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To all my fellow travelers

There was a great battle of ideas

at the end there were no losers,

no winners

and no ideas.

Stefano Benni - Elianto, 1996

Fratello, non temere, che corro al mio dovere!

Trionfi la giustizia proletaria!

Francesco Guccini - La locomotiva, 1972
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Chapter 1

Introduction and Thesis Outline

This chapter briefly introduces the basic concepts that are behind the idea of using

swarm of autonomous robots to accomplish predefined tasks and presents the state-of-

the art in this research field. Then, the arguments exposed in this thesis will be briefly

presented, along with the outline of this work.

1.1 Multiple mobile robot systems

Starting early in 1980’s, the attention of researchers was attracted by the idea of creating

groups of mobile robots able to collaborate in order to accomplish one or more predefined

tasks. The basic principle behind this new approach to the robot coordination was directly

inspired by the observation of natural systems. In nature, in fact, it is possible to see

a lot of animals that work together for a final common purpose: typical example can

found in the sea, on the ground and in the air, and more evolved animals can collaborate

to perform more complex social behaviors (see Fig. 1.1). Ants and termites can work

together to build enormous nests or to transport a pray that is many times heavier than

the individuals; birds can fly in compact formations during migrations in order to save

energy, and fishes school in groups with thousand individuals to protect from enemies.

Predators find it easier to chase down a fish swimming all alone, than trying to cut out a

single fish from a huge group. Other animals, like lions, are able to organize to perform

more complex tasks like hunting. As example, naturalists observed that in a group of

lions some of them have to scare the pray, while some others have to intercept and kill

it. Alternatively, they can organize themselves to attack and kill a pray which is too big

for a single predator. An example is reported in Fig. 1.1(d), where four lions attaching



(a) Ants collaborate to form

a living bridge.

(b) Flock of seagulls at Dunedin Harbor, New

Zealand.

(c) Butterfly fishes schooling. (d) Four lions collaborate during hunting.

Figure 1.1: Examples of social animals

a gnu can be seen. As the animal behavior has evolved in collaborative direction in

order to increase the survival probability of the species, researchers start thinking that

maybe a multi-robot mobile system, where all the agents collaborate, can increase the

chances to accomplish a predefined task. Among all animals, men represent the higher

collaborative level, as in the last 10 thousands years was able to drastically modify the

environment. Starting from these considerations derived from natural systems, researchers

have identified two main collaborative paradigms: the intentionally cooperative systems

and collective cooperative systems. The idea behind the first paradigm is that all the

robots in group have knowledge about the presence of other team members, and are able

to coordinate each other exploiting global information like the state and the capabilities of

teammates. Multi-mobile robot systems based on this approach usually present different

kind of vehicles, with different abilities. Examples are presented in [90], [88]. In the first

work, the authors demonstrate that an Unmanned Aerial Vehicles (UAV) and ground

vehicles can collaborate to perform reconnaissance and surveillance (Fig. 1.2(a)); similar



(a) Three robots cooperating for surveillance. (b) Three robots cooperating in an assembly task.

Figure 1.2: Two examples of an heterogenous multirobot system.

results can be found in [54] [1] [84]. In the second paper, authors show the possibility of

using three different robots (a mobile manipulator, a crane and a mobile robot equipped

with a camera) to perform an assembly task as the three robots have to collaborate to

connect a beam at a given location (Fig. 1.2(b)). Other references on the coordination of

mobile manipulators can be found in [71] and [73], where the problem of creating a fault

tolerant architecture for heterogenous group of mobile robots is addressed.

The key assumption of the second paradigm is that a group of agents is composed of

a large number of mobile robots with same characteristics (e.g. same sensors, size and

interaction ability) - it is called homogenous swarm - where each robot performs its own

tasks with minimal information about the state of teammates. In these systems, robots use

a local control law in order to create a coherent team behavior, and the situations where

such a kind of system can be use have to be described with scalable task functions, in order

to add or remove easily agents from the group. Roughly speaking, no team member is

important and every one of them can be sacrificed (the swarm is implicitly fault tolerant),

while in intentionally cooperative systems it is not.

The robustness of multirobot systems is strictly related to the control structure used

to organize the agents and to obtain the desired emergent behavior. Four different archi-

tectures can be identified in the field of mobile multirobot systems, that are summarized

below.

Centralized: a global supervisor receives information from team members and the swarm

behavior is coordinated from a single control point. This architecture (examples can

be found in [66] [50]) has the advantage that as all the information are collected by a

single unit, this node of the system can be powerful enough to calculate the control

law for each robot, considering also the opportunity of having complex tasks. On the

other hand, the system is vulnerable, as a fault of the supervisor implies that all the

system crashes. These simple considerations were those that led to the development



(a) Centralized architecture of the Decabot

Project.

(b) Example of a decentralized architecture

Figure 1.3: Two examples of centralized and decentralized control of a group of mobile

robots

of internet in the late 1960s. In Fig. 1.3(a) an example of centralized architecture is

depicted.

Decentralized: it is the most used architecture to control multirobot systems, and can

be considered as the opposite of the centralized approach. In a decentralized archi-

tecture, each robot acts based only on knowledge of local teammates’ state and of

environment. This control subsumption is robust to failure but, on the other hand,

presents limits to power computation, means that can be non trivial to implement

complex tasks in distributed fashion. An example of decentralized architecture is

shown in Fig. 1.3(b), where 18 Swarm-Bots [38] organize themselves in order to drag

a body in an hypothetic disaster scenario.

Hierarchical: this architecture, directly inspired by military command protocol, is suit-

able for some applications. It is based on the idea that some robots can command -

as supervisors - a local and relatively small group of team members. Once again, as

in the centralized approach, weakness of this architecture can be found in recovering

from failures of robots high in the command tree.

Hybrid: this approach tries to be a trade off between the centralized and decentral-

ized architecture. In particular, it is base on the idea that one or more high level

supervisors allocate tasks and resources, and single low level robots exploit local

information to accomplish a predefined task. The hybrid architecture has been used

in many applications based on multirobot control [93] [42].

The first experiments on swarm robotic systems - the Nerd Herd experiment [60] - deals

with a decentralized control architecture, where 20 robots use very little explicit commu-

nication rather then stigmergy (i.e. communication through environment modification),



(a) Robots involved in the nerd herd experiments. (b) A picture of the Swarmbot experiments

Figure 1.4: Examples of robot swarms

in order to perform foraging, dispersion, surrounding, and herding (see Fig. 1.4(a)). Each

single robot is supposed to have very minimal capabilities in terms of sensing and acting

on the environment, but they are able to collaborate in order to show complex behaviors.

Systems like that, where simple agents can perform complex goals, are called superaddi-

tive, meaning that the whole can do more than the single. Recent experiments performed

with 100 robots (SwarmBots, see Fig. 1.4(b)), has pointed out the possibility of merging

different simple tasks in order to achieve complex goals [61].

Since robotics start working on group of mobile robots, studying both homogeneous

and heterogeneous groups, their attention focuses on the possibility of obtain a large

spectrum of emergent behaviors, such as multiagent manipulation, traffic control and

path planning, foraging and coverage, flocking and formation keeping. In particular, the

last two has attracted researchers attention for many reasons, among them the fact that

they can be used to model the behavior of social insects like ants (foraging) or social

animals like birds (flocking). In foraging domain, where a very large number of mobile

robots are involved, objects like pucks are distributed in the environment, and the global

goal is to find and collect them; a typical real applications of the foraging problem are

demining, search and rescue, toxical waste removal. The main issue in this application

is how to coordinate robots in order to explore as fast as possible all the terrain without

interfering with each other. Thus, foraging is strictly related to the coverage problem,

whose solution can be applied to real world problems such as mapping, surveillance or

industrial surface cleaning. In this cases we can talk of weakly cooperating systems, as the

solution of the foraging and coverage problem usually requires minimum communication

between teammates. Examples of solution for these problems can be found in [20] [94] [83].

Flocking and formation keeping are global goals that can be considered like different

realizations of the same basic problem, that is to find a way to coordinate a group of



(a) Separation (b) Alignment

(c) Cohesion (d) Boids flocking around obstacles

Figure 1.5: Reynolds’ rules for boids flocking.

mobile robots in order to make them move together while preserving group compactness.

Eventually, flocking and formation tasks can be involved in a point-to-point group transfer,

means the group has to move from a starting zone to a final one. In particular, it is possible

to consider the formation keeping task as a subcase of the flocking task: while flocking

needs a weak relation between teammates positions, the formation task requires a strong

relation in order to achieve and preserve predefined distances between the agents of the

group. Typically, flocking is a natural behavior, while formation keeping characterizes

human activities.

One of the first solutions to the coordination of mobile agents flocking together was

presented by Reynolds in [78]. In this work, the author used three basic rules in order to

reply the behavior of a group of birds (called boids). In particular he defined:

Separation: steer to avoid crowding local flockmates (Fig. 1.5(a));

Alignment: steer towards the average heading of local flockmates (Fig. 1.5(b));

Cohesion: steer to move toward the average position of local flockmates (Fig. 1.5(c)).

The result was a realistic flock-behavior simulation (a snapshot of a simulation can be

seen in Fig. 1.5(d)), but, more important, he demonstrates that with a simple set of rules

many complex behavioral schemes can be created. A similar approach was later used



(a) A six-legged spider robot. (b) Omnidirectional robot with

swedish-wheels

(c) A flying quad-rotor UAV

(d) Couple of Serafina Mark

II AUV used in the Swarmsea

project

(e) Khepera III robot by K-

Team.

(f) E-Puck robot by Cyber-

botics.

Figure 1.6: Examples of mobile robots used in swarm applications.

in [59] [7] to study emergent behaviors in groups of real robots. The so called behavioral

approach was used also in [34] [35] [37] [36], where authors focused their attention on the

possibility of using a behavioral approach to decompose a global goal function in simpler

tasks (eventually in conflict) with assigned priority-levels.

The most recent architecture pointed out by researchers in order to control an homo-

geneous group of mobile robot is based on graph control theory. This fully decentralized

approach, initially used on groups of massless-point agents, is based on concepts borrowed

from the graph theory, and it exploits the Laplacian solution to the consensus problem (or

rendezvous problem) in order to achieve goals like herding, leader-based optimal control

and formation keeping or flocking. Later, similar concepts were applied on non-holonomic

vehicles, in particular on differential wheel robots. Examples of these work can be found

in [27] [77] [30].

Generally, to achieve a global goal, each robot controller is implemented in two different

layers: a high-level layer, devoted to the calculus of the swarm strategy, and a low-level

layer, that take into account the kinematic/dynamic robot model and controls the robot’s

actuators. The idea of separate the strategy controller from the actuators controller is

suitable to work both with heterogeneous and homogenous groups of robots. In case of

robot swarms, another approach consists in considering at the same time the global goal



and the kinematic/dynamic constraints of the robot model, and find a control law that

globally stabilize the system.

Even if a rich collection of mobile robots can be found (see Fig. 1.6 for some examples),

in the field of swarm robotics few of them can be really used due to the complexity of

the models. Typically, researchers focused they attention on omnidirectional robots and

on differential wheel robots (or tracked robots), both used for outdoor and indoor appli-

cations. In Fig. 1.6(b) 1.6(c) an omnidirectional four-wheel robot and an omnidirectional

quad-rotor UAV [41] are depicted respectively. They are actually used for indoor activi-

ties, but researchers are planning to use them for outdoor surveillance. In Fig. 1.6(d) a

couple of Serafina Mark II [76] Autonomous Underwater Vehicles (AUVs) are depicted:

by a control point of view, they can be modeled as differential wheel robots except the

fact they can change their depth. In Fig. 1.6(e) 1.6(f) an E-puck by Cyberbotics and

a Khepera III by K-Team [67] are depicted. These differential wheel robot models are

worldwide used for indoor research and educational activities.

In our research, we decide to focus our attention on the implementation of decentral-

ized algorithms able to reply some basic simple animals behaviors, such as hunting or

formation keeping. In particular, we concentrate on the idea of having robots (or, more

generally, mobile agents) dealing with constraints that limit their ability to understand

the environment, like the problem of moving in unknown environments or the use of local

sensing data instead of using global data.

1.2 Outline

This thesis, that gathers the work carried out by the author in the last three years of

research, is composed by two main topics corresponding to two different tested algorithms.

Both of them deals with the problem of driving a swarm of robots through an unknown

environment while achieving one or more predefined tasks. The first algorithm, based

on null space behavioral concepts, was studied and developed at LAR (Automation and

Robotic Lab) of the University of Bologna and tested by means of simulations. The second

algorithm, instead, is based on concepts borrowed from the graph theory and was developed

and tested also on real Khepera III robots at DISAL (Distributed Intelligent Systems and

Algorithms Laboratory) at École Polytechnique Fédérale de Lausanne, Switzerland.

In Chapter 2 our attention is focused on the development of a decentralized algorithm

to coordinate a group of autonomous mobile agents moving through an unknown environ-

ment while performing more tasks defined with different priorities. The main idea is to

decompose a global swarm task in different simple subtasks in order to flock the swarm

toward a target with known position and surround it with regular polygon formation (i.e.

minimize the target escape possibilities). After a brief introduction to the main paradigms



used in literature to merge different tasks, our algorithm - based on the so called Null space

behavioral approach (NSB) is presented. In particular, we focus on the possibility of having

a decentralized version of the classical NSB that exploits only local data. Moreover, we

have introduced extra degrees of freedom to ensure the swarm avoid unknown obstacles

exploiting data collected by swarm individuals. To conclude, a new strategy to avoid local

minima is investigated, and numerical simulation are used to validate our approach.

In Chapter 3 concepts and basic notions from graph theory are resumed, in order to

provide the reader the basic knowledge needed to face the so called consensus problem

and to apply it on groups of autonomous mobile agents. In particular, a classical well-

known solution of the rendezvous problem for holonomic agents is introduced, exploiting

the idea of using the so called Laplacian approach to drive all the states of a system to a

predefined final value. After that, the solution of the consensus problem is applied to solve

some standard problems in graph control theory, such as formation keeping, connectedness

preserving. Moreover, under the assumption that some agents are controllable from an

exogenous system, optimal control problems and herding problems are faced. All these

classical problems are illustrated by means of simulation examples.

In Chapter 4, the concepts of graph theory are applied on systems composed by

differential-wheeled robots. In particular, the chapter is divided in two main parts: in

the first one, the consensus problem is solved, i.e. a control law is found to drive all

the robots to a final common point; in the second part, using a modified version of that

control law, it is shown that the swarm is able to reach a predefined configuration and to

maintain it while moving in the environment. As an example application of the defined

algorithm, a swarm of robots is controlled to surround a fixed target, engaging in a typical

hunting task. As for the previous chapters, here all the results are supported by simulation

examples implemented both in Matlab/Simulink and Webots. The chapter is concluded

with comments about the implementation of the algorithm on real Khepera III robots

with range and bearing on board platform, an hardware board that allows robot to find

teammates’ position without an external detection system like Global Positioning System

(GPS) or fixed cameras. The experiments were performed at DISAL lab at EPFL.

Chapter ?? collects final comments about the obtained results and the possible guide-

lines for future work.

Even if it is not strictly correlated to the research guideline of this thesis, in Ap-

pendix ?? a brief description of RobotiCad is provided. RobotiCad is a Matlab/Simulink

toolbox developed by the author in the last three years in order to simulate open chain

manipulators in pseudo industrial environments. This toolbox is a 55-thousands-lines soft-

ware composed by a collection of many Matlab functions and a Simulink block library. It

was originally developed to provide a useful tool to the students of the course on “Indus-

trial Robotics” at the Faculty of Engineering of the University of Bologna, so that they



can easily understand basic concepts behind robotic theory. After a brief description of

the toolbox, this chapter deals with two case studies: the first one is a typical industrial

problem that was solved by students during the academic year 2007/2008; the second one

summarizes the results obtained in [10], where the toolbox was integrated with genetic

algorithms in order to design the minimum kinematic configuration parameters of a med-

ical robots to heal patients affected by Benign Paroxymal Positional Vertigo and variants

(collectively called vestibular lithiasis), a common disorder caused by a malfunction of the

inner ear.



Chapter 2

Decentralized Control for Robot

Teams in Unknown Environments

In this chapter a decentralized control algorithm for swarm behavior and obstacle avoid-

ance in unknown environments is presented. The proposed technique is based on the

Null Space Based behavioral approach to merge different predefined tasks with assigned

priority levels. In particular, the algorithm focuses on the possibility of sharing sensors

data in order to avoid obstacles that can be detected in the environment and on the

implementation of strategies to avoid that the group (or a single robot) gets stuck in a

local minima. The effectiveness of our approach is investigated by means of numerical

simulations with different environments.

One of most interesting problem in mobile robotics is to control one or more au-

tonomous agents in order to achieve different tasks at the same time. This problem has

been solved essentially in two different ways: the first one concerns the use of a cost func-

tion where all the tasks are mixed with different weights; the second one is based on the

possibility of creating a hierarchy among the different tasks, so that the lower tasks are

satisfied only when the higher tasks became accomplished. A typical approach to this

problem was pointed out firstly in [28], [13], [16], were the authors used the kinematic

redundancy of the system to merge more tasks. This approach, called Null-Space Based

Behavioral approach, is used in this chapter in a decentralized way in order to drive a pla-

toon of agents from a starting random configuration to a final regular one, in particular

driving the swarm through an unknown environment toward a target area. The key point

of this work is the decentralization of the algorithm and the implementation of an obstacle

avoidance function that allows the group to escape from local minima while preserving



group properties. In this chapter, after a brief introduction on the behavioral control

paradigms, the robot model used in our algorithm is introduced and the decentralized

control structure used in this work is explained. To conclude, in Section 2.4 simulation

results are collected in order to demonstrate the efficiency of the algorithm.

2.1 Background on behavioral control

Generally, the behavior of a robot is expressed through the definition of a cost function

and its value is the index of task achievement. The basic example is the point-to-point

motion of a vehicle: the cost function is usually a function of the distance from the final

position (target), and the control can be either a constant value (motors are always on

with constant velocity till the final point is reached or, in presence of disturbance, the

error is small enough) or a varying value depending on the distance or, more generally, on

the environment. In fact, if we suppose that a forbidden area is between the robot and the

final position, the function that drives the robot toward the end point must be modified

to avoid that area. Problems arise when the driving function tries at the same time to

move the robot toward the target and away from the obstacle. In this case, we deal with

conflicting tasks. This problem has been solved in literature with different approaches

that have evolved depending on the on-board computational power of robots and on the

different ideas behind the way to solve conflicts. The most common approaches to solve

problem are summarized below.

2.1.1 Competitive behaviors coordination

Supervisor

Task 1

Task 2

Task N

u1

u2

un

...
Supervisor

selection

Environmental

data

u

(a)

Task 1

Task 2

Task N

u1

u2

un

...

Environmental

data

u

(b)

Figure 2.1: Different schemes of the competitive behavior coordination paradigm.

