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1. Introduction 
 

1.1 Why Medicine needs Evolution 

 

Biomedical research could be actually improved by an evolutionary perspective that looks at our 

species as the result of evolutionary processes occurred in extremely variable environmental and 

socio-cultural contexts. 

Accordingly, such a viewpoint also regards our genome as a biological reality shaped by natural 

selection under the constraints of several tradeoffs that inevitably produce specific compromises 

and vulnerabilities. 

Classical medical research has long tried to provide mechanistic explanations of disease conditions, 

mainly on the basis of consideration of the simple study of body anatomic and physiological 

mechanisms, as they currently exist. 

In contrast, an evolutionary approach to medicine pursues the aim of exploring the reasons for the 

human genome to be designed in a way that makes us vulnerable to diseases, offering a broader 

context in which to conduct research. 

As already stated by the distinguished geneticist Theodosius Dobzhansky, it seems to be undeniable 

that “nothing in biology makes sense except in the light of evolution” (Dobzhansky 1973) and 

nowadays, almost 40 years later this claim, we are even more aware about the fact that evolutionary 

biology represents the scientific foundation for all biology and that, at the same time, biology is 

turned out to be the foundation for all medicine. 

Whereas variability is a fundamental concept at the core of evolution theory, and H. sapiens is 

notably variable in all of its cultural and biological manifestations, medical research tends to focus 

on what differs from a perceived “normal” condition and, furthermore, this medical “normal” is 

often based on health characteristics of Western people (Trevathan 2007). 

That being so, a population-evolutionary approach to biomedical research reveals its significance by 

cautioning that a single “normal” genome is non-existent and by suggesting that the achievement of 

a genomic region global picture of nucleotide and haplotype diversity, through the study of 

populations with different ancestry, could facilitate the distinction between variants falling into the 

standard degree of intra-specific variation and changes which are potentially related to diseases. 
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1.1.1 Natural selection and complex diseases 

 

Complex genetic diseases, which are due to the interplay of several genes and environmental 

factors, represent the major source of morbidity and mortality in developed countries, resulting 

much more common respect to Mendelian-inherited simple diseases. 

A possible explanation for this condition comes from evolutionary genetics and states that natural 

selection against complex diseases-causative alleles is presumably weak, since they individually 

have a small effect on the disease phenotype, whereas alleles underlying simple diseases, and hence 

with a greater pathological impact, tend to be rapidly removed from the population by a stronger 

natural selection (Smith and Lusis 2002). 

Such a remark emphasizes how evolutionary genetics can play a substantial role in dissecting the 

origin, causes and diffusion of human diseases, according to current opinions for which many 

aspects of human health are strongly influenced by the individual genotype and this genotype is 

anything else that an awesome result of our species evolutionary history.  

At the theoretical basis of this discipline there is a neutral model of molecular evolution for which 

most of genetic variation within and between species (or populations) has accumulated as a result of 

neutral processes (Kimura 1983). As a consequence, fixation or loss of most alleles is determined 

by genetic drift, so that species (or populations) may become genetically and phenotypically 

differentiated over time simply due to random fluctuations of their allele frequencies. 

Nevertheless, many genetic and phenotypic differences among human populations may be also due 

to adaptative processes, which were historically favored by natural selection. That being so, present-

day deeper and deeper survey of human genetic variation in many different populations represents a 

turning point in the study of natural selection effects on the H. sapiens genome. 

Nowadays, it is also possible to identify new candidate targets of selection and to reevaluate 

previous claims by comparison with empirical distributions of DNA sequence variation across the 

genome and among populations (Sabeti et al. 2007). In particular, identifying regions of the human 

genome that have been subjected to such selection events might turn out to be extremely important 

to understand their potential role in the different diseases susceptibility of human populations.  

Despite that, it is necessary to keep in mind that a sharp distinction between “normal” and disease-

associated genetic variation is hardly achievable, since phenotypic consequences of genetic variants 

strongly depend also on the environment. As regards this issue, a clear example is depicted by the 

“thrifty gene” hypothesis proposing that in response to scarcity of food in ancient environments 

alleles causing more efficient food assimilation had increased fitness, while in modern 

environments they actually increase susceptibility to obesity and Type 2 diabetes (Neel 1962). 
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As a general rule, looking for genetic and phenotypic variation patterns consistent with adaptive or 

neutral processes needs the assumption that it is possible to separate functional and neutral genetic 

variants. Changes that do not alter protein function, such as silent mutations in exons or introns, are 

usually expected to reflect neutral variation, whereas protein sequence, transcription, translation, or 

expression levels altering mutations are expected to be under stronger evolutionary constraint and 

selection. 

If a functional mutation is adaptive, positive selection increases its frequency in the population, 

driving it to a faster fixation respect to neutral expectations. On the contrary, if different functional 

mutations are favored, or if there is a heterozygote selective advantage, balancing selection can 

maintain variation in the population longer than expected under a neutral model of evolution (Figure 

1.1.1.1). 

 

 
Figure 1.1.1.1 Gene genealogies and lineages coalescence expected under different models of 
molecular evolution or demographic processes. 
a) Neutral model; b) positive selection or population expansion model; c) balancing selection or population subdivision 
model. Black circles represent neutral mutations, while open circles represent adaptive mutation. 
 

 

However, it may be very difficult to distinguish between neutral and adaptive genetic variation 

patterns, because of the almost always simultaneous action of genetic drift and selection on human 
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populations and since they have had a complex history of both size reductions and expansions 

which can strongly influence patterns of population variation. 

For example, when an adaptive mutation rapidly increases in frequency due to positive selection it 

can sweep out pre-existing population variation (Payseur et al. 2002). After this selective sweep, 

new polymorphisms will arise, but they will be rarely shared among individuals. 

In this way, a star-like phylogeny, which has many external branches that coalesce back rapidly to 

the recent common ancestor at the time of the selective sweep, can be observed as a consequence of 

an excess of rare polymorphisms in the population. 

Unfortunately, the same effect can occur when population size rapidly increases. In such a case, 

genetic drift has less effect and an increase in the length of genealogy external branches, as well as 

a rapid coalescence prior to the time of population expansion, is observed. 

On the contrary, balancing selection can maintain polymorphisms longer than expected under a 

neutral model of evolution, resulting in significantly long coalescence times and a largely 

distributed variation on phylogeny internal branches (Figure 1.1.1.1) (Navarro and Barton 2002). 

Since population size fluctuations are expected to equally impact the entire genome, whereas 

selection only targets DNA regions or populations in which adaptive mutations have arisen, a useful 

approach for distinguishing between neutral and adaptive evolution can be the comparison of 

nucleotide sequence variation from different genomic regions and populations. 

To this end, several studies on the G6PD gene, mutations of which may provide protection against 

malarial infection and therefore are maintained by balancing selection (Tishkoff and Verrelli 

2003a), on the CCR5 gene, positively associated with HIV-1 resistance (Stephens et al. 1998) and 

on the MC1R gene, commonly associated with variation in skin pigmentation (Harding et al. 2000), 

are representative of a bright use of samples from different geographic areas, as well as of both 

silent and functional variation data. 

Genomic regions with long stretches of nucleotide sites in high linkage disequilibrium (LD), or for 

which high differentiation among populations or patterns of unusual low diversity are observed, can 

be generally considered as good candidates for selection studies (Hamblin et al. 2002; Enard et al. 

2002). One of the main classical examples is that of the MHC-HLA gene family, for which it has 

been demonstrated the impact of demographic forces, in addition to both positive and balancing 

selection (Dean et al. 2002). 

In conclusion, investigation on the footprints left by natural selection in human populations genetic 

diversity represents an extremely precious chance to explore the genetic basis of adaptation and its 

crucial medical implications. However, this requires a deeper and deeper understanding of 
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genotype/phenotype relationships, as well as the development of even more powerful tests of 

selection. 

Thankfully, further developments in proteomics, functional genomics, and chip-based technology 

for a simultaneous screening of the expression of thousands of genes, have recently improved our 

capability to dissect the roles that selection and demography have played in shaping our genome.  
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1.2  The Human Genome Variation 
 

1.2.1 Genomic and post-genomic eras 

 

Since the development of the first DNA sequencing technology by Sanger et al. (1977), an 

unrestrained race to achieve the knowledge of the ins and outs of an organism complete genome has 

begun, opening the way to the genomic era. 

Genomic research formally came into existence in 1986 as the study of a living being primary 

genetic makeup focused on both genome sequence structure and its functional annotation 

(Groisman and Ehrlich 2003). 

The first whole-genome sequencing (WGS) technology was successfully applied in 1995 and led to 

the achievement of the first entire genomic sequence of an organism, the bacterium Haemophilus 

influenzae (Fleischmann et al. 1995). 

This strongly accelerated the progress of another ambitious project, the Human Genome Project 

(HGP), which has been started in 1992 (Little 1992) and, at first, produced the complete human 

genome sequence draft in 2001 (International Human Genome Sequencing Consortium 2001), then 

it completed the final version on April 14, 2003 (International Human Genome Sequencing 

Consortium 2004).  

This success was mainly due to the advent of high-throughput (HTP) sequencing technology 

platforms, as well as of high-speed bioinformatics platforms able to manage their huge amount of 

data and to perform sequence assembly and gene annotation. From that moment, full many studies 

focused on the nature and amount of human genetic polymorphisms have been published (Goldstein 

and Cavalleri 2005; Hinds et al. 2005; Conrad et al. 2006; Redon et al. 2006; Lao et al. 2007; Myers 

et al. 2008; Jakkula et al. 2008; Tian et al. 2008; Keinan et al. 2009). 

To date, many mammalian genomes, including mouse (Mus musculus), dog (Canis familiaris) and 

especially chimpanzee (Pan troglodytes) (The Chimpanzee Sequencing and Analysis Consortium 

2005) and rhesus macaque (Macaca mulatta) (Rhesus Macaque Genome Sequencing and Analysis 

Consortium 2007), have also been completely sequenced, leading to the birth of comparative 

genomics. This makes the attempt to identify DNA regions that actually contributed to our 

evolution possible; potentially shedding light on the role that natural selection has played during 

this process (Sabeti et al. 2006).  

At the same time, sequencing of Neanderthal mitochondrial genome (Krings et al. 1997; Serre et al. 

2004; Orlando et al. 2006), as well as of some shares of its nuclear genome (Green et al. 2006; 
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Noonan et al. 2006), has attempted to elucidate evolutionary relationships between Neanderthals 

and us. 

To sum up, a deep characterization of individuals and populations genetic variation has been carried 

out and has led to reconstruction of our evolutionary history and phylogeny, providing a direct 

genetic witness of the origin of H. sapiens (Garrigan and Hammer 2006). 

Moreover, it has also laid the foundation for functional genomics, the assessment of the function of 

genome regions, and transcriptional genomics, leading to a better understanding of complex 

interactions between genetic and environmental factors in producing phenotypes and hence of 

differential susceptibilities to disease and responses to pharmacological agents. 

In particular, these data have revealed a hierarchical organization of the human genome as a DNA 

modules system (Shapiro 2005), whereas genome-wide RNA expression profiles highlighted the 

clustering of highly expressed genes in specific chromosomal regions, suggesting that genes with 

similar or linked expression are often grouped together (Hurst et al. 2004). 

That being so, a crucial role for the phenotypic outcome is plausibly played by genetic variation 

also through its effect on gene expression, with single nucleotide polymorphisms (SNPs) 

accounting for about 84% and copy number variants (CNVs) accounting for about 18% of gene 

expression variation among and across human populations (Stranger et al. 2005).  

Comparative and transcriptional genomics have also confirmed that anatomical differences between 

humans and chimpanzees are mainly due to differences in the regulation of genes function, as well 

as that human inter-individual variation in gene expression is in part governed by regulatory genetic 

determinants, which may be trans- or cis-acting, and which may harbor common haplotypes which 

affect a gene total expression (Pastinen et al. 2006).  

At present, these results have thrown disciplines such as Biology, Molecular Anthropology and 

Medicine into the post-genomic era, inducing a radical shift in theoretical and methodological 

approaches to the study of human origin, evolution and susceptibility to diseases. 

However, the field evolves very rapidly, and our comprehension of evolution of the human genome, 

which seems to be actually depicted by a colorful mosaic of a multitude of pieces, with different age 

and telling different stories, is gradually emerging (Paabo 2003).  

Undoubtedly, understanding heritable variation in the human genome, as well as genetic basis of 

physical and behavioral traits that distinguish human beings from each other and from other 

primates, will be one of the great challenges of science in immediate future. 
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1.2.2 Nucleotide variation 

 

Genomics and post-genomics data suggest that SNPs would be the main source of genetic and 

phenotypic human variation, so that their amount seems to be one the most precise measure of the 

general extent of human genetic polymorphism. A total number of over 10 million SNPs was 

observed by The International HapMap Consortium (see section 1.3.5), most of which are rare, with 

a minor allele frequency (MAF) lower than 5%, and located within non-coding regions such as gene 

introns or intergenic regions (Figure 1.2.2.1) (The International HapMap Consortium 2005). 

 

 
Figure 1.2.2.1 SNP density across the genome in the HapMap Phase II. 

                           Colors indicate the number of polymorphic SNPs every 1,000 bases in the consensus 
                           dataset, with white blocks indicating gaps in the assembly.  
 

 

Since SNPs are characterized by a relatively low mutation rate (10-8 substitutions per locus per 

generation), the majority of nucleotide differences between individuals are not de novo mutations, 

but inherited changes. Thus, two individuals that share the same allele at a given nucleotide position 

are most likely identical by descent, for that particular DNA segment, rather than carriers of two 

identical independent mutations. 

This is the main reason behind SNPs utility in reconstruction of human evolution, for example 

through the observation that a greater number of SNPs is found in people of African origin respect 

to people of European origin (Figure 1.2.2.2), reflecting the common African past of these ethnic 

groups (Crawford et al. 2005). As a matter of fact, investigation of more than 1.5 million SNPs in 

Americans of European, African, and Asian ancestry has revealed that 93.5% of them are observed 

in individuals of African ancestry, 81.1% are found in those of European ancestry, and only 73.6% 
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in those of Asian ancestry. In addition, African-Americans also showed more private SNPs, 

nucleotide substitutions which are segregating in one population only, than European-American or 

Asian-American individuals (Hinds et al. 2005). This pattern of higher level of genetic diversity for 

African populations respect to non-African ones, the latter consequently showing a subset of the 

genetic diversity present in Sub-Saharan Africa, was also confirmed by several re-sequencing 

studies, for example on non-coding regions (Zhao et al. 2006) and on 3,873 genes in European, 

Latino/Hispanic, Asian, and African-American populations (Guthery et al. 2007).  

Nevertheless, DNA sequence similarity among people from around the world is still sensationally 

high, with any two individuals which are thought to be about 99.9% identical in their DNA 

sequence (Reich et al. 2002). 

 

 
Figure 1.2.2.2 SNP frequency distribution in SeattleSNPs. 

                                        The number of SNPs is plotted within each frequency range. African- 
                                        Americans SNPs are shown in red, Europeans SNPs in blue. 
 

 

1.2.3 Haplotype variation and linkage disequilibrium (LD) 

 

Haplotypes are described as specific allele combinations for a given set of polymorphic sites. 

Reciprocal association between these alleles is disrupted only by mutation or recombination events 

that occurred in some of the nucleotide sites constituting the haplotype. Such a non-random 

association is known as linkage disequilibrium (LD) and can be measured by indexes such as r2 and 

D’. The former is very useful in medical genetics because of its inverse relationship with the power 

of association studies, while the latter is mainly used to describe historical recombination events in 

populations (Reich et al. 2001). 

Interestingly, although African, European and Asian populations are characterized by different 
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haplotype frequencies and, to some extent, by different combinations of SNPs inside haplotypes, 

data from the HapMap project (see section 1.3.5) have shown that both common and rare 

haplotypes are often shared across these groups (The International HapMap Consortium 2005). At 

the same time, it was found that haplotype diversity decreases as distance from Africa increases 

and, even if the extent of LD varied across the populations, inferred recombination hotspots, 

genome regions in which historical crossing-over events are clustered and which separate large 

haplotype blocks, generally match across different continental groups (Conrad et al. 2006). 

Moreover, it has been proved that patterns of LD depend on both demographic factors, such as 

population size and structure, and locus-specific features due to selection, mutation, recombination 

and gene conversion events, resulting particularly useful for inferences about human evolutionary 

and demographic processes (Abecasis et al. 2005; Tishkoff and Verrelli 2003b). For example, lower 

levels of LD are observed in Africans respect to non-Africans and haplotype blocks, regions in 

which SNPs are in strong LD, extend over greater distances and are more uniform in the latter 

(Figure 1.2.3.1) (Sawyer et al. 2005).  

 

 
 
 

         Figure 1.2.3.1 Haplotype blocks in African and non-African populations. 
                         Blue bars represent the haplotype blocks, while orange bars represent the recombination  
                         hot spots. Vertical lines indicate SNPs and vertical arrows indicate haplotype tag SNPs. 
 

 

It has also been shown that Africans have higher population recombination rates (ρ) compared to 

Europeans and Asians, in accordance to the fact that recombination is a remarkable determinant of 

LD extent. In particular, recombination hot spots, 1–2 kb DNA segments with a higher 
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recombination rate respect to surrounding regions, turned out to be not homogeneously distributed 

across populations and in the genome, covering a very small fraction of it, but accounting for over 

80% of all recombination events.  

Described divergent LD patterns and recombination levels between African and non-African 

populations can be explained by different demographic histories of such groups. The former has 

shorter blocks of LD because of larger effective ancestral population size (Ne) and because there has 

been more time for recombination to disrupt LD, while the latter shows greater LD values as the 

result of founding events occurred during the expansion of modern humans out of Africa within the 

past 100,000 years (Figure 1.2.3.2) (Tishkoff and Verrelli 2003b). 

 

 
 

             Figure 1.2.3.2 A serial founder model for H. sapiens migrations. 
                              Non-Africans geographic expansion occurred in different small steps, each of  
                              one involved a sampling of the previous populations variation. 
                              Horizontal lines indicate gene flow between populations.  
 

 

H. sapiens migration from Africa to Eurasia and the rest of the world is indeed thought to be 

accompanied by a population bottleneck that produced an inevitable loss of genetic diversity (Liu et 

al. 2006). Census size of the group/s migrating out of Africa was estimated on the basis of 

combined mtDNA, Y chromosome, and X chromosome nucleotide diversity analyses and was of 

about  4,500 individuals, corresponding to 1,500 effective founding males and females  (Garrigan et 
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al. 2007). Such a value implies that Eurasians must have rapidly expanded to a larger size to 

account for estimates of a long-term Ne of 10,000 individuals and of a census size of 30,000 

individuals for their global population (Zhao et al 2006). 

