which maximize
the likelihood of the data and use it to find a parsimonious means of representing
the table. In contrast with more standard approaches for model search in HLLM,
this procedure systematically reduces the number of categories of the variables.

2.4.1 Hierarchical Clustering based on Correspondence Anal-
ysis (HCCA)

Our purpose is to summarize the original information, i.e. the complete contingency
table N = [Nij], to extract the most relevant patterns of specialization in the data.
We must not lose sight of the problem scope. In the case of Argentina there are
I = 523 regions. Using just the first 2 digits of the International Standard Industrial
Classification of manufacturing activities (ISIC-Rev.3) there are J = 23 activities.
The total number of employees is N = 1.083.928. Thus the contingency table is a
523× 23 matrix of 1.083.928 employees spread in more than 12000 cells. Collapsing
tables mean building tables of smaller dimension through aggregated regions (rows)
and/or activities (columns). We are looking for the smallest collapsed table that
preserves the observed overall level of specialization as much as possible. The total
number M of possible collapsed tables for the I × J matrix N is

M =
∑

(m1...mi...ml)

(
I

m1 . . .mi . . .ml

)
×
∑

(n1...ni...nk)

(
J

n1 . . . nj . . . nk

)
(2.42)

where l 6 I−1, k 6 J−1, m1+. . .+mi+. . .+ml < I and n1+. . .+nj+. . .+nk < J .
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For I and J large, as in the present case, M is huge and trying all possibilities is
not feasible. This problem was already treated by Gilula (1986). He used canonical
analysis to obtain scores for both rows and columns of the contingency table and
then grouped the rows and columns with similar scores. Certain issues remained
open as he does not provide a criteria for deciding when two or more scores are
similar enough to group them.

Our approach consists of applying the Correspondence Analysis technique (Mari-
nelli and Winzer 2003 show that it yields equal results as canonical analysis) and
provides an alternative to avoid the calculation of all M possible collapsed tables.
It does so by giving for every possible number of row groups and column groups the
“best” grouping of rows and columns. Thus the total number of collapsed tables
needed for calculation is at most I×J . As a first step we conduct a Correspondence
analysis of the original contingency table N. Let P = N

N··
be the probability matrix

of N. Let r = {pi·} the vector of row marginals and c = {p·j} the vector formed
with the column marginals. Finally let Dr and Dc be the diagonal matrices formed
with the row marginals and column marginals, respectively.

Through Singular Value Decomposition (SVD) of the matrix (P − rc′), obtain
(P− rc′) = ADλB

′, where A′D−1
r A = I = B′D−1

c B.

The standardized residuals matrix S = {sij} can be constructed from

S = D−1/2
r (P− rc′)D−1/2

c = D−1/2
r ADλB

′D−1/2
c = UDλV

T , (2.43)

where U = D−1/2
r A, V = D−1/2

c B, and UTU = VTV = I.

In this decomposition, the dimension of U is J ×K, of V is I ×K and of Dλ

is K ×K, with K ≤ min(I − 1, J − 1). The diagonal elements λ1, λ2, ..., λk of Dλ

are the singular values of (P− rc′).

The principal coordinates for the rows are

F = D−1/2
r UDλ (2.44)

and the principal coordinates for the columns are

G = D−1/2
c VDλ (2.45)

The coordinates for r row deviation are given by de elements of fik, i = 1, 2, ..., r,
k = 1, 2, ..., k, of F. Similarly the coordinates for de c column deviations are given
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by the elements gkj, k = 1, 2, ..., k, j = 1, 2, ..., c, of G. The elements fik and gkj are
the kth scores for the row and column of the cell (i, j).

Each row of F provides the coordinates for a row deviation with respect to
the K principal axes given by the columns of U. Each column of F provides the
coordinates for the r deviations with respect to a particular principal axis or column
of V. For more details, see Jobson 1992 and Mardia et al. (1979).

The divergence dX 2(p | q) (Section 2.3) or total inertia I(p | q) of the matrix of
standardized residual is

dX 2(p | q) = I(p | q) =
I∑
i=1

J∑
j=1

(pij − qij)2

qij
=

K∑
k=1

λ2
k (2.46)

whereλ1, λ2 . . . λK−1 are the eigenvalues from Dλ.

The total inertia can be expressed as the sum of the row inertias as follows
(partition)

I(p | q) =
K∑
k=1

I∑
i=1

Pi·f
2
ik =

I∑
i=1

(
K∑
k=1

Pi·f
2
ik

)
=

I∑
i=1

Ii (2.47)

The row Inertia Ii measures the partial contribution of the region i to the global
measure of specialization. Symmetrically, the total inertia can be expressed as the
sum of the column inertias as follows

I(p | q) =
K∑
k=1

J∑
j=1

P·jg
2
kj =

J∑
j=1

(
K∑
k=1

Pj·g
2
kj

)
=

J∑
j=1

Ij (2.48)

We keep the first k coordinates of the row and columns scores. The choice
of k, as will be shown later, will be an outcome of the method. In most cases
k will end up being such that the first k eigenvalues will concentrate a relevant
proportion of their global accumulated value. With the fixed scores we achieve an
agglomerative hierarchical clustering of both row scores and column scores. For a
given number of row groups we choose the grouping structure yielded by the single
linkage agglomerative row clustering, that is equivalent to cut the dendrogram to
such level that the number of groups be the one desired. The grouping thus created
has the following property:
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• The grouped rows (regions), produced using the first k scores, are the most
homogeneous in terms of column (activity) profiles.

• The grouped columns (activities), produced using the first k scores, are the
most homogeneous in terms of row (region) profiles.

Having done this for a fixed k, we repeat the procedure for every possible k ∈
{1 . . . K}, being K = min(I − 1, J − 1). Thus we have a three dimensional array
of collapsed tables A = {T kij} where each element T kij is a collapsed table, produced
using the first k scores, with i rows and j columns from the original table.

2.4.2 The “best” collapsed table

Having built the array A of collapsed tables, our final question is: which of the
I × J ×K collapsed tables is better? We look for the smallest table that preserves
the highest association possible. Two extreme and not useful cases are:

• The table T kIJ (the original one), has the maximum association with the min-
imum of information reduction.

• The table T k11 = N (the total number of cases), has the minimum association
with the maximum of information reduction.

We need a quantity that balance the trade-off between the association degree
and table dimension. We begin by defining a “goodness of association” measure
for a given collapsed table. The idea is to measure the effectiveness of the HCCA
to preserve association while reducing the table dimension. The proposed quantity
measures the gain in association produced by the HCCA method compared to the
association that would be expected under a random grouping strategy

g(Tk
ij) = X 2(Tk

ij)− E∗(X 2(Tk
ij)) (2.49)

where E∗(X 2(Tk
i,j)) is the expected association measured with the chi-squared statis-

tic.

This expectation arises from the finite but large population of tables with i rows
and j columns that can be obtained collapsing randomly the original table using
Monte Carlo with a B number of replications. This expectation is conditional to
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the original table and to the fixed dimensions i and j. We estimate this value with
the sample mean

E∗(X 2(Tk
ij)) ≈

∑
T∗ij

X 2(T∗ij) (2.50)

where T∗ij is obtained collapsing rows and columns randomly without labels following
the agglomerative hierarchical clustering schemes of the HCCA procedure, i.e

• the random grouping strategy is based on these schemes as a griding algorithm;

• hence, the number of T∗ij is at most equal to (I × J ×K)×B.

Then we propose that the best collapsed table is that with the maximum “good-
ness of association” measure, i.e

T∗ = max
ijk

g(Tk
ij) (2.51)

Next we show that, as long as there is a minimum association in the data, this
maximum is obtained in none of the two extreme cases mentioned before.

Theorem. Given a contingency table T such that X 2(T) > 0, then g(T11) = 0,
g(TIJ) = 0 and ∃i ∈ {1 . . . I}, ∃j ∈ {1 . . . J} such that g(Tij) > 0.

2.5 Example

We apply the methodology to a classical example from Srole et al. (1962), which
was analyzed by Haberman (1974, 1979), Goodman (1985) and Gilula (1986), among
others. The data of Table 2.1 consists of 1660 subjects in midtown Manhattan cross-
classified by mental health status and parental socioeconomic status (A being the
highest; F the lowest).

Following Gilula (1986), when the independency model is considered for this
table, we found that X 2 = 45.99, G2 = 47.42, dX 2 = 0.02770, dKL = 0.01428, and
d2
H = 0.00366 on 15 df . Fig. 2.2 shows the standardized residuals of Table 2.1.

Gilula (1986) obtained the maximum likelihood estimates of the canonical cor-
relation for the above Table 2.1 and its corresponding canonical scores, and suggests
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Table 2.1: Subjects cross-classified by mental health status and parental socioeco-
nomic status

Mental health category A B C D E F
Well 64 57 57 72 36 21
Mild symptom formation 94 94 105 141 97 71
Moderate symptom formation 58 54 65 77 54 54
Impaired 46 40 60 94 78 71

Figure 2.2: Standardized residuals of Table 2.1

that rows 2 and 3 are homogeneous (Well and Mild symptom formation), as are
columns A and B and columns C and D. Combining these rows and columns, the
following is obtained: a 3 × 4 table with X 2 = 42.04, G2 = 43.44, dX 2 = 0.02532,
dKL = 0.01308, and d2

H = 0.00336 on 6 df . Comparing these results with the values
of the original Table 2.1, there is reasonable evidence that the suggested grouping
is justified. Fig 2.3 shows the standardized residuals of the collapsed table obtained
by Gilula.

From Fig. 2.3 also arises that it is possible to group columns E and F.

Then we developed an R function that automatically computes the collapsed
“best” table. For this example, the B number of Monte Carlo replications of T∗ij is
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Figure 2.3: Standardized residuals of collapsed table obtained by Gilula (1986)

equal to 100. Based on a Correspondence Analysis of Table 2.1., Tables 2.2, 2.3 and
2.4 show the principal inertias (eigenvalues), and row and column scores for the two
first eigenvalues, respectively.

Table 2.2: Principal inertias (eigenvalues) based on Correspondence Analysis of
Table 2.1

dim value % cum% scree plot
1 0.026025 93.9 93.9 *************************
2 0.001379 5.0 98.9 *
3 0.000298 1.1 100.0
4

Total 0.027702 100.0

The function also returns a scatter plot of standardized residuals and LQij

values, the row and column dendrogram based on the HCCA method, and the
eigenvalues of the SVD decomposition (Fig. 2.4).

The scatter plot of the standardized residuals and the LQij values in Fig. 2.4
serve to illustrate the following relationship: positive standardized residuals cor-
respond to LQij values greater than 1, i.e. “over-specialization”, while negative



2.5. Example 61

Table 2.3: Rows scores for the two first
eigenvalues

Mental health category k=1 k=2
Well -260 12
Mild symptom formation -30 24
Moderate symptom formation 14 -70
Impaired 237 19

Table 2.4: Columns scores for the two first
eigenvalues

Parental socio- k=1 k=2
economic status
A -181 -19
B -185 -12
C -59 -22
D 9 42
E 165 44
F 288 -62

standardized residuals are synonymous to “sub-specialization” (LQij < 1). In addi-
tion to the perfectly linear correlation between residuals and LQij values given the
characteristics of this classic example, the graph shows that the best collapsed table
is obtained by grouping rows and columns so as to make the most extreme possible
standardized residuals or LQij values.

The red lines in the row and column dendrogram in Fig 2.4 show the best cutting
branches selected automatically by our method, while the bar graph shows the values
of the eigenvalues and the red bar indicates the eigenvalue selected.

The 3 dimensional plot (Fig 2.5) shows g(Tk
ij) for the first eigenvalues and

for each level of the grouping structure of the row and column dendrogram. It
is important to note that there are 3 row levels and 5 column levels (Fig. 2.4), so
the total number of M collapsed tables is 15. The red point indicates the maximum
goodness of association T∗.

Our method obtains automatically a 3×3 collapsed table (red point in Fig. 2.5)
with X 2 = 40.49, G2 = 41.45, dX 2 = 0.02439, dKL = 0.01249, and d2

H = 0.00318 on
4 df , with the advantage (as opposed to the subjective selection of the homogeneous
row and column scores) that the best cutting branches of the dendrogram and the
selection of the eigenvalues (the first in this case) is automatic.

Table 2.5 shows rows 2 and 3 (Well and Mild symptom formation), columns A
and B, columns C and D, and columns E and F grouped respectively, with the stan-
dardized residuals and column cell proportions between parenthesis. As in Gilula’s,
we see that well-being has a decreasing prevalence inasmuch as the status gets lower
as opposed to impaired-being, which is generally more frequent in lower statuses
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Figure 2.4: Scatter plot of standardized residuals and LQij values, dendrogram for
rows and columns based on the HCCA method, and the eigenvalues of the SVD
decomposition

than in upper statuses. “Mild” and “moderate” symptoms seem to have a similar
prevalence across statuses.

Fig. 2.6 shows the standardized residuals of the table obtained with our method
and serves to illustrate that the best collapsed table is obtained by grouping rows
and columns so as to make the most extreme possible standardized residuals values.

2.6 Application: Argentina, Brazil and Chile

The purpose of this section is to compare the overall degree of specialization of
Argentina, Brazil and Chile using the measures described above, and obtain the
best collapsed table for each of them to identify the regions with similar industrial
manufacturing structures. As mentioned at the beginning of this Chapter, this
methodology does not consider the distance among regions.

The spatial units are the lower level political-administrative jurisdictions called



2.6. Application: Argentina, Brazil and Chile 63

Figure 2.5: 3 dimensional plot of g(Tk
ij) for the first eigenvalues

departments (523), municipalities (5,138) and communes (342) of Argentina, Brazil
and Chile respectively. The final spatial units (after eliminating those without em-
ployees) are 462, 5,138 and 249 for Argentina, Brazil and Chile, respectively.

The data related to the employees in the manufacturing sector were obtained
from of the Nationals Institute of Statistics and Censuses of Argentina (INDEC-1994:
1,083,928 employees), Brazil (IBGE-1998: 6,018,445 employees), and Chile3(INE-
2005: 446,613 employees) respectively. The activity classifications in Table 2.6 refers
to the first 2 digits of the International Standard Industrial Classification (ISIC-
Rev.3) of manufacturing activities (22 activities).