This approach, presented in [75], can be implemented in various ways, but the general



concept is that even if many tasks are defined at the same time, only one of them produces

the signal command used to drive the robot. Fundamentally, there are two paradigms to

implement this control logic:

• Each task is an asynchronous function that uses the environmental data to calculate

the command signal needed by the robot to accomplish it. In this case, a supervisor

that analyze the same data is needed in order to switch between the different tasks.

Since the supervisor can switch task in each moment, all the tasks have to be com-

puted in parallel, and therefore high computational power is required for the system

(see Fig. 2.1(a)).

• Tasks are organized in different layers, each one with an assigned priority level (see

Fig. 2.1(b)), and the output they calculate is always deleted by higher priority tasks.

This means that, as long as the primary task is not satisfied, the lower priority tasks

can be deactivated and they are not considered in the command signal. Typically,

the obstacle avoidance is defined as the higher priority task. The computational

power needed for this scheme is lower than in the previous approach.

Of course, the functions devoted to the calculus of each task output can be implemented

as preferred, and the most used is the virtual potential concept [14] [46] [85] [52] [47].

2.1.2 Cooperative behaviors coordination

Another paradigm used to solve conflicting tasks is the cooperative coordination. Gener-

ally, in this paradigm any task is completely deleted by others, i.e. all the tasks are merged

together in order to reach a final control signal that is a trade-off between all the desired

results. A typical scheme for cooperative control is the so called motor schema [8] depicted

in Fig. 2.2, that is a cooperative scheme directly inspired from biological considerations.

As can be seen it is requested that a supervisor is present in the control architecture in

order to multiply each contributes for a weight defined considering environmental infor-

mation. All the weights can be instantaneously changed by the supervisor, depending on

the importance that each task has in that moment. The motor schema has an output

given by the linear combination of the weighted contribution provided by each task, i.e.

u =
N

∑

i=1

αi · ui

Since all the tasks must produce an output, it is clear that the computational power

requested for this control scheme is higher than in the layered approach. If the weights

produced by the supervisor are αi ∈ {0, 1}, the motor schema can be seen as the supervised

competitive control of Fig. 2.1(a).
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Figure 2.2: Scheme of the cooperative behavior coordination paradigm.

2.1.3 Null-space behavior coordination

As discussed, the possibility of accomplishing different tasks at the same time is of interest

in robotic missions. A way to solve this problem is to use a task-priority inverse kinematic

function [68] that, in case of conflicting tasks defined with an associated priority, allows to

avoid singularity configurations. In [37,36] this approach, originally developed for ground-

fixed robotic manipulators, has been applied to a platoon of mobile robots. The basic

concepts that will be used later in this chapter are summarized below.

Let x̄ = f(q) be the task variable to be controlled, e.g. mean value or variance or

regular polygon configuration. By deriving, it results:

˙̄x =
∂f(q)

∂t
=

∂f(q)

∂q

∂q

∂t
= J(q)q̇, (2.1)

where q is the state-space vector of the system and J(q) ∈ Rm×n is the Jacobian of the

system. As we consider a 2-dimensional instance of our algorithm, we have m = 2. If

˙̄x is known for a predefined task, i.e. ˙̄x = ˙̄xtask, the value of q̇task can be computed by

inverting Eq. (2.1):

q̇task = J†(qtask) ˙̄xtask (2.2)

where J†(q) is the (pseudo-)inverse of the Jacobian matrix. If we consider groups of robots

with at least two agents, it results m < 2n. This means that the Jacobian matrices of

the task have always a low-rectangular shape and the inversion problem admits infinite

solutions (see [87] for a tutorial). The relationship expressed in Eq 2.2 has been widely

studied in robotics. A typical solution is given by:

J† = JT
(

JJT
)−1

that pursues minimum-norm velocities, corresponding to minimum square solution. With
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this solution, it follows:

q̇task = J†(qtask) ˙̄xtask = JT
(

JJT
)−1 ˙̄xtask (2.3)

The null space of the Jacobian matrix is spanned by
(

I − J†J
)

. This technique is

useful because, by projecting the lower priority task onto the null space of the higher one,

it is possible to employ those extra degrees of freedom to merge together more tasks while

preserving different priorities. As an example, let’s suppose to have three tasks (v1, J1)

(v2, J2) and (v3, J3), where ˙̄xi = vi, and the lower index corresponds to the higher priority.

The final control action for the desired merged tasks is given by:

vtask = v1 +
(

I − J†
1J1

)(

v2 +
(

I − J†
2J2

)

· v3

)

(2.4)
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Figure 2.4: Scheme of the null-space behavioral coordination paradigm.



With reference to Fig. 2.3, it is easy to see that, considering for simplicity only two

tasks v1 and v2, all the components of the second task that conflict with the first one

are filtered out and do not affect the final result. A sketch of the behavioral control is

showed in Fig. 2.4. Now, the motion controller needs the position trajectory besides the

velocity trajectory. In a continuous-time system, this can be obtained by time integration

but, since all the robots are in the end controlled using discrete time systems, this will

introduce a numerical drift in the integration process. To avoid this problem, the position

of the agents can be reconstructed by using the so called closed loop inverse kinematic

(CLIK), that is:

q̇task = J†(qtask)( ˙̄xtask + Ωx̃task)

where Ω is a suitable diagonal positive-definite constant matrix and x̃task = x̄task − x̄ is

the task error.

2.2 Problem Statement and Robot Model

Starting from the concepts introduced in Sec 2.1, our goal was to create a high-level

decentralized controller able to manage different priority tasks in order to move a group

of robots in an unknown environment from initially random positions to a final target.

To define the problem, let’s suppose to have a group of autonomous agents moving

in an unknown environment that have to flocks in formation toward a target placed in a

known position. Let G be a platoon of n robots, and A a subgroup of G, i.e. every group

of robots whose cardinality is less or equal to n:

A is a subgroup ⇔ ‖A‖ ≤ n

Let Φ be the subgroup with zero elements. The position of the i-th robot on the plane is

denoted by the vector qi = [xi, yi]
T , qi ∈ R2, and the vector describing the position of all

robots in a subgroup A is given by:

qA =
[

qT
1 , qT

2 , . . . , qT
‖A‖

]T
, qA ∈ R2‖A‖

We consider robots bearing only proximity sensors, limited communication range, lim-

ited target-visibility range and able to detect their position. Moreover, we suppose that

each robot is able to exchange information with its neighbors, but no data broadcasting

is introduced. A schematics of one of the robots is shown in Fig. 2.5, where:

• Ri
COMM is the radius of the communication area: the i-th robot can communicate

with the j-th robot only if their communication areas intersect. Namely,

Ci = {
⋃

Rj∈G

:| qi − qj |≤ Ri
COMM},
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Figure 2.5: Description of the robot used in our algorithm.

is the subgroup of robots that can communicate with the i-th robot. We consider

Ri ∈ Ci;

• Ri
TARG is the radius of the target visibility area: a target can be acquired by the

i-th robot only if the robot-target distance is lower than Ri
TARG.

T = {
⋃

Rj∈G

:| qj − qtarget |≤ Rj
TARG}

is the subgroup that collects the robots able to see the target;

• RR > 0 is the robot’s body radius.

• L is the range of the proximity sensors on board. As shown in Fig. 2.5, they are

modeled as cones (triangle in 2D) to take into account measurement errors in case

of irregular obstacles.

During the implementation of our algorithm, we have supposed that the communication

radius Ri
COMM is always relatively short. This limitation was introduced to imitate nat-

ural constraints recognized in massive swarms of animals like fishes or birds, where each

individual can share information only with local teammates.

As an example, in Fig. 2.6 five robots (R1 . . . R5) are shown in a particular configuration

where the following subgroups can be recognized:

• C1 = {5}; C2 = C4 = {3}; C3 = {2, 4}; C5 = {1};

• T = {2, 3, 4};
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Figure 2.6: Communication topology and data sharing

where the gray areas are the communication areas and the dotted circles represent the

target-visibility areas.

As we are interested in defining a general algorithm and not a specific one for a given

robot model, we assume that the vehicles are omnidirectional robots. A low-level control

can be introduced to apply this general algorithm to different robot models, tanking into

account a different sensor configuration or other constraints on the ability of each robot of

sensing the environment. Moreover, this algorithm can be used to control heterogeneous

group of robots. In our case, it is:

q̇i(t) =

[

ẋi(t)

ẏi(t)

]

=

[

u̇i,x(t)

u̇i,y(t)

]

= ui(t) (2.5)

qi(0) = q0
i

t ≥ 0, ∀Ri ∈ G, where ui(t) is the control input of the i-th robot and qi(0) its initial

position.

2.3 Control Structure

The overall structure of the controller is reported in Fig. 2.7. Since, from Eq. (2.5), the

control action affects directly the velocity, we define the controller output for the i-th

robot Ri as the contribution of two different velocity terms

ui(t) = Vobst,i(t) + Vtask,i(t) (2.6)

where Vobst,i(t) and Vtask,i(t) are devoted to avoid obstacles that can be present in the

unknown environment and to accomplish the predefined mission, respectively. Both these

terms are thoroughly explained below.
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2.3.1 Task unit

The block named “Task Unit” is devoted to calculate the value of the control that the

agent should perform in order to achieve the predefined tasks. In particular, we choose

to decompose the global task “follow and surround a target” in three different subtasks,

that are, for the i-th robot:

Definition 2.1 (Tasks definition).

1. move in such a way as to contribute moving the center of the group Ci toward the

target position;

2. keep a predefined distance from the target position;

3. maintain the same distance with respect to the closest neighbor (if |Ci| ≥ 2).

where the given order corresponds to the task priority levels.

As our aim is to coordinate the swarm in an unknown environment, the best way to

merge these three tasks is to use the Null Space behavioral coordination control paradigm,



explained in Sec 2.1.3, because allows to avoid conflicting situations among the tasks to be

performed. The contribution for obstacle avoidance in Eq 2.6 has been decoupled from the

task contribution because, as robots do not known in advance the position and the shape

of the obstacles, any predefined task can be computed in advance. This feature introduces

a difference with respect to the work presented in [34] [35] [36] [37]. With respect to Eq 2.7

we have introduced a modification that, as will be explained later, is very important for

our purposes. In particular, Eq 2.7 is changed as follows:

vtask = v̄1 +
(

I − J†
1J1

)(

v̄2 +
(

I − J†
2J2

)

· v̄3

)

(2.7)

where the generic term v̄i = αi · vi, means that the supervisor has to monitor both the

possibility of exchange the priority order and the weight to assign to each task. In simple

words, we can see our approach as a mixture where the null-space paradigm is helped by

basic concepts borrowed from the cooperative paradigm. The tasks defined in Def 2.1 can

be formalized as follow.

Task1: Mean value function (MVf).

The mean value and the corresponding Jacobian matrix are defined as follows:

qmean,Ci =
1

‖Ci‖
∑

j∈Ci

qj =

[

xmean,Ci

ymean,Ci

]

, (2.8)

Jmean,Ci =
1

‖Ci‖

[

· · · 1 0

0 1
· · ·

]

(2.9)

This function moves the mean value of a subgroup Ci towards the target position. The

reference value is

x̄ref,MV f = x̄target =

[

xtarget

ytarget

]

. (2.10)

Task2: Nearest-Neighbors equidistant function (NNf)

This function moves the i-th robot of a subgroup Ci in order to keep the same distance

between (Ri, Rj) and (Ri, Rk) i.e. | qi − qj | − | qi − qk |= 0. The nearest neighbors w.r.t.

Ri are chosen run time by Ri and can change. The NNf and the corresponding Jacobian

matrix are defined as follows:

qNNf,Ci =| qi − qj | − | qi − qh |, (2.11)

JNNf,Ci =

[

0, · · · 0,

(

xi − xj

∆ij
− xi − xh

∆ik

)

,

(

yi − yj

∆ij
− yi − yh

∆ik

)

, 0, · · · 0

]

,

(2.12)

where ∆i,j =| qi − qj | and ∆i,k =| qi − qk |. The reference value is σref,NNf = 0.
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Figure 2.8: Example of configurations with Nearest-Neighbors function

Task3: On-a-Circle function (OCf)

qOCf,Ci =| qi − qmean,Ci |= Rf , (2.13)

JOCf,Ci =

[

0, · · · 0,
xi − xmean,Ci

| qi − qmean,Ci | ,
yi − ymean,Ci

| qi − qmean,Ci | , 0, · · · 0

]

(2.14)

This function keeps Ri on a circle centered in the mean value of Ci and with fixed

radius Rf (x̄OCf = Rf ).

As can be seen from Fig. 2.8 and Fig. 2.9, these two functions used alone cannot force

the robots of a subgroup in a regular formation. Merged together, NNf and OCf functions

create a complex behavior that drives all the robots of the same communication subgroup

to a regular polygon configuration.

The mixture of cooperative and Null Space Based control can be easily justified by

the fact that each αi introduces an extra degree of freedom in the system, allowing the

group to change its behavior in more complex ways. In particular, the αi terms can

be used to reduce or increase the module of each behavior function that acts on the

group. As an example, let’s consider four robots that are flocking in square formation and

that have to cross a gate in order to reach a target. As we have decoupled the obstacle

avoidance unit from the task unit, the robots depicted in Fig. 2.10(a) should not break

the formation although the task priority order is changed. In fact, OCf task and NNf

task, combined, force the robots in a regular configuration regardless the their priorities.

Otherwise, if we suppose to set α3 = 0 and suppose that α2 is continuous decremented

R
f

R
f

Figure 2.9: Example of configurations with On-a-Circle function
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Figure 2.10: Critical situation in gate-crossing task.

while at least one obstacle is sensed by the group, the configuration can be stretched and

the formation can cross the gate (Fig. 2.10(b)-2.10(c)). When any obstacle is sensed, all

the weights are incremented and the group can achieve again the square formation. As

a simulation example, consider Fig. 2.11 where the same set up is used to simulate two

different behaviors of a four-robot-swarm trying to reach a target in presence of obstacles.

In particular, in Fig. 2.11(a) the OCf contribution is deleted and the contribution of NNf

is reduced by setting αOCf = 0,αNNf = 0.1 respectively when the robots meet obstacles;

in Fig. 2.11(b) all the contribution are at the maximum value, thus robots are not able to

break the formation and cross the gate between the obstacles.

The overall scheme of the Task unit block is depicted in Fig. 2.12, where for simplicity

only two generic behavior functions (v1, J1) and (v2, J2) are used. Note that, by the

definitions of the three tasks, each robot computes its Vtask exploiting only local data,

means that the controller is fully decentralized. So far we have considered all the agents as

(a) (b)

Figure 2.11: Simulation of a group of four robot moving in unknown environment toward

a target using varying (Fig. 2.11(a)) and fixed (Fig. 2.11(b)) α weights.
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fully actuated agents able to move on the plane in both x and y directions instantaneously.

An application of this algorithm was presented in [31], where it was supposed to apply it to

an underwater vehicle modeled as a differential robot. An example of this kind of vehicle

is the Mako Autonomous Underwater Vehicle [18] depicted in Fig. 2.13. Considering the

single robot kinematic equations for x, y holds:

{

ẋi(t) = A(t)i cos φi(t)

ẏi(t) = A(t)i sinφi(t)

(a)

Left motor

Right motor

U
A
V

(b)

Figure 2.13: The Mako Autonomous Underwater Vehicle 2.13(a) modeled as a differential

mobile robot 2.13(b)



and the robot is controlled by:

{

Ai(t) =
√

u2
i,x(t) + u2

i,y(t)

φi(t) = atan2(ui,y, ui,x)

2.3.2 Obstacle avoidance unit

The Obstacle Avoidance unit in Fig. 2.7 is devoted to the calculus of the term Vobst,i(t) in

Eq 2.6. As we have supposed that robots can communicate data to their neighbors and

each robot knows the position of the other members of its own communication group, it is

possible to exploit these information in order to improve the classical obstacle avoidance

algorithms. Before going on with the definition of the obstacle avoidance term, for exposure

clarity we define the following potential function:

f(X0,X) =
1

1

tanh(X0)
− 1

·
(

1

tanh(X)
− 1

)

(2.15)

whose profile is depicted in Fig. 2.14. It is important to notice that the function

f(X0,X) is equal to 1 in X = X0 and, for X < X0 it tends to 0, for X > X0 it goes to

infinity. Although the choice of this function as a potential function for obstacle avoidance

may appear an odd choice, in the following it will be clearly explained how it is useful,

especially if this obstacle avoidance algorithm is applied to heterogenous group of robots.

In particular, the control signal Vobst,i(t) for obstacle avoidance is expressed as:

Vobst,i(t) = αO,iVO,i(t) + αE,iVE,i(t) + αR,iVR,i(t) (2.16)

where:

0
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6

X0

...

∞

Figure 2.14: Potential function in Eq 2.15.
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• (αO,iVO,i(t)) represents the contribution given by the obstacles that are directly

detected from the i-th robot Ri.

• (αR,iVR,i(t)) represents the contribution calculated considering the obstacles de-

tected from the other robots of the group, thus the obstacle position can be re-

constructed by the robot Ri.

• (αE,iVE,i(t)) represents the contribution derived from the known position of the other

robots of the group Ci.

The scalars αO,i,αE,i, αR,i may be changed in real-time by the controller supervisor

in order to define witch kind of obstacles is more important. For example, in some appli-

cations it may be more important that the robots do not collide each other rather than

avoid environmental obstacles. As Vobst,i(t) is calculated with the linear combination of

three different contributions, the obstacle unit block follows the cooperative paradigm (see

Fig. 2.15).

The definition of the three terms in Vobst,i(t) is based on the potential defined in

Eq 2.15 exploiting different safety values X0. In particular, the first component of Vobst,i

is calculated by considering the sensors measurement: for each sensor that relieves an

obstacle at a distance dO < L, the robot calculates a potential field that points to the

opposite direction and whose intensity is defined by using Eq. (2.15) as:

VO,i = f (RDO, dO) (2.17)

where RDO is a safe distance (or rescue distance), set in advance (e.g. RDO is the

minimum allowed distance between a robot and an obstacle). We set RDO = 1.1 · RR.
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Figure 2.16: Artificial Potential Field for obstacle avoidance.

Note that:
{

dO = RDO ⇔ VO,i = 1

dO > RDO ⇔ VO,i < 1

The second term of the obstacle avoidance function takes into account the positions of

the obstacles detected by the other robots in the same communication subgroup. Consid-

ering Ri and Ci, the position PO = [xO, yO]T of an obstacle detected by Ri is broadcasted

to all communicating robots. If Rj ∈ Ci, it calculates an Artificial Potential Field (APF)

to take into account the obstacles detected by the others. The expression of the APF used

for other obstacles is obtained as in Eq. (2.17):

VE,i = f (RDE , dE) , (2.18)

where dE is the Euclidean distance between Ri and the other obstacles detected by Rj

and the safe distance is RDE = 1.1 · RR.

The last contribution to the obstacle avoidance component of the control law is given

by:

VR,i = f(RDR, dR,j), (2.19)
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where dR,j is the Euclidean distance between Ri and Rj , and the safe distance is RDR =

2·RR+L. This value ensures that any robot cannot detect others of the same subgroup with

its sensors. This means that, in absence of faults, when a robot detects an obstacle, this

cannot be another robot and must be an object present in the environment. These three

contributions are depicted in Fig. 2.16. In Fig. 2.17 an example with 2 communicating

robots is shown: PO,1 and PO,2 are the points of the obstacle detected by the robot Ri,

while PO,3 is the point of the obstacle detected by Rj.