In more details, the Out of Africa model described for H. sapiens origins assumes that fully modern 

human traits appeared in East Africa and Southwest Asia around 90,000 years ago, then a rapid 

spread of modern humans throughout the rest of Africa and Eurasia occurred within the past 

40,000-80,000 years (Reed and Tishkoff 2006). Two different routes have been proposed for such 

diffusion. A southern coastal route around the Indian Ocean, by which modern humans first left 

Africa via Ethiopia and then rapidly migrated to Southeast Asia and Oceania, is supported by recent 

mtDNA data (Macaulay et. al 2005), whereas other hypotheses have traditionally favored a 

second/single northern route via the Sinai Peninsula into the Levant (Figure 1.2.3.3). 

 

 
Figure 1.2.3.3 A simplified scenario for early human migration routes and dates. 

                   KYA stands for thousands of years ago.  
 

 

Along these sensational evolutionary inferences, analysis of haplotypes and LD turned out to be 

incredibly useful also for mapping disease susceptibility loci, as it will be further discussed in 

section 1.3.2.  

A human genome organization in 10-100 kb haplotype blocks has been indeed proposed and states 

that the 2-5 most common haplotypes within each block are able to capture the great majority of 

that DNA region variation, accounting for more than 90% of all analyzed chromosomes (Gabriel et 

al. 2002). 
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Thus, a minimal subset of SNPs (tag SNPs), which are in strong LD with all the other nucleotide 

sites within the block and typical of the most common haplotypes, can be used to survey all related 

SNPs of that entire region. In this way, a full genotyping procedure will be avoided.  

 

1.2.4 Structural variation 

 

The advent of whole-genome scanning technologies has uncovered an unexpectedly large extent of 

multiple-scale structural variation in our genome (Komura et al. 2006). 

Microscopic and submicroscopic variants, such as deletions, duplications and large-scale copy 

number variants (CNVs), as well as insertions, inversions and translocations have been observed, 

accounting for millions of nucleotides of heterogeneity within every single genome (Tuzun et al. 

2005; Khaja et al. 2006). About 100 CNVs per individual, each over 50 kb in size, a significant 

number of intermediate sized CNVs and inversions, from 8 to 40 kb, and even smaller variants, 

from 1 to 8 kb, were indeed found, leading to the conclusion that approximately 3.75x106 base pairs 

of structural polymorphism exist between any two diploid human genomes, accounting for about 

12% of the entire genome (Feuk et al. 2006). That being so, structural variants actually represent an 

important contribution to human genetic diversity (Figure 1.2.4.1). 

 

 
 

Figure 1.2.4.1 Overlapping degree of CNVs regions in HapMap populations. 
                      Numbers in brackets correspond to the stringent CNV region dataset for each population group. 
                      CEU: European, JPT+CHB: Asian, YRI: African. 
 



 18 

In particular, large segmental duplications constitute 2.7% of difference between H. sapiens and P. 

troglodytes, in comparison to only 1.2% represented by SNPs (Sharp et al. 2006). 

As a matter of fact, comparison of structural variation in human, chimpanzee and rhesus macaque 

genomes has led to the discovery of 130 human specific breakpoints, identifying 58 genes affected 

by insertions, with 36 gene copies fully contained within insertions, and 22 genes that were either 

partially duplicated or contained an insertion. The average size of detected rearrangements is of 

110,063 bp, with a range spanning from 20 to 1,365,171 bp (Harris et al. 2007). 

Moreover, an enrichment of large interspersed segmental duplications with high level of sequence 

identity was observed comparing human and other primates genomes with those of other mammals 

(Bailey and Eichler 2006), suggesting that they have been responsible for the creation of novel 

primate gene families. 

Most importantly these segmental duplications might also have influenced human genotypic and 

phenotypic variation on a previously unappreciated scale, playing a crucial role in separation of 

lineages leading to humans, on the one hand, and to chimpanzees on the other.  
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1.3 Genetic Association Studies 

  

Genetic defects causing rare Mendelian recessive or dominant diseases, such as cystic fibrosis and 

Huntington’s disease, were far back recognized by means of classical pedigree-linkage analyses. 

Unfortunately, such a typology of studies has failed in identification of susceptibility alleles for 

complex common diseases, which represent the major source of morbidity and mortality in 

developed countries. 

For this purpose, genetic association studies have been adopted to detect an association between one 

or more genetic polymorphisms, either individually or as haplotypes, and a trait that might be some 

quantitative characteristic or even a disease phenotype. The rationale behind such a typology of 

analyses is the assumption that the same allele is associated with a given trait in a similar manner 

across the whole population. 

In particular, population-based association studies quickly turned out to be more powerful than 

pedigree-linkage analyses for detecting also weak genetic polymorphisms effects on the 

development of diseases (Sham et al. 2000), so that they initially played an important role in fine 

mapping genetic loci previously detected by pedigree analyses. 

The power of association studies is mainly due to the fact that linkage disequilibrium extends over 

shorter distances in distantly related individuals. Nevertheless, the coeval increased possibility for 

linkage to be destroyed by recombination implies that these studies need a greater density of 

markers to be performed respect to family-linkage ones. 

In the following sections different approaches to deal with candidate genes association studies will 

be fully discussed. 

 

1.3.1 Direct association studies 

 

Direct association studies are characterized by the fact that putative disease-causing mutations are 

directly genotyped. 

Candidate causal variants are generally non-synonymous mutations, but also synonymous and non-

coding changes may induce differential splicing or variation in gene regulation and expression, 

resulting responsible for heredity of common complex disorders and increasing the difficulty of 

identifying candidate polymorphisms. 

Moreover, SNPs in coding regions are fewer and rarer than non-coding SNPs (Wellcome Trust 

Case Control Consortium and Australo-Anglo-American Spondylitis Consortium 2007), so that 

their detection would require twice the sample size actually used by SNP discovery projects, such as 
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SeattleSNPs, which are calibrated to successfully detect common variants, that is changes with 

minor allele frequency (MAF) > 5%. 

 

1.3.2 Indirect association studies 

 

Indirect associations are referred as cases in which the plainly associated polymorphism has not a 

causal role but is simply in strong LD with a nearby causal variant (Figure 1.3.2.1).  

 

 
 

Figure 1.3.2.1 LD examples measured by r2 for common SNPs (MAF >5%). 
                          At the top of the figure columns represent nucleotide sites, while rows represent genotypes. 

               At the bottom of the figure LD graphs measured by r2. 
               A) Genomic region with average LD and few blocks of correlated SNPs. 
               B) Genomic region with low LD and less SNPs correlation. 

 

 

As a consequence, it will be necessary to genotype several surrounding neutral markers to have a 

high chance of picking up the indirect association. Nevertheless, there cannot be a definitive 

negative result, since we cannot exclude the possibility that a causal variant exists, but is not picked 

up by chosen markers. Therefore, indirect association studies should be designed in terms of both 
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sample size and markers coverage to have sufficient power to detect common disease susceptibility 

alleles even of modest effect (Byng et al. 2003). 

Population-based indirect association studies are focused on candidate genes, identified either on 

the basis of their known biological function or from animal models. 

Exploiting the fact that genotyped SNPs are in LD with disease-causing SNPs, they expect that 

those variants would be over represented among disease individuals respect to healthy people 

(Carlson et al. 2004). However, it necessarily implies that investigated diseases have an actual 

genetic component, but it is not so easy to be proved, since even a strong heredity does not indicate 

that there is a single major gene underlying the disease. Consequently, these possible limits in 

capability of estimating the strength of a disease genetic component could negatively affect 

association studies results (Dahlman et al. 2002). 

Another key assumption of indirect association studies that will be subsequently discussed in 

section 1.3.4, is that only a few common variants are associated with a common disease (Risch and 

Merikangas 1996). However it does not take into account that several rare variants at several 

nucleotide sites might also contribute to the disease phenotype. 

In particular, if the causative SNP is more infrequent than genotyped ones, it is likely that only 

studies searching for genetic determinants of large phenotypic effects will be successful. Moreover, 

although chromosomal regions with large stretches of LD are ideal for association studies, because of 

the smaller number of SNPs to be genotyped, they make subsequent isolation of causative SNPs, 

from SNPs simply in LD with them, extremely difficult (Zondervan and Cardon 2004). 

 

1.3.3 Confounded associations 

 

Unfortunately, confounded associations can arise due to substructures of surveyed populations such 

as stratification or admixture. For example, in a mixed population, in which strata have different 

environmental exposures or founder populations entailing different genetic risks, any locus whose 

allele frequencies differ between strata, or founder populations, will be associated with the 

examined disease. This raises the possibility of generating false findings or, conversely, of 

obscuring true causal associations. 

Such a confounding effect could be reduced by matching samples by geographical regions or by 

markers of ethnic origin, so that comparisons can be made, as far as possible, within homogeneous 

subpopulations (Wacholder et al. 2002). 

However, as already discussed, causal variants for complex disease might have small effects that 
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require large studies to be detect. That being so, even modest confounding by stratification and 

admixture could have important repercussions on association studies results. 

Another possible method for facing this problem is to seek genetic markers for population 

substructure or ancestry informative markers whose allele frequencies differ between founder 

populations (Hoggart et al. 2003). 

Since confounding is regarded as a random process, potentially affecting all loci, its effect is 

increasing the false positive rate. Genomic control aim to correct this effect by increasing the 

threshold required for statistical significance. The extent by which variance is inflated by 

confounding can further be measured by typing a large number of unselected markers across the 

genome to empirically estimate the variance of association test statistics (Bacanu et al. 2002). 

That being so, taking into account genetic markers for population substructure and using genomic 

control could turn out to be complementary approaches, with great effects addressed by statistical 

models and surrogate measures of substructure and more subtle effects, such as those due to cryptic 

relatedness between cases and controls, left to genomic control. 

 

1.3.4 The Common Disease/Common Variant hypothesis (CD/CV) 

 

The Common Disease/Common Variant (CD/CV) hypothesis, which assumes that much of the 

genetic variation of common complex diseases is due to a limited number of common variants, 

present in more than 5% of the population, was suggested in 1996 (Risch and Merikangas 1996; 

Lander 1996). Ever since, genetic association studies have achieved greater and greater importance, 

even if their full application should require testing every gene and identifying all common variants 

in the human genome.  

The CD/CV hypothesis implies that more common genetic variants, despite having only moderate 

disease risk respect to susceptibility variants found by pedigree-linkage analyses, have larger effect 

on disease risk at a population level, so that they may be far more important in terms of public 

health simply because they are more common. According to such a hypothesis, common genetic 

variants were actually found to increase some common diseases risk, as in the case of APOE 

variants that increase risk for Alzheimer’s and heart disease (Lohmueller et al. 2003). 

However, there also exist examples of rare variants influencing common diseases (Romeo et al. 

2007), suggesting that both rare and common variants may play a role in common diseases 

manifestations, even if it is not known which of them are more important. 

That being so, in spite of recent huge financial and scientific investments in genome-wide 

association studies, an incontrovertible evidence in support of the CD/CV hypothesis was not found 
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and, if rare genetic variants were the primary cause of common complex disease, so that for a 

disease to be common there would be many different causative alleles, association studies would 

have little power to detect them. 

 

1.3.5 The HapMap project  

 

Regardless of the absence of an incontrovertible evidence in its support, the CD/CV hypothesis 

gained credence up to the design of the International HapMap Project (http://www.hapmap.org) 

(International HapMap Consortium 2003), which pursues the ambitious goal of cataloguing all 

common human genetic variants. 

As a matter of fact, strong linkage disequilibrium among SNPs in most chromosomal regions 

consents that few carefully chosen SNPs, named tag SNPs, need to be typed in each region to 

predict likely alleles at its remaining polymorphic sites, so that a precise map of LD patterns among 

SNPs can be obtained.  

To achieve that, a consortium of researchers from Canada, China, Japan, Nigeria, the United 

Kingdom, and the United States was launched to produce a human haplotype map by genotyping 

270 samples from four populations with different ancestry (Yoruba from Nigeria, Utah residents of 

Northern and Western European origin, Han Chinese and Japanese individuals). 

The HapMap Phase II published more than 3 million SNPs (International HapMap Consortium 

2007), proving that tag SNPs chosen in this dataset are generally applicable across worldwide 

populations, even if with limitations for rarer SNPs and for populations with substantial proportions 

of recent African ancestry (Figure 1.3.5.1) (Conrad et al. 2006; deBakker et al. 2006). 

Taking into account such a remark, it seems that the development of different panels of tag SNPs, 

together with a more dense SNPs coverage, will be necessary for populations with low levels of LD, 

especially for African ones, to achieve the same proportion of variation tagged with fewer SNPs in 

higher LD populations. 

For this reason, 1,301 additional samples were further collected from the four populations 

mentioned above and from seven additional populations (Luhya and Maasai from Kenya, Tuscans 

from Italy, individuals of Gujarati Indian, Chinese, Mexican and African ancestry from USA). 

These additional samples are being genotyped on the Affymetrix 6.0 platform and the Illumina 1 

million SNP chip, and promise to be crucial for identification of tag SNPs that are more informative 

across ethnically diverse populations (Manolio et al. 2008). 
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Figure 1.3.5.1 Portability of tag SNPs chosen using the HapMap Phase II 3.1 million SNPs dataset. 
For each of the 52 populations, columns show the proportion of polymorphic non-tag SNPs that have r2 > 0.85 with at 
least one tag SNP. For each population, the gray bar indicates which tag SNP set is best. Vertical dashed lines indicate 
50% tag portability. Tag SNPs were chosen separately from each of the three HapMap groups (CHB+JPT, CEU, YRI). 
 

 

1.3.6 Genome-wide association studies (GWA)  

 

The human haplotype and LD map achieved by The International HapMap Project has provided a 

totally new approach for searching genetic variants related to complex diseases. 

As a matter of fact, together with the advent of high-throughput SNP chip genotyping technologies, 

which simultaneously assay hundreds of thousands of SNPs, it has made genome-wide association 

studies (GWA) possible, leading to new insights into genomic variation, structure, function and 
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interaction with environmental factors in diseases causation. However, it is necessary to underline 

the fact that, in addition to the classical genetic association studies limits described in previous 

sections, GWA studies have also an enormous potential for generating false-positive, since they 

simultaneously test hundreds of thousands of statistical hypotheses, one for each allele assessed.  

To date, although it is considered a very high conservative method, applying the Bonferroni 

correction, in which conventional p-value is divided by the number of tests performed, is the most 

used approach to face this problem (Hunter and Kraft 2007). 

Despite that, results of first GWA studies have actually highlighted common genetic variants 

involved in several common diseases (Figure 1.3.6.1), such as coronary heart disease (McPherson et 

al. 2007; Samani et al. 2007), breast cancer (Easton et al. 2007) and type II diabetes (Salonen et al. 

2007; Saxena et al. 2007). 

A promising feature of GWA studies is that they are not limited to known genes or regulatory 

regions, but they actually represent an “agnostic” approach to identifying common diseases related 

genetic variants, being unbiased by prior assumptions about DNA changes and unconstrained by 

current imperfect understanding of genome structure and function (NCI-NHGRI working group on 

replication in association studies 2007; Altshuler and Daly 2007). 

Interestingly, GWA studies successful results suggest that the CD/CV hypothesis is true to an 

extent, at least for some of the studied diseases. However, even for disorders in which common 

genetic variants have been found, most genetic variation is still uncovered and it is not possible to 

rule out the possibility that much genetic variation is due to rare variants. This does not imply that 

the CD/CV hypothesis is necessarily false; rather that power is low for current study size, unless the 

allele MAF is high or its effect is large (Iles 2008). 

Therefore, while many common diseases variants have been found, there may be many more 

variants that are of moderate frequency, but that current studies are not large enough to find.  

Certainly, sample sizes will increase, leading to greater power to find rare variants. However, as 

samples become larger and larger, such an increased power may lead also markers in weak LD with 

disease alleles to reach significance. Thus, as sample sizes increase, rare variants are more easily 

detected, but the most significantly associated markers may not be rare themselves. Moreover, there 

may be a limit to how large population-based studies can get, and so there may exist a further class 

of variants that are too rare to be captured by GWA studies, but that are also not sufficiently high 

risk to be captured by linkage analyses (Cambien and Tiret 2007). 

To date, successes in finding common variants associated with common diseases are encouraging, 

but it is not yet sure whether observed variants represent only the tip of an undiscovered iceberg. 

That being so, new approaches will be necessary to find these kind of variants, for example finer 
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and finer bioinformatics-based methods might become useful to identify both candidate genes and 

changes. Finally, current high-throughput genotyping platforms are not yet effective at suitably 

genotyping structural variants. Although these platforms recent improvements are just focused on a 

deeper CNVs detection (Cooper et al. 2008), sequencing still probably remains the only way to 

avoid this problem, even if it only slightly improves power and will not, on its own, remove the bias 

towards finding more common variants. 

 
 

 
Figure 1.3.6.1 SNP-trait associations detected in genome-wide association studies up to the present. 
Associations significant at p<9.9×10-7 are shown according to chromosomal location and involved or nearby gene. 
Colored boxes indicate similar diseases or traits.  
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1.3.7 Whole-genome sequencing (WGS)  

 

Although SNPs used in the HapMap have been highly informative for association mapping studies, 

initial identification of SNPs in one, or a few populations, can result in an ascertainment bias toward 

high frequency changes.  

Several studies have shown that such an ascertainment bias can distort estimates of migration 

(Wakeley et al. 2001), mutation (Nielsen 2000) and recombination rates (Clark et al. 2003), as well 

as of LD patterns (Akey et al. 2003).  

Moreover, as already discussed in the previous section, there exists a limit for GWA studies sample 

sizes beyond that their reliable associations detection will decrease and they also seem to be not so 

effective at genotyping structural variants. 

These are the reasons why new sequencing methods have been developed to more accurately infer 

human genetic variation by typing structural variants and by characterizing the entire frequency 

distribution of nucleotide variants in different populations. This certainly improves the attempt to 

identify rare potentially causative variants that are now poorly tagged by existing genotyping 

platforms.  

WGS of all samples of the extended HapMap dataset has been suggested to develop a 

comprehensive catalog of rare variants and will soon begin as part of the international 1000 

Genomes Project (http://www.1000genomes.org). 

To date, primary data production for sequencing of most genomes has relied on the same type of 

capillary sequencing instruments used by the HGP and based on bacterial artificial chromosome 

(BAC) clones. Each BAC clone was usually amplified in bacterial culture, isolated, and sheared to 

produce size-selected pieces of approximately 2-3 kb. Subsequently, such pieces were sub-cloned 

into plasmid vectors and then amplified in bacterial culture. Finally, DNA was selectively isolated 

prior to sequencing.  

Nowadays, that scenario is rapidly changing owing to the advent of so-called next-generation 

sequencing technologies (Bentley 2006).  

As a matter of fact, in current WGS approach, genomic DNA is sheared directly into several distinct 

size classes and placed into plasmid and fosmid sub-clones. Over sampling the ends of these sub-

clones, to generate paired-end sequencing reads, provides the necessary linking information to fuel 

whole genome assembly algorithms (Mardis 2008). 

In this way, genomes can be sequenced more rapidly and more readily, even if highly polymorphic 

or highly repetitive genomes remain quite fragmented after assembly.  
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1.4  The Immune System 

 

The immune system of vertebrates consists of two main components: the innate and the adaptive 

immune system. In such a context, many types of proteins, cells, organs, and tissues are responsible 

for immune responses by interacting in an elaborate and dynamic network. 