Table 2.7 shows a summary of the results obtained from the proposed measures
of global specialization for the original and collapsed tables, the number of cells, and
the resulting loss of information about the level of specialization.

While the absolute values of these measures are not comparable because they
use different scales, the global measures of specialization in the original tables show
that Chile has a higher level of specialization, followed by Brazil and Argentina,
respectively (with the exception of unweighted GI and SK indexes whose values
indicate that these differences are not an effect that depends on the number of cells:
Chile < Argentina < Brazil).

3The data refer to the firms with 5 or more employees. This means that Chile is not directly
comparable to other countries and the results are for illustration purposes only.
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Table 2.5: Data in Table 2.1 grouped with our method of best collapsed table, with
standardized residuals and columns cell proportions between parenthesis

Mental health category A+B C+D E+F
Well 121 129 57
std residuals 2.813 0.440 -3.404
column cell proportions (0.239) (0.192) (0.118)
Mild + moderate symptom 300 388 276
std residuals 0.325 -0.084 -0.234
column cell proportions (0.592) (0.578) (0.573)
Impaired 86 154 149
std residuals -3.010 -0.258 3.392
column cell proportions (0.170) (0.230) (0.309)

The global measures of specialization on the best collapsed tables also show the
same order in the level of specialization of these countries, although in this case the
different measures show a decline in its absolute values as a result of the loss of
information arising from grouping regions and activities.

The loss in the level of specialization is quite similar for Argentina and Brazil,
while Chile clearly shows a minor loss of information. The unweighted indexes show
a minor loss of information with respect to other measures. The loss of information
seems very reasonable vis-à-vis a substantial reduction in the size of the tables (more
than 90%).

2.6.1 Best collapsed table for Argentina

Fig. 2.7 shows a scatter plot of standardized residuals and LQij values, the row
and column dendrogram based on the HCCA method, and the eigenvalues of the
SVD decomposition respectively. The red lines in the row and column dendrogram
show the best cutting branches selected automatically, while the bar graph shows
the values of the eigenvalues and the red bars indicates the eigenvalues selected (the
first 12 out of 21).

The 3 dimensional plot (Fig. 2.8) shows g(Tk
ij) for fixed eigenvalues and for

each level of the grouping structure of the row and column dendrogram, and the
maximum goodness of association T∗(red point). The B number of Monte Carlo
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Figure 2.6: Standardized residuals of the best collapsed table

replications of T∗ij is equal to 1,000. The best collapsed table for Argentina has 35
rows (grouped regions) and 17 columns (grouped activities) reducing by 94% the
number of cells of the original table (from 10,164 to 595 cells). Table 2.7 shows that
the loss of information of specialization using dX 2 is 23%.

Table 2.8 and 2.9 show the number of employees and the standardized residuals
by activity for the selected grouped regions (GRegion) of Argentina. These GRegions
show the highest levels of specialization at a national level for the activities described
below. 467 regions are grouped in 35 GRegions, while the 22 activities are brought
into 17 groups. Grouped sectors (GS) are 2: 25, 28, 29, 31 and 36 (GS1); and 30
and 33 (GS2).

GRegions 2 and 15, formed by 7 and 10 regions respectively, are “over-specialized”
in activity 18. The GRegion 2 has 6,779 employees and the GRegion 15, 3,255 (red
values on Table 2.8). In the aggregate, these GRegions add 22 percent of the em-
ployees in the whole sector at a national level. The difference between these two
GRegions is that the GRegion 2 is over-specialized (lower level) in activity 17, 22,
24 and grouped activities GS2, while GRegion 15 is over-specialized in activity 19.
Consequently, these GRegions are “sub-specialized”, at different levels- in the rest
of the activities.

The GRegion 16, formed by 4 regions, is over-specialized in activity 27. This
GRegion has 13,022 employees which accounts for 35 percent of the employees in
the whole sector at a national level. GRegion 16 is also over-specialized in lower
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Table 2.6: Division ISIC-Rev.3 for the manufacturing industry

Division Description
15 Manufacture of food products and beverages
16 Manufacture of tobacco products
17 Manufacture of textiles
18 Manufacture of wearing apparel; dressing and dyeing of fur
19 Tanning and dressing of leather; manufacture of luggage, handbags, saddlery,

harness and footwear
20 Manufacture of wood and of products of wood and cork, except furniture;

manufacture of articles of straw and plaiting materials
21 Manufacture of paper and paper products
22 Publishing, printing and reproduction of recorded media
23 Manufacture of coke, refined petroleum products and nuclear fuel
24 Manufacture of chemicals and chemical products
25 Manufacture of rubber and plastics products
26 Manufacture of other non-metallic mineral products
27 Manufacture of basic metals
28 Manufacture of fabricated metal products, except machinery and equipment
29 Manufacture of machinery and equipment n.e.c.
30 Manufacture of office, accounting and computing machinery
31 Manufacture of electrical machinery and apparatus n.e.c.
32 Manufacture of radio, television and communication equipment and apparatus
33 Manufacture of medical, precision and optical instruments, watches and clocks
34 Manufacture of motor vehicles, trailers and semi-trailers
35 Manufacture of other transport equipment
36 Manufacture of furniture; manufacturing n.e.c. (includes division 37: recycling)

levels in sectors 23 and 32. Finally, GRegion 35 is formed by 2 regions and add
3,379 employees (32 percent of employees in the whole sector at a national level).
This GRegion is sub-specialized for the rest of the activities.

Figures 2.9, 2.10 and 2.11 show the location of the selected GRegions for Ar-
gentina.

2.6.2 Best collapsed table for Brazil

Like in the case of Argentina, Fig. 2.12 shows a scatter plot of standardized residuals
and LQij values, the row and column dendrogram based on the HCCA method, and
the eigenvalues of the SVD decomposition respectively. The red lines in the row and
column dendrogram show the best cutting branches selected automatically, while
the bar graph shows the values of the eigenvalues and the red bars indicates the
eigenvalues selected (the first 15 out of 21).

The 3 dimensional plot (Fig. 2.13) shows g(Tk
ij) for fixed eigenvalues and for

each level of the grouping structure of the row and column dendrogram, and the
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Table 2.7: Summary of the results

Measure
Original Collapsed Lost level of

table table specialization (%)
Argentina Brazil Chile Argentina Brazil Chile Argentina Brazil Chile

dX2 2.1580 3.1345 3.4363 1.6532 2.4162 2.8584 23.39 22.91 16.82
dKL 0.5049 0.7420 0.8870 0.3176 0.4928 0.6759 37.10 33.58 23.80
d2H 0.1300 0.1894 0.2600 0.0713 0.1073 0.1773 45.17 43.39 31.80
GI(average) 0.6352 0.7448 0.6991 0.5704 0.6012 0.6562 10.21 19.28 6.14
GI(average)1 0.4621 0.5595 0.6017 0.3388 0.4135 0.5065 26.69 26.09 15.83
SK(average) 0.5338 0.6545 0.6374 0.4760 0.5165 0.5695 10.83 21.08 10.65
SK(average)1 0.3625 0.4521 0.5079 0.2963 0.3555 0.4500 18.26 21.38 11.40

# of cells
10,164 113,036 5,478 595 884 450

(462x22) (5,138x22) (249x22) (35x17) (52x17) (30x15)
Reduction # of cells 94.15% 99.22% 91.79%

1 Weighted for Ni·/N··

Table 2.8: Number of employees in the selected GRegions for Argentina

GRegion
Division ISIC-Rev.3

15 16 17 18 19 20 21 22 23 24 GS1 26 27 GS2 32 34 35
2 3,819 6 1,496 6,779 424 258 479 1,750 4 2,147 3,300 384 68 281 114 587 21
15 851 0 193 3,255 289 149 1 151 0 4 827 61 21 8 26 81 0
16 1,409 0 732 140 59 120 462 200 784 639 2,125 454 13,022 5 281 1,328 60
35 485 0 224 24 1 164 0 76 0 85 827 61 0 0 3,379 215 0

1 Divisions grouped: 25, 28, 29, 31 and 36.

2 Divisions grouped: 30 and 33.

maximum goodness of association T∗ (red point). The B number of Monte Carlo
replications of T∗ij is equal to 1,000. The best collapsed table for Brazil has 52 rows
(grouped regions) and 17 columns (grouped activities) reducing by 99% the number
of cells of the original table (from 113,036 to 884 cells). The above Table 2.7 shows
that the loss information of specialization using dX 2 is 23%.

Fig. 2.14 shows the standardized residuals for each cell of the original table
for Brazil. It must be noted that most of the standardized residuals are around
zero. Therefore, it is expected that most of the cells are not “over-specialized” or
“sub-specialized”. The original table can then be summarized as showing almost no
difference between the observed and expected values, and the degree of specialization
can be explained with much less information.

As in the previous example (Section 2.5), Fig. 2.15 with the standardized resid-
uals for each cell of the best collapsed table for Brazil shows that it is obtained
by grouping rows and columns so as to make the most extreme possible standard-
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Figure 2.7: Argentina: scatter plot of standardized residuals and LQij values, the
row and column dendrogram based on the HCCA method, and the eigenvalues of the
SVD decomposition

ized residual values, i.e. to make the “over-specialized” and the “sub-specialized”
phenomenon more evident.

Tables 2.10 and 2.11, show the number of employees and the standardized resid-
uals by activity for the selected grouped regions of Brazil. As for Argentina, these
GRegions show the highest levels of specialization at a national level for the activ-
ities described below. The 5,138 regions are grouped in 52 GRegions, while the 22
activities are brought into 17 groups. There are 2 grouped sectors (GS): 22, 25, 28,
31 and 33 (GS1); and 30 and 32 (GS2).

GRegion 27, formed by 41 regions, is over-specialized in the grouped sectors
GS2. This GRegion has 22,070 employees (red values on Table 2.10) that account
for 23 percent of employees in the whole grouped sector at a national level. GRegion
27 is also over-specialized with lower levels in the grouped sector GS1 and in sector
35.
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Figure 2.8: Argentina: 3 dimensional plot of g(Tk
ij) for fixed eigenvalues (the first

12 out of 21)

Table 2.9: Standardized residuals in the selected GRegions for Argentina

GRegion
Division ISIC-Rev.3

15 16 17 18 19 20 21 22 23 24 GS1 26 27 GS2 32 34 35
2 -27 -9 9 191 -15 -15 -2 24 -11 20 -28 -20 -25 5 -7 -23 -12
15 -18 -5 -7 189 4 -2 -12 -7 -6 -19 -16 -13 -13 -7 -4 -16 -7
16 -58 -10 -13 -26 -27 -20 -3 -25 55 -20 -44 -18 452 -14 4 -44 -9
35 -26 -5 -5 -14 -15 0 -12 -11 -6 -14 -14 -12 -14 -7 449 -8 -7

The GRegions 46 and 49, formed by 118 and 73 regions respectively, are over-
specialized in activity 19. The GRegion 46 has 164,653 employees and GRegion 49
has 91,625 (red values on Table 2.10). Together, these GRegions add 70 percent of
employees in the whole sector at a national level. The difference between these two
GRegions is found on sub-specialization levels for the rest of the activities.

Finally, GRegion 51, formed by 48 regions, is over-specialized in activity 34.
This GRegion has 122,629 employees which accounts for 43 percent of employees in
the whole sector at a national level. GRegion 51 is also over-specialized with lower
levels in sector 29.

Figures 2.16 and 2.17 show the location of the selected GRegions for Brazil.
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Figure 2.9: Map 1 for Argentina: location of the selected GRegions

2.6.3 Best collapsed table for Chile

As in the case of Argentina and Brazil, Fig. 2.18 shows a scatter plot of standard-
ized residuals and LQij values, the row and column dendrogram based on the HCCA
method, and the eigenvalues of the SVD decomposition respectively. The red lines
in the row and column dendrogram show the best cutting branches selected auto-
matically, while the bar graph shows the values of the eigenvalues, and the red bars
indicates the eigenvalues selected (the first 12 out of 21).

The 3 dimensional plot (Fig. 2.19) shows g(Tk
ij) for fixed eigenvalues and for

each level of the grouping structure of the row and column dendrogram, and the
maximum goodness of association T∗(red point). The B number of Monte Carlo
replications of T∗ij is equal to 1,000. The best collapsed table for Chile has 30 rows
(grouped regions) and 15 columns (grouped activities) reducing by 92% the number
of cells of the original table (from 5,478 to 450 cells). Above Table 2.7 shows that
the loss of information of specialization using dX 2 is 17%.

Tables 2.12 and 2.13 show the number of employees and the standardized resid-
uals by activity for the selected grouped regions (GRegion) of Chile. As in the case
of Argentina and Brazil, these GRegions show the highest levels of specialization at
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Figure 2.10: Map 2 for Argentina: location of the selected GRegions

a national level in the activities described below. The 249 regions are grouped in 30
GRegions, while the 22 activities are brought into 15 groups. Grouped sectors (GS)
are 3: 18 and 33 (GS1); 22, 25, 28, 29, 31 and 34 (GS2); and 26 and 30 (GS3).

The GRegions 8 and 15, formed by 7 and 2 regions respectively, are over-
specialized in activity 19. GRegion 8 has 3,864 employees and GRegion 15 has 2,080
employees (red values on Table 2.12). Together, these GRegions add 67 percent of
employees in the whole sector at a national level. GRegion 8 is also over-specialized
with lower levels in grouped sectors GS1 and GS2, and in sectors 17, 24, 32 and 36.
Instead, GRegion 8 is over-specialized with lower levels in grouped sectors GS2, and
in sectors 17, 35 and 36.

GRegions 3 and 13, formed by 4 and 5 regions respectively, are over-specialized
in activity 24. GRegion 3 has 2,574 employees and GRegion 13 has 6,754 (red values
on Table 2.12). Together, these GRegions add 28 percent of employees in the whole
sector at a national level. GRegion 13 is also over-specialized with lower levels in
grouped sectors GS3.

Finally, GRegions 4 and 6, formed by 9 and 10 regions respectively, are over-
specialized in activity 27. GRegion 4 has 11,894 employees and the GRegion 6 has
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Figure 2.11: Map 3 for Argentina: location of the selected GRegions

7,220 employees. Together, these GRegions add 60 percent of employees in the
whole sector at a national level. GRegion 4 is also over-specialized with lower levels
in grouped sectors GS3 and in activity 24.