Let’s consider now the overall control structure depicted in Fig. 2.7. The blocks Task

Unit and Obstacle Unit, as explained in previous sections, generate the control action to

accomplish one or more predefined tasks and to avoid obstacles respectively. The typical

problem that arises when dealing with obstacles avoidance in unknown environments is the

possibility of getting stuck in a local minima, i.e. a robot or the entire group is not able to

avoid obstacles and gets stuck in a zone of the map other than the final one. To recognize

these dangerous situations we have introduced the MEM block: during the execution of

the algorithm, the i-th robot memorizes the last m positions (if an obstacle is detected)

and, if the mean value of the memorized data is lower than the robot radius RR, it detects

the local minima and send the information to the supervisor.
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The test performed by the MEM block is:
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(2.20)

where ρ(t) is a flag transmitted to the supervisor so it can modify the α-tasks multipliers.

The number of samples m memorized by the MEM block can be tuned: in fact, for a

low number of samples, the robot can detect a local minima also if it is not stuck but is

moving slowly; on the other hand, a large number of samples can prevent the detection of

a local minima in a short time.

Once a local minima is detected, the robot has to calculate a smart strategy to avoid

it. Our local-minima-escape strategy is based on the idea of exploiting a virtual target (or

false target) that is temporary assumed as the new point that the robot has to reach to

accomplish its primary mission.

The new false target is defined by choosing a point at the same distance of the real

target. The angle to identify the escape direction is defined considering the sensors data:

as can be seen in Fig. 2.18, a probabilistic curve is designed by the entrapped robot as

a sum of negative Gaussian curves centered on the direction where sensors have detected
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a critical obstacle. Moreover, to avoid deadlock situations where the robot moves in the

opposite direction w.r.t. to real target, that direction is strongly penalized.

The last element to be analyzed in the high-level controller depicted in Fig. 2.7 is the

Automaton block, that can be considered the core of the supervisor. In fact, using the

information received from the MEM block and from the Obstacle Unit block, it is devoted

to change the weights introduced in Sec 2.3.1-2.3.2. Its behavior is summarized in Fig. 2.19

where, depending on the current state, the output information-set is changed run-time.

For clearance of representation, we introduce the following flag functions with reference

to the i-th robot and its communication subgroup Ci:

φr,i =

{

1 if Ri acquires target

0 otherwise

φg,i =

{

1 if ∃ Rh ∈ Ci : φr,h = 1

0 otherwise

φ̄r,i =

{

1 if ρi = 1 ∧ Ri define false target

0 otherwise

φ̄g,i =

{

1 if ∃ Rh ∈ Ci : ρh ∧ φ̄r,h = 1

0 otherwise

In order to create more realistic simulations, a fault state has been introduced to take into

account the possibility of faults. In particular, we suppose that this state is activated in

case of motor faults, communication faults and sensor faults.

The description of the states of the automaton is reported:

Search State: Any robot in Ci has acquired a target. Each robot is moving randomly

trying to be as far as possible from the others.

Task State: The target has been acquired by at least one robot in Ci. Using shared data,

every robot in Ci knows the target position. Using swarm behavior functions and



avoiding obstacles each robot tries to match its subgroup mean value with target’s

position (see Subsec 2.3.1).

Escape State: A robot Rh ∈ Ci is in a local minimum. To escape, it tries to reach a

false target.

Fault State: The current robot is in fault condition.

To conclude the analysis of the high level control scheme depicted in Fig. 2.7, note that

two blocks named respectively SAT1 and SAT2 has been introduced after the calculus of

Vtask and after the calculus of ui = Vtask + Vobst. The meaning of these two blocks is easy

to explain: the block SAT1 has been introduce in order to limit the norm of the maximum

control action that can be generated by the Task Block. This justifies the odd choice made

for the potential field used for obstacle avoidance: since the norm of the control action can

not exceed the value of 1, the obstacle avoidance will always create an avoidance control

action that can prevent the robot going too close to the obstacles. The block SAT2 has

been introduce to normalize the control output so that it can be applied to different kind

of actuators. Note that to get a control action as smooth as possible, the saturation can

be replaced by the function −1 ≤ tanh(x) ≤ 1.

2.4 Simulation Results

The control algorithm presented in this chapter has been validated by means of numerical

simulations using Matlab. The environment created is a 4 x 4 m. arena, where many round

obstacles with radius of 30 cm. are randomly placed. As we are interested in testing our

algorithm in configurations with many local minima, the obstacles are randomly merged

together in order to create more complex environments. The model of the robots used in

our simulations has the following characteristics:

• Robot radius RR = 1.

• Eight proximity sensors equally spaced around the robot and with a maximum range

L = 3.

• Communication range Ri
COMM = 40 (represented as a dotted circle).

• Target visibility range Ri
TARG = ∞.

The multipliers used by the high level control are summarized in the following table:



Automaton State α1 α2 α3

Search 1 0 0

Task 1 1 1

Escape 1 0.1 0

Fault 0 0 0

The data are collected over 100 simulation runs, with fixed target at [100, 0]T . In

Fig. 2.20 the evolution of the mean value and the standard deviation of the distance of a

single robot from the fixed target is depicted. In the arena 34 obstacles are present and

the starting point is randomly chosen a zone defined by in x ∈ [−170 . . . − 100] cm. and

y ∈ [−170 . . . 170] cm.
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Figure 2.20: Evolution of the mean value and the standard deviation of the distance of a

single robot from the fixed target.

Considering four robots moving in the same environment, the evolution of the radius

of the formation and the distance from the target of the formation mean value in case of

fixed are depicted in Fig. 2.21(a) and in Fig. 2.21(b) respectively. The starting positions

are randomly chosen in a zone located in x ∈ [−170 . . .− 100] cm. and y ∈ [−170 . . .− 70]

cm. In Fig. 2.21(c) the final robots positions (∗) and the final centroid positions (⊗) are

shown; in Fig. 2.21(d) a statistical graph summarizes the percentage of tests collected

w.r.t. the final distance to the target.
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(a) Evolution of the distance between group cen-

troid and static target.
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(c) Final robots (∗) and centroid (⊗) positions.
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(d) percentage of results collected w.r.t. the final

distance between the centroid and the target.

Figure 2.21: Statistical data about four-agent fixed-target simulations.



The simulations with moving target are performed with the same starting conditions

but on the same environment, that is depicted in Fig. 2.22, where a simulation is reported:

note that in absence of obstacles, the mean value of the swarm (dash-dotted line) converges

to the target’s trajectory (dashed line). The target path is generated using spline passing

through four fixed points and do not take care about obstacles. Statistical data are

collected over 100 simulations and reported in Fig. 2.23

Figure 2.22: Simulation field with random obstacles and moving target.
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(a) Evolution of the distance between group cen-

troid and moving target.
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(b) Evolution of the group radius in case of mov-

ing target.

Figure 2.23: Statistical data about four-agent fixed-target simulations.





Chapter 3

Graph Theory

In this chapter, basic notions on graph theory are provided, and many famous theorems

are reported. To clarify the concepts exposed below, many examples are provided by

the author. Moreover, the consensus problem is explained and some applications of

the classical solution are shown. These basic concepts will be used in Chapter ?? and

applied to a system of real robots.

3.1 Introduction on Graph Theory

3.1.1 Basic notions about graph theory

In mathematics and computer science, graph theory is the study of graphs, that are

mathematical structures used to model relations between objects of a certain collection.

From a historical point of view, the graph theory was initially used to solve optimization

problems: a famous example is the Seven Bridges of Konigsberg problem. In a paper

published by Leonard Euler in 1736, the author discuss about the possibility of crossing

all the seven bridges of Konigsberg only one time. In Fig. 3.1 the problem is reported in

its original version.

In more recent years, graph theory has been studied as a new way to solve many

different problems, such as traffic routing problems [72], payload transport, task assign-

ment, air traffic control and many other applications, included robotics. Before dealing

with some standard application of these concepts, some basic definitions and notions are

introduced [21].
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Figure 3.1: Konigsberg bridges

Definition 3.1 (Undirected graph). An interconnected undirected graph G with N ele-

ments can be defined by a couple of sets G = (V, E), where V is the vertex set (or node

set) and E is the edge set and represents the connections between couples of nodes:

• V = {ni, i = 1 . . . N},

• E = {(ni, nj) ⊆ V × V | ni 6= nj},

As we do not consider any direction map over E, the elements of this set are unordered

pairwise of nodes.

Let’s note that E ⊆ V × V , i.e. many connections couldn’t exist.

Definition 3.2 (Subgraph). Given a graph G = (V,E), a subgraph is defined as Ḡ =

{V̄ , Ē}, where V̄ ⊆ V and Ē ⊆ E

Definition 3.3 (Path over G). A path P (n0, nL) over a given graph G connecting two

nodes n0, nL is defined as a finite sequence of nodes ni such that nk−1 6= nk, k = 1 . . . L

Definition 3.4 (Connected graph). A graph is said to be connected if a path P (ni, nj)

exists for each couple of nodes (ni, nj), ni 6= nj.

Definition 3.5 (Neighbors set (or friend set)). Given a connected graph G = (V,E) and

a node ni ∈ G, the neighbors set N(ni) is defined as N(ni) = {nj ∈ V : (ni, nj) ∈ E}

Definition 3.6 (Degree of a node). Given a connected graph G = (V,E) and a node ni ∈
V , the degree of the node ni is given by the number of its neighbors, i.e. deg(ni) = N(ni).

From the definition of degree of a node follows:

Definition 3.7 (k-regular graph). Given a graph G = (V,E) with N nodes, the graph is

said to be k-regular if all the nodes have the same number of neighbors, i.e.

G is k − regular ⇔ N(ni) = N(nj),∀ni, nj ∈ V
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Figure 3.2: Example of undirected graph G

A complete graph can be defined also considering the degree of the nodes: indeed,

a graph with N nodes is complete if it is k-regular and if k = N − 1 (no self loops are

considered)

Example 3.1. As an example, let’s consider the graph reported in Fig. 3.2. In this six-

nodes graph, the two sets that defines G are:

• V = {v1, v2, v3, v4, v5, v6, v7},

• E = {{n1, n2}, {n1, n3}, {n3, n4}, {n4, n5}, {n4, n6}},

• N(n4) = {n3, n5, n7}

• Path(n2, n3) = {n2, n1, n3}

Once an orientation map is defined on a graph G, it is called oriented graph. In

particular, an oriented graph is defined as:

Definition 3.8 (Oriented graph). Given a graph G and an orientation map M over it,

the resulting directed graph can be defined as G = {V,EM}, where

• EM = {(ni, nj), (nj , ni) ⊆ V × V | ni 6= nj, (ni, nj) = −(nj, ni)}

To conclude, a weight map can be defined on elements of both vertex set and edge set.

In these cases, weighted graphs are defined.

Definition 3.9 (Weighted graph). Given a graph G, a weight map over the vertex set

WV and a weight map over the edge set WE, three new graphs can be defined:

1. Edge-weighted graph GWE
= (V,E,WE)



2. vertex-weighted graph GWV
= (V,E,WV )

3. edge-vertex weighted graph GWE ,WV
= (V,E,WE ,WV )

Note that the two maps WV and WE can be defined dynamically as long as also the

edge set E can be time-variable. Generally, a weight defined over an edge of a graph can

be interpreted, for example, as a cost, as a distance or a capacity and, in general, a cost

function can be used to define a weight map.

As will see in Section 3.1.2, the orientation map, the edge-weight map and the node-

weight map can be encoded in an appropriate matrices.

3.1.2 Algebra in graph theory

An interesting way to study the properties of a graph is to find a method to write its

structure in a mathematical mode. To study the system represented by a graph, in this

paragraph the most important matrices that define a graph and their spectral properties

are exposed.

Definition 3.10 (Adjacency matrix). Given a graph G = (V,E) with N nodes, the Ad-

jacency matrix A ∈ R
N×N is a binary matrix that is defined as:

A(i, j) =

{

1, if (ni, nj) ∈ E

0, otherwise
(3.1)

Example 3.2. With reference to Fig. 3.2, the adjacency matrix is:

A =























0 1 1 0 0 0

1 0 0 0 0 0

1 0 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0























(3.2)

In case G is a complete graph, the adjacency matrix is a unit matrix except for zeros on

the main diagonal. The definition of the adjacency matrix is the same also for undirected

graphs, and some properties of A can be extrapolated:

• A is symmetric;

• A has a complete set of real eigenvalues;

• A has an orthogonal eigenvector basis.



Definition 3.11 (Degree matrix). Given a graph G = (V,E) with N nodes, the degree

matrix of G is a square matrix D ∈ R
N×N defined as:

Di,j =

{

deg(ni) if i = j

0 otherwise
(3.3)

where deg(ni) = |N(ni)| is the degree of the node ni.

Once the adjacency matrix is defined, the degree matrix can be constructed starting

from a zeros matrix and setting the values on the diagonal as the sum of the elements of

the corresponding row of the adjacency matrix. This means that:

Di,j =

{

∑N
i=1 a(i, j) if i = j

0 otherwise
(3.4)

Example 3.3. The degree matrix for the graph depicted in Fig. 3.2 is:

D =























2 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 2 0

0 0 0 0 0 2























(3.5)

A new matrix, that collect all the data stored in the adjacency matrix and in the degree

matrix, can be defined. It is called Laplacian matrix and is usually defined as follows:

Definition 3.12 (Laplacian matrix). Given a graph G = (V,E) with N nodes, the Lapla-

cian matrix L ∈ R
N×N of G (called also admittance matrix or Kirchhoff matrix) is defined

as L = D −A or, more explicitly, as:

L(i, j) =











deg(ni) if i = j

−1 if i 6= j, (ni, nj) ∈ E

0 otherwise

(3.6)

Example 3.4. Considering once again the graph in Fig. 3.2, the corresponding Laplacian

matrix is:

L =























2 −1 −1 0 0 0

−1 1 0 0 0 0

−1 0 2 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 2 −1

0 0 0 −1 −1 2























(3.7)
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Figure 3.3: Example of oriented graph: on orientation map is applied to the graph depicted

in Fig. 3.2

The last matrix that is useful to define over a given graph G = (V,E) is the incidence

matrix.

Definition 3.13 (Incidence matrix). Given a connected graph G = (V,E) and an orien-

tation map M over G, the incidence matrix I ∈ R
N×|E| is defined as:

ii,k =











−1 if ek = (ni, nj)

1 if ek = (nj, ni)

0 otherwise

(3.8)

where |E| is the cardinality of the edge set and ek is the k-th edge of G.

Roughly speaking, the incidence matrix is a low rectangular matrix (square matrix

only if |E| = N , i.e. G is a single-path graph) where k-th column contains 1 in the i-th

row if the ni node is the tail node (or starting node) for the edge ek, contains -1 in the

i-th row if the ni node is the head node (or ending node) for the edge ek, and 0 otherwise.

It is important to notice that over an undirected graph G can be defined many different

orientation maps: in fact, all the incidence matrices defined over an undirected graph

G differ only by inverting the direction of some edges. The most important properties

of the incidence matrix is that it allows to define the Laplacian matrix of a graph as

L = I · IT = D −A.



Example 3.5. An example of incidence matrix over the graph reported in Fig. 3.2 is:

I =























−1 −1 0 0 0 0

1 0 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 1 0

0 0 0 0 −1 −1

0 0 0 1 0 1























(3.9)

and the corresponding oriented graph is depicted in Fig. 3.3.

As the Laplacian matrix collect all the information that can be used to represent a

graph, it is generally considered the most important matrix in graph theory. For this

reason its spectral properties have been widely studied. Some of the properties that will

be used in this work are summarized below.

Theorem 3.1. Given a connected graph G = (V,E), the corresponding Laplacian matrix

is always positive-semidefinite: ∀i, λi ≥ 0.

This means that if the spectrum of L is defined as Λ(L) = {λ0 . . . λn}, all the elements

of Λ(L) can be rearranged in a non-decreasing order:
{

λ0 ≤ λ1 ≤ λ2 . . . ≤ λn

λ0 = 0
(3.10)

The fact that λ0 = 0 follows directly from the definition of L: in fact, as all the row-sums

are equal to zero, means that all the columns of L are linear-independent except one.

Therefore, there must be a null eigenvalue. Consequently, this means that the null space

of L is always a non-empty subspace with at least one eigenvector corresponding to the

null eigenvalue. In particular, the following theorem holds:

Theorem 3.2. Given a graph G = (V,E) and the corresponding Laplacian matrix L,

the number of non-connected components (or disjointed subgraph) in G is equal to the

multiplicity of the λ0 eigenvalue of L. More generally, given a graph G = (V,E) with N

nodes and C connected components, then rank(L) = N − C.

Example 3.6. For the graph represented in Fig. 3.2 (witch Laplacian matrix L is reported

in Example 3.4), the spectrum of L is:

Λ(L) = {0.0, 0.3249, 1.4608, 3.0, 3.0, 4.2143}

If we cancel the edge connecting the third node to the fourth one, we get a new graph

composed of two separated subsets. Analyzing the spectrum of this new graph G̃ = (V, Ẽ),

where Ẽ = {E − {(n3, n4)}}, it is:

Λ(L̃) = {0.0, 0.0, 1.0, 3.0, 3.0, 3.0}



where the Laplacian matrix L̃ differs from L. Let’s note that the multiplicity of the null

eigenvalue is two.

In case we deal with connected graphs, it is proved that

0 < λ1 ≤ λ2 . . . ≤ λn (3.11)

Starting from these considerations, it follows: eigv(L) = {ν1 . . . νN}, with null(L) =

span(ν1) = span(1), where 1 is a n-dimensional vector of 1.

Definition 3.14 (Algebraic connectivity). Given a connected graph G = (V,E), the small-

est non-zero eigenvalue is called algebraic connectivity of G

The algebraic connectivity of a graph is upper bounded by a value that depends on

the graph configuration:

Theorem 3.3. Given a connected graph G = (V,E) with Laplacian matrix L, for the

eigenvalues of L the following propositions hold:

• λ1 ≤ N

N − 1
min {deg(ni),∀vi ∈ V }, i.e. the algebraic connectivity is upper bounded;

• ∑N
i=1 λi = 2|E| =

∑N
i=1 deg(ni)

In graph theory, the algebraic connectivity is usually called Fiedler value (from the

name of Miroslav Fiedler, the father of the theory of algebraic connectivity [24], [26]).

Empirically, another widely used interpretation of the algebraic connectivity of a graph

can be found in literature: the value of λ1 increase as long as increase the number of edges

in a graph. Therefore one can says that the value of the algebraic connectivity is a good

index to understand how strong the graph is connected: if the value of λ1 is low the graph

can be divided cutting few edges, viceversa if λ1 is high many edges must be cut to split

the starting graph.

In Fig. 3.4 three different edge sets are used on the same vertex set. As can be seen,

as long as the the number of edges increases, the value of λ1 tends to its maximum value.