 

1.4.1 Innate immunity 

 

Innate immunity is typical of all plant and animal classes as it provides an immediate non-specific 

defense against infection, recognizing and responding to pathogens without conferring long-lasting 

immunity (Beck and Habicht 1996). 

This kind of response is usually triggered when microbes are identified by pattern recognition 

receptors that recognize components conserved among broad groups of microorganisms (Medzhitov 

2007), or when damaged, injured or stressed cells send out alarm signals, many of which are 

recognized by the same receptors that recognize pathogens (Matzinger  2002).  

 

1.4.2 Adaptive immunity 

 

Adaptive immunity evolved in early vertebrates to provide both a stronger response respect to 

innate immunity and an immunological memory to pathogens, since each of them is identified by a 

specific signature antigen.  

The major achievement in adaptive immune system evolution is indeed the capability to generate 

specific immunoglobulin isotypes, such as IgM, IgG, IgA and IgE, which are directed against 

invading pathogens, and, subsequently, to memorize this response. As a matter of fact, 

immunoglobulins represent an important component of the humoral immune system, together with 

serum complement factors, and are secreted either by plasma cells or by activated memory B cells, 

being kept at constant concentration in blood. 

This antigen-specific response requires recognition of specific “non-self” antigens during the 

“antigen presentation” process and such specificity enables the generation of responses that are 

tailored to specific pathogens or pathogen-infected cells. 

At the same time, memory cells maintain this ability during the time, so that if a pathogen should 

infect the body more than once, specific memory cells are used to quickly eliminate it.  

Processes such as somatic hypermutation and V(D)J recombination of antigen receptor gene 

segments confer to humoral response a high adaptability, since a small number of genes is able to 
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generate a huge number of different antigen receptors that are uniquely expressed on each 

individual lymphocyte. Moreover, since gene rearrangement leads to an irreversible change in the 

DNA of each cell, all that cell progeny will inherit genes encoding the same receptor specificity, 

including Memory B cells and Memory T cells that are keys to long-lived specific immunity. 

Although such a high evolutionary level of specialization, systemic cells and processes of the 

adaptive immune system are still activated by the “non-specific” and evolutionarily older innate 

immune system (Pancer and Cooper 2006). 

 

1.4.3 B cells development 

 

B cells develop in bone marrow from pluripotent haemopoietic stem cells through rearrangement of 

Immunoglobulin heavy-chain and light-chain genes and initial selection of the repertoire with 

selection against auto reactive B cells. 

After leaving bone marrow as transitional B cells, they circulate in peripheral blood and become 

naive B cells, most probably with the help of splenic environment. At that stage they need the B cell 

activating factor BAFF as a survival signal to prevent apoptosis (see also section 1.7.2). 

Mature B cells expressing both IgM and IgD enter secondary lymphoid organs. Here, affinity 

maturation takes place through somatic hypermutation of variable region genes. In particular, in the 

germinal center of secondary lymphoid follicle, B cells receive the help of T cells that provide the 

correct set of co-stimulatory molecules, such as CD28 and ICOS, to select lymphocytes with the 

correct receptor. Subsequently, these B cells proliferate and undergo class switch recombination and 

somatic hypermutation that enable IgG, IgA and IgE isotypes production (Figure 1.4.3.1). 

B cells selected through affinity maturation can become either memory B cells, which circulate in 

blood and engage in secondary immune responses to provide an immunological memory to 

infections and vaccinations, or long-lived plasma cells, the survival of which depends on the 

survival factor provided by a proliferating inducing ligand (APRIL) and signaled through B cell 

maturation antigen (BCMA), for coming back to bone marrow and produce high-affinity antibodies 

(Figure 1.4.3.1) (Mckay et al. 2003). 

Differentiation of mature B cells into effectors capable of specific humoral immunity is strictly 

regulated and Tumor Necrosis Factor Receptor Superfamily (TNFRSF) members play important 

and diversified roles in regulation of activation and apoptosis for specific cells of the immune 

system (see also section 1.7.3). 
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As it will be further discussed in following sections, the failure to produce effective 

immunoglobulins leads to increased host susceptibility to infections and to severe immunological 

diseases onset. 

 

 
  Figure 1.4.3.1 Schematic representation of B cells development. 
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1.5  Primary Immunodeficiencies Diseases (PIDs) 

 

Human Primary Immunodeficiencies Diseases (PIDs) are a heterogeneous group of disorders in 

which inherited genetic defects compromise the ability to produce immune responses. 

Since the description of first PIDs, such as Bruton’s Agammaglobulinaemia and Kostmann’s 

Neutropenia, about 200 different clinical entities have been classified according to detection of 

immunological abnormalities affecting blood circulating leucocytes or their products, the 

Immunoglobulins (Ig) (Ochs et al. 2007).  

Several mutations associated with these diseases have been identified in about 130 genes, so that a 

genetic aetiology is known for the majority of PIDs (Table 1.5.1) and functions of many genes 

involved in immune responses have been elucidated (Geha et al. 2007; Fischer 2007).  

In the last 50 years it has been depicted how PIDs plague innate immunity as well as adaptive 

immunity mechanisms, impairing both cell differentiation and regulatory functions. 

Nowadays, antibody-related defects, that is humoral PIDs such as Common Variable 

Immunodeficiency, Selective IgA Deficit, Hyper-IgM Syndrome and X-Linked 

Agammaglobulinemia, which are characterized by B cells differentiation and Ig production defects, 

account for 65% of all primary immunodeficiencies, whereas defects in both cellular and antibody 

compartments account for another 15% of cases (Yin et al. 2001). 

As mentioned above, PIDs wide spectrum of vulnerabilities to microorganisms has offered a 

precious tool for dissecting the immune system and has enabled in vivo assessment of immune 

response effectors specific roles. 

One of the main conclusions drawn from these studies was that vulnerability to infectious diseases 

can vary over time, since predisposition to invasive infections by encapsulated bacteria or viruses 

due to TLR3 deficiencies or defects in the Toll-like receptor (TLR) pathway, in the Interleukin-1 

Receptor associated Kinase 4 (IRAK-4) and in the Polytopic Endoplasmic Reticulum CERI-resident 

membrane protein (UNC93B), result to be limited in time (Casrouge et al. 2006; Ku et al. 2007). 

This observation suggested that once an adaptive immune response has occurred it is protective. 

Moreover, PIDs genetic analysis is not only important for elucidating crucial pathways in the 

immune system, but also for its notable medical impact by prompting the design of new diagnostic 

tools and opening up new fields of therapeutic research.  

Although the most severe forms of PIDs, such as Severe Combined Immunodeficiency (SCID), in 

which T lymphocyte development is compromised and associated with disorders of development 

and functionality of B lymphocytes and natural killer cells, are fatal without treatment, 
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haematopoietic stem cell transplantation is usually highly successful when a genotypically matched 

donor is available (Antoine et al. 2003). 

 

Table 1.5.1 Primary Immunodeficiencies with known molecular defects. 
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However, for most individuals this is not the case and survival from mismatched transplants is 

substantially lower (52%). For this reason, SCID and some other PIDs are particularly attractive 

targets for gene therapy because of the huge proliferative capacity of haematopoietic system, 

especially the lymphoid compartment, so that an effective gene transfer to a small proportion of 

bone marrow precursor cells can result in correction of the immunological deficit (Hirschhorn 

2003). 

In some instances, gene product supplementation might be envisaged, as is the case with Adenosine 

Deaminase Deficiency that results in a SCID phenotype. Direct genetic intervention by adding a 

normal copy of the mutated gene to affected cell lineages is an approach that has been proved to be 

successful in these conditions (Aiuti et al. 2002).  

Different typologies of mutation in a given PID may also prompt new strategies. For example, 

mutations creating glycosylation sites can cause protein unfolding and degradation. Chemicals able 

to modify glycosylation may be able to complement these defects by preventing protein 

degradation, as shown in vitro for several models (Vogt et al. 2007). 

Unfortunately, genetics of PIDs has turned out to be very complex, since environment and modifier 

genes should strongly change the spectrum of infectious diseases encountered in a specific PID. 

This is the case of early-in-life infections by Cytomegalovirus (CMV) which trigger a massive 

expansion of oligoclonal non-Vg9Vd2 gd T cells in association with autoimmune manifestations 

(Ehl et al. 2005). 

Moreover, epigenetic factors and modifier genes can also account for variability of many other 

PIDs, especially autosomal-dominant inherited ones, such as Common Variable Immunodeficiency 

and Autoimmune Lymphoproliferative Syndrome, suggesting that there may be a continuum 

between simple and more complex genetically determined diseases (Antonarakis and Beckmann 

2006). 

Finally, consequences of PIDs causative mutations can vary from a strong predisposition to 

infection by a broad range of microorganisms, such as in Severe Combined Immunodeficiencies 

(SCIDs), to an extremely narrow predisposition, which is for example typical, of Herpes Papilloma 

Virus (HPV) Disease (Ramoz et al. 2002), Herpes Simplex Virus 1 (HSV-1) Encephalitis (Zhang et 

al. 2007) and aberrant lymphocyte responses to Epstein-Barr virus infection (Rigaud et al. 2006). 

The dominant view in genetics of infectious diseases postulates that rare monogenic PIDs 

predispose the individual to numerous infections, whereas common infectious diseases are 

associated with polygenic inheritance of numerous susceptibility genes. 
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Despite that, it has been proved that novel monogenic PIDs predispose the individual to a principal 

or single type of infection and major genes exert a nearly Mendelian impact at the population level, 

largely accounting for common infectious diseases in some individuals. 

Recent discovery of such human genes, which confer vulnerability or resistance to a specific 

infection at the individual level, bridges the gap between the two classical fields of conventional 

PIDs and polygenic inheritance, providing experimental support for a continuous spectrum of 

predisposition and an unified theory of human genetics of infectious diseases (Figure 1.5.1). 

 

 
    Figure 1.5.1 Spectrum of genetic predisposition to infectious diseases. 

 

 

In addition, it has been taken into account that multiple paradigm shifts have been witnessed by the 

field of PIDs, since they were initially thought to be few rare, familial, monogenic, recessive traits 

impairing development or function of one or several leukocyte subsets and resulting in multiple, 

recurrent, opportunistic and fatal infections in infancy. 

A dozen of epidemiological, clinical and genetic paradigm shifts have indeed occurred over the last 

decade, expanding the conventional view about Primary Immunodeficiencies and leading to a 

profound revision of their definition and classification (Casanova and Abel 2007) (Table 1.5.2). 

 



 35 

Table 1.5.2 Paradigm shifts in Primary Immunodeficiencies.  
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1.6 Common Variable Immunodeficiency (CVID) 

 
1.6.1 Clinical manifestations 

 

Although the first case of Common Variable Immunodeficiency (CVID, OMIM #240500) was 

reported in 1953 (Janeway et al. 1953), a consensual definition for this disease is not yet available 

and our understanding of it is far from complete. Its clinical manifestations generally present 

sinopulmonary and systemic bacterial infections, such as recurrent bronchitis, sinusitis, otitis media, 

pneumonia, as well as gastrointestinal complications (Figure 1.6.1.1), which are consequences of 

most CVID patients low serum IgG concentrations in spite of detectable levels of circulating B 

cells. 

 

   

Figure 1.6.1.1 Organ systems involved in CVID pathogenesis. 
                                                                                                                     Left = healthy organs; right = organ system involved in CVID. 
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About 25% of affected individuals have also autoimmune manifestations, such as Autoimmune 

Thrombocytopenic Purpura and Autoimmune Haemolytic Anaemia (5-8% of CVID patients) or 

Splenomegaly and Autoimmune Thyroiditis (Cunningham-Rundles and Bodian 1999). These 

manifestations are probably due to the fact that specific checkpoints for autoreactivity during B-cell 

development either fail or are circumvented (Tsuiji et al. 2006). 

Finally, 10-22% of CVID patients are also affected by lungs, liver, skin, spleen and gastrointestinal 

tracts granulomas, together with some kind of neoplasias such as non-Hodgkin lymphoma and 

gastric cancers (Cunningham-Rundles and Bodian 1999). 

That being so, individuals affected by CVID form a hardly definable group, characterized by 

extremely high phenotype heterogeneity. 

 

1.6.2 Diagnosis 

 

A well-accepted CVID definition, used for a reliable diagnosis of the disease, generally includes the 

following key features:  

 

 the presence of Hypogammaglobulinaemia of two or more Ig isotypes (i.e. low IgG, IgA, or 

IgM); 

 the presence of recurrent sinopulmonary infections and impaired functional antibody 

responses.  

 

From a cellular point of view, immune system characteristics of individuals affected by CVID are 

very complex, with several numerical and functional defects involving B cells, T cells, natural killer 

cells, macrophages and monocytes (Bayry et al. 2005). 

For example, B cells number in peripheral blood can be normal or reduced, whereas T cells 

abnormalities include reduction in number and function, defects in cytokine production, decreased 

T-helper cells function and T cells signaling, diminished expression of costimulatory molecule 

CD40 ligand and increased suppressor T cells function (North et al. 1998). 

The number of class-switched memory B cells (CD27+, IgM–, IgD–) is low in 50-75% of CVID 

patients, even if it can also be low or zero in other humoral PIDs, such as Hyper-IgM syndrome. 

Although origin and function of different memory B cells subsets in humoral responses has been 

ardently debated (Weller et al. 2004), there are enough data to prove a role for them in generating 

antibodies to both T-dependent and T-independent antigens, since changes in B cells memory 
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compartment, due to an underlying immunodeficiency, could have substantial effects on quality and 

quantity of humoral immune responses. 

Unfortunately, delays in recognizing CVID are very common because of pervasive misconceptions 

that PIDs are extremely rare and typical pediatric disorders. Although most of them, like most 

Mendelian disorders, are observed principally in children, it may be due to their severe nature. As a 

matter of fact, as medical progress is making it increasingly possible for children with PIDs to 

survive to adulthood, adults with PIDs are increasingly being encountered (Cunningham-Rundles 

and Bodian 1999). 

 

1.6.3 Epidemiology 

 

Selective IgA Deficiency (IgAD) is the commonest PID, but most IgAD patients are asymptomatic 

(Salzer and Grimbacher 2006), so that CVID actually results the commonest clinically relevant 

primary immunodeficiency, representing about 30% of all PIDs affected individuals in Europe 

(Eades-Perner et al. 2007). 

CVID equally affects both sexes, with prevalence from one per 50,000 to one per 200,000 and a 

reported incidence of one per 75,000 live births.  

Most patients present a sporadic form of the disease, but 10-25% have familial inheritance, 

generally with an autosomal dominant pattern (Hammarstrom et al. 2000). 

CVID age of onset has a bimodal distribution, with few patients presenting the disease in mid 

childhood, the great majority presenting it in early to mid adulthood and someone that presents it 

even later, with a reported mean age at the onset of symptoms of 23 years for males and 28 for 

females (Cunningham-Rundles and Bodian 1999). 

 

1.6.4 Aetiology 

 

Few CVID genetic aetiologies have been identified to date (Table 1.6.4.1), consistent with impairing 

B cells function autosomal recessive mutations of tumor necrosis factor receptor superfamily 

member 13B (TACI) (Salzer et al. 2005; Castigli et al. 2005a) and member 13C (BAFF-R) (Warnatz 

et al. 2005), of inducible T-cell costimulator ICOS (Grimbacher et al. 2003) and of CD19 (van Zelm 

et al. 2006). 
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Table 1.6.4.1 Gene defects in CVID and related inheritance patterns. 

 
 

BAFF-R  

  

BAFF-R is encoded by the TNFRSF13C gene and expressed on B cells surface, whereas its ligands, 

interactions of which provide crucial survival signals for differentiation of peripheral B cells, are 

expressed on macrophages, monocytes, and dendritic cells (Mackay and Ambrose 2003). 

A homozygous 24 base-pair deletion in TNFRSF13C has been described in only one CVID subject 

with anomalies in peripheral B cells subsets, such as strong reduction of both class-switched 

(CD27+, M–, D–) and non-switched memory or marginal-zone (CD27+, M+, D+) B cells, increase 

in the transitional B cells compartment (CD38+++, M++) and decrease in plasmablasts (CD38+++, 

M–) (Warnatz et al. 2005). 

 

TACI  

 

Since defects on the TNFRSF13B gene, which encodes for B cells surface TACI receptor, are the 

most common nucleotide substitutions in CVID individuals, the great majority of genetic studies on 

this primary immunodeficiency are concerning such a genomic region. 

For this reason, a full description of TACI structure, biological function and known nucleotide 

substitutions is postponed to a specific section (1.7). 

 

ICOS 

 

About 2% of CVID subjects presents defects in the ICOS gene. The protein product of this gene is 

constitutively expressed in germinal centers and T cells zones of spleen, lymph nodes, and Peyer’s 

patches, whereas its ligand is expressed on lymphoid and non-lymphoid tissue. 
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ICOS function is that of enhancing natural killers activity and enabling T cells interactions with B 

cells, monocytes and dendritic cells (Greenwald et al. 2005). 

It has been found that ICOS-deficient individuals generally have few peripheral B cells, few or no 

class-switched memory B cells, and hypogammaglobulinaemia (Salzer et al. 2004). Their T cells 

also produce very little interleukin-10 and this may be associated with a defective formation of 

germinal centers that leads to impaired memory B cells (Figure 1.6.4.1). 

 

 

 
Figure 1.6.4.1 Signaling pathways of ICOS. 

 

 

CD19 

 

CD19 is expressed on B cells from an early stage of development, as a part of the B cell co-receptor 

along with CD21 and CD81. Interaction between B cell receptor and this co-receptor complex 

increases B cells signaling by several thousand times (Figure 1.6.4.2). 
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Individuals with homozygous mutations in the CD19 gene show a normal total number of B cells 

(CD20+), but with low or undetectable surface expression of CD19 and decreased numbers of 

CD27+ memory B cells and CD5+ B cells (van Zelm et al. 2006). 

 

 

 
Figure 1.6.4.2 The B cell receptor and co-receptor signaling complex. 

 

 

Unfortunately, since TACI defects, which are the most common nucleotide changes in CVID 

individuals, do not seem to be responsible of autosomal dominant forms of the disease (Pan-

Hammarstrom et al. 2007), genetic basis of the typical, late-onset, CVID manifestation remains 

largely unknown. 

That being so, the extremely high clinical heterogeneity of CVID subjects is probably a consequence 

of an equally high genetic heterogeneity of such disease. 

For a summary of all receptors/ligands networks that are though to be involved in the CVID onset 

see Figure 1.6.4.3. 
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Figure 1.6.4.3 Summary of all molecules implicated in CVID. 
        A = ICOS 

                 B = BAFF-R and TACI 
            C = CD19 
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1.7 Transmembrane Activator and CAML Interactor (TACI) 
 
1.7.1 Structure and signaling 

 

Transmembrane activator and CAML (calcium-modulator and cyclophilin ligand) interactor (TACI) 

belongs to the tumor necrosis factor receptor (TNF-R) superfamily and is primarily expressed as a 

293 aminoacids type III transmembrane protein (Bossen and Schneider 2006) on late transitional B 

cells and marginal zone B cells surface, in circulation and lymphoid organs (Ng et al. 2004).  