Figures 2.20 and 2.21 show the location of the selected GRegions for Chile.
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Figure 2.12: Brazil: scatter plot of standardized residuals and LQij values, the row
and column dendrogram based on the HCCA method, and the eigenvalues of the SVD
decomposition

Table 2.10: Number of employees in the selected GRegions for Brazil

GRegion
Division ISIC-Rev.3

15 16 17 18 19 20 21 GS1 23 24 26 27 29 GS2 34 35 36
27 9,515 17 3,179 2,309 120 1,448 1,379 29,664 42 2,655 3,298 925 3,160 22,070 2,681 6,411 2,921
46 4,347 6 1,773 2,368 164,653 1,279 2,877 10,934 2 2,436 2,233 945 2,314 30 228 215 4,663
49 27,479 49 4,560 8,415 91,625 4,179 3,648 17,523 86 2,626 6,848 962 6,752 101 860 273 6,744
51 24,738 25 8,702 12,400 1,753 5,276 6,093 75,143 1,410 19,449 15,397 9,363 29,945 4,345 122,629 1,407 16,976

1 Divisions grouped: 22, 25, 28, 31 and 33.

2 Divisions grouped: 30 and 32.
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Figure 2.13: Brazil: 3 dimensional plot of g(Tk
ij) for fixed eigenvalues (the first 15

out of 21)

Figure 2.14: Standardized residuals of original table of Brazil
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Figure 2.15: Standardized residuals of the best collapsed table of Brazil

Table 2.11: Standardized residuals in the selected GRegions for Brazil

GRegion
Division ISIC-Rev.3

15 16 17 18 19 20 21 GS1 23 24 26 27 29 GS2 34 35 36
27 -58 -15 -23 -66 -73 -41 -20 91 -21 -35 -28 -33 -35 537 -26 197 -35
46 -171 -23 -85 -118 1,373 -81 -31 -141 -34 -83 -87 -64 -92 -56 -96 -37 -68
49 -36 -20 -51 -64 761 -44 -14 -94 -30 -75 -36 -59 -45 -52 -84 -33 -40
51 -161 -30 -72 -111 -135 -84 -31 27 -15 -3 -36 -8 50 -18 809 -31 -30

Table 2.12: Number of employees in the selected GRegions for Chile

GRegion
Division ISIC-Rev.3

15 16 17 GS1 19 20 21 GS2 23 24 GS3 27 32 35 36
3 0 0 0 0 0 0 0 0 0 2,574 0 0 0 0 0
4 1,666 0 0 36 0 103 5 3,582 0 1,953 726 11,894 0 16 22
6 96 0 0 0 0 0 0 6 0 119 9 7,220 0 0 0
8 5,667 0 2,212 3,483 3,864 899 994 9,323 0 2,937 634 1,618 80 5 1,146
13 8,050 0 552 223 236 43 522 4,417 0 6,754 1,122 647 0 13 374
15 429 0 161 0 2,080 38 100 1,700 0 90 76 0 0 192 213

1 Divisions grouped: 18 and 33.

2 Divisions grouped: 22, 25, 28, 29, 31 and 34.

3 Divisions grouped: 26 and 30.
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Figure 2.16: Map 1 for Brazil: location of the selected GRegions

Figure 2.17: Map 2 for Brazil: location of the selected GRegions
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Figure 2.18: Chile: scatter plot of standardized residuals and LQij values, the row
and column dendrogram based on the HCCA method, and the eigenvalues of the SVD
decomposition

Table 2.13: Standardized residuals in the selected GRegions for Chile

GRegion
Division ISIC-Rev.3

15 16 17 GS1 19 20 21 GS2 23 24 GS3 27 32 35 36
3 -30 -2 -9 -11 -7 -15 -10 -22 -4 173 -9 -14 -1 -6 -9
4 -64 -5 -25 -28 -20 -40 -27 -5 -12 12 3 278 -3 -16 -25
6 -49 -3 -15 -18 -12 -26 -16 -38 -7 -18 -15 291 -2 -10 -16
8 -55 -7 39 54 125 -37 -6 37 -15 10 -14 -15 19 -21 1
13 -1 -6 -5 -25 -10 -44 -11 -1 -13 123 13 -24 -3 -17 -14
15 -32 -3 1 -15 196 -19 -6 23 -6 -15 -7 -19 -1 15 3
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Figure 2.19: Chile: 3 dimensional plot of g(Tk
ij) for fixed eigenvalues (the first 12

out of 21)

Figure 2.20: Map 1 for Chile: location of the selected GRegions
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Figure 2.21: Map 2 for Chile: location of the selected GRegions





Chapter 3

Probability model for the
identification of specialized
agglomeration in discrete space

The positive spatial correlation is a key feature of New Economic Geography (NEG)
models, and in particular of the so-called “market potential functions” that can be
derived from them (Section 1.3). For instance, Fujita, Krugman and Venables (2001)
have obtained several reduced-form equilibrium equations, in which a variable ex-
pressing the attractiveness of a location turns out to be a positive function of the
level of economic activity in the surrounding regions. Fujita and Thisse (2002)
show the substantial difference in the geographical scope of traditional externali-
ties (pecuniary externalities) that are the engine of agglomeration in NEG models.
Traditional spillovers or more localized externalities (Marshallian externalities, Ur-
banization, Porter or Dynamics externalities), require some degree of physical inter-
action among agents within the same place. Consequently, pecuniary externalities
can be part of the forces that boost concentration, while positive spatial correlation
are their distinctive feature with respect to either traditional externalities or factor
endowments.

The externalities arising from the proximity among firms, i.e. externalities and
location, are concerned with firm interaction in a certain region. The spatial exter-
nalities are significant for the plant location distribution, i.e. the outcome of firms’
location choice (Section 1.3.3). Consequently, should we measure the strength of
these spillover effects, the unit of analysis would be in favor of firms. Consider, for
example, the following two polar cases. In the first one, there is only one large indus-
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try firm located in region j. In the second case, now there are many firms belonging
to the industry located in region j. Clearly, the employment-based Gini coefficient
would take the same high value in both cases, indicating a strong concentration
pattern for the industry. However, the nature of this concentration is completely
different in the two situations involved. In the first one, concentration occurs at
the establishment level, resulting in a unique operating plant that hires all workers
(industrial concentration). This could be reasonably associated to factors that are
“internal” to a firm or an industry, such as increasing returns to scale in production,
regardless of where the firm is located. Conversely, the second case is character-
ized by a co-location of different firms in the same place (spatial concentration),
and suggests that there are some “external” elements such as localized externalities,
natural resources, factor endowments or demand and input-output linkages, driving
the process.

Simultaneously, dynamic intra-industrial economies -within the same activity, or
inter-industrial -among different productive activities, show the presence of external
effects of a spillover and/or pecuniary nature. These forces affect the territories, and
thus the effectiveness of resident establishments, and the firms’ ability to growth.

We will define a probability model for the location of establishment which will
help us identify spatial clusters of specialized industrial allocation in discrete space
for a given specific manufacture sector (activity a, a ⊆ A, where A is a the set of all
manufacturing sectors: A = 1, ..., kA).

3.1 The model

Currently, there are very few formal models of the overall spatial pattern of industrial
agglomerations, and thus the majority of these models are focused on the simple
“two-region case” (see Section 1.3.2). However, the extent to which such models
are extendable to more complex regional systems is not yet clear (for more details
see Fujita and Mori 2005a and b), while there is not even consensus as to how
agglomerations should be defined in more general settings.

The purpose of this Section is to develop a probability model to identify spe-
cialized agglomerations in terms of multiple-cluster patterns, i.e. we propose an
approach based on a probability model for multi-regional systems in terms of sta-
tistical cluster analysis. The basic idea is to develop a probability model of multiple
clusters, called “cluster schemes”. Simply put, a cluster scheme is a space partition
through which it is postulated that firms are more likely to locate in cluster partition
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than elsewhere. Thus, in this partition the model is equivalent to a multinominal
sampling model.

The method starts by postulating a null hypothesis of “no specialized agglom-
eration”, i.e. “no clustering” in terms of the uniform distribution of industrial
locations across regions. Then, it continues testing this hypothesis on each activity
a by finding a single “most significant” contiguous cluster of regions with respect to
this hypothesis. In other words, on a first stage we have an individual region, and
then it starts adding contiguous regions to find the most significant clusters.

Methodologically, this approach is closely related to cluster-identification meth-
ods proposed by Besag and Newell (1991), Kuldorff and Nagarwalla (1995), and
Kuldorff (1997), that have been used for the detection of disease cluster in epidemi-
ology. Recently, Mori and Smith (2006) used this approach to the identification
“just” industrial agglomerations (as per Section 1.2.3). The description of our model
will be based on the latter.

The location behavior of individual establishments in a given activity a can be
treated as independent random samples from unknown activity location probability
distribution P a. The observable location data is assumed to be only in terms of
establishment counts of a set of disjoint basic regions, Ωr ⊆ Ω, indexed by R =
{1, ..., kR}. These regions are assumed to partition Ω,⋃kR

r=1
Ωr = Ω (3.1)

Hence the location probabilities of each basic region of the location probability
distribution P a:

P a = [P a(r) = P a(Ωr) : r ∈ R] (3.2)

To identify areas of relative intense specialization of an activity a, we now con-
sider an approximation of P a by probability models, P a

c . Each model is characterized
by a “cluster scheme”, C, consisting of disjoint regional cluster, Cj ⊂ R, j = 1, ..., kc,
within which specialization activity is supposedly more intense. Hence, the areal ex-
tent of cluster Cj in Ω is denoted by

ΩCj =
⋃

r∈Cj
Ωr , j = 1, ..., kc (3.3)
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The regions {Ωr : r ∈ ΩCj} in each cluster are contiguous, then ΩCj is a con-
nected set of regions. Hence the corresponding locations probabilities are

pac(j) ≡ P a
c (ΩCj) , j = 1, ..., kc (3.4)

To complete these probability models, let the set of remaining or residual regions
be denoted by

C0 = R−
⋃kc

j=1
Cj , ΩC0 = Ω−

⋃kc

j=1
ΩCj (3.5)

and so the corresponding location probability are

pac(0) = P a
c (ΩC0) = 1−

∑kc

j=1
pac(j) (3.6)

Each cluster sheme, C = (C0, C1, ..., Ckc) is a partition of the regional index
set R, and the location probabilities [pac(j) : j = 0, 1, ..., kc] yield a probability
distribution on C.

Finally, we need to specify a probability distribution for the basic regions. That
is, to make an assumption of the conditional probabilities of an individual establish-
ment located in a basic region, r ∈ Cj given that the establishment belongs to the
cluster Cj. We will assume that this probabilities are proportional to the importance
of basic region r, that is

P a
c (Ωr|ΩCj) =

nr
nCj

, r ∈ Cj , j = 0, 1, ..., kc (3.7)

where

nCj =
∑

r∈Cj
nr (3.8)

If we consider that inside a geographical area or region, that includes the pres-
ence of services, infrastructure, transportation cost and of others factors that enable
the development of the industrial activity, it could initially be stated that the in-
dustrial localization, or rather, the election of a place inside the area is based on
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a stochastic mechanism, i.e. completely at random. However, is important to note
that the arbitrariness of partitions plays a key role in capturing above-mentioned
effects, while it becomes potentially more dangerous the more unequal are the ele-
ments of it in terms of area where data are observed within administrative regions
that are unequal in size, shape and neighborhood, and where neighboring regions
typically resemble each other more than regions that are far apart. In this sense,
to minimize MAUP (see Section 1.2.4) the election of the partition would have to
reflect the actual characteristics of the economy (for example, the Local Labor Sys-
tems in Italy). Due to the unavailability of such partition, we use the proportion of
firms for each administrative region as a proxy variable for the presence of factors
for the industry localization to make the conditional probabilities of an individual
establishment located in a basic region, r ∈ Cj.

Since Ωr ∈ ΩCj implies that

P a
c (Ωr|ΩCj) =

P a
c (Ωr)

P a
c (ΩCj)

=
P a

c (r)

pac(j)
(3.9)

and for all r ∈ R

P a
c (r) = pac(j)

nr
nCj

, r ∈ Cj (3.10)

Hence for each cluster scheme C, the above formula yields a well defined cluster
probability model,

P a
c = [P a

c (r) : r ∈ R] (3.11)

that is comparable to the unknown true model (3.2). It should be emphasiezed that
both P a and P a

c are probability models based on basic regions r ∈ R. The first one
P a is a saturated model in which no clustering is achieved. The second one is a
simplified one where a specific cluster scheme (C) is postulated. Note that for each
given cluster scheme, C = (C0, C1, ..., Ckc), the only unknown parameters are given
by the kc-dimensional vector of cluster probabilities, pac = [pac(j) : j = 1, ..., kc].

We will now consider a chosen sequence of n independent location for each
establishment i, i = 1, ..., n, modeled by a random (indicator) vector, Xa(i) = (X

a(i)
r :

r ∈ R), with X
a(i)
r = 1 if i locates in region r, and X

a(i)
r = 0 otherwise. The random
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matrix of indicators X = (X
a(i)
r : i = 1, ..., n) represents the set of location decisions,

with the following finite set of possible realizations (location patterns):

∆a
R(n) =

{
x = (xa(i)

r : r ∈ R, i = 1, ..., n) ∈ {0, 1}n×kR :
∑

r∈R
xa(i)
r = 1, i = 1, ..., n

}
(3.12)

By independency, the probability distribution of the X sample under the un-
known true distribution (3.2) is given for each location pattern, x ∈ ∆a

R(n), by:

P a(x) =
∏n

i=1

∏
r∈R

P a(r)x
a(i)
r (3.13)

Likewise, the postulated distribution of X for each cluster probability model P a
c

is given for each location pattern, x ∈ ∆a
R(n), by:

P a
c (x|pac) =

∏n

i=1

∏
r∈R

P a
c (r)x

a(i)
r =

∏n

i=1

∏kc

j=0

∏
r∈Cj

(
pac(j)

nr
nCj

)xa(i)r

(3.14)

It appears that the locational frequencies naCj(x) are sufficient statistics

naCj(x) =
∑n

i=1

∑
r∈Cj

xa(i)
r , j = 0, 1, ..., kc (3.15)

since by definition

P a
c (x|pac) =

∏kc

j=0

pac(j)
∑n
i=1

∑
r∈Cj

x
a(i)
r
∏n

i=1

∏
r∈Cj

(
nr
nCj

)xa(i)r

 = bac(x)
∏kc

j=0
pac(j)

naCj
(x)

(3.16)

where the factor bac(x)

bac(x) =
∏n

i=1

∏kc

j=0

∏
r∈Cj

(
nr
nCj

)xa(i)r

(3.17)

is completely independent from the parameter vector pac.
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3.2 Selection of the best cluster scheme

Since we know that specialization phenomena exits in the manufacturing sector
and each probability model P a

c represents a particular cluster scheme, we aim at
to finding the model P a

c (cluster scheme) which best captured “this specialization
phenomena”. For this purpose, we postulated the null hypothesis of no specialization
and look for the most distant probability model from this null hypothesis. Given a
statistic to test the null hypothesis of no specialization we would like to identify the
probability model P a

c which yields the strongest rejection. That is, the best cluster
scheme by definition.