Note that the maximum value of the algebraic connectivity is equal to the number of

vertices. The algebraic connectivity λ1 can be used also to calculate the convergence ratio

of the swarm to the centroid. It holds:

‖x(t) − 1‖ ≤ ‖x(0) − 1‖e−λ1t (3.12)

It’s easy to understand why the convergence ratio is upper bounded by a value related to

the algebraic connectivity: in fact, λ1 is the lower eigenvalue of the system and corresponds

to the higher time constant, i.e. the part of the system related to λ1 is the slower.



(a) λ1 = 0.2679 (b) λ1 = 0.3249 (c) λ1 = 6.000

Figure 3.4: Examples of different values of λ1 for different edge sets on the same vertex

set

3.2 Control in Graph Theory: the consensus algorithm

Literally, consensus means that an interconnected system is able to reach an agreement

regarding a certain quantity of interest. The first formulation of the problem appeared

in 1960’s (see [29]) and a statistical formulation of the problem was developed to manage

information collected using sensor networks working under uncertainties [9].

The agreement problem was later solved by Borkar and Varaiya [15] for distributed

decision making systems. This work was summarized in [11] and was widely applied to

parallel computing.

In case of agents (or dynamic systems) the agreement reached by the system depend

on the state of all the agents. A typical way to solve this problem is to define interaction

rules in order to explicit the information exchange between an agent and all its neighbors.

In our case, the idea of using graph to represent an agent network sounds natural: in

this case, in fact, it will be possible to use all the results collected in graph theory that

are summarized in the previous section. Moreover, the spectral analysis of matrices used

to describe a graph (overall the Laplacian matrix) can be automatically applied to the

dynamic analysis of a group of agents

Given a group of N agents, the simplest model that can be used is the single integrator,

i.e. ui(t) = ẋi(t), and the goal of the consensus algorithm is to drive all the agents to a

final common value xf .

If we model the connections between agents as a connected graph G = (V,E), a simple

algorithm regarding the state of the system can be found in [2] and can be expressed as a

n-th order linear system:

ẋi(t) = −
∑

j∈N(i)

(xi(t) − xj(t)) + bi(t), where

{

xi(0) = xi,0 ∈ R

bi(t) = 0
(3.13)

where N(ni) is the neighbor set of agent xi (see def 3.5). The role of the input value
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Figure 3.5: Two equivalent forms of the consensus algorithm: 3.5(a) a networks of agents

modeled as integrators and 3.5(b) the feedback loop that performs the algorithm on a

MIMO system.

bi(t) will be described later. Note that, setting bi(t) = 0, the collective behavior can be

summarized in:

ẋ = −L · x (3.14)

The two equivalent formulations of the consensus algorithm explained in this section are

reported in Fig. 3.5. In particular it is possible to see that there is a direct correspondence

between a network of agents modeled as single integrators where the i-th node receive

information about the state of all the neighbors node xj ∈ N(i), and the block diagrams of

interconnected dynamic systems with identical transfer functions T (s) = 1
s . The collective

system is a MIMO (Multi In - Multi Out) system represented with a diagonal matrix.

This algorithm is of interesting in robotics because of its decentralized nature: each agent

performing the consensus act only based on information received from local neighbors and

does not need a supervisor.

Recalling the definition of the Laplacian matrix of a graph (Def 3.12) and the theorem

related to the eigenvalues of this matrix (Thm 3.1), as 1 belongs to the null space of L
(L · 1 = 0), the zero-eigenvalue λ0 corresponds to the eigenvector 1 = [1 . . . 1]T . This

means that the consensus feedback is globally asymptotically stable and drives the system

to an equilibrium point that, in the state-space, is a N -dimensional vector

x̄ =









α
...

α









= α ·









1
...

1









(3.15)

Once all the agents reach the equilibrium, the time-derivative in Eq 3.13 is null, i.e.

ẋ(t) = 0. Starting from this consideration, it is easy to demonstrate that the α value

coincides with the mean value of the agents starting positions, i.e. α is a function of the
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(a) Time evolution of a five-integrators system

performing consensus.
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(b) Evolution of a four-integrators system and

a constant: note that the mean value tends to

the constant agent

Figure 3.6: Evolution of system performing consensus

starting position vector:

α(xi,0) =
1

N

N
∑

i=1

xi(0) (3.16)

If we think about the agents as points without mass, till this point we can imagine that

the state vector x(t) = [x1, . . . xN ]T represents their positions on a line, i.e. we have

supposed that all the agents can move on single dimension. In Fig. 3.6(a) an example

of the evolution of the states of a system with five agents versus time is depicted. Note

that the mean value (dash-dotted line) is always constant in time. In Fig. 3.6(b) the same

example is depicted, but the third agent (starting position is 3) is fixed: in this case, as

a consequence of the property expressed in eq 3.15-3.16, all the states tend to the locked

one.

Because of the decentralized nature of this algorithm, we are interested in using it to

guarantee the convergence of a group of robots modeled as particle points without mass.

Let’s see now how to extend the Laplacian-based consensus algorithm to a m-dimensional

space. The key point is that a particle point can be modeled as single integrator in

all dimensions. The control loop depicted in Fig. 3.5(b) can be slightly modified: the

collective system block is a MIMO system with (m ·N)× (m ·N) transfer function matrix

with T (s) = 1
s on diagonal; the consensus feedback block is a (m · N) × (m · N) matrix

that is created using the Kronecker product (denoted by ⊗), that is L̄ = L ⊗ Im, where

Im is the m × m identity matrix. In particular, if we set m = 2 or m = 3, we perform

consensus for a group of agents moving in a two-dimensional or three-dimensional space

respectively. In the rest of this chapter, if no extra information is provided, we mean for

simplicity of exposition m = 2.
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Figure 3.7: Evolution of system performing consensus

Definition 3.15 (Kronecker product). : given a m − by − n matrix A and a p − by − q

matrix B, the Kronecker product A ⊗ B is mp − by − nq block matrix

A ⊗ B =









a11B · · · a1nB
...

. . .
...

am1B · · · amnB









(3.17)

Note 3.1. The Kronecker product enjoys the following properties:

• A ⊗ (B + C) = A ⊗ B + A ⊗ C

• (A + B) ⊗ C = A ⊗ C + B ⊗ C

• (kA) ⊗ B = A ⊗ (kB) = k(A ⊗ B)

• (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

Note 3.2. The Kronecker product is not commutative (A ⊗ B 6= B ⊗ A), even if two

permutation matrices P , Q, can be found such that:

• A ⊗ B = P (B ⊗ A)Q

An example of a group of agents moving in a two-dimensional space is depicted in

Fig. 3.7, where their behavior is shown.
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Figure 3.8: Evolution of system performing consensus

3.2.1 Formation control

There are two main paradigms to achieve formation for multi-vehicle systems: the first

approach is based on the idea of using a rigid structure to represent the desired formation

and to control the robots behavior basing on inter-vehicle potential fields; the second one,

instead, is based on the idea of representing the group of vehicles as a graph (where com-

munication links are represented by edges) performing consensus with an input bias other

than zero. The second paradigm is analyzed in this section, focusing on the possibility of

using the inter-agents distances to calculate the bias vector.

Suppose now to have the two vectors xd and yd with the desired final positions. If we

define a new state z = x − xd (the same for the second dimension), the eq 3.14 becomes:

zi(t) = xi(t) − xi,d, ∀i = 1 . . . N (3.18)

Follows, for the single agent:

żi(t) = −
∑

j∈N(i)

(zi(t) − zj(t)) = −
∑

j∈N(i)

((xi(t) − xj(t)) − (xi,d − xj,d)) (3.19)

If we define rij = xi,d−xj,d as the desired relative distance between agent ni and agent

nj, ∀nj ∈ N(i)), from Eq 3.13 it follows

bi(t) = −
∑

j∈N (i)

(xi,d − xj,d) = −
∑

j∈N (i)

rij (3.20)



that is the bias input required for agent ni to reach the desired position asymptotically.

In Fig. 3.8 the behavior of a swarm of nine particles is depicted: starting from random

positions, they converge in a regular polygon configuration.

3.3 Applications of the consensus algorithm

Due to its simplicity, the consensus algorithm explained in the previous section has been

widely studied and applied to solve problems arisen in many different research fields. In

particular, it has been studied for commercial and military applications.These problems

can be summarily divided into two main branches, that are explained in this section.

3.3.1 Leader Networks

The key point behind the so called leader networks is the idea of finding some special nodes

called leaders that can be used to drive all the group toward a predefined task [58] [89] [3]

[92]. The ability to characterize a given network as a leader network is the starting point

for the solution of two problems that are strictly related with the possibility of controlling

only some agents of the group while the others perform the consensus algorithm.

Given a swarm of N agents described by a graph G = (V,E), suppose that in the

vertex set there is a subset of Nl agents that can be considered the leaders. In particular,

to deal with the problems related to a leader network, we have to assume that:

• the leaders have access to global information;

• a static graph G represents the network topology

• the graph G is connected and undirected

In a leader-based network represented by a graph G = (V,E), the vertex set can be

divided in two disjoint (but connected) subsets, the follower subset Vf and the leader

subset Vl, such that Vf
⋃

Vl = V and Vf
⋂

Vl = 0. Without loosing of generality, we can

suppose that the first N − Nl agents are follower while the last Nl agents are leaders, i.e.

xf = [x1 . . . xNf
]T , xL = [xNf +1 . . . xN ]T , where Nf = |Vf |.

As a consequence of this division, the incidence matrix and the Laplacian matrix can

be partitioned as:

I =

[

If

Il

]

⇒ L =

[

Lf Lfl

LT
fl Ll

]

=

[

IfIT
f IfIT

l

IlIT
f IlIT

l

]

(3.21)

where Lf ∈ R
Nf×Nf , Ll ∈ R

Nl×Nl and Lfl ∈ R
Nf×Nl .
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Figure 3.9: Example of a leader-follower network: graph (Fig. 3.9(a)) and control loop

(Fig. 3.9(b))

.

If we suppose to be able to control the leader nodes, the dynamic of the controlled

system can be expressed as:
[

ẋf

ẋl

]

= −
[

Lf Lfl

0 0

][

xf

xl

]

+

[

0

I

]

u (3.22)

The system for the followers is

ẋf = −Lfxf − Lflxl (3.23)

As pointed out in [58], we have:

Theorem 3.4. Given a connected graph G = (V,E) and a subset Vf ⊂ V , the submatrix

Lf is positive definite (Lf ≻ 0)

Theorem 3.5. Given a connected graph G = (V,E) with the vertex set partitioned in

leaders and followers (performing consensus in Eq 3.23), for a fixed leader position, the

equilibrium point of the follower subsystem is

xf = −L−1
f Lflxl (3.24)

that is globally asymptotically stable.

An example of leader-follower graph and the corresponding control loop is reported in

Fig. 3.9. In Fig. 3.9(a) leader nodes are blue and follower nodes are red.

Before going on with the control of leader-based networks, some conditions must be

verified in order to ensure the controllability of the follower system.



Theorem 3.6. If we call A = −Lf and B = Lfl, the system ẋ = Ax + Bu is controllable

if and only if one of this propositions holds:

1. rank(C) = rank(A), where C is the controllability matrix C = [B AB . . . ANf B];

2. rank(Wc) = rank(A), where Wc is the controllability Gramian;

3. eig(L) ∩ eig(Lf ) = 0;

4. eig(Lf ) are distinct and eigv(Lf ) ∩ B⊥ = 0 (see [92]).

Example 3.7. Let’s consider the graph reported in Fig. 3.9(a). It is:

L =

















2 −1 0 −1 0

−1 3 −1 −1 0

0 −1 2 0 −1

−1 −1 0 2 0

0 0 −1 0 1

















with : eig(L) =

















0.0

0.5188

2.3111

3.0

4.1701

















, eig(Lf ) =







1.0

2.0

4.0






.

As the proposition 3 of theorem 3.6 is satisfied, the system is controllable.

At the two extremity of the spectrum connectivity of connected graph, we have:

• the graph is complete but is not controllable;

• the graph is a path graph and is controllable.

This means that having a low connectivity (i.e. the algebraic connectivity λ1 is low) is

not always a bad characteristic for graphs. More generally, once a connected graph is

given, one of the hardest problem is to find a partition of the vertex set in order to have a

controllable system. In fact, given a connected graph, a random search for a controllable

configuration can be very expansive in terms of time and resources. In Fig. 3.10 two

examples are depicted: in Fig. 3.10(a) the probability of a node of being connected is

20%, in Fig. 3.10(b) the probability is 2%. It is possible to note that as long as the

number of the graph vertices and the probability of a node of being a leader increase, the

mean probability over 200 iteration of finding a controllable leader-follower configuration

drastically increases.

It is easy to note that for high leader probability and for a high number of vertexes

there is a peak in the number of iteration requested to find at least one controllable

leader-follower configuration.

An important theorem that allows to find a subset of leader/follower agents in order

to have controllable system is in [58]:

Theorem 3.7. The system (Lf ,Lfl) is controllable if G is connected and null(Il) ⊆
null(If ), where If and Il are defined in Eq 3.21.
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Figure 3.10: Probability of finding a controllable configuration with a node probability

connection of 20% (3.10(a)) and 2% (3.10(b)).

Now that we have analyzed the main problems related to the use of a leaders subset

to control the system, let’s see two applications of these results.

Optimal Control

The optimal control problem applied to a leader/follower graph can be formulated as

follows: given a network of agents modeled as a connected graph G = (V,E) and given

a subset of nodes that acts as leaders such that the system in Eq 3.23 is controllable,

find the control input for the leader set in order to drive the followers from a position x0

at time t0 to a final position x1 at time t1. This formulation is widely referenced as the

optimal point-to-point transfer and the conditions x(T0) = x0 and x(T1) = x1 are called

boundary states.

Let’s consider the system in Eq 3.23 and, for the sake of notational convenience, equate

xf with x, xl with u, −Lf with A and −Lfl with B, so that it can be rewritten as

ẋ = Ax + Bu (3.25)

As the theory regarding optimal control has been widely studied in literature, in this

subsection we present only an application of the optimal control theory applied to a leader-

follower network of agents.

The optimal control is solved if a given cost index can be minimized; in general the

problem can be formulate as:

min J (3.26)

The cost index J can be a function of the input and of the system state, or simply a



function of the input. The typical example used in optimal control theory is

J =

∫ td

t0

uT (t)u(t)dt (3.27)

that minimize the control energy.

The solution of this problem is well-known in literature [53] [19], and it is:

u(t) = BT eAT (t1−t0)Wc(t0, t1)
−1

(

xd − eA(t1−t0)x0

)

(3.28)

where Wc(t0, t1) is the controllability Gramian defined as:

Wc(t0, t1) =

∫ t1

t0

esABBT esAT

ds (3.29)

Recall that, if the system in Eq 3.25 is controllable, the controllability Gramian is always

invertible. As an example, consider a network of five agents represented as a path graph,

where nodes n1 . . . n4 are the follower and node n5 is the leader. The boundary states are
{

x(0) = x0 = [0, 1, 2, 3]T

y(0) = y0 = [0, 0, 0, 0]T
and

{

x(15) = x1 = [−2, −2, 2, 2]T

y(15) = y1 = [−2, 2, 2, −2]T

i.e. starting from a line configuration we want to drive the followers at time t = 15 sec. to

a square configuration with side 4.

In Fig. 3.11 the control signal is reported with some snapshots of the simulation. It

is important to recall that even if the optimal control of a group of agents allows to drive

the agents between two boundary states in a finite time by acting with an exogenous

control action only on the leaders, it may present some feasibility problems: first of all the

control action can saturate the actuators (i.e. the energy supplied to the system is too

high); secondly there can be numerical problems. In fact, as the Gramian is calculated

by integrating a matrix multiply, the final result can be a matrix Wc(t0, t1) that is bad

conditioned.

Containment Algorithm

The second application that concerns the use of the leader-follower paradigm is the so

called containment problem. In this problem we have the followers subset performing the

consensus and a the leader subset controlled by an exogenous signal. The leaders, in

particular, have to move from a zone of the plane (in 2D space) to another predefined

zone keeping all the followers inside the convex polytope spanned by them (a polygon

in 2D and a polyhedron in 3D). This problem is frequently indexed as herding problem,

because it is the typical problem that shepherds have to face when they have to keep a

herd of animals compact while moving from a pasture to another. To face the solution of

the herding problem we have to make some starting assumptions:
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Figure 3.11: Evolution of system with optimal control

• the graph G is fixed and connected;

• the leader subgraph is connected;

• the followers execute the consensus algorithm;

• the leader velocities are unbounded;

• leaders are able to detect polytope-perimeter crossing conditions.

The polytope spanned by one or two leaders is a point or a segment respectively and

both cases are considered as degenerate polytopes. In this section we suppose that in our

leader-network there are at least three leader agents.

The main work about this problem is addressed in [33], where two important theorems

are enunciated and demonstrated.

Theorem 3.8 (Follower convergence). Given a graph G = (V,E), with V partitioned in

leaders and follower subsets such that the previous assumptions hold, the follower agents

converge to the convex polytope spanned by leader agents.

Theorem 3.9. Given a graph G = (V,E), with V partitioned in leaders and follower

subsets, once the followers are inside the polytope spanned by the leaders, they never point

away.
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Figure 3.12: Four static leaders attract followers.

An example of graph that can perform the containment algorithm described in this

section is shown in Fig. 3.12, where the follower nodes (red) converge to the center of the

polygon spanned by the leaders (blue). Some problems arise when the leaders move to

execute a point-to-point transfer of the followers. The following corollary point out the

first problem related to the convergence time of the followers:

Corollary 3.10. Given a graph G = (V,E), with V partitioned in leaders and follower

subsets such that the previous assumptions hold, if a follower is connected only with one or

two leaders, it will asymptotically converge to a vertex or to a side of the convex polytope

spanned by leader subset.

This particular configuration can drive the system into a deadlock situation, where

the follower converges into the polytope only asymptotically. In Fig. 3.13 an example of

these two possible deadlock configurations are shown. These problems, addressed as static

problem because arises when the leaders are static and are waiting for followers to converge,

can be circumvented by transmitting to the followers false information about leaders

position: in other words, the leaders see a new convex polytope that is smaller than the

real one. With this trick, the followers with critical connections will tend asymptotically to

the border of the inner polytope and will go into the original polytope spanned by leaders

in a finite time. Now that we are sure that all the followers converge in a finite time



into the polytope spanned by the leaders, we can assume that the leaders start moving to

transfer the followers from the starting zone to a final one. At this point, another problem

arises: as the leaders velocities are unbounded, it can happen that the leaders are faster

than the followers, thus one or more follower agents can lie out of the polytope spanned

by leaders. To solve this problem, a hybrid control has been used to move the leaders and

at the same time ensure that all the followers never lie out of the polytope. The hybrid

control automaton is described in Fig. 3.14 with snapshots that explain the meaning of

the two states. The guard conditions are defined as:

Guard1 (STOP2go): all the followers are inside the polytope spanned by leaders;

Guard2 (GO2stop): at least one follower is outside the polytope spanned by leaders;

The hybrid control used to move leaders is useful, but it can be improved if the crossing

condition is applied not on the real polytope but on the false polytope used to avoid

deadlock situations: in this case, in fact, the leaders will stop before one follower fall out

of the leader-spanned polytope, ensuring that once the stating condition is true, they never

go out of the polytope, even if their dynamic is slower than the leaders one. This trick

can be very important if, for example, the leaders are escorting vehicles that transport

dangerous materials (the polytope can be interpreted as the safety zone). The problem

with the automaton in Fig. 3.14 is that the system, in some particular configuration or

if the leaders are faster than the followers, can switch frequently between the two states,

thus slowing down the system performances. The last trick that one can use is to change

dynamically the dimension of the inner polytope, such that it expands while leaders are

in GO mode and reduces in STOP mode.