TACI extracellular region is mainly constituted by two cysteine-rich domains (CRDs) that are 

typical of all TNF-Rs. CRD-1 drives the receptor ligand-independent assembly into trimers or more 

complex multimers (Garibyan et al. 2007), whereas CRD-2 is responsible of ligands binding.  

TACI intracellular region is instead structured to recruit signaling proteins such as TNF-R 

associated factors (TRAFs), which are also bound by BAFF-R and B cell maturation antigen 

(BCMA), and the calcium modulator and cyclophilin ligand (CAML) expressed on cytoplasmic 

vesicles surface (Xia et al. 2000) (Figure 1.7.1.1). 

 

      

Figure 1.7.1.1 Schematic representation of TACI structure, assembly and signaling. 
 APRIL, a proliferating inducing ligand;  BAFF, B cell activating factor;  CAML, calcium modulator  
 & cyclophilin ligand; CRD, cysteine-rich domain; EC, extracelluar domain; IC, intracellular domain; 
 TACI, transmembrane activator and calcium modulator and cyclophilin ligand interactor; TM, trans-   
 membrane domain; TRAF, TNF-R-associated factor. 
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Ligands binding induces a conformational change that strengths the association with CAML and 

TRAFs and actives downstream effectors. In particular, TRAFs activation induces the nuclear 

factor κB (NF- κB), while via CAML the nuclear factor of activated T cells (NF-AT) is expressed. 

The whole signaling complex also leads to activation of the c-Jun NH2-terminal kinase and of the 

transcription factor AP-1. 

TACI requires a ligand induced oligomerization for such a optimal signaling, since TRAFs bind 

weakly to a single receptor (Castigli and Geha 2006). 

Moreover, two TACI splice variants exist and differ from the already described structure. In 

particular, one lacks the CRD-1, while the other leads to a soluble form of the protein (Bossen and 

Schneider 2006). 

 

1.7.2 Ligands/receptors network  

 

TACI plays a role in a very complex network of ligands and receptors with overlapping binding 

specificities (Fig. 1.7.2.1). 

 

 
             Figure 1.7.2.1 Representation of TACI, BAFF-R and BCMA network. 

                              BAFF-R is universally expressed on transitional and naïve B cells; TACI expression 
                              depends on B cells activation both in germinal centers and lymphoid organs; BCMA  
                              is expressed in terminally differentiated plasmablasts and plasmacells.  
                         TM, transmembrane domain. 
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It binds two TNF ligands, B cell activating factor (BAFF) and a proliferating inducing ligand 

(APRIL), which are expressed as type II transmembrane proteins, so that they can be proteolytically 

cleaved and secreted (Mackay et al. 2003). 

In particular, BAFF is mainly expressed by neutrophils, monocytes, macrophages, and dendritic 

cells, whereas APRIL is expressed in monocytes, macrophages, dendritic cells and activated T cells. 

These ligands are also able to bind to other molecules than TACI. For example, APRIL binds to 

BCMA and to heparan-sulfated proteoglycans, while BAFF binds to BCMA as well as to its own 

unique receptor BAFF-R. 

 

1.7.3 Biological function 

 

TACI certainly plays a pivotal role in B cells activation and differentiation into plasma cells, since 

it has been proved that class-switch recombination and isotype switching can occur in a CD40 

independent manner in naive B cells in response to APRIL and BAFF (Castigli et al. 2005b). 

In vivo studies have also proved that TACI-deficient mice show a normal B cells development, but 

with contemporaneous IgA deficiency and impaired ability to perform antibody response to thymus-

independent type II antigens, so that TACI seems to behave also as a negative regulator in B cells 

homeostasis.  

As a matter of fact, TACI-deficient mice are characterized by splenomegaly and marked increase in 

circulating B cells (Yan et al. 2001).  

An alternative explanation for this finding is that TACI may compete with BAFF-R for binding, 

limiting BAFF-R mediated B cells survival, so that in absence of TACI, an increase in BAFF-R 

signaling would result in B cells hyperproliferation.  

 

1.7.4 The TNFRSF13B gene 

 

The TNFRSF13B gene (OMIM #604907) is located on chromosome 17 (p11.2), spanning from 

position 16,783,124 to 16,816,127, for a total of 33 kb and being made up of five exons (Figure 

1.7.4.1). 

Three different TNFRSF13B transcripts exist, of which two are currently reported on databases and 

are described in the following part of this section. The third transcript is instead not reported on 

databases, but it has been proved that it is due to a splice variant that leads to a soluble form of the 

protein (Bossen et al. 2008). 
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Figure 1.7.4.1 TNFRSF13B genomic structure. 

 

 

The two already described transcripts (Figure 1.7.4.2) are reported on the Ensamble database 

(http://www.ensembl.org/Homo_sapiens/transcript): 

 

 TNFRSF13B-001 (ENST00000261652). 

This transcript is constituted by 5 exons, for a total of 1,357 bp, and leads to a translated 

protein of 293 residues. 

Such a protein is that considered in clinical expression and sequencing studies on CVID 

individuals to date.  

 TNFRSF13B-201 (ENST00000343345). 

This transcript is constituted by 4 exons, for a total of 1,219 bp, and leads to a translated 

protein of 247 residues.  

This form is due to a splice variant in which exon 2, encoding for CRD-1, is replaced by a 

codon for tryptophan (Hymowitz et al. 2005). 

 

 

 
 

 
 

Figure 1.7.4.2 TNFRSF13B different transcripts. 
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1.7.5 TNFRSF13B defects 

 

Several nucleotide substitutions in the TNFRSF13B coding region are found in about 10-20% of 

CVID individuals and are generally associated with a clinical phenotype of lymphoproliferation 

comprising splenomegaly, tonsillar hyperplasia, IgA Deficiency and autoimmune thyroiditis (Figure 

1.7.5.1).   

 

Table 1.7.5.1 The most common TNFRSF13B sequence variants. 

 
                 b significance undetermined because of low variant frequency in CVID 
              population and absence in healthy population. 
 

 

The great majority of CVID individuals carries at least one mutated allele, whereas less than 2% 

carries biallelic mutations (Park et al. 2008; Salzer et al. 2008). Although many variants have been 

observed also in healthy individuals, homozygous or compound heterozygous TNFRSF13B 

mutations have been found exclusively in individuals with a full-blown antibody deficiency. 

However, it seems that presence of a heterozygous mutation alone cannot explain a sufficient 

percentage of multiplex CVID families with dominant inheritance and, in general, does not cause 

CVID. 

C104R and A181E amino acid substitutions represent the most common TNFRSF13B mutations, 

being found in 4-5% of CVID subjects, in both sporadic and familial cases. 

However, a critical factor in determining the pathogenicity of such changes is their frequency in 

healthy population. As a matter of fact, finding of heterozygous C104R and A181E in healthy 

individuals questions whether they on their own are truly pathogenic or if, indeed, they act as 

susceptibility or disease-modifying mutations, acting in co-operation with other gene defects. 
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Despite conflicting data, especially for A181E, the great majority of studies reports a highly 

significant association of these two mutations with CVID, but not with IgAD (Castigli et al 2007; 

Pan-Hammarstrom et al. 2007; Zhang et al. 2007; Park et al. 2008). Moreover, in families with 

dominant inheritance of A181E, some individuals with such a substitution resulted completely 

asymptomatic, suggesting that the mutation has incomplete penetrance (Salzer et al. 2005; Pan-

Hammarstrom et al. 2007). 

Many other variants, such as G76fsX3, C170Y and L171R, are instead found to be exclusive of 

CVID individuals, but they resulted too rare to reach statistical significance. 

Finally, amino acid substitutions R72H, R202H, V220A and P251L have been always observed at 

similar frequency in cases and controls (Castigli et al. 2005a). 

 

1.7.6 TNFRSF13B defects and B cells functionality 

 

A reliable evaluation of TNFRSF13B variants involvement in CVID necessarily requires a clear 

understanding of how they may affect B cells functionality. 

In particular, the impact of a mutant allele on wild-type TACI function should be assessed, since the 

great majority of CVID subjects carrying TNFRSF13B defects are heterozygotes. 

There are three main hypothesis concerning this issue: 

 dominant negative effect of the mutant allele; 

 haploinsufficiency; 

 CVID individuals heterozygous for TNFRSF13B variants preferentially express the 

dysfunctional allele. 

A dominant negative effect was initially though for C104R substitution. As a matter of fact, even if 

C104R affects the receptor extracellular domain, disrupting a disulphide bond required for ligand 

biding CRD-2, it has been proved that only homozygous C104R individuals are unable to bind 

APRIL (Salzer et al. 2005). In heterozygotes, association of the mutant allele with wild-type TACI 

indeed does not interfere with ligand binding, but inhibits ligand induced NF-kB activation 

(Garibyan et al. 2007).  

Moreover, it has been shown that TACI respond to oligomeric BAFF or APRIL only, implying that 

at least six wild type receptors are likely required in an active signaling complex, rendering it 

particularly prone to dominant negative effects of mutated allele (Bossen et al. 2008). However, 

further in-vivo analyses of transgenic mice co-expressing both wild-type TACI and the mutated 

allele suggest that C104R exerts its effect via haploinsufficiency (Lee et al. 2008). 
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As regards A181E substitution, a negatively charged glutamine replaces a neutral alanine in the 

transmembrane domain. It may prevent downstream signaling by interfering with ligand induced 

conformational changes of the whole receptor. The mutant-wild-type complex can indeed bind 

ligands, but is unable to activate NF-kB or NF-AT.  

Despite such in-vitro observations, effects of heterozygous C104R and A181E substitutions on B 

cells function in individuals with CVID are still under debate. Their B cells responses to TACI 

ligation are actually impaired, but it needs to be further investigated whether these defects are 

specific to these subjects or are part of a generalized impairment of B cells activation that has been 

observed in the CVID population in response to TACI, CD40 and TLR9 ligands (Zangh et al. 

2007). As already discussed for TNFRSF13B variants in general, it seems that presence of a 

heterozygous C104R and A181E alone does not cause CVID. Whether it is due to incomplete 

penetrance or delayed onset, or whether additional genetic-environmental factors are required for 

manifestation of the disease, is not entirely clear. However, C104R and A181E heterozygous 

mutations are present in up to 1% of healthy population and it is quite unlikely that even a fraction 

of these individuals will develop CVID later in life, otherwise, its frequency would be much higher. 

Moreover, incomplete penetrance and familial segregation have been demonstrated for other 

heterozygous TNFRSF13B variants, implying that they increase the risk, but are neither necessary 

nor sufficient to cause CVID (Salzer et al. 2008). 

That being so, other genes and/or environmental factors are probably needed for TACI mutations to 

result in CVID. In particular, genes along CD40-CD40L or TLR pathways may be potential 

candidates, as it is known that defects in CD40L expression, CD40 signaling and TLR9 can occur 

in CVID and that TACI participates in cross-talk with CD40 and TLRs (Lee et al. 2008). 
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1.8 Selective IgA deficiency (IgAD) 

 

Selective IgA deficiency (IgAD) is the most common primary immunodeficiency disorder (Salzer 

and Grimbacher 2006) and is characterized by decreased serum IgA concentration (<0.07 g/l) and 

normal serum IgM and IgG levels.  

Many of these individuals have no apparent diseases, whereas others suffer from recurrent mucosal 

infections, allergies and autoimmune diseases. IgA deficiency is also associated with some 

autoimmune manifestations such as systemic lupus erythematosus, juvenile onset diabetes mellitus 

and rheumatoid arthritis (Hammarstrom et al. 2000). IgA deficit is presumed to result from impaired 

switching to IgA or maturational failure of IgA-producing lymphocytes. 

Progression from IgAD to CVID has been also reported in several cases (Carvalho Neves Forte et 

al. 2000). In addition, fixed haplotypes of MHC genes are frequently associated with both IgAD and 

CVID. At least two distinct loci, one in the class II region and one in the class III region, confer 

susceptibility to IgAD and CVID development (Schroeder et al. 2004). 

In conclusion, co-occurrence of some autoimmune disorders, IgG subclass deficiency and 

association of HLA A1, 8, DR3, DQ2 or part of these haplotypes in IgAD individuals, in particular 

those with affected family members, could be risk factors for CVID induction (Aghamohammadi et 

al. 2008). 
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2. Aim of the Study 
 
This study has investigated worldwide genetic variability of the TNFRSF13B gene, with the aim of 

evaluating its variants potential contribution to the development of Common Variable 

Immunodeficiency (CVID), the most prevalent primary immunodeficiency in individuals of 

European ancestry.  

As a matter of fact, in the recent years this gene was proved to be able to regulate isotype switching, 

survival and differentiation of B lymphocytes, playing a role in a very complex functional network 

that is crucial for humoral responses (Mackay and Schneider 2008). 

Moreover, some TNFRSF13B coding variants have been also implicated in CVID and Selective IgA 

Deficiency (IgAD) by clinical genetics studies (Castigli et al. 2005a; Salzer et al. 2005), even if 

they were exclusively based on samples of European ancestry and functional effects of observed 

mutations in relation to diseases development have not been entirely established. After the initial 

claim of a strict association of TNFRSF13B changes with both diseases, further analyses have 

indeed shown the existence of some of these variants also in healthy individuals (Castigli et al. 

2007; Pan-Hammarstrom et al. 2007; Lee et al. 2008; Salzer et al. 2008). 

Given such a complex and still ambiguous scenario, the more comprehensive perspective of an 

evolutionary approach was applied in this study, as already carried out for other genes with medical 

implications (Aldea et al. 2004; Sabater-Lleal et al. 2006; Soldevila et al. 2006), offering a broader 

context in which to conduct research and underling the belief that investigating genetic variation 

and evolution patterns represents a powerful tool also in human health research. This study would 

indeed show how evolutionary genetics methods could play a role in dissecting the origin, causes 

and diffusion of human diseases. 

The rationale behind this approach is that if natural selection has acted on the TNFRSF13B locus, a 

specific imprint in its genetic diversity could be observed and this may turn out to be very useful for 

an exhaustive understanding of its function and potential role in different human populations CVID 

susceptibilities. In particular, genes involved in adaptive immunity, such as TNFRSF13B, are likely 

to be subjected to geographically localized selective pressures, as they may interact with local 

pathogen landscapes, resulting in increased inter-population differentiation (Bamshad and Wooding 

2003). 

In order to verify such a hypothesis, the TNFRSF13B coding region was sequenced in 451 healthy 

individuals belonging to 26 worldwide populations from Sub-Saharan Africa, North Africa, Middle 

East, Central Asia and South America, in addition to control individuals, CVID and IgAD subjects 

from Italy. In this way, a global picture of TNFRSF13B nucleotide diversity and haplotype structure 
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was for the first time obtained, making investigation on potential departures from the neutral model 

of evolution possible. 

For this purpose, six different neutrality tests have been applied to infer genetic variability 

deviations from what is expected under neutrality. 

Moreover, pair-wise genetic distances among studied groups were computed and the apportionment 

of genetic variance among and within large geographically-based groups of populations, among 

individual populations, and between cases and controls, was investigated by means of the Analysis 

of the Molecular Variance (AMOVA). 

The average mutation rate for such a genomic region was also estimated by computing nucleotide 

divergence between healthy human samples and the chimpanzee. Subsequently, a phylogenetic 

analysis was performed to examine evolutionary relationships among inferred haplotypes and to 

achieve broad age estimates for supposed disease-causing TNFRSF13B variants.  

Combined results of all these analyses have finally led to the reconstruction of a plausible 

evolutionary history for the TNFRSF13B gene that was achieved in the attempt to elucidate which 

diversity falls into the standard degree of intra-specific TNFRSF13B variation and which instead 

may be related to CVID and IgAD phenotypes. 
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3. Materials and Methods 
 

3.1 Population Samples 

 
Two groups of unrelated Italian CVID and IgAD subjects, as well as a panel of 451 unrelated 

healthy individuals belonging to 26 worldwide populations, were analyzed for a total of 1,132 

sequenced chromosomes. A written informed consent was collected from each subject. 

 
3.1.1 CVID and IgAD samples 

 

77 CVID samples were kindly provided by Dr. Isabella Quinti of the “La Sapienza” University 

Department of Clinical Immunology of Rome. All individuals belong to Center Italy and have been 

diagnosed for CVID by standard criteria of low levels of serum IgG, IgA, and/or IgM, antibody 

deficiency with impaired response to tetanus and pneumococcal antigen immunization, more than 

2% of peripheral B cells and exclusion of hypogammaglobulinemia due to other primary or 

secondary immunodeficiencies. 

38 IgAD samples were instead provided by Dr. Giampaolo Ricci of University of Bologna Pediatric 

Department and belong mainly to Northern Italy (Figure 3.1.1.1). 

CVID individuals were enrolled from 26 Italian Centers belonging to the Italian Primary 

Immunodeficiency Network and, together with many other affected individuals, have already been 

used in a deep analysis of the spectrum of illnesses occurred at the time of the disease onset and 

over a mean of 11.5 years of follow-up with long-term immunoglobulin replacement therapy.  

Such a study, as well as its samples collection, was designed according to the ethical principles for 

medical research involving human subjects of the World Medical Association Declaration of 

Helsinki.  

 

3.1.2 Italian samples 

 

96 unrelated Italian blood donors belonging to many different regions of Italy, without any evident 

immunological manifestations and with an age of over than 55 years, were collected at the 

Transfusion Center of the Maggiore General Hospital of Bologna, to be used as a control group 

representative of Italian healthy population. 
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In addition, 96 unrelated individuals born in the Pre alpine Val di Scalve (BG) were collected 

thanks to collaboration of the Val di Scalve AVIS group (Volunteer Italian Blood donors 

Association).  

Val di Scalve is located in a mountainous area of Lombardy surrounded by peaks belonging to the 

Orobie Pre Alps and rising up to 2,700 m a.s.l. Such features make communication with 

neighboring valleys very difficult and contribute to the high degree of isolation of Val di Scalve 

villages (Figure 3.1.1.1). 

Bio-demographic data about the last three generations were also collected for each subject to check 

its actual origin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
      
              Figure 3.1.1.1 Geographical location of Italian samples.                               

                                           = CVID samples  
                                                 = IgAD samples  
                                                 = Val di Scalve samples  
                                       Blood donors were representative of Italian healthy population. 
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3.1.3 Central Asian samples 

 

28 individuals from Central Asia were selected among samples collected in 1993 and 1994 for the 

CAHAP Project (Central Asia High Altitude People Project). 

Individuals from Kazakhstan were collected in the high plain of the Kegen valley (8 Kazakhs) and 

in the medium-altitude village of Penjim in the East part of the country (7 Uyghurs). 

Individuals from Kirghizstan belong to two different groups located in the medium-altitude Talas 

valley, in the Northern part of Kirghizstan, close to Kazakhstan and Uzbekistan (7), and from the 

isolated high-altitude village in Pamir mountains in the South of the country (6 Kirgiz).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.3.1 Geographical location of Central Asian samples.                               