3.2.1 Likelihood-ratio statistic

To test the null hypothesis (H0) of no specialization we need to define a probability
model P a

0 (r) that is compatible with (H0), which in the present context amounts
to the hypothesis that C = {C0}. From equation 10, we know that in the no
specialization scenario the probability of one establishment of activity a located in
the region r should follow nr/n, so

P a
0 (r) =

nr
nC0

=
nr
n

(3.18)

that is no dependent on activity a.

Hence should we allow P a
0 = [P a

0 (r) : r ∈ R] denote the non specialized agglom-
eration or non clustering, we could now consider the null hypothesis that the true
distribution is equal to the non specialization model:

H0 : P a = P a
0 (3.19)

Thus the non specialization model, P a
0 , is nested in each cluster model, P a

c (for
more details see Kuldorff and Nagarwalla 1995). If we now rewrite (3.18) as

P a
0 (r) =

nr
n

=
nCj
n

nr
nCj

, r ∈ R (3.20)

then from (3.10), P a
0 is the special case of P a

c with
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pac(j) =
nCj
n

, j = 1, ..., kc (3.21)

Hence if we now denote the log likelihood of P a
0 given x as

La0(x) = L(P a
0 |x) = ln

[∏n

i=1

∏
r∈R

P a
0 (r)x

a(i)
r

]
(3.22)

and note that by definition

La0(x) = ln

∏n

i=1

∏kc

j=0

∏
r∈Cj

(
nCj
n

nr
nCj

)xa(i)r

 (3.23)

= ln

∏kc

j=0

(nCj
n

)∑n
i=1

∑
r∈Cj

x
a(i)
r ∏n

i=1

∏
r∈Cj

(
nr
nCj

)xa(i)r

 (3.24)

= ln

[
bac(x)

∏kc

j=0

(nCj
n

)naCj (x)
]

(3.25)

=
∑kc

j=0
naCj(x) ln

(nCj
n

)
+ ln bac(x) (3.26)

then under H0, a natural test of this hypothesis is the log-likelihood-ratio statistic

T ac (X) = −2
[
La0(X)− L̂ac(X)

]
(3.27)

chi-square distributed with kc degree of freedom.

From (3.16), for any given cluster scheme C, the log likelihood of parameter
vector, pac, given observed locations x, is:

L(pac|x) =
∑kc

j=0
naCj(x) ln pac(j) + ln bac(x) (3.28)

The second term is independent of pac, and by differentiation, the maximum-
likelihood estimate p̂ac = [p̂ac(j) : j = 1, ..., kc] of pac for each j = 1, ..., kc is given
by
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p̂ac(j) =
naCj(x)

na
(3.29)

Hence, the associated estimate of the maximum-likelihood value for model P a
c

is given by

L̂ac(x) = L(p̂ac|x) =
∑kc

j=0
naCj(x) ln

(
naCj(x)

na

)
+ ln bac(x) (3.30)

This together with (3.26) shows that

La0(X)− L̂ac(X) =
∑kc

j=0
naCj(X) ln

(nCj
n

)
−
∑kc

j=0
naCj(X) ln

(
naCj(X)

na

)
(3.31)

=
∑kc

j=0
naCj(X) ln

(
nCj/n

naCj(X)/na

)
(3.32)

and hence that

T ac (X) = −2
∑kc

j=0
naCj(X) ln

(
nCj/n

naCj(X)/na

)
(3.33)

= 2
∑kc

j=0
naCj(X) ln

(
naCj(X)/na

nCj/n

)
(3.34)

It must be noted that the argument of the logarithm in (3.34) is the Hoover-
Balassa Local Quotient coefficient (LQij) (see Section 2.1). In addition, if we divide

both sides of (3.34) for 2
∑kc

j=0n
a
Cj

(X)

T ac (X)

2
∑kc

j=0n
a
Cj

(X)
=

∑kc
j=0n

a
Cj

(X) ln
(
LQa

Cj

)
∑kc

j=0n
a
Cj

(X)
(3.35)
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T ac (X)

2N
=
∑kc

j=0
waCj ln

(
LQa

Cj

)
(3.36)

we will obtain the similar weight waCj used heuristically by Donato and Haedo (2002).

The asymptotic P -value for this likelihood-ratio test is given by

P − value = 1− Fkc(T ac )

where Fkc denotes the cumulative distribution function for the chi-square distribu-
tion with kc degrees of freedom. We rejects the null hypothesis if the value of the
likelihood-ratio test is sufficiently large, or if the corresponding P -value is sufficiently
small.

Given the set of basic regions, it would of course be desirable to compare all
possible cluster schemes that can be formed from these regions, and then to identify
best cluster scheme. But there could be an extraordinary number of possible cluster
schemes can be enormous for even modest numbers of basic regions and in addition
the chi-square distribution has fatter tails for larger degrees of freedoms. As a result
of these features, in most cases the P -value is zero. This trivial result does not allow
us to use the P -value as a sensible measure to compare all possible cluster schemes
and any comparison would yield a dumb comparison of zero with zero. The next
measure, BIC, differs from this test precisely in the way it penalizes larger numbers
of clusters and offers an additional model-selection criteria to resolve these potential
over-fitting problems.

3.2.2 The bayesian information criterion (BIC)

The bayesian information criterion (BIC) was introduced by Schwartz (1978). This
BIC has proved to yield a consistent estimator of a true model whenever it is among
the candidate models. Now the unknown parameter vector, pac, is a random vector
with prior distribution given by density, ψac(·). Hence the associated marginal event
probabilities P a

c are given by

P a
c (x) = Epac [P a

c (x|pac)] =

∫
pac

P a
c (x|pac)ψac(pac)dpac (3.37)
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These Bayes factors or marginal probabilities are another natural criterion for
model selection. Given any two candidate cluster schemes, C and C’, for data
x ∈ ∆a

R(n), if P a
c (x) > P a

c’(x) the principle of maximum likelihood suggests that C
should be a better data model than C’. This can be equally written as a likelihood
ratio condition:

P a
c (x)

P a
c’(x)

> 1 (3.38)

or

lnP a
c (x)− lnP a

c’(x) > 0 (3.39)

Hence for large sample sizes n

lnP a
c (x) = lnEpac [P a

c (x|pac)] ≈ lnP a
c [x|p̂ac(x)]− kc

2
ln(n) (3.40)

where this restrictive formulation is completely independent from the prior density
ψac(·), and for large sample sizes, the posterior distribution of pac given data x ∈
∆a
R(n) eventually concentrates around p̂ac(x), regardless of the prior distribution. If

we multiply both sides by −2, then the best models of x are those with the smallest

BICa
c (x) = −2 lnP a

c [x|p̂ac(x)] + kc ln(n) (3.41)

= −2L̂ac(x) + kc ln(n) (3.42)

values. If we now denote the BIC value for the random benchmark model by

BICa
0 (x) = −2La0(x) (3.43)

then we may reformulate this measure in terms of BIC-differences from this bench-
mark as follows:

∆BIC
c (x) = BICa

0 (x)−BICa
c (x) (3.44)

= −2[La0(x)− L̂ac(x)]− kc ln(n) (3.45)

= T ac (x)− kc ln(n) (3.46)
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and hence the better cluster schemes C are now those with larger difference values
∆BIC

c .

If we rewrite (3.34) as follows

T ac (X) = 2

{
n ln

n

na
−
∑kc

j=0
nCj ln

nCj
naCj(X)

}
(3.47)

we would illustrate how the degree of freedom kc penalizes larger number of clus-
ters in the likelihood-ratio test. The penalty for adding parameters grows without
limitations as the sample size n increases. Hence, would be reasonable to expect that
models with a smaller number of parameters will be favored as n becomes larger.

Note that BIC-differences (3.46) differ from likelihood-ratio test (3.47) as much
as they penalize larger number of clusters. This BIC measure will always yield a
consistent selection of the true model whenever this model is one of the candidates
and tend to select a more parsimonious model when sample sizes are sufficiently
large.

3.3 Cluster detection procedure

Methodologically, this procedure is in contrast with those that are often adopted
to detect disease cluster in epidemiology. Openshaw et al. (1988) proposed the
geographical analysis machine (GAM) as an exploratory cluster detection method.
Besag an Newell (1991) proposed statistically rigorous alternatives to the GAM
based on circles of fixed populations radius and circles of fixed case radius, respec-
tively. Kuldorff and Nagarwalla (1995) and Kuldorff (1997) generalized the previous
procedures to arbitrary collections of clusters using likelihood ratio test. They typ-
ically consider a circular area centered at each region to be a potential cluster, and
find the central region and the radius of the circle which corresponds to the high-
est significance level of concentration. However, such circular clustering of regions
will contain many irrelevant low-density regions unless the “true” agglomeration is
roughly circular. Thus, approaches tend to result in identifying unreasonable large
clusters. In this sense, Mori and Smith (2006) define a minimal boundary closure
basically assumes convexity of each cluster, i.e. consider that a roughly convex
closure of the significant regions is the geographic coverage of the cluster.
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Our approach is essentially an elaboration of the basic ideas proposed by Besag
and Newell (1991) in which given the set of basic regions we could start with indi-
vidual regions and then add contiguous region to find the most significant cluster,
comparing all possible cluster scheme that can be formed from these regions. Hence,
to identify best cluster scheme,

C∗ = arg max
C

∆BIC
c (3.48)

But as mentioned in Section 3.2.1, the number of possible cluster schemes can
be enormous for even modest quantities of basic regions and the procedure of clus-
terization could remain in a loop on a local maxima. Thus, it is necessary to con-
sider limited search procedures that yield reasonable approximations to best cluster
schemes.

We developed a greedy forward algorithm that uses the ∆BIC
c as a selection

criteria and starts with a baseline configuration with all regions forming a unique
consolidated cluster. The steps of the procedure are the follows:

1 The first step is to choose the region, which will form a separated one region
cluster, that maximizes the configuration criteria based on larger difference
values of ∆BIC

c . There are R possible regions to choose from.

The outcome of this first step is a two cluster configuration: one cluster formed
by the chosen region and the other cluster consisting of the remaining regions.

2 The second step is to choose from the R − 1 not chosen regions the region
which maximizes the configuration criteria.

The outcome of the second step will depend on the cluster configuration of the
previous step. At least three regions should have been formed: i) one cluster
with the first chosen region; ii) another cluster with the second chosen region;
and iii) a third cluster with the remaining regions.

If the two chosen region are contiguous then the least number of clusters is
two: one with the two chosen regions and the other with the remaining regions.

3 The algorithm stops when no choice of region provides an increase in the
configuration criteria.

The algorithm follows in a forward manner choosing the regions, one by one,
whilst the configuration criteria is increased. It must be noticed that this methodol-
ogy does not provide a global maximum of the configuration criteria. It is possible
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that the best configuration, in terms of the selected configuration criteria, is different
from the resulting configuration of the algorithm.

3.4 Application: Manufacture industry in Chile

The spatial units are the lower level political-administrative jurisdictions in Chile
(communes). The firms’ data for the manufacture sector with 5 or more employ-
ees have been taken from the National Institute of Statistics and Censuses of Chile
(INE-2005).The activity classifications refer to the first 2 digits of the International
Standard Industrial Classification (ISIC-Rev.3) for the following manufacturing sec-
tors:

• Division 24: Manufacture of chemicals and chemical products;

• Division 20: Manufacture of wood and of products of wood and cork, except
furniture; and manufacture of articles of straw and plaiting materials;

• Division 25: Manufacture of rubber and plastics products;

• Division 28: Manufacture of fabricated metal products, except machinery and
equipment; and

• Division 29: Manufacture of machinery and equipment n.e.c.

3.4.1 Specialized agglomeration of division ISIC 24

Division 24 has 33,078 employees in 304 firms distributed across 69 regions. Table
3.1 shows the best cluster scheme formed by 5 clusters: two high-specialization
clusters (1 and 2), two low specialization clusters (N1 and N2), and the remaining
regions. It must be noted that non specialization implies (by Section 2.2) that the
joint proportion of firms in region i in activity j is equal to the product of marginal
proportions in region i and activity j. Consequently, the best cluster scheme is made
of “over-specialized” (clusters 1 and 2) and “sub-specialized” regions (clusters N1
and N2), following the trade-off in order between the number of firms, contiguity or
number of clusters, and very high and low specialization levels. In this respect, the
column of “% of firms” in Table 3.1 shows in each cluster how the model-selection
criteria to obtain the best cluster scheme prioritizes the number of firms in the first
place.
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Table 3.1 shows that the “over-specialized” clusters 1 and 2, each formed by 3
contiguous regions (in the middle and upper portion of Fig. 3.1), have 12% and 17%
of firms and 3% and 6% of employees, respectively (37 firms with 5,706 employees
and 8 firms with 2,046 employees, respectively). Together, these clusters add 15
percent and 24 percent of the firms and employees in the whole sector at a national
level, respectively.

The “sub-specialized” cluster N1 is formed by 10 contiguous regions (in the
center of Fig. 3.1) and has 19% of firms and employees in the whole sector at a
national level (59 firms with 6,405 employees). The “sub-specialized” cluster N2,
shown in Fig. 3.2, is formed by only one region that represents the largest number of
firms (equal to 2) between those with a lower specialization level or sub-specialized
regions (LQij = 0.45).

Finally, the remaining regions are 52 and have 65% and 57% of firms and em-
ployees in the whole sector at a national level, respectively (197 firms and 18,721
employees).