Let’s conclude about the containment algorithm with an example where the hybrid

algorithm described in this section has been applied using all the improvements (inner

polytope, varying radius). The law used for varying inner polytope radius is a saturated
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Figure 3.13: Critical configurations in herding problem.
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Figure 3.14: Automaton for the Stop-and-Go hybrid control for herding.
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Gaussian-like function:

r(d) = max{0.5 ,
1

Mρ
√

2π
e
−

(d − µ)2

2ρ2 } (3.30)

where M = 1
Mρ

√
2π

e
− µ2

2ρ2 normalize r(d) such that 0 ≤ r(d) ≤ 1 and d is a weighted

function of leaders position errors (mean the distance to the target position) and the

leader velocity. In Fig. 3.15 an example of the eq 3.30 is depicted.

The graph depicted in Fig. 3.16 is a seven-agents network where three follower agents

(Vf = {n1, n2, n3}) start in random positions and four leader agents (Vl = {n4, n5, n6, n7})
start in a square formation. The goal is to move leaders to the positions marked with

dotted circles while herding followers. The safety polytope is in grey.

In Fig. 3.17 the leaders control action is compared with the solution of the same

example without using safety polytope. It is easy to see that using a safety polytope the

system moves slowly toward the final positions but, on the other hand, the hybrid control

avoids jitter.

3.3.2 ∆-disk Graphs

So far we have considered the networks as a static networks, i.e. the starting communica-

tion graphs do not change in time. If we introduce the possibility of having networks with
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Figure 3.16: Snapshots of a simulation of a group of agents performing herding task.
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connections that can change in time, we deal with dynamic networks. This improvement

of the classical network model can be considered as a step toward the reality. In fact,

in reality agents have to deal with adverse environmental conditions (like obstacles) and

we have to take into account the possibility for an agent to lose the connection with the

others. A typical example of a graph model used to study dynamic networks is the so

called ∆-disk graph. A ∆-disk graph G∆(V,E) is defined by a couple of sets as in Def 3.1,

where the edge set is slightly different.

Definition 3.16. ∆ edge set Given a graph G with N nodes, the ∆ edge set is defined as:

E∆ ⊆ V × V : E∆ = {(ni, nj) : d(ni, nj) < ∆} (3.31)

where d(ni, nj) is the Euclidean distance between two agents and ∆ is the communication

distance. Specifying for the 2D problem, it is d(ni, nj) =
√

(xi − xj)2 + (yi − yj)2.

In case of an heterogenous set of nodes is used in the same network, it is possible to

define E∆ using different communication range. For simplicity, we will consider that all

the agents have the same communication range. Note that having a edge set dynamically

defined imply that all the matrices previously defined to describe the graph properties

(Adjacency matrix, Degree matrix, Incidence matrix and Laplacian matrix) are no longer

static but change dynamically. In Fig. 3.18 an example of a ∆-disk graph is reported. As

can be pointed out from the figure, there is a critical connection between nodes n3 and n5

as, if the edge e3,5 goes down, the graph is no more connected.

One of the most interesting problem related to ∆-disk graph is to find a way to control

the swarm in order to preserve connectedness while performing consensus algorithm or
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Figure 3.19: Nine agents ∆-disk swarm performing consensus.

formation keeping [57] [56] [55] [40]. Indeed, while the agents move, they can go too

far from a subset of neighbors and then broke the network connectivity. An example

is reported in Fig. 3.19, where some snapshots of a ∆-swarm performing consensus are

depicted, where it is ∆ = 4. Note that at time t = 0.1 sec. the node n5 is at the limit of

the communication range of neighbors n4 and n6. After this time instant, the connection

is lost and the graph is no longer connected. The phenomena can be easily explained.

Let’s consider what happens for agent n4: as long as the swarm is performing consensus,

n4 is “attracted” to two opposite neighbors subsets NA = {n1, n2, n3} NB = {n5}. As

the cardinality of subset NA is grater than the cardinality of NB , the agent n4 is strongly

attracted to the first subset.

The elemental solution for this problem is based on the use of a edge-weighted graph as

defined in point 1 of Def 3.9. In particular, our weight matrix W ∈ R
|E|×|E| is a diagonal

matrix that can be used to change dynamically the Laplacian matrix L. In fact, it is:

LW = I · W · IT where W = diag(wk) : ek ∈ E (3.32)

and in particular the single agent dynamic in Eq 3.13 becomes:

ẋi(t) = −
∑

j∈N(i)

wi,j(xi(t) − xj(t)) + bi(t), where

{

xi(0) = xi,0 ∈ R

bi(t) = 0
(3.33)

where wi,j is the weight of the edge (if exists) connecting nodes ni and nj. Till now, we



have always considered

wi,j =

{

1 if (ni, nj) ∈ E

0 otherwise

The W matrix is defined as a diagonal matrix where each elements correspond to the

weight of an edge. As changing the elements of W it is possible to change the behavior of

the swarm, our goal is to find a function to weight edges such that as long as the starting

graph is connected, the swarm performing consensus will never becomes disconnected.

In [56] an edge tension Vij(∆, x) is defined between each couple of nodes as:

Vij(∆, x) =



















‖lij(x)‖2

∆ − ‖lij(x)‖ , if (ni, nj) ∈ E

0, otherwise

(3.34)

It follows:

∂Vij(∆, x)

∂xi
=



















2∆ − ‖lij(x)‖
(∆ − ‖lij(x)‖)2 , if (ni, nj) ∈ E

0, otherwise

(3.35)

where lij = xi(t)− xj(t) is the edge-vector between agents ni and nj. The control law for

weighted-consensus in Eq 3.33 becomes:

ẋi(t) = −
∑

j∈N(i)

2∆ − ‖lij(x)‖
(∆ − ‖lij(x)‖)2 (xi(t) − xj(t)) (3.36)

The weight matrix is:

W(∆, x) = diag(wk(∆, x)), k = 1, 2, . . . , |E|
m

wk(∆, x) =
2∆ − ‖lij(x)‖

(∆ − ‖lij(x)‖)2
(3.37)

In the same work, authors clearly demonstrate that as long as the starting graph is

connected, with the control law in Eq 3.36 any connection will be lost. A problem arises

when a new connection is created: as long as the starting graph is connected but not

complete, while the consensus algorithm is executed, new connections are created (i.e. two

nodes that are disconnected at time t = 0 can become connected in finite time) because

the distance between a couple of nodes became equal to ∆. But with ‖lij(x)‖ = ∆ both

Vij(∆, x) and
∂Vij(∆,x)

∂xi
go to infinity, and an infinite energy is introduce into the system

by the control law. To bypass this problem, a hybrid control can be introduced using

a two-states automaton as reported in Fig. 3.20, where ǫ > 0 is a predefined switching

threshold.

So, if we define a state set D
ǫ
G,∆ =

{

x ∈ R
m×N : ‖xi − xj‖ ≤ (∆ − ǫ)

}

, formally it is

demonstrated that:



State 1 State 2

‖lij(x)‖ ≤ ∆ − ǫ

wk(∆, x) = 0 wk(∆, x) =
2∆ − ‖lij(x)‖

(∆ − ‖lij(x)‖)2

Figure 3.20: Two states automaton for preserving connectivity in a ∆-disk graph.

Theorem 3.11. Given a connected graph G with initial condition x0 ∈ D
ǫ
G,∆ for a given

ǫ > 0, the dynamic system performing consensus algorithm converges to the static centroid.

Considering two nodes ni and nj, the behavior of the new controller can be described

as follow:

• if the two nodes are disconnected or if the distance between them is greater then

(∆ − ǫ), then wij(∆, x) = 0;

• otherwise the value of wij(∆, x) is defined in Eq 3.37.

Using a predefined threshold greater than zero, for each new connection the control will

inject in the system a quantity of energy that is always lower than infinity, but is higher

as long as the value of ǫ decrease.

In Fig. 3.21 some snapshots of the same simulation setup depicted in Fig. 3.19 are

shown. Let’s note the the connectivity is preserved. As the global control energy of the

system is defined by

V =
1

2

N
∑

i=1

N
∑

j=1

Vij(∆, x), (3.38)

in Fig. 3.22 the peaks correspond to the creation of a new connection and the value

converges to zero asymptotically.

∆-graph and formation control

Now that the problem of maintain connectivity in a ∆-disk graph performing consensus

is solved, it is useful to see how this solution can be applied to the formation control.

As explained in Sec 3.2.1, a connected swarm achieves formation by using an exogenous

signal (bias) as a reference. Its expression is defined in Eq 3.20. If we suppose that all the

desired inter-agent distances rij are known, the weights defined in Eq 3.37 can be modified

as follows:

wij(∆ − rij , x) =



















2(∆ − rij) − ‖lij(x)‖
(∆ − rij − ‖lij(x)‖)2 if (ni, nj) ∈ Ed

0 otherwise

(3.39)



where Ed is the desired edge set. In fact, as usually the ∆-graph is not complete in the

beginning, the new weights wij(∆ − rij, x) can not be applied till the system recognizes

to be complete. This means that the automaton shown in Fig. 3.20 must be modified. It

becomes as reported in Fig. 3.23.

Some snapshots where the weight matrix is defined using Eq 3.39 are reported in

Fig. 3.24. Here, nine agents starting from random positions move to a regular nonagon

formation.

As a final remark, it is important to notice that the control law applied to preserve

connectivity presented in this section, can be applied also to all the other control problems

that exploit consensus algorithm to control swarms of agents. It is particularly adapted

to manage the herding problem as it can prevent leaders and followers going too far from

each other.
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Figure 3.21: Nine agents ∆-disk swarm performing consensus using the weighted matrix

defined in Eq 3.37, with ∆ = 4 and ǫ = 0.2.
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Figure 3.22: Global control energy. Peaks correspond to new connections.



replacemen

State 1 State 2 State 3

State 4

‖lij(x)‖ ≤ ∆ − ǫ G complete ∧ (ni, nj) ∈ Ed

G complete ∧ (ni, nj) 6∈ Ed

wk(∆, x) = 0

wk(∆, x) = 0

wk(∆, x) =
2∆ − ‖lij(x)‖

(∆ − ‖lij(x)‖)2

wk(∆ − rij , x) =
2(∆ − rij) − ‖lij(x)‖
(∆ − rij − ‖lij(x)‖)2

Figure 3.23: Automaton for preserving connectivity in a ∆-disk graph engaged in a for-

mation keeping mission.

−2−4−6−8−10 0 2 4 6 8 10

−2

−4

−6

0

2

3

4

6

n1

n2

n3n4

n5

n6

n7

n8

n9

(a) t = 0.0 sec

−2−4−6 0 2 4 6

−1
−2
−3
−4
−5

0
1
2
3
4
5

n1

n2

n3n4

n5

n6

n7

n8

n9

(b) t = 0.025 sec

−1−2−3−4−5 0 1 2 3 4 5

−1

−2

−3

0

1

2

3

n1

n2
n3

n4n5

n6
n7

n8n9

(c) t = 0.15 sec

−1−2−3−4−5 0 1 2 3 4 5

−1

−2

−3

16

0

1

2

3

n1

n2
n3n4

n5
n6
n7n8

n9

(d) t = 0.975 sec

−1−2−3−4−5 0 1 2 3 4 5

−1

−2

−3

0

1

2

3

n1

n2
n3n4

n5

n6
n7n8

n9

(e) t = 1.275 sec

−1−2−3−4−5 0 1 2 3 4 5

−1

−2

−3

0

1

2

3

n1

n2
n3n4

n5

n6
n7 n8

n9

(f) t = 5 sec

Figure 3.24: Nine agents ∆-disk swarm achieving regular nonagon with radius 2 using the

weighted matrix defined in Eq 3.39, with ∆ = 4 and ǫ = 0.2.



Chapter 4

A Graph-Based Distributed

Control for Non-Holonomic

Vehicles

In Chapter 3, basic notions on graph theory have been introduced in order to solve the

consensus problem for a system of agents modeled as n-dimensional integrator, where

a graph is used to represent the communication topology. Then, the attention has been

focused on the possibility of using the Laplacian feedback solution of the consensus

problem in order to solve a wide spectrum of problems, including formation keeping. In

this chapter, we will show how the graph theory can be applied on agents modeled as

real robots, focusing on differential-wheeled robots.

4.1 From holonomic agents to real robots

After introducing some basic definitions and notions about graph theory, in the previous

chapter we have focus our attention on the so called consensus problem that, in simple

terms, can be formulated as follows:

“Given a system, find a control law to drive the states of the system

to a final common value.”

For a system where the agents are modeled as single integrators (i.e. n-dimensional

points without mass), the problem has a well known solution called Laplacian feedback

(see Sec 3.2), that ensures the convergence of the state vector to a final common value.



If we consider our agents as points moving in a n-dimensional space, the solution can be

interpreted as the ability of the system to converge to a final common point. A particular

property of such systems is that the final point coincides with the centroid of the group

and is static during the evolution of the system.

Our idea now is to extend this approach to a system where the particles are real

robots: the problem that arises from the application of this theory to a group of real

robot is that usually they can not be modeled as points (with or without mass). Even

if in literature many works deal with the control of groups of omnidirectional robots,

most of them are developed exclusively for research purposes. We decide to focus our

attention on robots modeled as differential-wheeled robots due to the fact that this type

of vehicles represent the better trade off between robot complexity (i.e. cost of the robot

and of the maintenance) and the kinematic abilities of the vehicles. In fact, a differential

wheeled robot is able to move straight, to bend and, most important, is able to turn on

the spot, reducing the room needed for maneuvering. This characteristic is very important

as allows the vehicle to accesses to areas forbidden to the others. Moreover, as seen in

Chap 1, there are many vehicles modeled as differential wheel robots that are able to

accomplish outdoor real missions, like de-mining, map building, planetary exploration or

industrial surface cleaning.

Ri

φi

ωi

xi

yi

ui

Figure 4.1: Differential wheel robot model.

The kinematic model of a differential-wheeled robot is shown in Fig 4.1, where the red

dot over the body of the robot represents the front side. The kinematic equations of the



model are reported in Eq 4.1











ẋi = ui cos(φi)

ẏi = ui sin(φi)

φ̇i = ωi

(4.1)

where ui is the linear speed, ωi the rotational speed and xi, yi and φi form the triplet

defining the absolute coordinates.

The problem of state agreement for group of vehicles has been already faced in many

works that can be find in literature [77] [95] [96] and, in particular, in [30] [12] the authors’

attention is focused on the rendezvous problem for non holonomic vehicles modeled as

differential-wheeled robots. In [44] authors deal with the problem of controlling formation

and in [27] they consider also the possibility of having varying communication links.

In this Chapter we will deal with the problem of driving the position vectors [xi, yi]

to a final common value, without considering the orientation of the robots φi. Part of the

work exposed in this chapter was presented in [81].

4.2 Control Algorithm

Ri

Rj

eij

eji

αji

αij

Figure 4.2: Example of local sensing.

The innovation introduced in this work is the fact that our graph-based control algo-

rithm is based only on local sensing, means that we have supposed that each robot is able

to detect the distance and the relative angle of the other members of the swarm within

a given range. This introduces another limitation: a robot can not access to the global

position and orientation data of its neighbors. Furthermore, occlusions between robots



can occur and, as explained in Sec 4.4, the system can became instable. The relative

angles are positive defined in counter-clockwise: αij ∈ [−π, π]. As an example, consider

the system depicted in Fig. 4.2: αij is the relative angle where Ri sees Rj with respect to

its front direction and eij is the distance where robot Ri senses robot Rj .

[

ui

ωi

]











ẋi = ui cos(φi)

ẏi = ui sin(φi)

φ̇i = ωi

Controller

C(eij , αij)







xi

yi

φi







Local

Positioning

Information

[

eij

αij

]

,∀j ∈ N(i)







xj

yj

φj






,∀j ∈ N(i)

Figure 4.3: Feedback scheme for the consensus algorithm for a group of differential-wheeled

robots using local sensing.

As long as we use vehicles with non-holonomic constraints, the feedback scheme for the

i-th robot is reported in Fig. 4.3. Our goal is to create a controller C(eij , αij) that is able

to drive all the robots to a final common point exploiting only local sensing information.

As we have seen in Section 3.2, in a system with agents modeled as massless particles, the

convergence point is the centroid of the group. So, it sounds natural to choose this point

as the convergence point for a group of differential-wheeled robots, in order to preserve a

first match with the graph theory. As defined in Chapter 3, the set N(i) represents the

neighbor set of the i-th robot and deg(ni) = |N(i)| its cardinality.

With reference to the Fig. 4.4, we introduce now the following

Definition 4.1 (Global relative error). For a robot Ri with |N(i)| 6= 0, we define:

ēx,i =
1

|N(i)| + 1

∑|N(i)|
j=1 [−Li,j · ei,j · cos(αi,j)]

ēy,i =
1

|N(i)| + 1

∑|N(i)|
j=1 [−Li,j · ei,j · sin(αi,j)]

(4.2)

where ei,j is the Euclidean distance between Ri and Rj, and αi,j is the azimuth of Rj with

respect to Ri. L is the Laplacian matrix used to represent the connectivity topology of the

swarm. The global relative error is defined as ci = [ēi, ᾱi]
T , where:

ēi =
√

ē2
x,i + ē2

y,i (4.3)

ᾱi = atan2(ēy,i, ēx,i) ⇒ ᾱi ∈ [−π, π] (4.4)
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eih

ēi

Xi

Yi

Figure 4.4: Definition of the relative position of the centroid of the group (black star) with

respect to the robot Ri.

In this section we assume that all the terms Li,j are equal to 1 if robot Rj is in N(i), 0

otherwise. As we assume that a couple of robots can communicate each other only when

there are no obstacles occluding the line of sight, we will refer indistinctly to connectivity

topology or communication topology. The demonstration that all the robots see to the same

centroid if and only if the graph is connected is trivial. A first important difference with

respect to the case of holonomic agents is that, except the trivial case where all the robots

start pointing to the centroid, the centroid position is not static but change dynamically

due to the nonlinearity of the robots model. In this section we consider the case where

the communication graph is always complete, i.e. no occlusions occur between robots.

The control law for the i-th robot is given by:
{

ui = K1 · ēi

ωi = K2 · ᾱi

where K1,K2 > 0 (4.5)

The stability of this control law is first proofed for a group of two robots, and we

will see that in this particular case (due to geometric properties) the two controls can be

decoupled. Then, we will demonstrate the stability of a group composed by at least three

robots. Due to simplicity of notation, for a generic k-th node ᾱk and ēk will be substituted

by αk and ek respectively.