                                 = Kazakhs 
                                       = Uyghurs  
                                       = Kirgiz from Talas  
                                       = Kirgiz from Sary-Tash 
 

 

 

 

 

 

 

Kazakhstan  
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3.1.4 Middle Eastern samples 

 

Middle Eastern samples were provided by Dr. Shirin Farjadian of the Department of Immunology 

of the Allergy Reseach Center of Shiraz University of Medical Sciences. 

All 96 individuals were collected in Iran, but belong to 6 different ethnic and religious groups: 16 

Iranian Arabs from Ahvaz (Western Iran), 16 Iranian Jews from Shiraz (South Western Iran), 16 

Balochs from Iranshahr (South Eastern Iran, close to Pakistan), 16 Parsees from Shiraz (South 

Western Iran), 16 Turkmens from Gonbad (North Eastern Iran) and 16 Zoroastrians from Yazd 

(Center Iran). 

Bio-demographic data were also collected for each individual to check that he was third generation 

native from the selected area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.4.1 Geographical location of Iranian samples.                               

                                        = Balochs  
                                                = Iranian Jews                   
                                              = Iranian Arabs   
                                                = Parsees  
                                                    = Turkmens 
                                              = Zoroastrians  
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3.1.5 African samples 

 

African samples were obtained from individuals which currently live in Italy and were maintained 

subdivided into two different groups: Sub-Saharan Africans were represented by Ethiopians (11), 

Cameroonians (7), Senegalese (7), Maasai from Kenya (10), Eritreans (7) and Nigerians (15), while 

North Africans come from Morocco (25), Tunisia (8) and Egypt (4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1.5.1 Geographical location of African samples                               

                                        = Sub-Saharan African samples  
                                                                   = North African samples 
 

 

3.1.6 South American samples 

 

41 individuals from South America were selected among samples collected in 2007 during the 

Darwin Project expedition in Peru.  

Subjects of Yanesha ethnicity (8) come from the medium-altitude Peruvian Central Jungle of the 

Cerro de Pasco region in the province of Oxapampa. 

Individuals speaking Quechua language come from two different areas: the province of  Tayacaja 

(9) and the high-altitude Pucachupa village in the province of Puno, close to Lake Titicaca (10). 
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Samples of Aymara ethnicity (10) also come from the same region, notably form the village of 

Chimu. 

Finally, Arequipa individuals (4) were selected among samples collected by Dr. Eduardo Tarazona-

Santos starting form 1998 for mtDNA and Y-chromosome genetic variability studies on South 

Amerindian populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.6.1 Geographical location of Peruvian samples.                               

                                      = Quechuas from Pucachupa  
                                            = Yanesha  
                                            = Aymara from Chimu 
                                            = Arequipa 
                                            = Quechuas from Tayacaja 
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3.2 Laboratory Methods 

 
3.2.1 DNA extraction 

 

DNA was extracted from peripheral blood samples using two different methodologies. A modified 

Salting-Out protocol (a), based on the original protocol of Miller et al. (1988), was used for Middle 

Eastern, Central Asian, South American and Val di Scalve samples, while a QIAamp Blood Midi 

Kit (b) (QIAGEN, Hilden, Germany), which exploits ability of QIAamp Spin Columns silica-gel 

membrane to absorb DNA, was employed for extracting DNA from Sub-Saharan African, North 

African, Italian healthy, CVID and IgAD samples. 

 

a) Modified Salting-Out protocol: 

 

1. Thaw out blood samples by incubating at 37°C and then equilibrating to room temperature    

(15-25°C). 

2. Transfer blood samples to sterile 15 ml tubes and add 12 ml Red Cell Lising Buffer (RCLB). 

3. Vortex, centrifuge at 3,000 rpm for 10 min. and discard supernatant being careful to 

conserve the pellet. Repeat this step 3-4 times as far as the pellet loses its colour. 

4. Add 3 ml White Cell Lising Buffer (WCLB), vortex and add 25 µl Proteinase K (20 mg/ml) 

and 25 µl SDS 20%, vortex and incubate at 55°C for 1 hour. 

5. Add 1.7 ml Sodium Acetate (3M, pH 5.2), manually agitate and centrifuge at 3,000 rpm for 

10 min. 

6. Transfer the supernatant to new 15 ml tubes. 

7. Add an equivalent volume of Isopropyl alcohol and softly agitate. At this step it should be 

visible the DNA “jelly-fish” (on the dimension of which depends the final amount of sterile 

water to add). Centrifuge at 3,000 rpm for 10 min. 

8. Discard the supernatant and add 3 ml Ethanol 80%, vortex and centrifuge at 3,000 rpm for 

10 min. 

9. Discard the supernatant, turn upside-down the tubes and leave them drying on absorbent 

paper for at least 2 hours. 

10. Put dry DNA in solution by using sterile water. 

 

 

 



 60 

b) QIAamp Blood Midi Kit protocol: 

 

1. Thaw out blood samples by incubating at 37°C and then equilibrating to room temperature 

(15-25°C). 

2. Add 100 µl QIAGEN Protease in 15 ml centrifuge tubes, add 1 ml blood and mix briefly. 

3. Add 1.2 ml Buffer AL and mix thoroughly by inverting the tubes 15 times, followed by 

additional vigorous shaking for at least 1 min. 

4. Incubate at 70°C for 10 min. 

5. Add 1 ml Ethanol 96-100% and mix by inverting the tubes 10 times, followed by additional 

vigorous shaking. 

6. Transfer the solution onto QIAamp Midi columns placed in 15 ml centrifuge tubes. Close the 

cap and centrifuge at 3,000 rpm for 3 min. 

7. Remove QIAamp Midi columns, discard the filtrate from the 15 ml centrifuge tubes and 

place the columns back into them. 

8. Add 2 ml Buffer AW1 to the columns. Close the cap and centrifuge at 5,000 rpm for 1 min. 

9. Add 2 ml Buffer AW2 to the columns. Close the cap and centrifuge at 5,000 rpm for 15 min. 

10. Place the columns in clean 15 ml centrifuge tubes and discard the collection tubes 

containing the filtrate. 

11. Add 200 µl Buffer AE, equilibrated at room temperature (15-25°C), directly onto the 

membrane of the columns. Close the cap and incubate at room temperature for 5 min. then 

centrifuge at 5,000 rpm for 2 min. 

12. Add further 200 µl Buffer AE, equilibrated at room temperature (15-25°C), directly onto the 

membrane of the columns. Close the cap and incubate at room temperature for 5 min. then 

centrifuge at 5,000 rpm for 2 min. 

 

Purified total extracted DNA (e.g. genomic and mitochondrial DNA) was visualized by 

electrophoresis on 1% agarose gel, at a voltage of 120 V for 15 min. Agarose gel was prepared with 

SeaKem® LE Agarose gel (CAMBREX Bio Science Rockland, Rockland, ME, USA), TAE 1X 

Buffer composed of 40 mM Tris, pH 8.0, 20 mM Acetic Acid, 1 mM EDTA (BIO-RAD 

Laboratories, Munich, Germany) and 0.1 µg/ml Ethidium Bromide (Sigma, St. Louis, MO, USA). 

The same visualization provided a rough DNA quantification by means of visual comparison of 

extracted DNA with cl857 Sam 7 λ-DNA samples at known variable concentration (Roche 

Diagnostic, Indianapolis, IN, USA). 
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3.2.2 TNFRSF13B exons amplification 

 

Five segments, corresponding to the five TNFRSF13B exons and their immediately intronic 

flanking regions, were amplified by using Polymerase Chain Reaction (PCR) (Mullis et al. 1986), 

encompassing a total of 2,254 base pair (bp) for each individual. Amplification reactions were 

performed in a GeneAmp® PCR System 9700 thermal cycler (Applied Biosystems, USA) as 

previously described (Castigli et al. 2005a), except for exon 5 that required a new couple of primers 

and a different annealing temperature. A high efficiency FastStart Taq DNA Polymerase (Roche 

Diagnostic, Indianapolis, IN, USA) was used to ensure amplification even for less concentrated 

DNA samples. Reagents used for PCR reaction mix are reported in Table 3.2.2.1, while exon-

specific couples of primers and thermal cycler setting parameters are listed in Table 3.2.2.2 and 

3.2.2.3 respectively. 

 

Table 3.2.2.1 PCR mix reagents for TNFRSF13B exons amplification. 
 

Reagents Cf V (µl) 

H2O    

Buffer + MgCl2 1 X 2.5 

dNTPs 0.2 mM 2 

Primer F  0.5 µM 1.25 

Primer R  0.5 µM 1.25 

Taq Polymerase 1 U 0.2 

Genomic DNA ≥ 5 ng  

mix  25 
                                   Cf = final concentration; V = volume; U = units.                             
                                   H2O to reach the final volume of 25 µl. 

 
 
 
 

Table 3.2.2.2 Couple of primers used for TNFRSF13B exons amplification. 
 

Exon   Amplicon 
(bp) Primer forward (5’>3’)  Tm 

(°C) Primer reverse (5’>3‘)  Tm 
(°C) 

I 465 GCCCGGCAGGCCTTCCACT 66 GCAAGCCCCACATCCCAGAGG 70 

II 336 GGCAGGAGAGGCCGTCTTGG 68 TCCTCCTGCCACCCTTTCCTCA 70 

III 503 GGCTTACTCTGGAATTGCCTTCTG 72 CTTCTGGCCATTTGCTTGGACT 66 

IV 497 CCAGCCTCTCCAGGAGCCAGAC 74 CCGGGTGCCACTCTCCCAGTTA 72 

V 452 CCCCGGCACAGGTTCTGGTC 62 TCCTCCTTTCCCTCCCTGAC 72 

      bp = base pairs; Tm = melting temperature. 
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Table 3.2.2.3 Thermal cycler setting parameters for TNFRSF13B exons amplification. 
 

Steps Time Temp. (°C) Cycles 

Initial DNA denaturation  5 min 95  

DNA denaturation 30 sec 95  

Primers annealing 30 sec 66a/64b 35  

Extension 30 sec 72  

Final extension 7 min 72  
                                a for exon 1, 2, 3, 4; b for exon 5. 

 

 

Amplicons were visualized by electrophoresis on 2% agarose gel, at a voltage of 100 V for 15 min. 

In order to verify if amplified DNA segments actually have the expected length, to be sure of the 

absence of unspecific amplifications, a GeneRulerTM 100 bp DNA Ladder (Fermentas, Burlington, 

Ontario, Canada) was used as a reference (Figure 3.2.2.1). 

 

 

 

 

 

 

 
 

Figure 3.2.2.1 Amplification pattern for TNFRSF13B exon 3.                               

                               L = GeneRulerTM 100 bp DNA Ladder, with the brightest band of 500 bp;  
                                     k = white control to test for possible DNA contamination of PCR reagents. 
 

 

Subsequently, PCR products were added of 70 µl sterile water and transferred on a Montage PCR 

kit (Millipore, Bedford, MA, USA) to be purified with a vacuum pump system, at a pressure of 15 

mmHg for 5 min. This typology of purification exploits the ability of a filtration membrane to 

eliminate residual salts, primers and not incorporated dNTPs from PCR products solution. To check 

if purification process has been achieved without DNA loss, purified products were visualized by 

electrophoresis on 1% agarose gel, at a voltage of 100 V for 15 min. 

 

 

L

L 

2 3 4 5 6 8 7 k 1 
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3.2.3 TNFRSF13B exons sequencing 

 

Sequencing of TNFRSF13B coding region was performed by means of Chain Termination Method 

(Sanger et al. 1977) based on the employment of dideoxynucleotides (ddNTPs) that are devoid of 

the 3’ OH group and labeled with four different fluorescent molecules. 

In this way, ddNTPs incorporation in new DNA strands precludes incorporation of further 

nucleotides, producing DNA strands that differ for one base and are identifiable by a CCD (Charge-

Coupled Device).  

Purified PCR products were used for sequencing reaction with ABI Prism BigDye® Terminator 

v1.1 Cycle Sequencing Kit (Applied Biosystems, USA), the protocol of which and the relative 

thermal cycler setting parameters are described in Table 3.2.3.1 and Table 3.2.3.2 respectively. 

 

Table 3.2.3.1 Sequence reaction mix reagents. 
 

Reagents Cf V (µl) 

H2O    

Buffer* 0.5 X 2 

BigDye 1.1 Kit 2.5 X 1 

Primer (F o R) 0.32 µM  1 

Purified PCR product  2 

mix  10 
                                              Cf = final concentration; V = volume.  
                                              *BigDye® Terminator v1.1/3.1 Sequencing Buffer 5X.  
                                              H2O to reach the final volume of 10 µl.                  
 
 
 
 
 

Table 3.2.3.2 Thermal cycler setting parameters for TNFRSF13B exons sequencing. 
 

Steps Time Temp. (°C) Cycles 

Initial DNA denaturation  30 sec 96  

DNA denaturation 10 sec 96 

Primer annealing 3 min 60 
25 
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Products of sequencing reaction were added of 10 µl sterile water and transferred on a Montage 

SEQ96 Sequencing Reaction Cleanup Kit (Millipore, Bedford, MA, USA) to be purified with a 

vacuum pump system, at a pressure of 15 mmHg for 3 min and, after re-moisturizing DNA with 

Injection Solution (Millipore, Bedford, MA, USA), for further 4 min. 

Finally, separation of sequencing reaction purified products, on the basis of their length and 

fluorescent label, was performed by capillary electrophoresis on an automatic sequencer ABI 3730 

DNA Analyzer (Applied Biosystems, USA), the Data Collection software of which manage 

fluorescence data directly producing electropherograms (Figure 3.2.3.1). 

Subsequently, the Sequencher 4.6 software (http://www.genecodes.com) was used to read 

electropherograms and to align obtained sequences to the TNFRSF13B reference sequence 

(NG_007281.1 GenBank) for detecting polymorphic sites. 

 

 

Figure 3.2.3.1 Example of ABI 3730 electropherogram. 
                                               indicates a polymorphism in heterozygous state. 
 
 
 

 

 

 

 

 

 

 

 

 

 



 65 

3.3 Statistical Analyses 

 
Statistical analyses were performed clustering population samples into five geographically-based 

groups (Sub-Saharan Africa, North Africa, Middle East, Central Asia and South America), whereas 

Italian healthy, CVID and IgAD individuals, as well as Italians from the isolate of Val di Scalve, 

were considered as four independent samples. 

 

3.3.1 Haplotypes inference 

 
Haplotypes were statistically inferred from unphased genotype data by means of the Bayesian 

algorithm implemented in the PHASE 2.1 software (Stephens et al. 2001; Stephens and Donnelly 

2003). This Markov Chain-Monte Carlo (MCMC) algorithm aims to evaluate conditional 

distribution of unresolved haplotypes by exploiting the fact they tend to be similar to resolved 

haplotypes, which are certainly known since some individuals are homozygous. According to this 

rationale, the most likely pair of haplotypes for an ambiguous individual should be represented by 

two haplotypes that are similar, but not identical, to two high population frequency haplotypes. 

The most plausible phase reconstructions and their confidence probabilities were estimated on the 

basis of such a comparison between unresolved and similar resolved haplotypes, by using default 

settings of the PHASE 2.1 software, with the exception of the number of iterations (1,000 rather 

than 100), as recommended in Graffelman et al. (2007). 

Relatively low confidence probabilities are obtained if analyzed samples are made up of very few 

individuals, since too little information is available to allow a reliable haplotypes inference. This is 

the reason why data from different populations are sometimes pooled together to perform a sole 

haplotypes inference. Despite that, in this study haplotypes reconstruction was separately performed 

in each single group to avoid potential bias due to the fact that European samples are much more 

represented respect to other continents samples and since each group was made up of a consistent 

number of individuals.  

All detected polymorphic sites were used for such a reconstruction, but samples with >50% missing 

genotypes were dropped from the analysis, as recommended in Stephens and Scheet (2005). 

The chimpanzee TNFRSF13B reference sequence (NC_006484.2 GenBank; Pan_troglodytes 2.1 

assembly) was used to define the putative ancestral allele at each SNP, except for intronic 

substitution C>T at position 90, where the chimpanzee sequence carries a G. In this case, the most 

frequent allele in analyzed samples was considered as the ancestral one. 
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3.3.2 Basic descriptive statistics 

 

Estimates of several descriptive statistics, such as nucleotide diversity (π), average number of 

nucleotide differences (K) and haplotype diversity (H), which are useful to describe the amount of 

intra-population genetic variability of each sample, were computed using the DnaSp package 

(Rozas et al. 2003) version 4.50.2.  

 

 Nucleotide diversity (π) is defined as the probability that two randomly chosen homologous 

nucleotides are different in the sample: 
 

                                                                       k 

π = 1/L [ Σi=1  Σj<i   pi pj d ij ] 
 

where L is the number of loci, k is the number of haplotypes, pi is the frequency of the i-th 

haplotype, dij is an estimate of the number of mutations having occurred since haplotypes i 

and j divergence (Tajima 1983). 

 

 Average number of nucleotide differences (k) is defined as: 
                                                                                           

k = [ Σ kij ] / (n
2)  

                                                                                                i<j   
 

where kij is the number of nucleotide differences between the i-th and j-th nucleotides 

(Tajima 1983). 

 

 Haplotype diversity (H) is equivalent to expected heterozygosity for diploid data so that it is 

expected to be higher in populations with a great number of alleles and lower in populations 

with few alleles or with only one common allele. It is defined as the probability that two 

randomly chosen haplotypes are different in the sample: 
 

                                                                                                         k 
H = (n/n-1) [ 1- Σ  pi

2
 ]  

                       i=1     
where n is the number of gene copies in the sample, k is the number of haplotypes, and pi is 

the frequency of the i-th haplotype (Nei 1987). 

 

In addition to intra-population genetic variability, indices for total nucleotide divergence between 

humans and chimpanzees (Dxy) and its apportionment in non-coding (Ki), synonymous (Ks) and 
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non-synonymous (Ka) divergence were also computed with the same software. Finally, the Ka/Ks 

ratio was calculated as a conventional statistic for the measure of global evolutionary constraint on 

genes. 

 Average number of nucleotide substitutions per site between populations (Dxy): 

Dxy = Σij  xi  yi  d ij 

where xi and yi are the frequencies of the i-th haplotype in the X and Y population and dij 

represents nucleotide substitutions between the i-th haplotype from a population and the j-th 

haplotype from the other population (Nei 1987). 

 Number of non-synonymous substitutions per non-synonymous site (Ka) and number of 

synonymous substitutions per synonymous site (Ks) for any pair of sequences: 

 
 

Ka = Nd / N  ;  Ks = Sd / S   
 
 

where N and S are the average number of non-synonymous and synonymous sites for the 

two sequences compared (Nei and Gojobori 1986). 

 

 Ka/Ks ratio has been applied to investigate the TNFRSF13B evolution rate both within the 

human species and when compared to the chimpanzee. 