Fig. 3.1 and 3.2 show the location of the regions with the best cluster scheme
for sector 24.

Table 3.1: Best cluster scheme of division ISIC 24: Manufacture of chemicals and
chemical products

Cluster # of regions % of firms1 % of employees2 LQij

Mean Variance Min Max
Over-specialized 1 3 12.2 17.3 3.19 0.33 2.39 3.63
Over-specialized 2 3 2.6 6.2 14.10 15.91 8.46 16.92
Sub-specialized N1 10 19.4 19.4 0.74 0.04 0.41 1.15
Sub-specialized N2 1 1.0 0.6 0.45
Remaining regions 52 64.8 56.5 2.87 10.54 0.37 16.92

1 Percentage of firms in the whole sector at a national level.

2 Percentage of employees in the whole sector at a national level.
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Figure 3.1: Map 1 for specialized agglomeration of division ISIC 24

3.4.2 Specialized agglomeration of division ISIC 20

Division 20 has 39,745 employees in 337 firms distributed across 121 regions. The
best cluster scheme for this sector is formed by 8 clusters: 4 over-specialized, 3
sub-specialized and the remaining regions.

Table 3.2 shows that over-specialized agglomeration 1, formed by 20 contiguous
regions, has 21% of firms and 45% of employees in the whole sector at a national
level (70 firms with 17,698 employees). Over-specialized clusters 2 and 4 are formed
one by only 1 region each, while the over-specialized cluster 3 is formed by 4 regions
with de same value of LQij = 15.22. With respect to cluster 1, these last three
clusters show a greater proportion of firms and employees. Together, these 4 over-
specialized clusters add 32 percent and 56 percent of the firms and employees in the
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Figure 3.2: Map 2 for specialized agglomeration of division ISIC 24

whole sector at a national level, respectively. These results show that the firms in this
manufacturing sector have a relatively higher tendency to co-localize in specialized
agglomerations with respect to sector 24.

The “sub-specialized” cluster N1 is formed by 29 contiguous regions and has
18% of firms and 6% of employees in the whole sector at a national level. Although
the firms’ data for the manufacturing sector in Chile is related to firms with 5 or
more employees, this cluster is formed by smaller firms, as clusters N2 and N3.
Together, these 3 sub-specialized clusters add 23 percent and 7 percent of the firms
and employees in the whole sector at a national level, respectively.

Finally, the remaining regions totalize 61 and have 45% and 37% of firms and
employees in the whole sector at a national level, respectively.
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Fig. 3.3 shows the location of the regions in the best “over-specialized” cluster
scheme formed by 4 clusters.

Table 3.2: Best cluster scheme of division ISIC 20: Manufacture of wood and of
products of wood and cork, except furniture; manufacture of articles of straw and
plaiting materials

Cluster # of regions % of firms1 % of employees2 LQij

Mean Variance Min Max
Over-specialized 1 20 20.7 44.5 7.63 13.57 2.17 15.22
Over-specialized 2 1 6.5 4.4 13.39
Over-specialized 3 4 3.3 4.5 15.22 0
Over-specialized 4 1 1.5 2.2 9.51
Sub-specialized N1 29 18.3 5.8 0.54 0.12 0.08 1.25
Sub-specialized N2 4 4.1 1.4 1.15 0.13 0.81 1.69
Sub-specialized N3 1 0.3 0.1 0.18
Remaining regions 61 45.3 37.1 4.77 19.39 0.42 15.22

1 Percentage of firms in the whole sector at a national level.

2 Percentage of employees in the whole sector at a national level.

3.4.3 Specialized agglomeration of division ISIC 25

Division 25 has 22,929 employees in 326 firms distributed across 66 regions. The
best cluster scheme for this sector is formed by only 2 clusters: 1 over-specialized
and the remaining regions.

Table 3.3 shows that over-specialized agglomeration, formed by 18 contiguous
regions, has 67% of firms and employees in the whole sector at a national (217 firms
with 15,359 employees). These results show that the firms in this manufacturing
sector have a high tendency to co-localize in specialized agglomerations.

Fig. 3.4 shows the location of the 18 contiguous regions in the over-specialized
cluster.
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Figure 3.3: Over-specialized agglomeration of division ISIC 20

3.4.4 Specialized agglomeration of division ISIC 28

Division 28 has 24,156 employees in 393 firms distributed across 76 regions. As with
division 25, the best cluster scheme of this sector is formed by only 2 clusters: 1
over-specialized and the remaining regions.

Table 3.4 shows that over-specialized agglomeration, formed by 20 contiguous
regions, has 51% of firms and 56% of employees in the whole sector at a national
level (201 firms with 13,504 employees). These results show also that the firms in
this manufacturing sector have a high tendency to co-localize in specialized agglom-
erations.

Fig. 3.5 shows the location of the 20 contiguous regions in the over-specialized
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Table 3.3: Best cluster scheme of division ISIC 25: Manufacture of rubber and
plastics products

Cluster # of regions % of firms1 % of employees2 LQij

Mean Variance Min Max
Over-specialized 1 18 33.4 33.0 1.93 0.43 0.99 3.36
Remaining regions 48 66.6 67.0 1.12 0.83 0.25 5.26

1 Percentage of firms in the whole sector at a national level.

2 Percentage of employees in the whole sector at a national level.

cluster.

Table 3.4: Best cluster scheme of division ISIC 28: Manufacture of fabricated metal
products, except machinery and equipment

Cluster # of regions % of firms1 % of employees2 LQij

Mean Variance Min Max
Over-specialized 1 20 51.1 55.9 2.75 5.93 1.58 13.09
Remaining regions 56 48.9 44.1 1.31 3.44 0.16 13.09

1 Percentage of firms in the whole sector at a national level.

2 Percentage of employees in the whole sector at a national level.

3.4.5 Specialized agglomeration of division ISIC 29

Division 29 has 19,140 employees in 308 firms distributed across 76 regions. The
best cluster scheme for this sector is formed by 3 clusters: 2 over-specialized and
the remaining regions.

Table 3.5 shows that over-specialized cluster 1, formed by 15 contiguous regions,
has 35% of firms and 41% of employees in the whole sector at a national level (107
firms with 7,871 employees). The over-specialized cluster 2 is formed by 2 contiguous
regions and has 10% and 7% of the firms and employees in the whole sector at a
national level, respectively (31 firms with 1,334 employees). Together, these clusters
add 45 percent and 48 percent of the firms and employees of the whole sector at a
national level, respectively.
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Figure 3.4: Over-specialized agglomeration of division ISIC 25

As with divisions 25 and 28, the firms of this manufacturing sector show a high
tendency to co-localize in specialized agglomerations.

Fig. 3.6 shows the location of the contiguous regions in over-specialized clusters
(18 regions in cluster 1 and 2 regions in cluster 2).
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Figure 3.5: Over-specialized agglomeration of division ISIC 28

3.4.6 Some remarks about the co-localization of firms in
specialized agglomerations

The purpose of this section is not to provide a thorough analysis of the phenomenon
of the co-localization of firms in specialized agglomerations, but rather to highlight
some relevant features that can drive the analysis and its comparison with similar
studies.

It must be noted that the firms’ data for the Chile manufacturing sector is
related to establishments with 5 or more employees. The firm and employee rates
are calculated on the basis of the whole sector at a national level.

To summarize the prior sections, if we analyzed Fig 3.7 it becomes readily ap-
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Table 3.5: Best cluster scheme of division ISIC 29: Manufacture of machinery and
equipment n.e.c.

Cluster # of regions % of firms1 % of employees2 LQij

Mean Variance Min Max
Over-specialized 1 15 34.7 41.1 1.24 0.15 0.52 2.03
Over-specialized 2 2 10.1 7.0 2.35 0.19 1.92 2.78
Remaining regions 59 55.2 51.9 1.53 1.45 0.33 8.35

1 Percentage of firms in the whole sector at a national level.

2 Percentage of employees in the whole sector at a national level.

parent that the firms of ISIC 25, 28 and 29 are prone to co-locate in over-specialized
agglomerations, while it becomes more evident in division 25. This can be sup-
ported in two features. Firstly, over-specialized agglomerations are formed by a
single cluster of contiguous regions that in the aggregate represent less than a third
of the total number of regions in the country with a sector firm (see Figures 3.4,
3.5 and 3.6, respectively). Secondly, the non-existence of significant sub-specialized
agglomerations denotes that these sector firms are either located homogeneously
across the remaining regions without affecting their structure sector configuration,
or are located in over-specialized agglomerations. Additionally, it must be noted
that these sector firms have similar mean sizes, both within over-specialized ag-
glomerations and in the remaining regions, while they are hardly greater than the
national average in the over-specialized clusters of divisions 28 and 29 (Fig. 3.8).

Although the firms in division 20 show a lower tendency to co-locate in over-
specialized agglomeration vis-à-vis the previous sectors (Fig 3.7), nonetheless Fig.
3.8 shows that the mean size of the firms located there is greater than that of the
firms located in the remaining clusters (sub-specialized and remaining regions) and
that of the national average. This could be supported in the direct relationship
between the sector and the presence of natural resources.

Contrary to the preceding examples, the firms in division 24 show a low tendency
to co-locate in specialized regions, and practically do not affect the sector structure
configuration of the regions where the firms are located. However, as shown in
Fig. 3.8, the size of the firms located in over-specialized agglomerations is greater
compared to the remaining clusters and the national average, a situation that could
be also compared to the case of the German chemical cluster, in which a small
number of large companies are located together, not only to reduce production
costs but also as a strategy towards their competitors. The formation of this type of
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Figure 3.6: Over-specialized agglomeration of division ISIC 29

clusters would seem to depend on the relative strength of the size of the localization
economies (for more details, see Section 1.3.3.).
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Figure 3.7: Percentage of firms and employees in the best cluster schemes

Figure 3.8: Mean firm size in the best cluster schemes





Chapter 4

Spatial point patterns clustering
for the identification of specialized
agglomeration

Unlike in Chapters 2 and 3, in which regions were defined according to process-
exogenous criteria, namely administrative entities, in this Chapter the space is a
unique continuum. The spatial process approach is based on geocodified data, and
aims at assessing the power of attraction from a local space perspective. As we
mentioned in chapter 1 (MAUP problem), the availability of geocodified data allow
for quantifying the specialization level of a certain activity at a particular point
in space. From the point of view of a non-homogeneous Poisson process, firm lo-
calization points are randomly distributed, and disjoint area counts are mutually
independent, each based on Poisson’s distribution according to which the intensity
parameter forms a finite measure of the reference space, in this case a bi-dimensional
space. This measure may be interpreted as the representation of the differentiated
power of attraction of the space and, in the case of a specific area, the expected
value of the number of locations in such area.

The approach of spatial point pattern analysis using de geocodified data already
has known considerable developments in economic geography. Barff (1987) uses a
point pattern analysis of manufacturing in Cincinnati (Ohio) and focuses on the im-
portance of production technology in understanding the degree of urban industrial
clustering. Duranton and Overman (2005) study the detailed location pattern of
industries, and particulary the tendency for industries to cluster relatively to overall
manufacturing through the develop of distance-based tests of localization. Recently,
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Arbia et al. (2007) suggest an adequate model of spatial coagglomeration of indus-
tries and describe a class of spatial statistical methods to be used in the empirical
analysis of spatial clusters. They use a set of European Patent Office (EPO) data
and produce a series of empirical evidences referred to as the pairwise intrasectoral
spatial distribution of patents in Italy in the nineties. In this analysis they are able
to identify some distinctive joint patterns of location between patents of different
sectors and to propose some possible economic interpretations. These works focus
on the co-agglomerations or clustering tendency of manufacturing sectors, i.e. on
the spatial concentration or just agglomeration (in the sense of Section 1.2.3) but
do not pay attention to the identification of these spatial clusters. By contrast, this
chapter concentrate the attention on the identification of specialized agglomerations.

4.1 Spatial point patterns

A spatial point pattern is a set of locations irregularly distributed within a region
of interest M . We refer to this set of points as events, to distinguish them from
arbitrary points of the region in question.

Throughout this chapter, bold face will be used for points in a two-dimensional
space. The observed point pattern x will be treated as a realization of a random
point process X. A point process is a stochastic process generating a random set of
points; the number of points is random, as well as the locations of the points.

In the case of a Poisson processes, the intensity of the processes represents
expected number of points per area. The intensity may be constant (uniform or
homogeneous) or may vary from location to location (non-homogeneous).

Fig 4.1 introduces the idea of multivariate point pattern. In this fictitious ex-
ample, the points represents firms of two different types (hence, bivariate) in man-
ufacture sectors. The data consist of the location of 80 firms, amongst which 40 are
of orange activity, whilst the remaining 40 blue points are the firms in the rest of
activities. Fig. 4.1, might also represent the position of two types of trees in an area
of woodland or cells in the retina.

For more details about spatial point patterns see Diggle (2003) and Møller and
Waagepetersen (2004).
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Figure 4.1: Bivariate point pattern

4.1.1 Poisson processes

A Poisson process is a counting process and its characteristic feature is a property
of statistical independence. More specifically:

Definition 1. Let Λ be a Borel measure on R2. A Poisson process with parameter
Λ is a point processes with the following properties:

• (PP1): for any bounded Borel A ⊆ R2, N(A) has a Poisson distribution with
intensity parameter Λ(A). Thus E[N(A)] = Λ(A);

• (PP2): for any bounded disjoint Borel sets A and B, N(A) and N(B) are
stochastically independent.

In the smooth case, the intensity Λ may be represented by the Riemann’s integral
of a local intensity λ: Λ(A) =

∫
A
λ(x) dx. When the intensity is a finite measure,

i.e. Λ(M) = m, f(x) = λ(x)/m is a probability density:
∫
M
f(x) dx = 1.

Definition 2. A Poisson process is stationary, or homogeneous, if the parameter
Λ is proportional to the Lebesgue measure, i.e. Λ(A) = m|A| for some finite m
where |A| is the Lebesgue measure (area) of A. This process is sometimes referred
to Complete Spatial Randomness (CSR) (Kingman 1967).

Thus, in the general case the expected number of events in space varies as the
intensity function does, whereas in the homogeneous case, the expected number
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of events is constant per unit area. In both cases, however, spatial independence is
maintained. It might be emphasized that in a Poisson process approach, a significant
clusterization of point is attributed to the variation of the process intensity. More-
over, this intensity is deemed to represent the only cause of clusterization because
conditionally on the intensity what is left is pure randomness.