Theorem 4.1. Given a couple of robots kinematically modeled as in Eq 4.1 and suppose

that no occlusion is present in the line of sight between them, then the control law in Eq 4.5
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Figure 4.5: Couple of differential robots.

drives the robot to their mean point.

Proof: Consider the candidate Lyapunov function

V (e, α) =
1

2
(e2

1 + e2
2 + α2

1 + α2
2) =

2
∑

i=1

1

2
(e2

i + α2
i ) (4.6)

As V (e, α) is quadratic in the relative range and bearing with respect to a calculated mean

point, it is
{

Vi(ei, αi) > 0, ∀ei 6= 0 ∧ ∀αi 6= 0

Vi(ei, αi) = 0, ∀ei = 0 ∧ ∀αi = 0

Deriving Eq 4.6, it is:

V̇ (e, α) = e1 · ė1 + e2 · ė2 + α1 · α̇1 + α2 · α̇2 =

2
∑

i=1

(ei · ėi + αi · α̇i) (4.7)

We can split the Eq 4.7 in two subparts:

V̇ (e, α) =

{

V̇e = e1 · ė1 + e2 · ė2

V̇α = α1 · α̇1 + α2 · α̇2

(4.8)



For the centroid, w.r.t. a global reference frame, it is:



















xc =
1

2
(x1 + x2)

yc =
1

2
(y1 + y2)

(4.9)

where [xc, yc]
T denotes the coordinates of the centroid. It follows:



















xc − x1 =
1

2
(x2 − x1) = e1 cos θ1

yc − y1 =
1

2
(y2 − y1) = e1 sin θ1

(4.10)

The demonstration of stability and convergence is divided in two steps.

Step 1: consider the term V̇α. To calculate α̇i we have to consider that αi = θi − φi:

α̇i = θ̇i − φ̇i = θ̇i − ωi

where, for i = 1:

α̇1 = θ̇1 − ω1 =
dθ1

dt
− ω1 =

d

dt

(

arctan

(

yc − y1

xc − x1

))

− ω1 (4.11)

The value of θ̇1 can be calculated as follows:

θ̇1 =
1

1 +

(

y2 − y1

x2 − x1

)2 · (x2 − x1)(ẏ2 − ẏ1) − (y2 − y1)(ẋ2 − ẋ1)

(x2 − x1)2
=

=
cos θ1(u2 sin φ2 − u1 sin φ1) − sin θ1(u2 cos φ2 − u1 cos φ1)

e1 + e2
=

=
u1 sin α1 − u2 sin(θ1 − φ2)

e1 + e2

Calculating α̇2, it is:

α̇1 =
u1 sin α1 − u2 sin(θ1 − φ2)

e1 + e2
− ω1 (4.12)

α̇2 =
u1 sin α2 − u1 sin(θ2 − φ1)

e1 + e2
− ω2 (4.13)

From Fig. 4.5 it is easy to see that e1 = e2 = ē and θ1−θ2 = π, follows that θ1−φ2 = α2−π

and θ2−φ1 = α1−π. Now, by substituting Eq 4.12, Eq 4.13 in V̇α and using these equalities,

it is:

V̇α = α1
u1 sin α1 + u2 sin(α2)

2 · ē − α1ω1 + α2
u1 sin α2 + u1 sin(α1)

2 · ē − α2ω2



and, considering a control law as in Eq 4.5 and considering that | sin x| ≤ |x| and that

|x| = x · sign(x):

V̇α = α1

(

K1

2
sin α1 +

K1

2
sin α2 − ω1

)

+ α2

(

K1

2
sin α1 +

K1

2
sin α2 − ω2

)

≤

≤ α1

(

K1

2
| sin α1| +

K1

2
| sin α2| − ω1

)

+ α2

(

K1

2
| sin α1| +

K1

2
| sin α2| − ω2

)

≤

≤ α1

(

K1

2
|α1| +

K1

2
|α2| − K2α1

)

+ α2

(

K1

2
|α1| +

K1

2
|α2| − K2α2

)

=

= α2
1

(

K1

2
sign(α1) − K2

)

+ α2
2

(

K1

2
sign(α2) − K2

)

+
K1

2
(α1 · |α2| + α2 · |α1|)

Choosing K2 >
K1

2
, it is:

V̇α ≤ −K2

(

α2
1 + α2

2

)

+
K1

2
(α1 · |α2| + α2 · |α1|) ≤ 0, for K2 >

K1

2
≥ 0. (4.14)

This means that, with the control law in Eq 4.5, the angles α1, α2 goes to 0, i.e. the

vehicles point to the centroid.

Step 2: consider the term V̇e. To calculate ė1 let’s consider that:

e1 =
√

(xc − x1)2 + (yc + y1)2, (4.15)

From Eq 4.10 follows:

ė1 =
1

2

2(xc − x1)(ẋ2 − ẋ1) + 2(yc − y1)(ẏ2 − ẏ1)
√

(xc − x1)2 + (yc + y1)2
=

=
e1 cos θ1(ẋ2 − ẋ1) + e1 sin θ1(ẏ2 − ẏ1)

e1

(4.16)

and, replacing ẋi and ẏi with Eq 4.1,

ė1 = cos θ1(u2 cos φ2 − u1 cos φ1) + sin θ1(u2 sinφ2 − u1 sinφ1) =

= −u1(cos θ1 cos φ1 + sin θ1 sin φ1) + u2(cos θ1 cos φ2 + sin θ1 sin φ2) =

= −u1 cos(α1) + u2 cos(θ1 − φ2)

(4.17)

Similarly, deriving e2, we get:

ė1 = −u1 cos(α1) + u2 cos(θ1 − φ2) = −u1 cos α1 − u2 cos α2

ė2 = −u2 cos(α2) + u1 cos(θ2 − φ1) = −u2 cos α2 − u1 cos α1

(4.18)

Follows, using the control law in Eq 4.5:

V̇e = e1 (−u1 cos α1 − u2 cos α2) + e2 (−u2 cos α2 − u1 cos α1) =

= e1 (−K1e1 cos α1 − K2e2 cos α2) + e2 (−K2e2 cos α2 − K1e1 cos α1)



As e1 = e2 = ē,

V̇e = −2K1ē
2 (cos α1 + cos α2) (4.19)

In Eq 4.19 there can be stability problems because for α1, α2 ∈ [−π,
π

2
] the function V̇e is

positive, but, as we have demonstrated in step 1, the angles converge to zero regardless

the value of e1 and e2. So, after a finite time T it is possible to say that Eq 4.19 is always

lower then zero, for K1 > 0. It follows that, after time T , Eq 4.7 is lower than zero, and

the stability of the system is proved.

�

An improvement of the control can be introduced if we define ui = K1ei cos αi. This

changes Eq 4.19 in V̇e = −2K1ē
2
(

cos2 α1 + cos2 α2

)

, that is always less than zero regard-

less the angles. Intuitively, this improvemten moves the i-th robot backward till it is

perpendicular to the the centroid position, reducing the maneuvering space.

Proposition 4.2. Given a group of N robots modeled as in Eq 4.1, assuming that com-

munication graph representing the communication topology of the swarm is complete, the

control law in Eq 4.5 stabilizes the group to its the centroid.
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Figure 4.6: Coordinates and angles evolution of a differential-wheel-four-robot group per-

forming consensus.

In Fig. 4.6 the evolution of the X, Y coordinates and φ angles of four robots of a

group are depicted, while in Fig. 4.7 some snapshots of the same simulation are shown.

Note that in Fig. 4.6(a)-4.6(b), the coordinates of the robots converge to a common point

(green diamond in Fig. 4.7 represents the centroid), but the mean value is no more static

(dotted line). In Fig. 4.6(c) the value of the orientations of the robots is reported: as we

have supposed that any robot can access to global information, it is impossible to perform

agreement also on angles, as this request to know the value of φi, i = 1 . . . N .
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Figure 4.7: Evolution of a four-robot group performing consensus.

4.3 Formation Keeping

Bi =









...

bij

...









[

ui

ωi

]











ẋi = ui cos(φi)

ẏi = ui sin(φi)

φ̇i = ωi

Controller

C(eij, αij)







xi

yi

φi







Local

Positioning

Information

[

eij

αij

]

,∀j ∈ N(i)







xj

yj

φj






,∀j ∈ N(i)

Figure 4.8: Feedback scheme for formation keeping using consensus algorithm for a group

of differential-wheeled robots with local sensing.

As we have seen in Sec 3.2.1, the consensus algorithm can be used also to get a

predefined formation. To introduce this possibility, the scheme in Fig. 4.3 should be

slightly modified, and became as appear in Fig. 4.8. The arrow on the left side of controller

block represents the input bias, that is a vector defined as

B(i, j) =

{

bi,j, ∀Rj ∈ Ni

0, otherwise

where bi,j is the desired distance between robot Ri and robot Rj. As we will see in Sec 4.6,

this vector can be dynamically calculated based on the cardinality of set N(i). To use the

control law defined in Eq 4.5 in order to get a formation, the values defined in Def 4.1 are



changed as follows:

ēx,i =
1

|N(i)| + 1

∑|N(i)|
j=1 [−Li,j · (ei,j − bi,j) · cos(αi,j)]

ēy,i =
1

|N(i)| + 1

∑|N(i)|
j=1 [−Li,j · (ei,j − bi,j) · sin(αi,j)]

(4.20)

This means that robot Ri will not point to the real centroid but to a false centroid, that

depends on the desired configuration. For convenience of representation, for a group of N

robots all the column vectors Bi can be collected in the bias matrix B:

B =









... . . .
... . . .

...

B1 . . . Bi . . . BN

... . . .
... . . .

...









(4.21)

As an example, let us consider a group of four robots achieving the square formation.
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Figure 4.9: Evolution of radii and sides of a group of four differential-wheel robots group

performing consensus to achieve square formation.

The side of the desired formation is 2 and the diagonal is 2
√

2. The corresponding B

matrix is:

B =













0 2 2
√

2 2

2 0 2 2
√

2

2
√

2 2 0 2

2 2
√

2 2 0













(4.22)

In Fig. 4.9 the evolution of radii and edges of the formation are depicted, where “radius

Ri” represents the distance to the centroid. As expected, the edges converge to 2 while

radii converge to
√

2. Some snapshots of the same simulation are depicted in Fig. 4.10.
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Figure 4.10: Evolution of a four-robot group achieving square formation.
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Figure 4.11: Evolution of a four-robot group achieving square formation.

4.4 Additional Optimization

Avoiding local minima in formation maneuvering

The use of this control law to achieve formation can present some interesting issues. The

first problem arises directly from the definitions in Eq 4.20. In simulations reported in

Figg 4.9-4.10 the counterclockwise order of the robots is R1,R2,R3,R4. If we suppose

that the order is R1,R3,R4,R2, the system can stabilize in a local minima due to the fact

that the ēi values are zero when Eq 4.20 are both zero in points other then the final

configuration. In Fig. 4.11 a simulation illustrates the problem, while in Fig. 4.12 the

evolution of the formation edges and of the Lyapunov function introduced in Theorem 4.1

and in Proposition 4.2 are shown. Note that even if the Lyapunov function goes to zero,

the sides converge to different values.
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Figure 4.12: Evolution of the formation edges (4.12(a))and of the Lyapunov function

(4.12(b)) introduced in Theorem 4.1.



A possible way to avoid this problem is to relabel each robot with a virtual label that

can be different respect the real one. As a consequence, the rows of the bias vector Bi

have to be exchanged. In order to reach a consensus on the virtual labeling, all the robot

of the swarm relabel the others in the same way. If each robot has a different ID, the

relabel algorithm is:

Algorithm 4.1 (Relabel algorithm for the i-th robot).

while (1)

find swarm centroid;

Sort robots in CCW starting from the robot with lower ID;

if (more robot are aligned)

then sort based on distance w.r.t. centroid;

endif

exchange rows of B_i;

perform consensus;

endwhile

Using the same initial conditions of the previous example, in Figg 4.13- 4.14 the be-

havior of the swarm is reported, where at time t = 5.0 sec. robots start reconfiguring to

avoid local minima. Note that at time t = 5.0 sec. the Lyapunov function has a peak due

to the relabeling algorithm.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

V =
∑N

i=1

1

2

(

ē2
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Figure 4.13: Evolution of the Lyapunov function in case of relabeling.
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Figure 4.14: Evolution of radii and edges of a four-differential-wheel-robots formation

performing relabeling.

Data Broadcasting

So far we have supposed that each robot can sense the others, i.e. the communication

graph is complete. The problem is that robots navigating through a terrain can often

encounter obstacles that can prevent point-to-point communication and drive the system

to instable configurations. In fact, if two robots sense two different subsets of neighbors,

they can point to different centroids. To make the system more stable and redundant

we can introduce the ability for the robots to transmit information, broadcasting relative

positioning data. Fig. 4.15 depicts a typical situation where broadcasting is useful. In this

figure, the line-of-sight between robot R0 and robot R2 is blocked by a wall. Fortunately

robot R1 can be used as a relay to compute the missing information about the position

of R2 with respect to R0. The idea is to have R1 broadcasts its relative positioning

information (in our case α10, e10, α12 and e12, where eij is the distance sensed by Ri

to Rj). This information enables R0 to compute an estimation of α02 and e02 with the

following equations:



































β02 = π + α01 − α10 + α12

ex,02 = e01 cos(α01) + e12 cos(β02)

ey,02 = e01 sin(α01) + e12 sin(β02)

e02 =
√

e2
x,02 + e2

y,02

α02 = atan2(ey,02, ex,02)

This ability allow us to relax the complete constraint used in Theorem 4.1 and in

Proposition 4.2 to a connected constraint, means that as long as each robot sees at least

one robot of the group, the system converges. The data broadcasted by the range and



R0

R1

R2

β02

α10

α10

α12

α12

π − α10

π − α10

α01

α02

Figure 4.15: Example of a blocked line-of-sight where broadcasting is important.

bearing board is grouped into a data packet. Tabel 4.1 shows how the packet sent by

R0 and R1 in our previous example looks like. This data packet not only contains the

measurements (αij and eij, for all j such that Ri is sensing Rj), but also contains a hop

count hij that is incremented each time a robot broadcasts positioning data that it is not

directly measuring. In Fig. 4.15, the hop count h02 will be one, meaning that R0 used

one relay to compute α02 and e02. The data broadcasted can be ignored if the hop count

is too high (hij > hmax).

Data packet sent by R1

0 (Sender ID)

1

α01

e01

0 (= h01)

2

α02

e02

1 (= h02)

Data packet sent by R2

1 (Sender ID)

0

α10

e10

0 (= h10)

2

α12

e12

0 (= h12)

Table 4.1: Broadcasted data packet format.



Obstacle Avoidance

To avoid obstacles, robots, tested later in our experiments, use a Braitenberg controller [17]

on top of the formation control introduced in the previous sections. Sometimes, a robot

would incur in a deadlock and oscillate undecided whether to avoid an obstacle or keep

the formation. We introduce a counter that is increased by two when the robot is too

close to an obstacle and reduced by one otherwise (values of the counter are between zero

and a maximum value Cmax). Whilst the counter is greater than zero, the robot follows

the Braitenberg rules. This asymmetric counter makes sure that the robot gets more time

to avoid the obstacle and avoids in practice these deadlock situations.

4.5 Range and Bearing board: relative positioning algo-

rithm

To calculate the range and bearing of a transmitting robot using the Received Signal

Strength Indication (RSSI) values, we employ a variation of the algorithm described by

Pugh and Martinoli in [74] (in this case RSSI refers to the power present in a received

infrared signal, in opposition with the common usage for the power present in a received

radio signal). The original algorithm assumed a specific angular reception strength profile

for photo-diodes and aggregated the RSSI from a series of receivers to calculate an estimate

of both the range and bearing of the transmitting robot. We use a very similar approach,

but with a different angular reception strength profile.

The algorithm requires that receivers are evenly-spaced around the perimeter of the

robot. For any received transmission, approximately half these sensors will detect the

signal. We can define a “sector of interest” as some sector of n sensors with the highest

received signal, where n is at most half of the total sensors. We now only need to calculate

the angle offset (θ) from the center of this sector to find the bearing of the transmitting

robot (φ).

Upon measuring the signal intensity at the individual receivers for different receiver

orientations, we discovered that the intensity is closely modeled by:

r′ = r cos(θ)

where r, which we will call the range term, would be the signal intensity at a receiver

which is directly facing the transmitting robot. Let us define m = ⌊n
2 ⌋ as the number of

sensors in one half of the receiving sector. Let r′−1, ..., r
′
−m be values of the sensors which

have a lesser angle than the center of the receiving sector, r′1, ..., r
′
m be the values of the

sensors which have a greater angle than the center of the receiving sector (with r0 as the

value of the center sensor if n is odd), and βi be the angular offset of sensor i from the



sector center (for a visual depiction of an example module with n = 3 and m = 1, see Fig.

4.16). The value r′i is given by:

r′i = r cos(θ − β) with βi = −β−i

Therefore:

r′i + r′−i = r cos(θ − βi) + r cos(θ + βi)

= 2r cos(θ) cos(βi)

r′i − r′−i = r cos(θ − βi) − r cos(θ + βi)

= 2r sin(θ) sin(βi)

Let:

a =

∑n
i=0/1 r′i + r′−i

∑n
i=1 2 cos(βi)

= r cos(θ)

b =

∑n
i=0/1 r′i − r′−i

∑n
i=1 2 sin(βi)

= r sin(θ)

so that:

θ = arctan(
b

a
), r = (a2 + b2)

1

2

which exploits the trigonometric identity A cos2(x) + A sin2(x) = A. The initial term of

the sums for a and b is 0 if n is odd (center sensor should be included) and 1 if n is even.

We can apply this algorithm to our current system. With some empirical trials, we

determined that the best accuracy was obtained using three of the eight total sensors.

Given the signal strength at all infrared receivers, we can find the sector of three sensors

with the strongest total received signal; this provides us with the values r′−1, r′0, and r′1.

In this system, β1 = π
4 , and thus:

r′−1 = r cos(θ +
π

4
), r′0 = r cos(θ), r′1 = r cos(θ − π

4
)

Based on this, we get the formulas:

a =
r′1 + r′−1 + 2r′0
2 cos(π

4 ) + 2
, b =

r′1 − r′−1

2 sin(π
4 )

which we can use to get:

θ = arctan(
b

a
), r = (a2 + b2)

1

2

φ = quadrant angle + θ

where φ specifies the bearing and r can be converted into range using a lookup table.
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4.6 Simulation Results

Experiments were conducted using Webots [64], a realistic mobile robotic simulator, and

simulated Khepera III robots [91]. All sensors and actuators of the simulated robotic

platform, including the range and bearing module introduced in Sec 4.5, were calibrated

to match reality. In particular, the range and bearing module suffers from a 10% noise

ratio in the estimation of the distance and a 0.1 radians noise in the relative angle.