 

3.3.3 Phylogenetic analysis and dating 

 

Evolutionary relationships among inferred haplotypes were visualized by means of a median joining 

network (Bandelt et al. 1995) based on the Kruskal’s minimum spanning tree and the Farris’ 

maximum parsimony algorithms implemented in the Network 4.5.0.0 software (http://www.fluxus-

engigeering.com). 

First of all, the Kruskal’s minimum spanning tree algorithm produces all possible trees with the 

shortest distance among observed haplotypes, that is with the minimal value of branch length sum. 

Subsequently, the Farris’ maximum parsimony algorithm generates median vectors, namely the 

consensus haplotypes, which are necessary to joint together all produced trees. As a consequence, 

the median joining network represents a synthesis of all parsimony trees, so that all possible 

evolutionary pathways will be represented (e.g. through cycles). 
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One network was constructed for each group, for the total sample and for a cases/controls sample. 

With the same software, a broad age estimate for analyzed TNFRSF13B sequences was calculated 

on the basis of network topology, by computing the average number of sites differing between a set 

of sequences and a specified common ancestor (ρ): 
    

                                                                                      m 
ρ = Σ  (ni/n) ρi  

                                                                                               i=1   
       

where ρi is referring to the last common ancestor of the pooled population, ni is the sample size of 

each subpopulation and n is the sample size of the total population (n = n1 + … + nm) (Saillard et al. 

2000).  

To turn ρ into a time estimate, a mutation rate per site per year (µ) of 6.22×10-10 was obtained by 

dividing total nucleotide divergence between human samples (excluding CVID and IgAD 

individuals) and the chimpanzee (Dxy = 0.00746) by twice the divergence time between the species 

(6 million years). 

Finally, the most frequent haplotype in the analyzed dataset was used as the specified common 

ancestor, that is the root sequence of interest used to calculate ρ.  

 

3.3.4 Analysis of population structure 

 

Apportionment of genetic variance at different hierarchical level (Fct among geographically-based 

groups of populations, Fsc within geographically-based groups of populations and Fst among 

individual populations), as well as between cases and controls, was investigated with a locus by 

locus Analysis of the Molecular Variance (AMOVA) (Excoffier et al. 1992), exploiting information 

on haplotypes allelic content and frequencies. 

A Fst index, analogue to AMOVA Wright’s Fst based on haplotypes pair-wise differences, was also 

used to calculate pair-wise genetic distances among 26 worldwide populations and CVID and IgAD 

samples, and to generate a Slatkin’s linearized genetic distance matrix (Slatkin 1995). This matrix 

was finally used for a graphical representation by means of the multivariate analysis Non Metric 

Multidimensional Scaling (NM-MDS) (Kruskal 1964) that enables reproduction of computed 

distances in a bi or tri-dimensional space, reducing loss of information and giving stress values for 

indication about the approximation goodness. 

Both AMOVA and genetic distances were computed using the Arlequin 3.01 package (Excoffier et 

al. 2005), while the StatSoft 6 software (http://www.statsoft.it) was employed to obtain NM-MDS.  
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3.3.5 Neutrality tests 

 

Several statistical tests have been developed to infer genetic variability deviations from what is 

expected under neutrality, since it is well known that departures from the neutral model of evolution 

strongly influence gene genealogies and mutation patterns.  

These tests have been classified into three different classes according to the different genetic 

information they are able to use: Class I tests are based on the frequency spectrum of mutations, 

Class II on the haplotypes distribution and Class III on the distribution of pair-wise differences 

(Ramos-Onsins and Rosaz 2002). 

Departures form the null hypothesis of neutral evolution at the TNFRSF13B gene were tested by 

using Class I statistics, since it has been proved that they are less sensitive to misspecifying 

recombination in comparison to those based on haplotypes distribution or mismatch distribution 

(Ramírez-Soriano et al. 2008). 

 

 Tajima’s D is based on standardized difference between the average pair-wise difference 

(π), which takes into account the number of differences between two sequences, and the 

Watterson’s estimator of theta θW, based on the number of segregating sites: 

D = (θπ - θw) / √ Var (θπ - θw) 

                                                                                         n-1                          
where  θπ = Σij  xi  xj π ij   and  θw = S / [ Σ 1/i ]  
                                                                                            i=1    
where n is the number of chromosomes in the sample and S the number of segregating sites 

(Tajima 1989). 

Under neutrality, both θπ and θw predict the theoretical value of θ = 4Nµ so that they are 

equivalent. As a consequence, Tajima’s D distribution results centered on 0 under a neutral 

model of evolution. 

Differently, if positive selection or population expansion have acted, an excess of singletons 

and low frequency variants is found and the number of segregating sites (S) results too large 

compared to π, so that θw will be larger than θπ, leading to more negative Tajima’s D values 

as larger is deviation from neutrality. On the contrary, an excess of intermediate frequency 

variants, and so positive Tajima’s D values due to a too small number of segregating sites 

(S) compared to π, will be caused by balancing selection or population substructure. 
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 Fu and Li’s D*, F* and D, F (with a chimpanzee sequence as outgroup) are based on 

comparison between an estimator of θ and the number of derived unique mutations in the 

genealogy external branches. Fu and Li’s D is computed from the normalized difference 

between θw and the expected number of derived mutations, while F uses π instead of θw: 

 

         D = (S - anηe) / √ Var (S - anηe)      ;      F = (θπ - ηe) / √ Var (θπ - ηe) 
 

                                                                                          
                               n-1                          

where  an = Σ 1/i  
                           i=1   
 

where ηe is the number of derived singletons in the sample.   

Under neutrality, the expected number of external mutations is E[ηe] = θπ = θw = 4Nµ. 

D* and F* statistics have been developed since it is not always possible to have an outgroup 

and, thus, to know whether a singleton is derived or ancestral: 

 

 D* = (n/n-1) S - anηs / √ Var [(n/n-1) S - anηs] 
 

                               F* = (n/n-1) ηs - θπ / √ Var [(n/n-1) ηs - θπ] 
 
 

where ηs is the total number of singletons in the sample (Fu and Li 1993). 

 

 Fay and Wu’s H (with a chimpanzee sequence as outgroup) is based on the standardized 

comparison between π and θH: 
 

H = (θπ - θH) / √ Var (θπ - θH)  
    

where θH is an estimator of θ that gives more weight to high-frequency derived variants 

based on the expected number of mutations with a derived frequency i in the sample.  
 

                                                                                                        n-1                          
                                            θH = 2 / n(n-1)  Σ  i2 Si 
                                                                                                            i=1   

 

where Si is the number of derived variants found i times in the sample. 

Under neutrality both θπ and θH predict the theoretical value of θ = 4Nµ, so that they are 

equivalent (Fay and Wu 2000). 
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All these tests were performed with the DnaSp package (Rozas et al. 2003) version 4.50.2 and the 

same software was used to test statistical significance of such statistics by running 10,000 

coalescent simulations for each one, with a constant population size and an intermediate level of 

recombination (R = 24.26). 

Coalescent simulations produced a distribution of values for each statistic obtained under a neutral 

model of evolution and useful to be compared with observed values of Tajima’s D, Fu and Li’s D*, 

F*, D, F and Fay and Wu’s H in a one-tailed test. In this way, statistical significance of each 

neutrality test resulted as the portion of coalescent simulations carrying more extreme values than 

observed ones. 

In order to calculate the recombination parameter (R = 4Ner) at the TNFRSF13B locus an effective 

population size for humans of Ne = 10,000 have been considered (Takahata et al. 1995). The 

recombination rate r was obtained using a weighted arithmetic mean of recombination rates 

between adjacent sites per generation (r1 = 3.37 cM/Mb, r2 = 1.83 cM/Mb, r3 = 0.40 cM/Mb, r4 = 

0.06 cM/Mb) which are available on the on-line OXSTATS Recombination Map database 

(http://www.mathgen.stats.ox.ac.uk/Recombination.html) and estimated by Myers et al. (2005) for 

intervals spanning from position 16,764,600 to 16,817,752 (53 kb) of chromosome 17 and covering 

the TNFRSF13B region. 
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4. Results 
 

4.1 Polymorphic variation at the TNFRSF13B coding region: an overview 

 

Polymorphic variation at the TNFRSF13B coding region was investigated by sequencing a total of 

2,254 bp for each individual. Such a survey encompassed the gene five exons and their immediately 

intronic flanking regions and was performed on 902 chromosomes from healthy individuals 

belonging to 26 worldwide populations, in addition to 154 and 76 chromosomes from Italian 

subjects diagnosed for CVID and IgAD respectively. 

This sequencing approach led to the overall identification of 35 sequence variations, 33 of which 

were biallelic SNPs, while the remaining two were a single base insertion and a single base deletion 

(Figure 4.1.1). 

Figure 4.1.1 Genomic structure of TNFRSF13B and position of detected polymorphisms. 
           Intronic variants are reported above the gene, while coding variants are listed below. 
 

Fifteen sequence variations were singletons, that is nucleotide changes with minor alleles which 

were observed only once among the total sample and in heterozygous state. Among them, six 

variants resulted to be exclusive of CVID and IgAD individuals. Moreover, eleven polymorphic 
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sites have already been reported in the on-line SNP database build 129 (dbSNP, 

http://www.ncbi.nlm.nih.gov/projects/SNP/) (Table 4.1.1).  

 

 

Table 4.1.1 Polymorphisms detected in the TNFRSF13B gene. 

Nucleotide 
position a 

Intronic / mRNA 
position Protein residue b Standard nomenclature b SNP id c SNP alleles d 

22 22 Gly/Gly G3G  C/G 
84 20+10    C/T 
85 20+11    G/A 
90 20+14     C/T* 

19,525 94 Thr/Thr T27T rs8072293 G/A  
19,566 135 Asp/Gly D41G  A/G 
19,588 157 Met/Ile M48I  G/C 
23,036 67-70    C/T 
23,043 67-63    G/C 
23,099 67-7    C/G 
23,110 204  204insA  insA 
23,166 273 Ile/Asn I87N  T/A 
23,197 304 Pro/Pro P97P rs35062843 T/G  
23,216 323 Cys/Arg C104R rs34755412 T/C 
23,217 324 Cys/Tyr C104Y   G/A 
23,264 358 359  358 359delA  delA 
23,376 149+25   rs2274892 A/C  
23,382 149+31   rs55955502 T/A 
31,492 150-86    G/A 
31,518 150-60    G/T 
31,538 150-49   rs56223325 C/T 
31,674 555 Ala/Glu A181E  C/A 
31,695 576 Lys/Met K188M  A/T 
31,711 592 Cys/stop C193X  C/A  
31,726 606 Arg/Arg R198R  G/A 
31,757 638 Ser/Pro S209P  T/C  
31,759 640 Ser/Ser S209S  C/T 
31,819 210+55    C/T 
32,153 211-139   rs11652843 T/G  
32,208 211-84    G/C  
32,232 211-60   rs11652811 T/C  
32,319 672 Val/Ala V220A rs56063729 T/C  
32,412 765 Pro/Leu P251L rs34562254 C/T 
32,436 789 Trp>stop   G/A 
32,491 844 Ser/Ser S277S rs11078355 T/C        

      Polymorphisms in italics are private CVID and IgAD variants, of which underlined ones are singletons.                     
         a Position in the reference sequence (NG_007281.1 GenBank). 
         b Coding variants. 
         c dbSNP build 129.    
         d Inferred ancestral state in bold (see the Materials and Methods section). 
         * SNP with ambiguous phylogenetic information (see the Materials and Methods section). 
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Twenty polymorphisms lay in exons: six were synonymous changes, ten were replacement changes, 

two led to non-sense mutations and two led to frameshift mutations. 

In particular, six coding variants (204insA, I87N, C104R, 358_359delA, A181E and C193X) have 

been previously observed in clinical case-control studies (Castigli et al. 2005a; Castigli et al. 2007; 

Salzer et al. 2005). Among them 204insA, I87N, 358_359delA, A181E and C193X resulted private 

diseases mutations, with I87N, 358_359delA and A181E which were exclusive of CVID 

individuals, whereas 204insA and C193X were found also in IgAD subjects.  

Nevertheless, such coding variants extremely low frequencies resulted in little statistical power to 

detect significant differences of frequency between cases and controls. As a matter of fact, 

substitution A181E only showed a statistically higher frequency in CVID subjects respect to healthy 

individuals (Fisher’s Exact Test, p<0.05). 

Finally, amminoacid replacement C104R was the sole non-private diseases mutation, being found 

both in healthy Italians and in CVID and IgAD individuals with nearly the same frequency. 

 

4.2 Patterns of genetic diversity 

 

Summary statistics describing TNFRSF13B coding region genetic diversity were separately 

estimated in geographically-based groups of populations, Italian CVID and IgAD samples, Italian 

control group and Val di Scalve population and are reported on Table 4.2.1. 

A regards nucleotide diversity (π), which was calculated as the average heterozygosity per site, a 

value of 0.00110 was obtained for the total sample and did not change significantly after excluding 

CVID and IgAD individuals from the analysis. 

Compared to literature values, such a statistic resulted to be nearly twice the mean value estimated 

for 292 autosomal genes (π = 0.00058) (Stephens et al. 2001) and higher than the mean value 

calculated from the 320 genes re-sequenced by the Seattle SNPs project (π = 0.00085) 

(http://pga.gs.washington.edu/). Moreover, it was also higher than the value obtained as an average 

for eight genes involved in immune functions and selected from the Innate Immunity Program in 

Genomics Application database (π = 0.00094) (IIPGA, http://innateimmunity.net/), which were 

recently surveyed for signatures of selection (Ferrer-Admettla et al. 2008).  

Interestingly, the Sub-Saharan African sample showed one of the lowest values of nucleotide 

diversity (π = 0.00063), as already reported in Mateu et al. (2001), but in contrast with the trend 

observed for several other genes (Tishkoff et al. 1996; Calafell et al. 1998; Tishkoff et al. 1998; 

Guthery et al. 2007) and for Seattle SNPs re-sequenced genes, for which African-Americans 

showed greater nucleotide diversity in comparison to European-Americans in 82.6% of cases. 
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Table 4.2.1 Summary statistics for TNFRSF13B genetic diversity. 

 N S s k H π K 

S.S. Africa 114 10 1 14 0.802 ± 0.022 0.00063 1.416 

N. Africa 74 10 3 17 0.849 ± 0.026 0.00101 2.280 

M. East 192 14 5 23 0.822 ± 0.021 0.00107 2.411 

C. Asia 56 7 3 9 0.795 ± 0.039 0.00056 1.267 

S. 
America 82 7 1 12 0.792 ± 0.028 0.00062 1.401 

Italy 192 13 4 20 0.759 ± 0.025 0.00119 2.678 

CVID 154 20 9 24 0.767 ± 0.032 0.00115 2.592 

IgAD 76 12 3 14 0.784 ± 0.040 0.00121 2.724 

Val Scalve 192 8 3 11 0.695 ± 0.026 0.00093 2.087 

Total 1132 35 15 64 0.865 ± 0.006 0.00110 2.482 

                       N, number of chromosomes; S, number of polymorphic sites; s, number of 
        singletons; k, number of haplotypes; H, haplotype diversity; π, nucleotide         
        diversity; K, average number of nucleotide differences. 

 

 

Also concerning haplotype diversity (H), which is defined as the probability of two haplotypes 

randomly chosen in the sample to be different, a lower value was found for the Sub-Saharan 

African sample (H = 0.802) respect to North African and Middle Eastern ones (H = 0.849 and H = 

0.822 respectively). 

Finally, the same peculiar trend can be observed also for the number of polymorphic sites (S), 

singletons (s) and haplotypes (k), as well as for the average number of nucleotide differences (K), 

pointing out again an unusual scarceness of variability in Sub-Saharan Africans. 

 

4.3 Divergence between humans and chimpanzees 

 

Fifteen fixed nucleotide differences were observed between sequences of healthy humans and the 

chimpanzee reference sequence (NC_006484.2 GenBank, Pan_troglodytes 2.1 assembly), one of 

which, the C to G transversion at nucleotide position 23,342, was the sole leading to a replacement 

change (P146A). 

A total nucleotide divergence (Dxy) of 0.75% was calculated, together with its apportionment in 

non-coding (Ki), synonymous (Ks) and non-synonymous (Ka) divergence (Table 4.3.1). 
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Table 4.3.1 Divergence between human and chimpanzee TNFRSF13B sequences. 

Dxy Ki          Ks   Ka     Ka/Ks 
0.75% 1% 0.87% 0.18% 0.202 

(2,254 bp) (1,375 bp) (667 bp) (212 bp)  (879 bp) 
      

          Dxy, total nucleotide divergence; Ki, non-coding divergence; Ks, synonymous divergence; Ka, non-  
          synonymous divergence. In brackets the number of surveyed nucleotide sites. 
   

 

A Ki of 1% was estimated on the basis of the 1,375 non-coding bp analyzed and turned out to be 

lower than 1.27% computed as the average value for 12,997 autosomal genes, only 5% of which 

shows lower non-coding divergences (The Chimpanzee Sequencing and Analysis Consortium 

2005).  

Small values of synonymous and non-synonymous divergence (Ks = 0.87% and Ka = 0.18%) were 

also observed with respect to average values estimated for genomic divergence between humans 

and primates (Ks = 1.42% and Ka = 0.34%) (Chen and Li 2001), but they fall respectively in the 

37% and 47% percentiles of such a genome-wide distribution. 

Finally, as a conventional statistic for the measure of global evolutionary constraint on genes, the 

Ka/Ks ratio was estimated, obtaining a value of 0.202 that was quite similar to the mean value 

reported by The Chimpanzee Sequencing and Analysis Consortium (Ka/Ks = 0.23). 

 

4.4 Haplotypes structure in the total sample 

 

An ancestral haplotype, which was not found in the surveyed samples, was inferred by using the 

chimpanzee TNFRSF13B reference sequence to recover putative ancestral alleles at each 

polymorphic site. 

Haplotypes inference was separately performed in five large geographically-based clusters of 

populations, in Italian groups of CVID, IgAD and healthy individuals and in the Val di Scalve 

sample. 

Such haplotypes reconstruction led to the overall identification of 64 different haplotypes (Table 

4.4.1), the frequency distribution of which showed that the five most frequent haplotypes 

accounted for 68% of sampled chromosomes.  