If it is suspected that the intensity may be non-homogeneous, the intensity
function or intensity measure can be estimated nonparametrically by techniques
similar to those used for estimating probability densities, such as quadrat counting
and kernel smoothing. For more details about Poisson processes see Daley and
Vere-Jones (1972), Ripley (1981), Kingman (1993) and Kutoyants (1998).

4.2 Measurement of local specialization in contin-

uous space

Consider now a universe of reference M where M is a Borel region of R2. For the
spatial analysis of specialization it is natural to assume that Λ(M) = m is finite. We
may accordingly decompose the Poisson process into a (marginal) process generating
a number of points in M , i.e. a Poisson random variable N(M) with parameters
Λ(M), and a process conditional on N(M) generating the location of the N(M)
points. In such a case, as mentioned above, the normalized intensity f(x) = λ(x)/m
is a probability density.

When considering a multivariate Poisson process, N = (N1, ..., Na, ..., NA),
where Na is a Poisson process for activity a, Na(M) represents the total num-
ber of firms for activity a in region M , the realization of witch is denoted na. When
aggregating all activities, we define the random process N+ =

∑
aN

a and n+, the
realized value of N+(M), is the realized total number of firms for region M .

Thus, we now assume that the localization pattern takes the form of a non-
homogeneous Poisson process, conditional on the total number of firms, namely na

for activity a and n+ for all activities aggregated. Here, a significant clustering
of firms is interpreted as an effect of higher values of the intensity function of the
process.

Let us adjust to the continuous case the Hoover-Balassa Local Quotient coeffi-
cient, introduced in Section 2.1, as follows:
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LQa(x) =
λa(x)
na

λ+(x)
n+

=
fa(x)

f+(x)
(4.1)

where λa(x), respectively λ+(x), is the local intensity of the process associated to
activity a, respectively of the aggregated process. Two features should be noticed
of this local measurement of specialization. Firstly, the normalized densities fa and
f+ integrate to 1 and have therefore comparable values at point x whereas λa and
λ+ do not. Secondly, the equality to 1 of this ratio means that point x has a similar
attractivity among the na firms of sector a and among the n+ firms of all sectors
together. Thus, this ratio close to 1 for each sector of activity means that this point
reveals no specialization. A ratio higher than 1 in a substantial neighborhood of
a given point x reveals an area particularly attractive for a specific activity and
eventually a degree of specialization.

4.2.1 Average Specialization Measure (ASM)

Because in formula (4.1), no specialization around activity a at point x means that
LQ

a
(x) = 1, i.e. λa(x)/na = λ+(x)/n+, a possible Average Specialization Measure

(ASM) for the continuous space M is

ASM =
1

n+

A∑
a=1

∑
i∈Ia

(
λa(xi)

na
− λ+(xi)

n+

)2

(4.2)

where i is the index of firms, and Ia is the set of the indexes of firms in activity
a; more explicitly, the firms are ordered in such a way that: I1 = {1, ..., n1}, I2 =
{n1 + 1, ..., n1 +n2}, ..., IA = {n+−na + 1, n+−na + 2, ..., n+}. In the construction
of ASM, averaging over the n+ firms of each country allows for comparison between
countries, even of quite different size.

4.3 Kernel method

The kernel method is a non-parametric method used for a density estimation and has
been a popular technique for analyzing one and two-dimensional data; see Bowman
and Azzalini (1997), Scott (1992), Simonoff (1996), Wand and Jones (1995) for
examples. Scott (1992)’s book applies to multivariate density estimation. The
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nature of the kernel methods is first briefly presented in the framework of a non-
parametric density estimation.

Consider a set of observed data points x assumed to be a sample from an un-
known probability density function, say f . Density estimation is the construction of
an estimator of the density function f from the observed data. For two-dimensional
data, Rosemblatt (1956) has proposed the following kernel estimator for an unknown
density f :

f̂(x) =
1

nh2

n∑
i=1

K

(
x− xi
h

)
(4.3)

where h is a so-called smoothing parameter or bandwidth and the function K, called
a “kernel”, is a known function defined for two-dimensional x, satisfying

∫
R2

K(x)dx = 1

Usually K will be a radially symmetric unimodal probability density function,
for example the standard bivariate normal density function

K(x) = (2π)−1 exp(−1
2
xtx)

Thus, the kernel estimator depends on two parameters: the bandwidth h and
the kernel density K. It is generally considered that the density kernel estimator is
robust with respect to kernel choices; this eventually justifies the usual choice of a
Gaussian kernel (for details, see Silverman 1992).

A natural use of density estimation is a description of some properties of a
given set of data: density estimation may indeed give valuable indications on such
features as skewness or multimodality (i.e. the presence of several local maxima in
the density) in the data. In this application, the technique of density estimation is
particulary suitable to detect local specialization.

Thus, an estimator of local measurement of specialization of point x in the
activity a with bandwidth h1 and h2 is the following
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L̂Q
a

h1h2
(x) =

λ̂ah1
(x)

na

λ̂+
h2

(x)

n+

(4.4)

=
f̂ah1

(x)

f̂+
h2

(x)
(4.5)

=

1
nah2

1

∑
i∈Ia

K
(

x−xi
h1

)
1

n+h2
2

∑
i∈I+

K
(

x−xi
h2

) (4.6)

where I+ is the set of all indexes of firms, and λ̂ah1
(x)/na and λ̂+

h2
(x)/n+ are a kernel

local density estimators with bandwidth selection h1 and h2 of firms in the activity
a and of the aggregated process, respectively.

As the matter of fact, in this Chapter we generalize to a two-dimensional space
a suggestion of Flahaut, Mouchart, San Martin and Thomas (2003) that introduced
the idea of estimating the intensity of a non-homogeneous Poisson process on the
real line through a technique of nonparametric density estimation after normalizing
the intensity into a probability density.

Thus f̂ah1
(x) tells how far companies dedicated to activity a tend to concentrate

around point x whereas L̂Q
a

h1h2
(x) tells whether this concentration around point x is

larger than for all activities aggregated. This is precisely the issue of specialization.

The following Fig. 4.2 illustrates a specialization measurement (using continuous

L̂Q
a

h1h2
(x) with spherical normal kernels with h1 = 0.15 and h2 = 0.13) for the above

Fig. 4.1 (location of 80 firms, amongst which 40 are of orange activity, whilst the
remaining 40 blue points are the firms of rest of activities).

It can be observed that the specialization pattern for the orange activity has a
”U” shape in the central layer of the territory.

4.4 Bandwidth selection

As noticed in Flahaut, Mouchart, San Martin and Thomas (2003),“The kernel es-
timator depends on two parameters: the bandwidth h and the kernel density K.
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Figure 4.2: Specialization measurement

It may be shown that the density kernel estimator is generally robust with respect
to kernel choices; this eventually justifies the usual choice of a Gaussian kernel (for
details, see Silverman (1986, Chapter 3). For a given kernel K, the kernel estima-
tor critically depends on the choice of the smoothing parameter h. An appropriate
choice of the smoothing parameter should be determined by the purpose of the esti-
mate. Silverman (1986, Section 3.4.1) suggests a subjective choice of the smoothing
parameter if the purpose of the estimation is to explore the data in order to propose
possible statistical models and hypotheses.

In addition, he suggests an automatic choice of the smoothing parameter, which
may be considered as a starting point for subsequent subjective adjustments (Silver-
man, 1986, p. 44). Indeed, an optimal smoothing parameter hopt may be obtained
by minimizing the approximate integrated mean square error; such an optimal band-
width is proportional to n−1/5, where n is the sample size. The constant of propor-
tionality depends on the unknown density f ; for computing it, iterative methods are
typically used (see Silverman, 1986, p. 40). The initial iteration often makes use of
a reference bandwidth href , defined by both the kernel K and the unknown density
f ; when f is Gaussian with variance σ2 the reference bandwidth is obtained by:

href = 1.06 σn−1/5 (4.7)

(end of citation).
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An optimal bandwidth requires a performance criterion, a common choice of
which is the Kullback-Leibler information

I(f, f̂) =

∫
x∈M

f(x) log
(
f(x)/f̂(x)

)
dx (4.8)

which is a divergence between f and f̂ . An alternative may be the integrated squared
error

ISE =

∫
x∈M

(
f̂(x)− f(x)

)2

dx (4.9)

The mean integral squared error (MISE) criteria is accordingly defined as:

MISE(h) = E

 ∫
x∈M

(
f̂h(x)− fh(x)

)2

dx

 (4.10)

The asymptotic form of h which minimizes the mean integrated squared error
is given by

h =


∫

x∈M
K2(x) dx

n(
∫

x∈M
K(x)x2 dx)2

∫
x∈M

(f ′′(x))2 dx


1/5

(4.11)

In this work we will adopt a data-based bandwidth selection approach. One
alternative for h1 and h2 bandwidth selection is to use cross-validation of least
square, according to Rudemo (1982) and Bowman’s (1984) suggestions. However,
as it will be noted in Section 4.6 we will make a bootstrap, we opted for bandwidths
through smoothing bootstrap, following Taylor (1989).

The bootstrap version of (4.10) is:

MISE∗(h) = E∗

 ∫
x∈M

(
f̂ ∗h(x)− f̂h(x)

)2

dx

 (4.12)



116 4. Spatial point patterns clustering for the identification of specialized agglomeration

where f̂ ∗h(x) is the kernel estimate using resampled x∗i ∼ f̂h(x). Realizations of x∗

could be generated as follows; see, for example Silverman (1992):

• choose an integer I with equal probability from {1, . . . , n};

• generate a random variable φ ∼ K(x);

• set x∗ = xI + hφ.

However, for the Gaussian kernel, we shall see that there is no need for this ap-
proach as the bootstrap mean can be calculated without resampling. By minimizing
MISE∗(h) we minimize an estimate of mean integrated squared error, and hence,
get an h close to the minimizing integrated squared error. And obvious concern al
this stage of using f̂ ∗h(x) is that each application of the smooth bootstrap inflates
the variance. Similarly, for Kullback-Leibler information we would minimize

E∗

 ∫
x∈M

f̂h(x) log f̂h(x)/f̂ ∗h(x) dx

 (4.13)

where again the expectation E∗ is taken with respect to the distribution of x∗.

4.5 Problem related to the use of normal kernels

4.5.1 Problems on the boundaries

One of the issues raised by the use of normal kernels is that for regions with low

density of firms, the ratio of estimated densities in L̂Q
a

h1h2
(x) involves very small

values for both densities (numerator and denominator). If the numerator is greater
than the denominator, the ratio will tend to reciprocate the proportion of firms in
the activity a of interest, namely n+/na. If the denominator is greater than the
numerator, the ratio will tend to zero. This is due to the thin tails typical of the
normal distribution.

The next two figures display a local measurement of specialization based on a
zoom-out of the Fig. 4.2. In this illustration, the orange-colored points represent
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firms of the activity of interest, whereas the blue-colored points represent the other
activities.

The left-hand graph of Fig. 4.3 is based on normal kernels. The regions far
from the center and bordered, toward the center, by blue-colored points become
white regions, illustrating the fact that the measurement of specialization tends to
zero. In contrast, regions far from the center and bordered, toward the center, by
orange-colored points become dark-colored regions, reflecting the fact that the local
measurement of specialization tends to n+/na. Next subsection gives a more precise
statement of this phenomenon.

The right-hand graph of Fig. 4.3 shows a local measurement of specialization
with Cauchy kernels. All the zones that are far from the center show a moderate
color intensity that corresponds to the 1-value of the limit in the local measurement
of specialization.

Figure 4.3: Boundary problem of kernel estimator: local measurement of specializa-
tion with normal kernels (left-hand) and with Cauchy kernels (right-hand)

This behavioral difference in the continuous L̂Q
a

h1h2
(x) that can be observed

when using Cauchy kernels instead of normal kernels derives from the following
results:

lim
x→∞

f(x)
f(x−∆)

= 0 if f is a standard normal density

lim
x→∞

f(x)
f(x−∆)

= 1 if f is a standard Cauchy density

when ∆ > 0
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The upper diagram in the following Fig. 4.4 pair shows the convergence to
zero of the density ratio for the normal case, while the lower diagram shows the
convergence to one of the same ratio for the Cauchy case.

Figure 4.4: Convergence to zero of the density ratio: normal case (upper diagram)
and Cauchy case (lower diagram)

The problem of boundary effects has long been recognized, starting with Gasser
and Müller (1979), while more recent research of methods to handle boundary effects
for kernel function estimates include those by Marron and Ruppert (1994), Jones
and Foster (1996), Müller and Stadtmüller (1999), and more recently Hazelton and
Marshall (2008) for bivariate density estimation. The reason for the boundary prob-
lem in the kernel estimator is that, at a boundary point, the kernel mass falls outside
the support of the function to be estimated, and is therefore lost. We can consider
that this problem is caused by a discontinuity in the function to be estimated across
the boundary.

Although we believe it is important to show how choosing the K parameter may
affect the estimation of the specialization level at the support ends, it still remains
a minor problem vis-à-vis the selection of the h parameter. As we will see in the
examples included at the end of this Chapter, the bootstrap method proposed in
section 4.6 eliminates or correctly isolates this disadvantage to identify the statistical
significance of the specialization level, even using normal kernels.
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4.5.2 Formal exposition

We define the Zone of Influence of the ε margin for the i firm (Zε
i ) as the region in

the map formed by the points for which the i firm is at least less ε closer than any
other firm, more formally

Zε
i = {x ∈ R2 : d(xk,x) < d(xi,x)− ε,∀k ∈ I+, k 6= i} (4.14)

where d(·, ·) is a Euclidean distance between points of R2.

These regions will be bounded for the innermost points, while they will generally
be unbounded for the outermost points. It can easily be observed that if we consider
ε = 0, the zones of influence defined will match the well-known Voronoi cells (see
for more de Berg et al. 1997).

This definition will be useful to create a sequence of divergent points in the zone
of influence of a firm of the activity a, and calculate the LQ limit applied to such
sequence. Next Fig. 4.5 shows the influence zone of xi∗ point of margin ε.