4.6.1 Experimental Setup

At the beginning of each simulation run, four robots and either zero or ten obstacles are

randomly placed in a 3 x 3 m area in the middle of a 4 x 4 m arena. Figure 4.17 shows

an example of initial and final positions for the robotic nodes. Obstacles are represented

by cylinders with a 10 cm radius.

The goal of the four robots is to converge to a square formation where the diagonal of

the square is one meter. Thus, they use the Bias matrix B

B =













0 1 1
√

2 1

1 0 1 1
√

2

1
√

2 1 0 1

1 1
√

2 1 0













. The controller of the robot has K1 = 25000 and K2 = 50000. It is important to note
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Figure 4.17: Example of an experiment with ten obstacles and four robots. Obstacles

are in red, robots are white. Ii and Fi denote the initial and final position of robot Ri

respectively.

that if at any time ‖Ni‖ = 0, the robot Ri will start to move randomly to acquire the

positioning information again.

4.6.2 Results

The position of each robot is monitored during a run. After 1000 runs, distances to the

center of mass of the robots are computed to assess the convergence of the algorithm.

Since the robots need to converge to a square configuration with a diagonal of one meter,

their distances to the center of mass should converge to half a meter. Two main scenarios

are tested, one without obstacles and one with ten obstacles. Each scenario is subdivided

into two test cases: perfect links between robots (no packet loss) and intermittent con-

nectivity. During the intermittent connectivity, or unstable connectivity, positioning and

communication links are unstable and can go up or down with constant probability a rate

corresponding to a Poisson distribution. We chose a mean time constant for the Poisson

process of 10 sec. Furthermore we analyze the usefulness of the broadcasting algorithm

by varying hmax, the maximal hop count.

Figure 4.18(a) shows the evolution of the distance to the center of mass with perfect

connectivity and no obstacle present. We can see that, even though there are no obstacles,



point-to-point communication can still break when another robot passes in between two

other robots. Hence, a two hop broadcasting enables a faster convergence of the algorithm.

This figure also shows that the approach used converges.

(a) (b)

Figure 4.18: Average and standard deviations of the distances to the center of mass

depending on time without obstacles and using a perfect connectivity 4.18(a) and an

unstable connectivity 4.18(b).

Figure 4.18(b) shows that, even though the communication links can easily go down,

the system stays stables. Since a robot starts to move randomly when it loses all its

communication links, the figure shows a mean of the distance to the center of mass a little

higher than half a meter and large standard deviations. Again it is worth noting that a

two hops broadcasting achieves similar performances to the full broadcasting and we can

safely have the robots not send data with two hops or more, thus saving energy.

Figure 4.19(a) and Figure 4.19(b) really demonstrate the importance of broadcasting

in real - not trivial - environments. The figures show that the control law used enables

convergence even in more challenging scenarios. Again two hops broadcasting is achieving

identical performances to the full broadcasting.

4.6.3 Application example: target hunting

Let us recall that in Eq 4.20 the values used to define the control law depend on the

connectivity matrix L. Till now, we have supposed that:

Lij =











|N(i)| if i = j

g(N(i), t) if Rj ∈ N(i)

0 otherwise

where g(N(i), t) = 1. The function g(N(i), t) can be defined dynamically in order plan

more complex tasks. The key point is to remember the definition of the weighted Laplacian



(a) (b)

Figure 4.19: Average and standard deviations of the distances to the center of mass

depending on time with obstacles and using a perfect connectivity 4.19(a) and an unstable

connectivity 4.19(b).

matrix LW given in Eq 3.32, where the terms g(N(i)) for a system able to preserve

connectivity are defined in Eq 3.37.

The same approach can be use to coordinate a group of differential-wheeled robots.

As an example where a weighted connectivity matrix is used, consider the target hunting

task: given a target object that can be located by robots, the task is to surround it and

achieve a regular polygon formation in order to reduce the escape possibilities. Moreover,

we are interested in modeling a different behavior for the swarm when the target is too

far to be surrounded. If we suppose that the target position is always known by robots,

it can be considered as an extra vehicle. The incidence matrix and the Laplacian matrix

can be defined as:

Ĩ =



















1 · · · 0

I 0 · · · 0
...

. . .
...

0 · · · 1

0 · · · 0 −1 · · · −1



















⇒ L = Ĩ · W · ĨT (4.23)

where I represent the incidence matrix of the group. The weight matrix is defined

using two different coefficients wT , wF , that represent the weight of the robot-to-target and

robot-to-robot communication links respectively, i.e. each robot performs the consensus

algorithm sensing robots other than target (see Eq 4.24).



State 1 State 2

d(Ri, T ) > dmax

d(Ri, T ) ≤ dmax

Surrounding state
{

wF = wF1(·)
wT = wT1(·)

}

Hunting state
{

wF = wF2(·)
wT = wT2(·)

}

Figure 4.20: Automaton that summarizes complex behavior in target hunting task.

W = diag(wk), k = 1, . . . , |E|
m

wk =

{

wF if ek = (Ri, Rj)

wT if ek = (Ri, T )

(4.24)

where E is the edge set for the given communication topology. Exploiting the use of

different weights, a complex control law can be defined depending on the distance from

the target. Defining d(Ri, T ) as the distance between the i-th robot and the target and

dmax as a predefined distance threshold, the control is summarized by the automaton in

Fig. 4.20.

The weights wF1(·), wT1(·), wF2(·), wT2(·) can be continuous function or constants.

In Fig. 4.24 snapshots of a simulation are reported, where

{

wF1(·) = 1

wT1(·) = 1

{

wF2(·) = 0.05

wT2(·) = 1

The blue ball represents the target. Obstacles and target are placed randomly in the

arena and the regular polygon formation is an octagon with radius d = 0.5. Note that in

Figg 4.24(a)-4.24(c) the group do not care about formation but flocks toward the target,

while in Figg 4.24(d)-4.24(f) the target is close enough and the group surrounds the target.

Using nine robots with the same setup introduced in Sec 4.6.2, simulations were per-

formed in an environment with five obstacles. In Figg 4.22-4.23 the evolution of the mean

value and the standard deviation of distance to the target over 1000 simulations are shown,

respectively in case of perfect connectivity and of instable connectivity (mean with 50%

of probability of loosing connection and 50% probability of re-establish it). In both cases

it is hmax = 8, i.e. the system is fully broadcasted.

In particular, all the robots start from a free-obstacles zone in the upper part of the

arena, and the target is placed randomly. Moreover, at time t = 32 sec. the position of
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Figure 4.21: Automaton that summarizes complex behavior in target hunting task with

research state.

the target is randomly changed instantaneously (during the same simulation run). This

justifies the peak in the graphs.

It is possible to see that, in case of perfect connectivity using 9 robots, the system

converges to a distance to the target d = 0.5 in both cases with full broadcast and with

hmax = 2. In case of no broadcast the mean value tends to d = 0.5 but the standard

deviation is too high.

The last improvement of the algorithm in case of hunting tasks is summarized by the

automaton in Fig. 4.21, where the possibility that the group looses the target is considered

and
{

wF0(·) = 1

wT0(·) = 0

{

wFR(·) = 0

wTR(·) = 0

The basic idea is that when a robot sees others but, due to a lower number of hmax or to a

bad communication link, do not know the target position, tries to perform the formation

task instead of moving randomly in order to find the target. This because as long as at

least one robot senses the target, it move towards it dragging the whole group.
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Figure 4.22: Average and standard deviations of the distances to the target depending on

time with obstacles and using a perfect connectivity. The peak at t = 32 sec. means that

the target is moved instantaneously to another random location.
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Figure 4.23: Average and standard deviations of the distances to the target depending on

time with obstacles and using bad connectivity. The peak at t = 32 sec. means that the

target is moved instantaneously to another random location.
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(c) (d)

(e) (f)

Figure 4.24: Group of robots using weighted Laplacian matrix to surround a target.



4.6.4 Real robots

In the end, some experiments were performed on real robots. For our experiments we

used the Khepera III robotic platform (see Fig. 4.25) produced by K-Team Corporation

that, with a diameter of 12 cm., make it suitable for indoor experiments. As explained

Figure 4.25: Khepera III robot with relative positioning module attached

in [45], the range and bearing module has the possibility of transmit data packet, thus in

our experiments we were able to implement the data broadcasting.



Chapter 5

Conclusions and final remarks

This thesis deals with the problem of implementing different algorithms in order to co-

ordinate a group of robots moving in unknown environments. More precisely, our work

concerns solution of two different type of problems, in particular the coordination of a

robotic swarm moving while hunting a target using a set of global information and the

possibility of achieve a predefined formation using only local sensing. In Chapter 2, after

a brief introduction on the basic concepts about the behavioral control of robots, we focus

on a decentralized implementation of the so called null space behavioral control intro-

duced in Sec 2.1.3. Basically, by exploiting the theory originally originally developed for

the calculation of inverse kinematic of redundant manipulators, the possibility of merging

different tasks with assigned priority level is shown, and a decentralized implementation

based only on local communication is explained. This approach allow us to avoid all the

problems related to conflicting tasks: in fact, if at least two of them try to satisfy reference

functions that should drive the robot in different directions, the lower tasks are partially

satisfied only insofar as they are not in contravene with the higher one, that is completely

satisfied. As an example we choose a system composed by robots kinematically modeled

as holonomic vehicles with non-null diameter. Moreover, each robot has a ring of eight

proximity sensors modeled like infrared sensors, a limited ability to transmit data and a

limited transmission range; the target visibility range, that allows each robot to see the

target, is supposed limited. In particular, we have supposed that the data transmitted by

the robots concern only their position, the data sensed by their on board sensors, and,

eventually, the position of the target. Exploiting this limited set of information, we have

created an algorithm able to move the robots toward a target or to follow it. More exactly,

the algorithm is able to move the centroid of the group toward the target position; once

the target is reached, low priority tasks can move the agents in order to surround the

target and limiting the escape possibilities. This complex behavior is pursued by the im-

plementation of three tasks, that are: match group centroid with target position, achieve



a predefined distance from the target (i.e. the robots must be on a circle surrounding

the target) and maintain a fixed distance between a robot and its two nearest neighbors.

The main problem for robots that moves in unknown environments is to avoid obstacles

and, in case, to avoid configurations where they get stuck in local minima such that the

group can not accomplish the desired mission. The obstacle and local minima avoidance

algorithm implemented in our control is based on the cooperative paradigm as introduced

in Sec 2.1.2 in order to mix the contributions generated by potential field applied to the

data regarding obstacles detected by on board sensors, obstacles detected by other robots

(whose positions are broadcasted) and the position of other robots in the same commu-

nication group. In particular, the algorithm is able to create a virtual target that can

drive the single robot (or the entire swarm) out of a critical situation. The possibility of

applying the obtained results to autonomous agents modeled as differential-wheel vehicles

is shown Sec ??, where this algorithm was developed to coordinate a group of Autonomous

Underwater Vehicles (AUV), . In Sec 2.4, our approach is verified with many simulations

where a single robot and a group of agents are moving in an arena with randomly placed

obstacles in both cases with fixed and moving target.

The second part of this work is centered on the control theory applied to systems where

the interconnections between agents are modeled as interconnected graphs. In Chapter 3

the basic notions about graph theory are summarized. The chapter introduces the reader

to the basic notations necessary to handle control concepts applied to graph theory, in

particular focusing on the possibility of using this approach to solve the so called consensus

problem. This problem, whose basic solution is explained in Sec 3.2, deals with the idea

of driving the states of a system to a final common value. In particular, if applied to

a N -dimensional problem where the states represent the positions of mobile agents, the

solution of the consensus problem allows to solve many other problems, such as formation

keeping. Moreover, assuming that some agents are directly controlled from a high level

control while others move solving the consensus, problems related to optimal control and

herding/containment can be faced. The solution to these problems with holonomic agents

is reported in the same chapter. In Sec 3.3.2 a different problem is faced: it is considered

the possibility of having a limited communication range and this hypothesis is the starting

point to analyze the behavior of systems where the connectivity is not fixed but time

dependant.

The next step was to find a way to exploit the knowledge about graph theory to con-

trol groups of non-holonomic vehicles, in particular vehicles modeled as differential-wheel

robots. As the problem has been already partially faced in the last years, we decided to

introduce a new constraint to our system: basically, inspired by a range-and-bearing plat-

form developed by DISAL lab at EPFL, we have supposed that robots can exploit only

local information, eventually broadcasted in a short communication range, where “local”



means that each robot can sense the others but don’t have access to global information.

In Sec 4.1, the algorithm used to solve the consensus problem for differential-wheel robots

is explained: after defining a decentralized control law, a demonstration of stability is

provided in case of fully connected system (i.e.the communication graph is complete). As

an example of application of this algorithm, we have performed the formation keeping.

Furthermore, as the communication between robots is actuated using infrared, optimiza-

tion like data broadcasting has been introduced in order to avoid instability due to the

presence of environmental obstacles. The result is that the system is still stable also if

the communication graph is no more complete but only connected. The goodness of our

result has been investigated also with realistic simulations both on Matlab and Webots,

where errors have been introduced in sensors reading in order to match with real set up.

To conclude, this second part was tested on real robots using four Khepera III robots with

range and bearing platform at DISAL lab, EPFL.

In Appendix A RobotiCad, an educational Matlab/Simulink toolbox for robotics has

been presented. Even if it is not strictly related with the main work presented in this

thesis, it is a 55 thousands line code program that was developed starting in 2005 and was

programmed as a parallel activity in order to create a user-friendly toolbox to help students

learn robotics basic concepts and to help engineers in fast prototyping. As example, two

case studies are provided: the first one deals with the problem of programming a 8-degree-

of-freedom robot to weld two objects; the second one exploits functionalities of RobotiCad

for prototyping a robot to heal labirintolithiasis in motion-impaired persons.

Future Developments

Future research activities will concern the possibility of finding new behavioral functions

in order to create more complex swarm behaviors using the null-space based approach,

in particular will consider the possibility of using only local data instead of using global

data in order to achieve complex tasks. Another interesting research direction may be

finding a real application field where the null-space behavioral approach can be applied.

An example can be having robots able to carry an object: in that case it will be interesting

to find a way to coordinate robots in order to move a common load in a point to point

transfer task and, in particular, can be interesting to coordinate different subsets of robots

in order to have explores, able to find a way to accomplish the assigned task, and carrier,

that exploit the information broadcasted by explorers in order to avoid formation breaking

or to prevent problems related to local minima.

On the other hand, an interesting direction for future research may be focus on the

possibility of solving consensus algorithm using only local sensing to coordinate vehicles

modeled as Dubins vehicles or car-like vehicles. In the first case, the algorithm can be



potentially useful to coordinate aerial vehicles like airplanes or Unmanned Aerial Vehicles

(AUVs), while in the second case the consensus can be solved to face problems like vehicle

routing on highways, where cars can not use full time data from GPS systems.

The topics of this thesis have been published or presented in [45], [81], [31], [32], [10],

[79], [80]



Appendix A

RobotiCad, a Matlab/Simulink

toolbox for robotics

RobotiCad is a user-friendly Matlab/Simulink toolbox for the modeling and simulation of

robotic manipulators. With RobotiCad, starting from Denavit-Hartenberg parameters,

it is possible to create the kinematic and dynamic models of any serial mechanical

structure, together with its 3D graphical model. When a robot is created, it can be

exported in a dedicated file that can be loaded in a Simulink scheme and easily interfaced

with other block-sets. A robot, then, can be simulated and, eventually, an AVI file of

the simulation can be obtained. Moreover, a rich collection of Matlab functions properly

developed in order to study industrial robots is included in RobotiCad, e.g. functions

for trajectory generation, manipulability analysis, control, and so on.

A.1 Introduction to RobotiCad

Because of the complexity of robotic systems, several simulation tools devoted to robotics

have been developed and proposed for solving problems ranging from control to trajectory

planning, from design to programming and so on. Some of these tools are oriented to pro-

fessional/industrial applications, while others are more specifically suitable for educational

purposes. Many of them have been implemented for well defined problems and for defined

classes of robots only, such as e.g. RoboOp [39], RoboWorks [70], or Easy-Rob [4]. Some

of them are stand-alone packages, while others have been created as open source tools,

see e.g. GraspIt [65], RoboMosp [43] or Webots [64]. Among the open source packages,

several Matlab toolboxes have been developed, such as SimMechanics [6], or the Robotics



Toolbox by Peter Corke [25], to our knowledge the first tool of this type.

The Robotics Toolbox, basically, provides a set of Matlab functions and Simulink blocks

for the simulation of the direct and inverse kinematics and of the dynamic model of user-

defined robots. Although it can be probably considered as the most popular robotics

toolbox, it reveals some limits:

• the Corke’s Simulink blocks are related to the current Matlab workspace;

• only a type of trajectory is implemented, that represents the only manner to move

a robot;

• a graphical user interface (GUI) is not available, and robots are represented as a

collection of segments;

• the inverse kinematic function does not take into account singularity points;

• a robot is simulated without any other object in its environment;

• a robot cannot interact with external objects (e.g. grasped objects).

In particular, the last point is critical if the simulation of a robot within an industrial

environment is required. These limitations were the main motivations for the development

of RobotiCad, the Matlab/Simulink toolbox described in this chapter.

Robotics Toolbox RobotiCad

Text line interface User friendly 3D dedicated interface

Create dedicate object classes Compatible with Corke’s toolbox

No workspace object Several different workspace objects

Workspace simulation without objects Workspace objects included in Simulink

model

Fifth order polynomial trajectories Twelve different types of trajectories;

dedicated script tool

Table A.1: Comparison between Robotics Toolbox and RobotiCad.

The main differences between the Robotics Toolbox and RobotiCad are summarized

in Table A.1. It’s worth to notice that some of the Corke’s Matlab functions have been

implemented and expanded in RobotiCad. Among them, all the functions allowing the

definition of the robot and of the link object classes. This requirement was fundamental

as we decided to keep software compatibility between models created in Robotics Toolbox

and RobotiCad.



This chapter is organized as follows. In Section A.1 the main features of RobotiCad are

introduced (the fundamental Matlab functions, the graphic user interface, the algorithms

for the study of kinematics and dynamics, the RobotiCad Simulink Blockset library). An

example of control implemented using RobotiCad features for an 8-DOF robot welding

two perpendicular intersecting cylinders is discussed in Section A.2. In Section A.3 a fast

prototyping example is shown.

As shown in Fig. A.1, the RobotiCad environment is composed of three fundamental

modules:

• RobotiCad Matlab Functions.

• RobotiCad GUI.

• RobotiCad Blockset.

Matlab

RobotiCad
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Simulink

RobotiCad
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Figure A.1: RobotiCad functional blocks.