Among these five most frequent haplotypes h3, h6 and h9 were found in all groups except in the 

Val di Scalve sample, reaching a cumulative frequency of 46%. In particular, h3 was the most 

represented haplotype nearly in all populations, with a frequency always ≥25%, except for the 

Central Asian sample (7%).  
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Table 4.4.1 TNFRSF13B haplotypes and their absolute frequencies in the surveyed groups. 
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CCGGAAGCGCATTTGAATGGCCACGTCCTGTTCGC 
          *    #           

 

h10 ...T............................... 1 - - - - - - - - 1 
h11 ...T..............A................ 1 - - - - - - - - 1 
h2 ...C............................... 15 - - 3 6 38 15 6 27 110 

h63 G..C............................... - - - - - - - 1 - 1 
h54 ...C..........................C.... - - - - 1 - - - - 1 
h26 ...C.G............................. - 1 - - 1 - - - - 2 
h15 ...C..................T............ 1 - - - - 3 - - - 4 
h60 ...C..................T.........T.. - - - - - - 1 - - 1 
h14 ...C............................T.. 2 4 - 1 - 8 2 - 5 22 
h5 ...C....................A.......T.. 1 - - - - - - - - 1 

h41 ...C.........C..................... - - - 2 - - - - - 2 
h27 ...C.........C....................T - 2 - - 5 - - - - 7 
h3 ...C..............................T 71 83 - 32 70 28 22 4 24 334 

h53 ...C.................A............T - - - - 1 - - - - 1 
h47 ...C.................A.......C....T - - - - 2 - - - - 2 
h49 ...C.......A.........A.......C....T - - - - 1 - - - - 1 
h43 ...C........................G.....T - - - - 2 - - - - 2 
h30 ...C.......................T......T - 1 - - - - - - - 1 
h51 ...C...........G..................T - - - - 1 - - - - 1 
h46 ...C...............T..............T - - - - 1 - - - - 1 
h23 ...C.....................C........T 1 - - - - - - - - 1 
h64 ...C...T..........................T - - - - - - - - 1 1 
h4 ...C........G.....................T 5 - - - - - - - - 5 

h12 ...C............C.................T 6 1 - - - 3 3 7 - 20 
h50 ...C..........A...................T - - - - 1 - - - - 1 
h57 .T.C..............................T - - - - - 1 - - - 1 
h52 .T.C............................... - - - - 1 1 - - - 2 
h22 ...C........G...................... 6 5 - 3 3 2 - - - 19 
h44 ...C........G...C.................. - - - - 2 - - - - 2 
h59 ...C.....G..G...................... - - - - - - 1 - - 1 
h32 ...C........G...................T.. - 1 - - - - - - - 1 
h35 ...CG.......G...................... - - 1 - - - - - - 1 
h18 ...CG.............................. 2 - 5 - - - 1 - 5 13 
h33 ...CG...........C...............T.. - 1 32 - - - - - - 33 
h38 ...CG...........................T.. - - 1 - - - - - - 1 
h37 ...CG...........................T.T - - 1 - - - - - - 1 
h20 ...CG.............................T 3 - 93 - - - - - - 96 
h36 ...CG..T..........................T - - 1 - - - - - - 1 
h19 ...CG...............T.............T 1 - - - - - - - - 1 
h13 ...CG...........C.................T 2 3 - - - 1 - - - 6 
h34 ...CG...........CA................. - - 1 - - - - - - 1 
h31 ...CG...........C.................. - 1 8 - - - 1 4 3 17 
h1 ...CG...........C...........G.C.... 25 37 39 11 17 2 9 - - 140 

h21 ...CG...........C........C..G.C.... 2 - - - - - - - - 2 
h55 ...CG.....G.....C...........G.C.... - - - - 1 - - - - 1 
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h40 ...CG.....G.....C......A....G.C.... - - - 1 - - - - - 1 
h45 ...CG...C.......C......A....G.C.... - - - - 1 - - - - 1 
h8 ...CG...........C...........G.C...T 7 10 10 3 5 1 - - - 36 

h25 ...CG...........C...........G.CC..T - 5 - 3 6 - - - - 14 
h39 ...CG.......................G.C.... - - - 1 - - - - - 1 
h62 ...CG.......................G.C...T - - - - - - 1 - - 1 
h42 ...C........................G.C...T - - - 1 - - - - 2 3 
h58 ...C............C...........G.C...T - - - - - - 2 1 1 4 
h61 ...C............C...........G.C..AT - - - - - - 1 - - 1 
h17 ...C........................G.C.... 3 2 - - - - 1 - 1 7 
h48 ...C........G...............G.C.... - - - - 3 - 1 - - 4 
h7 ...C............C...........G.C.... 1 - - - - - 1 - 1 3 
h6 ...C............C...............T.. 21 22 - 10 16 9 6 9 3 96 

h56 ..AC............C...............T.. - - - - - 1 - - - 1 
h29 ...C..........A.C...............T.. - 1 - 1 - - - - - 2 
h24 ...C..C.........C...............T.. - 1 - - - - - - - 1 
h28 ...C............C...............T.T - 1 - - 1 - - 2 - 4 
h16 ...C............C.........T.....T.T 1 - - - - - - - - 1 
h9 ...C............C.................. 14 10 - 4 6 16 6 22 9 87 

Polymorphisms are listed in the second column below their nucleotide position and the corresponding chimpanzee 
ancestral position; ancestral chimpanzee-like alleles are indicated by dots. Variants 204insA and 358_359delA were re-
codified as biallelic SNPs: *haplotypes with the G allele at position 23,110 carry the 204insA mutation; # haplotypes 
with the G allele at position 23,264 carry the 358_359delA mutation. In brackets the number of analyzed chromosomes. 
 

 

Haplotypes h1 and h2 were instead less common respect to h3, h6 and h9. Haplotype h1 was rare 

in Sub-Saharan Africans (1.8%) and even completely absent in Central Asians and South Americans, 

whereas h2 was not observed in Italian and Val di Scalve samples (Figure 4.4.1). Interestingly, this 

haplotype was the most closely related to the ancestral one, which was inferred from the 

chimpanzee sequence, showing a single divergent site at nucleotide position 90. 

In these five most frequent haplotypes, intronic substitutions 23,376A>C, 32,153T>G, 

32,232T>C, synonymous changes 19,525G>A (T27T), 32,491T>C (S277S) and replacement 

substitution 32,412C>T (P251L) were the sole represented polymorphisms. 

On the contrary, three different haplotype typologies accounted for remaining 32% of analyzed 

chromosomes. 

The first typology was actually represented by a sole haplotype (h20), which was found in only 

two groups and whose global frequency of 8% was mainly due to the very high frequency observed 

in the Val di Scalve sample (48%), in contrast to only 2% found in the Middle Eastern sample. 

The second typology was represented by 18 haplotypes, whose frequencies in the total sample 

ranged from 0.27% to 3.18% and merged into a cumulative frequency of 20%. 

Finally, the third typology was that of rare haplotypes (40), which were found only once or twice 
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in the total sample and which showed a cumulative frequency of 4%. 

Interestingly, the higher percentage of rare haplotypes (18%) was found in North Africans and was 

higher also in comparison to CVID and IgAD percentages (11% and 9% respectively), followed by 

Sub-Saharan African and Middle Eastern samples (8%), Italians, Central Asians and South 

Americans (7%) and, at the end, Val di Scalve sample (3%). 

 

 
Figure 4.4.1 Relative frequencies of TNFRSF13B haplotypes in the surveyed groups. 

                       The five most frequent haplotypes were individually represented, haplotypes with frequencies ranging 
              from 0.27% to 3.18% are pooled as other and haplotypes found only once or twice are pooled as rare. 
 

 

4.5 Haplotype structure in Italian CVID, IgAD and healthy samples 

 

A very similar haplotypes frequency distribution was shown by Italian CVID, IgAD and healthy 

samples, especially as regards the five most frequent worldwide haplotypes (Figure 4.4.1) and 

Italian and Middle Eastern distinctive haplotypes h8, h22, h25 (Table 4.4.1). 

In particular, these haplotypes carried synonymous substitution 23,197T>G (P97P) and replacement 

change 32,319T>C (V220A), in addition to nearly the same polymorphisms of the five haplotypes 

mentioned above. 

On the whole, such a eight-haplotypes cluster accounted for 89% of Italian healthy chromosomes 

and for 91% and 84% of IgAD and CVID chromosomes respectively. 

The group of individuals affected by CVID presented another non-rare haplotype (h27), which 
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carried supposed pathogenic substitution 23,216T>C (C104R) (Garibyan et al. 2007) and showed a 

higher, but not significantly different, frequency in the CVID sample respect to the control one 

(3.25% vs. 1.04%; Fisher’s Exact Test, p = 0.25). 

As discussed in the previous section, rare haplotypes accounted for 7% of Italian healthy 

chromosomes, while their frequency rose to 9% in IgAD and 11% in CVID groups. In more detail, 

three rare haplotypes only turned out to be exclusive of controls and of IgAD individuals (on a total 

of 11 and six rare haplotypes respectively), while they reached the number of 11 in the CVID 

sample (on a total of 14 rare haplotypes).  

In that case, haplotypes h53, h47 and h49 carried replacement change 31,674C>A (A181E), which 

was the sole supposed pathogenic variant with a significantly higher derived allele frequency in 

individuals diagnosed for CVID respect to healthy subjects (Fisher’s Exact Test, p < 0.05). 

 

4.6 Phylogenetic analysis of Italian CVID, IgAD and healthy haplotypes 

 

Evolutionary relationships among inferred CVID, IgAD and healthy haplotypes were visualized by 

means of a median joining network constructed for a cases/controls pooled sample (Figure 4.6.1). 

This graphical representation disclosed that haplotypes h50 and h51, which carried substitution 

23,217G>A (C104Y) and 358_359delA deletion respectively, as well as already described h53, h47 

and h49, were one-step neighbors of the most represented haplotype h3.  

On the contrary, haplotype h45 and h55, which carried substitution 31,711C>A (C193X) and 

204insA insertion respectively, derived from the second most frequent haplotype (h1), as well as 

IgAD private haplotype h40, which carried both mutations at the same time. 

Moreover, haplotype h41, with substitution 23,216T>C (C104R), also resulted exclusive of IgAD 

individuals, while the remaining four private IgAD haplotypes carried only intronic variants 

32,153T>G, 32,232 T>C, 31,518 G>T, 23,376 A>C and the synonymous change 23197T>G 

(P97P). 

Finally, haplotype h29, which was derived from the cosmopolitan haplotype h6 and shared between 

controls and IgAD subjects, carried another potential pathogenic mutation, substitution 23,217G>A 

(C104Y).  

Identification of circles originated from some branches of the median joining network, in 

accordance to observation of 64 different haplotypes with respect to 35 variants only, also 

represented a reliable clue about the level of recombination occurred within the TNFRSF13B gene. 

A minimum number of six recombination events (Rm) was indeed inferred for the total sample and 

each single group also presented a certain degree of recombination, with Sub-Saharan Africans 
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showing the lowest one (Rm = 1), contrary to all expectations. 

Although changes in nucleotide patterns along sequences could be used to infer which ones may be 

the outcome of recombination (Parida et al. 2008), the pattern of analyzed sequences resulted too 

complex to allow a reliable characterization of recombinant haplotypes. 

 

 

 
Figure 4.6.1 Median joining network of TNFRSF13B haplotypes in Italian cases and controls. 

      The nodes are proportional to haplotype frequencies, while the branch lengths are proportional to the number of  
      variants occurred in the sequences, except for the branch tracing back to the chimpanzee, which encompasses 15  
      divergent nucleotide positions between humans and chimpanzee. Supposed pathogenic variants only are reported    
      on branches. 
 

 

4.7 Dating of healthy and diseases haplotypes 

 

As discussed in the previous section, recombination has undoubtedly played a role in shaping the 

genealogy of TNFRSF13B sequences, so that unambiguous time estimates for inferred haplotypes 

are hardly achievable. 

Nevertheless, it was at least possible to get glimpses about the rough history of events that describes 

the gene evolution using total divergence between humans and chimpanzee (Dxy = 0.00746), in 

order to estimate the time to the most common recent ancestor. 

C104Y 

C104Y 

C104R 

C104R 

delA A181E C193X 
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204insA 204insA 

I87N 
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Taking into account a divergence time of six million years for H. sapiens and P. troglodytes, a 

mutation rate per site per year (µ) of 0.622x10-9 was obtained and corresponded to an average 

number of base substitutions, from inferred ancestral haplotype to each analyzed sequence, of 1.853 

± 0.623. Such amount of variation required about 1.323 ± 0.444 million years to accumulate. 

The same rationale has been applied in order to date expansion times of haplotypes carrying 

variants of CVID and IgAD individuals. In this way, it has been estimated that 61,283 ± 34,577 

years were required for C104R, 358_359delA and A181E changes to accumulate from the most 

frequent haplotype h3, whereas 52,483 ± 25,711 years were required for 204insA and C193X to 

appear on the second most represented haplotype h1.  

However, this kind of inference necessarily represents an overestimate of actual haplotypes 

expansion times, since it was based on a “biased” sample (i.e. individuals affected by CVID and 

IgAD) rather than on a random population sample. 

 

4.8 Analysis of population structure 

 

Excluding Arequipa and Egyptians because of their very small sample sizes, genetic distances 

among 24 worldwide populations, as well as between CVID and IgAD samples, were measured 

using Fst as an estimate of their allele frequency differentiation. 

A graphical representation of such genetic distances was obtained from the computed genetic 

distance matrix by means of a Non Metric Multidimensional Scaling (NM-MDS) (Figure 4.8.1), 

revealing that a clear pattern of geographical structure for TNFRSF13B genetic diversity was hardly 

recognizable.  

As a matter of fact, North African, Middle Eastern, Italian CVID, IgAD and healthy samples were 

represented in the NM-MDS as gathered into an indiscernible single cluster, South Americans 

instead occupied an intermediate position between the previous cluster and Sub-Saharan Africans, 

while Central Asian populations remained nearly isolated probably as a consequence of their lowest 

sequence diversity, due to smaller sample sizes. 

Moreover, in a first plotting the Val di Scalve sample also stood out as a clear outlier, relegating 

other populations in a cloud very hard to disentangle, so that it was subsequently excluded from the 

NM-MDS computation. 

Analysis of Molecular Variance (AMOVA) (box in Figure 4.8.1) also provided statistical support 

for the absence of a sharp geographical structure for TNFRSF13B genetic diversity, showing a very 

low and barely significant level of differentiation among geographically-based groups of 

populations (Sub-Saharan Africa, North Africa, Middle East, Europe, Central Asia and South 
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America) (Fct = 0.0658, p = 0.026), if compared to the average value of 0.10 estimated for 109 DNA 

loci (Barbujani et al. 1997). 

 
Figure 4.8.1 Multidimensional Scaling of genetic distances among analyzed groups. 

            Val di Scalve sample was excluded from the MDS. CVID and IgAD samples in red bold, controls in 
            black bold.  The apportionment of genetic variance at the TNFRSF13B coding region resulting from  
               AMOVA is reported in the box. 
 

 

However, such a minimal differentiation increased its statistical significance after removing Val di 

Scalve sample from the analysis (Fct = 0.0559, p<0.001), as well as the level of differentiation 

among populations within the same geographically-based group, which shifted from Fsc = 0.0761 to 

Fsc = 0.0225, but maintaining a significance of p<0.001.  

Most importantly, after removing Val di Scalve from AMOVA computation the level of 

differentiation among populations, represented by the Fst value, drastically dropped from 0.14, an 

extent well-comparable to the average computed for several human populations (Fst = 0.15) 

(Romualdi et al. 2002) and to the mean value for the Alfred database (Fst = 0.13) 

(http://alfred.med.yale.edu/alfred/),  to only 0.0579 (p<0.001). 

Nevertheless, even if very low, such a value perfectly lay within known distribution of Fst and 
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resulted very similar to those observed for other genes recently surveyed for signatures of selection, 

such as OR511 (Fst = 0.06) (Moreno-Estrada et al. 2008), CD14 and TLR9 (Fst = 0.07 and Fst = 0.05 

respectively) (Ferrer-Admetlla et al. 2008) and ABO (Fst = 0.06 for Seattle SNPs data and Fst = 0.07 

for re-sequencing data) (Calafell et al. 2008). 

The same Fst index was also used to measure genetic differences between Italian diseases and 

healthy groups of individuals. Comparing IgAD and control samples an Fst value of -0.00629 (p = 

0.823) was found, whereas a thin difference was observed between CVID sample and the control 

one, but with a borderline statistical significance (Fst = 0.01046, p = 0.043). 

 

4.9 Neutrality tests 

 

Genetic footprints of selection at the TNFRSF13B gene were sought for by computing several 

neutrality tests, such as Tajima’s D, Fu and Li’s D, F and Fay and Wu’s H, which are based on the 

frequency spectrum of mutations, since it has been proved that they are less sensitive to 

misspecifying recombination in comparison to those based on haplotypes distribution or mismatch 

distribution (Ramírez-Soriano et al. 2008). In this way, a proper test for departures from the null 

hypothesis of neutral evolution within the pattern of observed sequence variation was ensured.  

After coalescent simulations performed to evaluate their statistical significance, Tajima’s D 

estimates resulted not significantly different from zero, showing very small negative and positive 

values, except for Val di Scalve and total samples (D = 1.156, p = 0.914 and D = -1.163, p<0.05 

respectively) (Table 4.9.1). Although not significantly different from zero, the Val di Scalve large 

positive Tajima’s D value suggested a condition close to a scarceness of segregating sites and an 

excess of intermediate frequency alleles; however, the other sole noteworthy statistic for this 

sample (Fu and Li’s D = -1.451, p<0.05) did not result significantly different from zero after 

correction for multiple testing. 

An excess of singletons and low frequency variants generally causes a negative Tajima’s D statistic, 

as observed for the total sample. In this case, such an excess of rare variants was mainly contributed 

by polymorphisms of CVID and IgAD samples, since total Tajima's D value notably decreased, and 

became non significant, after removing diseases individuals from the analysis (D = -0.832, p = 

0.107).  

As regards Fu and Li’s D and F statistics, the sole significant values were associated with CVID and 

total samples (F = -2.354, p<0.01; Fu and Li’s D = -2.743, p<0.01 and F = -3.917, p<0.001; Fu and 

Li’s D = -4.926, p<0.001 respectively). Both showed significant large negative values even after 
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correction for multiple testing. Nevertheless, excess of singletons and low frequency variants in the 

CVID sample is presumably due to an actual relationship between TNFRSF13B sequence variations 

and pathological conditions of surveyed individuals (unlike for IgAD subjects), while total sample 

negative values, which remained nearly the same excluding CVID and IgAD individuals from the 

analysis, could be more plausibly linked to demographic expansion of anatomically modern humans, 

rather than to an effective selective sweep, as seen in most of the human genome (Stephens et al. 

2001). 

 

 

Table 4.9.1 Neutrality tests for TNFRSF13B in the surveyed groups. 

 N  D (p) F (p) D* (p) H (p) 

SS.Africa 114 -0.623                          
(0.229) 

0.236 
(0.575) 

0.652 
(0.585) 

1.009 
(0.816) 

N.Africa 74 0.298 
(0.668) 

-0.389 
(0.330) 

-0.659 
(0.339) 

1.381 
(0.938) 

M.East 192 0.011 
(0.533) 

-1.319 
(0.087) 

-1.875 
(0.066) 

1.241 
(0.859) 

C.Asia 56 -0.437 
(0.313) 

-1.146 
(0.139) 

-1.227 
(0.188) 

-0.266 
(0.312) 

S.America 82 -0.009 
(0.515) 

0.276 
(0.583) 

0.355 
(0.797) 

1.024 
(0.934) 

Italy 192 0.501 
(0.756) 

-0.668 
(0.237) 

-1.197 
(0.186) 

1.042 
(0.777) 

CVID 154 -0.751 
(0.141) 

-2.354 
(0.007) 

-2.743 
(0.008) 

1.273 
(0.052) 

IgAD 76 0.311 
(0.683) 

-0.132 
(0.425) 

-0.344 
(0.459) 

1.342 
(0.862) 

Val Scalve 192 1.156 
(0.914) 

-0.627 
(0.253) 

-1.451 
(0.038a) 

0.719 
(0.761) 

Total 1132 -1.163 
(0.025) 

-3.917 
(0.000) 

-4.926 
(0.000) 

1.249 
(0.698) 

             N, number of chromosomes; D, Tajima’s D; F, D*, Fu and Li's F and D, 
                                      with chimpanzee as outgroup; H, Fay and Wu’s H; (p), p-value obtained  
                                      by coalescent simulations. 