Figure 4.5: Influence zone of xi∗ point of margin ε

Theorem 1 (zones of high intensity).For the unbounded zones of influence cor-
responding to the firms of the activity a, as we move away from such firms, the
specialization measure (using a normal spherical kernel) will tend to reciprocate de
proportion of firms with such activity n+/na.
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In formal terms, given x1, ...,xn, ε > 0, any firm i∗ of the activity a (i∗ ∈ Ia),
yn ∈ Zε

i∗ ⊂ R2 a sequence of points in the map that belong to the zone of influence
of margin ε of the firm i∗ such that

d(yn,xi∗) < d(yn+1,xi∗)

d(yn,xi∗)
n→∞−→ ∞

i.e. monotonically increasing sequence of distance, therefore

L̂Q
a

h(yn)
n→∞−→ n+

na

Demonstration:

L̂Q
a

h(yn) =

λ̂ah(yn)

na

λ̂+
h (yn)

n+

(4.15)

=

1
nah2

∑
i∈Ia

K
(yn−xi

h

)
1

n+h2

∑
i∈I+

K
(yn−xi

h

) (4.16)

If we divide the numerator and the denominator by K(yn−xi∗
h

)

1
nah2

(
1 +

∑
i∈Ia,i 6=i∗

K(
yn−xi
h

)

K(
yn−xi∗

h
)

)
1

n+h2

(
1 +

∑
i∈I+,i 6=i∗

K(
yn−xi
h

)

K(
yn−xi∗

h
)

) (4.17)

we should see that

∑
i∈I+,i 6=i∗

K(yn−xi
h

)

K(yn−xi∗
h

)

n→∞−→ 0 (4.18)

and consequently, also
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∑
i∈Ia,i 6=i∗

K(yn−xi
h

)

K(yn−xi∗
h

)

n→∞−→ 0 (4.19)

And since Ia ⊂ I

0 ≤
∑

i∈Ia,i 6=i∗

K(yn−xi
h

)

K(yn−xi∗
h

)
≤

∑
i∈I+,i 6=i∗

K(yn−xi
h

)

K(yn−xi∗
h

)
(4.20)

it results in

L̂Q
a

h(yn)
n→∞−→ n+

na
(4.21)

To demonstrate (4.18) we must note that ∀i ∈ I+, i 6= i∗ and since yn ∈ Zε
i∗

then

K(yn−xi
h

)

K(yn−xi∗
h

)
<
K( (yn−xi∗ )(1+ε)

h
)

K(yn−xi∗
h

)
(4.22)

=
f(‖yn−xi∗‖(1+ε)

h
)

f(‖yn−xi∗‖
h

)
(4.23)

=
e−

1
2 ‖yn−xi∗‖

2(1+ε)2

h2

e−
1
2 ‖yn−xi∗‖

2

h2

(4.24)

= e−
1
2
‖yn−xi∗‖2ε2 (4.25)

where f is the univariate normal density function. Hence

∑
i∈I+,i 6=i∗

K(yn−xi
h

)

K(yn−xi∗
h

)
< (n+ − 1) e−

1
2
‖yn−xi∗‖2ε2 (4.26)

and since based on the hypothesis d(yn,xi∗)
n→∞−→ ∞, given ε, there is an n that

makes (n+ − 1) e−
1
2
‖yn−xi∗‖2ε2 as small as desired.



122 4. Spatial point patterns clustering for the identification of specialized agglomeration

4.6 Identification of specialized agglomeration

4.6.1 Introducing the methodology

The identification of specialized agglomerations in continuous space has a close re-
lationship with the identification of statistical significance or significant feature of
the specialization level. In the analysis of three or higher-dimensional data the
discovery of significant features may have more interest than the estimation of the
whole data density. Feature significance is an extension of kernel density estimation
which is used to establish the statistical significance of features (e.g. local modes).
For one- and two-dimensional data Chaudhuri and Marron (1999) and Godtliebsen
et al. (2002) looked for as significant features from different perpectives: local ex-
trema, valleys, ridges, saddle points and steep gradients. They developed techniques
for determining and visualizing these features. Chaudhuri and Marron (2000) and
Hannig and Marron (2006) produced asymptotic distributional results for the one-
dimensional case. As the number of dimensions increases, local maxima become the
single most important features, and identification of these maxima is the goal.

In feature significance we focus on a range of bandwidths, rather than on a
“best” bandwidth selection. For one-dimensional data this approach leads to the
“Sizer” plots of Chaudhuri and Marron (1999). For bivariate data Godtliebsen et
al. (2002) employ diagonal bandwidth matrices with the same bandwidth for both
dimensions, thus reducing the two-dimensional problem to one dimension. For the
single diagonal bandwidth one can then proceed as in the one-dimensional “Sizer”
case.

In contrast, we propose a bootstrap methodology to evaluate the significance of
the local specialization following the method of bootstrap hypothesis testing pro-
posed by Efron and Tibshirani (1993), and Davison and Hinkley (1997). Although
there is a very large literature on bootstrapping in statistic, a surprisingly small
proportion of it is devoted to bootstrap testing. Instead, the focus is usually on
estimating bootstrap standard errors and constructing bootstrap confidence inter-
vals. The basic idea of any sort of hypothesis test is to compare the observed value
of a test statistic with the distribution that it would follow if the null hypothesis
were true. The method of bootstrap hypothesis testing generates a large number of
simulated values of the test statistic and compare it with the empirical distribution
function of the simulated ones. Recently, Reiczigel et al. (2005) uses this approach
to test the stochastic equality of two populations and Mackinnon (2007) proposed
a bootstrap and Monte Carlo methods for testing hypothesis in econometrics (test
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for structural change with an unknown break point).

Although the values of the L̂Q
a

h1h2
(x) function greater than 1 suggest high spe-

cialization levels for the activity a, we should still find a measure of the empirical
evidence to support this value, i.e. the statistical signification of the specialization.
To determine the significance of the estimated specialization levels, we calculate for

each point x of interest the distribution of the values for the L̂Q
a

h1h2
(x) function,

based on the non-specialization (of the activity a) hypothesis, i.e. based on the
hypothesis: λa(x)/na ≤ λ+(x)/n+, and consider as significant specialization points

those points x with a value of L̂Q
a

h1h2
(x) significantly higher than 1 or significantly

over-specialized (in the sense of Chapter 2 and 3), relative to the distribution under
the non-specialization (of the activity a) hypothesis. The steps are:

1. bandwidth selection of the activity a through smoothing bootstrap (h1);

2. bandwidth selection of the total activity through smoothing bootstrap (h2);

3. using the estimated density of the total activity, λ̂+
h2

(x)/n+, we create B sam-
ples of size na;

4. for each bootstrap sample of step 3, we estimate the λ̂a∗h1
(x)/na density (with

the h1 established in step 1), and together with λ̂+
h2

(x)/n+ density, we calculate

the L̂Q
a∗
h1h2

(x) function for all the points of interest:

L̂Q
a∗
h1h2

(x) =

λ̂a∗h1
(x)

na

λ̂+
h2

(x)

n+

(4.27)

Therefore, for each x point of interest, we have:

• the value of the original L̂Q
a

h1h2
(x) function;

• B Monte Carlo replications of the L̂Q
a∗
h1h2

(x) function.
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4.6.2 Identifying high-specialization regions

The significance of L̂Q
a

h1h2
(x) is accordingly evaluated thought the bootstrap distri-

bution of L̂Q
a∗
h1h2

(x). A point x in the map is detected as a high specialization (of
the activity a) point, inasmuch as it meets

L̂Q
a

h1h2
(x) > 1 (4.28)

and

P̂ ∗
(
L̂Q

a∗
h1h2

(x) > L̂Q
a

h1h2
(x)
)
< α (4.29)

where

P̂ ∗
(
L̂Q

a∗
h1h2

(x) > L̂Q
a

h1h2
(x)
)

= 1−F̂ ∗
(
L̂Q

a

h1h2
(x)
)

=
1

B

B∑
j=1

I
(
L̂Q

a∗
h1h2

(x) > L̂Q
a

h1h2
(x)
)

(4.30)

where F̂ ∗ denotes the bootstrap distribution function of the L̂Q
a∗
h1h2

(x), B is the num-
ber of the bootstrap samples, or simulated data sets, indexed by j, and I(·) denotes
the indicator function, which is equal to 1 when its argument is true and 0 otherwise.
Thus the bootstrap P -value is, in general, simply the proportion of the bootstrap

test statistics L̂Q
a∗
h1h2

(x) that are more extreme than the observed test statistic

L̂Q
a

h1h2
(x). Of course, rejecting the null hypothesis whenever P̂ ∗

(
L̂Q

a

h1h2
(x)
)
< α

is equivalent to rejecting it whenever L̂Q
a

h1h2
(x) exceeds the 1-α quantile of F̂ ∗.

Perhaps surprisingly, this procedure can actually yield an exact test in certain

cases. The key requirement is that the test statistic L̂Q
a

h1h2
(x) should be pivotal,

which means that its distribution does not depend on anything that is unknown.

This implies that L̂Q
a

h1h2
(x) and the L̂Q

a∗
h1h2

(x) all follow the same distribution if
the null is true. In addition, the number of bootstrap samples B must be such
that α(B + 1) is an integer, where α is the level of the test. If a bootstrap test
satisfies these two conditions, then it is exact. This sort of test, which was originally
proposed in Dwass (1957), is generally called a Monte Carlo test. For an introduction
to Monte Carlo testing, see Dufour and Khalaf (2001) and Diggle (2003).

It is quite easy to see why Monte Carlo tests are exact. Imagine sorting all B+1

test statistics. Then rejecting the null whenever P̂ ∗
(
L̂Q

a∗
h1h2

(x) > L̂Q
a

h1h2
(x)
)
< α
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implies rejecting it whenever L̂Q
a

h1h2
(x) is one of the largest α(B + 1) statistics.

But, if L̂Q
a

h1h2
(x) and the L̂Q

a∗
h1h2

(x) all follow the same distribution, this happens
with probability precisely α. For example, if B=999 and α=0.01, we reject the null

whenever L̂Q
a

h1h2
(x) is one of the 10 largest test statistics.

Since a Monte Carlo test is exact whenever α(B+1) is an integer, it is tempting
to make B very small. In principle, it could be as small as 19 for α=0.05 and as small
as 99 for α=0.01. There are two problems with this, however. The first problem is
that the smaller is B the less powerful is the test. The loss of power is proportional
to 1/B; see Jöckel (1986) and Davidson and MacKinnon (2000).

The second problem is that, when B is small, the results of the test can depend
nontrivially on the particular sequence of random numbers used to generate the
bootstrap test statistics. Since P̂ ∗ is just a frequency, the standard error of P̂ ∗ is
P ∗(1− P ∗)/B. Thus, when P ∗=0.05, the standard error of P̂ ∗ is 0.0219 for B=99,
0.0069 for B=999, and 0.0022 for B=9,999. This suggests that it might be dangerous
to use a value of B less than 999 and it would not be unreasonable to use B=9,999.

As a conclusion, in this chapter we define a specialization measurement for a
point x. This definition is an extension of the well-known LQ measurement to
the continuous space. To quantify the degree of significance of the specialization
measurement, we used the bootstrap method to approximate the distribution of
the function LQ under the non-specialization hypothesis. As a result, we define a
specific point in the map x as specialized, if the LQ value for that point is larger
than a pixel quintile of the bootstrap distribution for the same point.

4.7 Graphic representation of the specialized ag-

glomerations

This section shows the results of implementing the methodology proposed in the
previous section with the following changes: for simplicity and calculation speed,
i) we used the asymptotic method for the bandwidth selection of h1 and h2; and
ii) we created an equally spaced rectangular grid of points in M map, with size
n+ × n+, to reduce the number of points, and consequently, the number of tests of
significance (see for more Diggle 2003). Thus, for each of the (n+)

2
cells we compute

the estimated value L̂Q
a

h1h2
(x) as in (4.28) and the significance level as in P̂ ∗-value

(4.30), and eventually construct an histogram of P̂ ∗-values. The B number of Monte
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Carlo replications for the null hypothesis bootstrap is equal to 1,000, and the critical
level α is equal to 0.05.

Table 4.1 shows the schemes of simulations for seven examples, where I(2) denotes
the 2× 2 identity matrix.

For each example, Table 4.2 gives the following diagrams: i) the locations of
the simulated points in the M map (first graph); ii) the specialization level (second
graph); iii) the significant specialized regions (third graph), in which the zones with
a high specialization level are viewed as contiguous arrays of blue points; and iv)
the p-values histogram (fourth graph), in which the solid line shows the level of
non-specialization hypothesis.

These graphs provide some hint on the actual working of the proposed method-
ology. The first column “Simulated points” make clear the difference among the 7
examples. In particular, examples 5 and 6 display substantial clustering whereas
examples 1 to 4 and 7 provide locations more spread on the map. The second col-
umn “Specialization level” is based on the values of the estimated local quotient

L̂Q
a

h1h2
(x). Two features should be noticed. These graphs illustrate clearly the

connection between the locations (first column) and the value of the local quotient.
Secondly, the second column also illustrate the frontier problem typical of the ker-
nel estimators. The third column “Significant specialized regions” also deserves two
remarks. Firstly, checking for significance of the value of the local quotient, through
bootstrapping, provide a more synthetic view than the second column: even though
the level alpha is arbitrary, the resulting view better corresponds to the needs of
spatial analysis by explicitly bordering specialized regions. Secondly, bootstrapping
naturally eliminates the frontier problems. Finally, the last column “P-values his-
togram” provide a synthetic view of the method through two interesting features.
Firstly, the different pattern of each example results in different pattern of clus-
terization, i.e. the proportion of significant cells is clearly different through the 7
examples. Secondly, the method illustrates explicitly a compensation effect, i.e. that
to over-specialized regions correspond, by logical necessity, sub-specialized regions
even though this compensation effect is different among the 7 examples.
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Table 4.1: Schemes of simulated random points

Example n+ Blue points (n+ − na) Orange points (na)
Bandwidths
h1 h2

1 130 70 : U(0, 1)2 30 : N
([

0.25
0.25

]
, 0.0156 I(2)

)
0.13 0.11

30 : N
([

0.75
0.75

]
, 0.0156 I(2)

)

2 120 70 : U(0, 1)2 50 : N
([

0.5
0.5

]
, 0.0156 I(2)

)
0.06 0.09

3 400 200 : U(0, 1)2 50 : N
([

0.25
0.25

]
, 0.0156 I(2)

)
0.10 0.09

50 : N
([

0.25
0.75

]
, 0.0156 I(2)

)
50 : N

([
0.75
0.25

]
, 0.0156 I(2)

)
50 : N

([
0.75
0.75

]
, 0.0156 I(2)

)
4 600 300 : U(0, 1)2 300 : U(0, 1)2 0.10 0.09

5 400 100 : t

([
2
2

]
, I(2), 5

)
100 : t

([
2
2

]
, I(2), 5

)
0.53 0.48

100 : t

([
−2
−2

]
, I(2), 5

)
100 : t

([
−2
−2

]
, I(2), 5

)
6 600 100 : U(−1, 1)2 100 : U(−1, 1)2 0.66 0.59

100 : t

([
2
2

]
, I(2), 5

)
100 : t

([
2
2

]
, I(2), 5

)
100 : t

([
−2
−2

]
, I(2), 5

)
100 : t

([
−2
−2

]
, I(2), 5

)
7 80 40: exactly those of fig. 4.1 40: exactly those of fig. 4.1 0.15 0.13
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Table 4.2: Graphic representation of the specialized agglomerations

Example
Simulated Specialization Significant specialized P-values histogram

points level regions

1

2

3

4

5

6

7
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4.8 Application: Manufacture sector data of Buenos

Aires City

For this application, we have geocodified 10,657 firms of the manufacturing sector
in Buenos Aires City (Fig. 4.6). First, we had to homogenize the name of the
streets declared by the firms on the basis of the name of the georeferenced streets
map of Buenos Aires City, according to a record linkage algorithm developed by the
Research Center of the Università di Bologna at Buenos Aires. Finally, the firms
were geocodified using the ArcGis software.