A.1.1 RobotiCad Matlab Functions

This module can be considered the core of RobotiCad. Many functions used by the Robot-

iCad GUI (see Section A.1.2) and by the RobotiCad Simulink Blockset (see Section A.1.3)

are implemented as m-functions and can be used at the Matlab prompt. This module

allows the user to handle homogeneous transformation and rotation matrices, the creation

of robot objects, and the study of its forward and inverse kinematics and dynamics. More-

over, this module allows to study singularity configurations and to handle robot’s Jacobian

matrices. Although many of these functions are improvements of Corke’s Robotics Toolbox

functions, the real innovation introduced in this module is the possibility of generating

workspace and joint-space trajectories. A special mention concerns the DYN function

subset: exploiting the Matlab Symbolic Toolbox, it allows the user to create the closed

form solution to all the equations that concerns a particular manipulator. Starting from

the kinematic and dynamic parameters of a robot, it creates all the matrices needed to

analyze and control the robot, in particular it creates:

• the homogeneous-transform matrix for the position and orientation of the end-

effector and of all the joints of the robot;

• the matrices involved in the closed-form dynamic equation of the manipulator, ex-

pressed as

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q)q = τ (A.1)

where all the matrices are parameterized based on the joint-space coordinates q.

As an extra options, this function set allows to create an .m files to be included in a

Simulink scheme in order to have a more realistic simulations.

A.1.2 RobotiCad Graphic User Interface

The GUI (Graphic User Interface) is probably the most important module of RobotiCad.

By using it, the user can create a workspace, e.g. an industrial working cell, with many

robots and objects to interact with. By typing “>> RobotiCad” at the Matlab prompt,

the toolbox is started. The environment, shown in Fig. A.2, is composed of three main

windows, that are:

Log Window (a): this window contains a single text field that is automatically updated

every time the user executes an action on the workspace or on an object in the

scene. By means of the Log Window, an history of the executed actions in the

current workspace is then available to the user.

World-Tree Window (b): the World Navigator Window presents the hierarchical struc-

ture of the objects in the workspace, automatically updated when objects are created

or modified. As example, in Fig. A.3 the structure of a Puma 560 robot is shown.



a

bc

Figure A.2: RobotiCad main windows: a) Log Window. b) World Tree. c) RobotiCad

Workspace.

Workspace Window (c): robots, workspace trajectories and other objects can be cre-

ated in this window. The user can also insert lights and cameras to improve the

representation of the scene. An absolute reference frame F0 = {O0, x0, y0, z0} is

present in the center of the new workspace.

In the RobotiCad Workspace Window the user can create its workspace with objects,

robots, 3D workspace trajectories, lights and cameras.

Figure A.3: Example of World Navigator Window: Unimation Puma 560 and its subtrees.



In order to create a new robot, the user can specify the Denavit-Hartenberg (DH)

parameters or load a Corke-robot model if saved in a Matlab file. After defining the DH

parameters, the user can fix the position and the orientation of the base of the robot base

w.r.t. F0. Once all the parameters have been defined, the robot can be exported in the

RobotiCad workspace. As a new robot is created, it is characterized by four categories

of objects: base, joint, link, and endeffector. Each category may contain several objects,

and their dynamic properties (i.e. mass and inertia matrix) can then be specified. As

default, each category contains an object with default properties. By using the World-Tree

Window, a workspace object can be moved to a robot’s category and viceversa. Once the

robot is created, all its properties can be analyzed (i.e.: Jacobian matrix, manipulability

measures, force and velocity ellipsoids). Moreover, it can be programmed by using a

virtual teach pendant (for joint-space trajectories), by using the Script Editor tool, or

by assigning to the manipulator a workspace trajectory previously created. In Fig. A.4 a

crane manipulator moving a box along a workspace trajectory is shown. The Trajectory

Figure A.4: A Crane moving a box along a 3D workspace trajectory.



Figure A.5: Examples of workspace trajectories.

Planning module allows to define both Cartesian and Joint-Space trajectories. Many of

the trajectories available for joint space motions can be found in [62], [63]. Cartesian

trajectories can be specified in three ways:

• by using one of the predefined trajectories implemented in RobotiCad, such as circle

and straight line;

• by the definition of a collection of via-points with specified position and orientation;

• by loading a collection of via-points from a text file *.txt containing the trajectory

description.

As example, in Fig. A.5 some workspace trajectories are shown.

For planning Cartesian trajectories in RobotiCad, several interpolation methods have

been implemented (the default is based on cubic splines). Moreover, RobotiCad allows the

user to combine together trajectories from workspace and joint space in order to achieve

complex behaviors. To conclude, each workspace trajectory is associated with a semi-

transparent bounding box (that suggests to the user the space covered by it) and a fixed

frame positioned in the center of the trajectory. In this manner, scaling, rotation, and

translation operations can be applied to the whole trajectory. Independently from the



+

-

ts

Tin

fkine(·)

KG MT J†
W

q

q∗

MQ

qout

fλ(·)

λ

Figure A.6: Scheme of the inverse kinematic algorithm.

method chosen to program the robots, the obtained trajectories can be saved in a file

that can be loaded in the RobotiCad GUI and in a Simulink model using a dedicated

block (see Section A.1.3). During the execution of a movement, RobotiCad gives also the

opportunity of controlling if the moving robot collides with one or more objects in the

workspace.

Kinematic and Dynamic Algorithms

The position and orientation in space of each object is provided by a reference frame

rigidly connected with the object itself. Since the DH parameters are used to describe

robot configurations, the position and orientation of each object in space results from a

proper multiplication of homogeneous matrices. For the i-th joint (and related objects),

the matrix providing position and orientation in a specified configuration is:

B A2
1(q1) . . . Ai

i−1(qi) =

[

R p

0 0 0 1

]

where B is the homogeneous matrix used to define the position and the orientation of the

base of the manipulator w.r.t. F0, R is a rotation matrix and p is a vector.

The inverse kinematic algorithm is based on a modified calculus of the pseudo-inverse

of the Jacobian matrix (see [48]). The general scheme to compute the robot’s joint

configuration starting from an homogeneous matrix or from a sextuple of elements like

[Xpos, Ypos, Zpos, Roll, P itch, Y aw] is shown in Fig. A.6, where:

• Tin is the homogeneous matrix for the desired endeffector position and orientation,

and qout is corresponding joints configuration;

• KG is a matrix gain that can be set by the user, whose value is critical for the



convergence of the algorithm; the Inverse Kinematic block (see Section A.1.3) allows

to set the value of KG (the default value is 1) during simulation;

• J†
W is the weighted pseudo-inverse of the Jacobian matrix computed as

J†
W = JT

(

JJT − λ
)−1

,

where J is the Jacobian matrix of the manipulator in the current configuration and

λ is a weight matrix defined in [48];

• MT and MQ are two filters customable by the user in order to mask some positions

or directions in the workspace (MT ) or to lock some joints to a defined value (MQ).

In particular, the first filter can be used to improve algorithm performances for

under-actuated robots (i.e.: for a planar robot, we can mask [Zpos, P itch, Y aw]);

the second filter can be used to select only proper subsets of the joints for the inverse

kinematic function, leaving the possibility for the remaining joints to be programmed

directly in joint space.

The dynamic algorithm used in RobotiCad is based on the standard Newton-Euler

method and consists of a recursive algorithm to define the torques applied to the endef-

fector (for details, see [86]). Alternatively, the user can specify a .m file containing the

closed-loop form of the dynamic equations calculated via the DYN function subset.

A.1.3 RobotiCad Blockset

The second main part of the RobotiCad toolbox is a Simulink blockset collection, called

RobotiCad Blocks. In Fig. A.7 a snapshot of this library is shown.

These eight fundamental blocks are summarized in the following list. Their properties

are explained in the next Section with a case study.

Workspace and Graphics This main block, shown in Fig. A.8(a), contains all the

blocks that allow the user to interface the model created in the RobotiCad GUI

with a Simulink environment. In particular, the Select Robot (see Fig. A.8(b)) block

allows to choose the robot to work with and, by a simple tick in a checkbox, can

automatically create all the blocks that implement the fundamental functions, such

as forward and inverse kinematics and dynamics, and so on.

Trajectory Contains all the blocks dedicated to the trajectory generation. The user can

choose between many kinds of trajectories, or load the *.txt files created by the

RobotiCad GUI containing workspace trajectories. By means of these blocks, the

user can combine many different trajectories to create complex motion profiles.



Figure A.7: RobotiCad Library for Simulink.

(a) Workspace and Graphics (b) Select Robot mask

Figure A.8: RobotiCad Workspace and Graphics Blocks and mask of the Select Robot

block.

Motor Models Some basic motor models, such as DC motors and so on, are collected

here. The user can add new models.

Homogeneous Transformation Contains all the blocks to handle homogeneous trans-

formation.
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Figure A.9: The case study robot.

Robot Extras Once the user selects a robot, the blocks collected here allow the compu-

tation of the manipulability values, of the Jacobian matrix, of singularity conditions.

Force Contains two blocks to define a force vector and to load the gravity vector.

Time Contains two blocks that can be programmed as switches and that can be used to

combine trajectories.

Examples As indicated by the block name, this block contains some examples of robotic

systems.

A.2 Case Study 1: welding profile

In this Section, in order to show how to create and simulate an industrial robot cell within

RobotiCad, a case study is reported. In particular, an 8 DOF robot composed by a 2



Figure A.10: Two orthogonal cylinders with desired welding profile.

DOF planar arm moving on the XY plane and a Unimation Puma 560 (see Fig. A.9) is

considered. The DH parameters are reported in Table A.2. In the simulation, this 8 DOF

robot is used to weld two orthogonal and intersecting cylinders. The robot’s tool trajectory

is specified in the workspace, and the inverse kinematic algorithm is used to obtain the

corresponding joints configurations. The workspace trajectory is described analytically

and a subset of via-points is used and interpolated for the robot programming. Of course,

for this kind of task, it is not necessary to use a manipulator as complex as this one. The

dynamic parameters are not reported for the sake of brevity and because they are well

known in the literature (see [5]). The position of the robot base in F0 is [−1, −1, 1.5]T ,

while its Tool has an offset dt = 0.5 along the z8 endeffector axis.

A.2.1 Trajectory Definition

The trajectory followed by the robot’s tool is shown in Fig. A.10. To obtain the requested

path, one can start from considering the locus obtained by intersecting two orthogonal

cylinders, with radii r1 = 0.4 and r2 = 0.75 respectively. This locus is described by:

p(t) =







x(t)

y(t)

z(t)






=









r1 cos(t)

r1 sin(t)
√

r2
2 − r2

1 sin2(t)









, (A.2)



αi a θi d R/P

Joint1
π
2 0 0 d1 1

Joint2 −π
2 0 π

2 d2 1

Joint3
π
2 0 θ3 0 0

Joint4 0 0.43 θ4 0 0

Joint5 −π
2 0.02 θ5 0.15 0

Joint6
π
2 0 θ6 0.43 0

Joint7 −π
2 0 θ7 0 0

Joint8 0 0 θ8 0 0

Table A.2: DH Welding Robot Parameters.

where t ∈ [0 . . . 2π].

To define the Frenet frame associated to each via-point, p(t) is derived:

ṗ(t) =







ẋ(t)

ẏ(t)

ż(t)






=













−r1 sin(t)

r1 cos(t)

− r2
1 sin(t) · cos(t)

√

r2
2 − r2

1 sin2(t)













,

p̈(t) =







ẍ(t)

ÿ(t)

z̈(t)






=











−r1 cos(t)

−r1 sin(t)

r2
2(sin

2(t) − cos2(t)) − r2
1 sin4(t)

sin(t) cos(t)











,

(A.3)

By normalizing p(t), ṗ(t), p̈(t), one obtains p̄(t) =
p(t)

|p(t)| ,
˙̄p(t) = ṗ(t)

|ṗ(t)| , ¨̄p(t) =
p̈(t)

|p̈(t)|
that represent the unit vectors of the Frenet frame parametrized in t ∈ [0 . . . 2π]. Now, by

considering the 8 DOF robot, one can see that the robot’s approach vector and z vector

of the Frenet frame differ of π radians. To get the via point that describe the trajectory,

one can get the Frenet frame for t = i · 2π
N , with i = 0 . . . N , and apply a rotation about

z of an angle θ = π. In our case, the value N = 20 has been chosen to get a low position

error using cubic spline interpolation (see Table A.3). The resulting workspace trajectory

is shown in Fig. A.11.

A.2.2 Robot Control Scheme

The control scheme used in this example is the well known PD with gravity compensation.

The overall scheme is reported in Fig. A.12.



Figure A.11: Resulting trajectory with 20 via-points.

Table A.3: Number of trajectory via points versus approximation error.

Number of via points Error %

3 2.4039

5 0.0882

20 7.4488·10−5

100 5.7429·10−13

In Fig. A.13 the analogous scheme created with the RobotiCad Simulink Library is

shown. Note that in this scheme, a Random Number generator has been introduced to

simulate the fact that the gravity term computed by the control algorithm in general does

not match the real value. Moreover, note that the reference signal is created with two

different blocks: the first one loads the *.txt file containing the 20 via points used for the

trajectory interpolation, the second one generates a joint space trajectory. In fact, the

Inverse Kinematic Block is used to get joints trajectory reference for joints 3 . . . 8, while

the first two joints are moved by a circular trajectory specified directly in joint space. This

allows to move the Cartesian part of the structure on a circle, while the tool of the robot

is always maintained orthogonal to the intersection of the two cylinders.
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Figure A.12: PD with gravity compensation control scheme.

Figure A.13: PD with gravity compensation control scheme implemented with RobotiCad

Simulink Library.

A.3 Case Study 2: a real application in rehabilitation

robotics

The first real application that exploits the RobotiCad Matlab Functions has been pre-

sented in [10], where the authors deal with the problem of projecting a serial manipulator

able to heal motion-impaired patients affected by Benign Paroxymal Positional Vertigo

(BPPV) and variants, collectively called vestibular lithiasis, that designate a common dis-

order caused by a malfunction of the inner ear. These pathologies are connected with

the presence of dense particles within the semicircular canals which interfere with the

sensing capabilities of angular velocity in the patient, causing nystagmus and vertigo. In



(a) Human vestibular system (b) BPPV (Canalithiasis) and BPPV variants

(Cupulolithiasis)

Fig. A.14(a) the human vestibular system is shown, and in Fig. A.14(b) the BPPV is

depicted with variants.

Some of these conditions can be treated by repositioning maneuvers physically done by

the doctor that moves the head of the patient along different poses in space. Despite the

fact that the treatment shows a success rate up to 80-90%, the failure rate remains highly

significant and it is proven that precision repeatability and unlimited 360◦ manoeuvrability

can improve diagnostic and treatment potential for overcoming this kind of vertigo. Some

example of manipulators able to move and orient a person following predefined trajectory

already exists, such as the RoboCoaster from Kuka Roboticker GmbH [82] or the Omniax

Positioning System designed and manufactured at the Portland Otologic Clinic by Eng.

William Scott following Dr. J. M. Epley specifications [69], a robot specifically designed

for the diagnosis and treatment of the BPPV that presents limited maneuverability. From

these considerations, it follows the need to create a manipulator with high mobility able to

move a patient replying known maneuvers and, eventually, with a workspace as small as

possible in order to be used in an hospital environment. The kinematic design proposed in

[10] is based on a simplified version of the task-based design technique exploited in [22] [23]

[97] [51] to find an optimal structure-configuration to satisfy all the kinematic constraints

for BPPV maneuvers. In particular, the optimization process make use of a progressive

method witch meets consecutive constraints and progressive optimized solutions.

The overall evaluation procedure is depicted in Fig. A.14. Given a set of tasks we state

that a reachability constraint (RC) must be satisfied for all task points. The RC constraint

is said to be satisfied if there exists a solution of the inverse kinematic problem (IK) for

the particular task presenting a positional and orientation error norm within a certain

threshold and within a certain number of iterations. As the structure of the manipulator

is not yet defined and the serial chain can assume a very high number of configurations,



Design Steps Evaluation Procedure
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constructability
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Figure A.14: Design steps and evaluation procedure.

a numerical method to solve the IK problem is used; reference is made to the singularity

robust IK method proposed in [49]. If the RC is not satisfied the fitness value is set to a

very large number. The design steps are briefly explained below:

A) Minimized degrees-of-freedom approach(MDOF): In the first design stage the

fitness value is simply the number of manipulator’s d.o.f. regardless the fact of joint being

revolute or prismatic. IK is computed for every task and, if the RC is not satisfied, the

fitness value is set to a very large number and successive tasks are not evaluated. Prior to

IK calculation, which is the most time consuming procedure, it is verified that:

Ri = ri −
n

∑

j=0

lj < 0 for i = 1, ..., NTOT (A.4)

where NTOT is the total number of tasks, ri is the Euclidian distance of i-th task point

from robot base and lj is the j-th link length. If the j-th joint is revolute, lj is a design

parameter with a maximum allowed value set to Lmax. If j-th joint is prismatic, lj is set

to 2Lmax. After IK, i-th RC is considered not satisfied if:
√

a2
j + (∆d2

jmax
) > 2Lmax (A.5)

where ∆djmax
= |djmax

− djmin
| (i.e. during motion the prismatic joint has traveled a

distance greater than 2Lmax, its initial length being set to aj.) Result of this procedure



D-H matrix and Link Type best solution

α a ϑ d R/P

π
2 0,00 ϑ1 1,20 R

3
2π 0,10 ϑ2 0 R
3
2π 0,00 π d3 P
3
2π 0,00 ϑ4 0 R
3
2π 0,00 ϑ5 0,20 R

π 0,00 ϑ6 0 R
(a) Denavith-Hartenberg parameters

(b) Best solution link representation.

Figure A.15: Best found solution.

is the minimum number of d.o.f. necessary to perform task specifications; basically there

exists a possible n-DOF structure defined by the individual X capable to perform every

pose.

B) Mechanical constructability minimization. Fitness function is set to:

F (X) =

n
∑

j=0

lj (A.6)

where:






lj =
√

a2
j + d2

j if j − th joint is revolute

lj =
√

a2
j + (∆d2

jmax
) ifj − th joint is prismatic.

(A.7)

At this design stage fixed joints are not allowed. The aim of this step is the minimization

of total link length and therefore of total robot’s mass.

The algorithm is tested with a population size of 50 individuals - 200 generations. The

IK solver and the obtained results visualization make use of the functionalities provided

by RobotiCad. In table A.15(a) are reported the kinematic parameters of the best found

solution, schematized in Fig. A.15(b). In Fig. A.16 a possible mechanical realization of

the manipulator is depicted, and in Fig. A.17 two positions of task-executing are shown.

A.4 Conclusions and future work

In this chapter RobotiCad, a new robotic toolbox for Matlab/Simulink, has been presented.

It is based on a rich collection of Matlab functions, and can be used as a tool for educational

purposes or industry robot prototyping and control.

The user-friendly interface allows to model a robot by specifying its Denavit-Hartenberg

matrix and its physical properties, and to add objects to the environment by creating or



loading them from a library, and more manipulators can be used at the same time. More-

over, the manipulator can be programmed in different ways and simulated by means of new

Simulink blocks. An AVI file can be created for each simulation session. The RobotiCad

toolbox is available on the web at:

http://www.roboticad.deis.unibo.it/

Here, several examples and a library of robots (such as SCARA, Unimation Puma 560,

Stanford Arm and so on) can be found.



Figure A.16: Possible Mechanical design of best found solution

(a) Rest position (b) Rotation along right AC axis

Figure A.17: Manipulator performing task
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