                                     a non significant after correction for multiple testing. 
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5. Discussion and Concluding Remarks 
 

Human Primary Immunodeficiencies Diseases (PIDs) represent a heterogeneous group of disorders 

in which inherited genetic defects compromise the ability to produce effective immune responses. 

Until the last decade PIDs were thought to be few rare, familial and monogenic, recessive traits 

impairing the development of one or several leukocyte subsets and resulting in multiple, recurrent, 

fatal infections in infancy. In the recent years this conventional view has instead undergone a 

substantial change (Casanova and Abel 2007), opening the way for broader and deeper genetic 

analyses on such a class of diseases. These studies quickly turned out to be very important both for 

elucidating crucial functional pathways in immune responses and for prompting the design of new 

diagnostic tools and therapeutic researches.  

Humoral PIDs, which are antibody-related defects characterized by B cells differentiation and 

immunoglobulins production defects, account for 65% of all primary immunodeficiencies (Yin et 

al. 2001), with Common Variable Immunodeficiency (CVID) that stands out as the most common 

clinically relevant primary immunodeficiency, representing about 30% of all PIDs affected 

individuals in Europe (Eades-Perner et al. 2007). 

As regards humoral immunity, it has been far-back proved that differentiation of mature B cells into 

effectors capable of specific immune responses is strictly regulated and that Tumor Necrosis Factor 

Receptor Superfamily (TNFRSF) members undoubtedly play important and diversified roles in the 

regulation of activation and apoptosis of several immune cell types. 

In particular, the TNFRSF13B protein product TACI plays a pivotal role in a very complex 

ligands/receptors network by binding the TNF ligands B cell-activating factor (BAFF) and a 

proliferating inducing ligand (APRIL) (Mackay et al. 2003), so that its function in regulation of 

isotype switching, survival and differentiation of B lymphocytes is nowadays accepted, even if only 

partially understood (Mackay and Schneider 2008).  

Conversely, what still remains enigmatic is the degree of association of such gene variants with the 

heterogeneous spectrum of CVID. Although TNFRSF13B defects represent the most common DNA 

sequence variations in individuals affected by CVID, being found in about 10-20% of disease 

subjects (Park et al. 2008), after the initial claim of their strict association with CVID and Selective 

IgA Deficit (IgAD) (Castigli et al. 2005a; Salzer et al. 2005), further analyses have indeed shown 

the existence of some of these variants also in healthy individuals (Castigli et al. 2007; Pan-

Hammarstrom et al. 2007; Lee et al. 2008; Salzer et al. 2008) and, besides, their functional effects 

in relation to the development of these diseases have not been yet established. 



 88 

Moreover, up to the present, clinical genetic studies which investigate on TNFRSF13B involvement 

in CVID, IgAD, autoimmune disorders and some other diseases are principally based on European 

and North American of European ancestry cases and controls, with very few exceptions (Inoue et al. 

2006; Lee et al. 2007), so that this work actually represents the first global survey of TNFRSF13B 

nucleotide diversity and haplotype structure.  

The rationale behind this population-based approach is that analysis of samples with different 

ancestry ensures the reconstruction of a plausible evolutionary history for the examined genomic 

region and this could turn out to be truly significant for shedding light on its actual role in immune 

functions and for facilitating distinction between variants falling into the standard degree of intra-

specific variation and changes which are potentially related to a so complex and multifaceted 

disease such as CVID. 

For this purpose TNFRSF13B exons and their immediately intronic flanking regions were 

sequenced in a worldwide panel of 26 human populations from Sub-Saharan Africa, North Africa, 

Middle East, Central Asia and South America, for a total of 451 healthy individuals, in addition to 

96 healthy, 77 CVID and 38 IgAD individuals from Italy. 

This led to identification of 13 unpublished and 22 known sequence variations, almost all in 

heterozygous state, in accordance to clinical studies from which it has been estimated that less than 

2% of CVID subjects carry biallelic mutations (Salzer et al. 2008). 

In particular, already described 204insA, I87N, 358_359delA, A181E and C193X coding variants 

(Salzer et al. 2005; Castigli et al. 2005a; Castigli et al. 2007) were observed in diseases-individuals 

only, even if nearly all their extremely low frequencies resulted in little statistical power to detect 

significant differences between cases and controls. 

Supposed pathogenic substitution A181E only showed a statistically higher frequency in CVID 

subjects, but not in IgAD ones, respect to healthy individuals, in accordance to several studies 

which report a significant association of this mutation with CVID (Castigli et al 2007; Pan-

Hammarstrom et al. 2007; Zhang et al. 2007; Park et al. 2008). Such an observation supports the 

hypothesis that replacement of a neutral to a negatively charged amminoacid in the protein 

transmembrane domain may prevent downstream signaling by interfering with ligand-induced 

conformational changes of the whole receptor also in a mutant-wild-type complex. 

The other sole supposed pathogenic substitution C104R was instead present both in healthy Italians 

and in CVID and IgAD individuals with nearly the same frequency and was also the sole 

homozygous variant observed in the CVID sample. It disrupts a disulphide bond required for ligand 

biding CRD-2 in the receptor extracellular domain. However, it has been proved that only 

homozygous C104R individuals are unable to bind APRIL (Salzer et al. 2005), whereas in 
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heterozygotes, a mutant-wild-type complex binds the ligand, but is not able to induce intracellular 

signaling (Garibyan et al. 2007). A similar impact can be also supposed for the never described 

before C104Y substitution, which was found in both healthy and CVID and IgAD individuals, only 

in a heterozygous state. 

Despite these considerations, effects of heterozygous C104R and A181E substitutions on B cells 

function in individuals with CVID are still under debate, as well as whether their presence in 

healthy people means that they have incomplete penetrance or simply that a delayed CVID onset in 

controls used for association studies is possible. As regards this issue, blood donors without any 

evident immunological manifestations and with an age of over than 55 years, were collected to be 

used as control group in this study, since a mean age of about 25 years at the onset of CVID 

symptoms has been estimated (Cunningham-Rundles and Bodian 1999). In this way, possibility that 

healthy subjects carrying C104R/C104Y replacement might subsequently develop the disease has 

been strongly reduced, suggesting that incomplete penetrance or presence of additional genetic–

environmental factors are responsible for the disease manifestation. 

Although this advises that CVID does not fit a monogenic disease model, extremely low 

frequencies of TNFRSF13B and other supposed CVID-causing variants reveal at the same time that 

it does not fit neither the Common Disease/Common Variant paradigm, for which alleles 

contributing risk for a common complex disease are supposed to be frequent in the general 

population (Reich and Lander 2001). 

However, there exist examples of rare variants influencing common diseases (Romeo et al. 2007), 

reinforcing the idea that both mutation typologies may play a role in such pathological 

manifestations, although to date it is not known which of them is more important. Even for 

disorders in which common nucleotide changes have been found, most genetic variation is indeed 

still uncovered and it is not possible to rule out the possibility that much genetic variation is due to 

rare variants. Therefore it is not yet known whether observed common disease-associated mutations 

represent only the tip of an undiscovered iceberg (Iles 2008). 

Consequently, if rare variants were the primary cause of common complex disease, so that for a 

disease to be common there would be many different causative alleles, traditional genetic 

association studies would have little power to detect them and an evolutionary approach can offer a 

new and useful perspective to face the matter. 

In accordance to this view, comparison of TNFRSF13B genetic diversity among samples with 

different ancestry turned out to be significant to understand its potential role in different CVID 

susceptibilities of different populations, as it is known that such a disease is essentially more 

common in individuals of European ancestry (Eades-Perner at al. 2007). 
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Low values of TNFRSF13B genetic variability were found for Sub-Saharan African, Central Asian, 

South American and Val di Scalve populations. Excluding Sub-Saharan Africans results, observed 

values may be due to small sample sizes, especially for Central Asians, and, most importantly, to 

the strong action that genetic drift has historically exerted on small isolated South American and 

Val di Scalve populations.  

A completely different explanation can be instead invoked for values obtained for the Sub-Saharan 

African sample. Interestingly, an unusual remarkable scarceness of variability was observed for this 

group of populations, which displayed one of the lowest values of nucleotide diversity, as well as a 

lower value of haplotype diversity, respect to North African and Middle Eastern samples, in 

contrast with the trend observed for several other genes (Tishkoff et al. 1996; Calafell et al. 1998; 

Tishkoff et al. 1998; Guthery et al. 2007). Usually, a lower level of nucleotide diversity is found in 

non-African populations, as exemplified by Seattle SNPs data, and, at the same time, haplotype 

diversity is found to decrease as distance from Africa increases (The International HapMap 

Consortium 2005). It has also been observed that African groups exhibit lower levels of LD, 

concomitant with higher population recombination rates (ρ), compared to Europeans and Asians 

(Sawyer et al. 2005), suggesting that patterns of genetic variation observed in present-day 

populations are not the mere result of the action of mutation, recombination and natural selection, 

but are also strongly affected by demographic histories of populations. Shorter African LD blocks 

are indeed a consequence of larger effective ancestral population size (Ne) and of the fact that there 

has been more time for recombination to disrupt LD (Tishkoff and Verrelli 2003b). On the contrary, 

the greater LD in non-Africans is the result of founding events experienced by the groups of modern 

humans that migrated out of Africa starting from 100,000-50,000 years ago (Stoneking 2008). 

Therefore, H. sapiens migration from Africa to Eurasia and the rest of the world is thought to be 

accompanied by a strong population bottleneck that produced an inevitable loss of genetic diversity 

(Liu et al. 2006). 

That being so, the higher TNFRSF13B variability observed in North-African, Middle Eastern and 

European samples respect to Sub-Saharan African one may be principally due to the presence of 

recent variants, which have arisen in ancestors of such populations during the early dispersal of 

anatomically modern humans out of Africa. In ancestral Sub-Saharan African populations an 

excessive number of TNFRSF13B changes should be not the optimum for survival, since the huge 

amount of bacterial pathogens encountered during childhood. As a matter of fact, human immune 

system remains quite immature during the first two years of life, being mainly dependent on its 

innate component. Thus, if TNFRSF13B was also involved in innate immunity, as recently 

proposed (Mackay and Schneider 2008), its defects would doubly affect the health of carrier 
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individuals, altering both innate responses and humoral immunity maturation, being rapidly 

removed from the population. On the contrary, the presence of endemic tuberculosis since in 

ancestral northern African populations might has allowed the spread of TNFRSF13B defects, as it 

seems that a weak wastefulness in B cell function can boost a stronger inflammatory response, 

which results just essential against mycobacteria. 

This may be one of the reasons why new TNFRSF13B changes started to be maintained in first 

modern human groups that left Sub-Saharan Africa and were subsequently spread in Eurasian 

populations. In this way, TNFRSF13B changes in modern human populations, especially those of 

European ancestry, in which health care and hygiene conditions have been strongly improved, are 

tolerated in early childhood, perhaps with IgAD manifestations, and might subsequently lead to an 

increased susceptibility to CVID in adulthood. 

The hypothesis of the presence of recent non-Sub-Saharan African private mutations is also 

confirmed by time estimates for haplotypes carrying coding variants found in CVID and IgAD 

individuals. Although unambiguous estimates were hardly achievable, since recombination 

undoubtedly played a role in shaping the genealogy of TNFRSF13B sequences, some glimpses 

about a rough dating can be indeed obtained. Moreover, 61,283 ± 34,577 years required for C104R, 

358_359delA and A181E to accumulate from haplotype h3 and 52,483 ± 25,711 years required for 

204insA and C193X to accumulate from haplotype h1, are overestimates, since they are based on a 

biased sample, made up of CVID and IgAD affected individuals, rather than on a random 

population sample. Therefore, actual haplotype expansion times are bound to be even more recent, 

perfectly falling into the 60-40 thousands years ago range that saw the first colonization of Eurasia 

by H. sapiens. 

Results of human/chimpanzee nucleotide divergence estimate show that, both within our species 

and when compared to our closest ancestor, TNFRSF13B seems to be evolving at a slightly slower, 

though not unusual, rate. This suggests that a striking differentiation among worldwide human 

populations can not be expected for this genomic region, unless recent population specific selective 

pressures have affected it. 

Observed haplotype structure at the TNFRSF13B locus indeed emphasizes that its five most 

frequent haplotypes accounted for 68% of sampled chromosomes, being found in almost all groups 

and carrying the more ancient and globally widespread variants, while remaining haplotypes are less 

widespread, and in some cases population specific, but rare. 

This nearly homogeneous genetic background of worldwide populations, as regards TNFRSF13B, 

was also confirmed by computation of Fst genetic distances among them and by Analysis of 

Molecular Variance (AMOVA) results. They revealed the absence of a sharp geographical structure 
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for TNFRSF13B genetic diversity, with very low levels of differentiation among large 

geographically-based groups of populations, among populations within such groups and simply 

among individual populations. Moreover, as already inferred from nucleotide and haplotype 

diversity values, both Fst and AMOVA analyses pointed out a peculiar pattern of variability for the 

Val di Scalve population, suggesting again its outstanding genetic isolation. 

The absence of recent population specific selective pressures was further and more reliably verified 

by searching for genetic footprints of selection at the TNFRSF13B locus by means of specific 

neutrality tests, such as Tajima’s D, Fu and Li’s D, F and Fay and Wu’s H, since this matter could 

represent a potential key to understand the actual role of this gene in immune functions.  

Looking back to the evolutionary history of such a young and cosmopolitan species as H. sapiens, it 

is coherent to believe that our pathogens, which live in the extremely diversified environments 

colonized by modern humans, may have represented one of the major selective pressures on our 

genome. Thereby, genes whose function is strictly related to the immune system are supposed to be 

more likely subjected to the action of natural selection respect to other typology of genes (Sabeti et 

al. 2006). In particular, genes involved in adaptive immunity, such as TNFRSF13B, are likely to be 

subjected to geographically localized selective pressures, as they may interact with local pathogen 

landscapes, resulting in increased inter-population genetic differentiation. 

However, as already suggested by the absence of such a remarkable inter-population differentiation, 

also neutrality tests showed not significant results for examined groups, leading to the acceptance of 

a neutral model of evolution for the analyzed genomic region. Excluding CVID and IgAD 

individuals from the analysis, significant values for total sample Fu and Li’s D and F statistics only 

were obtained, so that they seem to be more plausibly due to demographic expansion of 

anatomically modern humans rather than to the action of selection, as seen in most of human genes 

(Stephens et al. 2001).  

That being so, genetic drift and gene flow only might have driven TNFRSF13B evolution, unless it 

might be very anciently shaped by selective pressures which have predated the exit of anatomically 

modern humans from Sub-Saharan Africa, resulting homogeneous on early H. sapiens populations. 

This latter hypothesis might be consistent with several recent remarks which are more and more 

emphasizing relationships between innate and adaptive components of the immune system (Pancer 

and Cooper 2006; Groom et al. 2007; Katsenelson et al. 2007) and with what already discussed 

about the potential involvement of TNFRSF13B in innate immunity. Such a typology of immune 

responses represents a generic and not pathogen specific defense, so that related genes may be 

subjected to similar selective forces also in different populations (Ferrer-Admetlla et al. 2008). 

Therefore, it can not be unlikely that equal, but too ancient to be recognized, selective pressures 
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may have been responsible for low TNFRSF13B genetic diversity of ancestral Sub-Saharan 

Africans and, since its slow rate of evolution, also for present-day Sub-Saharan Africans low 

diversity. 

Moreover, neutrality tests results for the Val di Scalve sample were again the most peculiar, with a 

large, even if not significant, positive Tajima’s D value that suggests a condition close to a 

scarceness of segregating sites and an excess of intermediate frequency alleles. This pattern is 

generally consistent with population substructure, bottlenecks or even balancing selection, although, 

in this case, it could be simply interpreted as a consequence of a founder effect, followed by strong 

genetic drift.  

Together with described population-based evolutionary analyses, a direct comparison of Italian 

CVID, IgAD and control samples was performed applying the same methods. 

Haplotype structure in such groups was found to be characterized by a very similar haplotype 

frequency distribution with respect to that observed in worldwide populations and, in particular, to 

that of Italian and Middle Eastern samples. More in details, taking into account percentages of 

cosmopolitan and rare haplotypes, an extremely subtle difference is noticed between IgAD 

individuals and healthy controls, whereas just a bit greater difference is found when CVID subjects 

are examined. A statistical support for these cases-controls differences is additionally given by 

relative AMOVA results, which showed a barely significant Fst value for CVID-control comparison 

only. 

Neutrality tests also turned out to be very useful for further characterizing and distinguishing CVID, 

IgAD and control subjects, again emphasizing a difference between groups of individuals affected 

by the two studied diseases. 

As already observed for worldwide populations, the absence of significant departures from the null 

hypothesis of neutral evolution was also verified for IgAD and healthy Italian groups. Significant 

values only for CVID sample Fu and Li’s D and F large negative statistics were obtained, reflecting 

a substantial excess of singletons and low frequency variants in such a group. These features, which 

are not confirmed by Tajima’s D and Fay and Wu’s H statistics, are unlikely due to positive 

selection acting on CVID subjects, resulting more plausibly consistent with an actual involvement 

of some of these changes in the disease. On the contrary, this seems not true for variants of IgAD 

individuals, for which smaller negative and not significant values were observed. 

 

In conclusion, evolutionary analyses performed on TNFRSF13B coding region have demonstrated 

that populations in which CVID is rare are characterized by a low variability of the examined 

genomic region, and that, at the same time, individuals affected by CVID carry a little, but 
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significant, excess of rare derived alleles, respect to healthy individuals belonging to the same 

population. This leads to the conclusion that some of these TNFRSF13B changes may actually 

contribute to the development of the disease. 

However, the extent of such disease/healthy samples difference and the fact that geographical 

distribution of this gene diversity is more plausibly related to its potential involvement in innate 

immunity rather than to its involvement in adaptive immunity, suggest that CVID might be more 

likely related to still unknown environmental and genetic factors, rather than to the nature of 

TNFRSF13B variants only. 

That being so, for populations in which health care and hygiene conditions have been strongly 

improved, and especially for those of European ancestry, it seems that changes in TNFRSF13B 

coding region can be tolerated in early childhood, perhaps with IgAD manifestations, but might 

subsequently lead to an increased susceptibility to CVID in adulthood, acting as genetic risk factors 

rather than causative mutations. 
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