Figure 4.6: Locations of 10,657 geocodified firms of the manufacturing sector in
Buenos Aires City

4.8.1 Specialized agglomerations of pharmaceutical and med-
ical equipment sectors

The following Fig. 4.7 shows the locations of 248 geocodified firms of the Pharma-
ceutical sector (class ISIC Rev. 3: 2423)
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Figure 4.7: Locations of 248 geocodified firms of the Pharmaceutical sector in Buenos
Aires City

Next Fig. 4.8 shows the locations of 223 geocodified firms of the Medical equip-
ment sector (class ISIC Rev. 3: 3311)

Figure 4.8: Locations of 223 geocodified firms of the Medical equipment sector in
Buenos Aires City

In the same way as that of the above examples, the next figures shows: i)
the locations in the M map in which each x point of interest (na) is assigned an
orange color, while the rest of points (n+ − na) are in blue (upper left corner); ii)
the specialization level (upper right corner); iii) the significant specialized regions
(lower left corner), in which the zones with a high specialization level are viewed
as contiguous arrays of blue points; and iv) the p-values histogram (lower right
corner), in which the solid line shows the level of non-specialization hypothesis. The
B number of Monte Carlo replications for the null hypothesis is equal to 1,000.



4.8. Application: Manufacture sector data of Buenos Aires City 131

For expository purpose, we only consider two sectors (Fig. 4.9): Pharmaceutical,
as a sector of interest, and Medical equipment, deemed to represent “the other
sectors”. The critical level α is equal to 0.01 and the reference bandwidths are (in
meters): h1 = 1312.50 and h2 = 1220.13.

Figure 4.9: Specialized agglomerations of Pharmaceutical sector

Observing the left-hand graph of significant specialized regions in Fig. 4.10, one
may wonder why the region m1 appears as significant while region m2 does not?
Using the R function “Jittering” for separating points for plotting (this technique
add a random noise to separate points with identical values) makes to note that
the region m1 had 11 nearest orange points whereas the region m2 had 9 and more
separate orange points (right-hand graph).

The next Fig. 4.11 shows how far the choice of the critical level alpha affects
the identification of specialized agglomerations. For instance, using a critical level
α of 0.05, the region B of the above diagram appears now as significant specialized
region with a new small specialized region in the downtown.

In Fig. 4.12 the point of interest (orange color) are the Medical equipment firms
while the rest of points (blue color) are the Pharmaceutical firms. The critical level
α is equal to 0.01. The references bandwidths are (in meters): h1 = 1293.13 and
h2 = 1220.13. Notice the difference of specialized agglomerations in Fig. 4.9 and in
Fig. 4.12.
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Figure 4.10: Specialized agglomerations of Pharmaceutical sector: original locations
(left-hand) and jitter locations (right-hand)

Figure 4.11: Specialized agglomerations of Pharmaceutical sector with critical level
α equal to 0.05

Finally, in Fig. 4.13 graphs shown de geocodified firms of Pharmaceutical and
Medical equipment sectors respectively and the specialized agglomerations at critical
level α to 0.01. The significant specialized regions of Pharmaceutical had 68 firms
(27%) while the significant specialized regions of Medical equipment had 45 firms
(20%). In the sense of Chapter 3, the Pharmaceutical firms had a higher tendency
to co-localize in specialized agglomerations to the Medical equipment firms.
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Figure 4.12: Specialized agglomerations of Medical equipment sector

Figure 4.13: Geocodified firms (left-hand graph), and Specialized agglomerations of
Pharmaceutical (center graph) and Medical equipment (right-hand graph) sectors





Chapter 5

Summary and overall conclusions

5.1 An overview of this thesis

If we observe a map with the location of economic activities, three clearly defined
phenomena become readily apparent: concentration, specialization and agglomer-
ation. While Economic Geography studies the underlying causes on the basis of
different theoretical models, there are only a few studies that cover the aspects de-
veloped in this thesis that refer to the identification of specialized agglomerations,
as well as to their global quantification.

In this research two general approaches are put in contrast. Chapters 2 and 3
take a discrete approach with exogenously defined regions, namely administrative
entities. The data are provided, for each region, by the number of employees and
firms categorized into sectors of activities and the labels of the region are arbitrary.
In contrast, Chapter 4 take a continuous approach of a unique universe of reference
and the data are provided by the geocodification of the firms with no reference to
region.

Our major original contributions to this research were:

• provide a graphical and conceptual explanation of the differences between con-
centration, specialization, agglomeration itself and specialized agglomerations
(Chapter 1);

• analyze specialization in terms of stochastic independence: non specialization
is viewed as the case where the joint proportion of employees of region i in
activity j is equal to the product of marginal proportions of region i and
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activity j; equivalently, the distribution of activities within region i is the
same as the global distribution at the country level (Chapter 2);

• the subsequent use of non parametric dependence measures as natural mea-
sures for the global specialization level (Chapter 2);

• the development of an automatic grouping procedure of regions and activ-
ities based on hierarchical clustering and correspondence analysis (HCCA),
defining a goodness of association measure for a given collapsed table, that
enabled us to i) significantly reduce the size of the original table and obtain
a best collapsed table with low level of information loss vis-à-vis the degree
of original specialization (e.g. in the case of Brazil, the number of cells of the
original table is reduced by 99%, namely from 113,036 to 884 cells, while the
lost specialization information using dX 2 was 23%); and ii) identify the homo-
geneous regions according to the industrial structure in terms of sub, and over
specialization activities in large two-way contingency tables;

• the adaptation of the cluster-identification methods proposed by Besag and
Newell (1991) to identify specialized agglomeration in discrete space (Chapter
3);

• the measurement of firm tendency to co-localize in specialized agglomerations
according to the industrial activity (Chapter 3 and Chapter 4);

• define a local specialization measurement for a point x as an extension of the
well-known LQ measurement to the continuous space (Chapter 4);

• a possible Average Specialization Measure (ASM) in continuous space (Chap-
ter 4); and

• the relationship between the identification of specialized agglomerations in
continuous space and the identification of statistical significance or significant
feature of the specialization level based on the method of bootstrap hypothesis
testing proposed by Efron and Tibshirani (1993) to approximate the distribu-
tion of the LQ under the non-specialization hypothesis (Chapter 4).

The application field of the methods developed in this work is sizable, and may
encompass applications for genetic studies, epidemiology sciences, and social and
politics topics, to mention just a few.
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5.2 Some possible extentions

The future methodological challenges of this one probably more related to the topics
put forth in Chapters 2 and 4. For example, to include certain restrictions for the
region and activity grouping method of Chapter 2, related to the distance among
regions and to the activities connection observed in the input-output matrix, respec-
tively.

A drawback of the identification of the specialized agglomeration method in
continuous space (Chapter 4) is that for a given n+×n+ grid, we are achieving a (n+)

2

hypothesis test. Hence, the contiguous arrays of blue points in the non-significant
specialized regions occur as a result of the lack of a global significance level, i.e. in the
(n+)2 hypothesis test it is expected that certain number of test results are significant
when they are not. More formally, the false discovery rate (FDR) is the expected
proportion of falsely rejected null hypotheses among all rejected null hypotheses.
A simple Bonferroni correction or the Benjamini and Hochberg (2005) method are
widely accepted and commonly used. These methods can provide corrected p-values
or estimates of the FDR for a given threshold p-value. Storey and Tibshirani (2003)
introduces a measure of statistical significance called the q-value associated with
each tested feature in addition to the traditional p-value. Their approach avoids a
flood of false positive results. Perone Pacifico et al. (2004) extends FDR to random
fields, for which there are uncountably many hypothesis tests. They develop a
method for finding regions in the fields domain where there is a significant signal
while controlling either the proportion of area or the proportion of clusters in which
false rejections occur. The method produces confidence envelopes for the proportion
of false discoveries as a function of the rejection threshold. Moreover, powerful re-
sampling approaches (like that used to estimate the FDR in this correspondence)
are precise and increasingly common with the rise in available computing power.
Regardless of the method used, the objective is to determine a statistical cutoff that
results in a reasonable number of false positives. An acceptable adjusted p-value or
FDR is somewhat arbitrary, but for the latter metric a value lower than 10 − 20%
is commonly cited.

To reduce the number of tests, one option is to implement the binning method,
also called “nearest neighbor binning” (see Wand and Jones 1995), moving each
data point to the grid point that is its nearest neighbor. Then the mapped points
are counted to give a matrix of bin counts.

Following Wang et al. (2006), an alternative for the kernel estimator of special-
ization measurement is a nearest neighbor approach to estimate divergence between
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the density of activity a and the density of the whole of activities for each point x
in the map, and to measure the specialization level by the Kullback-Leibler diver-
gence. One advantage of this approach is that it eliminates naturally the boundary
problem of the kernel estimator, i.e. when the kernel mass falls outside the support
of the function to be estimated caused by a discontinuity in this function across the
boundary.

Finally, an alternative to the bootstrap hypothesis testing is to approximate the
statistical properties of the statistic under the actual distributions of both activity
a and the whole of activities through a re-sampling scheme in order to replace na

points from the activity a of the original sample and n+ points now from the original
sample of the whole of activities.
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Jöckel, K-H. (1986). Finite sample properties and asymptotic efficiency of
Monte Carlo tests. Annals of Statistics 14: 336-347.

Jones, M., and Foster, P. (1996). A simple nonnegative boundary correction
method for kernel density estimation. Statistica Sinica 6: 1005-1013.

Kendall, M., and Stuart, A. (1963). The Advanced Theory of Statistics. Vol-
ume 1: Distribution Theory. London: Griffin.



References 149

Kingman, J. (1967). Completely random measures. Pacific Journal of Math-
ematics 21: 59-78.

Kingman, J. (1993). Poisson Processes. Oxford: Clarendon Press.

Koehler, K. (1986). Goodness-of-fit tests for log-linear models in sparse con-
tingency tables. Journal of American Statistical Association 81: 483-493.

Kreiner, S. (2003). Introduction to DIGRAM. Technical Report. Dept. Bio-
statistics, University of Copenhagen, Denmark.

Krugman, P. (1987). The narrow moving band, the Dutch disease, and the
competitive consequences of Mrs. Thatcher. Journal of Development Eco-
nomics 27: 41-55.

Krugman, P. (1991a). Increasing returns and economic geography. Journal of
Political Economy 99: 483-499.

Krugman, P. (1991b). Geography and Trade. Cambridge: MIT Press.

Krugman, P. (1993). On the number and location of cities. European Eco-
nomic Review 37: 293-298.

Krugman, P. (1995). Development, Geography, and Economic Theory. Cam-
bridge: MIT Press.

Kullback, S. (1959). Information Theory and Statistics. New York: John
Wiley and Sons.

Kullback, S., and Leibler, R. (1951). On information and sufficiency. Annals
of Mathematics and Statistics 22: 79-86.

Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics-
Theory and Methods 26: 1481-1496.

Kulldorff, M., and Nagarwalla, N. (1995). Spatial disease cluster: detection
and inference. Statistics in Medicine 14: 799-810.

Kutoyants, Y. (1998). Statistical Inference for Spatial Poisson Processes. New
York: Springer-Verlag.

Lucas, R. (1988). On the mechanics of economic development. Journal of
Monetary Economics 22: 3-42.



150 References

Lafourcade, M., and Mion, G. (2003). Concentration, agglomeration and the
size of plants: disentangling the source of co-location externalities. CORE
Discussion Paper 91.

Lancaster, H. (1949). The derivation and partition of chi-squared in certain
discrete distributions. Biometrika 36: 117-129.

Lancaster, H. (1951). Complex contingency tables treated by the partition of
chi-squared. Journal of Royal Statistical Society 13: 242-249.

Lancaster, A. (1979). The Chi-Squared Distributions. New York: John Wiley
and Sons.

Lauritzen, S. L. (1996). Graphical Models. Oxford: Oxford University Press.

Lawson, A., and Denison, D.(eds.) (2002). Spatial Cluster Modelling. London:
Champan and Hall/CRC.

Lerman, R., and Yitzhaki, S. (1989). Improving the accuracy of estimases of
the Gini Coefficient. Journal of Econometrics 42: 43-47.

Lorenz, M. (1905). Methods of measuring the concentration of wealth. Journal
of the American Statistical Association 9: 209-219.

Maasoumi, E., and Racine, J. (2002). Entropy and predictability of stock
market returns. Journal of Econometrics 107: 291-312.

MacKinnon, J. (2007). Bootstrap hypothesis testing. Queen’s Economic De-
partment. Working paper 1127.

Mardia, K., Kent, J., and Bibby, J. (1979). Multivariate Analysis. London:
Academic Press.

Marinelli, C. , and Winzer, N. (2004). Agrupamiento de filas y columnas
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